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CHA&PTER 1
INTRODUCTION
Statement of the Froblem

Colloids made of <suspended polymer microspheres are
very useful syestems for studyring man}—body physics. They are
phy¥sically well-characterized, inexpensive, and the particle
order may show solid, 1liquid, and gaseous sctates under
easily attained physical and chemical conditions. It is
Known that due to -screened coulombic interactions, even a
dilute aqueocus suspension of charged particles can exhibit
interparticle ordering over large distances compared to the
particle diameter. Recently, these co]]oida} s¥stems have
been studied by a number of auvthors to examine statistical
mechanical behavior (1 to &), Since there is & similarity
between these colloidal syztems and molecular fluids, ther
become ideal candidates to test many theories of condensed

-

phases, under both equilibrium and nonequilibrium conditions

L7, Scattering of 1light <from these colloidal systems
provides infaormation about static and dynamice aof the
interparticle order, similar to that obtained by x-ray =and

neutron scattering from pure atomic condensed matter states.
In this work we explore the effect of radiation

pressure etfects on the ordering in two dimensional



colloidal liquid states. Using a crossed laser beam
technique we should be able toc impose a periodic C(radiation?
potential on the colloidal sample with a wavelength on the

order of the

m

yerage interparticle spacing. The colloidal
particles, which have an index of refraction ltarger than the
surrounding agquecue medium, <shculd be drawn into the high
intensity regions of the +Fringe pattern created by the
crassed beams (1>, The recrganization will destroy the
Debre—Scherrer rings, which are produced on scattering light
from an amorphous state where particle pairs maintain an
average separation but random orientation, in fawvor of
localized intensity maxima, which are prodpced by scattering
from a diffraction grating of particles aligned with the
fringe pattern. However, the particles alsoc maintain there

interaction to produce a registration between the rows of

particles in the fringes. This interaction produces other
density modes, not directly excited by the intensity
potential. The recsuylt ie that =2 solid like order may be

induced in the sample by directly stimulating only one of
its modes. This thesis describes the cdessey to demonstrate

this "laser induced freezing " phenomencn.

Purpose of Thies Thesis

While the main goal of thigs thesis is to demonstrate
the phenomenon of "laser induced +Freezing", there are
several subsidary problems which are explored as a result of

thie work:



1. A measurement of the scattering efficiency and
amplitude of the directly excited density mode as a function
of the strength of the applied intensity potential for hard
sphere f(weakly interacting) as well as soft sphere (strongly
interacting) samples.

2. A measurement of the scattering efficiency and
amplitude of the indirectly excited density mocdes as a
function of strength of the intensity potential for the sott
zphere {(strongly interactings samples.

2. A study and quantification the directly excited
density mode +or fixedlatrength of the intensity potential
as & function of the fringe spacing of the applied field for
both hard and soft sphere samples.

4. A study of the characteristic formation time of the
directly excited density mode as a function of strength of
the intensity potential for both hard and soft sphere
systems.

S. A study of the characteristic formation time of the
indirectly excited density modes as a function of strength
of the intensity potential for soft sphere systems.

4. A measurement of the diffusion of hard spheres near
a plane boundary in the presence of the normal radiation
pressure force,

7. A ¢etudy of the relaxation time constant of the
directly and indirectly excited density modes for soft
sphere systems as a function of both the strength of the

intensity potential and fringe spacing.



Thus this thesis reports extensive experimental and
some theoretical work on  ardering in  two dimensicnal
colloidal syestems subject to spatially pericdic external
fielde. @A short review of articles have been included with

the theory and discussion in each chapter. In this way, each

chapter is self-contained, having a review of literature,
theory, experimental data, and discussiaon. While each
chapter is self contained the +first few chapters give

background information helpful in the following chapters. &
brief summary  of the chapters is as follows: Chapter II is
a development of experimental and thecretical tocls relevant
to the theme of this thesis, a review of literature and some
experimental results, Chapter III discusses experimental
details and apparatus, Chapter IV presents a study of hard
sphere <(weakly interacting) samples with & quantitative
theoretical explanation, Chapter VU presents a study of a
satt sphere {interacting? <cample, with &a quantitative
theoretical mode and Chapter L caontains overall

discussion, conclusion and suggestions for future work,



CHﬁETEE 11
GENERAL B&CKGEROUMD
Introduction

Thie chapter outlines sewerals fopics which will be
useful in discussing our experimentz]l procedure  and our
recsults, We begin with scattering from single finite sized
particles and then collectionse of particles, Measurement
techniques including ©DLS f{dynamic light scatterings, CCIFS
{crossed coarrelation intensity fluctuation spectroscopy? and
CBT <crossed beam techniques) are discussed, as well as, the

relations between these techniques. Finally we discu

=S Some
of the work of others on two dimensional +luid-=solid
cystems.
Static Light Scattering
When x-ray radiation is incident on an atom, the

surrounding electrons will undergo acceleration under the
action of the electric +field asscciated with the beam.
Since an accelerated charge emits radiation, the atomic
electrons emit and <scatter the incident radiation. In this
case the wavelength and size of the atom are the same order

of magnitude. ©On the other hand, if an iscolated arbitary

shaped dielectric object i= illuminated by a parxllel beam



of linearly polarized radiation of longer wavelength, then
antecedent to becomees polarized in the electromagnetic field
due to the displacement of the electrons with respect to the
nuclei and aleoc due to the partial orientation of any
permanent dipolese that may be present. In  the optical
frequency range the etfect af permanent dipoles is
ingignificant. For these long wawelengthe we consider the
individual dipales to radiate uniformliy in 211 directions
{Rayleigh Scattering? in calcﬁ]ating the effect of the shape

of the dielectric object on the scattered radiation.

Scattering from Finite Sized Particles .

Now we consider a collection of scatfering centers

which radiate uniformly in &all directions. The total
electric +Field amplitude Ffunction, ®&{E), is the sum of
ampli tude functions for scattering by each individual
cscillater in & given direction as shown in figure | and is
Qiven by

X4 = cpliKar. 2 (2.1)

ACaD Z@l,eypmlf o (2.1

|

where k (= ki - Ks» is the scattered wave vector, the

ditterence between the incident and scattered

wave vectars

=

ie the distance of ith particle from the origin
and €. is a tunction depending on the scattering

efficiency, the distance of the detector from



n.| iz the refractive index of the
particle
n2 iz the refractive index of the

surrcunding
D ie the position of constructive
interference pattern.

Figure 1., Mutuzal Interference between exch
Oscillator in the Particle.



the scattering centers, and the incident
amplitude which may depend on ri. {For
simplicity we will assume E;= 1, except when
stated otherwisel.

In general this sum is wery hard to ewvaluate since the

position of each individual oscillator is not Known. Un the

other hand we can treat each oescillator in a dielectric

particie as a Rayrleiagh

m

catterer excifted by the incident
field and assume that it is unperturbed by the presence of
the rest of the oscillators. We consider the case of
incident radiation polarized perpendicular to the plane of
scattering, where each oascillator scatters radiation to a

point with different. phase in general. Then the amplitude

function of each oscillator is given {8) by

d acey = i {{(3 K3>E4ﬂ}[(m2 - IJE(mZ + 201
explidy dy (2.2)
where m is the ratio of complex refractive index of the

particle ta the medium index of refraction
& is the phase of the scattered radiation from
exch element at the observation position.
The resultant amplitude function which arises +from
interference of each wavelet is obtained by the vector sum
Cintegral for continuous case? over all oscillators in the

particle as



-3 .
Ay = ({03 Kk )f(4ﬂ)}[(m2 —1}f(m2 + 23]

Jexp(igb au, (2.3
The <ecattered interncity of this cobject iz directly

proportional te the absolute walue square of the amplitude

functicn,

I 1ACE! = 1 i CCEKOUI a3 mont s
2
e+ 115 PE) (2.4)
il 2 L
and PRy = (1050 .fexpiléJ i (2.5

is Known as particle form factor. It is clear that scattered

intensity is directly proportional to the form factor, P{H),.

Ravleigh scattering is restricted to particles small in
diameter compared to the radiation wavelength. On the other
hand Rarleigh-Debve or Rarleigh—-Gans resulitse given in
equation (2.4 and (2.5) assume that neither fhe ratioc of
the refractive index of the medium to the cobject is much
larger than unity nor that the phase shift corresponding to

any point in the object be large, i.e., that

im ~- 11 {1 (2.4
and Zkaim - 11 << 1 L2.72

where & ig the radius of the sphers
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and 'KY (= 2N/ XN» is the incident wave wvector
magni tude, For thiz reason neither the radius of the
particle nor the relative refractive index can be ftaken too
large.

Within the reetrictions of these assumptions, the form
factor, P:R)», of a homogenecus sphere can be obtained by
integrating in equation (2.5) aver a sphere of radiuz a. The

result (8) is given by

. 3. .. .2
P(ary = 1i2 0 )lsin{u) — u cosfulrli
. 3, L2
= (9720”20 Jd5 furl (2.8
32
where u = Ka = 2ka sin(l/727
and JbﬂfU) is the three-halwes order Bessel function.
The range and validity ot Rarleigh-Debye or

Ravleigh-Gans theory <Ffor & sphere has been investigated
(8,7 by M.Kerker and W.A.Farone and hie co-workers. They
found that Ffor the relative refractive index, m, claose to
unity =as well as= a phase =s=hift less than unity,.this theary
agrees within 950X to 100X with the exact calculation for the
sphere wusing Mie theory. 0On the other hand, numericai
calculations of the anomalous diffraction approximatiocn were
done for the foarm factor of sphere larger than wave length
and Ffor a relative refractive index greater than unity (¥,
It was found that this calculation agrees with Mie theory to
mithin 20X to 1594 as the scattering angles increase from 10

te 20 degrees for a sphere of radius, x =1 um, radiation
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wavelength, A= 0.488 um and relative refractive index, m =
1.2. Thus the Rarleigh-Ganz theory gives good agreement at
small =cattering angles Ffor larger radius particles, as
well.

The exact thecory ar Mie theory for scattering from a

sphere of arbitary size and any refractive indexy is obtained

1]

By neing Maxwell”= equaticons with appropriate boundary
condticone (10,113. The saolution for the resulting amplitude
function for perpendicular and parallel polarization of the

electric Tield is given by

£{2n + 12/mdn + 103{a t (co=d8d)

T
—/*-
I
i
N8

n=|
+ b,T, (cascgi2d (2.9
0
and A,08) =D [(Zn + 1)/ntn + 1)1(b,t (cosi8))
A=
+ anTnicas(B)}, (2.107
respectively., The coefficient 2, &and b, are in general

compltex, and are ftabulated (12,13) +for arbitary values of
the relative refractive index and sphere radiuse. The

functione t (cos{8> and Tn(cos(B)) are given by

t,lcosiE)s = d Pnfcnsiaﬁhfd cos(g) (Z2.11%
and T, tcos(B2) = cas(8) tn{cqa(83 - {sindds

[d tnicasiﬁ))fd (cosilId»1d {2,122
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where Pnﬁcosiab) are the Legendre polynomials,
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Let wus consider a collection of particles suspended in
a liquid. I+ these particies are randomly positicned ‘no
long range order? and subjected to a laser light, then the
scattered radiation will ewidenmce no net interference
between particles and the single particle form factor will
dominate the scattered intenszity distribution., I+ the
particles interact strong]y enough that they maintain an
averzxqe <separation from one ancther fchort range order», the
scattered radiation intensity patfern will be similar to
that for x-ray {(or neutron) scattering Ffrom liquids or
amorphous <solide. [Debyre—Scherrer rings concentric with the
incident beam will be observed., The diameter (scattering
angle? of these rings is a measure of the average particle
separation and their width is a measure of the volume cver
which particles are correlated. If the interaction hetween
particles is sufficiently strong, they mayr Erder into a
regular tattice structure (long range order). Light
scattered +from these systeme behaves similar to x-rar (or
neutron) <scattering from crvstalline sclids and Bragg'es law
applies. mAccording to Bragg’s law scattering will occur only

for certain angles given by:

2d =iniB) = A

s
X0
-
—
ol
o
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where 8 is the half angle of scattering
X i=s the wavelength used
and d is the average separation of planes of particles

in the crystalline lattice.
Thue the Bragg’'s scattering can be used to determine
particle separations from Knowledge of A and measurements of

0 for crPstalline systems. An example of Bragg scattering i

i

le

shown in figure 2a. This ie produced by focusing & sin

W

lagser beam to a area of diameter S0 um in a sample of

collcidal particlez. The gap thi:khesa iz about 30 um which

"

forces the particles to form a monclayer. This monolayer is

ctserved directly wusing & microscope. The centeral spot in

the scattering pattern ie the unscattered main beam. From
this scattering pattern the scattering angles are
determined. In appendix (A2, it is shown exactly the
procedure for calculating these anglese, as care must be

taken to account for scattering oqeometry and refraction
etfects,
The separation between the "planes” of particles was

obtained wusing equation (2.13), These scattering "planes”
are indicated as shown in figure Zh. In this figure the
particle ‘"planes" (indicated by sclid lines? are responsible

for producing the scattering intensity maxima closest to the

main beam in fiqure 2a, the +irst order maxima. The dash
lines indicate the planes responsible for the second order
intensity maxima in figure 2a. The real space structure and

scattering patternm crosspond qualitativelw, Guantitativelsr
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we have a hexagonal close pack structure, fthcp?, whose
lattice constant, a = 2.3 um can be found by using relaticn
a = 2dihk? V/(h2 + hik + KZ}IS (2.147
a2
where d{hkK» i=s the separation of the planes
and h as well as K are Miller indices.

Since the phyesical diameter of the particles is 1 um, the
lattice parameter Ffor touching particles would be a = 0.868
um. However, these strongly charged particles maintain a
much larger separation producing the observed lattice
constant.

To analyze the scattered intensity For an arbitrary
collection of interacting scatterse, the more general

amplitude of scattering function, E{K), given by

ra
=
[}

E{ks = (&> E exp{ik.r. 7,
|
|

2

where i tEd = P{a i

a the <single particle form factor

n

fassumed the <came Ffor all particles: and the =sum is taken
over all the particle positions. Note that this is of the
same form of equation (2.1 Ffor considering internal
interference of single particltes. We now apply the samé form

for interparticle interterence.

n

The zcattered intenzity, I, iz directly proporticnal tao

the absolute value square of ECK? and is given by



Figure 2a. A Tracing of Bragg's =
Light Scatftering +From a2 Highly
Interacting Colloidal Samp

Figure 2b. The Feal Space Structure of above
Scattering Pattern

15
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2 I
VECKIYD = £, (80 KplikKenai
1QC VECKk 5 L8 Ez94ck|k r
= :+aia}:2s iy £2.18%
wher S (Ky = exp(ikeir, = r. ) (2 17
e 0 g Seetied - k
ie called the instantaneocus static structure factor. The sum
can be split into two different tvpesz of terms: those for
which | = j, the se1f part: and the mutual part where i = j.
In the case af a ligquid the particles are alwars

sufficiently randomly positiconed that the zum is diffcult to

m

evalute, However, Jlet us assume that there are M particles
in our sample. Then the liguid structure ractor can be

written in terme of SI(K> as follows (153

S{K» = () exp {iE-(Fi -r.o23y = <SI{K}> (2.18a2
4
I :

3 SN o e
and BKIAN =1+ n | dr explikerdlgiry - 11 (2.18k2
where n ie the average particle density, gi{r? is the pair
distribution function and the brakets represent an

equilibrium ensemble average.

Thue the pair distribution function qir? ie related tao
structure Ffactor GS{(K» wia a Ffourier transform. This is
important because the pair distribution function is defined

as

[
—
44
"’

gir}) = nirdsng
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where niry is the radial density distribution function
of the liquid.

Obviously the pair distribution +functicn, gtr» and
radial density function haug same type of behavior, i.e. as
r =@, n{ry» =>n and gir)> = 1. What is important i=s that
this pair distribution Ffunction gives the conditicnal
probability for finding a particle a distance r from the

origin given a particle positioned at the origin. This

a

probability can be determined from scattering experiments.
Dvnamic Light Scattering

So far the static structure factor is discussed for
averxge particle positions, no motion of the particles is
considereq. But in reality the\microspheres exhibit Brownian
motion. ASs & result the scattered intensity will fluctuate

in time. The rate at which the intensity chanqges gives a

measure of particle diffusion rates, polyrdispersity, size,

etc with sui table assﬁmptioni. I+ the particles are
correlated, then this information about the dynamic
structure tactor can be obtained from the equilibrium

fluctuations in position.

The dynamic light scattering {DLS> technigue is a ver:
powerful methed to obtain thise information. In DLS the
measured photon correlation function can be expressed as
intensity correlation functioﬁ, Cik,T». Thiz correlation

function, Cik,T? is qgiven by
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2
COl Ty = Ik, t+T) Tok,t02 Ik, tr> (2.207

where IfK,t? is the intensity at time t at the detector
I{K,t+T) is the intensity at the later time t+T at
the detectar
and {I{K,t>»> i the time averzged intensity.
Furthermore, this correlation function can be exprecssed

in terms of electric field correlation function, g K,T). Ih

I
the Qaussian 1limit when there are a large number of
independent correlations regions in the scattering volume,

we have the Seigert relation (167

2
Cik,T» = 1 + c:gI(K.T): 2 (2.21>
where ¢ is an apparatus constant often called the signal to
noise ratio,
and QIKK,T) = E{K,t+T) Efk,t):s <1 S: . (2.22)

The glectric field correlation functicon or intermediate
scattering function, glik,T} is the dynamic analogue af SCK?
and is related tc a time dependent two particle distribution
function uia fourier transformation. Hence Ei(k,t) and
E(K,t+T? are scattered electric fields at time <(t) and
Lt+To, respectively, The instantanecus electric field
produced by scattering from the coliection of Brownian

particles in the sample ie given in equation (2.13), as in
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the <ctatic case. So the two time electric field correlation

p
functicon is given byr

2 -
CECK ,t+T) EcK t2> = 1£f,080) fexp ike{r. ot

- L CEETOY 3. $2.237
J .

In the case of M identical noninteracting particles in the

scattering volume the correlation function becomes (17

SECK  t+T) EdK,t1> = N [§5(8)) <exp

where N is the number of particle in the scattering

volume
ies the single particle form factor Yand
geometry etfectsl

r{t) is the position of the particle at time t
and r{t+T) is the position of the same particle at
Jater time (t+T3. -
simple Brawnian mo?iun,

When these particles exhibit

the correlation function further simplifies to

2
CECK t+T) E(K,t2> = N {45€831 [expliw T>]

{exp(—Dosz)} C2.25)

where [y is the self-diffusion constant of the Brownian

particles, and according to the Stokes-Einstein relation D,
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= KT/ {énha> for spherical particles of radius, &, with
yizcosity of the medium, n.

The correlation function, C¢k,T» i=s then found to be

Cik,Tr» =1 + « exp(-E&osz}. L.

ra
[
or

When the Brownian particles are interacting, the form

for CiK,T? given in equation (2.24) i=s not correct. Rather

the decay is non—-exponential in time, in general, and is
exprecssed in terms of & cumulant expansion as  follows

(18,1%):

Kot #3! = ... (2.27)

The cumulants have been derived (13,1%) wusing equation
{2.24* and a generalized diffusion (20 or Langevin egquation
¢21r +for  the particle dynamics. The first cumulant in the
absence of hydrodynamic interactions is given by

Do <2rscio

X,
Il
(2

where all quantities have been defined previously. The

cecond and higher cumulants become important at intermediate

values of kK for strong interactions, in general. On the

cther hand, Cik,Ts» for non—-interacting particles is given by
2

equation (Z.25) iKI = Dok 'y Ky, 2 0. For dilute system ot
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hard spheres (223, Kl = DOMZEI + b @) in the small K limit
when the effect of both S<K! and hwdrodvnamic interactians
are included. Here a] | = 1.45 is the "first Uirial
coefficient" for hard spheres. FPolvdispersity, a

distribution of particle iz

s
w
w

0

3 ands/or diffusion constantes,
will also give a non—exponential time decay for Cok,T3» which
must be analwrzed using & cumulant expansion “21), We refer

the interested reader to the liturature cited +For more

detailed discussions of polrdispersity and interactions.

Cross—-Correlation Intensity

Filuctuation Speciroscopy

Cross-correlation intencity fluctuation spectrascopy
(CCI?S) ie a relatively new method of light scattering. In
contrast to the standard scattering techniques which monitor
the static or dypamic structure ftactors (which are related
to particle pair correlation functions), the CCIFS technigue

is <senszitive to higher order particle correlation functions

In these experiments twa detectors are wsed to monitor
the scattering from a small illtuminated wolume in the
sample. Only a few correlation regions (local structure? aré
observed and the <scattered radiation is nongaussain in

general $2,3). Generally, in these experiments, one detector

n

ie positicned at a Ffixed wavewector K and the other i

scanned over a <eries of walues q. The intensities ar

[

1]

crassed correlated to find the CCIFS +Function, which i
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defined az
CiKy,q T2 = <IK,02 ICq,To3/<Idkr><Iiqis (2.292

and is a generalization of the dynamic light scattering
function {equation (2,202 to two wavevectors. &ssuming the
single scattering Born approximation (as with the DLS
expression? C{lk,q,T) may be expanded as follows:
s ‘ — A\ - N " - . . -— : .
Clk.q,T) = Liieclr; (0> €LF. €031 EIF (t)]

1 m

i J
Elr,ity] exp{iE-[F.(Db - F;-::nn

+ iE.[F|<t> - r (ty13r/SiK050q (2,307
where SR = <) YELF, (0] EIF,(0)1 expliR [F, (0> -
1)
F. (02137 (2.31)
J

iz the <static etructure factor. Because the scattering
wolume is small, the static structure factor and C{kK,q,T2

are generalized to include the fluid amplitude factor E{rd

o

which determines the size of the scattering vwolume. For €ir)
= 1 everywhere, S(k) reduces to the previcus result given in
equation (2.15).,

Experimental results have been obtained +for =z two

dimensional monolarer of strongly interacting colloidal
particles ©2,3) in the colloidal liquid phase. The authors
frave reported a two dimensional ficp =tructure &= the

averaged local structure in a sufficiently dense colloidal
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liquid. This wasz evidenced by the fact that when both ki
and iq! are equal to  the magnitude of KDS, the maxima of
Cik,g,0r on the Ffirst Debye-Sherrer ring exhibited six
evenly spacing maxima as & function of the angle between K
and q. aAnticorrelations were abserwved between these maxima.
This work has been interpreted using an harmonic sclid
madel © (23). Howewver the underlyving lattice to which the
particles are referenced | is considered o be
pol¥crystalline, and the orientation of a given crystalline
iz taken to be & random function of time in the liguid
state. The assumption was made that the dyvnamice of this
recrientation is <slow encugh not to interfere with local
lattice wibratione. The crr¥estal lattice iz assumed toc be

large compared with the <scxttering wvolume. The vibration

probdem was treated the =same as Ffor an infinite two
dimensicnal lattice, So the particle coordinates are
separated into two parts, cone part represents the reference
of the particles to am underlying lattice which is

orientationally averaged, while the other part represents
deviation +rom  the lattice sites which i assumed zmall and
averaged ower thermal Fluctuations. Detailed calculations

have been done For a twoe dimentional hexagonal close pack

St

structure {3». The cross—-corretation function, ©CtK,gq.07

0

howe that the particles are highly correlzxted when g9 = K =

HDS at azimuthal anqular separations between & and q of 0O
J -0 - . ~ 0 _0 _C
&0, 12075 {20 and anticorrelated =t 320, 70, 130, where the

angle sweep was from ®® to 120°% The zame tvpe of results will
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tween 120° to 2480, which ie just the
mirrar reflection of the former. A more general form of

crogse—carrelation hae been examined ¢4, Here the authors

w

make a general expression of Cik,q,T) in equation (2.303,
replacing the four sume by an integral ocwer a four-point
particle distribution <function. Thie distribution function
i= reexpressed in terme of many particle correlation
functions. The results make explicit the connection to

several different cross carrelation experiments performed in

recent wears.
Crossed—-Beam Technigues

Crossed-beam Technigques, (CBT> are & very important
experimental tools that are wused to study both sclids and
liguids. This process can be thought ot as the production
and reading out af a holographic index of refraxction grating
in an opticallw non—iinear medium, Here two laser "wrijte'
beams are crossed in & sample to produce & 2 set of
interference +fringes which modify the aoptical pfopertiea ot
the scample., I+ & third "probe" beam has the zame wavelength
as the two inital write beams and propagates in the
direction opposite one of them, then the "scattered" beam
propagates back in the cpposite direction of the other write
beam. This <scattered wave is termed the "phase conjugate"
replica of the initial object beam because its wave fronts
match those of the cbisct beam exactly, except that the sign

of the time appears reversed, This technique is alsoc termed



as degenerate four—wave mixing 1,247,
Thie technique has been used to study the non-linear

(25». Here the

mn

aoptical scattering in nematic ligquid crystal
incident beame interface spatially» to create an index
modulation wia their recrientation effects on the molecules.
When aided by a dc magnetic field, the reorientation and
nonlinear responcses of the medium are enhanced and
meacsurements of diffraction efficiency were done, as a
function of the cptical intensity, magnetic field and time,
This technique has alsc been applied to absorbing media
{such as solids and liquids) where Jlocal temperature
variations <+form a phase grating which is probed by scattered
light of ditferent frequency (e.g. non-degenerate four-wave
mixing?). The diffusion of this thermal grating was also
studied (2&8,27). FRecently, degenerate four-wave mixing has

been performed in alexandrite crystals (Beﬁ1203:5r3+), where
the decar rate of the excited state population grating were
measured as a function of the beam—crossing angle (28). This

technique is also used to the study the self diffusion of

e g
1]
n
o

fluorescent particles (200. T flucrecscent particles may
be photobieached by & brief exposure to an intence laser
beam to form fluorescent ograting. This grating scatters
light, but decars in time due to particle diffusicon. Thus =z
recovery time can be measured. Finally, we mention that
degenerate four-wave mixing experiments have been performed

on colloid suspensions, tYcomprised of dielectric spheres

suspended on water’) where the dielectric spheres are drawn

25



into the high intensity regicne to form & grating, which in

turn scatters light (1.

Thie thesics describes related crossed beame experiments
for strongly interacting and essentially non-interacting
particles, suspended in water, Here photophoretic or

radiation pressure forces submicron plastic spheres into
rows aligned along the Tight intensity interference fringes
produced by crossed beams. The alignment of the particles
can be detected by probing with a third laser beam which is
scattered from the induced diffraction grating.
Alternatively, the structural alignment may alsc be detected
by =sel¥ scattering of the incident 1laser beam. When the
crossed lxser beams are eliminated, the particles diffucse
and the time decay of the diffracted probe beam light can be
used to determine the collective diffusion constant of the
particles. In the case of non-intercating particles the
collective diffusion constant is equal to the self ditfusion
canstant. Diffusion constants may also be measured by
dyvnamic light scattering techniques (DL3). DLS ﬁanitore the
decay of spontaneous density fluctuations and can be used to
determined the collective diffusion coefficient, in general.

Thue we see that CBT is a stimulated version of DLES.

Mathematical Description of Fringes Produced by

Crossed {(Gaussian Profile) Beams

Let wus consider twao infinite electromagnetic plane

waves with electric fields Eil> and E(2) respectively, which

26
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intersect at angle 28 as shown in figure 3. These two plane

2]
waves can be represented as

E<1) = E¢l0rexp itkKler = wt + {17 (2. 32a0
and E¢2) = E{20Yexp i(KZer — wt + D20 (2.32b)
where kl1.is the wawe vector of plane wave |

K2 is the wawve vector of plane wave 2

¢1 is the phase angle of plane wave |
02 is the phase angle of plane wave 2
EC10) is the amplitude of the electric
field of the plane wave 1
E<20) is the amplitude ot the electric
field of the plane wave 2
r is the displacement
w is the angular frequency of the waves
and t is the time.
The time dependent part is suppressed hereatter,
because we are interested in the intensity dfstributions for

beams of equal frequency. The totxl electric field, E iz the

vector sum of the twa fields

E = Ei(ly + Exzo., (2,33}
Furthermore, in practice, the plane wave will not have

infinite lTateral extent we will now assume the beam to have

a gaussian beam profile., With these approximations we have



Figure 3. The Crossed-Beam Geometry
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ety = EC1ay [ exp {-arlzinid + 0331 X
[ exp iCKi.r + Q131 (2,340
and Eemy = E(20) [ exp {-arlsinis - Q03] X
[ exp i(kK2r + Q221 £2.34hb)
where 1V iz the decay constant for the laser
beam width
g iz the half angle of crossing
and ® ie the direction of r.

The intensity distribution, I, for these two beams is
directly proporticonal to the product of the total electric

—¥ —
field and its complex conjugate, E E, i.2

(ull
)
Fa
4]
on

ECID}[exp{-arzsin2(8+®)}][exp PCELeT + Q121 +

where E
) T — 2 : 2 =My " A T Ry =Y
E{Z02[expi{-arsin“i8-0 21lexp itkKZ-r + 0231,

Thus, the intensity distribution, I, iz given by

E = EC10) [exp{-2arleinl(B+(nil +

ECZ0) [expi~Zarlzin®ia-(s3] +

2

ZEC10IEC 200 [expi-ardisin

2

ra+Qr +

sin“ia-yilcosi2krsini@rsinid
+ O1 + ¢z (2,380

where EC10) and EC{20) are azzumed to be rezal elecitric field
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amplitudes.
Ta simplity further analrsis, we specify (D{= NSZ2r and

acssume that E{10> = E{20) = E{0) to find

E¥E = 2E(0) Cexpt-2arleosfiaril X
[ 1| + cosi{2krsinib) + g1 + 21 (2.372
The last term on the right handv side can have the

maximum wvalue +1 and minimum value -1 depending on r for
fixed @1 and @2. 1In fact the phase @l and 02 only shitft
the intensity pattern with respect to origin, and can
eftectively be ignored. We can identify a length scale for

the fringes such that

Zkdsin(g) = 2n

or 2dsin(gy = A (2.38)
where d is the fringes separation
and Ais the incident laser beam wavelength.

Hermce by Knowing the crossing angle and the incident
beam wavelength, the fringe spacing can be determined. Note
that the intensity of the successive maxima are decresasing
in amplitude <from that of the central maxima because of the
gauzsian nature of the input beams. Thiz iz shown in figure
4 where z-axis represents intencity and x-v plane is the
propagation plane. Here we assume that the diameter of the

Beam is 1S um, the decay constant is 1.8E10ium2 « the
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ing angle is iEgéodegree and the wavelength is 0.483E-

o

cros

m

um. The ‘ftwo beams.are propagating in #x—» plane and crossing

at the origin of the coordinates.

The Photophoretic or Radiation Pressure Forces

When a dielectric sphere iz placed in & uniform
electric field, it becomes polarized. The relation between

the polarization, P, and the electric field, £, iz given bv

(29
F=1[3€ - 13794nE + 2231 Evd {(Z2.39)

where € is the relative dielectric constant of the
sphere to the medium.

I+ this dielectric sphere is illuminated by a linearly
polarized plane wave of radiation then it will be polarized
in the electromagnetic field due to the displacement of the
glectrons with respect to the nuclei and alsc due to the
partial orientation of any permanent electric aipolea that
may be precsent. Begause the incident +ield oscillates
harmonically, then toc a «close approximation the induced

polarization will follow synchronously as follows

P exp(iwt) = [3C€ - 1)-¢4n (€ + 271 X

EcOy expiliwmt) (2,400

where w iz the angular fregquency of ocscillation.
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The resulting electric dipole moment of a2 dielectric
sphere in the presence of an electric field is given (27}

B = [i€ - 107¢€ + 231 a2 Ecad P2, 410

where a ie the radius of the dielectric sphere,
Fur-thermore, equaticon ©2Z2.41) can be written in terms of
the refractive index of the dielectric =sphere, np and

refractive index of sourrcunding, n as follows

p = n? [(n2 - lbfinz + 221 a3 ECOY
= L ECOY (Z2.42)
where n is the ratio of index of refracticn of sphere,

n, to sourrcunding, ng .
In the presence of this radiation field, forces are
exerted on & neutral dipole <(the polarized sphere). In a
dilute medium thie ‘ponderomotive’ Force is scimply the

Lorentz force (307

Fiarad) = (pe\/) E + (1 cridp-dt) % B (2,430
where B is the magnetic field induction
and E(grad} is the force on the z=phere,.
Furthermore, if we assume p = X E as above in equation

(2,43, the firet term on the right hand side can be written
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(p.yJ) E=Q (E-y E

@ t1/2yOES - E % curl El. (2.44)

Then using Maxwell ‘s squation

curl E + (1/c)(®Bs 3ty = 0 (2.45)
and the equation (2.44, equation (Z2.43) can be written as
F{arad> =(I[(1f2)§7E2 + (1/¢co B(E *® E)!bt]. (2.48)

The +ir5f term of the right hand side of the equation
{2.448> shows that the dielectric spheres are moved towards
the high intensity regions of the incident radiation, when
the dielectric constant of the spheres is larger than the
surrounding medium. ©On the other hand, if the dielectric
constant of the spheres are smal]eF than the surrounding.,
then the spheres would be moved ocut of the hiéh intensity
regions. The second term involving the Pownting vector is
responsible for moving the dielectric spheres in the
direction of the beam propagation. This is true for atl
cases; but when the dielectric espheres are not transperent,
then radiomatric +force may dominate. This can cause the
spheres toc move in  the opposite direction of prapagating
beams.

Micron <size particliee have been accelerated and ftrapped
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in <table optical potential! weils using only the force of
radixtion precssure Ffrom a continucus laser (217, A.AshkKin

(22> =shows this effect on &a dieglectric sephere, where za

sphere is drawn into the high intensity region of focussed
light radiation. @A =single wertically directed <focussed
TEMoo-made cw laser beam of approximately 250 m is

sufficient to mave and ultimately support stably a2 20 um
aglass sphere (33). The restoring force on the sphere due to
gravity is balance by the radiation pressure. There exsits
two distinct stable regimes of levitation for solid spheres,
one located above the focus, the other below it (34>, &
sphere can switch back and forth between these positions.

In our own preliminary experiments a laser beam of
wavelength (438 nm)> was focused to an area of 1S nm in &
sample cell of thicknese ~~ 7 0 um and containing a dilute
gsuspension of | wum diameter spheres at & density of 10ELD
particles/c.c. The particles are moved into the high
intensity region and pushed in the direction of propagation.
AS & Pesglt gf this radiation pressure, these p#rticles are
pushed against the .downstream wall, The self diffracted
intensity maxima were observed as shown in figure Sa. This
diffraction pattern is & two dimensional hexagonal
structure. The scattering angle <from thie first neighbour
intensity maxima QC10) or 0401)> measured with rezpect to the
incident 'beam, was 24 deagrees and the second neighbour

intensity maxima 0(11) was 43 degrees. Using the Bragg’'s law

for twao dimen<sional hexagonal close pack structure,
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{(Ifdihhhz = {4f3a2)ih2 +hlk + kzi, where dihk) is the plane
separation and a is the lattice constantt, the real space
configaration was recaonstpucted as shown in figure Sh. &
microscopic objective was® used to image the real space

[
N

structure picturd - as sfown in figure These two pictures
give the game structure with the same dimensions.
The: effect ofr both the first term and second term of

equations (2.48) is vdemonstrated in the abowe experiment,

Mote that i+ the dielectric sphere

m

. are nat transparent then
radiometric force dominate over radiation force. This may
cause the dielectric sphere move cpposite to the propagation

of the beam but thexr will &also be moved in the high

)

intensity regicocnei(33).

Radiation Pressure for Finite Size Particles

The effect of an field gradient on dielectric spheres
has been discusszed in the“pervious section with the implicit

assumption that - the particles re small in dimension

w

compared to -#he wvariatien in the +Ffield gradient. In our
experiments the particle size and field gradient variation
can be of the same order of magnitude. Thus we need to
consider - the effect af the field gradient variations within

a single particle.

.

11 )
o f"‘i

I+ we. are terezted in the lateral force {(force

It U |

in
the direction of propagation) produced on

perpendicular to

the .particles ".in#ta :padiation +ield, then we focus cur

attention on: the ffretiterm in the equation (2.4&). Here O
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= —C[Ez.fz acte 1like a potential whose negative gradient
produces the force of interest, In & crossed beams
experiment - the fringes will produce a spatially periodic
potential which is purely harmonic for infinite beam widths.
Let wus assume a sphere of radius a is subjected to the

potential produced by the ftieids in e=quation C2.37) in the

limit a = 0, @l = @2 = 0, and g = 2Ksint8». The force
exerted an the sphere is dependent on the intensity
potential averaged over the whole sphere. The average

intensity potential, U{avgr is given by

Utavag) = <1x‘umfc1 + cas(ger?] ey (2,477
y .
where A is a constant (a fuction of the magnitude of the

intensity, the diameter of sphere and the
dielectric constant of the sphere as well
as the medium?’

haxs the direction of the pericdicity of the

al

potential (and magnitude g = 25d, where d is
the width of the intencity potentiald
r is the distance of the sphere from the origin
and WV ise the volume of the sphere,
The integration is carried out ocver the vaolume of the
sphere, Let us assume thzat the sphere i= at distance, b from
the origin and the direction of b is parallel to g, as shown

in figure &, The equation (2.47) is then written as
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a b
Uavg) = {Eﬂfvbﬁ-(r’ dr’JﬁsiniB? dag [1 +
o] o]

cosigh + gqr cosd(g) ] v2.980
This integration is straightforward, and the result is given
b
Ulawgd = & [1 + (Zecasigbl qal Jliqa}J 12.4%9)
where JI(qa) is the 1st order spherical Bessel function.

Let the <sphere be placed &t the origin b = 0},

Assuming a point particle (asd —> 03, the average potftential

on the sphere iz maximum {(Udavg? 2Ay . On the other hand,

as the radius of the <sphere compare to fringes spacing
increases f{a/d >0 the average potential decreases to zero.
When the sphere ic displaced from the origin such that b =
2d, then in the 1imit of point particles, the average
paotential is zero. @4 (asd) increases the average potential
oscillates and decreaszes to a constant. One sees. that in the
limiting case that (a<sd —>o02, the potential goes to zero.
The average potential is constant. This means that the force

on the sphere is zero.

Comparison of CCIFS and CBT

CCIFS is a technique which monitors the local order in

fluid systems by cross correlating light scattered to two

spatially separated detectors. [ue to interactions, local



43

density made s will be coupled and scatter light
preterentially with certain symmefries. A minimun of two
detector= may be used to measure these correlated density
modes. In LCBT a single density mode is directly stimulated

ttering will produce diffraction

in the <+luid, =and =c
pattern +rom the stimulated mode, as well as, other modes
slaved to it. Thus in both techniquees, the {(locall coupling
af Ffluid density modes is being monitored. In this section
we explore the connection between CCIFS anmd CEBT. Recall that
the equal time equilibrium CCIFS scattered intensity

distribution was given in equation 2,30 and can be written

1]

-

C(K.q,0) = [{fZZe,E.QEexp[if-(F. T+
1y |m I J
1y lwm

iE-(FI - rpd = YAKTI

di{r» 3, 21/7080kIECq2] (Z2.300

and re-expressed as

q 4
PSELKIE0g) {2,517
where C4 (k,.,q2 ie a nongaussain Factor including four
particle correlation functions. This term becomes

negligiblly s=mall compare to the denominator +or  large

scattering volumes.
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SOk =J-E epEplikeir., = r. ) = YAKTY dirirsz (2,520
| J
1]

ig the apertured static structure factor

n
W

%

and z = j;xpi—WfHT} dird,

i the partition Function. The <scattered intensitiecs are

w

reprecented in terme of the firet Born approximaticon and
averaged cver an eqgquilibrium distribution of particles
subjected to mutual interaciion potential, ¥ .

The CBT scattered intensity distribution may be written

L as
<ICKY> = {fz'exp(iﬁ-c? - FJ.:: - + YI/KT)
. l
1y A o ) -
dird 2 { expi~=(d + Y3y dirir: (2.54)
where the first Born approxximation iz again used to

represented the scattered intensity with scattered amplitude

EOW » = 1 J{infinite scattering wvaolume). Thé scattered

intemnsity is averaged ower an equilibrium distribution of
particles with interacting potential, Y , and extearnal

patential, ¢ , where ¢ is given by

N
on

the amplitude of the external potential {dependent on

ur

A

input power) and q is wave vector of the periodic potential.
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Furthermore, the scattered intensity in the expression
{2.54) assumes a zingle probe beam scattered from the
gample, and the self-scattered beams are filtersd cut,.

Bv expanding equation (Z2.333 in & power seriegs in My

the amplitude of the external potential, a formal relation

£l

between CCIFS and CBT can be demonstrated (35)., The terms

[X

linear in A are zero due to the translational symmetry of

the 1liguid <etate, The quadratic termz in A involve particle

m

(1]

correlation functions averaged owver the same phase factors
AE in CCIFS. TaKing inte account the expansion of

denominator of equation (2.33) in &, as well, we have

{IEKD> = S(K) + mzmbzcsm)sm)%&tq +

C4(k,q)] + 0 (ﬁ3} (2.38)

where Stk and C _{K,q? are defined as before. The scattering

4

volume <ize is uJnrestricted here and C4£K,qb is no longer
dominated by Gaussain terms as the scattering wolume becomes
large,

From the zxbove expreszsion we see the similarity betweesn
these two techniques., The advantage of CBT ie that there are
no aperture tuncticans madulating the influence of

multiparticz] correlation functions on the calculated

D

catterin (€ ir}y = 1. On the other hand, extreme care must

w
A
i
Fa

be taken in order to collect the data. This CBT techinigue
suggests & new way to investigate multiparticle correlation

functions, as well as, the sclid liquid phase transition.
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Commensurate and Incommenzurate FPhase

in Twg Dimenzional Systems

For & long time it was beliewved that ftwo dimensional
solids could nct exist. The classical two—dimensional
harmonic soilde camnnot hawve long range order (38,372,

However, the absorpticon of rare—-gas monclarers on graphite

have interesting properties (3%2). As the temperature and

pressure of the rare—gas iz varied, these systems exhibit a
large variety of phases. At high temperature and Tow density
the monolayvers fopm a two-dimensicnal (2-0) Fluid 1ike
phase. @At low temperature, &s well x5, lcow pressure they
exhibit a 2-D crystal-like phase which register on the
underlyving tattice (3%). This +luid-solid structure bears
some resemblance to our problem of JlcokKing at a two
dimensional colloidal liquid in the presence of a pericdic
external +field.

The monolaver problem may be studied theoreticxlly by
considering an array of spheres connected with springs and
having an average spacing a ispatial period Z2J¥a). When
these systems are subjebted'to a external periodic peftential
af spatial period, 27N-d, then depending on the =trength of
the external periodic potential, this harmonic structure
undergoes phase change Yike the absorped atome on the
graphite substrate (3%,40), I+ the external potential is
weak f{(or absent) the harmonic term would favour a lattice

constant & which is in general incommensurable with
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potential SpaAcing, d. This is in eneral termed the

i

incommensurate phase (IC)» and represented in figure Fa. In

thiz caze diffraction spots would not coincide with the

Bragg spots of the pericdic potential. Howewver, i+ the
external  potential i strong enough, it may be favourabie
for the lattice to relax into the external periodic

potential, where the average spacing, a, is simply rationsal

fraction of the period, d. This iz termed as commemsurate

ph

1)
1]

@ tC)» and is shown in figure ?b., The diffraction pattern
for this case coincides with the potential. However, these
two  phases (C & ICy do not exhaust the stable configurations
{40». If the potential i€ not strong enough to force the
particles into a commensurate phase, the particles will move
fowards the minima of the potential. The average period may
approach- & simple commensurate value but remain
incommensurate. This gives rise to a additiconal chaotic
structure 2= shoawn in figure Fo. The diffracticon pattern
does not have well defined Bragg spots. For instance, if the
potential is very strong compared to the " interaction
potential, then <clearly there exicstsz a metastable state
where the atoms are distributed randomly among the potential
minima. This is also termed a chaotic phase. Later in the
Chapter UV we will find it usetul to use =imilar terminal ogy

in analying our data.
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CHAPTER I11
EXPERIMENTAL BACKGROUND
Introduction

This chapter gives details of the experimental
techniques wused. The ogeneral experimental desian is given,
with details of cell design, sample preparation, and data

collection techniques,
Experimental Details

The basic CBT experimental set-up is straightforward.
It consistse of the following items: two beam splitters, two
front surface reflecting mirrors, one right angle prism with
orthogonal sidee having a reflecting coating, one lens, two
pin diodes, amplifers, A/D converter, digital oscilloscope,
analog cscillascope, apple Ile computer, ;ample cell,
screen, optical bench, chopper, He-MNe laser and/or an argon
jion lacer.

The two crossed beams are praduced from the main laser

beam by using a coated optically flat beam splitter as shown
in figure 8. fhe intensity ratio of transmitted to reflected
beam was 40/80 and the angle bhetween transmitted beam and
reflected beam wacs made 70 degreee (for maximum efficiency).

The two mirrors were placed about 30cm Ffrom the beam

49
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splitter to direct eazch beam onto 2 prism shaped mirror. The
prism was mounted on moveable table which ie placed
symmetrically with respect to the two mirrors. The cptical
path length of these two beams were made approximately egqual
and within the coherence Jlength of the laser. These two
laser beams upon reflecting +Ffrom the prism propagated
parallel tae one another in the <same plane with the main
beam. The beam separation of the two parallel beams could be
controlled by tramslating the prism table. This adjustment
changed the crossing angle of the beams by makKing use of the
double convex lens. In this way the angle could be varied in
the sample from 8 = 1° degree tao 8 = 30°degree assuming that
the index of refraction of the sample is 1.33. The higher
intensity beam was attenuated by introducing another beam
splitter with transmission to reflection ratio 1/2:273. The
reflected beam is used for triggering, while the transmjtted
beam <(propagating parallel to the other beam) now has equal
intensity with the other beam. DOne pin diode was positioned
to detect the reflected beam. The photocurrent was amplified
by a 741 operational amplifier wusing the simple circuit
shown in figure 9. The signal is then fed to ﬁhe triggering
channel of the a/d converter. A lens of approximately licm
focal length was wused to focus the beam in the sample. The
scattered intensity at a given scattering angle was picked
up by the <second pin diode. This pin dicde converted the
light signal to electrical signal and amplified it as

described previously. This electrical signal was then fed to
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another channel of the asd converter for data collection.
The ocutput signhals could alse be Ffed to an anxlog
ascilloscope to observe the signal. The cutput of the ard
converter or digital oscilloscope was connected to the apple
Ile computer. A chopper was used to eliminate the crossed
beams and the chopping rate was controalled by & variac. This
chopper has a circular blade which was attached toc a motor.
When the triggering beam was eliminated, & triggering signal
was generated. A linear relationship between intensity and

amplified vol tage was observed ( as shown in figure 10.).
Cell Design

The sample cell consists of the follawing items: three
quartz plates, a metal cell holder and an O-ring. The
dimensions of two of the quartz plates are 1in diameter and
1/8in thickness. The other gquartz plate has thickness of
1/8in and ie 749im in .diameter. This design is shown in
figure 11. The small quartz plate is glued to one of the
other larger quartz plates using epoxy. This is then placed
inside one of the cell holder cavities., The other cavity
haldse the opposite quartz plate which iz separated from the
first by means of a silicon rubber D—ring. The gap between
the plates is wvaried by adjusting the screw tensicn. To
assemble the «cell, an O-ring is placed on the top of double
plate in thie cell housing cavity. The other plate was
placed on top of the O-ring to form a seal, protecting

effectively agaxinst evaporation. The other cell holder wall
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Dimension in cm.

— Holder

Front View

Figure 11. Thin Film Cell
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was then placed on the top of the quartz plate and tightened
by means of screws. Thus the sample iz in contact with only

the gquartz plates and 0O-ring.

Spacing Measurement

. The spacing between the two quartz plate cell walls was
measured in the following wars: first by using a microscope
and then by an interterence technique. A rough measurement
of the gap was measured by focussing a2 low power microscope
at the bottom and top surface of the plates of the cell. The
uncertainty in the gap measurement is estimated at about
20%. However, <=some parts of this experiment needed very
accurate gap measurements (i.e. ap uncertainty within 1X).
Thus we wutilized an interference method described by Hurd
(5.

Here a collimated 1laser beam enters a parallel plate
cell at an angle 8i as shown in figure 12. Before injecting

the <=sample in the cell, the gap is Ffilled with &air.

Therefore, the refractive index is same as outside the cell
and there ie strong scattering at the gap interface. &
reflection occurs at every interface, but only the

retlections from the interface adjacent to the thinm air film
proved to be important. Interference in the beams reflected
from either side of the imterface will depend on the zpacing
L.

Concider figure 12. the phase of ray | at A and of ray

2 at € are the same. The optical path length difference



Figure 12,

Spacing Measurement
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between ray | and ray 2 is simply nAaB where n is the
refractive index of the thin film ( n =1, for air). This
path difference between ray 1 and ra¥ 2 may be expressed as
2Llcos<Bir. If n > nt (the refractive index of the cell wall)
an extra factor A/Z is to be added to the path difference
because of the phase change an reflection. Keeping in mihd
that ray 1 and ray 2 are not separate beams but selected
rare within the incident beams, and ray 3 is only one of the
entire number of reflected beams. The problem is to
determine the order of the interterence.

Decstructive interference, that is, a darKened ray 3,
agccurs when the path difference is a half-odd integer number

of the wavelength. Hence the order "m" is given by

m = [2L cos(Bi>] /N (3.12
where Ais the incident radiation wavelength.
Now suppose the cell is rotated so that 8i increases.

The path Jlength difference will decrease and destructive
interference will occur wuntil B8i hasg increased encugh that
the next lower order of interference is found. At this paint
a fringe will again darkKen ray 3 so that the condition is
immediate}y identifiable. Knowing the fwo angles, @i and 8+,
at which segquencial order numbers are found allows one to
selve for L from equatioﬁ (3.1 and identical equation for m
- 1.

Accuracy and precision can be increased by passing over
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a number of fringes before reading 8f. The number of fringes

passed aver is given by
Am = [2L-"XN1{cos(B8i> — cos(8+)} (3.2
which qgives gap L is
L=<¢AmA) /[2{cos(Bi) - cos(8f)}]. (3.3

In most situations the limitation on the precision is
the wuncertaintie in the angle. When that uncertainty of the
gap is «.1 um, the relative error in L is 1¥X; thus a 5 um
spacing can be measured to within S0 A uncertainty. Ancther
important 1limitation .is in the measurement of spacing below
1 um where different laser 1lines must be used to see any

interference at all for the accessible incident angles.

Cell Cleaning

A

The walle of the sample containers constantly
contribute to the ionic impurities by the leaching out of
charged ions. At least one quantitative study has been‘done
(41> on this problem and some suggestions made for
eliminating it. In this study, the following procedure was
adopted to clean sample containers:

1. Washing sample containers and cellz vigorously with

a soap and a brush.

2., Boiling in deionized water with Micro for 1 hour.

\
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3. Rinsing in deionized water, then re-boiling in
deionized water. Repeating process several times.

4., Final rinse was done using water deionized and
filtered in a Barnetead system (18 mega-ohms
resistivityy.

5. Handling with tongs and storing in a clean dry
place.

é. Keeping parts covered until use,

Actually, there is 1little hard evidence that leaching

is indeed a problem, but the circumstantial evidence is

convincing enough to use care in cell preparation.
Sample Preparations

The t@o clean quartz plates are put together inside the
cell container with an O-ring between them and mixed bed
resin f{(Analytical grade mixed bed resin AG S01-X8(D> 20-50
mesh, <fully regenerated, Rioc—-Rad Laboratories) ineside the
cell. @& wedqge shaped gap can be produced by drawing one side
cf this <cell tighter than the cother. It is this wall
separation gradient that will allow us to get a monolayer of
particles.

When the latex has been placed in cells with ion
exchange resin, it is advisable to mix them mechanically +for
a few hours to cspeed the deionization process. However,
violent or prolonged mixing is contraindicated by a "scum"
of particles that forms at any air-water interface. This air

may cantain carbon dioxide which can be dissolved and may
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contribute to the impurities problems. We avoided this
problem by +Filling the cell completely with water. An
effective war to handle clean latex without opening the
container iz wvia plastic tubing with srringe tapers on its
ends. Latex can be removed Ffrom a vial using the soft
plastic top or quartz tube and lcaded in a syringe needle,
then the sample celles can be loaded by injecting through the
O-ring cell in the <came way. If the cell is +filled
completely, air contact will be minimal. The probliem is now
with agaregation of latex, but the percent of aggregation is
very small compared toa the rest of the sample., This sample
is then placed in &a quiet place with no thermal gradients
that might cause convection. Within a. few hours one
generally finds nice liquid and crystalline structures which
can be detected by illuminating with laser light. Some
samples will simply never crystallize. Others phase separate
showing 1liquid and crystalline reqions. When it becomes
necessary to transport them, we try to do so with the least

amount of agitation possible.

A0 Converter

We wused two different A/D converters to collect data in
our experiments. The first A/D converter used Ffor this
experiment i=s the AII2 analog input system data acquisitfon
module (Interactive Structure Inc.)>. The AIl3 analog input

s¥stem ie a high-performance 12-bit data acquisition system

for aApple Ile computer. It plugs directly intc one of the
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ABpple expansion slots and givee the Apple the ability to
male precision wvoltage megsurements. any instrument or
sensor producing an electrical signal becomes an Apple Ile
input device. Software selecis the input range, and sensor
cutput range From +- T Volte to 0-100 milliVolts can be
accomodated with 12-bit accuracy.

The AI1Z analog system has 146 input channels. The
channel selection and range are a single store gperation,
which are then read in 2 bytes directly from the AIl3.
Software is in complete control of both order andﬁspeed wi th
which the channels are read. The analog conversions can be
started by a varity of signals including an external irigger
pulce.

ALz fully supports high-performance proqramming
techniques, such as high speed Assembly language sampling.
The <selection and <sampling time of each channel is &
microseconds, haeld and conversion time is lé microseconds,
total conver<sion time is 20 microseconds and sampling

aperture is 125 nanoseconds.

Digital Memory Oscilloscope

The Model 835 aScope Digital Usci]losdape (Narthwest
Instrument Systems, Inc.> is k- dual-channel, Ffully
programble, digital memory oscilloscope. It is designed to
work with an Apple 11, Apple 11+, or Apple Ile computer. The
Apple computer must have a Disk II, display, JSK of memory

and the DOS 3.3 operating srstem. The model 85 aScope is
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controlled by the Apple through programs. In any case, once
the operating software is loaded and one or two probes are
attached to the back of the Apple, we have a workKing
DC-to-50 MHz digital ocscilloscope.

The analog information is received by the probes and is
sampled very rapidly, digitized and turned into binary data.
The model 85 aScope can average successive frames of a
waveform to remave random noise and will store the entire
data to the disk. The software then converts and displare a

waveform on the Apple monitor.

Data collection

All  of our measurements involve measuring the intensity
of scattered light, either as a function of input laser
power, or of time, or of beam crossirig angles. However, the
intensity of the signals fluctuate in time, which
complicates the data collection process. For these reascons,
two different procedures are used for data collection. One
of them is for static or average intensity data collection
and other one is for dynamic or time dependent data
collection. The static procedurs basically uses the A/D
converters as a digital wvoltmeter. The dynamic procedues
utilizee the digital scope or ASD converter to signal
average time sweeps.

A statistical method is wused to get a continucus
reading of the average intensity for static measurements. Ue

defined the weighted average, 5, by:
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s= > w Dy w (3.4)
n n
= 5 w'tl = w Dind £3.5)
fn
where D(n? is the nth data sample measurement relative to

the present time interval. D{0) is the current data, D{1) is
the data taken before Dfﬂ), D(2» ie the data talken before
DCiy, D¢3) ise the data taken before D{2) and Din! iz the
data taken before D{(n-1) data. Egquation (3.4) is the same as
standard average when the weight Ffactor, w is unity. In
practice, however, the wx ght factor was chosen be to less
than wunity and greater than zerc in order to weight the
present reading the most. This allowed us to have running
average with minimized fluctuations and yet would reveal any
systematic drifts in the signal. The wvalue S8 is then
dispalyed on the monitor or printer which worked as a
digital vwoltmeter.

The fluctuatione in the <signal are estimated by the

following running average:
n 2 a 2 . .
s = [-w () w DM = O w D w3 €3.6)
n n

This number is also displayed on the monitor or
printer., When the Fluctuation in the signal is small, thie
calcualted Ffluctuation is also small. The basic program for
calculating these averages is given in appendix (C).

In the case of the dynamic data collection, a totally
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different method is8 used. Here two types of devices were
used, one was the 146 channel AlIl3 ASD converter and the
other one was the digitx] memory oscilloscope.

In the first case one of the channels of the A/D
converters is selected for triggering and ancother is
utilized for  data callection. This triqggering WAas
implemented by means of software and is based on the input

to the triggering. channel. When & signal derived from the

beam chopper drives the triggering channel 1low (or high
depending on experiment), then the program was allowed to
collect data. This data collection is done utilizing an

assembly language program supplied by the manufacturers of
the A/D converter. This program fills up & Basic array with
data, when called, and the time interval between the data
points is controlled by software. The intensity versus time
data are then signal averaged (using our own Basic program?
by adding the precsent data run to any previcus data runs and
saving the results in the memory, until the desired number
of sets of data have been averaged. The average intensity
value wversus time is then saved on floppy disk for further
analyesis. This basic program will alszo display the current
average plot of data ve time. This basic program is given in
the appendix (D). The assembly program supplied br the
company is shown in appendi* (E>.

In the second case the diqital memory ocscillascope was
used. It acts 1like a oscilloscope with difference that it

can average maximum of 255 framees., It has two channels: ane
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of them is used as a triggering channel and one is for data
collection. The <software for this zystem is supplied. The

triggering channel selection can be done by the software.

Either channel can be used as the triggering channel, with

either a low or high input logic depending on experiment,

The number of frames to be averaged and time interval
be tween data4 points is selected by software. This program

will display the plot of average signal ve time and aleo

saves it on disk.

The basic difference between these two systems is minor

and dependent on the particular experiment. The AI13 A/D

converter has 18 channels and all of them can take data

simul tanecusly whereas digital memory oscilloscope(DMO) has

only two channels. The number of data points in a run is

fixed in the case of DMO (25& pointe) whereas the A/D

converter can take essentially any number of data points in

‘a4 run. While the time inmterval between the data points can
be wvaried in the same run for the A/D converters, the time

interval between the data pointe is fixed tor the DMO. In

any case the choice depends on the particular experiment.

Laser and Laser problem

A Spectra phresics model 144 laser was used in our
experiments. The two beams derived from the primary beam are
focused down to a circular area of diameter 40 um and
crossed to produce fringes with separation, d on the order

of a few microns. Small mechanical vibratioens will produce
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violent motion of the +ringes and destroy the whole
experiment. Initially we detected a vibration in the lacer
head. Because the laser is a water cooled laser, there
seemed .ta be turbulent motion in the plasma tube. This

produced a small wvibration in the beam which was encugh to
destroy any standing +ringes pattern. This problem was
eventually overcome by implementing several different
proposed <solutions: (a) reversing the water flow in the
lagser head, (b2 using an air trap in the water outlet of the
laser head which acte l1ikKe a mechanical shock absorber, (c?
minimizing the spatial size of the experiment and making a
firm attachment of the laser chasis to the supporting table
and (d> the experimental table-was floated on air shocks.
Still, <cometimes these wvibrations were observed in the
fringes. Finally these wvibrations <ceemed to be correlated
with turbulent moticon in the laser tube produced by Kinks in
the tube supplying water to the laser head. Thus, the final
step to eliminate wvibration required careful suspension of

the hose supplying the cocling water.



CHAFPTER IV
NMOM=INTERACTING SAMPLE STUDIES
Introducticon

It has been demonétrated that transparent dielectric
spheres can be moved into high intensity regions, as well
as, in the propagation direction of laser light (1,31-34),
On the other hand, if a sample of these spheres is subjected
to crossed laser beams, then the spheres register in the
high intensity regions forming & phase grating which
diffracts light (1>. The strength of the grating depends on
the strength of the intensify potentiaxl. A study of the
ampl i tude of the phase grating +for weakly interacting
particles ie presented in this chapter, as & function of the
heigﬁt of the intensity potential and beam cro;sing angles.
& comparison is made between these results and & theory for
non—interacting particles. For particles larger than | um
diameter, the radiation pressure easily maves the spheres to
the down stream cell wall. This gives us a chance to study
the diffusion of the micro-spheres near a single boundary in
the absence of other interactions. Dynamical measurements of
diffusion indicates =a slowing of the diffusion near z wall.
In this <chapter the author will try to understand this

phenomenon experimentally and theoretically.

68
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Results for Non-Interacting Particles

(or Strongly Screened Particles)

Thies chapter describes details of the data collection
procedure and results for static and dynamic experiments on
non—interacting colloidal particle samples. By
non—interacting particles we mean that the Jlong range
coulomb force between particles is highl» screened. Thus the
particles only interact near contact with strongly repulsive
torces. @ further increase in added salt will decrease the
screening length, and wvan der Waals attractive forces will
produce coagulation. Data was taken using the pin diode as
describe in Chapter I1I.

A lens of 10 cm focal length was used to focue the
incident beam in the «cell. The crossing angle of the two
beams was varied between & t0 13 degrees by translating the
prism mirror. The two crossed Deams produced a periodic
intensity potential (i.e. halographiﬁ fringe pattern as
mentioned in the Chapter I1) with fringe spaciﬁgs, d varing
from .47 um to 3.21 um. The sample cell gap 5gacing ranged
from 30 um to S50 um. The beam was focus to a spot of
diameter 4% um (the calculation of the size of the spot is
shown in appendix (B)).

The micron =ized particles were drawn to the high
intensity reqgion and pushed toward the downstream wall by
radiation pressure forces., These particles aligned in rows

in the high intensity regicon to become a transparent
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diffraction grating. While a third lacser beam of different
frequency has been used to produce a diffraction pattern of
the induced grating, the two interfering beams inducing the
grating also produce a <self-diffracted intensity pattern.
Thise <elf scattered diffraction pattern has been used in
data collection (rather than wusing third probe beamy. For
the non-interacting samples the pin diode was positioned
with appropriate attenuation to collect intensity data at
the position of the first (or higher order) intensity maxima
produced by scattering of the laser beam from the induced
diffraction agrating. The figures 13a, 1Zb and 14a, 14b show
the diffraction pattern and real space structure for the twe
different angles. The off axis scattering pattern (diffuse
lines above and below the row of intensity maxima) is
cbhserved in the figure 13a and figure 14a due to the fact
that particles were observed to have fairly uniform spacing
parallel to the intensity fringes. Using Bragg’s law for the
scaftering angle of these lines, the spacing of spheres was
found to be exactly the diameter of the sphér9§. This is
indicted in figure 13b and 14b by direct imaging through a
microscopic objective.

It was also observed that if the fringe separation is
less than the diameter of the sphere, then the spheres do
not form the grating. This is because the average or net
force on the particle is reduced as described in Chapter II.
Basically this results <from & competition between two

adjacent fringes to draw the spheres into their high
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Figure 14a. Self-Ditfracted Maxima. The Fringe
Spacing ise 3.21 um and Diameter
of the Spheres is 1.0% um.
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intensity regions. If the fringe separaticon is larger than
the diameter of the sphere but smaller than twice the
diameter of the sphere then the grating i=s formed by single
row of pirticles. The real space picture is shown in figure
13 for 1.0% um diameter particles. In this case the angle
of croscing is from 12 to ?.5 degress, the wavelength is 488
nm and a focal length of 11.5 cm was ucsed. On the other hand
when the fringe separation is larqger than twice the diameter
of the sphere then double and triple rows of spheres were
found in a single intensity regionse. This is shown in figure

14b for crossing angles & to 8 degrees.

Data Collection

The magnitude aof the intensity of scattered light can
be studied as a function of input power and also as a
function of time when the holographic grating is modulated
in time. Thus the data collection is described in two parts,

static or time independent and dynamic or time dependent.

Time Independent Study

In the time independent study the pin diocde wzz
positioned on the diffracted maxima such that the area of

the diffracted spot ie larger than the area of the pin diode

(in order to minimize the stray light going to the pin
dicde). The incident laser intencsity was varied. Thus the
intensity of the crossed-beams were wvaried in order to

change the depth of the intensity potentizl. The averaged
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intensit» was measured using the procedure describe in
chapter III. When the running average intensity did not
drift, the input power of laser and the average intensity

data were recorded.

Fiote of input power wversus relative intensity of the
first or second order diffracted maxima were made for four
different crossing anglee ( 12, #.5, 8 and 4.5 degree? and
tfor four different particle sizes ¢( 0.481 um, 0.? um, 1.0%
um and 2.02 um). Resultz are shown in figure 13 toc 20. A
least square power Ffit curve is drawn through the datsa
points far each agraph. & cubic power law was found to give a
reasonable Ffit for particle sizee 0.481 um for all crossing
angles (1) and G.¥% um for 12 degrees crossing angles as
shown in figure 195 and figure 18 respectively and less than
cubic power law was found for particle sizes 0.9% um, 1.0%
um and 2.02 um for crossing angles smaller than 12 degrees
as shown in Ffigure 16, figure 17, figqure 1% and figure 20,
Because the radiation pressure forces are proportional to
the volume of the particles (2.44), it is clear that as the
diameter of the spheres become larger there is a greater
force holding the spheres at the maxima of the intenmsity. On
the other hand, the <force on the spheres increases as the
ratio of radius of the spheres to the fringes decrease. This
is discussed in Chapter II. Hence, as the spheres increase
in <size, they become more confined at the center of the
fringe. This causes the out put signal deviate from the

cubic Fit. In fact if the spheres are perfectly crdered and
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fixed in position, then the alignment is complete and the
diffracted intensity should be & linear function of the

input intensity for self =cattering studies.

Theoretical Model for Particles &lignment in

Radiation Potential Well

At 1 ow input power we expect the celf-scattered
intensity to follow a cubic dependence on the input pcwer,
because the particles align in propertion to the depth of
the intensity potential and scatter coherently proportional
to the square of this depth. The third power comes from the
strength of the incident beam which scatters +rom the
induced grating. However, once the particles are perfectly
aligned by a strong enough radiation field, there can be no
further increase in <scattering other than that due to the
increase .input power. Thus we expect the self-scattered
response to be cubic at low inmput power and linear at large
input powers. To understand in detail the dependence on
input power and temperature, we extended a mgdel presented

by D.Rogovin and co—worKers (42-447,
First we consider the force on the spheres is given by

the equation (2.44> in the Chapter 11
F{grad> =C[[(1/2)§7E2 + (1/C)D(E X BX/Dt1. (4.1

Here the Ffirst term on the right hand side represents the

force which moves the particles into the high intensity
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regions and the second term represents the force which moves
the particle in the direction of propagation of the incident
beams. The force far the motion along the intensity aradient
{neglecting motion along the direction of propagation) can
be written in terms of a potential {see equation (2,

reference (1))
- . - =2 .
F¢agrady = - JU{r) = @xs/2)\/E (4.2

where E2 is given by equation ¢(2.36), which on neglecting
the gausesian beam shape term gives,

E2 = 2E(10)2[ 1 + cos(2kr sinfgj>1] (4.3

where iki = 2Kk sin (8) is the reciprocal of the fringe
spacing, d.

Let us try to discuss this quantitavely. I+ the
frictional coefficient is Tlarge enough and density is not
tee far from an equilibrium distribution, then the spatial
variation of the probability density of the system, ni(r,t>
will be similar to that of the imposed poatential, Uiry.
Using the Planck-MNernst equation for the microparticle

dencsity one can write

NP I/ = DA/ nr, t) + (F/KTOnir,t)>  (4.4)

where F = -f§7U(r> is the <Fforce on the sphere and D izs
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defined as the diftfusion cocefficient. For intfinite dilution

D is qiven by Stokes’ law for spherical particles of radius
&,

D = KT / é&nha, (4.5
For steady state 72n{r,t> /2t = 0 and this equation reduces
ta

thﬁn@)—nhﬂﬁU@h%ﬂ = 0, ' (4,8

This potential, U(r)>, can be written more explictly using
the result " from equation (4.2). At equilibrium the solution

of this equation is the Boltzmann distribution:

nir,0) = A expl{~ UCr)/KT) (4.7
where A is a normalization constant.
Hence the probability of +finding & spﬁere in one

dimension is given by

nir,0 = A exp{(mE(10>2/KT)[1 +
cos(2Kr sin{8>212. (4.8
This can be verified by direct substitution into
equation (4.8). For particles with (nsz > ng? the potential

causes the <spheres to move into the high intensity regions
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of this periodic intensity potential and to register in rows

to form ditfraction grating.
The normalization constant, A, can be obtained b» the

relatian
jn(r,ﬂ) dr = 1. (4,7

Substituting the expression for nir,0» in the zbove integral

we tind

d
AS;xp[¢EE(IG)2/KT){1 +

o

cos{2Krsin(g)>»¥1ldr = 1. <4.10)

Rearranging the equation (4.15) and substitutina p =G:E(IU)2

#KT and z = 2krsin(8) we get

2N
& [expip) 2K sin(B)]-(exp(pcas(z))dz =1, {(4.11)
0

This equaticon can be evaluated by using the standard

integral relation

2n
1720 fexp(+ zcos(8) + in8) d& = I, (z),

[}

Hence, the normalized probability for finding a sphere

at & position r is

Alr,0) = (K sinC@8X)/ I,¢p)
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explp costZKr sin(a)’1. 4.12

The +igures 21 and 22 show a plot of n(r,0) vs r for
three different wvaluee of p and Four different crossing
angles. It is clear that as the p increases, the function
nir,0) becomes sharply peaked. In fact this will behave as a
periodic distribution of delta +functions in the limit of
high incident intensity ands/or for sufficiently large
spheres in well separated fringes. This probability function
spreads out at low intensity or for smaller spheres. From

the qraph it is clear that n{(r,0’ is maximum at the middle

of the high intensity regions.

Effect of Coherent Sel¥f-Scattering by the

Two Incident Beams

Because the particle structure is probed by
self-scattering of the incident beams, we have two
overlapping scattering patterns which add coherently. In
this section we formul ate the effect of this more
complicated scattering geometry. The total scattering

intensity is given by (equation (2.18)2

— - 2
1 :-Fa(B)Z: 1Y exp Ciker. )l C4.13>
- |
|
where :+a<e>:2 is the single particle form factor
and ki = 2k sinf@) is scattered wave vector.

To proceec it is convenient to consider the scattering
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amplitude, H{(K), for a caollection of particles where
I 1F5%80 1 TH{K»! (4.14>

such that

H(KY = ¢ E:exp Ciker) (4.15)
i

Since the probability function, n{(r,0) is Known for our
gystem and is a continuous function of position rather than
a discrete function, the sum in the equation (4.13) can be

replaced by the integral. Thus the scattering amplitude can

be written for a single Kk vectar as
H(K) = J/n(r,ﬂ) dr exp(ilsm) (4.18)

Because there are two incident beams in the <self
scattering experiment, there are two scattered diffraction
patterns, (one +or each incident bsam), Furthermore the two
patterns combine ccherently due to the mutual coherence of
the two incident beams. We now discuss how to properly
analyze the scattered intensity under these conditions, Let
the detector be placed on the lower side of the beam (1) and
{2) at a point which is the 2Znd order diffraction spot of
the beam (1) and +irst order diffraction spot of the beam
(2> as& shown in figure 23. Becauce the cross beams from the

grating, the <scattering angle turns out to satisfiy the
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condition for minimum dewiation, and this relation can be

written as

2d sinC@R/2) = nA $4,17)

where d ies the fringe separation
#n is the nth order scattering anqgle
and X is the wave length.

Since the diffracted spit of interest is the
combination of the first order diffracted spot of the beam
(2> and 2nd order diffracted spot of the beam (1), the angle
between diffracted beam and the two read beams can be
obtained. Let wus assume that Z Y iz the diffraction angle
of the beam (1) which allows us to write the equation (4.17)

as

dsin{ ¥ ) = A £4.18)

Using the relation 2d sin{8) =X from the chapter (1) we

get the relaticnship

sint Y » = 2 sin{8) (.17

Let 2 ¢ be the first order ditfracted angle of the beam (2

on the lower side. This angle can be written as

ra
S
I

2V - 2B (4,207
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a
=2
a}
n
[n]

gint ¢ » = sint ¥ - @ (4.21)

The above equation (4.,21) can be represented using equation

(4,19) as
sin{ & » = sint@) { E\Ai - iinZ(B)) -
vél - 4 sinZiE))} (4.22)
In f=xct, in the experiment the crossing angle 28 was

. =0
varied +from 3

to 12°degreee. The sin square of this angle
is wvery semall compaxred to unity. I+ we neglect the small

terms compared to unity, we get
sint @ ) = sinc@)., (4.23)
In this approximation we can write the scattering angle

for &1l higher orders as an integer mcitizie of crossing

angle of the beams as

2in( ® n) = n sin{@&} .24

At this point we have all the toole needed to find the
scattering amplitude due to both beams. Let us consider any
order of the diffracted maxima. Substituting the expression
for the nir,0) and k , in equxtion (4,142, one can write the

scattering amplitude &as
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d
H(s) = [{K =sin¢ay)/« Iofp))qu;xp(iZKP
o

nsin(8l) expip cosi{2kr sin{d23) dr. ({4,252

Putting 2Kr <in(B) = =z and rearranging equaticn 74.25) we

get
2N
Hiky = [17°2 Ioip>]‘§exp(inz + p ocoscziddz., (4.2&)
[o}

This is nothing but the integral representation of the
modified Beesel function of nth order, and the scattering

amplitude is given by (43,44)
Hik) = I, ¢pd/ I <p) {4,272

Hence the scattering amplitude for 1st order spot and

2nd order spot is given by

H(k1) = I <pir/ I, {p> ' (4.28)
and H(Kk2) = Iz(p)/ I, (p? (4,29
respectively.

The total scattering amplitude is then the zum of the

individual scattering amplitude for each beam.

HCKT K2, 000 yKmd = (F1 H(K1) + 2 H(k2) +

csssat fn H(kﬁ)) (4-30)



where for K1 is

crossponding firet order

respect fto the first beam and KZ

of the second

gecond beam, etc.

The physically measurable

The intensity is the absclute

zcattering amplitude,

self—-scattering,

the

gquantity is

HOKY K2, .o KR
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scattered wavevector

maxima measurement with

iz the cscattered wavevector

order maxima measurement with respect to the

the intensity.

value squared of the

Howeyer hbecause we are

there is angther factor in the scattering
intensity, the power of the incidemt beams. Thus the
expression for the output intensity for two self-scattering

beams is given by
2
I O 1HCKL K21 p
2
where p = xEC10) /KT.

In the case of non—degenerate
laser beam is used in order to
intensity of the probe beam is
scattering amplitude will have
scattering amplitude, H{K), will
Bessel function of order 1st to
order scattering. The expression

amplitude can be written as

H (k) = # I, (oI (pd

(4,31

four wave mixing a third

probe the 'sample. The
fixed. In this case the
only one term. This

be the ratio of modified

Oth (42,43,844) for first

for the scattering

P
b
|51
38
"~
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and the intensity in this case will be simply¥ proportional
to the product of the absolute wvalue square of the

scattering amplitude.

I (k> C tH i~ p. 4,332

at this point we see that intensity I of equation
{(4.31>» and has & cubic power dependence when p < 1. As the
value of p increases and becomes greater than unity then I
deviates from cubic power dependence. At high enough power
it is linearly proportional to +the input intensity. This
model &also shows that the higher order diffracted maxima
have even larger power law dependences for p < 1 (43).

In our experiment the input power from the laser was
varied +From .013 to .07 watts for four different sizes of
spheres and for five different crossing angles. As we have
seen, the force on the spheres ics dependent on the volume
and relative refractive index of the materiaxl. It iz also
shown in equation (4.31) that output intensity is
independent of the crossing angle of the two beams. However,
from the Chapter II, we have seen that the actual force on
the sphere ies lese than the calculated force from equation
(2.49> when the Fringe spacing is small compared to the
particle diameter. Thecse dxta are corrected +or the
effective force by using method describe in chapter II. A

theoretical fit to the data is shown in figure 24 and 23 for
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these four different sizes of spheres. We csee in figure 24
that the dafa for 0.421 um diameter spheres fall in the
cubic region and the data of 0.7?5 um and 1.0%? um diameter
spheres start to deviatezs +from the cubic region. In this
case the 1st and 2nd order sel¥f diffracted intensities data
fite are presented. On the other hand when we used the 2.02
um diameter spheres, then we have an opportunity to study
the higher order dencsity modes. The data fit presented in
figure 235 is a 2nd and 3rd order superposition of self
diffracted maxima. Since the force on the sphere is volume
dependent for same relative refractive index, hence these
larger <cpheres are more confined to the center of the
intensity potential at the same input powers. These data are
in the region where p » 1 and a deviation from the cubic
dependence is noted. The arreement between theory and

experiment is good.

Study of Intensity as a Function of Crossing angle

The intensity of the self diffracted épat was also
studied as function of crossing anqgle for fixed input power
and a plot of this is shown in the figure 26. The intensity
of the self diffracted beam diminished as the crossing anqgle
increased. This ie due to the particle form factor which is
highly angular dependent. This angular dependence in the
scattering by single particle was explored in the Chapter
II. The effect is due to interference within single finite

cized particles. The theory was developed in an approximate



UNIT )

INTENSITY (ARB,

Figure

20

24

18

12

.
(=3

r(X18a>

S ;

| +

L

é 8 16 12 14

(%12

CROSSING ANGLE (DEGREE)>
Plot of Output Intensity as

a Function of Crossing
Angle of the Beams. Input
Power of the Write Beams

Per Unit &rea iz SOES Wattz.md

Open Circles is the Data and
Selid Circles are Corrected
Data wusing Mie Theorwv.

93



94

way following the approach to Rarleigh and Gans. On the
cther hand Mie thecory discussed in Chapter 11, should ke
used in our case because the relative refractive index is
larger than unity and particle diameter is greater than wave
length. Taking into account the form factor for Mie Theory
with the parameters for our experiment, gqives the upper
cﬁrue in figure 26.

Thue we cee that the form factor offers a good
explanation as to why the intensity decreases as the

crossing angle increases.
Time Dependent Study

The time dependence of particle density grating growth
and decay was takKen +for non—-interacting colfoids by using
the A/D converter and digital memory oscilloscope. The
results of these two methods were compared and were found to
be in agreement. We found that the =mall angle light
scattering is wvery difficult using dynamic light scattering
(DLSY and iz much easier in the cross beam ekperiment. In
dvnamic light scattering the spontaneocus thermal density
fluctuations are measured while iﬁ the crossed beams
experiment, the density grating is stimulated and itz decay
iz monitored. The crosced beams signal czan be much stronger
than the DLS signal, and this probably accounts for the case
of its measurement.

In the crossed beams experiments twa laser beams are

crossed in the sample to form holegraphic fringe pattern,
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The dilectric spheres are moved to the high intensity
regions by means of the photophoretic force effect. This
produces a stimulated density moadulation in the two
dimensional coalloidal system thch strongly diffracte light
in definite directions. A 488 nm wave was used and i< not
absorbed by either water or spheres. If one of the beams
{the write beam? is blocked, then the s=timulated density
mode decavys. This causes the intensity of the diffracted
light producsd by the other beam to diminish. Alternatively
a third He-Ne laszer was also used as a probe beam and both
the write beams are blocked.

Data was collected and plotted by the Apple Ile
computer as describe in Chapter 11I1. The figures 27a to 3la
show the growth and decay of the light intensity diffracted
from stimulated density modulation for four different sizes
of spheres (0.481 um, 0.95 um, 1.0% um and 2.02 um>. Figure
278 to 30a shows the growth and the decay of the grating
where the probe beam is one of the write beams and +igure
3la. =hows the growth and the decay of the grat?ng where the
probe beam is & third laser (He-Ne laser). This data is
analyzed for both the decay and the growth of this
stimulated density modulalation.

The analysis of the diffracted signal is performed as
follows: (45,446,477 48)>. The measured voltage is proportional
to the detected intensity. This intensity may not be pure
scattering from the <cample but may include <tray light

scattered Ffrom cell surfaces, etc. This stray light may mix
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ccherentl¥ or incoherently with the signal. Thus the form
for the measured signal is taken to be
2 4
Uty = [E(t) + Bl + ¥ (4.34)
where E{t) 1is the electric field amplitude from the sample.

B accounts for stray light mixing coherently with the sample
signal ampli tude (heterodrne effect) and B represents
incoherent mixing.

In general, we can take E(t) +to be a sum of the

exponentials as
ECt) = CZexp(—t/Tl.) (4.35)
i

Analysis of our time decay data on independent (hard
spheres? -particlese indicates a good fit with E(t) a single

exponential, B equal to zero and set equal to the V(t ->x)

limit of the data.

Self-Diffusion Measurements

The diffusion of sub-micron particles has been studied
previously by CBT (1). The diffusion of small molecules
throdgh a swollen polymeric membranee has alsoc been studied
ucsing thie type of experiment (43) where it was shown that
the dependence of the dye diffusion coefficient an the
solvent wvolume Ffraction does not obey free volume theory.

Appplication of the technique to the liquid crystals
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indicated that the binary mass diffusion in the nematic
phase is faster along the local axis than perpendicular to
it ¢48>. While the cited CBT studies focus on interparticle
interaction effects, it has been noted in DLS experiments
that the diffusion of sub-micron dielectric spheres betwesen
two parallel boundaries is <clower due to hydrodynamic
effects than with no boundary (5>. The studies presented
here represent what we believe to be an cbserved tramsition
from free bulk se2lf-diffusion to diffusion hindered by
hydrodynamic wall interactions studied by CET.

In these experiments, hydrodynamic wall effects are
encounterted because the particles are pushed by the
radiation pressure towards the downstream wall. At constant
input power the force is larger on the large diameter
particles. This force is always presents to some degree
because the decay of the particle allignment is monitored by
one of the write beams in the self scattering experiment or
by a third beam in a probe experiment. Thege light beams
exert a pressure on the particles even when one (or both) of
the crossed beams are eliminated.

Trpical data from these experiments is presented in
figure 27a to 3la The anairsis of the diffracted signal is
performed by using equation (4.34) with B =0 and § is
extraced from the long time decay data {(background). From a
loeg plot of the data <(figure 27b to 31b) we see that the
decay is well approximated by & zingle exponentiz]l decay

where we have:
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E(ty = C expl{=-t/Td {4,3&6)

and the slope cbtained from the figure 27b to 31b is related

to relaxation time constant as
1/Td = slopes2. : (4.372

Formally we can wunderstand these experimental results
on the basis of the diffusion equation introduced in
equation (3.4>. While the force term inveolwing F is precsent
for the formation of the periodic particle grating, it is
abgent when one or both of the incident beams ics eliminated

and the simple diffusion equation results:

drir,t)/xt = szn-:r,u (4,38
where D is the diffusion coefficient. The intermediate
scattering Function, SikK,t), iz related to the density,
nir,t>, by a spatial fourier transform. Thus we may» fourier

transform the diffusion equation given in equaticon (4.38) tao

find

Sk LI Dt = —DKZS(k,U (4,39

which is easily soclved to find
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S{k,t)» = [ exp( —Dq2t>] 8(q £ K2 (4,40)
where K = Ki — Ks is the interpreted as the scattered wave
vector and E(q + K ) is the delta function. The tfunction
results from the assumption that a single density mode with
wave vector q (or fringe spacing d = ZN/q) is present at t
=0,

The physically measurable quantity ie the intensity (in
this case wvoltage) which is directly proportional to the
absolute walue squared of the 5S(K,t). Comparing equation
(4.37) to (4.40) we see that slope is

slope = 2 Dk2 (4.41>

and so equation (2.37) becomes
T=1 /DK . (4.42)

Thus we expect the measured relaxation time to be
directly related to the particle self diffusion constant and
the scattered wave vector determined from the incident beam
crossing angle. The measured value of the diffusion

coefficient For these four different diameter particles are

shown in Table I along with the theoretical diffusion
coefficient wvalue for an infinitely dilute sample with no
boundary <(the +ree diffusion cocefficient?. The measured

diffusion coefficients are smaller than free diffusion
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COMPARISON OF MEASURED DIFFUSIOM CONSTAMNT
TO FREE DIFFUSION COMSTANT FOR FOUR

DIFFERENT SIZES

OF SPHERES
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Diameter Fringe Input Measured Free Q=

ot the Spacing Power per Diffusion Diftuzion {CKTADD

Sphere in um unit Area Constant,D Constant - annaltsA
in um in Watts/m in m27s, in mss. in Kg/m-<s.
0.481= 1.77 3?.37ES &.71E-132 8.70E-132 1.7238E4
0.?5 = 2.83 2?.035Es 3.13E-13 4.51E-13 1.435E4
1.07 = 2.17 21 .947E& 2.,10E-13 2.93E-13 Z.797E4
2.02 =% 2,89 28 .44E8 8.95E-14 2.12E-13 2.254E4
2.02 = 2.89 4z .,4%7E& &.87E-14 2.12E-12 2,335E4

A
»*

is the zquare ot the radius

#*# Third laser
Temperature 20°C

{He—-Ne) as

&4 probe beam,

af the

spheres times cogdB)
Self-diffracted 1st order maxima, Temperature 20°C
#% Self-diffracted 2nd order masima, Temperarure 20° C

st order maxima and



106

coefficient, We beleve this is to be due to hydrodynamic
wall effects discussed previously.

The boundary dr-ag eftect can be examined by
substracting the Stoke’s drag &émnha +rom the measured
diffusion constant divided into the thermal energy. Thece
values are listed in Table 1I. #rAe the radiation pressure
increases, the sphere exerts more +Force on the boundary
layer and. as a result the boundary larer becomes thinner.
The thinner the boundary layer ‘is, the greater the drag
force. This is discussed in more detail in the following
section.

Finally we note the effect of coherent mixing of the
two self scattered beams may be seen in the data in fiqure
27a, 28a, 2%a and 31a. When one of the beames is blocked then
we see an instantaneous decrease in the diftracted intensity
for 0.481 um, 0.%95 um and {.0% um diameter spheres as shown
i% figure 27a to 2%a. However, for 2.02 um diametér spheres
the effect is reversed, the diffracted intensity
instantaneously increases when one beam is blocked as shown
in figure 30a. It was shown in Chapter II that the
scattering amplitude of individual spheres can have negative
value. The total scattering amplitude ie the sum of all
amplitudes reaching the detector, and the intensity is
proportianal to the absoclute wvalue <squared of the total
amplitude. For 2.02 um diameter spheres the scattering
amplitude of one beam is positive and other one is negative.

This can easily be obtained from the Chapter II form factor
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calculation and accounts for the observed behavior.
Alternatively, when a2 third laser beam probe was
incident normal to the grating plane and both the write
beams are blocked the results shown in figure 31a. and 3ib.
were produced. The diffucion coefficient was measured be to
smaller than the self diffracted method of measuring.
Presumably this is due to the larger input crossed beam
power which moves the particles closer to the wall. Howewver,
more extensive studies need to be done. With the smailer
probe power (3.0 mW>» and the elimination of the incident
crosged beams, during the decay, the probe bkeam method
offers several advantages: no coherence effect due to two
beam interference, elimination of most of the radiation

pressure during the decay, no extra force parallel to the

wall, et;.

BB Pellets Experiment

To explore the bDoundary effect on the particle motion
we did an experiment with BB pellets and glyceﬁin. These BB
pellets are dropped in the middie and near the wall of a jar
containing glycerin. Here we used two types of jar with
diameters of the Jjar 14 cm and 3.6 e¢m and length 253 cm and
40 cm respectively. The BB"s were 0.44 cm in diameter. When
these BB‘s are dropped, they will experience a drag force
and =soon reached their terminal velocity. The velocities are
recorded and shown in Table [I. Here we observed the velocity

of the BB“s along the wall are smaller than the velocity of
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these EB’= on the cylinder axie. The wvelocity of the BB‘e an
the cylinder axis ie then corrected further for an unbound

fluid using the following formula (42)
U=Vl - [17¢K + a L1>RI[S.48112 -

5.5642(aXR)2]} (4,43)
where U is the velocity in the unbound fluid
W is the velocity on the cylinder axis
a is the radius of the BB pellet
R is the radius of the c¥linder
and K and L1 are constant dependent on the radius
and force on the BB, as well as,
radius of the cylinder. ’

The waiue of the constants caﬁ ke obtzined from Table
7~=5.4 of reference (4%, Using these wvalues the unbound
velocity was obtained as shown in Table I1 for these two
crlinders. These wvelocities are in good agreemeht with that
oﬁtained assuming Stoke‘s drag U = 4.5 cm/sec.

In these experiments the only force acting on the BB’s
is the grawvitational force which is uertiﬁally downwards. ESo
far no external <force is exerted on the BB“s to hold them
near the wall. In general the BB'e will be moved away from
the wall by a lift effect (3S0). In conclusion we note that
the rgaults of this very simple experiment indicate a strong

boundary effect.
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COMPARISON OF VELOCITY OF BB PELLETES ALONG THE Wall
OF THE CONTAINER TO THE MIDDLE OF THE CONTAIMER

BOUNDARY SHAPE IN GLYCERINM

AMD THE CORRECTED FOR THIS CYLIMNDERICAL

Diameter of BB =
Density ot BB'=s

0.44 cm

Density of Glycerin =

= 7.%4 gmscm

Mzase

1.26 gm/cm

of BE s ]
Temperature

Wu
—
.

Diameter
aof the
Container
in cm

Velocity
#lang the
ldall

in cmssec

Velocity
at the
Middle
in cmssec

Corrected
Veloci ty

for infinite
Wall Separa.
in cm/sec

[}
o

14.0

2.153 + 0,15

4,24 + 0,17

4.25 + 0.21

4.34 + 0.20
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In the previocus experiment we demonstrated the effect
of the wall on the terminal velocity of the BB‘s, where the
external Force exert on the BB s to stay near the wall was
zero. Howewver, another type of experiment was done by using
a large tank filled with glycerin., In order to introduce &
force holding the BB“s near the wall, the tank was placed at
an  angle. In this way there will be two force components due
te gravity: along the direction of motion and perpendicular
"to the direction. The force perpendicular ta the direction
of motion will hold the BB"s rnear the bottom wall and result
in an extra resistive drag. The measured welacities of the
spheres are shown in Tablte 1III along with the forée
components parallel and perpendicular to  the wall., It is
obeerved that the BB“s have both translational and rotation
motioen. For small angles <(with recspect to horizontal) the
motion is dominated by rotational motion and as the angle
increases the rotational motion decreases.

The thickness of the boundary layer depends on the
balance of forces perpendicular to the motion. These forces
are due to gravity and hyrdrodyrnamic effects. For laminar

flow we argue that

F(ed = DL V (4.44)
F(d> = H(D{L)> V (4.43)
where F¢e)» [= m’qg ¢incB>] is the component of the force

acting along direction of the velocity
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TaBLE 111

COMPaRISON OF VELOCITY OF BEB“S PELLETES aALONG THE WaLL
OF THE CONTAINMER WHEW BOTH FORCES P&RALLEL AND
FERPENMDICULAR TOQ THE MOTION ARE PRESENT

Diameter of EE‘s = 0.44 cm Mase of BEB's = 0.34 gm
Dencsity of BB's = 7.64 gm<cm Temperature = 19°C
Force due to Gravity = 278.7 dy
Density of Glywcerin = 1.246 amscm
Angle with Velocity Dibl) = H(D{L3) =
the Harizon of the BE = FleyY Fidisu
in degree in cm/sec in gm/sec. in gmssec.
14.4 D.17 + 0.01 275 + 10 .34 + 0.38
17.5 g.22 + 0,01 254 + 10 3.17 + 0.322
20.5 0.27 + 0.01 23% + ¢ 2.48 + 0.27
23.5 .35 + 0.01 214 + 3 .20 0+ 0,23
20.8 1,07 + 0.04 172 + 17 Q.17 + 0.02
25.7 1,12 + 0,04 167 + 17 0.07% + 0.008

7.3 t.14 + 0.04 145 + 17 0.044 + 0,009




112

F(d) [= m‘g cos(B}) ie the component of the force
acting perpendicular to the wall

DCLY i

m

the coetficient of drag parallel to the
wall
H(L) ie a 1ift coefficient
and L ic the distance from the particle center to
the wall,

DCLY and H{(L) are assumed dependent oniy on the
thickness of the boundary layver in general. & plot of
{H{L>-Dc<L)>} wve D(LY» can then be determined experimentally
from a ratio of the force'compcnents and a measuyrement of
the BB“s velocity. The result is shown in figure 32 where we
see that H(L) is directly proportional to the square of the
DLy,

Finally we note that the diffusion mechanism of
microsized spheres near a single boundary were different
from unbounded diffusion mechanism. The experiment was done
with the BB pellets anqlglycerin sugqQestes an explanation of
this phencmena. The thin laver of fluid between the spheres
and the boundary is related to the lubrication laver which
becaomes smaller ae  the radiation pressure increases. The

drag of the bulk fluid ie different from this thin layrer.

Growth of the Density Grating

Lastly in this chapter we look at the growth of the
density grating. The grating formation time should depend on

the incident crossed beams power, sphere size, refractive’
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indix of the particles as well as viscosity of the solvent
and Fringe spacing. The diffraction pattern produced by
scattering from the grating containe information on the
amplitude of the different spatial modes being stimulated.
The zeroth order mode corresponds to & uniform average
particle distribution and 1is time independent. The first
or&er mode has & wavelength, d, equal to the fringe spacing
and initially arows most rapidly when the crossed beams are
turned on. Higher order modes have shorter wavelength and
initially respond weakly to the crossed beams (44). Because
of this, we ignore the effect of the higher order modes than
the +irst in our analysis of the initial growth in the CBT
experiments. Furthermore we assume that thie agrowth is of

the following form

ECts

I — exp (t/T+) (4,446

and fit the data wusing equation {4.34) to determine the
formation time, Tf. The time for different experimental
conditions are listed in Table V.

We expect the formation time to be inversely
proporticonal to the drift velocity produced by the radiation
field and proportional to the length the particle must

diffuse ( d = 2N/Ks:

T+ = K A(K W) (4.47)
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where K is the universal constant
kK = 2n-d, d is the +ringe spacing

and W is the drift velaocity which is given by
o= Ff? (4,48

with § being a friction factor. The diffusion constant, D is

related to the friction factor § via the relation

¢ = KT/D. £4.4%9)

Finmnally putting every thing tocgether in equation (4.47) the

universal constant, K7, becomes
, o 2 g
K = {T+/Td) p (KsKs) {(4.30)

where Td (= 1/DK52) is the relaxation time constant
determine previous]y
p (=<IE{1032fKT), EC10)> is the amplitude of the
applied field
and ks is the scattered wave wvector,

The wvalue of the relaxation time constant, Td, can be
obtained +rom Table IV, Here we are not using the free
diffusion constant in order to obtain the relaxation time
constant because the spheres are di%fusiné near a wall. We
have seen from the previcocus discussion that the hydrodynamic

wall effects produce an increased drag.
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From fluid mechanice we Know that the velocity of the
fluid at the wall aqd velocity of the fluid at the sphere
will be at recst with respect to the wall and sphere surface,
respectively f{strict boundary condition). A& very thin laver
will stay between the wall and sphere which is Known as the
boundary laver. The thickness of this thin layver of fluid is
depeﬁdent an  the surface roughness of the sphere as well =e
the wall, surface tension of the fluid, viscosity of the
fluid and pressure cocn the sphere. Thie thin layer undergoes
a wvery high strain when the spheres try to move in the high
intensity region. The fluid in the front of the sphere will
slip 'through that thin tlaver, which causes the sphere to
experience a large drag. This slows down the particle. Hence
we used the measured relaxation time constant, Td, instead
of the theoretical free retaxation time punctuation
Stoke“s—-Einstein constant. The effect of the force due to
the timite size of the spheres are alsc taken into
consideration. These wvalues aof universal time constant are
listed in Table V.

The universal canstant cf the first order self
diffracted intensity maxima of 0.481 um, 0.?5 um and 1.0% um
ie <shown in the beqining of the Table IV, We see that the
universal constant of 0.481 um diameter sphere is about half
of the wvalue of the universal constant obtained for 0.95 um
and 1.02 um diameter sphere. This suggested that we are
missing an important factor in our estimate of the formation

time. The dewiation is systamatic following either the
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TABLE IV

CIFFUSION TIME OF DIFFEREMT

GRATIMG ORDER MODE TO FREE RELAMATION TIME
FOR FOUR DIFFEREMT SIZE OF SFHERE AT
FOUR DIFFERENT FRINGE SP&CING

Diameter Fringe Potential Forced Ratio

of the Spacing Energy on Ditfusion K = Ku'=

Sphere in um Spherer-KT Time T+ (Tf-/Td? K <a
in um (P = U KT in sec, (KAKzIF per m.,
0.481% 1.77 0.23% 0.17& J.39% 1.488E&
0.? = 2.63 1.208 0.397 0.878 1.85E%
1.09 = 2.17 1.172 0.350 0.728 1.34E8
1.09 # 2.17 1.015 0.438 0.385 1.38Es
2.02 =% 2.3% 7.848 0.7s8 2.403 2.33Eé&
2.02 =% 2.8% &.162 1.406 2.73% 2.71E48

# Self-diffracted ist
*% Third laser ‘He-PMe)

Temperature 20° C

= -
ure 22U L

ocrder maxima, Temperat
st order maxima and

as & probe beam,

=
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particle radius or energy/KT of the system. If we divide
this constant by the radius of the sphere then the values of
T¥ &almost agree within experimental error. On the other hand
for a 2.02 um diameter sphere there is no agreement. The
firet order diffracted <spot of 2.02 um diameter sphere was
probed by a third laser (He-Ne laser?>. This laser probed
perpendicul ar to the grating and the two write beams
(Ar—ion) were blocked. When both the write beames are on more
radiation pressure is exerted on the sphere than when they
are blocked. Hence the sphere feels more restoring force
when they are diffusing to form a grating. Thies information
can not be obtained +rom this type of experiment and this
type of data.

Clearly & great deal more work needs to be done to sort

out the trends noted in these preliminary experiments.



CH&PTER W
INTER&CTING SaMPLE STUDIES
Introduction

Whern highly charged polymer spheres are intoduced into
deionized water, ther interact with each other wix =creened
coulombic interactions. The <=creened coulomb potential
causes the particles to maintain = rather large and unitorm
average distance +rom each other. In <some regions the
particles order as in a solid and other places as in &
tiquid. This makes‘the sample ideal Ffor the study of liquid
and <coclid behavior. lhen the liquid phase ie subjected to an
external periaodic potential then it can be forced to
undergoes a phase change if the average particle separation

and spatial period of the external potential are properly

adjusted.

Experiments on the interacting samples were diwided
inta three portions. The first is a study of the ardering of
particles in a harmonic external +field for different spatial

periods of the external Ffield f{or incident beam crossing
angled, The cecond i= a study of the output intenzity of the
different diffracted intensity maxima as a function of input

power and crossing angle. The third ieg the study of the

arowth and decay of these different density modes when the

11s
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external fieid ie modulated.
Study of Structure

When an X-ray beam is scattered from a single or
polrcrystaline structure, the scattered intensity
distribution gives information about th; structure of the
cryrstal. Similtarly when laser light s scattered from a
strongly interacting collaidal sample, the scattered
intensity distributions contain information about the
particle order. In the case of an amorphous order; the
scattered light produces a diffuse Debyre-Scherrer ring
concentric &about the main or unscattered beam as shown in
figure 33. Bragg‘s retation described in Chapter II by
equation (2.13> can be used to determine the average
particles separation. We simply assume the Debye-Sherrer
ring structure to be similar to 2 powder pattern. For 488 nm
wavelength the angle of scattering iz about 2 degrees and
average particles separation,a, ies found to be 2.4 um. In
the case of sclid ordering the parameter a [= dihkl>1 is
identified with the separation be tween planes and

represented as d(hkl>, where h,K and 1 are Miller indices.

As  in the case of noninteracting particles described in

Chapter IV, when strongly interacting particles are
subjected to & pericdic intensity potential, they qenerally
line wup along the high 'intensity regionse of the fringe
pattern to produce diffraction grating which =strongly

scatters light. Howewver, because the particles are
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Figqure 33. Debye-Scherrer Ring. The Scattering
Angle 1s 7.4 Degrees, Diameter of
the Spheres is 0.75 um and the
Wavelength used is 428 nm
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interacting strongly over micron distance scales, there ics a
uniform separation betwesn particles "within a row and
registration between rows. This results in the appearance of
other intensity max ima outside the cross beam plane
indicating cther periodic structures, These periodic

structures are not directly excited by the craossed laser

beams. However, these modes are coupled to the 1aser
stimulated mode. Evidently this colloidal liguid is frozen,
being two dimensicnally ordered by applring a cone
dimensional external field which directly breaks the

symmetry of the 1liquid state parallel to the stimulated
density mode.

When the fringe separation, d, is slightly larger than
the average particles separation, a, the diffraction from
the fundamental density mode which ie excited directly by
the two crossed bheams was observed. The other diffraction
spots from the secondary density modes, which are not
directiy excited by the <crossed beams, were not observed.
This is because the width of this periodic intensity
patential is sufficiently large such that the interaction
between particlee in adiacent rows is reduced. The particles
lose their correlation between rows of this structure.

Al though the fundamental mode s produced, the diffracted

tight from this mode is less than that {or other
configarations. Figure 34a showe diffracted maxima for this
incident beam cCrossing angle. Also wisible are the

Debyve-Sherrer rings, produced by <elf <scattering of each
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incident beams. The intensity of the Debyve-Sherrer ring was
measured and +found to be wuniform around the ring within
experimental error. Figure 34b shows the real space picture
order for this experimental configuration. Here the
particles try to align along the high intensity region and
tae form other registrations. There are weak correlations
be tween these rows and the symmetry ic weakly broken in this
liquid phase.

A more interesting case to study is when the fringe
separation is larger than the size of the particles but
smaller or equal to the average particles separation. In
this configuration the particles line up in rows along the
fringe direction. Due to the fxct that there are
interactions between the particles and that the fringe
spacing is smaller, there exists a correlation between these
rows. This means that the rows register forming density
modes in other directions, a breaking of the liquid

symmetry. Figures 33a to 37a show the diffracted maxima from

the directly excited <(fundamenal® =zard indiréct]y excited
cther {secondary’ modes, The corresponding real space
pictures are shown in figure 35b to 3Fb. The diffraction
patterns represent " the reciprocal lattice of the two

dimencsional real space lattice.

The scattering angles of the intensity maxima are
measured as explained in appendix (&), and the separation
between the corresponding real space scattering lines were

obtxined wvusing Bragg’s law {(For two dimensionxl syetems we
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have <ccattering lines instead of planes as ig the case in
three dimensione?. Thece lines with proper orientation are
plotted in figure 35c to 37c. From this construction we find
that the packing Ffraction of these lattices for three
different crossing angles are the same. Thus the density of
af these micro-cryvestale doese not change much with the

application and wvariation of the external field. These real

space structures can be identified as destorted hexagomal
lattices., It is observed that for a fringe separation equal
tco the square roct of halt of the square of the average
particle separation, then the two diffracted intensity

maxima of Ffundamental mode move cuteide of the liquid
Debye-Sherrer ring figure 35a. There are alsc four other
diffracted intensity maxima from the secondary dencsity modes
which appear near the Debye—-Sherrer ring. These four
intensity maxima aré 70° degrees apart from each other and 45
degree <+from the fundamental diffracted maxima in a plane
normal te the incident beam. Using the Braxgg’s law, this
micro-crystal structure was identified as a two dimensional
square Jlattice. The principle axis of this lattice is along
one of the secondary registration directions. The secondary
diffracted intensity maxima &re from the [10] lines of the
micro crystal square ltattice and the tundamental diffracted
maxima correspond to scattering from (11) lines. There are
also twa diffuse spots wisible in figure 33a which
corregspond to scattering from other (11) lines. The lattice

constant was found to be 2.3 um as shown in figure 335c.
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Fiqure 37a. Self-Diffraction Pattern. The
Average FParticle Separation
.5 um, the Fringe Spacing

2.45 um and the Two Central
ght Spots Partially blocked
by Tape are the Emerging main
m
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When the 4fringe separation increased, the fundamental
diffracted maxima appeared Jjust outside the Debye-Sherrer
ring and the other secondary maxima <tayed near the
Debye-Scherrer ring with unequal angular separation between
them (see +Figure 3&a). The angular separation between the
fundamental and secondary increased to more than 45°degrees
but less than éU°degree5. Since the angle of scattering and
angular separaton are Known, the line separation and the
orientation are determined. This distorted hexagonal close
pack structue is similar to a two dimensional tetragonal

body centered lattice. Using Bragg’s equation { lf(d(kh))z =

(h/a)2 + (k/b)2 } and applying the scattering condition for

two dimensional body centered lattice, (2D-bcl) that the sum

of the Miller indices must be even, we find the first two
diffracted spots from the fundamental density mode
corresponds to scattering from [20]1] 1lines. The lattice

constant, (a = 4.4E-& um) is found to be twice the zize of
the +fringe separation (d = 2.2E-& um>. The athgr diffracted
spots fr-om secondary registration correspﬁnds ta the
scattering from [11] lines. The lattice constant a (= 4.4E-4
um) ie not equal to b (= 2.3E-& um). The diffracted maxima
from third order registration is diffuse.

It is also observed that for the fringe separation, d=
a 1 - (1/’4')}'/a = 0.8884, then the micro—-cry¥stal becomes
exactly hexagonal clgse pack. The fundamental diffracted
maxima appear Jjust outside the Debye—-Sherrer ring as does

the zecondary maxima. Thie ie shown in the figure 37a. Using
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Figure 3%z. Two Dimensional Sguare Lattice
FPacking Fraction iz .11
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2 X 2 2., 2
Braga‘s equation { 1/7(d(hK)) = (4/33[<h + hk + K /2

13
from Chapter II and applying the condition that the sum of
the Miller indices must be an integer, the lattice constant
{a = 2.5%E-& um) was cbtained which is the average particle
separaton as shown in figure 37c. The diffracted maxima from
higher order registarion was alsc observed.

The nice Featﬁre of his experiment is that we not only
make a phase change from liquid to hexagonal solid but also
+trom liquid to cubic and destorted hexagonal structures
directly. In other words by applying an externxl field, the
liquid symmetry was brokenj and by changing the period of
the externxl +ield, the crystal symmetry can be broken., It
is also possible to get the phase change from cubic to

either of the distorted or perfect hexagonal structures (ar

vice versa? by changing the period of the external field.

Study of the Structure as a Function of Input Power

In the experiments on strongly interacting particle
csamples, the data are takKen in two ditferent wars. One
method is the weighted average method as described in
Chapter III, and the other method involves takKing 1000 data
points in <come time interval and averaging them. It was
found that both of these methods are in agreement with each
other. The weighted average method works as a dynamic
average where the signal growth can be monitored. On the
other hand, when the structure is stable, then the 1000 data

point method as well as weighted average method can be used.
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The data presented here is for stable structures using the
weighted average method. The data collections +Fer both
me thods are reproduceable.

The sample cell gap is made wedge cshaped to cbhtain &
monolayer of particles as describe in Chapter III. The
cample order is a liquid like or amorphous " Y{having no long
range order) in <some regions and solid 1like in ather
regions. If the incident crossed beams are placed in those
parts of the sample where the interacting particles exhibit
cshort ranged order and near regions where the gap spacing
exciudes all particles ¢ a colloidal vaccum), then a stable
structure can be obtained using radiation pressure. This
allows us to take the data for any period of time and to
average the data. On the other hand, if the crossed beams
are placed in a reqions with larger gap spacings, then many
particles are drawn into the crosced beams region and the
spheres evidently try to form three dimensional siructures.
The signal for the fundamental diffracted maxim; is observed
to grow to a maximum before decreasing to lowér values. At
the same time the secondary diffracted maxima are alzo
observed to grow to a maximum before decreasing to lower
values. A typical plot of intensity as a function of time
shows this effect in figure 38a and Figqure 38b for
fundamental and secondary maxima, respectively. The open and
solid circles represent two different input power and the
bars reprecent the signal Ffluctuation <(given by equation

(3.8)). The peak value of the intensity for fundamental and
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secondary maxima wefe determined and plotted as a function
of input power per wunit area for five different crossing
anqles. These resulte are shown with 2olid zymbol in figure
3%a to figure 43a for the fundamental diffracted maxima and
for the secondary diffracted maxima in figqure 3%b to figure

43b. The data for stable condition of the sample are also

shown in there figures with open symbol. The seolid lines are
a cubic power law fit for the fundamental maxima and three
halves power law it +for the secondary maxima. It is seen

that they are generally in agreement with one another and
follow a cubic dependence and three half power depencence
for the fundamental and secondary modes, respectively.

The gcattered electric field From the Fundamental
density mode is directly proportional to the amplitude of
the density modulation, which for non—interacting particles
is proportional to the input intensity of the crossed beams.
Thie was discussed in Chapter IV. Since the =scattered
intensity of the fundamenatal density mode is the absolute
value square of the scattered electric ffeld, it s
propartional to the square‘of the input power of the crossed
beams. Since the probing bheam is one of the pump beams the
intensity of the probe beam increases as the pump beam
intensity increases. Hence the <scattered intensity of the
fundamental maxima is proportional to the cubic power of the
pump beam intensity. This is true only in the low power
reqgion, because at high enocugh power these spheres will be

esegentially completely localized in the +Fringes. Further
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increases in incident power will not increase the order of
the particle. Evidently the interactions are weal encugh
here, that particle interactions do not produce a

significant deviation from the cubic law dependence.

Landau Theory

It has been shown that in the presence of the external
intensity +field, not only do we see the directly excited
density modes, but &lsc we <see the indirectly excited
(slaved) density modes as well. In order to discuss this
mode coupling, & Landau theory was constructed. Let the

number density of the spheres be described by

P(r) = P, +Za.lcc.s<i;-F> + Higher order terms (S5.1)

where F, is the average number density of the spheres

and a;cos(kfF) are the stimulated and slaved dernsity

variations of wave uectors.k .

Iin the Fluid 1iKe phase the second term on the right
hand side of equation (S5.1) ic zero [ aicos(EfF) = 01. Thus
the coetfcients of this term can be wused as the arder
parameters for the phase transitions from the disordered to
the ordered phases. The free energy density of the system is

assumed to have form
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where we terminate at the 4th order term to form a standard
4th order theory (&), The +free energyr is found by

integrating over space (350):
E =4(,c aoF (5.3

and only the terms in which the sum of the wawve vectors, Kk ,

ie zero contribute to the result such that (&)

. 2 2.2
Fo=2ma, + B ) a; + 2Ca a,a; + D(Ta))
1

4 1
2.
+ E(% a. . (5.4)
or equivalently

2
= ZRa, + BE;ai + 2Ca agag +

Ezz(azi - al.z';??.s + (E/2 + D)(Zazihz. (5.5)
[ | 1

where AB,B,C,...2 are phencmenclogical .cae+¥icients
described below. The as (=1 - 3) represent the amplitudes
of density modes with wave vectors we take to be Ki, kK2 and
k3 as indicated in €63, and shown in +figure 4d4a. The
experimentally observed <structure was & quasi-long-range
2D~hcp structure which is approximated with the three (six
complex) Jlowest-order modes given above. The firet term in
equation (5.4) represents the external field which couples

only to the k! mode and only to first order in &Y. The

second term stabilizes the fluid state <(ay = 00 +for
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sufticiently large vaxlue of B. The third term couples x11
the modes toge ther and induces the observed (13,170
first—-order freezing transition in the absence of the
external fields. The last twe terms equalize the mode
amplitudee and stabilize the overall free energr. In this

experiment only a single mode is directly stimulated by the

external field, and we expect &, to differ +rom the
degenerate modes a, , az . From the experiment, we see that
the other two indirectly excited modes are symmetric and

equivalent, hence we can assume that a, = ag . The state of

the gsystem is given by the wvalues of 2 (a,,ay) which
minimize the +ree energy F. For C = -1, D= 1/2, E = 372,
the minimized result of F is found numercially and is shown
in figure d4b as a function of & and B. As we see for A = 0
(na external field) ax11 the density mode=z, & are equal and
undergo a first-order phase transition from solid to a
liquid a= B is increased. 0On the other hand, i¥ A is non
zZero, the directly excited mode, a is larger than
indirectly excited mode, =& in general. For sufficiently
large B the transition +from 1liquid to solid becomes a
second-order phase change with a, = ag~ (A - Aac)’® for the
initial «change in the slaved modes from zerc amplitude. This
tvype of symmetry-changing tramsition can be second order,
because the external field reduces the symmetry ot the fluid
before - freezing occurs. Thue it would be possible to take =

fluid system to a solid by a second—-order process which

involves externally applied Fields, as indicated by the
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continuous growth of the structure in our experiment. Cur
experimental results indicate both =solid and liquid phases
can exist as described by the Landau theory. When an
external field is applied the fundamental mode <(a|) is
stimulated and grows faster than the "slaved (secondary?
modes (ap ) as indicated by the Landau theory. The agreement
is not gquantitative. The experiments indicate a continuous
charnge in intensity consictent with the behavior for large B
values in the Landau theory. d@again the agreement is not
quantitative. Spatial fluctuations, which are not included
in the Landau theory, may destroy the low amplitude behavioﬁ

of a, and age.

Study of the Intencsity maxima as a function o+t

Crossing Angles

The study of the scattered intensity +From the
diffraction grating {(produced by crossed beams) was observed
as a function of crozsing anqgle in Chapter VY for
non—-interacting particles. There we obserued' that as the
crossing angle increases the scattered intensity decreases,
This is a form factor effect, This effect was corrected by
using the Mie theory. But when a interacting csample is
subjected to crossed beams and the crossing angle of the
beam was varied, something different happens.

The intensity of the fundamental and secondary maxima

was studied for different crossing angles. Two pin diocdes

were positioned at the fundamental and secondary ditfracted
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maxima recspectively. The data was taken by the weighted
average method. The intensity of the two pump beams was made
the <came and Kept constant. The <scattering angle of the
liquid-like Debye-Scherrer ring was 7.4° degrees. It was
cbserved that when the <fringe separation, d, is equal to

0.87a, <(the average particle separation) then the intensity

of the Ffundamental qiffracted maxima is maximum. IFf the
fringe separation is increased or decreased from this point
the intensity of the fundamental diffracted maxima decreaced

for Fixed input pawér of 40Eé& wattsfmzof the pump beam. This
is <chown in +igure 45a with a sclid line, The data is also
corrected for the particle <form factor using Mie Theory,
assuming the scattering from each beazm is equal and in phase
(dash—-dash 1line of figure 45a. There is no correction for
the intensity potential due to Ffinite particle size. (A
rough calculation indicates this may increase the value at
12° degrees by =& factor 2.5 compared to the S5°deagrees,
without destroring the maximum at 8°degrees).

A plot of intensity of the zecondary diffracted maxima
is <cshown in figure 43b for different crossing anqglee and for
fixed input power of the pump beams. The maximum intensity
of the secondary diffracted maxima was observed for a fringe
separation d equal to 0.87a. I+ the <crossing angle is
decreased the intensity of the secondary diffracted maxima
decreases rapidly to the intensity of the Debye-Scherrer

ring. If the «crossing angle is increased such that fringe

geparation is greater than particle diameter of the sphere
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then the intensity of the secondary diffracted maxima again
decreases. Maote that the secondary diffracted maxima always
stays positioned near the Debye-Scherrer ring, only the
angular position of this maxima changes as the crossing
angle changes.

When the fringe separation, d, is increased or
~decreased from 0.87a, there exists a competition between
fluid and soild phases and the structure goese from a
"commensurate" to an "incommensurate" phase or vice versa.
In particular, when the crossing angie is decreased from the
commensurate crossing angle the intensity of the both maxima
decrease=., This s because the particles belonging to same
fringe are strongly correlated but the correlation betweén
particles of neighbouring fringes become weak as the fringe
spacing increases. In this case the fluid phase dominates
the system and only the weak reqgistration with the applied
intensity potential occurs. However, if the crossing angle

is increased (still Keeping the Ffringees larger than the

particle diame ter>, the intensity of the haxima again
decrease. In Fact, in this condition there exists & strong
correlation be tween particles of neighbouring +ringes.
Howewer, the interparticle <forcees become strong enough to

compete with the external potential registration force. The
interparticle forces can dominate the external potential and
the sample assumes a liquid like order. It was observed that
the fundamental diffracted spot changed in shape from

circular to eliptical as the crossing angle increased. This
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may indicate the transition from & commensurate to chaotic

phase rather than to & liquid phase (40>.

A Study of Intensity of the Debre-Scherrer Ring as a

Function of the Write Beam Intensity

A studry of the intensity of the liquid Debye-Scherrer
ring at amn anticorrelation position f{(a position midway
between <stimulated and slaved intensity maxima) was made an
the commensurate structure. It was observed that as the
intensity of the write beams were increased the scattered
intensity of the Debye-Scherrer ring at an anticorrelation
position decreases relative to the input intensity, as the
scattered intensity of the fundamental and secondary maxima
increase. This is shown in figure 44. This is not surprising
because the dominance of the few density modes stimutaled by
an external field comes at the expense of other modes in the
same. These modes decrease in amplitude and scatter lecss
light with increasing external +field strength. This effect
also coarresponds to the development of anticorrelations in

the CCIFS technique (3,4),.
Time Dependent Study OFf The Structure

The data for time dependent measurements were collected
as described in Chapfer III. When the beams are crossed in
the interacting <cample, the liquid symmetry is broken. This
allows the growth of a solid structure which is monitored by

the growth of the diffracted intensity. The growth of the
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structure is dependent on the strength of the interaction
between the particles and strength of the applied external
periodic potential. One of the pump beams is then blocked
periodically by the chopper. It was obeerved that as the
write beams were blocked, the sample 1lost itse solid
symme try. The scattered intenszity slowly diminicshed which is
the indication of the decay of the structure. The growth and
decay of the fundamental and secondary maximas are studied
and given in Figures 4Y3,48a & d4%a and figure 350a,

respectively,

Study of the Growth of the Fundamental Mode

Plote of the intensity of the fundamental diffracted
maxima as a function of time are shown in figqures 47a, 48a
and 4%9a for a total input power 22E4& wfmz, a wavelength of
488 nm and three crossing angles 11° 9.5°%and 8°degrees
respectively. @Ads in Chapter IV, we expect the growth of
these density modes to be dependent on the input power of
the pump beam, the crossing angle, the atfength ot the
interaction of the particies and the wviscosity of the
suspended medium. In this case the scattering angle of
Debye~Scherrer ring is 8.5°degrees. It is observed that the
structure gr-ows faster wher the fringe separation d
approches 0.87a. On the other hand if the crossing angle is
increased or decreased from this point then competion
between the interparticle forces and the external field

increases the growth time.
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The data for the initial ogrowth of the fundamental
density mode is fitted to equation (4.24y with the
assumption that coherently scattering background B is zero,
i= extracted from the incoherent background and the

scattered electric field, E<ty, is assumed to be given by

E(t) = 1 - exp(-t/T+> (5.8

Here T+ is the formation time constant. A plot of the log of
E(t> as a functien time is shown in Ffigures 47b, 48b and 47b
for three different crossing angles., The value of the {(1/-T+2
along with input power and crossing angles are listed in
Table V.

The growth of the density mades is dependent on the
strength of the interparticle interaction a&and external
periodic potential as discussed esarlier. Let us zssume that
free diffusion coefficient iz related to this transition

time wia a Afunction which

1]

dependent on the input power

and the strength of the interactiaon
2
Dek T = C (S.72

where C is a function of the strength of the particle
interaction and of the applied Field
Do is the free diffussion constant

and K is the scattered wawve wvector.

The wvalues of the C’s are alsc listed on Tabkle V. It is
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cbserved that &= the power increased the C's decreased. In
other words, it takes less time to form this structure. It
can alsc be <ceen that when the fringe separation iz 0.27a

faverage particle separation?> then the structure grows

+

ster. OQOur recults are wvery tentative and need to be

further studied for different input powers.

Decay of the Fundamental Maode

When one of the write beams is blocked, the structure
decar¥se. But this decar is ditferent from the decayr in the
non—interacting samples. It was found that the decay is not
a single exponential. It was alsc cbhbeserved that when one of
the write beams is blocked the structure sometimes stayxs
frozen for about 30 meec which we refer to as the "free
induction time" for nucleation of the liquid phase. Thi§
type of free induction time has been chserved in a computer
simulation experiment by Hess (52)..Immediately atter this
tree induction decay the structure decaye non—exponentialy.
The data for the decay after the free induction period for
three different crossing angles is fitted to equation (4.34)
with the assumption that B is zero, that the incocherent
background & ie extracted +From the datz at large timee and

that the scattered ele=ctric field, E{t) given by

ECt) = > exp(—ts/Ti? (5.8

where Ti“s are the relaxation times.
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TemBLE W/

COMPARISON OF IMITIAL FORMATION TIME COMSTAMNT OF
FUMDAMENTAL MODE OF IMTERACTIMG P&RTICLES
TO FREE REL&AXATION TIME OF SaME
NMOM-IMNTERACTIMNG PARTICLES
FOR THREE DIFFERENT
FRIMGE SFACING

Dizmeter of the spheres = 0.75 + 0.03 um o
Scattering angle of Debywe-Scherrer ring = 7.9+ 0.4

Fringe Taotal Initial Ratio

Spacing Input Formation C =

in um Power Time Constant (T+/Td>» -

in katts in s2c.

1.23%E-4 D.03% .24 + .04 1.7 + .2
1.3%9E-4 0.030 0.27 + 0.04 1.4 + .2
2,17E-4& 0.027 0.42 + 0.03 1.8 + .2
2.17E-& 0.0327 0.38 + 0.0S 1.4 + .2
Z2.452E-4 0.025 0.29 + 0.03 1.0 + .2

Self-diffracted ist order maxima., Temperature 20°C
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Figure 42k, Initial Growth of Fundamental Mode.
The FParticle Diameter is 0.95 um,
the fAverage Particle Separztion

iz 2.7 um, the Fringe Separaticn
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A plot of log W(t), which is corrected as described

above Ffor the coherent and the incoherent background, as a

function of time ie shown in figure 47c, 48c and 4%7c for
three ditferent crossing angles. We <found that +irst
relaxation time constant is smaller than second relaxation

time constant in general. In fact, after this free induction
time the structure decarse rapidly to a2 metaliquid state
followed by & slow decay to liquid state. The value of the
(1/Tid's are shown in Table VI xlong with input power and
fringe <separation. Here we observed that the guasi-solid
structure tranesfer to & liquid state continuousty.

We have discussed in Chapter IV that the radiation
pressure maoved the <spheres near the down stream wall
rgsu]ting in an extra hydrodyvnamic friction which slows the
diffusion process., To <see the hydrodyvnamic etfect of the
wall and the strength of interaction between particles in

this process, we assume that

Dok™T = C~“ (5.9)

where C’ is relaxation time divided by the free
diffusion time at the same K vector
Do i=s the free ditfusion constant
k is the scattered wave vector.
The walues of the constant C'= are listed in Tabkle WI.
The initial decay aof the sfructure i=s faster than free

diffusion even with wall eftects present. This gives an
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COMP&RISOM OF RELAXKATION TIME COMSTANTS OF
FUMDAMENTAL MODE OF IMTERACTIMG PARTICLES
TO FREE RELASATION TIME OF SaME
NOM=-INTERACTIMG PARTICLES
FOR THREE LIFFERENT

FRIMGE SP&CIMNG
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Ciameter of the spheres = 0.25 + 0.05 um o
Scattering angle of Debye~Sherrer ring = 7.9°+ 0.9
Fringe Tatal Ratic of Fatio
Spacing Input
in um Power (T1STdD (T2-Td
in Watts
1.87E-4 g.03% 0.48 + 0.03 1.2 2
1.29E-4 0,050 0.484 + 0.04 1.4 2
2.17E-& 0,027 0.5& + 0,04 1.1 .1
2.17E-4 0.037 0.485 + 0,035 1.0 . 2
2.83E-4 0.025 0.53 + .02 38 2

Self~diffracted lst order maxima, Temperature 20
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indication that the structure breaks the symmetry of solid
very Fast. The following decay iz approximately two times
slower than the <+irst. This tells wus that the sample is
slowly getting its liquid symmetry., I+ the wall effect could
zomehow be neqlected, then the structure would probably
decay +aster., Howewver, this later decay is slcwer tﬁan the
free diffusion decar and is consistent with the slow decay
observed in the interacting system near the peak intensity

in the structure factor (53).

Study of the Growth and Decay of the Secondary Mode

We have seen that in these experiments the applied
external +Ffield breaks the 1liquid symmetry and the solid
structure grows continuously. In the previous two sections
and last two sections of Chapter IV, we ztudied the growth
and decay of the density mode which is directly induced by
the external +field. Here we will study the growth and decay
of the density modes which are not directly induced by the
field, the modes which give & clear indicationAof the solid
symmetry.

I+ the intensity potential is adiusted to be 0,87 times
the awverage particle separation, then the Bragg scattering
from the <secaondary modes appear near or just ocutside the
Debve—-Scherrer ring. This makes it very hard to interpret
datx for the growth and decay of this density mode. as the
secondary mode starts growing the Debye-Scherrer ring

background diminishes. Alesc, in a self scattering mode bath
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the write beams are used as probe beams. When the field is

turn of+t by means of blocking one beam, then the
contribution of this beam to the scattering is also
eliminated and & larqge decrease in the scattered intensity

of secondary Bragg spots is observed. This can be inferred
from figure S0. Also in the growth of, the secondary mode, a
smalf Jump in the scattering intensity of the Bragg spots
was observed over the backaround, immediately when both
crossed beams are turned on. Both of these effects are due
to the Ffact that scattering by the write beam (1) is adding
coherently to the scattering by the write beam {(2>. This
Jump in intensity is less than 254 of the maximum scattered
intensity in the growth case. The particle form factor is
very impertant analyzing these results, because the incident
light wavelength is approximately equal to the radius of the
sphere. Hence the scattering intensity will in general he
less as the a&angle increases from the forward direction.
Furthermore the <cscattered intensity of the othgr write beam
(2) will contribute to the intensity at that pofnt as higher
order modes exist which will scatter in this direction, as
they are formed.

Each probe beam produces four lowest order slaved mode
diffracted spots near the Debye-Scherrer ring as a result of
the induced first order mode. But in the picture figure 32Sa,
3%a and 37a only six diffracted spots are vicsible instead of
eight diffracted spots. However, the diffracted spots which

are sitting in the middle above and below the write beam
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plane are a combiination or superposition of diffracted spots
from each incident beam. The observed growth is
non—exponentixl. The order of the formaticn time constant is
simitar to that of the fundamental modes which is listed in
Table Y. The growth of thie mode is dependent an the
strength of the interaction and the spacing of the periodic
intensity potential. The arowth of this secondary density
mode clearly indicates the growth of the solid from liquid
caontinuously.

The decay oaof this indirectly induced mode {(secondary

density mode) is also interesting'ta study. When one of the
write beams is blocked, then there is a sharp fall in the
scattered intensity. This is due in part to the coherent

mixing of the two write beams which changes when one of the
write beame is eliminated. This contribution is less than
25% of the total intensity based omn the Jjump in the
intensity <seen when both beams are turned on. If we subtract
this number <from data though, we still see a rapid decay
followed by a slow decay. This rapid decay is!sa fast that
it happene within S0 mesec. This faster decay can not be
interpreted through this data., This is because the write

beam (2 ie chopped by a blade connected to & motor. The

reyoglution of the motor was one revolution per second. Th
width of the laser beam is 1.25% mm. Hence there is finite
time to choped the beam completely. The chopping of this

beam sends & triggering signal to the computer. The time it

takes to chopped the beam completely is about 60 msec. Hence
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the initial decay is in the limit of the chopping rate. If
we chopped the beam at a faster rate then we lose
information of the mode formation. Since the secondar» mode
became distint at long times. Considering all of this we
find that we are restricted by the apparatus to do any

further detailed study of the samble.



CHAPTER WI

DISCUSSIOM, COMNMCLUSIOMS AND SUGGESTIONS

FOR FUTURE WORK
Diescussion and Conclusions

The statistical behavior of dilute collaidal
non—interacting and interacting <samples are studied in the
presence of two crossed laser beams. It was observed that if
transparent dielectric spheres with a dielectric constant
larger than the dielctric constant of the surrounding medium
are subjected to a +focused laser light, these spheres are
moved into the high intensity regions and pushed to the down
stream wall due to radiation pressure. Howesver, when two
laser beame are crossed in & non—-interacting samplie of this
trpe which produces a fringe pattern, the gartic]es are
moved into the high intencsity region and create periodic
density moedes. This in fact formed a diffracticn arating
which scattered Tight.

These density modes can be probed by self-escattered, bf

degenerate or by non-degenerate four wave mixing methods. As

the intensity of the two crossed beams increased, the force
gradient on the particles increased which Jlocalized the
spheres <strongly in the high intensity regions. It was

observed that i+ the thermal energy (KT» is larger than the
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effective potential energyr then the first order diffracted
intensity from these density modes follows cubic dependence
for self-scattering or non-degenerate four wave mixing. On
the other hand, if the thermal energy is less than the
effective potentizl energyr of the spheres, the diffracted
intensity from these density modes deviates <Ffrom cubic
dependence. & theoritical model had been developed by us
which agrees with the experiment. In that model, we observed
that higher order modes follow higher power dependence when
thermal energy is lese than the effective potential energy
on the <spheres and saturates if the effective potential
energy on the spheres increases.

The growth and decay of the density modes has also been
studied. D. Rogovan and co—workers (31) suggested in their
model that higher order density modes will grow sltowly,
This was alsc observed. The growth of these density modes
depends on the effective potential energy on the spheres. It
was observed that the growth time is larger than the
relaxation time when thermal enerqgyr is larger than the
effective potential energy of the <spheres and is smaller
than relaxation time when effective potential energy of the
spheres is larger than the thermal enerqy.

The diffusion of particles xlong & single boundary is
different +rom ths Z.<fusion of the same particles without
boundary. Due to the radiation pressure, the spheres move to
the down stream wall and as the intensity of the crossed

beams increases, the radiation pressure on the z=pheres
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increases which detreaseé the thickness of the boundary
layver. When one of the crossed beams is blocked then these
density modes decay. The decay is a single exponent but the
diffusion constant iz different from the diffusion of same
spheres without Dboundary. In this case, the boundary layer
undergoes a wvery high strain. This creates an extra draaq
force on the spheres. As the thicKkness of the boundary 1ayer
decreases, then a higher shear stress is needed in order to
have the same strain. This has been obéerved when the
diffusion of 2.02 um diameter spheres was found to be even
slower than 1 um diameter spheres. This diffusion process is
independent of thickness of the gap between the cell wall,
Since the radiation pressure on the less than .5 um diameter
spheres is- less; the effect of boundary is very small, and
the diffusion constant obtained by this method is in
approximate agreement with value of the diffusion constant
wi thout boundary.

When these highly charged dielectric spheres are Kept
in a highly deionized aqueous environment, théy exhibit a
interparticle ordering over & distance caonsiderably larger
than the diameter of the spheres due to the coulombic
interactions. The local ordering of these interacting

particles has been observed by crossed correlation intensity

fluctuation (CCIFS) me thods (2,3,47. This coulombic
interacting potential is spherically symmetric. However, if
the <sample is subjected to a one dimensionxl reriadic

potential produced by crossing two laser beams (CBT)> in the
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csample, the spherical symmetry of the amorphous liquid like
order breaks and exhibits two dimensional periodicity. In
Chapter II, it was shown that when the thermal energy of the
particles is laréer than the effective potential energyr of
ithe particlee then mathematically CBT and CCIFS are related
to each other (35). 1t was observed that the two experiments
are in agreement where CCIFS mini{ars the statistical local
ordering and CBT monitor the induced long range ordering. It
was alsa Ffound that when the fringe separation iz equal to
the <square root of halt of the square of the average
particle separation, them they form a two dimensional square
lattice with its principle axis along the secondary
registration direction. 0On the other hand, when the fringe
gseparation is .8&8d8a (average particle separation) then they
form a hexagonal close pack structure. [In between thece
separations they exhibit a destorted hexagonal structure.

The diffracted intensity +from thece Bragg’'s spots was
studied, and it was found that the diffracted intensity from
the fundamental regiztration follows & :cubic power
dependence of the input power and the diffracted intensity
from the secondary registration follows & three-halves power
dependence of input power for thermal energy less than
effective  potential energy for self-diffraction method. It
was found in the Landau free energy minimization theory that
the fundamental modes can grow continuously for a continuous
increase ot input power and secondary mades grow

continuously from certain threchol g values (&),
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Experimentally we Ffound that the secondary modes grow
continuously <for a continuous increase in input power. The
liquid symmetry of the sample breaks continuously when the
sample ie subjected in a periodic intensity potential.

The growth and decar of the fundamental modes and

secondary modes has alsc been ztudied. 1t was found that

when the +ringe separation is ©0D.847 times the average
particle <ceparation, the fundamental modes grow faster than
when the fringe separation is less than that for the same

input power. This i2 due to the presence of interaction
potential of the spheres. It was also observed that
fundamental modes grow faster than secondary modes.

When one of the write beams is blocked the structure
decars. The decay of the fundamental mode is not a single
exponential and this structure stars in its metastable state
tfor few moments which is termed the "free induction decay".
This "free induction decay" ics followed by a faster and then
a cslower decay procecss. Experimentally, it was found that
initial decay of the <fundamental mode iz even faster than
the decay of non—-interacting particles for same scattering
angle. The initial decay of the secondary modes was ewven
faster than the decay of the fundamental modes. Since we are
limited by the apparatus, the detail of the decay process of
the secondary modes is not possible at this time.

Finally we found that CBT is a wvery powerful tool which
can be wused in both <solide and liquids to monitor the

structure. This method allows us to study the diffusion of
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microspheres near Y single boundary; it even allows
different thicknese of the boundary layrer to be studied. We
found quantitative agreement between CBT and CCIFS in

monitoring the structure.
Suggesticne for Future Work

So +far we have collected & drop of water out of an
ocean in this experiment, The mathematical model we
developed agrees excellently with our experiment for
non—interacting particles. We have also observed that while
the Landau theory does explain our data qualitatively, it
does not explain the continuous growth of the structure
gquantitatively. The growth of density modes has been
explained by wue and by D. Rogovin and his co-workers; and
warks excellently <for non—-interacting case when there is no
boundary or the eftfect of the boundary is very small. In the
case of the interacting samples, there is not a single
mathematical model to explain this growth and decay. On the
basis of the observation we made for this thesis, the
foliowing future suggestions are made as follows:

1. The arowth and decay of the density modes near a
single boundary needs to be <studied in further detail in
corder to get a relation between thickness of the boundary
layer and applied +force on the paticles. This needs wery
fine measurements of the +force acting on the spheres. A
mxthematical model needs to be developed in order to explain

the results.
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2, The behavior of the higher order dencsity modes
which are not excited directliy, needs to be studied as a
function input power and strength of interaction for an
interacting sample. A theoretical model has to be developed
to explain guantitatively the higher order density modes.

3. The growth and decay of the fundamental density
modes neede to be studied Further as a function of input
power and quantitatively analyzed as a function of the
strength of the interactions.

49, The growth and decar of the secondary and higher
order density modes needs to be studied further for faster
sampling rate. A theoretical model is needed in order to
explain these growtﬁs and decays.

5. So far we have studied the spherical symmetry of
the liquid which can be broken by applying an external
periodic potential. In this case, the strength of the
interaction paotential is not Known accurately. The
interaction paotential can be generated in the sample
externally in a controlled way for example By applying a
magnetic field to the colloidal particles imbeded in a ferro
fluid. This will allow further studies of laser freezing.

& A1l of these <studies can also be performed in a
three dimensional sample.

In order to wunderstand the statistical behavior of
micro-size particles these are the minimum <tudies

necessary).
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AFPENDIX &

kle have seen that when twa laser beams are crossed in

an interacting colloidal sample, then the ligquid s¢mmetry of

change

1

the =zample i= broken. The sample undergoes & phas

[T

from ligquid to zolid crystalline phase. Thiz =sclid
crvstalline structure will scatter light. This diffraction
pattern of the Bragg's spots has been captursed in &
photographic +f1lim. The =scattering angle of these Bragg’s
spots were then measured by calculating the distance from

the screen to the cample cell and the Bragg's spots.

The sample is zandwiched between two quartz plates and
the refractive index of the scattering medium is different
from the cell wall and environment. On the other hand, the
two beame are incident at an  anglie fto the cell wall.
Therefore, the angles we measured fraom the ﬁhotagraphic flim
are not the exact scattering angle coming from the cell. The
following mathematics will correct the measured scattering
anglie. It is helpful to consider the ray diagram given in
tigure (512,

Let wus assume that 28 i= the croszing angle of the twao
beams, then 8 i= the angle of incidence on the cell wall
mexsured From a normal tc the wall and L is the distance

from the screen to the cell. Let P be any Bragg's spot on

T

the screen and making an angle QN with the normal, as shown

193
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Figure 51.

Scattering Geometry.

E



195

in figure (Si1>. Uzing law’'s of refraction we get

T

n
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«
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5 =incy ) (A1)
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where ng o fig and n,, are the refractive index of the air,

P

the gquartz and the sample, respectively. The angle @A

and QN are the scattering angle of the same Bragg's spots
w

in the air, the guartz and the =sample, respectivel». In

ractice the thickness of the quartz wall, g, is much

[y

k=

llter than the distance from the screen to the cell wall.,

i

m

P

Herce from the figure (510 we

ain(ﬁN Y = o+ oA :ﬁz + L? 3 (#.3)
and iin{QNwh = g Ty sin(GN K (A4
where & is the distance from the center pesition of the

n

crossed beams to the Bragg spot. Let usz assume that B iz th

3

actual scattering angle and =& and b are the distance fro
the scattering wvolume to the main scattering beam and point

P respectively. Using the lTaw’'s of triangle we get

22 4 B2 - 2ab cos(¥) = RS (A5

= mreleinia 47 TS

a P.[Elﬁxdm.l LR .S

and B = a/lesinid, »1 TE .7
Nw

where R ics the dis=tance from cne of the write beams to the
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Bragg spot on the screen, r is the distance from the main
beam to the center of the two crossed beams, 88 is the half

af the cro

1]

sing angle in medium and QN is the angle betwesn
w
Brago spoct and center of the main beam. Finally putting

suerrything together in terms of phresically measurable

guantities we hawve

cogi¥r = (17220008 sindB 00 (r sinigy 10k +
(e sini@y 22 0A sin(@ o0y = CCRT=inda 0

sindy 22 tA rail. : CE .30

The phrsically measurable guantities are FE, ry, &, L, B,

and €, can be ochktained from measurement and equation (A.I3).,



&PPENDIX B

The <size of the Ffocused area is ca]cu]afed by aszuming
that the diameter of the incident. beam has & circular
aperture., The expression +or the optical disturbance at
peint P shown in  figure (523, arising from the circular

aperture in the far—+field case is

E=E,6 [{exp itwt - KR):/R]

A
J{exp iKYy + Z223/°RY ds (B.13
apetture
where E ie the amplitude of the electric +ield.

A

From the symmetry of the problem, sphericxl polar

and the eguation

by

coordinates can be wused for bBoth case

W
1]

(B.1>» becomes

E = EA [fexp i{wt - KR :-R]

2n ra
J-‘[exp {ifkqpsR» cosi@’ - & » p dp do LB.20
o -]

Because of the complets axizl symmetry, the solution
4

must be independent of ©° . lble might just set " = 0 and

carrring out the integral we get

E = EA [{exp itwt - KRR 2n
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a
J Jo (KqpsRY p dp
[o]

(B.3
where J, (KgqpsR} ie the 0Oth order Bessel functicon.
Finally we get
E=E), [fexp ifwt - KRIXR] 20 a (r kol
J(KgasR? (B.d
where J,iKqasR? is the 1st order Bessel function,
The irradiance, I {intensity), at point P is <(Re E)Z} or
t;f2>cé*é> which is
I =12 Ei ﬁ}/RZJE{J‘tkqaﬁR}}f{kanRDJZ {B.3

whepe A is the area of the aperture

2,

(=na

Because of the axial symmetry, the towering central

maximum corresponde to a high intensity circular spot Known

as the Airy disk. Firet order zero accurs

J, (kqasR) = 0O

when kgasR =

)

IE:

[
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and for lens with focal lenath, f is given by

q = 1.22 (Af1/D

where D= 2a is the diameter of the aperture

A ie the wavelength

and f = R.



APPENDIX C

10 REM THIS IS THE MASTER PROGR
A FOR Al13.A/D CONVERTER

20 REM IT WILL COLLECT DATA AT
GIVEN TIME INTERVAL FOR '
20 REM FALLING EDGE OF THE TRIG
BGERING

31 REM

40 LOMEM: 14384

S0 HIMEM: 36844

S5 PRINT CHRs (4)"BLOAD GETAIL3
.DELAY"

60 D$ = CHRS (4)

70 G¢ = CHRS¢ (%)

7S DIM A%(1,1024)

80 REM

81 REM THIS INTEGER ARRAY 1S FO
R CHANNEL AND DATA

82 REM THE DATAS COME IN INTEGE
R FORM

83 REM
90 DIM B(512),T(512)
91 REM

100 REM THESE ARE DONE TO CONVE
RT NUMBER TO VOLTAGE

110 REM FOR CERTAIN GAIN CODE
111 REM

120 DIM S(?7>:S(0) = 5§ / 4096:8¢1
) = 8C0) / S:85(2) = S(0) /1
0:8(3) = 8(0) / S0: FOR I =

4 TO 7:8(I> = S(I - 4) + S(I]

- 4): NEXT 1

1230 DIM 0¢(?7):0¢4) = = 5:0(5) =
- 1:8¢(&) = - .5:S(7) = -

.1

140 REM

1S5S0 REM THIS FLAGS ARE FOR SOFT
WARE TRIGGERING

140 REM

200 FLAG = 1

210 FLAGL = O

220 Nl =0

230 L1 =0

235 K =0

240 REM

250 HOME

240  PRINT

270 PRINT " GETAI13.DELAY 1S A A
SSEMBLY LANGUAGE"

280 PRINT " ROUTINE WHICH MAKES
A SERIES OF AI13"

290 PRINT " READINGS EACH TIME 1

201



T 1S CALLED.*

300 PRINT 3 PRINT * THE LIST OF

READINGS 1S PUT IN A*

310 PRINT ® BASIC ARRAY, GETAI13
1S CALLED,"

320 PRINT * AND THE RESULTS ARE

RETURNED IN THE"

330 PRINT " SAME BASIC ARRAY.*®

340 PRINT

350 PRINT ® OLD OR NEW ¢O/N) *

340 GET As

370 IF A$ = "0" THEN 5000

380 IF A$ = "N* THEN 1000

997 REM

98 REM GETAI13 1S IN SLOT # 5

999 REM
1000 A%(0,0> = 51AC1,0) = 0

1010 TEXT

1020 INPUT * NUMBER OF RUN N = *
iN

’

1030 N1 = Nt + N

1040 IF FLAG! > 0 THEN 2000

1050 INPUT * CHANNEL? (0-15 OR R
ETURN) " jCHANS

1060 CHAN = UAL (CHANS): IF CHAN
¢ = "* THEN 5000

1070 PRINT

1075 PRINT * GAIlIN c
ODE"

1080 PRINT * 0 = 0 TO SV 4
= =9 TO +3V"

1690 PRINT * § = 0 70 1V S
= =1 TO +iy~

1100 PRINT " 2 = 0 T0 .5V é
= =,5 TO +.5V"°

1110 PRINT " 23 = 0 T0Q .1V 7
= =,1 70 +.1V"

1120 PRINT

1130 PREM

1140 REM THESE ARE THE GAIN COD
E

1150 REM

1160 INPUT " ENTER GAIN CODE = *
1GAIN

1170 INPUT * ENTER TRIGGERING CH
ANNEL NUMBER = *;C

1180 INPUT " EVEN # OF DATA POIN
T (0 - 1024) = ";D2

1190 INPUT * ENTER DELAY ¢1 TO 2
55) *;D

118 REM

1199 REM DELAY = 162 + (7%SUM O

202



1540 11 = (2 * 1) - 1|

1550 IF A%(1,11) < 3500 AND A%(1
,11 + 1) > 3500 THEN 1570

1560 GOTO 1530

1570 SP = 1:EP = SP + 500

1580 P = 500

1590 FOR J =1 TO P

1400 Pt = SP + J

1610 BCJ) = BCJ) + A%C(1,P1)

1620 NEXT J

16430 PRINT *RUN NUMBER = ";K
1640 L1 = L1 + 1

1650 IF L1 = 10 OR K = N1 THEN 1
670

16460 GOTO 2000

1670 HGR : HCOLOR= 3: SCALE= 1:
0,0 TO 0,157: HFLOT 0,157 TO
279,157

1680 21 = 1
1690 22 = 21 + |
1700 X1 = 21:X2 = 22:23 = (2 = 21

) = 1324 = (2 % 21) + §:25 =
2 % 21:26 = (2 % 21) + 2
1710 Y1 = 155 - INT (B(23) / (26
.5 % K))i¥2 = 185 = INT (B¢
25) / (26.5 * K)>:¥Y3 = {55 -
INT (B(24) / (24.5 # K)):Y4
= 155 = INT (B(2&) / (26.5
* K))
1720 SCALE= 1
1730 HPLOT X1,Y1 TO X2Z,Y3
1740 HPLOT X1,Y2 TO X2,Y4
1750 1 =1 + |
1760 21 = 21 + 1
1720 IF (21 + 3) < Y THEN 14%0
1780 PRINT " RUN NUMBER = ";K
1790 L1 =0
1800 FLAG! = FLAG! + |
2000 IF K < N1 THEN 1410
2010 INPUT * DO U WANT 7O RUN IT
(Y/N) *3A%

2020 IF A$ = "Y* THEN 1020
2030 INPUT * WANT TO SAVE IT <Y/
NY ";As

2040 IF At = "N" THEN 200

2050 FOR J =1 TO 500

2060 T(J) = (J - 1) * Dt

2070 G4 = A%(0,J) 7/ 16:CAL = AX(O,

HPLOT
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F NUMBER UPTO D)
1200 REM
1210 €1 = O
1220 FOR I = | TO D181 = S1 + g
NEXT 1
1230 DI = 162 + (7 # S1)
1240 A%(1,0) = - D2
1250 M = D2 /7 2
1260 FOR I =1 TO M
1270 It = (2 # 1) = (3112 =2 % |
1280 A%(0,11) = Ci1A%(0,12) = CHAN
+ 18 % GAIN
1290 A%(1,11) = 0:1A%(0,12) = 0
1300 NEXT 1
1310 REM
1320 REM LOADIND A%(0,1) WITH T
HE ADDRESS OF CHANNEL NUMBER
AND GAIN
1330 REM LOADING A%(1,1) WITH 2
ERQ FOR DATA COLLECTION
1340 REM
1350 REM FOR TRIGGERING THE CIR
CUIT THIS PORTION OF THE BAS
I1C PROGRAM 1S
1340 REM RESPONSIBLE WHERE THE
ADDRESS OF AlI13 IN A%(0,0) L
OCATION

1370 REM
1380 AI13 = - 14256 + A%(0,0) *
16

1390 GOTO 1410

1400 FLAG = 0

1410 POKE AlIl13,C

1420 RESULT = PEEK (Al13 + 1) *
25¢ + PEEK (AI13)

1430 IF RESULT > 3900 THEN 1400
1440 IF FLAG = | THEN 1410

1450 K = K + 1

1440 REM

1470 REM REDAY TO TAKE DATA IN
SOME TIME INTERVAL SPECIFY B

Y D.

1480 REM
1490 POKE 2
1500 POKE 8
1510 FLAG =
1520 1 0
1530 1 I +1

CALL 34844

won
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J) - (GX % 16>

2080 B(J)> = INT ((B(J) # S(GA) +
0(G%4>) = 100000) / 100

2090 B<J) = INT (B¢(J) / K)

2100 NEXT J

2110 M =2 = P

2200 INPUT " NAME OF THE FILE ";
F$

2210 INPUT " PLACE THE DISK INTO
THE DRIVE AND HIT RETURN®;G

3

2220 PRINT D$"OPEN"Fs

2230 PRINT D$"WRITE"Fs$

2240 PRINT M

2250 FOR 1 =1 TOP

2260 PRINT TC(D)

2270 PRINT B(ID)

2280 NEXT I

2290 PRINT D$"CLOSE"Fs

. 2300 GOTO &000

5000 INPUT " NAME OF THE FILE =
";Fs

5010 PRINT D$"NOMON C,I,0"

5020 PRINT

5030 PRINT D$"OPEN"Fs

S040 PRINT D$"READ"FS$

S050 INPUT I

S0S5 DIM As(I>

S040 FOR J =1 TO 1

5070 INPUT A$CJ)>: NEXT J

S080 PRINT D$“CLOSE"Fs$

5090 PRINT D$"MON C,I1,0"

S100 * WANT A HARD COPY (Y/N) ";A
¢

5110 [IF A = "N" THEN 5490

S120 PRINT Ds;"PR#1"

S130 PRINT " TIME (IN MICROSECON
o DATA C(IN VOLTS)*

S140 FOR J =1 TO 1

SIS0 J1 = (2 % J) - 1:J2 =2 % J
S140 PRINT VAL (AS$(J1)); TABC 3
0); VAL (ASJ2))

5170 NEXT J

S180 PRINT Ds$;"PR#H0"

5490 GOTO 200

5500 IF PEEK ( - 14384) > 127 THEN

POKE - 14368,0: GOTO S900
5550 GOTO 1500
S900 GOTO 1280
4000 END
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APPENDIX D

1 REM

2 REM THIS PROGRAM WILL TAKE Da
TA AND

3 REM DISPLAY THE WEIBHTED AVER
AGE ON

4 REM THE MONITOR AND PRINTER.
S REM

M= 0
10 INPUT "WEIGHTING FACTOR W = *
W

20 S1 = 0:82 = 0

30 Tl = 01T2 = 0

31 REM

32 REM AlI13 IS IN SLOT S5 OF APP

LE Ile

33 REM

35 SLOT = &

40 AI13 = - 142546 ¢+ SLOT # 16

50 INPUT ®* CHANNEL NUMBER C1 & C

2 ";C3,C2

S1  REM

52 REM GAIN CODE 1S ZERO (MEAN

0 TO S VOLT RANGE)

$3 REM

60 G = 0

70 POKE Al13,C1 + 16 % G

80 R1 = PEEK (AI13 + 1) # 254 +
PEEK (AI13)

0 Vi = Rl * 5 / 4095

100 POKE AI13,C2 + {12 % 6

110 R2 = PEEK (AI13 + 1) » 256 +
PEEK (AlI13)

120 V2 = R2 # 5 / 4095

130 S1 = V1 ¢+ (W » S1)

140 S2 = Y2 + (W » S2)

150 T1 = (VU1 % U1) ¢+ (W = T1)

140 T2 = (V2 # V2) + (W » T2)

170 @1 = SQR (Tt = (3 - W) - (S}
® (1 =W 4~ 2

180 @2 = SAR (T2 # (] - W) - (82
® (1 =W ~ 2

190 PRINT S1 &% (1 ~ W ;" -+ *301
' "3S2 * (1 - Wrg" -+ "

;G2

200 M =M + |

210 IF M = 10 THEN 230

220 GOTO 70

230 PRINT D$;°PRHL"

240 PRINT S1 » (1 - W;* -+ ";jQ1

} 3182 % (1 - W" =+ "
102
250 M = 0

260 PRINT D$;"PR#0"
270 6070 70
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0000:
0000
0000
(e gleal]
000n0:
0000

a0o0:
Q0Q0:
a000:
Co80:
Q06E:
06D
QU062
a008:
003C:
QO3D:
[{DLT-H
OOF9:

NOCNBUN

APPENDIX E

INTERACTIVE STRUCTURES INC
DAT DEC 'B0

AI13 TO AFPLESOFT ARRAY

VARIABLE DEFINITIONS

DEV EQU sCo80 DEVICE SELECT LOCATION

AARY EQU $6&B
AARYE EQU $&D

AFPLESOFT ARRAY POINTER
AFPLESOFT ARRAY END

PTR EQU &
ARYPTR EOU 8

OLDCH EOU $3C
DELAY EQU $3D
DLYVAL ERU 6

STASUR EQU $F9

LAST CHANNEL /GAIN USED
DELAY COUNTER

FOR AEBOUT 45 MS DELAY
"STA DEV+SLOTR16"

-=-~= NEXT OBJECT FILE NAME IS GETAI1Z

F000:
0003
0003
9000
i H
0003
000
0003
00D
9000;
000
OO0
000
OO
E s H
9000z
000

QOO0

000

90003z AS
F02:85
F004: AS
P006:85
0Bz AG
0A: R
F00C: 10
P0CE: CB
FOOF:BI
011210
F013:C6
F013: D0
5017:C8

6B
a6
&6C
07
Q0

24
06

20
o8

22
23

-~

33

‘88 ‘@0 WS ‘8% ‘AR ‘48 We WS s WS 4e w4 o WS e W ‘es

ORG  $9000

THIS ROUTINE TAFES THE N°TH INTEGER ARRAY
TO DETERMINE THE SAMFLING SEQUENCE FOR
THE AI13. BEFORE USE DIMENSION A YOUR
ARRAYS AS 1 BY N. THE (0,0) ELEMENT
CONTAINS THE SLOT NUMEER FOR THE AILZ,

THE (0, 1) TH ELEMENT CONTAINS THE

NEGATIVE OF THE NUMEER
OF SAMFLES TO TAKE (LESS THAN THE
ARRAY DIMENSION SIZE)

THEN FILL THE (0.1)°TH ELEMENTS WITH
THE AI13 ADDRESS/GAIN FARAMETERS.

IF THIS IS NEGATIVE THIS SAMFLE IS SKIPFED
AFTER CALLING THE ¢1,1I)"TH ELEMENTS WILL
CONTAIN THE VALUES.

TO SELECT THE ARRAY TO USE FOLE
ITS NUMEER INTO LOCATION 8 BEFORE CALLING.
NOTE: THIS LOCATION 1S CLOEBERED!

GETAIIS EQU x

LDA AARY GET START OF ARRAY SPACE
S§TA PTR

LDA AARY+1

STA PTR+1

GAAL LDY #0

LDA (FTR),Y
BPL  GMARY1
INY

LDA {(PTR),Y
BPL GNARY
DEC ARYPTR
BNE GNARY
INY
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9018:C8
F019:C8
S01A1 B1
901C1AA
S0iDiCB
901E:CB
S01F1C8
9020:CA
9021300
9023298
9024:18
90251 65
9027:85
9029:A9
S028: 65
902D: 85
S02F; 18
90303 90
9032:C8
9033:C8
S034: 18
9035: Ry
S03I7: 65
9039: 48
903A: CB
Q0TR: Bl
SO3ID: 65
903F:85
S041:68
9042:85
S9044: A5
9046:CS
9048: FO
Q04A: 90
QUAC: &0
(4D: AS
FO4F: CS
90513 90

FR
06
08

07

22

L)
06

90531 60

9054

9054: AT
9054: 85
058: A9
Q05A: 8S
QUEC: AT
Q0SE: 85
FO&0O: AD
9062: Bl
Q064229
F066: 0A
067:0A
9068: 0A
N69: 0A
90b6A: AA
S0bK: 0F
906D: 8BS
Q06F:CB

80
FA

BGRA2

GNARY1
GNARY

GETOK

INY
INY

TAX
INY
INY
INY
DEX

TYA

ETA

208

(PTR),Y GET NUMBER OF DIMENSIONS
WE WANT TO SKIP OVER THEM
6AAZ
PTR
ARYPTR NOW GET REAL POINTER
®0
PTR+1
ARYPTR+1
GETOK GOT THE ARRAY
(PTR),Y POINT TO NEXT ARRAY
PTR
CAN’T OVERWRITE JUST YET
(PTR), Y
PTR+1
PTR+1
NOW WE CAN
PTR
PTR+1
AARYE+1  SEE IF FAST END
BNAAZ2
GAAL
RETURN WITHOUT DOING ANYTHING
PTR
AARYE
GAAL
3 NOW GOT THE ARRAY
#38D *STA® OFCODE
STASUR SETUF A STORE SURRDUTINE
#sCa
‘STASUE+Z
#8860 'RTS"
STASUE+Z
#1 WANT THE SLOT #
(ARYFTR) Y
#7 JUST IN CASE
A TIMES 16
A
A
A
#£80
STASUE+1

NOW GET NUMEER OF SAMFLES



o

F0701R1 0B 114 LDA (ARYPTR),Y

9072185 07 113 STA PTR+1

9074:C8 116 INY

9075:1B1 08 117 LDA (ARYPTR),Y

9077183 06 118 STA PTR

9079:A9 00 119 LDA #0 INITIALIZE OLD CHANNEL/GAIN
078185 3C 120 STA OLDCH

907Dz 121 GETLOOP EQU &

F07D: 18 122 ac

FO7E:AT9 04 123 LDA #4 POINT TO NEXT ELEMENT
080165 08 124 ADC ARYPTR

9082:85 08 125 STA ARYPTR

084:49 00 126 LDA #0

90B6: 65 09 127 ADC ARYPTR+!

088:85 09 128 STA ARYPTR+1

90B8A: A7 06 129 LDA #DLYVAL  INIT DELAY LOOP
08C:85 3D 130 STA DELAY

F0BE: A0 00 131 Loy #0 GET HI-ORDER BYTE
F090:B1 08 132 LDA (ARYPTR),Y TO SEE IF SKIPPING
9092: 30 29 133 BMI SKIPTHIS

F094:C8 134 INY NOW FOR LO-ORDER BYTE
9095181 08 135 LDA (ARYPTR),Y

F097:20 F? 00 135 JSR STASUB SETUP ADDRESS/GAIN
909A: 48 137 PHA

F09B:CS 3C 138 CMP  OLDCH SEE IF SAME AS BEFORE
909D:FQ 08 139 BEQ@ SKPDLY YES, DON’T HAVE TO DELAY
F09F:29 02 140 AND #2 SEE IF HI-GAIN SETTINGS
90A13F0 04 141 BEQ@ SKPDLY NGO, LO-GAIN (FASTER)
F0A3:C4 3D 142 WAITLP DEC DELAY NOW TWIDDLE CUR THUMES
90AS5: D0 FC 143 BNE WAITLP

F0A7: 68 144 SKPOLY PLA RESTORE CHANNEL/GAIN
90R8: 85 3C 145 STA OLDCH UPDATE QLD

F0AA20 F9 00 14364 JSR STASUB TAKES CARE OF OP-AMP SPROING
50AD: 48 147 PHA

FOAE: 68 148 PLA

F0AF:C8B 149 INY '

F0BO:BD 81 CO 150 LDA DEV+i,X THIS COMES QUT FIRST
90B3:29 OF 151 AND #s$F AND OFF FLAGS

083391 08 152 STA (ARYPTR),Y SAVE HI-ORDER

90B7:C8 153 INY

F0B8:ED 80 CO 154 LDA DEV,X

90PB:91 08 135 STA (ARYPTR),Y AND LO-ORDER

F0BDs 136 SKIPTHIS EQU ¢ # ELEMENTS COUNTER
FOBD:ES 06 157 INC PTR

F0BF: DO BC 158 BNE GETLOOP

90CL:E€6 07 159 INC PTR+1

F0C3:00 PO 160 BNE GETLOOP

90CS3 60 161 RTS

¥%8 SUCCESSFUL ASSEMBLY: NO ERRORS

#4112 aAnalog Input
Interactive

Bala Cynwwyd,

ource ;

Structures,
Fennsylivanis
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. P.0.Bax 404
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