$B y$
ASLAM HAEIE GHOWDHLIFY
Bechelor of Seience
Dacca University
Dhaka, Bangladesh
1976
Master of Science
Decea Uniuereity
Dhaka, Bangladesh
1977
Master of Science
Marquette Uniuersity
Milwaykee, , Mi Ecansin
1562

Sutaitted to the Faculty of the
Graduate College Gf the
OKlahoma State Uniuersity
in partial fulfillment af
the requiremerite for
the Degree af
DOCTOR OF FHILQSOPHY
December, 19B

Thesis
1986 D
C 5521
cop 2

LAGER INDUCED FREEZING

Thesis Approved:

TO MY PARENTS

ACKNOWLEDGMENTS

The Author wishes to express the deepest appreciation to his major adviser: Or. Bruce J. Ackerson: for his constant assistance, suppervision and guidance throughout the course for this work. Appreciation is alsa exterded to the other mambers of the committee, Dr. R. C. Fowell, Dr. L. E. Halliburton, Dr. H. L. Scott and Dr. H. O. Spivey. Additional thanks are also extended to 0 . W. Ford for serving as member in my original committee.

The Author also expresses his love and gratitude to Dr. Nemesio Caraballo for his friendshif and advice. Appreciation extended to Frankie W. Jezercak, Dr. Hamzah A. Almoghoabi and Dr. Alharthi Abdulaziz for their help and friendship. Thanks extended to khalid Loudiyi for his friendship and discussions.

We gratefully acknowlindge the support by National Science Foundation, Division of Material Research, Low Temperature Fhysics Grants Nos. DMR E1-16119, DMR ES-0̆704 and the University Center for Water Research.

Finally, the author express gratitude to hiswife, Milly, for her underetanding and encouragement and express loue to his son, Ibrahim and daughter, Silvia.

TABLE OF CONTENTS
Chapter Fage
I. INTRODUCTION. 1
Etatement at the Fratiem 1
Purpose of This Thesis. 2
II. GENERAL BACKGROLND 5
Introduction 5
Static Light Scattering 5
Scattering from Finite Sized
Particles.
Scattering from a Collection ofParticles12
Dynamic Light Scattering 17
Cross-Correlation Intensity
Fluctuation Spectroscopy 21
Crossed-Beam Techniques 24
Mathematical Description of FringesProduced by Crossed (GaussainProfile) Beame26
The Fhotophoretic or Radiation Pressure Forces. 32
Radiation Fressure for Finite Size Farticles. 37
Eomparison of ECIFs and CET 42
Commensurate and Incommensurate Phase
in Two Dimensional Systems. 46
III. EXPERIMENTAL BACKGROUND 49
Introduction 49
Experimental Details 45
Lell Design 54
Spacing Measurement 56
Cell Gleaning 59
Sample Preparations. 60
A/D Converters 61
Digital Memory Oscilloscope $\varepsilon 2$
Data Eollection 63
Laser and Laser Problem 66
IU. NON-INTEFACTING SAMFLE STUDIES $\Delta \varepsilon$
Introductigri. 68
Results for Non-Interacting Farticles (or Strongly Screened Farticles). 6
Data Collection 73
Time Independent Etudy 73
Theoretical Model for ParticlesAligrement in FadiationPotential Well. 78
Effect af Coherent Eelf-Scattering by the Two Incident Eeams 83
Study of Intensity as a Function of Crossing angles. 92
Time Dependent Study 94
Self-Diffusion Measurements 101
BE Fellets Experiment 107
Growth of the Density Grating. 112
U. INTERACTING EAMFLE STUDIES 117
Intraduction 119
Study of Structure 120
Study of the Structure as a Function of Input Fower 137
Landau Theory 152
Study of the Intensity Maxima
as a Function of Erossing Angles 156
Study of the Intensity of theDebye-Scherrer Ring as aFunction Write Eeams Intensity. . $1 \leqslant 1$
Time Dependent Study of the Structure. 161
Study the Grouth of the Fundamental Mode 163
Decay of the Fundamerital Mode. 167
Study the Growth and Decay af the Eecondary Mode. 177
UI. DISCUSSION, CONCLUSIGNS AND SUGGESTIGNS FOR FITURE WORK 181
Discussion and Conclusions 181
Suggestions for future Work 186
A SELECTED BIELEOGRAPHY. 198
AFFENDIXES 182
APPENDIX A. 193
APPENDIX E. 197
APPENDIX E. 201
APFENDIX D. 206
APFENDIXE. 207
I. Comparison of Measured Diffusion Dontant
to Free Diffusion constant for Four
Different Sizes of Spheres 105
II. Comparison of Velacity of BB Pellete Along
the Wall of the Container to the Middle of the Container and the Corrected for This Cylinderical Boundary shape in Glycerin 109
III. Eomparison of Velocity of EE's Fellets Along the Wall of the Container when Both Forces Farallel and Ferfendicular to the Motion are Present
IV. Comparison of Forced Diffusion Time of

Different Grating Order Mode to Free Relaxation Time for Four Different Size of Sphere at Four Different Fringe Spacing . . 117
V. Comparison of Initial Formation Time

Constant of Fundamerital Mode of
Interacting Faricles to Free Relaxtion Time of Same Non-Interacting Farticles For Three Different Fringe Spacirg. 1.68

UI. Comparison of Relaxation Time Constants of Fundamental Mode Interacting Farticles
to Free Relaxation Time of Same
Non-Interacting Farticles for Thres Different Fringe Spacing 176
Figure Fage

1. Mutual Interference between each Decillator in the farticle. 7
2a. A Tracing of Eragg' s Epots produced by Light Scattering from a Highly Interacting Col1gidal Sample 15
2b. The Real Space Structure of above Scattering Fattern 1.5
2. The Crossed-Beam Geometry 28
3. Intensity Distribution Two Crassed Gaussian Beam Profile in the $X-Y$ Plane 31
5a. Bragg's Spots Produced by Scattering from a Close Facked Structure Trapped by a Sirigle Fgcused Laser Beam. 36
5b. Two Dimensional Hexagonal close Packed structure. 37
Sc. Real Space Structure in a Sample Compreseed by Radiation Pressure 38
4. Finite Sized Dielectric Sphere in a Feriodic Intensity Fotentisl 41
7a. Incommensurate Phase. 48
5. Eommensurate Fhase 48
7c. Chaotic Phase 48
6. Experimertal Eetup 50
7. Circuit Diagram of Pin Diode and Operational Amplifiers 52
8. Flot af Amplifiers output Voltage ve Input Intensity. 53

> Figure

> 11. Thin Film Eell.

12．Eparing Messurement ．．．．．．．．．． 57
1ヨa．BelfーDiffragted MExima．The Fringe Epacirigis 2.17 um and Diameter of the Spheres is 1.09 um71

136．Real．Space Ficture．The Fringe Gpacing is 2．17 山m and Diameter of the Gpheres is 1.09 un71

14a，Self－Diffracted Maxime．The Fririge Gpacing is 3.21 um and Diameter of the Spheres is 1.09 um72

14t．Real Space Ficture．The Fringe Spacing is E． 21 um and Dismeter gi the Spheres is 1.09 um72

15．Flot of Gutput Intensity us Total Fquer Fer Unit Area．The Fringe Spacing is 2.03 um and Diameter of the Gpheres is 0.461 um．

1＊．Flot of Output Intensity ve Total Fower Fer． Unit Area．The Fringe Spacing is 2.63 um and Diameter of the Spheres is 0.95 um． $Y=A * X A 2.5$75

17．Plot af gutput Intensity us Total Fower Fer Unit Area．The Fringe Spacing is 2.17 um and Diameter af the Spheres is 0.95 um ． $Y=A \geqslant X \wedge 2.7$76

18．Flot af Output Intensity ys Tatal Fower Fer Unit Area．The Fringe Spacing is 1.77 um and Diameter af the Spheres is 0．FS um． $Y=A \neq X \times 3.1$

1F．Figt of Output Intensity us Tatel Fouer Fier Unit Area．The Fringe Spacing is 2．17 um and Dismeter of the Spheres is 1 ． 0 g um． $Y=A * X \therefore 2 . \delta$

20．Fiot of Gutput Intensity ve Total Fower Fer． Unit Area．The Fringe Spacing is 2．BG um ard Diameter of the Spheres is 2.02 um ． $Y=A * X A 2$ ．
21. The Fringe Spacing is 1.77 um and the Maximum Fotential Energy Relative to kT for 0.5. 1.0 and 5.0 is Presented. Protatility for Finding a Ephere as a Function of r. 82
22. The Fringe Spacing is 3.20 um and the Maximum Fotential Energy Relative to KT for 0.5 , 1.0 and 5.0 is Presented. Frotability for Finding a Sphere as a Function of r. 92
23. Self-Scattering Geometry for Croseed Beams 86
24. Thegretical Fit to Data for $1=t$ and znd orderCoherent Mixing. Open Circles, EalidCircles and Open Square as well as SolidSquare are for 0.481 um, 0.65 um and 1.09um Diameter spheres for Craseing Angles8.1 , 8.1 , and 9.6 Degrees Respectively . . Y125. Theoretical Fit to Data for End and Srdorder Eoherent Mixing. Open Circles arethe Data for the Epheres of Diameter 2.02um and Croseing angle is 7.9126. Flot of Output Intensity as a Function ofCrossing Angle of the Beams. Input Powerof the Write Beams Fer Unit Area is 50EsWatts/m² Open Circles is the Data and SolidCircles are Corrected Data using MieTheory. 93
27a. Growth and Decay of Firet Order Self Diffrected Grating Mode. Input Fower Fer Linit Area is $40 \mathrm{MW} / \mathrm{m}^{2}$, Diameter of the Spheres is 0.43 um and Fringe Spacing is1.77 um96
27t. Decay of First Order Self Diffrected Grating Mode us Time. Input Fower Fer. Unit Area is $40 \mathrm{Mb} / \mathrm{m}^{2}$, Diameter of the Spheres is 0.48 um and Fringe Spacing is1.77 um96
28a. Erowth and Decay af Firet Order Self Diffrected Grating Mode. Input Power Fer Unit Ares is $29 \mathrm{MW} / \mathrm{m}^{2}$, Diameter of the Spheres is 0.95 um and Fringe Spacing is$2.63 \mathrm{um} . \quad . \quad$.97

2BE. Degョy af First Drder Self Diffréteg Gratirag Mode us Time. Infut Fower Per. Init Ares is $2 \overline{7} M / m^{2}$, Diameter af the Spheres is 0.95 um and Fringe Spacirg i三 2. 63 נா

29a. Grouth and Deray of First Order Self Diffrected Gratirag Mode. Infut Fower Fer. Unit Area i $326 \mathrm{MW} \mathrm{m}^{2}$, Diameter of the Spheres is 1.0 G um and Fringe Gpating is $2.17 \mathrm{um} . \quad 9$

2Ft. Desay of First Or.der Gelf Diffrected Grating Mode us Time. Input Fouer Fer. Unit Ares i 3 2\& Mh/mí, Diameter af the Spheres is 1.09 um and Fringe Spacing is 2.17 um

30a. Growth and Decay of Second Drder Self Diffrected Grating Mode. Input Fower. Fer. Unit Area is $26 \mathrm{MW} \mathrm{m}^{2}$, Diameter af the Spheres is 2.02 um and Fringe Spacirig is $2.89 \mathrm{um} . \quad . \quad$.

Decay Gf Second Grder Self Diffrected
Grating Made ve Time. Input Power Fer. Unit Area is $2 \Leftrightarrow \mathrm{M} / \mathrm{Mm}^{2}$, Diameter of the Spheres is 2.02 um and Fringe Spating is $2.87 \mathrm{um} . \quad . \quad$.99
313. Growth and Decay of First Order Self Diffrected Grating Mode. Input Fruner. Fer. Unit Ares is zi MW/me Diameter of the Spheres is 2.02 um and Fringe Spating is 2.87 um100

Bit. Decay af First Groder Gelf Diffrected Grating Mode ve Time. Input Power Fer Unit Area i E 21 MW/mí Dismeter af the Spheres is 2.02 um and Fringe Spacing is 2.87 um 100
32. Ratio Gf Ferferidicular Forge to Farallel Force ve Drag Force Coefficient 113
33. Debre-Scherrer Ring. The Geattering Arigle is 7.4 Degrees, Diameter of the Spheres i s 0.95 um and the wauelength used iE 488 rm

34, Self-Diffraction Fattern. The Average Farticle Geparation $i \leq 2.54 m$, the Fringe Spacing is 3.2 um and the Two Central Bright Epots are due to the Emerging Crossed Eeams125

34b. Real Space Image of Eorresponding to the Diffraction in 34a.

35a. Self-Diffraction Fattern. The Average Farticle Separation is 2.5 um, the Fringe Spacing is 1.77 um and the Two Gentral Eright Spats Fartially Elacked ty Tape are the Emerging main Beams.127

35b. Real Space Image of Corresponding to the Diffraction pattern in Figure 3Ea128

36a. Self-Diffraction Fattern. The Auersge Particle Sefaration is 2.5 um, the Fringe Spacing is 2.17 um and the Two Main Eeams are blocked by Eeam Stope in this Figure129

3et. Real Space Image of Corresponding to the Diffraction pattern in Figure 36a.130

37a. Self-Diffraction Fattern. The Auerage Particle Separation is 2.5 um, the Fringe Spacirig is 2.45 um and the Two Central Bright Spote Partially blocked by Tape are the Emerging main Eeams.131

37b. Real Space Image of Corresponding to the Diffraction pattern in figure 37a. 132

35c. Two Dimensional Square Lattice. Facking Fraction is 0.11134
soc. Two Dimensional Distorted Hexagonal Lattice. Facking Fraction is 0.105 135

37c. Two Dimensional Hexagonal Lattice. Facking Fraction is $0.105 . \quad 136$

SEa. Typical Behauior of the Fundamental Mode for a Non-Stable Sample. Open and Solid Circles Respect Two Different Input Powers of the Crossed Eeams and the Bar Represerit Fluctuations.

S6E．TYpical Eehavior of the Sevandary Made for
a Non－Stabie Sample．Open and Solid
Gircies Respect Twn Different Input
Powers of the Crossed Beams and the Ear．
Fiepresent Fluctuatigns ．．．．．．．． 140
3デa．A Plat af the SelfーDiffracted Intensity from the Fundamental Mode ve Input Fower per． Unit Area．The Gpen Gircles Represente a Etable Candition of the Esmple．The Solid Line is Cubic Fit to Date and the Fringe Specirg i三ふ．z um ．．．．．．．．

A Plot of the Self－0iffractea Intensity from the Gecondary Mode ve Input Fower per Unit Area．The Gpen Circles Fepresent a Stable Condition of the sample．The Solid Line is Three－Half Fit to Data and the Fringe Spacing is S． 2 um ．．．．．．．．．． 142

40a．A Plot of the $\operatorname{si} 1$ f－0iffracted Intensity from the Fundamental Mode ve Input Fower fer Unit Area．The Gpen and Solid Eircles Fepresent Stable and Non－Stable Sample Respectively．The Solid Line is Cutic Fit to Data and the Fringe Efacing is 2.63 um ．． 143

40b．A Plot of Self－Diffracted Intensity from the Eecondary Mode vs Input Fower per． Unit Ares．The Open and Solid Circles Fiepresent Statie and Non－Statle Sample Respectively．The Solid Line is Three－Half Fit to Data arid the Fringe Spacing is 2． $63 \mathrm{um} . \quad 144$

41玉．A Flot Gif Self－Diffracted Intensity from the Fundamental Mode ve Input Fower per． Urit Area．The Gpen and Solid Cirgles Represent Stable and Non－Stable Sample Respectively，The solid Line is Cutic Fit to Data and the Fringe Spacing iE $2.17 \mathrm{um} . \quad 145$

41b：A Flot of Self－Diffracted Intensity from the Secondary Mode ve Infut Fower per． Unit Area．The Dpen and Solid Circies Represent Statie and Non－Stable Sample Respectively．The Solid Line is Three－Half Fit to Data and the Fringe Sparing is 2．17 um．．．．．．． 146

42a．A Plot of $\operatorname{self} \boldsymbol{f}$－Diffragted Intensity from the Fundamental Made us Input Fower per． Unit Ares．The Dpen and Solid Eirgles Fiepresent Stable and Nom－Statle Sample Respectively．The Solid Line is Eutic Fit to Data and the Fringe Spacing i三 2.04 um ．．．．．．．．．．．．

4zt．A Flgt of छelf－Diffracted Intensity from the Secondary Mode us Input Fower per Unit Area．The Gpen and Ealid Eircles Represent Stable and Non－Stable Sample Respectively．The SglidLire is Three－Half Fit to［ata and the Frimge Epacing is 2．04 um143

43a．A Plot of Self－Diffracted Interisity from the Fundamental Mode ve Input Fower per Unit Area．The Open and Solid Circles Fepresent Etatle and Nom－Etable Sample Respectively．The Solid Line is Eubic Fit to Data and the Fringe Efacing is 1.77 um ．．．．．．．．．149

436．A Plot of Belf－Diffracted Intensity from the Secondary Mode vs Infut Power fer． Unit Area．The Open arod Salid Eircles Represent Stable and Non－Stable Sample Respectively．The solid Line is Three－Half Fit to Data and the Fringe Epacirg i三 $1.77 \mathrm{um} . \quad$ ．．．．．．．．． 150

44a．The Crossed Beams Direstly Excite Density Mode with wayeuector k ：and two ather． Modes with wave－vector k_{2} and k_{3} are Coupled to the k，Made by Farticle Interactions．155

44b．Landau Theory for the Groder Farameter a （Solid Eurves）and a $=$ a（Dashed Curues） for $\mathrm{C}=-1, \mathrm{D}=1,2$ and $\mathrm{E}=3 / 2$ as a Function of A and Parametrized by B ．．．．．．．． 155

45a．Flot of Self－Diffracted Intensity af Fundamental Mode ve Erossing Angles．The Euattering Angle of the Debye－Echerrer Ring is 7．4 Degrees．The Farticle diameter． is 0．$\overline{5}$ um．The Open and Salid Eireles Represents Data and Correeted Data Usirg Mie Theory，Feepertively．The Ear Represente the Intensity Fluctustions．．．15今

45t. Flat of Self-Diffragted Intensity of Gecondary Mode ve Eraseing Angles. The Seattering Angle af the Debye-siherrer Firg is 7.4 Degrees. The Fartisle Diameter is 0.95 um. The Dfen Cirales Fiepresent Data and the Ear Represents Intensity Fluctuations. 150

4s. Flot of Intensity of Detive-Seherrer Ring us Input Fower. The Scattering Angles is 7.4 Degrees. The Farticle Diameter is 口. 5 (um. The Gpen Eircles and Bar Represents Data and Fluctuations 162

47a. Growth and Desay of Fundemental Mode. The Farticle Diameter is 0.GS um. The Auerage Farticle Separation i 32.7 um. The Fringe Gpacing is 2.63 um. The Input Fower is 0.024 watts and 250 Frames are Averaged. . . 164

4Ba, Growth and Decay af Fundamental Mode. The Particle Diameter $i \equiv 0.95$ um. The Average Farticle Separation is 2.7 um. The Fringe Spacing is 2.17 um. The Input Fower is 0.025 watts and 250 Frames are Aueraged. . . $1 \leqslant 4$

49a. Growth and Decay of Fundamental Mode. The Farticle Diameter is 0. \mathbf{F} (נm. The Auerage Farticle Separation is 2.7 um . The Fringe Spacing is 1.89 um, The Input Power is 0.039 batts and 250 Frames are Averaged. . . 185
50. Growth and Decay af Becondary Mode. The Particle Diameter $i s u . F 5 \mathrm{um}$. The Auerage Farticle Separation is 2.7 um. The Fririge Spacing is 2.17 um. The Irput Fower is 0.05 Watts and 221 Frames are Averaged. . . 165

47b. Initial Grouth of Fundamental Mode. The Particle Diameter is 0.75 um, the Average Particle Separation $i=2.7$ um, the Fringe Separation is 2. 63 um: Input Fower is 0.024 Watts and a 250 Frames Auerage is Ferformed. $1 \leqslant 7$

47c. Decay of Fundamental Made. The Farticle Diameter is $0 . \sigma 5$ um, the Aver age Farticle Separation is 2.7 um: the Fringe Geparation is 2.63 um: Input Frower is 0.024 Watts and a 250 Frames Auerage is Performed

48t. Initial Growth of Fundamental Made. The Partigle Diameter $i \equiv 0.95$ um, the Auerage Fartigle Geparation is 2.7 um, the Fringe Separation $i \equiv 2.17$ um, Input Fower $i=$ 0.025 Watts and a 2 页 Frames Auerage is Performed. 171

48c. Decay of Fundamental Mode. The Farticle Diameter is 0.75 um, the Auerage Particle Sefaration is 2.7 um , the Fringe Separation is 2.17 um, Input Power is 0.025 Watts arid a 250 Frames Average is Performed.172
496. Initial Growth of Fundamental Made. The Farticle Diameter is 0.95 um: the Auerage Fartiele separatign is z. 7 um, the Fringe Separation is 1.87 um, Input Fower is 0.037 Watts and a 250 Frames Averige $i s$ Performed. 173

49c. Deray of Fundamental Mode. The Farticle Diameter is $0.954 m$, the Auerage Farticle Separation $i=2.7$ um, the Fringe Sefaration is 1.89 um , Input Fower is 0.037 Watts and a 250 Frames Average is Performed.

174
51. Eisttering Geometry 1F4
52. Eircular. Aperture Geometry. 178

CHAFTER I

INTRODUCTION

Statement of the Froblem

Colloids made of suspended polymer microspheres are very useful systems for studying many-body physics. They are physically well-characterized, inexpensive, and the particle order may show solid, liquid, and gaseous states under easily attained physical and chemical conditions. It is known that due to screened coulombic interactions, even a dilute aqueous suspension of charged particles can exhibit interparticle ordering over large distances compared to the particle diameter. Recently, these colloidal systems have been studied by a number of authors to examine statistical mechanical behavior (1 to 6). Since there is a similarity between these colloidal systems and molecular fiuids, they become ideal candidates to test many theories of condensed phases, under both equilibrium and nonequilibrium conditions〔7). Scattering of light from these colloidal systems provides information about static and dynamics of the interparticle order, similar to that obtained by $x-r a y$ and neutron scattering from fure atomic condensed matter states.

In this work we explore the effect of radiation pressure effects on the ordering in two dimensional

Abstract

colloidal liquid states. Using a crossed laser beam technique we should be able to impose a periodic (radiation) potential on the collaidal sample with a wavelength on the order of the average interfarticle spacing, The collaidal particles, which have an index of refraction larger than the surrounding aqueous medium, should te drawn into the high intensity regions of the fringe pattern created by the crossed beams (1). The reorganization will destroy the Debye-scherrer rings, which are produced on scattering light from an amorphous state where particle pairs maintain an average separation but random orientation, in favor of localized intensity maxima, which are produced by scattering from a diffraction grating of particles aligned with the fringe pattern. However, the particles also maintain there interaction to produce a registration between the rows of particles in the fringes. This interaction praduces ather density modes, not directly excited by the intensity potential. The result is that a solid like order may be induced in the sample by directly stimulating: only one of its modes. This thesis describes the adessey to demonstrate this "laser induced freezing " phenomenon.

Purpose of This Thesis

While the main goal of this thesis is to demonstrate the phenomenon of "laser induced freezing", there are several subsidary problems which are explored as a result of this work:

1. A measurement of the scattering efficiency and amplitude of the directly excited density mode as a function of the strength of the applied intensity potential for hard sphere (weakly interacting) as well as soft sphere (strongly interacting) samples.
2. A measurement of the scattering efficiency and amplitude of the indirectiy excited density modes as a function of strength of the intensity potential for the soft sphere (strongly interacting) samples.
3. A study and quantificatian the directly excited density mode for fixed strength of the intensity potential as a function of the fringe spacing of the applied field for both hard and soft sphere samples.
4. A study of the characteristic formation time of the directly excited density mode as a function of strength of the intensity potential for both hard and soft sphere systems.
5. A study of the characteristic formation time of the indirectly excited density modes as a function of strength of the intensity potential for soft sphere systems.
6. A measurement of the diffusion of hard spheres near. a plane boundary in the presence of the normal radiation pressure force.
7. A study of the relaxation time constant of the directly and indirectly excited density modes for soft sphere systems as a function of both the strength of the intensity potential and fringe spacing.

Thus this thesis reports extensive experimental and some theoretical work on ordering in two dimensional colloidal systems subject to spatially periodic external fields. A short review of articles have been included with the theary and discussian in each chapter. In this way, each chapter is self-contained, having a review of literature, theory, experimental data, and discussion. While each chapter is self contained the first few chaptere give background information helpful in the following chapters. A brief summary of the chapters is as follows: Chapter II is a development of experimental and theoretical tools relevant to the theme of this thesis, a review of literature arid some experimental results, Chapter II discusses experimental details and apparatus, Chapter IV presents a study of hard sphere (weakly interacting) samples with a quantitative theoretical explanation, Chapter V presents a study of a saft sphere $\langle i n t e r a c t i n g\rangle$ samples with a quantitative theoretical model and chapter $V I$ contains ouerall discussion, conclusion and suggestions for future work.

EHAFTEF II

GENEFAL BAEKGROLIND

Intraduction

This chapter outlines eeverals topics which will be useful in discussing our experimentel procedure and our resulte, We begin with scattering from single finite Eized particles arid then collections of particles. Messurement techniques including DLS sdynamic light Ecattering., CCIFS (crossed correlation intensity fluctuation spectroscopy) and CBT (crossed beam techniques) are discussed, as well as, the relations between these techniques. Finally we discuss some of the work of others on two dimensional fluid-solid s.〉stems.

Static Light Scattering

When $x-r a y$ radiation is incident on an atom, the Eurrounding electrons will undergo aceeleration under the action of the electric field associated with the beam. Gince an accelerated charge emits radiation, the atomic electrons emit and scatter the incident radiation. In this Case the wavelength and size of the atom are the same order of magnitude. Gn the other hand, if an isolated arbitary shaped dielectric object is illuminated by afarallel beam
of linearly polarized radiation of longer wavelength, then antecedent to becomes polarized in the electromagnetic field due to the displacement of the electrons with respect to the nuclei and also due to the partial orientation of any permanent dipoles that may be present. In the optical frequency range the effect of permanent difoles is insignificant. For these long wavelengths we consider the individual dipoles to radiate uniformy in all directions (Rayleigh Scattering) in calculating the effect of the shape of the dielectric object on the scatteredradistion.

Scattering from Finite Sized Particles

Now we consider a collection af scattering centers which radiate uniformly in all directions. The total electric field amplitude function, $A(\theta), i s$ the sum of amplitude functions for scattering by each individual oscillator in a given direction as shown in figure 1 and is given by

$$
\begin{equation*}
A(\theta)=\sum_{i} \epsilon_{i} \in \operatorname{ep}\left\langle i \bar{K} \cdot \bar{r}_{i}\right\rangle \tag{2.1}
\end{equation*}
$$

where
\bar{K} (= $\bar{k} i-\bar{K} s)$ is the scattered wave vector, the difference between the incident and scattered wave vectors
\bar{r} is the distance of ith farticle from the origir
and

$$
\begin{aligned}
& \epsilon_{i} \text { is a function depending on the scattering } \\
& \text { efficiency, the distance of the detector from }
\end{aligned}
$$


```
ng is the refragtive index gf the
    particle
H2 is the refractive inides of the
    surrounding
D is the positign of Gonstructive
    interference pattern.
```

Figure 1. Mutual Interference between each Oscillator in the Farticle.

```
        the scattering centers, and the incident
        amplitude which may defened on ri. ©For.
        simplicity we will assume }\mp@subsup{\epsilon}{i}{\prime}=1, exgept whe
        stated otherwi se).
        In general this sum is very hard to evaluate since the
Fositign gf Esah individual oscillatgr is not kriown. On the
other hand we cam treat each ascillator in a dielectric
farticle as a Rayleigh scatterer excited by the incident
field and assume that it is unperturbed by the presence of
the rest of the oseillators. We consider the case of
incident radiation polarized perpendicular to the plane of
scattering, where earh oscillator scattereradiation to a
point with different. phase in general. Then the amplitude
function af each oscillator is given (B) by
\[
\begin{align*}
\Delta A(\theta)= & i\left\{( 3 k ^ { 3 } ) \left\langle4 \pi j\left[\left(m^{2}-1\right) /\left(m^{2}+2\right)\right]\right.\right. \\
& E \times p(i \delta) d W \tag{2.2}
\end{align*}
\]
where \(m\) is the ratio of complex refractive index of the particle tor the medium index af refraction \(\delta i s\) the phase of the seattered riadiation from each element at the atseruation prosition.
The resultant amplitude function which arises from interference of each wavelet is ottained by the vector sum (integral for continuous case) over all oscillators in the Farticless
```

$$
\begin{align*}
A(\theta)= & i\left(\left(3 k^{3}\right) /(4 \pi)\right)\left[\left(m^{2}-1\right) /\left(m^{2}+2\right)\right] \\
& \int e x p(i \delta) d V . \tag{2.3}
\end{align*}
$$

The scattered interisity of this abject is directiy proportional to the absolute value square of the amplitude function.

$$
\begin{align*}
I \propto|A(\theta)|= & i\left(\left(3 k^{3} v\right) /(4 \Omega)\right)\left[\left(m^{2}-1\right) \gamma\right. \\
& \left.\left(m^{2}+2\right)\right]\left.\right|^{2} F(\theta) \tag{2.4}
\end{align*}
$$

and

$$
\begin{equation*}
P(\theta)=\left(1 / \nu^{2}\right): \int e x p(i \delta) d v i^{2} \tag{2.5}
\end{equation*}
$$

is known as particle form factor. It is clear that scattered intensity is directly proportional to the form factor, $P(B)$.

Rayleigh scattering is restricted to particles small in diameter compared to the radiation wavelength. On the ather hand Rayleigh-Debye or Rayleigh-Gans results given in equation (2.4) and (2.5) assume that neither the ratio of the refractive index of the medium to the object is much larger than unity nor that the phase shift corresponding to any point in the object be large: i.e., that

$$
\begin{equation*}
1 m-11 \ll 1 \tag{2.6}
\end{equation*}
$$

and 2kaim-1iくく1
where a is the radius of the sphere
and \quad iki $\langle=2 \pi / \lambda j i s$ the incident wave vector magnitude. For this reasari neither the radius of the particle nor the relatiue refractive index can te taken too large.

Within the restrictions af these assumptions, the form factor, $P(B)$, of a homogenequs sphere can tie obtained by integrating in equation (2. result (8) is given by

$$
\begin{align*}
P(\theta) & =\left\{(3 / u ^ { 3 }) \left[s i n(u)-u[0 E(u)]^{2}\right.\right. \\
& =\left(\theta \pi / 2 u^{3} j\left[J_{3 / 2}(u)\right]^{2}\right. \tag{2.8}
\end{align*}
$$

where $u=k a=2 k a \sin (B / 2)$
and $J_{3 / 2}(u)$ is the three-halves arder Bessel function.
The range and validity af Rayleigh-Debye or Rayleigh-Gans theary for a sphere has been investigated (B, \%) by M.kerker and W.A.Farone and his co-morkers. They found that for the relatiue refractiue index, m, clase to unity as well as a phase ehift less than unity, this theory agrees withir 50\% to 100% with the exact calculation for the sphere using Mie theorye Dri the other hand, rumerical calsulations of the anomalous diffraction approximation were done for the farm factor of sphere larger than wave length and for a relative refractive index greater than unity (9). It was found that this calculation agrees with Mie theory to within 50% to 15% as the scattering angles increase from 10 to 20 degrees far a sphere of radius, a=1 um, radiation
wavelength, $\lambda=0.488$ um and relative refractive index, $m=$ 1.2. Thus the Rayleigh-Gans theory gives good agreement at small scattering angles for larger radius particles, as well.

The exact theary or Mie theory for scattering from a sphere of arbitary size and any refractive index is obtained by using Maxwells equations with appropriate boundary condtions (10,11). The solution for the resulting amplitude function for perpendicular and parallel polarization of the electric field is given by

$$
\begin{gather*}
A_{1}(\theta)=\sum_{n=1}^{\infty}[(2 n+1) / n(n+1)]\left(a_{n} t_{n}(\cos (\theta))\right. \\
\left.+b_{n} T_{n}(\cos (\theta))\right) \tag{2.9}
\end{gather*}
$$

and

$$
\begin{gather*}
A_{2}(\theta)=\sum_{n=1}^{\infty}[(2 n+1) / n(n+1)]\left\{b_{n} t_{n}(\cos (\theta))\right. \\
+a_{n} T_{n}(\cos (\theta)\} . \tag{2.10}
\end{gather*}
$$

respectively. The coefficient a_{n} and b_{n} are in general complex, and are tabulated (12.13) for artitary values of the relative refractive index and sphere radius. The functions $t_{n}\left(\cos (\theta)\right.$ and $T_{n}(\cos (\theta)\rangle$ are given by

$$
\begin{equation*}
t_{n}(\cos (\theta))=d F_{n}(\cos (\theta)) / d \cos (\theta) \tag{2.11}
\end{equation*}
$$

and

$$
\begin{align*}
T_{n}(\cos (\theta))= & \cos (\theta) t_{n}(\cos (\theta)-(\sin (\theta) \\
& {\left.\left[d t_{n}(\cos (\theta)) / d(\cos (\theta))\right]\right) } \tag{2.12}
\end{align*}
$$

where $P_{n}(\cos (\theta))$ are the Legendre polynomials. Scattering from a Collection of Particles

Let us consider a collection af particles susperided in a liquid. If these partigles are randomly positianed ing long range ordery arid subjected to a laser light, then the scattered radiatian will evidence no net interference between particles and the single particle form factor will dominate the seatered intensity distribution. If the particles interact strongly encugh that they maintain an average separation from one another sehort range ordery, the scattered radiation intensity pattern. will te similar to that for x-ray (or neutron) scattering from liquids ar amorphous solids. Debye-Scherrer rings concentric with the incident beam will be observed. The diameter escattering angle) of these rings is a measure of the auerage particle Eeparation and their width is a measure of the volume over which particles are correlated. If the interaction between particles is sufficiently strong, they may order into a regular lattice structure (long range ordery. Light scattered from these systems behaves similar to x-ray for neutron) scattering from crystallirie salids and Eragg's law applies. According ta Eragg's lawscattering will occur only for certain angles given by:

$$
\begin{equation*}
2 d \equiv i n(\theta)=\lambda \tag{2.13}
\end{equation*}
$$

where日 is the half angle of scattering
$\lambda i \equiv$ the wavelength used
and dis the average separation of planes af particles in the erystallime lattice.

Thus the Bragg's scattering can be used to determine Farticle Eefarations from knowledge af λ andmeasurements of 0 for crystalline systems: An example of Bragg scattering is shown in figure 2a. This is produced by frousing a single laser beam to a area of diameter 50 um in a sample of collaidal partieles. The gap thickriess is about su um which forces the particles to form a monalayer. This monolarer is otserved directly using a microscope. The Eenteral spot in the Ecattering pattern is the unscattered main beam. From this scattering pattern the scatteririg angles are determined. In appendix $\langle A$, it is shown exactly the procedure for calculating these anglese as bare must be taken to account for scattering geometry andrefrection effects.

The separation tuetwef the "flanes" offartiglesmas obtained using equation (2.13). These seattering "Flanes" are indicated as ghown in figure zt. In this figure the particle "flanes" (indicated by salid lines; areresporsible for froducing the scattering intensity maxima glosest to the
 lines indicate the flanes resfonsibie far the secoma arder. intensity maxima in figure za. The real Epace Etructure and sGattering patterri crosspand qualitatively Quantitatively
we have a hexagonal close pack structure, (hcp), whase lattice Egnstant, $a=2.3$ um $=$ an be found ty usingrelatign

$$
s=2 d(h k) \sqrt{\left(h^{2}+h k+k^{2}\right) B}
$$

where a(hk) $i s$ the sefaration at the planes
and $\quad h$ as well as K are Miller indices.

Gince the physical diameter of the particles is 1 um, the lattice parameter for touching particles would be a $=0.86$ um: However, these strongly charged partigles maintaina much larger separation producing the observed lattice constant.

To analyze the scattered intensity for an arbitrary collection of interacting scatters the more general amplitude of scattering function, E(K), given by

$$
\begin{equation*}
E(k)=f_{a}(B) \sum_{i} \exp \left(i \bar{k} \cdot \bar{r}_{i}\right) \tag{2.15}
\end{equation*}
$$

where $\left\{f_{a}\langle\theta\rangle^{2}=P(B\rangle\right.$ is the Eirigle particle form factor Gassumed the same for all particles and the sum is taken ouer all the particle positions. Note that this is of the same form of equation (z.1) for considering internal interference af single particles. We riow apply the same form for interparticle interference.

The scattered intensity, I, is directly proportignal to the absolute yalue square af E(k) and is given by

Figure 2a. A Tracing of Eragg's Epots froduced by Light Ecattering from a Highly Interacting Colloidal Sample

Figure 2t. The Real Gpace Etructure af atove Scattering Fattern

$$
\begin{align*}
I \propto|E(k)|^{2} & =i f_{a}(\theta) \sum_{2} \exp \left(i \bar{k} \cdot \bar{r}_{i}\right) i \\
& =\left.i f_{a}(\theta)\right|^{2} S(k) \tag{2.16}
\end{align*}
$$

where

$$
\begin{equation*}
s_{I}(k)=\sum_{i} \sum_{j} \exp \left\langle i \bar{K} \cdot\left(\bar{r}_{i}-\bar{r}_{j}\right)\right. \tag{2.17}
\end{equation*}
$$ is called the instantaneous static structure factor. The sum Gan be split into two different types of terms: those for which $i=j, ~ t h e ~ s e l f ~ p a r t: ~ a n d ~ t h e ~ m u t u a l ~ p a r t ~ w h e r e ~ i f j . ~$ In the gese of a liquid the particles are always suffigientiy randomly positioned that the sum is diffeult to evalute. However, let us aseume that there are N farticles in our sample. Then the liquid structure factor can be written in terms of $s_{I}(k) a s$ follows (15):

$$
\begin{array}{ll}
& S(k\rangle=\left\langle\sum_{i j} \exp \left\langle i \bar{k} \cdot\left\langle\bar{r}_{i}-\bar{r}_{j}\right\rangle\right\rangle\right\rangle=\left\langle S_{I}(k\rangle\right\rangle \\
\text { and } \quad & S(k\rangle N=1+n_{0} \int d^{3} r \exp (i \bar{k} \cdot \bar{r}\rangle[g(r)-1] \tag{2.18t}
\end{array}
$$

where n_{0} is the average particle density, $g(r)$ is the pair distribution function and the Erakets represent an equilibrium ensemble average.

Thus the pair distribution function g(r) is related to structure factor $s(k)$ via a fourier transform. This is important because the pair distribution function is defined as

$$
\begin{equation*}
g(r)=n(r) / n_{0} \tag{2.19}
\end{equation*}
$$

```
where n(r) is the radial density distribution funetion
    Gf the liquid.
```

Qbuigusly the pair distribution functian, gery and radial density function have same type of behaviar, i.e. as $\Gamma \rightarrow \infty, n(r) \rightarrow n$ and $\quad \rightarrow(r) \rightarrow 1$, What $i \leq i m p o r t a n t i s t h a t$ this pair distribution functign gives the Goriditignal probability for finding a particle a distance rem the arigir giveri a pertigle positioned at the origire This probability can be determined from Ecattering experimente.

Dynamic Light Scattering

So far the static structure factor is discussed for aversge particle positions: no motion of the particles is considered. But in reality the microspheres exhibit Brownian motian. As a result the scattered intensity will fluctuate in time. The rate at which the intensity changes gives a measure of particle diffusion rates, polydispersity, size, etc with suitable assumptions. If the particles are correlated, then this information atout the gynamic Etructure factor gan be obtained from the equilibrium flurtuations in position.

The dynamic light scattering (DLS) technique is a very prowerful method to gbtain this information. In DLS the measured photon correlation function can be expressed as intensity correlation function: E(k, Ty. This correlation fungtion, Cuk,T) is giuen by

$$
\begin{equation*}
E(k, T)=\langle I(k, t+T) I(k, t)\rangle\langle I(k, t)\rangle^{2} \tag{2.20}
\end{equation*}
$$

where
I (k, t) is the intensity at time t at the detector I(k,t+T) is the intensity at the later time t+T at the detector
and
$\langle I\langle k, t\rangle\rangle$ is the time averaged intensity.
Furthermore, this correlation function can be expressed in terme of electric field earcelation function, g, (K, T). In the gaussian limit when there are a large number of independent correlations regians in the sutatering volume, we have the Seigert relation (16)

$$
\begin{equation*}
\left.C(K, T)=(1+E \operatorname{G},(K, T))^{2}\right) \tag{2,21}
\end{equation*}
$$

where c is an apparatus constant often called the signal to noise ratio.
and

$$
\begin{equation*}
g_{1}(k, T\rangle=\langle E(k, t+T) E(k, t)\rangle\left\langle\left\langle E_{S^{1}}{ }^{2}\right\rangle\right. \tag{2.22}
\end{equation*}
$$

The electric field correlation function or intermediate scattering function, $g,(k, T) i s$ the dynamic analogue of $S(k)$ and is related to a time dependent two particle distritution function via fourier transformation. Hence E(k,t) and E(k,t+T) are scattered electric fields at time (t) and《t+T〉, respectively. The instantaneous electric field produced by scattering from the collection of Erownian particles in the sample is given in equation (2.15), as ir

$$
\begin{align*}
& \text { the gtatic case. So the two time electric field correlation } \\
& \text { function is given by } \\
& \qquad \begin{array}{r}
\langle E(k, t+T\rangle E(k, t)\rangle= \\
\\
\left.-f_{a}(\theta) i^{2}\langle(t+T)\rangle\right\rangle .
\end{array}
\end{align*}
$$

In the ease of N identical noninteracting farticles in the scattering volume the correlation function becomes (17)

$$
\begin{array}{r}
\langle E(k, t+T\rangle E(k, t\rangle\rangle=N\left\{f_{a}(\theta) ;\langle\exp i \bar{k} \cdot[\bar{r}(t+T\rangle\right. \\
-\bar{r}(t)]\rangle(2.24\rangle
\end{array}
$$

where $N i s$ the number of particle in the scattering volume
ifa (e) ${ }^{2}$ is the single particle form factor sand geometry effecte)
$\bar{F}(t)$ is the position of the particle at time t and $\bar{r}(t+T)$ is the position of the same particle at later time (t+T).

When these particles exhibit simple Brownian motion, the correlation function further simplifies to

$$
\begin{align*}
\langle E(k, t+T) E(k, t)\rangle= & N, i f_{a}(\theta) i^{2}[\exp (i \omega T)] \\
& \left(\exp \left(-D_{0} k^{2} T\right)\right\rangle \tag{2.25}
\end{align*}
$$

where D_{0} is the self-diffusion constant of the Brownian particles, and according to the Stokes-Einstein relation D_{0}
$=$ KT/isgna) for Epherical particles of redius, e, with viscosity of the medium, r.

The correlation function, $[$ (G,T) is then found to be

$$
\begin{equation*}
C(k, T)=1+G E x p\left(-2 D_{0} k^{2} T\right) \tag{2,26}
\end{equation*}
$$

When the Erownian particles are interacting, the form for C(k,T) given inequatign (2.2s) is not correct. Rather. the decay is non-exponential in time, in general, and is expressed in terms of a cumulant expansian as follows (18.19):

$$
\begin{array}{r}
C(K, T)=1+\left[\operatorname { e x p } \left[-2\left(K_{1} t-K_{2} t^{2} / 2!+\right.\right.\right. \\
K_{3} t^{3}(3!-\ldots .) \tag{2.27}
\end{array}
$$

The cumulants have been derived (1B.19) using equatign (2.24) and a generalized diffusion (20) or Langevin equation (21) for the particle aymamics. The first cumulant in the absence of hydrodynamic interactions is giuen by

$$
\begin{equation*}
k_{1}=D_{0} k^{2} s(k) \tag{2.28}
\end{equation*}
$$

where all quantities have been defined previgusly. The second and higher eumulants beaome important at intermediate values of k for strong interactions, in general. On the other hands \quad G(k, T) for nom-interacting partigles is given by equation $(2.26) \quad\left(K_{\mid}=D_{0} K^{2}, K_{n>1} \rightarrow 0\right)$. For dilute system of

Abstract

hard spheres (22), $k,=D_{0} k^{2}(1+b \varnothing)$ in the small k limit when the effect of both S (k) and hydrodynamic interactions are included. Here $\quad=1.45$ is the "first Uirial coeffigient" for hard spheres. Polydispersity, a distributign g+ particles Eize andor diffusion gonstante, will also give a mon-exponential time decay for E(k,T) which must be anslyzed using a cumulant expaneion (zi). Werefer. the interested reader to the 1 iturature cited for more detailed discussions af polydispersity and intersctions.

Cross-Correlation Interisity

Fluctuation Bpectroscopr

Cross-correlation intensity fluctuation spectroscopy (CCIFS) is a relatively new method of light scattering. In contrast to the standard scattering techniques which monitor the static or aynamic structure factors quhich are related to particle pair correlation functions), the cCIFs technique is sensitive to higher order particle correlation functions (2, 3)

In these experiments two detectore are used to monitor the scattering from a small illuminated volume in the Esmple. Only a few correlation regigns (local structure) are observed and the Ecattered radiation is nongausesin in general (2,3). Generally, in these experiments, one detector. is positioned at a fixed uavevectar k and the other $i s$ scanried ouer a series of values q. The intensities are crossed correlated to find the ECIFS function, which is

```
defined ミE
```

$$
\begin{equation*}
I(k, q, T\rangle=\langle I(k, G\rangle I(q, T)\rangle\langle I(k)\rangle\langle I(q)\rangle \tag{2.29}
\end{equation*}
$$

and is a generalization of the dynamic light Ecattering function (equation (2.20) to two wavevertore. Assuming the Eingle scattering Born afproximation sas with the ols Expression) C(K:q,T) may be Expanded as follows:
©

$$
\begin{align*}
& C(k, q, T)=\left\langle\sum_{i} \sum_{j} \sum_{i} \sum_{m} \in\left[\bar{r}_{i}(0)\right] \in[\bar{r} ;(0)] \in[\bar{r},(t)]\right. \\
& \in\left[\bar{r}_{m}(t)\right] \operatorname{Exp}\left(i \bar{x} \cdot\left[\bar{r}_{i}(0)-\overline{r_{j}}(0)\right]\right. \\
& \left.\left.+i \bar{q} \cdot\left[\bar{r}_{1}(t)-\bar{r}_{m}(t)\right]\right)\right\rangle \operatorname{S}(\bar{K}) S(\bar{q}) \tag{2.30}
\end{align*}
$$

where $\quad ~ G(\bar{K})=\left\langle\sum_{i} \sum_{j} \in\left[\bar{r}_{i}(\underline{a})\right] \in\left[\bar{r}_{j}(0)\right] \in x F\left(i \bar{K}\left[\bar{r}_{i}(a)-\right.\right.\right.$ $\left.\left.\bar{r}_{j}(0)\right]\right\rangle$
$i s$ the static structure factor. Eecause the scattering yolume $i \equiv$ small, the static Etructure factor and C (k, q, T) are generalized to include the fluid amplitude fagtor Eir) which determines the size of the scattering volume. For E(r) $\equiv 1$ everywhere, S(k) reduces to the provigus result giveri iri equation (2.15).

Experimental results have been obtained far a tua dimensional monolayer of strongly interacting colloidal particles (2, 3 in the collaidal liquid phase. The authore have reported a tuo dimensional hof structure as the averaged locsl structure in a sufficiently dense colloidal
liquid. This was euidenced by the fact thet when both iki and iqi are equal to the magnitude of Ko the maxima at E(k,q, 0) on the firet Deboe-Sherrer ring extitited Eix evenly sparing maxima as a function af the angle betueen k and q. Anticorrelations were observed between these maxima.

This work has tien interpreted using an harmonic salid model (23). However the underlying lattice to which the partigles are referenced is bonsidered te be polyerystalline, and the orientetion of a given crystal.line is taken tor be a random function of time in the liquid state. The assumption was made that the dynamics of this reorientation is slou enough not to interfere with lacal lattice vibrations. The crystal lattice is assumed to be large compared with the seattering volume. The vibration protilem was treated the same as for an infinite two dimensional lattice. So the particle cograinates are separated into two parts, one part represents the reference gf the partigles ta an underlying lattige which is orientationally averaged, while the other part represents deviation from the latticesites which is assumed small and aueraged ouer thermal fluctuations. Detailed caliulations have been dane for a two dimentional hexagonal blase pagk structure (3). The Gross-correlation functign: G(k,q.0) shoms that the fartigles arehighly eorrelated wheri $=k=$ KOS at azimuthal angular separations between k and a of of, 60, $120^{\circ}, \quad 180^{\circ}$ and antigarrelated at $30^{\circ} 90^{\circ}$, 50°, where the arigle sweef was from oi to 1 Bio The same type of results will
be obtained for angles between 180° to 360°, which is just the mirror reflegtion af the former. A mare general form of Grass-rarrelation has been examiried (4). Here the authore make a general expression of C(k,q,T) in equation (2. 30́); replacing the four sums by an integral ouer a four-point Farticle distribution function. This distribution function is reexpressed in terme of many particle correlation functions. The results make explicit the ronnection to several different cross correlation experimerits perfarmed in recent years.

Crossed-Eeam Techniques

Crossed-beam Techniques, (CBT) are a very important experimental tools that are used to study both salids and liquids. This process can be thought of as the production and readirig out of a holographic index of refraction grating in an optically non-linear medium. Here two laser "write" teams are crassed iri a sample to produce a set of interference fringes which modify the optical properties of the sample. If a third "probe" beam has the same wavelength as the two inital write beame and propagates in the direction opposite one af them, then the "scattered" beam propagates back in the opposite direction of the other write beam. This scattered mewe is termed the "phase conjugate" replica of the initial object beam because its wave fronts match those of the gbiert beam exartly, except that the sign of the time appears revereed. This technique is also termed
as degenerate fourmaue miximg (1,24).
This technique has been used to study the nori-linear Gptical seattering in nematic liquid grystals 《z5〉. Here the incident beams interface spatially to create an index modulation via their reorientatignefferts on the malecules. When aided by a de magnetic field, the reorientation and nonilinear responees gif the medium are entianced and messurements of diffraction efficiency were done, as a function of the optical intensity, magnetic field and time. This technique has also been applied to absorbing media (such as solids and liquids) where local tempereture variations form a phase grating which is probed by scattered light of different frequency eg.g. non-degenerate four-wave mixing. The diffusion of this thermal grating was also studied (26.27). Ferently degenerate faur-wave mixirg has been performed in alexandrite crystals \{BeAl ${ }_{2}{ }_{3}$:Cr3ty, where the decay rate af the exaited state population grating were measured as a function of the beam-urossing angle (2s). This technique $i s$ also used to the study the self diffusion af fluorescent particles (20). These flugrescent particles may be photobleached by a brief exposure to an intense laser beam to form fluorescent grating. This grating scatters light, but decays in time due to partigle diffusion. Thus a recouery time can be measured. Finally, we mention that degenerate four-wave mixing experiments have been perfarmed on colloid suspensions, scomprised of dielectric spheres suspended on watery where the dielectric spheres are drewn
into the high intensity regions to form a grating, which in turn scatters light (i).

This thesis describes related crossed beams experiments for strongly interacting and essentially non-interacting particles, suspended in water. Here photaphoretic or radiation pressure forces submicron plastic spheres into rows aligned along the light intensity interference fringes produced by crossed beams. The alignment of the particles can be detected by frobing with a third laser beam which is scattered from the induced diffraction grating. Alternatively, the structural alignment may also be detected by self scattering of the incident laser beam. When the crossed laser beams are eliminated, the particles diffuse and the time decay of the diffracted probe beam light can be used to determine the collective diffusion constant af the particles. In the case of non-intercating particles the collective diffusion constant is equal to the self diffusion constant. Diffusion constants may also be measured by dynamic light scattering techniques (DLS). DLS monitors the decay of spontaneous density fluctuations and can be used to determined the collective diffusion coefficient, in general. Thus we see that CET is a stimulated version of DLS.

Mathematical Description of Fringes Froduced by

```
Grossed (Gaussian Profile) Beams
```

Let us consider two infinite electromagetic plane waves withelectric fields $\bar{E}(1)$ and $\bar{E}(2)$ respectively, which

```
intersect at angle 2G as shown in figure 3. These two flane
waves can be represen'ted as
    E}(1)=E(10)\operatorname{exp i (\overline{K}1\cdot\overline{r}-wt + $1)
                                    (2.32a)
and
E}(2)=E(20)Expi(\overline{K}2\cdot\overline{r}-wt + \phi2
where \(k i\) is the wave vestor of plane wave 1
            k2 is the wave vector of plane wave 2
            \phi1 is the phase angle of plane wave 1
            \phi2 is the phase angle of plane wave 2
            E(10) is the amplitude of the electric
                            field of the plane wave 1
                    E(Z0) is the smplitude af the electric
                            field of the plane wave 2
\overline{r}}\mathrm{ is the displacement
w is the angular frequency of the waves
and t is the time.
```

The time dependent part is suppressed hereafter: because we are interested in the intensity distributions for beams of equal frequency. The total electric field, \bar{E} is the vector sum of the two fields

$$
\begin{equation*}
\bar{E}=\bar{E}(1)+\bar{E}(2) . \tag{2.33}
\end{equation*}
$$

Furthermore, in practice, the plane wave will not have infinite lateral extent we will now assume the beam to have a gaussian beam profile. With these approximations we have

Figure 3. The Crossed-Beam Geometry

$$
\begin{align*}
\bar{E}(1)=E(10) & {\left[E x p\left(-E r^{2} E i n^{2}(\theta+\phi)\right]\right] \times } \\
& {[E x P i(\bar{K} 1 \cdot \bar{r}+\phi 1)] } \tag{2.342}
\end{align*}
$$

and

where $1 / \sqrt{a} i s$ the decay coristant fior the laser． beam width

日 is the half arigle of aroseirg
and $\phi \quad i s$ the direction of r．

The intensity distribution，I，for these tua beams is directly proportional to the product af the tatal electria field and its Eomplex conjugate， $\bar{E}^{*} \bar{E}, i$ ．e

$$
\begin{equation*}
I \propto E^{*} \bar{E} \tag{2.35}
\end{equation*}
$$

Whだと

$$
\begin{aligned}
\bar{E}= & E(10)\left[e x p \left(-a r^{2} \sin \right.\right. \\
& E(\underline{\theta}+\phi)\left[e x p\left(-a r^{2} \sin n^{2}(\theta-\phi)\right]\right][e x p i(\bar{K} 1 \cdot \bar{r}+\phi 1)]+ \\
& i(\bar{k} \cdot \bar{r}+\phi 2)] .
\end{aligned}
$$

Thus，the intensity distributian，I，is given by
$I \propto \bar{E}^{*} \bar{E}=E(10)\left[\exp \left(-2 a r^{2} \sin { }^{2}(\theta+\phi)\right\rangle\right]+$ $E(20)\left[e x p\left(-\operatorname{zar}^{2} \sin ^{2}(\theta-D) y\right]+\right.$

$+\phi 1+\phi 23$
（2．36）
where $E(10)$ and $E(20)$ are assumed ta bereal elertria field
amplitudes.
To simplify further analysis, we specify ($(=\pi / 2)$ and assume that $E(10)=E(20)=E(0)$ to find

$$
\begin{align*}
\bar{E}^{*} \bar{E}= & 2 E(0)\left[\operatorname{xp}\left(-2 a r^{2} \cos { }^{2}(\theta)\right\}\right] \times \\
& {[1+\cos [2 k r \sin (\theta)+\varnothing 1+\varnothing 2]] } \tag{2.37}
\end{align*}
$$

The last term an the right hand side gan have the maximum value +1 and minimum value -i depending on r for fixed $O 1$ and $O Z . ~ I n$ fact the phase O1 and OZ only shift the intensity pattern with respect to origing and can effectively be ignored. We can identify a length scale for the fringes such that
ar

$$
\begin{align*}
& 2 k d \sin (\theta)=2 \pi \\
& 2 d \sin (\theta)=\lambda \tag{2.38}
\end{align*}
$$

where d is the fringes separation and $\lambda i s$ the incident leser beam wavelength.

Hence by knowing the erossing angle and the incident beam wavelength, the fringe spacing Gan be determined. Nate that the intensity of the successive maxima are decressing in amplitude from that of the central maxima because of the gaussian nature of the input teams. This is shown in figure 4 where $z-2 x i s$ represents intensity and $x-y$ plane $i s$ the propagation plane. Here we assume that the diameter af the beam is 15 um, the decay constant is 1.8E10/um ${ }^{2}$, the

Groseing angle is 12.6° degree and the wavelength $i=0.48 B E-6$ um: The two beams are propagating in x-y fisme and Grossing at the origin of the cogrdinstes.

The Photophoretic or Radiation Fressure Forces

When a dielectric sphere is placed in a uniform electric field, it becomes folarized. The reletion between the polarization, \bar{F}, and the electric field, E, is given by (29)

$$
\begin{equation*}
\bar{F}=[3(\epsilon-1) / 4 \pi(\epsilon+2)] \bar{E}(0) \tag{2.39}
\end{equation*}
$$

$$
\begin{align*}
\bar{F} \exp (i w t)= & {[3(E-1) /(4 \pi(\epsilon+2)] \times} \\
& E(0) \exp (i w t)
\end{align*}
$$

where w is the angular frequency of oscillation.

The resulting electric dipule moment of a dielegtric sphere in the presence of an electric field is given (2尹)

$$
\begin{equation*}
p=[\Leftrightarrow-1) \% \in+2)] a^{3} E(0) \tag{2.41}
\end{equation*}
$$

where a is the radius of the dielectric sphere.
Furthermore, equatign (2.41) gan be written in terms at the refractive index of the dielectric sphere, na and refractive index of sourrounding: ms as follows

$$
\begin{align*}
p & \left.=n_{s}^{2}\left[\left(n^{2}-1\right) / n^{2}+2\right)\right] a^{3} E(0) \\
& =\alpha E(0) \tag{2.42}
\end{align*}
$$

where
n is the ratio of index of refraction of sphere,
n_{\exists} to sourrounding: n_{s}.

In the presence of this radiation field, farces are exerted gn a meutral dipale (the polarized sphere). In a dilute medium this "ponderomotive" force is simply the Lorentz force (30)

$$
\begin{equation*}
\bar{F}(g r a d)=(\bar{p} \cdot \bar{\nabla}) \bar{E}+(1 / c)(\partial \bar{F} / \partial t) \times \bar{E} \tag{2.43}
\end{equation*}
$$

where	\bar{B} is the magnetic field induction
and	\bar{F} (grad) is the force on the sphere.

Furthermore, $i f$ we assume $\bar{F}=\propto \bar{E}$ as above in equation (2.43), the first term on the right hand side ean be written as

$$
\begin{align*}
(\overline{\mathrm{P}} \cdot \bar{\nabla}) \overline{\mathrm{E}} & =\alpha(\overline{\mathrm{E}} \cdot \bar{\nabla}) \overline{\mathrm{E}} \\
& \left.=\alpha\left[(1 / 2) \bar{\nabla} E^{2}-\bar{E} \times \text { cur }\right] \overline{\mathrm{E}}\right]
\end{align*}
$$

Then using Maxwell's equation

$$
\begin{equation*}
\operatorname{curl} \overline{\mathrm{E}}+(1 / c\rangle\langle\partial \bar{B} / \partial t)=0 \tag{2.45}
\end{equation*}
$$

and the equation (2.44), Equation (2.43) can be written as

$$
\bar{F}(\underline{g} a d)=\propto\left[(1 / 2) \bar{\nabla} E^{2}+(1 / c) \partial(\bar{E} \times \bar{B}) / \partial t\right] .(2.46)
$$

The first term of the right handside of the equation (2.46) shows that the dielectric spheres are moved towards. the high intensity regions of the incident radiation, when the dielectric constant of the spheres is larger than the surrounding medium. On the other hand, if the dielectric constant of the spheres are smaller than the surrounding. then the spheres would be moved out of the high intensity regions. The second term involving the Poynting vector is responsible for moving the dielectric spheres in the direction of the beam propagation. This is true for all cases; but when the dielectric spheres are not transparent, then radiometric force may dominate. This can cause the spheres to move in the opposite direction of propagating beams.

Micron size particles have been accelerated and trapped
in stable optical potentisl wells using only the force of radiation pressure from a continuous laser (si). A.Ashkir (32) shows this effect on a dielectric sphere: where a sphere is drawn into the high interisity region of focussed light radiation. A single vertically directed focussed TEMoo-mode cw laser beam of approximately 250 mblis suffigient to move and ultimately support stably a 20 um glass sphere (3З). The restoring force an the Ephere due to grauity is balance by the radiation pressure. There exsits two distinct statle regimes of levitation for solid spheres, one logated above the focus, the other below it (34). A Ephere can switch back and forth between these positions.

In our own preliminary experiments a laser beam of wavelength (4B8 nm) was focused to an area of 15 nm in a sample cell of thickness ~ 70 um and containing a dilute suspension of 1 um diameter spheres at a density of 10 eio particles/c.c. The particles are moved into the high intensity region arid pushed in the direction of propagation. As a result of this radiation pressure, these particles are pushed against the downstream wall. The self diffrected intensity maxima were observed as shown in figure sa. This diffraction pattern is a two dimensignal hexagonal structure. The scattering angle from this first neighbour intensity maxima $0(10)$ or $0<01)$ measured with respect to the incident 'beam, was 24 degrees and the second neighbour intensity maxima G(11) was 43 degrees, Using the Eragg"s law for two dimensional hexagonal close pack structure,

Fiqure 5a. Bragg's Spots Produced by Scattering from a Close Packed Structure Trapped by a Single Facused Laser Beam

Figure 5b. Twa Dimensional Hexagonal Giose

Fiqure Sc. Real Space Structure in a Sample
Compressed by Radiation
Pressure.

Abstract

$\left(\left\langle 1 / d(h k)^{2}=\left(4 / 3 a^{2}\right)\left\langle h^{2}+h k+k^{2}\right)\right.\right.$, where duh $)$ is the plane separation and a is the lattice constanty, the real space configaration was reconstructed $a s$ shown in figure 5b. A microscopic objective was used to image the real space structure picture k strown in figure Se. These two pictures give the same structure with the same dimensions.

The: effect of both the first term and second term of equationt (2.46) is demonstrated in the aboue experiment. Note that if the dielectric spheres are not transparent then radiometric force dominate over radiation force. This may cause the dielectric sphere moue opfosite to the propagation of the beam but they will also be moved in the high intensity regians(33). =

Radiation Pressure for Finite Size Particles

The effect of an field gradient on dielectric spheres has been discussed in the "pervious section with the implicit assumption that \cdot the particles are small in dimension compared to the variatien in the field gradient. In our experiments the particle size and field gradient variation can be of the same order of magnitude. Thus we reed to consider the effect af the field gradient variations within a single particle.

If we are interested in the lateral force sforce perpendicular to the direction of propagations produced on the particles fineta madiation field, then we focus our attention on the freatitepm in the equation (2.46). Here \varnothing

where
A is a constant <a fuction of the magnitude of the intensity, the diameter of sphere and the dielectric constant af the Ephere as well as the medium
$\bar{q} h=s$ the direction of the periodicity of the potential candmagnitude $q=2 \pi d$, where d is the width of the intensity potentialj
\bar{r} is the distance of the sphere from the origiri
and

```
V is the valume of the sphere.
```

The integration is carried out ouer the volume of the sphere, Let us assume that the sphere is at distarice, from the origin and the direction of bisparallel to qu as shown in figure \quad. The equation (2.47) is then written se

Figure 6. Finite sized Dielectric Sphere in a Fericdic Intensity Fotential

$$
\begin{align*}
U(a v g)= & \left(2 \Omega U y A \int_{0}^{a} d r \cdot \int_{0}^{\pi} \sin (\theta) d \theta[1+\right. \\
& \cos [q t+q r \cos +\theta) y] \tag{2.48}
\end{align*}
$$

This integration is straightforward, and the result is given by
where $\quad j$ ($q a$) $i s$ the $1 s t$ order sphericel Bessel function. Let the sphere be placed at the arigin eb = Assuming a point particle $\langle\boldsymbol{a} \boldsymbol{d} \rightarrow 0\rangle$, the auerage potential on the Ephere $i s m a x i m u m$ (USavg) $=2 A$, On the other hand, as the radius of the sphere compare to fringes spacing incresses $\leqslant \boldsymbol{a r} \rightarrow \infty$ the auerage potential dereases to zero. When the sphere is displaced from the origin sush that $b=$ Za, then in the limit of point particles: the average potential is zero. As (a/d) incresses the average fotential oscillates and decreases to a constant. Orie sees that irt the limiting case that $\left\{\begin{array}{c}\text { a } \\ \text { a }\end{array} \rightarrow \infty\right.$: the potential goes to zero. The average potential is constant. This means that the force on the sphere is zero.

Eomparisan af CCIFS and EET

ECIFS is a technique which manitore the local order in fluig systems by cross correlatirig light seattered to two spatially separated detectors. Due to interactions, lacal
density modes will be coupled and scatter light preferentially with certain symmetries. A minimun of two detectors may te used to measure these correlated density modes. In CBT a single density mode is directiy stimulated in the fluid, and scattering will produce diffraction pattern from the stimulated mode, as well as, other modes slaved to it. Thus in both techniques, the (logal) coupling af fluid density modes is being monitored. In this section we explore the connection between DCIFS and CET. Recall that the equal time equilibrium CCIFS scattered intensity distribution was given in equation (2.30) and can be written as

$$
\begin{array}{r}
c(k, q, \overline{0})=\left[\varepsilon \sum _ { i j } \sum _ { i m } \epsilon _ { i } \epsilon _ { j } \epsilon _ { 1 } \epsilon _ { m } \operatorname { e x p } \left[i \bar{k} \cdot\left(\bar{r}_{i}-\bar{r}_{j}\right)+\right.\right. \\
\left.\left.\quad d\left(\bar{r}_{1}-\bar{r}_{m}\right)-\psi / K T\right]\right) \\
 \tag{2.50}\\
d(2] /[\operatorname{s}(k) \Theta(q)]
\end{array}
$$

and re-expressed as

$$
\varepsilon(k, q, 0)=\left\{S(k) S(q)\left[1+\delta_{k \pm q}\right]+\varepsilon_{4}(k, q)\right.
$$

$$
\begin{equation*}
2 \operatorname{s}(k) \mathrm{s}(\mathrm{q}) \tag{2.51}
\end{equation*}
$$

where $\mathrm{G}_{4}(\mathrm{~K}, \mathrm{q})$ is a nongaussain factor including four particle correlation functions. This term becomes negligiblly small compare to the denominator for large scattering volumes.

$$
\begin{equation*}
S(k)=\int \sum_{i j} E x p\left(i \bar{k} \cdot\left\langle\bar{r}_{i}-\bar{r}_{j}\right)-\Psi / K T\right\rangle d i \Gamma \cdot / z \tag{2.52}
\end{equation*}
$$

is the apertured static structure factor
and

$$
\begin{equation*}
z=\int E x p(-\Psi / K T) d(\Gamma) \tag{2.53}
\end{equation*}
$$

i三 the partition function. The scattered intensities are represented in terms of the first Eirn approximation and averaged over an equilibrium distribution of particles sutjected to mutual interacticn patential, Ψ.

The CBT scattered intensity distribution mar ke written as

$$
\begin{align*}
&\langle I(k)\rangle=\left\{\int \sum_{i j}\right. \exp \left(i \bar{k} \cdot\left(\bar{r}_{i}-\bar{r}_{j}\right\rangle-(\phi+\psi) / k T\right\rangle \\
&d(r)\rangle /\{\exp (-(\phi+\psi)\rangle d(r)\rangle \tag{2,54}
\end{align*}
$$

where the first Eorn approximation is again used to represented the scattered intensity with scattered amplitude ECl $H_{i}=1$ (infinite scattering volume). The seatered intensity is aueraged ouer an equilibrium distribution of particles with interacting potential, Ψ, andexternal potential: Φ, where ϕ is given by

$$
\begin{equation*}
\phi \quad=A \cos \bar{q} \cdot \bar{\Gamma}) \tag{2.55}
\end{equation*}
$$

$A \quad i=$ the amplitude of the external potential sdependent on infut power' and q is wave vector of the perigdic potential.

Furthermore, the scattered intensity in the expression (2.54) assumes a single probe beam scattered from the sample, and the self-scattered beams are filtered out.

By expanding equation (2.53) in a power Eeries in'A. the amplitude of the external potential, a formal relation between GCIFE and EBT can be demonstrated (35). The terms linear in A are zero due to the translational symmetry of the liquid state. The quadratic terms in A inualue particle correlation functions averaged over the same phase factors as in CCIFS. Taking into account the expansion of denominator of equation (2.53) in $A, a=$ well, we have

$$
\begin{array}{r}
\langle I(K)\rangle=S(k)+\langle A / K T)^{2}\left[S(k) S(q) \delta_{k \pm q}+\right. \\
\left.c_{4}(k, q)\right]+0\left(A^{3}\right) \tag{2.56}
\end{array}
$$

where $S(k)$ and $C_{4}(k, q)$ are defined as before. The scattering volume size is unrestricted here and $\varepsilon_{4}(k, q)$ is no longer dominated by Gaussain terms as the scattering volume becomes large.

From the above expression we see the similarity between these two techniques. The advantage of CBT is that there are no aperture functions modulating the influence of multipartigle correlation functions on the calculated Ecettering ($\epsilon(r)=1$). On the other hand extreme care must be taken in order to collect the data. This CET techinique suggests a new way to investigate multiparticle correlation functions, as well as, the solid iiquid phase transition.

Eqmmensurite and Incommerisurate Phase
in Twa Dimensional Systems

For a long time it was belieued that two dimensional solids could not exist. The classigel two-dimensionel harmonic soilds caniot have lang range orider (3s, 37). However, the absorption of rare-gas monolayers on graphite have interesting properties (SB). As the temperature and pressure of therare-gas is uaried, these systems exhitit a large variety of phases. At high temperature and low density the monolayers form a two-dimensional (2-0) fluid like phase, At low temperature, as well as, low pressure they exhibit a $2-0$ crystal-like phase which register on the underlying lattice (39). This fluid-solidstructure bears some resemblance to our problem of looking at a two dimensional colloidal liquid in the presence of a pericedic external field.

The monalayer problem may be studied theoretically by considering an array of spheres connected with springs and having an aversge spacing a capatial periodzag. When these systems are subjected to a external periodic potential of spetial period, zת/g, then depending on the strength of the external periodic potential, this harmanic structure undergose phase \quad bhange like the atsorped atoms ori the graphite substrate $(39,40)$. If the external potential is wesk sor absent) the harmonig term would favour a lattice constant a which is in general incommensurable with

Abstract

poteritial Eparing：d．This is in general termed the incommensurate phase（IC）andrepresented in figure 7 a．In this case diffrestion spots would not goincide with the Brage spots of the periouic potential．However：if the External potential is Etrong emough，it may be favguratie for the lattice to relax into the external periodic potential，where the average ョpacirig，a；i三simply rational fraction of the period，d．This is termed as commemsurate phase 《C and is Ehown in figure Tb．The difiragtign fattern for this case coincides with the potential．However，these two phases（ C \＆IC）do nat Exheust the stable configurations （40）．If the potential is not strong enough to force the particles into a commensurate phase，the particles will move towards the minima of the potential．The auerage period may approach a simple commerisurate value but remair incommensurate．This gives rise to a additional chaotic structure as Ehouni in figure 7E．The giffractign pattern does not have well defined Bragg spots．For instance，if the potential is very strong compared to the interaction potential，then clearly there exists a metastable state where the atoms are distributedrandomly among the pigtential minima．This is also termed a chaotic phase，Later in the Chapter V we will firid it useful to use Eimilar termirial gegy in analying gur data．

Figure 7a. Incommensurate Fhase

Figure $7 \mathrm{~b} . \quad$ Commensurate Phase

Figure 7c. Ehagtic Fhase

EXPERIMENTAL BACKGROUND

Intraduction

This chapter gives details of the experimental techniques used. The general experimental design is given, with details of cell design, sample preparation, and data collection techniques.

Experimental Details

The basic CBT experimental set-up is straightforward. It consists of the following items: two beam splitters: two front surface reflecting mirrors, one right angle prism with orthogonal sides having a reflecting coating, one lens, two pin diodes, amplifers, A/D converter, digital ascilloscope, analog oscilloscope, apple lie computer, sample cell, screen, optical bench, chopper, He-Ne laser andfor an argon ion laser.

The two crossed beams are produced from the main laser beam by using a coated optically flat beam splitter as shown in figure 8. The intensity ratio of transmitted toreflected beam was 40/60 and the angle between transmitted beam and reflected beam was made 90 degrees (for maximum efficiency). The two mirrors were placed about 30 cm from the beam

Figure B. Experimerital Betup
splitter to direct each beam onto a prism shaped mirror. The prism was mounted on moveable table, which is placed symetrically with respect to the two mirrors. The optical path length of these two beams were made approximately equal and within the coherence length of the laser. These two laser beams upon reflecting from the prism propagated parallel to one another in the same plane with the main beam. The beam separation of the two parallel beams could be controlled by translating the prism table. This adjustment changed the crossing angle of the beams by making use of the double convex lens. In this way the angle could be varied in the sample from $\theta=1^{\circ}$ degree to $\theta=30^{\circ}$ degree assuming that the index of refraction of the sample is 1.33. The higher intensity beam was attenuated by introducing another beam splitter with transmission to reflection ratio 1/3:2/3. The reflected beam is used for triggering, while the transmitted beam (propagating parallel to the other beam) now has equal intensity with the other beam. One pin diode was positioned to detect the reflected beam. The photocurrent was amplified by a 741 operational amplifier using the simple circuit shown in figure 9 . The signal is then fed to the triggering channel of the a/d converter. A lens of approximately 11 cm focal length was used to focus the beam in the sample. The scattered intensity at a given scattering angle was picked up by the second pin diode. This pin diade converted the light signal to electrical signal and amplified it as described previously. This electrical signal was then fed to

Figure $\begin{gathered}\text { Girguit Diagrami of Fin Digue and }\end{gathered}$ Gperetionsl Amplifiers

Figure 10. Flet of Amplifier's Gutput Voltage vs Infut Intensity
another channel of the a/d converter for data collection. The output signals could also be fed to an analog oscilloscope to observe the signal. The output of the a/d converter or digital oscilloscope was connected to the apple IIe computer. A chopper was used to eliminate the crossed beams and the chopirig rate was contralled by a variac. This chopper has a circular blade which was attached to a motor. When the triggering beam was eliminated, a triggering signal was generated. A linear relationship between intensity and amplified voltage was observed (as shown in figure 10.).

Cell Design

The sample cell consists of the following items: three quartz plates, a metal cell holder and an 0-ring. The dimensions of two of the quartz plates are lin diameter and 1/8in thickness. The other quartz plate has thickness of 1/8in and is $1 / 4 i n$ in dismeter. This design is shown in figure 11. The small quartz plate is glued to one of the other larger quartz plates using epoxy. This is then placed inside one of the cell holder cavities. The other cavity holds the opposite quartz plate which is separated from the first by means of a silicon rubber o-ring. The gap between the plates is varied by adjusting the screw tension. To assemble the cell, an oring is placed on the top of double plate in this cell housing cavity. The other plate was placed on top of the o-ring to form a seal, protecting effectively against evaporation. The other cell holder wall

Dimension in cm.

Cell Design

Front View

Figure 11. Thin Film Cell
was then places an the top of the quartz plate and tightened ty means of screws. Thus the sample is in contact with only the quarta plates and \quad aring.

Spacing Measurement

The spacing between the twa quartz plate cell walls was measured in the following ways: first by using a microscope and then by an interference technique. A rough measurement of the gap was measured by focussing a low power microscope at the bottom and tap surface of the plates of the cell. The uncertainty in the gap measurement is estimated at about 20\%. However, some parts of this experiment meeded very accurate gap measurements (i.e. an uncertainty within 1\%). Thus we utilized an interference method described by Hurd (5).

Here a collimated laser beamenters a parallel plate cell at an angle θi as shown in figure 12. Before injecting the sample in the cell, the gap is filled with air. Therefore, the refractive index is same as outside the cell and there $i s$ strang scattering at the gap iriterface. A reflection occurs at every interface: but only the reflections from the interface adjacent to the thin air film proved to be important. Interference in the beams reflected from either side of the interface will defend on the spacing L.

Consider figure 12. the phase of ray 1 at A and of risy 2 at C are the same. The optical path length difference

Figure 12. Spacing Measurement
between ray 1 and ray 2 is simply nAB where nis the refractive index of the thin film $\quad n=1$, for air). This path difference between ray 1 arid ray 2 may be expressed as 2Lcos(日i). If n \boldsymbol{n} nl (the refractive index of the cell wall) an extra factor $\lambda / 2$ is to be added to the path difference because of the phase change an reflection. Keeping in mind that ray 1 and ray 2 are not Eeparate beams tut selected rays within the incident beams, and ray 3 is only one of the entire number of reflected beams. The problem is to determine the order of the interference.

Destructive interference, that is, a darkenedray 3 , occurs when the path difference is a half-odd integer number of the wavelength. Hence the order "m" is given by

$$
\begin{equation*}
m=[2 L \cos (\theta i)] / \lambda \tag{3.1}
\end{equation*}
$$

where $\lambda i s$ the incident radiation wavelength.
Now suppose the cell is rotated so that ei increases. The path length difference will decrease and destructive interference will occur until 日i has increasederiough that the next lower order of interference is found. At this paint a fringe will again darken ray 3 so that the condition is immediately identifiable. Knowing the two angles, θi and $g f$, at which sequencial order numbers are found allows one to solve for L from equation (3.1) and identical equation for m -1.
a number of fringes before reading 日f. The number of fringes passed over is given by

$$
\begin{equation*}
\Delta m=[2 L / \lambda]\{\cos (\theta i)-\cos (\theta f)\} \tag{3.2}
\end{equation*}
$$

which gives gap L is

$$
\begin{equation*}
L=(\Delta m \lambda) /[2(\cos (\theta i)-\cos (\theta+)]] . \tag{3.3}
\end{equation*}
$$

In most situations the imitation on the precision is the uncertaintie in the angle. When that uncertainty af the gap is . 1 um: the relative error in L is 1% thus a 5 um spacing can be measured to within 50 A uncertainty. Another important limitation is in the measurement of spacing below 1 um where different laser lines must be used to see any interference at all for the accessible incident angles.

Cell Cleaning

The walls of the sample containers constantly contribute to the ionic impurities by the leaching out of charged ions. At least one quantitative study has been done (41) on this problem and some suggestions made for eliminating it, In this study, the following procedure was adopted to clean sample containers:

1. Washing sample containers and cells vigorously with a soap and a brush.
2. Boiling in deiorized water with Micro for 1 hour.
3. Rinsing in deionized water, then re-boiling in deionized water. Repeating process several times.
4. Final rinse was done using water deionized and filtered in a Earnstead system <18 mega-ohms resistiuity).
5. Handing with tongs and storing in a clean dry place.
6. Keeping parts covered until use.

Actually, there is little hardevidence that leaching is indeed a problem, but the circumstantial euidence is convincing enough to use care in cell preparation.

Sample Preparations

The two clean quartz plates are put together inside the cell container with an orring between them and mixed bed resin 《Analytical grade mixed bed resin AG 501-x8(D) 20-50 mesh, fully regenerated, Eio-Rad Laboratories) inside the cell. A wedge shaped gap can be produced by drawing one side of this cell tighter than the other. It is this wall separation gradient that will allow us to get a monolayer of particles.

When the latex has been placed in cells with ion exchange resin, it is advisable to mix them mechanically for a few hours to speed the deionization process. However, violent or prolonged mixing is contraindicated by a "scum" af particles that forms at any air-water interface. This air. may contain carbon dioxide which can be dissolued and may
contribute to the impurities problems. We avoided this problem by filling the cell completely with water. An effective way to handle clean latex without opening the container is via plastic tubing with syringe tapers on its ends. Latex can be removed from a vial using the soft plastic top or quartz tube and loaded in a syringe needle, then the sample cells can be laded by injecting through the o-ring cell in the same way. If the cell is filled completely, air contact will be minimal. The problem is now with aggregation of latex, but the percent of aggregation is very small compared to the rest of the sample. This sample is then placed in a quiet place with no thermal gradients that might cause convection. Within a. few hours one generally finds nice liquid and crystalline structures which can be detected by illuminating with laser light. Some samples will simply never crystallize. Others phase separate showing liquid and crystalline regions. When it becomes necessary to transport them, we try to do so with the least amount of agitation possible.

A/D Converter

We used two different A / D converters to collect data in our experiments. The first A/D converter used for this experiment $i \equiv$ the All3 analog input system data acquisition module 《Interactive Structure Inc.). The AIIS analog input system is a high-performance 12-bit data acquisition system for Apple Ile computer. It plugs directly into one of the

Apple expansion slots and gives the Apple the ability to make precision voltage measurements. Any instrument or sensor praducing an electrical signal becomes an Apple lie input device. Software selects the input range, and sensor autput range from +- 5 Volts to 0-100 milliVolts cari be accomodated with 12-bit accuracy.

The All3 analog system has 16 input channels. The channel selection and range are a single store operation, which are then read in 2 bytes directiy from the All3. Software is in complete control of both order and speed with which the channels are read. The analog conversions can be started by a varity of signals including an external trigger pulse.

Al13 fully supports high-performance programing techniques, such as high speed Assembly language sampling. The selection and sampling time of each channel is s microseconds, hold and conversion time is 13 microseconds, total conversion time is 20 micraseconds and sampling aperture is 125 nanoseconds.

Digital Memory Oscilloscope

The Model 85 aScope Digital Dscilloscape (Northwest Instrument Systems, Inc.) is a dual-channels fully programble, digital memory oscilloscope. It is designed to wark with an Apple II, Apple IIt, or Apple IIe computer. The Apple computer must have a Disk II, display, 48k of memory and the 0053.3 operating system. The model 85 ascope is
controlled by the Apple through programs. In ariy case, once the operating software $i s$ laded and one or two probes are attached to the back of the Apple, we have a working DC-to-50 MHz digital oscillascope.

The analog information is received by the probes and is sampled very rapidly, digitized and turmed into binary data. The model 85 aScope can average successive frames of a waveform to remove random noise and will store the entire data to the disk. The software then converts and displays a waveform on the Apple monitor.

Data collection

All of our measurements inualve measuring the intensity of scattered light, either as a function of input laser power, or of time, or of beam crossirig angles. However, the intensity of the signals fiuctuate in time, which complicates the data collection process. For these reasons. two different procedures are used for data collection. One of them is for static or average intensity datacollection and other one $i=$ for dynamic or time dependent data collection. The static procedure basically uses the A/D converters as a digital voltmeter. The dynamic procedues utilizes the digital scope or A / D comverter to signal average time sweeps.
A statistical method is used to get a continuous. reading of the auerage intensity for static measurements. We defined the weighted average, S b by:

$$
\begin{align*}
S & =\sum_{n} w^{n} D(n)<\sum_{n} w^{n} \tag{3.4}\\
& =\sum_{n} w^{n}(1-w) D(n) \tag{3.5}
\end{align*}
$$

where $D(n)$ is the rith data sample measurement relative to the present time interual. D(0) is the gurrent data, D(1) is the data taken before $D(0)$, $D(2)$ is the data taken before D(1), D(3) $i=$ the data taken tefore D(Z) and $D(n)$ is the data taken before $D(n-1)$ data. Equation (3.4) is the same as standard average when the weight factor, wisunity. In practice, however, the me ght factor was chosen be to less than unity and greater than zero in order to weight the present reading the most. This allowed us to have running average with minimized fluctuations arid yet would reveal any systematic drifts in the signal. The value s is then dispalyed on the monitor or printer which worked as a digital voltmeter.

The fluctuations in the signal are estimated by the following running average:

$$
s=\left[(1-w)\left\{\sum_{n} w^{n} D(n)^{2}-\left(\sum_{n} w^{n} D(n)\right)^{2}(1-w)\right\}\right]\langle 3.6)
$$

This number is also displayed on the monitor or printer. When the fluctuation in the signal is small, this calcualted fluctuation is also small. The basic program for calculating these averages is given in appendix (c).

In the case of the dynamic data collection, a totally
different method is used. Here two types of devices were used, one was the 16 channel AII3 A/D converter and the other one was the digital memory oscilloscope.

In the first case one of the channels of the A / D converters is selected for triggering and another is utilized for data collection. This triggering was implemented by means of software and is based on the input to the triggering channel. When a signal derived from the beam chopper drives the triggering chaninel law <or high depending on experiments, then the program was allowed to collect data. This data collection is done utilizing an assembly language program supplied by the manufacturers of the A / D converter. This program fills upa Basic array with data, when called, and the time interual between the data points is controlled by software. The intensity versus time data are then signal averaged (using our own Basic program) by adding the present data run to any previous data runs and saving the results in the memory, until the desired number of sets of data have been averaged. The average intensity value versus time is then saved on floppy disk for further analysis. This basic program will also display the current average plot of data us time. This basic program is given in the appendix (D). The assembly program supplied by the company is shown in appendix (E).

In the second case the digital memory oscillascope was used. It acts like a oscilloscope with difference that it can average maximum of 255 frames. It has two channels: one
of them is used as a triggering channel and one is for data collection. The software for this system is supflied. The triggering channel selection can be done by the software. Either channel can be used as the triggering channel, with either a low or high input logic depending on experiment. The number of frames to be averaged and time interval between data points is selected by software. This program will display the plot of average signal $u s$ time and also saves it on disk.

The basic difference between these two systems is minor. and dependent on the particular experiment. The AI $13 \mathrm{~A} / \mathrm{D}$ converter has 16 channels and all of them can take data simultaneously whereas digital memory oscilloscope(DMO) has only two channels. The number of datapoints in arun is fixed in the case of DMO (25b points) whereas the A/D converter can take essentially any number of data points in a run. While the time interual between the data points can be varied in the same run for the A/D converters, the time interval between the data points is fixed for the DMO. In any case the choice depends or the particular experiment.

Laser and Laser protilem

A Spectra physics model 1 s4 laser was used in our experiments. The two beams derived from the primary beam are forused down to a circular area of diameter 40 um and crossed to produce fringes with separation, don the order of a few microns. Small mechanical vibrations will produce
violent motion of the fringes and destroy the whole experiment. Initially we detected a vibration in the laser. head. Because the laser is a water cooled laser, there seemed to be turbulent motion in the plasma tube. This produced a small vibration in the beam which was enough to destroy any standing fringes pattern. This problem was eventually overcome by implementing several different proposed solutions: (a) reversing the water flaw in the laser head, (b) using an air trap in the water outlet of the laser head which acts like a mechanical shock absorber, (c) minimizing the spatial size of the experiment and making a firm attachment of the laser chasis to the supporting table and (d) the experimental table was floated on air shocks. Still, sometimes these vibrations were observed in the fringes. Finally these vibrations seemed to be correlated with turbulent motion in the laser tube produced by kinks in the tube supplying water to the laser head. Thus, the final step to eliminate vibration required careful suspension cif the hose supplying the coaling water.

CHAPTER IV

NON-INTERACTING SAMPLE STUDIES

Introduction

It has been demonstrated that transparent dielectric spheres can be moved into high intensity regions, as well as, in the propagation direction of laser light (1, 31-34). On the other hand, if a sample of these spheres is subjected to crossed laser beams, then the spheres register in the high intensity regions forming a phase grating which diffracts light (1). The strength of the grating depends on the strength of the intensity potential. Astudy of the amplitude of the phase grating for weakly interacting particles ispresented in this chapter, as a function of the height of the intensity potential and beam crossing angles. A comparison is made between these resulte and a theory for non-interacting particles. For particles larger than 1 um diameter: the radiation pressure easily moves the spheres to the down stream cell wall. This gives us a chance to study the diffusion of the micro-spheres near a single boundary in the absence of other interactions. Dynamical measurements of diffusion indicates a slowing of the diffusion near a wall. In this chapter the author will try to understand this phenomenon experimentally and theoretically.

```
Results for Non-Interacting Farticles
    (or Strongly Screened Farticles)
```

This chapter describes details of the data collection procedure and results far static and dynamig experiments ori non-interacting colloidal particle samples. By non-interacting particles we mean that the long range coulomb force between particles is highly screened. Thus the Farticles anly interact near contact with strongly repulsive forces. A further increase in added salt will decrease the Ecreening lergth, and $u a n$ der Waals attractive forces will produce coagulation. Data was taken using the pin diode as descrite in Chapter III.

A lens of 10 cm focal length was used to focus the incident beam in the cell. The grossing angle of the two beams was varied between o tu 13 degrees by translating the prism mirror. The two crossed beams produced a periodic intensity potential (i.e. holographit fringe pattern as mentioned in the Chapter II) with fringe spacings, duaring from 1.67 um to 3.21 um. The sample cell gap spacirig ranged from 30 um to 50 um. The beam was focus to a spot of diameter 45 um ©the calculatign of the size of the spot is shown in appendix (B)).

The micron sized particles were drawn to the high intensity region and pushed toward the downstream wall by radistion pressure forces. These particles aligned in rows in the high intensity region to become a transparent
diffraction grating. While a third laser beam of different frequency has been used to produce a diffraction pattern of the induced grating, the two interfering beams inducing the grating also produce a self-diffracted intensity pattern. This self scattered diffraction pattern has been used in data collection (rather than using third probe beam). For the non-interacting samples the pin diode was positioned with appropriate attenuation to collect intensity data at the position of the first (or higher order) intensity maxima produced by scattering of the laser beam from the induced diffraction grating. The figures $13 a, 13 b$ and $14 a, 14 b$ show the diffraction pattern and real space structure for the two different angles. The off axis scattering pattern <diffuse lines above and below the row of intensity maxima) is observed in the figure $13 a$ and figure $14 a$ due to the fact that particles were observed to have fairly uniform spacing parallel to the intensity fringes. Using Bragg's law for the scattering angle of these lines, the spacing of spheres was found to be exactly the diameter of the spheres. This is indicted in figure $13 b$ and $14 b$ by direct imaging through a microscopic objective.

It was also observed that if the fringe separation is less than the diameter of the sphere, then the spheres do not form the grating. This is because the average or net force on the particle is reduced as described in Chapter II. Basically this results from a competition between two adjacent fringes to draw the spheres into their high

$$
\begin{aligned}
& \text { arnaty } \\
& \% \\
& 5 \\
& \text {, 4iv }
\end{aligned}
$$

Figure $13 \mathrm{a} . \quad \mathrm{Self} \mathrm{D}$ Diffracted Maxima. The Fringe Spacing is 2.17 um and Diameter of the Spheres is 1.09 um

Figure 13b. Real Space Picture. The Fringe Spacing is 2.17 um and Diameter. of the Spheres $i s 1.09 \mathrm{um}$.

Figure 14a. Self-Diffragted Maxima. The Fringe Spacing is 3.21 um and Diameter of the Spheres is 1.09 um.

Figure 14b. Real Space Picture. The Fringe Spacing is 3.21 um and Diameter. of the Spheres $i \leq 1.09 \mathrm{um}$.
intensity regions. If the fringe sefaration is larger than the diameter of the sphere but smaller than twice the diameter of the sphere then the grating is formed by single row of pirticles. The real space picture is shown in figure 136 for 1.09 um diameter particles. In this case the angle of crossing is from 12 to 9.5 degrees, the wavelength is 488 nm and a focal length of 11.5 cm was $u s e d$. On the other hand when the fringe separation is larger than twice the diameter of the sphere then double and trifle rows of spheres were found in a single intensity regions. This is shown in figure 14b for crossing angles s to 8 degrees.

Data Collection

The magnitude of the intensity of scattered light can be studied as a function of input power and also as a function of time when the holographic grating is modulated in time. Thus the data collection is described in two parts, static or time independent and dynamic or time dependent.

Time Independent Study

In the time independent study the pin diode was positioned on the diffracted maxima such that the area of the diffracted spot is larger than the area of the pin diode Sin order to minimize the stray light going to the pin diode). The incident laser intensity was varied. Thus the intensity of the crossed-beams were varied in order to change the depth of the intensity potential. The averaged
intensity was measured using the procedure describe in chapter III. When the running auerage intensity did not drift, the input power of laser and the average intensity data were recorded.

Fiots of infut power versus relative intensity of the first or second order diffracted maxima were made for four different crossing angles (12, $9.5,8$ and 6.5 degree) and for four different particlesizes (0.481 um, $0.9 \mathrm{um}, 1.09$ um and 2.012 um). Results are shown in figure 15 to zu. A least square power fit curve is drawn through the data points for each graph. A cubic power law was faund to give a reasonable fit for particle sizes 0.481 um for all crossing angles (1) and 0.7 um for 12 degrees croseing angles as shown in figure 15 and figure 18 respectively and less than cutic power law was found for particlesizes 0.95 um: 1.09 um and 2.02 um for crossing angles smaller than 12 degrees as shown in figure 16, figure 17, figure 17 and figure 20. Because the radiation pressure forces are proportianal to the volume of the particles (2.46), it is clear that as the diameter of the spheres become larger there is a greater force holding the spheres at the maxima of the intensity On the other hand, the force on the spheres increases as the ratio of radius of the spheres to the fringes decresse. This is discussed in Chapter II. Hence, as the spheres increase in eizes they become more confined at the center of the fringe. This causes the out put signal deviate from the cutic fit. In fact if the spheres are perfectly ordered and

Figure 15. Plot of Gutput Intersity ve Total Power Fer Unit Area. The Fringe Spacing is 2.63 um and Di ameter of the Spheres is 0.431 um. $Y=A * \times \therefore 3$

Figure 16. Flot of Dutput Interisity ve
Total Fower Fer Init Ares. The Fringe Spacing is 2.03 um and Diameter of the Spheres is 0.F5 um. $Y=A \div X \therefore 2.5$

Figure. 17. Plot Gf gutput Intensity ve Total Fower Fer Unit Area. The Fringe Epacirig is 2.17 um and Diameter af the Spheres is 0. 5 与m. $\gamma=A * X \wedge 2.7$

Figure 18. Figt of Gutput Intensity ve Total Fower Fer Unit Area. The Fringe Sparing is 1.77 um and Diameter of the Gptieres is $0 . F 5 \mathrm{um}$. $Y=A \div X * 3.1$

Figure 19. Plot of Dutput Intensity $v e$ Total Power Fer Unit Area.
The Fringe Spacing is 2.17
um and Diameter of the
Spheres is 1.09 um.
$Y=A * X \wedge 2.6$

Figure 20. Flot of output Intensity vs
Tatal Power Per Unit Ares.
The Fringe Spacing is 2.8 F
um and Diameter of the
Gpheres is 2.02 um .
$\gamma=A * X \therefore 2$
fixed in position, then the alignment is complete and the diffracted intensity should be a linear function of the input intensity for self scattering studies.

Theoretical Model for Farticles Alignment iri
Radiation Potential Well

$$
\bar{F}(\text { grad })=\alpha\left[(1 / 2) \bar{\nabla} E^{2}+(1 / c) \partial(\bar{E} \times \bar{E}) / \partial t\right] . \quad(4.1)
$$

Here the first term on the right hand side represents the force which moves the farticles into the high intensity
regions and the second term represents the force which moves the particle in the direction of propagation of the incident beams. The force for the motion along the intensity gradient (neglecting motion along the direction of propagation) can be written in terms of a potential (see equation (2), reference (1))

$$
\begin{equation*}
\bar{F}(\mathrm{gr} a d)=-\bar{\nabla} U(r)=(\sigma / 2) \bar{\nabla} E^{2} \tag{4.2}
\end{equation*}
$$

where E^{2} is given by equation (2.36), which on neglecting the gaussian beam shape term gives,

$$
\begin{equation*}
E^{2}=2 E(10)^{2}[1+\cos (2 k r \sin (8))] \tag{4.3}
\end{equation*}
$$

where $\quad i k i=2 k \sin$ (θ) $i s$ the reciprocal of the fringe spacing, -

Let us try to discuss this quantitavely. If the frictional coefficient is large enough and density is not too far from ari equilitrium distribution, ther the spatial variation of the probability density of the system, n(r,t) will be similar to that of the imposed potential, U(r). Using the Planck-Nernst equation for the microparticle density one can write

$$
\begin{equation*}
\partial n(r, t) / \partial t=D \bar{\nabla} \cdot(\bar{\nabla} n(r, t)+(\bar{F} / K T) n(r, t)\} \tag{4.4}
\end{equation*}
$$

where $\bar{F}=-\bar{\nabla} U\langle r\rangle$ is the force on the sphere and $D i \equiv$
defined as the diffusion coefficient. For infinite dilution D is given by Stokes law for spherical particles of radius a,

$$
\begin{equation*}
D=K T \text { / бתna, } \tag{4.5}
\end{equation*}
$$

For steady state $\partial n\langle r, t\rangle / \partial t=0$ and this equation reduces to

$$
\begin{equation*}
d i v(\bar{\nabla} n(r)-n(r) \bar{\nabla} U(r) / K T\rangle=0 . \tag{4.6}
\end{equation*}
$$

This potential, U(r), can be written more explictly using the result fromequation (4.2). At equilibrium the solution of this equation is the Boltzmann distribution:

$$
\begin{equation*}
n(r, 0)=A \exp (-U(\Gamma) / K T) \tag{4.7}
\end{equation*}
$$

where A is a normalization constant.
Hence the probability of finding a sphere in one dimension is given by

$$
\begin{array}{r}
n(r, 0\rangle=A \exp \left\{\left\langle\alpha E(10)^{2} / K T\right)[1+\right. \\
\cos (2 K r \sin (\theta))]\} . \tag{4.8}
\end{array}
$$

This can be verified by direct substitution into equation (4.6). For particles with ($\left.n_{a}\right\rangle n_{s}$) the potential causes the spheres to move into the high intensity regions
of this periodic intensity potential and to register in rows to form diffraction grating.

The normalization constant, A, $c a n$ be obtained by the relation

$$
\begin{equation*}
\int n(r, 0) d r=1 . \tag{4.7}
\end{equation*}
$$

Substituting the expression for $n(r, 0)$ in the above integral we find

$$
\begin{align*}
& A \int_{0}^{d} \exp \left[\left(ब E(10)^{2} / K T\right)(1+\right. \\
& \qquad \cos (2 k r \sin (\theta)))] d r=1 . \tag{4.10}
\end{align*}
$$

Rearranging the equation (4.15) and substituting $p=\propto E(10)^{2}$ /KT and $z=2 k r \sin (\theta)$ we get

$$
\begin{equation*}
A[\exp (p) / 2 k \sin (\theta)] \int_{0}^{2 \pi} e x p(p(\cos (z)) d z=1 . \tag{4.11}
\end{equation*}
$$

This equation can be evaluated by using the standard integral relation

$$
1 / 2 \pi \int_{0}^{2 \pi} \exp (+z \cos (\theta)+i n \theta) d \theta=I_{n}(z) .
$$

Hence, the normalized probability for finding a sphere at a position r is

$$
n(r, 0)=\langle k \sin (\theta)\rangle / I_{0}(p)
$$

Figure 21. The Fringe Spacing is 1.77 um and the Maximum Fotential Energy Relative to KT for 0. $5,1.0$ and E.0 is Presented. Frobatility for Finding a Sphere as a Functign afr.

Figure 22. The Fringe Spacing is 3.20 um and the Maximum Fotential Energy

S. 0 is Presented. Frotisbility for Finding a Sphere as a Function of r.

```
EXF[F-cos(2kr Eir(日))].
```

The figures 21 and 22 show a plot of $n(r, 0) u s r$ for three different values of p and four different crossing angles. It is clear that as the p increases, the function n(r,0) becomes sharply peaked. In fact this will behave as a periodic distribution of delta functions in the limit of high incident intensity arid/or for sufficientiy large spheres in well separated fringes. This probability function spreads out at low intensity or for smaller spheres. From the graph it is clear that $n\langle r, 0\rangle$ is maximum at the middle af the high intensity regions.

Effect of Coherent Self-Scattering by the

Two Incident Beams

amplitude, $H(K\rangle$, for a collection of particles where

$$
\begin{equation*}
I \propto: f_{a}(\theta) i^{2}, H(k) i^{2} \tag{4.14}
\end{equation*}
$$

such that

$$
\begin{equation*}
H(k)=\left(\sum_{i} E \times F \quad\left(i \bar{k} \cdot \bar{r}_{i}\right)\right\rangle \tag{4.15}
\end{equation*}
$$

Since the probability function, n(r,0) is known for our system and is a continuous function of position rather than a discrete function, the sum in the equation (4.15) can be replaced by the integral. Thus the scattering amplitude can be written for a single k vector as

$$
\begin{equation*}
H(k)=\int n\langle r, a\rangle d r \exp (i \bar{k} \cdot \bar{r}) \tag{4.16}
\end{equation*}
$$

Because there are two incident beams in the self scattering experiment, there are two scattered diffraction patterns, (one for each incident beam). Furthermore the two patterns combine coherently due to the mutual coherence of the two incident beams. We now discuss how to properly analyze the scattered intensity under these conditions. Let the detector be placed on the lower side of the beam (1) and (2) at a point which is the and order diffraction spot of the beam (1) and first order diffraction spot of the beam (2) as shown in figure 23. Because the crass beams from the grating, the scattering angle turns out to satisfiy the
condition for minimum deviation, and this relation can be written as

$$
\begin{equation*}
Z d \sin (\theta n / 2)=n \lambda \tag{4.17}
\end{equation*}
$$

where $d i=$ the fringe separation
En is the nth order acattering angle
and
λ is the wave length.
since the diffracted spot of interest is the combination of the first order diffracted spot of the beam (2) and 2nd order diffracted spot af the tesm (1), the angle between diffracted beam and the two read beams can be obtained. Let us assume that 2ψ is the diffraction angle of the beam (1) which allows us to write the equation (4.17) $a s$

$$
\begin{equation*}
d \sin (\psi)=\lambda \tag{4.18}
\end{equation*}
$$

Using the relation $2 d \sin (\bar{\theta})=\lambda$ from the chapter (1) we get the relationship

$$
\begin{equation*}
\sin (\psi)=2 \sin (\theta) \tag{4.17}
\end{equation*}
$$

Let 2Φ be the first order diffracted arigle of the beam (2) on the lower side. This angle can be written as

$$
\begin{equation*}
2 \Phi=2 \psi-2 \theta \tag{4.20}
\end{equation*}
$$

Figure ż. Belf-Scattering Eeqmetry for Croseed Eeams.

The above equation (4.21) can be represented using equation (4.19) as

$$
\begin{array}{r}
\sin (\phi)=\sin (\bar{\theta})\{2 \sqrt{(1-\sin (\theta)\rangle}- \\
\sqrt{\left.\left(1-4 \sin ^{2}(\theta)\right\rangle\right)} \tag{4.22}
\end{array}
$$

In fisct, in the experiment the crossirig angle 2θ was varied from 3^{0} to 12° degrees. The sin square of this angle is very small compared to urity. If we rieglect the small terms compared to unity, we get

$$
\begin{equation*}
\sin (\phi)=E i \Gamma_{1}(\theta) \tag{4,23}
\end{equation*}
$$

In this approximation we can write the scattering angle for all higher orders as an integer mutipie of crossing angle of the beams as

$$
\begin{equation*}
\sin (\phi n)=n \sin (\theta) \tag{4.24}
\end{equation*}
$$

At this point we have all the tools needed to find the scattering amplitude due to toth tueam. Let us consider any order of the diffracted maxima. Substituting the expression for the $n(r, 0)$ and k, $i n$ equation (4.16), one can write the scattering amplitude as

$$
\begin{aligned}
H(s)= & {\left[(k \sin (\theta)) /\left(I_{0}(p)\right)\right] \int_{0}^{d} \exp (i 2 k r} \\
& n \sin (\theta)) \exp (F \cos (2 k r \sin (\theta))) d r . \quad(4.25)
\end{aligned}
$$

Putting $2 k r$ sirı (g) $=2$ andrearranging equation (4.25) we get

$$
H(k)=\left[1 / 2 I_{0}(F)\right] \int_{0}^{2 \pi} e x p(i n z+F \cos (z)) d z \cdot(4 . z 6)
$$

This is nothing but the integral representation of the modified Bessel functian of nth order, and the scsttering amplitude is given by (43,44)

$$
H(k)=I_{n}(p) / I_{0}(p)
$$

Hence the scattering amplitude for 1 st order spot and Znd order spot is given by
and

$$
\begin{equation*}
H(k 1)=I_{1}(p) / I_{0}(p) \tag{4.28}
\end{equation*}
$$

$$
H(K 2)=I_{2}(p) / I_{0}(p)
$$

respectively.
The total scattering amplitude is then the sum of the indiuidual scattering amplitude for each beam.
$H(k 1, k 2, \ldots, k n)=(f 1 H(k 1)+f 2 H(k 2)+\ldots$
where for example $k 1$ is the sestered wavevector groseponding to the first order maxima measurement with respect to the first beam and kz is the scattered wavevector of the second order maxima measurement with respect to the second beam, etc.

The physically measurable quantity is the intensity. The intensity is the absolute value squared of the scattering amplitude, H(k1,kz...kn). However because we are self-scattering: there $i s$ another factor in the scattering intensity: the power af the incident tieams. Thus the expression for the output intensity for two self-scattering beams is given by

$$
\begin{equation*}
I \propto 1 H(k 1, k 2) i^{2} p \tag{4.31}
\end{equation*}
$$

where $\quad \rho=\propto E(10)^{2} / K T$.

In the case of nom-degenerate four wave mixing a third laser beam is used in order to probe the sample. The intensity \quad af the probe beam is fixed. In this case the scattering amplitude will have only one term. This scattering amplitude, H(k), will be the ratio of madified Bessel function of order 1 st to 0 th (42,43,44) for first order scattering. The expression far the satatering amplitude can be written as

$$
\begin{equation*}
H(K)=f_{1} I_{1}(F) / I_{0}(F) \tag{4.32}
\end{equation*}
$$

and the intensity in this case will be simply proportional to the product of the absolute walue square of the scattering amplitude.
$I(k) \propto \quad\left|H_{1}(k)\right|^{2} p$.
(4.33)

At this point we see that intensity I of equation (4.31) and has a cubic power dependence when p \& 1 . As the value of p increases and becomes greater than unity then I deviates from cubic power dependence. At high enough power it is linearly proportional to the input intensity. This model also shows that the higher order diffracted maxima have even larger power 1 aw dependences for $p<1$ (43).

In our experiment the input power from the laser was varied from .015 to .07 watts for four different sizes of spheres and for five different crossing angles. As we have seen, the force on the spheres is dependent on the volume and relative refractive index of the material. It is also shown in equation (4.31) that output intensity is independent of the crossing angle of the two beams. However, from the Chapter II, we have seen that the actual force on the sphere is less than the calculated force from equation (2.49) when the fringe spacing is small compared to the particle diameter. These data are corrected for the effective force by using method describe in chapter II. A theoretical fit to the data $i s$ shown in figure 24 and 25 for

Figure 24 . Theoretigal Fit ta Data for let and Znd order Goherent Mixing. Open Circles, Solid Eircles and Open Square as well as Eqlid Square are for $0.481 \mathrm{um}, 0.95$ um and 1.09 um Diameter spheres for Crossing Angles B.1, 3.1, and F.G Degrees Respectively.

Figure 25. Theoreticsl Fit to gata for End and Grd order Loherent Mixing. Qpen Circles are the Data for the Spheres of Diameter 2.02 um and Crossing angle is 7.7.
these four different sizes of spheres. We see in figure 24 that the data for 0. 481 um diameter spheres fall in the cubic region and the data of 0.75 um and 1.07 um diameter spheres etart to deviates from the cubic region. In this case the 1 st and 2nd order self diffracted intensities data fits are presented. Gri the other hand wheri we used the 2.02 um diameter spheres, then we have an opportunity to study the higher arder density mades. The data fit presented iri figure 25 is a 2nd and Brd order superposition of self diffracted maxima. Since the force on the sphere is valume dependent for same relative refractive index, hence these larger spheres are more confined to the center of the intensity potential at the same input powers. These data are in the region where $F>1$ and a deviation from the cutic dependence is noted. The arreement between theory and experiment is good.

Study of Intensity as a Function of Crossing angle

The intensity of the self diffracted spot was also studied as function of erossing angle for fixed input power and a plet of this is shown in the figure 26. The intensity of the self diffracted beam diminished as the crossing angle increased. This is due to the particle form factor which is highly angular dependent. This angular dependence in the scattering by single particle was explored in the Ehapter II. The effect is due to interference within single finite sized particles. The theory was developed in an approximate

Figure 2E. Plot Gf Dutput Intensity as
a Function G千 Croseing
Angle of the Eeame. Infut
Fower af the Write Eesme Fer Unit Area $i=$ EGES watts π^{2}
Dper Circles is the Data and Salid Eireles are Corrected Data usirig Mie Theory.
way following the approach to Rayleigh and Gans. On the other hand Mie theary discussed in Ehapter II, should be used in our case because the relative refractive index is larger than unity and particle diameter is greater than wave length. Taking into account the form factor for Mie Theory with the parameters for our experimerit, gives the upfer curve in figure 26.

Thus we see that the form factor offers a good explanation as to why the intensity decreases as the crossing angle increases.

Time Dependent Study

The time dependence of farticle density grating growth and decay was taken for non-interacting colloids by using the A / D converter arid digital memory oscilloscope. The results of these two methods were compared and were found to Ee in agreement. We found that the small angle light scattering is very difficult using dynamic light scattering (DLS〉 arid is much easier in the cross team experiment. In dynamic light scattering the spontaneous thermal density fluctuations are measured while in the crossed beams experiment, the density grating is stimulated and its decay is monitored. The erossed teams signal can be much stronger than the $D L S$ signal, and this probably arcounts for the case of its measurement.

In the crossed beams experiments twa laser teams are crossed in the sample to form holographic fringe pattern.

The dilectric spheres are maved to the high intensity regions by means of the photophoretic force effect. This produces a stimulated density madulation in the two dimensional calloidal system which strongly diffracts light in definite directigns. A 488 nm wave was used and is not absorbed by either water or spheres. If one of the beams (the write beam) is blacked, then the stimulated density mode decays. This causes the intensity of the diffracted light producej by the ather beam to diminish. Alternatively a third He-Ne laser was also used as a probe beam and both the write beams are blocked.

Data was collected and plotted by the Apple IIe computer as descrite in Chapter III. The figures $27 a$ to $31 a$ show the growth and decay of the light intensity diffracted from stimulated density modulation for four different sizes of spheres ($0.481 \mathrm{um}, 0.95 \mathrm{um}, 1.09 \mathrm{um}$ and 2.02 um) . Figure $27 a$ to $30 a$ shows the growth and the decay of the greatig where the probe beam is one of the write beams and figure 31a. Ehows the growth and the decay of the grating where the probe beam is a third laser (He-Ne laser). This data is analyzed for both the decay and the growth af this stimulated density modulalation.

The analysis of the diffracted signal is performed as follows: (45,46,47 48). The measured voltage is proportional to the detected intensity. This intensity may not be pure scattering from the sample but may include stray light scattered from cell surfaces etc. This stray light may mix

Figure 27a. Growth and Decay of First Order Self Diffrected Grating Mode. Input Power Per Unit Area is $40 \mathrm{MW} / \mathrm{m}$, Diameter of the Spheres is 0.48 um and Fringe Spacing is 1.77 um

Figure 27b. Decay of First Order Self Diffrected Grating Mode us Time. Input Power Per Unit Area is $40 \mathrm{MW} / \mathrm{m}$, Diameter of the Spheres is 0.48 umi and Fringe Spacing is 1.77 um

Figure 28a. Growth and Decay of First Order Self Diffrected Grating Mode. Input Power Per Unit Area is $29 \mathrm{MW} / \mathrm{m}$, Diameter of the
Spheres is 0.95 um and Fringe Spacing is 2.63 um

Figure 28b. Decay of First Order Self Diffrected Grating Mode us Time. Input Power Per Unit Area is $29 \mathrm{MW} / \mathrm{m}$, Diameter of the Spheres is 0.95 um and Fringe Spacing is 2.63 um

CHE 1 YSDIV DC TAUC
CNE.6\&.2(061185)1/1.09

500 mSSDIV $4 . \mathrm{aV}^{2}+\mathrm{CHZ}$

Figure 29a. Growth and Decay of First Order Self Diffrected Grating Mode. Input Power Per Unit Area is $26 \mathrm{MW} / \mathrm{m}$, Diameter of the Spheres is 1.09 um and Fringe Spacing is 2.17 um

Figure 29b. Decay of First Order Self Diffrected Grating Mode us Time. Input Power Per Unit Area is $26 \mathrm{MJ} / \mathrm{m}$, Diameter of the Spheres is 1.09 um and Fringe Spacing is 2.17 um

Figure 30a. Growth and Decay of Second Order Self Diffrected Grating Mode. Input Power Per Unit Area is $26 \mathrm{MW} / \mathrm{m}$, Diameter of the Spheres is 2.02 um and Fringe Spacing is 2.89 um

Figure 30b. Decay of Second Order Self Diffrected Grating Mode us Time. Input Power Per Unit Area is $26 \mathrm{MW} / \mathrm{m}$, Diameter of the Spheres is 2.02 um and Fringe Spacing is 2.89 um

Figure 31a. Growth and Decay of First Order Self Diffrected Grating Mode. Input Power Per Unit Area is $21 \mathrm{MW} / \mathrm{m}$, Diameter of the Spheres is 2.02 um and Fringe Spacing is 2.89 um

Figure 3ib. Decay of First Order Self Diffrected Grating Mode us Time. Input Power Per Unit Area is $21 \mathrm{MW} / \mathrm{m}$, Diameter of the Spheres is 2.02 um and Fringe Spacing is 2.89 um
coherently or incoherently with the signal. Thus the form for the measured signal is taken to be

$$
\begin{equation*}
V(t)=[E(t)+B]^{2}+\gamma \tag{4.34}
\end{equation*}
$$

where $E(t) i s t h e e^{\prime}$ etric field amplitude from the sample. B accounts for stray light mixing coherently with the sample signal amplitude (heteradyne effect) and γ represents incoherent mixing.

In generals we can take $E(t)$ to be a sum of the exponentials as

$$
\begin{equation*}
E(t)=c \sum_{i} \exp \left(-t / T_{i}\right) \tag{4.35}
\end{equation*}
$$

Analysis of our time decay data on independent (hard spheres) particles indicates a good fit with $E(t)$ a single exponential, B equal to zero and set equal to the $v(t \rightarrow \infty)$ limit of the data.

Self-Diffusion Measurements

The diffusion of sub-micron particles has tuen studied previously by CBT (1). The diffusion of small molecules through a swollen polymeric membranes has also been studied using this type of experiment (45) where it was shown that the dependence of the dye diffusion coefficient on the solvent volume fraction does not obey free volume theory. Application of the technique to the liquid crystals
indicated that the binary mass diffusion in the nematic phase is faster along the local axis than perpendicular to it (46). While the cited CBT studies focus on interparticle interaction effects, it has been noted in DLS experiments that the diffusion of sub-micron dielectric spheres between two parallel boundaries is slower due to hydrodynamic effects than with no boundary (5). The studies presented here represent what we believe to be an observed transition from free bulk self-diffusion to diffusion hindered by hydrodynamic wall interactions studied by CET.

In these experiments, hydrodynamic. wall effects are encounterted because the particles are pushed by the radiation pressure towards the downstream wall. At constant infut power the force is larger on the large diameter particles. This force is always presents to some degree because the decay of the particle allignment is monitored ty one of the write beams in the self scattering experiment or by a third beam in a probe experiment. These light beams exert a pressure on the particles even when one (or both) of the crossed beams are eliminated.

Typical data from these experiments is presented in figure $27 a$ to $31 a$ The analysis of the diffracted signal is performed by using equation (4.34) with $B=0$ and γ is extraced from the long time decay data (background). From a \log plot of the data $\langle f i g u r e 27 b$ to 316) we see that the decay is well approximated by a sirigle exporiential decay where we have:

$$
\begin{equation*}
E(t)=[e \times p(-t / T d) \tag{4.36}
\end{equation*}
$$

and the slope obtained from the figure 270 to 31b is related to relaxation time constant as

$$
\begin{equation*}
1 / \mathrm{Td}=\mathrm{slope} / 2 \tag{4.37}
\end{equation*}
$$

on the basis of the diffusion equation introdused in equation (3.4). While the forre term involuing F is present for the formation of the periodic particle grating, it is absent when one or both of the incident beams is elimiriated and the simple diffusion equation results:

$$
\begin{equation*}
\partial n(r, t) / \partial t=D \nabla^{2} n(r, t) \tag{4.38}
\end{equation*}
$$

where D is the diffusion coefficient. The intermediate scattering function, $S(k, t)$, $i s$ related to the density, n(r,t), by a spatial fourier transform. Thus we may fourier transform the diffusion equation given in equation (4.38) ta find

$$
\begin{equation*}
\partial s(k, t) / \partial t=-D k^{2} s(k, t) \tag{4.39}
\end{equation*}
$$

which is easily solved to find

$$
\begin{equation*}
S(k, t)=\left[\exp \left(-D q^{2} t\right)\right] \delta(q \pm k) \tag{4.40}
\end{equation*}
$$

where $\bar{k}=\bar{k} i-\bar{k} s i s$ the interpreted as the scattered wave vector and $\delta\langle q \pm k)$ is the delta function. The functian results from the assumption that a single density mode with wave vector q (or fringe spacing $d=2 \pi / q$) is present at t $=0$.

The physically measurable quantity is the intensity iin this case voltage) which is directly proportional to the absolute value squared of the $S(k, t)$. Comparing equation (4.37) to (4.40) we see that slope is

$$
\text { slope }=2 D K^{2}
$$

and so equation (3.37) becomes

$$
\begin{equation*}
T=1 / D K^{2} \tag{4.42}
\end{equation*}
$$

Thus we expect the measured relaxation time to be directly related to the particle Eelf diffusion constant and the scattered wave vector determined from the incident beam crossing angle: The measured value of the diffusion coefficient for these four different diameter particles are shown in Table I along with the theoretical diffusion coefficient value for an infinitely dilute sample with no boundary (the free diffusion coefficient;. The measured diffusion coefficients are smaller than free diffusion

TABLE I
COMPARISON OF MEASURED DIFFUSION CONSTANT TO FREE DIFFUSIGN CONSTANT FOR FOUR DIFFERENT SIZES OF SPHERES

Diameter of the Sphere in um	Fringe Spacing in um	Input Power per unit Area in Watte/m	Measured Diffusion Constant, D in m^{2} /s.	Free Diffusion Constant in $\mathrm{m}^{2} / \mathrm{s}$.	$\begin{aligned} & Q= \\ & (C \mathrm{KT} / \mathrm{D}) \\ & -6 \operatorname{lna} / \mathrm{A} \\ & \text { in } \mathrm{kg} / \mathrm{m}-\mathrm{s} . \end{aligned}$
0.481\%	1.77	39.39 E 6	6.91E-13	8.90E-13	1.986 E 4
0.75 *	2.63	29.05E6	3.15E-13	$4.51 \mathrm{E}-13$	1.68554
1.07*	2.17	21.45 E	$2.10 \mathrm{E}-13$	3.93E-13	2.999E4
2.02 **	2.89	26.46E6	8.55E-14	2.12E-13	$2.854 E 4$
2.02 *\#	2.89	42.49E6	6.87E-14	2.12E-13	3.885E4

A is the square of the radius af the spheres times cas(日)

* Self-diffracted 1 st order maxima. Temperature $20^{\circ} \mathrm{C}$
** Self-diffracted 2nd order masima, Temperarure $20^{\circ} G$
*\# Third laser (He-Ne) as a probe beam, $15 t$ order maxima and Temperature $20^{\circ} \mathrm{C}$
coefficient. We beleve this is to be due to hydrodynamic wall effects discussed previously.

The boundary drag effect can be examined by substracting the Stoke's drag 6תha from the measured diffusion constant divided into the thermal energy. These values are listed in Table I. As the radiation pressure increases; the sphere exerts more force on the boundary layer and. as a result the boundary layer becomes thinner. The thinner the boundary layer is, the greater the drag force. This is discussed in more detail in the following section.

Finally we note the effect of coherent mixing of the two self scattered beams may be seen in the data in figure 27a, 28a, 29a and 31a. When one of the beams is blocked then we see an instantaneous decrease in the diffracted intensity for 0.481 um, 0.95 um and 1.09 um diameter spheres as shown ín figure 27a to 29a. However, for 2.02 um diameter spheres the effect $i s$ reversed, the diffracted intensity instantaneously increases when one beam is blocked as shown in figure 30a. It was shown in Chapter II that the scattering amplitude of indiwidual spheres can have negative value. The total scattering amplitude is the sum of all amplitudes reaching the detector, and the intensity is proportional to the absolute value squared of the total amplitude. For 2.02 um diameter spheres the scattering amplitude of one beam is pasitive and other ane is negative. This can easily be obtained from the Chapter II form factor
calculation and accounts for the otserved behaviar.

Alternatively, when a third laser beam probe was incident normal to the grating plane and both the write beams are blocked the results shown in figure $31 a$ and $31 b$. were produced. The diffusion coefficient was measured be to smaller than the self diffracted method of messuring. Presumably this is due to the larger input croseed beam power which moves the particles closer to the wall. However: more extensive studies need to be dane. With the emaller. probe power $\{5.0$ mW) and the elimination of the incident crossed beams, during the decay, the prote beam method offers several advantages: no coherence effect due to two beam interference, elimination af mast of the radiatiar pressure during the decay, no extra force parallel to the wall, etc.

BB Pellets Experiment

To explore the Eoundary effect on the particle motion we did an experiment with $B B$ pellets and glycerin. These BB pellets are dropped in the middle and riear the wall of a jar. containing glycerin. Here we used two types of jar with diameters \quad f the $j a r 14$ em and 3.6 cm and 1 ength 25 cm and 40 cm respectively. The BE^{\prime} s were 0.44 cm in diameter. When these BE's are dropped, they will experience a drag farce and soon reached their terminal velocity. The velocities are recorded and shown in Table İ. Here we observed the velocity of the $\mathrm{BB}^{\prime} s$ along the wall are smaller than the velocity of
these BB^{\prime} s on the cylinder axis. The velacity of the BB^{\prime} g on the eylinder axis is then corrected further for an unbound fluid using the following formula (4Z)
$U=U / E 1-[1 /(K+a L 1) R][5.6112-$
$5.5642(a / R)^{2} 13(4.43)$

TABLE II

COMFARISON OF VELOCITY OF BB PELLETES ALONG THE WALL af the container to the midole of the container AND THE CORRECTED FOR THIS CYLINDERICAL EOUNDARY SHAPE IN GLYCERIN

Diameter of $\mathrm{BE}^{\prime} s=0.44 \mathrm{~cm}$ Mass of $\mathrm{BE}^{\prime} \mathrm{s}=0.34 \mathrm{gm}$ Density of $\mathrm{BB} / \mathrm{s}=7.64 \mathrm{gm} / \mathrm{cm}$ Temperature $=19^{\circ} \mathrm{C}$ Density of Elycerin $=1.26 \mathrm{gm} / \mathrm{cm}$			
Diameter of the Container in cm	Velocity Along the Wall in cm/sec	Velocity at the Middle in $\mathrm{cm} /$ sec	Corrected Velocity for infinite Wall Separa. in cm/sec
3.6	$2.12+0.19$	$3.15+0.15$	$4.25+0.21$
14.0	$2.38+0.17$	$4.24+0.17$	$4.54+0.20$

In the previous experiment we demonstrated the effect of the wall on the terminal velocity of the $B B^{\prime} s$, where the external force exert on the BE^{\prime} s to stay near the wall was zero. However, another type of experiment was done by using a large tank filled with glycerin. In order to introduce a force holding the $B B^{\prime} s$ near the wall, the tank was placed at an angle. In this way there will be two force components due to grawity: along the direction of motion and perpendicular to the direction. The force perpendicular to the direction of motion will hold the BB^{\prime} s near the bottom wall and result in an extra resistive drag. The measured velocities of the spheres are shown in Table III along with the force components parallel and perpendicular to the wall. It is observed that the BB^{\prime} s have both translational and rotation motion. For small angles (with respect to horizontal) the motion is dominated by rotational motion and as the angle increases the rotational motion decreases.

The thickness of the boundary layer depends on the balance of forces perpendicular to the motion. These forces are due to gravity and hydrodynamic effects. For laminar flow we argue that

$$
\begin{align*}
& F(e)=D(L) U \tag{4.44}\\
& F(d)=H(D(L)) U \tag{4.45}
\end{align*}
$$

where
$F(e)\left[=m^{\prime} g \sin (\theta)\right]$ is the component of the force acting along direction of the velocity

TABLE I I I
EOMFARISON DF UELOCITY OF EE'S FELLETES ALONG THE MALL OF THE CONTAINER WHEN EOTH FGFCES FAFALLEL AND FERFENDICULAR TO THE MUTIIN ARE FRESENT

Diameter of Density of	$\begin{aligned} & =0.44 \mathrm{~cm} \\ & =7.64 \mathrm{gm} / \mathrm{cm} \end{aligned}$ due to Grau ty of Glycer	278.9 dy $1.26 \mathrm{gm} / \mathrm{cm}$	
Angle with the Harizon in degree	```Velocity of the EE'E in cm/sec```	$\begin{aligned} & D(L)= \\ & F(e) / V \\ & \text { in gm/sec. } \end{aligned}$	$\begin{aligned} & H(D(L)= \\ & F(d), y \\ & \text { in } g m / s e=. \end{aligned}$
14.6	$0.17+0.01$	$275+10$	$3.84+0.38$
17.5	$0.22+0.01$	$256+10$	$3.17+0.32$
20.5	$0.27+0.01$	$239+9$	$2.68+0.27$
23.5	$0.35+0.01$	$214+8$	$2.30+0.23$
80.6	$1.07+0.04$	$172+17$	$0.17+0.02$
85.7	$1.12+0.04$	$167+17$	$0.075+0.008$
87.5	$1.14+0.04$	$155+17$	$0.044+0.009$

$F(d)[=m$ 'g cos(g)] is the component af the force acting perpendicular to the wall

D(L) is the coefficient of orag parallel to the wall

H(L) is a lift coefficient
and
$L \quad i s$ the distance from the particle center to the wall.
$D(L)$ and $H(L)$ are assumed dependent only on the thickness of the boundary layer in general. A plot of〔 $H(L) / D(L)\rangle$ us $D(L)$ can then be determined experimeritally from a ratio of the force components and a measurement of the $B B^{\prime}$ s welocity. The result is shown in figure 32 where we see that $H(L)$ is directly proportional to the square of the $D(L)$.

Finally we note that the diffusion mechanism of microsized spheres near a single boundary were different from unbounded diffusion mechanism. The experiment was done with the $B B$ pellets and glycerin suggests an explanation of this phenomena. The thin layer of fluid between the spheres and the boundary is related to the lubrication layer which becomes smaller as the radiation pressure increases. The dreg of the bulk fluid is different from this thin layer.

Grouth of the Density Grating

Lastly in this chapter we look at the growth of the density grating. The grating farmation time should depend ar the incident crossed beams power, sphere size, refractive

Figure sz. Fiatio of Ferpendicular Force ta Farallel Force us Drag Force Coefficient
indix of the particles as well as viscosity of the solvent and fringe spacing. The diffraction fattern produced by scattering from the grating containe information on the amplitude of the different spatial modes being stimulated. The zerath order mode correspands to a uniform average particle distribution and is time independent. The first order mode has a wavelength, d, equal to the fringe epacing and initially grows most rapidly when the crossed beams are turned on. Higher order modes have shorter wavelemgth arid initiaily respond weakly to the crossed beams (44). Because of this, we ignore the effect of the higher order modes than the first in our analysis of the initial growth in the GBT experiments, Furthermore we assume that this growth is af the following form

$$
\begin{equation*}
E(t)=1-e x p(t / T f) \tag{4.46}
\end{equation*}
$$

and fit the data using equation (4.34) to determine the formation time, Tf. The time for different experimental conditions are listed in Table lV.

We expect the formation time to be inuersely proportional to the drift velocity produced by the radiation field and proportianal to the length the particle must diffuse $(d=2 \pi / k):$

$$
\begin{equation*}
T f=K \prime \prime K U) \tag{4.47}
\end{equation*}
$$

```
where \(K^{\prime}\) is the universal constant
                                \(k=2 \pi / d ; \quad i s\) the fringe spacing
and
    \(Y\) is the drift velocity which is given by
\[
\begin{equation*}
v=F / \xi \tag{4.48}
\end{equation*}
\]
```

with \mathcal{f} being a friction factor. The diffusion constant, D is related to the friction factor $\frac{8}{3}$ wia the relation

$$
\begin{equation*}
\rho=K T / D . \tag{4.49}
\end{equation*}
$$

Finally putting ever> thing together in equation (4.47) the universal constant; K", becomes

$$
\begin{equation*}
K^{\prime}=\langle T f / T d\rangle p(k / k s\rangle^{2} \tag{4.50}
\end{equation*}
$$

where $T d\left\{=1 /\right.$ DKs 2) is the relaxation time constant determirue previ uusly
$P\left\langle=\infty E(10)^{2}, K T\right\rangle, E(10)$ is the amplitude of the applied field
and
ks is the scattered wave vector.
The value of the relaxation time constant, Td, can be obtained from Table IV. Here we are not using the free diffusion constant in order to obtain the relaxation time constant because the spheres are diffusing near a wall. We have seen from the previgus discussion that the hydrodynamic uall effects produce an increased drag.

From fiuid mechanics we know that the velocity of the fluid at the wall and velocity of the fluid at the sphere will be at rest with respect to the wall and sphere surface, respectively sstrict boundary condition). A very thin layer will stay between the wall and sphere which is known as the boundary layer. The thickness of this thin layer of fluid is dependent on the surface roughness of the sphere as well as the wall, surface tension of the fluit, viscosity of the fluid and pressure an the sphere. This thin layer undergoes a very high strain when the spheres try to move in the high intensity region. The fluid in the frant of the sphere will slip through that thin layer, which causes the sphere to experience a large drag. This slows down the particle. Hence we used the measured relaxation time constant, Td, instead of the theoretical free relaxation time punctuation Stoke's-Einstein constant. The effect of the force due to the finite size of the spheres are also taken into consideration. These values of universal time constant are listed in Table IV.

The universal constant of the first order self diffracted intensity maxima of 0.481 um, 0.95 um and 1.09 um is shown in the begining of the Table IV. We see that the universal constant of 0.481 um diameter sphere is about half of the value of the universal constant obtained for 0.95 um and 1.09 um diameter sphere. This suggested that we are missing an important factor in our estimate of the formation time. The deviation is systamatic following either the

TABLE IV

COMPARISON OF FORCED DIFFUSION TIME OF DIFFERENT grating order mode to free relakation time FOR FOUR DIFFERENT SIZE OF SFHERE AT FOUR DIFFERENT FRINGE gFACING

Diameter of the Sphere in um	Fringe Spacing in um	Potential Energy on Sphere/KT ($F=(1 / K T$)	Forced Diffusion Time Tf in Eer.	$\begin{aligned} & \text { Ratio } \\ & K= \\ & (T f / T d\rangle \\ & \langle K / K \equiv\rangle F \end{aligned}$	$\begin{aligned} & \mathrm{Ku}= \\ & \mathrm{K} / \mathrm{a} \\ & \text { per m. } \end{aligned}$
0.481%	1.77	0.235	0.176	0.397	1.60ES
$0.9 *$	2.63	1.208	0.397	0.878	$1.85 E 6$
$1.09 *$	2.17	1.172	0.350	0.728	1.34 ES
$1.09 *$	2.17	1.015	0.488	0.865	1.58ES
$2.02 * *$	2.89	7.646	0.768	2.403.	2.3BE
$2.02 * *$	2.89	0.162	1.406	2.739	2.71ES

* Self-diffracted 1 st order maxima, Temperature 20° e
* Third laser (He-Ne) as a probe beam, list order maxima and Temperature $20^{\circ} \mathrm{C}$

```
particle radius ar eriergy/kT gt theseystem. If we divide
this constant by the radius of the sphere then the values of
Tf almost agree withiri experimental errar. On the other hand
for a 2.02 um diameter sphere there is no agremment. The
first arder diffracted spGt of 2.0̈2 um diameter sphere was
probed by a third laser (He-Ne laser). This laser probed
perpendicular to the grating and the two write beams
(Ar-ion) were blocked. When both the write beams are on more
radiation pressure is exerted on the sphere than when they
are blocked. Hence the sphere feels more restoring force
when they are diffusing to form a grating. This information
can not be obtained from this type of experiment and this
type of data.
    Clearly a great deal more work meeds to be done to sort
out the trends noted in these preliminary experiments.
```


CHAPTER \cup

INTERACTING SAMPLE ETUDIES

Introduction

When highly charged polymer spheres are intoduced into deionized water: they interact with each other via screened coulombic interactions. The scresened coulomb potential gauses the partisles to maintain arather large and uniform average distance from each other. In some regions the particles order as in a solid and other places as in a liquid. This makes the sample ideal for the study of liquid and solid tehavior. When the liquid phase is sutjected to an external periodic potential then it can be forced to undergoes a phase change if the average particle separation and spatial period of the external potential are properly adjusted.

Experiments on the interacting samples were diuided into three portions. The first is a study of the ordering of particles in a harmonic external field for different Epatial periods of the external field ©or incident beam erossing angle). The second $i s$ a study of the output intensity of the different diffraeted intensity maxima as a function of input power and crassing angle. The third is the study of the grouth and decay of these different density modes when the
external field is modulated.

Study of Striucture

When an $x-r a y$ beam is scattered from a sirigle or polycrystaline structure, the scattered intensity distribution gives information about the structure of the crystal. Similarly when laser light is scattered from a strongly interactirig collgidal sample, the scattered intensity distributions contain information about the particle order. In the case of an amorphous order, the scattered light produces a diffuse Debye-Scherrer ring concentric about the main ar unscattered beam as shoun in figure 33. Bragg's relation described in Chapter II by equation (2.13) can be used to determine the auerage particles separation. We simply assume the Debye-Sherrer ring structure to be similar to a powder pattern. Far 4 g nim wauelength the angle of scattering is about 8 degrees and average particles separation, a, is found to be $2.4 \mathrm{um} . \ln$ the case of solid ordering the parameter a $[=$ dihkl)] is identified with the separation between planes and represented as d(hkl), where h, k and 1 are Miller indices.

As in the case of noninteracting particles descrited in Chapter $I U$, when strongly interacting particles are subjected to a feriodic intensity potentisl, they generally line up along the high intensity regions of the fringe pattern to produce diffraction grating which strongly scatters light. However, berause the particles are

Figure 33. Debye-Scherrer Ring. The Scattering Angle is 7.4 Degrees, Diameter of the Spheres is 0.95 um and the Wavelength used is 488 nm
interacting strangly over micron distance scales there is a uniform separation between particles within a row and registration between rows. This results in the appearance of other intensity maxima outside the cross beam plane indicatirig other periodic structures. These periodic Etructures are not directly excited by the crossed laser beams. However, these modes are coupled to the laser. stimulated mode. Euidently this colloidal liquid is frozen, being two dimensignally ordered by applying a one dimensional external field which directly breaks the symmetry of the liquid state parallel to the stimulated density mode.

When the fringe separation, d, is slightly larger than the average particles separation, a, the diffraction from the fundamental density mode which is excited directly by the two crossed beams was observed. The other diffraction spots from the secondary density modes, which are not directiy excited by the crossed beams, were not observed. This is because the width of this periodie intensity potential is sufficiently large such that the interaction hetween particles in adjacent rows is reduced. The particles lose their correlation between rows of this structure. Although the fundamental mode is produced, the diffracted light from this mode is less than that for other configarations. Figure 34a shows diffracted maxima for this incident beam crossing angle. Also visible are the Debye-Eherrer rings, produced by self scattering of each
incident beams. The intensity of the Debye-Sherrer ring was measured and found to be uniform around the ring within experimental error. Figure $34 b$ shows the real space picture order for this experimental configuration. Here the particles try to align along the high intensity region and to form other registrations. There are weak correlations between these rows and the symmetry is weakly braken in this liquid phase.

A more interesting case to study is when the fringe separation is larger than the size of the particles but smaller or equal to the average particles separation. In this configuration the particles line up in rows along the fringe direction. Due to the fact that there are interactions between the particles and that the fringe spacing is smaller, there exists a correlation between these rows. This mearis that the rows register forming density modes in other directions, a breaking of the liquid symmetry. Figures 35a to 37a show the diffracted maxima from the directly excited \langle fundamenal: ard indirectly excited other (secondary) modes. The corresponding real space pictures are shown in figure 35b to 37b. The diffraction patterns represent the reciprocal lattice of the two dimensional real space lattice.

The scattering angles of the intensity maxima are measured as explained in appendix (A), and the separation between the corresponding real space scattering lines were obtained using Bragg's law <Far two dimensional systems we
have scattering lines instead of planes as is the case in three dimensians). These lines with proper orientation are plotted in figure 350 to $37 c$. From this construction we find that the packing fraction of these lattices for three different crossing angles are the same. Thus the density of of these micro-erystals does not change much with the application and variation of the external field. These real space structures can be ideritified as destorted hexagomal lattices. It $i s$ observed that for a fringe separation equal to the square root of half of the square of the average particle separation, then the two diffracted intensity maxima of fundamental mode move outside af the liquid Debye-Sherrer ring figure 35 a. There are also four other diffracted intensity maxima from the secondary density modes which appear near the Debye-Sherrer ring. These four intensity maxima are 90° degrees apart from each other and 45 degree from the fundamental diffracted maxima in a plane normal to the incident beam. Using the Bragg 's law, this micro-crystal structure was identified as a two dimensional square lattice. The principle axis of this lattice is along one of the secondary registration directions. The secondary diffracted intensity maxima are from the [10] lines of the micro crystal square lattice and the fundamental diffracted maxima correspand to scatteririg fram (11) lines. There are also two diffuse spots visible in figure $35 a$ which correspand to scattering from other (11) lines. The lattice constant was found to be 2.3 um as shown in figure 350.

$\begin{aligned} & \text { Figure 34a. Self-Diffraction Fattern. The } \\ & \text { Average Farticle Separation } \\ & \text { is } 2.5 \text { um, the Fringe Spacing } \\ & \text { is } 3.2 \text { um and the Two Central } \\ & \text { Bright Spots are due to the } \\ & \text { Emerging Crossed Beams }\end{aligned}$

Figure 34t. Real Space Image of Corresponding
to the Diffraction in 34 a.

Figure 35a. Self-Diffraction Fattern. The Average Farticle Separation $i \leq 2.5 \mathrm{um}$, the Fringe Spacing is 1.77 um and the Two Central Bright Spots Fartially blocked by Tape are the Emerging main Beams

Figure 35b. Real Space Image of Corresponding
to the Diffraction pattern in
Figure 35a

Figure 36a. Self-Diffraction Fattern. The Average Farticle Separation
is 2.5 um, the Fringe Spacirig
is 2.17 um and the Two Main
Beams are blocked by Eeam
Stops in this Figure

Figure 36t. Real Space Image of Corresponding
to the Diffraction pattern in
Figure 36z

Figure 37a. Self-Diffraction Pattern. The Auerage Farticle Separation is 2.5 um, the Fringe Spacing is 2.45 um and the Two Central Bright Spots Partially blocked by Tape are the Emerging main Beams

Figure 37b. Real Space Image of Corresponding to the Diffraction pattern in Figure 37a

When the fringe separation increased, the fundamental diffracted maxima appeared just outside the Debye-Sherrer ring and the other secondary maxima stayed near the Debye-Scherrer ring with unequal angular separation between them (see figure 36a). The angular separation between the fundamental and secondary increased to more than 45° degrees but less than $s 0^{\circ}$ degrees. Since the angle of sattering and angular separaton are known, the line separation and the orientation are determined. This distorted hexagonal close pack structue is similar to a two dimensional tetragonal body centered lattice. Using Eragg's equation ($1 /(\Delta k h))^{2}=$ $\left.(h / a)^{2}+(k / b)^{2}\right\}$ and applying the scattering condition for two dimensional body centered lattice, (2D-bcl) that the sum of the Miller indices must be even, we find the first two diffracted spots from the fundamental density mode corresponds to scattering from [20] lines. The lattice constant, (a $=4.4 E-6$ um) is found to be twice the size of the fringe separation $\langle d=2.2 E-6 u m$). The other diffracted spots from secondary registration corresponds to the scattering from [11] lines. The lattice constant a $<=4.4 E-6$ um) is not equal to $b(=2.3 E-6$ um). The diffracted maxima from third order registration is diffuse.

It is also observed that for the fringe separation, $d=$ ac $1-(1 / 4)\}^{1 / 2}=0.866 a$, then the micro-crystal becomes exactly hexagonal clese pack. The fundamental diffracted maxima appear just outside the Debye-Sherrer ring as does the secondary maxima. This is shown in the figure 37a. Using

Figure 35c. Two Dimensional Square Lattice Facking Fraction is. .11

Figure BEc Two Dimensional Dietorted Hexagonal
Lattice. Facking Fraction is. 105

Figure 37c. Two Dimensional Hexagonal Lattice.
Facking Fraction is . 105

Bragg's equation $\left\{1 /(d(h k))^{2}=(4 / 3)\left[\left(h^{2}+h k+k^{2}\right) / a^{2}\right]\right\rangle$ from chapter II and applying the condition that the sum of the Miller indices must be an integer, the lattice constant〈a $=2.5 * E-6$ um) was obtained which is the average particle separaton as shown in figure $37 c$. The diffracted maxima from higher order registarion was also observed.

The nice feature of his experiment is that we not only make a phase change from liquid to hexagonal solid but also from liquid to cubic and destorted hexagonal structures directly. In other words by applying an external field, the liquid symmetry was broken; and by changing the period of the external field, the erystal symmetry can be broken. It is also possible to get the phase change from cubic to either of the distorted or perfect hexagonal structures (or vice versa) by changing the period of the external field.

Study of the Structure as a Function of Input Power

In the experiments on strongly interacting particle samples, the data are taken in two different ways. One method $i s$ the weighted average method as described in Chapter III, and the other method involves takirg 1000 data points in some time interval and averaging them. It was found that both of these methods are in agreement with each other. The weighted average method works as a dynamic average where the signal growth can be monitored. On the other hand, when the structure is stable, then the 1000 data point method as well as weighted average method ran be used.

The data presented here is for stable structures using the weighted average method. The data collections for both methods are reproduceable.

The sample cell gaf is made wedge shaped to obtain a monolayer of particles as describe in chapter III. The sample order is a liquid like or amorphous Shaving no larg range order) in some regions and solid like in other regions. If the incident crossed beams are placed irn those parts of the sample where the interacting particles exhibit short ranged order and near regions where the gap spacing excludes all particles (acolloidal vaccum), then a stable structure can be obtained using radiation pressure. This allows us to take the data for any period of time and to average the data. On the other hand, if the croseed beams are placed in a regions with larger gap spacings, then many particles are drawn into the crossed beams region and the spheres evidently try to form three dimensional structures. The signal for the fundamental diffracted maxima is observed to grow to a maximum before decreasing to lower values. At the same time the secondary diffracted maxima are also observed to grow to a maximum before decreasing to lower values. A typical plot of intensity as a function of time shows this effect in figure 38a and figure 38b for fundamental and secondary maxima, respectively. The open and solid circles represent two different input power and the bars represent the signal fluctuation Sgiven by equation (3.6)). The peak value of the intensity for fundamental and

Figure 38a. Typical Behavior of the Fundamental Mode for a Non-Stable Sample. Open and solid Circles Respect Two Different Infut Fowers of the Crossed Beams and the Bar Represent Fluctuations

Figure 3Bb: Typical Eehavior of the Seeondary
Mode for a Non-Statle Eample.
Open and Solid Eircles Fespect
Two Different Input Fowers of the
Erossed Eeams and the Ear
Represent Fluctuatigns

Figure 39a. A Flat of the Self-Diffrated Intensity from the Fundamental Mode us Input Power per unit Ares. The Gpen Gircles Represents a Stable Condition of the Sample. The salid line is Cubir fit to Data and the Fringe Spacing is 3.2 um .

Figure 39t. A Plot of the Self-Diffracted
Intensity from the Secondary Mode ve Input Power fier Unit Area. The gpen Eircles Represent a Stable Londition of the sample. The Eglid Line is Three-Half Fit to Data and the Fringe Spacing $i=3.2 \mathrm{um}$.

Fiqure 40a. A Flot of Self-Diffracted Intensity from the Fundamental Mode vs Iaput Fower per Unit Area. The Dpen and SGlia Eircles Represent Gtable and Non-Stable Sample Fespectively. The Ealid Line is Cutir Fit to Data and the Fringe Sparing is 2.63 um

Figure 40t. A Flot of GelfoDiffragted Intensity from the Seaondary Mode us Input Fower per Unit Area. The Dpen and Solid Eircles Represent Stamle and Non-Stable Bample Fespectively. The Salid Line is Three-HElf Fit to Data and the Fringe gpacing is 2.63 um

Figure $413 . A$ Flot of Self-Diffracted Intersity from the Fundamental Mode ve Irput Fower per Hnit Area. The Gfen jnd Eolid Eircles Represerit Statile and Nom-Stable Sample Fespectively. The Solid Line is Cubic Fit to Data snd the Frifige Spacing is 2.17 um

Figure 4ib. A Plot of Self-Diffracted Intensity from the Secondary Mode us Input Power per Unit Area. The Open and Solid Eircles Represent Stable and Non-Stable Sample Respectively. The Solid Lire is Three-Half Fit to Data and the Fringe Gearing is 2.17 um

Figure 42a. A Flot of Self-0iffracted Intensity from the Fundamental mode ve Imput Fower per Unit Area. The Open and Solid Circles Represent Stable and Non-Statle Sample Respectively. The Golid Line is Eutie Fit to Data and the Fringe Spacing is 2.04 um

Figure 42b. A Plot of Self-Diffracted Intensity from the Secondary mode us Input Fower fer Urit Area. The Open and Salid Eircles Represent Stable and Nan-Stable Sample Fiesfectively. The Solid Line is Three-Half Fit to Data and the Fringe Spacing is 2.04 um

Figure 43a. A Plat of Self-Diffracted Intensity from the Fundamental Mode vs Input Fower per Unit Ares. The Operi and Salid Girales Fepresent Statie and Non-stable Sample Fespectively. The Solid Line is Eubic Fit to Data arig the Fringe Epacing is 1.77 um

Figure 43b. A Flot of Eelf-Diffracted Intensity from the Secondary Mode us Input Fower per Unit Area. The Open and Solid Circles Represent Stable and Non-Stable Sample Respectively. The Solid Line is Three-Half Fit to Data and the Fringe Epacing is 1.77 um
secondary maxima were determined and plotted as a function of input power per unit area for five different crossing angles. These results are shown with solid symbol in figure $39 a$ to figure $43 a$ for the fundamental diffracted maxima and for the Eecondary diffracted maxima in figure 39b to figure 43b. The data for stable condition of the sample are also shown in there figures with open symbal. The salid lines are a cubic power law fit for the fundamental maxima and three halves power law fit for the secondary maxima. It is seen that they are generally in agreement with one another and follow a cubic dependence and three half power depencence for the fundamental and secondary modes, respectively.

The scattered electric field from the fundamental density mode is directly proportional to the amplitude of the density modulation, which for non-interacting particles is proportional to the input intensity of the crossed beams. This was discussed in Ehapter IV. Since the scattered intensity of the fundamenatal density mode is the absolute ualue square of the scattered electric field, it is proportional to the square of the input power of the crossed teams. Since the probing team is one of the pump teams the intensity of the probe beam increases as the pump beam intensity increases. Hence the scattered intensity of the fundamental maxima is proportional to the cubic power of the pump besm intensity. This is true only in the low power. region, because at high enough power these spheres will be essentially completely localized in the fringes. Further
increases in incident power will not increase the order of the particie. Euidently the interactions are weak enough here, that particle interactions do not produce a significant deviation from the gubic law dependence.

Landau Theory

It has been shown that in the presence of the exterial intensity field: not only do we see the directiy excited density madese but also we see the indirectly excited (slaved) density modes as well. In order to discuss this mode coupling, a Landau theory was constructed. Let the number density of the spheres be described by

$$
P(r)=P_{0}+\sum_{i} a_{i} \cos \left(\bar{k}_{i} \cdot \bar{r}\right)+\text { Higher order terms (5.1) }
$$

Where P_{0} is the average number density of the spheres and $a_{i} \cos \left(\bar{K}_{i} \cdot \bar{r}\right)$ are the stimulated and slaved density variations of wave vectors \bar{k}.

In the fluid like phase the second term on the right hand Eide of equation (5.1) is zero $\left[a_{i} \cos \left(\bar{k}_{i} \bar{r}^{\prime}\right)=0\right]$. Thus the coeffcients of this term can be used as the order parameters for the phase transitions from the disordered to the ordered phases. The free energy density of the system is assumed to have form

$$
\begin{equation*}
\dot{f}=\sum_{i} A_{i} P^{i} \tag{2}
\end{equation*}
$$

where we terminate at the 4 th order term to form a standard th order theory (6). The free energy is found by integrating over space (50):

$$
\begin{equation*}
F=\int f d^{3} \bar{r} \tag{5.3}
\end{equation*}
$$

and only the terms in which the sum of the wave vectors, k, is zero contribute to the result such that (6)

$$
\begin{align*}
F= & 2 A a_{1}+B \sum_{i} a_{i}^{2}+2 C a_{1} a_{2} a_{3}+D\left(\sum_{i} a_{i}^{2}\right)^{2} \\
& +E\left(\sum_{i} a_{i}^{4}\right) . \tag{5.4}
\end{align*}
$$

or equivalently

$$
\begin{aligned}
& =2 A a_{1}+E \sum_{i}^{2} a_{i}^{2}+2 C a_{1} a_{2} a_{3}+ \\
& \quad E \sum_{i} \sum_{i}\left(a_{i}^{2}-a_{i}^{2}\right) / b+(E / 3+D)\left(\sum_{i} a_{i}^{2}\right)^{2}
\end{aligned}
$$

sufficiently large value of E. The third term couples all the modes together arid induces the observed (i3,17) first-order freezing transition in the absence of the external fields. The last two terms equalize the mode amplitudes and stabilize the ouerall free energy. In this experiment only a single mode is directly stimulated by the exterral field, and we expect a_{1} to differ from the degenerate modes a_{2}, a_{3}. From the experiment, we see that the other two indirectly excited modes are sommetric and equivalent, hence we can assume that $a_{2}=a_{3}$. The state of the system is given by the values of ai (a, a a_{2}) which minimize the free energy F. For $C=-1, D=1 / 2, E=3 / 2$, the minimized result of $F i s$ found numercially and is shown in figure 44 b as a function of A and B. As we see for $A=0$ (no external field) all the density modes, a are equal and undergo a first-order phase transition from solid to a liquid $A E E$ is increased. On the other hand, if A is non zero, the directiy excited mode, a is larger than indirectly excited mode, a in general. For sufficiently large B the transition from liquid to solid becomes a second-order phase change with $a_{2}=a_{3} \sim\left(A-A a_{1}\right)^{1 / 2}$ for the initial change in the slaved modes from zero amplitude. This type of symmetry-changing transition sari be second arder, because the external field reduces the symmetry of the fluid tefore freezing gccurs. Thus it would be possible to take a fluid system to a solid by a second-order process which involves exterrally applied fields, as indicated by the

Figure 44a. The Eroseed Beams Dirertly ExEite a Density Moue with Wavevertor k, and two ather Modes with WaveVertor k_{2} and k_{3} are Eoupled to the k, Mode by Farticle Intersations.

Source: A. Chowdhury arid E.J.AGKErEOn, LEEErInduced Freezing, Phys. Rev, Lett., Yal.55, No. 8 , p8S5 (1785).

Figure 44t. Landau Theory for the Order. Farameter a (SGlia curves) and a =a (Dashed Curves) for $\mathrm{C}=-1, \mathrm{D}=1 / 2$ and $\mathrm{E}=3 / 2$ as a Function af A and Parametrized by B.

Abstract

continuous growth of the structure in our experiment. our experimental results indicate toth solid and liquid phases can exist as described by the Landau theory. When an external field is applied the fundamental mode $\left\langle a_{1}\right\rangle$ is stimulated and grows faster than the slaved (secondary) modes (az) as indicated by the Landau theory. The agreement is not quantitative. The experiments indicate a continuous charige in intensity consistent with the behavior for large E values in the Landau theory. Again the agreement is not quantitative. Spatial fluctuations, which are not included in the Landau theory, may destroy the low amplitude behavior of a_{2} and a_{3}.

Study of the Intensity maxima as a function of
Crossing Angles

The study of the scattered intensity from the diffraction grating (produced by crossed beams) was observed as a function of crossing angle in Chapter IV for non-interacting particles. There we observed that as the crossing angle increases the scattered intensity decreases. This is a form factor effect. This effect was corrected by using the Mie theory. But when a interacting sample is subjected to crossed beams and the crossing angle of the beam was varied, something different happens.

The intensity of the fundamental and secondary maxima was studied for different crossing angles. Two pin diodes were positioned at the fundamental and secondary diffracted
maxima respectively. The data was taken by the weighted auerage method. The intensity of the two pump beams was made the same and kept comstant. The scattering angle of the liquid-like Debye-Scherrer ring was 7.4° degrees. It was observed that when the fringe separation, d, is equal to 0.87a, (the average particle separation) then the intensity of the fundamental diffracted maxima is maximum. If the fringe separation is increased or decreased from this point the intensity of the fundamental diffracted maxima decreased for fixed input power of $40 E 6$ wattefm of the pump heam. This is shoun in figure 45a with a solid line: The data is also corrected for the particle form factor using Mie Theory, assuming the scattering from each team is equal and in phase (dash-dash line of figure 45a). There is no correction for the intensity potential due to finite particlesize. (A rough calculation indicates this may increase the value at 12° degrees ty a factor 2.5 compared to the 5° degrees, without destraying the maximum at 8° degrees).

A plot of intensity of the secondary diffracted maxima is shown in figure 45b for different crossing angles and for fixed input power of the pump teams. The maximum intensity of the secondary diffracted maxima was observed for a fringe separation d equal to 0.87a. If the crossing angle is decreased the intensity of the secondary diffracted maxima decreases rapidly to the intensity of the Debye-Scherrer ring. If the crossing angle is increasedsuch that fringe separation is greater than particie diameter of the sphere
then the intensity of the secondary diffracted maxima again decreases. Note that the secondary diffracted maxima always stays positioned near the Debye-Scherrer ring, only the angular position of this maxima changes as the crossing angle changes.

When the fringe separation, d, is increased or decreased from 0.87a, there exists a competition between fluid and soild phases and the structure goes from a "commensurate" to an "incommensurate" phase or vice versa. In particular, when the crossing angle is decreased from the commensurate crossing angle the intensity of the both maxima decreases. This is because the particles belonging to same fringe are strongly correlated but the correlation between particles af neighbouring fringes become weak as the fringe spacing increases. In this case the fluid phase dominates the system and only the weak registration with the applied intensity potential occurs. However, if the crossing angle is increased (still keeping the fringes larger than the particle diameter), the intensity of the maxima again decrease. In fact, in this condition there exists a strong correlation between particles of neighbouring fringes. However, the interparticle forces become strong enough to compete with the external potential registration force. The interparticle forces can dominate the external potential and the sample assumes a liquid like order. It was observed that the fundamental diffracted spot changed in shape from circular to eliptical as the crossing angle increased. This

Figure 45a. Plot of Self-Diffracted Intensity Qf Fundamental Made vs Crossing Argles. The Scattering Angle af the DebyeーScherrer Fiirig $i \equiv 7.4$ Degrees. The Farticle Diameter. is 0. $\overline{\text { G }}$ um. The Gpen and solid Circles Represents Data and
Corrected Data Leing Mie Theory. Respectively. The Eiar Represents the Intensity Fluctustions

Figure 45t. Flot of Self-Diffracted Intensity of Serondary Mode vs Eroseing Angles. The Siattering Arigle of the Debre-Siherrer Ririg is 7. 4 Degrees. The Farticle Dismeter is 0. 05 um. The Gpen Circles Fepresent Data and the Ear FeFresents Intensity Fluctuatign
may indicate the transition from a commerisurate to ehaotic phase rather than to a liquid phase (40).

A Study af Intensity of the Debye-Scherrer Firig as a
Function of the Write Beam Intensity

A study of the intensity of the liquid Debye-scherrer. ring at an anticorrelation position sa position midway between stimulated and slaved intensity maxima) was made on the commensurate structure. It was observed that as the intensity of the write beams were increased the scattered intensity of the Debye-Scherrer ring at an anticorrelation position decreases relative to the input intensity, as the scattered intensity of the fundamental and secondary maxima increase. This is shown in figure 46. This is nat surprising because the dominance of the few density modes stimutaled by an external field comes at the expense of other modes in the same. These modes decrease in amplitude and scatter less light with increasing external fieldstrength. This effect also corresponds to the development of anticorrelations in the CCIFS tectinique $\langle 3,4$).

Time Dependent Study Of The Structure

The data for time dependerit messurements were collected as described in Chapter III. When the beams are crossed in the interacting sample, the liquid 三ymmetry is broken. This allows the growth of a solid structure which is monitored by the growth of the diffracted intensity. The growth of the

Figure 4 ó Plot gi Intensity of Detrye-scherrer Ring us Input Fower. The Scattering Arigles is 7.4 Degrees. The Farticle Diameter is 0.95 um. The Opert Cireles and Bar Reprosents Data and Fluctustions
structure is dependent on the strength of the interaction between the particles and strength of the applied external periodic potential. One of the pump beams is then blocked periodically by the chopper. It was observed that as the write beams were blocked, the sample lost its solid symmetry. The scattered intensity slawly diminished which is the indication of the decay of the structure. The growth and decay of the fundamental and secondary maximas are studied and given in figures 47a,48a \& 49 a and figure 50 a , respectively.

Study of the Growth of the Fundamental Mode

Flots of the intensity of the fundamental diffracted maxima as a function of time are shown in figures 47a, 48a and 49a for a total input power $22 E 6 \mathrm{~W} / \mathrm{m}^{2}$, a wavelength of 488 nm and three crossing angles $11^{\circ}, 9.6^{\circ}$ and 8° degrees respectively. As in chapter iV, we expect the growth of these density modes to be dependent on the input power of the fump beam, the crossing angle, the strength of the interaction of the particies and the viscosity of the suspended medium. In this case the scattering angle of Debye-scherrer ring is 8.5° degrees. It is observed that the structure grows faster when the fringe separatian d approches 0.87a. On the other hand if the crossing angle is increased or decreased fram this point then competion between the interparticle forces and the external field increases the growth time.

Figure 47a. Growth and Degay af Furidamental Mode. The Particle Diameter is 0.95 um. The Average Farticle Separation is 2.7 um. The Fringe Spacing is 2.63 um. The Input Fower is 0.024 batts and 250 Frames are Aueraged

Figure 48a. Growth and Decey gif Fundamental Mode. The Farticle Diameter is 0.95 um. The Auerage Farticle Separation is 2.7 um . The Fringe Sparing is 2.17 um. The Input Fower is 0.025 Watts and ziso Frames are Aueraged

Figure 49a. Growth and Decay of Fundamental Mode. The Particle Diameter is 0.95 um. The Average Particle Separation is 2.7 um. The Fringe Spacing is 1.89 um. The Input Power is 0.039 Watts and 250 Frames are Averaged

Figure 50. Growth and Decay of Secondary Mode. The Particle Diameter is 0.95 um. The Average Farticle Separation is 2.7 um. The Fringe Spacing is 2.17 um. The Input Fower is 0.05 Watts and 221 Frames are Averaged

The data for the initial growth of the fundamental density mode is fitted to equation (4.34) with the assumption that coherently scattering background B is zero, is extracted from the incoherent background and the scattered electric field, E(t), is assumed to be given by

$$
\begin{equation*}
E(t)=1-\exp (-t / T f) \tag{5.6}
\end{equation*}
$$

Here Tf is the formation time constant. A plot of the log of
 for three different crossing angles. The value of the (1/Tf) along with input power and croseing angles are listed in Table V.

The growth of the density modes is dependent on the strength of the interparticle interaction and external periodic potential as discussed Earlier. Let us assume that free diffusion coefficient is related to this transition time vis a function whiat dependent on the infut pomer and the strength of the interaction

$$
\begin{equation*}
\operatorname{DaK}^{2} T \dot{T}=E \tag{5.7}
\end{equation*}
$$

where

$$
\begin{aligned}
& \text { C is a function of the strength of the particle } \\
& \text { interaction and of the applied field } \\
& \text { Oo is the free diffussion constant } \\
& k \text { is the scattered wave uector. }
\end{aligned}
$$

and

The values of the $C^{\prime} s$ are also listed on Table V. It is

Decay of the Fundamental Mode

When one af the write beams is blocked, the structure decays. But this decay is different from the decay in the non-interacting samples. It was found that the decay is not a single exponential. It was also observed that when one of the write beams is blocked the structure sometimes stays frozen for about 30 msec which we refer to as the "free induction time" for nucleation of the liquid phase. This type of free induction time has been observed in a computer simulation experiment by Hess (52). Immediately after this free induction decay the structure decays non-exponentialy. The data for the decay after the free induction period for three different crossing angles is fitted to equation (4.34)
 background γ is extracted from the data at large times and that the scattered electric field: E(t) given by

$$
\begin{equation*}
E(t)=\sum_{i} E x p(-t / T i) \tag{5.8}
\end{equation*}
$$

where $T i$ s are the relaxation times.

TABLE V

```
EOMPARISON DF INITIAL FORKATION TIME CONSTANT OF
    FUNDAMENTAL MODE OF INTEFACTING FARTILLES
    TO FREE RELAXATION TIME OF SAME
            NON-INTEFACTING FARTIELES
                FOR THREE DIFFERENT
                FFINGE SFACING
```

Diameter of the spheres $=0.95+0.05 \mathrm{um}$ Scattering angle of Debye-Scherrer ring $=7.7^{\circ}+0.4^{\circ}$			
Fringe Spacing in um	Total Input Power in Watts	Initial Formation Time Constant in E\&に。	$\begin{aligned} & \text { Retio } \\ & \bar{C}= \\ & (T+/ d) \end{aligned}$
1.89E-3	0.0139	0.34+0.04	$1.7+.2$
1.89 E -6	0.050	$0.27+0.04$	$1.4+.2$
$2.17 E-6$	0.027	$0.43+0.05$	1.6+.2
2.17E-6	0.037	$0.36+0.05$	$1.4+.2$
$2.63 \mathrm{E}-3$	0.025	$0.37+0.03$	$1.0+.2$

Self-diffracted 1 st order maxima, Temperature $20^{\circ} \mathrm{C}$

Figure 47t. Initisi Growth of Fundamental Mode. The Farticle Diameter is 0.95.um, the Auerage Farticle Eeparation is 2.7 um, the Fringe Eeparation $i \leq 2.63$ um, Input Fower is 0.024 Watts and a 250 Frames Average is Ferformed

Figure 47c. Decay of Fundamentel Mode. The Fiarticle Oiameter is 0. 9 兵 um, the Auerage Farticle Eeparation $i \equiv 2.7$ um, the Fringe Separatign $i \equiv 2 . E 3$ um, Infut Fguner i $i=0.024$ Watte and a 2 Sio Frames Average is Ferformed

Figure 48t. Initial Growth af Fundamental Made. The Farticle Diameter is 0.95. um, the Auerage Farticle Separation $i \equiv 2.7$ um, the Fringe Separation is 2.17 um, Input Fower is 0.025 Watts and a 250 Frames Average $i=$ Performed

Figure 4Be. Decay of Fundamental Mode. The Farticle Diameter i三 0.55 um, the Average Farticle Separation is 2.7 um, the Fringe Eeparation $i s 2.17 \mathrm{um}$, Input Fourer is 0.025 Watts and a 250 Frames Auerage is Ferformed

Figure 49b. Initial Growth of Fundamental Mode. The Farticle Diameter is 0. $\overline{\mathrm{G}} \mathrm{S}$ um, the AuErage Particle Geparation is 2.7 um, the Fringe Sefaration $i \equiv 1.89$ um, Infut P口uer is 0.039 Watts and a 250 Frames Average is Ferfarmed

Figure 49c. Decay of Fundamental Mode. The Farticle Diameter is 0.95 um, the Average Farticle Separation is 2.7 um, the Fringe Separstion is 1.89 um, Input Fower is 0.039 Watts and a 250 Frames Average is Ferformed
A plot of log V(t), which is corrected as described abowe for the coherent and the incoherent background: as a function af time is Ehown in figure 47e, 48e and 49c for three different crossing angles. We found that first relaxation time constant is smaller than secondrelaxation time constant in general. In fact, after this free induction time the structure decars rapidly to a metaliquidstate followed by a slow decay to liquid state. The value of the (1/Ti)'s are shown in Table vi along with input fower and fringe separation. Here we observed that the quasi-solid Etructure transfer to a liquid state continuously.

We have discussed in Chapter IV that the radiation pressure moved the spheres near the down stream wall resulting in an extra hydrodynamic friction which slows the diffusion process, To see the hydrodynamic effect of the wall and the strength of interaction between particles in this process, we assume that

$$
\begin{equation*}
\operatorname{Dok}^{2} T=C \tag{5.9}
\end{equation*}
$$

where $\quad C^{\prime}$ is relaxation time divided by the free diffusion time at the same k vector

Do is the free diffusian canstant
k is the scattered wave vector.
The values of the constant cis are listed in Table VI. The initial decay of the structure is faster than free diffusion even with wall effecte present. This gives an

TABLE UI

```
COMPARISON OF RELAXATION TIME CONSTANTS OF
        FUNDAMENTAL MODE OF INTERACTING PARTICLES
            TO FREE RELAXATION TIME OF SAME
                NON-INTERACTING PARTICLES
            FOR THREE DIFFERENT
            FRINGE SPACING
```

Diameter of the spheres $=0.95+0.05$ um Scattering angle af Detye-Gherrer ring $=7.9^{\circ}+0.4^{\circ}$

Fringe Spacing in um	Total Input Power in watts	Ratio of (T1/T日)	Ratio (T2/Td)
1.89E-6	0.039	$0.48+0.03$	$1.2+.2$
$1.89 \mathrm{E}-6$	0.050	$0.04+0.04$	$1.4+.2$
2.17E-6	0.027	$0.56+0.04$	$1.1+.1$
2.17E-6	0.037	$0.65+0.05$	$1.0+.2$
2.63E-6	0.025	$0.53+0.02$. $88+.2$

Self-diffracted 1 et order maxima, Temperature $20^{\circ} \mathrm{e}$
indication that the structure breaks the symmetry of solid very fast. The following decay is apfroximately two times slower than the first. This tells us that the sample is slowly getting its liquid symmetry. If the wall effect could somehow be neglected, then the structure would probably decay faster, However, this later decay is slower than the free diffusion decay and is consistent with the slow decay observed in the interacting system near the peak intensity in the structure factor (53).

Study of the Growth and Decay of the Secondary Mode

We have seen that in these experiments the applied external field treaks the liquid symmetry and the solid structure grows continuously. In the previous two sections and last two sections of Chapter IV, we studied the growth and decay of the density mode which is directly induced by the external field. Here we will study the growth and decay of the density modes which are not directly induced by the field, the modes which give a clear indication of the solid symmetry.

If the intensity potential is adiusted to be 0.87 times the auerage particle separation, then the Bragg scattering from the secondary modes appear near or just outside the Debye-Scherrer ring. This makes it very hard to interpret data for the growth and decay of this density mode. As the secondary mode starts growing the Debye-Scherrer ring Eackground diminishes. Also: in aself scattering mode tiath
the write beams are used as probe beams. When the field is turn off by means of blacking one beam, then the contribution of this beam to the seattering is also eliminated and a large decrease in the scattered intencity of secondary Bragg spots is observed. This can be interred from figure 50. Also in the growth of, the secandary mode, a small jump in the scattering intensity of the Bragg spots was observed over the background, immediately when both crossed beams are turned on. Both of these effects are due to the fact that scattering by the write beam (1) is adding coherently to the scattering by the write beam (2). This jump in intensity is less than 25\% of the maximum scattered intensity in the growth case. The particle form factor is very important analyzing these results, because the incident light wavelength is approximately equal to the radius of the sphere. Hence the scattering intensity will in general be less as the angle increases from the forward direction. Furthermore the scattered intensity of the other write beam (2) will contribute to the intensity at that point as higher order mades exist which will seatter ire this directian, as they are formed.

Each probe team produces four lowest order slaved mode diffracted spots near the Debye-Scherrer ring as a result of the induced first order made. But in the picture figure 35a; 3லa and 37a only six diffracted spots are visible instead af eight diffracted spots. However, the diffracted spots which are sitting in the middle above and below the write beam
plane are a combination or superfosition of diffracted spots from each incident beam. The observed grouth is non-exponential. The order af the formation time constant is similar to that of the fundamental modes which is listed in Table U. The growth of this mode is deperident ar the strength of the interaction and the spacing of the periodic intensity potential. The growth of this secondary density mode clearly indicates the growth of the solid from iquid continuousiy.

The decay of this indirectly induced mode seecondary density mode) is also interesting to study. When one of the write beams is blocked, then there is a sharp fall in the scattered intensity. This is due in part to the coherent mixing of the two write beams which changes when one of the write beams is eliminated. This contribution is less than 25/, of the total intensity tased on the jump in the intensity seen when both beams are turned on. If we subtract this number from data though; we still see arapid decay followed by a slow decay. This rapid decay is so fast that it happens within Eig msec. This faster decay ean not be interpreted through this data. This is because the write beam (2) is chopped by a tilade connected to a mator. The revolution of the motor was one revolution per second. Tte width \quad af the laser beam is 1.25 mm . Hence there is finite time to choped the beam completely. The chopping of this beam sends a triggering signal to the computer. The time it takes to chopped the beam completely is about su msec. Hence

DISCUSSION, CONCLUSIONS AND SUGGESTIONS FOR FUTIIRE WORK

Discussion and Conclusions

The statistical behavior of dilute colloidal non-interacting and interacting samples are studied in the presence of two crossed laser beams. It was observed that if transparent dielectric spheres with a dielectric constant larger than the dielctric constant of the surrounding medium are subjected to a focused laser light, these spheres are moved into the high intensity regions and pushed to the down stream wall due to radiation pressure. However, when two laser beams are crossed in a non-interacting sample af this type which produces a fringe pattern, the particles are moved into the high intensity region and create periodig density modes. This in fact formed a diffraction grating which scattered light.

These density modes can tue probed by self-scattered, by degenerate or by non-degenerate four wave mixing methods. As the intensity of the two crossed beams increased, the force gradient on the particles increased which localized the spheres strongly in the high intensity regions: It was observed that if the thermal energy (KT) is larger than the
effective potential energy then the first order diffracted intensity from these density modes follows cutic dependence for self-scattering or non-degenerate four wave mixing. On the other hand, if the thermal energy is less than the effective potential energy of the spheres, the diffracted intensity from these density modes deviates from cubic deperidence. A theoritical model had been developed by us which agrees with the experiment. In that model, we observed that higher order modes follow higher power dependence wheri thermal energy is less than the effectiue potential erergy on the spheres and saturates if the effective potential energy on the spheres increases.

The growth and decay of the density modes has also been studied. D. Rogovan and co-workers 〈31) suggested in their model that higher order density modes will grow slowly. This was also observed. The growth of these density modes depends on the effective potential energy ori the spheres. It was observed that the growth time is larger than the relaxation time when thermal energy is larger than the effective potential energy of the spheres and is smaller than relaxation time when effective potential energy of the spheres is larger than the thermal energy.

The diffusion of particles alongasingle toundary is different from tras tifusion of the same particles without boundary. Due to the radiation pressure, the spheres move to the down stresm wall and as the intensity of the crossed teams increases, the radiatian pressure an the spheres
increases which decreases the thirkness of the boundary layer. When one gif the crossed beams is blocked then these density modes decay. The decay is a single exponent but the diffusion constant is different from the diffusion of same spheres without boundary. In this case, the boundary layer undergoes a very tigh strain. This creates an extra drag force on the spheres. As the thickness of the boundary layer decreases, then a higher shear stress is needed in order to have the same strain. This has been observed when the diffusion of 2.02 um diameter spheres was found ta be even slower than 1 um diameter spheres. This diffusion process is indeperident of thickness of the gap between the cell wall. Since the radiation pressure on the 1 ess than .5 um diameter spheres is less, the effect of boundary is very small, and the diffusion constant obtained by this method is in approximate agreement with value of the diffusion constant without boundary.

When these highly charged dielectric spheres are kefit in a highly deionized aqueous environment, they exhibit a interparticle ordering over a distance considerably larger than the diameter of the spheres due to the coulombic interactions. The local ordering of these interacting particles has been observed by crossed correlation intensity fluctuation (CEIFS) methods (2,3,4). This coulombic interacting potential is spherically symmetric. However, if the sample is subjected to a one dimensional feriadic potential produced by crossing two laser beams (CBT) in the
sample, the spherical symmetry of the amorphous liquid like order breaks and exhibits two dimensional periodicity. In Chapter II, it was shown that when the thermal energy of the particles is larger than the effective potential energy of the particles then mathematically CBT and CCIFS are related to each other (35). It was observed that the two experiments are in agreement where CCIFS minitors the statistical local ordering and CBT monitor the induced long range ordering. It was also found that when the fringe separation is equal to the square root of half of the square of the average particle separation, then they form a two dimensional square lattice with its principle axis along the secondary registration direction. On the other hand, when the fringe separation is . Boba (average particle separation) then they form a hexagonal close pack structure. In between these separations they exhibit a destorted hexagonal structure.

The diffracted intensity from these Eragg's spots was studied, and it was found that the diffracted intensity from the fundamental registration follows a cutic power dependence of the input power and the diffracted intensity from the secondary registration follows a three-halues power dependence of input power for thermal energy less than effective patential energy for self-diffraction method. It was found in the Landau free energy minimization theory that the fundamental modes can grow continuously for a continuous increase of input power and secondary modes grow continuously from certain threshold values (6).

Experimentally we found that the secondary modes grow continuously for a contimuous increase in input power. The liquid symmetry of the sample breaks continuously when the sample is subjected in a periodic intensity potential.

The growth and decay of the fundamental modes and secondary modes has also been studied. It was found that when the fringe separation is 0.867 times the average particle separation, the furdamental modes grow faster than when the fringe separation is less than that for the same input power. This is due to the presence of interaction potential of the spheres. It was also observed that fundamental modes grow faster than secondary modes.

When one of the write beams is blocked the structure decays. The decay of the fundamental mode is not a single exponential and this structure stays in its metastable state for few moments which is termed the "free induction decay". This "free induction decay" is followed by a faster and then a slower decay process. Experimentally, it was found that initial decay of the fundamental mode is even faster than the decay of non-interacting particles for same scattering angle. The initial decay of the secondary modes was even faster than the decay of the fundamental modes. Since we are limited by the apparatus, the detail of the decay process of the secondary modes is not possitle at this time.

Finally we found that CBT is a very powerful tool which can be used in both solids and liquids to monitor the structure. This method allows us to study the diffusion of
microspheres near a single boundary; it even allows different thirkness of the boundary layer to be studied. we found quantitative agreement between CBT and CCIFS in monitoring the structure.

Suggestians for Future work
So far we have collected a drop of water out of an ocean in this experiment. The mathematical model we developed agrees excellently with our experiment for non-interacting particles. We have also observed that while the Landau theory does explain our data qualitatively, it does not explain the cantinuous growth of the structure quantitatively. The growth of density modes has been explained by us and by D. Rogovin and his co-workers; and works excellently for non-interacting case when there is no boundary or the effect of the boundary is very small. In the case of the interacting samples, there is not a single mathematical model to explain this growth and decay. Gn the basis of the observation we made for this thesis, the fallowing future suggestions are made as fallows:

1. The growth and decay of the density modes near a single boundary needs to be studied in further detail in order to get a relation between thickness of the boundary layer and applied force on the paticles. This needs very fine measurements of the force acting on the spheres. A mathematical model meeds to be developed in order to explain the results.
2. The behavior of the higher order density mades which are not excited directly, needs to be studied as a function input power and strength of interaction for an interacting sample. A theoretical model has to be developed to explain quantitatively the higher order density modes.
3. The growth and decay of the fundamental density modes needs to be studied further as a function of input power and quantitatively anslyzed as a function of the strength of the interactions.
4. The growth and decay of the secondary and higher order density modes needs to be studied further for faster sampling rate. A theoretical model is needed in order to explain these growths and decays.
5. So far we have studied the spherical symmetry of the liquid which can be broken by applying an external periodic potential. In this case, the strength of the interaction potential is not known accurately. The interaction potential can be generated in the sample externally in a controlled way for example by applying a magnetic field to the colloidal particles imbeded in a ferro fluid. This will allow further studies of laser freezing.
6. All of these studies can also be performed in a three dimensional sample.

In order to understand the statistical behavior of microsize particles these are the minimum studies necessary.

A SELECTED EIELIGGRAFHY

1. F.W. Smith, A.Ashkin and W.J.Tomlinson, Optics Letters, Vol. 6, No. $6, ~ p 284,(1581)$.
2. N.A.Clark, B.J.Ackerson and A.J.Hurd, Phys. Rev. Letts. Vol.50, No.19, p1459 (1563).
3. B.J.Ackerson and N.A.Clark, Faraday Discuss Chem. Soc. Vol.7E, p219 (1983).
4. B.J.Ackerson, T.W.Tayler and N.A.Elark, Phys. Rev. A, Vol.31, No.5, p3183 (1985).
5. A.J.Hurd. Ph.D. Thesis, Lniversity of Colorada, Boulder.
6. A.Chowdhury, B.J.Ackerson and N.A.Clark. Fhys. Rev. Letts, Vol.55, No.8, p833 (1985).
7. D.Ronis, Fhys. Rev. Letts. Val.52, p473 (1984).
8. Milton Kerker: The Scattering of Light and other Electromagnetic Radiation, Milton Kerker, Academic Press, New York and London.
9. W.A.Farone and M.J.Robinson III. Appl. Gpts. Vol. 7 , No.4: p643 (1968).
10. Light Scattering Ey Small Sphere. H.C.Van De Hulst. John Willy and Sons. Inc. New York.
11. R.O.Gumprecht and E.M.Sliepervich. J. Phys. Chem. Vol.57, p90 (1953).
12. Tables of Scattering Functions of Spherical Farticles. National Bureau of Standards Applied Mathematics. Series-4, U.S.A. Governmerit Frinting Dfitice. Washington D.C. (1748).
13. W.J.Pengonis, W. Heller and A.Jacobson. Table of Light Scattering Functions for Spherical Particles. Wayne State University Fress, Detrait, ©1957).
14. H.2.Cummins and E.R.Pike. Photon Correlation Spectroscopy and Velocitmetry, Flenum Fress, New York and London.
15. M.A. Omar. Elementry Solid State Physice, Addison-wesley Publishing Company, Massachusetts, USA.
16. J.M.Robtins. M.S. Thesis, Okalhoma State University, Stillwater, Okalhoma.
17. B.Crosignani, F.Di Fnoto and M. Bertolotli. Statistical Properties of Scattered Light, Academic Press, New York, (1975).
18. B.J.Ackerson. J.Chem. Phys. Vol.64, p242 (1976).
19. B.J.Ackerson, F.N.Pusey and R.J.A.Tough. J. Chem. Phys. Vol.76, No.3, 1279 (1982).
20. D. Chatenay, W. Urbach, A.M.Cazabat and D.Lengevin. Phys. Rev. Letts. Vol.54, No. 20, p2253 (1985).
21. R.Fecora, Dynamic Light Scattering, Flenum Fress. New York, SBA.
22. G.K.Batchelor. J. Fluid Mech. Vol.52, F245(1972) and Vol.74, pll (1976).
23. F.H.Stillinger and T.A.Weber. Fhys. Rev. A. Vol. 25, No.2, p978 (1932).
24. R.L.Abrams and R.C.Lind. Optics Letters. Vol. 2, No. 4, p94(1978).
25. I.C.Khoo, Phys. Rev. A. Vol.25, No. 2, pl040 (1982).
26. H.Eichler, G.Salje and H.Stahl. J. Appl. Phys. Vol. 44, No.12, p5363 (1973).
27. D.W.Pohl, S.E.Schwarz and U.Irniger. Phys. Rev. Letts. Vol.31, No.1, p32 (1973).
28. A.M.Ghazzawi, J.K.Tyminski and R.E.Powell. Phys. Rev. B. Vol.30, No.12, p7182 (1984).
29. J.D.Jackson. Elassical Electromagnetics. 2nd Edition, John willy and Sons. Inc. New York.
30. J.P.Gordon. Phys. Rev. A. Vol.8, No.1, p14 (1973).
31. A.Ashkin. Fhys. Rev. Letts. Vol. $24, N 0.4, ~ p 156$ (1970).
32. A.Ashkin. Science. Vol.210, No.4474, p1081 (1980).
33. A.Ashkin and J.M.Dziedzie. Appl. Phys. Letts. Vol.19, No. B, p283, (1971).
34. A.Ashkin snd J.M.Dziedzie. Appl. Phys. Letts. Vol. 24,

No.12, p586 (1974).
35. B.J.Ackerson and A.H. Chowdhury. Cross-Correlation Intensity Fluctuation Spectroscopy and Laser Trapping Studies of Colloidal Suspensions. Presented in the meeting on Statistical Mechanics, Gaxtapec, Mexico, Jan(s-B), (1986).
36. B.Jancouivi. Phys. Rev. Letts. Vol.19, No.1, p20 (1967).
37. N.D.Mermin, Phys.Rev. Vol.176, No.1, p250 (1968).
38. Per Bak and D.Mukaml. Phys. Rev. B. Vol.19, No. 3, p1604 (1985).
39. J.Villain. Phys. Rev. Letts. Vol.41, No.1, p36 (1978).
40. Per Bak. Rep. Prog. Fhys. Vol. 45, p587 (1982).
41. J.R.Moody and R.M.Lindstrom. Anal. Chem. Vol.45, p2264 (1977).
42. D.Rogovin and S.Q.Sare. Fhys. Rev. A. Vol.31, No. 4 , p2375 (1985).
43. D.Rogovin and P. McGrath. Phys. Rev. Letts. Vol. 54, No.20, p2222 (1985).
44. D.Rogovin, R.McGrath and P.Yeh. Phys. Rev. Letts. Vol.55, No.26, 22864 (1985).
45. J.A.Wesson, H.Teakezoe, H.Yu and S.F.Chen. J. Appl. Phys. Vol.53, No.10, 0.6513 (1982).
46. H. Hervet, W. Urbach and F.Rondelez. J. Chem. Phys. Vol. 68, No. $6, ~ p 2725$ (1978).
47. H.Eichler, G.Salje and H.Stahl. J. Appl. Phys. Vol. 44, p5383 (1973).
48. D.W.Fohl, S.E.Schwarz and U.Irniger. Phys. Reu. Letts. Vol. 31, No. 32, 332 (1973).
49. J. Happel and H. Brenner. Low Reynolds Number Hydrodynamics. Prentice-Hall Inc. Englewood Cliffs, N.J.
50. P.Vasseur and R.G.Cox. Fluid Mechs. Vol.80, Part. 3 , p561 (1977).
51. S.Alexander and J.McTague. Phys. Rev. Letts. Vol. 41, No.10, p702 (1978).
52. Decay of BCC-Structure and of Bond-Drientational

Order in a Fluid. by S. Hese
Institut Max von Laue - Faul Langevin Auenue des Martyrs - 156×-58042 Grengole Cedex - Framue.

SE. P. G. deGennes. Physirs, Val. З, ps7 ©1Fs7).

APPENDIXES

AFFENDIX A

We have geen that when two laser beams are croseed in an interacting Ealloidal sample, then the liquid symmetry at the Eample $i s$ broken. The sample undergoes a phase ohange from liquid to solid Erystelline phese. This. Eolid crystalline structure will scatter light. This diffraction Fattern of the Eragg a spots has been captured in a photographic flim. The scattering argle of these Bragg's spots were then measured by calculating the distance from the screen to the sample cell and the Eragg's spots.

The sample is sandwiched tuetween two quartz plates and the refractive index of the scattering medium is different from the cell wall and enviromment. On the other hand, the two beams are incident at an arigle to the cell wall. Therefore, the angles we meseured from the photegraphic fiom are not the exact scattering angle coming from the cell. The fall quing mathematiEs will correct the measured sesttering angle. It $i s h$ helpful to consider the ray diagram given in figure (51).

Let us assume that 2θ is the argesing angle of the two beams, then g is the angle of incionce on the cell wall messured from a normal to the wall and lis the distance from the screen to the cell. Let F be any Bragges spot on the Ecreen and making an angle of with the normal, as Ethown

Figure El. Scattering Geometry.
in figure 《Si）．Using 1 aw＇s of refraction we get
and

$$
\begin{equation*}
\Pi_{a} s i n_{N}\left(\varphi_{N}\right)=\Gamma_{g} s i \Pi_{1}\left(\varphi_{N_{g}}\right) \tag{A.1}
\end{equation*}
$$

$$
\begin{equation*}
\pi_{g} \equiv i n\left(\sigma_{N_{g}}\right)=n_{w} \equiv i n\left(\sigma_{N_{w}}\right) \tag{A,2}
\end{equation*}
$$

where Π_{a}, Π_{g} ：and Π_{w} ，are the refractive index af the air， the quartz arid the 三ample，respectively．The angle o ${ }_{N}$＂${ }_{\mathrm{Ng}} \mathrm{N}_{\mathrm{g}}$ ： and of are the scattering angle of the Eame Eragge spots in the air，the quartz and the Eample，respectively．In practice the thickness of the quarta wall．q．ismuch smaller than the distance from the screen to the cell wall． Herice from the figure 〔51〉 we
and

$$
\begin{equation*}
\left.\left.\equiv i \Pi_{\left(\sigma_{w}\right.}\right)=\left(\Pi_{a} / \Pi_{w}\right) \equiv i \Pi_{N}\right\rangle \tag{A,3}
\end{equation*}
$$

where A is the distance from the center position af the Erosest beams to the Eragg spot．Let us assume that γ is the actual scattering angle and a and bare the distance from the geattering volume to the main scattering beam and point Prespectively．Using the 1 aw＇s of triangle we get

$$
\begin{align*}
& a^{2}+t^{2}-2 a t \cos (\gamma)=R^{2} \tag{A,E}\\
& a=r \angle\left[\sin \left(g_{w}\right)\right] \\
& t=A \angle\left[\equiv i n_{1}\left(\sigma_{N_{w}}\right)\right] \tag{A.7}
\end{align*}
$$

arid
where R is the distance from one of the write bueme to the

Eragg spot on the screen, r is the distance from the main beam to the center of the two croseed beams, θ is the half af the crossing angle in medium and $\mathscr{o}_{N_{w}}$ is the angle between Bragg spot and center of the main beam. Finally putting everything together in terms of physically measurable quantities we have

$$
\begin{aligned}
& \cos (y)=(1 / 2)\left[\left(\theta \operatorname{Ain}\left(\theta_{w}\right)\right\rangle /\left(r \sin \left(\theta_{N_{w}}\right)\right\rangle+\right. \\
& \left\langle\left(r \sin \left(\theta_{N_{w}}\right)\right) /\left(A \sin \left(\theta_{1 w}\right)\right)-E\left(R^{2} \leq i n\left(\theta_{1 w}\right)\right.\right. \\
& \left.\sin \left(\varnothing_{N_{W}}\right)\right\rangle(A \text { r)) }] \text {. (A.B) }
\end{aligned}
$$

The physically messurable quantities are R, r: A: L; Gw and $\varnothing_{N_{w}}$ can be othtained from measurement and equation (A.4).

APPENDIX B

The size af the focused area iscalculated by aseuming that the diameter of the incident beam hes a circular aperture. The expression for the optical disturbarice at point F Ehoun in figure s.s., arising from the circular

$$
\begin{align*}
& \int_{\text {aperture }}^{\text {Eexp } i k G Y+z z j / R S d s} \tag{E.1}
\end{align*}
$$

where $E_{A} i s t$ the amplitude of the electric field.

From the symmetry af the protilem, spherical palar coordinates Gan be used for both cases and the equation (B.1) becomes

$$
\begin{align*}
& E=E_{A}[\{e x p i(w t-k R) \geqslant R] \\
& \int_{0}^{2 \pi} \int_{0}^{a} \exp \left(i(k q P) \cos \left(\theta^{\prime}-\sigma\right) p d p d \theta\right. \tag{B.2}
\end{align*}
$$

Bersueg of the complete axial Eymmetry, the solution
 carrying out the integral we get

$$
E=E_{A}[\text { [Exp icut - kR) } \mathcal{R}] \quad 2 \pi
$$

Figure 52. Circular Aperture Geometry.

$$
\int_{0}^{a} J_{0}(k q \beta / R) p d F
$$

(EM)
where Jo (kqp/R) is the goth order Bessel function.

> Finally we get

$$
\left.E=E_{A}[\operatorname{cexp} i(\omega t-k R)\rangle R\right] z ת a(r / k q \Delta)
$$

$$
\begin{equation*}
J_{1}(k q \exists / R) \tag{E,4}
\end{equation*}
$$

where $J_{1}(k q a / R)$ is the 1 st order Bessel function.

The irradiance, I (intensity), at point P is $\left\langle(R e E)^{2}\right\rangle$ or ($1 / 2$) ($\bar{E}^{*} \bar{E}$) which is

$$
\begin{equation*}
I=\left[\left(2 E_{A}^{2} A\right\rangle / R^{2}\right]\left[\left\{I_{1}(k q a / R)\right\rangle /(k q a / R)\right]^{2} \tag{E.5}
\end{equation*}
$$

where

$$
\text { A is the ares of the aperture }\left\langle=\pi a^{2}\right. \text {. }
$$

Because of the axial symmetry, the towering central maximum corresponds to a high intensity circular spot known as the Airy disk. First order zero occurs

$$
J_{1}(k q a / R)=0
$$

when

$$
K q 3 / R=3.89
$$

(EDE)
and for lens with focsl length, f is given by

$$
\mathrm{q}=1.22\langle\lambda+\% / \mathrm{D}
$$

where
$0=2 a i s t h e d i a m e t e r$ of the aperture
λ is the wavelerigth
and $f=R$.

APPENDIX C

```
    10 REM THIS IS THE MASTER PROGR
    AM FOR AII3.A/D COMNERTER
    20 REM IT WILL COLLECT DATA AT
    GIUEN TIME INTERUAL FOR
    30 REM FALLING EDGE OF THE TRIG
    GERING
    31 REM
    40 LOMEM: 16384
    50 HIMEM: 36864
    55 PRINT CHR$ (4)"BLOAD GETAII3
    .DELAY"
    60 D$ = CHR$ (4)
    70 G% = CHR& (s)
    75 DIM A%(1,1024)
    80 REM
    81 REM THIS INTEGER ARRAY IS FO
    R CHANNEL AND DATA
    82 REM THE DATAS COME IN INTEGE
    R FORM
    83 REM
    90 DIM B(512),T(512)
    9 1 \text { REM}
    100 REM THESE ARE DONE TO CONUE
    RT NUMBER TO VOLTAGE
    110 REM FOR CERTAIN GAIN CODE
    111 REM
    120 DIM S(7):S(0) = 5/ 4096:S(1
    )=S(0)/5:S(2)=S(0)/1
    0:S(3)=S(0)/ 50: FOR I =
    4 TO 7:S(I) = S(1 - 4) + S(1
    - 4): NEXT I
    130 DIM O(7):O(4)= - 5:0(5) =
    -1:S(6) = - .5:S(7) = -
    .1
    140 PEM
    150 REM THIS FLAGS ARE FOR SOFT
    LIARE TRIGGERING
    160 REM
    200 FLAG = 1
    210 FLAG1 = 0
    220 N1 = 0
    230 L1 = 0
    235 k = 0
    240 REM
    250 HOME
    260 PRINT
    270 PRINT " GETAl13.DELAY IS A A
    SSEMELY LANGUAGE"
    280 PRINT " ROUTINE WHICH MAKES
    A SERIES OF Al13"
- 290 PRINT " READINGS EACH TIME 1
```

```
T is Called."
300 PRINT : PRINT " THE LIST OF
READINGS IS PUT IN A"
310 PRINT = BASIC ARRAY, GETAII3
    15 CALLED,"
320 PRINT " AND THE RESULTS ARE
RETURNED IN THE"
330 PRINT " SAME BASIC ARRAY."
340 PRINT
350 PRINT " OLD OR NEW (ONN) "
360 GET AS
370 IF A$ = "O" THEN 5000
380 IF AS = "N" THEN 1000
9 9 7 ~ R E M
998 REM GETAII3 IS IN SLOT * 5
9 9 9 ~ R E M
1000 A%(0,0)=5:A(1,0)=0
1010 TEXT
1020 INPUT - NLMBER OF RUN N = *
;N
1030 N1 = N1 + N
1040 IF FLAG1 > O THEN 2000
1050 INPUT " CHANNEL? (0-15 OR R
ETURN) "; CHANE
1060 CHAN = VAL (CHAN$): IF CHAN
* = "" THEN 5000
1070 PRINT
1075 PRINT " GAIN C
    O D E"
1080 PRINT * 0 = 0 TO 5U 4
    = -5 TO +5U"
1090 PRINT " 1 = 0 TO 1U 5
    = -1 TO +1U"
1100 PRINT * 2 = 0 T0.5V 6
    = -.5 TO +.5Un
1:10 PRINT * 3 = 0 TO.IU 7
    =-.1 TO +.1U
1120 PFINT
1130 R.EM
1140 REM THESE ARE THE GAIN COD
E
1150 REM
1160 INPUT " ENTER GAIN CODE = "
GGIN
1170 INPUT - ENTER TRIGGERING CH
ANNEL NUMBER = ";C
1180 INPUT " EUEN H OF DATA POIN
T (0 - 1024) = ":D2
1190 INPUT " ENTER DELAY (1 TO 2
55) ";D
1198 REM
1199 REM DELAY = 162 + (7*SUM O
```

```
1540 11 = (2 * 1) - 1
550 IF A%(1,11) < 3500 AND A%(1
11 + 1) > 3500 THEN 1570
1560 GOTO 1530
1570 SP = 1:EP = SP + 500
1580 P = 500
1590 FOR J = 1 TO P
1600 P1 = SP + J
1610 B(J)= B(J) + A%(1,P1)
1620 NEXT J
1630 PRINT "RUN NUMBER = ";K
1640 L! = L1 + 1
1650 1F L1 = 10 OR K = N1 THEN\ 1
670
1660 GOTO 2000
1670 HGR : HCOLOR= 3: SCALE= 1: HPLOT
0,0 TO 0,157: HPLOT 0,157 TO
279,157
1680 21 = 1
1690 22=21 + 1
1700 X1 = 21: X2 = 22:23= (2 * 21
) - 1:24=(2*21)+1:25=
2*21:26=(2*21)+2
1710 Y1 = 155- INT (B(23) / (26
.5*K)):Y2 = 155 - INT (BC
25) / (26.5 * K)):Y3 = 155-
    INT (B(24) / (26.5 * K)):Y4
    = 155-INT (B(26)/(26.5
    * K))
1720 SCALE= 1
1730 HPLOT X1,Y1 TO X2,Y3
1740 HPLOT X1,Y2 TO X2,Y4
1750 1 = 1 + 1
1760 21 = 21 + 1
1770 1F (21 + 3) < Y THEN 1690
1780 PRINT " RUN NUMBER = ";K
1790 L1 = 0
1800 FLAG1 = FLAG1 + 1
2000 IF K < N1 THEN :410
2010 INPUT " DO U WANT TO RUHN IT
    (Y/N) ";A*
2020 IF A$ = "Y" THEN 1020
2030 INPUT " WANT TO SAUE IT (Y/
N) ";As
2040 JF A% = "N" THEN 200
2050 FOR J = 1 TO 500
2060T(J)=(J-1) * DI
2070 G% = A%(0,J) / 16:C% = A%(0,
```

```
F NUMBER UPTO D)
1200 REM
1210 S1 = 0
1220 FOR I = 1 TO DiS1 = S1 + 1:
NEXT 1
1230 D1 = 162 + (7 S1)
1240 A%(1,0)= - D2
1250 M = D2 / 2
1260 FOR I = 1 TO M
1270 11 = (2* 1) - 1:12=2*1
1280 A%(0,11) = C:A%(0,12)= CHAN
+ 16 * GAIN
1290 A%(1,11)=0,A%(0,12)=0
1300 NEXT I
1310 REM
1320 REM LOADIND A%(0,I) WITH T
HE ADDRESS OF CHANNEL NLMBER
    AND GAIN
1330 REM LOADING A%(1,1) WITH Z
ERO FOR DATA COLLECTION
1340 REM
1350 REM FOR TRIGGERING THE CIR
CUIT THIS PORTION OF THE BAS
IC PROGRAM IS
1360 REM RESPONSIBLE WHERE THE
ADDRESS OF AII3 IN A%(0,0) L
OCATION
1370 REM
1380 Al13 = - 16256 + A%(0,0) *
1 6
1390 GOTO 1410
1400 FLAG = 0
1410 POKE Al13,C
1420 RESULT = PEEK (Al13 + 1) *
256 + PEEK (AI13)
1430 IF RESULT > 3900 THEN 1400
1440 IF FLAG = 1 THEN 1410
1450 K = K + 1
1460 REM
1470 REM REDAY to takE data in
SOME TIME INTERUAL SPECIFY E
Y D.
1480 REM
1490 FOKE 25,D
1500 POKE 8,1: CALL 36864
1510 FLAG = 1
1520 1 = 0
1530 1 = 1 + 1
```

```
J) - (G% * 16)
2080 B(J) = INT ((B(J) * S(G%) +
0(G%)) * 100000) / 100
2090 B(J) = INT (B(J)/K)
2100 NEXT J
21:0 M = 2 * P
2200 INPUT " NAME OF THE FILE ";
F
2210 INPUT " PLACE THE DISK INTO
    THE DRIVE AND HIT RETURN";G
$
2220 PRINT D$"OPEN"F$
2230 PRINT D*"WRITE"F%
2240 PRINT M
2250 FOR I = 1 TO P
2260 PRINT T(I)
2270 PRINT B(I)
2 2 8 0 ~ N E X T ~ I ~
2290 PRINT D$"CLOSE"F$
2300 GOTO 6000
5000 INPUT " NAME OF THE FILE =
";F$
5010 PRINT D$"NOMON C,I,O"
5020 PRINT
5030 PRINT D$"OPEN*F$
5040 PRINT D$"READ"F$
S050 INPUT I
5055 DIM A*(1)
5060 FOR J = 1 TO I
5070 INPUT A$(J): NEXT J
5080 PRINT D$*CLOSE"F$
5090 PRINT D$"MON C,I,O"
5100 - WANT A HARD COPY (Y/N) ";A
$
5110 IF A& = "N" THEN 5490
5120 PRINT D$;"PRH1"
5130 PRINT " TIME <IN MICROSECON
D) DATA (IN VOLTS):
5140 FOR J = 1 TO I
5150 J1 = (2*J)-1:J2=2* J
5160 PRINT VAL (A$(J1)); TABC 3
0); VAL (A$(J2))
5170 NEXT J
5180 PRINT D&;"PRWO"
5490 GOTO 200
5500 IF PEEK ( - 16384) > 127 THEN
    POKE - 16368,0: GOTO 5900
555O GOTO 1500
5900 GOTO 1280
6 0 0 0 ~ E N D ~
```


APPENDIX D

APPENDIX E

0000:	2				
c000:	3	- INTERACTIVE STRUCTURES INC			
0000:	4	DAT DEC 'BO			
0000:	5	\%			
0000:	6	Ali3 T0 AFPLESOFT ARRAY			
0000:	7	1			
cron:	9				
0000:	10	; VARIABLE DEFINITICNS			
couo:	11	1			
cobis:	12	DEV	EQU	\$C0日	DEVICE SELECT LOCATION
006E:	13	AARY	EQU	\$6B	AFPLESDFT ARRAY POINTER
006D:	14	Aarye	EQU	\$60	AFPLESOFT ARFAY END
0006:	15	PTR	EQU	6	
0008:	16	ARYPTR	EQU	8	
003C:	17	OLDCH	EOU	\$5C	LAST CHANMEL/GAIN USED
003D:	18	DELAY	EOU	*3D	DELAY COUNTER
0006:	19	DLYYAL	EOU	6	FOF AEOUT 45 MS DELAY
COF7:	20	STASUR	EOU	\$F9	'STA DEV+SLOT ${ }^{\text {P }} 16$ '

9070181		114		LDA	(ARYPTR), Y	
9072:85	07	115		STA	PTR+1	
9074: Cg		116		INY		
9075: B1	08	117		LDA	(ARYPTR), Y	
9077183	06	118		STA	PTR	
9079:A9	00	119		LDA	\#0	INITIALIZE OLD CHANNEL/GAIN
9078185	3C	120		STA	OLDCH	
907 DB		121	GETLDOP	EQU	+	
9070: 18		122		CLC		
907E: A9	04	123		LDA	\% 4	PQint to next element
9080165	08	124		ADC	ARYPTR	
9082:85	08	125		STA	ARYPTR	
9084: A9	0	126		LDA	W0	
9086: 65	09	127		ADC	ARYPTR+1	
908日: 85	09	129		STA	ARYPTR+1	
908A: A9	06	129		LDA	delay	
908C: 85	3D	130		STA		
90BE: 0	01	131		LDY	\#O GET HI-DRDER BYTE	
9090181	08	1.32		LDA	(ARYPTR), Y TO SEE IF SKIPPING	
9092: 30	29	133		B4I	SKIPTHIS	
90948 CB		134		INY	NON FOR LO-ORDER BYTE	
909581	08	135		LDA	(ARYPTR), Y	
7097: 20	F9 00	136		JSR	STASUB SETUP ADDRESS/GAIN	
909A: 48		137		PHA		
9098: CS	3C	138		CMP	OLDCH SEE IF SAME AS defore	
9090: F0	08	139		EEQ	SKPDLY YES, DON"T HAVE TO DELAY	
909F: 29	02	140		AND	W2 SEE IF HI-GAIN SETTINGS	
90A1: FO	04	141		EED	SkPDLY NO, LO-GAIN (FASTER)	
90A3: C6	30	142	WAITLP	DEC	DELAY NOW TWIDDLE OUR THUMES	
9045: 00	FC	14.3		BNE	WAITLP	
90A7: 68		144	SKPDLY	PLA	RESTORE CHANNEL/EAINOLDCH UPDATE OLD	
90AB: 85	3 C	145		STA		
90AA: 20	F9 00	146		J5R	STASUB TAKES CARE OF OP-AMP SPROING	
90AD: 48		147		PHA		
FOAE: 68		148		PLA		
90AF:C8		149		INY		
90BO: 80	81 C0	150		LDA	DEV $+1, \mathrm{X}$ THIS COMES OUT FIRST	
9083: 29	OF	151		AND	WFF AND OFF FLAGS	
9085:91	08	152		STA	(ARYPTR), Y SAVE HI-ORDER	
90B7: C8		153		INY		
90883 CD	80 CO	154		LDA	DEV, X	
908B291	08	155		STA	(ARYPTR), Y AND LO-ORDER	
90BD:		156	SK.IPTHIS	5 EQU		- ElEments counter
90RD: E6	06	157		INC	PTR	
90BF: DO	BC	158		BNE	GETLOAP	
90С1:E6	07	159		INC	PTR+1	
9003:00	日6	160		BNE	GETLDOP	
90C58 60		161		RTS		

[^0]\[

$$
\begin{gathered}
\hat{\imath} \\
\text { VITA } \\
\text { Aslam Habib Choudhury } \\
\text { Candidate for the Degree of } \\
\text { Doctor of Philosophy }
\end{gathered}
$$
\]

Thesi $: ~ L A B E F$ INDUCEO FREEZING

Major Field：Physics

Eiographical：
Fersonal Data：Eorri in Serajganj，Eangladesh，Derember 22，1956：the son of Mr．Abul Hossain Chowdhury and Mrs．Gara Hossair Ehowdhury．Married to Isret J．Chowdhury on Fetruary 7：1980．

Education：Received Gecandary Gchagl Gertificate from Uictoria High School，Serajganj，Bangladesh，in 1971；received Higher Secandary Eertificate from Dacca College，Dhaka，Bangladesh，in 1973； received Eachelor af Science Degree iri Fhysics from Dacea Univereity，Dhaka，Eangladesh，in 1F7s： received Master gf Gcience Degree in Fhysics from Dacca university，Dhaka，Bangladesh，in 197\％；「eseived Maeter gf Saience Degree in Fhrsice from Marquette University，Miluaukee，wiscarisir，in Déember：158z；completed requiremerits far the Doctor of Philosophy degree at Oklahoms State University in DeEember，1sङ心．

Frofessignal Experience：Research Fellow，Department af Fhysies，Decea Uniuersity，from February， 19 Ga ta April，19Gu；Lecturer，Department of Physies， Daces Univereity，from May；1ヶE0 to August，1FG0； Teaching Aseistant，Fhrsics Department，Marquette University，from AuguEt，19B0 to May，1F日z； Teaching and Research Assistant，Department af Fhysics，GKlahoma state Univereity，from August， 1982 to present．

[^0]: Interartive Struatures, Inc. F. O. Bex 404 Eala Gynwyd, Fennsyluania

