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CHAPTER I 

INTRODUCTION 

Statement of the Problem 

Colloids made of suspended polymer microspheres are 

very useful systems for studying many-body physics. They ar~ 

physically well-characterized, inexpensive, and the particle 

order may show sol id, 1 iquid, and gaseous states under 

easily attained physical and chemical conditions. It is 

Known that due to -screened coulombic interactions, even a 

dilute aqueous suspension of charged particles can exhibit 

interparticle ordering over large distances compared to the 

particle diameter. Recently, these colloidal systems have 

been studied by a number of authors to examine statistical 

mechanical behavior < 1 

between these colloidal 

to 6). Since there is a similarity 

systems and molecular fluids, they 

become idea 1 candidates to test many theories of condensed 

phases, under both equilibrium and nonequil ibrium conditions 

(7). Scattering of light from these colloidal s>•stems 

provides information about static and dynamics of the 

interparticle order, similar to that obtained by x-ray and 

neutron scattering from pure atomic condensed matter states. 

In this worK we explore the effect of radiation 

pressure effects on the ordering in two dimensional 

1 
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colloidal 1 i quid states. Using a crossed laser beam 

technique we should be able to impose a periodic <radiation) 

potential on the colloidal sample with a wavelength on the 

order of the average interparticle spacing. 7he colloidal 

particles, which have an index of refraction larger than the 

surrounding aqueous medium, should be drawn into the high 

intensity regions of the fringe pattern created by the 

crossed beams (1). The reorganization wi 11 destroy the 

Debye-Scherrer rings, which are produced on scattering 1 ight 

from an amorphous state where particle pairs maintain an 

average separation but random orientation, Ln favor of 

localized intensity maxima, which are produced by scattering 

from a diffraction grating of particles aligned with the 

fringe pattern. However, the particles also maintain there 

interaction to produce a registration between the rows of 

particles in the fringes. This interaction produces other 

density modes, 

potential The 

not directly 

result is that 

excited by the intensity 

a sol id 1 iKe order may be 

induced in the sample by directly sti1T?ulating·only one of 

its modes. This thesis describes the odessey to demonstrate 

this "laser induced freezing " phenomenon. 

Purpose of This Thesis 

While the main goal of this thesis is to demonstrate 

the phenomenon of "laser induced freezing", there ar·e 

sever a 1 subsidary problems which are explored as a result of 

this wor·K: 
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1. A measurement of the scattering efficiency and 

amplitude of the directly excited density mode as a fur1ction 

of the strength of the applied intensity potential for hard 

sphere <weaKly interacting) as wel 1 as soft sphere <strongly 

interacting) samples. 

2. A measurement of the scattering efficiency and 

amplitude of the indirectly excited density modes as a 

functic•n of strength C•f the intensity potential for the soft 

sphere <strongly interacting) samples. 

3. A study and quantification the directly excited 

density mode for fixed strength of the inten~ity potential 

as a function of the fringe spacing of the applied field for 

both hard and soft sphere samples. 

4. A study of the characteristic formation time of the 

directly excited density mode as a function of strength of 

the intensity potential for both hard and soft sphere 

systems. 

5. A study of the characteristic formation time of the 

indirectly excited density modes as a function·of strength 

of the intensity potential for soft sphere systems. 

6. A measurement of the diffusion of hard spheres near 

a plane boundary in the presence of the normal radiation 

pressure force. 

7. A study of the relaxation time constant of the 

directly and indirectly excited density modes for soft 

sphere systems as a function of both the strength of the 

intensity pote~tial and fringe spacing. 
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Thus this thesis reports extensive experimental and 

theore ti ca 1 worK on ordering in two dimensional 

coll o i da 1 systems subject to spatially periodic external 

fields. A short review of articles have been included with 

the theory and discussion in each chapter. In this way, each 

chapter 

theory, 

chapter 

is self-contained, having a review of 1 iterature, 

experimental data, and discussion. While each 

is self contained the first few chapters give 

background information helpful in the following chapters. A 

brief summary· of the chapters is as follows: Chapter II is 

a development of experimental and theoretical tools relevant 

to the theme of this thesis, a review of 1 iterature and some 

exp er· i men t a 1 results, Chapter III discusses experimental 

details and apparatus, Chapter IV presents a study of hard 

sphere <weakly interacting) samp 1 es with a quan ti tat i tJe 

theoretical explanation, Chapter V presents a study of a 

soft <interacting) sample, with a quantitative 

theore ti ca 1 mode 1 and Chapter 1v'I contains over a 11 

discussion, conclusion and suggestions for future:worK. 



CHAPTEP II 

GENERAL BACKGROUND 

Int r odu ct i on 

This. chapter outlines se~Jerals. topics vJhich will be 

usef•J 1 in discussing our experimental procedure and our 

results. We begin with scattering from single finite sized 

particles and then collections of particles. Measurement 

techniques including DLS (dynamic light :.cattering), CCIFS 

(crossed correlation intensity fluctuation spectroscopy) and 

CBT <crossed beam techniques) are discussed, as well as, the 

relations between these techniques. Finally we discuss some 

of the work of others on b1,10 dimensional f 1 u i d-so 1 i d 

s.y:.tems. 

Static Light Scattering 

When x-ray radiation 

surrounding electrons wil 1 

is incident on an atom, the 

undergo acceleration under the 

action of the electric field associated with the beam. 

Since an accelerated charge emits radiation, 

electrons emit and :.catter the incident radiation. In thi:. 

case the wavelength and size of the atom are the same order 

of magnitude. On the other hand, if ar1 i:.olated arbitary 

shaped dielectric object is i I luminated by a parallel beam 

5 
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of linearly polarized radiation of longer wavelength, then 

antecedent to becomes polarized in the electromagnetic field 

due to the displacement of·the electrons with respect to the 

nuclei and also due to the partial orientation of any 

permanent dipoles that may be present. In the optical 

frequency r.~nge the effect of permanent dipoles is 

insignificant. For these long wavelengths we consider the 

i n di .._, i du a 1 dipoles to radiate uniformly in all directions 

<Rayleigh Scattering) in calculating the effect of the shape 

of the dielectric object on the scattered radiation. 

Scattering from Finite Sized Particles. 

Now we consider a collection of scattering centers 

which radiate uniformly in all directions. The total 

electric field amplitude function, A(8), is the sum of 

amp l i tude functions for scattering by each i ndi •Ji dual 

o~.c i 1 l at or in a given direction as shown in figure 1 and is 

given b>' 

A<8) = ~f.exp< iK•r.) L: I I 
( 2. 1 ) . 

I 

where i< <= i<i Ks) is the scattered wa~.ie i..>ector, the 

difference between the incident and scattered 

wa~.Je i..>ec tors 

-r is the distance of ith particle from the origin 

and E. is a function depending on the scattering 

efficiency, the distance of the detector from 



n
1 

is. the r-efr·acti•.,,e 
par-tic le 

n
2 

is the r-efr-active 
sur-r-ounding 

D is the position of constr-uctive 
inter-fer-ence patter-n. 

D 

Figur-e 1. Mutual Inter-fer-ence between each 
Oscillator- in the Par·ticle. 

7 



the scattering centers, and the incident 

amplitude which may depend on r .. (For 
I 

simplicity we will assume E.= 1, except when 
I 

stated otherwise). 

8 

In general this sum is very hard to evaluate since the 

position of each individual oscillator is not Known. On the 

other hand we can treat each oscillator in a dielectric 

particle as a Rayleigh scatterer excited bv the incident 

field and assume that it is unperturbed by the presence of 

the rest of the oscillators. We consider the case of 

incident radiation polarized perpendicular to the plane of 

scattering, where each oscil later scatters radiation to a 

point with different. phase in general. Then the amplitude 

function of each oscillator is given (8) by 

d A(8) = 

exp<iS> dlJ (2.2) 

where m is the ratio of complex refractive index of the 

particle to the medium index of refraction 

~ is the phasi of the scattered radiation from 

each element at the observation position. 

The resu 1 tan t amp l i tu de function v..•h i ch arises from 

interference of each wavelet is obtained by the vector sum 

( int e gr a 1 for continuous case) over al 1 oscillators in the 

particle as. 
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A(8) . { ··- K3 · . ·4 . - [. 2 -1 )./'•:m2 + ·-=-·> J = I (~ )/( n>J (m . ~ 

(2.3) 

The scattered intensity of this object is directly 

pr op or t i on a 1 to the absolute ~ial 1.Je ·:.quare of the ampl i ti.Jde 

I CC l A< 8) : = 

and P(8) 

iCC3K 3V)/(4~)}[(m2-1)/ 

cm2 +2) J :
2

P<8) (2.4) 

(2.5) 

is Known as particle form factor. It is clear that scattered 

intensity is directly proportional to the form factor, P(8). 

Rayleigh scattering is restricted to particles small in 

diameter compared to the radiation wavelength. On the other 

hand Rayleigh-Debye or Rayleigh-Gans results given in 

equation (2.4) and (2.5) assume that neither the ratio of 

the refractive index of the medium to the object is much 

larger than unity nor that the phase shift corresponding to 

any poi n t i n the object be 1 ar ge ~ i . e-. , that 

:m - ll « 1 (2.6) 

and 2K a : m - 1 : < < 1 (2.7) 

1A1her·e a is the radius of the sphere 
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and l K: (= 2.n/)\.) is the incident wave vector 

rnagn i tude. For this reason neither the radius of the 

particle nor· 

large. 

the relative refractive index can be taKen too 

(.o..I i thin the restrictions of these assumptions, the form 

factor, p( 8) ' of a homogeneous sphere can be obt.3. i ned b>' 

in tegr·-3. ting in equation <2.5) over a sphere of radius a. The 

result (8) is. given by 

where 

and 

The 

PC8) = lC3/u 3)[sin(u) - u 

= ( 9.n/2u3 ) [ ._r
312

c u) ]Z 

u =Ka= 2ka sin(8/2) 

(2.8) 

is the three-halves order Bessel function. 

range and validity Ra~·' l e i gh-De bye or 

Rayleigh-Gans theory for a sphere has been investigated 

by M.KerKer and W.A.Farone and his co-workers. They 

found that for the relative refractive index, m, close to 

unity as well as a phase shift less than unity, this theory 

agrees within 50% to 100% with the exact calculation for the 

sphere using Mie theor>'. On the other hand, numerical 

calculations of the anomalous diffraction approximation were 

done for· the form factor of sphere larger than wave length 

and for a relative refractive index greater than unity (9). 

It was found that this calculation agrees with Mie theory to 

within 50% to 15% as the scattering angles increase from 10 

to 20 degrees for a sphere of radius, a= 1 urn, radiation 
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A= 0.488 um and rela.tive refractive inde>(, m = 

1.2. Thus the Rayleigh-Gans theory gives good agreement at 

sma 11 scattering angles for larger radius particles, as 

well. 

The exact theory or Mie theory for scattering from a 

sphere of arbitary size and any refractive index is obtained 

by using Maxwell's equations with appropriate boundary 

condtion:. (10,11). The solution for the -re:.1Jlting amplitude 

function for perpendicular and parallel polarization of the 

electric field is given by 

.;:..nd 

CXl 

= 2 [(2n + 1)/n(n + 1)]{.;:..ntn<c•:•·:.(8)) 
n-::1 

+ b n Tn ( c OS ( 8) ) } 

= f [(2n + 1) .. /n(n + l)J(bntn(co-:.(8)) 

+ a T (cc1s(8)}, 
n n · 

(2.9) 

(2.10) 

respectively. The coefficient an and bn are in general 

complex, and are tabulated (12,13) for arbitary values of 

the relative refr.::c.ct i •.Je index and sphere radius. The 

functions tn(cos(8) and Tn<cos(8)) are given by 

and 

tn (cc•-:.(8)) = d P Ccos(8))/d cos(8) 
n 

Tn (cos(8)) = C C•S ( 8) t ( C C•S ( 8) - {Sin ( 8) 
n 

Ed t (cos(8))/d Ccos(8))]} 
n 

(2.11) 

(2.12) 



12 

v .. •h ere P (cos(8)) are the Leoendre polynomials. n -

Sc.atter·ing fr·c•m a Col lectic•n of Particles 

Let us consider a collection of particles suspended in 

a iquid. If these particles are randomly positioned (no 

1 ong range order) and subjected to a 1 aser 1 i gh t, then the 

-:.cattered rad i at i c•n l,•J i 1 1 evidence no net interference 

between particles and the single particle form factor will 

demi nate the scattered intensity distribution. If the 

particles interact strongly enough that they maintain an 

average separation from one another (short range order), the 

scattered radiation intensity pattern. will be s i m i 1 ar to 

that for x-ray <or neutron) scattering fr·c•m 1 iquid-:. c•r 

amorphous sol ids. Debye-Scherrer rings concentric with the 

incident beam will be observed. The diameter (scattering 

angle) of these rings is a measure of the average particle 

separation and their width is a measure of the volume over 

which particles are correlated. If the interaction between 

particles is sufficiently strong, they may 6rder into a 

regular lattice -:.tructure ( 1 ong range order). Light 

scattered from these systems behaves similar to x-ray (or 

neutron) scattering from crystal 1 ine sol ids and Bragg/s law 

applies. According to Bragg's law scattering will occur only 

for certain angles given by: 

2d :.i n(8) = >. (2.13) 
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where 8 is the half angle of scattering 

A is the wavelength used 

and d is. the average separation of planes of particles. 

in the cr:.·st.~ l l i ne lattice. 

Thus the Bragg's scattering can be used to determine 

particle separations from Knowledge of X and measurements of 

0 for crfstall ine systems. An example of Bragg scattering is 

s.hown in figure 2a. This is produced by focusing a single 

laser beam to a area of diameter 50 um in a sample of 

colloidal particles. The gap thickness is about 30 um which 

forces the particles to form a monolayer. This monolayer is 

observed directly using a microscope. The centeral spot in 

the scattering pattern is the unscattered main beam. From 

this scattering patterr1 the scattering angles are 

determined. In appendix (A)' i t is shown exactly the 

procedure for calculating these angles~ as care must be 

taken to account for scattering geometry and refraction 

effects. 

The separation between the "planes" of particles was 

obtained using equation 

ar·e indicated as shown 

(2.13), These scattering "planes" 

in figure 2b. In this figure the 

particle "planes" <indicated by s.olid lines) are responsible 

for producing the scattering intensity maxima closest to the 

main beam in figure 2a, the first order maxima. The dash 

l i nes indicate the planes responsible for the second order 

intensity maxima in figure 2a. The real space structure and 

:.•:atter i ng patter·n cr·osspc•nd qu.~l i tat i \.!el;...-. Gl•Jant i tat i ~-·el y 



14 

we have a hexagonal close pack structure, 

lattice constant, a= 2.3 um can be found by using relation 

a = (2.14) 

~ 

wher·e d( hk) is the :.epar·a ti on c•f the p 1 ane:. 

and h as vJe 1 1 as K are Mi 1 1 er i n di •: e =·. 
Since the physical diameter of the particles is 1 um, the 

lattice parameter for touching particles would be a= 0.86 

um. Hov .. •ever, these strongly charged particles maintain a 

much 1 arger separation producing the observed lattice 

constant. 

To analyze the scattered intensity for an arbitrary 

collection of interacting scatters, the more general 

amplitude of scattering function, ECK>, given by 

( 2. 15) 

1.1.,1here is the single particle form factor 

(assumed the same for all particles) and the sum is taken 

over· al 1 the particle positions. Note that this is of the 

same form of equation (2.1) for considering internal 

interference of single particles. We now apply the same form 

for interparticle interference. 

The scattered i n ten=· i t;.· , I , i ::. di rec t 1 y pr op c•r· t i c•r1 a I to 

the absolute value square of ECK) and is given by 



• • • 

• • • 

• 0 0 e 

e • • • 

• • • 

Figure 2a. A Tr~cing of Bragg~s Spots produced by 
Light Scattering from a Highly 
Interacting Colloidal Sample 

Figure 2b. The Real Space Structure of above 
Scattering Pattern 

15 
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I • • 8. , 2 - . k. = I +a ( ) I 0 (_ -. ) 
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,(2.16) 

1.JJher-e S (!() =I,I_exp(ik•(;, - ;,) <2.17) 
I . . I J 

I .J 

is called the instantaneous static str-uctur-e factor-. The sum 

can be sp 1 it into two different types of ter-ms: those for-

= J, the self par-t; and the mutual par-t wher-e *J· 
In the of a 1 iquid the par·ticles .ar-e alv .. •ay-:. 

sufficiently randomly positioned that the sum is diffcult to 

evalute. However-, let us assume that ther-e ar-e N particles 

in our sample. Then the liquid str-ucture factor can be 

written in ter-ms of s
1

<K) as fol lows (15) : 

S<K) = <Iexp {iK•<ri - r-.)}) = (2.18a) 

I J 

and S(Kl/N = 1 + n,Jd
3

r •xp(;i(.C)[g(r) - ll ( 2. 18b) 

1.1.Jhere n
0 

is the average particle densit>-, g(r) i-:. the pair 

distr-ibution function and the br·aKe ts r-epr-e-:.en t .an 

equilibrium ensemble average. 

Thu-:. the pair· di -:.tr i but ion func ti c•n g( r·) i -:. r-e I a ted to 

structure factor S(K) via a fourier transform. This is 

important because the pair distribution function is defined 

as 

g(r·) = n(r-)/n
0 

(2.1'7') 
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n(r) is the radial den:.i b' di:.tribution f•.rnction 

c•f the liquid. 

Obviously the pair distribution function, g(r) and 

radial densit>' function have same type of behavior, i. er. ::.c ._, -· 

r ~co , n ( r) ~ n and g( r) -7 1. 1,.Jha t i :. imp or tan t i ·:. that 

this pair distribution function gives the conditional 

probability for finding a particle a. distance r from the 

origin given a particle positioned at the origin. This 

probability can be determined from scattering experiments. 

Dynamic Light Scattering 

So far the static structure factor is discussed for 

average particle positions, no motion of the particles is 

considered. But in real i ty the mi crospheres exh i bi t Brownian 

motion. As a result the scattered intensity will fluctuate 

in time. The rate at which the intensity changes gives a 

measure of particle ~iffusion rates, polydispersity, size, 

etc suitable assumption: .• If the particles are 

correlated, then th i =· about the dynamic 

str•.Jc tu re factor can be obtained from the equilibrium 

fluctuations in position. 

The dynamic 1 i gh t seat ter i ng ( DLS) technique is a very 

powerful method to obtain this information. In DLS the 

measured photon correlation function can be expressed as 

intensity correlation function, C<K,T). This correlation 

function, CCK,T) is given b>' 



where 

and 

C<k,T> = <I<k,t+T) 
2 

I<k,t))/<I(k,O> 
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(2.20) 

I ( K , t) i s the i n tens i t y at t i me t at the detect or 

I ( K , t + T) i s the i n ten·:. i t>' at the 1 ate r· t i me t + T at 

the de tee t•::ir 

<I<K,t>> is the time averaged intensity. 

Furthermore, this correlation function can be expressed 

in terms of electric field correlation function, g
1

<K,T>. In 

the gaussian 1 imit when there are a large number of 

independent correlations regions in the scattering volume, 

we have the Seigert relation (16) 

C<K,T) 
2 

= <1 + clci (k,T)I ) - I . <2.21) 

where c is an apparatus constant often called the signal to 

noise ratio. 

and = 'ECK t T) E'K t)" '''E ,Z. \ ! + ~ ! )'/<.,I s I .> • (2.22) 

The electric field correlation function or intermediate 

:.cattering f~nction, Q (k,T> is the dynamic analogue of S<K> . - I 

and is related to a time dependent two particle distribution 

fur1ction fourier transformation. Hence E<K,t) and 

E<K,t+T) are scattered electric fields at time (t) and 

Ct+T>, re-:.pec ti \)e 1 ~..,,. The instantaneous electric field 

produced by scattering from the collection of Brownian 

particles in the sample i:. gi•.)en in equation (2.15>, as in 
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the static case. So the two time electric field correlation 
/ 

function is giuen by 

<ECk,t+T) E(k,t)> I (" ,2 = 1fa .. 8)1 

r·. ( t+T)} >. (2.23) 
J 

In the case of N identical noninteracting particles in the 

scattering volume the correlation function becomes (17) 

<E<k,t+T) E<k,t>> = N :fa<8>: <exp iK·[r(t+T) 

- F<t)J> <2.24> 

~\!here N is the number of particle in the scattering 

volume 

:faC0)l
2 

is the single particle form factor <and 

geome tr·y effects) 

r: ( t) i s the p os i t i on of the part i c 1 e at t i me t 

and r(t+T) is the position of the s.ame particle at 

later time (t+T). 

When these particles exhibit simple Brownian motion, 

the correlation function further simplifies to 

where D 0 

2 
<ECk,t+T) E<k,t)) = N :f~(8): [exp<iw T)J 

(2.25) 

is the self-diffusion constant of the Brownian 

particles, and according to the Stokes-Einstein relation D0 
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= KT/(6]11').a) for spherical particles of radius, a, with 

viscosity of the medium, n. 

The correlation function, CCK,T) is then found to be 

(2.26) 

When the Brownian particles are interacting, the form 

for C<K,T) given in equation (2.2~.) i·:. nc•t cc•rr·ect. R.:c.ther· 

the decay is non-exponential in time, in general and i ·:. 

expressed in terms of a cumulant expansion as follows 

(18,19): 

CCK,T) = 1 + C exp[-2CK
1

t -.K
2

t
2
/2! + 

K t 3 
/·"::I ) ] 3· ·-· - ..... . (2.27) 

The cumulants have been derived (18,19) using equation 

( 2. 24) and a genera 1 i zed di ff us ion C 20) or Langei..i in equation 

C21) for the particle dynamics. The first cumulant in the 

absence of hydrodynamic interactions is given by 

(2.28) 

where al 1 q~antities have been defin~d previously. The 

second and higher cumulants become important at intermediate 

values of K for strong interactions, in general . On the 

other hand, CCK,T> for non-interacting particles is given by 

equation 0::2.2°5) 
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hard spheres (22>, I< = D 1.-; 2n + b 0) i n the sma 1 1 K 1 i mi t I o 

the effect of both S(K) and hydrodynamic int9ractions 

are incl•Jded. Her·e b = 1.45 is the "first Virial 

coefficient" for har·d sphere-: .• Pol yd i sper·-:. i b', a 

distribution of particles size and/or diffusion constants, 

w i 1 1 also give a non-exponential time decay for CCK,T> which 

must be analyzed using a cumulant expansion C21). We refer 

the interested reader to the 1 i tura tu re cited for more 

detailed discussions of polydispersity and interactions. 

Cross-Correlation Intensity 

Fluctuation Spectroscopy 

Cross-correla~ion intensity fluctuation spectroscopy 

CCCIFS) i s a re 1 at i v e 1 y new met h •:id of 1 i gh t scatter i r1 g. In 

contrast to the standard scattering techniques which monitor 

the stat i c c•r d:.,...n am i c st r· u ct u re fact c•r s •: wh i ch are r· e 1 ate d 

to particle pair correlation functions), the CCIFS technique 

is -:.erasitive to higher order particle correlation functions 

(2,3). 

In these experiments two detectors are used to monitor 

the scattering from a small illuminated volume in the 

sample. Only a few correlation regions (local structure) are 

observed and the scattered radiation i =· nongaus-:.a in in 

general <2,3). Generally, in these experiments, one detector 

is positioned at a fixed wavevector K and the other is 

scanned over a series of values q. The intensities are 

crossed correlated to find the CCIFS function, which is 
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defined as 

(2.29) 

and is a gener-al ization of the dynamic 1 ight :.catter-ing 

function (equation (2.20)) to two wavevectors. Assuming the 

:. i ngl e scatter-ing Bor-n appr-oximation (as with the DLS 

expression) C<K,q,T) may be expanded as follows: 

-;s, 

c<K,q,T) = <II.2-IErri <O)J err.<O)J ~rr 1 <t:>J 
j j I m . J 

vJher-e 

Errm(t)J exp{iK• rr. co> - r:.co>J 
I J 

+ iq.(r
1

<t) - rm(t)J}>/S(k)S(q) 

r:. (0)J}> 
J 

(2.30) 

(2.31) 

is the static str-uctur-e factor-. Because the scatter-ing 

1 • .>ol 1.Jme is small the static str-uctur-e factor- and CCK,q,T) 

ar·e gener-al ized to incl1Jde the fluid amplitude factor- ECr-) 

which deter-mines the size of the scattering volume. For ECr-) 

1 ever-ywher-e, SCK) r-educes to the previous result given in 

e qua t i on ( 2 • 1 .:::, ) • 

E:i<per- i men ta 1 r-esults have been obtained for a two 

dimensional monolayer of str-ongly inter-acting colloidal 

particles (2,3) in the colloidal iquid phase. The authors 

have r-epor-ted a two dimensional hep str-uctur-e as the 

a~'eraged 1oca1 str·uc ture in a sufficiently dense colloidal 
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1 iquid. This was evidenced by the fact that when both :k: 

and : q: ar·e equ.:i. l the magn i tude of I< ' os· the maxima of 

co·:,q,o;. on the first Debye-Sh~rrer ring exhibited six 

evenly spacing maxima as a function of the angle between k 

and q. Anticorrelations were observed between these maxima. 

This work has been interpreted using an harmonic sol id 

mode 1 · ( 23) • HovJever the underlying lattice to v.Jh i ch the 

par· tic l es are i =· be 

po 1 >'Cr>'=· ta 1 1 i n e , and the or·ient.:<.tion of a ·~i•)en cr·ystal.l ine 

i ·:. taken to be a random function of time in the 1 iquid 

state. The assumption was made that the dynamics of this 

re or· i entat ion is slow enough not to interfere with local 

lattice vibrations. The crystal lattice is .:<.ssumed to be 

large compared with the scattering volume. The vibration 

problem was treated the same as for an infinite two 

lattice. So the particle coordinates are 

separated into two parts, one part represents the reference 

C•f the particle:. to an underlying lattice which i =· 

orientationally averaged, while the other part represents 

dev i at i •:rr1 from the 1 .:._ t ti ce =· i te:. \J.Jh i ch i :. assumed :.ma l 1 .:i.nd 

a~)eraged over therma 1 fluctuations. Detailed calculations 

have been done for a two dimentional hexagonal close pack 

str·ucture (3). The cross-correlation function, 

:.how:. that the particles are highly correlated when q = K = 

at az i mu tha 1 angular separations between k and q of O~ 

120°, 180° and 

angle sweep was from if to 180~ The same type of results will 
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be obtained for angles between 180° to 36~, which is Just the 

mirror reflection of the former. A more general form of 

cross-correlation has been examined (4). Here the authors 

make a general expression of CCK,q,T) in equation (2.30)~ 

replacing the four sums by an integral over a four-point 

particle distribution function. This distribution function 

i :. reexpre:.sed in terms of many particle correlation 

functions. The results make explicit the cc•nnection to 

se~.>era 1 different cross correlation experiments performed in 

recent >'ears. 

Crossed-Beam Techniques 

Crossed-beam Techniques, (C8T) are a very important 

experimental tools that are used to study both sol ids and 

liquids. This process can be t~ought of as the production 

and reading out of a holographic index of refraction grating 

in an optically non-1 inear medium. Here two laser "write" 

beams are crc•ssed in a :.ample to produce a set of 

interference fringes which modify the optical properties of 

the sample. If a third "probe" beam has the same wavelength 

as the two in ital write beams and propagates in the 

direction opposite one of them, then the "scattered" beam 

propagates back in the opposite direction of the other write 

beam. This scattered wave is termed the "phase conjugate" 

replica of the initial object beam because its wave fronts 

match those of the object beam exactly, except that the sign 

of the time appears reversed. This technique is also termed 



as degenerate four-wave mixing (1 ,24). 

This technique has been u:.ed to stud>' the non-1 i near 

C•P ti ca 1 

incident 

:.cattering in nematic liquid cr·y:.tals (25). Her·e the 

beams interface spatially to create an index 

modulation via their reorientation effects on the molecules. 

When aided by a de magnetic field, the reorientation and 

non l i near r·esponse:. the medium are enhanced and 

measurements of diffraction efficiency were done, as a 

function c•f the optical intensity, magnetic field and time. 

This technique has also been applied to absorbing media 

(such as sol ids and 1 iquids) where 1 ocal temperat•Jre 

variations form a phase grating which is probed by scattered 

1 ight of different frequency (e.g. non-degenerate four-wave 

mixing). The diffusion of this thermal grating t-'.las also 

studied <26,27). Recently, degenerate four-wave mixing has 

been performed in alexandrite crystals <BeA1
2

o
3
:cr3+,, where 

the decay rate of the excited state population grating were 

measured as a function of the beam-crossing angle (28), This 

technique is also used to the study the self diffusion of 

fluorescent particles (20). These fluorescent particles may 

be photobleached by a brief exposure to an intense laser 

beam to form fluorescer1t gra.ting. This grating scatter:. 

1 i gh t' but decays in time due to particle diffusion. Thus a 

recovery time can be measured. Finally, we mention that 

degenerate four-wave mixing experiments have been performed 

on colloid suspensions, (comprised of dielectric spheres 

su:.pended on •1Ja ter·) where the die 1 ec tr i c :.pheres ar·o? dr·awn 

25 



into the high intensity regions to form a grating, which in 

t•Jrn s.catter·s. light (1). 

This thesis describes related crossed beams experiments 

for strongly interacting and essentially non-interacting 

particles., s.us.pended in water. Here photophoretic or 

radiation pressure forces submicron plastic spheres into 

rows aligned along the 1 ight intensity interference fringes 

produced by crossed beams. The alignment of the particles 

can be detected by probing with a third laser beam which is 

s.cattered from the induced di ffr·act ion gr·ating. 

Al ter·natively, the s.truct•Jr·al alignment may als.o be detected 

by self scattering of the incident laser beam. When the 

crossed laser beams are eliminated, the particles diffuse 

and the time decay of the diffracted probe beam 1 ight can be 

used to determine the collective diffusion constant of the 

part i c 1 es. In the case of non-intercating particles the 

collective diffusion constant is equal to the self diffusion 

cor1s·tant. 

d>'nam i c 

Diffusion constants may also be measured by 

ight scattering techniques <DLS). DLS ~onitors the 

decay of spontaneous density fluctuations and can be used to 

determined the cc•llective diff•Js.ion coefficient, in general. 

Thus we see that CST is a stimulated version of DLS. 

Mathemati.cal Description of Frinqes Produced by 

Crossed <Gaussian Profile) Beams 

Let us consider two infinite electromagnetic plane 

v..•a~.•es t-Jith electric "fields E(l) and EC2) respective_h", VJhich 

26 
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intersect at angle 28 as shown in figure 3. These two plane 
,, 

waves can be represented as 

E(1) = E<lO)exp i(Kl·r· - wt+ !{)D <2.:32a) 

and EC2) = E<20>exp iCK2·~ - wt+ ¢2> (2.32b) 

v..iher·e kl 'is the 1.1,,ia• . .ie •,,ec tor· of p 1 ar1e t.\la\.J e 

K ''j 
""' is the wa•,, e ~'ec tor of plane 1.1..1ave ., 

..... 

¢1 is the phase angle of plane wave 

¢2 is the pha-=.e angle of plane v..iav e 2 

EC10) is the amplitude of the electric 

field C•f the p 1 ane 1.1.,1a•Je 1 

E<20) is the amplitude of the electric 

field of the plane wave 2 

r is the di -=·P 1 acemen t 

l-\1 i -=· the angular frequenc>' of the 1A•aves 

and t is the time. 

The time dependent part is -=·up pr· e sse d hereafter·, 

because we are interested in the intensity di'strlbutions for 

beams of equal frequency. The total electric field, E is the 

vector sum of the two fields 

E = E< 1 ) + E< 2) • (2.:33) 

Furthermore, in practice, the plane wave will not ha.•,ie 

infinite l.:i.teral extent we wil 1 now assume the beam to have 

a gaussian beam profile. With these approximations we have 



z 

lk- i=\k != k ' l ' 2 

y 

Figure 3. The Crossed-Beam Geometry 
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E( 1 ) = E( 1 0 ) [ e~q:r {-ar.2-:. i n2(8 + (()) }) >< 

i ( k 1. - ¢1 ) ] [ e >~ p r + (2.34~.) 

.:..nd E( 2) = E(20) [ e::<p {-ar2si n2•:8 - cti> }] )( 

[ i <K2· - ¢·;· ") ] e >~ p r + -·· (2.34b) 

beam width 

8 is the half angle of crossing 

and is the direction of r. 

The intensit>' di:.tribution, I, f·::ir· the:.e t\1,10 beams is 

directly proportional to the product of the total electric 

-'lf-
f i el d and its cc•mpl ex conjugate, E E, i .e 

v..iher'·e 

I ex. E'* E (2.35) 

E = E(10)[expC-ar2sin2(0+¢>>JEexp i(~l·~ + ¢1>J + 

i<K2·r + 

Thus, the intensity distribution, I, is given by 

I CC E~E = E<10) Eexp{-2ar·2:.in2(8+¢:>::·J + 

E<20) [exp(-2ar2 si n2(8-Cp) }] + 

2E(10)E(20)[expC-ar2(sin2(8+¢) + 

sin 2 (8-¢))}]cosC2Krsin(8)sin(¢) 

rh·;' ] 
\~.:_ ·' . 

(2.36) 

where E<lO) and E<20) are assumed to be real electric field 



30 

amp l i tu des. 

s imp l if> ... further analysis, we specify rh ' J1 . ,.., ') '+' • .. = ,/£. and 

assume that E<10) = E<20) = ECO) to find 

-~ - 2 2 E E ~Eco-) [ { ~ ·1-1-·>,J v = ~ . exp - ... ar cos •,_, J. ·"· 

[ 1 + c OS { 2K rs i n ( 8) + ~1 + 02}] (2.37) 

The last term on the right hand side can have the 

maximum value +1 and minimum value -1 depending on r for 

fixed 01 and 02. In fact the phase 01 and 02 only shift 

the intensity pattern with respect to origin, and can 

effectively be ignored. We can identify a length scale for 

the fringes such that 

2K ds in< 0) = 2 J1 

or 2dsin(8) = .>.. (2.38) 

where d is the fringes separation 

and ~is the incident laser beam wavelength. 

Hence by Knowing the crossing angle and the incident 

beam vJavelength, the fringe spacing can be determined. Note 

that the intensity of the successive maxima are decreasing 

in amplitude from that of the central maxima because of the 

gaussian nature of the input beams. This is shown in figure 

4 where z-axis represents intensity and x-y plane is the 

propagation plane. Here we assume that the diameter of the 

beam is 15 um, the decay constant is 1 .8E10/um2 the 
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crossing angle is 12.~ degree and the wavelengt~ is 0.488E-6 

um. The two beams.are propagating in x-y plane and crossing 

at the origin of the coordinates. 

The Photophoretic or Radiation Pressure Forces 

l..o.Jhen a dielectric spher~ is placed in a uniform 

electric field, it becomes polarized. The r·el.:..tion bebJ.Jeen 

the polarization, ~' and the electric field, ~! is given by 

(29) 

where 

P = c 3 <E - 1 ) / 4 n < E + 2 > J E < o ) (2.39) 

E is the relative dielectric constant of the 

sphere to the medium. 

\ 

If this die 1 ec tr i c sphere is i 11 um i na ted by a 1 i near 1 y 

polarized plane wave of radiation then it wi 11 be polarized 

in the electromagnetic field due to the displacement of the 

electrons with respect to the nuclei and also due to the 

partial orientation of any permanent electric dipoles that 

ma::» be present. Because the incident fiel.d oscillates 

harmonica] ly, then to a close approximation the induced 

polarization will follow synchronously as follows 

where 

P exp<iwt) = C3<E - 1)/(4.n <E + 2)J X 

E<O) exp( iwt) 

w is the angular frequency of oscillation. 

<2.40) 
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The resulting electric dipole moment of a dielectric 

sphere in the presence of an electric field is given C29) 

p = E CE - 1 ) / < G + 2 ) J a 3 E < 0 ) < 2 . 41 ) 

•Alhere a is the radius of the dielectric sphere. 

Furthermore, equation (2.41) can be written in terms of 

the refractive index of the dielectric sphere, na and 

r·efractive index of sour·rc•undir1g, n5 a:. follot .... •s 

where 

p = n~ E<n2 - 1)/(n 2 + 2)] a 3 E<O) 

= 0: ECO) (2.42) 

n is the ratio of index of refraction of sphere, 

n 3 to sourround i ng, n5 • 

In the presence of this radiation field, forces are 

exerted on a neutral dipcile <the polarized :.phere). In a 

dilute medium this 'ponderomotive' force 

Lorentz force (30) 

lNhere 

and 

B is the magnetic field induction 

Ft'. grad) is the force on the sphere. 

i =· s i mp l y the 

(2.43) 

Furthermore, if we assume~= cr ~as above in equation 

(2.43), the first term on the right hand side can be written 

as 



= (( 

(E·\17) E 

[(1/2)VE
2 - E :x: curl EJ. 
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(2.44) 

Then using Maxwell/s equation 

curl E + (1/c)(2>B/bt) = 0 (2.45) 

and the equation (2.44), equation (2.43) can be written as 

The first term of the right hand side of the equation 

( 2. 46) shows that the die 1 ec tr i c spheres are moved towards:. 

the high intensity regions of the incident radiation, when 

the dielectric constant of the spheres is larger than the 

surrounding medium. On the other hand, if the dielectric 

constant of the spheres are smaller than the surrounding, 

then the spheres would be moved out of the high intensity 

regions. The second term involving the Poynting vector is 

respon·:.i bl e for moving the dielectric spheres in the 

direction of the beam propagation. This is true for all 

cases; but when the dielectric spheres are not transperent, 

then radiomatric force may dominate. This can cause the 

spheres to move in the opposite direction of propagating 

beams. 

Micron size particles have been accelerated and trapped 



35 

in stable optical potential wells using only the force of 

radiation pressure from a continuous laser (31). A.Ashkin 

(32) shows this effect on a dielectric sphere, where a 

sphere 

1 i gh t 

is drawn into the high intensity region of focussed 

radiation. A single vertically directed focussed 

TEMoo-mode cw laser beam of approximately 250 mW is 

sufficient to move and ultimately support stably a 20 um 

glass sphere <33). The restoring force on the sphere due to 

gravity is balance by the radiation pressure. There exsits 

two distinct stable regimes of levitation for sol id spheres, 

one located above the focus, the other below it <34). A 

sphere can switch back and forth between these positions. 

In our own preliminary experiments a laser beam of 

wavelength <488 nm) was focused to an area of 15 nm in a 

samp 1 e ce 11 of th i cknes.s ~ 70 um and containing a di 1 ute 

suspension of 1 um diameter spheres at a density of 10E10 

particles/c.c. The particles are moued into the high 

intensity region and pushed in the direction of propagation. 

As a result of this radiation pressure, these particles are 

pushed against the downstream wa 11 • The self di ffr·r.i.c ted 

intensity maxima were observed as shown in figure 5a. This 

diffraction pat ter·n is a dimensi c•nal hexagonal 

structure. The scattering angle from this first neighbour 

intensity maxima 0(10) or 0(01) measured with respect to the 

incident' beam, was 24 degrees and the second neighbour· 

intensity maxima 0(11) was 43 degrees. Using the Bragg's law 

for two dimensional hexagonal close pack structure, 



Figure 5a . Bragg ·· s Spots Produced by 
Scatter i ng from a Cl ose 
Packed Structure Trapped 
b y a S i ngle Focused 
Laser Beam 
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Figure 5c. Real Space Struc ture in a Sample 
Compressed by Radiation 
Pressure. 
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separation and a is the lattice constant}, the real space 

configaration was reconst•ucted as shown in fig•.Jre 5b. A 

microscopic objective was~ used to image the real space 

structure pictur~·· ~s s~own in figure 5c. These two pictures 

gi ue th·e s·ame struci:ure v.Ji th the same dimensions. 

The;: effect of r bc•th the f i r·st term and second term of 

equation:: (2.46) is ~demonstrated in the above experiment. 

Note that if the dielectric spheres are not transparent then 

radiometric f-orce dominate over radiation f-orce. This may 

cause the dielr~tric sphePe move opposite to the propagation 

of the beam but they will also be moved in the high 

intensity regions<33). ~ 

Radiation Pressure for Finite Size Particles 

The effect of an ffeld gradient on dielec~ric spheres 

has been discu~s~d in the~pervious section with the implicit 

as-:.ump ti on that the p~rticles are small 

compared to '°'"he variati'1!tr1 in the field gradient. In our 

experiments the particle size and field gradient variation 

can be o~ the same o~der of magnitude. Thus we need to 

c on s. i de r · i:h e,. e ff e c t o. f the f i e 1 d gr ad i e r1 t u a r i at i on s v.J i t h i n 

a single particle. 
·, .• .• ! 

If tJ.,1e are in tei=-e"s'fed in the lateral force 
~ ;. ::·.-,' - . per·pend i cu 1 ar To- ·-n .. -e-d.(rec ti on of propagation) produced on 

then we focus our 

attention on:the ffr~tjte;m in the equation (2.46). Here 0 
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= -a. E 
2 

/2 acts l i i.:: e a potential whose negative gradient 

pr·oduces the C•f i nter·e-:.t. In a crossed beams 

experiment· the fringes IA•ill produce a spatially periodic 

potential which is purely harmonic for infinite beam widths. 

Let us assume a sphere of radius a is subjected to the 

pcitential produced by the fields in eq•.Jati•:•n (2.:37) in the 

limit = = 0 ' and q = 2Ksin(8). The force 

exerted on the -:.phere is dependent on the intensity 

potential averaged over the whole sphere. The average 

intensity potential, U<a~Jg) is gi•.Jen by 

where 

and 

The 

U( avg) = < 1/1..))A J[ 1 + cos< q .. r) J d3r> 
v 

(2.47) 

A is a constant Ca fuction of the magnitude of the 

intensity, the diameter of sphere and the 

dielectric constant of the sphere as well 

as the medium) 

q has the direction of the periodicity bf the 

potential (and magnitude q = 2J"Vd, tJ.Jher·e dis 

the width of the intensity potential) 

r i~ the distance of the sphere from the origin 

V is the volume of the sphere. 

integration is carried out over the volume of the 

sphere. Let us assume that the sphere is at distance, b from 

the origin and the direction of bi-:. parallel to q, as shov.m 

in figure 6. The equation (2.47) is then written as 



·-.... c 
Q) 

~ 

0 

Period of Potential 

ll/d 211/d 

Figure 6. Finite Sized Dielectric Sphere in 
a Periodic Intensity Potential 

41 



U(a•Jg) = <2Jt/l))A i;,. dr"1:.ir1(8) dB [1 + 

cosCqb + qr"cos(8)}J 
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(2.48) 

This integration is straightforward, and the result is given 

by 

U<~.•.Jg) =A [1 + C3cc•sJqb)/qa} jl (qa)J (2.49) 

where jl <qa) is the 1st order s.pherical Bessel function. 

Let the sphere be placed at the origin Cb = 0). 

Assuming a point particle (a/d ~O>, the average potential 

on the sphere is maximum (LJ(avg) = 2A). On the other hand, 

as the radius of the sphere compare to fringes spacing 

increases ( a/d ~) the average potent i a I decreas.es tc• :zero. 

When the sphere is displaced from the origin such that b = 

2d, then in the limit of point particles., the ai..ier·age 

potential is zero. As < a/d) i ncr·eases the average potent i a 1 

oscillates and decreases to a constant. One sees; that in the 

l i m i t i n g case that ( a/ d ~co ) , the pot en t i al goes to zero . 

The ai..ier-.:i.•;ie potential is cons.tant. This. me.an·:. that the fc•rce 

on the sphere is zero. 

Comparison of CCIFS and CBT 

CCIFS is a technique which monitors the local order in 

fluid sys.terns by cr·os.·:. cor·rel.:i.ting 1 ight s.cattered tc• two 

spatially separated detectors. Due to interactions, local 
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density mode:. be and :.catter- 1 i gh t 

pr-efer-ential ly with cer-tain symmetr-ies. A minimun of two 

detector-s may be used to measur-e these cor-r-elated density 

mode: .. In CBT a single density mode is dir-ectly stimulated 

in the fluid, and scatter-ing wi 11 pr-educe diffr-action 

pattern fr-om the stimulated mode, as well as, other modes 

:.Ja•.ied to it. Thus in both technique:., the (local) coupling 

of fluid density modes is being monitored. In this section 

1,.,.1e explor·e the cor1nection betvJeen CCIFS arid CBT. Recall that 

the equal time equilibrium CCIFS scattered intensity 

distribution was given in equation (2.30) and can be written 

as 

C<K,q,0) = [ -:: ( '\""" '\"" E. E. ~ E exp [ i K· < r. 
JL L 1 J 1 m 1 

- r. ) + 
J 

i j Im 
~/KTJ 

d(r)}/ZJ/[S(K)S(q)J 

and re-expressed as 

} ... ...-S(k)!3(q) 

(2.50) 

(2.51) 

where is a nongaussain factor including four 

par·ticle correlation functions. This ter·m become:. 

neg 1 i g i b 1 1;.,, sma 1 1 compar-e to the denominator for lar-ge 

scattering volumes. 
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sqo =J~e::q:•{iK·(ri - r·. 
J 

- \j-1/f<T} d(r·)./:z (2.52) 

I J 

is the apertured static structure factor 

and :z = f exp< -lf'/kT) d( r) , (2.53) 

is the partition function. The scattered intensities are 

represented in terms of the first Born approximation and 

averaged over an equilibrium distribution of particles 

subjected to mut•Jal i nteraci:.__i on poter1t i al, '+' • 

The CST scattered intensity distribution may be written 

, a-:. 

<I<K)> = {f:Lexp<ik•(;::-i - r.) - <cl>+ lf)/kT) 
• , J 
I J 

d(r)}/{ exp<-<~+~)) d(r)} <2.54) 

where the first Born approximation is again used to 

represented the scattered intensity with scattered amplitude 

ECI·· ) = 1 
I 

(infinite scattering volume). Tht scattered 

intensity is .averaged ot.ier an equilibrium di-:.tr·ib•.Jtion of 

partkle-:. with interacting potential and ex t€'r·na l 

potential, ¢ , v..•here cl> is gii..Jen by 

=A cos(q.r ) . (2.55) 

A i ·~ the a.mp l i tu de of the external potential (dependent on 

input power) and q is wave vector of the periodic potential. 
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Furthermore, the :.catter·ed intensity in the expre:.si 1::in 

(2.54) assumes a single probe beam scattered from the 

~ample, and the self-scattered beams are filtered out. 

Sy expanding equation (2.53) in a power series in' A, 

the amplitude of the external potential, a f•::irmal relation 

between CCIFS and CST can be demonstrated (35). The terms 

1 i near in A are zero due to the translational symmetry of 

the 1 iquid :.tate. The quadr·atic terms in A in•,,cil~>e pa.rti•:le 

correlation functions averaged over the same phase factors 

as in CCIFS. Taking into account the expansion of 

denominator of equation (2.53) in A, as well we have 

<l(k)> = SCk) + CA/KT> 2 CS<k)S(q)b~:1:C\ + 

c4ck,q)J + 0 CA
3 ) (2.56) 

where SCk) and c
4

<k,q) are defined as before. The scattering 

volume size is unrestricted here .and c
4 

< k, q) i :. no 1 onger 

dominated by Gaussain terms as the scattering volume becomes 

1 arge. 

From the above expression we see the similarity between 

these two techniques. The advantage of CST is that there are 

no aper t1Jre the influence 

mu 1 t i pa.:· t i ,: l e correlation f1Jnc ti ons on the calculated 

·:.c.atter· i ng ( f (r) = 1). On the other· hand, e;dr·eme car·e mu:.t 

be taken in order to collect the data. This CST techinique 

suggests a new way to investigate multiparticle correlation 

functions, a:. 1A1ell as, the :.cilid liquid phase transition. 



Commensurate and Incommensurate Phase 

in Two Dimensional Systems 
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For a long time it was believed that two dimensional 

solids CO•.Jl d not exist. The classical t\J.Jo-d i mens i on a. 1 

har·mc•n i c 

However, 

soilds cannot have long range order ( :36' 37) • 

the absorption of rare-gas monolayers on graphite 

interesting properties C38). As the temperature and 

pressure of the rare-gas is varied, these systems exhibit a 

large variety of phases. At high temperature and low density 

the monolayers form a two-dimensional <2-D) fluid 1 ike 

phase. At low temperature, as well as, low pressure they 

e>~hibit a 2-D cr>·stal-like phase which register on the 

underlying lattice (39). This fluid-sol id structure bears 

some resemblance to 

di mer1:. i ona l colloidal 

our problem of looking at a two 

1 i quid in the presence c•f a per· i c•d i c 

externa.l field. 

The monolayer problem may be studied theoretically by 

considering an array of spheres connected with.springs and 

having an average spacing a (spatial period 2J1./a). l,.Jhen 

these systems are subje~ted to a external periodic potential 

of spat i .a 1 period, 211/d, then depending •:ir1 the :.tr·ength of 

the external per i ·od i c potent i al , this harmonic structure 

undergoes phase change 1 i Ke the absorped atoms on the 

graphite substrate ( 39' 40) • If the e:i< terna l patent i al i -:. 

•.JJe aK ( c•r ab-:.e n t) the harmonic term would favour a lattice 

constant a VJh i ch is in general incommensurable with 
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potential spacing, d. Thi-:. is in general ter·med the 

i ncc•mmensura te pha-:.e (IC) and represented in figure ?a. In 

this case diffraction spots would not coincide with the 

Bragg spots of the per i od i c potent i a 1 • if the 

extern.:i..l pc•tential is strong enough, it may be favourable 

for the lattice to relax into the external periodic 

potential where the average spacing, a, is simply rational 

fraction of the period, d. This is termed as commemsurate 

pha-:.e (C) and is shown in figure ?b. The diffraction pattern 

for th i -:. c .:i.. se co i n c i des 1,1,1 i th the pot en t i a 1. HotAJe v er , these 

two phases (C & IC> do not exhaust the stable configurations 

( 40) • If the potential is not strong enough to force the 

particles into a commensurate phase, the particles wil 1 move 

towards the minima of the potential. The average period may 

approach a s imp 1 e commensurate val •.Je b•.J t remain 

incommensurate. This gives rise to a ad~i tional chaotic 

structure as shown in figure ?c. The diffraction pattern 

does not have well defined Bragg spots. For instance, if the 

potential 

potential 

is very strong compared to the interaction 

then clearly there exists a metastable state 

t.AJher·e the atoms are distributed randomly among the potential 

minima. This is also termed a chaotic phase. Later in the 

Chapter V we wi I 1 find it useful to use simi Jar terminology 

in analying our data. 
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I 
Figure 7a. Incommensurate Phase 

Figure 7b. Commensurate Phase 

Figure 7c. Chaotic Phase 



CHAPTER III 

EXPERIMENTAL BACKGROUND 

In trcrduc ti on 

This chapter gives details of the experimental 

techniques used. The general experimental design is given, 

with details of cell design, sample preparation, and data 

collection techniques. 

Experimental Details 

The basic CBT experimental set-up is straightforward. 

It consists of the following i terns.: two beam splitters, two 

front surface reflecting mirrors, one right angle prism •Aii th 

orthogonal sides having a reflecting coating, one lens, two 

pin diodes, amplifers, A/D conr..rerter, digital oscilloscope, 

analog oscilloscope, ap p 1 e I I e computer , samp 1 e c e 1 1 , 

screen, optical 

ion 1 aser. 

bench, chopper, He-Ne laser and/or an argon 

The tw6 crossed beams are produced from the main laser 

beam by using a coated optically flat beam splitter as shown 

in figure 8. The intensity ratio of transmitted to reflected 

beam was 40/60 and the angle between transmitted beam and 

reflected beam was made 90 degrees (for maximum efficiency), 

The two mirrors were placed about 30cm from the beam 
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splitter to direct each beam onto a prism shaped mirror. The 

prism tA.•as mounted on moveable table which is placed 

symmetrically with respect to the two mirrors. The optical 

path length of these two beams were made approximately equal 

and within the coherence length of the laser. These two 

laser be ams up on ref l e ct i n g fr C•m the pr i sm pr op agate d 

parallel to one ar1other· in the same plane with the main 

beam. The beam separation of the two parallel beams could be 

controlled by translating the prism table. This adjustment 

changed the crossing angle of the beams by making use of the 

double convex lens. In this way the angle could be varied in 

the samp 1 e from 0 = 1° degree to 9 = 30° degree assuming that 

the index of refraction of the sample .is 1 .33. The higher 

intensity beam was attenuated by introducing another beam 

splitter with transmission to reflection ratio 1/3:2/3. The 

reflected beam is used for triggering, while the transmjtted 

beam (prc•pagat i rig parallel to the c•ther beam) now has equal 

intensity with the other beam. One pin diode was positioned 

to detect the reflected beam. The photocurrent was amplified 

by a 741 operational amplifier using the simple circuit 

shown in f i gur·e 9. The s. i 9r1a l is then fed to .the triggering 

channel of the a/d converter. A lens of approximately llcm 

focal length was 

scattered intensity 

used to focus the beam in the sample. The 

at a given scattering angle was picked 

up by the second pin diode. This pin diode converted the 

light signal to electrical s i gna 1 and amplified it as 

described previously. This electrical signal was then fed to 
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Figure 9. Circuit Diagram of Pin Diode and 
Oper·a ti ona 1 Amp 1 if i er·~. 
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another channel of the a/d converter for data collection. 

The output signals could also be fed to an analog 

oscilloscope to observe the signal. The output of the a/d 

converter or digital oscilloscope was connected to the apple 

IIe computer. A chopper was used to eliminate the crossed 

beams and the chopping rate was controlled by a variac. This 

chopper has a circular blade which was attached to a motor. 

When the triggering beam was eliminated, a triggering signal 

was generated. A 1 inear relationship between intensity and 

amplified voltage was observed ( as shown in figure 10.). 

Cell Design 

The sample cell consists of the following items: three 

quartz plates, 

dimensions of 

a me ta 1 ce l 1 holder and an 0-ring. The 

two of the quartz plates are 1 in diameter arid 

1/8in thickness. The other quartz plate has thickness of 

1/8in and is 1/4in i r1 diameter·. This design is shown i r1 

figure 11. The small quartz plate is glued to one of the 

other· 

inside 

1 arger 

one of 

quartz plates using epoxy. This is then placed 

the eel l holder cavities. The other cavity 

holds the opposite quartz plate which i-:. separated fr·c•m the 

first by means of a silicon rubber 0-ring. The gap between 

the plates is 

assemble the 

plate in this 

varied by adjusting the screw tension. To 

cell, an 0-ring is placed on the top of double 

cell housing cavity. The other plate was 

placed on top of the 0-ring to form a seal, protecting 

effectively against evaporation. The other cell holder wall 
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was then placa~ on the top of the quartz plate and tightened 

by means of screws. Thus the sample is in contacf with only 

the quartz plates and 0-ring. 

Spacing Measurement 

. The spacing between the two quartz plate cell walls was 

measured in the following ways: first by using a microscope 

and then by an interference technique. A rough measurement 

of the gap was measured by focussing a low power microscope 

at the bc•ttom and top surface of the pl ates. of the cell, The 

uncertainty in the gap measurement is estimated at about 

20%. However, some par ts of this experiment needed •Jer·y 

accurate gap measurements (i.e. an uncertainty within 1%). 

Thus we utilized an 

( 5) • 

interference method described by Hurd 

ce 11 

Here a collimated laser beam enters a parallel plate 

at an angle 8i as shown in figure 12. Before injecting 

the sample 

Therefore, 

and there 

reflection 

in the cell, the gap is filled with air. 

the refractive index is same as outside the cell 

is strong scattering at the gap interface. A 

occurs at interface, but only the 

reflections from the interface adjacent to the thin air film 

proved to be important. Interference in the beams reflected 

from either side of the interface will depend on the spacing 

L. 

Consider figure 12. the phase of ray 1 at A and of ray 

2 at C are the same. The optical path length difference 
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Figure 12. Spacing Measurement 
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between ray 1 and ray 2 is simply nAB where n is the 

refractive index of the thin film ( n = 1, for air). This 

path difference between ray 1 and ray 2 may be expressed as 

2Lcos(8i). If n > n1 <the refractive index of the cell wall) 

an extra factor A/2 i ~- to be added to the pa th difference 

because of the phase change an reflection. Keeping in mind 

that ray 1 and ray 2 are not separate beams but selected 

rays within the incident beams, and ray 3 is only one of the 

entire number of reflected beams. The problem is to 

determine the order of the interference. 

Destructive interference, that is, a darKened ray 3, 

occurs when the path difference is a half-odd integer number 

of the wavelength. Hence the order "m" is given by 

m = [ 2L COS ( 0 i ) J / )-.. ( 3. 1) 

where ~is the incident radiation wavelength. 

Nov..• suppose the ce 11 is rotated so that 9 i increases. 

The path length difference will decrease and destructive 

interference will occur until 0i has increased enough that 

the next 1 ower order of interference is found. At this point 

a fringe will again darKen ray 3 so that the condition is 

immediately identifiable. Kr1owing the two angle~., 0i and 9f, 

at which sequencial order numbers are found allows one to 

solve for L from equatio~ (3.1) and identical equation form 

- 1 • 

Accuracy and precision can be increased by passing over 
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a number of fringes before reading 0f. The number of fringes 

passed over is given by 

6m = [2L/ A J {cos(0 i) - cos(8f)} (3.2) 

which gives gap L is 

L = <6mA) /[2{cos(8i) - cos(8f)}J. (3.3) 

In most situations the limitation on the precision is 

the uncertaintie in the angle. When that uncertainty of the 

gap is .1 um, the relative error in L is 1/.; thus a 5 um 

:.pacing 

important 

can be measured to within 50 A uncertainty. Another 

1 imitation is in the measurement of spacing below 

1 um where different laser lines must be used to see any 

interference at all for the accessible incident angles. 

Cell Cleaning 

The walls of the :.ample containers constantly 

contribute to the ionic impurities by the leaching out of 

charged ions. At least one quantitative study has been done 

problem and some suggestions made for 

In this studyJ the following procedure was 

(41) on this 

eliminating it. 

adopted to clean sample containers: 

1. Washing sample containers arid cell:. vigorou:.ly with 

a soap and a brush. 

2. Boiling in deionized water with Micro for 1 hour. 



3. Rinsing in deionized water, then re-boiling in 

deionized water. Repeating process several times. 

4. Final rinse was done using water deionized and 

filtered in a Barnstead system <18 mega-ohms 

resistivity). 

5. Handling with tongs and storing in a clean dry 

place. 

6. Keeping parts covered until use. 
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Actually, there is little hard evidence that leaching 

is i.ndeed a pr-oblem, but the circumstar1tial ei..iidence is 

convincing enough to use care in cell preparation. 

Sample Preparations 

The two clean quartz plates are put together inside the 

cell container with an 0-ring between them and mixed bed 

resin (Analytical grade mixed bed resin AG 501-XSCD) 20-50 

mesh, fully regenerated, Bio-Rad Laboratories) inside the 

cell. A wedge shaped gap can be produced by drawing one side 

of this cell tighter than the other. It is this wall 

separation gradient that will allow us to get a monolayer of 

particles. 

When the latex has been placed in cells with ion 

exchange resin, it is advisable to mix them mechanically for 

a few hours to speed the deionization process. However, 

violent or prolonged mixing is contraindicated by a "scum" 

of particles that forms at any air--water interface. This air 

may contain carbon dioxide which can be dissolved and may 
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contr-ibute tc• the i mpur· i tie:. pr-oblems. We avoided this 

pr-oblem b)' filling the eel l comp 1 e t e l >' with water-. An 

effective way to handle clean latex •Ali thout c•pen i ng the 

container- is via plastic t•Jbing with syringe taper-s on its 

ends. Latex can be removed from a vial using the sc•ft 

plastic top or- quartz tube and loaded in a syringe needle, 

then the sample cells can be loaded by injecting thr-ough the 

0-ring ce 1 l in the same way. If the eel 1 is f i l led 

completely, air contact will be minimal. The pr-oblem is now 

with aggregation of latex, but the percent of aggregation is 

very smal 1 compared to the rest of the sample. This sample 

is then placed in a quiet place with no thermal gradients 

that might cause convection. Within a. few hours one 

gener-ally finds nice liquid and crystalline structur-es which 

can be detected by illuminating with laser light. Some 

samples will simply never crystallize. Others phase separ-ate 

showing liquid and cr-ystal line regions. When it becomes 

necessary to transport them, we try to do so with the least 

amount of agitation possible. 

A/D Converter 

We used two different A/D conver-ters to collect data in 

our experiments. The first A/D converter used for this 

experiment is the AI13 analog input system data acquisition 

module <Interactive Structure Inc.). The AI13 analog input 

system is a high-performance 12-bit data acquisition system 

for Apple Ile computer. It plugs directly into one of the 
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Apple expansion slots and gives the Apple the ability to 

make precision voltage measurements. Any instrument or 

sensor producing an electrical signal becomes an Apple Ile 

input device. Software selects the input range, and sensor 

output range from +- 5 V61ts to 0-100 mill iVolts can be 

accomodated with 12-bit accuracy. 

The AI13 analog system has 16 input channels. The 

channel selection and range are a single store operation, 

which are then read in 2 bytes directly from the AI13. 

Sof tt ... •are is in complete control of both order and speed with 

which the channels are read. The analog conversions can be 

started by a varity of signals including an external trigger 

pu 1 se. 

AI13 fully supports high-performance programming 

techniques, such as high speed Assembly language sampling. 

The se 1 ec ti or1 and samp 1 i ng ti me of each channe 1 is 6 

microseconds, hold and conversion time is 13 microseconds, 

tot a 1 conversion time is 20 microseconds and sampling 

aperture is 125 nanoseconds. 

Digital Memory Oscilloscope 

The Model 85 aScope 

I nstrumer1 t Systems, Inc.) 

Digital 

is a 

Oscilloscape <Northwest 

dual-channel, fully 

programble, digital memory oscilloscope. It is designed to 

work with an Apple II, Apple II+, or Apple Ile computer. The 

Apple computer must have a Disk II, display, 48K of memory 

and the DOS 3.3 operating system. The model 85 aScope is 
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controlled by the Apple through programs. In any case, once 

the operating software is loaded and one or two probes are 

attached to the back of the Apple, we have a working 

DC-to-50 MHz digital oscilloscope. 

The analog information is received by the probes and is 

sampled very rapidly, digitized and turned into binary data. 

The model 85 aScope can average successive frames of a 

waveform to remove random noise and will store the entire 

data to the disk. The software then converts and displays a 

waveform on the App(e monitor. 

Data co 1 1 e c t i on 

All of our measurements involve measuring the intensity 

of scattered 1 ight, either as a function of input laser 

power, or of time, or of beam crossi~g angles. However, the 

intensity of the signals fluctuate in time, which 

comp! icates the data collection process. For these reasons, 

two different procedures are used for data collection. One 

of them is 

and other 

for stat i c or 

one is for dynamic 

intensity da~a collection 

or time dependent data 

collection. The static procedure basically uses the A/D 

converters as a digital voltmeter. The dynamic procedues 

utilizes. the digital 

average time sweeps. 

scope or A/D converter to signal 

A statistical method is used to get a continuous 

reading of the average intensity for static measurements. We 

defined the weighted average, S, by: 



S = L wn D<n)/I_w" 
n n 

= Lw11 <1 - VJ) D(n) 
n 
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(3.4) 

(3.5) 

where D<n> is the nth data sample measurement relative to 

the pres&r1t time interval. 0(0) is. the current data, 0(1) is 

the data taken before D<O>, D<2> is the data taken before 

is the data taken before 0(2) and D<n) is the 

data taken before D<n-1) data. Equation (3.4) is the same as 

standard average when the weight factor, w is unity. In 

practice, however, the ~~·ght factor was chosen be to less 

than unity and greater than zero in order to weight the 

present reading the most. This allowed us to have running 

average with minimized fluctuations and yet would reveal any 

systematic drifts in the signal. The value S is then 

dispalyed on the monitor or printer which worked as a 

digital voltmeter. 

The fluctuations in the signal are estimated by the 

fol 1 owing running aver·age: 

s = "'\" n 2 [(1-•.A,l){Lw D(n) "'""" n 2 - <Lw DCn)) <1-w)}J (3.6) 
n n 

This number is also displayed on the monitor or 

pri.nter. When the fluctuation in the sigr1al is. small, this. 

calcualted fluctuation is also small. The basic program for 

calculating these averages is given in appendix CC). 

In the case of the dynamic data collection, a totally 
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different method is used. Here two types of devices were 

used, one was the 16 channel AI13 A/D converter and the 

other one was the digital memory oscilloscope. 

In the first case one of the channels of the A/D 

converters is selected for triggering and another is 

utilized for data collection. This triggering was 

implemented by means of software and is based on the input 

to the triggering. channel . vJhen a ~- i gna 1 der i vt.>d from the 

beam chopper dr i •Jes the trigger· i ng channe 1 l C•W (or high 

depending on experiment), 

collect data. This data 

then the program was allowed to 

co 1 1 e c t i or1 is done utilizing an 

assembly language program supplied by the manufacturers of 

the A/D converter. Thi~- program f i 11 s up a Ba~.i c array with 

data, when called, and the time interval between the data 

points is controlled by software. The intensity versus time 

data are then signal averaged <using our own Basic program) 

by adding the present data run to any previous data runs and 

saving the results in the memory, until the desired number 

of sets of data have been averaged. The average intensity 

value versus time is then saved on floppy disk for further 

analysis. This basic program wi 11 also display the current 

average plot of data us time. This basic program is given in 

the appendix <D>. The assembly program supplied by the 

company is shown in appendix <E>. 

In the second case the digital memory osc.il loscope was 

used. It acts like a oscilloscope VJith difference that it 

can average maxi mum of 255 frame~.. It has two channe 1 s: one 
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of them is used as a triggering channel and one is for data 

collection. The software for this system is supplied. The 

triggering channel selection can be done by the software. 

Either channel can be used as the triggering channel, with 

either a low or high input logic depending on experiment. 

The number of frames to be averaged and time interval 

between data points is selected by software. This program 

w i 11 display the plot of average signal vs time and also 

saves it on disK. 

The basic difference between these two systems is minor 

and dependent on the particular experiment. The AI13 A/D 

converter has 16 channels and all of them can taKe data 

simultaneously whereas digital memory oscilloscope<DMO) has 

only two channels. The number of data points in a run is 

fixed in the case of DMD <256 points) whereas the A/D 

converter can taKe essentially any number of data points in 

a run. While the time irrterval between the data points can 

be varied in the same run for the A/D cor1ver· ter·:., the ti me 

interval between the data point:. is fixed for· the DMO. In 

any case the choice depends on the particular experiment. 

Laser and Laser problem 

A Spectra physics model 164 laser was used in our 

experiments. The two beams derived from the primary beam are 

focused down to a circular area of diameter 40 um and 

crossed to produce fringes with separation, don the order 

of a few microns. Smal 1 mechanical vibrations will produce 
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violent motion of the fringes and destroy the whole 

experiment. Initially we detected a vibration in the laser 

head. Because the laser is a water cooled laser, there 

seemed to be turbulent motion in the plasma tube. This 

produced a small vibration in the beam which was enough to 

destroy any standing fringes pattern. This problem was 

eventually overcome by implementing several different 

proposed solutions: (a) reversing the water flow in the 

laser head, (b) using an air trap in the water outlet of the 

laser head which acts 1 iKe a mechanical shocK absorber, <c> 

minimizing the spatial size of the experiment and making a 

firm attachment of the laser chasis to the supporting table 

and ( d) 

St i 11 , 

the experimental table was floated on air shocks. 

sometimes these vibrations were observed in the 

fringes. Finally these vibrations seemed to be correlated 

with turbulent motion in the laser tube produced by Kinks in 

the tube supplying water to the laser head. Thus, the final 

step to eliminate vibration required careful suspension of 

the hose supplying the cooling water. 



CHAPTER I 'v1 

NON-INTERACTING SAMPLE STUDIES 

Introduction 

It has been demonstrated that transparent dielectric 

spheres can be moved into high intensity regions, as well 

as, in the propagation direction of laser 1 i gh t ( 1, 31-34). 

On the other h•nd, if a sample of these spheres is subjected 

to crossed laser beams, then the spheres register in the 

high intensity 

diffracts light 

regions forming a phase grating which 

(1). The strength of the grating depends on 

of the intensity potential. A study of the 

the phase grating for weakly interacting 

the strength 

amp 1 i tu de of 

particles is presented in this chapter, as a function of the 

height of the intensity potential and beam crossing angles. 

A comparison is made between these results and a theory for 

non-interacting particles. For particles larger than 1 um 

diameter, the radiation pressure easily moves the spheres to 

the down stream cell wall. This gives us a chance to study 

the diffusion of the micro-spheres near a single boundary in 

the absence of other interactions. Dynamical measurements of 

diffusion indicates. as.lowing of the diffus.ion near a wall. 

In this chapter the author will try to understand this 

phenomenon experimentally and theoretically. 

68 
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Results for Non-Interacting Particles 

<or Strongly Screened Particles) 

This chapter describes details of the data collection 

procedure and results for static and dynamic experiments on 

colloidal particle samples. By non-interacting 

non-interacting particles we mean that the long range 

cou 1 omb force be tween particles is .highly :.creened. Thus the 

particles only interact near contact with strongly repulsive 

forces. A further increase in added salt will decrease the 

screening length, and van der Waals attractive forces will 

produce coagulation. Data was taken using the pin diode as 

describe in Chapter I I I. 

A lens of 10 cm focal 

incident beam in the cell. 

length was used to focus the 

The crossing angle of the two 

beams was varied between 6 to 13 degrees by translating the 

prism mirror. The two crossed beams produced a periodic 

intensity potential (i.e. hologr·aphic fringe pattern a:. 

mentioned in the Chapter II> with fringe spaciMgs, d varing 

from 1.67 um to 3.21 um. The sample ~ell gap spacing r·anged 

from 30 um to 50 um. The beam was focus to a spot of 

diameter 45 um <the calculation of the size of the spot is 

shown in appendix (8)). 

The micron sized particles were drawn to the high 

intensity region and pushed toward the downstream wall by 

radiation pressure forces. These particles aligned in rows 

in the high intensity region to become a transparent 
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diffraction grating. While a third laser beam of different 

frequency has been used to produce a diffraction pattern of 

the induced grating, the two interfering beams inducing the 

grating also produce a self-diffracted intensity pattern. 

This self scattered diffraction pattern has been used in 

data collection (rather than using third probe beam). For 

the non-interacting samples the pin diode was positioned 

with appropriate attenuation to collect intensity data at 

the position of the first (or higher order) intensity maxima 

produced by scattering of the laser beam from the induced 

diffraction grating. The figures 13a, 13b and 14a, 14b show 

the diffraction pattern and real space structure for the two 

~ifferent angles. The off axis scattering pattern (diffuse 

1 ines above and below the row of intensity maxima> is 

observed in the figure 13a and figure 14a due to the fact 

that particles were observed to have fairly uniform spacing 

parallel 

scattering 

found to 

to the intensity fringes. Using Bragg~s law for the 

angle of these 1 ines, the spacing of spheres was 

be exactly the diameter of the sph~res. This is 

indicted in figure 13b and 14b by direct imaging through a 

microscopic objective. 

It was also observed that if the fringe separation is 

less than the diameter of the sphere, then the spheres do 

not form the grating. This is because the average or net 

force on the particle is reduced as described in Chapter JI. 

Basically 

adjacent 

this results from a competition between two 

fringes to draw the spheres into their high 



Figure 13a. 

Figure 13b. 

Self-Diffracted Max i ma. The Fringe 
Spacing is 2.1 7 um and Diameter 
of the Sphere<E. i '=· 1 . o·? um 

Real Space Picture. The Fr inge 
Spacing i s 2.17 um and Diameter 
of the Spheres i '=· 1 . 09 1Jm. 
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F igure 14a . Self - Diffracted Max ima. Th e Fringe 
Spacing is 3.21 um and Di ameter 
of the Spheres i s 1 . 09 um . 

Figure 14b. Real Space Picture . The Fringe 
Spac ing is 3 . 21 um and Di ameter 
of the Spheres is 1 . 09 um . 
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intensity regions. If the fringe separation is larger than 

the diameter of the sphere but smaller than twice the 

diameter of the sphere then the grating is formed by single 

row of pirticles. The real space picture is shown in figure 

13b for 1 .09 um diameter particles. In this case the angle 

of crossing is from 12 to 9.5 degrees, the wavelength is 488 

nm and a focal length of 11.5 cm was used. On the other hand 

when the fringe separation is larger than twice the diameter 

of the sphere then double and trip 1 e rows of :.pher·es t1..1er·e 

found in a single intensity regions. This is shown in figure 

14b for crossing angles 6 to 8 degrees. 

Data Collection 

The magnitude of the intensity of scattered 1 ight can 

be studied as a function of input power and also as a 

function of time when the holographic grating is modulated 

in time. Thus the data collection is described in two parts, 

static or time independent and dynamic or time dependent. 

Time Independent Study 

In the time independent study the pin diode w~s 

position~d on the diffracted maxima such that the area of 

the diffracted spot is larger than the area of the pin diode 

Cin order to minimize the stray light going to the pin 

diode). The incident 1 aser intensity was varied. Thus the 

intensity of the crossed-beams were varied in order to 

change the depth of the intensity potential. The averaged 
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intensity was measured using the procedure describe in 

chapter III. When the running average intensity did not 

drift, the input power of laser and the average intensity 

data were recorded. 

Plots of input power versus relative intensity of the 

first or second order diffracted maxima were made for four 

different crossing angles ( 12, 9.5, 8 and 6.5 degree> and 

for four different particle sizes ( 0.481 um, 0.9 um, 1.09 

um and 2.02 um). Result-.:. are shown in figure 15 to 20. A 

least square power fit curve is drawn through the data 

points for each graph. A cubic power law was found to give a 

reasonable fit for particle sizes 0.481 um for all crossing 

angles (1) and 0.9 um for 12 degrees crossing angles as 

shown in figure 15 and figure 18 respectively and less than 

cubic power law was found for particle sizes 0.95 um, 1 .09 

um and 2.02 um for crossing angles smaller than 12 degrees 

as shown in figure 16, figure 17, figur·e 1'7' and figur·e 20. 

Because the radiation pressure forces are proportional to 

the volume of the particles (2.46), it is clear that as the 

diameter of the spheres become larger there is a greater 

force holding the spheres at the maxima of the intensity. On 

the other hand, the force on the spheres increases as the 

ratio of radius of the spheres to the fringes decrease. This 

is discussed in Chapter II. Hence, as the spheres increase 

in size, they become more confined at the center of the 

fringe. This causes the out put signal deviate from the 

cubic fit. In fact if the spheres are perfectly ordered and 
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fixed in position, then the alignment is complete and the 

diffracted intensity should be a linear function of the 

input intensity for self scattering studies. 

Theoretical Model for Particles Alignment in 

Radiation Potential Well 

At low input pc•wer· we expect the ~.elf-scattered 

intensity to follow a cubic dependence on the input power, 

because the particles align in proportion to the depth of 

the intensity potential and scatter coherently proportional 

to the square of this depth. The third power comes from the 

strength of the incident beam which scatters from the 

induced grating. However, once the particles are perfectly 

aligned by a strong enough radiation field, there can be no 

further increase in scattering other than that due to the 

increase .input power. Thus we expect the self-scattered 

response to be cubic at low input power and 1 inear at large 

input powers. To understand in detail the dependence on 

input power and temperature, we extended a model presented 

by D.Rogovin and co-workers (42-44). 

First we consider the force on the spheres is given by 

the equation <2.46) in the Chapter I I 

- 2 
F<grad) =a:t<1/2)\7E + (1/c)O(E X B)/Ot]. (4.1) 

Here the first term on the right hand side represents the 

force which moves the particles into the high intensity 
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regions and the second term represents the force which moves 

the particle in the direction of propagation of the incident 

beams. The force for the motion along the intensity gradient 

(neglecting motion along the direction of propagation) can 

be written in terms of a potential <see equation <2>, 

reference (1)) 

where 

F<grad) = - V'U<r·) = - 2 
(cr/2)\7 E (4.2) 

is given by equation (2.36), which on neglecting 

the gaussian beam shape term gives, 

E 
2 

= 2E < 10>
2 

[ 1 + cos< 2K r s i n < 0) > J (4.3) 

where : K: = 2K sin < 8) is the rec i proca 1 of the fringe 

spacing, d. 

Let us try to discuss this quantitavely. If the 

frictional coefficient is large enough and density is not 

too far from an equilibrium distribution, then the spatial 

variation of the probability density of the system, nCr,t) 

wi 11 be simi 1 ar to that of the imposed pot en ti al, U(r-). 

Using the PlancK-Nernst equation for the microparticle 

density one can write 

(4.4) 

where F = - \J U(r) is the force on the sphere and D is 
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defined as the diffusion coefficient. For infinite dilution 

D is given by StoKes~ law for spherical particles of radius 

a, 

D = KT / 6J1t"la, (4.5) 

For steady state ~n<r,t) /~t = 0 and this equation reduces 

to 

div{'V'n<r> n(r)\7U<r·)/KT) = O. (4.6) 

This potential, U<r>, can be written more expl ictly using 

the result , from equation (4.2), At equ i 1 i br i um the solution 

of this equation is the Boltzmann distribution: 

n<r,0) =A exp<- UCr)./KT> (4.7) 

where A is a normalization constant. 

Hence the probability of finding a sphere in one 

dimension is given by 

n<r,0) 2 = A exp { <a::E<t 0) /KT)( 1 + 

cos(2Kr sin(8))]}, (4.8) 

This can be verified by direct substitution into 

equation (4.6). For particles with Cn,;i > n5 ) the potential 

causes the spheres to move into the high intensity regions 
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of this periodic intensity potential and to register in rows 

to form diffraction grating. 

The normalization constant, A, can be obtained by the 

relation 

f n < r , 0 ) dr = 1 • (4.9) 

Substituting the expression for n<r,0) in the above integral 

we find 

AS:~p[(~E(10) 2/KT){l + 

cos<2krsin(0))}]dr = 1. 

Rearranging the equation (4.15) and substituting 

/KT and z = 2krsin(0) we get 

A [oxp<p)/2k sin(9)J s,::p<pcos<z))dz = 1. 

(4.10) 

2 
p =a: E< 10) 

(4.11) 

This equation can be evaluated by using the standard 

integral relation 

f
2J1 

1/2Jl exp<+ 

0 

z cos ( 0) + in 8) d0 = In ( z) . 

Hence, the normalized probability for finding a sphere 

at a position r is 

n<r,0) = (k sin(8))/ ! 0 (p) 
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exp[p cos<2Kr sin(8))]. (4.12) 

The figures 21 and 22 show a plot of n<r,O> vs r for 

three different values of p and four different crossing 

angles. I t is clear that as the p increases, the function 

n<r,0) becomes sharply peaked. In fact this will behave as a 

periodic distribution of delta functions in the 1 imit of 

high irrcident intensity and/or for sufficiently large 

spheres in well separated fringes. This probabi 1 ity function 

spreads out at low intensity or for smaller spheres. From 

the graph it is clear that ·ncr,O> is maximum at the middle 

of the high intensity regions. 

Effect of Coherent Self-Scattering by the 

Two Incident Beams 

Because the particle s.tr·uc tu re is probed by 

self-scattering of the incident beams, we have two 

overlapping scattering patterns which add coherently. In 

this section we formulate the effect of this more 

complicated s.cattering geometry. The tot a 1 seat ter· i rrg 

intensity is given by (equation <2.16)) 

where 

and 

:~exp 
I 

- - 2 (ik•r.>: 
I 

:fa<8>: 2 is the s.ingle particle form factor 

lK: = 2K sirr(0) is scattered wave vector·. 

(4.13) 

To proceec it is convenient to consider the scattering 
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amplit1Jde, H(k), for· a collectic•n of par·ticles where 

I (( I - '0' ,2 'H(k' ,2 I Ta I, .) I I ) I (4.14) 

such that 

H<IO = < Iexp (ik•r::)) 
I 

(4.15) 

Since the probability function, n<r,0) is Known for our 

system and is a continuous function of position rather than 

a discrete function, the sum in the equation (4.15) can be 

replaced by the integral. Thus the scattering amplitude can 

be written for a single K vector as 

H<K) = f n<r,0) dr exp(iK·~) (4.16) 

Because there are two incident beams in the self 

scattering experiment, there are two scattered diffraction 

patterns, <one for each incident beam). Furthermore the two 

patterns combine cc•herer.tl>' due to the mutual coherence of 

the two incident beams. We now discuss how to properly 

analyze the sc~ttered intensity under these conditions. Let 

the detector be placed on the lower side of the beam (1) and 

(2) at a point which is the 2nd order diffraction spot of 

the beam (1) and first order diffraction spot of the beam 

(2) as shown in figure 23. Because the cross beams from the 

grating, the scattering angle turns out to satisfiy the 
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condition for minimum deviation, and this relation can be 

1J..•r i t ten as 

2d sin(8n/2) = n~ (4.17) 

where d is the fringe separation 

Sn is the nth order scattering angle 

and ~ is th~ wave length. 

Since the diffracted :.pc•t of ir1tere:.t is the 

combination of the first order diffracted spot of the beam 

(2) and 2nd order diffracted spot of the beam (1), the angle 

between diffracted beam and the two read beams can be 

obtained. Let us assume that 2 ~ is the diffraction angle 

of the beam <1> which allows us to write the equation <4.17) 

as 

d sin< 'fl ) =A ( 4. 18) 

Using the relation 2d sin(8) = \ from the chapter <1> we 

get the relationship 

sin( ~ ) = 2 sin(8) (4.19) 

Let 2 ~ be the first order diffracted angle of the beam (2) 

on the lower side. This angle can be written as 

2 ci> = 2 l.jl - 29 (4.20) 
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and so sin( ¢ ) =sin( ~ - 8) ( 4. 21) 

The above equation <4.21) can be represented using equation 

(4.19) a-:. 

sin< ¢ ) = sin(8) C . 2(-)) 'E· In 8. 

(4.22) 

In fact, in the experiment the crossing angle 20 was 

varied from 3° to 12°degrees. The sin square of this angle 

is very smal 1 compared to unity. If we neglect the small 

terms compared to unity, we get 

sin(~) = sin(0). (4.23) 

In this approximation we can write the scattering angle 

for a 11 higher orders as an integer mLltipie of crossing 

angle of the beams as 

sin< ~ n) = n sin(0) (4.24) 

At this point we have a 11 the tools needed to find the 

scattering amplitude due to both beams. Let us consider any 

order of the diffracted maxima. Substituting the expression 

for the n<r,0) and K , in equation <4.16), one can write the 

scattering amplitude as 
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d 

H ( s) = [( K. =· i n ( 8) ) / ( 10 ( p) ) J _[exp ( i 2K r 

nsin(8)) exp(p cos(2Kr sin(8))) dr. (4.25) 

Putting 2Kr sin(8) = z and rearranging equation (4.25) we 

get 

H<k) = [1/2 I,<pllr-:p<inz + p cos(zlldz. <4.26l 

This is nothing but the integral representation of the 

m6dif ied Bessel function of nth order, and the scattering 

amplitude is given by <43,44) 

(4.27) 

Hence the scattering amplitude for 1st order spot and 

2nd order spot is given by 

(4.28) 

and (4.29? 

respectively. 

The tot a 1 seat ter i ng amp 1 i tu de is then the :.um of the 

individual scattering amplitude for each beam. 

H<Kl ,K2, ..• ,Kr1) = (fl H<Kl) + f2 HCK2) + 

..... + fn H<kn)) (4.30) 
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wher-e for- example Kl is the scatter-ed wavevector-

cr-ossponding to the first or-der- maxima measur-ement with 

respect to the fir-st beam and K2 is the scatter-ed wavevector-

of the second or-der- maxima measurement with respect to the 

second beam, etc. 

The physically measur-able quantity is the intensity. 

The intensity is the absolute value squared of the 

scattering amplitude, HCK1 ,K2 .•. Kn). However because we ar-e 

self-scattering, there is another factor in the scattering 

intensity, the power- of the incident beams. Thus the 

expression for the output intensity for two self-scattering 

beams is given by 

I a:. IH<Kl ,K2) 1
2 

p (4.31) 

where 
2 p = a: E ( 10) ./KT. 

In the case of non-degenerate four wave mixing a third 

laser beam is used in or-der to probe the sample. The 

intensity 

scattering 

scattering 

of the probe beam is 

amplitude wi 11 have 

amplitude, H<K), wi 11 

fixed. In th i s ca s:.e the 

only one term. This 

be the ratio of modified 

Bessel function of order 1st to 0th <42,43,44) for first 

or-der :.cat ter i ng. The expression for the scattering 

amplitude can be written as 

(4.32) 
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and the 

to the 

intensity in this case will be simply proportional 

product of the absolute value square of the 

scattering amplitude. 

(4.33) 

At this point we see that intensity I of equation 

( 4. 31) and has a cubic power· dependence •Alhen p < 1. As the 

value of p increases and becomes greater than unity then I 

de1..i i ates from cubic pov..1er dependence. At high enough power 

it is 1 i nearly propbrt i onal to "the input i ntensi b'. This 

mode 1 a 1 so shows that the higher· order di ffr·ac ted maxi ma 

have even larger power law dependences for p < 1 <43). 

In our experiment the input pc•wer frc•m the 1 aser was 

varied from .015 to .07 watts for four different sizes of 

spheres and for five different crossing angles. As we have 

seen, the force on the spheres is dependent on the volume 

and relative refractive index of the material. It i-:. also 

shown in equation (4.31) that OU tpu t intensity is 

independent of the crossing angle of the two beams. HovJever, 

from the Chapter I I, VJe ha•Je seen that the ac tua 1 force on 

the sphere is less than the calculated force from equation 

<2.49) when the fringe spacing is smal 1 compared to the 

particle diameter. These data are corrected for the 

effective force by using method describe in chapter II. A 

theoretical fit to the data is shown in figure 24 and 25 for 
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these four different sizes of spheres. We see in figure 24 

that the data for 0.481 um diameter sphere-:. fall in the 

cubic region and the data of 0.95 um and 1.09 um diameter 

spheres start to deviates from the cubic region. In this 

case the 1st and 2nd order self diffracted intensities data 

fits are presented. On the other hand when we used the 2.02 

um diameter spheres, then we have an opportunity to study 

the higher order density modes. The data fit presented in 

figure 25 is a 2nd and 3rd order superposition of self 

diffracted maxima. Since the force on the sphere is volume 

dependent for same relative refractive index, hence these 

larger spheres are more confined to the center of the 

intensity potential at the same input powers. These data are 

in the region where p > 1 and a deviation from the cubic 

dependence is noted. The arreement between theory and 

experiment is good. 

Study of Intensity as a Function of Crossing angle 

The intensity of the self diffracted spot was also 

studied as function of crossing angle for fixed input power 

and a plot of this is shown in the figure 26. The intensity 

of the self diffracted beam diminished as the crossing angle 

increased. This is due to the particle form factor which is 

highly angular dependent. This angular dependence in the 

scattering by single particle was explored in the Chapter 

II. The effect is due to interference within single finite 

sized particles. The theory was developed in an approximate 
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way following the approach to Rayleigh and Gans. On the 

other hand Mie theory discussed in Chapter II, should be 

used in our case because the relative refractive index is 

larger than unity and particle diameter is greater than wave 

length. TaKing into account the form factor for Mie Theory 

with the parameters for our exper· i men t, gives the upper 

curve in figure 26. 

Thus we :.ee that the form factor offers a good 

explanation as to why the intensity decr·eases as the 

crossing angle increases. 

Time Dependent Study 

The time dependence of particle density grating growth 

and decay was taKen for non-interacting colloids by using 

the A/D converter and digital memory oscilloscope. The 

results of these two methods were compared and were found to 

be in agreement. We found that the small angle l i gh t 

scattering is very difficult using dynamic light scattering 

<DLS) and is much easier in the cross beam experiment. In 

dynamic light scattering the spontaneous thermal density 

fluctuations are measured vJh i le in the crossed beams 

experiment, the density grating is stimulated and its decay 

is monitored. The crossed beams signal can be much stronger 

than the DLS signal, and this probably accounts for the case 

of its measurement. 

In the crossed beams experiments two laser beams are 

crossed in the sample to form holographic fringe pattern. 
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The dilectric spheres are moved to the high in ter1s. i ty 

regions by means of the photophoretic force effect. This 

produces a stimulated density modulation in the two 

dimensional colloidal system which strongly diffracts 1 ight 

in definite directions. A 488 nm wave was used and is not 

absorbed by either water or spheres. If one of the beams 

(the write beam) is blc•cked, 

mode decays. This causes the 

then the stimulated density 

intensity of the diffracted 

light proauc2a by the other beam to diminish. Alternatively 

a third He-Ne laser was also used as a probe beam and both 

the write beams are blocked. 

Data was collected and plotted by the Apple Ile 

computer as describe in Chapter III. The figures 27a to 31a 

show the growth and decay of the light intensity diffracted 

from stimulated density modulation for four different sizes 

of spheres 

27a to 30a 

<0.481 um, 0.95 um, 1.09 um and 2.02 um). Figure 

shows the grc•wth and the dee ay of the gr· at i ng 

where the probe beam is one of the write beams and figure 

31 a. shows the growth and the decay of the gra t i·ng wher·e the 

probe beam is 

ana I >'Zed for 

a third 

both the 

laser <He-Ne laser). This data is 

decay and the growth of this 

stimulated density modulalation. 

The analysis of the diffracted s.ignal is. performed as. 

follows: (45,46,47 48). The measured voltage is proportional 

to the detected intensity. This intensity may not be pure 

scattering from the sample but may include stray 1 ight 

scattered from cell surfaces, etc. This stray 1 ight may mix 
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coherently or incoherently with the signal. Thus the form 

for the measured signal is taken to be 

2 
V(t) = [E(t) + BJ + O (4.34) 

where E(t) is the electric field amplitude from the sample. 

B accounts for stray 1 ight mixing coherently with the sample 

signal amplitude (heter·odyne effect) and '6 repre:.ents 

incoherent mixing. 

In genera 1 , we can taKe E< t) to be a sum of the 

exponentials as 

E< t) = CL exp <-t/T i) (4.35) 

Analysis of our time decay data on independent (hard 

spheres) ·particles indicates a good fit with E<t) a single 

exponent i a 1 , B equa 1 to zero and set equa 1 to the V< t ~a) 

1 imi t of the data. 

Self-Diffusion Measurements 

The diffusion of sub-micron particles has been studied 

previously by CBT (1). The diffusion of small molecules 

through a swollen polymeric membrane:. has al :.o been studied 

using this type of experiment <45) where it was shown that 

the dependence of the dye diffusion coefficient on the 

solvent volume fraction does not obey free volume theory. 

App 1 i cation of the technique to the 1 i quid cr·y:.ta 1 s 
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indicated that the binary mass diffusion in the nematic 

phase is faster along the local axis than perpendicular to 

it (46). While the cited CST studies focus on interparticle 

interaction effects, it has been noted in DLS experiments 

that the diffusion of sub-micron dielectric spheres between 

two parallel boundaries is s 1 ower· due to hydrodynamic 

effects than with no boundary (5). The studies presented 

here represent what we believe to be an observed transition 

from free bulK self-diffusion to diffusion hindered by 

hydrodynamic wa 1 l interact i ens :.tud i ed by CBT. 

In these experiments, hydrodynamic wall effects are 

encounterted because the particles are pushed by the 

radiation pressure towards the downstream wall. At constant 

input power the force 

particles. This force 

is larger on the large diameter 

is always presents to some degree 

because the decay of the particle all ignment rs monitored by 

one of the write beams in the self scattering experiment or 

by a third beam in a probe experiment. These light beams 

exert a pressure on the particles even when one <or both) of 

the crossed beams are eliminated. 

Typical data from these experiments is presented in 

figure 27a to 31a The analysis of the diffr·acted signal is 

performed 

ex traced 

1 og plot 

decay is 

where v..se 

by 

frc•m 

of 

we 1 l 

h ai..' e : 

using equation (4.34) with B = 0 and o is 

the long time decay data (background). Fr-om a 

the data (figure 27b to 31b) we see that the 

approximated by a single exponential decay 
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E<t) = C exp(-t/Td) (4.36) 

and the slope obtained from the figure 27b to 31b is related 

to relaxation time constant as 

1/Td = slope/2. (4.37) 

Formally we can understand these experimental results 

on the basis of the diffusion equation introduced in 

equation (3.4). While the force term involving F is present 

for the formation of the periodic particle grating, it is 

absent when one or both of the incident beams is el imir1ated 

and the simple diffusion equation results: 

2 = DV' n ( r, t) (4.38) 

where D is the diffusion coefficient. The intermediate 

scattering function, S<K,t), is related to the density, 

n<r,t), by a spatial fourier transform. Thus we may fourier 

transform the diffusion equation given in equation <4.38> to 

find 

(4.39) 

which is easily solved to find 
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(4.40) 

where K = ii - is is the interpreted as the scattered wave 

vector and h<q ±. K ) is the delta function. The function 

results from the assumption that a single density mode with 

wave vector q (or fr· i nge spacing d = 2n/q) is present at t 

=O. 

The physically measurable quantity is the intensity (in 

this case voltage) which i s di rec t 1 y pr op or t i on a 1 to the 

absolute value squared of the S<K,t). Comparing equation 

<4.37) to (4.40) we see that slope is 

slope = 2 DK2 (4.41) 

and so equation (3.37) becomes 

2 
T = 1 / DK . (4.42) 

Thus we expect the measured relaxation time to be 

directly related to the particle self diffusion constant and 

the scattered wave vector determined from the incident beam 

angle. 

coefficient for 

shown in Table 

The measured value of the diffusion 

these four different diameter particles are 

I along with the theoretical diffu:.ion 

coefficient value for an infinitely dilute sample with no 

boundary <the free diffusion coefficient>. The measured 

diffusion coefficients are smaller than free diffusion 



Diameter 
of the 
Sphere 
in um 

0.481* 

0 ,'?5 * 

1. 09 * 
2.02 ** 

2.02 *# 

TABLE I 

COMPARISON OF MEASURED DIFFUSION CONSTANT 
TO FREE DIFFUSION CONSTANT FOR FOUR 

DIFFERENT SIZES OF SPHERES 

Fringe Input Measured Free 
Spacing Power per Diffusion Di ff•Js ion 
in um unit Area Con-:. tan t, D Ccrnstan t 

in Watts/m in ma ... /·s. in m2 /s. 

1 • 77 39.39E6 6.91E-13 8.90E-13 

2.63 29. 05E6 3.15E-13 4.51E-13 

2 .17 21 .49E6 2.10E-13 :3 .. 9:3E-13 

2.89 26.46E6 8.55E-14 2.12E-13 

2.89 42.49E6 6.87E-14 2.12E-13 
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Q = 
{ (KT /D) 
- 6nna}/A 
i r1 Kg/m-s. 

1 . 986E4 

1.685E4 

2. '?99E4 

2. :354E4 

3.885E4 

A is the square of the radius of the spheres times cosC8) 
* Self-diffracted 1st order maxima, Temperature 20° C 
**Self-diffracted 2nd order masima, Temperarure 2if C 
*#Third laser (He-Ne) as a probe beam, 1st order maxima and 

Temperature 2if C 
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coefficient. We beleve this is to be due to hydrodynamic 

wall effects discussed previously. 

The boundary dr·ag effect can be examined b>' 

subs tract i ng the Stoke-'s drag 6J1 ria from the measured 

diffusion constant divided into the thermal energy. These 

values are 1 isted in Table I. As the radiation pressure 

increases, the sphere exerts more force on the boundary 

layer and. as a result the boundary layer becomes thinner. 

The thinner the boundary layer is, the greater the drag 

force. This is discussed in more detai 1 in the following 

s.ec ti on. 

Finally we note the effect of coherent mixing of the 

two self scattered beams may be ?een in the data in figure 

27a, 28a, 29a and 31a. When one of the beams is blocked then 

we see an instantaneous decrease in the diffracted intensity 

for· 0.481 um, 0.95 um and 1.09 um diameter· spheres as shown 
/ 
in figure 27a to 29a. However, for 2.02 um diameter spheres 

the effect is reversed, the diffracted intensity 

instantaneously increases when one beam is blocked as shown 

in figure 30a. It was shown in Chapter· II that the 

scattering amplitude of individual spheres can have negative 

value. The total scattering amplitude is thesumc•fall 

amplitudes reaching the detector, and the in tens i ty is 

prop or ti ona 1 to the absolute value squared of the total 

amplitude. For 2.02 um diameter spheres the scattering 

amplitude of one beam is positive and other one is negative. 

This can easily be obtained from the Chapter II form factor 
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calculation and accounts for the observed behavior. 

Alternatively, when a third laser beam probe was 

incident norma 1 to the grating plane and bc•th 'Hie wr· i te 

beams are blocked the results shown in figure 31a. and 31b. 

were produced. The diffusion coefficient was measured be to 

smaller than the self diffracted method of measuring. 

Pr·esumabl y th i =· is due to the 1 arger· input cr-o:.sed beam 

power wh·i ch moves the part i c 1 es c 1 o:.er to the wa 11 • However, 

more extensive studies need to be done. With the smaller 

probe power (5.0 mW) and the elimination of the incident 

crossed beams, during the decay, the probe beam method 

offers several advantages: no coherence effect due to two 

beam interference, elimination of most of the radiation 

pressure during the decay, no extra force parallel to the 

wall, etc. 

BB Pellets Experiment 

To explore the boundary effect on the particle motion 

we did an experiment with BB pellets and glyce~in. These BB 

pellets are dropped in the middle and near the wall of a Jar 

containing glycerin. Here we used two types of Jar with 

diameters of the jar 14 cm and 3.6 cm and length 25 cm and 

40 cm respectively. The 88/s were 0.44 cm in diameter. When 

these B8/s are dropped, they will experience a drag force 

and soon reached their terminal velocity. The velocities are 

recorded arid shown in Table II. Here v..1e obser~ied the velocity 

of the 88/s along the wall are smaller than the velocity of 
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these 88's on the cylinder axis. The velocity of the BB's on 

the cylinder axis is then corrected further for an unbound 

fluid using the following formula (42) 

U = V/{1 - [1/(K + a L1>RJ[5.6112 -

5. 5642( a/R)
2 

J) (4.43) 

where u is the velocity in the unbound fluid 

l.) is the velocity on the cylinder axis 

a is the radius of the 88 pe l let 

R is the radius of the cyl i nder 

and K and L1 are constant dependent on the radius 

and force on the BB's, a.s we l l as, 

radius of the cyl i nder. 

The value of the constants can be obtained from Table 

7-5.4 of reference <49). Using these values the unbound 

velocity was ob ta i r1eq as shovm in Table II for these two 

cylinders. These velocities are in good agreement with that 

obtained assuming StoKe's drag U = 4.5 cm/sec. 

In these experiments the only force acting on the 88's 

is the gravitational force VJhich i-:. vertically downwar·ds. So 

far no external 

near the wal I. 

force is exerted on the BB's to hold them 

In general the 88's will be moved away from 

the wa 1 l by a 1 ift effect <50). In conclusion we note that 

the results of this very simple experiment indicate a strong 

boundary effect. 
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TABLE II 
. 

COMPARISON OF VELOCITY OF 88 PELLETES ALONG THE l1..IALL 
OF THE CONTAINER TO THE MIDDLE OF THE CONTAINER 

AND THE CORRECTED FOR THIS CYLINDERICAL 
BOUNDARY SHAPE IN GLYCERIN 

), -------------------------------------------------------------
0.44 cm Diameter of BB's = 

Density of BB's = 7.64 gm/cm 
Mass of BB's = 0.34 gm 
Temperature = 19°C 

Density of Glycerin= 1 .2~ gm/cm 

Diameter 
of the 
Cc•n t.;.. i ner 
in cm 

·J .. 
·-·. 0 

14. 0 

Velocity 
Along the 
l1..lal l 
in cm./sec 

2.12 + 0.1·;;:· 

2. 38 + 0. 1 7 

l)e 1 QC i ty 
at the 
Middle 
in cm/sec 

3.15 + 0.15 

4. 24 + 0. 1 7 

Cc•rrec ted 
\Je 1 oc i b' 
for infinite 
[..Jal l Separa. 
in cm/sec 

4.25 + 0.21 

4.54 + 0.20 
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In the previous experiment we demonstrated the effect 

of the wall on the terminal velocity of the BB's, where the 

external force exert on the BB's to stay near the wall was 

zero. However, another type of experiment was done by using 

a large tanK filled with glycerin. In order to introduce a 

force holding the BB's near th~ wall, the tank was placed at 

an angle. In this way there will be two force components due 

to gravity: along the direction of motion and perpendicular 

to the direction. The force perpendicular to the direction 

of motion will hold the BB's near the bottom wall and result 

in an extra resistive drag. The measured velocities of the 

spheres are shown 

components parallel 

in Table III along with the force 

and perpendicular to the wall. It is 

observed that the BB's have both translational and rotation 

motion. For smal 1 angles <with r·espect to horizontal) the 

motion is dominated by rotational motion and as the angle 

increases the rotational motion decreases. 

The thickness of the boundary layer depends on the 

balance of forces perpendicular to the motion. These forces 

are due to gravity and hydr·odynamic effects. For laminar 

flow we argue that 

where 

F<e) = D<U lJ 

F(d) = H<D<L>> V 

(4.44) 

(4.45) 

F<e> [= m'g sin(8)J is the component c•f the force 

acting along direction of the velocity 
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TABLE III 

COMPARISON OF VELOCITY OF BB'S PELLETES ALONG THE WALL 
OF THE CONTAINER V..IHEN BOTH FOF:CES PARALLEL AND 

PERPENDICULAR TO THE MOTION ARE PRESENT 

0.44 cm Diameter of BB'"s = 
Density of 88'. s = 7. 64 gm .. -· .. · cm 

Angle t.o.• i th 
the Hor· i zon 
in degree 

14.6 

17.5 

20.5 

23.5 

80.6 

85.7 

87.5 

Force due to Gravity 
Density of Glycerin 

t.)e 1 oc i ty 
of the 8B'. s. 
in cm/sec 

I). 1 7 + 0. 01 

0.22 + 0.01 

0.27 + 0.01 

0.35 + I). 01 

1 . 07 + 0.04 

1 1 .-, . .:. + 0.04 

1 . 14 + 0.04 

Mass of BB's = 0.34 gm 
Temperature = 19°C 

= 278.9 dy 
= 1.26 gm/cm 

D(L) = 
F< e )/t) 
in gm/sec. 

275 + 10 

256 + 10 

239 + 9 

214 + 8 

172 + 17 

167 + 17 

165 + 17 

H<D(L)) = 
F < d)/t.) 
in gm/sec. 

3.84 + 0. :38 

3. 1 7 + 0.32 

2.68 + 0.27 

2. :30 + 0.23 

0. 1 7 + 0.02 

0.075 + 0.008 

0.044 + 0.009 
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D<L) 
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F ( d) [ = m ,. g cos ( 8) ] i s. the comp C•r1 en t c•f the f C•r c e 

acting perpendicular to the wal 1 

D(L) is. the coefficient of dr·ag par·allel to the 

wal 1 

H ( L) i s a 1 i ft c C•e ff i c i en t 

L is the distance from the particle center to 

the wa 11 • 

and HCL) are assumed dependent only on the 

thickness of the boundary layer in general. A plot of 

CH(L)/D(L)) vs DCL) can then be determined experimentally 

from a ratio of the force components and a measurement of 

the BB,. s. ve 1 oc i ty. The result is shown in figure 32 where we 

see that H< L) is direct 1 y prop or ti ona 1 to the square of the 

DC L) • 

Finally we note that the diffusion mechanism of 

microsized spheres near a single boundary were different 

from unbounded diffusion mechanism. The experiment was done 

with the 88 pellets an~ glycerin suggests an explanation of 

this phenomena. The thin layer of fluid between the spheres 

and the boundary is related to the lubrication layer which 

becomes smaller as the radiation pressure increases. The 

drag of the bulk fluid is different from this thin layer. 

Growth of the Density Grating 

Lastly in this chapter we look at the growth of the 

density grating. The grating formation time should depend on 

the incident crossed beams poweri sphere size, refractive 
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indix of the particles as well as viscosity of the solvent 

and fringe spacing. The diffraction pattern produced by 

scattering from the grating contains information on the 

amplitude of the different spatial modes being stimulated. 

The zeroth order mode corresponds to a uniform average 

particle distribution and is time independent. The first 

order mode has a wavelength, d, equal to the fringe spacing 

and initially grows most rapidly when the crossed beams are 

turned on. Higher order modes have shorter wavelength and 

initially respond weakly to the crossed beams (44). Because 

of this, we ignore the effect of the higher order modes than 

the first in our analysis of the initial growth in the CBT 

experiments. Furthermore we as.s•Jme that this growth is c•f 

the following form 

ECt> = 1 - exp Ct/Tf) (4.46) 

and fit the data using equation (4.34) to determine the 

formation time, Tf. The time for different experimental 

conditions are 1 i sted in Table IV. 

We expect the formation time to be i nvers.e l )"" 

proportional to the drift velocity produced by the radiation 

field and proportional to the length the particle must 

diffuse ( d = 2}1/K): 

Tf = K//(K V) (4.47) 
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where K'. is the universal con-:.tant 

K = 2n/d~ d is the fringe spacing 

and V is the drift velocity which is given by 

() = F/f (4.48) 

with f being a friction factor. The diffusion constant, D is 

related to the friction factor f via the relation 

f = KT/D. (4.49) 

Finally putting every thing together in equation (4.47) the 

universal constant, K', becomes 

where 

and 

2 K' = <Tf/Td) p CK/ks) (4.50) 

Td <= 1/DKs
2> is the relaxation time constant 

determine previously 

p (=O:E(10)
2 /KT>, E<10) is the amplitude of the 

app l i ed field 

ks is the scattered wave vector. 

The value of the relaxation time constant, Td, can be 

obtained from Table IV. Here we are not using the free 

diffusion constant in order to obtain the relaxation time 

constant because the spheres are diffusing near a wall. We 

have seen from the previous discussion that the hydrodynamic 

wall effects produce an increased drag. 
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From fluid mechanics we Know that the velocity of the 

fluid at the wall and velocity of the fluid at the sphere 

w i 11 be at rest with respect to the wall and sphere surface, 

resp•ctively <strict boundary condition). A very thin layer 

w i 11 :.tay be tween the wa 11 and :.phere which i =· Known as the 

boundary layer. The thickness of this thin layer of fluid is 

dependent on the surface roughness of the sphere as well as 

the wall, surface tension of the fluid, viscosity of the 

fluid and pressure on the sphere. This thin layer undergoes 

a very high strain when the spheres try to move in the high 

intensity region. The fluid in the front of the sphere will 

slip through that thin layer, which causes the sphere to 

experience a large drag. This slows down the particle. Hence 

we used the measured relaxation time constant, Td, instead 

of the theoretical free relaxation time punctuation 

Stoke/s-Einstein constant. The effect of the force due to 

the finite size of the spheres are also taken into 

consideration. These values of universal time constant are 

1 isted in Table I¥. 

The universal of the first order self 

diffracted intensity maxima of 0.481 um, 0.95 um and 1.09 um 

is shown 

universal 

in the begining of the Table IV. We see that the 

constant of 0.481 um diameter sphere is about half 

of the value of the universal constant obtained for 0.95 um 

and 1.09 um diameter sphere. This suggested that we are 

missing an important factor in our estimate of the formation 

time. The deviation is systamatic following either the 



TABLE Il.) 

COMPARISON OF FORCED DIFFUSION TIME OF DIFFERENT 
GRATING ORDER MODE TO FREE RELAXATION TIME 

FOR FOUR DIFFERENT SIZE OF SPHERE AT 
FOUR DIFFERENT FRINGE SPACING 

Diameter Fringe Potential Forced Ratio 
of the Spacing Energy on Diffusion K/ = 
Sphere in um Sphere/KT Time Tf <Tf/Td) 
in um <P = U/KT> in -:.e c . (k/ks)P 

0.481* 1. 77 0.235 0. 1 76 0.399 

0.9 * 2.63 1. 208 0.397 0.878 

1. 09 * 2. 1 7 1 . 192 0. :350 0.728 

1 . 09 * 2. 1 7 1 . 015 0.488 0.865 

2.02 ** 2.89 7.646 0. :;-68 2. 403. 

2.02 ** 2.89 6 .162 1. 406 2.739 
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Ku·'= 
K·'/a 
per m. 

1.66E6 

1.85E6 

1.34E6 

1.58E6 

2.38E6 

2.71E6 

-------------------------------------------------------------
* Self-diffracted 1st order maxima, Temperature 2if C 
**Third laser <He-Ne> as a probe beam, 1st order maxima and 

Temperature 2if C 



118 

particle radius or energy/KT of the system. If we divide 

this constant by the radius of the sphere then the values of 

Tf almost agree within experimental error. On the other hand 

for a 2.02 um diameter sphere there is no agreement. The 

first order diffracted spot of 2.02 um diameter sphere was 

probed by a third laser <He-Ne laser). This laser probed 

perpendicular to the grating and the two write beams 

<Ar-ion) were blocked. When both the write beams are on more 

radiation pressure is exerted on the sphere than when they 

are blocked. Hence the spher~ feels more restoring force 

when they are diffusing to form a grating. This information 

can not be obtained from this type of experiment and this 

type of data. 

Clearly a great deal more work needs to be done to sort 

out the trends noted in these preliminary experiments. 



CHAPTER l.) 

INTERACTING SAMPLE STUDIES 

Introduction 

When highly charged polymer spheres are intoduced into 

deionized water, they interact with each other via screened 

coulombic interactions. The screened coulomb potential 

causes the particles to maintain a rather large and uniform 

average distance from each other. In some regions the 

particles order as in a sol id and other places as in a 

1 iquid. This maKes the sample ideal for the study of 1 iquid 

and sol id behavior. When the 1 iquid phase is subjected to an 

external periodic potential then it can be forced to 

undergoes a phase change if the average particle separation 

and spatial 

adJ•Jsted. 

period of the external potential are properly 

Experiments on the interacting samples were divided 

into three portions. The fi~st is a study of the ordering of 

particles in a harmonic external field for different spatial 

periods of the external field (or incident beam crossing 

angle). The second is a study of the output intensity of the 

different diffracted intensity maxima as a function of input 

pcii..o..1er and crc•:.:.ing angle. The third i:. the st•Jd:•' c•f the 

growth and decay of these different density modes when the 
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external field is modulated. 

Study of Structure 

When an X-ray beam is scattered from a single or 

polycrystal ine structure, the scattered intensity 

distribution gives information about the structure of the 

crystal. Simi 1 arl y when 1 aser 1 i ght is scattered from a 

strongly 

intensity 

interacting 

distributions 

colloidal 

contain 

s.amp 1 e, the seat ter·ed 

information about the 

par t i c 1 e order . In the case of an amorphous order, the 

scattered 1 ight produces a diffuse Debye-Scherrer ring 

concentric about the main or unscattered beam as shown in 

figure 33. Bragg~s relation described in Chapter II by 

equation <2.13) can be used to determine the average 

particles separation. We simply assume the Debye-Sherrer 

ring structure to be s i mi 1 ar to a powder· pat tern. Fc•r 488 nm 

wavelength the angle of scattering is about 8 degrees and 

average particles separation,a, is found to be 2.4 um. In 

the case of sol id or·der i ng the parameter· a [= d( hK 1)] is 

identified with the separation between planes and 

represented as d<hKl>, where h,K and are Miller indices. 

As in the case of noninteracting particles described in 

Chapter IV, when strongly interacting particles are 

subjected to a pe~iodic intensity potential, they generally 

l i ne up a 1 ong the high ' intensity regions of the fringe 

pattern to produce diffraction grating which strongly 

scatters l i gh t. because the particles are 



Figure 33 . Debye-Scher r er Rin g . The Sc a tt e ring 
Ang l e i s 7 . 4 Degrees, Diame ter of 
the Sph ere s i s 0 . 95 um and th e 
Wa velength used i s 488 nm 
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interacting strongly over micron distance scales, there is a 

uniform separation between particles· within a row and 

registration between rows. This results in the appearance of 

other intensity maxima outside the cross beam plane 

indicating other per· i odi c structures. These periodic 

structures are not directly excited by the crossed laser 

beam: .• However, these modes are coupled to the laser 

stimulated mode. Et)idently this colloidal liquid is frozen, 

being two dimensi C•nal 1 >' or·dered by app 1 y i ng a one 

dimensional external field 1.>Jhich directly breaKs the 

symmetry of the 1 iquid state parallel to the stimulated 

dens i ty mode. 

When the fringe separation, d, is slightly larger than 

the 

the 

ave~age particles separation, a, the diffraction from 

fundamental density mode which is excited directly by 

the two crossed beams was obser•Jed. The other diffraction 

spots from the secondary density modes, which are not 

directly 

This is 

potential 

excited 

because 

by the crossed beams, were not observed. 

the width of this periodic intensity 

is sufficiently large such that the interaction 

between particles in adjacent rows is reduced. The particles 

lose their correlation between rows of this structure. 

Although the 

1 i gh t from 

fundamental 

this mode 

mode is produced, the diffracted 

is less than that for other 

configarations. Figure 34a shows diffracted maxima for this 

incident beam crossing angle. Also visible are the 

Debye-Sherrer rings, produced by self scattering of each 
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incident beams. The intensity of the Debye-Sherrer ring was 

measured and found to be uniform around the ring within 

experimental error. Figure 34b shows the real space picture 

order for this experimental configuration. Here the 

try to align along the high intensity region and particles 

to form other r·eg i =-tr· at ion=·. There are weaK correlations 

between these rows and the symmetry is weakly broKen in this 

l i quid phase. 

A more interesting case to study is when the fringe 

separation is larger than the size of the particles but 

smaller or equal to the average particles separation. In 

this configuration the particles line up in rows along the 

fringe direction. Due to the fact that there are 

interactions between the particles and that the fringe 

spacing is smaller, there exists a correlation between these 

rows. This means that the rows register forming density 

modes in other directions, a breaking of the 1 iquid 

symmetry. Figures 35a to 37a show the diffracted maxima from 

the directly excited Cfundamenal) ~nd indirectly excited 

other (secondary) modes. The corresponding real sp.:o.ce 

pictures are shown in figure 35b to 37b. The diffraction 

patterns represent the reciprocal lattice of the two 

dimensional real space lattice. 

The scattering angles of the intensity maxima are 

measured as explained in appendix <A>, and the separation 

between the corresponding real space scatte~ing 1 ines were 

obtained using Bragg/s law <For two dimensional systems we 
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have scattering lines instead of planes as is the case in 

thr·e-e dimension:.). These lines with proper c1rientatior1 are 

plotted in figure 35c to 37c. From this construction we find 

that the packing fraction of these lattices for three 

different crossing angles are the same. Thus the density of 

of these micro-crystals does not change much with the 

application and variation of the external field. These real 

space structures can be identified as destorted hexagomal 

lattices. I t is observed that for a fringe separation equal 

to the square root of ha 1 f of the ,square of the aver· age 

particle separation, then the two diffracted intensity 

maxi ma of fundamen ta 1 mode moue out:. i de of the 1 i quid 

Debye-Sherrer ring figure 35a. There are also four other 

diffracted intensity maxima from the secondary density modes 

which appear near the Debye-Sherrer ring. These four 

intensity maxima are 90°degrees apart from each other and 45 

degree from the fundamental diffracted maxima in a plane 

norma 1 to the incident beam. Using the Bragg's law, this 

micro-crystal structure was identified as a two dimensional 

square lattice. The principle axis of this lattice is along 

one of the secondary registration directions. The secondary 

diffracted intensity maxima are from the [10) 1 ines of the 

micro crystal square lattice and the fundamental diffracted 

maxima correspond to scattering from (11) 1 ines. There are 

also two diffuse spots visible in figure 35a which 

correspond to scattering from other (11) 1 ines. The lattice 

constant was found to be 2.3 um as shown in figure 35c. 



F i gure 34a. Self-Diffract i on Pattern. The 
Average Part i c l e Separa ti on 
is 2 . 5 um, the Fr i nge Spacing 
i s 3 . 2 um and the Two Central 
Br i ght Spo ts are due to the 
Emerging Crossed Beams 
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Figure 3 4b. Rea l Space Image of Corresponding 
to the Di ffraction i n 34a . 
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F i gure 35a . Self-Diffract i on Pattern. The 
Average Particle Seoarat i on 
is 2.5 um, t he Fr i nge Spac i ng 
i s 1 . 77 um and the Two Cen tra l 
Br i ght Spots Part i all y b locked 
b y Tape are the Emerging ma i n 
Beams 

127 



Figure 35b . Real Space Image of Correspond i ng 
to the Diffract i on pattern i n 
Figu re 35a 

128 



F i gure 36a. Self-Diffraction Pat t er n . The 
Average Particle Separat ion 
is 2 . 5 um , the Fr inge Spacing 
is 2 .1 7 um and the Two Main 
Beams are blocked by Beam 
S tops in thi s F i gure 
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Figure 36b . Real Spac e Image of Correspond ing 
to the Diffraction pattern i n 
Figure 36a 
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Figure 37a . Self - Diffract i on Pattern. The 
Ave r age Particle Separat i on 
i s 2 . 5 um~ the Fringe Spac i ng 
is 2 .45 um and the Two Central 
Br i ght Spots Part i a ll y b l oc ked 
by Tape are t he Emerg i ng ma i n 
Beams 
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Figure 37b . Real Space Image of Corresponding 
to the Diffraction pattern 1n 
Figure 37a 
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When the fringe separation increased, the fundamental 

diffracted maxima appeared just outside the Debye-Sherrer 

and the other secondary maxima stayed near the 

Debye-Scherrer ring with unequal angular separation between 

them <see figure 36a). The angular separation between the 

fundamental and secondary increased to more than 45°degrees 

but less than 60°degrees. Since the angle of scattering and 

angular separaton are Known, the 1 ine separation and the 

orientation are determined. This distorted hexagonal close 

pacK structue is similar to a two dimensional tetragonal 

body centered lattice. Using Bragg's equation C 1/CdCkh>> 2 = 

(h/a)2 
+ CK/b) 2 } and applying the scattering ~ondition for 

two dimensional body centered lattice, <20-bcl) that the sum 

of the Miller indices must be even, we find the first two 

diffracted spots from the fundamental dens. i t>' mode 

corresponds to scattering from [20] 1 ines. The lattice 

constant, (a = 4.4E-6 um) is found to be twice the size of 

the fringe separation Cd= 2.2E-6 um). The other diffracted 

-:.pots from secondary registration corresponds to the 

scattering from [11l 1 ines. The lattice constant a <= 4.4E-6 

um) is not equal to b <= 2.3E-6 um). The diffracted maxima 

from third order registration is diffuse. 

It is a I so observed that for the fringe separation, d = 

ac 1 = 0.866a, then the micro-crystal becomes 

exactly hexagonal close pacK. The fundamental diffracted 

maxima appear just outside the Debye-Sherrer ring as does 

the -:.ecc•ndary maxi ma. Thi-=· is shown in the figure 37a. Us i rig 



Figure 35c. Two Dimensional Square Lattice 
PacKin•;;i Fr·a•:tiorr i~ .• 11 
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Figur-e 36c. Two Dimensional Distor-ted Hexaoonal 
Lattice. Packing Fr-action is-.105 
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Figure 37c. Two Dimensional Hexagonal Lattice. 
Packing Fraction is .105 
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2 2 2. 2 
Bragg?s equation { 1/(d(hK)) = (4/3)[(h + hk + k >/a ]} 

from Chapter II and applying the condition that the sum of 

the Miller indices must be an integer, the lattice constant 

(a = 2.5*E-6 um) w~s obtained which is the average particle 

separaton as shown in figure 37c. The diffracted maxima from 

higher order registarion was also observed. 

The nice feature of his experiment is that we not only 

maKe a phase change from liquid to hexagonal sol id but also 

from liquid to cubic and destorted hexagonal structures 

directly. In other words by applying an external field, the 

liquid symmetry was broKen; and by changing the period of 

the external field, the cr>·sta l symmetry can be broKen. It 

is also possible to get the phase change from cubic to 

either of the distorted or perfect hexagonal. structures <or 

vice versa) by changing the period of the external field. 

Study of the Structure as a Function of Input Power 

In the experiments on strongly interacting particle 

samples, the data are taken in two different ways. One 

method is the weighted average method as described in 

Chapter III, and the other method involves taKing 1000 data 

points in some time interval and averaging them. It was 

found that both of these methods are in agreement with each 

other. The weighted average method worKs as a dynamic 

average where the signal growth can be monitored. On the 

other hand, when the structure is stable, then the 1000 data 

point method as well as weighted average method can be used. 
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The data presented here is for stable structures using the 

weighted average method. The data collections for both 

methods are reproduceable. 

The sample cell gap is made wedge shaped to obtain a 

monolayer of particles as describe in Chapter III. The 

sample order 

range order) 

is a 1 iquid 1 iKe or amorphous (having no long 

in some regions and sol id 1 iKe in other 

regions. If the incident crossed beams are placed in those 

parts of the sample where the interacting particles exhibit 

short ranged 

excludes all 

structure can 

order and near regions where the gap spacing 

particles< a colloidal vaccum), then a stable 

be obtained using radiation pressure. This 

allows us to take the data for any period of time and to 

average the data. On the other hand, if the crossed beams 

are placed in a regions with larger gap spacings, then many 

particles are drawn into the crossed beams region and the 

spheres evidently try to form three dimensional structures. 

The signal for the fundamental diffracted maxima is observed 

to grow to a maximum before decreasing to lower values. At 

the same time the secondary diffracted maxima are also 

observed to grow to a maximum before decreasing to lower 

values. A typical plot of intensity as a function of time 

shows this effect in figure 38a and figure 38b for 

fundamental and secondary maxima, respectively. The open and 

sol id circles represent two different input power and the 

bars represent the signal fluctuation (given by equation 

(3.6)). The peaK value of the intensity for fundamental and 
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secondary maxima were determined and plotted as a function 

of input power per unit area for five different crossing 

angle: .• The:.e re:.ults ar·e shov,m with solid s.ymbol irr figure 

39a to figure 43a for the fundamental diffracted maxima and 

for the secondary diffracted maxima in figure 39b to figure 

43b. The data for stable condition of the sample are also 

-:.hewn in there figures with open symbol. The sol id lines are 

a cubic power law fit for the fundamental maxima and three 

halves power law fit for the secondary maxima. It is seen 

that they are generally in agreement with one another and 

follow a cubic dependence and three half power depencence 

for the fundamental and secondary modes, respectively. 

The scattered electric field from the fundamental 

is di r-ec t l >' prop or ti ona l to the a.mp l i tu de of 

the density modulation, which for non-interacting particles 

is proportional to the input intensity of the crossed beams. 

This was discussed in Chapter IV. Since the scattered 

intensity of 

value squar·e 

the fundamenatal density mode is the absolute 

of the scattered electric field, it is 

proportional to the square of the input power of the crossed 

beams. Since the probing beam is one of the pump beams the 

intensity of the probe beam increases as the pump beam 

intensity increases. Hence the scattered intensity of the 

fundamental maxima is proportional to the cubic power of the 

pump beam in tens it>·. This. is true on 1 >' in the l ovJ power 

region, because at high enough power these spheres will be 

essentially completely localized in the fringes. Further 
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increases in incident power wi 11 not increase the order of 

the particle. Evidently the interactions are weak enough 

here, that particle interact i or1s do not produce a 

significant deviation from the cubic law dependence. 

Landau Theor>' 

It has been shown that in the presence of the external 

intensity field, not only do we see the directly excited 

density modes, but also we see the indirectly excited 

(slaved) density modes as well. In order to discuss this 

mode coupling, a Landau theory was constructed. Let the 

number density of the spheres be described by 

P(r) = P0 +,La. cos(K.·i='."> + Higher order terms <5.1) 
• I I 
I 

where ~is the average number density of the spheres 

and a.cos<[·~) are the stimulated and slaved density 
I I 

variations of wave vectors K • 

In the fluid 1 ike phase the second term on the right 

hand side of equation <5.1) is zero [ a. cos(K.·~) = OJ. Thus 
I I 

the coeffcients of this term can be used as the order 

parameters for the phase transitions from the disordered to 

the ordered phases. The free energy density of the system is 

assumed to have form 

(5.2) 
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where we terminate at the 4th order term to form a standard 

4th order· theor>' (6). The free energy is found by 

integrating over space (50): 

( 5. 3) 

and only the terms in which the sum of the wave vectors, k , 

is zero contribute to the result such that (6) 

F = 2Aa + B '°a~ 
I ~I 

4 I 

+ EC I a.). 
• I 
I 

or equivalently 

I J 

2.2 
+ 2Ca 1 a2 a3 + DC '2;>i > 

I 

. E/...., D> f, '°'a2. ·>
2 

+ ( .:- + L 
. I 
I 

(5.4) 

(5.5) 

where <A,B,C, ••• ) are phenomeno l c•g i ca I coefficients 

described below. The a· (= 1 - 3) represent the amp l i tu des 
I 

of density modes with wave vectors VJe take to be k 1 ' k2 and 

K3 as indicated in ( 6) ' and shown in figure 44a. The 

experimental l >' obser·ved structure V.JaS a quasi-long-range 

20-hcp structure which is approximated with the three <six 

complex) lowest-order modes given above. The first term in 

equation <5.4) represents the external field which couples 

only to the kl mode and only to first order in a~. The 

second term -=·tab i l i z es the f 1 u i d state <a ·1 = 0) for 
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sufficiently large value of 8. The third term couples all 

the modes together and induces the observed (13,17) 

f i r·:.t-order freezing transition in the absence of the 

external fields. The last two terms equalize the mode 

amplitudes and stabi 1 i ze the c•verall free energy. In th i =· 

experiment only a single mode is directly st i mu 1 a ted b>' the 

ex ter·na l field, and ~\le expect a I to differ frc•m the 

degenerate modes a2 ' a3 . From the experiment, we see that 

the other two indirectly excited mode:. are :.ymmetr i c and 

equivalent, hence we can assume that a 2 = a 3 • The state of 

the system is given by the values of a; <a 1 ,a 2 ) which 

minimize the free energy F. For C = -1, D = 1/2, E = 3/2, 

the minimized result of Fi:. found r1umercially and is shown 

in figure 44b as a function of A and 8. As we see for A= 0 

(no external field) all the density modes, a are equal and 

undergo a first-order phase transition from sol id to a 

1 iquid as 8 is increased. On the other hand, if A is non 

zero, the directly excited mode, a is 1 arger than 

indirectly excited mode, a in general. For sufficiently 

large B the transition from 1 iquid to sol id becomes a 

second-order phase change VJ i th a 2. = a 3 rv (A - Ac•)112 for the 

in it i a 1 change in the slaved modes from zero amplitude. This 

type of symmetry-changing transition can be second order, 

because the external field reduces the symmetry of the fluid 

before freezing occurs. Thus it would be possible to take a 

fluid system to a sol id by a second-order process which 

involves externally applied fields, as indicated by the 
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continuous growth of the structure in our experiment. Our 

experimental results indicate both sol id and 1 iquid phases 

can exist as described by the Landau theory. When an 

external field is applied the fundamental mode <a 1 ) i:. 

stimulated and grows faster than the 'slaved (secondary) 

modes <a 2 ) as indicated by the Landau theory. The agreement 

is not quantitative. The experiments indic~te a continuous 

change in intensity consistent with the behavior for large B 

values in the Landau theory. Again the agreement is not 

quantitative. Spatial fluctuation:., which are not included 

in the Landau theory, may destroy the low amplitude behavior 

of a 2 and a-a· 

Study of the Intensity maxima as a function of 

Crossing Angles 

The study of the scattered intensity from the 

diffraction grating (produced by crossed beams) was observed 

as a function of crossing angle in Chapter IV for 

non-interacting particles. There we observed that as the 

crossing angle increases the scattered intensity decreases. 

This is a form factor effect. This effect was corrected by 

using the Mie theory. But when a interacting sample is 

subjected to crossed beams and the crossing angle of the 

beam was varied, something different happen: .. 

The intensity of the fundamental and secondary maxima 

was studied for different crossing angles. Two pin diodes 

were positioned at the fundamental and secondary diffracted 
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maxima respectively. The data was taken by the weighted 

average method. The intensity of the two pump beams was made 

the same and Kept constant. The scattering angle of the 

1 i qui d-1 i Ke Debye-Scherrer ring was 0 7.4 degrees. It was 

observed that when the fringe separation, d, is equal to 

0.87a, <the average particle separation) then the intensity 

of the fundamental diffracted maxima is maximum. If the 

fringe separation is increased or decreased from this point 

the intensity of the fundamental diffracted maxima decreased 

for f i >~ed input power of 40E6 Wat ts/m2of the pump beam. This 

is shol.A.•n in figure 45a with a sol id 1 ine; The data is also 

corrected for the particle form factor using Mie Theory, 

assuming the scattering from each beam is equal and in phase 

(dash-dash 1 ine of figure 45a). There is no correction for 

the intensity potential due to finite particle size. <A 

rough calculation indicates this may increase the value at 
0 

12 degrees by a factor 2.5 compared to 0 the 5 degrees, 

0 without destroying the maximum at 8 degrees). 

A plot of intensity of the secondary diffracted maxima 

is shown in figure 45b for different crossing angles and for 

fixed input power of the pump beams. The maximum intensity 

of the secondary diffracted maxima was observed for a fringe 

separation d equal to 0.87a. If the crossing angle is 

decreased the intensity of the secondary diffracted maxima 

decreases rapidly to the intensity of the Debye-Scherrer 

ring. If the crossing angle is increased such that fringe 

is greater than particle diameter of the sphere 
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then the intensity of the secondary diffracted maxima again 

decreases. Note that the secondary diffracted maxima always 

stays positioned near the Debye-Scherrer ring, only the 

angular position of this maxima changes as the crossing 

arrg 1 e changes. 

When the fringe separation, d, is increa-:.ed or 

a competition between decreased from 0.87a, there exists 

fluid and soild phases and the structure goes from a 

"commensurate" to arr "incommensurate" phase or vice versa. 

In particular, when the crossing angle is decreased from the 

commensurate crossing angle the intensity of the both maxima 

decrease-:.. This is becau-:.e the particles belonging to same 

fringe are st~ongly correlated but the correlation between 

particles of neighbouring fringes become weaK as the fringe 

spacing increases. In this case the fluid phase dominates 

the system and only the weak registration with the applied 

intensity patent i al occurs. Ho11Jever, if the crossing angle 

is increased <st i 11 

particle 

decrease. 

correlation 

diameter), 

In fact, 

between 

keep i rig the 

the in tens i t>· 

fringes larger than the 

of the maxima again 

in this condition there exists a strong 

particles of neighbouring fringes. 

However, the interparticle forces become strong enough to 

compete with the external potential registration force. The 

irrterpar·ticle forces can dominate the external poterrtial and 

the sample assumes a 1 iquid like order. It was observed that 

the furrdamerr ta l diffracted s.pot changed in shape from 

circular to el iptical as the crossing angle increased. This 
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may indicate the transition from a commensurate to chaotic 

phase rather than to a l i quid phase ( 40). 

A Study of Intensity of the Debye-Scherrer Ring as a 

Function of the Write Beam Intensity 

A study of the intensity of the liquid Debye-Scherrer 

ring at an anticorrelation position Ca position midway 

between stimulated and slaved intensity maxima) was made on 

the commensu~ate structure. It was observed that as the 

intensity of the write beams were increased the scattered 

intensity of the Debye-Scherrer ring at an anticorrelation 

position decreases relative to the input intensity, as the 

seat tered in tens i ty of the fundamen ta 1 arrd secondary maxi ma 

increase. This is shown in figure 46. This is not surpr i ~· i ng 

because the dominance of the few density modes stimutaled by 

an external field comes at the expense c•f other modes in the 

same. These modes decrease in amplitude and scatter less 

1 i gh t w i th increasing external field strength. This effect 

also corresponds to the development of anticorrelations in 

the CCIFS technique <3,4). 

Time Dependent Study Of The Structure 

The data for time dependent measurements were collected 

as described in Chapter III. When the beams are crossed in 

the interacting samp 1 e, the 1 i quid symmetry is br·c·Ken. This 

al lows the growth of a sol id structure which is monitored by 

the growth of the diffracted intensity. The growth of the 
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structure is dependent on the strength of the interaction 

between the particles and strength of the appl led external 

periodic potential. One of the pump beams is then blocked 

periodically by the chopper. It was observed that as the 

write beams were blocked, the sample lost its sol id 

symmetry. The scattered intensity slowly diminished which is 

the indication of the decay of the structure. The growth and 

decay of the fundamental arid secondar:>' maximas. are studied 

and given in figures 47a,48a & 49a and figure 50a, 

respectively. 

Study of the Growth of the Fundamental Mode 

Plots of the intens.ity of the fundamental diffracted 

maxima as a function of time are shown in figures 47a, 48a 

and 49a for a total input power 22E6 W/m2, a wavelength of 

488 nm and three crossing ang 1 es 11°, 
0 0 9.6 and 8 degrees 

respectively. As in Chapter IV, we expect the growth of 

these density modes to be dependent on the input power of 

the pump beam, the crossing angle, the strength of the 

interaction of the particles and the viscosity of the 

suspended medium. In this case the scattering angle of 

Debye-Scherrer ring is 8.5°degrees. It is observed that the 

structure grows faster when the fringe separation d 

approches 0.87a. On the other hand if the crossing angle is 

i ncr·eased or decreased from this. point then competion 

between the interparticle forces and the external field 

increases the growth time. 
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Figure 50. Growth and Decay of Secondary Mode. 
The Particle Diameter is 0.95 um. 
The Average Particle Separation is 
2.7 um. The Fringe Spacing is 2.17 
um. The Input Power is 0.05 Watts 
and 221 Frames are Averaged 
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The data for the in it i a 1 growth of the fundamental 

mode is fitted to equation (4.34> with the 

assumption that coherently scattering background 8 is zero, 

is extracted from the incoherent background and the 

scattered electric field, E<t>, is assumed to be given by 

E<t> = 1 - exp(-t/Tf) (5.6) 

Here Tf is the formation time constant. A plot of the log of 

E(t) as a function time is shown in figures 47b, 48b and 47b 

for three different crossing angles. The value of the (1/Tf) 

along with input power and crossing angles are l ist~d in 

Table V. 

The 

strength 

growth of the density modes is dependent on the 

of the in terpar tic le interaction and external 

periodic potential as discussed earlier. Let us assume that 

free diffusion coefficient is related to this transition 

time via a function v . .1hii:'-· '-=·dependent on the input pc•1AJer 

and the strength of the interaction 

2 
Dok Tf = C (5.7) 

where C is a function of the strength of the particle 

interaction and of the applied field 

Do is the free diffussion constant 

and k is the scattered wave vector. 

The values of the C's are also listed on Table V. It is 
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observed that as the power increased the C/s decreased. In 

other words, it takes less time to form this structure. It 

can also be seen that when the fringe separation is 0.87a 

(average particle separation) then the structure grows 

faster. Our results are very tentative and need to be 

further studied for different input powers. 

Decay of the Fundamental Mode 

When one of the write beams is blocked, the structure 

decays. But this decay is different from the decay in the 

non-interacting samples. It was found that the decay is not 

a single exponential. It was also observed that when one of 

the write beams is blocked the structure sometimes stays 

frozen for about 30 msec which we refer to as the "free 

induction time" for nucleation of the liquid phase. This 

type of free induction time has been observed in a computer 

simulation experiment by Hess (52). Immediately after this 

free induction decay the structure decays non-exponentialy. 

The data for the decay after the free induction period for 

three different crossing angles is fitted to equation (4.34) 

with the assumption that B is zero, that the incoherent 

bacKgr·o•Jnd ?! is e~dracted from the data at large times and 

that the scattered electric field, E(t) given by 

E < t) = Lex p < - t/T i ) (5.8) 

where Ti/s are the relaxation times. 



TABLE t.) 

COMPARISON OF INITIAL FORMAT I ON TIME COl'-lSTANT OF 
FUNDAMENTAL MODE OF INTERACT I !'-.JG PARTICLES: 

TO FREE RELAXATION TIME OF SAME 
MON-INTERACTING PARTICLES 

FOR THREE DIFFERENT 
FRINGE SPACING 

Diameter •:if the ·:.pheres. = 0.'?5 + 0.05 um 
Scattering angle of Debye-Scherrer ring= 7.~ + o.t 

Fringe Total Initial Ratio 
Spacing Input Formation r· ~ = 
in um Power Time Cons. tan t <Tf/Td) 

in l.o.Jatts in Se•: . 

1 • 89E-,£ 0 .0:39 0 . :34 + 0.04 1 "7 
' I + .-, . .;. 

1 .89E-6 0.050 0 .27 + 0.04 1 .4 + .-, . .;. 
2. 17E-6 0 .027 0 4'=' • CJ + 0 .05 1 ~6 + .-. . .:. 
•j 17E-6 0 0 •'j"? 0. :36 + 0.05 1 .4 + ·j ,_. ' CJ I . ,,_ 

2 .. ~.3E-.5 0 .025 0 • :3•? + 0. 0:3 1 • 0 + .2 

Self-diffracted 1st order maxima, Temperature 20°c 
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Figure 47c. Decay of Fundamental Mode. The 
Particle Diameter is 0.95 um,· 
the Average Particle Separation 
is 2.7 um, the Fringe Separation 
is 2.63 um, Input Power is 0.024 
Watts and a 250 Frames Average 
is Per·for·med 
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Initial Growth of Fundamental Mode. 
The Particle Diameter is 0.95.um, 
the Average Particle Separation 
is 2.7 um, the Fringe Separation 
is 2.17 um, Input Power is 0.025 
Watts and a 250 Frames Average is 
Performed 
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Figure 48c. Decay of Fundamental Mode. The 
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the Average Particle Separati6n 
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Figure 49b. 
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Initial Growth of Fundamental Mode. 
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the Average Particle Separation 
is 2.7 um, the Fringe Separation 
is 1 .89 um, Input Power is 0.039 
Watts and a 250 Frames Average is 
Performed 
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A plot of log V<t>, which is corrected as described 

above for the coherent and the incoherent background, as a 

function of time is shown in figure 47c, 48c and 49c for 

three different crossing angles. We found that first 

relaxation time constant is smaller than second relaxation 

time constant in general. In fact, after this free induction 

time the structure decays rapidly to a metal iquid state 

fol lowed by a slow decay to liquid state. The value of the 

(1/Ti),.s are shown in Table t.,JI along with input power and 

fringe separation. Here we observed that the quasi-sol id 

structure transfer to a 1 iquid state continuously. 

We have discussed in Chapter IV that the radiation 

pr·es~.ure moved the spheres near the down stream wall 

resulting in an extra hydrodynamic friction which slows the 

diffusion process. To see the hydrodynamic effect of the 

wa 11 and the strength of interaction between particles in 

this process, we assume that 

2 Doi< T = C,. (5.9) 

wher·e C,. is relaxation time divided b>' the free 

diffusion time at the same I< vector 

Do is the free diffusion constant 

k is the scattered wave vector. 

The values of the constant C's are listed in Table VI. 

The in it i a 1 decay of the structure is faster than free 

diffusion even with wall effects present. This gives an 



·TABLE '.)I 

COMPARISON OF RELAXATION TIME CONSTANTS OF 
FUNDAMENTAL MODE OF INTERACTING PARTICLES 

TO FREE RELAXATION TIME OF SAME 
NON-INTERACTING PARTICLES 

FOR THREE DIFFERENT 
FRINGE SPACING 

Diameter of the spheres = 0. '?5 + 0. 05 um 
~ t t . 1 . D b - h · 7 - 0 - 4° bca .. er1ng ang e ot eye-~ errer ring=,.~+ u.· 
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' -------------------------------------------------------------Fr· i nge 
Spacing 
in 1.Jm 

1 .89E-6 

1 .89E-6 

2.17E-6 

2.17E-6 

2.63E-6 

Total 
Input 
Power 
in l,Jatts 

0. 039 

0.050 

0.027 

0. 0:37 

0.025 

Rat i C• of 

(Tl/'Td) 

0.48 + 0.03 

0.64 + 0.04 

0.56 + 0.04 

0.65 + 0.05 

0. 5:3 + 0.02 

Ratio 

<T2/Td) 

1 .2 + .2 

1.4 + ., . "-
1 . 1 + • 1 

1 . 0 + ·::o . ..:;.. 
.88 + ., . "" 

Self-diffracted 1st order maxima, Temperature 20°C 
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indication that the structure breaKs the symmetry of sol id 

very fast. The following decay is approximately two times 

slower than the first. This tells us that the sample is 

slowly getting its liquid symmetry. If the tA,1all effect could 

somehow be neglected, then the structure would probably 

decay faster. However, this. later decay is slc•to.Jer than the 

free diffusion decay and is consistent with the slow decay 

observed in the interacting system near the peaK intensity 

in the structure factor (53). 

Study of the Growth and Decay of the Secondary Mode 

We have seen that in these experiments the applied 

external field breaks the liquid symmetry and the sol id 

structure grows continuously. In the previous two sections 

and last two sections of Chapter IV, we studied the growth 

and decay of the density mode which is directly induced by 

the external field. Here we will study the growth and decay 

of the density modes which are not directly induced by the 

field, the modes which give a clear indication of the sol id 

symmetry. 

If the intensity potential is adiusted to be 0.87 times 

the average particle separation, then the Bragg scattering 

from the secondary modes appear near or Just outside the 

Debye-Scherrer ring. This makes it very hard to interpret 

data for the growth and decay of this density mode. As the 

secondary mode starts growing the Debye-Scherrer ring 

background diminishes. Also, in a self scattering mode both 
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the write beams are used as probe beams. When the field is 

turn off by means of blocking one beam, then the 

con tr i bu t i on of this beam to the scattering is also 

eliminated and a large decrease in the scattered intensity 

of secondary Bragg spots is observed. This can be inferred 

from figure 50. Also in the growth of, the secondary mode, a 

small jump in the scattering intensity of the Bragg spots 

was. observed over the bacKgr·ound, immediately when both 

crossed beams are turned on. Both of these effects are due 

to the fact that scattering by the write beam (1) is adding 

coherently to the scattering by the write beam (2). This 

jump in intensity is less than 25% of the maximum scattered 

intensity in the growth case. The particle form factor is 

very important analyzing these results, because the incident 

1 ight wavelength is approximately equal to the radius of the 

s.phere. Hence the scattering intensity will in general be 

less as the angle increases from the forward direction. 

Furthermore the scattered ir.tensi h' of the other write beam 

(2) VJill contribute to the intensity at that point as higher 

order modes exist which will scatter in this direction, as 

they are formed. 

Each probe beam produces four lowest order slaved mode 

diffracted spots near the Debye-Scherrer ring as a result of 

the induced first order mode. But in the picture figure 35a, 

36a and 37a only six diffracted spots are visible instead of 

eight diffracted spots. However, the diffracted spots which 

are sitting in the middle above and belot.v the write beam 
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plane are a combination or superposition of diffracted spots 

from each incident beam. The observed is 

non-exponential. The order of the formation time constant is 

similar to that of the fundamental modes which is 1 isted in 

Table V. The growth of this mode is dependent on the 

strength of the interaction and the spacing of the periodic 

intensity potential. The growth of this secondary density 

mode clearly indicates the growth of the sol id from liquid 

continuously. 

The decay of this indirectly induced mode (secondary 

density mode) is also interesting to study. When one of the 

write beams is blocked, then there i E· a sharp fa 11 in the 

scattered intensity. This is due in part to the coherent 

mixing of the two write beams which changes when one of the 

write beams is eliminated. This contribution is less than 

of the total intensity based on the Jump in the 

intensity seen when both beams are turned· on. If we subtract 

this number from data though, we still see a rapid decay 

followed by a slow decay. This rapid decay is so fast that 

it happens within 50 msec. This faster decay can not be 

interpreted through this data. This is because the write 

beam ( 2) is chopped by a blade connected to a motor. The 

revolution of the motor was one revolution per second. T~e 

width of the laser beam is 1.25 mm. Hence there is finite 

time to choped the beam completely. The chopping of this 

beam sends a triggering signal to the computer. The time it 

takes to chopped the beam completely is about 60 msec. Hence 
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decay i~. in the limit of the chcrpping rate. If 

the beam at a faster rate then we lose 

information of the mode formation. Since the secondary mode 

became distint at long times. Considering all of this we 

find that we are restricted by the apparatus to do any 

further detailed study of the sample. 
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CHAPTER VI 

DISCUSSION, CONCLUSIONS AND SUGGESTIONS 

FOR FUTURE WORK 

Discussion and Conclusions 

statistical of di 1 u te colloidal 

non-interacting and interacting samples are studied in the 

presence of two crossed laser beams. It was observed that if 

transparent dielectric spheres with a dielectric constant 

larger than the dielctric constant of the surrounding medium 

are subjected to a focused laser 1 ight, these spheres are 

moved into the high intensity regions and pushed to the down 

stream wall due to radiation pressure. Howe1ier, when two 

laser beams are crossed in a non-interacting sample of this 

type which produces a fringe pattern, the ~articles are 

moved into the high intensity region and create periodic 

density modes. This in fact formed a diffraction grating 

IA•h i ch s.cattered 1 i ght. 

These density modes can be probed by self-scattered, by 

degenerate or by non-degenerate four wave mixing methods. As 

the intensity of the two crossed beams increased, the force 

gradient on the particles increased which localized the 

spheres strongly in the high intensity regions. It was 

obser•..ied that if the thermal energy <KT) is larger than the 
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effective potential energy then the first order diffracted 

intensity from these density modes follows cubic dependence 

for self-scattering or non-degenerate four wave mixing. On 

the other hand, if 

effective potential 

the thermal energy is less than the 

energy of the spheres, the diffracted 

intensity from these density modes deviates from cubic 

dependence. A theoritical model had been developed by us 

which agrees with the experiment. In that model, we observed 

that high~r order modes fol low higher power dependence when 

thermal energy is less than the effective potential energy 

on the spheres and saturates if the effective potential 

energy on the spheres increases. 

The growth and decay of the density modes has also been 

studied. D. Rogovan and co-worKers <31) suggested in their 

model that higher order density modes w i 11 grov.J slowly. 

This was also observed. The growth of these density modes 

depends on the effective potential energy on the spheres. It 

was observed that the growth time is larger than the 

relaxation time when thermal energy is larger than the 

effective potential energy of the spheres and is smaller 

than relaxation time when effective potential energy of the 

spheres is larger than the thermal energy. 

The diffusion of particles along a single boundary is 

different from the ~;~fusion of the same particles without 

boundary. Due to the radiation pressure, the spheres moue to 

the down stream wall and as the intensity of the crossed 

beams increases, the radiation pressure on the spheres 
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increases which decreases the thickness of the boundary 

layer. When one of the crossed beams is blocked then these 

density modes decay. The decay is a single exponent but the 

diffusion constant is different from the diffusion of same 

spheres without boundary. In this case, the boundary layer 

undergoes a very high strain. This creates an extra drag 

force on the spheres. As the thickness of the boundary layer 

decreases, then a higher shear stress is needed in order to 

have the same strain. This has beer1 observed when the 

diffusion of 2.02 um diameter spheres was found to be even 

slower than 1 um diameter spheres. This diffusion process is 

independent of thickness of the gap between the cell wall. 

Since the radiation pressure on the less than .5 um diameter 

spheres is- less, the effect of boundary is very small, and 

the diffusion constant obtained by this method is in 

approximate agreement with value of the diffusion constant 

without boundary. 

When these highly charged dielectric spheres are Kept 

in a highly deionized aqueous environment, they exhibit a 

interparticle ordering over a distance considerably larger 

than the diameter of the spheres due to the coulombic 

interactions. The 1oca1 ordering of these interacting 

particles has been observed by crossed correlation intensity 

fluctuation 

interacting 

the sample 

potential 

<CCIFS> methods (2,3,4). This coulombic 

potential is spherically symmetric. Hov..iever, if 

is subjected to a one dimensional periodic 

produced by crossing two laser beams <CBT) in the 
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sample, the spherical s>'mme tr;.,, of the amor·phous l i quid l i ke 

order breaks and exhibits two dimensional periodicity. In 

Chapter II, it was shown that when the thermal energy of the 

particles is larger than the effective potential energy of 

the particles then mathematically CBT and CCIFS are related 

to each other (35). It was observed thaf the two experiments 

are in agreement where CCIFS mini tors the statistical local 

ordering and CBT monitor the induced long range ordering. It 

was also found that when the fringe separation is equal to 

the square root of half of the square of the average 

particle separation, then they form a two dimensional square 

lattice with its principle axis along the secondary 

registration direction. On the other hand, when the fringe 

separation is .866a <average particle separation) then they 

form a hexagonal close pack structure. In between these 

separations they exhibit a destorted hexagonal structure. 

The diffracted intensity from these Bragg's spots was 

studied, and it was found that the diffracted intensity from 

the fundamental registration follows a cubic power 

dependence of the input power and the diffracted intensity 

from the secondary registration follows a three-halves power 

dependence of input power for thermal energy less than 

effective· potential energy for self-diffraction method. It 

was found in the Landau free energy minimization theory that 

the fundamental modes can grow continuously for a continuous 

increase of 

continuous 1 >' 

input 

fr· om 

power 

certain 

and secondary modes grow 

thres.hol d values ( 6) • 
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Experimentally we found that the secondary modes grow 

cc•r1tinuously for a cc•ntir1uous. increas.e ir1 ir1put power. The 

liquid symmetry of the sample breaKs continuously when the 

sample is. s.ubjected in a periodic intensity potential. 

The growth and decay of the fundamental modes and 

secondary modes has also been studied. It was found that 

when the fringe separation is 0.867 times the average 

particle separation, the fur1damen ta 1 mc•des gr· ow faster· than 

when the fringe separation is less than that for the same 

input power. This is due to the presence of interaction 

potential of the spheres. It was also observed that 

fur1damen ta 1 modes grow faster than secc•ndary modes. 

When one of the write beams is blocked the structure 

decays. The decay of the fundamental mode is not a single 

exp on en ti al and this structure stays in its metastable state 

for few moments which is termed the "free induction decay". 

This "free induction decay" is followed by a faster and then 

a slower decay process. Experimentally, it was found that 

initial decay of the fundamental mode is even faster than 

the decay of non-interacting particles for same scattering 

angle. The initial decay of the secondary modes was even 

faster than the decay of the fundamental modes. Since we are 

1 imited by the apparatus, the detai 1 of the decay process of 

the secondary modes is not possible at this time. 

Finally we found that CBT is a very powerful tool which 

can be used in both sol ids and liquids to monitor the 

structure. This method allows us to study the diffusion of 
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mi cro-:.pher·es near· a single boundary; it even allows 

different thickness of the boundary layer to be studied. We 

quantitative agreement between CBT and CCIFS in 

monitoring the structure. 

Suggestions for Future WorK 

So far we have collected a drop of water out of an 

ocean in this experiment. The mathematical model we 

de~Je loped agrees excellently with our experiment for 

non-interacting particles, We have also observed that while 

the Landau theory does explain our data qualitatively, it 

does not explain the continuous growth of the structure 

quantitatively. The growth of density modes has been 

explained by us and by D. Rogovin and his co-workers; and 

worKs excellently for non-interacting case when there is no 

boundary or the effect of the boundary is very small, In the 

case of the interacting samp 1 es, there is not a single 

mathematical model to explain this growth and decay. On the 

basis of the observation we made for this thesis, the 

fol 1 owing future suggestions are made as foll C•WS: 

1. The growth and decay of the density modes near a 

single boundary needs to be -:.tud i ed in fur· ther de ta i 1 in 

order to get a relation between thickness of the boundary 

layer and applied force on the paticles. This needs very 

fine measurements of the force acting on the spheres. A 

mathematical model needs to be developed in order to explain 

the results. 
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2. The behavior of the higher order density modes 

which are not excited directly, needs to be studied as a 

fur1c ti on input power and strength of interaction for an 

interacting sample. A theoretical model has to be developed 

to explain quantitatively the higher order density modes. 

3. The 

modes needs 

growth 

to be 

and decay of the fundamental density 

studied further as a function of input 

power and quantitatively analyzed as a function of the 

strength of the interactions. 

4. The growth and decay of the secondary and higher 

order density modes needs to be studied further for faster 

sampling rate. A theoretical model 

explain these growths and decays. 

is needed in order to 

5. So far we nave studied the spherical symmetry of 

the 1 iquid which can be broken by applying an external 

periodic potential. In this case, the strength of the 

interaction 

interaction 

potential 

potential 

is not knowr1 accurately. The 

can be generated in the sample 

externally in a controlled way for example by applying a 

magnetic field to the colloidal particles imbeded in a ferro 

fluid. This will allow further studies of laser freezing. 

6. All of these studies can also be performed in a 

three dimensional sample. 

In order to understand the· statistical behavior of 

micro-size par-ti cl es these ar·e the minimum studies 

necessary. 
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APPEND I:::< A 

that when two laser beams are crossed in 

an inter·acting colloidal :.ample, then the liquid =·~·'mmetr·y eof 

the ·:.ample is broken. The sample undergoes a phase change 

1 i quid teo :.o 1 id 

cr~,...stal 1 i ne str·uct•Jre t.o.,1i 11 

crystal 1 ine phase. This sol id 

scatter 1 ight. This diffraction 

pattern of the Bragg's spots has been captured in .:i. 

photographic fl im. The scattering angle of these Bragg's 

-:.pc•ts were then measured by calculating the distance from 

the screen to the :.amp 1 e ce 11 and the Bragg···=· spot: .• 

The sample 

the refract i •,ie 

from the cell 

tvJo beam:. are 

is sandwiched between two quartz plates and 

index of the scattering medium is different 

wal 1 and environment. On the other hand, the 

incident at an angle to the c e 1 l l/Ja l 1 . 

Therefor·e, the angles we measured from the photographic fl im 

.:i.re not the exact :.catter i ng .:i.ngl e comi n•;i from the eel 1. The 

fol lowing mathematics wil 1 correct the measured scattering 

angle. It is helpful to consider the ray diagram given in 

figure (51). 

Let us assume that 28 is the crossing angle of the two 

beams, then 8 is the angle of incidence on the cell wall 

measured from a normal to the wall and L is the distance 

from the screen to the ce 11 . Let P be an>' Bragg·"=· spot on 

the :.cr·een and mak: i ng an .:i.ngl e ~·N with the nc•r·mal 
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BEAM2 

QUARTZ 

SAMPLE 

Figure 51. Scattering Geometry. 
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in figure (51). Using law's of refraction we get 

na s.i n (¢ N ) = ng s.in(PNg ) (A. 1) 

and ng sin(¢Ng ) = nw :. in <~·N ) (A. 2) 
w 

and QNw are the scattering angle of the same Bragg's spots 

in the air, the quartz and the sample, respectively. In 

practice the thickness c•f the quar·tz wall, q, i :. much 

smaller than the distance from the screen to the eel 1 wall. 

Hence from the figure (51) we 

(A. 3) 

and = .. I' ) . "0 ' " na , n w . s 1 n " . N ,.c (A.4) 

where A is the distance from the center position of the 

crossed beams to the Bragg spot. Let us assume that ~ is the 

ac t1Ja l scattering angle and a and b are the dJstance from 

the scattering volume to the main scattering beam and point 

P respectively. Using the law's of triangle we get 

<A. 5) 

and (A.7) 

where R is the distance from one of the write beams to the 
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Bragg spot on the screen, r is the distance from the main 

beam to the center· of the tvJ•::i cr·c•s:.ed t•eam:., 8 i:. the half 

C•f the crossing angle in medium and ¢Nw is the angle between 

Bragg spot and center of the main beam. Finally putting 

toge th er· in terms of physically measurable 

quantities we have 

(1./2)({(A :.in(81w))./(r :.in(¢N))} + 

,- < R 2.= ., ( a ·., '·.. .. - n IJIW .. 

s i n ( ¢Nw ) ) .. ....- (A r· ) } J • <A.8) 

The physically measurable quantities are R, r, A, L, ~w 

and¢Nwcan be obtained fr·c•mmeastJr·ement .:i.nd eq•.Jatic•n <A.4). 



APPENDIX B 

The size of the focused area is calculated by assuming 

that the diameter of the incident beam has a circular 

aperture. The expression for the optical di ·:.turbance .:i.t 

point P -:.ho1. .. .m in figure (52), arising from the circular 

aperture in the far-field case is 

E =EA [{exp i(wt - KR)}/RJ 

S.;;;:, i k <Yy + Zz )/Rl ds ( B. 1) 

1.1.Jhere EA is the amplitude of the electric field. 

From the symmetry of the problem, spherical pol .:i.r 

coordinates can be used for both cases and the equation 

(8.1) becomes 

E = EA [{exp i <v.Jt - KR) },/RJ 

1
2
"1:xp { i (Kqp/R) cos((Zl·' - ¢ ) p dp d¢ 

0 0 

( B. 2) 

Because of the complete axial symmetry, the solution 

m•Jst be independent of ¢~ We might Just set~- = 0 and 

carrying out the integral we get 

E =EA [{exp i(wt - KR)}/RJ 2n 

197 



198 

Figure 52. Circular Aperture Geometry, 
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s.~• ( Kqp/R) p dp (8.3) 

... T"(Kqp./R) is:. the Oth •::rr-der· Be:.·:.el functicin. 

E = EA [{exp i (v .. •t - KR) }/RJ 2Jl .;c. (r· ... ··'Kqa) 

J 1 ( Kqa/R) (8.4) 

v..iher·e .J 1<Kqa/R) is the 1:.t c•r-der- Be-:.-:.el functi•::rn. 

The ir-r-adiance, I (intensity), at point P 

-"¥"-
( 1/2) < E E) which is 

I [ r. ·-:- E2 ·~ ., . R2 J [ { J . K . R . . ' . K . R. J 2 
= ._,_ AH.•/, . t ( ,qa/ ).~/( ·qa/ ) (8.5) 

A is the ar-ea of the aper-tur·e <= J1 a2). 

Because of the axial symmetr-y, the tower-ing centr-al 

maximum cor-r-esponds to a high intensity cir-cular- spot Known 

as the Air-y disk. Fir-st or-der- zer-o occur-s 

J 1 ( Kqa/R) = 0 

v..ihen Kq.:c./R = 3. 83 (8.6) 



and for len~ with focal length, f is given by 

where 

and 

q = 1.22 (~f)/D 

D = 2a is the diameter of the aperture 

~is the wavelength 

f = R. 
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APPENDIX C 

10 REM THIS IS THE MASTER PROGR 
AM FOR Al13.A/D CONVERTER 
20 REM IT WILL COLLECT DATA AT 
GIVEN TIME INTERVAL FOR 
30 REM FALLING EDGE OF THE TRIG 
GERING 
31 REM 
40 LOMEM: 
50 HIMEM: 
55 PRINT 
.DELAY" 

16384 
36864 
CHRt C4>"BLOAD GETAl13 

60 Dt • CHRS C4> 
70 GS = CHRS (9) 
75 DIM AXCl,1024> 
80 REM 
81 REM THIS INTEGER ARRAY IS FD 
R CHAN'-IEL AND DATA 
82 REM THE DATAS COME IN INTEGE 
R FORM 
83 REM 
90 DIM B<512>,TC512> 
91 REM 
100 REM THESE ARE DONE TO CONVE 
RT NUMBER TO VOLTAGE 
110 REM FOR CERTAIN GAIN CODE 
111 REM 
120 DIM SC7>:SC0) = 5 / 4096:SCI 
> = SCO> / 5:SC2> = SCO) / 1 
O:S<3> = S<O> / 50: FOR I = 
4 TO 7:SCI> =SCI - 4> + SCI 

- 4>: NEXT I 
130 DIM OC7):0<4> = - 5:0<5> 

- 1 :SC6) = - .5:SC7> = 
• 1 
140 REM 
150 REM THIS FLAGS ARE FOR SOFT 
lo.IARE TR I GGER I NG 
160 REM 
200 FLAG = 1 
210 FLAGl = 0 
220 NI = 0 
230 L1 = 0 
235 K = 0 
240 REM 
250 HOME 
260 PRINT 
270 PRINT • GETAI13.DELAY IS A A 
SSEMBLY LANGUAGE" 
280 PRINT " ROUTINE WHICH MAKES 
A SERIES OF All3" 
290 PRINT " READINGS EACH TIME I 

201 



T IS CALLEO." 
300 PRINT 1 PRINT • THE LIST OF 
READINGS IS PUT IN A" 
310 PRINT • BASIC ARRAY, GETA113 

IS CALLEO," 
320 PRINT • ANO THE RESULTS ARE 
RETURNED IN THE" 
330 PRINT " SAME BASIC ARRAY," 
340 PRINT 
350 PRINT " OLD OR NEW (0/N) " 
360 GET AS 
370 IF AS = "0" THEN 5000 
380 IF AS c "N" THEN 1000 
997 REH 
998 REH GETA113 IS IN SLOT M 5 

999 REH 
1000 AY.<O,O> = 51AC1,0> c 0 
1010 TEXT 
1020 INPUT " NIJ'1BER OF Rl..t-1 N = 
;N 
10;30 N1 "' NI + N 
1040 IF FLAGI > 0 THEN 2000 
1050 INPUT • C~EL? C0-15 OR R 
ETURN> "1C~ 
1060 CHAN= VAL CCHANS>: IF CHAN 
$ = "" THEN 5000 
I 070 PRINT 
1075 PRINT • 

0 D E " 
G A I N 

1080 PRINT • 0 = 0 TO 5V 
= -5 To +sv· 

1090 PRINT " I = 0 TO IV 
-I TO +IV" 

1100 PRINT " 2 
= - , 5 TO +. 5\.1" 

1110 PRINT • 3 
= -.I TO +,1V" 

PRINT 
REM 

0 TO .5V 

0 TO • IV 

c 

4 

5 

6 

7 

1120 
1130 
1140 
E 

REM THESE ARE THE GAIN CO[> 

1150 REM 
1160 INPUT " ENTER GAIN CODE = " 
;GAIN 
1170 INPUT" ENTER TRIGGERING CH 
ANNEL NUMBER = " ; C 
1180 INPUT " EVEN M OF DATA POJN 
T CO - 1024> = ";02 
1190 INPUT " ENTER DELAY <1 TO 2 
55) •; D 
1198 REM 
1199 REH DELAY 
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1540 11 • <2 * I> - I 
1550 IF AX<l,11> < 3500 AND AX<I 
,11 + 1> > 3500 THEN 1570 
1560 GOTO 1530 
1570 SP• l:EP"" SP+ SOO 
1580 p .. soo 
1590 FOR J = I TO P 
I 60 0 PI ., SP + J 
1610 8CJ> -= B<J> + AXCl ,Pl> 
1620 NEXT J 
1630 PRINT "RLN NU'IBER • "JK 
1640 LI • LI + I 
1650 IF LI "" 10 OR K = NI THEN 
670 
1660 GOTO 2000 
1670 HGR: HCOLOR= 3: SCALE= I: HPLOT 
O,O TO 0,157: HPLOT 0,157 TO 
279' 157 
1680 21 = 1 
1690 22 "" 21 + I 
1700 XI• 21:X2 • 22:23 = <2 * 21 
) - 1:24 = <2. 21> + 1:25 = 
2. 21:26 = <2. 21) + 2 
1710 YI ., 155 - INT <8<23> / <26 
.S * K>>:Y2 = 155 - INT <BC 
25> / <26.5 * K>>:Y3"" 155 -

INT <B<24> / <26.5 * K>>:Y4 
= 155 - INT <B<26> / C26.5 
* K» 

1720 SCALE= 1 
1730 HPLOT Xl,Yl TO X2,Y3 
1740 HPLOT X1,Y2 TO X2,Y4 
1 750 I = I + 1 
1760 21 = 21 + 1 
1770 IF CZ! + 3> < Y THEN 1690 
1780 PRINT• RLN NUMBER= ";K 
1790 Lt = 0 
1800 FLAG1 = FLAG1 + I 
2000 IF K < Nl THEN 1410 
2010 INPUT • DO U WANT TO RUN IT 

CY/N) •;AS 
2020 IF AS = •y• THEN 1020 
2030 INPUT • WANT TO SAVE IT CY/ 
N) ";AS 
2040 IF A$ = "N" THEN 200 
2050 FOR J = I TO 500 
2060 TCJ) CJ - I) *DI 
2070 GX = AX< 0 'J) / .16: ex A%< 0' 
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F Nl.t!BER UPTO D> 
1200 REM 
1210 SI ., 0 
1220 FOR I • 

NEXT I 
TO 01Sl •SI + 11 

1230 DI ., 162 + <7 • SI> 
1240 AX<l,O> = - D2 
1250 M = D2 / 2 
1260 FOR I = I TO M 
1 270 I I -= C 2 * I ) - 1 I I 2 = 2 * 1 
1280 AX<O,Il> ., C1A%CO,I2> •CHAN 
+ 16 * GAIN 

1290 AX<l,Il>., OrA%CO,I2>., 0 
1300 NEXT I 
1310 REM 
1320 REM LOADIND AXCO,I> WITH T 
HE ADDRESS OF C~EL Nl.t!BER 

AND GAIN 
1330 REH LOADING AX<l,I> WITH Z 
ERO FOR DATA COLLECTION 
1340 REM 
1350 REH FOR TRIGGERING THE CIR 
CUIT THIS PORTION OF THE BAS 
IC PROGRAM IS 
1360 REM RESPONSIBLE WHERE THE 
ADDRESS OF Ail3 IN AX<O,O> L 
OCATI ON 
1370 REH 
1380 AI13 = - 16256 + AXCO,O> • 
16 
1 390 GOTO I 41 0 
1400 FLAG = 0 
1410 POKE AI13,C 
1420 RESULT= PEEK <Ail3 + I> * 
256 + PEEK <AI13) 
1430 IF RESULT > 3900 THEN 1400 
1440 IF FLAG= I THEN 1410 
1450 K = K + 1 
1460 REM 
1470 REM REDAY TO TAKE DATA IN 
SOME TIME INTERVAL SPECIFY B 
y D. 
1480 
1490 
1500 
1510 
1520 
1530 

REM 
Pm~E 25,D 
POKE 8,1: 

FLAG = 1 
I 0 
I = I + I 

CALL 36864 
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J) - (G"/.. 16) 
2080 B<J> = INT 
O<GX>> • 100000> 
2090 B< J> = INT 
2100 NEXT J 
2110 M = 2 • P 

«B<J> • S<GX> + 
/ 100 
<B<J> / K> 

2200 INPUT• NAME OF THE FILE"; 
FS 
2210 INPUT " PLACE THE DISK INTO 

THE DRIVE AND HIT RETURN";G 
$ 

PRINT DS"OPEN"FS 
PRINT DS"WRITE"FS 
PRINT M 
FOR I = 1 TO P 
PRINT T<I> 
PRINT B<I> 
NEXT I 
PRINT DS"CLOSE"FS 
GOTO 6000 

2220 
2230 
2240 
2250 
2260 
2270 
2280 
2290 
2300 
5000 
";FS 
5010 
5020 
5030 
5040 
5050 
5055 
5060 
5070 
5080 
5090 
5100 
$ 

INPUT • NAME OF THE FILE = 

PRINT DS"Nc.10N C,I,0" 
PRINT 
PRINT DS"OPEN"FS 
PRINT DS"READ"FS 
INPUT I 
DIM AS([) 
FOR J = 1 TO I 
INPUT AS<J>: NEXT J 
PRINT DS"CLOSE"FS 
PRINT DS"MON C,I,O" 

• WANT A HARD COPY <Y/N> 

5110 IF AS= "N" THEN 5490 
5120 PRINT DS;"PRMI" 

•;A 

5130 PRINT " TIME <IN MICROSECON 
D> DATA <IN VOLTS>" 
5140 FOR J ~ l TO I 
5150 JI= <2 • J> - l:J2 = 2 • J 
5160 PRINT VAL <AS<Jl>>; TAB< 3 
O>; VAL <AS<J2>> 
5170 NEXT J 
5190 PRINT DS;"PRMO" 
5490 GOTO 200 
5500 IF PEEK < - 16384> > 127 THEN 

POKE - 16368,01 GOTO 5900 
5550 GOTO 1500 
5900 GOTO 1280 
6000 a~o 
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APPENDIX D 

REH 
2 REM THIS PROGICAM WILL TAKE DA 
TA AND 
3 REH DISPLAY THE WEIGHTED AVER 
AGE CN 
4 REM THE MCNJTOR AND PRINTER. 
!5 REM 
6 H • 0 
10 INPUT "WEIGHTING FACTOR W • • ,w 
20 SI • 01S2 • 0 
30 Tl • 01T2 • 0 
31 REH 
32 REH AJl3 JS JN SLOT !5 OF APP 
LE II• 
33 REH 
35 SLOT • !5 
40 AJl3 • - 16256 + SLOT * 16 
50 INPUT • C~EL Nll1BER Cl & C 
2 •1c1,c2 
!51 REM 
52 REM GAIN CODE IS ZERO <HEAN 
0 TO 5 VOLT RANGE> 
53 REM 
60 G • 0 
70 POKE AJl3,Cl + 16 * G 
80 RI • PEEK <AJ13 + 1> * 256 + 

PEEK <AI 13> 
90 VI a RI * 5 / 4095 
100 POKE AI13,C2 + 1: * G 
110 R2 z PEEK <AI13 + 1) * 256 + 

PEEK <AI 13> 
120 V2 a R2 * 5 / 4095 
130 SI z VI + <W *SI> 
140 S2 c V2 + <W * S2> 
150 Tl • <VI * VI> + <W * Tl> 
160 T2 • <V2 * V2> + <W * T2> 
170 QI • SQR <Tl * <1 - W> - <SI 
* < 1 - W» " 2> 

180 Q2 • SQR <T2 * <I - W> - <S2 
* < 1 - W> > " 2> 

190 PRINT SI * <1 - W>;• -+ "1Q1 
1" "JS2 * <1 - W>1" -+ " 
1Q2 
200 M • M + 1 
210 IF M • 10 THEN 230 
220 GOTO 70 
230 PRINT 0$J"PRl1" 
240 PRINT SI * <1 - W>1" -+ "1QI 
t" "tS2 * <1 - W>t" -+ " 
1Q2 
250 
260 
270 

H • 0 
PRINT 0$ t "PRIO" 
GOTO 70 
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0000: 
(1(1()01 
00001 
0(1001 
0000: 
OQ001 

(1)00: 
O(IQO: 
(1()00: 
C(l81): 
Qc)6B: 
(1)60: 
Q006r 
((108: 
003C: 
((130: 
(1(11)6: 

((IF9: 

APPENDIX E 

2 I 
3 I INTERACTIVE STRUCTURES INC 
'1 t DAT DEC 'BO 
5 I 
6 I All3 TO APPLESOFT ARRAY 
7 I 

9 I 
10 I VARIABLE DEFINITIONS 
11 I 
12 DEV EQIJ scoeo 
13 AARY EQU S6B 
l '1 AARYE EQIJ SOD 
15 PTR EOU 6 
16 ARYPTR EDU 8 
17 OLDCH EOU S3C 
18 DELAY EDU S3D 
19 DLYVAL EQU 6 
20 STASUB EDU SF9 

DEVICE SELECT LOCATION 
APPLESQFT ARRAY POINTER 
APPLESOFT ARRAY END 

LAST CHANNEL/GAIN USED 
DELAY COUNTER 
FOR ABOUT 45 MS DELAY 
'STA DEV+SLOT*16' 

----- NEXT OBJECT FILE NAME IS GETAl13 
9(100: 
9000: 
9(100: 
91)01): 
90(•0: 
9(1(10: 
9000: 
901)0: 
9(11)0: 

9(100: 
9(1(11): 

9000: 
9(100: 
91)(1(1: 
9'JO(I: 
9000: 
9001): 
91)0(1: 
9(1t)(I: 

9(1(11): 
91)0•): 
9000:A5 68 
9(•(12:85 06 
9(104:A5 6C 
9(1(16:85 07 
9008:AO 00 
91:•0A: Bl 06 
900C: 10 24 
9(IOE:C8 
900F:BI 06 
9(111110 20 
9013:C6 08 
9CllS1DO IC 
9017:CB 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 .,.., _ .... 

34 
35 
36 
37 
38 
39 
40 
41 

ORG S9C1Q(1 

THIS ROUTINE TALES THE N'TH INTEGER ARRAY 
TO DETERl'IINE THE SAMPLING SEQUENCE FOR 
THE All3. BEFORE USE DIMENSION A YOUR 
ARRAYS AS 1 BY N. THE <0,01 ELEMENT 
CONTAINS THE SLOT NUMBER FOR THE Al13. 
THE !O,ll'TH ELEMENT CONTAINS THE 

NEGA Tl VE OF THE NUMBER 
OF SAl"PLES TO TAl:E <LESS THAN THE 
ARRAY DIMENSION SIZE> 
THEN FILL THE (0,ll'TH ELEMENTS WITH 
THE Al13 ADDRESS/GAIN PARAMETERS. 

IF THIS IS NEGATIVE THIS SAMPLE IS Sr!PF'ED 
AFTER CALLING THE <1,ll'TH ELEMENTS WILL 
CONTAIN THE VALUES. 
TO SELECT THE ARRAY TO USE F'm.E 
ITS NUMBER INTO LOCATION 8 BEFQi;:E CALLING. 
NOTE: THIS LOCATION IS CLOBBERED! 

42 GETAI13 EQU * 43 LDA AARY GET START OF ARRAY SPACE 
44 STA PTR 
45 LDA AARY+l 
46 STA PTR+l 
47 GAAi LDY •o 
48 LDA <PTRl,Y 
49 BPL GNARY1 
~ INV 
51 LOA IPTR>,Y 
52 BPL GNARY 
53 DEC ARYPTR 
54 BNE GNARY 
55 INV 
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'K'IJ81CS S6 INY 
90191CS 57 INY 
90IA1ll 06 SB LDA CPTR>,Y GET NltlBER OF Dll'IENSICM; 
90IC1AA 59 TAX NE WANT TO SKIP OVER T.eil 
'°ID1C8 6(1 INY 
90IE1C8 61 GAA2 INY 
'°lF1C8 62 INY 
90201CA 63 DEi 
'°21100 Fll 64 BNE SAA~ 
902319B 65 TVA 
'°24rlB 66 CLC 
9025165 06 67 ADC PTR 
9(127rBS OB 6B STA ARYPTR NOW GET REAL POINTER 
90291A9 00 69 LDA 10 
'°211165 07 70 ADC PTR+l 
9020:85 09 71 STA ARYPTR+I 
'°2Fr 18 72 CLC 
9030190 22 73 BCC 6ETCI( GOT THE ARRAY 
'°32:C8 74 GNARYI INY 
9033:CB 75 GNARY INV 
9(134: IB 76 CLC 
9035:111 06 77 LDA CPTR>,Y POINT TO NEXT ARRAY 
9(137:65 06 78 ADC PTR 
9039:4B 79 PHA CAN'T OVERWRITE JUST YET 
9Q3A1CB BO INV 
903B:BI 06 Bl LDA CPTR>,Y 
9(130:65 07 82 ADC PTR+l 
903F:B5 07 B3 STA PTR+J 
9041168 84 PLA NOW WE CAN 
9042:85 06 BS STA PTR 
9Cl441AS 07 86 LDA PTR+l 
9(146:C5 6E 87 CHP AARYE+l SEE IF F'AST END 
9(148: F(I 03 88 llEO GNAA2 
9(14A:90 BC 89 BCC GAAi 
9(14C:60 90 GNAA3 RTS RETURN WITHCA.IT DOING ANYTHING 
904D:A5 06 91 GNAA2 LDA PTR 
9Ct4F:C5 6D ~2 CHP AARYE 
9051:90 85 93 BCC GAAi 
9(153:60 94 RTS 

9054: 96 GETm'. EDU • NOW GOT THE ARRAY 
9QS4:A9 SD 97 LDA #SBD 'STA' OPCODE 
9056:85 F9 98 STA STA SUB SETUP A STORE SUBROUTINE 
9CISB:A9 CO 99 LOA ISCO 
90SA:B5 FB 101) STA ·STASUB+2 
9CISC:A9 60 101 LDA IS61) 'RTS' 
90SE:85 FC 1(12 STA STASUB+3 
9(160: AO (1 l 103 LDY 11 WANT THE SLOT ti 
9062:Bl 08 104 LDA <ARYPTR>, Y 
9(164:29 07 105 AND 17 JUST IN CASE 
9066:0A 106 ASL A TIMES 16 
9(167:0A 107 ASL A 
9068:0A 108 ASL A 
9(169:0A 109 ASL A 
906A:AA 110 TAX 
9(16£<:09 80 111 ORA IS80 
9060:85 FA 112 STA STASUB+l 
9(16F1C8 113 INY NOW GET NUMBER OF SAMPLES 



90701111 OB 114 LOA CARYPTR>,Y 
9072185 07 llS STA PTR+I 
90741CB 116 INV 
9075181 OB 117 LOA CARYPTRI ,Y 
9077185 06 l1B STA PTR 
907'hA9 00 119 LOA 10 INITIALIZE OLD CHANll.EL/GAIN 
9078185 3C 120 STA Cl.OCH 
90701 121 GETLOOP EOO • 907D1IB 122 CLC 
907E:A9 04 123 LOA 14 POINT TO NEXT ELEt£NT 
9080165 OB 124 ADC ARVPTR 
90B2185 08 125 STA ARYPTR 
9':1841A9 00 126 LDA IO 
9086:65 09 127 ADC ARYPTR+l 
9088185 09 128 STA ARYPTR+l 
908A:A9 06 129 LOA IDl..YVAL INIT DELAY LOOP 
908C:B5 3D 130 STA DELAY 
908E:AO OC) 131 LDY 10 GET HI-ORDER BYTE 
9090181 08 132 LOA <ARVPTRl,Y TO SEE IF SKIPPING 
9092130 29 1-33 811I SKIPTHIS 
90941C8 134 INV NOW FOR LO-ORDER BYTE 
9095181 OB 135 LDA <ARYPTRl, Y 
9097120 F9 00 136 JSR STASUB SETIJ> ADDRESS/GAIN 
909A:4B 137 PHA 
909B1C5 3C 138 Cl'IP OLDCH SEE IF SAME AS BEFORE 
909D:FO OB 139 BEr;i Sl<PDLY YES, DON'T HAVE TO DELAY 
909F129 02 140 AND 12 SEE IF HI-GAIN SETTINGS 
90AllFO 04 141 llEI;! Sl<PDLY NO, LO-GAIN CFASTERl 
90A3:C6 30 142 WAITLP DEC DELAY NOW TWIDDLE OUR THUMBS 
90A51DO FC 143 BNE WAITLP 
90A7:68 144 SKPDLY PLA RESTORE CHAl\lllEL/GAIN 
9QA8:85 3C 145 STA OLD CH UPDATE OLD 
90AA:20 F9 00 146 JSR STA SUB TAl<ES CARE OF OP-AMP SPROING 
90AD14B 147 PHA 
90AE:6B 148 PLA 
90AF:CB 149 INY 
9080:8D Bl CO 150 LDA DEV+l,X THIS COMES OUT FIRST 
9083129 OF 151 AND HF AND OFF FLAGS 
90B:S19l OB 152 STA CARVPTR>,V SAVE HI-ORDER 
90B7:CB 153 INV 
9CIE.181 BD BO CO 154 LOA DEV,X 
90B8191 OB 155 STA <ARYPTRl,Y AND LO-ORDER 
9{1801 156 SKIPTHIS EOO e I ELEMENTS COUNTER 
90BD1E6 06 157 INC PTR 
90BF:DQ EiC 15B BNE GETLOOP 
90Cl:E6 07 159 INC PTR+I 
90C3:DO EIB 160 BNE GETLOCP 
90C5160 161 RTS 

**' SUCCESSFUL ASSEMBLV1 NO ERRORS 
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