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Abstract 

Traditional transportation policies unfairly affect marginalized travelers and under-represented 

groups, limiting their access to social and economic opportunities and contributing to 

residential segregation. Even though there is growing acknowledgement among policymakers 

and planners about the need for fair and inclusive transport systems covering all modes, the 

empirical literature remains inconclusive and lacks sufficient intellectual tools, data sources, 

and standards to incorporate a system-level perspective and assess the diversity, equity, 

inclusion, and accessibility (DEIA) indicators for multi-modal transportation systems. Existing 

approaches rely on time-consuming, labor-intensive, expensive surveys that lack real-time 

capabilities. In contrast, this research utilizes alternative data sources such as large-scale, open-

source social media and street network data to identify latent DEIA indicators for transportation 

systems using network science theories and advanced data-driven methods. 

First, road network data from sources like OpenStreetMap or Google Maps offer a promising 

avenue to measure the accessibility of social opportunities for marginalized populations, such 

as bicycle users and transit dependents. This research aims to establish indicators of bike 

accessibility by utilizing open-source street network data from OpenStreetMap and extracting 

the bicycle network of 40 cities in the United States. Various macro network parameters (e.g., 

density, diameter, average path length, circuity, average degree) were calculated for the cities, 

along with demographic parameters obtained from the American Community Survey 2020 data 

(e.g., population size, per capita income, percentage of bike users). Statistical regression 

analysis revealed a significant relationship between accessibility score and certain network and 

demographic parameters. The regression model can assist planners in identifying the 

accessibility of the bike network in any given area using network data. The study also presents 

a systematic intervention method that utilizes the betweenness centrality measure to increase 

the accessibility of an existing network, with lower centrality nodes found to be more critical 

for interventions aimed at improving accessibility. 

Next, social media data presents a cost-effective and real-time alternative for capturing public 

opinion on transportation issues, which can serve as an indicator of a transportation system's 

DEIA. The study leveraged approximately three months' worth of Twitter data (around 1.46 

million tweets) from the state of New York to identify key transportation-related DEIA issues 

discussed by users. Natural language processing techniques were employed to extract 

transportation DEIA-relevant conversations, followed by the use of a Bidirectional Encoder 

Representations from Transformers (BERT) model for tweet classification. Socio-

demographic information of users was detected using Random Forest machine learning 

algorithm. Major topics discussed by the users in the sample dataset were public transportation 

infrastructure, active transportation, ridesharing, accessibility, etc. Finally, a logistic regression 

model was developed to understand the relationship between users' demographic data and 

DEIA concerns. This model helps identify specific transportation DEIA issues raised by 

different marginalized groups, providing valuable insights for urban planners. 

In conclusion, this research utilizes an innovative dataset and sophisticated data analysis 

techniques to introduce a unique method for assessing the diversity, equity, inclusion, and 

accessibility (DEIA) of transportation systems. This approach yields crucial insights for 

planners, pinpointing the specific locations and demographic segments most impacted by 

existing transportation inequities. Furthermore, the study presents a distinct strategy for 

systematically enhancing network accessibility. Collectively, these findings represent 

substantial advancements in our comprehension of, and ability to address, DEIA issues within 

transportation networks.  
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Chapter 1 

INTRODUCTION 

Transportation diversity means designing and implementing transportation infrastructure and 

services that can cater to the needs of individuals from various backgrounds, income levels, 

and abilities [1]. Equity in transportation means providing fair access to transportation 

infrastructure and services for all individuals, regardless of their background or circumstances. 

This can include providing equal access to public transportation in all neighborhoods and 

providing affordable transportation options [2-4]. Inclusion in transportation means creating an 

environment where all individuals feel welcome and valued. This can involve designing 

transportation infrastructure and services that are accessible to people with disabilities such as 

providing wheelchair ramps and lifts on buses and trains, installing audio and visual 

announcements on public transportation, and providing accessible parking spaces [5, 6].  

Accessibility in transportation means ease of reaching social and economic opportunities such 

as education, employment, healthcare [7]. Usually, transit or active transportation dependents 

suffer from lack of accessibility to many opportunities because of traditional car-based 

transportation infrastructure in the USA. 

The transportation system has a vital role in affording people a variety of choices for reaching 

their destinations, and it profoundly impacts their overall quality of life [8]. Due to an ever-

increasing influx of immigration, the United States (U.S.) is becoming more racially and 

ethnically diverse, needing a paradigm shift in the transportation planning system to solve 

DEIA of its citizens from all socioeconomic backgrounds [9]. Traditionally, transportation 

organizations in the U.S. have primarily prioritized safety and mobility as their key areas of 

focus. Unfortunately, the consideration of DEIA factors has often been neglected in decision-

making processes. This oversight has resulted in the perpetuation of socioeconomic imbalances 

within the transportation system. 

 

Figure 1: Graphical Representation of residential segregation due to car-based transportation 

infrastructure development. 
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Figure 1 above demonstrates inequal distribution of resources and opportunities that stem from 

disparities in transportation access between rich and vulnerable communities. The “rich” 

community is defined by the people who have the ability to own cars and afford housing in 

areas of well-connected transportation infrastructure. As such, the rich community has better 

access to various opportunities such as education, employment, healthcare, stations, recreation, 

grocery stores etc.  

On the contrary, the term "vulnerable" community refers to a group of individuals who face 

financial constraints that prevent them from residing in areas with improved infrastructure or 

owning a vehicle, individuals with physical limitations that restrict their driving ability, or those 

who choose not to drive. Thus, they have limited access to all the social and economic 

opportunities, resulting in poor living conditions, low economic growth, high unemployment 

rates, social isolation, and long-term social inequalities [7, 9, 10].  

From the figure above, the constituent elements of a diverse, equitable, inclusive, and 

accessible transportation network can be identified. These elements encompass various 

infrastructure and services, including bike routes, transit routes, medical facilities, grocery and 

shopping centers, educational and financial institutions, recreational venues, eateries, places of 

work, fitness centers, high-speed internet connections, and accessible parking spaces. Any 

locality that lacks these amenities may be classified as a poorly linked area.  

 

Figure 2: An interconnected network formed by two layers, with interlayer links connecting 

different elements. The physical system layer comprises of the bike road network and social 

system layer comprises of the social media user network. 

The transportations system can be classified in two layers as shown in Figure 2, the physical 

system layer and the social system layer. In this thesis, for ease of analysis, the author will only 

consider bike network as the physical system network. Bicycles are classified as active 

transportation since they rely on human power for propulsion. For individuals who cannot 

afford to purchase a car, biking represents a practical alternative mode of transportation. 

Nevertheless, as illustrated Figure 2, there are numerous destinations that are not easily 

accessible via bicycle due to the inadequacy of the infrastructure. This may necessitate bikers 



 

 

3 

to traverse longer distances on foot or take a longer, indirect route to reach their destination, 

unlike drivers who have the advantage of a more direct path. 

The social system layer in this framework consists of the social media users who live in the 

area of study. Public opinion expressed on social media platforms represents a valuable 

resource for analyzing DEIA issues within the study area. 

In this framework, the social system layer encompasses the social media users residing within 

the study area. A significant proportion of these social media (SM) users are individuals who 

utilize alternate modes of transportation, and they actively express their opinions on SM 

platforms regarding transportation DEIA. As a result, SM platforms hold considerable potential 

as a valuable alternative to traditional survey methods for gathering public opinion pertaining 

to transportation system’s DEIA. 

Improving opportunities for public transit and active transportation can contribute to a more 

equitable and healthier transportation for vulnerable populations. Multiple studies have 

indicated that as alternative modes of travel improve, there is a noticeable shift from car usage 

to these alternative transportation options [11-14]. Therefore, implementation of a multimodal 

transportation system can address the diverse needs of both the marginalized community and 

the rich community. 

Numerous scholarly studies have extensively addressed the imperative of establishing an 

equitable transportation system to cater to the diverse population within the United States [1-

15]. Some studies have also proposed user-centric approaches to quantifying and assessing 

equity at the local level [16, 17]. These studies provide evidence to the policymakers to 

facilitate the implementation of public and active transportation infrastructures. As such, the 

US government and policymakers have undertaken several notable policies and initiatives to 

establish DEIA in transportation. Noteworthy among these are the Executive Order 13985 

(January 2021) [18], and the Justice40 policy (January 2021), which aims to direct federal 

investments towards disadvantaged communities [19]. Furthermore, notable funding programs, 

such as the Reconnecting Communities Pilot (RCP) program (2021) and the Rebuilding 

American Infrastructure with Sustainability & Equity (RAISE) program (2022), have been 

established to support the development of multimodal transportation infrastructure [20, 21]. 

These initiatives have already initiated numerous projects focused on achieving DEIA 

objectives. 

To this point, an essential question persists regarding standards for quantifying and assessing 

DEIA in order to effectively identify communities that require utmost attention. In light of this 

research gap, the primary objective of this study is to introduce a novel measure for estimating 

DEIA within transportation systems. This measure will leverage a unique and innovative data 

set, providing valuable insights and contributing to the advancement of DEIA goals in 

transportation planning and policymaking. To achieve this goal, the study will address the 

following specific research questions for the physical system layer. 

RQ1: Is there any network property that can indicate the level of accessibility of a bike 

network? 

RQ2: Is there any socio-demographic property of travelers strongly influenced by network 

inaccessibility? 

RQ3: Is there a method to identify crucial nodes that needs more attention to increase 

accessibility of a network?   
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RQ4: Is there a systematic way of network intervention using graph theory that can make the 

network more accessible? 

For social system layer, the author will address the following research questions. 

RQ5: To what extent can social media interactions serve as a viable alternative to traditional 

surveys in capturing public opinion regarding transportation? 

RQ6: Can social media opinions be utilized to identify and characterize vulnerable 

communities in relation to transportation issues? 

 

The research proposes the following hypotheses: 

H1: The accessibility of a road network increases as it becomes more direct.  

H2: Increased accessibility within a bicycle network leads to an increased interest of biking 

among the residents living in the network. 

H3: Network components occupying less central positions are more crucial for network 

intervention aiming at achieving higher accessibility for marginalized travelers (e.g., bikers).  

H4: Social media users discuss issues related to transportation DEIA. 

H5: Social media data can effectively identify and map the locations of vulnerable communities 

in terms of transportation accessibility. 

 

Overall, the study utilized novel datasets and cutting-edge data analysis techniques to introduce 

a unique method for assessing the diversity, equity, inclusion, and accessibility (DEIA) of 

transportation systems. This approach yields crucial insights for city planners, helping them 

find the communities most affected by inequitable transportation and a novel strategy for 

enhancing network accessibility. These findings contribute to significant progress in the 

understanding of and capacity to tackle DEIA concerns within transportation networks. 
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Chapter 2 

This chapter covers relevant literature on transportation DEIA as well as some cutting-edge 

analytical techniques that have been applied to transportation research and that will be 

employed for the analysis of this study. The chapter is divided into four major sections, starting 

with the methodologies used to measure the DEIA of transportation in the literature, followed 

by the use of network data and network science in existing transportation research, the use of 

twitter data in existing transportation literature, and finally the use of machine learning and 

natural language processing algorithms in twitter data analysis. 

2.1 REVIEW OF LITERATURE ON TRANSPORTATION DEIA 

In recent years, transportation researchers, including the U.S. DOT, state Department of 

Transportation, American Society of Civil Engineers, Transportation Research Board, National 

Academies, and the private sector entities, have shown a growing emphasis on addressing 

social equity issues in transportation [8, 10, 22-31]. The goal is to alleviate the adverse impacts 

experienced by travelers from underrepresented communities. While some researchers have 

underscored the importance of transportation DEIA in reducing residential segregation, there 

has been limited discussion on how to assess and improve it. Litman provided a summary of 

transportation equity concepts and methodologies to measure it [15]. Litman suggests that 

factors like the quality of available transportation alternatives, average trip distances, and trip 

costs can serve as potential indicators of accessibility, and he proposes conducting a public 

survey to quantify these indicators [17]. The research team at the University of South Florida's 

Center for Urban Transportation Research (CUTR) introduced a two-fold strategy for 

incorporating equity into traditional planning processes. They developed an equity audit tool 

to identify the transportation needs of the community from the equity perspective, alongside 

an equity scorecard tool that rates projects based on the outcomes derived from the needs 

assessment generated by the equity audit tool [32]. However, these tools rely on data collected 

through public surveys, which can be a time-consuming and costly process. Moreover, by the 

time the survey is completed, the opinions of the respondents may have evolved or shifted. To 

overcome these limitations, the incorporation of real-time and cost-effective data sources, such 

as road network data and social media data, provides a viable solution. This alternative 

approach mitigates the shortcomings associated with traditional survey-based methods and 

offers a timelier and dynamic tool for effectively identifying and assessing transportation 

DEIA.  

2.2 NETWORK DATA IN TRANSPORTATION RESEARCH 

Street networks aid as the primary structure for urban transportation systems, influencing how 

people and vehicles move and enhancing the dynamics of urban life [33]. Street network data 

has been employed in numerous research applications, including the analysis of travel patterns 

[34, 35], optimization of transit routes [36-38], calculation of the shortest routes and estimated 

travel times [39-41]. However, no existing research utilizes this data to assess and improve 

DEIA of transportation systems.  

Traditional sources of street network data include municipal and state repositories, expensive 

commercial datasets, and in the US, the census bureau's TIGER/Line roads shapefiles [42, 43]. 

An alternative data source is OpenStreetMap, an online collaborative mapping project covering 

the entire world [44]. OpenStreetMap contains a vast amount of geospatial objects and 

descriptive tags, including streets, trails, building footprints, land parcels, rivers, power lines, 

points of interest, and more [41, 45, 46].  

Researchers typically obtain street network data from OpenStreetMap using three main 
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approaches. The first approach involves using the Overpass API to query geospatial features, 

although the query language can be challenging to use directly [44, 47]. The second approach 

is to utilize commercial services that download data extracts for specific areas or bounding 

boxes and provide them to users. However, these services can be expensive, slow, and lack 

customization, making them less suitable for acquiring data in multiple precisely bounded 

study sites.  

The third method involves using OSMnx, a free and open-source Python package specifically 

designed for downloading and analyzing street networks from OpenStreetMap [33, 48, 49]. 

OSMnx is a tool that retrieves street network data from OpenStreetMap. It offers different 

query options like bounding boxes, addresses, polygons, or place names. You can download 

networks for driving, walking, or biking, and analyze them for properties like shortest paths, 

centrality, clustering, and geometric measures. OSMnx corrects the topology, retaining 

accurate geometry and length of street segments. In short, OSMnx simplifies access to street 

network data and enables comprehensive analysis. The OSM street data is regarded as reliable 

for many cities, although there is room for improvements on micro-level details. Nonetheless, 

the OSM data quality is adequate for large-scale analysis [50].  

2.3 REVIEW OF NETWORK SCIENCE LITERATURE 

Network science, also known as graph theory, is a widely recognized mathematical tool that 

has proven very useful in the study and analysis of the features and dynamics of street networks 

in a multitude of contexts and practical applications [11, 33]. Graph theory provides several 

metrics that can be employed to evaluate the performance of a network. These metrics include 

density, average degree, average circuity, centrality, diameter, radius, average path length, and 

average centrality. Assessing these parameters allows researchers to gain insights into different 

aspects of complex networks. Consequently, this method has gained significant popularity 

among scientists, particularly transportation planners, who extensively utilize it to analyze 

various aspects of road networks.  

Researchers utilize network science to model traffic flow as a dynamic process on a network, 

allowing them to analyze congestion patterns, identify bottlenecks, and propose effective 

strategies for traffic management and congestion mitigation [51-54]. Graph theory has also 

been extensively used to evaluate the resilience and robustness of road networks when faced 

with disruptions such as accidents, disasters, or infrastructure failures [55-58]. By identifying 

critical nodes or links, researchers can develop strategies to enhance network resilience and 

ensure efficient recovery from disruptions. Moreover, network science contributes to 

understanding the intricate relationship between road networks and land use patterns. It enables 

the integration of various transportation modes, including roads, public transportation, and 

pedestrian or cycling paths. By considering the interconnections and interactions between these 

modes, researchers can optimize multi-modal transport systems, enhance connectivity, and 

promote sustainable transportation options [59-61]. Lastly, by integrating network science with 

geographic information systems (GIS), researchers perform spatial analyses, visualize road 

networks, and overlay additional geographic data. This integration enables a deeper 

understanding of the spatial context and facilitates informed decision-making in urban 

planning, transportation management, and emergency response [52, 62, 63]. 

The author wants to make use of this effective tool for network accessibility analysis and 

methodology development to increase accessibility for vulnerable users of active transportation 

which has not been explored yet in the past literature. 
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2.4 TWITTER DATA IN TRANSPORTATION RESEARCH 

Several studies have emphasized the importance of leveraging data from social media 

platforms that capture user behaviors and interactions. Robust empirical research has shown 

that big data from social media can yield significant insights into public opinion patterns 

regarding ongoing societal issues [64]. For instance, Twitter data has been employed by 

numerous researchers to investigate different areas such as service characteristics [65, 66], 

retweeting activity [67, 68], text classification and event detection [69-73], situational 

awareness [74, 75], online communication among emergency responders [76, 77], human 

mobility [78, 79], developing sensor techniques for early awareness [80], and disaster relief 

efforts [81]. In recent times, transportation researchers have made extensive use of social media 

data sources, such as Twitter, to study human mobility patterns [82], modeling of activity-

pattern [83-86], origin-destination demand estimation [87-91], social influence in activity 

patterns [92], transit service characteristics [93], travel survey methods [94, 95], and crisis 

informatics [96], among other research areas.   

2.5 MACHINE LEARNING AND NATURAL LANGUAGE PROCESSING IN 

TWITTER DATA ANALYSIS 

Machine learning has found extensive applications in research across various fields. 

Researchers utilize machine learning algorithms and techniques to analyze complex data, 

discover patterns, make predictions, and gain insights. It has been applied in areas such as 

healthcare [97, 98], climate modeling [99, 100], finance [101-103], image recognition [104-

107], and recommendation systems, enabling advancements and discoveries that were 

previously challenging or impossible to achieve with traditional statistical methods. In the field 

of transportation research, it used to predict travel demand [108-110], optimize routing and 

scheduling, analyze traffic patterns [111], and develop intelligent transportation systems [112-

114]. Thus, it aids in improved decision-making, enhanced efficiency, and the development of 

innovative transportation solutions. 

Natural Language Processing (NLP), is a field of artificial intelligence that focuses on enabling 

computers to understand, interpret, and generate human language. Natural Language 

Processing (NLP) is extensively used in research to analyze and extract valuable information 

from textual data [115-117]. It enables researchers to automate tasks such as sentiment analysis 

[118, 119], topic modeling [120, 121], information extraction, and language generation, 

contributing to a deeper understanding of text-based datasets and facilitating more efficient 

data-driven research. 

ML and NLP algorithms are widely used in Twitter data analysis research to extract valuable 

insights from large volumes of tweets. Researchers employ these algorithms to perform 

sentiment analysis, topic modeling, user classification, and other tasks [122-127]. By 

leveraging such techniques, they can gather deeper understanding of public opinion, social 

dynamics, and real-time events [128].  

This study aims at gathering large-scale Twitter data from the state of New York and analyze 

the tweets related to transportation systems, as discussed by local residents on the platform to 

identify the transportation DEIA concerns and the demographic relation with such concerns.  
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Chapter 3  

In this chapter, bike network data from forty cities across the US was extracted and subjected 

to in-depth analysis using network science and statistical regression techniques. The aim was 

to identify key network parameters that contribute to bike network accessibility. Building upon 

this understanding, a systematic intervention method was developed to enhance the 

accessibility of the network. The findings of this study offer a robust tool for planners, enabling 

them to identify areas where people are suffering from inadequate accessibility, locate crucial 

road segments requiring network intervention, and pre-assess the effectiveness of interventions 

on specific road segments. This research presents valuable insights that can empower planners 

to make informed decisions and facilitate targeted improvements in bike network accessibility. 

3.1 DATA ANALYSIS METHODS 

Graph theory is a branch of mathematics that deals with the study of graphs. A graph (G) refers 

to a finite set of nodes or vertices 𝑉 = 𝑣1, 𝑣2 , … … , 𝑣𝑛   (where n is the number of nodes) and 

a finite set of edges (or connections) E. Nodes represent entities or elements, while edges 

represent connections or relationships between those entities. 

  
Figure 3: An undirected graph (left) and a directed graph (right). 

Figure 3 shows examples of directed and undirected graphs. In an undirected graph, the edges 

do not have a specific direction associated with them. The relationship between nodes is 

bidirectional or symmetric. In an undirected graph, such as a social network, if there is an edge 

between node 1 and node 2, it implies a mutual relationship. For example, if nodes 1 and 2 

represent two people and the edge represents friendship, an undirected edge signifies that 

person 1 considers person 2 as a friend, and vice versa. This symmetrical representation 

indicates that both individuals have a reciprocal perception of friendship towards each other. 

In a directed graph, also known as a digraph, the edges have a specific direction or flow 

associated with them. This means that the relationship between nodes is one-way or 

asymmetric. The directed edge from node A to node B in Figure 3 indicates that node A 

considers node B as a friend, but node B does not consider node A as a friend.  

Graph theory provides a framework for analyzing the relationships, connectivity, and 

properties of these networks. Thus, graph theory has been very helpful to analyze complex 

networks in the field of computer science communication network [129-134], transportation 

and urban planning [52, 135, 136], social network analysis[137-139], biology and 

bioinformatics [140-144], operation research [145-147], physics and chemistry [148-152] and 

many more. It encompasses understanding the structure, properties, and behavior of graphs, as 

well as developing algorithms and techniques for solving graph-related problems.  

Street networks can be effectively represented and analyzed as graphs in urban planning and 

transportation studies. Nodes (V) in the graph correspond to intersections or dead ends, 

representing points where streets intersect and the points where roads end. The edges (E) of the 

graph are the street segments or road links connecting those intersections and dead ends. An 
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example is shown in Figure 4. 

 

 

Figure 4: Graphical representation of road network as a set of nodes and edges  

Figure 5: Finding shortest route using Dijkstra's algorithm and graph theory. 
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Various graph-based measures can be employed to analyze the network structure and 

characteristics. Additionally, graph algorithms enable the exploration of efficient routes, 

identification of shortest paths, and evaluation of network connectivity. Algorithms like 

Dijkstra's algorithm or A* search algorithm can be applied to find optimal routes (Figure 5) or 

estimate travel times within the street network [153-156]. Overall, graph theory provides a 

powerful tool for studying the spatial organization and functionality of urban transportation 

systems, aiding in the improvement of urban planning practices. 

The characterization of networks in the field of transportation geography and network science 

involves various methods, as reviewed in [157-159]. In this paper, specific measures have been 

chosen to analyze and describe networks, and they are discussed below. 

3.1.1 Graph Theory and Network Characterization 

3.1.1.1 Average Degree 

Average degree is a measure used in network analysis to quantify the average number of 

connections or links that each node has in a network. It provides insights into the overall 

connectivity and complexity of the network. The mathematical formula to calculate the average 

degree in a street network is: 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑒𝑔𝑟𝑒𝑒 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑑𝑔𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑜𝑑𝑒𝑠
 (1) 

The average degree of a network can have a significant impact on network accessibility. A 

higher average degree implies a greater number of connections or links between nodes, 

indicating a more interconnected transportation network. This increased connectivity can 

enhance accessibility by providing multiple routes or paths for travelers to reach their 

destinations. It facilitates easier movement and reduces the chances of congestion or 

bottlenecks in the network. Improving the average degree of a network through infrastructure 

development, such as constructing new roads or adding public transportation routes, can 

contribute to enhancing transportation accessibility by providing better connectivity and more 

efficient travel options for users. 

3.1.1.2 Diameter 

The diameter of a network refers to the longest shortest path between any two nodes in that 

network. In other words, it represents the maximum distance between any two points in the 

network. The diameter is a measure of the network's overall size or extent.  

 
Figure 6: A social network example. 
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Diameter of the Network in Figure 6 is 3 (A-B-F-G, E-B-F-G, D-B-F-G, C-B-F-G). The 

impact of the diameter on transportation accessibility can be significant. The impact of the 

diameter on transportation accessibility can be significant. A smaller diameter implies shorter 

travel distances and potentially faster travel times between different locations within the 

network. This can improve overall accessibility by reducing travel costs, increasing 

connectivity, and facilitating efficient movement of people, goods, and services. On the other 

hand, a larger diameter indicates longer distances and potential travel delays, which can 

negatively impact transportation accessibility. Longer travel distances may discourage 

commuting, limit connectivity between areas, and hinder accessibility to essential facilities 

3.1.1.3 Circuity 

Circuity has been extensively used by the researchers in understanding the network structure, 

connectivity, and urban development [33, 160-167]. Circuity refers to the ratio between the 

actual path distance traveled by a vehicle and the straight-line or Euclidean distance between 

the origin and destination points. For an unweighted network, 

 

 

 
𝐶𝑢 =  

∑ 𝐷𝑁

∑ 𝐷𝐸
 (2) 

 

Figure 7: Euclidean distance (left) and network distance (right) in street network. 

Thus, the circuity value can never be less than ‘1’. Higher circuity values indicate a more 

circuitous route, meaning that the actual distance traveled is greater than the straight-line 

distance. This can result in increased travel times, inefficiencies in transportation systems, and 

reduced accessibility between locations. Therefore, circuity considerations are important in 

designing public transportation systems, pedestrian and cyclist-friendly routes, and efficient 

routing algorithms for various transportation modes. 

3.1.1.4 Density 

Density refers to the degree of connectivity or interconnectedness within a network. It 

quantifies the links present in the network in relation to the total number of possible 

connections. The mathematical formula for density in a transportation network is: 

 
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑑𝑔𝑒𝑠 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝐸𝑑𝑔𝑒𝑠
 (3) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝑦 =  
∑ 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑙𝑙 𝑜𝑟𝑖𝑔𝑖𝑛 − 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑖𝑟𝑠

∑ 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑙𝑙 𝑜𝑟𝑖𝑔𝑖𝑛 − 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑖𝑟𝑠
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The graph on left of Figure 8 had a lower density than the graph on the right. The impact of 

density on transportation accessibility is significant. A higher network density implies better 

accessibility within the transportation system. It allows for more direct routes and multiple 

options for traveling between different locations. This can lead to shorter travel distances, 

reduced travel times, and improved overall accessibility for individuals using the transportation 

network. 

Figure 8: The existing edges (left) vs the possible edges for the network (right) 

3.1.1.5 Average path length 

Average path length is a network measure that quantifies the average distance between pairs of 

nodes in a network. Mathematical formula to calculate average path length is: 

 
𝑙𝑎 =

1

𝑛(𝑛 − 1)
∑ 𝑑𝑖𝑗 (4) 

Here,  

n = number of nodes 

𝑑𝑖𝑗 = shortest path distance between i and j  

It provides insight into the overall efficiency and accessibility of transportation networks. A 

longer average path length implies that individuals have access to a wider range of destinations 

within the network. For example, in a transportation network with a larger average path length, 

there may be multiple routes or connections available to reach different destinations offering 

more options for travelers to access various facilities, services, and opportunities. 

3.1.1.6 Betweenness Centrality 

Betweenness centrality is a network centrality measure that quantifies the importance of a node 

within a network based on its position as a bridge or intermediary between other nodes. It 

measures the extent to which a node lies on the shortest paths between pairs of other nodes in 

the network. Nodes with high betweenness centrality have a significant influence on the flow 

of information, resources, or movement within the network. For transportation network 

analysis, betweenness centrality measure is considered the most important centrality measure 

by the researchers. Betweenness centrality of a node i is calculated using the following 

equation: 

 
𝐶𝑖 =

1

𝑛2
∑

𝑛𝑠𝑡
𝑖

𝑔𝑠𝑡
𝑠𝑡

 (5) 

Here, 𝑛𝑠𝑡
𝑖  is 1 if node 𝑖 is in the shortest path between two nodes 𝑠 and 𝑡 in a network, 0 

otherwise. 𝑔𝑠𝑡 the total number of shortest paths between nodes 𝑠 and 𝑡  and ‘n’ is the total 

number of nodes in the network. Figure 9 displays nodes and links with maximum centrality 
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of a street network.  

 

Figure 9: A street network showing the most central links and nodes (green representing top 

5 central links and nodes, yellow representing next most central nodes and links). 

In transportation networks, the literature finds that nodes with high connectivity tend to have a 

high centrality [168-170]. For example, nodes that are major intersections or hubs, connecting 

multiple roads or routes, often have high connectivity and are considered to be central nodes. 

Detecting such nodes is important in urban planning as the disruption of such nodes will have 

a substantial impact on the overall connectivity and efficiency of the transportation network. 

There has been substantial research effort to identify critical links and nodes of road network 

in disaster and risk mitigation [171, 172], improving resilience [173-175], etc. The concept is 

based on focusing on the nodes or links that aids to increased mobility of the network. However, 

the concept may not be useful in increasing accessibility of the network. 

3.1.1.7 Accessibility 

Transportation accessibility refers to the ease with which individuals can reach desired 

destinations or engage in activities. In the car-based transportation infrastructure of the U.S., 

often the bicyclists or transit dependents suffer from lack of accessibility as they often have to 

change mode of transportation or travel a much longer distance due to the circuitous nature of 

the network to reach a destination. Such inaccessibility results from lack of investment and 

planning in public and active transportation networks by the government agencies. Especially 

the poor and disabled suffer the most from such inaccessibility as they do not have the 

affordability of ability to buy or drive a car. While the recent attention to enhance bicycle 

network accessibility is appreciable, the method to measure and improve accessibility is still 
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unestablished. This study focuses on establishing a method to measure bicycle accessibility 

and improve it using graph theory.  

For this purpose, bicycle network data of forty cities was collected. The network properties 

described in section 3.1.1.1 through 3.1.1.6 were determined. Additionally, relevant 

demographic data of these cities was collected. The bicycle accessibility score, as outlined in 

the methodology of section 3.1.2.2, was calculated.  Statistical regression analysis was 

conducted to establish a relationship between the accessibility score and both network and 

demographic parameters. By deriving insights from the regression equation, a network 

intervention approach is proposed in section 3.1.4, aiming to improve bicycle accessibility 

based on the identified factors. 
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3.1.2 Data Collection  

3.1.2.1 Bike Network Data 

Bike networks of forty cities (listed in Table 1) across the United States were collected from 

OpenStreetMap using the Python software package OSMnx [48, 176, 177]. OSMnx provides 

a convenient way to extract and manipulate street network data, creating graph objects 

compatible with the NetworkX package in Python. One example of the extracted bike networks 

has been shown in Figure 10. Subsequently, the obtained networks were analyzed using the 

OSMnx package to assess several network parameters. These parameters included the number 

of nodes, number of edges, circuity, average degree, average path length, density, diameter, 

betweenness centrality, among others.  

 

Figure 10: Bicycle network of Washington city, D.C. (source: OpenStreetMap) 
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3.1.2.2 Bike Accessibility Score Data 

Accessibility was measured in each study area  through the aggregation of two approaches: the 

traffic stress analysis method [178-182] and the assessment of access to various opportunities 

within a 30-minute cycling distance [183, 184].  

Traffic stress analysis is a methodology used to assess the level of stress or perceived safety 

experienced by different road users, particularly pedestrians and bicyclists, in relation to the 

surrounding traffic conditions. It aims to evaluate the potential discomfort, fear, or 

inconvenience caused by vehicular traffic on non-motorized modes of transportation. The 

factors considered to determine traffic stress include vehicle speed, traffic volume, road design, 

presence of dedicated cycling or pedestrian facilities, and interactions with motorized vehicles. 

Once the traffic stress has been established for all street segments, accessibility score was 

determined based on reachability to different opportunities. The scoring system ranges from 0 

to 100 and takes into account the number of low-stress opportunities available as well as the 

ratio of low-stress to total destinations within biking distance. The opportunities were divided 

into six areas, including access to people, employment and educational opportunities, 

healthcare services, retail establishments, transit alternatives, and recreational attractions. 

Weights are assigned to represent the relative importance of each destination type within the 

category. Higher scores were assigned to the initial low-stress destinations through a stepped 

scale. Beyond those initial destinations, points are prorated up to a maximum of 100 based on 

the ratio of low-stress to high-stress connections. If a destination type is not reachable by either 

high- or low-stress means, it is excluded from the calculations for the corresponding city. 

Figure 11 displays the bicycle accessibility scores assigned across the study areas. 

Table 1: Study Areas Ranked by Accessibility of Bicycle Network. 

Rank Place Rank Place 

1 Minneapolis, MN 21 Miami, FL 

2 New York City, NY 22 Oklahoma City, OK 

3 Washington City, D.C. 23 Montgomery, AL 

4 Denver, CO 24 New Orleans, LA 

5 Detroit, MI 25 Newark, NJ 

6 Anchorage, AK 26 Tampa, FL 

7 Oakland, CA 27 Baton Rouge, LA 

8 Tucson, AZ 28 Chesapeake, VA 

9 Aurora, CO 29 Honolulu, HI 

10 Baltimore, MD 30 Boise City, ID 

11 San Diego, CA 31 Jacksonville, FL 

12 Phoenix, AZ 32 Indianapolis, IN 

13 Boston, MA 33 Fort Wayne, IN 

14 Kansas City, MO 34 Dallas, TX 

15 Charlotte, NC 35 Fort Worth, TX 

16 Jersey City, NJ 36 Greensboro, NC 

17 Atlanta, GA 37 Arlington, TX 

18 Tulsa, OK 38 Chicago, IL 

19 Richmond, VA 39 Wichita, KS 

20 Birmingham, AL 40 Buffalo, NY 
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Figure 11: Bar chart of bicycle accessibility score over study areas. 

3.1.2.3 Socio-Demographic Data 

Socio-demographic data for forty study areas was collected from the American Community 

Survey (ACS) 5-year survey published in the year 2020. The specific variables utilized in this 

research included population size, per capita income and percentage of population who 

commutes by bike or motorcycle to work.  

3.1.3 Statistical Regression Analysis 

Transportation Researchers have extensively employed statistical modeling approaches to 

predict various aspects of travel behavior [185-190] , network structure [166, 191-194], urban 

features [195-198] and many more. However, the accessibility of bicycle modes has not yet 

been adequately modeled in existing literature. By utilizing statistical modeling techniques to 

analyze bike mode accessibility, considering network structure parameters and demographic 

information, valuable insights can be gained and a new avenue for measuring transportation 

accessibility can be explored. This information can be instrumental for city planners and 

government investors in prioritizing areas requiring improvements. Although several statistical 

modeling approaches are available, this study will focus on utilizing multiple linear regression 

(MLR) to predict the accessibility score of bicycle networks in a given area. 

3.1.3.1 Multiple Linear Regression with Logarithmic Transformation 

In many engineering challenges, it's essential to understand the relations between different 

variables. Regression analysis is a key statistical technique that researchers frequently use to 

address this problem. Regression models offer a means to capture and interpret the complex 

dynamics within a system by fitting mathematical models to empirical data. 

Linear regression models utilize linear predictor functions to model the data and estimate 

output parameters based on the input variables. Multiple linear regression (MLR) is a statistical 

approach utilized for predicting the outcome of a variable by considering the values of two or 

more independent variables. It serves as an extension of linear regression. In this technique, 

the variable that we aim to predict is termed the dependent variable, while the variables used 

to estimate the value of the dependent variable are referred to as independent or explanatory 

variables. By analyzing the relationship between these independent variables and the dependent 
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variable, multiple linear regression provides a framework for making predictions and 

understanding the influence of various factors on the outcome variable. 

The general form of a multiple linear regression model is expressed in equation (6) 

 
𝑦𝑖 = 𝑏0 +  ∑ 𝑏𝑗𝑥𝑖𝑗

𝑛

𝑗=1
 (6) 

where 𝑦𝑖 represents the model's dependent or predicted variable, xij refers to the independent 

input variables, and b1, b2, …. bn represent regression coefficients representing the change in y 

relative to a one-unit change in 𝑥𝑖1, 𝑥𝑖2, … . . . 𝑥𝑖𝑛. b0 is the y-intercept, i.e., the value of y when 

all xij values are 0. 

These coefficients are determined by fitting the MLR model using ordinary least squares (OLS) 

regression which aims to minimize the differences between the model's predicted outcome of 

the dependent variable and the actual values of the dependent variable on the training dataset. 

This optimization process minimizes the sum of squared vertical deviations between each data 

point and the regression equation. When a data point lies precisely on the fitted line, the vertical 

deviation is zero.  

The histogram displaying the distribution of accessibility scores in the dataset reveals a right-

skewed pattern, as illustrated in Figure 12. To address this skewness and achieve a more 

symmetrical distribution, a logarithmic transformation was applied, resulting in a spread-out 

histogram that approaches symmetry, as depicted in Figure 13. Consequently, multiple linear 

regression with logarithmic transformation was selected as the preferred modeling approach 

for our dataset. This choice aligns with the objective of fulfilling the assumption of constant 

variance in the context of linear modeling. 

 

Figure 12: Frequency distribution of accessibility scores. 
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Figure 13: Frequency distribution of ln(accessibility scores). 

Therefore, in this study, a multiple linear regression modeling with log-transformed variables 

was constructed to investigate the relationship between the accessibility score and various 

network and demographic characteristics.  

Logarithmic transformations are one of the most used methods in regression analysis among 

researchers [199]. It can be done in many ways: 

Level- log regression (only the independent variable is transformed): 

 
𝑦 = 𝑏𝑜 + 𝑏1 ln 𝑥1 + 𝑏2 ln 𝑥2 + ⋯ +  𝑏𝑛 ln 𝑥𝑛 (7) 

Log-level regression (only the dependent variable is transformed): 

 
ln 𝑦 = 𝑏𝑜 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ +  𝑏𝑛𝑥𝑛 (8) 

Log-log regression (both independent and dependent variable is transformed): 

 
ln 𝑦 = 𝑏𝑜 + 𝑏1 ln 𝑥1 + 𝑏2 ln 𝑥2 + ⋯ + 𝑏𝑛 ln 𝑥𝑛 (9) 

Besides, the right side of the equations can include a combination of logarithmic terms and 

non-logarithmic terms. In this specific study, log-log regression will be utilized as the preferred 

modeling approach where all independent and dependent variables will be log-transformed. 

Taking the exponential on both sides, the equation (9) simplified as follows: 

ln 𝑦 = ln 𝑒𝑏0 + ln 𝑥1
𝑏1 + ln 𝑥2

𝑏2 + ⋯ +  ln 𝑥𝑛
𝑏𝑛  

ln 𝑦 = ln(𝑒𝑏0 𝑥1
𝑏1 𝑥2

𝑏2 … … 𝑥𝑛
𝑏𝑛) 

𝑦 = 𝑒𝑏0𝑥1
𝑏1𝑥2

𝑏2 … … 𝑥𝑛
𝑏𝑛

 

𝑒𝑏0 can be expressed as constant c and the equation can be re-expressed as: 

 𝑦 = 𝑐 𝑥1
𝑏1𝑥2

𝑏2 … … 𝑥𝑛
𝑏𝑛

 (10) 
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Explanation: 

If all other explanatory variables of the model in equation (10) 𝑥𝑖2, … . . . 𝑥𝑖𝑛 remain unchanged, 

one-percent change in x1 would change the y as shown in the following equation: 

 𝑦𝑛𝑒𝑤 = 𝑐 (1.01 𝑥1)𝑏1𝑥2
𝑏2 … … 𝑥𝑛

𝑏𝑛
  

 𝑦𝑛𝑒𝑤 = 1.01𝑏1  × (𝑐 𝑥1
𝑏1𝑥2

𝑏2 … … 𝑥𝑛
𝑏𝑛) (11) 

Subtracting (10) from (11) , 

𝑦𝑛𝑒𝑤 − 𝑦 = 1.01𝑏1  × (𝑐 𝑥1
𝑏1𝑥2

𝑏2 … … 𝑥𝑛
𝑏𝑛) −  𝑐 𝑥1

𝑏1𝑥2
𝑏2 … … 𝑥𝑛

𝑏𝑛
 

𝑦𝑛𝑒𝑤 − 𝑦 = 1.01𝑏1  × 𝑦 −  𝑦 

𝑦𝑛𝑒𝑤 − 𝑦 = (1.01𝑏1 − 1) 𝑦 

 𝑦𝑛𝑒𝑤 − 𝑦

𝑦
= 1.01𝑏1 − 1 (12) 

Thus, 1% change in an independent variable is associated with (1.01𝑏1 − 1) × 100 percent 

change in dependent variable given that all other variables remain unchanged. 

Similarly, 𝑥% change in an independent variable is associated with a ((1 +
𝑥

100
)

𝑏1

− 1) × 100 

percent change in dependent variable given that all other variables remain unchanged. 

3.1.3.2 Assumptions of MLR 

The MLR relies on several key assumptions to ensure the validity and reliability of the results. 

The common assumptions associated with multiple linear regression are listed in Table 2. 

Table 2: Assumptions of Multiple Linear Regression Modeling 

Topic Assumptions 

Independence The observations used in the regression analysis should be 

independent of each other. There should be no autocorrelation or 

systematic patterns in the residuals. The commonly used test to assess 

independence is the Durbin-Watson test statistic. A Durbin-Watson 

test statistic value between 1.5 and 2.5 indicates no significant 

autocorrelation [200-203].  

Homoscedasticity The assumption of homoscedasticity in a regression model states that 

the residuals are drawn from a population with a constant variance. 

To assess this assumption, one can plot the standardized residuals 

against the predicted values. If the spread of the residuals appears to 

be relatively constant, with no discernible trend or funnel shape, it 

suggests the presence of homoscedasticity. On the other hand, if the 

spread of the residuals varies noticeably as the predicted values 

change, indicating a systematic pattern, it may indicate the violation 

of the homoscedasticity assumption. 
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Multicollinearity The independent variables should be minimally correlated with each 

other. High correlations between independent variables can lead to 

instability and unreliable estimates of the regression coefficients. The 

best method to test for the assumption is the Variance Inflation Factor 

method. As a rule of thumb, a VIF score below “3” is considered good. 

As VIF increases, the regression results become lesser reliable. 

Multivariate 

normality (MVN) 

Multivariate normality refers to the assumption that the residuals in a 

regression model follow a normal distribution. Plotting a histogram of 

the residuals and overlaying a normal curve can visually evaluate how 

well the residuals align with a normal distribution. It can also be tested 

using a Normal Probability Plot. This plot involves ordering the 

residuals and comparing them to theoretical quantiles derived from a 

standard normal distribution. If the points on the plot follow a straight 

line, it suggests that the residuals conform to a normal distribution. 

 

3.1.4 Network Intervention 

Existing literature has extensively studied the importance of betweenness centrality in 

improving network resilience to disaster and crisis, sustainability of urban mobility [171-175]. 

Researchers suggest prioritizing the most central links and nodes, determined through the 

betweenness centrality measure, while investing in road network improvements. This will 

strengthen the network's ability to withstand disruptions and ensure the smooth flow of traffic 

and mobility during crisis. However, such measures may not necessarily enhance network 

accessibility.  

The accessibility of a network is rather affected by the absence of links which leaves the 

network broken, disconnected or incomplete. Since the study focuses on bicycle accessibility, 

the author will explain accessibility from a cyclist’s perspective. For instance, if there is a 

highway between an origin and destination, a bicyclist would need to either switch 

transportation modes or take a longer and circuitous route to reach the destination. The node 

where the highway begins naturally will have fewer connections than others making it a less 

central node and bicyclists will avoid such nodes. If the planners do not detect such nodes and 

create alternative connections, the network cannot be made accessible for the bicyclists. 

Therefore, instead of prioritizing central nodes, investments aimed at enhancing network 

accessibility should focus on nodes that are less connected or have lower centrality based on 

the betweenness centrality measure. This study puts forth a hypothesis suggesting that when 

planning new bicycle routes or adding bicycle lanes, creating connections with less central 

nodes will result in a more accessible network compared to creating connections with the most 

central nodes. The author aims to contribute to establishing a novel method of systematic 

intervention in the network that aims at enhancing network accessibility. 

For that purpose, a small bicycle network covering a 1000-square-meter area in Norman, 

Oklahoma (Figure 14) was extracted from OpenStreetMap using the Python software package 

OSMnx (circuity = 1.02345, no. of edges = 780, no. of nodes = 276). The network was analyzed 

using the OSMnx package to assess betweenness centrality of all nodes within the network. 

Figure 15 illustrates the identification of the most and least central nodes through the 

utilization of the betweenness centrality measure. 

 



 

 

22 

  

Figure 14: Bicycle network from the Norman, Oklahoma (left) & graphical representation of 

the network as set of nodes and edges (right)  

Based on the centrality values obtained, the two most central nodes and two least central nodes 

were selected for intervention. Additionally, two random nodes were selected for intervention 

purposes. A new bike lane (bidirected) was added to each of the selected nodes using OSMnx 

package. The impact of these interventions on the network has been reported and investigated 

is section 0.The findings provide valuable insights into the importance of targeted interventions 

and the potential improvements that can be achieved by systematically enhancing connectivity 

at critical nodes. 

Figure 15: Most central nodes (green) and least central nodes (red) of the network  
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3.2 RESULTS 

This study conducts a comparative analysis of bicycle accessibility in different cities, 

examining the interplay between macro and micro-level street network measures. The objective 

is to identify significant relationships between mode accessibility and network parameters, 

which can inform future network design strategies. Additionally, the research proposes a cost-

effective approach to enhance the accessibility of an existing network by leveraging graph 

theory principles, thereby offering valuable insights for practical network improvements. 

3.2.1 Data Description 

Table 3: Mean Network Variables by Network Size Quintile. 

Variables 1st quintile 2nd quintile 3rd quintile 4th quintile 

Number of Nodes 23916 31404 56031 101895 

No of Edges 62363 82364 145294 238821 

Density 0.0003419 0.0000953 0.0000558 0.0000266 

circuity 1.128 1.079 1.081 1.084 

Average path length 139 78 76 82 

Average Degree 2.59 2.60 2.59 2.60 

Diameter 231 272 307 442 

Accessibility Score 20 27 33 24 

Population 251043 379822 613991 2186211 

 Per Capita income 33633 36574 38193 35227 

% Bike Commute to Work 2.32 3.06 3.17 2.22 

 

Table 3 presents a summary of the network parameters and demographic statistics for the study 

areas categorized into quintiles based on network size. The quintiles are defined such that 

quintile 1 includes the 10 smallest cities, quintile 2 includes the next 10 smallest cities, and so 

on. The network size is determined by the number of population where a higher population 

indicates a larger network size.  

3.2.2 Modeling Accessibility 

3.2.2.1 Model Results 

MLR regression was utilized to model Accessibility score as the dependent variable and all 

other variables from Table 3 as independent variables. Both dependent and independent 

variables were log-transformed. The final model was determined based on the highest R-square 

value, and the findings and relationships of this selected model are summarized in Table 4. 
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Table 4: Dependent Variable ln(Accessibility) 

  Coefficient Std. Error Standardized 

Coefficient 

t-stat P 

ln(circuity) -8.921 2.895 -0.964 -3.081 0.004 

ln(avg. path length) 1.229 0.464 0.858 2.649 0.013 

ln(diameter) -1.036 0.323 -0.675 -3.207 0.003 

ln(percent bike user) 0.477 0.137 0.479 3.479 0.002 

ln(per capita income) 0.246 0.306 0.109 0.804 0.427 

constant -3.288 4.075  -0.807 0.426 

Adjusted r2 0.608        

N 40        

Durbin-Watson test stat 1.678     

The explanatory variables that showed statistical significance, with p-values lower than 0.1, 

were included in the final model. The variables that were found to be statistically significant in 

explaining accessibility score were circuity, average path length, diameter, and the percentage 

of bike users. These variables had a significant impact on the accessibility score, indicating that 

they were important factors to consider. 

While per capita income did not exhibit statistical significance in the model, it was included 

due to its hypothesized positive correlation with accessibility score based on prior literature. 

Among the significant variables, circuity had the highest standardized coefficient of -0.964. 

The standardized coefficient represents the comparative importance of the parameter in the 

output variable. In this case, it indicates that circuity had the maximum impact on the 

accessibility score. A coefficient of -0.964 suggests that an increase in circuity is associated 

with a substantial decrease in the accessibility score. 

The adjusted R-squared value of 0.608 indicates that the model provides a good fit to the data. 

This value represents the proportion of the variance in the accessibility score that can be 

explained by the included variables. A value of 0.608 suggests that the model explains 

approximately 60.8% of the variability in the accessibility scores, indicating a relatively strong 

fit. 

3.2.2.2 Assumption Testing 

a) Independence 

To evaluate the independence of the variables, the Durbin-Watson test statistic [204-206] was 

computed using SPSS and the results are presented in Table 4. The Durbin-Watson test statistic 

is derived from the residuals of the model and falls within the range of 0 to 4. The mathematical 

formula for determining Durbin-Watson test static is shown in equation (13). 
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𝑑 =

∑ (𝑒𝑖 − 𝑒𝑖−1)2𝑛
𝑖=2

∑ 𝑒𝑖
2𝑛

𝑖=1

 (13) 

Here, ‘n’ indicates the number of observations and 𝑒𝑖 indicates the ith residual from the 

regression model.  

 A value of 2 indicates the absence of autocorrelation, while comparison with critical values 

helps determine the presence of autocorrelation. When the Durbin-Watson test statistic 

approaches 0, it suggests positive autocorrelation, signifying a positive correlation between 

residuals at neighboring observation points. Conversely, a value close to 4 indicates negative 

autocorrelation, implying a negative correlation between adjacent residuals. 

In our analysis, a Durbin-Watson test statistic value of 1.678 was obtained, indicating that the 

data satisfies the assumption of independence. This falls within the range of 1.5 to 2.5 (rule of 

thumb), which is indicative of no significant autocorrelation. Therefore, we can conclude that 

the model exhibits independence between the variables as required by the regression analysis. 

b) Homoscedasticity 

To assess homoscedasticity, one commonly used approach is to examine the scatter plot of 

standardized residuals. Standardized residuals are calculated by dividing the residuals by their 

estimated standard deviation, which allows for a more meaningful comparison of residual 

values across different observations. 

 

Figure 16:Scatter plot of standardized residuals against standardized predicted values in 

regression model. 

If the scatter plot of standardized residuals displays a random and uniform distribution, with 

no discernible pattern or trend, it provides evidence that the variability of the residuals is 

constant across the range of predicted values. This supports the assumption of 

homoscedasticity. Conversely, if the scatter plot exhibits a funnel-like shape, a pattern of 

increasing or decreasing spread, or any other systematic trend, it suggests the presence of 

heteroscedasticity, which violates the assumption of constant variance. 
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In Figure 16, the standardized residuals are uniformly scattered without any discernible pattern 

or trend, which provides empirical support for the assumption of homoscedasticity in this 

regression model. 

c) Multicollinearity 

Collinearity statistics for the model parameter were computed using SPSS, and the results are 

presented in Table 5. The table displays the formula for tolerance and variance inflation factor 

(VIF) estimates.  

 
𝑉𝐼𝐹 =

1

1 − 𝑅𝑖
2 =  

1

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒
 (14) 

Here, Ri² represents the coefficient of determination obtained from regressing the ith variable 

as the dependent variable and all the other explanatory variables as independent variables. 

Tolerance is defined as the reciprocal of the VIF for each predictor variable. Tolerance values 

range from 0 to 1, with values closer to 1 indicating low levels of multicollinearity and values 

closer to 0 indicating high levels of multicollinearity. Conversely, a VIF value of 1 indicates 

no correlation between variables, while VIF values between 1 and 5 suggest moderate 

correlation, and VIF values above 5 signify high correlation. It is generally recommended to 

aim for a VIF below 5 [207]. 

The VIF values obtained from the model show no significant collinearity among the variables. 

This implies that the predictor variables in the model are not strongly correlated, ensuring the 

validity and reliability of the regression analysis. 

Table 5: Collinearity statistics of the model parameters. 

Explanatory Variables Tolerance VIF 

ln(density) 0.271 3.688 

ln(circuity) 0.429 2.331 

ln(avg. path length) 0.521 1.92 

ln(diameter) 0.285 3.505 

ln(percent bike user) 0.667 1.5 

ln(per capita income) 0.692 1.445 

 

d) Multivariate Normality 

The histogram in Figure 17 displays the distribution of standardized residuals. For multivariate 

normality, it is expected that the histogram will demonstrate a symmetric bell-shaped curve, 

resembling a normal distribution. Deviations from this shape, such as skewness (asymmetry) 

or kurtosis (peakedness), may indicate non-normality. In this case, the histogram supports the 

assumption of normality as it exhibits a bell-shaped curve, suggesting that the residuals follow 

a normal distribution. 
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Figure 17: Histogram of standardized residuals. 

The assumption of multivariate normality can also be tested using the normal probability plot, 

also known popularly as P-P plot, that compares the ordered standardized residuals against the 

expected quantiles of a standard normal distribution. When the points in the plot align closely 

along a straight line, it indicates that the standardized residuals conform to a normal 

distribution. Departures from the straight line suggest deviations from normality, such as 

positive or negative skewness when the points curve upward or downward, respectively. Any 

significant deviations, such as sharp bends or distinct patterns in the plot, may indicate non- 

normality. Figure 18 visually illustrates the P-P plot, revealing that the points closely align 

along the straight line, providing evidence for the normality of the residuals. 

 

Figure 18: Normal P-P plot of regression standardized residual. 
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3.2.2.3 Model Interpretation 

The number of explanatory variables in the selected model output is 5. Thus, the final model 

can be expressed as follows: 

 𝑦 = 𝑐 𝑥1
−8.291𝑥2

1.229𝑥3
−1.036𝑥4

0.477𝑥5
0.246

 (15) 

y = accessibility score 

𝑥1 = 𝑐𝑖𝑟𝑐𝑢𝑖𝑡𝑦 

𝑥2 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ 

𝑥3 = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 

𝑥4 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑏𝑖𝑘𝑒 𝑐𝑜𝑚𝑚𝑢𝑡𝑒𝑟 

𝑥5 = 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎 𝑖𝑛𝑐𝑜𝑚𝑒 

c = 0.037 

The significant findings from the model analysis are as follows: 

• The relation between the accessibility score and circuity is negative, which aligns with the 

hypothesis. As the network becomes less circuitous, meaning the routes become more 

direct, the accessibility increases. This suggests that a more connected network with direct 

paths enhances accessibility for cyclists. 

• The average path length has a positive relation with the accessibility score. This indicates 

that cyclists have access to a wider range of routes and options to reach their destinations. 

A greater variety of paths can contribute to increased accessibility by providing cyclists 

with more choice and flexibility. 

• The diameter of the network has a negative relation with the accessibility score. As the 

diameter decreases, it indicates a more connected network, allowing a shorter path between 

two locations in the network. A well-connected network with shorter distances between 

different parts improves accessibility by reducing travel times and increasing connectivity. 

• The percentage of bike commuters has a positive relation with the accessibility score. A 

higher percentage of bike commuters indicates a more accessible bike network.   

• Per capita income also has a positive relation with accessibility. This suggests that higher-

income individuals have the affordability to live in more accessible network areas, as land 

prices are generally higher in such locations. This finding highlights the relationship 

between socioeconomic factors and accessibility, indicating that accessibility might be 

influenced by economic disparities. 

• The interpretation of coefficients is crucial for understanding the impact of each variable 

on the accessibility score. For example, let's consider circuity. If all other variables remain 

constant, a 1% increase in circuity would lead to a change in the accessibility score by 100 

× (1.01-0.08291−1) %, which equals a 7.919% decrease in the accessibility score. This means 

that even a small decrease in circuity can have a significant improvement on accessibility, 

emphasizing the importance of reducing circuitous routes for improving overall 

accessibility. 
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3.2.3 Network Intervention  

The study's final model revealed that circuity has the greatest influence on network 

accessibility. Consequently, circuity was adopted as the indicator of network accessibility in 

our method. A lower circuity is indicative of higher accessibility in the network.  

Figure 19 displays the nodes selected for intervention, including the two most central, two 

least central, and two random nodes. Table 6provides their respective centrality values and 

labels assigned. The intervention method involves adding a new bi-directed edge to the existing 

network without introducing any new node. Six cases were tested, with each case entailing the 

addition of a new edge with one of the six selected nodes. While the chosen nodes serve as the 

starting nodes for the new connections, there are multiple potential end nodes already present 

within the network. Figure 29 to Figure 31 shows the available end nodes considered in all 

six cases.  

Table 6: Description of Nodes to be Intervened. 

Case Label Betweenness Centrality 

Most Central Nodes A 0.28562265 

B 0.274671533 

Least Central Nodes C 0 

D 0 

Random Nodes E 0.052196417 

F 0.034304357 

 

 

Figure 19: Nodes to be intervened. 
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The network before any intervention had an average circuity value of 1.02345. For each 

intervention case, the new average circuity value was measured using OSMnx. Given that the 

minimum circuity value of a network is "1", the following equation was utilized to calculate 

the percentage change in the circuity value. 

 

% 𝐶ℎ𝑎𝑛𝑔𝑒 =  
𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝑦𝑎𝑓𝑡𝑒𝑟 − 𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝑦𝑏𝑒𝑓𝑜𝑟𝑒

(𝐶𝑖𝑟𝑐𝑢𝑖𝑡𝑦𝑏𝑒𝑓𝑜𝑟𝑒 − 1)
 × 100 

(16) 

The results of the intervention have been listed in Table 7. The results have been further 

summarized graphically in Figure 20. It was found that the average circuity value decreased 

up to 35% when the least central nodes were strengthened. On the other hand, average circuity 

only decreased by 4.75% when the most central node was strengthened. Strengthening the 

random nodes showed a decrease of up to 4.62% in average circuity. 

 

Figure 20: Summary of network intervention. 

 

The key findings obtained from the network intervention analysis are: 

• The nodes with low centrality are more critical for network accessibility improvement. 

In other words, strengthening a low centrality node would more rapidly increase the 

accessibility of the network. 

• Betweenness centrality can serve as a tool to identify critical nodes for accessibility 

interventions.  

• A graph theory framework to increase accessibility has been presented here. This 

framework provides a systematic approach for planners to analyze the overall effect 

on accessibility by improving specific nodes within the network. By assessing the 

impact of interventions on the network's connectivity and accessibility metrics, 

planners can make informed decisions about which links to target for improvement.  
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Table 7: Effect on average circuity upon creating a new connection in the network. 

Intervention Details Source 

Node 

Target 

Node 

Circuity  %Change Remarks 

Strengthening the 

Most Central Nodes 

A 
 

1 1.02456 4.75%  

2 1.02244 -4.30%  

3 1.02238 -4.57%  

4 1.02267 -3.33%  

B 

5 1.02234 -4.75% ⇐ Maximum Decrease 

6 1.02453 4.62%  

7 1.02249 -4.10%  

8 1.02293 -2.22%  

9 1.02239 -4.51%  

Strengthening 

Random Nodes 

E 
1 1.02325 -0.88%  

2 1.02325 -0.88%  

F 

3 1.02309 -1.54%  

4 1.02246 -4.21%  

5 1.02241 -4.42%  

6 1.02289 -2.41%  

7 1.02237 -4.62% ⇐ Maximum Decrease 

Strengthening the  

Least Central Nodes 

C 

1 1.01522 -35.08% ⇐ Maximum Decrease 

2 1.02243 -4.37%  

3 1.02236 -4.64%  

4 1.02047 -12.73%  

D 

5 1.02476 5.57%  

6 1.02122 -9.53%  

7 1.02117 -9.73%  

8 1.02164 -7.72%  

9 1.02112 -9.93%  

 

In summary, in this chapter, street network and demographic data were utilized, and the 

Network Science theory and multilinear statistical regression model were employed to develop 

a new method for measuring the accessibility score of a bicycle network in a city. Furthermore, 

a method was proposed, leveraging Network Science concepts, to improve the accessibility of 

the bike network.  
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Chapter 4 

In this chapter, the author focuses on utilizing Twitter data, to identify and examine 

transportation DEIA issues. The aim is to understand the relationship between specific DEIA 

challenges faced by travelers and their demographic or geographic characteristics. To achieve 

this, a combination of advanced analytical methods was employed, including machine learning, 

natural language processing algorithms, reverse geocoding, and statistical regression. By 

analyzing the collected data, several intriguing insights were uncovered. These insights have 

the potential to assist planners and policymakers in identifying underprivileged populations 

and areas that require greater attention in order to establish a more equitable and accessible 

transportation system throughout the United States. 

The research questions that will be addressed in this chapter are: 

• To what extent can social media interactions serve as a viable alternative to traditional 

surveys in capturing public opinion regarding transportation? 

• Can social media opinions be utilized to identify and characterize vulnerable 

communities in relation to transportation issues? 

The following hypotheses will be tested through this analysis: 

• Social media users discuss issues related to transportation DEIA. 

• Social media data can effectively identify and map the locations of vulnerable 

communities in terms of transportation accessibility. 

4.1 DATA ANALYSIS METHODS 

4.1.1 Data Collection and Preparation 

4.1.1.1 Twitter Data  

Twitter data was collected from New York City (NYC) which consists of five counties─ Bronx, 

Queens, Manhattan, Brooklyn, Staten Island using the Academic Application Programming 

Interface (API) [208], which provides the full history of public conversation through a full-

archive search endpoint [209]. The data collection process employed the Python programming 

language, along with relevant Python libraries. Geolocation-based search queries were utilized 

to retrieve data from the study area (Figure 21) from February to April 2020. A total of ~ 2.75 

million tweets were collected, originating from ~14.1k unique users. 

The tweets obtained from the academic track API contain supplementary details such as user 

ID, username, profile information, and tweet location. For the analysis conducted in this study, 

the tweet text, user information, and location information were taken into consideration. To 

address the inherent ambiguity of tweets, which can arise from non-standard spelling, 

inconsistent punctuation, and capitalization, additional preprocessing steps were implemented. 

The purpose of these steps was to extract clean tweet text and usernames suitable for analysis. 

This involved cleaning the text data and usernames by eliminating noise elements such as 

HTML tags, character codes, emojis, and stop words. Additionally, the tweets underwent 

tokenization, a process in which expressions, sentences, paragraphs, or entire text documents 

were broken down into smaller units, referred to as tokens, which are typically individual words 

or phrases. 
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Figure 21:Bounding box of the area for tweet collection. 

Although the data was gathered through geolocation-based search queries, it included 

numerous geotagged tweets that originated from locations outside of New York City. The 

tweets that have a (latitude, longitude) coordinate outside the bounding box [-74.264667, 

40.487217, -73.766128, 40.911357] were removed from the dataset (Figure 21). Additionally, 

the Pandas library in Python was employed to identify and eliminate any duplicates within the 

dataset, ensuring that all tweets were unique. The study specifically focused on tweets related 

to transportation DEIA. A tweet's relevance was assessed by identifying specific keywords or 

tokens within the tweet; further details regarding the steps and significance of relevance 

filtering can be found here [80]. Relevance filtering was used to find tweets about DEIA using 

the keyword list below: 

DEIA related 

keywords   

(40 words) 

"dei", "diversity", "equity", "excluded", "inequity", "inclusion", "unequal", 

"accessibility", "inaccessible", "inequality", "inequitable", "injustice", 

"unjust", "justice", "afford", "unaffordable", "affordable", "discriminated", 

"discrimination", "disability", "disabled", "wheelchair", "ada", "gender", 

"poor", "women", "disadvantaged", "underserved", "deprived", 

"underprivileged",  "denied", "marginalized”, “exclusion”,  

"polarization", "aged", "lowincome", “income”, “racism”, “race” 

To determine the DEIA relevance of the tweets, a tweet was considered relevant if it contained 

at least one of the DEIA keywords identified for this study. While this approach may exclude 

some potentially relevant tweets, it guarantees that all tweets containing these keywords are 

only included in the filtered dataset for subsequent analysis. At the end of this step, a clean 

dataset consisting of 37,552 tweets was obtained, which is 1.36% of the original dataset. 

Demographic Data 

Reverse geocoding was applied on the tweets to find the census tract information of the tweets. 

431 census tracts were identified from the DEIA related tweets (n=37,552). Each census tract 

has unique socio-demographic characteristics. To identify the transportation DEIA challenges 

faced by different demographic groups of people, the following demographic characteristics 

were collected for each census tract from the 5-year survey of American Community Survey 



 

 

34 

(ACS) published in the year 2020: 

• UPL: Percentage of population living under the poverty limit  

• HSE: Percentage of population who completed high school education 

• PI: Per Capita Income  

Based on the survey respondent’s last name, the Census Bureau compiles annual estimates of 

the racial origin distribution for each county of the US. The estimates are based on the most 

recent decennial census and population change estimates (including deaths, births, and 

migration) since then. In this study, last names categorized by different ethnicities were 

collected from the census bureau to identify the ethnicity of users in the Twitter data applying 

machine learning algorithms. User’s ethnicities were categorized as Asian, Black, Hispanic, 

and White. The study utilizes the 2010 estimates for this analysis. 

4.1.1.2 Social Security Administration Data 

The Social Security Administration (SSA) collects names from social security card 

applications for individuals born in the United States after 1879. In order to analyze the gender 

demographics of Twitter data, we obtained the first names of the applicants from the SSA 

website. According to the SSA data, there are 63,152 male names and 37,212 female names 

included in their records. 

 

Figure 22: Methodology of the study  
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4.1.2 Tweet Classification 

The topic modeling method was utilized to identify the major topics within the tweets. Once 

the major topics were determined, the tweets were classified into respective topic categories, 

and each tweet was assigned a label based on the topic category to which it belonged. The next 

sections provide a detailed explanation of the procedure. 

4.1.3.1 Topic Modeling 

Topic modeling is a computational technique used to uncover hidden thematic patterns or 

topics within a collection of text data. It is a way to automatically analyze and organize large 

volumes of text by identifying the underlying topics or themes that are prevalent in the data. 

Among many methods available, the study utilized the Latent Dirichlet Allocation (LDA) 

model  [210]. The reason behind selecting this model is its ability to uncover hidden, 

unexplored topics within the dataset. Supervised models can only identify topics they have 

been trained on, whereas LDA, being a generative probabilistic model, assumes that each text 

exhibits a variable distribution of underlying themes. Each document in LDA is supposed to 

be a combination of topics, and each topic is assumed to be a combination of words. The 

following activities are taken by LDA to assign topics to each of the documents: 

• It begins by presuming there are K subjects in the document, loops through it, and assigns 

each word to one of the K topics at random. 

• It cycles over each word in each document and computes: 

a) P (wj|tk): Percentage of assignments to topic tk across all documents for a specific word 

wj 

b) P (tk|di): Percentage of words in document di that are assigned to topic tk 

• Considering all other words and their topic assignments, reassign topic 'T' to word wj with 

probability p(tk|di)*p(wj|tk). 

The final step is repeated iteratively until a steady condition is achieved, where further changes 

in topic assignments no longer occur. The topic allocations obtained through this process are 

then used to compute the topic ratios for each document. The method is illustrated in Figure 

23. 

 

Figure 23: Conceptual Figure of LDA model. 

The model identified five major topics related to transportation DEIA discussed by the netizens 

in the dataset (Transit infrastructure, social disparity, active transport, accessibility and ride 
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sharing) with a coherence score of 0.3926. The details are shared in Table 8. 

Table 8: Optimum topics identified in the dataset. 

Topics  Most probable words in a topic (probability) 

Transit station (0.131), line (0.112), bus (0.018), train (0.010), busstop (0.009) 

Social disparity 
rich (0.067), inequity (0.043), income (0.027), equity (0.026), race 

(0.010) 

Accessibility 
Wheelchair (0.028), disabled (0.020), woman (0.016), access (0.012), 

opportunity (0.011) 

Active transport 
bike (0.016), walking (0.015), blocked (0.014), blockedbikenyc (0.014), 

vissionzero (0.014) 

Ridesharing 
ride (0.017), rent (0.017), rideshare (0.011), carpool (0.011), uber 

(0.012) 

Others  
virus (0.032), aged (0.028), quarantine (0.026), chinese (0.018), 

symptom (0.009), incident (0.067), construction (0.013) 

4.1.3.2 Data Labeling 

Manual labeling in tweet classification refers to the process of assigning predefined categories 

or labels to individual tweets within a dataset. This is typically done by human annotators who 

review each tweet and determine which category or label best describes its content. This 

annotated dataset serves as the training ground for machine learning algorithms, enabling them 

to learn patterns and associations between the textual content of tweets and their corresponding 

labels. Manual labeling is crucial for building accurate and reliable machine learning models. 

In this study, the tweets were annotated into six categories: ‘Transit infrastructure’, ‘Social 

disparity’, ‘Active transport’, ‘Accessibility’, ‘Ride sharing’ and 'Others'. 350 tweets from each 

of the categories were randomly selected with a total of 2100 tweets for manual annotation by 

two human annotators. To ensure accuracy, the labels were assigned only when both annotators 

agreed on them, guaranteeing the retrieval of correct labels. Each tweet was assigned only one 

label from the six available options. 

4.1.3.3 BERT modeling 

BERT (Bidirectional Encoder Representations from Transformers) classification is a popular 

Natural Language Processing (NLP) technique that employs deep learning models to solve 

text-based issues and was developed by Google's AI researchers in 2018 [211]. The earlier 

models could only read text data unidirectionally, which means that the model can only use the 

information available from the words that come before it in the sentence. In this context, the 

model lacks access to future words and relies solely on the preceding context. In comparison 

to them,  BERT's bidirectional approach enables it to understand the context from both sides 

of each word in a sentence (from left to right and right to left), resulting in a greater 

comprehension of the sentence structure and meaning. BERT facilitates the accurate 

categorization of text into predefined classes or categories within the context of text 

classification. This could involve sentiment analysis (categorizing texts as positive, negative, 

or neutral), spam detection (categorizing emails as spam or not spam), or any other text-based 

categorization. 

The BERT model was trained with manually annotated tweets (n=2,100). For training, K-fold-

cross-validation was used which involves dividing the dataset into k equal-sized subsets, or 
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folds, where k was set to 10.  

The trained model was applied to the dataset to predict the labels. The predicted labels were 

compared with the actual labels (manually annotated) through the confusion matrix (Figure 

24). A confusion matrix can reveal the following information: 

• True Positives (TP): The number of instances that were correctly predicted as positive by 

the model. 

• True Negatives (TN): The number of instances that were correctly predicted as negative by 

the model. 

• False Positives (FP): The number of instances that were incorrectly predicted as positive 

by the model. 

• False Negatives (FN): The number of instances that were incorrectly predicted as negative 

by the model. 

The commonly used performance metrics to evaluate the prediction performance of the model 

are precision, recall, and F1 score. Precision was calculated as: 

 
Precision = 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 = 

𝑇𝑃

𝑇𝑃+𝐹𝑃
 

(17) 

Recall was calculated as: 

 
Recall = 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 = 

𝑇𝑃

𝑇𝑃+𝐹𝑁
 

(18) 

F1 score was calculated using the following equation: 

 
F1 score = 

2∗(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
 = 

𝑇𝑃

𝑇𝑃+ 
1

2
(𝐹𝑃+𝐹𝑁)

 
(19) 

 

Figure 24:  Confusion matrix showing prediction performance of the training model. 

The F1 score of the model is determined to be 0.9868673809846785, indicating a high level of 

overall performance. Additionally, the precision value is measured at 0.9868349564997437, 

signifying the model's ability to accurately identify positive instances among the predicted 
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positives. Moreover, the recall value is computed as 0.9869055723953398, reflecting the 

model's capacity to correctly identify positive instances among the actual positives. These 

evaluation metrics collectively demonstrate the model's strong performance in terms of 

accuracy, precision, and recall. 

4.1.3 Gender and Race Prediction 

The study determined the demographic details, such as gender and race, of the individuals 

posting tweets by referencing social security and census information. This process was 

conducted simultaneously with the classification of tweets. The resulting demographic data 

was then utilized in a discrete choice model study to examine its impact on the individuals' 

DEIA related concerns. 

The study utilized the names associated with Social Security Numbers (SSNs) sourced from 

the Social Security Administration for gender identification. The dataset consisted of 63,152 

male and 37,212 female names. Some names appeared on both lists, so these duplicates were 

removed, leaving a total of 85,736 unique names. Several supervised machine learning 

techniques such as Random Forest, Naive Bayes, Support Vector Machine, and K-nearest 

Neighbor were trained, and the best performing random forest model was chosen to predict the 

gender from the first names of Twitter users. 

Regarding the determination of race or ethnicity, this was challenging due to the limited 

information available on each Twitter user. The study conducted an analysis based on the self-

reported last names in the user's profile. We used the data published by the Census Bureau, 

which provides a breakdown of the racial and ethnic composition of each surname with a 

population of over 100,000 people in the United States, as recorded in the 2010 Census. Using 

several supervised machine learning approaches, we compared the users' last names with the 

2010 Census data. Support vector machine outperformed all other techniques in this case [212]. 

For instance, the surname "Smith" is associated with individuals who identify as White 70.9 

percent of the time, Black 23.11 percent, Asian 0.5 percent, and Hispanic 2.4 percent. 

4.1.4 Discrete Choice Model 

The discrete choice framework was pioneered by McFadden (1973) in the field of travel 

demand analysis [213]. Initially, discrete choice models were primarily used to examine travel 

mode choice, which involved selecting between options like train, bus, car, or airplane for 

travel purposes. As the framework evolved, it was also employed to study the choice of travel 

routes and destinations, as demonstrated by the Ben-Akiva in 1985 [214]. 

In a discrete choice scenario, a decision maker denoted as "n" is faced with the task of selecting 

one option from a set of "J" alternatives. Here, the term "alternatives" refers to the various 

items, actions, or locations that can be chosen, while the word "choice" pertains to the decision 

made by the decision maker in selecting a specific alternative. Conventionally, the entire range 

of available options is referred to as the "choice set" or “set of alternatives”. 

The decision maker, denoted as "n" derives a certain level of utility (such as profits or 

satisfaction), labeled as "Uni," from alternative "i" if that particular alternative is chosen. The 

principle of utility maximization states that the decision maker will choose alternative "i" only 

if they anticipate deriving more utility from it compared to any other available alternative. 

Consequently, if the decision maker selects alternative "i" it implies that they expect to obtain 

less utility from each of the other alternatives: 

 𝑈ni > 𝑈nj ; (∀𝑗 ≠ 𝑖) (20) 
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Only the decision maker possesses knowledge of the utilities. Researchers do not have the 

knowledge; however, researchers can observe to the "J" alternatives, certain attributes (ani) of 

the alternatives, and decision maker attributes (dn). A representative utility or systematic utility 

(V) can be established, that links these observed attributes to the decision maker's utility: 

 Vni = V(ani, dn) ∀i  (21) 

The researchers have an incomplete understanding of utility, so generally Uni ≠ Vni. To address 

this issue, the utility can be expressed as the sum of representative utility (Vni) and an 

unobserved term (εni) that encompasses the factors determining utility but remains 

unobservable to the analyst. This unobserved term is typically treated as random: 

 Uni = Vni + εni (22) 

The probability of the decision maker (n) selecting alternative (i) is equivalent to the probability 

of the utility associated with choosing alternative (i) being greater than the utility associated 

with any other alternative within the choice set. 

4.1.5.1 Multinomial Logit Model (MNL) 

When the unobserved random utility components (𝜀ni) follow an independent and identically 

distributed (IID) extreme value distribution, commonly known as a Gumbel distribution, the 

Multinomial Logit (MNL) or Conditional Logit (CL) model can be used. 

This study used a multinomial logit (MNL) model to analyze public concerns regarding 

different DEIA concerns. The MNL is a popular type of random utility Discrete Choice model 

[215]. In this model, an individual (represented by n) selects one choice from discrete 

alternatives by assessing the associated features J (J= set of DEIA issues) in order to maximize 

their utility.  

The MNL model is constructed based on the assumption that each unobserved term, εip, follows 

an independent and IID extreme value distribution, such as the Gumbel or type 1 extreme value 

distribution. The likelihood of person ‘n’ selecting alternative j can be calculated by solving 

the following mathematical formula: 

 
P𝑖j = 

𝑒𝑉𝑛𝑖

∑ 𝑒
𝑉𝑛𝑗𝐽

𝑗=1

 (23) 

In MNL, the representative utility (Vni)  is defined as: 

 Vni = ∑ 𝛽𝑘𝑖𝑋𝑘𝑛
𝐾
𝑘=1  (24) 

In this equation, ‘K’ denotes the number of predictor variables, Xkn represents the value of kth 

predictor variable for n, of observed explanatory variables associated with choosing a particular 

alternative, and β represents the parameter for the observed utility.  

Combining equation (23) and (24) 

 

Pni = 
𝑒∑ 𝛽𝑘𝑖𝑋𝑘𝑛

𝐾
𝑘=1

∑ 𝑒
∑ 𝛽𝑘𝑗𝑋𝑘𝑛

𝐾
𝑘=1𝐽

𝑗=1

 (25) 

This formula was used for understanding a correlation between transportation DEIA concern 

and various socioeconomic characteristics. 
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4.2 RESULT 

4.2.1 Classification Outcome 

The BERT classification model successfully predicted the category of each tweet in the test 

dataset. Each tweet was labeled one of the six topics “transit”, “active transport”, “ride 

sharing”, “social disparity”, “accessibility” or “others”. The distribution is shown in Figure 

25. It is interesting to find out that during the study period, NYC people talked most about the 

transit. This finding can be attributed to the peak of the COVID-19 pandemic, which instilled 

fear in people, discouraging them from utilizing public transportation and leading to numerous 

discussions on this subject. Moreover, the temporary suspension of transit services disrupted 

the mobility of individuals heavily reliant on public transportation. Residents also talked a lot 

about social disparities, as many individuals faced job losses during the COVID-19 crisis, 

posing significant challenges to their survival and well-being. The topic of active transportation 

was frequently discussed. For those who cannot use transit for commuting, active 

transportation is an affordable alternative. However, biking is challenging to them due to the 

inequitable bike network. They frequently addressed these topics on twitter. 

 

Figure 25: Text classification outcome. 

Interestingly the number of male twitter users are almost two times than the female users in the 

final dataset. Each tweet was labeled either male or female based on the result of Random 

Forest gender and race detection model [212]. 

 
Figure 26: distribution of gender among users.  
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Figure 27: Distribution of race among users. 

About 87% of the users were white American in the dataset while the number of African 

American were least (~2%) The white American users are most vocal about DEIA issues on 

twitter (Figure 27). Maximum transportation DEIA related tweets were generated from 

Manhattan county whereas the minimum number of tweets were generated from Richmond 

county. The Manhattan users are more vocal about their equity issues on social media (Figure 

28). 

 

Figure 28: Distribution of tweets among counties. 

4.2.2 Modeling Demographic relation with DEIA challenges 

The Multinomial Logit (MNL) model was applied to examine the relationship between 

demographic or geographic factors and the specific challenges related to DEIA faced by 

individuals. The six topics detected from social media conversations (transit, active transport, 

ridesharing, accessibility, social disparity, and others) were treated as alternative set of choices. 

Five demographic variables (gender, race, per capita income, education rate, and poverty rate) 

and five geographic variables (Manhattan county, Kings county, Queens county, Bronx county, 

and Richmond county) were included to model how they influenced the selection among the 

choice set of DEIA challenges. 

4.2.2.1 Model Result 

The statistical description of variables is shown in Table 9. All variables in the model are 

categorical except the PI, HSE and UPL. The final result of the model in showed in Table 10. 
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Table 9: Descriptive Statistics of Key Variable. 

Variable Description Mean or % Minimum Maximum 

User's Gender         

  1: Female 64% 0 1 

  0: Male       

User's Race         

  White 87.13% 0 1 

  Asian 7.76% 0 1 

  Black 1.63% 0 1 

  Hispanic 3.48% 0 1 

Tweet Location: County         

  Manhattan 33.29% 0 1 

  Kings 28.09% 0 1 

  Queens 18.93% 0 1 

  Bronx 14.16% 0 1 

  Richmond 5.53% 0 1 

User's Socioeconomic attribute       

            PI: Per Capita Income($) $45,502  $2,758  $354,695  

            HSE: High School Education Rate(%) 0% 48.56% 100% 

            UPL: Below Poverty Limit Rate (%) 

  

0% 8.50% 100% 

DEIA concerns         

  Transit 17.10% 0 1 

  Active Transport 9.11% 0 1 

  Accessibility 5.39% 0 1 

  Ridesharing 11.00% 0 1 

  Disparity 13.54% 0 1 

  Others 43.85% 0 1 

The p-value or Pr(>|z|), represents the statistical significance of each variable. Values that have 

a p-value below 0.05 are regarded as statistically significant. The McFadden Pseudo R-squared 

value for the model is 0.501. This metric provides an estimate of the goodness-of-fit, indicating 

that approximately 50% of the total variation in the dependent variable is explained by the 

independent variables included in the model. The Hosmer-Lomeshow goodness of fit test (HL 

test) is used to evaluate the model's fit. The resulting p-value from the test is 0.392. Since this 

p-value is greater than the conventional significance level of 0.05 [216], it suggests that the 

model adequately fits the data.  

The coefficients represent the log-odds of the outcome variable for each unit change in the 

explanatory variable, while holding all other factors constant. A positive sign implies that an 

increase in the variable is associated with a higher probability of choosing the corresponding 

topic, while a negative sign suggests a lower probability.  
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Table 10: Model Result (* means that variable is statistically significant at α = 0.05) 

Variable Category Coeff. p-value  Significance 

Female 

Transit 0.914 0.015 * 

Active Transport 0.438 0.782   

Accessibility -0.898 0.113   

Ridesharing -2.330 0.262  * 

Disparity 0.6119 0.038   

PI: Per Capita Income 

Transit -0.914 0.142   

Active Transport -0.115 0.323   

Accessibility 0.703 0.013   

Ridesharing 0.17 0.005 * 

Disparity 0.361 0.912   

HSE: High School Education 

Transit -0.527 0.573   

Active Transport 0.139 0.755   

Accessibility -0.031 0.066  
Ridesharing 0.999 0.037  * 

Disparity 0.679 0.382   

UPL: Under Poverty Limit 

Transit 0.089 0.248   

Active Transport 0.234 0.018 * 

Accessibility -1.745 0.755   

Ridesharing 0.219 0.174   

Disparity 0.146 0.045 * 

Asian 

Transit 0.724 0.41   

Active Transport 0.08 0.081   

Accessibility 0.469 0.045 * 

Ridesharing -0.048 0.188   

Disparity 0.157 0.015 * 

Tweet location: Richmond 

County 

Transit 0.034 0.351   

Active Transport 0.063 0.028 * 

Accessibility -1.104 0.048   

Ridesharing 0.038 0.102   

Disparity 0.089 0.38   

Tweet location: Queens County 

Transit 0.726 0.032 * 

Active Transport -0.193 0.205   

Accessibility 0.05 0.683   

Ridesharing 0.213 0.581   

Disparity 0.895 0.174   

Tweet location: Bronx County 

Transit 0.914 0.015   

Active Transport 0.439 0.782 * 

Accessibility -0.899 0.113   

Ridesharing 2.331 0.262 * 

Disparity 0.612 0.039   

Number of cases 37,522 

McFadden Pseudo r2 0.501 

Hosmer-Lomeshow test: p-value 0.392 
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The magnitude of the coefficient represents the strength of the relationship. Larger coefficients 

indicate a more significant impact on the likelihood of selecting a particular DEIA topic. If a 

coefficient has a p-value below the chosen significance level (e.g., α = 0.05), it suggests that 

the variable has a statistically significant impact on the choice of DEIA topic. 

4.2.2.2 Model Interpretation 

The choice set for this model comprises six transportation DEIA topics: transit, active transport, 

ridesharing, accessibility, social disparity, and others. The model was constructed to analyze 

the relation between ten demographic/geographic factors with the probability of tweeting about 

one of the six topics in the choice set. The model yields intriguing insights into the relationships 

between these factors which can help planners to detect the marginalized population and areas 

with inequitable transportation networks. 

Specifically, it was found that females in NYC exhibited a strong inclination to discuss transit 

and ridesharing topics in their tweets. Furthermore, per capita income displayed a negative 

association with transit, indicating that higher-income populations tend to discuss transit less 

frequently. Conversely, there was a statistically significant positive relationship between per 

capita income and ride sharing, suggesting that individuals with higher incomes tend to tweet 

more about ride sharing compared to other topics. 

The percentage of the population with a high school education exhibited a statistically 

significant positive relationship with the topic of accessibility, indicating that individuals with 

higher levels of education are more likely to engage in conversations related to ridesharing and 

accessibility. 

Additionally, the percentage of the population below the poverty limit showed a positive 

relationship with both active transport and social disparity, implying that lower-income 

populations rely more on active forms of transportation and are more sensitive to social and 

economic disparity. Consistent with prior literature, it was observed that Asians tended to 

express more concerns about accessibility and social disparity [217, 218]. 

Interestingly, residents of Richmond County were found to engage in more discussions about 

active transport, while individuals residing in Queens County had a higher tendency to discuss 

transit topics. This suggests that Queens County may have a less developed public transit 

infrastructure, while the residents of Richmond County face challenges in cycling due to 

inequitable cycling infrastructure. 

These findings shed light on the intricate connections between demographic/geographic factors 

and transportation-related topics, providing valuable insights into transportation DEIA issues 

in NYC. 

4.3 SUMMARY 

In this chapter, the twitter conversations of NYC citizens that are related to DEIA were 

analyzed using machine learning and natural language processing algorithms to find out the 

key transportation DEIA concerns. The concerns were further correlated with demographic 

(e.g., gender, race, income of twitter users) and geographic factors (e.g., location of twitter 

users) using statistical model to understand the relation between such factors and the sensitivity 

to the DEIA issues. The model yields the following key findings. 

• Females were more likely to discuss the inequities they faced in transit and ridesharing 

while traveling, while Asian individuals showed greater sensitivity to accessibility and 

social disparity issues. 
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• Socioeconomic factors, including education, income, and poverty, also played a role in 

influencing travel choices. Discussions about ride sharing were more prevalent among 

those with higher education and higher income. 

• Moreover, people's tweeting behavior concerning DEIA concerns was influenced by their 

location. For example, residents of Richmond county were more engaged in discussions 

about active transport, while those in Queens county showed a higher focus on transit-

related issues compared to other concerns. 

Chapter 5 

5.1 CONCLUSION 

5.1.1 Summary  

The study aimed to analyze bicycle network data from various regions in the USA to assess the 

impact of graph properties on network accessibility. A statistical regression model was 

employed to examine the relationship between accessibility scores and graph properties, as 

well as demographic characteristics as explanatory variables. Building upon the insights gained 

from the model, a systematic intervention approach was proposed using network science to 

enhance network accessibility. The findings of this study provide valuable guidance to 

planners, aiding them in identifying target areas and road segments for improving bike 

accessibility in the United States.  

Another objective of this study was to examine the role of social media platforms, specifically 

Twitter, in gaining insights into public perceptions and attitudes towards transportation 

diversity, equity, inclusion, and accessibility (DEIA) indicators. Through the utilization of a 

deep learning approach, tweets from New York City users between February 2020 and April 

2020 were classified based on various DEIA issues. Additionally, a discrete choice model was 

developed to assess user sensitivity towards different transportation DEIA matters, considering 

demographic characteristics and geographic locations. The findings offer valuable implications 

for planners, as the model can aid in identifying target populations and locations for prioritizing 

efforts towards transportation DEIA development.  

5.1.2 Key Findings 

Key findings of bike network data analysis:  

• Using the Multiple Linear Regression (MLR) model, the study explored how network and 

demographic factors influence bike network accessibility in the area, revealing some 

interesting insights. 

• Several network parameters, including diameter, circuity, and average path length, are 

crucial indicators of accessibility. The study found that diameter and circuity have a 

negative relation to accessibility, whereas average path length showed a positive relation. 

• Demographic factors such as percent bike commuters also indicate bike accessibility as 

found from this study. Higher percentages of bike commuters were associated with 

increased bike network accessibility, providing planners with valuable information for 

identifying areas that require attention. 

• The research highlighted the importance of reducing circuity to enhance accessibility, with 

even minor reductions having a substantial impact on overall accessibility. 
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• Nodes with low centrality emerged as key players in improving network accessibility, 

emphasizing the need to strengthen these nodes to enhance the bike infrastructure. 

• The utilization of betweenness centrality proved instrumental in identifying critical nodes 

for accessibility interventions, offering valuable guidance for targeted improvements. 

• The graph theory framework presented in this study provides planners with a systematic 

approach to analyze the impact of interventions on network connectivity and accessibility. 

It serves as a valuable tool for making informed decisions and directing focused efforts to 

improve the bike infrastructure. 

Key findings of the social media data analysis:  

• The study uses an unsupervised machine learning algorithm (LDA) to detect the major 

transportation DEIA issues discussed by the twitter users of NYC during study period. Five 

topic were detected ‘transit infrastructure’, ‘active transport’, ‘ridesharing’, ‘accessibility’, 

‘socio-economic disparity in the optimal model.   

• The study develops a Multinomial Logit (MNL) model to analyze the demographic and 

geographic correlation of individuals with their sensitivity to the transportation DEIA 

issues. 

• Personal characteristics such as race and gender have significant relation with DEIA issues. 

Females are more likely to talk about transit and ridesharing inequities they face while 

travelling, while Asian people are more sensitive to accessibility and social disparity issues. 

• Socioeconomic factors like education, income, poverty also influence travel choices. 

Higher education and high income are associated with discussions about ride sharing. 

• Location also affects people's tweeting behavior related to DEIA concerns. For example, 

people in Richmond county discuss more about active transport, while those in Queens 

county focus more on transit than other issues. 

5.1.3 Limitations 

The study acknowledges limitations related to the presence of bot-generated tweets and 

suggests further research to eliminate such tweets using available methods. A bot-generated 

tweet is a message posted on Twitter that has been automatically generated by a computer 

program, often lacking human touch and genuine interaction. Conducting surveys among 

Twitter users and integrating national databases, such as the National Household Travel 

Survey, could improve the model.  

The social media users may not be representative of the opinion of the entire population living 

in the study area. As a result, the findings may primarily reflect the views and perspectives of 

specific segments of the population, particularly the younger demographic and those residing 

in areas with high internet accessibility. Using stratified sampling method can produce a better 

representation of the community. 

Although the author identified key DEIA related topics discussed in the twitter data, it doesn’t 

capture the positive or negative sentiment of the tweets. By applying sentiment analysis, this 

limitation can be addressed. Such analysis can provide a better understanding of the DEIA 

issues of an area. 



 

 

47 

5.1.3.1 Privacy Concern  

During the course of this research, Twitter data was employed to investigate various social 

phenomena and aspects pertinent to the study's scope. Nevertheless, it is essential to address 

potential privacy concerns arising from the utilization of such data. While Twitter is a public 

platform where users voluntarily share information, analyzing their tweets raises ethical 

considerations. Even though no direct quotes or specific tweet content were used in this study, 

and all data was anonymized and aggregated, there remains a possibility that some users' 

identities or sensitive details could be indirectly inferred through patterns or associations in the 

data. To mitigate such risks and uphold user privacy, stringent measures were taken to ensure 

the complete anonymization of the data used. Usernames or any other identifiable information 

were excluded from the analysis to protect the privacy of Twitter users fully. Additionally, this 

research adheres to ethical guidelines and regulations to respect and preserve the privacy of 

individuals contributing to the public discourse on social media platforms like Twitter. 

5.1.4 Future Directions 

Several potential future directions can be explored in the network data analysis presented in 

this thesis: 

• Consideration of other web map platforms: While this study focused on utilizing a specific 

web map platform (OpenStreetMap), other platforms such as Google Map can be explored. 

• Testing alternative statistical regression models: Although this research employed an MLR 

model, there is room for further investigation and experimentation with alternative models. 

Testing different regression techniques can provide a comparative analysis, enabling the 

selection of the most appropriate model for network data analysis. 

• Expansion of sample size: Conducting the analysis with a larger sample size, encompassing 

a greater number of cities, would enhance the accuracy and generalizability of the model.   

• Extending analytical scope: While the research focused on bike routes, the methodology 

applied in this study can be extended to analyze accessibility concerns for other 

transportation modes, such as buses and trains, by utilizing their respective shapefiles. This 

expansion of analysis has the potential to provide a comprehensive understanding of 

transportation equity across various modes, guiding policymakers and urban planners in 

improving transportation DEIA in the study area. 

The future direction for utilizing social media data in analyzing transportation DEIA presents 

several potential avenues for exploration. These include: 

• Expanding data sources: Exploring the use of additional social media platforms, such as 

Facebook and Uber could provide a more comprehensive understanding of public 

perception and attitudes towards transportation trends and DEIA issues. However, such 

data may not be cost-free and publicly accessible. 

• Incorporating additional demographic parameters: Testing the inclusion of additional 

demographic parameters, such as age, alongside existing variables, can further enrich the 

analysis and provide a more nuanced understanding of the relationship between 

demographic factors and transportation DEIA. 
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• Extending geographic scope: Conducting similar analyses in different geographic areas can 

offer insights into regional variations and shed light on the diverse challenges faced by 

communities in different locations. 

• Addressing bias: Recognizing that social media usage may not represent the entire 

population, future studies should consider implementing stratified sampling techniques to 

reduce bias and ensure a more representative sample for analysis. 

By exploring these future directions, researchers can enhance the effectiveness and inclusivity 

of social media and network data analysis in examining transportation DEIA, leading to more 

robust findings and actionable insights for policymakers and planners. 
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Appendix 

 

 

 

 

Figure 29: Source nodes and target nodes for most central nodes intervention. 
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Figure 30: Source nodes and target nodes for random nodes intervention. 
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Figure 31: Source nodes and target nodes for least central nodes intervention. 
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