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PREFACE

Econometric and Autoregressive Integrated Moving
Average forecasts of the annual average price of beef
cattle received by farmers in the United States were made
aver the period from 1944 through 1985, These forecasts
from the two models were combined into composite forecasts
to improve forecasting accuracy. The period for the
analysis of the accuracy of the individual and combined
faorecasts was 19746 through 19895.

The composite forecasts improved forecasting accuracy
in most cases, and the method of combining forecasts
provides a useful tool for devlioping an accurate set of
annual cattle price forecasts.
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CHAPTER ONE
INTRODUCTION
Problem Statement

During the early 19887¢, cattle producers faced
conditions of falling prices coupled with difficulty in
financing and thus, many producers were unable to survive
the price fluctuations associated with the cattle cycle.
The U.S.D.A. ecstimated that between 1984 and {985, the
number of operations with beef cattle dropped by 47,18@, and
inventories of cattle fell by about 4 million head. O0One
reason for the financial stress within the cattle industry
is that many cattle producers make production decisions
based on recent price changes, vet production lags create a
zituation where price may be moving in the opposite
direction by the time production has been adapted to the
price changes. Thie is evidenced by the fact that
inventories usually continue to rise several years after
prices have peaked.

According to Keith (1974, po 110, & survey of OK1ahoms
cow—calf operators "seemgs to portray the cow-calf man as an

unrelenting optimist." In a2 1274 survey of Oklahoma



cow—calf operators, Keith found that 5% percent of the
cowm-calf operators believed prices would remain stable awver
the next »ear, (1974-1975), 24 percent believed prices would
recover within the next year, while only 3 percent believed
that prices would spiral downward over the next 3 to 5
¥ears. As can be seen in Figure 1, real prices received by
beef cattle farmere did not begin to recover until 1%¥78.

Some producers hold slaughter cattle during periods of
increasing prices, hoping to receive higher returns, but do
not sell until prices already have begun a sharp decline.
In doing so, these producers forego marginal returns and
increase their marginal costs, selling at 2 lower price and
putting marginally more expensive weight on the cattle.
Collectively, these actions of cattle producers result in a
glut of cattle for slaughter at heavier slaughter weights
after prices have begun ta fall.

Resources .continue toc be applied to a product with
diminishing marginal returns. @As a result, allocative
inefficiency occurs from a lack of understanding of the
operative forces during the downswing of the cattle cycle.
An improper allocation of resources also occurs during an
upewing of prices. After a pericd of low prices, herd
liquidation teads to a low supply of feeder cattle.
Therefore, in the early stages of the upswing of the cattle
price cycle, as prices are rising, feedlotse are operating at
levels well below capacity, and only modest returnzs are

received, From the foregoing loqgic it can be =een that
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Figure 1. Average Deflated Price of Beef Cattle Received by Farmers in the United States



allocative inefficiencies occur during both the upswing and
downswing phases of the cattle cycle. Figure 2 shows
h¥pothetical social coste of the cyclical nature of supply.
The.curues SU and SL represent an outward shift of the
supply curve and an inward shift of the supply curve
respectively. Areas | and 2 represent costs to society when
cutput is low, which could be illustrated by the case when
feedlots must operate at below capacity due to a lack of
feeders, In this case the supply of feeders is shifted
inward and the consumer, the feedlot cperatar, loses
revenues equivalent to area 1, while the producer, for
example, the cow-calf operator, loses revenues equivalent to
area 2. #@Areas 3 and 4 represent social coste when supply is
increaced, area 3 being the loss to consumers of the product
and area 4 being the loss to producers of the product. This
case is analagoue to when operatorse must begin slaughtering
breeding stock and calves due to falling prices. The outward
shift in the supply curve would have occcurred from some
change in supply determinants, such as decreased feed
prices.

Adccording to Brandt and Bessler, there are inherent
uncertainties within the livestock industry coupled with an
inelastic demand curve for farm livestock. Given these
conditions they state (1781, p. 3)3:

Sencsible decicsion making thus requires Knowledge

fexpectations or beliefs) about the likelihood of many
alternative outcomes.
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Certainly outcomes, such as producer profits, are dependent
on how well producer’es expectations of praducghbrices
coincide with actual prices. The problem is then how to
develop accurate expectations of future cattle prices, qiven
their cyclical behavior. One possible means is by
developing a set of accurate price forecasts based on past

and currently available information.
Behavior of the Cattle Cycle

Unfortunately for forecasting purposes, the cattle
price cycle has not zhown a fixed periocdicity, nor 2 time
symmetry between the upswing phase and the downswing phase.
Cy¥cles in numbers have occurred from 1?12-1928, 1?728-17=28,
1938-174%, 1947-1958, 1938-1947, and 1947-1979. Peaks in
numbers occurred in 1898, 1704, 1918, 1734, 1745, 19355,
1?85, and 1?75, In general, peaks in cattle cycle numbers
occur approximately | to 2 years after prices have peaked.
Accumulation phases have varied from 4 to 8 years, and
liquidation phases have been even more variable in Yength,
ranging from 2 to 18 yearse., While ligquidation phases within
the crcle have tended to become shorter, the ligquidation
phase of the most recent cycle was two wears longer than the
previcus cvcle. Beaxle, Hasbargen, IKerd, Murfieild, and
Petritz (1?33, p. 1) noted the variablility in the periocd of
the past 5 crycles, two of which were ¢ wears long, one which
was 10 wears in length, an 11 year cycle, and the last

crcle, completed in the beginning of {9779, which was 12
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years long. As can be seen in Figure 1, peaks in deflated
prices received by farmers for heef cattle and troughs in
total slaughter took place in 1728, 1?48, 1949, 1957, f??l,
and 1?79, while troughs in deflated prices and peaks in
slaughter occurred in 19234, 1?44, 193533, 19484, and 1975.
Deflated prices have ranged from about four cents per pound
from peak to trough in 19248 to 1744, to over ten cents per
pound between the price peak and trough in 1975 to 197%.
Such variability in cycle length and relative tength of
phases within each cycle, underscores the difficulty of

forecasting cyclical price patterns.
Objectives

With more accurate information concerning price
gxpectations and improved Knowledge of where cyclical
turning paints in prices wiil cccur, producers would be abie
to makKe better management decisons regarding the size of
their breeding herds including decisions relating to
expancion and reduction of herd size. Of particular
importance to long—term producer decisions is the ability to
correctly identify significant turning points within the
cattle price crcle. The objective of this study is to
develop & model, or combinaxtion of models, capable of
accurately forecasting live cattle cash prices throughout
the cattle price crcle. Price forecasts from various types
of forecasting techniques, and combinztions of these

techniques will be zanalyzed in an attempt to find the most



accurate set of forecasts of beef cattle prices.

o

Consequently, an additional objective of thies study will be

to test the relative forecasting accuracy of various tvpes
of forecasts and combinations of forecasts, including

forecasts from an econometric and an ARIMA model.
Past Studies of the Cattle Crcle

Generally, studies of the cattle cycle have been of
three tvpes: qualitative or descriptive studies,
econometric studies, and non-structural mechanical studies
or those which use only past and present wvalues of the

1 Qualitative

specified variable to formulate forecasts.
studies of the cattle cycle include HopKine {(1924), Lorie
(1947), Burmeister (1924%9), and DeGraf+ (17563, UWhile
Hopkins and Burmeister hypothesized that the cattlé crcle
caused by factors externzl to the cattle industry, Lorie
sought to discount the exogenocus theory of causation,

emphasizing the importance aof the biclogical process of

cattle breeding and raising in determining the length and

is

amplitude of the cattle cycle. Ehrich (1944, as have more

recent studies of the cattle cycle, incorporated both the
theory of exogenous caucsation and endogencus causation of
the cattle cycle into an ecocnometric study of the cattle

cvcle., Ehrich assumed supplies were fixed due to the

production lag involved in breeding and raising cattle, and

therefore hwpothesized the price of beef steers to he

m

determined by a demand relation. Mon—-structural mechanical



studies include Franzmann and Walker ¢(1?772) who emploved
harmonic regressions to predict monthly feeder, slaughter,
and wholesale beef cattle prices throughout the price cycle,
which was assumed to be ten vears in length. Cattle crcie
studiec often employ all three of these types of techniques
in their analvees, but the majority of cattle cycle studies
since the early 19358°s have employed econometrics as the
primary means of analysis.z
fAiccording to Brandt and Bessler (1979, p. &),
econometric models provide a tool for analyzing prices by
using information about "relevant supply and demand factors
which together determine market price and quantity."
Structural models estimate the relationship of present
prices to present and past values of exogencus variables.
Given that this relationship Ean be expected to haold in the
future, then structural models furnish a means for
forecasting future values of the dependent variable, If &
complete set of information about these structural
relationships is unavailable, then non-structural models
exist as an alternative, relating present walues of prices
to past walues of prices. Given the complexity of the
cattie industry, the forecaster may not be able to identify
all of the relevant structural relationships in order to
forecast prices. Yet, structural modelsz may provide a
vseful set of forecasts., In fact, if both types of models
supply information which is independent of the octher type of

model, then the forecazster can gain information by emploring
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both types of models. Granger and Newbold (1972) proposed
that the grextest benefits would arise from combining wery
different types of techniques, particularly econometric and

statistical techniques.
Me thodal ogy

One poscsible means of achieving more accurate price
forecasts is the employment of composite forecasting
techniques. Composite forecasting techniques use =
combination of forecasts develaoped from altternative
forecasting methods. This study will employ a structural
model, a time series model or non—-structural model, and a
compasite of these two types of models to make one step
ahead annual forecasts of the price of beef cattle received
by farmers. The structurzl model will be of single equation
tform, relating price to quantities produced and specified
demand determinants. The time series model emploved will be
an autoregressive integrated moving average {ARIMAY., The
forecxsting adequacy of the indiwvidual and composite
forecasting techniques will ‘be evaluated by several
criteria, including the mean squared error and turning point

errors produced by each technique.



FOOTNOTES

lpecsler and Brandt (1979) consider four
classifications of commodity forecasting: structural
mechanical, non-structural mechamical, structural
non-mechanical, and ron-structural non-mechanical.
Structural models are those which incorporate supply and
demand factors, while non—-structural models reflect only
past walues of the wvariable to be forecasted. Mechanical
models are built, then require no additional human
intervention or Jjudgement,

ZNorblom €1982) gives a cumulative chronology of
cattle cycle literature,

11



CHAPTER TWO
EXPLANATIONS OF THE CATTLE PRICE CYCLE
Definition of the Cattle Cycle

The cattle cycle has several alternative definitions.
Various studies define the cattle cycle as the cycle in
inventory numbers.! Gruber (1945, p. 1) defines the
"cattle cycle"” as consisting of three separate cycle groups:
(1) the cattle inventory cycle, {(2) the cattle price and
income crcle, and (3> the cattle slaughter and import cycle,
Al though there are several alternative definitions of the
cattle cycle, Breimrer (1962, p. 2 states, "In so far as
cvclical trends in inventories, slaughter, and prices are

causally linkKed, it makes no difference by what term th

n

cattle cycle is described.® ULhile the primary focus of this
study will be to Forecast cattle prices and cyclical price
behavior, the fact that the three cycles are causally linked
necessitates examination of the crclical behavior of
slaughter and inventories in order to formulate & structural

model to forecast prices.



Theories af Causation of the

Cattle Cwvcle

E+faorts have been made to explain the cattle cycle in
caucsal terms. Thece efforts have taken two divergent paths,
exogenous causality and endogenous causality. The theory of
exogenous causality proposes that the value of cattle is
affected primarily by influences exogenous to the industry,
such as changes in demand, and not changes in cattle
numbers. Hopkinse felt the irregularity of the length and
amplitude in cattle price cycles indicated exogenous
causality of the cycle, contrary to the cobwebk theoryr.
Hopkins (1924, p. 351) states:

Granting that adjusting cattle production requires =

lang period and does not establish the theory that

cattlie price and production cycles are to be explained
by an inherent and self— perpetuating tendency of
praducers to aver and under—produce.

The cattle cycles of the past &8 years are
apparently due to +orces from outside of the cattle
industry, but these forces or conditions which have
caused the major crises in the cattle industry do not
seem to be related to any regularly recurrent
phenomena.

Hopkine lizstse several exogenous factors which are
purpaorted to qenerate price cycles, including the general
leyel of business activity, wars, expansion of Qrazing
territoriss, and profitability of alternative enterprises,
Simitarly, Burmeister (174%, p. %) socught to explain "the

diestinctive feature of each cycle in numbers with reference

te unusual conditions that have affected

o

y

T

cattle industry

at various times..." Lhile Burmeister described the =ffect

of individual events in the economy and development of the
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industry updn cycles in cattle number=z, he did acknowledge
that periodic changes in cattle numbers were partially
affected by the biological characteristics of cattie
raising. Lorie (1947, p. 5@ qheetiona the great importance
placed by HopkKine on the effect of business activity upon
cattle crcles, noting the markKed lack of synchronizatian
between business activity and cattle prices. With regard to
Hopkin“s linkage of specific economic and physical events to
cattle number cycles, Lorie (1747, p. 3512 states, "It ceems
probable that a more consistent and convincing explanation
of fairly regular fourteen—to sixteen—year crcles in cattle
numbers can be found."

This fair "regularity" in cycles leads to the second
theory of causation of the cattle cycle. The endogencous
theory of causation of the cattle cycle postuiates that the
cattle cycle is caused primarily by factors within the
cattle industry, and more specifically, by the biclogical
pracess of raising cattie. DeGraff (1948, p. 42, while
acknowledging the influence aof factors such as changes in
demand 6b feed supplies upon the initiation of a crcle,
proposes that:

The reazon why a cycle follows its standardized pattern

is found, not in economics, but in biclogy. Changes in

cattle production, whatever caused their beqginning are
converted into & crclical pattern by the natural
biology of the cattle species.

Ezekiel (1938) incorporated the role of prices along

with the biclogical processe

it

. causing crcles into the ccochbuweb

o
i

theory, as may be seen in Figure 3. While producers respond
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to changes in prices of a commodity, the production of the
commodity requires at least one period to be realized once
production plans are made. Therefore, responses in quantity
to prices are determined by the length of the production
process., Case 1 of the cobweb theorem shows the effect of a
production ltag on prices when supply and demand for the
commodi ty both have the same own price elasticity. In this
cace there will be no diveragence or convergence of prices
through time, Case 2 of the cobweb theory shows that when
demand is more elastic than supply, prices will tend to
caonverge towards a long-run equilibrium. Ceonsequently, if
demand is elastic re]atiue‘to supply, crclical behaviar will
tend to become less evident through time. Yet in Case 3,
when demand is inelastic relative to supply, prices will
tend to converge away from a long-run equilibr}um. Ezekiel
noted that the cobweb theorem contzined very rigid
assumptions, and building hypothetical cycles determined by
fixed length of production lags would result in crocles which
were much more reqular in length than actual crcles. lhen
EzeKiel compared actual deflated prices for cattle with
c¥cles based upon the +ixed production perionds suggested by
the cobweb theorem, the cyclical patterns of the actuxl data
were much moere irreqular in length and amplitude. Yet, the
trend toward a shortening of the cattle cycle over the past
&8 wears would tend to suggest that in the Tong-run the
cattle price crvcle might follow the covergent path of Case 2

of the cobweb theory suggested by Ezekiel.Z



17

Later attempts to explain cyclical behavior through the
cobweb theorem include the study by Talpaz (1974, Talpaz
extended EzekKiel“s model to include a demand curve which
relates current prices to current market output and & supply
curve which relates current output to past prices.
Therefore, Talpaz’s model extended the static Marshallian
supply and demand curves to express the hog cycle as a
linear combination of several decomposable hog cycles.
Adccording to Talpaz (1974, p. 48):

This model refiects an integrated multifrequency

decisicon process resulting from the feedback of the

production recponse to the price ratio signal through
fixed multiple production lags.
The model incorporated the Cobweb Theorem, the Harmonic
Motion, and the Distributed Lags Model.

Lorie (1%947) attempted to formulate & theory explaining
crvclical fluctuations in cattle which would consider the
interrelationships between value, marketings, and number an
farms. Lorie also incorporated into the theory the effects
of certain exogenous factors upon the model, such as changes
in the tastes of consumers or changes in weather. Laorie
noted that = change in tastes, specifically an increase in
demand, would affect markKeting directly, rather than
production, but, except for a time lag between the rise in
value and the accumuiation process, the effect would be the
fame as with a weather disturbance. According to Lorie
(1947, p. S4):

The =subsequent development of the cycle would be the

same in the two cases, except the za-czalled
"equilibrivm level” itself would ke changed if the
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initial disturbance were a change in demand.

Consequently, in this latter case the crclical

fluctuatione would be around a different equilibrium

position.

Lorie states that the varying effects of different
exogencus factors result because the response to price
changes is less rapid than the response of prices to changes
in other factors. Underlying this statement is the concept
that although different exogenous factorse may have wvarying
stimuli upon the cycle, a given pattern or chain of events
will resuft due to the limitations of the production

process. The cycle is therefore affected by both endogenous

and exogenous factors.
Phases of the Cattle Cycle

If the excgenous chock is such that it raises the valus
cof beef cattle zbove equilibrium, cattle slaughter will be
reduced, further pushing prices up., This reduction in
slaughter occurs for two primary reasons, Cattle feeders,
who are buying and selling on a cyclically rising market,
are able to oguthid packers for veal calvees, therefore calf
slaughter is reduced. More importantly, beef-cow producers
expand herds for breeding purposes in order to increase
their potential production of feeder calves in I tao 3 vears.
By haolding back more cows and heifers, slaughter ie reduced
even further. Thus during this initixl phace, which Beals

et al. term the acceleration phase, price

(0]

are increasing,

slaughter is decreasing, and inventories are rebuilt,’
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Eventually, following herd Eui]d—up, as cows are past
breeding, calves reach yvearling age, and some firms reach
carrying capacity limits, sales are generated from these
herds lowering the rate of price increases. ' Even after
prices have peaked, numbers of animals still rise. Beales et
al. state that cattle numbers reach their peak about two
vears after prices pealk, Reductions in herds mark the
deceleration stage. With falling prices, producers decrease
breeding stock by culling cows and placing more heifers on
feed. During the deceleration stage feeder supply available
for slaughter increases, as well as & greater availability
of calvee and "nonfed" steers and heifers., The incregases in
slaughter relative to an inelastic short—-run demand drive
prices down even further.

Staughter of breeding stock and, particularly, calves
result in smaller potential supplies of s=laughter cattle in
the future, With & decrease in slaughter, prices begin to
rise. EBexle et al. refer to this stxge in the cattle cycle
as the "turpnaround stage®. They distinguish between it and
the "rapid growth" or "acceleration stage" because during
the turnarcund stage cattle feeders mar receive only
moderzte returns duse to high feedlot capacity relative to
available feeder supplies.

From the above description of the cattle crcle, it
becomes apparent that cattle s=lzaughter plarve an important

role in determining prices and that in the short-run, prices

are based on current quantities., While this is true,



producers must base inventory and slaughter decisions
largely on past prices or results of past production
decisione, such as resulting producer incomes. Although
price cvcles are partially determined by slaughter cycles,
price cvcles tend to be more irregular in amplitude and
length than slaughter number cycles, indicating the

responciveness of prices to exogenous economic factors
Changes in the Cattle Industry

Several important changes have taken place within the
cattle industry since the 19468 which have the potentizxl to
affect the reqgultarity of the price cycle. These changes
include:

(1> an increase in the efficiency of slaughter

and marketing

(2 an increase in cattle feeding

(3> changes in markKeting structure, specifically

more direct sales to packers

(4 a gradual inward shift in the consumer

demand for beef, resulting partialliy from
changes within the poultry industry and the
increased demand for poultry.

An increase in the efficiency of slaughter and
marketing has resulted in the ability to adapt slaughter and
marketing to changes in the prices of cattle more rapidiy.
The increased ability to adapt slaughter and marketing is a

primary cause of the general trend toward shortening of the
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lTiquidation phase of the cattle cycle. When prices of
cattle begin to. fall, and more feeders are available for
slaughter, slaughter and marketing facilities are more able
to accomodate to the increased numbers. Pyne (1928, p. 18
notes that while the length of the liquidation phase has
shortened in general, the accumulation phase has remained
fairly stable, The stability of the accumulation phase can
bhe attributed to its higher degree of linkage to the
relatively fixed biological process of cattle breesding and
growth.
& trend of ricing numbers of cattle being fed relative
to nonfed has occurred since the 1?58"s. The result is a
relative increase in fed steer and heifer production. Prne
(1938, p. 28> writes on the effect of this change on the
steer slaughter cycle:
Concurrently, the growth of ltarge—scale feedlots
appears to be a2 major factor affecting steer
staughter...a major part of the inquiry into steer
slaughter iz that as a result of this structural change
it exhibits no noticeable relationship to inventorr
numbers or to aother slaughter rates,
In conjunction with a greater number of fed stesrs and
heifers, the number of cxlves slaughtered, once an important
sagurce of non—fed beef, has shown & decline. This is a
natural conclusion since more calves are fed to maturity for

taughter. Also the number of culled dairy cows, another

w

source of non—fed beef, has decreased as dairy cow numbers
have trended downward.
The beef marketing structure has changed such that

there are more direct =zale

m

. to packer=. Crom et al., stzate
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that by 1978, direct sales accounted for &5.2 percent of
packer purchases. Yet prior to wor[d War 11, most sales
were nondirect {(through terminal markets and auctions).
While there are many beet producers, there are relatively
few buxers or packers, thus the burver has a bargaining
advantage. Therefore, demand factore may have become of
greater importance in determining the cattle price crcle
particularly with recspect to the steer cycle, steerse being
the primary source of beef consumed.

Development of new technologies of production and
marKeting strategies within the poultry industry Haue Iikeiy
had an etfect upon the demand for beef. Specifically,
innovations, such as those to improve feed conversion rates
for broilers, have lowered the coste of poultry production.
Additionally, marketing strateqgies, such as branding of
poultry praductse may have helped to promote competition
between poultry products and higher quality cute of beef.
While changes in the poultry industry have likely had an
effect upon the beef cattle industry, past studies have
found ambiguous resulits for price flexibilities retating

beef prices to quantities of chicken consumed, 4



FOOTNOTES

lThese studies include Breimyer (1955), Burmeister
(19493, and Pyne (1%38).

2Ezekiel devised s¥nthetic time series given certain
production lags. He examined three cases: the case where
supply and demand are of egual =lasticity, the case where
supply elasticity is greater than demand elasticitr, and the
case where the elasticity of demand is greater than the
eltasticity of supply. Notably, when the elasticity of
demand is greater than the elasticity of supply then the
cvcle would undergo convergent fluctuations over time, and
when the elasticity of supply iz greater than the elasticity
of demand then the cycle would become divergent through
time.

SBeale et al. (1983) break down the traditional
accumultaticon and ligquidation phases into the rapid growth,
deceleration, and turnaround stages. The rapid growth and
turnaround stages are within the traditional inventory
accumulation phase, while the deceleration stage includes
the end of the accumulation phase and the liguidation phase.

Ycrom et al. (1973, p. 18%9) review price flexibilities
fournd in past studies, which shcwed a negative flexibility
between the price of beef and pork quantities, wet showed a
positive flexibility between beef prices and chicken
quantities.

3]
(12 ]



CHAPTER THREE
COMFOSITE FORECASTING
The Combination of Forecasts

Bates and Granger (1948 suggest that individual
forecasting technigues may produce information independent
of other individual forecasting techniques. This implies
that more information may be gained through a combination of
forecasts., Given this implication, Granger and Mewbold
(1?72 proposed that the greatest benefits would aricse from
combining very different typés of forecasting techniques,
particularly econometric and statistical techniques.

Mewboid and Granger (1974) examined forecasts more fully
using univariate time series. Their study focused on the
combination of such techniquese for wvarious rezxsons,
According to Newbold and Granger, these techniques are often
quick and inexpensive to operate and often adequate
structural data may be unavailable. aAdditionally,
univariate forecasting procedures may be used as a means of
comparison for more elaborate techniques.

The methods of combining forecasts may vary according
to forecasting needs and the consistency of individual

o

g

caszting performance. Three composite methods were
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selected to generate composite forecasts of cattle prices:
1> a simple average, 2 an adaptive weighting schem2, and
3> an unrestricted linear combination of forecaste. The
firet two weighting methods assume a linear combination of
forecasts with the weights summing to one, as suggested by
Bates and Granager (1%958%).

The general form for composite forecasting with
forecasts from K techniques, according to Bates and Granger

(19890, is:

R

€T+ = 2 Wi T4y i, T+1 .0

i=1

where
€14y = the composite of the K forecasting
methods in the T+1 forecast period
Wi,T+1 = the weight applied to fi,

K

T, = 1
T+
i=1" 1

{i,T+1= the T+1 forecast from the ith
forecasting technique.

This form is ewvaluated becsuse & lingar combination of
unbiased forecasts will result in an unbiased compeosite
forecast.! Sufficient conditions for & combined forecast
bias of zerc are that each of the K forecasts has zero mean
error and forecast weights that sum to one. The third
compaosite method does not restrict the weights to sum to
one. The second two composite technigues, unlike a s=imple

average, use information concerning past forecast =rror



histories to formulate the composite weights. According to
Bates and Granger (1949, p. 45):
Though the combined forecast formed by giving equal
weights to each of the individuzl forecasts is
acceptable for illustrative purposes, one would wish to

give greater weight to the set of forecasts which
seemed to contain lower {(mean—-square) errors.

A Simple Average of Forecasts

Perhaps the simplest method of composite forecasting is
the naive approach of taking an averxge of forecasts fraom
the individual techniques. An average of forecasts provides
a simplte and inexpencive means of combining forecasts which
perform consistently through time. The formula for a simple
average of alternative forecasting technigues is:

K
CT+1 =i§

03
N
-

T i, T+1 ¢

where

wi,T+1=1/K'
A simple average will of course give equal weight to esach
forecast regardlese of the accuracy of the forecast. Brandt
and Bessler (1781 found that 2 simple average of
econaometric and ARIMA& modele produced lower mean abzoclute
percentage errores, mean forecast srrors, and turning point
errors than did either of the individual methods when
applied to quarterly cattle price data. Harris and Leuthold
(1783 additionally applied a =imple average composite of
econometric and ARIMA models to quarterly farm price of

cattle. They naoted that the composite produced higher root
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mean squared errors than the ARIMA alone, but lower than the
econometric model. Although this was the case, the ARIM&
model alone did not perform well in terms of indicating

turning points in the data.

Adaptive Weighting SChemgs

M

Other maore sophisticated means of combining forecast
include methodes which base forecast weights on the
histeorical forecast’s performance. If constant forecasting
performance for each technique over time cannot be assumed,
the weighte may be adapted to account for more recent error
histories. PBrandt and Bessler (1?81) suggest an adaptive
weighting method to allow for the inclusion of v error
histories in the calcluation of the composite weight:

K T

Z¢ % eEJ L7
i=jt=T-v""'

Wi, T+1= (3.
K T

(K-1) Z[ ¥ e2i
i=1t=T-v ’

XY ]
L]
—t

where
i=1...K,

and Wi,T+i is the weight =zpplied to the ith forecast method
in period T+1, ei,t ie the error made by forecast method i
in pericod t, K is the number of forecasting methods, v is
the number of pericds selected to include in calculating the
adaptive weights, and T is the total number of periocds for
which historical errors are zavailable. Therefore, if the

number of forecasting technigues combined is two, as will be

u]



in the case of this study, then the weight applied on

forecasting technigque one weould be:

T
o2
=Ty 2%
Wy Te1 = (3.4)
T T
v g2 2
z e + Z e
t=T-v 1Y p=roy 2t

Ae in the previous methods of combining forecaste, the
weights must sum to one, but this method allows for the
selection of the number of error histories to include in
calculating the composite weight rather than including the
entire forecast error history. The method of including v
péricds of the error history to calculate the weights on the
forecasts does have the disadvantage that the method does
not adapt to the possibility that one or more of the
technigques may become worse over the v periods. 0One
possible sclution is weighting the forecast error hiztories
by an exponentia)l decay to give more recent forecast errors
greater importance relxtive to more distant error histories
in determining the weights on the individual forecasts in
the composite, Thus, if forecaste from one of the
techniques became much worse over the v error histaries
relative to the other technique, then less importance (&
smaller composite weight? would be placed on the forecasts
from that technique in calculating the composite forecast.
If the correlation between past forecast errors i assumed

to be z

hd

ra, as in the adaptiwve weighting scheme proposed by
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Brandt and Bessler, then the modified adaptive weight would

be:
K T
T(E atef ¢
i=j t=T-v °°*
Wi Tep = (3.5)
K T
(K-1) £ ¢ & ate? ¢
i=1 t=T-v '’
where

i=8 to n, B<Nn<T.

The modified adaptive weight is similar to the one
proposed by Brandt and Bessler, by allowing the forecaster
to consider only v periods, but it also allows more recent
forecast errors to be given more importance in determining
composite weights than distant ones. MNotably, if fhe
smoothing factor, a, is greater than 1, then recent error
histories are weighted more heavily than more distant error
histories. As a declineé toward 1, past errors are given
increasingly more importance in determining composite
weights, and if a=1, all v error histories are given equal
importance. If a is less than 1, distant error histories
_are given more importance in determining weights than recent
error histories. Therefore, from Equation (3.5), it may be
seen that if a is greater than 1, and the j...K forecasting
techniques begin to perform poorly in more recent forecasts
-(produce higher sum of squared errors), then more weight

will be given to the ith technigue.



Unrestricted Linear Combination

of Forecasts

Granger and Ramanathan (1734, p. 268> challenged the
restriction of convexity of weights, stating "...there is
nothing sacred about the weights adding up to unity,
although that seems to be the common practice." They
evaluate three methods of determining appropriate forecast
weights., These methods included an unrestricted linear
combination of forecasts without an intercept, a restricted
linear combination of forecasts, with the weights summing to
one, as suggested by Bates and Granger, and an unrestricted
linear combination of forecasfa with an intercept.

The firet method was an unrestricted combined forecast
with noe intercept. In cther words, the weights were
determined by regressing the actual data upon the forecasts
from the individual technigques and forcing the intercept to
be equal to zero. Unfortunately, in this case the composite
forecast errcrs may not average to zero. To illustrate this
problem, if the composite forecast iz found by:

Fa, (2.4

F being an nxK matrix of forecasts and o« being a Kxl vector

of composite weights, then the composite error will ke
€y = x - Fa. (2.7)

N
The value for o must be chosen to minimize:
. N A N -
(¥ — Feoed e — Foed, (2.8
where x is the actual price series to be forecast.

Thiz walue will be:
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% = (F'FYy lFrx, (2.9

and the composite forecasts would be:
xp = Fa = FCF/FYT1F7x, (3.18)
and the sum of squared errors would be:

rL

By = ep’ey = (x - §ﬁ>'<x - %)

= x’x - x’Fa. £3.11)
Even if each forecast is unbiased, 17¢(x = ¥J) = g,
which means that (172017 = 17F, and there%ore, 17017 =
I’Fa, in order for the combined forecast to have zero error

mean, 17%x would have to be zeroc or ‘¢ would have to be
equal to one. This is due ta the fact that in order to hzave
a zero error mean 1°Fa = 1'%, and since 175017 = l’F&,
then (1730170 = 17x.

With the second method tested by Granger and Ramanathan
and employed by Rausser and Just, the weights were
constrained to sum to unity and the regression was pertormed
without an intercept. If each individual forecast is
unbiased, then this weighting scheme will produce an
unbiased composite, but if one or more of the forecasts is
bizx=zed, then the combined forecast mar not yield errors
which average to zerc.l Additiconally, conetraining the
weights to sum to one will produce a larger mean—-squared
error. They represented this case as minimizing (x -

FE) (% - FE> with respect to B subject to the constraint
1“8 = 1. The first aorder condition for minimization:
F'x — F'FE - 21 = @, - (3.12)

which »ields the estimate for F:
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I

= - 2(F'Fy "1y, (3.13)
the value for > being:
o= 1@ - 1217 (F7Fy~1y,
Since the walue for SBISB ise
(x - FBy’ix - FBy,
then the sum of squared errors may be rewritten as:
| Qg = @y + 22017 CF Ry, (2.14)
by substituting in the walue for E shown in £3.14).
Thus, Qg is greater than G4, and the mean-squared error is
increased by constraining the composite weights to sum to
one .

Granger and Ramanathan also examined the case where
there are no restricions on the weights and a constant term
ie added. The combined forecast is then:

%o = 851 + F8§ (3.15)

where

a lxn vector of composite forecast

C s
égl = the constant term when the forecaste
are regressed an the data values to
be forecast
F = an nxl matrix of the forecast wvalues

from the various techniques
& = the weights applied to the K forecasts,

The sclutions for S and SB found by minimizing:

ey " Py o
(2 - SB] - FSY» d{x — Sﬁ] - F53, (3.142

may be given by:
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§=um -5 (FFP7IF
Sy = (17x% = 1°F >/n
= 17e, 7 [n - VVFLF/ P TlE T, (2.17)
where
& = a Kxl vector of weights for +J’s
or
= (F'Fy~1F7)
X = & lxn wvector of the values to be
forecasted.
The combined forecast is §C = SB] + F%, therefore the

forecast error is:

= &, - 8401 - FCF P TIF 11, (318
and the sum of squared error is:
-— — & ’ — £ —lr’\
O = @y - 2551701 - FCFPFY 1 F le,
+ 85101 - FeRemy TR £3.19)
Given that F’e, = @, then:
Be = @y - (178,057 In
- 1°FeF Py " Ea -, £3R, 200

Hence, the walue for Gé will be less than the vzxlue for ..
This method was emplored, according to the Granger and
Ramanathan, because it produced the lowest mean squared
error of the three methods tested and generated an unbiased
combined forecast regardliese of whether or not the |
individual forecasts were unbiased., Granger and Ramanthan

(1924, p. zZ81» therefore recommend, "The common practice of

0

cbtaining a2 weighted awverage of alternative forecasts should
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be abandoned in favor of an unrestricted linear combination
including a conetant term."

The weighting schemes evaluated in this study will be
the simple average of the two forecasts, the adaptive
weighting scheme, and the unrestricted linear combination of
forecaste including & constant term. The first weighting
scheme will be included primarily because of its simplicity
of calculation. The method of adaptive weights will be
tested because it permits adaptation of weights on forecasts
which do not perform uniformly through time by allowing the
weights to place greater importance on more recent error
histories, Finally, the unrestricted linear combination of
forecasts will be examined due to the fact that this method
will produce & minimum variance set of unbiased composite

weights.
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CH&APTER FOUR
THE ECOMNOMETRIC MODEL
Selection of a Model Specification

The cattle cycle has been econometrically modelled in
several studies, with varying degrees of complexity. These
studies have modelled different aspects of the cattle cwrele,
encompassing the inventory, slaughter, and price crcles.

The primary focus of the econometric model employed in this
study will be to forecast the annual auerage price of beef
cattle received by farmers. Due to the fact that only one
variable, +arm beef cattle price, will be forecasted, the
model will be Kept relxtively simple. Cromarty and Mrers
(1973) wrote in an analysis of commodity price forecasting
models:

«.emphzsis must be placed on understanding the market

structure which generated the pricing problem and on

specifying a model that will correctly identify the twa
or three factors influencing the system. Models that
gerve this purpose are not only easier to understand,
but they generally lead to better forecasts and policy
prescriptions.

fur-thermore, they continue:

Despite etrong persconal attachments to particular
estimating technigques, there is much to be gained From

Keeping models simple and working with partial -srstems
af equations.

i
(2
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& tradeoff may exicst between including all relevant
variables and Keeping the model simple, but certainly, as
Cromarty and Myers indicated, occasions exist when the
marginal contributions to forecasting performance gained by
applying more complex models may be emall or nonexistent.
Another conesideration in selecting an econometric
model, which is perhaps coincidental with determining the
decired complexity of the model, is the trype of economeiric
model to be employved. Ecocnometric modeles of the cattle
cvcle have been of two basic types: simultameous systems of
equations and recursive systems of equaticns. Studies which
hhave employed simul taneous systems of equations have
generally estimated supply and demand equations for beef,
assuming that the demand for beet at the farm lewel is
derived from the retail demand for beef. Recursive models,
on the other hand, postulate the supplies of beef asz
predetermined due to the productioﬁ lag from conception to

retail marketing.
Fast Econometric Studies

Wallace and Judge ©1%95%) consider an extensive
simul taneous systems of equaticons to model the beef and pork
sectors. The supply and demand at the retail, wholesale,
and farm levels were simultanecusly determined. Exogencous
variabies used to determine the supply of beet at the farm

level were January 1 inventories of beef cxttle and dairy

e

cows, available feedgrains in the previous »ear, range
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conditions, and time. Wallace and Judge noted that the sign
on the coefficient for range conditicons was often contrary
to logic perhaps due to the subjective nature of the data
uzed to represent the variable. The demand function at the
farm level was a derived demand, and the farm price of beef
was postulated to be determined simul taneously with the
retail price of beef, farm price of pork, and farm
production of beef. Exogenous factors in the demand for
beef at the farm level were wage rates of slaughtering
facilities to reflect marketing costs, and time as a proxy
for technological change.

Similarly, Gruber (1965)'emp10yed a simul taneous
equations approach to modelling the cattle cycle. Gruber
madelled the inventory cycle, the price and income cycle,
and the staughter and import cycle. Current values of cows
and heifers over two years kKept on farms, calves Kept as
voung heifers, calves and heifers raised, calves availakle,
current slaughter prices and current slaughter were all
considered to be simultanecusly determined. Gruber did
postulate January 1 inventories as predetermined. Unlike
Wallace and Judge, who ltinked the farm and retail levels in
estimating supply and demand at the farm level, Gruber
linked the slaughter price received by farmers to current
cattle slaughter, average liveweight of s=laughter, 1agged
slaughter price, lagged net imports of cattlie, hay
production, corn price, total disposable personal income,

and the supply of octher meats. While Gruber tested =z dummw
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variable to shift the intercept in an attempt to account for
different behavior near turning points in the crycle, the
gains in information from including the dummy?uariable were
negligible. Wallace and Judge assumed farm supplies to be
predetermined, employing January 1 inventories as an
excgenous variable. Langmeier and Thompeon (174872, like
Gruber, hypothesized that the weight of fed beef
€laughtered, the supply of nonfed beef, imports, per capita
demand for beef, fed teef margins, and non—-fed beef margins
were determined simul taneocuslty. Only¥ the number of fed beef
slaughtered was specified in single equation form due to the
fact that slaughter numbers were considered to be 2 function
ot January 1 inventory, which isy in turn, & function of
lagged ecaonomic and non—economic varijables.

The second type of econometric model which has been
emplored in previcus studies is a recursive system.‘
Recursive syetems of equations make the assumption that
current prices are determined by current gquantities, and
current quantities are determined by past prices aor
production decisicons. Current gquantities would necessarily
be based on past prices due to the fact that a production
lag exi=t=s. I¥ the time increments examined in an analysi=
of the cattle crcle, are lese than the average period of
time it takes from conception oFf x calf until it reazches the

consumer, such as with annual data, then the analrysis must

include =z production lag. This production lag averages 28

1]

te 28 months, as i= shown in Figure 4. Since current prices
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Figure 4., Biolagical Lags in the Beef Froduction

Process
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are based on current quantities and not vice-versa, and
current quantities are based on past prices or production
decisions, a simultaneous system of equationes is not needed.
Ordinary least squares may be used to eztimate the slaughter
price equation, the quantity sltaughtered equation, and the
inuentdry eduationg.

Maki (1959> hypothesized & chain of market and
production variables, linking feeder calf prices, cattle
inventories, cattle slaughter, and slaughter prices, as
shown in Figure 5, Notably, slaughter prices are directly
caused by commercial cattle slaughter levels within the same
year, and slaughter cattle prices affect feeder calf prices
within the same year alsoc. The two primary scurces of
cattle slaughter are steers and cows. @& modification to the
flow chart might be made for present use. Mamely, heifer
slaughter hase increased through time, so that an arrow might
be drawn from inventory of heifers to commercial slaughter
within the same time pericd. Maki hypothesized commercial
slaughter tc be a function of the change in trend from year
to year for the three previous years, of beef cows on hand
and of steers-on hand Januvary 1. Inventories are in turn
affected by feeder calf prices.

Ehrich 1987 aleso emplored & recursive system of
equations to model the cattle cwcle. 1In Ehrich’e study
determinants of prices were specified in demand relations,

because gquantities supplied were considered to be
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predetermined, as in most recursive models, According to

Ehrich {p. 11}
There are fairly riqid physical limitations on growth
which cause a high degree of correspodence between
cattle on farms on January 1 and slaughter during the
¥ear.

Ehrich does note:
Guantities supplied may have been influenced by current
prices in some instances. For example, low prices may
have induced some producers to hold cattle on feed
longer than normally, perhaps into a new year, in
anticipation of favorable price develapments. Such
adjustments were probably minimal, and will be ignored
in the present study.

Ehrich made the assumption that farm prices are derived from

retail prices by a constant markKeting margin, therefore farm

prices were related to the slaughter of live animals and to

variables which were chosen to reflect consumer demand.

Specifically, steer prices were evaluated as a function of

steer and heifer slaughter, cow slaughter, and demand

determinants such as the price of pork and disposable

‘persanal income. UHnlikKe Maki‘s approach, which assumed that

se.forecasts of livestock prices at the primary market,
aor a farm level depend on forecasts of the coansumer
demand for meat and on the price spreads between
different marketing levele.
Ehrich did not evaluate marketing margins in his study.
While Maki related farm prices to wholesale and retail
prices explicitly, Ehrich acknowledged the relaticonship
between retail prices and farm prices by hypothesizing that

the factors which affect retail prices would also affect

farm prices. Although Ehrich included variables to reflect
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consumer demand, they were not found to be highly
significant in explaining deflzted steer prices. In
particular the coefficient on per capita disposable income
was found to be not statistically significant.

& second set of relationships specitied factors
believed to influence levels of inventory. January |
inventories of beef steer, heifers, and calves were
hypothesized to be & function of lagoed feeder prices and
lasts year’s January 1 inventory of beef calves. pfAs in
Maki‘e study past inventory relations and past feeder prices
were postulated to determine current production. Simitarly,
Reutlinger (1944) hypothesized steer slaughter in year t to
be a function of a beef corn price ratioc in year t-1 and
January 1 inventories of beef cowse and heiferse in year t-1.

Several studies have emplored recursive maodels similar
to that of Ehrich’s study, including Keith (1274, Prne
(188>, and Stillman {1283, @All of these models made the
commmon assumption that current prices are determined b
current quantities, and current quantities are determined by
past prices and production decisians,

Keith modified Ehrich’s annual model into a quarterly
madel through the use of dummy variables, but the modelling
of slaughter prices upon per capita steer and heifer
production, per capita cow production, and per capita
disposable income was gquite similar to Ehrich’s model.

Keith found that the coefficient on per capita disposable

income to be significant over the 1?Z? to 19274 pericd
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cantrary to Ehrich’s findings owver the 1?44 to 1754 period.
This coculd possibly be an indication of the increasing
importance of demand factors in determining cattle prices.

Guarterly prices were tinked to retail beef prices, fed
cattle marketings, and nontfed steer and heifer slaughter by
Stiliman (1985). Steer and heifer celaughter were viewed as
previocusly determined, while retail prices represented the
marginal revenue on the processor’s cutput. Retail prices
were hypothesized to be a function of per capita beef, pork,
and broiler consumption and per capita disposable income.
Fed cattle marketings were considered to be & function of
total cattle on feed, while commercial steer and heifer
slaughter were considered to be a fumnction of corn price, a
distributed tag of steer prices, and steers and heifers
greater than 588 pounds.

In summary, studies emplaoyving recurcsive madels have
conta{ned some common factors. Mamely, current prices ars
hrypothesized to be & function of current quantities suppliesd
and demand factore. Current quantit{es supplied are
postulated to be determined by inventories or production
decisions, with inventories detefmined by past prices or

praoducer incomes.
The Hrpothesized Model

The model hypothesized in thie study will folloma the

recursive approach suggested by past studies, such as that

1]
i n]

of Ehrich, that current farm prices are determined by
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current quantities slaughtered and demand determinants,
while current quantitiez =laughtered are determined by past
inventory and production decisions. The hypothesized model
ist

FBP, = #.ICA _y, FCRAT _y, TOPI, 4, PHF  _qy PCF,_y? 4.1
The variable svmbols, variable definitions, and expected
signs of the regreesion coefficients in the postulated madel
are shown in Table I.

The dependent variable, the annual average price
received by farmers for beef cattle in the United States, is
an average price for all fifty states. The term "beef
cattle" includes steers, bulls, heifers, and cows, and
excludes only beef calves. Calves are defined as animals
under 388 pounde or under 2 years of age. The term "beef
cattle" is also exclusive of dairy amimale. The annual
average price received by farmers for beef cattle was
selected as the dependent variable ceries for zeweral
reasons,. MAn aggregated price series for the United States
was emploved €0 an overall measure of the prices received by
farmers could be analyzed, and additiconally so that

aggr

O
[n}

ate slaughter and inventory data could be employved. A

e

ri

W
o
b

s such =as the average price of steers received by
farmers in the United States would perﬁaps have provided =
more accurate depiction of the cycle in beef cattle prices,

due to the fact that st

eegrs are the primary source of fsad
beetf. However, this series was unavailable prior to 1738

and unduly restricted the data for analy¥zis. The behavior
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TABLE I

VARIABLES INCLUDED IN THE ECONOMETRIC MODEL

Symbol

Expected

Definition Sign

FEP,

ICA, 4

FCRAT ,

TOPI,_,

PHFt_1

the annuxl average price
received by farmers for beef
cattle in the United States

in year t, deflated by the

index of prices received by
farmers for all farm products,
1947=186, dollars/hundredweight.

the inventory of calves on farms -
in the United States on January 1,
lagged by one year, 888 head.

the ratic of the annual average +
price paid by farmers for feeder

cattle in the United States to

the average price of corn

received by farmers in the United

States, lagged by one year,

dollars per hundredweight/dollars

per bushel.

total dicsposable personal income +
in the United States, lagged by

one year, deflated by the index of
consumer prices, 19287=188, dollars.

the annual average price received +
by farmers for hogs in the United

States, lagged by one year,

deflated by the index of prices

received by farmers for all farm

products, 1?47=1808, dollars per

pound.

the annuxl average price received +
by farmers for chickens in the United
States, lagged by one year, deflated by
the index of prices received by farmers
for x11 farm products, 19&7=1084,

cents per pound.
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of the two seriecs, the average price of beef cattle and the
average price of steers, coincide closely until the late
1978°=, when the average price of steers becomes less
cyclica1.1
Prices of beef cattle are ocften hypothesized to be
negatively correlated with quantities slaughtered (Ehrich,
Makiy, P¥ne, Stillman). Thie relationship is hypothesized
because slaughter cattle are a2 nonstorable commodity with
predetermined production., Thus, given that storage and net
imports or exports are negligible, the quantity of staughter
wi ! be a good measure for consumption at the farm lewvel,
The one year lag of inventory of calves on January 1 was
selected as a measure of quantity slaughtered within this
study because it is highly correlated with slaughter within
the following ¥ear, as may be seen in Figures & and 7, and
allows a lagged quantity measure to be used within the
model .2 Were a lagged quantity measure not used, a
forecast of slaughter in time t would have to be made. The
consequences of forecasting an explanatory variable are
discussed later within this chapter. It may be noted that

the inventory measure is a January 1 figure which has been

]
a

1agged by one period. The average price of beef catties is

m
e
[n

rear—end average. The lag between the inventory mexcsure
the price of beef cattle received by farmers is thersfore
eczentially a two year lag. It may be recalled from Figure

3 that the approximate average production and markKeting

pericd for beef cattle ies 28 to 28 months. The hypothecized
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sign for the coefficient relating the price received by
farmers to the tagged inventory of calwes is negative.
According to economic theory, given a downwardly sloping
demand curve, the hypothesized sign will be negative because
the relationship between the price of beef cattle and the
lagged inventory of calves is a price—-quantity demanded
relationship, @As the quantity of beef cattle slaughtered
increases, the price of beef cattle declines, and aes the
quantity of beef cattle slaughtered decre;ses, the price of
beef cattle will increase. Since the quantities available
for slaughter are relatively fixed by earlier production
decisions, primarily be inventaries of calwes, the price of
beef cattle will have & negative relationship to the lagged
inventory of calves on farms.

The coefficient on the ratio of the annual average
price of feeder cattle paid by farmers in the United Stzates
tg the average price of corn received by farmers in the
United States, or the "feeder cattle ratic" is postulated to
have a positive sign in relation to the price of beef cattle
received by farmers. The behavior of feeder prices
coincides closely with the behavior of beef cattle pricea.3
Low feeder prices are indicative of large supplies of
feeders, which can be translated into large potential
supplies for slaughter in year t. When the price of feeder
cattle is low compared with & relatively high price of corn,
more cattle are slaughtered, lowering the current price of

beef cattle., Conversely, during pericds of low corn prices
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or increasing feeder prices, more cattle are fed longer.
Increasing feeder prices provide a signal to operators of
higher future slaughter prices may be possibkle, so producers
may hold onto cattle. Falling corm prices provide less
expencsive feed prices, s0 cattle feeders have a greater
incentive to feed cattle to heavier weights. As mar be zeen
by comparing Figure 38 and Figure 1, the peaké and troughes in
the feeder cattle ratio often precede peaks and troughs in
beet cattle prices by 1| to 2 rears.

Total disposable perzonal income in the United States
is hypothesized to have a positive relationship to the
price of beef received by farmers. If beef iz 2 normal
good, as consumer income increases, the demand for beef at
the consumer lewel will increase, Given fixed supplies, the
quantity demanded will increase with an increase in demand.
fs the guantity demanded at the consumer level increases,
the gquantity demanded at the farm level will also increase.
Therefore a rise in consumer incomes will increase the
demand at the farm lewvel, and raise the farm price of beef.

Consumer income was |

w

wgoed 2t the risk of introducing some

[l

misspecification into the model, Meverthelezss, the cost in
terms of forecasting error was assumed to be les= than if
consumer incomes were forecasted. One reason that the
migspecification may not be great ie that, given increases
in the demand for beef, the only market meanz by which the
price could remain constant, would be if supplies increased

b¥ an amount proportional to the increacses in demand. Since
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supplies are relatively fixed during a one yvear pericd, the
pericd by which income has been 1agged, the effect of
increased consumer incomes =till will be to increase beef
prices in the short-run.

The annual average price received by farmers for hogs
in the Unfted States is postulated to have a positive
retationship to the price of beef cattle received by
farmers. & positive relationship existe because the
products, beef and pork, are substitutes. @As the price of
hogs increases, the quantity demanded of pork fxlls. If .the
price of pork increases relative to the price of beef, the
demand for beef will increase, thus increasing the price of
beef cattle in the short-run. Conversely, as the price of
pork falls, the quantity demanded of pork will rise., &= the
quantity demanded of pork rises, the demand for beef falls,
and the price of beef decreases,

Similarly, the coefficient on the price of chicken is
hypothesized to have a positive =sign hecause beef and
chicken are substitutes., Therefore, as the price of chicken
inﬁreasee, the gquantity demanded of chicken will fzx11, and
the demand for beef will ke shifted outward, thus raising
the price of beef.

The price of hogs and the price of chickene are both
farm level prices., While series depicting the retail price
of pork and broilers might have provided a more accurate
picture of the effects of the changes in prices of demand

substitutes upon the price of beef cattle, the farm price
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series was the only series consistently available throughout
the time span of the study.

The prices included in the models, and the income data
were all adjusted for the effects of inflation by dividing
the farm level prices by the Index of Prices Received by
Farmers for All Commodities, while consumer jincome was
divided by the Consumer Price Index.? These indexes were
used because the price series should be deflated by the
seriec which is calculated at the same market level, unless
some measure of marketing margins ie included. aAlthough the
farm prices, which were adjusted by a farm price index, were
included in the calculation of the price index, potentialtly
biasing the estimates downward slightly, the individual
prices of each commodity makKe up a small component af the
total index, with the result that the bias can be assumed to
be small.- & “Eea]" or deflated price of farm beef is
forecasted because producers and other forecast users need
information concerning "real" expected gprices in order to
make long term production and planning decisions. A
decizion based on nominal price forecaste or expectations,
which include inflaticonary trends could lead to "real"

los

n

3=

m

The Classical Linear Regression Model

Given that a single squation model is emploved to

describe the variation in the price of beef cattle received
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by farmers then the theoretical model may be written in the
generalized form for the tih cheervation:

e = Pyt PXa vt BoXg

+ Pixi,t + ...t kak,t + €y (4,22

where

Yt = ﬁhe obgervation for the dependent

variable at time t.
Xi.t = the independent or explanatory
variablee at time t

Et = the error term at time t

ﬁi = the unknown parameters

t=1 ... T

i =1 ... Kk
or the model may be represented in matrix notation:

¥ = XF + ¢
where

¥ = a Tzl vector of dependent variable

cbservations
¥ = a TxK matrix of independent variable
ohservations
F = a K¢l column vector of unknown parameters
€ = & Txl column wvector of errors

The assumptions of a multiple

-

-

are that (1) the X~

sampling, (2 no exact linear relaticonship ex

two or more of the exogenous or predetermined

the error term has an expected value of zero:

are nonstochastic aor fixked

linear regres=zion model

in repeated
icts between

{32

variables,
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Efft] =8, t=1,..T (d,.33
{4} the error term has a constant variance for all

obeservatiaons:

- _ 2 .
E[:tES] = g%, t = g
t=1...T
g = 1...T

(5 errore corresponding to different observations are

uncorrelated:

E[Etés] =8, t %= (4,47
t = 1! .T
«g=1...T

and (&) the error variable is distributed normally, so that:
£ ~ N(B, 62y, (4.5)
where @ is the expected value, or mean of the error term,

2 jg the variance of the error term which is given by:

and ¢
0% = (Y-XB)’(Y-XE). (4.8
The estimated multiple linear regression model may be

expressed as:

Ty = Fp o+ Fa 4 %o ¢ F Fg X3 ¢
+ ...PK,th!t, (4.7
where:
? = th . th
¢ = e ecstimate of the t—

observation of the dependent variasble
xi,t = the independent or explanatory
variables
§i= the ecstimated parameters thxt

relate the dependent variable to the
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independent variables
i =1 ...K
t=1...T

The ecstimated variance is:

22 = (4.8)

where
£ =v -~ xB,
The model may be estimated by least-squares estimation,

co that the wector of estimated parameters, F, are cbtained

o

co as to minimize the sum of squared errors, E’E. I+
E*g iss
(Y — XEYeLy - XB)
= Y'Y - BXOY = YXB + B
= ¥°v - 2B°X°Y + B/X/XB, (4.9)

The first order conditions for minimization of the sum of
squared errorss

3E &
= =2XY + 2X'XE = @, (3.162

9E
may be solved for the lexst squares estimate of F:
| B o= oerxoTixy, (4,112
Using the Gauss-Markov theorem, the estimate F can be shown
to be BLUE; =2 best, linear, unbiased estimator. The
estimate B is an unbiased estimatar since:

ELRT = EL¢x0 “hrvl = Eroxoy ~Ixs (xp+erd

ELexox “lexosng + oo Tlwee
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=B + B[00 " Ixog

=g + (x10 Ixgres

= F, (4,122
Therefore, as long as the expected walue of the errors is
zerc, then £ will be an unbiased estimator. The gstimate B
can also be shown to be best in that it has the minimum
variance of all unbiased estimators. I+:

BE=f{A + CHY =4Y + CY = B + CY

= (A + CY)XE + (A& + Q¢ (4.13)
where A=(X’K)—1X’, and is fixed in repeated sampling, and C
is an arbkitrary matrix. Given that b is unbiased:
Elbl = (X’ X)"1x'Xe + Cxp
= (I + CX)B
= F (d,14)
I1f EIbl] is equal to B, then CX must equal zero.
Since AX = (X0 Ixx = 1, an identity matrix, then b - F =
(& + C)€. The variance of b will he:
El(b - Bi(b - B»’1
= E{[(A + CXEJL{AH + CIE1" 2
= oL (x0T
+ oxoxoo "l o ke + ocoe
= a2 (x0Tl o
= Var(F) + ¢2CC” (4.15)

I+ CCY is & positive semidetinite matrix, from Equation
(d4.15) it can be seen that Yari(b):Var(F), therefore the

ordinary least—-squares ecstimator B is the minimum variance
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estimator of all unbiased estimators. The

variance—-covariance about the estimate B will be:
Var-Cov [F1 = EC(E - ELF(E - ELF1 /3
= E((E - PY(E - B)*2

ECrex X0 Ixrnitex xIxuls

= ¢2¢x 3 "Ixrxexxo 1

02<X’x>'11T : (4.18)

t

which may be estimated by s (X’X)_ilf. Therefore, the
standard error about the estimate is:
og = aZ(x 7! (4.17)
and can be estimated by:
se = s2xX0 7 (4.18)
The standard errors of the coefficiente may then be

ucsed to find t values:

t = =1 L. K. (4.1%)
Sg
The t-statistics can be used to test the null hypothesiz:
Ha: ﬁj = @,
1¥ the calculated t is greater than the tabulated t with T-k
degrees of freedom, at some given probability lewvel, then
the null hrypothesis must be rejected at that praobability
fevel.

The value far Rz can be calculated by:

. Rss e 2
RZ = =1 - (4,283

TSS Z(Y =¥ 2



The F-statistic mavy be used to test the joint

D1
=3
b3

h¥pothesis that none of the regression coefficients
significantly different from zero:

Hg: Fp = Bg = ... = F, = 8.
The F-statistic can be calculated as:

RS T-k
F = ¢4.21)

1-RZ k-1 .

1+ the multiple linear regression model is employed for
the purposes of unconditional forecasting, or forecasting
when all of the explanatory variables are Known with
certainty, then the estimated coefficients from the model in
Equation (4.2 are used to generate forecasts of the
dependent variable:

Prop = By v BoXp g4y + BoXg 14y

-
+ ... B (4,.22)

KKk, T+1°

Yrey = Xpaq Fo

where XT+1 ic a 1xk vector of all Kk independent wariables at
time T+1.
The forecast error ig:
®Te1 T TTa1 T VT4

T FETES FE RS FET

= - - 3 N SN -1, -
= —€o,q = XpaqF b XX TRy, 14.232)
and since ¥ = XB + £, then:
= - wsr RV -
E’T+1 = —éT"'l - XT+1.S + .-'<T+1(A pAy) WILXE + £
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=~ + Xpa 0 Tlxe, (4.24)
It can be noted that the forecast error comes from two
sources (Pindyck and Rubinfeld, p. 2685): (1) the randaom
nature of the additive error proceses in a linear regression
madel that forecasts will deviate from true values ewen if
the model is specified correctly and its parameters are
Known with certainty and (2) the process of estimating the
regression parameters introduces errors because estimated
parameter values are random variables which may deviate from
the true parameter values. The forecast error is
digstributed normally because it iz & linear function of £,
and €4,y which are distributed normally. Furthermore,
assuming that the £7s are unbiased estimators of the true
population parameters, then the forecast errcr will have an
expected value of zero:
E[3T+1] = E[(ﬁ—E)JXT+1 + E[(-¢3]1 = 8. (4,23
The variance of the forecast error is:
62, = Ele?, ]
ELE2, |1 - 2%y, <X X0 Ik Eree )
X, 1 0670 "I EDEE 10 Thkg, (4.24)
If the error terme are assumed to be uncorrelated, and
recalling that EL[€€7] = 021, the the variance of the

forecast error can be simplified to:

2 — 2 2\ [V EY _1\'/ NSNS NS _1'\/ ”,
¢y =0+ O KT+1(A Ky R IIXIKKD AT+
- 2 \ ooy =l . -
= 5%¢] + AT+1£“ %) LS PR (4,27

The #3 percent confidence interval zbout a one step-ahead

forecast therefore ic:
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. 2 A —1\
Y % tc.:c=.@5/2>\lé D1+ X (X730 T gy 1. (4.28)

Problems With Employing Econometric

Models for Forecasting Purposes

In emploring econometric models to forecast prices a
problem arises because current values of quantities and
demand factors are used to explain current values of price,
while in reality the values of these explanatory wvariables
might not be available at the time the faorecast was made.

Two possible solutions to this problem have been
presented in past econometric studies of the cattle crcle.
Ehrich (12467), Keith {1974), Pvne (1%88), and S5tillman
{(1985) attempted to forecast the values of the exogencous
yariables into the future, and then used these to forecast
within the estimated equation explaining price. Another
possible =solution, suggested by Bessler and Brandt (1781) is
te lag the walues of the explanatory variables. Both of
these proposed solutions are not without problems.

I+ the values of the explanatory wariables are
forecasted into the future, guantities for pericd T+l are
forecasted and these forecaste are emplorved in a price
equation which was estimated over T periodes in order to
generate price forecasts for period T+1. Since predicted
values of the explanatory wariables have been used, the
conditional forecasts of the dependent variable, Y, will be

les

(13

r

o

liable than when the explanatory variables are fixed

in repeated sampling, and the confidence intervals for the



forecasted errors will be increased. This result can be
shown with the model:

Yooy = Xr4qFs (4.29)
whern:

Ryet = Xpeq * UTeqs

The assumptions of thizs model also include:

uy ~ NCB, 62

EL€,, uyd = @.
The forecast error when the values of the X=s in period T+1
must be forecasted is:

Brey = Xpaq * UTedF = fppq = (Xpu 08

= —Eo,y m XpaqP F Xp (X0 TIXxe + 6
+up, (X0 T exe « 6
= =€,y = XgegB o Xy x0Tl xoxe
+ X X0 TIXE ¢ up, x0TIk xs
+oup, X0 TIx
—Eraq * Xya XXy Tk
+up, $x730 Theoxe
+oup, (X030 TIxe. (4.2@)

The expected walue of the forecast error will =till be equal
to zero assuming that the Bz are unbiaszed ecstimators of
the true Darameterg.and the forecaste of the X'z are
unbiased:

ELéq,q] = El—fq, ] + Xpgq (X0 TEIX7 €]

+ Elup,3¢x20 "ixrxe
+oup, Xy TIEIXC €

= i, {4.21%
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If the values for X must be forecasted then, the variance of
the forecast error will be:
Ele , 1 = 0%+ 2%, «xx07Ing,

+ BOxx) Tlprol

+ o2xx0"1e2 (4.32)
1t can be seen that the variance of the forecast error
increases by the terms B(X'X)'lﬁ’of and OZ(X’X)_IGZU.
The consequences of using predicted values of X‘s is that,
while the parameters may be significant and a good fit may
be indicated, the forecasts may not be very accurate.

A second solution to the problem of cobtaining values
for explanatory variables included in the model is to use
lagged values of the explanatory variables. This technique
was employved by Bessler and Brandt (1981) to forecast
quarterly steer prices. While lagging the exogenous
variables provides a solution which is relatively easy to
employ, it may result in the misspecification of the model.
For shorter time intervals between prices, such as guarteriy
data in which the value of the exogencus value is close to
what it was in the lagged period, the concern over
misspecification might be diminished relative to longer time
intervals between prices which are less correlated.
Returning to the theoretical frameworl behind recursive
models, which states that current prices are based on
current quantities , it becomeshapparent that an equation
which hypothesizes that current prices are determined by

last year’s gquantities may be misspecified. The result of
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this misspecification will be that forecasts produced by
thie type of model will generally lag behind major price
turns, introducing positive serial correlation of the
residuals.

Aan alternative to the approaches of including
forecasted explanatory variables or lagged explanatory
variables would be to include variables which predict the
explanatory variables directliy in the equation of interest,
rather than forecasted values of the explanatory variables.
For example, many of the recursive models employ slaughter
in period t as a explanatory variable for price in time t.
Slaughter in time t is then hypothesized to be caused by
inventories, which are predetermined, and by lagged prices.
The approach described above would directly include
inventories and lagged prices rather than slaughter, as was
done in this study. The benefits of this approach are
twofold: the explanatory variables are fixea in repeated
sampling so the confidence intervals on the forecast errors
are not widened, and the model does not solely include
lagged explanatory variables which in economic theory should

not be lagged.
The Estimated Model

The estimated model for 19235 to 19485, using ordinary

least squares was:

N

FBPt = 17.3807772 ~— .08088308617 ICA,_,
[3.89957815] [.88823888s811
(3.484) (=2.477>



+ 8846684112742 RTDPIt_
[.6808115%1811]

1

(2.548)
+ .2844346 FCRAT, | + .B518745 PHF,_,
[.B22506621 [.1246427471]
(3.431) ¢ .4843
- 1458387 PCF,_, (4.33)
[.B8953385]
(=1.852)
K =5 RZ = 7917
N = 48 Dl = 1.1218
SSE = ¥7.57041
MSE = 2.849724
DFE = 24

The R% value of .7917 suggestes that approximately
79.17 percent of the variation in the real price of beef
cattle received by farmers in the United States is explained
by the wvariation in the independent variabkles over the
period of 1925-1945. The calculated F was equal to 21.33,
while the tabulated F with 5 and 34 degreees of freedom at
the .85 probability level is approximately 2.4%, therefore
the null hrpothesis, Ha: Bo=Fa= .., B, = 8, must be
rejected.

The calculated t values indicated that all of the
regression coefficients were siginificant at the 5 percent
probaxbility level except for the regression coefficient on
the price of hogs received by farmers and the regression
coetficient an the farm price of chickens. The tabu]ated t
value with 24 degrees of freedom, at the 5 percent

probability level is approximately 2.832. Thus, the



regression coefficients for the intercept, the regression
coefficients on ICﬁt_i, RTDPIt_i, and FCF:QT,C_1 were all
greater than 2.833, and could not be.accepted as being equal
to zero.

The regression coefficients are interpreted in termz of
the change in the dependent variable resulting from a change
in the independent variable. For example, the regressicn
coefficient on the one year lag of the January 1 inventories
indicates that a one unit change in inuéntories (PEG 048
head) resulted in a .82 unit change in the price of bsef
cattle ($/cwt? in the opposite direction. The coefficient
an total disposable personal income shows that a one unit
change in total personal income (888 %) resulted in & .89
unit change in the price of beef cattle received by farmers.
The regression coefficient on the feeder cattle ratio
indicates that & one unit change in the ratio
[{e/cwt)/ (% budl, resulted in a .284432 unit change in the
price of beef cattle. The regression coefficent on the price
of hogs received by farmers indicates that a2 one unit change
in the price of hogs will result in a .B3187 unit change in
the price of beef cattle. Finally, the reqgression
coefficient on the price of chickene indicated that a one
unit change in the price of chickens would result in &
~-.148383 unit change in the price of beef cattle. The signs
on all of the estimated regression coefficients were
consistent with those hypothesized according to econaomic

theory except for the sign on the coefficient for the price
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of chickens. This may be due to the variable specification
for the price of poultry. In addition, other studies during
this time period have also found an ambiguous relationship
between beef and poultry.6
1t may be noted that the calculated Durbin Watson

statistic:

N

~ : 2
(’Ct - et_i)

2

e

t
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t
was 1.1218, indicating poscible positive serial correlation
of the residuals. The null hypothesis is that the no
serial correlation is present or:

P =298.
1 the test statistic is less than the tabulated dyy then
the null hypothesis that no first order autocorrelation of
the resuduals existe must be rejected. When DW is areater
than d,, the null hypothezis cannot be rejected. If Dl lies
be tween du and dy, the results are inconclusive. Due to the
fact that the calculated DWW = 1.1218, was leess than d] =
1.22, for K = 3 parameters, and N = 48 cbservations, the
null hvpothesis that P = B was rejected at the T percent
tevel. Thus, the aszumption:

Elg,e_ 1 =@
aof the classical lingar model was violated. Wiclation of
this zssumption leadse to bizsed estimatee of the standard

errors, The estimates of the standard errors will tend to



be underestimated, therefore the t-statistics will be
overectimated. With overestimates of the calculated
t-staticstics, the chance of committing a Type I error, or
rejecting a true null hypothesis ie increased. If the
errors contain serial correlafion, then the error structure
will actually be:

S = Pyfpg f Pofyip et Ppf g b Uy (4.39)

=X pPu, _
p=8 tr

where:

=

Efu,1 =

Il
<

E[utusl
=8, s %t
E[Et_iut] = i,
The variance of the errors may then be expressed as:
- ~2
E[Etét] = ¢
= Uar[ut] + Uar[Put_ll + Uar[Put_EJ
+ ..+ Uar[ut_p]
= ¢2[1/01-pD 1, (4.38)
and the covariance of the errors ic:

EL€, ¢ 1 = pfo

R

t+pr

Thue, the wvariance-covariance matrix with first order

utocarrelation of the residuale is:

i

E[£€°1 = 52



1 p p2,,, pT-i
P g ... pI—Z

=G§ (4,387
pT—1pT=2pT=3

The appropriate technigue when positive serial correlation
iec present is generalized least squares, or GLE, because GLS
uses information concerning the true error structure to find
estimates for £, Mamely, if we Know what P i=, then GLS
techniquee can be used to transform the datx so that the
variance—-covariance matrix of the transformed errors is 62

P

The GLS eztimator for E is:

PoLs = xrambo lxealy, (4,29
The estimated variance—-covariance for gGLS will be:

se” = 2xraTho ! (4,480
where:

2 fn~lE

T-k

and:

2= v - xPy .

The data muet be traneformed in such & wav that the wvariance
of the transformed errors will be GEI. I+ a2 T=T matrix, H,

eui

t

i

=uch that:



Ho~lh = 1 (4.41)
then H can be used to transform the datz to produce
residuale with the variance G621, Equation (4.41) can be
rewritten as:

0= HlH = (ot (4,42
The matrix, H, in the case of first order autoccorrelation of
the reciduals would he:

— —
1-p2 @8 ... 8 8

Thus, the model may be transformed as:

HY = HXB + H= {4.42)
or:

W=o0a + V
where:

W = HY

Q = Hx

W= Hg

= low = oo TixenTly,
The error term will meet the assumption of the classical

linear model since:

ELV-UI = E[VEE Y ] = GoHOH® = G2I, (4.44)

so that V is an efficient estimator. Furthermore, i+ P is

- . -~
Known with certainty, then g an unbizsed estimator,

4
1

aLs |

-



If P is not Known with certainty, then it must be

ectimated. The value for P may be ecstimated by applyring
Ordinary Least Squares to the data and obtaining the values

for the estimated residuals. The calculated value for P is:

e

(4.45)

Z¢¢-1

The calculated value for ﬁ was —-.38158832, and is used to

generate H. The Y vector and the X matrix can then be

transformed by H. The resulting transformed data will be:

= _n2
Nl = YyJ1-P

Nt = Yt - PYt_l, t = 2 LI ) T

Qti =Xt| - th_l,k, t=2 ... T

i =1 ... K.

The estimates resulting from the application of the

Prais-Winsten method will be consistent and assymptotically

efficient,

The model was re-estimated using the Prais-Winsten

procedure to correct for first order autocorretation of the

reciduals. The re-ectimated model was as follows:

ELY

FBPt = 19.024874% - .800897837 ICA,_,
[5.150697921 [.8082845897]

(3.594) (=3.155
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+ .888844882572 RTDPIt_1

[.660081358134841]

(2.448

[.88248221 ] [.120489311
(2,286 (2130
- .1744188 PCF,_, ' (4,44

[.672172794]

(—-1.913>

S8E = 77.%5274

=
w
m
il

ra

. 352284

2
A
m
]

23
The RZ value of .8834 suggested that approximately
83.24 percent of the variation in the dependent uariahle,
the farm price of beef cattle, was explained by the

3

variation in the independent variables, The calculated F of

|

27.595 wz

m

reaxter than the tabled F at a S percent

W

significance level, which is 2.38, therefore the null
hypothesis, Hg: 32 = BB = .. = Ek = @ had to be rejected.

The calculated t values, shown in the parentheses below
the regression coefficients in Eguation ©¢3.448), werse all

significantly different from zeroc at the five percent



probability level except for the coefficient on the price of
hogs and the coefficient on the price of chickens.

Except for the sign on the coefficient for the price of
chickens, the signs on %11 of the estimated regression
coefficients were in agreement with those postulated by
economic theory. Similar results were found by Ehrich ower
the period of 1744-1%484, who found a negative relationship
between the price of fed cattle and the quantity of steers
and heifers slaughtered. Stillman (1%85) found that the
coefficient on fed cattle marketings and nonfed steer and
heifer slaughter, both being measures of available
€laughter, showed negative signs in relation to steer
prices. Stillman also found that feeder prices in year t-1
showed a positive relationship with steers and heifers
areater than 5886 pounds in year t, between 1955 and 1981,
indicating that higher feed prices lead to a higher number
of animals placed in feedlots and fed to maturity rather
than being slaughtered at less than 568 pounds. Stillman’s
findings for the relationship between quantities and feeder
prices coincided with Reutlinger‘s (1964) findings that a
beef corn price ratio lagged by one year would have a
positive relationship with cattle slaughter. While Ehrich
found the sign on the coefficient for personal income to be
positive, as suggecsted by economic theory, the coefficient
was not significantly different from zero. Ehrich
hypothesized that this effect migﬁt be due to increased

consumer incomes resulting in greater demand for services at
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the retail level, so that an increase in consumer incomes
would have little effect on the farm level demand for beef.
Additionally, Ehrich did not find the regression coefficient
on either the price of tive pork or the price of broilers to
be significantly different from zero over the period of his
study.

To ensure that no higher order autocorrelation of the
residuals existed, the autocorrelation of the residuals were
calculated and plotted. A1l of the autocorrelations fell
within two standard errors, therefore no significant higher
order autocorrelation was found at the five percent
significance level. Additionally, a plot of the squared
residuals versus the dependent variable did not show any
identifiable patterns indicating heteroscedasticity of the
residual variance.

Haviné determined the model to be adequate for the
purposes of forecasting, the model Qas used to make a one
step ahead forecast of the price of beef cattle. The model,
which was ecstimated over the period of 1925-19245, was
updated and re-estimated with each additional year through
1985, and used to make a series of one step ahead forecasts.
These one step ahead forecasts will be presented in Chapter
Six. The regression coefficients, standard errors of the
coefficents, t values for the coefficients, RZ values, and
other relevant reagression statistics are presented in Table
11. Each of the updated models showed a low Durbin-latson

statistic when estimated with OLS, therefore the estimated
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models shown in Table Il have been carrected for first order
autocorrelation of the residuals. For each of these models
a check was also made for higher order autocorrelation of
the residuals, and the squared residualse were plotted to
check for heteroscedasticity, which did not show evidence of
either problem within the residuals.

&e may be seen in Table I all of the zigns an the
regression coefficients were in agreement with those
hypothesized by economic theoby, for each of the updated
models from 1744 through 19835, except for the sign on the
regression coefficient for the price of chickens. While
direct comparisons between each updated model may be made,
some trends in the significance of certain esimated
parameters may be observed. The coeftficients on the price of
chickens were not found to be significantly different from
zero until the model estimated for 1974, In 1774 and
bevond, the absolute value of the coefficient inceased while
the standard errcr of the coefficient remained fairly close
to values in the earlier years, thus producing a larger
calculated t staticstic. The coefficient on the January 1
inventaories of calvees wmas signiticantly different from zero
at the 5 percent probability level until 19832, berond which
the sign on the coefficient was still in agreement with
econcmic theory but was insignificant. The regression

coefficient tended to diminish in magnitude with each

updated model, while the standard errors of the regression

coetficient also dropped. The regression coefficients on



TABLE 11

TABLE OF REGRESSION COEFFICIENTS AND RELEVANT REGRESSION STATISTICS

Year Bo. SEg,t B1. SEB, t B2, SEg, t B3, SEg. t B4, SEg, ¢ Bs. SE[;. t RZ MSE Est. Autoreg.
1965 19.0240769 -.000897857 .00004682572 1823968 10256857 -.1764108 8336 2362204 -.38150032
[5.15009702] [.0002845897) [.00001361366) [.08268221) [.12048931]) [.09219294} [.16091194]
(3.694) (-3.155) (3.440) (2.206) (213) (-1.913) (-2:370)
1966 17.4198015 -.00081159 00004456997 .1884138 0555996 -.1608851 8375 2320725 -.38847746
[4.55909387) [.0002547681] [.00001313131) [.08122855} [.11146660) [.08878790) [.15802878}
(3.821) (-3.185) (3.393) (2.320) (.499) (-1.812) (-2.458270)
1967 16.9077038 -.000794347 00004466788 .1882421 10623142 -.1551349 8458  2.266397 -.39208610
[4.37376529] [.0002497306) [.00001301492) [.08028125]) [.10919301] {.08697372) 1.15549630}
(3.866) (-3.181) (3.4%2) (2.345) (57) (-1.784) (:2.52151)
1968 16.9451172 -.000795523 00004463975 1876995 0627265 -.1556786 8551 2.20344 -.39231997
{4.26396133) [.0002454755) [.00001282213) [.07870455) [.10739834] [-08522978] [.15330480]
(3.974) (-3.241) (3.481) (2.385) (.584) (-1.827) (-2.559085)
1969 16.4997081 -.000793009 00004566586 .1886732 0569811 -.1465786 8651  2.168651 -.38747327
[4.16460353) {.00004566586) [.00001253915) £.07803996} [-10612025]) [.08309657) [.15155629]
(3.962) (-3.270) (3.642) (2.418) (.53 (-1.764) (-2.556629)
1970 16.3388297 -.00078975 00004572562 .189817 0588867 -.1445606 8754 2.113161 -.38739994
{3.99464257] {.0002385623) {.00001237153} 1.07673492) [.10412086} [.08111461} [.14955384)
(4.090) 3.310) (3.696) (2.474) (-566) (-1.782) (-2.590371)
1971 15.8654069 -.000792709 00004739227 .184739227 0585442 -.1362591 8838  2.122579 -.38214032
{3.97355581) [.0002379657) [.00001223765) {-07636887] [.10440205) [.08077283] [.149797512)
(3.993) (-3.331) (3.873) (2.387) (.561) (-1.687) (-2.582463)
1972 15.7707554 -.000794498 .0000478877 1860112 0493618 -.1327089 8957 2.071984 -.38601243
[3.91541509] [.0002358953) (.00001205778] {-07405972) [.09954484} [.0791047] [.14585904}
" (4.028) (-3.368) (3.972) (2.512) (-496) (1.678) (-2.6464176)
1973 16.4055976 -.000798758 00004658239 .1971267 .0409408 -.1426465 .8981 2.075608 -.37668570
13.83719652] [.000234086) {.00001193023) [.07356385] [.09929055) {.07806163) {-14467018)
(4.275) (-3412) (3.905) (2.680) (412) (-1.827) (-2.903755)
1974 17.6356311 -.000640576 .00003148037 2954503 .0704651 -.1984364 8709  2.574335 -.31372869
14.12690705] [.0002419078]) [.0000117084) [.07644670]) [.11088132] [.081555305] {.14651299]
(4.213) (-2.648) (2.689) (3.865) (.635) (-2.433) (-2.141303)



TABLE II (Continued)

Year Po. SEp,t Bi. SEp,t P2, SEp,t B3, SEp.t B4, SEg, t Ps, SEp,t R2 MSE Est. Autoreg.
1975 17.6083191 -.000647267 00003037887 3164716 0865835 -.2050805 8699  2.536623 -.32497069
[4.11059996) {.0002422631) {-00001160643} [.06854902)  [.10734529]) [.08108907) [.14422157)

(4.284) (-2.672) (2.617) 4.617) (.807) (-2.529) (-2.253274)

1976 17.6094909 -.000646579 0000303609 3159413 0866637 -.2050825 8700 2.477496 -.32672785
[3.70734971) [.0002198974) [.00001106279) {-06770424)  [.10008807) [.07749602) {.14248197)

(4.750) (-2.940) (2.744) (4.666) (.866) (-2.646) (-2293117)

1977 17.9413836 -.000592846 0000255562 3411625 0970471 -.2196775 8561  2.680908 -.29561486
[3.81315438) [.0002221878]) {.00001 102399} [.06947954]  [.10435733) [-0789417] [.14240879)

(4.705) (-2.668) (2.318) (4.910) (.930) (-2.183) (-2.075819)

1978 18.0465619 -.000617932 00002708667 335475 0908700 -.2181091 .8599  2.623219 -.30058079
[3.77014687)  [.000203203) (00000964025)  [.06734184]  [.10139251]  [.07800713] [:14062370)

(4.787) (-3.041) (2.810) (4.981) (.896) (-2.796) (-2.137483)

1979 18.0317192 -.000600496 00002619125 3356167 0915942 -.2187010 8725 2.56818 -.30150539
[3.72912428) [0001723923} {-0000079066] {.06658069] 1.10019626} [.07715669) [.13907709)

(4.835) (-3.483) (3.13) (5.041) (914) (-2.835) (-2.167901)

1980 16.1443673 -.000360212 00001414944 - 3434914 1689341 -.2122651 8554 2988104 -.26984190
(3.93822743) [-0001597218) [.00000714522) [.07123008)  [.10468617] [.08186663] [.13898331]

(4.099) (-2.255) (1.980) (4.822) (1.614) (-2.593) (-1.941542)

1981 15.7626085 -.00033156 00001206059 - 3488015 1851846 -.2116258 8579 2.93791 -.288403131
[3.85441422) {.0001496098) {.00000639215) 1.06893132}  [.09995197] [-08193271) (.13678700)

(4.089) (-2.149) (1.887) (5.060) (1.853) (-2.583) (-2.108412)

1982 15.7619073 -.000297405 . 00001062052 3494758 1905490 -.2141734 8595 2913531 -.29048630
[3.84002830)  [0001460035]  (00000610184]  [06865452)  (.09927690]  [.08161920] [.13532315)

(4.104) (-2.037) (1.741) (5.090) 1.919) (-2.624) (-2.146612)

1983 15.7544244 -.000247905 00000832791 3560368 1731891 -.2108494 8575  2.939008 -.29756783
3.86616953) [.0001418345) [.00000586511) (068679571  [.09896558] {.08222053}) (.13368483)

(4.075) (-1.748) (1.420) (5.184) (1.750) (-2.564) (-2.225891)

1984 15.7628437 -.000248733 00000837355 3557245 17297157 -.2108622 8592 2.88263 -.29745612
[3.79127585) [.0001320169} [00000515631) [.06501632]  [.09705297} [.08141784) .13239799)

(4.158) (-1.884) (1.624) (5.471) (1.782) (-2.590) (-2.246681)

1985 15.6196864 -.000195802 00000562196 3696254 1794511 -.2173178 8582 2.851593 -.29462156
[3.79221161) [-00009915024) [.0000256415) {-06111188]  [.09605801] .08015139) [-13126368]

(4.152) (-1.973) (2.193) (6.048) (1.868) (-2711) (-2.244502)
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total disposable personal income were statistically
significant from zero at the five percent probability level
in each updated model until 1988, and the coefficient was
again significant in 1985. The regression coefficient tended
to decrease in magnitude through time. The regression
coefficients on the feeder cattle ratio were also
significantly different from zero in each of the updated
models, the calculated t values on this estimated
coefficient tended to increase with each updated model.
While the standard error of the estimated coefficient
remained fairly stable through time, the magni tude of the
estimated coefficient increased with the annual updating.
The regression coefficients on the price of hogs, while
showing the appropriate sign according to economic theory
were not significantly dffferent from zero in any of the
gstimated models. While this is true, the t values did tend
to increase with the updating of the model.

The regression RZ2 for each of the models fell between
.8 and .93 the RZ with the highest values cccurring between
1971 and 1?74, The MSE tended to be slightly higher
compared with other years between 1988 and 1982. The
ectimate of P used in the transformation of the data to
correct for first order autocorrelation of the residuzls
tended to drop with the updating of the model.

While the relationchip between the price of cattle and
the various predetermined variables tended to change through

time, the changes were very graduxl. For example the
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inventories of calves tended to decrease in importance in
explaining the price of beef cattle over the period of
study, and the feeder cattle ratio tended to increase in
importance in explaining the price of beef cattle. &
lengthy time period is covered in the model and the updated
model, thus some structrural change might be expected.

While this is true, the regression R2 and the MSE remained
fairly stable indicating an adequate fit. The updated models
were used therefore to make one step ahead forecasts from

194846-1985.



FOOTNOTES

!The estimate of the correlation between the deflated
average price of choice steers at Chicago and the deflated
price of beef cattle received by farmers over the periocd of
1925-1948 is .7384 and between the deflated price of choice
steers at Omaha and the deflated price of beef cattle
received by farmers between 1948 and 1983 is .56847.

2The estimate of the correlation between the January 1
inventories of calves and the slaughter of beef cattle over
the pericd of 1925-19835 is .784&0.

3The estimate of the correlation between average
feeder prices and average beef cattle prices over the period
of 1925-1985 is .9839.

4The estimate of the correlation between the CPI and
the FPI over the period of 1925-1%985 is .94613.

Jsee Foote (1938, pp. 28,33) and Tomek and Robinson
(1981, pp. 321-322) for criteria used in deciding when to
deflate and which deflator should be used.

0ther studies with ambigucous findings for the sign on
the regression coefficient for poultry prices include
Ehrich, Brandt and Beseler, and Stillman, which did not find
the coefficient relating cattle prices to various measures
of poultry prices or quantities to be sianificant.
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CHAPTER FIVE
THE TIME SERIES MODEL
Introduction to Time Series Models

In addition to the econometric model, a time series
technique was developed to forecast cattle prices. Time
gseries techniques are useful for the purpose of forecasting
when the data have a strong correlation between observations
at different time periods. Under such conditicons,
conclusions about the future behavior of the series may be
inferred from past values of the variable. aAccording to
Pindyck and Rubinfeld (17281, p. 493), time series techniques
differ from merely extrapolating into the future in that
they assume that "the series to be forecasted have been
generated by & stochastic {or random) process with
structures that can be characterized or described." The
time series technique used in this study was an
autoregressive integrated moving average or ARIMA& technique.
ARIMA models, as the name implies, can accomodate data
containing both autoregressive and moving average processes.,

Fast studies have used ARIMA models for the purposes of

economic forecasting, and in particular, for generating

a3z
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commodi ty price forecasts. These include Leuthold (1978},
Brandt and Bescler (1981), Standaert (1981), Harris and
Leuthold {1983), and Granger and Mewbold (1%784). These
studies employed shorter term data, analyzing daily, weekly,
monthly, and quarterly data. One reason ARIM& models have
not been previocusly used to analyze cyclical behavior is the
lack of annual data covering an adequate time span. Other
studies of the cattle cycle, including the work of Franzmann
and Walker (1972) anq Helmers and Held (1%77), have employred
techniques such as trend models.

Autoregressive models express the value of the variable
at time t, or X¢y as a linear combination of'past X values
in the form:

Xg = 0 Xyog + 03 Xp_p + 03 X4 3

+ *ELH 8, (5.1

pixt-p'
where the model is an autoregressive model of order p,
AR(pY, and:
¢1 . ¢p are the autoreqressive parameters
ét i a random error processg at time t
‘E is a constant.
The model may also be written more compactly as:

P(BIzy = €4 (3.2

where

and
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B is a backshift operator so that BJXt = xt—J and z; is the
deviations of the data series from its mean.
The random error process, ¢,, has the properties:
E[Gt] =8
E[Et €kl =8, K= @
E[€t Xe—jl = 8, i = 1...p
Varl€,1 = (8(B)Z Var X, = o2,
t t €
While autoregrescive models express the value of the
variable at time t as a linear combination of past values of
the variable, moving average models express Xt as a linear
combination of past errors:

Ry = B+ & = 81 €y — 8¢, 5

= ee. = eqet_q. (5.3
where
B is the true hean of the procecss
£ is the random error process
61 «.s ©q are the moving average parameters.
The model may also be written as:
z, (1 - 8B)¢, £3.4)

where
20 i
= ¥ =
g-1h .heJB s 98 1.
J=8

B iec a backehift operator, so that BJEt = Et—J

The random disturbances, or each &t is assumed to be
2

normally distributed with a mean of zero and variance OE

and E[Etét_KJ = @ for Kx8. Box and Jenkins (1978, p. 44&)

cstate:
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««:€, may be regarded as a series of shocks which drive
the system. It consists of a sequence of uncorrelated
random variables with mean zero and constant
variance, ...

ARIMA models include both autoregressive and moving

average terms, in which case, the model may be written:

- ét - elét_l = ass = eqﬁt_q [} (5-5)
or:
(1 - 9, B - 0,B2- - ¢_BFIX
1 2 2 a8 p t
= _ - 2_ _ qy « , .
which can be expressed as:
¢(B)Xt = £ + (B)ét, (5.7)
or:
¢(B)zt = (B)Et (5.8}

where the model is an ARMA(pP,q’. Again, the random errors,
Et are assumed to be independent, normally distributed

variables with means of zero and variance Gg.

Properties of Autoregressive and

Moving Average Processes

A premise of employing time series models for the
purposes of forecasting is that past behavior of the series
can be used to infer information about future behavior of
the series. In order to =implify the process of modelling,
the regquirement of stationarity of the series is made.
Staticnarity implies that a set of fixed coefficients can be
uszed to model the series. The series will then have a

constant mean level and Pindrck and Rubinteld (17281, p. 4975
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state that "the probability of a given fluctutation in the
process from the mean level ie assumed to be the same xt any
given time," so that, "the stochastic properties of the
stationary process are assumed to be invariant with respect
to time." |
Given that an autoregressive process is stationary, the

mean will be invariant through time, so:

E(Xg) = BEXyg) = oo = B, (5.9
The mean can therefore be written as:

B= 0k + 00 + ., 04 qu + & {5.16>

or

1 -9 - Py = oo = 0

p*
If the mean is to be inuariant through time, then a
neccessary condition for stationarity is:

Py + 05 + L. 4 mp { 1. (5.112
Furthermore, to ensure stationarity of an autoregressive
process, if Xy is a stationary process, then o~ 1¢B) must

converge, where:

-1
z, b C(BYE,, (5.12)

and

p .
I+ the value 9{B) = 1 - X¢jBJ is expressed as:
J=1

(I-GIB)(I—GZB)...(I—G By, (S.132

P
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0

then:
-1 P Hi
= 9 (B)Et = = Et . (5.14>
i=1 (I—GiB)

2t
Therefore, if 8 1(E) is convergent for !BI¢1, then G, 1<1,
i=l...p, or, the roots of 9(BY = @ must lie cutside the unit
circle.
For a stationary series, an auvtoregressive process can
be expressed as & moving average process:
z, = o~ lemye, = acmie,, (S.15)

The mean of the staticnary process, Zy, is theretfore:

E[zt] = E[Et] =} =48, (3.14&5

and the variance of zy is:
Varlz, ] = of = ef (S.17)

Jj=8

I1f the process in Equation (S5.15) is to have a finite
variance, the weights, SJ, must decrease, so that the series
on the right will converge. I¥ the weights do not decrease

as Jj increases, Equation (5.17) shows that the variance will

increase as J increases.

The autocovariance, EGU[zf,zt+T] E[(zt - ”z){2++k

Hz)], af an autoregressive process is:
Y. = . 2
a“”i}'l*"'*"p*'p*{’é
Yy = Pytg + 00 ¢pr_1

Y = ‘Dl'.lf'

0 LT P

p—-1
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For lags greater than p:
Ve = g + oo ¢ka_p, K>p. (5.19
Dividing (5.18) through by Y@, produces the theoretical

autocorretations:

- 2
P@—¢1H+ ...+¢p?p+ O¢
Yy Ta Ta
2
=1 = 091 + + wppp + GE
=<z
<’Z
Pyr=ry =47+ ... b0
Ty T Ty

P =Y =¢}"B+...+¢'Y

p p php
Yo Yy Yo
= 0¥,y 4+ .. k0T

These equations are often referred to as the Yule—lWalker
equations.
I¥f & moving average process can be inwerted to a purely
autoregressive process, then:
zy = Q(B)ét (5.213
can be rewritten as:
-1 _
& Bz, = ¢
or:
¢ 2
'-t=zt +ezt_1 +$Zt_.2+ s s n
It can be noted that if i9121, the weights will diverge in

the expansion. Thus, if KJ = - 9{ and



g

Ty == 8zy - 8%z, ... + € (5.22)

the weights on past values would increase as j increases,
The inverted expansicon in Equation (5.22) must form &
convergent series where {191<l in order to avoid increasing
the weights progressively on lzge in the further distant
past. The invertiblity condition is independent of the
stationarity condition, and is applicable to nonstationary
linear models.

If z, is to be invertible, then e~ 1¢B> must converqge.

Expressing 2(B> as:

q
0(B) = MC1-H B> (5,23
J=1
gives:
q MJ
o~ l¢my =32 (5.24)
j=1C1-H B>

which will converge i+ HJ<1, j=1,2,...,9. The roots of 9{(B?
= 8 are HJ‘I, s0 that for a moving average process to be
invertible, the roote of:
6BY =1 - 9B - o8%~ ... - o Bl =0 (5.25)

lie outside the unit circle.
For & moving average process, the mean or expected value for
zy will be:

Eflz,] = E[e(BYE, ] = &(B)EL¢,] = 8. (5.24)

The variance of Zy is:

Efz,z,] = (8(B)) 207

(1 + 9% 4 eg o, + eﬁ;ag. (5.27)
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The autocovariance for the series is:
q-K
Y, = Elz,z, 1 = 0% 20,0,,,

i=8

= (=9 + 910, t 0-0,,0
oo+ 9q-k9q)°§- (5.28)

For lags agreater than q, Tk = 8. Since P, =¥ Ty , a
moving average process will therefore have autocorrelation
coefficients of zero for all lags greater than q.

As with autoregressive models, mixed ARMA models have
the requirement for stationarity that the roots of $(B) = @
lie outside the unit circle. For invertibility, the roots
of 8(B> = must also lie cutside the unit circle,

The mean or expected value for a mixed ARMA process
will be:

Efz,] = Ew‘1<3>e<8>et1 = @. (S.29)

]
The variance for an ARMA process is:
= 2 _ - -
'r@ - ¢ + 2 8 a mp}fp + oe el}‘-ze( 1) "8
- eqrz€<—q>. (5.3
The autocovariance for a mixed process may be expressed
as:

- eae -~ eqrz€<k—q), {5.210
where Tzé(k) ie the cross covariance function between z and
£

TzE(k) = Elzy_p €1, (5.327
The value of z,_ . will only depend on shocks up to time t-K

S0



c(k) = 8, Kr@

Yot
Yz {(K» = B8, Kiag,

13

For lags greater than g+i,

LR ORI BN e (5.33)

==
P = BPpg * aae b 0P, K2GHL, (5.34)

or
PBIF, = B, (5.35)

This implies that q auvtocorrelations will depend on the g
moving aversge parameters and the p avtoregressive

parameters,

Empioying Time Series Models

Time series modelling entails the focllowing four steps:
¢1) Identification
(2) Estimation
(3> Diagnostic Checking
{(4) Forecasting.

The identification process involuwes specifying
tentative values for the order of the autoregressive
process, p, the moving average process, q, and d, the degree
of differencing necessary to achieve stationarity of the
ceries., PFossible values for p, q, and d may be determined
by examining the cample autoccorrelation function and the

partial auvtocorrelation function of the time series.



The autocorrelation function provides a measure of the
correlation between cobservationz in different time pericds.
The autocorrelation with lag kK is:

P =
K

2 - 2
Elz, - R ] E[(Zt+M KD 3

Coviz ,z b ¥
- tro btk = K (5.38)

%2t Czt+i Yo

1f the process is staticnary and homogeneous, then the
variance at time t will be the same as the variance at time
t+k, =0 the autocorrelation may be written:

ECCz, = B 3¢z, — K21 ¥
- t r4 + z
P, = K = K (5.37)

2
U2 ?B
The sample autocorrelation, the estimate of the theoretical

avtocorrelation function is:

T-K
fht - z)(zt+k -2

Il
)
=
It
Fal
n
)
1]
h

ficcording to Box and Jenkine (1278, p. 242, the
variance for the estimated autocorrelation coefficient of a
stationary Mormal process was approximated by Bartlett as:
$oo

2
warlr,l % 1/T X Py * PiepPu-k

cn
[0

41
-

22,
= APLPLP o F ZRUPE T ¢



The variance for the estimated autoccorrelations at lags k
greater than g will then be:
9 5
varlr,l & 1771 + ZE P55 % (S5.44)
v=1
due to the fact that for processes for which the
autocerrelations are zero for v>g, the terms in Equatian
(5.29), excluding the firet term, will disappear. The
h¥pothesis that the true order of a MA process is q can be
tected, b» whether or not the calculated autocorrelation

coeficients for lags K>q are signiticantly different from

zero. Specifically, if any ir,i1 , Krq, is greater than:

=

q
1.9601/4T €1 + 2EP23) 5] (S.41)

i=1
then we can be ?5 percent confident that the estimated
autocorrelation coefficient is not equal to zero.
In order to test the joint hypothesiz that 211 of the
avntocorrelation coe%ficienfs are zero, the Box—-Pierce B

statistic may be used, where:

The @ statistic is approzimately distributed as Chi-squared
with K degrees of freedom. Thus, if the calculated @
statistic ie greater than the tabulated Chi-squared value
with K degrees of freedom, then it can be concluded that
thecse K autocorrelations jointly are significantliy different

from zero at a selected probability lewvel.



The partial autccorrelation function, as explained by
MakKridakis and Wheselwright (1978, p. £22):

ie used to identify the extent of the relationship

between current values of a variable with earlier

values of that same variable {(values for various time

lags? while holding the effects of all other time lags

constant.

Recall that the covariance for K lag displacement may

be expressed as:

Yio = 0¥ * 01 o5 + 00 ¢ka_p (5.432
for k>8,
and dividing through by TB produces:

Pk = 0Py P VPt e BRL (S.44)
I+ mkj is the Jiﬁ coefficient in an autoregressive process
of order K, then:

Pi = %1 Pjor * ek-topi-k+et * PPk (.45

for j =1, 2, .. + K,
which gives the Yule-lJalker equations:

1 Pl PZ = a Fk_l ¢k1 .pl

PI 1 Pl s 'pk"'?.' 'bl{z PE

. . 1= (5,442

Pe-t Pz Py—z ++- 1 Pk P

o ol - - -

which may alsoc be written a=:

K Yk = Fi-



P&

llhen these eguations are solved for k=1,2,3,..., values for

¢11, ¢2¢, e @kK may be found. In particular the walue for

P = (5.47)

Pk"'l .F'k:__-E .F'k_3 P |

The guantity Qkk’ a function of the lag k, ie called the
partial autocorrelation function.

fccording to Box and JenKins (1978, p. &850, given an
autoregressive procese of order p, the variance of the
partial auvutoccorrelations of order Kip will ke distributed
approximately independently with variance: |

3

aa]

uar[&kk] % 170, (5.4
where n ie the number of observations. Theretore, if the
ectimated partial avtocorrelation coefficient for lag kip is

greater than:
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1.9601/¢n) "7, (5.49)
then we can be 73 percent confident that the partial
autocorrelation coefficient is not equal to zero,

Before tentative values for p and g may be determined,
the degree of differencing necessary to obtain stationarity
of the zeries must be identified. A stationary mixed
autoregressive moving average process of order {(p,8,9) will
have an autocorrelation function which satisifies the
condition:

$(BIP, = 8, K>g (5.50)
Thue, the autocorrelation function should approach zero as K
grows larger., I+ the autocorrelation function diminishes
quickly, and drops off nearly linearly, then the underl¥ing
stochastic process should be treated as nonstationary, and
differenced by d, the number of differences taken to achisve
staticonarity of the series. Once d ics determined, the
resultant series, Wy, which is Zy differenced d times, or w,
= A dzt, may be used to calculate the sample
avtocorrelation and partial autocorrelation functions.

As seen in Equation (5.47), the values for Oy mar be
found from the Yule-Walker squations, thus for an
autaoregressive process of order p, the partiszl
avtocorrelation function will be nonzeroc for Kip and.zero
for K:p. Therefore, for an autoregressive process of order
gy the partial auvtocorrelation coefficients will be

significant at lags up to p, and decline for lags kip.
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Due to the fact that each value contains information
from all of the past values of the series, as seen by:
Zy = °lzt-1 + °22t—2 + ... * @D t-p
+ €L+ 8, (5.91)
for a purely autoregressive process, the autocorrelation
coefficients of the sample autocorrelation function will
decline gradually. For example, the autocorrelation
function for an AR(1) process has a value of Pg = 1, and
k1, declines geometrically, as seen by:

Y = @1“. (5.52)

kK = —

Yo
The autocorrelation function for a moving average

process, unlike that for an autoregressive process, will

diminish quickly. Specifically, since:

-8 + 8,6 + + 9 -]
k 1%+1 * - -K
P = e, (5.53)
2 2 '
1+ of 4 ...+ 6f
Kk =1...q9
=8, Kq

Thus, the autocorrelation function for a moving process of
order g will drop off sharply at lags K>g.

Conversely, the partial autocorrelation function for a
moving average process will tend to be dominated by a damped
exponential pattern. For example, the partial
autocorrelation function for an MACL) process is:

= - gk - al - 2{K+1> '
°kk = 61{1 LTRZAS! 9y . (3.54



The autocorrelation function for a mixed ARMA model
will show a dampened sine wave or exponential decay pattern
if q-p<@, since the autocorrelation function will be
dominated by an auvtoregressive process., But if q-p:@, there
will be q-p+!l values which do not follow this pattern. The
partial autocorrelations of a mixed process will tend fo
show a damped sine wave or exponential decar due to the fact
that for:

€4 = 6_1iB)¢(B)zt, {3.53)
Q'Ii; an infinite series in B. The partial auvtccorrelstion
" function of a mixed process will then be infinite in extent,
and s=how a damped pattern.

Subsequent to the selection of valuez for p, g9, and d
for an ARIMA model:

${B> Adzt = @(B)wt = 0(BX¢ (5.54)

where:

i
p—

I
En
ua)

L RE =D

q .
(B = | - Za.B!
=1

the estimates for the autoregressive and moving average
parameters may be obtained. The ectimates for the
autoregressive and the moving average parameters are chosen

<0

w

5 to minimize the sum of squared errore between wy and
Fal
W, .

I1f the error series iz written as:

¢, = o lemrocmow,, _ (5,57
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then the sum of squared errors may be expressed as:

SCh, 6) = fe%. (S.53)

The estimates 9 and @ are chosen to minimize the sum of
squared errors in Equation (5.58).,

Given that moving average terms are present, then Et,
expressed as a function of parameters, will be nonlinear in
parameters, therefore an iterative method of nonlinear
estimation must be emplored.

I+ the assumption is made that the £/ are
independently and normally distributed, then the probability

function for them can be approximated by:

T
PCEL .u. £,0 & 070 exp¢-T €2 / 265 (5.59)

t=1

Thus, the log likelihood function is:
InL = -Tin o, - (Zé5r/202. (S.88)

The conditional log TiKelihood function is given by:

s*<¢,9> :
LyC(o, 9, Gﬁ) = —Tlogoé - (3,410
-2
EUé
where:
T i= the number of observations
] =}(¢1, e mp)
8 = (61, e eq)

The leg likelihood function is said to be comnditionsl

Py

because the sum of squared errors 5. <(#, &) is conditional on

past uncbservable values Wes Wogs =.o gy Soqr v

l""l—pi-l H

E_q+1. Due to the fact that the least squares estimates
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depend on past unobservable vwalues of we and €, values for
Was W_jy s must be chosen to initialize the series. The

values for Wgs «oe W_opiy and €5, «»- E_q+1 may be set t

Q

]

DUl

their unconditional expected values. If the unconditon
values €5, ... E_q+1 are all B, and £=8, the unconditionxl

values for wg, ... will also be B, én alternative is

w_p+1
to determine conditional expected values for Way = w_p+1

which are conditional on the estimated values of El s Et.
The procedure for initializing a conditional least =zquares

estimation is to set Way s and €g, ... € to B,

“op+t -q+l

The ARIMA model is then estimated to minimize S{0¢o, &3
conditional on the @ values. The estimated model iz then
used to hackcast the values for wg, ... Wop4y

Since the differenced series, Wy, is stationary with

respect to time, the series may be written:

on
[
(v
'

PLFdwy = B(F)€, {
where F is a forward shift operator, so:

Fwt = Weggs
Using this forward shift operator, Equation (S.57) can be
rewritten as:

wy = 8TIFISFIE . (5.463)
This equation can be used to solve for wg, ... Wogtq from
the ectimated values of €y +++ £7. A set of least =quares
ecstimates for ¢ and & are found by minimizing S(d, &, T )

conditional an L\JB, e e W 1 where:

e

£
1

e

(9, 9, 0.) =
k X
t

P

=20 U | Wy a Sy WD £3.490



Mew values for wg, wy, ... W_p ey May be estimated from

Equation (5.43), and the process repeated until the

estimates for % and % converge. Pindrck and Rubinfeld

(1981, p. 553 state:

1¥f the time series is short (relative to p and q), some
gain in efficiency would probably result from the use
of conditional expected valueese of Ways «ses Wopsg

Before estimation technigues can be uszed, initial
guesses for the parameters must be made. Recalling from the
Yule-Walker equations that:

Py =_-t-1 + Py LN | mppp_I

Fl-z = @'IF'I + 'b:-:. + ... * ®pPp_2

* oae v O

P
By replacing the thecretical autccorrelations with the

p—2

ecstimated autocorrelations Fes initial estimates for ¢ can

be found. MNamely, if:

- - - — —_
¢1 ry 1 ry ro rp_1
¢ o ry 1 P{ ses Fpoz
P =1. r = R ={. e s s eeezns
_’3’;; _':p_ :_p—i Fp=2 Fp-3 *= L
? may be found by:
p = 7! (5. 45)

for the ectimates.
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1f the model contains moving average parameters, then

the model can be represented.as:
s”lemoBIw, = ¢, (5.48)

which is nonlinear in parameters. The model’s parameters
must then be estimated by nonlinear ecstimation techmiques.

Equation (5.44) may be linearized with the first two
terms in a Tarlior series. Malues for the errors, which are
conditional on w, ®, and 9, [€,], may be expanded with a

Taylor series about initizxl guesses for the parameters (4,

9
p+tq LS
(€. =[¢,iw, Bl + Z<B., - B )
t : @ .8
t =y | i T F, | =5,
pt+q £e 1
+ .5 EB, - B, oF t
i=1 !
2 Vo
O BS | P=Ry
* (2.587)
If we let:
Z = ot (S, 4
it T — (3. 48
3 F ﬁ=ﬁa .
and
['Et’al == [Et= W, Ban’ ,::5.':-:.?)
then, substituting (5.48) and (5.4%) into (3,487):
. ptq
el = DEy el T IR - Fied 2y (5.78)

approximatel».
Thizs may be rewritten as:

F+q
i e - = TE. . = ¢
[-\-t!B] +.x.‘.=i!rﬂ£-i!t “F'Z“t + [tt] b

]

713
=



€y 0
for Ea. The values for Pi can be estimated then wia

ordinary least squares regression, wheres

v = ZF + [€1] (5.72)
where
- .
ptg
L€y gl +ifTi,@‘i,1
Y = ® 2 ¥ % B % & = s ¥ ® 5 % 8 B & R N
ptq
Liy @! +i§Ti,@2i,T
— —

21,1 Zz,1 *+ Zpag,i

Z=IIIIIIIIIIIIIIIIIIII

21’-'- 22,T “aw zp+q,-r

e

p+q

arnd [£) is a Txl vector of unobservable error terms.

A new Taylior series of [Et] can then be constructed
around the estimate of F, in order to generate a further
estimate of B. The process is repeated until:

P = B-p 8,
where K is the number of iteraticne necessary for

convergence.,

1 representing the error generated by the initial quess
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Once a moodel has been estimated, the appropriatenecs of
thizs model may be determined by the process of diagneostic
checking. Diagnostic checKing may employ variouse tcocols to
evaluate the zppropriatenese of % model, but the reciduals
are the most commonly used tocl to check the appropriateness
of an ecstimated model. I+ the random error terms, Et, in
the actual process are normally distributed and independent
of each other: |

€y ~ N(B,05)

EEC iy €4l = a,
and the model which has been estimated i=s appropriate, then
the errors €4 should also have these properties. If the
estimated residuale have properties c]oée tg the theoretical
residuals, the estimated residuals will be nearly
uncorrelated with each other. In order to test for the
caorrelation between residuales in ditferent time periods, the
sample residual autocorrelation function may be calculated
and examined.

The sample autoccorrelation function of the residuais

cshould be close to @ for displacement K1, where:

= t (3.73)

The standard deviation of the sample residual

autocorrelation coefficients may be approximated by lfit)'?

so that if the coefficient is greater than two standard
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deviations, we would be ?5 percent confident that the true
residual auvtocorrelation is not zero.

s with the actual data series, the @ statistic may be
used to test the joint hypothesis that the residual

autogcorrelation coefficients are zero:
RB=tZ rf (5.74)

Since @ is the sum of K—-gq-p squared independent variables
with normal distributions, means of zero, and variance of
1/t, t = T-d, then & will be distributed as Chi-squared with
K-q-p deqgrees of freedom. The calculated & may then ke
compared with the tabulated walue of KE(K—q—p) ta test the
hvpothesis that the residual autocorrelation coefficients
are zero.

1 the autocorrelations do not show any signiticant
spikes, and the value of @ is not significant at the
prescibed probability tevel, then the model mary be
determined to be adequate for the purposes of forecasting.

Given the model:

Wy = Dgwg_ g+ oo wpwt—p t gy

z, = z%,, (5.7&)
which may be expressed as Wy = e_lBil—B)_dQ(B)Et = $(Bre +

£, in order to obtain a forecast for Wriys Equation 5.7

o

)

can be modified as:

|~"'1‘r+1 = 'DIL'-JT + «wa + 'Dpl.hl-r_p_l_l - ':"1 ’\':T
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- e - quT—q+1 + £, (3.77
which may be rewritten as:

(-4

WTey =BT Yatrey BB ¥ragfroy

2

The forecast wr(1) is then calculated by taking the

conditional expected value of Wryqt

Wrll) = Elwp g iwp, Wrogs »e0y Wyl
'DIWT + ... * ®pWT_p+1 - '91‘.1-

= sas quT—q + . (5.78)

ar

<«

~ — * .
wp (1) ‘Jzaw1+3 ST-i

*

where W1+J ie the optimal weight to minimize the mean

squared forecast error.

The error for x one period ahead forecast is:

- _ * -
= W@ET_’_l +.§B(q’1+-j I‘P1+j >€T_J' (S.792

For & one period ahead forecast the variance will then be:

b--3

c1y 21 = 2 2 -y *

Jj=a
since E[£ €] = 8,
Given that the optimal weights are chosen, then their
expected values will be egual to the true weights, and the
expected walues of ET+1 «+s €4,y are equal to zero. Then

the variance for a one period ahead forecast will be:

29 = g 24 2 _ 2
E[eT(IJ 1 = g 0" = O (S.81)



due to the fact that W@ =1, The forecast error variance
for a one pericad ahead forecast will therefore be the

variance of the error term:

(3.82)

According to Box and Jenkins (1978, p. 154y, for a desired
probability ltevel, «, and each lead time L, the confidence
interval about the forecast is:
tlez y.5

zo(L) X oy 0l 3§1¢ j? % (5.83
where U,,p ie the deviation exceeded by /2 of the unit
Mormal distribution. The confidence interval about a one
period ahead forecast will then hke:

zpC1) * u, 5 O (5.84)
which can be estimated by:

zp€1) £ oy, o 8 . (5.85
Thus, the 95 percent canfidence.intérual about = one period

ahead forecast will be:

zp(1) £ 1.96 (1) S5 zoll) £ (1.98) 8,.

Identification of a Tentative Model

The data over the period of 1725-1945 was analyzed in
order to specify a tentative model. The sample
autocorrelation and partial auvtocorrelation functione were
calculated and plotted. The first two avtocorrelations
exceeded two standard errors of the estimate, with the

ecstimate at lag one equal to .32238 and the ectimate =t tag
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two equal to 59493, Also, the autocorrelations tended to
exhibit a trend, changing from positive to negative walues
at lag fourteen, as can be seen in Table III. The values
below the estimated auvtoccorrelation coefficients are the
standard errors of the coefficients. The calculated Q@
statistic up to 24 lags was 117.21 which exceeded the
tabulated Chi-squared value with K=24 dearees of freedom at
the five percent significance level, or 34.42. @Ae = result,
the joint null hypothesis that all of the autocorrelations
are equal to zero had to be rejected. The partial
avtocorrelation coefficients cshowed a strong spike at lag
one, with a value of ,82238, while none of the cther partial
autocorreltations showed a strong pattern. &3 may bes seen in
Table IIl, most of the other partial autccorrelations were
very close to zerao.

Zince the autccorrelations showed a trending pattern
and the partial autocorrelaticone exhibited a strong spike at
lag one with little distinguishabkle ﬁatfern at higher lags,
the data was tentatively identified as either an AR(L)
process or as nanstaticnary. When an autoregressive
parameter was 2stimated at lag one, the estimate was very
close to one, with a value of ,?7452. The residual
autocorrelation function =till showed two values which were
greater than two standard errors at lag one and at lag five,
Similarly, the partial auvtocorrelation showed a strong spike

t 1 five. ZSince the autocorrelation at lag one still

ny
10

w

exceeded two standard errors of the estimate, and the



THE SAMPLE AUTOCORRELATION

TABLE 111

AND PARTIAL AUTOCORRELATION FUMCTIONS OF THE ORIGIMAL
SERIES (1923-1983)

Autocorrelations
Lagl Lag2 Lag3 Lagd Lag5 Lag6 Lag7 Lag8 Lag9 Lag 10 Lagll Lag 12
.82238 .59495 40551 24719 .13472 .14458 .23488 .33258 .38287 .38591 .34633 .20522
[.156174] (.239543)  (.273218]) [.287522} [.297522) [.29266) [.294169] [.295897]) [.30041} [.30926] [.320613} [.331749]
Lag13 Lag 14 Lag 15 Lag 16 Lag 17 Lag 18 Lag 19 Lag 20 Lag 21 Lag 22 Lag23 Lag24
.04993 -.10456 -.18357 -.18800 -.14867 -.09498 -.02359 -03023 -.09242 -.14931 -.22791 -.31050
{.340463} [.343457]  [.343634]  [.344409] [.346787] [.349264] '[.350804] (.351431] [.35147] {.351533]  [.352125] [.353666])
Partial Autocorrelations
“Lagl Lag2 “Lagd Lag4 Lag5 Lag6 Lag7 Lag$8 Lag9 Lag 10 Lag 11 Lag 12
.82238 -.25134 -.00016 -06767 .01133 26772 .16691 .08767 -.02942 -.01463 01759 -23715
Lag 13 Lag 14 Lag 15 Lag 16 Lag 17 Lag18 Lag19 Lag 20 Lag 21 Lag 22 Lag23 Lag24
-.02953 -.22268 .04482 .01789 -.07699 -.03335 .01778 -.16015 -.00344 06171 -.07227 -05102

S.E. [¢kk] x 1/Vn = [.156173]

a1t
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autocorrelations of the original series showed & trend, the
data wae determined to be nonstationary, and a first
difference was required. The sample autocorreltation and
partial autocorrelation functions were calculated and
plotted. The values for the estimates of the
autocorrelations and the partial autocorrelations of the
differenced data, along with the standard errors of the
eztimates are chown in Table IY¥. A strong spike cccurred at
lag five in both the autocorrelations and the partial
autocorrelations. No other pattern was distinguichable in
the partial autocorrelations, but the autocorrelations did
seem to show a2 damped sine wave pattern, with the
avutocorrelations alternating between positive and negative
values with every five or six lags. While there were no
further spikes in the autocorretations which were greater
than two standard errors at lags other than lzxg five, the
calculated @ statistic was 78.52 which ié greater than the
tabulated Chi-squared value of 36.42 for the five percent
confidence level with K=24 degrees of freedom. Therefore,
the joint hypothesis that all of the autocorrelation
coefficients are equal to zeroc was rejected. This
combination of patterns in the autocorrelation and the
partial autocorrelations would tend to indicate an
avtoregressive process with a parameter at lag five, which
may be expressed as:



TABLE IV

THE SAMPLE AUTOCORRELATION AND PARTIAL AUTOCORRELATION FUNCTIONS OF THE
DIFFERENCED SERIES (1925-1%&5)

Autocorrelations
Lagl Lag2 Lag3 Lagd Lag 5 Lagé6 Lag7 Lag8 Lag9 Lag10 Lag1l Lag12
.30089 -.14487 -.05704 -.18435 -.57118 -.44822 03914 15853 .14599 .28499 39229 .13088
[.158114]  [.171834] [.17486} [.175325] [.180106] [.220795)] .242478] [.242636] [.245212) [.247375)  (.255451])  [.270092)
Lag 13 Lag 4 Lag15 Lag 16 Lag17 Lag 18 Lag 19 Lag 20 Lag21 Lag22 Lag23 Lag24
-.04800 -.28233 -27380 -.17198 -.11645 -.06605 .25861 30478 03231 .09091 .10268 -.07204

(.271673] (.271885] [.279118]  {.2185754][ .28833) (.289503] [.28988] [.295591]1  [.303346) [.303432) (304112} (.304977]

Partial Autocorrelations

Lag1 Lag2 Lag3 Lag4 Lags Lag6 Lag7 Lag8 Lag9 Lag 10 Lag1l Lag12
.30089 -.25884 .08923 -27402  -.51700 -32815  -.08362 -.12650 -.09109 -.16096 -.00217 -01627

Lag13 Lag 14 Lag 15 Lag 16 Lag17 Lag 18 Lag19 Lag20 Lag21 Lag 22 Lag23 Lag24
18171 -.27980 -01510 .04962 07636 -.11061 18045 -11838 -.06459 17270 -.00913 .08396

S.E. [¢kk] x 1n = [.158113)

Zi1



or
CI-BXC1 - 0BTIX, = ¢ + €, (5.87)

An autoregressive parameter at lag five within the
differenced data could be explained by the cyclical nature
of cattle prices. NMNamely, the period between a peak and
trough in the cattle cycle averages be tween three and ten
vyears, and the period between a trough and peak in the cycle
averages about four to six years. If the differenced ceries
are examined in Figure 8, large spikes clearly occur with
about five or six years between peak and trough. While the
autocorrelations at other lags were not significant, a
decaying sine wave pattern was evident. The peaks and
troughs in the sine wave pattern of the residual
autocorrelations occurred at approximately lags 3, 11, 14 or
15, and 28, which is indicative of the traditional cyrclical
pattern. Had a longer time span of data been availzble
perhaps these values would have been significantly different

from zero.
The Estimated Model

~After the model was identified tor the pericd of
1925-1745, it waes estimated with the following resuits:
(1—B)(1—.60383885)Xt = .428514 + €, {5.88)
o= .pd2912, t = 1.77

%, = -.403838, t = -4.47
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The estimate of the variance was 2.885281 and the standard
error was 1.44442334.

The autccorrelation function of the residuals was
calculated and plotted. A1l of the residual
autocorrelations were less than two standard errors of the
estimate and showed no apparent patterns. Furthermore, the
calculated @ statistic to 24 lags was 31.52, while the
tabulated Chi-squared value for the five percent
significance level with K-p—1=22 degrees of freedom is
approximately 33.915, therefore the joint null hypothecsis
that all of the residual autocorrelations are equal to zero
could not be rejected. Consequently, the model was
determined to be adequate for the purposes of forecasting.
The forecasts from the ARIMA model will be presented in
Chapter Six.

The ARIMA model, like the econometric model was updated
aver the period of 1?84~-1985. The estimates of the
avtoregressive parameters are presented in Table \ alaong
with some relevant measuree of fit. The estimated
avtoreqgressive parameter at lag five was significantly
different from zeroc at the five percent significance level
in each of the updated models. The estimate of the
parameter for each of the madels fell within a range.between
.49 and .469. The estimate for the mean of the zeriec fell
between .1% and .2%9. The estimate of the mean was
significantly ditferent from zero, from 1947 through 17732,

although the calculated t walues were not much larger than



TABLE V

THE ESTIMATES OF THE AUTOREGRESSIVE PARAMETERS

AND OTHER RELEVANT MEASURES OF FIT

——dabled

A A

Year Iy n $ s2 S Q taz0s X3

1965 -.603838  .292192 420514  2.08581 144423 31.52 2.025 33.915
[135072] [.148227)
(4.47) (1.77)

1966 -604781  .268337 430622  2.03581 1.42662 32.37  2.023
[133382] [.144334]
(-4.53) (1.86)

1967 -599218  .290182 464064 2.0302 142485 3624  2.021
(133087) [.142822] .
(<4.50) (2.03)

1968 -593376  .281854 .449] 1.98746 1.40977 37.04  2.019
(1330701} .13998)
(4.54) (2.01)

1969 -590075 .278816 .443339  1.9411 1.39323 37.56 2.018
[127074] [.13692]
(-4.64) (2.04)

1970 -.5859 287345 455701  1.90302 1.3795 39.81  2.017
[.125414] [.134258)
(<4.67) (2.14)

1971 -579619  .307738 486109 1.90159 1.37898 37.97  2.016
[125219] [.133155]
(4.63) (2.31)

1972 -568195  .32702 512831 1.89646 137712 31.71  2.015
[.124486] [.132363)
(<4.56) (2.47)

1973 -S573809 28825 45365  2.01418 141922 3486 2.014
[128265] [.134456)
(<4.47) (2.14)

1974 .608758  .227385 365809  2.39205 1.54663 25.19  2.013
[.139272] [.142039]
(437 (1.60)

1975 .609644  .195447 31458 246114 1.5688 2406 2012
[141261] [.142704)
(4.32) (1.37)



TABLE ¥ (Continued)

—Jlabled
A A '
Year ) R s s2 S Q tg=.05 X2
1976 -.601893 206752 331195 2.42738 1.558 25.25 2.011
[.139694] [.140959]
(431)  (1.47)
1977 -.599055 213073 340715 2.38394 1.544 2643 2.010
[.138188] [.138562)
(434)  (1.54)
1978 -.664257 252877  .420853 2.5109 1.58458 25.52 2.009
[.137421] ({.135017) .
(-4.83) (1.87)
1979 -.694481 262754 445232 247736 1.57396 26.29 2.008
[.125119] [.130454)
(555  (2.01)
1980 -.630939 2616179 .352574 2.77169 1.66484 26.30 2.007
[.129947] [{.1418)
(4.86)  (1.56)
1981 -.634382 191326 .312699 2.80296 1.67421 30.79 2.006
[.130656] [.140907]
(4.86) (1.36)
1982 -.634251 .19397 316996 2.75297 1.65921 31.10 2.005
[.129484] [.138355)
(4.90)  (1.40)
1983 -.588801 213763 339627 2.75338 1.65933 34.78 2.004
[.121415] [.1409]
(4.85)  (1.52)
1984 -.543121 .236708  .365269 2.78105 1.66765 37.68 2.003
[.116454] [.144477)
(4.66)  (-1.64) ,
198§ -.491694 .187252 279322 3.1948 1.73767 35.23 2.002
[.119306] [.154165]
“12) (120
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the tabulated values. The years betweem 1747 and 1773 were
upswing »years of the cattle price cycle. The variance of
the error term ranged between 1.89 and 3.81. The variance
decreased with the updating of the model between 1?7485 and
12?72, and increased between 1973 and 1985. This perhaps
could be explained by the somewhat irregular pattern of the
downswing in the last cycle. The calculated Box—-Pierce Q
statistic to 24 lags was significant between 1947 and 1971,
1$73, and 1?83 through 19835, but other than an
avtocorrelation of borderline significance at lag twﬁ, none
of the other residual autocorrelations were significantly

different from zero.



FOOTNOTES

lyhile some gaine in efficiency may be expected with
small samples, the statistical properties of the estimates
are based on assymptotic results and the small sample
properties of the estimates are unknown. Ansley and Mewbold
(1988, p. 164) did investigate the finite sample properties
of maximum liKelihood, conditional least squares, and exact
least squarecs estimators for autocregressive moving average
models, In 18608 replications of autoregressive models run
on sample sizes of 58 observations, Ansley and Newbold found
that for values of ¢ in the range of -.48 to -.73
conditional least squares and maximum likelihood ecstimators
produced the same forecast mean squared error when used to

make one step ahead forecasts, outperforming exact least
squares.

zén (L) period ahead forecast would be expresced as:
Wrey = 8 ¥afrey F VifTegog t e P Yoty

MRS PL S
J=a



CHAPTER S1X
FORECASTS: aNALYSIS AND RESULTS
Introduction

The purpose of this chapter is to present the forecasts
from the individual models and the variocus composite
forecasting methods. The period of primary interest is
1976~-1985 when forecasts were available for the individual
medels and the composite;. Additionally, this chapter will
seekK to present some measures of relative forecasting
accuracy produced by each of these models over the selected
time period. Forecasting accuracy is the primary criterion
in the selection of a "superior" model or method in a study
ceekKing to improve forecasting performance. The question
then arises regarding what are adequate measures of
forecazsting accuracy. Certainly, the definition of an
accurate forecast may depend on the forecast user‘’s needs.

Brandon (1983, p.18%) wrote:

The necessity of having an efficient benchmark is
required by the nature of measuring forecast accuracy.
There are numerous measures of accuracy: mean error,
mean absolute deviation, root mean square error, mean
absolute percentage error, Theil’s measure of
inequality, coefficient of variation, and coefficient
of determination. Each has specific advantages and
disadvantages bzased on its mathematical properties,

128
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Accuracy of forecasts is thus, in some sense, a
subjective choice. What is most accurate for one
purpose need not be for another purpose.
For example, some forecast users may need accurate
information concerning turning points in the data, with
little interest in the ability of a model to pinpoint a
specific level in the data. This may often be the case with
users of price forecasts who are primarily interested in
changes in markKet direction. On the other hand, some
forecast users may be more interested in the accuracy of the
level of the forecast. For example, prnduceﬁs who might
wish to base expected returns on a predicted price would be
interested in the accuracy of forecasting a.given price
level. These ditferent information requirements would
necessitate the use of different measures of forecasting
accuracy. Therefore, a number of price forecasting accuracy
measures will be examined. Makridakis and Wheelwright
(1978, p. 568) state:
In spite of the fact that accuracy is given prime
importance as a factor in the selection process, little
work has been done to develop a frameworK for measuring
and evaluating accuracy issues.
Most forecasting accuracy measures fall under the catergory
of descriptive measures, such as those listed by Brandon.
Perhaps the most commonly used measure of forecasting

accuracy is mean squared forecast error, which can be

expressed as:
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where
Xi is the actual value

Fi is the forecast for the value of the variable
n is the number of data values or forecast values
available
Granger and Ramanathan (1984>, Brandon (1983), MNewbold and
Granger (1972), and Brandt and Bessler {(1981) employ mean
squared error as a tool for comparison amcocng various
forecasts. According to Theil (19271, p.4):
A linear lose function would be inappropriate since
each unit of loss (inaccuracy) would be treated
similtarly, or stated differently, each unit of marginal
loss is assumed to be constant.
The mean squared error does have the properties that it
attributes more weight to large errors than small ones, and
is symmetrical in that it gives equal weight to over and
under forecasts. This descriptive measure would be more
applticable to a situation where the costs from an cver
forecast and an under forecast are about the same.
Unfortunately, this may not alwarys be the cace when
employing price forecasts for the purposes of production
planning. For example, if a price forecast is used to
calculate an expected return with a given set of expected
productiﬁn costs, the coste resulting from an averly
cptimistic forecast of prices could be much higher than with

an underforecast.



If the costs from consistently over or under
forecasting are grea£er than the opposite case, the forecast
user might wish to Know whether or not the model
consistently over or under forecaste. The mean forecast
error, unlike the mean squared error is a linear loss
function, and provides a measure of forecast bias. The mean

forecast error is:

n
Z(F. - X
. i i
i=1

MFE = (6.27

n
1¥ the mean forecast error is greatly different from zera,
forecasting bias may be indicated. For example, when the
mean forecast error is positive overforecasting may be
indicated. Another method of measuring forecast bias is
described by Dhyrmes, et:al (1972, p. 313
«ss We regress actual values on the predicted values
and test whether a series and the resulting equations
have zero intercepts and slopes not significantly
different from cne.
Bessler and Brandt emplored this technique to test for bias
of forecasts. I+ either the intercept wae found to be
significantliy different from zero, or the slope coefficient
was found to be significantly different from one, the
forecast were found to be biased on the average aver thaf
time pericd. While Brandt and Bessler found each of the
forecasts to be biased, they suggested that a lower mean
square error might be a more desirable forecasting goal than

an unbiased forecast.
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Aanother alternative to using MSFE as measure of
forecasting accuracy is the Theil U ccefficient. The
advantage of the Theil U coefficient is that it allows for
the comparison of formal forecasting methods and naive
forecasts. A naive forecast may be defined as a forecast
which ie based on the assumption that the best forecast of
next period’s observation is this period’s ocbhservation.
Thue, the forecast for XT+1 would be Xy, The Theil U
coefficient also has the property, like MSFE, that large
errors are given more weight than small errors. The Theil Q
coefficient uses a measure of relative change rather than an

absolute measure which MSFE uses, as can be seen by:

n—1
ey .
iEfFPEi+1'_ ﬁPEi+1) /({n-1>3
U= ’ (4.3
n-1
J Z(APE. , )%/ (n=1)
. i+1
i=1
where
F. - X,
FPE.,, = k '
i+l
.
i
= forecasted relative change
and
Xivt =%
APEi+l = = actual relative change

The Theil U coefficient can be rewritten:
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u = =1\ i / (4.4)

2
n-1f x... - X,
N z( P+l '/\ (n-1)

and simpltified to:

2
n=if F.,, - X.
+ +
z( i+ ! h (n~1)
i=1 ®.
U = \ : / (4.5

/'”_x\ (n—1)
\1 »—1\ X,

The Theil U coefficent may be interpreted as=:

when =1, the naive method performs as well as the
farecasting method
when U<{l, the forecasting method performs better
than the naive method. The smaller U
ie, the better the forecasting method is
compared with the nxive methad. I+ the
forecasts are perfect, then the
statistic will be zero.
when U>1, the naive method outperforms the
forecasting methaod.
The mean absclute percentage error alsc serves as an
alternative measurement of point forecasting accuracy. The

mean absolute percentage error is computed by:
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n
ZIPE.
i=1 i
MAPE = (4.8)
n
where:
PEi = (1aa)
X

The mean absolute percentage errar has the specific
advantage that it expresses forecasting accuracy in terms of
average percentage error. It does not give greater weight
to large errors than smaller errors, but does treat positive
and negative errors the same due to the fact that an
absolute value is used.

If the forecast user is more concerned with the
accuracy of correctly forecasting turning pointes in the
data, the appropriate tyﬁe of measure is some type of
tracking signal. Tracking signals include varicus
indicators such as the number of times & change in price
direction is forecasted when no change in price direction
occurs or the number of times no change in price direction
iz forecasted when a change in price direction actually
occcurs., Most often these types of results are simply
presented in tabutar form as by Brandt and Bessler {1981, p.
553 .

Since annual forecasts of beef cattle prices may be
employed for numerous purposes, various measures of
forecasting accuracy for each of the forecasts will be
presented. These measures include mean =quared forecast

error (MSFE), mean forecast error (MFE)>, mean abesolute
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percentage error (MAPE)>, the Theil U coefficient, and

turning point errors.

The Econometric and ARIMA Forecasts

(192446-1985)

& series of one step ahead forecasts were generated by
updating the econometric and ARIMA models over the period of
1944 through 1985. These one step ahead forecasts, along
with the actual values for deflated farm beef cattle prices
are presented in Table VYI. The errors and squared errors
resulting from each of the series of forecasts are also
shown in Table WI. Additionally, a series of simple average
composite forecasts, their errors and squared errors are
presented in Table VI for the purposes of comparison with
the econometric and ARIMA forecasts. @& simple average
composite of the econometric and ARIMA forecasts is compared
with the forecasts from the individual techniques over the
period of 19488 through 1985 since no forecast error
histories are necescary in order to calculate the simple
average composite., Table VII contains the mean squared
forecast errors, the mean forecast errors, mean absoclute
percentage errors, and Theil U coefficients for the
ecaonometric, ARIMA, and simple average composite forecasts
over 19&85-1985. Table VIII shows a summary of turning point
errors for each of the forecasts.

From Table UVII, it can be seen that the &RIM& forecasts

produced lower mean squared errors, mean forecast errors,



THE ECONOMETRIC, ARIMA, AND SIMPLE AVERAGE COMPOSITE

TABLE VI

FORECASTS, ERRORS, AND SQUARED ERRORS

Year

1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
198t
1982
1983
1984
1985

Aclual

20.9632
22.3000
22.8293
24.0809
24.4144
25.7750
26.8000
24.2768
19.4992
17.2469
17.6440
17.8701
22.8235
27.3813
25.0200
22.9894
23.3911
223610
22.2179
19.6853

Econometric

19.2780
21.0775
22.5343
22.9946
23.8265
23.9333
25.6757
25.4316
25.3999
18.9441
18.2857
21.5162
'23.1584
27.8670
30.9674
25.2849
25.3737
25.2000
22.8819
17.7552

Forecasts:
ARIMA

20.5896
20.9350
23.3666
24.2881
23.8547
24.4008
25.4863
27.0121
24.0123
19.6620
16.7321
17.3582
19.7224
26.4179
29.3913
25.1221
23.1586
20.5664
20.0166
23.8660

Average

19.9338
21.0053
22.9505
23.6413
23.8406
241671
25.5810
26.2219
24.7061
19.3031
17.5139
19.4372
21.4404
27.1424
30.1793
25.2035
24.2661
22.8832
21.4493
20.8106

Econometric

-1.6852
-1.2225
-1.2950
-1.0863
-.5879
-1.8417
-1.1243
1.1548
5.9007
1.6972
8516
3.6460
3348
4850 .
5.9473
2.2954
1.9825 -
2.8390
6640
-1.9301

-

Errors:’

ARIMA

-.3736
-1.3650
.5373
.2072
-.5597
-1.3742
-1.3137
2.7353
4.5131
2.4151%
-.9119
. -.5119

. 3101
. -.9640

43713
2.1327
-.2325
-1:7946
-2.2013
4.1807

Average

-1.0294
-1.2837
1212
-.4395
-.5738
-1.6080
-1.2190
1.9451
5.2069
2.0561
-.1301
1.5671
-1.3581
-.2395
5.1593
22141
.8750
5222
-.7687
-1.1253

Economelric

2.8398
1.4945
.0870
1.1800
.3456
3.3918
1.2640
1.3335
34.8182
2.8804
4247
13.2940
A121
.2353
356.3715
5.2693
3.9307
8.0599
.4408
3.7252

Squared
Errors:

ARIMA:

.1395
1.8632
.2886
.0429
3132
1.8884
1.7258
7.4818
20.3680
58327
.8315
.2620
9.3092
9292
19.1082
4.5484
.0540
3.2205
4.8457
17.4782

Average

1.0596
1.6737
.0146
.1932
.3292
2.5855
1.4859
3.7832
27.1118
4.2277
.0169
2.4558
1.8444
.0573
26.6188
4.9022
.7657
2726
.6908
1.2663

r
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FORECASTING ACCURACY MEASURES FOR THE ECOMOMETRIC, ARIMA,
A&ND SIMPLE AVERAGE COMPOSITE FORECASTS (1%88-19283)

Faorecast MSE MEE M&SPE THEIL U
Econometric 4,.B24% L2713 2.464%4 FP7S
ARIMA S.8245 L3219 5.1?4é‘ LF243
Average 4.85827 LSA&4 4.1825 &£545

TeBLE VITI

TURMNING POINT ERRORS OF THE ECOMOMETRIC, ARIMA,
AVERAGE FORECASTS (1744-19850

AND SIMPLE

Changes in Price Direction

Forecasted
fActual Econometric ARTMA Simple Averzages
C NC : c NC c NC
C = 2 a ! @ o
NC 2 11 é 7 4 e

C = Change MC = Mo Change
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mean abscolute percentage errors, and Theil U coefficients
than did the econometric forecaste. While the ARIMA
forecasts produced lower values for these measures of
forecasting accuracy, the econometric model performed better
in terms of accurately indicating turning points within the
data, as seen in Table VWIII. Thus, the choice of a
"superior" forecast between the econometric and ARIMA
forecasts would certainly depend upon forecasting needs.

The simple average composite gaue-a lower forecast mean
squared error, mean absolute percentage error, and Theil U
coefficient than either of the forecasts from the individual
models. As would be expected, the mean forecast error of the
simple average composite fell between the meian forecast
errors of the econometric and ARIMA forecasts. It may be
noted that the simple auérage composite did not improve the
number of turning points which were accurately forecasted by
the ARIMA model alone, but did improve the number of no
changes which were accurately forecasted.

Beyond 1973, the econometric model performed much
better than the ARIMA model or the csimple average composite
in forecasting turning points correctliy. Yet, the
econometric model produced largeﬁ values for all of the
other measures of forecasting accuracy. One reason for
these reults may be that the econometric model tended to
overforecast aftter 19273. The econometric model may have
proven to be superior over the ARIMA model in indicating

turning pointe because it uses lagged exogenous information
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to determine prices., For example, the econometric model
employed in this study uses lagged January ! inventories of
calves on farms as a predictor of prices, with large
inventories serving as an indicator of possible low prices
in the future. Given that the relationship between the
inventories of calves and beef cattle prices is fairly
stable, then information concerning changes in January 1
inventories would give an accurate indication regarding
future changes in beef cattle prices.

The ARIMA model assumes that the structure of the
prices remains somewhat stable, so that it can be
characterized by a set of fixed coefficients, relating
prices in different time periods, while the econometric
model assumes that the relationship between the dependent
variable, price, and the independent variables is stable.
Therefore, as long as the relationship between the dependent
and the independent variables remained stable through time,

given pattern of prices need not exist for the econometric

O

model to perform well in indicating turning points, as it
needs to exist for an ARIMA model to perform well in
indicating turning points. Harris and Leuthoald (1983, p. 3
found similar results with the ARIMA model which generated a
lower root mean square error than did the econometric model,
but the ARIMA model did not indicate turning points in
quarterly live cattle prices as well as their econometric
model. Brandt and Beseler (1781, p. 38,43), on the other

hand, found that the ARIMA model which they employed



tforecasted monthly cattle price levels and turning points
better than the econometric model. Both the econometric
model and the ARIMA model missed the turning points at
1975-1974 and 1978-177%. It may be noted that the downswing
between 1972 and 1275 was shorter than past downswings in
the crcle, and the upswing was only four years long between

1773 and 1972,

The Individual and Composite Forecasts

(1974-1285)

The econometric and ARIMA models were, as previously
stated, updated annually and used toc make one step ahead
forecasts over the period of 19448 through 1983, In addition
several composite foreca;ts were made which required
forecast error histories. These included the unrestricted
linear combination of forecasts and the adaptive weighting
schemes. Since thece composites required past forecast
error histories, a second analysis period between 1974 and
1925 was alze concidered. This time period was chosen
because it would allow for seweral forecast histories i{from
1286-1973) to be used in calculating the composites, and
would allow ten periods for composite forecaste to be made.
Aas with the econometric and ARIMA forecasts ouver 1944-1985,
the relative forecasting accuaracy of the individual and
composite forecasts were evaluated by various forecasting
performance measures. The performance measures included

mean squared forecast errar, mean forecast error, mean



absolute percentage error, the Theil U coefficient, and
turning point errors. The actual values, the econometric,
ARIMA, and composite forecasts are shown in Table IX. as
may be seen in Table IX, the econometric model tended ta
overforecast from 1974 through 1985, while the ARIMA madel
did not., The simple average of forecasts and the
unrestricted linear combination of forecasts helped to
offset the aoverforecasts made by the econometric mcodel, with
the unrestricted linear combination of forecasts actually
showing a tendecy to overforecazst., The compocsite forecasts
generated by the adaptive weighting scheme became much more
variable as the number of error histories included in the
calculation of the composite weight was decreased and as the
value for the smoothing factor, &, became larger.

The simple adaptive weighting scheme composite weights,
Wy On the econometric forecasts are shown in Table X. The
weiéht on the ARIMA forecastes are l—wl. As may be seen in
Table X, as the number of error histories, v, was
increased, the weights became less variable from one year to
the next, particularly with the smaller values of a. The

relative stability of the composite weights when a=1, and

P
n

v increased towards 18 periods occured because a longer
error history ie taken into consideration, so that one or
two larger values of the squared errors will have less
overall effect in determining the composite weight. Far
examplte, when only two or three error histories are

considered in & composite weight, and & large weight is



TABLE IX

THE ECONOMETRIC, ARIMA, AND COMPOSITE FORECASTS (1976-1985)

Year

1976
1977
1978
1979
1980
1981
1982
1983
1984
1985

v=1

17.7787
20.1104
19.8378
27.8497
30.6489
25.1792
24.1848
20.6292
20.8346
18.2648

V=2

17.3732
20.1376
20.0223
27.0215
30.9156
25.1807
23.9735
22.1114
20.6312
20.8907

Year

1976
1977
1978
1979
1980
1981
1982
1983
1984
1985

Actual

17.6440
17.8701
22 8235
27.3819
25.0200
22,9894
23.3911
23.3610
222179
19.6853

v=3

17.4563
19.0833
20.7692
27.0399
30.0768
25.1955
23.9905
22,1753
20.9102
21.4515

Eoonomelric

18.2957
21.5162
23.1584
27.8670
30.9674
25.2849
25.3737
25.2000
22.80819

17.7552

V=4

17.4634
19.2982
20.9465
271319
30.0945
25,1834
24.1612
22.2104
20.9864
21.3168

ARMA

16.7321
17.3582
19.7224
26.4179
293913
25.1221
23.1586
20.5664
20.0166
23.8660

Adaplive
Weighting

a=10
v=5

17.4522
19.3161
21.1177
27.0197
30.1843
25.1841
24.0141
22.5609
21.0054
21.5774

Simple
Average

17.5139
19.4372
21.4404
27.1424
30.1793
25.2033
24.2661
22.8832
21.4493
20.8106

v=6

17.4523
19.2859
21.1378
27.0768
30.0537
25.1887
24.0226
22.2815
21.1980
21.5424

Unrestricted
Linear
Combination

16.9271
17.5762
19.7618
25.7425
28.9006
24.0764
22,7004
21.0406
20.5334
21.7573

v=7

17.4425
19.2863
21.1293
27.0821
30.1144
25.1862
24.0774
22.2996
21.0508
21.1757

v=8

17.4447
19.2603
21.1310
27.0748
30.1199
25.1905
24.0410
22.4161
21.0611
21.4956

v=9

17.4507
19.2661
21.1156
27.0750
30.1117
25.1910
24,0052
22,3672
21.1280
21.4765

v=10

17.4293
19.2814
21.1203
27.0681
30.1119
25.1906
24.1013
22.4801
21.1104
21.3519

PET



Year

1976
1977
1978
1979
1980
1981
1982
1983
1984
1985

Year

1976
1977
1978
1979
1980
1981
1982
1983
1984
1985

Year

1976
1977
1978
1979
1980
1981
1982
1983
1984
1985

va=1

17.7787
20.1104
19.6378
27.8497
30.6489
25.1792
24.1848
20.6292
20.8346
18.2648

v=1

17.7787
20.1104
19.8378
27.8497
30.6489
25.1792
24.1848
20.6292
20.8346
18.2648

17.7787
20.1104
19.8378
27.8497
30.6489
25.1792
24.1848
20.6292
20.8346
18.2648

V=2

17.3839
20.1370
19.9938
27.0842
30.9099
25.1804
23.9798
22,0305
20.6574
20.7332

v=2

17.3942
20.1363
19.9729
27.1382
30.9044
25.1802
23.9857
21.9580
20.6776
20.5935

V=2

17.4038
20.1357
19.9569
27.1850
30.8991
25.1801
23.9913
21.8926
20.6937
20.4687

v=3

17.4519
19.1190
20.5930
27.0961
30.1497
25.1912
23.9935
22.1524
20.8759
21.2167

v=3

17.4510
19.1538
20.4589
27.1459
30.2120
25.1885
23.9970
22.1253
20.8520
21.0152

v=3

17.4552
19.1876
20.3563
27.1901
30.2656
25.1865
24.0009
22,0952
20.8353
20.8400

TABLE IX (Continued)

ve 4

17.4569
19.2927
20.8535
27.1513
30.1605
25.1838
24.1135
22.1804
20.9626
21.1720

v=4

17.4547
19.2971
20.7492
27.1794
30.2187
25.1837
24.0849
22.1485
20.9383
21.0189

Va4

17.4550
19.3078
20.6436
27.2106
30.2696
25.1833
24.0673
22.1146
20.9155
20.8687

a=12
Va§

17.4505
19.3052
20.9876
27.0520
30.2119
25.1842
24.0258
22.4244
20.9767
21.4648

q-!A
Va5

17.4506
19.3062
20.8546
27.0921
30.2481
25.1839
24.0295
22.3248
20.9489
21.3201

a=16
va=b

17.4523
19.3145
20.7263
27.1356
30.2864
25.1834
24.0305
22.2462
20.9234
21.1572

v=6

17.4506
19.2877
21.0029
27.0892
30.0955
25.1864
24.0303
22.2655
21.1003
21.4416

V=6

17.4507
19.2950
20.8662
27.1155
30.1465
25.1850
24.0320
22,2296
21.0299
21.3049

v==6

17.4523
19.3070
20.7350
27.1500
30.2007
25.1840
24.0320
22.1864
20.9775
21.1572

v=7

17.4464
19.2878
21.0023
27.0882
30.1369
25.1875
24.0412
22.3283
21.0298
21.3945

v =7

17.4487
19.2951
20.8681
27.1169
30.1701
25.1847
24.0442
22,2349
20.9897
21.1792

v=7

17.4513
19.3070
20.7374
27.1506
30.2148
25.1839
24.0384
22.1896
20.9551
21.0737

v=8

17.4472
19.2770
21.0035
27.0882
30.1369
25.1875
24.0412
22.3283
21.0298
21.3945

v=8

17.4490
19.2900
20.8689
27.1146
30.1713
25.1856
24.0385
22.2611
20.9922
21.2713

v=08

17.4515
19.3044
20.7379
27.1492
30.2152
25.1843
24.0359
22.2033
20.9565
21.1261

v=9

17.4490
19.2790
20.9982
27.0882
30.1325
25.1877
24.0642
22.3196
21.0584
21.3864

v =9

17.4480
19.2923
20.8676
27.1136
30.1687
25.1856
24.0488
22.2623
21.0050
21.2678

v=9

17.4517
19.3047
20.7371
27.1492
30.2136
25.1844
24.0399
22.2060
20.9625
21.1246

v=10

17.4435
19.2834
20.9999
27.0858
30.1325
25.1876
24.0666
22.3673
21.0606
21.3402

v=10

17.4480
19.2923
20.8676
27.1136
30.1687
25.1856
24.0488
22.2816
21.0090
21.2505

v=10

17.4511
19.3053
20.7374
27.1488
30.2136
25.1843
24.0402
22.2141
20.9652
21.1246

SE1



Year

1976
1977
1978
1979
1980
1981
1982
1983
1984
1985

Year

, 1976
1977
1978
1979
1980
1981
1982
1983
1984
1985

val

12.7787
20.1104
19.8378
27.8497
30.6489
25.1792
24.1484
20.6292
20.8346
18.2648

va=1

17.7787
20.1104
19.8375
27.8497
30.6489
25.1792
24.1848
20.6292
20.8346
18.2648

v=2

17.4131
20.1351
19.9443
27.2260
30.8940
25.1800
23.9965
21.8337
20.7068
20.3567

v=2

17.4218
20.1346
19.9342
27.2623
30.8892
25.1799
24.0015
21.7794
20.7176
20.2555

va3

17.4587
19.2203
20.2768
27.2294
30.3119
25.1852
24.0048
22.0628
20.8236
20.6863

v=3

17.4583
19.2519
20.2144
27.2645
30.3524
25.1841
24,0087
22.0287
20.8154
20.5502

TABLE 1X (Continued)

V=4

17.4570
19.3225
20.5439
27.2420
30.3144
25.1829
24.0309
22.1800
20.9011
20.9898

v=4

17.4600
19.3397
20.4539
27.2721
30.3537
25.1825
24.0469
22,0431
20.8777
20.5954

a=18
v=§

17.4551
19.3275
20.6087
27.1789
30.2385
25.1829
24.0309
22.1800
20.9011
20.9898

a=20
va$

17.4586
19.3435
20.5046
27.2198
30.3588
25.1825
24.0314
22.1216
20.6823
20.8273

v=6

17.4551
19.3221
20.6151
27.1878
30.2534
25.1833
240318
221410
20.9378
20.9835

v=6

17.4586
19.3396
20.5094
27.2253
30.3019
25.1827
24.0320
22.0954
20.9075
20.8232

v=7

17.4551
19.3220
20.6172
27.1880
30.2617
25.1833
24.0354
22.1430
20.9249
20.9398

v=7

17.4583
19.3396
20.5110
27.2254
30.3068
25.1827
24.0341
22.0967
20.8999
20.7969

v=8

17.4546
19.3207
20.6175
27.1871
30.2618
25.1835
24.0342
22.1506
20.9257
20.9701

v=8

17.4583
19.3887
20.5112
27.2248
30.3068
25.1828
24.0335
22.1012
20.9003
20.8154

v=9

17.4547
19.3209
20.6172
27.187t
30.2608
25.1835
24.0360
22,1528
20.9286
20.9699

v=9

17.4583
19.3886
205112
27.2248
30.3062
25.1828
240343
221028
20.9018
20.8152

v=10

17.4545
19.3211
20.6173
27.1869
30.2608
25.1835
24.0361
22.1565
20.9301
20.9673

v=10

17.4583
19.3389
20.5119
27.2247
30.3062
25.1828
240344
221045
20.9026
20.8141

SET



TABLE X

THE COMPOSITE WEIGHTS FOR THE ADAPTIVE WEIGHTIWG SCHEME

Year

1976
1977
1976
1979
1980
1981
1982
1983
1984
1985

Yoar

1976
1977
1970
1979
1980
1981
1982
1983
1984
1985

ve i

669410
661926
019330
988095
797940
.350740
463205
013565
.285500
916601

669410
661926
019330
.988095
797940
350740
463205
013565
.285560
916601

Vo2

.410030
668467
073630
416549
867175
.360099
367924
333451
214516

.486686

Va2

416916
668306
065398
459867
963531
358567
370750
15989
223656
512665

v=3

463214
414497
.294416
429270
434948
451032
375575
347245
311886
395115

v=3

460377
423487
242352
468031
481230
.425006
376917
342284
.299932
433538

v=4

467717
466569
346763
492778
446175
376597
452638
254803
338491
417152

ve 4

463069
.465252
319309
.506158
488080
.379436
A3M116
348344
330186
440843

a=10
v=S§

460540
.470887
397318
415321
503196
381084
.386220
430454
345119
374510

a=12
v=5

459464
4608276
358904
437643
520706
381865
.391539
400986
335096
.392931

.460660
463616
.403261
454729
420311
409442
.390082
370154
412216
380244

v=6

.459529
464046
363424
.463287
446857
.395482
393531
366712
378248
396731

va7

.454379
463710
.400746
458394
458803
393949
414014
.374066
360945
.440251

v=7

456886
.464091
363253
465261
471235
.390202
404800
368745
351896
431915

v=0

455796
457479
401256
453337
462305
420222
398381
399199
364548
.J87697

457382

461480

63597
462585

473116
4020914
J984G4
380256
353644

404442

v=9

459639
458861
.396672
453475
457110
423239
422025
388650
387916
J91020

v=9

459524
461957
362047
462618
470311
403365

408849

378377
363609
405759

v=10

445909
462532
.398096
.448698
457223
421085
425616
413024
381759
411410

v=10

454988
.463022
362537
460920
.470324
.402880
.409940
.388671
.364390
41331



Yoy

1976
1977
1978
1979
1980
1981
1982
1983
1964
- 1985

Year

1976
1977
1978
1979
1980
1981
1982
1983
1984
1985

ve1

669410
661926
019330
.90868095
.797940
350740
463285
013565
.285500
916601

V=1

669410
661926
.019330
.988095
797940
.350740
.463285
013565
.285560
916601

v=2

423446
668153
.059225
497081
960042
357465
373413
300335
230711
535527

V=2

429647
.668007
054511
.529396
956696
.356636
375928
.286222
.236321
.555939

v=3

459790
431853
202756
502432
.520739
407888
378527
336451
291590
466517

v=3

460852
439973
172453
.532934
554724
396099
380259
329946
.285759
495175

TABLE X (Continued?

ved

462172
466326
280502
525565
524972
3768383
418196
341445
321710
465907

v=4

.462379
468900
257313
547008
557322
376051
410247
334145
13724
480482

a=14

vsS$S

459564
468504
319625
465274
.543653
.379801
393191
379503
325384
416619

a=16

v=5

46068
470501
281743
495278
567978
376929
.393640
362527
316492
443266

v=6

459599
4650824
323046
481420
479211
.386803
394302
358959
353668
419094

v=6

460647
.468689
.284308
505259
513592
.380773
.394298
.349635
335359
.444860

v=17

458354
465045
323616
482388
494146
.J85055
.399821
360099
339619
439669

v=17

460005
468698
.285004
.505687
522497
.380195
397195
.350313
327572
456929

ve8

458553
464620
.323839
.480819
.494951
390213
.397263
.365757
340513
424608

v=8

460095
468153
2085145
.504721
.522004
382497
.396070
.353288
328048
448357

v=9

458947
.464809
323279
480813
.493292
390716
401509
.366011
344971
425169

v=9

460248
.468153
284931
.504706
521789
382700
397671
3530850
330144
448599

v=10

.457882
.465167
323468
.480152
.493273
.390604
401908
370185
346364
427999

v=10

.459878
.468288
285010
.504429
521767
.382671
.398022
355602
331068
449679

z



Year

1976
1977
1976
1979
1980
1981
1982
1983
1984
1985

Year

1976
1977
1978
1979
1980
1984
1982
1983
1984
1985

ve1

669410
661926
019330
.988095
797940
.350740
.463285
013565
.285500
916601

Vel

669410
661926
019330
.886095
797940
350740
463285
013565
285500
916601

V=2

435542
667868
050794
557721
.953485
355980
.376305
273433
.240889
.574276

Va2

441155
667735
047787
5827514
950402
.355469
330556
261789
.244680
.590838

ve3

462249
.447838
148981
560051
.584157
.387660
382035
322945
281670
.520331

ve3

464479
455444

130542
.584257

609802
381420
383810
315601
.278798

.542606

TABLE X (Continued)

ve4

463633
472429
227854
.568726
.585708
73476
.405313
326531
.J06615
.513693

v=4

465563
476572
201283
.589526
610671
371040
402282
318700
.300535
.535203

4623296
473627
.246880
525160
591683
374046
393815
.348229
308713
470670

a=20

464454
477481
216263
553407
613881
71426
.39404°
335655
302136
497264

462407
472341
240897
531307
.546996
376281
394226
.339832
321508
471693

v=6

464660
476533
217674
557222
577768
372791
394308
329994
310953
497924

V=7

462051
472343
.249509
531471
552277
376095
395840
.340256
.317026
478847

ve7?

464451
476533
218155
.557265
.580923
372738
395255
330269
.308261
502234

v=8

462094
471997
249597
.530865
.552359
3771680
395299
341914
17289
4730814

ve8

464474
476321
218211
.556881
.580916
373281
394973
331241
.308431
499198

v=9

462160
472037
249511
530851
.551733
377266
396111
342387
318321
473920

v=9

464504
476351
218174
.556071
560528
73320
.395363
331581
.308962
499198

462015
472093
249547
530728
551716
377258
396172
343169
3186840
474343

v=10

.464442
476376
218191
556813
.580516
373017
.395390
331952
.309240
499417
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given to the most recent error history, if that sqﬁared
error is large is for the forecast from the jih technique
(the ARIM& forecast) then wy will increase dramatically.
Also, as a increased above one, the variability of the
composite weight also increxsed, since the weight adapted
areater to more recent error histories. It is interesting
to note that when a=1 and v increased towards 18, the
composite weights, w,, for the adaptive scheme were not
greatly different from the value of .35 for Wy in a simple
average composite. The values for w;, when a=1 and v=18,
for example, ranged from about .38 to .4&. This would tend
to suggest that the econometric and ARIMA forecasts in terms
of resulting squared forecast errors were not greatliy
different from each other. On the other hand, the
composite weights genera%ed by an unrestricted linear
combination of forecasts did tend to vary much more than the
adaptive weighting schemes using ten error hictories even
though the smallest number of cbhservations used to calculate
the unrestricted linear combination of forecasts was ten
observatian in 1975, The variability of these composite
weights can be seen in Table XI. Yet, in each case the
ARIMA model was weighted more heavily than the econcometric
forecast, with the weight on the econometric forecast
actually being negative in 1974 through 1?78. By
re—examining Table VI, it can be seen that the econometric
model over forecasted between 1973 and 1?75, with a large

cver farecast in 1774 at & turning point. If the weights on
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TABLE XI

COMPOSITE WEIGHTS FOR THE UNRESTRICTED LINEAR COMBINATION
OF FORECASTS (1974~-178%5)

Year Intercept Econometric ARIM&

1976 2.4752 -~ 2P47 1.1742
1977 3.9174 -.1359 . PE53
1978 3.4147 -.8511 .8787
1979 1.2195 .2742 . 43258
1780 -.2181 .3577 . 5138
1931 5.3275 | A8 &452
1982 5. 4254 .B744 . 4557
1933 5.4942 0943 4405
1924 5.52084 L1847 5413
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the econometric and ARIMA forecasts are summed, their sums
range between .72 in 1984 and .77 in 1788. The sum of these
weights were alwars less than one, which was found to be the
case by Granger and Ramzanathan.

The mean squared forecast errors produced by each of
the different types of forecasts is shown in Table XII.

Each of the composite forecasts resulted in a smaller mean
squared forecast error than either the econometric or ARIMA
madel alone. The +forecasts with the lowest mean sgquared
forecast error were those generated by the unrestricted
linear combination of forecasts. The simple average
composite produced the next lowest mean squared forecast
error. Figqure 18 shows the mean squared forecast errors
from the adaptive weight?ng schemes tended to produce lower
mean squared forecast errors when longer forecast error
historieé were used to calculate the composite weighte.
Also, as Figure 18 shows, placing more importance on recent
error histories by increasing the value for the smoothing
factor, a, did not appear to reduce the resulting mean
squared forecast errors.

Table XIII shows that the ARIMA model alone produced
the emallest mean forecast error in abzolute terms, while
the econometric forecasts had the largest mean forecact
error. All of the mean forecast errors were positive except
for the mean forecast errors produced by the unrestricted

linear combination of forecasts. Figure 11 seemed to



TABLE XI1

MEAN SQUARED FORECAST ERROR (1974-198%5)

Econo-
metric aARIMA

Simple

Unrestricted

Linear

dverage Combination

Adaptive
Weighting

7.B843 46.8587

3.2543

?

1@

a =1.0
5.8219
5.7124
4.1585
4.1614
4,.2134
4.,8645
3.9843
4.8824
4.08662

4.8333

1.2

5.8218

0.46783

4.2348

4.1574

4.,2484

4.a787

4.8875

4.1188

4.1184

4.8955

1.4
S.8210
5.4523
4.3182
4.21%%
4.2981
4,1335
4.1488
4.,1753
4.17684

4.1&42

1.6

1.8

2.0

5.8218 5.8218 5.8218

5.6327

4.3%927

4.2871

4.3378

4.22%1

4,2280

4.,2414

4.3487

4.,2340

5.41886

4.3847
4.3115
4.30%8

4.368687

S.4782

4.5223

4.4238

4.4477

4.3774

4,.3784

4.3818

4.3808

4,383
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TABLE XI1I

MEAN FORECAST ERROR (1976-1983)

Unrestricted

Econo~- Simple Linear Adaptive
metric ARIMA Average Combination Weighting
a =1.0 1.2 1.4 1.6 1.8 2.0

1.86918 .1817 .89686 -.2356 v=1l .3934 3934 .3934 .3934 .3939 .3934
2 .85?4 .6788 ,6557 .6423 .6382 .6192
3 .46744 4435 .8215 .,4825 .5872 .5744
4 .7408 .7143 .6889 .4452 .6436 .6244
S5 .8468 7899 7375 7072  .6794 .4546
é .7855 79868 7271  ,4988 .46727 .4491
7 .7440 7346 .7147 6918 .6488 6467
8 .7851 7950 .7258 .46980 .4722 .4489
9 7893 7979 7275 49908 . &6727 .4492
18 .7841 7583 .7282 .6994 .6730 .4493
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indicate that the mean forecast errors did become slightly
smaller as v decreased and as a increased.

The mean absclute percentage errors presented in Table
XIV showed result similar to the mean squared forecast
errors, with all of the composite fﬁrecasts producing
ezmaller mean zbsalute percentage errors than the econometric
or ARIMA forecasts alone. The unrestricted linear
combination of forecastse did not produce the lowest mean
atrsolute percentage error as it did the mean squared
forecast error. The mean absclute percentage errors, like
the mean equared forecast errors, did appear to decrease as
v increased and as a decreased towards cne. Figure 12
presents the MAPE versus the number of error histaﬁieg with
varying values for a. ‘

Table XV shows that the individual forecasts and the
composite forecasts all produced Theil U coefficients less
than one, indicating that all were superior to a naive
torecast with recspect to forecasting relative changes. The
Theil U coefficients for each of the composite forecasts
were loawer than those for the econometric or ARIMA
forecasts., The Theil U statistics appeared to decreacse
slightly as v increased and to decrease ac a decreased
towarde one, as can be seen in Figure 12,

#1though the use of composite forecasting appeared to
improve the accuracy of point forecasting ower the
econometric or ARIMA forecasts, composites did not improve

upcon the capabilities of the forecasts to indicate turning



TABLE XIV

MEAN ABSOLUTE PERCENTAGE ERROR

(1976-1983)

Unrestricted
Econo- Simple Linear
metric ARIMA Average Combination

Adaptive
Weighting

?2.5056 9.1834 4.1835 7.2281 v=1
2
3
9
S
é
7
8
9

16

a

8'-

?l

.

6.

6'

6.

6.

6.

6.

6.

=1.0
4693
7779
6159
5773
6789
4273
3534
4831

4481

4649

1.2
8.4493
7.7857
6.6302
4.5683
$.6298
é6.5028
6.4507
6.5003
6.4%78

6.4444

1.4
8.4493
7.6416
6.6364
4.565%
6.616;
6.5540
&.5222
é6.55Za
é.547%

é.03a%7

1.6 .

1.8

8.4693 8.4493

7'

6.

.

6.

6.

&

é.

5845
6376
9684
40089

5908

L5696

2875

.5843

L9770

7.95334
6.6362
6.5736
6.5101
6.6120
6.5989
6.4897
6.6076

6.6843

2.0
8.44%93
7.4873
6.6337
4.5800
6.6546
6.6242
6.6160
6.8228
6.46213

6.6198
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TABLE XV

THEIL U CUOEFFICIENTS (1974-1985)

Unrestricted

Econo- Simple Linear Adaptive
metric ARIMA Average Combination Weighting
a =1.60 1.2 1.4 1.4 1.8 2.8

.74533 .8B%83 .4545 .7248 wv=1 .8428 .85828 .8628 .B4é2Z8 .8428 .8420
2 .8438 .8413 ,83%8 .8387 .8379 8374
3 .493% .7845 7141 (72285 .729% 7364
4 .&4879 LE931 0 L4994 7878 7147 (7223
5 .4936 L5974 L7834 7898 .7165 V233
& J&757 .4844 46938 .7017 7162 .7184
7 JA714 L6819 8917 .78le  .789%? .7182
8 .4B68Y .4848 46942 . 7622 .7185 .7185
? 4799 L4842 .493% .78Z21 .71B4 .7185
18 4767 L6847 4932 7618 .7183 .7184

IS1
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points. Table XVI shows the turning point errors generated
by each of the forecasts, individual and composite. The
econometric forecasts were much better at signallting turning
peints than any of the other forecasts, individual or
composite. The econometric model accurately forecasted
chanoes or no changes in the direction of prices 75 percent .
of the time. Only one change in the direction of price was
forecasted when no change occurred, and one actual change in
the direction of price was missed, so the econometric model
missed one turning point over the 1974-1983 period. The
ARIMA model did not accurately forecast any of the changes
in price direction accurately, and only forecast three no
changes in price direction accurately over 1274-1935.
Furthermore, the econometric model accurately forecasted the
mavement in the direction of prices 7?7.77 percent of the
time over the period of 19646-1985, while the ARIMA model
accurately forecasted price direction only 38.88 percent of
the time. The composites, in most cases were not any worse
than the ARIMA model at forecasting price direction, but did
not improve upon the ARIMA model ‘s capabilities to forecast
turning paints, This may have been because when the ARIMA
model missed the turning point, itse error was large enough
to offset the econometric model’s correct forecast of

directional change.



TABLE XVI

TURNMIMG POINT ERRORS (1974-1985)

Simple Unrestricted Linear
Actual Econometric ARIMA fGverage Combination of Forecasts
C NC C NC C NC € NC
C 2 1 6 3 8 3 e 3
NG | 2 8 2 3 2 3
fctual daptive Weighting: a=1.86, a=1.2, a=1.4, a=1.6, a=1.8, a=2.8
v =1 2 3 4 S é 7 8 4 18

C NC C NC C NMC CNC C NC C MNC C NC C NC C NC C NC

C a 2 a 3 8 3 a 3 a 3 a 3 a s @ 3 a6 3 & 3
hC 3 1 4 1 2 3 2 3 2 3 2 3 2 3 2 3 2 32 2 3

C = Change NC = No Change

£81
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Summary and Conclusions

The results of this study indicated that users of
forecasts of annual beef cattle prices who are interested in
point accuracy of forecasts would perhaps kenefit from using
a combination of forecasts., Furthermore, even if a set of
forecast error histories are unavailakle, the forecast user
might be advised to use a simple average of forecasts,
particularly when the individual methods employved are highly
varied in their assumptions. While a large number of
forecast periods were not available for analysis, other
studies such as Brandt and Bessler and Granger and
Ramanathan have tended to support these findings. The
findings in this study do indicate, contrary to Brandt and
Bessler’s findings, that when forecast error histories are
available, the forecaster should make use of the greatest
number of forecast error histories available in order to
formulate a composite forecast.

While the findings from this study implied that the
forecast user who is interested in the pcoint accuracy of
forecasts might benefit from using a combination of
forecasts, the combination of forecasts did not show any
improvement in forecasting turning points over either of the
individual forecasts, Had the turning point performance of
the two types of models been more similar perhaps the
results would have been different. The fact that the
econometric model performed much better than the ARIMA model

in terms of signalling turning points could be indicative of
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either a misspecified ARIMA model or that the relationships
between the annual average farm price of heef cattle and the
independent variables remained fairly stable while the
structure of the price series itself was gradually changing.
Unfortunately there were no strong patterns in the residual
avtocorrelatione to support ejther one of thece possible
answers over the other.

The data for 1983 were used to make forecasts of the
1984 annual average price of beef cattle received by farmers
with the econometric model, the ARIMA model, a simple
average of the twe, and an unrestricted linear combination
of the two forecasts. These forecasts are shown in Table
XMITI. It can be noted that these forecasts all were in the
28 to 21 dollars per hundredweight range, while the average
deflated price for 1985 was about 17.48 dollars per

hundredweight.

TABLE XVUII

FORECASTS FOR THE DEFLATED aAaNNUAL PRICE OF BEEF CATTLE
RECEIVED BY FARMERS IN {936

Simpie Unrestricted Linear
Econometric ARIMA Average Combination of Forecasts

192.97 20.94 28.47 17.85
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The +forecasts in Table XUII can be reinflated with the
average value of 238 for the Farm Price Index (19&7=18a)
from January through Adugust of 1984 as estimates of the
nominal values. The forecaszts in nominal terms are &5.%84,
67.16, &67.55, and 65.98 dollars per hundredweight,
respectively. The average nominal actual price, reinflated
with the estimate of 338 for the ihdex aover this period, was
65.93 dollars per hundredweight.

With the financial stress felt currently and in recent
vears within the beesf cattle industry, an accurate
expectation of product prices has become of even aqreater
importance in long-term production planning. Given the
possibility of lower returns resulting from inaccurate
expectations of future prices, more accurate forecasts of
prices are needed. Composite forecasting provides one
possible means of reducing large forecast erraors. This
study showed that point forecasting accuracy could be
improved with composite forecasting, and that in most cases
the composite forecasts did at least as well as the woret of
the individual kechniquea in indicating turning points,
Further research in this area might include the formulation
of confidence intervals about the individual and composite
forecasts, Certzinly producers who need to evaluate price
risk would find this type of information to be useful in

production planning.
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