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THE EFFECT OF REOVIRUS ADENINE RICH RNA ON L CULL 

MACROMOLECULAR SYNTHESIS AND ITS POSSIBLE ROLE 

IN THE REPLICATIVE CYCLE OF THE VIRUS

CHAPTER I 

INTRODUCTION

The n a tu re  of c e l lu la r  rep ro d u c tio n  and the  l i f e  

cycle  of c e l ls  has been one of the  most in te n s iv e ly  s tud ied  

a reas  of modern b io lo g y >. The c e l l  cycle  has been d iv ided  

in to  fo u r  d i f f e r e n t  phases (21 ) designated  M, 01, S, and 02, 

and defined  by th e  m orphological and biochem ical even ts which 

occur during each of these  p e r io d s . The time in te r v a l  from 

prophase to  te lo p h ase  has been d esigna ted  M or m ito s is  «

Gap 1 (01); has been c h a rac te rize d  by an  in c reased  r a t e  of 

r ib o n u c le ic  a c id  (RNA) and p ro te in  sy n th e s is . During th is  

phase a  sm all m olecular weight so lu b le  p ro te in  i s  u ltim a te ly  

produced which i s  necessary  fo r  the i n i t i a t i o n  of 8 or the 

D eoxyribonucleic ac id  (DNA) sy n th e tic  phase (46, 1^)« Oap 2 

(02) i s  a  r e s t in g  s ta te  between S phase and m ito s is  and is  

c h a ra c te r iz e d  by reduced ra te s  o f c e l lu la r  macromolecular 

s y n th e s is . Every v a r ie ty  of c e l l  p o ssesses c h a r a c te r is t ic

1
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tim e in te rv a ls  in  which each of these  c e l lu la r  events a re  

completed.

Since many v iru se s  a re  known to d is ru p t c e l lu la r  mac­

rom olecular sy n th e s is  during v i r a l  r e p l ic a t io n ,  the  c e l lu la r  

events which occur during  th e  c e l l  cycle  have proven to  he an 

im portan t p a r t  of the  study of v iru s -h o s t  c e l l  in te r a c t io n s .

In  th is  study I  have heen p a r t ic u la r ly  in te r e s te d  in  a l t e r a ­

tio n s  of c e l lu la r  macromolecular sy n th e s is , during the phases 

of the  c e l l  cy c le , i n  r e la t io n  to  the  r e p l ic a t io n  of reo v iru s 

type 3 -

One of the in tr ig u in g  fe a tu re s  of many v iru s  in fe c ­

t io n s  i s  the in h ib i t io n  of DM syn th esis  and /o r the  a l te r a t io n  

in  the  t r  ans c r ip  t iv e  and t r a n s la t io n  p rocesses which occur in  

th e  c e l l  cycle of the  in fe c te d  c e l l  (32, 33; 39) *• Whether 

these  changes in  c e l lu l a r  macromolecular sy n th e s is  a re  neces­

sa ry  fo r  v iru s  r e p l ic a t io n  remains u n c le a r . Although the 

mechanisms of v iru s  induced a l te r a t io n s  in  c e l lu l a r  macro­

m olecular sy n th e s is  a re  no t w ell understood c h a ra c te r iz a tio n  

o f these mechanisms cou ld  provide a va luab le  means of studying 

the  re g u la tio n  of DNA fu n c tio n  in  normal as w e ll as v iru s  in ­

fe c te d  c e l l s .

There may be numerous mechanisms by which v iru se s  

a l t e r  DNA fu n c tio n s . C erta in  members of the p ico rn av iru s  

group such as p o lio m y e lit is  and mengovirus (33j 39) and c e r ­

t a in  myxoviruses appear to  produce a v i r u s - s p e c i f ic  p ro te in  

which may a c t d i r e c t ly  or in d ir e c t ly  in  the  in h ib i t io n  of



3

c e l lu la r  DM sy n th esis  or t r a n s c r ip t io n .  Adenovirus in fe c tio n  

r e s u l t s  i n  the  in h ib i t io n  of c e l lu la r  DNA syn thesis  fo llow ing 

th e  accum ulation of a sp e c if ic  v iru s  coat p ro te in  w ith in  the 

h o s t c e l l  (32) .  Reovirus possesses c e r ta in  unique p h y s ic a l, 

chem ical and b io lo g ic a l p ro p e r tie s  which suggest i t s  s u i t a ­

b i l i t y  as a model system fo r  d e f in i t iv e  c h a ra c te r iz a tio n  of 

v i r a l  m o d ific a tio n  of c e l lu la r  genome fu n c tio n .

The p h y sic a l and b io lo g ic a l c h a ra c te r is t ic s  of 

re o v iru s  have been ex ten siv e ly  s tu d ie d  in  rec en t y e a rs . The 

v iru s  c o n ta in s  double stranded  and s in g le  stranded  RNA s u r ­

rounded by a p ro te in  capsid (22). The capsid  c o n s is ts  of an 

in n e r  core p ro te in  surrounding the RNA and an outer p ro te in  

s h e l l .  R eovirus possesses cubic symmetry of the ico sah ed ra l 

type and th e  complete v ir io n  has a diam eter o f 7$nm (16). The 

o u te r  co a t of the v ir io n  i s  n ecessa ry  fo r  e f f ic ie n t  in fe c t io n  

(22) ,  s in c e  the  removal of the ou ter capsid  by chymotrypsin 

d ig e s tio n  decreases v ir io n  in f e c t i v i ty .  However, the  ou ter 

co a t does n o t  seem to  play any o th er d isc e rn ib le  ro le  in  the 

r e p l ic a t iv e  cycle  of the v i ru s .  The core i s  fu n c tio n a lly  

more s ig n i f ic a n t  during the r e p l ic a t iv e  cycle since i t  con­

ta in s  a  t r a n s c r ip ta s e  (44). The co res co n ta in  the double 

stranded  RM and ca ta ly ze  the sy n th e s is  of new s in g le  stranded  

RNA w hile  f u l l y  conserving the  v i r a l  genome RNA w ith in  the  

core (22) .

Reovirus con ta ins double stran d ed  RNA (dsRNA). This 

was f i r s t  re p o r te d  by Gomatos and Tamm (19) and has s ince
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been confirm ed by nmnerous in v e s t ig a to r s  (16, 30, 2k^ *+8). The 

evidence fo r  the double s tranded  n a tu re  of the reo v iru s  genome 

has been determ ined using  a number of d i f f e r e n t  techniques- 

The RNA e x h ib its  a very  sharp m elting  p r o f i l e ,  is  r e s i s t a n t  to  

r ib o n u c lease  d ig e s tio n  and base com position a n a ly s is  in d i­

c a te s  e q u a lity  of adenine and u r a c i l  as w e ll as guanine and 

cy to s in e  (2, ^ 2 ) . X-ray d i f f r a c t io n  pa ,tte rn s have confirmed 

th a t  reo v iru s  dsRNA e x is ts  in  the form of a double stranded 

h e l ix  (30).,

The dsRNA occurs in  3 d i s t in c t  s iz e  c la sse s  or f ra g ­

ments» The m olecular w eights of the  3 fragm ents a re  0 .8 , 1-4-, 

and 2 . 5x10^ d a ltons fo r  the  sm all, medium, and la rg e  fragm ents 

re s p e c tiv e ly  (4, 50) ■■ Since the re o v iru s  genome i s  thought to  

have a  m olecular w eight of 10? d a lto n s  and a to ta l  leng th  of 

8 urn ( 18) one must ass'ume th a t  more than one of each of these  

fragm ents i s  in co rp o ra ted  in to  each v i r io n .  In v es tig a tio n s  

using  polyacrylam ide ge l e le c tro p h o re s is  have shown th a t  each 

v i r io n  con ta in s 3 of the la rg e ,  3 o f the  medium and 4 of the 

sm all fragm ents (41 ) .  The chem ical d e te rm ina tion  of the num­

ber o f 3 ' -  OH groups per v i r io n  y ie ld s  a number o f about 20 

(36) w hile  end group a n a ly s is  (49) re v e a ls  th a t  these  f ra g ­

ments a re  probably  n o t lin k ed  w ith in  the  v i r io n .  Furtherm ore, 

th e re  i s  no cross h y b r id iz a tio n  between th e  m olecules making 

up the  3 s iz e  c la sse s  (50) and the v a rio u s  segments a re  tra n ­

sc r ib e d  s p e c i f ic a l ly  in to  s in g le -s tra n d e d  RNA m olecules (3,

51)5 in d ic a tin g  th a t  these  te n  m olecular sp e c ie s  a re  not
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fragm ents o r p roducts of random breakage r e s u l t in g  from is o ­

la t io n .

In  a d d itio n  to  the dsRNA complement, reov iru s con­

ta in s  a s in g le -s tra n d e d  a d en in e -r ich  RM (A -rich  RM) (2, 4-̂  

4 2 ). Although i t  i s  n o t known how the A -rich  RM is  formed 

nor why i t  i s  encapsidated  a number of i t s  unique c h a ra c te r­

i s t i c s  have been e lu c id a te d .

The A -rich  RM appears to  be a c o n s t itu e n t  of the 

v iru s  core (35)? a lthough  some in v e s tig a to r s  (28) suggest th a t  

i t  i s  found between the  o u ter coat and v iru s  c o re . According 

to  th e  l a t t e r  hypo th esis  any trea tm en t th a t  would remove the 

o u te r co a t, would th en  a lso  remove the A -rich  RM. However, 

removal of the  o u te r  capsomeres may m erely allow  the A -rich  

RUA to  le a k  out of th e  core (22). Reovirus which does no t 

con ta in  A -rich  EM has a lso  been rep o rte d  (28). However, in  

th is  re p o r t  the methods used to  p u r ify  the  v iru s  may have r e ­

su lte d  i n  th e  removal of the  A -rich  RM from th e  v ir io n .

V ira l i n f e c t iv i ty  i s  a lso  decreased  by any trea tm en t th a t  

causes the  lo s s  of A -rich  RM (22).

Work w ith  in fe c te d  and "mock" in fe c te d  c e l ls  in d ic a te s  

th a t  th i s  A -rich  RM i s  n o t syn thesized  in  u n in fec ted  L c e l ls  

(2) and th a t  in  in fe c te d  c e l l s  l i t t l e  i f  any A -rich  RM i s  

syn thesized  befo re  8 hours p o s t in fe c t io n  (2 ). D etectab le  

amounts of A -rich  RM appear in  in fe c te d  c e l l s  between 9 and 

13 hours a f t e r  in f e c t io n  (2 ) which co inc ides w ith  the r e p l i ­

c a tio n  o f th e  double stranded  genome. Furtherm ore, i t  has
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been dem onstrated th a t  th is  A -rich  RNA w i l l  no t hy b rid ize  to  

any of the  dsRNA fragm ents (2 ). Each v ir io n  con ta ins approx­

im a te ly  2000 of th ese  A -rich  o lig o n u c leo tid e s  c o n s titu tin g  

approxim ately  2%  of the to ta l  RNA p re s e n t (1, 2 , 42).

The base com position has been determ ined by sev era l 

in v e s t ig a to r s  (1 , 2 , 42) and i s  88 to  89^ adenine, 10$ u r a c i l , '  

and 1$ each of guanine and c y to s in e . A value of 1.85 S has 

been shown fo r  A -rich  RNA which corresponds to  a m olecular 

w eight of approxim ately  5300 da ltons and a chain  len g th  of 15 

n u c le o t i le s  (42).

A more re c e n t an a ly s is  of th is  A -rich  RNA dem onstrates 

th a t  i t  re p re s e n ts  a  h igh ly  heterogeneous p o pu la tion  of mole­

c u le s  w ith  re s p e c t  to  both s ize  and base com position (1) .

S ix ty  per c en t o f th e  m olecules a re  from 6-12 n u c leo tid es  

long and th e  o v e ra l l  s iz e  range i s  from 2 to 15 n u c leo tid es  

(1 ) . While most o f the m olecules have a 5 ' PPP and a 3 ’-OH 

some of th e  sm a lle s t molecules have an unusual, o r u n id e n ti­

f i e d ,  component a t  the  5' term inus (1 ) .  In  a d d itio n  the 

sm alle r m olecules co n ta in  a h igher p ro p o rtio n  of pyrim idines 

and a  t r in u c le o t id e  of com position pppGpCpU has been id e n t i ­

f i e d  (1, 2 2 ) .

R ecent d isc o v e rie s  o f adeny lic  a c id  r ic h  sequences in  

th e  heterogeneous n u c lea r RNA of normal (9, 10, 12) as w ell 

as transform ed c e l l s  (31 ) have prompted renewed in te r e s t  in  

th e  A -rich  RNA of re o v iru s . In  a d d itio n  po lyadenylic  ac id  

sequences have been shown in  v a cc in ia  v iru s  mRNA (23) and in
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the  v iru s  sp e c if ic  mRNA of adenovirus in fe c te d  c e l l s  (37)» 

F u rth e r work along these  l in e s  has shown th a t  non-tem plate  

s in g le -s tra n d e d  p o ly rib o n u c leo tid es  can s tro n g ly  and s p e c if ­

i c a l l y  in h ib i t  the  DNA polymerase of Rausher murine leukem ia 

v i r u s .  In  these  s tu d ie s  p o ly u rid in e  is  a much more e f f e c t iv e  

in h ib i to r  than  po lyadenine, a lthough  the l a t t e r  i s  s t i l l  i n ­

h ib i to ry  fo r  the  enzyme (4-7 ) .

Reovirus i s  a unique r ib o v iru s  because of i t s  r e l a ­

t iv e ly  long la te n t  period  (7, 8 , 16). A fte r an i n i t i a l  2 

hour ad so rp tio n  p e rio d  in fe c tio u s  v iru s  t i t e r s  do n o t i n ­

c rease  fo r  7 hours (16). The c e l l  a sso c ia ted  v iru s  th en  in ­

c reased  ex p o n en tia lly  from 9-13 hours and reached a maximum 

a t  15-24- hours (16). Subsequent work has shown th a t  reo v iru s  

RNA appears in  in fe c te d  c e l ls  7-8 hours a f te r  in fe c t io n  which 

co inc ides w ith  the s t a r t  o f v iru s  induced in h ib i t io n  of c e l ­

l u l a r  DNA sy n th e s is  ( l5 j 2 9 ). Reovirus in fe c tio n  ap p aren tly  

has no e a r ly  e f f e c t  on the sy n th e s is  of c e l lu la r  RNA or p ro ­

t e in  sy n th e s is  (1 5 )» By in c re a s in g  the m u lt ip l ic i ty  of in ­

f e c t io n  i t  has been shown th a t  the  in h ib i t io n  of c e l lu l a r  DNA 

sy n th e s is  occurs as e a rly  as 3 hours p o s t- in fe c tio n  (7 ; 8 ) . 

U l t r a v io le t  l ig h t  in a c t iv a t io n  of the  in fe c tiv e  v iru s  p a r t i ­

c le s  does n o t a l t e r  the  in h ib i to ry  capacity  of th e  v iru s  (8 ) 

and th e  in h ib i t io n  of c e l lu la r  DNA sy n th esis  was no ted  to  

occur e a r l i e r  during in fe c tio n  as th e  le v e ls  of in a c t iv a te d  

v iru s  were in c re a se d . Thus, whether the v iru s  was in fe c tio u s  

or n o n -in fe c tio u s  the  time a t  which DNA sy n th e s is  was
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in h ib i te d  seemed to  be so le ly  dependent on the number of v iru s  

p a r t i c le s  p re s e n t .  The dose response e f f e c ts  of these  in ­

f e c t iv e  and n o n -in fe c tiv e  v iru s  p a r t i c l e s  suggests th a t  the 

in h ib i to r  of c e l lu la r  DNA sy n th esis  i s  an in te g r a l  p a r t  of the 

v iru s  and i s  r e s i s t a n t  to  u l t r a v io l e t  r a d ia t io n .  One could 

sp ecu la te  th a t  th is  e a r l ie r  in h ib i t io n  o f c e l lu la r  DNA syn­

th e s is  could be due to  a cy to tox ic  e f f e c t  and subsequent c e l ­

lu la r  d ea th  b u t th is  does no t seem to  be the  case (7 ) .

F u rth e r experiments (13) u sing  synchronous c e l l  

c lu tu re  have suggested th a t  L c e l ls  a re  prevented from e n te r­

ing in to  S phase follow ing reo v iru s  in f e c t io n .  The p o ss i­

b i l i t y  was in v e s tig a te d  th a t  reo v iru s  in fe c t io n  may in h ib i t  

DNA sy n th e s is  through a red u c tio n  in  n ecessa ry  enzyme a c t iv ­

i t i e s  (13) .  Those enzyme a c t iv i t i e s  n ecessa ry  fo r  DNA syn­

th e s is  were n o t s ig n if ic a n t ly  decreased  even a t  12 hours p o s t­

in fe c t io n ,  a tim e when c e l lu la r  DNA sy n th e s is  i s  in h ib ite d  by 

80^ or more (13)- Recent work has a lso  dem onstrated th a t the 

in h ib i t io n  of DNA syn thesis  cannot be accounted fo r  by a r e ­

duced r a t e  of DNA chain e longa tion  (20). Thus i t  would seem 

th a t  th e  i n i t i a t i o n  of r e p l ic a t io n  of new DNA chains i s  the  

step  most s e n s i t iv e  to  in h ib i t io n  by re o v iru s . Even though 

the  cause o f th e  in h ib i t io n  a t  th is  s te p  in  the  c e l l  cycle i s  

no t r e a d i ly  ap p aren t, hypotheses have been p resen ted  (8 , 13) 

which would ex p la in  th is  phenomenon.

The in h ib i t io n  of DNA sy n th e s is  by reo v iru s  may be 

due to  the  s p e c if ic  in h ib i t io n  of the  sy n th e s is  or a c t iv i ty
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of i n i t i a t o r  p ro te in .  A lte rn a tiv e ly , th e  in h ib i t io n  of DNA 

sy n th e s is  might somehow a f f e c t  the i n i t i a t i o n  p rocess by a f ­

fe c tin g  the  in te g r i ty  of the n u c lea r membrane s in c e  reo v iru s  

has been shown to  lo c a l iz e  in  p e rin u c le a r  in c lu s io n s  (13)» 

Another p o s s ib i l i ty  i s  th a t  the t r a n s p o r t  of i n i t i a t o r  sub­

stances across the  n u c le a r  membrane i s  impeded by v iru s -  

s p e c if ic  p roducts (13) .  F in a lly , the  n u c le ic  a c id  component 

of the v i r a l  genome may e i th e r  code fo r  an i n h ib i to r ,  i n t e r ­

a c t  w ith the DNA sy n th esiz in g  system d i r e c t ly ,  o r p ro te in a -  

ceous components of the  in fe c tio u s  v i r io n  may se rve  as the 

in h ib i to r  (8 ) .

The main th r u s t  of my re se a rc h  has been to  e lu c id a te  

th e  mechanisms of re o v iru s  in h ib i t io n  of DNA sy n th e s is  in  

p a r t ic u la r  and i t s  e f f e c ts  on o ther c e l lu la r  macromolecular 

syn thesiz ing  systems in  g e n e ra l. In  p a r t i c u la r  I  have in ­

v e s tig a te d  the e f f e c t  o f reo v iru s  A -rich  RNA on c e l lu la r  mac­

rom olecular s y n th e s is .

As p rev io u s ly  described  th is  heterogeneous popu la tion  

o f A -rich  m olecules possess a number of c h a r a c te r i s t ic s  which 

makes i t  a l ik e ly  cand idate  fo r  th is  in h ib i to ry  p ro cess .

Avian reo v iru s  A -rich  RNA has been shown to  b ind  ly sy l  t-RNA 

to  E. c o li  ribosom es (27) and thus i t  may a c t  as a mRNA to  

form a b asic  p r o te in .  Since the  g e n e tic  code f o r  ly s in e  is  

A-A-A (52) th is  i s  a d i s t in c t  p o s s ib i l i ty .  The fin d in g  of 

po lyadeny lic  a c id  sequences in  o ther v iru s  in fe c te d  c e l ls  

(23 j 37) along w ith  the  high  adeny lic  a c id  c o n ce n tra tio n  in
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heterogeneous n u c le a r  RM (9 , 10,, 12) tends to  im p lic a te  the  

A -rich  RNA of re o v iru s  as being p o te n t ia l ly  im p o rtan t, po s­

s ib ly  having a w idespread g en e ra l function^  The f a c t  th a t  

homoribopolymers such as po ly  (Ü) and po ly  (A) can in h ib i t  

DM polymerase a c t iv i t y  (̂ +7) in  a d d it io n  to  the  f a c t  th a t  

po lyadeny lic  ac id  sequences a re  p a r t ic u la r ly  U. V. r e s i s t a n t  

(^3) makes the A -rich  RNA o f reo v iru s  even more a t t r a c t iv e  as 

an in h ib i to r .

This in v e s tig a t io n  i s  r e s t r i c t e d  to  a study  of the DNA 

in h ib i to ry  fu n c tio n  o f re o v iru s  RNA and emphasizes th e  ro le  of 

A -rich  RNA in  th e  in h ib i to ry  p ro ce ss . In  a d d it io n , I  have 

examined the  ro le  of th i s  A -rich  RNA in  is o la te d  n u c le i  " in  

v i t r o "  DNA sy n th e s iz in g  system s. By u t i l i z i n g  th ese  te c h ­

n iques I was ab le  to  in v e s t ig a te  the ro le  of A -rich  RNA on 

th e  so lub le  p ro te in  i n i t i a t o r  produced l a t e  in  G! phase, and 

a c t iv e  during S phase of th e  c e l l  cy c le .



CHAPTER I I  

METHODS AND MATERIALS

C ells

Mouse f i b r a b l a s t s ,  s t r a in  L-929 were obtained  from 

Flow L a b o ra to r ie s , R o ck v ille , Maryland. The c e l ls  were main­

ta in e d  in  suspension  c u ltu re  w ith  E agle-s sp inner m odified 

minimal e s s e n t ia l  medium (MEM) (Schwarz B ioresearch) supple­

mented w ith  7^ (v /v) f e t a l  c a l f  serum (PCS) (Earn L abo ra to ries 

I n c . ) .  Stock c e l l  suspensions were m ain tained  a t  an average 

c e l l  d e n s ity  of 2x 10^ c e lls /m l by d i lu t io n  w ith  f re s h  p re ­

warmed MEM every  ^8 h o u rs .

Monolayer c u ltu re s  were e s ta b lis h e d  from s to c k  sus­

pension  c u ltu re s  u sin g  b asa l E ag le ’s medium (BME) (Grand 

Is la n d  B io lo g ic a l Company) and 10^ PCS. C ells  a t  a concen­

t r a t io n  of 7x 10^/ml were added to  30 ml p l a s t i c  c u ltu re  

f la s k s  (Falcon P la s t ic s )  and allowed to  a t ta c h  to the  su rface  

of th e  f l a s k  a t  room tem perature fo r  2 ho u rs . A fter being 

incubated  a t  37 C f o r  2k to  36 hours the  c e l ls  formed con­

f lu e n t  m onolayers and were then u t i l i z e d  fo r  experim ental 

purposes a t  t h i s  tim e.

11
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Virus

The hearin g  s t r a in  of reo v iru s  type 3 was k in d ly  pro­

vided by Dr. P. J .  Gomatos. The v iru s  was propagated  in  L 

c e l ls  in  suspension  c u ltu re s . The c e l l s  a t  a  co n cen tra tio n  of 

1x10^ c e lls /m l were concen tra ted  by c e n tr ifu g a tio n  (650xg fo r  

5 min) and resuspended in  fre sh  pre-warmed medium con ta in ing  

1$ (v/v) PCS a t  2%  of the  volume of th e  o r ig in a l  suspension 

c u ltu re . Two passage plaque p u r if ie d  v iru s  was added to  the 

concen tra ted  c e l l  c u ltu re  a t  a m u l t ip l ic i ty  of 10 plaque 

forming u n i ts  (FFU) per c e l l  and allow ed to  adsorb a t  37 C 

fo r  2 hou rs. F resh  pre-warmed medium was then  added to  the 

c u ltu re  s u f f i c i e n t  to  re tu rn  the c e l l  c o n ce n tra tio n  to  1x 10^ 

c e lls /m l and th e  FCS co ncen tra tion  to 10^. The v i ru s - 

in fe c te d  c e l l  c u ltu re  was then incubated  a t  37 C fo r  l 8 hours, 

cen trifu g ed  b r i e f ly  (6000xg) and the  p e l l e t  s to re d  a t  -70 C 

u n t i l  p u r i f ic a t io n .  Virus w ith  la b e le d  n u c le ic  acid  was ob­

ta in ed  in  th e  same manner by propagating  th e  v iru s  in  c e l ls  

grown in  a medium con ta in ing  1 piCi/ml of adenine (5-15 

mCi/mM) (New England N uclear).

Virus p u r i f ic a t io n

R eovirus was p u r if ie d  from in fe c te d  c e l ls  according 

to  the  procedure  of Smith e t  a l .  (44), w ith  th e  follow ing 

m o d ifica tio n s . The aqueous phase of th e  flo u ro ca rb o n  tre a te d  

v i r u s - c e l l  p e l l e t s  were layered  onto a preformed cesium 

ch lo rid e  d e n s ity  g ra d ie n t (1 . 2- 1.4  gm/ml) and cen trifu g ed  fo r  

1 h r  a t  113,000xg in  th e  SW 27 ro to r  o f the  Beckman L2-50
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u l t r a c e n t r i f u g e .  The v iru s  bands were c o lle c te d  c lean ly  by 

pu n c tu rin g  the  cen tr ifu g e  tube w ith  an 18 gauge needle and 

drawing th e  v iru s  bands in to  a 10 ml sy r in g e . The v iru s  

bands were then  d ilu te d  w ith  30 ml o f Q.1M sodium ch lo rid e , 

0 .0 1 5M sodium c i t r a t e  pH 7 .5  (880) and p e lle te d  a t  I 31,000xg 

f o r  1 h r .  The v iru s  p e l l e t  was resuspended overnight in  5 ml

880 and then lay e red  onto a A  ml preform ed 20-^0^ w/w

sucrose  g rad ie n t and cen trifu g ed  fo r  1 h r  a t  1l6,000xg in  the 

8W 27 r o to r .  These v i r a l  bands were c o lle c te d  c lean ly  and 

ag a in  p e l le te d  a f t e r  being d i lu te d  w ith  880. This f in a l  

p e l l e t  was taken up in  10 ml of 0 .3M sodium ch lo rid e , G.OIM 

Tris-HOL pH 7*2 con ta in ing  0.001M EDTA (O.3M 8TE) and s to red  

a t  -70 0 u n t i l  the  p u r if ie d  v iru s  was needed.

V irus assay

Virus plaque t i t r a t i o n  was perform ed e s s e n tia l ly  as

d esc rib ed  by Gomatos e t  a l .  (16). C e ll monolayers were p re -

p a ted  in  60x15 mm p la s t ic  p e t r i  d ish es (Falcon P la s t ic s )  a t  

37 C in  an atmosphere of %  OO2 (v /v) in  a i r .  Approximately 

2^ hours befo re  th e  c e l ls  reached confluency 0.1 ml of each 

v iru s  d i lu t io n  in  monolayer medium w ith o u t serum was in t r o ­

duced onto the c en te r of each c e l l  sh e e t and gen tly  d i s t r i b ­

u te d  over the  c u ltu re  su rfa ce . The v iru s  was allowed to ad­

so rb  f o r  30-^5 min a t  37 0. Following ad so rp tio n  5 ml of MEM 

m onolayer medium con ta in ing  O.9# (w/v) lonagar (Difco) sup­

plem ented w ith  3^ (v/v) F08 was added. The c u ltu re s  were 

th e n  incubated  a t  37 C in  an atmosphere of %  CO2 (v/v) in
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P re p a ra tio n  o f sy n th e tic  
p o ly riljo ad en y lic  ac id

Po lyadenylic  ac id  w ith  a mininrum m olecular w eight of 

g re a te r  than  100,000 daltons (Miles L ab o ra to ries) was sub­

je c te d  to  h y d ro ly sis  in  0.1 N NaOH fo r  12 h r a t  room tem pera­

tu re  to  reduce i t s  m olecular w eight to  th a t  approxim ating the  

m olecular w eight o f reo v iru s A -rich  RNA. ^H -polyadenylic ac id  

w ith  a minimum m olecular w eight of g re a te r  than 50,000 

d a ltons was sheared  by rep e a te d ly  fo rc in g  th e  suspension 

through a one inch  26 gauge n e ed le . These la b e lle d  and un­

la b e lle d  RNA p rep a ra tio n s  were then  f ra c t io n a te d  on a 

2.5x^0 cm column of G-50 Sephadex (Pharmacia) which was e lu te d  

w ith  T r is -b u f f e r .  E. c o li  t r a n s f e r  RNA (Schwarz B ioresearch) 

and in s u l in  were used as m olecular w eight m arkers. Only 

those f r a c t io n s  of sy n th e tic  po lyadeny lic  a c id  w ith a molec­

u l a r  w eight which approxim ated 5,000 d a ltons were c o lle c te d  

and used f o r  experim en tation .

Uptake s tu d ie s

A m odified  method of Koch and Bishop (26) was used to  

t e s t  th e  e f f ic ie n c y  of uptake of re o v iru s  A -rich  RNA. C ells 

were p re t r e a te d  fo r  5 min w ith  e i th e r  m ethylated bovine serum 

albumin (4-0 ;igm/ml) or DEAE d ex tran  (50 jigm/ml) p r io r  to  

trea tm en t w ith  A -rich  RNA ^^0 (Ijigm/ml) or th e  la b e lle d  A -rich  

RNA was added d i r e c t ly  to c e l ls  in  (w/v) sucrose in  T r is -  

b u ffe r  w ith o u t p re  trea tm en t. The m onolayers were washed 

tw ice a t  s e le c te d  time in te rv a ls  a f t e r  trea tm en t w ith  2 ml o f
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t is s u e  c u ltu re  medium w ithou t serum and then so n ic a ted  fo r  

30 sec in  5 ml of co ld  %  (v /v) t r ic h lo ro a c e t ic  a c id  (TCA).

The samples were allow ed to  stand  fo r  30 min a t  ^  C, the  

p r e c ip i ta te s  c o lle c te d  on g la ss  f ib e r  f i l t e r s ,  and ac id  i n ­

so lu b le  r a d io a c t iv i ty  determ ined by l iq u id  s c i n t i l l a t i o n  

coun ting . Uptake s tu d ie s  invo lv ing  the sy n th e tic  poly A and 

dsRNA were done in  the  same manner w ith  no c e l lu la r  p r e t r e a t ­

m ent.

D eterm ination  of macro­
m olecular sy n th e s is

Monolayer c u ltu re s  were grown to  confluency in  30 ml 

p la s t i c  t is s u e  c u ltu re  f la s k s  (Falcon P la s t ic s )  as p rev io u s ly  

d esc rib ed . Reovirus a d en in e -r ich  RNA and po lyadeny lic  ac id  

in  (w/v) sucrose  in  Tris-HCL b u ffe r  were each d i lu te d  to  a 

n u c le ic  a c id  c o n ce n tra tio n  of 1 .0  jigm/ml w ith monolayer medium 

supplemented w ith  10^ FCS. The growth medium was rep laced  

w ith  2 ml o f the  medium con ta in ing  a sp e c if ic  n u c le ic  ac id  

p re p a ra tio n . C ontro l c u ltu re s  rece iv ed  id e n t ic a l  medium con­

ta in in g  no n u c le ic  a c id . DNA, RNA or p ro te in  sy n th e s is  was 

determ ined by p u lse  la b e l l in g  fo r  o n e -h a lf  h r in  d u p lic a te  

t e s t  and c o n tro l c u ltu re s  a t  s e le c te d  tim e in te rv a ls  a f t e r  

sp e c if ic  n u c le ic  a c id  trea tm en t using  ^H-thymidine 

(5-1C Ci/mM), %  u r id in e  (2C Ci/mM) or %-L-amino ac id  mix­

tu re  (New England N uclear) re s p e c t iv e ly . At the  end of the 

la b e ll in g  p e rio d  th e  medium was removed and co ld  (^ C) 5^

(v /v) TCA was added to  th e  t e s t  c u l tu re s .  A fte r s to rag e  in
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th e  co ld  {k C) fo r  min the  a c id  in so lu b le  p re c ip i ta te  was 

c o lle c te d  by c e n tr ifu g a tio n  a t  lOOOxg fo r  5 min a t  4- C. The 

p r e c ip i t a te  was then  washed tw ice w ith  5 ml of cold %  (v/v) 

TCA. A fter th e  f i n a l  wash the  p r e c ip i t a te  was resuspended in  

10 ml of Aquasol (New England N uclear), and counted in  a 

Beckman DPM-100 S c in t i l la t io n  coun ter fo llow ing  a 12 hour dark 

ad ap tio n  p e rio d . Q u an tita tiv e  d e te rm in a tio n  of DNA was p e r­

formed according to  the  method of Burton (5)*

Synchronous growth cond itions

C ells  in  sp inner c u ltu re  were synchronized by s ta r v a ­

t io n .  The procedure was s im ila r  to  th a t  described  by 

L i t t l e f i e l d  (34) and consisted  of c e n tr ifu g in g  and resuspend- 

ing c e l l s  every  72 hours in  MEM supplemented w ith  FCS to  give 

a f i n a l  co n ce n tra tio n  of 10^ (v /v ) . This procedure was used 

to  p repare  synchronized n u c le i fo r  the  in  v i t r o  DNA sy n th e s is  

experim en ts.

P rep a ra tio n  o f  L c e l l  n u c le i

C ells  were propagated in  suspension  cu ltu re  as p re ­

v iously . d e sc rib ed . The i s o la t io n  of the  L c e l l  nuc le i was 

e s s e n t ia l ly  th e  procedure described  by E idw ell and M ueller 

(25)* The c e l l s  were allowed to  reach  a d e n s ity  of 1x10^ 

c e l ls /m l and were then  cen trifu g ed  a t  809xg fo r  2 min. The 

c e l l  p e l l e t  was washed twice w ith  BME, resuspended in  5 ml of 

a RSB s o lu tio n  d i lu te d  2:1 (0.1 M sodium c h lo r id e , 0.O1M T r is -  

HCL pH 7-4-, 0 .0015M magnesium c h lo rid e )  and allowed to  sw ell
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fo r  30-^5 min in  an ic e  b a th . A fter sw elling  th e  c e l ls  were 

homogenized w ith  20-30 stro k es in  a Doimce homogenizer 

(Wheaton G lass Co.) using  a t ig h t  f i t t i n g  p e s t le .  C en trifuga­

t io n  a t  809xg fo r  2 min p e lle te d  the n u c le i which were washed 

tw ice to  remove tra c e s  of cytoplasm . The n u c le i were r e ­

suspended in  th e  DNA re a c tio n  m ixture b u ffe r (0 .12M Tris-HCL 

pH 8 .0 , 0.022M glucose) to  a f in a l  c o n cen tra tio n  of n u c le i of 

a t  l e a s t  1x 10& n u c le i/m l.

P re p a ra tio n  of cytoplasm ic 
fa c to r

The low m olecular w eight, so lu b le  p ro te in  cytoplasm ic 

fa c to r  (OF) n ecessa ry  fo r  in d u c tio n  of DNA sy n th e s is  was p re ­

pared accord ing  to  Kidwell and M ueller (25). The c e l ls  were 

propagated in  suspension  c u ltu re  as p rev io u s ly  described  using  

synchronous or asynchronous cond itions fo r  growth. C ells were 

c o lle c te d  by c e n tr ifu g a tio n  a t  809xg fo r  2 min and the n u c le i 

removed as p re v io u s ly  described . The cytoplasm ic p rep a ra tio n  

was saved and c e n tr ifu g e d  a t  100,000xg fo r  1 hour a t  2 C in  

the  SW 27 r o to r  of a Beckman L2-50 p re p a ra tiv e  u l t r a c e n t r i ­

fuge . The r e s u l t in g  supernatan t con ta in ing  th e  OF fa c to r  was 

then  fro zen  a t  -70 0 u n t i l  needed.

DNA sy n th e s is  in  
i s o la te d  n u c le i

The DNA re a c tio n  m ixture which con tained  1-2x10^ 

n u c le i/m l and 5*0 mM ATP, 0 .5  mM dATP, dGTP, dCTP (Sigma 

C hem icals), 5*0 ;iCi/m l dTTP ( I 8.3 Ci/mM) (New England
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Nuclear), 9*5 mM magnesium chloride was incubated at 37 C 

without shaking. At selected time intervals 0.3 ml samples 

were removed and the reaction stopped by the addition of an 

equal amount of cold (4- C) 10  ̂ (v/v) TCA. The TCA precipi­

tated samples were allowed to stand in the cold for 30 min. 

The TCA insoluble material was collected on glass fiber 

f i l t e r s  (New Brunswick S cientific) and washed with 1C ml of 

cold % (v/v) TCA. The glass fiber f i l t e r s  were then placed 

in  v ia ls  containing 1C ml Aquas ol (New England Nuclear) for 

sc in tilla tio n  counting. All nuclear preparations received 

either 1 .C ngm/ml A-rich RNA, 1 .C jugm/ml synthetic poly A or 

were "mock" treated with an equal volume of Tris buffer.



CHAPTER I I I  

RESULTS

Reovirus m c le ic  ac id  
p re p a ra tio n

F igure  1 shows the sed im entation  p a tte rn  of re o v iru s  

RM. This p a t te r n  of the d i f f e r e n t  RM sp ec ie s  i s  c o n s is te n t 

and rep ro d u c ib le  when using  RM e x tra c te d  from p u r if ie d  v i ru s .  

The 3 sp ec ie s  o f ds genome RM a re  e a s i ly  id e n t i f ie d  and the 

A -rich  RM i s  always found a t  th e  top of the g rad ie n t as 

shown. The i s o la te d  reo v iru s  RNA's were c o lle c te d  and fro ze n  

u n t i l  re q u ire d  f o r  experim en ta tion .

Syn thetic  p o lv rib o ad en y lic  
ac id  p re p a ra tio n

A sy n th e tic  po ly rib o ad en y lic  a c id  (poly A) w ith  a 

m olecular w eight o f g re a te r  th an  100,000 d a ltons was base 

hydrolyzed to  o b ta in  an adenine r ic h  RM s im ila r  in  s iz e  to  

reo v iru s  A -rich  RM. Only th a t  p o rtio n  o f  peak D which ap ­

proxim ated a m olecu lar w eight o f 5000 d a lto n s  was c o lle c te d  

and used  fo r  experim ental pu rposes. The e lu t io n  p a t te rn  fo r  

sheared ^H la b e l le d  sy n th e tic  po ly  A was s im ila r  to  peak D.

20
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F ig . 1 .—Sedim entation p a t te r n  o f re o v iru s  RNA. P u r i­

f ie d  v i r a l  RNA in  t r i s  b u ffe r  was- lay e red  onto a preformed 

36 ml 5- 20^  w/w sucrose g ra d ie n t and c e n tr ifu g e d  fo r  18 h r 

a t  131j000xg in  th e  SW 27.I r o to r  o f th e  Beckman L2-50 u l t r a -  

c e n tr ifu g e . The dsRNA and A -rich  RNA as in d ic a te d  were c o l­

le c te d  and fro zen  u n t i l  u sed .
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F ig . 2 .—F ra c tio n a tio n  of base-hydrolyzed po lyadenylic  

ac id  on a 2.5x^0 cm colnmn of Sephadex G-50. F rac tio n s  were 

e lu te d  w ith  b u ffe r  con ta in ing  0.01 M Tris-HCL (pH y .2) w ith  

0.1 NaCl and 1 mM MgCl2 . (A) E lu tio n  p a tte rn  fo r  po ly­

ad en y lic  ac id  (M.W. 100,000 d a lto n s ) . (B) E lu tion  p a tte rn

fo r  E. c o l i  t-RNA. (C) E lu tio n  p a tte rn  fo r  in s u l in  (M.W.

5800 d a lto n s ) . (D) E lu tio n  p a t te rn  fo r  base hydrolyzed po ly ­

adeny lic  a c id . This f ig u re  re p re se n ts  a composite o f in d i ­

v id u a l sample absorbance tra c in g s  using  an ISCO u l t r a v io l e t  

m onito r.
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Uptake s tu d ie s

R ad ioactive ly  la b e l le d  reo v iru s  A -rich  RNA, dsRNA and 

sy n th e tic  poly A were p repared  and p u r i f ie d  as p rev io u s ly  de­

sc r ib e d . The re o v iru s  A -rich  RNA was taken  up ra p id ly  and e f ­

f i c i e n t l y  by L c e l ls  w ith o u t p o ly c a tio n ic  trea tm en t (Figure 

3A). The c e l ls  p re t r e a te d  w ith  DEAE d ex tran  were the  l e a s t  

e f f i c i e n t  in  the uptake of A -rich  RNA. At 2 h rs  the  c e l ls  

which had received  no p re trea tm en t and those  which had been 

p re tre a te d  w ith  m ethy lated  bovine serum albumin appeared to  

take  up the A -rich  RNA w ith  equal e f f ic ie n c y . However, a f t e r  

2 h rs  u n tre a te d  c e l ls  were s t i l l  tak ing  up A -rich  RNA w hile 

those  p re tre a te d  w ith  m ethy lated  bovine serum albumin had e s ­

s e n t ia l ly  stopped tak in g  up RNA. T here fo re , a 2 h r  adsorp­

t io n  period  was allow ed in  a l l  experim ents and the  c e l l  

c u ltu re s  were no t p re tr e a te d  w ith  any p o ly c a tio n s .

Figures 4-A and 5A show the uptake o f sy n th e tic  po ly  A 

and reo v iru s  dsRNA re s p e c t iv e ly . No c e l lu l a r  p re trea tm en t 

w ith  poly ca tio n s  was used  and the  sy n th e tic  poly A was ap­

p a re n tly  taken up as r a p id ly  and e f f i c i e n t ly  as was A -rich  

RNA. D ouble-stranded genome RNA, however, was no t taken  up 

e f f i c ie n t ly  and the d a ta  in d ic a te d  very  l i t t l e  o f th is  RNA 

was c e l l- a s s o c ia te d .

E ffe c t  of reo v iru s  A -rich  RNA 
on c e l lu la r  DNA. RNA and 
p ro te in  sy n th esis

Evidence fo r  th e  in h ib i t io n  of L c e l l  DNA sy n th e s is  

i s  p resen ted  in  F igure 3B. This in h ib i t io n  appeared to  be a
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F ig . 3*—Uptake of re o v iru s  a d e n in e -r ic h  RNA hy L 

c e l l s  and i t s  e f f e c t  on c e l lu la r  DNA, RNA, and p ro te in  syn­

th e s is .

The uptake of "*^C-labelled re o v iru s  a d en in e -r ich  RNA 

by L c e l l s  was measured (A). Monolayer c u ltu re s  were e i th e r  

p re tre a te d  w ith  50 ngm/ml DEAE d ex tran  ( A ) or 40 ;igm/ml 

m ethylated  bovine serum albumin (0) or rec e iv e d  no po ly - 

c a tio n ic  p re tre a tm e n t ( • ) .  A ll c u ltu re s  were then exposed to  

1.0 )igm/ml ^ ^C -labe lled  A -rich ENA. At th e  tim es in d ic a te d  

s e le c te d  c u ltu re s  were washed and c e l l- a s s o c ia te d  a c id -  

p r e c ip i ta b le  r a d io a c t iv i ty  determ ined . A ll p o in ts  re p re se n t 

an average value  from 3 c u ltu re s .  The e f f e c t s  o f r e o v iru s ( # )  

A -rich  RNA on c e l lu la r  DNA (B), RNA (C) and p ro te in  sy n th e s is  

(D), c o n tro l c u ltu re s  were "mock" in fe c te d , using  b u ffe r  con­

ta in in g  (v/v) sucrose  (0 ). Following a 2 h r up take  p e rio d  

c u ltu re s  were p u ls e - la b e lle d  fo r  30 min a t  s e le c te d  time in ­

te rv a ls  w ith  3h thym idine, u r id in e  or ^H-L amino ac ids 

(0 .5  j iC i/m l) . Acid p re c ip ita b le  r a d io a c t iv i ty  was then meas­

u red .



o

u
K
S

HOURS

9

8
7

6

5

4

3
2

I

10
HOURS

IV>

n
0
H
1

9

a
7

6
5

4

3
2

I

HOURS

4 0

30

26

10

HOURS



28

F ig . k . —Uptake of base hydrolyzed sy n th e tic  po ly ­

adeny lic  ac id  by L c e l l s  and i t s  e f f e c t  on c e l lu la r  DM, RNA, 

and p ro te in  sy n th e s is .

The uptake o f base hydrolyzed sy n th e tic  

po lyadeny lic  a c id  by L c e l ls  was measured (A). The c e l ls  were 

t r e a te d  w ith  1.0 j^gm/ml poly  A in  b u ffe r  con tain ing  

(w/v) su c ro se . At the  times in d ic a te d  se le c te d  c u ltu re s  were 

washed and c e l l- a s s o c ia te d  a c id  p r e c ip i ta b le  r a d io -a c t iv i ty  

determ ined. A ll p o in ts  re p re se n t an average value from 3 

c u l tu r e s .  The e f f e c t  of poly A on c e l lu la r  DNA (B), RNA (C), 

and p ro te in  (D) sy n th e s is  was te s te d .  Each t e s t  c u ltu re  r e ­

ceived I.Ojagm/ml poly A (I) and c o n tro l c u ltu re  were "mock"- 

in fe c te d  using  a 2 h r  uptake p e rio d , c u ltu re s  were p u lse - 

la b e lle d  fo r  30 min a t  se le c te d  tim e in te r v a ls  w ith  3h-  

thym id ine, 3h u r id in e ,  or ^h-L amino a c id s  (0 .5  uC i/m l).

Acid p re c ip i ta b le  r a d io a c t iv i ty  was th en  measured.
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F ig . 5*—Uptake of re o v iru s  doub le-s tranded  RNA by 

L c e l l s  and i t s  e f f e c t  on c e l lu l a r  DNA, RNA, and p ro te in  

s y n th e s is .

The uptake of re o v iru s  doub le-s tran d ed  RNA by L c e l ls  

was m easured (A). The c e l ls  w ith o u t p re tre a tm e n t were 

t r e a te d  w ith  1.0 ^gm/ml of the ^ ^C -labe lled  dsRNA in  b u ffe r  

co n ta in in g  (w/v) su c ro se . At th e  tim es in d ic a te d  se le c te d  

c u ltu re s  were washed and c e l l- a s s o c ia te d  a c id  p re c ip ita b le  

r a d io a c t iv i ty  determ ined. A ll p o in ts  re p re s e n t  an average 

from 3 c u l tu re s .  The e f f e c t  of dsRNA (•)  and c o n tro l c u ltu re s  

were "m ock"-infected using  b u ffe r co n ta in in g  h% (w/v) sucrose

(0 ) . Following a two h r uptake p e rio d  c u ltu re s  were p u lse -  

la b e l le d  fo r  30 min a t  s e le c te d  time in te r v a ls  w ith  ^H- 

thym idine, ^H -urid ine or amino ac id s (0 .5  >iCi/m l). Acid 

p r e c ip i ta b le  r a d io a c t iv i ty  was then  m easured.
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t r a n s i to r y  phenomenon the  p a t te r n  o f in h ib i t io n  appeared was 

id e n t ic a l  upon repeated  ex p erim en ta tio n . The in h ib i t io n  of 

c e l lu l a r  DM sy n th e s is  occurred  between 3 and hours in  con­

t r a s t  to  v i r a l  in h ib i t io n  which occurred 7-8 hours p o s t i n ­

f e c t io n  w ith  lOPFU/cell. However, th e  c e lls  appeared to  r e ­

cover and reached c o n tro l le v e ls  of sy n th esis  between 8 and 9 

hours a f t e r  trea tm en t w ith  re o v iru s  A -rich .RM.

When sy n th e s is  was measured as a' fu n c tio n  o f the  spe­

c i f i c  a c t iv i t y  of DM, th e  p a t te rn  of in h ib i t io n  was un­

a l te r e d  a lthough , the  degree of in h ib i t io n  appeared to  be more 

s ig n i f ic a n t  (F igure 6 ) . The le v e l  o f in h ib i t io n  shown in  th is  

f ig u re  ranges from 25 to 35^ below c o n tro l le v e ls  o f syn the­

s i s .  In  a l l  the  experim ents which showed th is  in h ib i t io n  of 

DM sy n th e s is  by A -rich RM a le v e l  of in h ib i t io n  le s s  than 

22$ was never observed. Thus, a lthough  the in h ib i t io n  appears 

to  be t r a n s i to r y .  This p a t te r n  was seen c o n s is te n tly  in  th is  

system .

The d a ta  p resen ted  in  F igu re  3C and D i l l u s t r a t e s  the 

e f f e c t  o f A -rich  RM on RM (C) and p ro te in  sy n th e s is  (D) r e ­

s p e c tiv e ly . There seems to  be no apparen t e f f e c t  on these  

c e l lu l a r  macromolecular sy n th e s iz in g  systems by A -rich  RM. 

T here fo re , i t  appeared th a t  re o v iru s  A -rich  RM was capable 

of s e le c t iv e ly  in h ib i t in g  DNA sy n th e s is  ra th e r  than  gen­

e r a l ly  in h ib i t in g  a l l  tem plate a c t iv i t y .  For t h i s  reason  i t  

was o f i n t e r e s t  to  determ ine i f  th i s  s e le c tiv e  p ro p e rty  was 

unique or i f  o th er p o ly n u c leo tid es  o f s im ila r  n u c le o tid e
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F ig . 6 .—The e f f e c t  of A -rich  REA on c e l lu la r  DNA 

sy n th esis  measured by changes in  the  s p e c if ic  a c t iv i t y  of DNA. 

Monolayer c u ltu re s  were t r e a te d  w ith  1.0 ^gm/ml A -rich  RNA

(I) or "mock" in fe c te d  using  b u ffe r (0) co n ta in in g  (w/v) 

sucro se . Follow ing a 2 h r  uptake p e rio d , t e s t  and c o n tro l 

c u ltu re s  were p u lse  la b e l le d  w ith  thymidine (0 .5  jiC i/m l) 

fo r  30 min a t  s e le c te d  time in te rv a ls  a f te r  trea tm e n t. The 

c u ltu re s  were t r e a te d  w ith  cold  %  (v/v) TCA, the  p r e c ip i ta te  

washed tw ice w ith  %  (v /v ) TCA and hydrolyzed a t  95 C fo r  30 

min in  5 ml of %  (v /v) TCA. One ml a liq u o ts  were taken and 

te s te d  fo r  r a d io a c t iv i ty  and DNA co n cen tra tio n  by th e  d i -  

phenylamine r e a c t io n .
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com position  and m olecular w eight could e f f e c t  s im ila r  a l t e r ­

a tio n s  in  th e  r e p l ic a t iv e  fu n c tio n  of c e l lu la r  DNA.

E f fe c t  o f sy n th e tic  p o ly rib o ­
a d en y lic  a c id  on c e l lu la r  DNA,
RNA, and p ro te in  sy n th esis

The d a ta  p resen ted  in  F igure 4B in d ic a te d  th e re  was 

no a l t e r a t io n  in  the  sy n th e s is  of DNA fo llow ing  trea tm en t of 

c e l l s  w ith  po ly  A. There a lso  appeared to  be no change in  

th e  sy n th e s is  o f c e l lu la r  RNA or p ro te in  (Figures and D 

re s p e c t iv e ly )  a f t e r  exposure of the  c e l ls  to  poly A. I t  

seemed th e re fo re ,  th a t  th e  a b i l i t y  o f re o v iru s  A -rich  RNA to  

s e le c t iv e ly  in h ib i t  c e l lu la r  DNA sy n th e s is  was unique to  th is  

m olecule and n o t m erely a n o n -sp e c if ic  m an ife s ta tio n  of i t s  

a d e n in e - r ic h  base com position, low m olecu lar w eight, or chain  

le n g th .

E f fe c t  o f re o v iru s  double 
s tran d ed  RNA or c e l lu la r  DNA, 
and p ro te in  sy n th e s is

The e f f e c t  of reo v iru s  dsRNA on DNA sy n th e s is  in  L 

c e l l s  i s  p re sen te d  in  F igure $B. RNA and p ro te in  sy n th e s is  

a ls o  appear to  be u n a ffe c te d  by re o v iru s  dsRNA (Figures 5C 

and D). The p a tte rn s  of c e l lu la r  macromolecular sy n th e s is  

appear to  be e r r a t i c .  However, rep ea ted  experim entation  

dem onstrated no rep ro d u c ib le  e f f e c t  o f dsRNA on macromolec­

u l a r  s y n th e s is .
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E ffe c t o f re o v iru s  A -rich  
RM on synchronized  L 
c e l l  c u ltu re s

C ell c u ltu re s  were synchronized and co n cen tra ted  to  

1x10^ c e l ls /m l i n  a t o t a l  volume of 50 m l. As shown in  

F igure  7 the A -rich  RNA d id  no t show i t s  in h ib i to ry  e f f e c t  

u n t i l  th e  c e l l s  en tered  the  S or DM sy n th e tic  phase of the 

c e l l  cy c le . In  a d d itio n  the  sy n th e tic  poly A d id  n o t appear 

to  be in h ib i to r y .  T herefore , the  A -rich  RNA, l ik e  th e  v iru s , 

appeared to  e x h ib i t  i t s  in h ib i to ry  e f f e c t  on the  i n i t i a t i o n  

of DNA s y n th e s is .

The " in  v ivo" f a t e  of 
re o v iru s  A -rich  RNA

R ad io ac tiv e ly  la b e lle d  re o v iru s  A -rich  RNA was added 

to  a co n cen tra ted  suspension c u ltu re  of asynchronously grow­

ing  c e l l s  and a n u c lea r i s o la t io n  procedure was used to  sep­

a ra te  th e  n u c le i from th e  cytoplasm . The d a ta  i l l u s t r a t e d  in  

F igu re  8 dem onstrated th a t  the  A -rich  RNA was e f f i c ie n t ly  

taken  up in to  th e  cytoplasm of th e  L c e l ls  u n t i l  5 hours 

a f t e r  trea tm en t began. A ra p id  r i s e  was a lso  seen in  the  i s o ­

la te d  n u c le i b u t lev e led  o ff and remained a t  much lower 

le v e ls  as compared to  th e  cytoplasm . A fte r 5 hours the 

amount o f A -rich  RNA found in  the  cytoplasm of th e  c e l l s  d i ­

m inished, w hile amounts found in  the  is o la te d  n u c le i  remained 

f a i r l y  c o n s ta n t.
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F ig . 7— The e f f e c t  of reo v iru s  a d e n in e -r ic h  RNA and 

sy n th e tic  po lyadeny lic  ac id  on synchronized c n ltn re s  of L 

c e l l s .

The c e l l  c u ltu re s  were synchronized and concen tra ted  

to  1x10^ c e lls /m l in  a t o t a l  volume of m l. The c e l l s  r e ­

ceived e i th e r  1 .0  ;igm/ml A -rich  RNA ( • ) ,  1 .0  ugm/ml sy n th e tic  

po ly  A ( A ) ,  or were "mock" tr e a te d  (0) w ith  t r i s -b u ffe r  con­

ta in in g  (w/v) su c ro se . RNA was added a t  time 0, serum was 

added a t  tim e 2, and th e  RNA was allowed to  adsorb f o r  2 h r .  

A fte r the 2 h r a d so rp tio n  p e rio d  c u ltu re s  were te s te d  fo r  DNA 

sy n th e s is  using  ^H-thym idine (0.5>iC i/m l) fo r  30 min. A li­

quots were p re c ip i ta te d  w ith  cold 5^ (v/v) TCA, allow ed to  

stand  in  an ice  b a th  f o r  30 min, and c o lle c te d  on g la s s  f ib e r  

f i l t e r s  fo r  d e te rm in a tio n  of r a d io a c t iv i ty .
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F ig . 8 .—The " in  vivo" f a te  of re o v iru s  ad en in e -rich

RM.

An asynchronous c u ltu re  of c e l ls  was concen tra ted  to 

2x10^ c e lls /m l in  50 m l. To th is  was added 2 .0  jigm/ml 

adenine la b e lle d  re o v iru s  A -rich  RNA. At hou rly  in te rv a ls  

th e r e a f te r  a liq u o ts  were removed and the n u c le i  and cytoplasm  

were i s o la te d .  The samples were tre a te d  w ith  cold  (4 C) TCA 

and allow ed to  p r e c ip i t a te  fo r  30 min in  an ic e  ba th . The 

p r e c ip i ta te s  were c o lle c te d  on g la ss  f ib e r  f i l t e r s  and the 

r a d io a c t iv ity  determ ined by l iq u id  s c i n t i l l a t i o n  counting . 

Cytoplasmic e x tra c t  (0) and n u c le i e x tra c ts  (•)  are  shown.
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E ffe c t of A -rich  RM and 
sy n th e tic  poly A on DM 
sy n th esis  in  i s o la te d  
n u c le i

The experim ents d escribed  above suggest a s p e c if ic  

in h ib i t io n  of c e l lu l a r  DNA sy n th e s is  by re o v iru s  A -rich  RNA. 

However, i t  i s  n o t c le a r  i f  th is  in h ib i t io n  i s  m ediated by 

t r a n s la t io n  of the  A -rich  RNA to  y ie ld  an in h ib i to ry  po ly ­

pep tide  or i f  th e  A -rich  RNA a c ts  d ir e c t ly  on th e  DNA tem­

p la te  or on one or more o f the  components n ecessa ry  fo r  th e  

i n i t i a t i o n  of DNA s y n th e s is .  In  order to f u r th e r  c la r i f y  the  

mode of in h ib i t io n  DNA sy n th e s is  was measured in  is o la te d  

n u c le i where th e  p o te n t ia l  fo r  t r a n s la t io n  i s  min imized, and 

the  e f f e c ts  of A -rich  RNA and po lyadenylic  ac id  on DNA syn­

th e s is  in  th ese  p re p a ra tio n s  was measured. The e f f e c ts  of 

these  m olecules on cytoplasm ic fa c to r s  and th e i r  a b i l i ty  to  

induce DNA sy n th e s is  in  i s o la te d  n u c le i was a ls o  measured.

The DNA s y n th e tic  p a t te rn  fo r  n u c le i i s o la te d  from 

unsynchronized c e l l s  which rece iv ed  no cytoplasm ic fa c to r  

(CF) i s  i l l u s t r a t e d  in  graph A of Figure As shown the  con­

t r o l  and sy n th e tic  poly  A tr e a te d  n u c le i sy n th e s iz e d  s im ila r  

le v e ls  o f DNA. The re o v iru s  A -rich  RNA-treated n u c le i  m ain­

ta in ed  c o n tro l le v e ls  of sy n th e s is  sh o rtly  a f t e r  trea tm en t 

fo llow ed by a re d u c tio n  in  DNA sy n th e s is , and u l t im a te ly  r e ­

tu rned  to  c o n tro l l e v e l s .  This t ra n s ie n t  in h ib i t io n  p a tte rn  

resem bles th a t  seen  in  p rev ious experim ents and may be due to  

the  in h ib i to ry  p ro cess  a c tin g  on only those n u c le i  from c e l ls  

which have n o t y e t  s ta r te d  to  sy n th esize  DNA. I t  should be
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F ig . 9*—The e f f e c t  o f A -rich  RNA on DM sy n th e s is  in  

i s o la te d  L c e l l  n u c le i .  A ll n u c le i and CF were p repared  as 

p rev io u s ly  d e sc rib e d . The i s o la te d  n u c le i experim ents a l l  

u t i l i z e d  1.0 )igm/ml A -rich  RNA, 1.0 jigm/ml sy n th e tic  p o ly , or 

th e  n u c le i were "mock" t r e a te d  w ith  b u ffe r . At the  se le c te d  

time in te r v a ls  O.3 ml n u c le i  samples were p r e c ip i ta te d  w ith  

an equal volume o f co ld  C) 10^ (v/v) TCA. These samples 

were allow ed to  s tan d  in  an ic e  bath  fo r  30 min and c o lle c te d  

on g la s s  f ib e r  f i l t e r s .  At l e a s t  10 ml of co ld  5^ (v /v ) TCA 

was used to  wash each sample which were then  p laced  in  

s c i n t i l l a t i o n  v ia l s  fo r  de te rm ina tion  of r a d io - a c t iv i ty .

N uclei from unsynchronized c e l ls  (graph A ). RM was 

added a t  time 0. C ontro l n u c le i  (0), n u c le i + A -rich  RNA 

( • ) ,  n u c le i  + sy n th e tic  poly A ( A ) .
N uclei from synchronized c e lls  (graph B ). RNA was 

added a t  tim e 0. C ontro l n u c le i  (0 ), n u c le i  + A -rich  RNA 

( • ) ,  n u c le i  + sy n th e tic  poly A ( A ) .

N uclei from synchronized c e lls  + cytoplasm ic f a c to r  

(CF) (graph C). RNA was added a t  time 0, CF was added a t  

60 min. C ontrol n u c le i  + CF (0 ) , co n tro l n u c le i  n o t t re a te d  

w ith  CF ( # ) ,  n u c le i  + CF + sy n th e tic  poly A ( A ) ,  n u c le i +

CF + A -rich  RNA (# ).

N uclei from synchronized c e lls  + CF p re tre a te d  fo r  15 

min w ith  RNA. P re tre a te d  CF added a t  time 0 w ith  ap p ro p ria te  

RNA. C ontrol n u c le i  + CF ( # ) ,  n u c le i no t t r e a te d  w ith  CF 

(0 ) , n u c le i + CF + sy n th e tic  po ly  A ( A ) ,  n u c le i  + CF + A- 

r i c h  RNA (# ).
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noted  th a t  in  th is  system i t  has been shown th a t  L c e l l  n u c le i 

have a very  l im ite d  cap ac ity  to  syn thesize  DM, and a f te r

60-75 min th e i r  a b i l i t y  to  syn thesize  DM d e c lin e s .

The r e s u l t s  shown in  F igure 9B provided evidence fo r 

th e  la c k  of any e f f e c t ,  by A -rich  RM or sy n th e tic  poly  A, on 

DM sy n th e s is  in  n u c le i from synchronized c e l l  c u ltu re s .  The 

n u c le i  were i s o la te d  from synchronized c e l l  c u ltu re s  a f te r  

the  c e l l s  had been allowed to e n te r  S phase or DM sy n th e s is . 

The tre a te d  n u c le i  showed no in h ib i t io n  of DM sy n th e s is  which 

in d ic a te d  th a t  th e  a c tio n  o f A -rich  RM on DM sy n th e s is  must 

occur befo re  or a t  th e  time of i n i t i a t i o n  of new sy n th e s is .

To t e s t  t h i s  h y p o th esis , n u c le i and CF were iso la te d  

from c e l ls  a c t iv e ly  syn thesiz ing  DM (Figure 9C). The n u c le i 

were incubated  f o r  60 min w ith  th e  a p p ro p ria te  RM or b u ffe r 

a t  which time the  CF was added to  se lec te d  nu c lear re a c tio n  

m ix tu re s . The evidence in d ic a te d  th a t  the  n u c le i no t re c e iv ­

ing  the CF d id  n o t show in creased  le v e ls  o f DM sy n th e s is .

Those re a c tio n  m ix tures rece iv in g  the  CF showed a dram atic and

s ig n i f ic a n t  in c re a se  in  le v e ls  o f DM sy n th e s is . However, the

A -rich  RM in h ib i te d  DM sy n th e s is  w hile sy n th e tic  poly A 

caused no m o d ifica tio n  of the sy n th e tic  p a t te r n .

Nuclei from synchronized c e l ls  n o t y e t in  8-phase and 

CF from c e l ls  a c t iv e ly  sy n th esiz in g  DNA were is o la te d  (Figure 

9D). The p u r i f ie d  CF was tr e a te d  w ith  A -rich  RNA, sy n th e tic  

poly  A, or T ris  b u f fe r , and then the m ixtures were incubated 

a t  37 C fo r  15 m in. Data are  presented, in  graph D which seem
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to  im p lica te  A -rich  RNA as an in h ib i to r  of the  cytoplasm ic 

fa c to r  n ecessa ry  f o r  the  i n i t i a t i o n  of DNA sy n th e s is . The 

le v e ls  of DNA sy n th e s is  in  c o n tro l n u c le i  as w e ll as those 

t r e a te d  w ith  s y n th e tic  po ly  A were very  s im ila r  which in d i ­

ca ted  no in h ib i to ry  e f f e c t  by poly A. Of considerab ly  g re a te r  

im portance i s  t h a t  the  le v e l  of DNA sy n th e s is  in  n u c le i r e ­

ceiv ing  the CF p re tr e a te d  w ith  A -rich  RNA was s ig n if ic a n t ly  

le s s  than th a t  of c o n tro l le v e ls  and approached th a t  of n u c le i 

rec e iv in g  no CF.



CHAPTER IV 

DISCUSSION

The r e s u l t s  of th is  in v e s t ig a t io n  suggest th a t  reo - 

v iru s  A -rich  RNA i s  capable of m ediating  a se le c tiv e  in h ib i ­

t io n  of c e l lu la r  DNA sy n th e s is . E a r l ie r  work has shown th a t  

re o v iru s  in fe c t io n  of L c e l ls  i s  s e le c t iv e  fo r  the in h ib i t io n  

o f DNA sy n th e s is  s ince  th e re  i s  ap p a ren tly  no in h ib it io n  of 

RNA or p ro te in  sy n th e s is  p r io r  to  or a t  th e  time of in h ib i ­

t io n  of DNA sy n th e s is  (7j 15)* By u sin g  Ü.V. in a c tiv a te d  

v iru s  p a r t i c l e s ,  Shaw and Cox (7 , 8) have shown th a t r e p l ic a ­

t io n  of the  v iru s  i s  no t necessary  fo r  th e  in h ib i t io n  of L 

c e l l  DNA s y n th e s is . The in h ib i t io n  of DNA syn thesis  was 

shown to  be a d i r e c t  r e s u l t  of in c re a s in g  m u l t ip l ic i t ie s  of 

U.V. in a c tiv a te d  v iru s  and could n o t be accounted fo r  by 

m u l t ip l i c i ty  of r e a c t iv a t io n  and subsequent r e p l ic a t io n  of 

the  v iru s  (7) .  Thus, i t  would appear t h a t  a subunit of reo ­

v iru s  could  p o ss ib ly  m ediate the  in h ib i t io n  o f DNA sy n th e s is  

in  L c e l l s .

The p ro p e r t ie s  of reo v iru s  A -rich  RNA th a t  make i t  

physicochem ically  unique a re  th e  same c h a r a c te r i s t ic s  th a t

^6
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have made i t  appea ling  as an in h ib i to r  of L c e l l  DM syn­

th e s is .  R eovirus A -rich  RM was chosen fo r  th e  fo llow ing 

reasons : a . A -rich  RM has a low m olecular w eight making i t

r e l a t i v e ly  easy to  sep a ra te  from o th er v i r a l  components, 

b . The A -rich  RM i s  taken up ra p id ly  and e f f i c ie n t ly  (F ig­

u re  3A) by L c e l l s  w ithou t poly c a tio n ic  tre a tm e n t, c . Se­

quences of p o lyadeny lic  acid  have been shown to  be r e la t iv e ly  

r e s i s t a n t  to  U.V. i r r a d ia t io n  (^3)* d. Since av ian  reo v iru s  

A -rich  RM was shown to  bind ly sy l t  RNA to  E. c o li  ribosomes 

(27) th e  p o s s ib i l i ty  e x is te d  th a t  mammalian re o v iru s  A -rich  

RNA could  be t r a n s la te d  in to  a b a s ic , p o te n t ia l ly  in h ib ito ry  

p ro te in  such as p o ly ly s in e .

Evidence fo r  the  se le c tiv e  in h ib i t io n  of L c e l l  DNA 

sy n th e s is  was p resen ted  in  F igures 3 B, C and D. The in h ib i ­

t io n  began 3 -^  hours (Figure 3B) a f t e r  the c e l l s  were exposed 

to  A -rich  RNA and seemed to  recover by 9-10 hours a f te r  t r e a t ­

ment began. W hile th i s  in h ib i t io n  appeared to  be t r a n s i to ry  

the le v e ls  of in h ib i t io n  were 20-30^ below c o n tro l le v e ls  of 

s y n th e s is . By comparing the sp e c if ic  a c t i v i t i e s  of c e l lu la r  

DNA sy n th e s is  in  t r e a te d  and u n tre a te d  c e l ls  th e  le v e ls  of 

DNA sy n th e s is  i n  c e l ls  tr e a te d  w ith  A -rich  RNA was 30-^0^ 

below c o n tro l le v e ls  of syn thesis  (F igure 6 ) . The le v e ls  of 

RNA and p ro te in  sy n th e s is  in  c e l ls  t r e a te d  w ith  A -rich  RNA 

were u n a ffe c te d . Thus, i t  appears th a t  re o v iru s  A -rich  RNA 

i s  s e le c t iv e  fo r  the in h ib i t io n  of c e l lu la r  DNA sy n th e s is . 

Although the  in h ib i t io n  of DNA sy n th esis  appears to  be
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t r a n s i to r y ,  th e  degree of c e l lu la r  DNA in h ib i t io n  was a con­

s i s t a n t  and rep roduc ib le  occurrence.

The t r a n s i to ry  n a tu re  o f the in h ib i t io n  of L c e l l  DNA 

sy n th e s is  by A -rich  RNA could be exp la ined  on the  b asis  of 

i t s  p o ss ib le  in te r a c t io n  w ith  and in h ib i t io n  of DNA poly­

m erase in  the  cytoplasm or n u c leu s . An a l te r n a te  exp lanation  

may be th a t  s ince  the c e l ls  were growing asynchronously when 

t r e a te d  w ith  A -rich  RNA the recovery  of the  c e l ls  may have 

been due to  c e l ls  en te rin g  the S phase befo re  the  RNA could 

a c t .  A s im ila r  hypo thesis would be th a t  the  in h ib i t io n  which 

was observed was complete and th e  r e s u l t in g  r e tu rn  to  normal 

le v e ls  of sy n th e s is  was caused by c e l ls  en te rin g  DNA syn­

th e s is  a t  a time when the  A -rich  RNA was n o t e f f e c t iv e .  Thus, 

i t  would appear th a t  the  a b i l i ty  of A -rich  RNA to  in h ib i t  DNA 

sy n th e s is  may be dependent upon i t s  being in  c o n ta c t w ith 

some f a c to r  d u rir^  a b r ie f  but c r i t i c a l  time p e rio d  in  the 

c e l l  r e p l ic a t io n  cycle ,

A number of questions a r i s e  concerning th e  s e le c tiv e , 

a lthough  t r a n s i to r y ,  n a tu re  of in h ib i t io n  of c e l lu la r  DNA 

sy n th e s is  by reo v iru s  A -rich  RNA. Is  i t  unique to  reo v iru s  

A -rich  RNA or would any p o ly rib o ad en y lic  a c id  of s im ila r  s iz e  

and base com position cause th is  same e f fe c t?  What ro le  would 

dsRRA p lay  in  th i s  in h ib i t io n  i f  the  s in g le  s tranded  A -rich 

RNA was contam inated w ith  fragm ents o f dsRNA? I s  A -rich  RNA 

tr a n s la te d  to  produce a  b a s ic  in h ib i to ry  p ro te in ?  F in a lly , 

a t  what p o in t during the c e l l  cyc le  does A -rich  RNA cause the 

in h ib i t io n  of c e l lu la r  DNA sy n th esis?
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The in h ib i t io n  of DM sy n th esis  by A -rich  RM i s  no t 

a n o n -sp e c if ic  even t m ediated by the adenine c o n te n t, molec­

u la r  weight or ch a in  len g th  of th is  m olecule. The d a ta  ob­

ta in ed  using  the  sy n th e tic  poly A supports th i s  s ince  no e f ­

f e c t  can be seen by th is  molecule on any c e l lu l a r  macromolec- 

u la r  sy n th esiz in g  system (Figures 4-B, C and D). Thus, no t 

only i s  A -rich  RM s e le c tiv e  fo r  DM in h ib i t io n  i t  i s  a spe­

c i f i c  event unique to  th is  m ixture of o lig o n u c le o tid e s .

E hrenfeld  and Hunt (11) using  an " in  v i t r o "  p ro te in  

sy n thesiz ing  system  have shown th a t  the doub le-stranded  i n t e r ­

m ediate of p o lio v iru s  can in h ib i t  p ro te in  sy n th e s is . A ddition 

of la rg e  amounts of bovine en te ro v iru s  doub le-s tranded  RM to  

c e l l  c u ltu re s  has shown th a t  i t  lead s to  ra p id  c e l l  death 

(6 ) . The e f f e c t  of reo v iru s  dsRM on c e l l  c u ltu re s  was then 

examined to  e lim in a te  the p o s s ib i l i ty  th a t  dsRM was causing 

th e  in h ib i t io n  of DNA sy n th e s is . The uptake experim ents using 

the  same co n d itio n s  used fo r  A -rich  RNA in d ic a te d  th a t  l i t t l e  

i f  any dsRNA was taken  up by L c e l l s . F u rth e r work showed 

th a t  reo v iru s  dsRNA had no e f f e c t  on DNA, RNA or p ro te in  syn­

th e s is  under the  co n d itio n s used in  th is  s tu d y . T herefore, 

even i f  the A -rich  RNA was contam inated w ith  fragm ents of the 

dsRNA the  in h ib i to ry  e f f e c t  can be a sc rib e d  only to  the  ac­

t io n  of A -rich  RNA.

The q u e s tio n  of whether A -rich  RNA i s  t r a n s la te d  i s  

d i f f i c u l t  to  answer; i t  could be. The d a ta  shows th a t  the  

A -rich  RNA rem ains m ainly in  th e  cytoplasm of t re a te d  c e l l s .
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The time i t  rem ains in  the cytoplasm  i s  much g re a te r  than  

needed fo r  t r a n s la t io n  of a b a s ic  in h ib i to ry  p ro te in .  The 

subsequent drop in  the le v e ls  of A -rich  RNA found in  th e  c y to ­

plasm may be due to  c e l lu la r  d eg rad a tio n  a f t e r  i t s  mRNA fu n c ­

t io n  has been completed.

A sm all amount of A -rich  RNA a lso  has been shown lo ­

ca ted  in  the  nucleus (Figure 8) and i t s  a c t iv i ty  here  may be 

o f im portance. A -rich  RNA may i n t e r f e r  w ith  sy n th e tic  a c t iv ­

i t y  by b inding to  the tem plate i n  such a way as to  in h ib i t  

DNA sy n th e s is .

The in te r fe re n c e  w ith  i n i t i a t i o n  fa c to r s  found in  the  

cytoplasm  seems to  be the most p la u s ib le  mechanism fo r  A -rich  

RNA in h ib i t io n  of DNA sy n th e s is . Although the t r a n s la t io n  

mechanism cannot be to ta l ly  excluded, the way in  which A -rich  

RNA in h ib i t s  the  i n i t i a t i o n  of DNA sy n th e s is  (Figure 7) len d s 

support to  th i s  id e a . A d d itio n a l evidence th a t  A -rich  RNA 

i n te r f e r s  w ith  i n i t i a t i o n  f a c to r s  comes from the method in  

which CF i s  p repared . Some of th e  f a c to r s  which a re  needed 

fo r  t r a n s la t io n ,  such as ribosom es, a re  removed by the  cen­

t r i f u g a t io n  and thus A -rich  RNA could  no t produce a b a s ic  

p ro te in .

The " in  v i t ro "  DNA sy n th e s iz in g  system in  is o la te d  

n u c le i  provided  fu r th e r  evidence f o r  the mechanism of A -rich  

RNA in h ib i t io n  of DNA sy n th e s is  (F igure 9 ) . The A -rich  RNA 

again  was shown to  be unique f o r  th e  in h ib i t io n  of DNA syn­

th e s is  and n o t a  n o n -sp e c if ic  even t m ediated by poly  A
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sequences. The d a ta  showed th a t the  s te p  most s e n s i t iv e  to  

in h ib i t io n  was th e  i n i t i a t i o n  of DM sy n th e s is  and once DNA 

sy n th esis  had begun no in h ib i t io n  was no ted . F in a lly  the  

evidence in d ic a te d  th a t  A -rich  RNA causes the  in h ib i t io n  of 

c e l lu la r  DNA sy n th e s is  by in te r f e r in g  w ith  the  cy toplasm ic 

fa c to r  or f a c to r s  n ecessa ry  fo r  i n i t i a t i o n  of DNA sy n th e s is .

In  co n clu sio n  the  data  p resen ted  in  th i s  in v e s t ig a t io n  

suggest th a t  re o v iru s  A -rich  RNA i s  s e le c t iv e  fo r  the  in h ib i ­

t io n  of DNA s y n th e s is .  A -rich  RNA, a s  w ell as sy n th e tic  

poly A i s  taken  up ra p id ly  and e f f i c ie n t ly  by L c e l l s  and the  

t r a n s i to r y  in h ib i t io n  of DNA sy n th e s is  i s  n o t due to  a non­

sp e c if ic  even t m ediated by adenine c o n te n t. R eovirus dsRNA 

ap p aren tly  has no r o le  in  the  in h ib i t io n  of DNA sy n th e s is  

under the  co n d itio n s  used in  these  experim ents. The s i t e  of 

a c tio n  of re o v iru s  A -rich  RNA appears to  be in  th e  cytoplasm  

and i t  a p p a ren tly  i n te r f e r s  w ith the s te p s  lead in g  to  i n i t i a ­

t io n  of DNA s y n th e s is .  F in a lly , the  i s o la te d  n u c le i  i n v e s t i ­

ga tions suggest t h a t  A -rich  RNA in h ib i t s  c e l lu la r  DNA syn­

th e s is  by a p p a ren tly  in te r f e r in g  w ith  the cytoplasm ic f a c to r  

o r fa c to rs  n ecessa ry  fo r  the  i n i t i a t i o n  of DNA s y n th e s is .

Although th e  d a ta  p resen ted  h e re  suggest t h a t  re o ­

v iru s  A -rich  RNA i s  s p e c i f ic a l ly  and s e le c t iv e ly  in h ib i to ry  

to  L c e l l  DNA sy n th e s is  and th a t  th is  in h ib i t io n  may be medi­

a ted  by th e  in te r fe re n c e  w ith  the cytoplasm ic f a c to r s  which 

i n i t i a t e  DNA s y n th e s is  th e  molecule s t i l l  r e ta in s  an au ra  of 

m ystery. There i s  s t i l l  no in fo rm ation  as to  how th is
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m olecule reproduces i t s e l f ,  nor i s  there  d a ta  e x p la in in g  the  

in c o rp o ra tio n  of t h i s  m olecule in to  the v ir io n .  T herefo re , a 

number of d i f f e r e n t  experim ents should be devised to  fu r th e r  

e lu c id a te  th e  ro le  of t h i s  A -rich  RNA during the r e p l ic a t iv e  

cycle  o f re o v iru s .

The exact mechanism by which the i n i t i a t i o n  of c e l lu ­

l a r  DNA sy n th e s is  i s  in h ib i te d  and the time during the  c e l l  

cycle  th a t  re o v iru s  A -rich  RNA i s  a c tiv e  a re  a reas o f in v e s t i ­

g a tio n  which could f u r th e r  c la r i f y  the way in  which A -rich 

RNA in h ib i t s  i n i t i a t i o n  of DNA sy n th e s is . By u sing  in c reas in g  

amounts o f A -rich  RNA i t  may be p o ss ib le  to  determ ine whether 

the  t r a n s i to r y  n a tu re  of th is , in h ib i t io n  of c e l lu l a r  DNA 

sy n th e s is  i s  due sim ply to  a  dose response phenomenon. I f  

th i s  i s  done in  co n ju n c tio n  w ith  the a d d itio n  of o th e r  v i r a l  

components a r e la t io n s h ip  may be shown between in h ib i t io n  of 

DNA sy n th e s is  and o th er v i r a l  components.

Since A -rich  RNA re p re se n ts  a m ixture of o lig o n u c leo ­

t id e s  one f r a c t io n  of t h i s  m ixture may be the a c t iv e  in h ib i to r  

of DNA sy n th e s is . However, the  A -rich  p o rtio n  may be a c a r ­

r i e r  fo r  th e  more a c t iv e  f r a c t io n s  or a s y n e rg is t ic  e f fe c t  

between the  d i f f e r e n t  m olecules may be necessary  f o r  the in ­

h ib i t io n  observed. F in a l ly ,  i s  th e re  a r e la t io n s h ip  between 

re o v iru s  A -rich  RNA and c e l lu la r  heterogeneous A -rich  RNA and 

could c e l lu l a r  A -rich  RNA a lso  in h ib i t  DNA sy n th e s is?

I t  becomes in c re a s in g ly  c le a r  th a t  the d a ta  p resen ted  

in  th is  in v e s t ig a t io n  re p re se n ts  a sm all s te p  in  th e
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understand ing  of th is  unusual m olecule. The prim ary o b je c tiv e  

of th is  s tudy  has been s a t i s f ie d  and i t  i s  hoped th a t  the  i n ­

form ation  p resen ted  here w i l l  a id  in  our understand ing  of how 

th is  v iru s  a l t e r s  th e  re g u la to r  mechanisms of L c e l l s .
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