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Abstract

This dissertation proposes a collaborative driving framework which is based on the
assessments of both internal and external risks involved in vehicle driving. The in-
ternal risk analysis includes driver drowsiness detection, driver distraction detection,
and driver intention recognition which help us better understand the human driver’s
behavior. Steering wheel data and facial expression are used to detect the drowsi-
ness. Images from a camera observing the driver are used to detect various types
of driver distraction by using the deep learning approach. Hidden Markov Models
(HMM) is implemented to recognize the driver’s intention using the vehicle’s lane
position, control and state data. For the external risk analysis, the co-pilot utilizes a
Collision Avoidance System (CAS) to estimate the collision probability between the
ego vehicle and other vehicles. Based on these two risk analyses, a novel collaborative
driving scheme is proposed by fusing the control inputs from the human driver and
the co-pilot to obtain the final control input for the vehicle under different circum-
stances. The proposed collaborative driving framework is validated in an Intelligent
Transportation System (ITS) testbed which enables both autonomous and manual
driving capabilities.
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CHAPTER I

INTRODUCTION

In this work, a human-vehicle collaborative driving system, which combines the

risk analysis of both the driver and the surrounding environment, is proposed to

enhance the safety of transportation systems. This chapter gives an introduction to

the motivation behind this work. The contributions of this work and the outline of

the whole dissertation are provided at the end of this chapter.

I.1 Motivation

In recent years, the increasing number of vehicles on roads causes the increase

of traffic accidents which leads to the rising number of fatalities. Globally, about

1.3 million people die in traffic accidents every year [1]. Human error is responsible

in most traffic accidents. In 2013, according to the US National Highway Traffic

Safety Administration, driving with drowsiness was responsible for 72,000 crashes, 800

fatalities and 44,000 injuries in the United States [2]. Moreover, in 2015, distracted

driving was responsible for 391,000 injuries and 3,477 fatalities in the United States [3].

Intelligent Transportation Systems (ITS) have attracted more and more attention

in recent years due to their great potential in enhancing traffic safety. As a part of ITS

research, Google’s self-driving cars [4] have been developed and have logged millions

of miles on the roads in California [5]. Tesla tested its all-electric cars with autopilot

capabilities under certain safety restrictions [6]. Many other car manufacturers are

also interested in developing autonomous cars. Audi presented a prototype of a self-

driving racing car using radars, lasers and cameras [7]. The car could finish a track lap
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like a professional driver with a maximum speed of 150 mph. BMW partnered with

Intel and Mobileye to create an open standards-based platform with a goal to bring

self-driving cars to market by 2021 [8]. Ford has also been testing self-driving cars in

less friendly environments, such as on snowy days or in poor lighting conditions [9].

Honda has received permission in California to test autonomous vehicles on public

streets [10]. In July 2016, Jaguar Land Rover announced plans to deploy a fleet

of at least 100 research vehicles over the next four years to test self-driving and

connected car technology on roads in Britain [11]. Mercedes unveiled their concept F-

015 autonomous vehicle, which the company said would be ready in 2030 [12]. Nissan

has been testing an autonomous Nissan LEAF on the roads of Tokyo while promising

that they would have vehicles with “significant autonomous functionalities” by 2020

[13]. In 2014, Toyota announced a $1B budget for autonomous driving research

to establish its advanced Toyota Research Institute [14]. The company has targeted

2021 as a goal for deploying “AI car features”. In 2015, Volkswagen announced that it

would bring the autonomous driving technologies to market by 2025 [15]. Challenging

BMW, Volvo also planned to sell a model that is able to pilot itself by 2021 [16].

With the potentials of self-driving vehicles, many non-vehicle-manufacturing com-

panies have also joined the self-driving vehicle research. Apple has been testing its

self-driving cars which are equipped with LIDARs, radars and cameras [17]. Nvidia

introduced Nvidia Drive PX2 as a powerful computing platform for autonomous

cars [18]. With 8 teraflops of processing power, the platform is robust enough to

support deep learning and sensor fusion which are key elements of future self-driving

vehicles. In May 2016, Uber, a taxi service provider, revealed its prototypes of au-

tonomous vehicles [19]. Microsoft has also joined the self-driving vehicle research. Its

deal with Volvo in November 2015 allowed Microsoft to develop autonomous vehicles

by leveraging its HoloLens technology [20].

In 2016, the U.S. Department of Transportation (DoT) adopted the SAE (Soci-

2



ety of Automotive Engineers) International standard which uses six levels (0 - 5) of

automation to categorize the autonomous vehicles [21]. While Google’s self-driving

cars are at the level 5 with fully autonomous capabilities in all driving modes (e.g

expressway merging, high speed cruising, etc.), Tesla’s auto-pilot cars [6] are at level

4 with fully autonomous capabilities in some driving modes. Similarly, car manufac-

turers like Toyota, BMW, Ford, Nissan, etc. [22] have also aimed to build up their

own fully self-driving vehicles at either level 4 or 5.

Despite fully autonomous driving’s great potentials for future transportation sys-

tems, mass deployment of such vehicles may still be years away. There are many

impediments to the real-world deployment of fully autonomous driving which range

from reliability to liability issues. Tesla cars also have reliability problems with their

autopilot system. [23]. In June 2016, a Tesla car was involved in a fatal crash when

the car was in auto-pilot mode [24]. The report indicated that the accident occurred

when a tractor-trailer made a left turn in front of the Tesla car while the latter did not

recognize the white side of the tractor-trailer against a bright sky and failed to apply

the brakes. In addition, legal issues concerning the liability when such autonomous

vehicles are involved in accidents have not been sorted out. This liability issue may

make the automotive industry reluctant to manufacture driverless vehicles, even when

the vehicles are reliable and robust.

It is believed that a collaborative driving system in which the vehicle runs under

the control of both a human driver and a co-pilot system would be the best solution in

the near future. Human drivers are more intelligent because they can assess the traffic

situation precisely. However, they are inconsistent because of various distraction

behaviors, including drowsiness. Co-pilot systems are more consistent in perceiving

the surrounding environments than human drivers. However, co-pilot systems are not

so intelligent in judgment, especially in situations that they have never seen before.

Therefore, a human driver and a co-pilot complement each other. For a vehicle to

3



drive safely on the road, two risk factors must be considered: 1) internal risk factors

which depend on the driver’s behavior; 2) external risk factors which depend on the

environment surrounding the vehicle. Most of the previous studies only address one

of the risk factors. It is believed that taking both risk factors into consideration

will make the vehicle drive more safely. Therefore, a driving assistance system that

monitors and analyzes both internal and external risk factors is proposed. Such a new

driving assistance system can help improve the safety of the transportation system.

Here, we examines the two risk factors and find out how they are related to driving

safety.

I.1.1 Internal risk factors

Internal risk factors are mainly caused by human driver’s behavior. There are two

main issues: driver intention and driver distraction. Driver drowsiness is a special

type of distraction.

Driver intention

Vehicle crashes occur more often when driving maneuvers of one or more drivers

are not announced properly to other vehicles. Therefore, driver intention recognition

can provide useful information to nearby vehicles through vehicle-to-vehicle commu-

nication [25] to avoid traffic accidents. The built-in turning signal is a good source

to determine other drivers’ intentions. However, many drivers do not use the turning

signal when they make turns or change lanes. A survey revealed that 57% of Amer-

ican drivers do not always use turning signals when changing lanes [26]. Thus, it

is not sufficient to rely on turning signals for intention recognition. Several projects

implemented driver monitoring systems inside the vehicle to observe the driver and

infer his/her intention [27–29]. In this dissertation, a driver intention recognition sys-

tem adopting Hidden Markov Models (HMM) [30] is presented. The author adopted
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a multi-sensor fusion approach by using lane position, vehicle control data (steering

wheel and pedal positions) and vehicle state data (velocity, acceleration and yaw rate)

to obtain accurate predictions of the driver’s intentions.

Driver distraction

In 2010, 18% of traffic accidents were distraction-related in the United States [31]

with around 5000 fatalities and $40 billion in damage. There are many factors that

may cause driver distractions. It is found that driver distractions are usually caused

by sources from inside the vehicle [32]. As major motor companies like Toyota, Nis-

san, Ford, Mercedes-Benz, etc. gradually introduce advanced infotainment, control

panel and display systems, adjusting those in-vehicle devices while driving could cause

serious distractions that may lead to traffic accidents. Another source that can in-

fluence the driving performances is cellphone use. Driving and having conversations

on cellphones each consumes a significant amount of the brain power. When doing

both actions at the same time, it will consume 37% of the brain power [33]. It is

not proved that using hands-free cellphones has safer driving performance than using

hand-held cellphones. Text messaging while driving can raise even more distraction

because it leads not only the driver’s thought but also his/her hand and vision out

of the driving tasks [33].

There are three types of distraction during driving [34]:

• Manual distraction: The driver takes his/her hands off the wheel, e.g., drinking,

eating, adjusting music, etc.

• Visual distraction: The driver looks away from the road, e.g., reading, watching

phones, etc.

• Cognitive distraction: The driver’s mind is not fully focused on driving tasks,

e.g., talking, texting, thinking, etc.

5



Drowsiness falls into both the second and the third types of distraction [35]. The

many casualties and injuries caused by drowsiness call for an effective system that

can detect drowsiness and take proper controls before accidents occur. The U.S.

Department of Transportation has been promoting the development of intelligent

vehicles in order to prevent such accidents [2]. In this dissertation, we aim to develop

a driver drowsiness detection system which is used as an important component for

the collaborative driving framework. Moreover, drowsiness detection is extended to

distraction detection, which can be used in the collaborative driving framework in

the future.

I.1.2 External risk factors

External risks to a vehicle can be attributed to many factors. Here, three main

issues are focused on: lane departure, pedestrians and other vehicles.

Lane departure detection

Lane keeping is one of the essential skills that a human driver must have. To

perform driving tasks, a human driver must analyze the road scene and choose suitable

maneuvers. Therefore, the ability to analyze the road scene is a critical component

in an Advanced Driver Assistance System (ADAS). The aim of lane detection is to

ensure that the vehicle travels in the middle of the lane and raise alert in case there

is any tendency of lane departure. Lane analysis includes the localization of the lane

and the determination of the relative position between the vehicle and the lane.

In the real world, roads are categorized into two kinds: structured and unstruc-

tured. While structured roads usually have clear lane markings (solid or broken)

and can be found on highways or urban streets, unstructured roads have vague or no

painted lane markings. In this dissertation, only lane detection on structured roads,

which reduces the complexity of the problem, is considered.
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Pedestrian detection

Similar to lane detection, pedestrian detection is one of the most critical compo-

nents in an ADAS. In urban areas, more pedestrians tend to cross the streets than

in rural regions which may cause serious traffic accidents especially when vehicles are

running at high speeds. In 2013 alone, 4,735 pedestrians were killed in traffic crashes

in the United States [36]. Also in 2013, more than 150,000 pedestrians were treated in

emergency departments for non-fatal-crash-related injuries [37]. Pedestrians are more

vulnerable in vehicle-related accidents. It is found that pedestrians are 1.5 times more

likely than passenger vehicle occupants to be killed in a vehicle crash [38]. There-

fore, automated pedestrian detection may help the driver assistance system alert the

driver, apply the brakes or perform necessary maneuvers to avoid collision with the

pedestrian.

Similar to vision-based lane detection, vision-based pedestrian detection may en-

counter the following challenges. Pedestrian appearances may vary in clothes, height,

poses, behaviors (walking, standing, running), carrying different objects, etc. Pedes-

trians may be partially occluded by other vehicles. Moreover, it is more challenging to

detect moving pedestrians from a moving vehicle. In this dissertation, the pedestrian

detection system could detect pedestrians with various appearances.

Vehicle detection

Vehicle detection is one of the core functions of any ADAS system. Other vehicles’

behaviors play a major role in a human driver’s decision-making process. Maneuvers

of nearby vehicles, such as suddenly changing lanes, slowing down in the front or

accelerating from behind may pose significant risks to a vehicle. Detecting other ve-

hicles may provide an early warning or precaution about traffic situations. Therefore

it is essential to explore techniques for vehicle detection and have appropriate actions

to decrease the possibility of collisions.
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Various sensing modalities have become available for on-road vehicle detection,

including radars, lidars and cameras. Imaging technology has greatly progressed in

recent years. Cameras are cheaper, smaller, and of higher quality than ever before.

Concurrently, computing power has dramatically increased. Furthermore, in recent

years, we have seen the emergence of computing platforms geared toward paralleliza-

tion, such as multicore processing and graphical processing units (GPUs). Such hard-

ware advantages make it possible to deploy computer vision approaches for real-time

vehicle detection. In this dissertation, we aim to develop a vehicle detection system

using cameras as in lane and pedestrian detection systems.

I.2 Objectives of this dissertation

In this dissertation, it is argued that an integrated manual and autonomous driv-

ing framework is more practical for real-world deployment compared to fully au-

tonomous driving. First, a manual and autonomous switching framework based on

driver drowsiness detection is developed. The driver’s status is monitored by the

drowsiness detection algorithm. If the driver is not drowsy, he/she can have full

control of the vehicle. Otherwise, the vehicle can drive by itself. However, these

conditions are only true if we are very sure of the driver’s status such as drowsy or

non-drowsy. The problem is how to choose a suitable control for the vehicle if we

are not sure about the driver’s status, or when the confidence regarding the status

of the driver is not high. Therefore, to solve this problem, a collaborative driving

framework which considers both internal and external risk factors is proposed. The

proposed framework has two agents: a human driver and an autonomous agent (co-

pilot). If the human intention agrees with the co-pilot’s decision from the Collision

Avoidance System (CAS) algorithm, the final decision is determined by fusing both

control inputs from the human driver and the co-pilot. On the other hand, if the

intention of the human driver and the co-pilot’s decision do not match, the final de-
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cision depends on the driver’s status and the status of the ego vehicle. Besides the

drowsiness detection system, a system which can detect driver distraction which is

a general case of driver drowsiness is developed. This distraction detection system

could be used for the collaborative driving framework in the future.

Figure I.1: The overall framework of the collaborative driving system.

I.3 Contributions

Figure I.1 shows the overall framework of the dissertation which can be divided

into three main modules: internal risk analysis, external risk analysis, and control.
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The internal risk analysis module aims to understand the driver’s intention and state.

The driver’s intention is the potential action that the human driver may take in

the near future. Typical intentions include changing lane left, changing lane right,

speeding up, slowing down and keeping the vehicle’s current state. The driver’s states

include drowsiness and distraction. The external analysis module aims to understand

how the ego vehicle moves in the lane and how the nearby pedestrians and other

vehicles move with respect to the ego vehicle. Such information is important to

develop the collision avoidance algorithm. The control module consists of two parts:

a co-pilot and a collaborative driving system (CDS).

The co-pilot utilizes the CAS which receives the collected information from the

external analysis module and the intentions from other vehicles to make a decision

regarding the best maneuver that the vehicle should take. The CDS module cal-

culates the best action by integrating the outputs from the CAS module and the

outputs from the internal analysis module. The human driver’s intention and the

co-pilot’s intention are compared. If they agree, the final control for the ego vehi-

cle is the fusion of the controls from the human driver and the co-pilot. Otherwise,

the final control relies on the driver’s state or the probability of drowsiness and the

ego vehicle’s probability of collision. The decision from the CDS module is given as

the final command to the vehicle control system. The contributions of this work are

summarized as follows.

1. A driver intention recognition system which uses the steering wheel, gas, brake

and lane information was developed. Hidden Markov Models are adopted to

classify five intentions (slowing down, speeding up, changing lane left, changing

lane right and keeping the vehicle’s current state). While most studies do not

address curved roads in their recognition system, we found out that curved roads

also play a major role in intention prediction. Unlike the studies of Doshi [29]

and Henning [28], where the structure (curvature metric) of the road is treated
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as input, in this dissertation, the proposed system does not take this feature as

input but is still able to classify the changing lane maneuvers on curved roads.

2. An algorithm to detect driver drowsiness, which is a special type of distraction

was developed. Tadasse’s work [39] is adopted to achieve this task. However,

in [39], the face detection relies on the CAMShift algorithm [40] which tracks

the face based on the skin color. Therefore if the background has a similar

color to the skin, the face would not be detected correctly which leads to miss-

classifications. A new face detection algorithm is implemented. It is based on

Histogram of Oriented Gradient (HOG) feature combined with a linear classi-

fier, an image pyramid, and a sliding window detection scheme [41]. We also

collected data and trained a new Support Vector Machine (SVM) model from

more subjects with different ages, skin colors and genders to enhance the robust-

ness of the proposed system. The drowsiness detection system was evaluated

through a manual and autonomous driving switching control mechanism.

3. A driver distraction detection system which identifies various types of distrac-

tions through a camera observing the driver was proposed. An assisted-driving

testbed is developed for the purposes of creating realistic driving experiences and

validating the distraction detection algorithms. We collected our own dataset

which consists of images of the drivers in both normal and distracted driv-

ing. Four deep Convolutional Neural Networks (CNNs) including VGG-16 [42],

AlexNet [43], GoogleNet [44] and ResNet [45] are implemented and evaluated

on an embedded GPU platform. In addition, a conversational warning system

that alerts the driver in real time when he/she does not focus on the driving task

was developed. The proposed distraction detection algorithm could be used for

the collaborative driving framework in the future.

4. A new Collision Avoidance System (CAS) based on Osipychev’s work [46] was
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proposed. The new CAS takes the probability distributions of other drivers’

intentions as inputs to cover all the possibilities of their intentions. Moreover,

the vehicle’s external environments such as lanes, pedestrians and other vehicles

are also fed to the proposed CAS so that it can generate appropriate actions to

assist the human driver.

5. A collaborative driving framework which considers both internal and external

risk analyses was proposed. The framework takes inputs from the human driver

and the co-pilot. The co-pilot always operates in parallel with the human driver

but only intervenes in the control of the vehicle in certain situations based on the

vehicle’s status, the human driver drowsiness and his/her drowsiness intensity.

6. In order to conduct such research, it is necessary to have a testbed which can

be used to verify the proposed methodologies. Since full scale experiments

using real vehicles are expensive and risky, it is believed that a small scale

physical testbed and a simulated testbed can be useful for preliminary study

and feasibility test. The testbed can simulate real traffic environments, human

driving experience and autonomous driving. The ITS testbed also provides

functions that allow users to remotely access it.

I.4 Outline

The rest of this dissertation is organized as follows. In Chapter II, the literature

review related to the proposed works is provided. Chapter III describes the devel-

opment of the ITS testbed. Chapter IV presents the driver intention recognition

system. Chapter V describes the driver drowsiness detection system. The distraction

detection system is presented in Chapter VI. The CAS is presented in Chapter VII.

Chapter VIII describes the proposed collaborative control framework. The conclusion

and some future research directions are presented in Chapter IX.
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CHAPTER II

RELATED WORKS

In this chapter, the existing works related to this dissertation are reviewed. This

chapter is organized as follows. Section II.1 gives an introduction to internal risk

analysis which includes driver intention recognition, driver drowsiness detection and

driver distraction detection. Section II.2 presents the related works on the external

risk analysis which includes lane and pedestrian detections. The literature review on

CAS is discussed in Section II.3. In Section II.4, the related works on the collaborative

control framework are presented.

II.1 Internal analysis

In this dissertation, the internal risk analysis includes the recognition of the human

driver’s intentions and the detection of his/her state (distraction or drowsiness). This

sub-section gives a brief overview of the related studies in these areas.

II.1.1 Driver intention recognition

In recent years, many techniques and approaches have been implemented to recog-

nize the human driver’s intention. For example, Support Vector Machine (SVM) was

used to classify the driver intention of lane changing [27]. Eye movement, steering

angle, gas pedal pressure, and vehicle states including velocity, acceleration and yaw

rate were used as inputs. The method could achieve an accuracy of 88.78% with 0.6

seconds of recognition time at a 5% false alarm rate. Moreover, SVM combined with

Bayesian Filtering (BF) was also implemented for driver intention recognition [47].
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This technique adopts distance between vehicles, heading angles, and speed as input

features to achieve an accuracy of 77% and a 0% false alarm rate. The same authors

also implemented a modified SVM-BF algorithm with discounted BF to increase the

accuracy up to 90% with a 7% false alarm rate. Sparse Bayesian learning technique

was also implemented for driver intention recognition in a research by McCall et

al. [48]. The input features are the vehicle’s control and state data from the CAN

bus, lane position and head motion.

Driver intention recognition using facial data also attracted many researchers [27,

48]. Doshi et al. proposed a recognition method using the driver’s eye gaze and head

motion [29]. However, they adopted a different classification method called Relevance

Vector Machine (RVM). Their method achieved an accuracy of 79.2%. Henning et al.

also used facial data with adaptive interface technology to model driver’s behavior

without turning on the signal lights [28]. Their study shows that the glancing at the

side-mirrors can yield earlier prediction than using signal lights. Overall, the facial

expression is a good source of data for intention prediction. However, it is not reliable

under weak lighting conditions [48].

The most widely used method in driver intention recognition is Hidden Markov

Model (HMM). Liu and Pentland presented an HMM-based real-time recognition

system [49] with 50% and 60% of accuracies in predictions of lane changing and

turning respectively. Jin et al. introduced a lane changing recognition system using

HMM [50] which takes both vehicle control and state data as observation inputs.

However, their system does not handle curved roads. Ding et al. introduced an HMM

method which uses Comprehensive Decision Index (CDI) as inputs [51]. This index

reflects the influence of surrounding traffic to the driver’s lane changing decisions.

The results of their paper show that implementing the CDI index could yield better

accuracy in prediction. While these papers mainly focus on lane changing actions

and have some limitations in accuracy and recognition time, more maneuvers can be
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predicted in this dissertation.

In this dissertation, maneuvers which include changing lane left, changing lane

right, speeding up, slowing down and keeping the vehicle’s current state are consid-

ered in the intention recognition system. The performance of the system is examined

in three scenarios: using only the vehicle control data (steer, gas and brake pedal po-

sitions); using both vehicle control data and vehicle state data (velocity, acceleration

and yaw rate); and using all the data including vehicle control data, vehicle state

data and lane position. While most studies do not mention curved roads in their

recognition system, we figured out that curved roads also play an important role in

intention prediction. Unlike the studies of Doshi [29] and Henning [28], where the

structure (curvature metric) of the road is taken as input, in this dissertation, the

system does not take this feature as input but is still able to classify the lane change

maneuvers on curved roads.

II.1.2 Driver state detection

The driver’s state can be considered as his/her distraction status. As mentioned

earlier, there are three types of distraction during driving: manual, visual and cog-

nitive distractions. In this sub-section, the author gives literature reviews of driver

distraction detection as well as its special example which is driver drowsiness detec-

tion.

Driver distraction detection systems

There are three main systems used to recognize driver distraction:

• Systems based on physiological data: (EEG, ECG). Brain activity or heart rate

is used as a feature vector to measure driver inattention/distraction [52, 53].

This kind of systems can provide very accurate and fast results. However, it does

not have any real practical application in the driving environment. Drivers have
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to wear many physiological sensors around their bodies. This would interfere

with their maneuvers while driving.

• Systems based on vehicle control data: (steering wheel movements and pedal

positions). Jin et al. introduced a system that can detect cognitive distraction

using only driver performance [54]. They claimed that distracted drivers usually

steer the steering wheel and apply the pedals differently than normal drivers.

They also mentioned that during distraction, drivers tend to increase the dis-

tance to the leading vehicle or tend to drive faster than normal with no leading

vehicle. In 2008, Ranney stated that distraction would lead to a lack of control

which may cause the vehicle to drift outside of the road [55]. This approach

can provide an accurate detection. However, it has low detection speed since it

requires long-term statistics.

• Systems based on computer vision: (driver’s face, eye and body movements).

This is the most popular approach in detecting driver distraction. The driver’s

face and eye images can help infer his/her state. Pooneh et al. used PERCLOS

(Percentage of Eye Closure) to detect driver’s drowsiness which is a kind of

distraction [56]. Infrared (IR) cameras are used to detect the eyes using the

difference between bright and dark pupils [57–59]. Driver expression such as

yawning is also utilized to detect distraction [58, 60]. In addition, the driver’s

right hand can also be monitored for distraction detection [61].

Driver distraction detection methods

There are various methods for driver distraction detection. The simplest method

for distraction detection is thresholding, in which a certain feature value is compared

with a preset threshold. Tabrizi et al. detected drowsiness by applying a constant

threshold to the PERCLOS value [62]. On the other hand, various machine learning
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techniques have been implemented to detect driver distraction. Support Vector Ma-

chine (SVM) using vehicle control data as feature vectors was implemented by Jin et

al. to detect cognitive distraction in [54]. In [63], the eye movements were utilized

as features in the SVM classification of distraction. SVM was also used to detect dis-

traction based on vision and lane tracking data [64]. Cray et al. proposed a Hidden

Markov Model (HMM) based method to detect distracted driving activities. Their

method requires the detection of the driver’s face and right arm [61]. Considering

the inherited uncertainty associated with the face features, Bayesian networks are

used by Gu and Ji [60,65] to model the uncertainty and determine the probability of

distraction of the driver.

Deep learning has gained more attention recently in distraction detection. In 2016,

State Farm started a competition on Kaggle.com with the goal to detect distracted

driving based on a provided dataset of dashboard camera images that showed drivers

either engaging in distracted behaviors or driving safely [66]. Convolutional Neural

Networks (CNNs) have achieved top performance in the competition [66]. For exam-

ple, Colbran et al. adopted a VGG-16 model that achieves an accuracy of 80% [67].

The AlexNet models were used in [68,69]. Based on the State Farm dataset, Lőrincz

et al. utilized region-based CNNs to detect the driver’s head pose, hands and clas-

sify the object that the driver is holding and thus detect distraction behaviors [70].

Inspired by the State Farm competition, Abouelnag et al. provided a dataset and

proposed a real-time distraction detection approach using a combination of 5 AlexNet

and 5 GoogleNet models with hand, face, and skin features [69]. A weighted genetic

algorithm (GA) ensemble of the CNNs is used to merge the CNN results to obtain the

final result. The system achieved a 95.98 % driving posture classification accuracy.

However, Abouelnag’s approach requires a powerful computer to perform the calcu-

lations of the 10 CNNs in real time which is not feasible on embedded systems yet.

Therefore, this dissertation proposes an approach of using a single CNN to ensure the
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efficiency of computation on embedded systems. Choi et al. proposed a deep learning

approach in real-time distraction detection based on eye gaze [71]. The driver’s face

is recorded and a Haar feature based face detector is combined with a correlation

filter based MOSSE (Minimizing the Output Sum of Square Error) tracker for face

tracking. Then the AlexNet model is utilized to classify the 9 gaze zones. In addition,

deep learning techniques can also estimate the driver’s head pose which is useful for

distraction detection. Venturelli et al. proposed an approach which uses a simple

CNN to estimate the head pose such as yaw, pitch and roll angle through a depth

camera [72]. From the face image, a linear interpolation algorithm is used to remove

the background. The result is fed to a CNN which has 5 convolutional layers and 3

fully connected layers to estimate the head pose. This network takes 64 × 64 images

as input, which is relatively smaller than other deep learning architectures. Unlike the

approaches in [71, 72] which focus on monitoring the face from a frontal camera, the

proposed system focuses on monitoring the driving behaviors from the whole human

body. Therefore, these approaches could be combined with the proposed one to en-

hance the robustness in the future. Hssayeni et al. compared the performance of deep

learning approaches versus a traditional classification algorithm such as SVM with

Histogram of Gradient features [73]. They also proposed an approach which combines

both deep learning and traditional classification algorithms. In their approach, the

outputs from the convolutional layers are used as features for an SVM classifier.

In this dissertation, the author aims to develop a real-time detection system of

distracted driving which is achieved by utilizing four deep CNN architectures in-

cluding VGG-16 [42], AlexNet [43], GoogleNet [44] and ResNet [45]. In addition to

the existing public dataset, we collected our own dataset using an assisted-driving

testbed. The performances of the four networks are evaluated and compared in terms

of both accuracy and realtimeness to identify the algorithm that is best suited for

real-time implementation. Distracted driving detection is performed in real time on

18



an embedded system which generates voice alerts to the driver if the distraction is

detected.

Driver drowsiness detection

A special type of distraction is drowsiness in which the driver has fatigue and

looses focus on the driving task. Similar to distraction detection, real-time drowsi-

ness detection has been implemented through different detection techniques analyzing

different types of input data e.g., physiological data, vehicle control data and driver’s

facial images. The first set of techniques makes use of the measurement of varia-

tions in the physiological activities of the human body such as brain wave (EEG),

heart rate or pulse rate [74–78]. Even though the measurements and their correlation

with the alertness of the driver are quite accurate, they are not practical because the

driver is required to always wear the sensing devices and the hardware cost is too

high to be used for commercial purposes. Moreover, wearing these kinds of sensors

would interfere with the movements of the drivers’ hands while driving. The second

approach is analyzing the vehicle control data such as steering wheel and gas pedal

position to detect the drowsiness of the driver [79–83]. The third approach, the most

popular one, is making use of computer vision and image processing to detect the

drowsiness of the driver. Researchers have mainly focused on the analysis of the

driver’s eye blinks and PERCLOS to determine his/her drowsiness [84–87]. In recent

years, analyzing facial expression has attracted more attention. Vural et al. employed

machine learning methods to analyze facial motions from a video [88]. The changes

in the driver’s facial expressions such as eyebrows, mouth, and wrinkles are utilized

to detect his/her drowsiness [89,90]. The different approaches mentioned above have

their own advantages and limitations. The method using vehicle control information

is non-intrusive but lacks reliability. The method utilizing measurements of phys-

iological information is reliable and accurate but is intrusive. On the other hand,
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the method using computer vision to analyze the driver’s facial expression is more

reliable than the one using vehicle control information. However, its performance is

affected by ambient illumination. So, utilizing either of these methods may not be

sufficient to determine the driver’s state under different circumstances. Therefore, the

fusing method is a good choice to improve detection reliability. Eskandarian et al.

detected driver drowsiness by combining steering wheel movements and facial data

using Neural Networks [91, 92]. In this dissertation, the author implements both the

analyses of the steering wheel data and the vision-based facial expression which are

then integrated to give a final decision on the state of the driver.

II.2 External analysis

The external risk analysis includes the detection of lanes, pedestrians and other

vehicles. This sub-section summarizes the literature reviews of those systems.

II.2.1 Lane detection

There are many works on lane detection in recent years. They generally utilize

different strategies to deal with certain kinds of surroundings and road conditions.

In general, there are two types of sensors for lane detection: LIDARs and cameras.

LIDAR-based lane detection attempts to detect the lane markings based on an in-

crease in reflectivity of the lane markings when compared to the road surface [93].

LIDARs can be used to identify lane marks and road boundaries by their 3D exten-

sions above the road surface [94, 95]. LIDARs can be used to estimate the ground

roughness that is important for road and off-road segmentation [94, 96, 97]. LIDARs

are also helpful in detecting road curbs and berms [95, 97]. The video-based method

attempts to detect lane markings by detecting the features of the lane markings in a

sequence of images. Color segmentation is used to detect the road [98]. The segmen-

tation is performed by the ISODATA clustering algorithm on the hue and saturation
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distribution (2D histogram) of the given image. Dahlkamp et al. introduced an ap-

proach in which the system identifies the drivable surface in desert terrain [99]. A

mixture of Gaussians - MOG (Modified Gravity) model was used to describe the road

surface. Gao et al. used HSV colors from road images as the main feature for detect-

ing rough road surface [100]. In recent years, edge is one of the most common features

used in road detection for structured roads. Edge-based methods use the edge infor-

mation extracted from the road image to obtain road or lane-marking candidates.

There are several famous techniques in edge detection such as Canny filters [101–104]

and Sobel filters [105–108]. After the edge map of the image is obtained, the Hough

transform is utilized to get line segments that possibly represent the lane markings.

II.2.2 Pedestrian detection

In their earlier work, Shashua et al. [109] proposed a sped-up method of HOG for

characterizing spatially localized parts to model pedestrians. Since their introduction,

the number of variants of HOG features has improved greatly with nearly all modern

detectors utilizing them in some forms. The shape features of human body are also

a frequent cue for detection. Boosting was used to learn head, torso, leg, and full

body detectors. This approach was extended in [110] to handle multiple viewpoints.

Similarly, Boosting was also used to combine multiple shapelets which are shape de-

scriptors and discriminatingly learned from gradients in local patches, into an overall

detector. Wojek and Schiele stated that using a combination of Haar-like features

and shapelets to detect pedestrians was better than using an individual feature [111].

Wang et al. [112] combined HOG features with a texture descriptor based on local

binary patterns (LBP) [113]. Additionally, a linear SVM classifier was modified to

handle occlusions. Schwartz et al. [114] represented pedestrians by edges, texture,

and color while applying partial least squares to project the features down to a lower

dimensional space prior to the SVM training. Dollár et al. [115] proposed a method
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of computing Haar-like features over multiple channels of visual data, including LUV

color channels, grayscale, gradient magnitude, and gradient magnitude quantized by

orientation. This approach provides a simple and uniform framework for integrat-

ing multiple feature types. Later this approach was extended for fast pedestrian

detection [116]. In 2014, Dollár et al. [117] proposed a method that used Aggre-

gated Channel Features (ACF) to form fast feature pyramids and detect pedestrians.

Since this approach satisfies the fast processing requirement, it is implemented in the

pedestrian detection system of this dissertation.

II.3 Collision Avoidance Systems (CAS)

Among many different approaches to driving assistance, one of the most popular

approaches is reactive safety which warns the driver about risks on the road or even

takes actions to avoid accidents [118,119]. With the help of modern sensors and fast

computers, these systems can surpass the human in reaction time and prevent up

to 80% of simulated collisions [120, 121]. Pomerleau et al. introduced an advanced

robotic system called ALVINN which utilizes the images from cameras and neural

networks for reactive control [122]. Goodrich et al. proposed a collision avoidance

system based on optical pattern growth rate. This system applies the brake when

the size of the leading vehicle grows on the image from a front view camera [123].

Maile et al. proposed a system that could alert the driver and autonomously apply

the brake when a high risk of collision at an intersection is detected [124]. Jimnez

et al. introduced a CAS based on a laser-scanner to keep the vehicle away from the

potential danger [125]. To improve the safety in reactive systems, we need to enhance

their sensitivity. However, too much sensitivity may lead to the increase of false

alarms and create annoying actions to the human driver when there is no danger.

Despite the reactive control, an autonomous vehicle can be equipped with a proac-

tive control system which plans its action ahead with respect to the positions, be-
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haviors and intentions of surrounding vehicles. This proactive approach helps achieve

a higher sensitivity to a potentially dangerous situation while maintaining softer ac-

tions which would not annoy the human driver. However, it is still a challenge for

the adoption of these methods in vehicles due to the following difficulties. First, a

system that plans actions in advance requires the information of the human driver’s

intention. This task has been previously solved using machine learning algorithms

which analyze human activity and output the intention or the warning about possible

unintended actions due to drowsiness or distraction [39,126]. The second challenge is

the modeling of the human behavior which is utilized to predict the trajectory of the

vehicle. This task can be solved by learning-based behavior models such as Gaussian

model [127,128]. The third challenge in developing a proactive algorithm is the eval-

uation of the corrective action based on the possible outcomes. This task could be

performed as an optimization task using various single-step and sequential decision-

making techniques such as tree search [129]. However, using a tree search requires

many evaluating functions which may slow down the decision-making. Another com-

mon way of solving this task is using the potential fields [130]. The principle of this

method is to represent the dynamic obstacles as objects with potential fields which

force the autonomous vehicle to move away from them. However, this method assumes

the use of the continuous model of the world which has large variations, especially in

unknown areas. A better solution to collision avoidance is using a sequential Markov

Decision Process (MDP) [131] and a Partially Observable MDP (POMDP) [132] in

which hidden intentions affect obstacle’s behaviors and transitions. The world is

assumed to be partially observed or completely hidden, and the motivation and dy-

namics of the processes are not available while only the effects of certain actions

can be observed [133, 134]. In theory, these methods would give an elegant solution.

However, they are very hard to solve, require many samples to establish the hidden

links, and are hard to check the correctness of the solution. In this dissertation, the
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single-step cost function optimization is implemented to solve the collision avoidance

problem. The system allows us to find the best actions given the full knowledge of the

parameters of velocity, direction, position and intentions for all surrounding vehicles.

II.4 Collaborative control

Collaborative control has been studied in robotics for some time. A collaborative

control framework allows the human and the robot to share the control to perform a

certain task [135–138]. Fong et al. proposed a collaborative control system in which

the robot is treated as a peer and could respond to human requests [139]. Carlson et

al. presented a collaborative control approach to assist powered wheelchair users as

they require assistance [140]. The system can predict the user’s intentions through

the control joystick on the wheelchair and adjust the signals if necessary to reach the

goal safely. Macharet et al. proposed a collaborative driving framework for a tele-

presence robot in which the user’s control input is treated as a general guidance for

the robot to reach the target [141]. The robot processes this information by coupling

it with a variable degree of automation depending on the task to obtain a suitable

control input.

In recent years, collaborative driving has attracted great research attention. In

the 2007 DARPA Urban Challenge, Wei et al. introduced a multi-level collaborative

driving framework for their autonomous vehicle [142] which includes different levels

of human driver involvement. An interface was created for the driver to control the

vehicle by cooperating with the vehicle’s intelligence system. Gillham et al. employed

a framework to assist the human driver by generating the smoothest trajectory and

applying the final control to the steering [143]. Their system tries to keep the human

driver at full control as much as possible. Zimmermann et al. proposed multimodal

interaction and a user interface for a cooperative lane-changing scenario in a highly

automated driving environment [144]. Flemisch et al. proposed a framework of coop-
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erative guidance and control for vehicles using the concepts of ‘Conduct-by-Wire’ and

‘H-Mode’ [145]. With ‘Conduct-by-Wire’, the driver can delegate maneuvers to the

automation with a specialized maneuver interface. On the other hand, the ‘H-Mode’

makes use of haptic-multimodal interaction with highly automated vehicles based on

the H(orse)-Metaphor. The cooperation is mainly carried out with a haptic interface.

Similarly, haptic human-machine interfaces were also used in many other studies of

collaborative driving of vehicles. Brandt et al. proposed an approach which combines

steering wheel force-feedback with a potential field path-planner for lane-keeping and

collision avoidance [130]. In their work, the human driver’s control input must fol-

low exactly the desired control from the path planner so that the control assistance

would not be applied. Otherwise, the driver can only control the vehicle indirectly and

his/her control input is always fused with the desired control from the path planner

to follow the planned path. Similar to [130], Li et al. presented a cooperative driving

paradigm in which the driver can only control the vehicle indirectly through the au-

tomation’s input transformation [146]. The ‘Steer-by-wire’ technology is applied so

that the vehicle can correct the driver’s steering input. Unlike [130] and [146], the

proposed system grants the driver more authority on controlling the vehicle, and the

driver’s control is only modified by the co-pilot in certain situations. An extended

work by Li et al. utilizes adaption and trust models which could grant the steer-

ing control authority to the driver if he/she distrusts the automatic controller [147].

In [148] and [149], the H2-optimization algorithm is utilized to share the steering

wheel control with the driver in the best possible way. Soualmi et al. presented a

Low-Level-Cooperation (LLC) system for the purpose of lane keeping. This system

shares the vehicle’s lateral control using the T-S controller with the human driver’s

steering wheel control, when obstacles on the road are not detected by the Electronic

copilot (E-copilot) [150]. Unlike these studies which only focus on the shared control

of the steering, this dissertation aims to share the control of both the steering and
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the gas/throttle between the human driver and the co-pilot.

Most importantly, while these studies ([130,143–150]) do not monitor the human

driver, the proposed system achieves a high-level cooperation which not only monitors

the driver but also utilizes his/her state as an input to the collaborative driving

framework. In the proposed system, the human driver’s intention is compared with

the decision from the co-pilot running the CAS algorithm. If they match, the system

assists the driving task by combining the control inputs from both the human driver

and the co-pilot. If they do not match, additional conditions such as the vehicle’s

status and the driver’s drowsiness status are taken into account to determine the

control of the vehicle.

In this dissertation, the human driver’s intention is compared with the decision

generated by the CAS algorithm [46]. If they match, the system would assist the

driving task by combining the control inputs from both the human driver and the

CAS algorithm. If they do not match, additional conditions such as the vehicle’s

status, the driver drowsiness and his/her drowsiness intensity are taken into account

to determine the control of the vehicle.

26



CHAPTER III

THE ITS TESTBED

Conducting full scale ITS research with real vehicles has many challenges. Modi-

fying a real vehicle into a semi or fully autonomous one can cost a significant amount

of money and time. A failed experiment can cause great risks to the drivers, vehicles

or nearby people. Hence, a small scale ITS testbed is preferred for initial study and

reliability tests before conducting the experiment in real traffic. This chapter presents

the development of the small scale ITS testbed which comes in two types: physical

and simulated testbeds.

III.1 The physical testbed

The physical testbed has two main parts: hardware and software. In this sub-

section, the physical testbed’s hardware and software setup are described as well as

its remote configuration capability.

III.1.1 Hardware setup

The ITS testbed includes an arena, an indoor localization system, automated

radio-controlled (RC) cars, roadside monitoring facilities, a server and clients. To

mimic typical traffic environments, an arena with a wooden floor, mock buildings

and streets was built. An indoor localization system is developed to mimic the GPS

tracking in the real world. Automated RC cars with both autonomous driving and

human driving capabilities are also developed. For the roadside monitoring facilities,

an overhead fish-eye camera is used and the associated advanced video processing
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algorithms are developed. The server is the testbed’s center which can collect data

and control the RC cars. The client can access the server, configure and perform

experiments remotely. The overall testbed is shown in Figure III.1.

Figure III.1: Hardware setup of the physical ITS testbed.

Arena

The arena is a wooden board with a dimension of 16 feet by 12 feet. There is

a 6-inch high wooden fence placed around the arena, in order to prevent the RC

cars from running outside the arena. The arena is covered by a gray carpet which

imitates the friction of real concrete or asphalt roads. A small scale intersection was

developed at an approximate ratio of 1:14 (the ratio of an RC car to a real car).

This intersection also has crosswalks, street lanes, sidewalks, and turning curves. It
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has three driving lanes in each direction including two lanes crossing the intersection

from both directions and one left-turning lane. The lane marks are made of yellow

and white tapes. Building blocks, green carpets and trees are decorated to create

a realistic driving environment. Building blocks do not have the 1:14 ratio since it

would be too big and space consuming. The size information of crosswalks, lanes,

sidewalks and curves is obtained from the website of the United State Department of

Transportation [151–153].

Indoor localization system

The Opti-Track system manufactured by the Natural Point Inc. [154] is used to

localize the RC cars. This system consists of twelve cameras placed around the arena

to estimate the locations of the markers placed on top of each RC car. Each camera

transmits IR beams and receives the signal reflected by the silver markers so that

it can localize these markers. Each camera can detect a marker with an accuracy

within sub-millimeters at a frame rate of 100 fps [154]. Each RC car, represented by

a rigid body, has a specific placement of makers on its top so that it can be correctly

identified. Each camera can localize markers within a range of 18 to 433 inches. The

optimized area which these cameras can cover on the arena is approximately 12 × 12

feet of the arena.

Automated radio-controlled (RC) cars

The automated cars are developed using commercial off-the-shelf RC cars which

have two DC motors: a front DC motor for steering control and a rear one for speed

control. After testing the front DC motor, it has very poor steering performance

and could not be used in this study. Therefore, the front DC motor is replaced

by a servo motor for more accurate steering. The original control board was also

replaced with another embedded board to control both motors. An XBee wireless
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module is attached to this board to receive commands from the server computer.

The RC cars are equipped with both autonomous and human driving capabilities.

In the autonomous driving mode, the concept of “a virtual vehicle” [155] which is

generated to run along a predefined trajectory is adopted. The server is programmed

to wirelessly control the RC car to track this virtual vehicle. The human driving

setup as shown in Figure III.2 can partially mimic the human driving experience.

A miniature wireless camera is mounted on the hood of the RC car to provide the

driving view. It is used to observe the environment in front of the car and send the

video stream through the radio AV receiver connected to the server. The human

driver controls the Logitech G27 steering wheel system and drives the RC car while

he/she observes the video stream on the monitor. Information such as steering angle,

gear, gas and brake pedal position is collected, encoded and sent by the server to the

RC car so that it can drive following the control of the human driver.

A VN-100 sensor [156] was also mounted on the top of the RC car to monitor its

motion. This is an integrated sensor package that combines multiple accelerometers

and gyro-meters to produce three-dimensional measurements of both orientation, ac-

celeration and angular rate with respect to an inertial reference frame [156]. The

motion data is sent to the server through another XBee module for further process-

ing. More details about the control of the RC car can be found in our previous

works [39,155].

Roadside monitoring facilities

A Mobotix Q24 fish-eye camera (Figure III.1) is mounted over the arena to monitor

the intersection. This camera can support continuous images with a panoramic 360-

degree view and no blind spot [157]. This camera can record videos with a 3MP

resolution at 20 fps. It can also serve as an IP camera which lets other computers

access its video stream. If the network connection is lost, the Q24 camera keeps
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Figure III.2: Hardware setup of manual driving.

recording and storing videos to its internal memory. The camera view, frame rate,

resolution, etc. can be adjusted through the software called MxControlCenter [158].

Server

The server is a computer that runs all software to control all components in the

ITS testbed. The indoor localization system is connected to the server via USB ports.

The server runs the ARENA software [154] to collect RC cars’ locations. There are

two XBee modules connected to the server. The RC car is controlled by the server

in either autonomous or manual driving mode through one XBee module. The other

one is used to receive data from the motion sensor attached on top of the RC car.

A webcam is connected to the server to capture the driver’s face. The server can

then send the collected data and images to a remote client application once being

requested.
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Clients

The client can be any computer running the client program in any physical loca-

tion. The client accesses the testbed by communicating with the server via TCP/IP.

It can configure/request which data should be received and draw a trajectory along

which the RC car in the testbed can track. The client can also utilize the received

data to perform drowsiness detection (based on the data from the steering wheel and

the webcam) or anomalous driving detection (based on the Q24 camera’s video data).

III.1.2 Software setup

All the devices in the physical testbed are controlled by the server software running

on the same computer. This server software can run the ARENA software to manage

the Opti-Track system, control the RC cars, and perform data collection.

ARENA software

This software is provided by the Natural Point Inc. [154]. It is used to manage

the Opti-Track system. The data obtained from the Opti-Track system can be a rigid

body’s unique ID, position (x, y, z), rotation in quaternions (qx, qy, qz, qw) and skele-

ton data which is a named hierarchical collection of rigid bodies. In this dissertation,

rigid bodies are utilized to represent RC cars. Therefore, we just need the position

and rotation data. The ARENA software also has an ability to stream its collected

data to a client. There are many methods for collecting data from the ARENA server.

We can use Direct Depacketization Client for Unix, Python or Java clients. We can

also use the NatNet SDK library provided by the Natural Point for C++, C#, VB or

.NET clients [154]. In this dissertation, the client is implemented in C++ using the

NatNet SDK library. The server plays as a client of the ARENA software to collect

the rigid body’s data. Thus they operate on the same computer and use the local

IP address (127.0.0.1) for communication. The data collected by the server enables
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Figure III.3: Euler rotation orientation of a car.

it to control the RC cars. The location data is (x, z) since all RC cars are put on

the ground. Their rigid locations vary with x and z values, and y values can be

neglected. The quaternion data (qx, qy, qz, qw) collected from the ARENA software

can be converted to Euler angles. Figure III.3 shows the Euler angles of a car in a

3-dimensional space. Since the RC car is on the ground, the value of θ and φ can be

considered to be zero. The heading angle Ψ, used for tracking the virtual vehicle, can

be computed using the following formula:

Ψ = arctan

(
2(qw × qy + qx× qz)

1− 2(qz2 + qy2)

)
(III.1)

Control of the RC cars

The RC car is controlled by a server implementing C++ programming. In order for

an RC car to move according to specified paths, we need to know its steering angle,

direction (forward/backward) and velocity. The RC car has two running modes:

manual driving and autonomous driving. In the manual driving mode, the RC car’s

steering angle, direction and velocity are determined by the values generated from the

steering wheel system which is manually controlled by the driver. In the autonomous
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Figure III.4: The overall block diagram of the physical ITS testbed.

driving mode, the server generates a virtual vehicle that moves along a trajectory.

Then, the necessary steering angle, direction and velocity based on the RC car’s

position and heading angle are computed so that the RC car can track the virtual

vehicle. The detailed tracking algorithm is presented in my Master thesis [159].

Data collection

The overall data collection process of the physical ITS testbed is illustrated in

Figure III.4. The dashed lines represent wireless communication and solid lines rep-

resent wired communication via USB or Ethernet cables. While the simulated testbed

is presented in Section III.2.3, the physical testbed is discussed in this section. Af-

ter the connection between the client and the server is established successfully, the

client sends a request to ask the server to perform data collection. After receiving the

request, the server lets the RC car be driven by the user and starts collecting data

from the steering wheel system, the Opti-Track system and the motion sensor. Then

it sends this collected data directly to the client program with a frequency of 20 Hz.

The steering wheel set is controlled by the user to drive the RC car and its data is

kept updating with a frequency of 20Hz. After receiving data successfully from the
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server, the client displays on the screen the collected data and the video from the

webcam in real time. It also saves the collected data to a file to record the history

of the car. The client can use the collected data to perform driver analysis including

intention recognition and drowsiness detection.

III.1.3 Remote configuration of the physical testbed

Besides the role of controlling the RC cars, the physical testbed helps us perform

remote data collection and remote trajectory configuration which are presented in

this sub-section.

Remote data collection

The server and client user interfaces are created by implementing the Windows

Application Programming Interface (Windows API) using the C++ programming

language. There are sixteen data collected by the server:

• Steering wheel control data

– Steering wheel: (0 to 250) from the most left to the most right.

– Brake: (-32767 to 32767) from the maximum push to release.

– Gas: (250 to 0) from the maximum push to release.

– Gear: forward, neutral, backward (reverse).

• Location data in x, y, and z directions with a range of [-1829 mm, 1829 mm].

• Motion data in yaw, pitch, and roll with a range of [-180◦, 180◦].

• Acceleration data in x, y, and z directions with a unit of m/s2.

• Angular rate data in x, y, and z directions with a unit of rad/s.
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(a) Server user interface

(b) Client user interface

Figure III.5: Server and client user interfaces for data collection.

Check-boxes are created on both the server and the client user interfaces to select

which data to be processed. Figure III.5 shows sixteen data selected and displayed

on both the server and client user interfaces. Both the server and the client can select

the data. Once the client and the server agree on the data selection, the client would

receive the data via TCP/IP at the frequency of 20 Hz. The server can also collect the

video of the driver’s face via the webcam and send it to the client in real time. This

video and steering wheel data are used in the case study of driver drowsiness detection

in Chapter V. A session to plot the received data in real time is implemented for

further analysis. Figure III.6 shows real-time plots of the received data at the client

user interface with the positions corresponding to check-boxes in Figure III.5.

36



Figure III.6: The plotted graph of received data in the client application.

Figure III.7: The top view of the arena and a trajectory of lines and arcs.

Remote vehicle trajectory configuration

Before performing experiments, the client can design different trajectories for the

RC car. Based on the designed trajectory, a script is encoded and sent to the server

which would decode it and control the RC car to run on the designed trajectory after

receiving the script.

1) Drawing vehicle trajectory: A client user interface for trajectory drawing

and script encoding is created. This user interface has a background image of the

arena’s top view. The user interface provides the abilities of line and arc drawing. To

draw a line, the user clicks on the image to specify the beginning point, then drags
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the mouse to a new location to specify the ending point of the line. For drawing an

arc, firstly, the user needs to specify the direction of the arc. The user also needs

to specify the beginning and ending points of the arc using the mouse. Figure III.7

illustrates the top view image of the arena and a combination of lines and arcs drawn

by the client user. Each line or arc is considered to be a numbered segment. When

the RC car reaches the end of a segment, it continues tracking on the next one until

the last segment is reached.

2) Mapping and Scripting location: The client program has to map the lo-

cation of the line and arc from pixel coordinates to real-world coordinates of the

Opti-Track system. The top view image has a resolution of 436 × 436 pixels. So,

the center point of the image (218, 218) should correspond to the center point of

the arena. The area that the Opti-Track system can cover is 3658 × 3658 millime-

ters. This area is measured on the image of 398 × 398 pixels. So, the location

of a pixel (imageX , imageY ) on the image is mapped to the location on the arena

(arenaX , arenaZ) through the following equations:

arenaX = (imageX − 218)× 3658

398

arenaZ = (imageY − 218)× 3658

398

Figure III.8 shows the mapping result displayed on the client user interface. The

intersection in the testbed is designed on a flat surface. Therefore, it is assumed that

the coordinate value in the y direction to be zero and only the coordinate values in

the x and z directions are considered.

For the RC car to track a line, we need to know its beginning point (xb,yb) and

ending point (xe,ye). The ending point of a segment is the beginning point of the

next segment. To track an arc, we need to specify the coordinate of the center of

the arc (x0, y0), radius, angle and direction (clockwise or counter-clockwise). These
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Figure III.8: Mapped locations from pixel to real-world coordinates.

parameters are calculated during the drawing of the arc and converted to real-world

coordinates. Then we can combine the parameters of lines and arcs into a script and

send it to the server, which can control the RC car based on the trajectory coded by

the script. The script has the following format:

S, 1stLine/Arc, 2ndLine/Arc, ..., nthLine/Arc, E

The formats of Line and Arc are as follows:

Line : L, xb, yb, xe, ye

Arc : A, x0, y0, radius, angle, direction

The letter ‘S’ and ‘E’ determine the start and end of the trajectory respectively. The

letter ‘L’ and ‘A’ indicate the segment to be a Line or an Arc respectively.

To control the RC car, the virtual vehicle based tracking control algorithm is

adopted following our previous works [160]. In previous projects, the trajectory of

the RC car is predefined with a certain number of segments. In this dissertation,

the trajectory is drawn by a client user. After receiving the encoded script from the
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client, the server decodes it into different parameters that are used to control the RC

car. Firstly, the virtual vehicle would run along a segment so that the RC car can

follow it. Figure III.9 illustrates various trajectories drawn in yellow curves, and the

corresponding real-world trajectories of the RC car are in red curves.

Figure III.9: Different drawn trajectories and corresponding RC car’s movements.

III.2 The simulated testbed

The simulated testbed has three main components: 1) a driving simulator which

simulates the driving environment, 2) a tool that helps user design road map database

for the driving simulator, and 3) a script to control the simulator’s behavior. The

overall block diagram of the framework is shown in Figure III.10.

III.2.1 The driving simulator

The Carnetsoft driving simulator [161] is utilized to provide a realistic environment

to collect data for training and local evaluation. Figure III.11 shows the hardware

setup of the simulated testbed. A metal frame was built to mimic an inside cabin

of a vehicle. Three monitors are mounted on the frame to display the driver’s view.

A Logitech G27 racing wheel and a webcam are used for this simulated testbed. An

adjustable and reclinable driver seat is also included to ensure comfort for different
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Figure III.10: The overall block diagram of the simulated testbed.

drivers. The simulator requires one more monitor to display its control windows while

the driving environment occupies three other monitors. These control windows help

the user manage the experiment, start/stop the simulator while monitoring the sim-

ulated vehicle’s current position and the whole system’s frame rate. In addition, the

dashboard information such as speedometer, tachometer, fuel consumption, changing

lane signal indicator, steering wheel angle, lighting switch and percentage of pressure

on the clutch, brake and acceleration pedal positions are also monitored. The screen-

shots of four monitors are presented in Figure III.12. In the driving environment of

this figure, we can also observe that there are glitches between the center monitor

and two side ones. This is the result when placing the three monitors on the same

plane. In practice, the two side monitors are mounted with certain angles like in Fig-

ure III.11, then the glitches disappear and the image transitions between the three

monitors become smoother. In addition, a USB 3.0 PointGrey camera is mounted

behind the driver seat to monitor the external environment.

III.2.2 Designing road map

The Carnetsoft driving simulator also gives us flexibilities in creating a driving

simulation. It provides us a tool to design networks of roads [161]. Figure III.13

41



Figure III.11: The simulated testbed.

shows a screenshot of a designed road map of a two-lane highway with exit and

merge roads. A road is described as a combination of multiple segments including

intersection, straight and curved roads whose parameters such as starting points,

length, curve angles, number of lanes, directions, traffic signs, etc. are inputted into

the left panel shown in Figure III.13. Other objects like facades (blocking the horizon

such as fences, tree lines, hills, etc.), underlying fields, trees, buildings, pedestrians,

animals, etc. can also be inserted.

III.2.3 Script language

The driving simulator’s behavior is controlled by a script language developed

by the manufacturer [161]. The script is programmed by the user to specify the

simulation scenarios. In a script, a pre-built road map database can be specified.

The user can choose the driving environments such as weather condition (dry, rain or

snow), lighting (daytime or nighttime), road frictions, etc. Also, the behaviors of all

vehicles that participate in the traffic can be programmed. For example, a car can
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Figure III.12: Screenshots from four monitors of the simulator.

be controlled to stop at an intersection for several seconds and then continue driving.

Each scenario has a unique identification number. Various vehicles such as sedan,

SUV, truck and bus can also specified. The script language also comes with many

pre-built functions which let the user collect variables such as velocity, acceleration,

heading angle, lateral position, etc. In this driving simulator, the driving mode

of the ego vehicle can be either manual, semi-autonomous (via speed or steering

only) or fully autonomous (via both speed and steering). A driving mode can be

switched to another one easily through commands provided by the manufacturer. In

this dissertation, only the manual (human) and fully autonomous (co-pilot) driving

modes are considered. So, the behavior of the ego vehicle during the autonomous

driving mode can be pre-programmed by setting its velocity and lateral position.

III.2.4 Data collection

The overall data collection process of the simulated driving testbed is illustrated

in Figure III.10. The dashed lines represent wireless communication and solid lines

represent wired communication via USB or Ethernet cables. Unlike in the physical

testbed, in the simulated testbed, the cameras are connected directly to the client

programs which also receive data sent from the driving simulator to perform both

43



Figure III.13: A tool for designing road map.

the internal and external risk analyses. Then, the collaborative driving framework

utilizes these analyses to generate an optimal control input for the ego vehicle. This

control input is sent back to the driving simulator so that it could control the ego

vehicle accordingly.

III.3 Summary

This chapter presents the development of the ITS testbed that includes both the

physical and simulated testbed. The physical one has the remote configuration and

remote data collection capabilities. It is used to validate the switching mechanism of

manual/autonomous driving based on drowsiness detection. The simulated testbed

provides us with the flexibility in designing road maps and traffic scenarios. It is used

for validating the collaborative driving framework.
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CHAPTER IV

DRIVER INTENTION RECOGNITION

Driver intention recognition can provide useful information for other human drivers

or autonomous vehicles through vehicle-to-vehicle communication [25] to avoid traf-

fic accidents. This chapter describes the driver intention recognition system which

adopts the Hidden Markov Model (HMM) algorithm. In addition, the simulation of

vehicle dynamics and experimental results of the system are also presented.

IV.1 Driver intention recognition using HMM

This section gives an introduction to the system overview and the HMM modeling.

IV.1.1 System overview

Figure IV.1 presents the overview of the proposed intention recognition system.

A driver can control the steering wheel system to drive the vehicle in the driving

simulator. The system consists of a server and a client. The server collects the car’s

front-view images from the camera so that the lane position with respect to the car

is determined. The details of the lane detection system are presented in Section

VII.1.1. Moreover, the server reads the steering wheel control data which drives the

simulator. The server also sends the data to the client in which the vehicle states are

obtained through the vehicle dynamic model. Based on the vehicle control data, state

data and lane position, the intention of the driver can be inferred. In the real world

implementation, the vehicle states such as velocity, acceleration and yaw rate can be

obtained from the standard vehicle diagnostic interface. In this dissertation, to obtain
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Figure IV.1: Overview of the intention recognition system.

the simulated vehicle’s state data, a vehicle dynamic model is implemented. Figure

IV.2 shows the overall approach of the driver intention classification. Lane position,

steering wheel data and vehicle state derived from the vehicle dynamic model are

used as feature vectors which are then segmented. The resulting segments are fed to

a training process to find the HMM parameters that best suit the training data. In

the testing stage, the segmented testing input is fed to each HMM model to evaluate

how well the observation sequences fit that model. The model that has the best

likelihood represents the current intention of the driver.

IV.1.2 HMM modeling

Hidden Markov Models have been used widely in the problem of driver intention

recognition. In this dissertation, an HMM model, µ, includes hidden states, ob-

servations, initial state probabilities, state-transitional and observational probability

matrices [30].

µ = {S,O, π,A,B}
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Figure IV.2: Overview of the intention recognition process.

S :{S1, ..., SN} : set of hidden states

O :{O1, ..., OM} : set of observation symbols

π :initial state probabilities

A :state probability matrix

B :state observation probability matrix

The input data to the HMM models is a multi-dimensional feature vector ex-

tracted from the lane position, the vehicle’s control and vehicle state data. The lane

position includes the distances from the left and right lines of the vehicle’s current

lane to its center. The vehicle’s control data is collected by the Logitech G27 steer-

ing wheel system shown in Figure IV.3. It can provide the vehicle’s current steering

angle, acceleration and brake pedal position. After the matching process described

in Section IV.2 is completed, the matched dynamic model can take vehicle control
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Figure IV.3: The Logitech G27 racing wheel for manual driving.

data as input and derive the corresponding vehicle state. The unsupervised K-mean

clustering technique is utilized to convert the multi-dimensional feature vectors to

discrete symbols (observation sequences).

In order to optimize the HMM parameters (π,A,B) of certain training data,

Baulm-Welch algorithm is implemented. This is a recursive forward-backward method

to make the model parameters describe the observation sequence [30]. To handle the

intentions at curved roads, a set of training data was also collected on different curved

roads. In this dissertation, five driving intentions are aimed to be classified. They are

slowing down, speeding up, changing lane left, changing lane right and keeping the

vehicle’s current state. According to Figure IV.2, the observation sequence of testing

data is fed to five trained HMM models for evaluation using the Viterbi algorithm

which can calculate the hidden state sequence s through the model µ that most likely

produces the given testing observation sequence O [30].

s∗ = arg max
s

P (s|O, µ)

This is the optimal segmentation of the testing observation sequence on a given model.

Then, the likelihood of the corresponding maneuver, P (O|s∗, µ), can be obtained by
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straightforward calculation based on the state transition matrix A and state obser-

vation matrix B of the model µ [162]. Then, the likelihoods of all trained HMM

models with the given observation sequence can be compared. The HMM that has

the maximum likelihood represents the best fitted maneuver.

IV.2 Simulation of vehicle dynamics

In real-world vehicles, the vehicle state data can be obtained easily through the

CAN bus system. However, it is quite challenging to access the vehicle dynamics

in simulated environments; especially in a commercial product like the Carnetsoft

driving simulator [161]. Even if the Carnetsoft driving simulator can provide the

vehicle state data, they do not let us access their vehicle’s dynamics which would

be later used to estimate the vehicle state data from the vehicle control data. This

problem is presented in Section VIII.1. Therefore, from the ego vehicle’s control data,

the author aims to estimate its dynamics and state data.

In this section, a vehicle dynamic model is used to model the motion of the ego

vehicle in the Carnetsoft driving simulator. The steering wheel data is fed to this

vehicle dynamic model to yield the vehicle’s current state such as velocity, acceleration

and yaw rate. In order to obtain the vehicle state, the vehicle dynamic model’s

parameters must be adjusted so that they can yield the same vehicle state as in the

simulator.

The vehicle dynamic model used in this simulation is derived by MathWorks [163].

Figure IV.4 shows the schematic of the vehicle dynamic model which takes the vehicle

control input (steer (σ), gas(α) and brake(β)) and uses six parameters to describe
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Figure IV.4: Schematic view of a vehicle dynamic system [163].

the real vehicle and the environment:

m : Mass of the vehicle [kg]

a : Distance from the front axle to Center of Gravity [m]

b : Distance from the rear axle to Center of Gravity [m]

Cx : Longitudinal tire stiffness [N]

Cy : Lateral tire stiffness [N/rad]

CA : Air resistance coefficient [1/m]

The model takes five inputs:

uk(t) = s ik(t) = Slip ratio of four tires (IV.1)

u5(t) = σ(t) [rad] (IV.2)

where k = 1, 2, 3, 4; i = {FL, FR,RL,RR} represents the Front Left, Front Right,

Rear Left and Rear Right tire respectively. The Slip ratios of tires are derived from
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the following equation:

s i(t) = Fx,i(t)/Cx (IV.3)

where Fx,i(t) denotes the longitudinal force from the engine. In this simulation, the

vehicle is assumed to be front-wheel driven. So,

Fx,FL(t) = Fx,FR(t) ∝ α(t)− β(t) (IV.4)

and Fx,RL = Fx,RR = 0. Steering angle is derived from the steering wheel value. So,

the input of the vehicle dynamic model comes from the steering wheel system (Figure

IV.3) which can provide us with steering angle, gas and bake pedal values. Three

states of the model are described below:

x1(t) = vx(t) = Longitudinal velocity [m/s] (IV.5)

x2(t) = vy(t) = Lateral velocity [m/s] (IV.6)

x3(t) = r(t) = Yaw rate[rad/s] (IV.7)

The state-space model is illustrated by the following differential equations [163]:

dx1(t)

dt
=x2(t)× x3(t)

+m−1 × [Cx × (u1(t) + u2(t))× cos (u5(t))

− 2× Cy ×
(
u5(t)−

x2(t) + a× x3(t)
x1(t)

)
× sin (u5(t))

+ Cx × (u3(t) + u4(t))− CA × x1(t)2
]

(IV.8)

dx2(t)

dt
=− x1(t)× x3(t)

+m−1 × [Cx × (u1(t) + u2(t))× sin (u5(t))

+ 2× Cy ×
(
u5(t)−

x2(t) + a× x3(t)
x1(t)

)
× cos (u5(t))

+ 2× Cy ×
b× x3(t)− x2(t)

x1(t)

]
(IV.9)
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dx3(t)

dt
=

1

(0.5× (a+ b))2 ×m
×

{a× [Cx × (u1(t) + u2(t))× sin (u5(t))

+ 2× Cy ×
(
u5(t)−

x2 + a× x3(t)
x1(t)

)
× cos (u5(t))

]
− 2× b× Cy ×

b× x3(t)− x2(t)
x1(t)

}
(IV.10)

The output of the model is defined as:

y1(t) = x1(t) (IV.11)

y2(t) = x2(t) (IV.12)

y3(t) = x3(t) (IV.13)

y4(t) = longitudinal acceleration =
dx1(t)

dt
− x2(t)× x3(t) (IV.14)

y5(t) = lateral acceleration =
dx2(t)

dt
+ x1(t)× x3(t) (IV.15)

Solving these ordinary differential equations (ODE), Equation (IV.8) – (IV.10), ex-

plicitly is difficult. However, the Runge-Kutta method [164] provides a numerical

solution for this sort of ODE to estimate the dynamics of vehicle’s behavior (velocity,

acceleration and yaw rate) in every iteration. This information reveals the behavior

of a real vehicle. The parameters of the vehicle dynamic model can be adjusted to

match any real-world vehicle’s dynamics.

Since the Carnetsoft driving simulator is a commercial product from a third-party

company, we can only obtain the ego vehicle’s state (velocity, acceleration, yaw rate)

but not the dynamic model’s parameters. However, they can be inferred by adjusting

the parameters of the vehicle dynamic model so that it can match the outputs with

those of the vehicle in the Carnetsoft driving simulator. Three criteria are used in

the matching process. To match the velocity, the velocity of the dynamic model and

that of the ego vehicle in the Carnetsoft driving simulator are compared. To match

the acceleration, we measure how long it takes the vehicle to reach a certain velocity.
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(a) Client simulation (b) Server simulation

Figure IV.5: The client simulation of matching the dynamic model of the simulated

vehicle with the one in the Carnetsoft simulator.

From the yaw rate of the vehicle state, the orientation can be inferred. In order to

match the orientation, a separate driving simulation is developed. In this simulation,

a driver can manually drive a vehicle by controlling the Logitech G27 steering wheel

system. This simulation environment gives a top view of the intersection where a

car is driven manually [160]. Figure IV.5 illustrates the simulation of two vehicles

passing the intersection. The blue rectangle represents the vehicle controlled by the

Logitech steering wheel. To ensure the correct matching, the comparing process

should collect information over a long distance of driving. This simulation is named

as the client simulation and the Carnetsoft driving simulator is named as the server

simulation. Due to computation burdens, the client and server simulations run in

different computers and can share the vehicle control data using a communication

program running in the background of the server simulation via UDP. The server

simulation is assumed to simulate the US standard freeway lane width of 12 feet (3.6

m). So, to match the left steering, firstly, the distance from the position of the blue

vehicle in the client simulation to the left center line can be proportionally set to 6

feet (1.8m). Then, the time when both vehicles in both simulations cross the center

line can be matched. Repeating in the opposite direction would yield the matching

in right-side steering. The perfect matching is that when turning, both vehicles can

53



Figure IV.6: Experimental setup with the client and server computers performing

different tasks.

cross the center line at the same time with the same velocity.

IV.3 Experiments & results

Figure IV.6 illustrates the experimental setup on the simulated testbed. The

Logitech steering wheel system is connected to the server. The lane position is de-

termined by the lane detection program running in the background of the server. In

addition, this server collects the vehicle control data and sends it to a client program

running in MATLAB with a frequency of 20Hz. This client program can compute

the corresponding vehicle state of the ego vehicle using the matched vehicle dynamic

model. Both lane positions, vehicle control data (from steering wheel system) and

vehicle state data are then used to form the feature vector and follow the process in

Figure IV.2 to realize the classification. The program runs on a computer with 3.6

GHz Intel Core i7 CPU and 16 GB of RAM. The data collection was performed with
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Table IV.1: Accuracy of the driver intention recognition system.

Accuracy

Maneuver Control data Control & Lane position,

only state data control & state data

Keeping current state 87% 93% 95%

Speeding up 89% 96% 96%

Slowing down 87% 95% 95%

Changing lane left 80% 88% 91%

Changing lane right 81% 89% 92%

five subjects. Each subject was asked to drive with five maneuvers in 5 minutes. 2/3

of the data was used for training. 1/3 of the data was used to evaluate the perfor-

mance of the trained HMM models. The classification performance under three kinds

of input combinations were compared. They include 1) vehicle control data only, 2)

both vehicle control and state data, and 3) all inputs which include the vehicle’s lane

position, control and state data.

Table IV.1 illustrates the performance of the system. The longitudinal maneuvers

(keeping current state, speeding up, and slowing down) could be recognized more

accurately than the lateral maneuvers (changing lane left and changing lane right).

Moreover, using all inputs has the best performance on the keeping and lane-changing

maneuvers. This is reasonable because the lane position has the maximum contribu-

tion on the lateral movements. With longitudinal maneuvers, the lane position does

not have much contribution, and thus using all inputs has the same performance as

using the vehicle’s control and state data.

Sixty driving tests were conducted to test the real-time classification. Figure IV.7

shows the classification results of detected maneuvers and the ground truth. All

maneuvers/intentions could be classified before their completion. Table IV.2 shows
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Figure IV.7: Graphs of intention recognition results. Intention values: 1 = keeping

the vehicle’s current state; 2 = speeding up; 3 = slowing down; 4 = changing lane

left; 5 = changing lane right.

the recognition times of all intentions. On straight roads, the “Keeping” maneuvers

can be quickly classified. However, at the beginning of curved roads when drivers steer

along the curve, the classified maneuvers would be lane-changing. After a certain

time (4.2 seconds with vehicle control data only; 3.5 seconds with vehicle control and

state data; and 1.2 seconds with all inputs) when the trained model recognizes the

curved patterns, the “Keeping” maneuvers would be classified accurately. After being

recognized as running on a curved road, the recognition times of other maneuvers is

similar to the recognition times of these maneuvers when not running on curved roads.

In addition, on curved roads, using all inputs (lane position, vehicle control and state

data) helps the system recognize the “Keeping” maneuver faster than using only

vehicle data (control and state). This is because the lane position helps determine

whether the driver tries to keep the lane or not. If the lane detection process fails

e.g., no lane or wrong lane is detected, the pre-trained HMM models which only use

the vehicle control and state data can be utilized.
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Table IV.2: Average recognition time of the driver intention recognition system with

different combinations of inputs.

Recognition time

Maneuver Control data Control & Lane position,

only state data control & state data

Keeping @ straight 0.5 s 0.3 s 0.3 s

Keeping @ curved 4.2 s 3.5 s 1.2 s

Speeding up 0.6 s 0.3 s 0.3 s

Slowing down 1.1 s 0.5 s 0.5 s

Changing lane left 1.1 s 0.9 s 0.5 s

Changing lane right 1.4 s 1.1 s 0.7 s

Figure IV.8: Lane changing styles.

As shown in Table IV.1 and IV.2, in terms of accuracy and recognition time,

the approach that uses both vehicle control and state data has better performance

than the one using only vehicle control data. This is because the vehicle state data

can give more information about the status of the vehicle. For example, during a

lane-changing maneuver, different drivers have different styles of changing lane, as

illustrated in Figure IV.8. While some drivers merge slowly, others tend to merge

more quickly. In this case, the vehicle state (velocity, acceleration, and yaw rate)

would be very important to obtain an accurate prediction.
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IV.4 Summary

This chapter presents a system that utilizes the ego vehicle’s lane position, con-

trol and state data to predict the driver’s intention. Five maneuvers which include

changing lane left, changing lane right, speeding up, slowing down and keeping the

vehicle’s current state can be recognized. A dynamic model was used to model the

motion of the ego vehicle in the Carnetsoft driving simulator.
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CHAPTER V

DRIVER DROWSINESS DETECTION AND ITS APPLICATION IN

ASSISTED DRIVING

This chapter presents the drowsiness detection system and its application on the

simulated and physical testbeds.

V.1 Driver drowsiness detection

Drowsiness is one of the main causes of severe traffic accidents. In this dissertation,

the drowsiness detection system takes two inputs: images of the driver’s face and

steering wheel data. Previous works have mainly focused on developing a drowsiness

detection system using only one channel of information. In this dissertation, both

of them are employed, pre-processed, and integrated at the feature level to obtain

reliable drowsiness decisions. The drowsiness detection algorithm is implemented as

a remote client application where the two sets of inputs transmitted from the server

are processed and the final decision is sent back to the server.

As can be seen from the system diagram in Figure V.1, there are three main

components of the system: facial expression feature extraction, steering wheel feature

extraction, and feature level integration.

V.1.1 Facial expression feature extraction

Using facial expressions to determine the drowsiness condition involves the follow-

ing steps: accepting the stream of images in real time from the data server through

the TCP/IP network, detecting the face of the driver from the image frame, and
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Figure V.1: The overall system diagram of drowsiness detection.

processing the image to determine the state of the driver.

The system accepts a stream of images from the server at a rate of 20 frames per

second. When a frame is captured, it is first converted to grayscale and histogram

equalization is utilized to increase the contrast of the image for better face detec-

tion. In our previous works [39, 165], the Viola-Jones robust real-time face detection

algorithm [166] is implemented in OpenCV [167] to detect the driver’s face and the

CAMShift algorithm [40] is utilized to track the face’s movement under different cir-

cumstances where the face detector fails to detect. However, there were still some

portions of the background in the face area. The features in different backgrounds

may affect the detection performance even if the driver’s behaviors in testing and

training data are similar. Moreover, different light conditions (sunny, shadows or

dark) may affect the face detection especially when it relies on the color informa-

tion (the CAMShift algorithm). Therefore, an open-source Dlib C++ library’s face

detection was implemented. The new face detection uses the classic HOG feature

combined with a linear classifier, an image pyramid, and a sliding window detection

scheme [41]. The new face detector overcomes the dynamic background issue while

providing fast face tracking.

Once the face is detected, features are extracted. To do that, two different areas
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of interest are used: the face and the eye regions. The area of interest is fed to

Gabor wavelet decomposition of 2 scales and 4 orientations to extract the facial

features. From the Gabor decomposition, there are so many facial features which

contain redundant information. Therefore, the Adaboost weak learning algorithm

[168] is employed to select the most important features for classification. The weak

classifiers are based on a single facial feature. Then the features with the minimum

classification errors are selected. For the weak classifiers, two different thresholds

are used: 1) Averaging: the average of the values of the facial feature of all training

images is taken. 2) Searching maximum: each value of the facial feature of all training

images is utilized as a threshold of the weak classifier and choose the one that gives

the maximum separation between the drowsy and non-drowsy training images.

V.1.2 Steering wheel feature extraction

According to previous studies in drowsiness detection, there is a good correlation

between the steering wheel movement and the drop in the state of vigilance while

driving [79,80]. The authors claimed that classifying driver drowsiness is possible by

using steering wheel data as an input for artificial neural networks. In an alert state,

the driver tends to make small adjustments to the steering wheel angle and hence

there are only small variations in the steering wheel angle. When the driver is in a

drowsy state, the movement of steering wheel becomes unpredictable resulting in a

large change in trajectory (zigzag driving) and there will be a larger amplitude of

movement to keep the vehicle in the center of the lane. However, zigzag driving in

a short time does not mean that the driver is drowsy. It is possible that the driver

may make sudden zigzag movements during some urgent situations in order to avoid

accidents. Therefore, the drowsiness detection using steering wheel information is

based on a 10-second sliding window to achieve reliability. The step size of the sliding

window is 0.05 seconds, which can achieve realtimeness.
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V.1.3 Feature level integration

By using feature extraction and selection methods, a single vector of the most

important features from the input image is obtained. Then, the vector of steering

wheel angles is appended to that vector as shown in Figure V.1. This feature vector

is the input to an SVM classifier with Gaussian Radial Basis Function (RBF) kernels

which provides a nonlinear decision hyper-plane between drowsy and non-drowsy

feature vectors. The stream of images with the detected face, face locations, the

steering wheel angle vector and their corresponding labels are saved. Using these

data, the classifier is trained offline. In the real-time testing stage, the final decision

from the classifier is sent to the collaborative driving algorithm to find the proper

control action.

Figure V.2: The experimental setup of the drowsiness detection’s application in the

simulated testbed.
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V.2 Evaluation of the drowsiness detection system

The experimental setup is shown in Figure V.2. A driver sits behind the steering

wheel to control the vehicle in the simulator which sends steering wheel information

to a C++ program to combine with the images of the driver’s face into total feature

vectors which are used for training and evaluating the drowsiness detection algorithm.

A total of 11 human subjects with different races, ages and genders were recruited to

conduct the tests. Seven subjects were asked to drive with drowsy and non-drowsy

status for 3 minutes. They were asked to drive the vehicle in both drowsiness and

non-drowsiness states. Each state lasted 3 minutes. Four subjects were asked to

drive for 10 minutes in both drowsy and non-drowsy states. In the laboratory-based

experiments, the subjects were asked to mimic drowsiness. They were asked to push

a button on the steering wheel when they started to mimic the drowsiness state and

push another button when they finished mimicking the drowsiness state. In this way,

the ground truth of drowsiness could be collected. The subjects’ videos and data

were labeled. While 2/3 of the data was used for training, the remaining 1/3 of the

data was used to evaluate the trained model. The evaluation with individual source

was performed separately, and then their combination (feature level integration) was

also evaluated to investigate their performances.

V.2.1 Drowsiness detection with facial expression data

The detection accuracy was evaluated based on the different numbers of facial fea-

tures, different regions of interest (eye only or face), different thresholds for Adaboost

classification (Averaging or Searching Maximum) and different techniques (i.e., Ad-

aboost or SVM). For a better understanding, the performance evaluation scheme is

categorized into Averaging and Searching Maximum Adaboost threshold computation

approaches. In each approach, the number of features selected by the Adaboost is

increased from 10 to 300 with an interval of 10 and observed the variation in perfor-
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mance.

Averaging threshold calculation - approach #1

The accuracy values are shown in Figure V.3 and V.4 for different system param-

eter settings. It can be observed that when the number of facial features selected for

classification increases, the performance converges to the maximum accuracy values.

In Figure V.3, the accuracy elevates to the saturation point quickly until the number

of features reaches 100. For averaging threshold computation, using the Adaboost

classification is significantly less accurate than using the SVM classification with RBF

kernel for the same chosen region of interest (either eye or face region). In addition,

for the same chosen classification technique (either Adaboost or SVM), the classifica-

tion accuracy of the system using face region as the ROI is better than using the eye

region as shown in Figure V.3. This result proves the fact that detecting drowsiness

using other facial expressions in combination with eye closure gives more reliable per-

formance than using eye closure alone. A maximum accuracy of 95.36% for 150 facial

features with the detected face selected as the ROI and using SVM classification was

obtained.

Figure V.3: Classification accuracy for Averaging threshold computation.
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Figure V.4: Classification accuracy for Searching maximum threshold computation.

Searching-maximum threshold calculation - approach #2

Figure V.4 illustrates an interesting relationship between the different methods of

classification and different choices of regions of interest (ROIs) for searching-maximum

threshold computation. By using the Adaboost classification method, the obtained

classification accuracy almost remains constant. This result implies that increasing

the number of features being added to the cascaded combination would not improve

the detection performance too much. Moreover, its classification accuracy is signifi-

cantly lower than using SVM classification. Similar to the case of averaging threshold

computation, using face region as the ROI also gives better results in classification

accuracy than using eye region only. A maximum accuracy of 94.28% for 220 fa-

cial features with face region selected as the ROI and using SVM classification was

obtained.

V.2.2 Steering wheel data analysis

The steering wheel data analysis is independently performed to evaluate the clas-

sification accuracy. Similar to the facial expression case, different feature vector sizes

can also be used from 10 to 300 in an interval of 10. A Gaussian radial basis function
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(RBF) kernel is utilized for the SVM classifier and obtained a maximum accuracy of

81.28% by using a vector size of 140 steering wheel features as can be seen in Figure

V.5.

Figure V.5: Classification accuracy for steering wheel data analysis.

V.2.3 Feature level integration

For the feature level integration, the vector of steering wheel angles is added to the

vector of facial features. The maximum classification accuracy is already obtained by

using a vector size of 140 features for the steering wheel data analysis. Hence, the same

vector size of steering wheel angles is retained. Then, the number of facial features

was varied from 10 to 300 with the interval of 10, and the classification parameter

settings was also varied to evaluate the classification accuracy of the system illustrated

in Figure V.6. The result shows that classification accuracy of all parameter settings

increases rapidly before the number of facial features reaches 110. After that, it does

not have many changes. The classification of feature level integration using facial

features as the ROI along with an SVM classifier also provides better results than

that using eye region as the ROI.

In Table V.1, the maximum accuracies achieved by the three different approaches
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Figure V.6: Classification accuracy for feature level integration.

are compared. It can be seen that integrating the two input sources (driver’s face

and steering wheel) at the feature level helps us obtain the best accuracy. A maxi-

mum accuracy of 99.05% for 280 facial features selected with the averaging threshold

computation, face region used as the ROI, and an SVM used for classification was

achieved.

Table V.1: Maximum classification accuracy with different approaches.

Types of systems Accuracy

Facial expression analysis 95.36%

Steering wheel analysis 81.28%

Feature level integration 99.05%

The labeled testing data from two subjects was fed to the trained model to output

the total number of correct and incorrect classifications. Then, the true/false positive

and true/false negative rates were calculated. Table V.2 shows the classification

results of the actual and predicted data in two categories: drowsy and non-drowsy

status.
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Table V.2: Confusion matrix for feature level integration.

Actual Predicted Data

Data Non-drowsy Drowsy

Non-drowsy 98.92% 1.08%

Drowsy 0.84% 99.16%

V.3 Application of drowsiness detection in the simulation testbed

The experimental setup is shown in Figure V.2. A driver sits behind the steering

wheel to control the vehicle in the simulator which sends the steering wheel data to a

C++ program to combine with the images of the driver’s face into the total feature

vector which is utilized to detect his state by the C++ program shown in Figure

V.7. After the driver’s status is determined, it is sent to the driving simulator. If

the driver is non-drowsy, the simulator continues letting the driver control the vehi-

cle. Otherwise, the simulator switches the control mechanism into the autonomous

driving mode. This manual/autonomous switching mechanism is one of the pre-built

functionalities of the simulator.

V.3.1 A simple collision avoidance system in the simulation testbed

During the autonomous driving mode, a simple collision avoidance algorithm is

implemented by adjusting the ego vehicle’s velocity, vh, when there is another vehicle

blocking it in the front or approaching it from behind. If the ego vehicle is not in the

dangerous range, R, to the other vehicle, its velocity is determined by a predefined

constant. Otherwise, vh must be adjusted to maximize the time to collision (TTC)

v∗h = argmax
vh

TTC = argmax
vh

d

|vh − va|
(V.1)

where d is the distance between the ego vehicle and the other vehicle with velocity

va; v
∗
h is the optimal velocity for the ego vehicle. The optimal solution for Equation
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(a) Non-Drowsy

(b) Drowsy

Figure V.7: The driver states while driving.

(V.1) could be found easily as v∗h = va. So, when the ego vehicle enters the dangerous

range, R, the algorithm adjusts its velocity according to the other vehicle. Hence,

this simple collision avoidance system can be formulated as:

vh(t) =


vh(t− 1) if d(t− 1) > R

va(t− 1) if d(t− 1) ≤ R

(V.2)
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Figure V.8: The trajectories of the ego vehicle at the switching moment from manual

to autonomous driving with different speeds of manual driving.

This simple collision avoidance algorithm just reflects the interaction between the

ego vehicle and another vehicle. For interactions with multiple other vehicles, a more

complex collision avoidance algorithm presented in Chapter VII is employed.

V.3.2 Switching between manual and autonomous driving in the simu-

lated testbed

In this experiment, only the switching between manual and fully autonomous

driving when the driver gets drowsy is considered. So, the behavior of the ego ve-

hicle during the autonomous driving mode can be pre-programmed by specifying its

velocity and lane position. Note that the steering of the ego vehicle is autonomously

controlled to follow the preferred lane. So, at the switching moments from manual to

autonomous driving, if the ego vehicle is already outside of the preferred lane posi-

tion, the simulator would steer the vehicle to drive back to the desired lane based on

its own dynamics.

It is noticed that the speed of manual driving may affect the switching behavior.

70



Figure V.9: Recognition time when driver’s status changes.

Figure V.8 shows the trajectories of two experiments in which the simulated vehicle

switched from manual to autonomous driving with different manual driving speeds.

The blue curves represent the manual driving trajectories. At the end of the blue

curves, the driver got drowsy and the vehicle switched to the autonomous driving

mode whose trajectories are represented by the red curves. The results show that

when the driver is drowsy and driving with higher speed, the vehicle tends to go off

the road further. This makes the vehicle take longer to recover back to a preferred

trajectory.

The recognition time was also investigated. In this dissertation, this time is defined

as the elapsed time from the moment when the driver changes his/her status (from

drowsy to non-drowsy or vice versa) until when the program detects the change

of his/her status. Figure V.9 shows the recognition time of the system when the

driver’s status changes from the other one. It can be seen that the average recognition

time is approximately 3 seconds. This is true because the driver’s facial expressions

at the transition moments are sometimes similar to each other. For example, at

the moment a driver’s begins getting drowsy, some of his/her facial expressions are
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(a) (b)

Figure V.10: Manual driving experiment setup. (a) The miniature camera setup, (b)

An image streamed back from the miniature camera.

similar to that when he is non-drowsy. Therefore, the drowsiness detection system

takes approximately 3 seconds to overcome this moment completely to obtain correct

classifications.

V.4 Application of drowsiness detection in the physical testbed

To validate the proposed algorithms, experiments on the physical testbed were

conducted. Since the proposed system consists of many sub-systems, the function-

alities of all sub-systems must be verified before assembling them into the overall

system. First, the manual driving control is tested. Second, the autonomous control

algorithm is tested with an RC car tracking a figure-eight trajectory. Finally, all sub-

systems are put together and the overall system is tested with the switching control

based on drowsiness detection.

V.4.1 Manual driving

The signal from the miniature camera which was placed on the RC car’s hood

was tested. This camera was mounted so that it can provide the front driving view of

the RC car. The miniature camera setup is displayed in Figure V.10a. Figure V.10b
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Figure V.11: Trajectories of the autonomous RC car and the virtual vehicle.

shows an image from the mini camera. In manual driving, a human driver controls

the G27 Logitech Racing controller to drive the RC car manually. While looking at

the video streamed from the miniature camera, the driver can control the RC car

to run in the arena. After running several rounds, it noticed that the run time for

the mini camera to function correctly (before the battery runs out) is around 15 –

20 minutes. During this time, the experiments must be executed so that the driver

can see the images and control the car correctly. The reason, a 9V battery is utilized

is that it is small and light. Other higher power supplies would make the RC car

heavier, create more frictions to the ground and slow down the RC car’s movement.

V.4.2 Autonomous driving

In this experiment, one RC car is used to test the tracking algorithm in the

designed figure-eight trajectory. Before the testing, some parameters were set as

follows: the desired distance between the RC car and the virtual vehicle dρ is 300 mm;
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Figure V.12: Image of tracking the figure-eight trajectory from the roadside facility.

the constant, µ, for computing the virtual vehicle’s velocity is 2; the initial velocity of

the virtual vehicle is 0; the constants for the steering controller kp = 1, kd = 0.8; the

desired velocity parameter used to send to the RC car is 80; the desired velocity of

the RC car is 250 mm/s; the constant for controlling the RC car’s velocity, K = 2 (in

straight segments) and K = 2.5 (in arc segments). The definitions of µ, kp, kd and

K can be found in our previous work [169]. The tracking result of the autonomous

control algorithm is shown in Figure V.11. The RC car can complete the figure-eight

trajectory by tracking the virtual vehicle that runs along the designed trajectory; even
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Figure V.13: Manual/autonomous switching experimental setup.

though at some points, the tracking is not precise. However, in overall, the RC car’s

trajectory and the designed trajectory along which the virtual vehicle runs almost

overlap with each other. Figure V.12 shows the images captured from the roadside

monitoring facility (Q24 camera).

V.4.3 Switching between manual and autonomous driving in the physical

testbed

The switching control is determined based on the driver drowsiness conditions.

The driver’s status is continuously monitored by the client which runs the drowsiness

detection by integrating the facial and steering wheel data. The output, a Boolean

variable, from the drowsiness detection system is sent to the server to let it determine

the suitable control of the RC car based on the driver’s status. The switching process

in the server is an infinite loop which always checks the Boolean variable sent from

the client application. When the server receives a non-drowsy state from the client,
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Figure V.14: Determining the virtual vehicle’s starting location during the switching

from manual driving to autonomous driving.

the server lets the driver manually control the RC car via the Logitech steering wheel

controller. When the driver gets drowsy, the Boolean variable asserts that the server

would control the RC car by tracking a predefined figure-eight trajectory. Before

the switching moment, the RC car might go off the trajectory. Therefore, the point

(xp, yp) that has the shortest distance h from the RC car’s current location to the

trajectory must be determined firstly. Then, an offset distance d can be added to

find the starting location (xd, yd) for the virtual vehicle. The virtual vehicle’s starting

location is illustrated in Figure V.14. To autonomously drive the RC car, its speed and

steering angle are computed according to the autonomous driving control algorithm

developed in [155].

Scale-down experiments were conducted to validate the proposed manual/autonomous

driving framework. The experimental setup is shown in Figure V.13. The webcam is

mounted on the monitor to watch the driver’s face. By integrating the facial expres-

sion and steering wheel data, the client program determines if the driver is awake or

drowsy as shown in Figure V.7. The drowsiness detection runs on the client computer

and the result is sent back to the server to trigger the switching from manual driving

to autonomous driving. At the beginning, the control is set to be manual driving.

Once a “drowsy” state is detected, the server switches to autonomous driving along
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Figure V.15: The trajectory of the RC car.

the predefined trajectory. When the driver is awake again and the “non-drowsy”

state is detected, the server lets the driver gain the control again. It is worth to note

that at the time of experiments, the driver mimicked drowsiness instead of making

the driver really sleepy.

The steering control data which captures the moment of the switching is plotted

in Figure V.16. At the beginning, the steering and gas values varied. This shows that

the driver was manually controlling the RC car at this time. After 300 samples (15

seconds), the steering data stayed unchanged since the driver got drowsy and he did

not do anything to control the RC car. Then, the RC car was controlled autonomously

by the server to track the predefined trajectory. After 400 samples (20 seconds), the

steering and gas data changed again which means the driver was detected to be non-

drowsy and could manually control the RC car. During the experiment, the brake

pedal was not pressed, so its value remained unchanged.

Figure V.15 illustrates the trajectories that the RC car traveled by manual driving

(blue curve and green curves) and autonomous driving (red curve) modes. The black
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Figure V.16: The racing wheel data. The left red dotted lines indicate the moment

of switching from manual to autonomous driving. The right red dotted lines indicate

the moment of switching from autonomous to manual driving.

curve represents the planned trajectory. The RC car was first started at the location

(-250, 1000) and manually controlled by the human driver to run downward along the

blue curve. The end of the blue curve indicates the point where the driver got drowsy

and drove the RC car outside of the lane. At this moment the server autonomously

controlled the RC car and started tracking the predefined trajectory along the red

curve. At the end of the red curve, the driver woke up. This is the point that

indicates the switching moment from autonomous back to manual driving. Then the

driver could control the RC car to run along the green curve. The recovering time

depends on how far the RC car runs away from the predefined trajectory. In this

experiment, the recovering time was around 4 seconds.
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V.5 Summary

This chapter presents a driver assistance framework which monitors the driver’s

status. If the driver is non-drowsy, he/she can manually control the vehicle. Other-

wise, it is switched to autonomous driving mode to run along a predefined trajectory.

This framework demonstrates that intermittent autonomous driving can be adopted

as a mechanism to prevent accidents in certain abnormal situations. Experiments

were conducted on both the simulated and physical testbed to evaluate the proposed

framework.
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CHAPTER VI

REAL-TIME DETECTION OF DISTRACTED DRIVING BASED ON

DEEP LEARNING

Driver distraction is a general case of driver drowsiness. This chapter presents

the distracted driving detection system and its application on the assisted-driving

testbed. The distraction detection system could be implemented to the collaborative

driving framework in the future.

VI.1 Distraction detection

Four different Convolutional Neural Networks (CNNs) are adopted to recognize

the various distracted driving behaviors which consist of the following 10 types:

• Safe driving

• Texting on the phone using the right hand

• Talking on the phone using the right hand

• Texting on the phone using the left hand

• Talking on the phone using the left hand

• Operating the radio

• Drinking

• Reaching behind

• Doing hair and makeup
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Figure VI.1: An example image of distracted driving.

• Talking to passenger

In this section, the CNN models are described firstly. Then the training techniques

are discussed.

VI.1.1 CNN models

CNN models are adopted to classify driving activities. The input to each CNN

model contains the pixel values of the input image. Full-color images with dimensions

of 640×480×3 are utilized as inputs. This means that the neurons are structured as

a 3D volume for R, G and B channels. Figure VI.1 shows an example input image of a

distracted driving activity. The following subsections describe the four CNN models

in more detail.

VGG-16 model

VGG-16 is a 16-layer CNN developed by Simon et al. for image recognition in the

2014 ImageNet large-scale visual recognition challenge (ILSVRC) [42]. 3 × 3 filters

are used for all convolutional layers. The network accepts the input image with a

dimension of 224× 224. The image is passed through a sequence of 16 convolutional
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layers. A multilayer perceptron (MLP) classifier including 3 fully-connected (FC)

layers is used in addition to the convolutional layers to perform the classification.

Rectified linear unit (ReLU) layers and max-pooling layers are used in the whole

network to prevent the overfitting problem.

AlexNet model

The AlexNet architecture designed by Krizhevsky was the winner of the 2012

ILSVRC with an error rate (ε) of 15.3% [43]. The network includes 2 streams of 5

convolutional layers, 3 max-pooling layers, 3 dropout layers, and 3 fully-connected

layers. The network was designed to classify 1000 categories of objects. The receptive

field sizes are 11× 11 and 5× 5 for the first and second convolutional layers, respec-

tively, and 3×3 for the last three convolutional layers. In addition, it consists of local

response normalization layers, ReLU layers, and overlapping max-pooling layers.

GoogleNet model

GoogleNet is a 22-layer CNN developed by Google, one of the winning teams in

the 2014 ILSVRC [44]. It was designed based on a local network topology. This new

model pays close attention to memory and power usage. GoogleNet is designed to

be very deep with 22 layers when counting only the layers with parameters. Another

characteristic of GoogleNet is that a new local Inception module was introduced into

the CNN. The basic idea of this module is to find the optimal local construction

and to repeat it spatially. One of the main beneficial aspects of this architecture is

that it allows the number of units to increase at each stage significantly without any

uncontrolled blow-up in computational complexity. Therefore, the CNN can be very

deep but still efficient in training. Each Inception module is a combination of 1× 1,

3× 3, and 5× 5 convolutional layers along with 3× 3 max-pooling layers. Moreover,

1×1 convolutional layers are applied to computation reductions because they include
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Table VI.1: The architectures of the four CNN models. The (*) notation represents

the layers on the parallel stream of the AlexNet model.

VGG AlexNet GoogleNet ResNet

Input Image Image Image Image

Convolutional part

conv3-64

conv3-64

conv3-48

conv3-48*
conv7-64 conv7-64

Max pooling layer Max pooling layer Max pooling layer Max pooling layer

conv3-128

conv3-128

conv3-128

conv3-128*
conv3-192

3 blocks of [conv1-64

conv3-64

conv1-256]

Max pooling layer Max pooling layer Max pooling layer

[conv1-128

conv3-128

conv1-512] with a stride of 2

conv3-256

conv3-256

conv3-256

conv3-192

conv3-192*

Inception3-256

Inception3-480

7 blocks of [conv1-128

conv3-128

conv1-512]

Max-pooling layer
conv3-192

conv3-192*
Max-pooling layer

[conv1-256

conv3-256

conv1-1024] with a stride of 2

conv3-512

conv3-512

conv3-512

conv3-128

conv3-128*

Inception4-512

Inception4-512

Inception4-512

Inception4-528

Inception4-832

35 blocks of [conv1-256

conv3-256

conv1-1024]

Max-pooling layer Max-pooling layer Max-pooling layer

[conv1-512

conv3-512

conv1-2048] with a stride of 2

conv3-512

conv3-512

conv3-512

Inception5-832

Inception5-1024

2 blocks of [conv1-512

conv3-512

conv1-2048]

Max-pooling layer
Average-pooling layer

Dropout (40%)
Average-pooling layer

MLP classifier

Fully-connected layer-2048

Fully-connected layer-1024

Fully-connected layer-2048

Fully-connected layer-2048*

Fully-connected layer-1024

Fully-connected layer-1024*

Fully-connected layer-2048

Fully-connected layer-1024

Fully-connected layer-2048

Fully-connected layer-1024

Fully-connected layer-10 Fully-connected layer-10 Fully-connected layer-10 Fully-connected layer-10
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less parameters as well as rectified activations before the expensive 3 × 3 and 5 × 5

convolutional layers. From the Inception module, local feature representations can be

extracted using flexible convolutional kernel filter sizes with a layer-by-layer structure,

which was proved to be robust and effective for the large scale high-resolution images.

Furthermore, the padding strategy and precise designs after the Inception module

operation help obtain a number of feature maps of the same sizes in terms of different

scale convolutions and poolings. The feature maps are concatenated together by a

concatenate-layer followed by each Inception module.

ResNet model

He et al. [45] from Microsoft Research proposed a new training framework called

residual network (ResNet) for very deep CNN training. The network is adopted

from the VGG network. The input image size for these networks is 224 × 224. The

convolutional layers have mostly 3 × 3 filters and the design follows two rules: 1)

For the same output feature map size, the layers have the same number of filters.

2) If the feature map size is halved, the number of filters is doubled in order to

preserve the time complexity per layer. The downsampling operation is performed

by the convolutional layers that have a stride of 2, hence no pooling layers. The

network ends with a global average pooling layer and a 1000-class fully-connected

layer with the softmax function. In this network, a shortcut connection is added to

each building block (two or three consecutive convolutional layers). Because of this

new training framework, they are able to train very deep networks, with 18, 34, 50,

101, and 152-weight layers, without encountering the degradation problem.

VI.1.2 Model training

Training the CNN models for distracted driving detection is not a trivial task.

Transfer learning is a commonly used technique in training deep neural networks
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[170]. The networks which were pre-trained with millions of images can be re-used.

To this end, the last FC layers were replaced with a new Multi-layer perceptron

(MLP) classifier. It is a type of ordinary neural networks which includes several fully-

connected layers where each neuron is connected to all the outputs from the previous

layer. The last FC layer computes the probability for each class. For multi-class

classification, softmax regression is a popular choice. The new classifier consists of

activation layers with 1024 and 2048 neurons as well as a 10-neuron FC layer which

corresponds to the 10 driving behaviors. Transfer learning helps save a significant

amount of time because we do not need to train the whole model from scratch. Table

VI.1 shows the architectures of the four CNN models with the modified MLP classifier

as the last layers.

One of the problems that transfer learning usually encounters is that it makes the

model prone to over-fitting when the nature of the learned data is rather different than

the training data. In this case, the model can be fine-tuned by unfreezing some pre-

trained layers and train them along with the fully-connected layers. Fine-tuning may

increase the training time but it could solve the over-fitting problem. The following

hyper parameters were adjusted for each model: learning rate (α), weight decay (γ)

and momentum (µ).

VI.1.3 Embedded computers for real-time implementation in the assisted-

driving testbed

It is apparent that placing a powerful computer machine in a car is unrealistic due

to the cost, power and size constraints. Embedded computers are cheaper, smaller

and power efficient. Two embedded computers were utilized to set up the distraction

detection system. Figure VI.2 presents the assisted-driving testbed which was devel-

oped based on the simulated testbed. The assisted-driving testbed was equipped with

the two embedded boards that are utilized for the real-time distraction detection and
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Figure VI.2: The assisted-driving testbed with embedded boards for real-time dis-

traction detection.

warning system.

NVIDIA Jetson TX1

An NVIDIA Jetson TX1 board was employed for the distraction detection task.

The board has a Quad ARM A57/2 1.73GHz CPU, 4 GB 64-bit LPDDR4 and a

GPU (Graphic Processing Unit) with 256 Maxwell CUDA cores [171]. The GPU

helps accelerate the distraction detection task which requires a signficant amount of

computation as the input images are passed through the layers of the deep CNNs.

NanoPi M3

The NanoPi M3 is an ARM board developed by FriendlyARM. It uses the Sam-

sung Octa-Core Cortex-A53 S5P6818 SoC at 1.4 GHz and 1GB 32bit DDR3 RAM
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Figure VI.3: The hardware setup of the embedded computing system for distraction

detection.

Figure VI.4: The software structure for distraction detection.

[172]. A touch screen display is connected to the NanoPi M3 board which runs the

Android operating system as an interface to the human driver. The M3 board is

placed behind the user interface so that it would not create any obtrusion while using

the driving simulator. The NanoPi M3 board is connected to the NVIDIA Jetson

TX1 board through an Ethernet cable so that they can communicate and share in-

formation. The detection result is transferred from the TX1 board to the M3 board

through TCP/IP protocol. Then the M3 board can display the message on the screen

or alert the driver about his/her driving status through the speakers. Figure VI.3

shows the hardware setup of the embedded computer system for distraction detection.

Figure VI.4 illustrates the software structure of the system. The images captured by
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Table VI.2: List of parameters used to train the CNNs.

Model Learning rate Weight decay Momentum

VGG 5× 10−5 5× 10−5 9× 10−1

AlexNet 9× 10−4 1× 10−5 9× 10−1

GoogleNet 1× 10−4 1× 10−5 9× 10−1

ResNet 1× 10−3 5× 10−5 9.5× 10−1

the camera are firstly resized to fulfill the input size requirements of each CNN model.

The resized images are then trained with each of the four CNN models. In the testing

phase, the resized image is fed directly to each CNN model to classify the driver’s

activity which is sent to a Java program on the NanoPi M3 board. In normal con-

ditions, the user interface operates as a control dashboard. The driver can use it

to change the music, adjust the volume, choose the station, etc. However, when a

distraction event is detected, the user interface can provide a reminder to the human

driver to ask him/her to focus on the driving task.

VI.2 Experiments & results

In order to validate and evaluate the CNN models in distraction detection, ex-

periments were conducted on the assisted driving simulator. Figure VI.2 shows the

complete setup of the simulator, which consists of multiple cameras for driver moni-

toring and environment monitoring. In the experiments, for the purpose of distraction

detection, only the side camera was utilized to observe the driver’s hand and body

movement. Ten subjects were asked to drive the car and conduct the 10 activities

mentioned in Section VI.1. For each activity, a five-minute video was recorded. Since

the images are taken from the video clip, there exist similar postures that belong to

the same activity. Therefore, only one image per second from the videos was selected.

Hence, about 35,000 images were extracted. Then, data augmentation was performed
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Table VI.3: Validation accuracy using the baseline approach.

Model Accuracy

VGG 79%

AlexNet 81%

GoogleNet 83%

ResNet 88%

by shearing, rotating, width shifting, height shifting, and zooming the original im-

ages. Then, the dataset has about 200,000 images. 70 % of the data was used for

training. 15 % of the data was used for validation and 15 % of the data was used for

testing. The four CNN models were trained on a computer with the following config-

uration: Intel i7 4790 CPU, 16 GB RAM and NVIDIA GeForce GTX 970 GPU. To

reduce overfitting on the training data, the following methods are applied during the

training stage: data augmentation by cropping and flipping the images horizontally;

applying the dropout technique [173] with a probability of 50% to the first two FC

layers; using batch normalization with a size of 128; and then applying Stochastic

Gradient Descent Learning (SGD) [174] with learning rate (α), momentum (µ) and

weight decay (γ). Table VI.2 shows the training parameter values corresponding to

each model.

For comparison purposes, a baseline approach was established. In this baseline

approach, each of the four CNN models has 256 neurons in the fully-connected layers,

as commonly adopted by most teams in the State Farm competition. Figure VI.5 and

Table VI.3 show the validation results of the baseline approach. Compared to the

baseline approach, the proposed approach have more neurons in the fully-connected

layers as shown in Table VI.1. Table VI.3 shows the performance of each of the four

CNN models.
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(a) VGG (b) AlexNet

(c) GoogleNet (d) ResNet

Figure VI.5: The validation results of the 4 CNN models using the baseline approach

with 256 neurons at the fully-connected layers.

VI.2.1 VGG-16 model

Figure VI.6a illustrates the accuracy of the VGG-16 model over the validation

dataset. Figure VI.6b presents the confusion matrix of the VGG-16 model. Most of

the time, the activities were recognized correctly. There were some misclassifications

between the class “talking on the phone - left” and “hair and makeup”. This is

because these two activities have many common postures especially when the phone

is occluded by the driver’s face completely. On the other hand, “texting left” was

90



(a) The validation accuracy.

(b) The confusion matrix of the results.

Figure VI.6: The evaluation results of the VGG-16 model.

misclassified with “safe driving” in some scenarios when the steering wheel blocked

the left hand. The evaluation of the trained model achieves an accuracy of 86%.

VI.2.2 AlexNet model

Figure VI.7a presents the validation accuracy of the AlexNet model after 41 epochs

with a maximum accuracy of 88%. Similar to the VGG-16 model, the trained AlexNet

model also had the most misclassifications in two scenarios such as between “talking

with the phone - left” and “hair and makeup”, and between “texting left” and “safe

driving”. Other than that, the behavior “drinking” was also misclassified with others

such as “texting left”, “talking to the phone - left”, or “hair and makeup”.

VI.2.3 GoogleNet model

Figure VI.8a shows the validation accuracy while Figure VI.8b illustrates the con-

fusion matrix of the validation result. The maximum validation accuracy is 89%.

The model is well-fitted. Similar to the VGG-16 and AlexNet models, the GoogleNet
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(a) The validation accuracy.

(b) The confusion matrix of the results.

Figure VI.7: The evaluation results of the AlexNet model.

model had the most misclassifications between the classes of “texting left” and “safe-

driving” because of their similarity in postures especially when the phone was covered

by the steering wheel. On the other hand, the behavior “texting right” was misclas-

sified to “hair and makeup”. It is because the driver in some images put the phone

too close to his/her face. This reason leads to the wrong prediction. In addition,

“drinking” was also misclassified to “hair and makeup” because both behaviors had

some similar postures.

VI.2.4 ResNet model

Figure VI.9a and VI.9b show the validation accuracy and the confusion matrix

respectively. The maximum validation accuracy is 92%. It can be observed that the

ResNet model converged faster than the other three models. This means that the

deeper the model is, the faster it fits the dataset. The ResNet model has the most

misclassifications of “texting right” with “hair and makeup” because they also have

similar postures. Overall, for all of the four CNN models, the proposed approach
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(a) The validation accuracy.

(b) The confusion matrix of the results.

Figure VI.8: The evaluation results of the GoogleNet model.

(a) The validation accuracy.

(b) The confusion matrix of the results.

Figure VI.9: The evaluation results of the ResNet model.
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Table VI.4: Validation accuracy and maximum frequency of each model running on

the TX1 board.

Model Accuracy Max frequency

VGG 86% 14 Hz

AlexNet 88% 12 Hz

GoogleNet 89% 11 Hz

ResNet 92% 8 Hz

achieves better performances than the baseline one.

VI.2.5 Performance on the embedded computer

The trained models were executed on the Jetson TX1 board to evaluate the real-

timeness. Table VI.4 shows the validation accuracy and the maximum frequency of

each model running on the TX1 board. Overall, all models can operate in real-time

but with different calculation times. When the human driver gets distracted, the TX1

board sends the request immediately to the M3 board to trigger the voice alert which

reminds the driver to focus on the driving task.

In terms of performance, the VGG-16 achieves the fastest frequency (14 Hz) but

has the least accuracy (86%). This is because the VGG-16 has the simplest archi-

tecture which is a sequential model. Other models with more complex architectures

achieve higher accuracies. The ResNet model obtains the highest accuracy of 92%.

However, it is the slowest among the four models with a frequency of only 8 Hz

and a delay of u1 second. We have noticed that, for a model to operate smoothly

without any noticeable delay in the assisted-driving tested, it must obtain at least 11

Hz. The GoogleNet model can obtain such a processing frequency but with a slight

loss of accuracy (3% reduction). Even though the GoogleNet model is a little slower

than the AlexNet model (11 Hz vs. 12 Hz), it has higher accuracy than the AlexNet
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model. Therefore, to balance accuracy and speed, the GoogleNet model is the best

for distraction detection in the proposed driving simulation testbed.

VI.3 Summary

This chapter presents a distraction detection system which is based on different

deep learning architectures including VGG-16,GoogleNet, AlexNet, and ResNet. An

assisted-driving testbed was developed so that the distracted driving dataset could

be collected. Experiments were conducted on the assisted-driving testbed to evaluate

the trained models. The proposed approach achieves better performance than the

baseline one. The distraction detection system operates on a Jetson TX1 embedded

computer board in real-time with a frequency in the range of 8 Hz and 14 Hz and an

accuracy in the range of 86% and 92%. To balance the performance in terms of both

accuracy and frequency, the GoogleNet model which achieves a frequency of 11 Hz

at an accuracy of 89% is selected. This system has the potential to be implemented

in real cars, which can significantly reduce the traffic accidents caused by driving

distractions.
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CHAPTER VII

COLLISION AVOIDANCE SYSTEM (CAS)

This chapter discusses the video-based external risk assessment, the structure of

behavior models, the CAS, and its evaluation on the simulated testbed. The Colli-

sion Avoidance System (CAS) is proposed based on Osipychev’s work [46]. The CAS

makes use of the external risk assessment to perform two general tasks. In the first

task, we detect the behavior/intention of the other drivers and predict their trajec-

tories in the near future. For that reason, behavior models which store the activities

of both human-driven and autonomous vehicles are utilized. In the second task, the

proposed CAS takes the probability distributions of intentions from other vehicles as

inputs and chooses the best action through an optimization algorithm. This desired

action is then applied to the vehicle dynamics using the vehicle’s actuators such as

steer, throttle and brake.

VII.1 Video-based external risk assessment

For most automated vehicles, monitoring the outside environment is an important

component to enhance safety. In the simulated testbed system, this information can

be extracted easily from the simulator. In order to enhance the proposed system’s

robustness, a video-based detection system is developed. This system relies on the

sequences of images from a camera to detect lanes and pedestrians.
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Figure VII.1: The overall experimental setup of the video-based external risk assess-

ment system.

VII.1.1 Lane departure warning system

To determine a lane departure off a road, the lane and its type (solid or broken)

are needed to be detected firstly. In this section, the lane detection system, the lane

type detection, and the departure warning system are discussed.

Figure VII.2: The overall system diagram of lane detection.
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Lane detection

Figure VII.1 illustrates the experimental setup of the lane detection system. In

most of on-board lane detection systems, the cameras are mounted on the windshield

area and focus on the road region. However, in the simulated environment, mounting

the camera on the windshield (too close to the center monitor) would make the camera

out-of-focus and unable to cover the road region. Therefore, in this dissertation,

a USB 3.0 PointGrey camera is placed behind the driver’s seat. This camera has

zooming functionalities and focuses on the road region only to enhance the detection

performance.

In this dissertation, the lane detection system is inspired by MathWorks [175].

The overall system diagram is presented in Figure VII.2. After receiving the image

stream from the camera, the system pre-processes the image by extracting the ROI

where the algorithm should search for the lanes. Then the system detects the edges

on the image which is converted to a binary image. The Standard Hough Transform

is utilized to detect the straight lines created by the detected edges. In the lane

matching block, the system counts the number of times each lane is detected and

compares with the previously-detected lanes. If they are similar enough, the lane is

updated and get ready for the next iteration.

The lane detection results are illustrated in Figure VII.3 with the scenarios of

broken and solid lines. The red bounding box represents the region of interest where

the system searches for the lanes. The left and right lines are plotted in yellow and

purple colors respectively. The area in the middle of the left and right lines is painted

in green color to determine the current lane of the vehicle.

Lane type detection

In this dissertation, only road maps with white lane markings are considered to

ease the detection of lane types. After detecting two lines, the total number of white
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(a) Broken lines

(b) Solid and broken lines

Figure VII.3: Lane is detected regardless of different line types.

pixels along each line can be counted to determine the type of that line. Note that,

any pixel that has an intensity value greater than 200 can be considered to be a

white pixel. If the total number of white pixels along a line is large enough, this line

is considered to be solid. Otherwise, this line presents a broken line. Figure VII.4

shows the detected lane types.
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(a) Detected broken lines

(b) Detected broken and solid lines

Figure VII.4: Lane type detection.

The overall lane departure warning system

The lane detection can help us determine the relative location of the vehicle to

the lane so the system can determine if the ego vehicle departs from its current lane.

Figure VII.5 shows the reference location of the vehicle and the lines. L b and R b

are the locations where the left and right detected lines meet the bottom edge of

the image. dl, dr and dc are the distances from the left margin of the image to L b,

R b and the center of the vehicle, respectively. The lane departure warning system is
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Figure VII.5: The reference location of the vehicle and the lines.

determined by the following equation:

Warning =


Left Departure , |dc− dl| < |dc− dr|, |dc− dl| < Twarn

Right Departure , |dc− dl| > |dc− dr|, |dc− dr| < Twarn

Nothing , Otherwise

(VII.1)

Twarn is the threshold distance to determine if the vehicle is too close to the left or

right line. If the vehicle departs from its current lane, the system would display the

warning message (“Left Departure” or “Right Departure”). Otherwise, the system

would not display any warning. The results of the lane departure system are presented

in Figure VII.6.

VII.1.2 Pedestrian detection system

Accident statistics indicate that 70 percent of the pedestrians involved in vehicle

accidents were crossing the road in front of forward-moving vehicles [176]. Therefore,

a pedestrian detection system typically uses a forward-facing camera. In this project,
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(a) Left departure

(b) Right departure

Figure VII.6: Lane departure detection.

the lane and pedestrian detection systems use the same image source from the USB

3.0 PointGrey camera placed behind the human driver. The camera captures the

video from the center monitor and sends it to an on-board computer for pedestrian

detection. The experimental setup is presented in Figure VII.1. The camera is

mounted so that the image can cover the road and pedestrians.

The overall system diagram is presented in Figure VII.7. After receiving the

image stream from the camera, the system pre-processes the image by extracting the

ROI where the algorithm should search for pedestrians using the Aggregated Channel
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Figure VII.7: The overall diagram of the pedestrian detection system.

Features (ACF) pedestrian detection. Non-maximum suppression is used to find the

best candidates in the image. Then a Kalman filter is utilized to track the detected

pedestrian. The detail of the ACF pedestrian detection and the results are presented

in the next sub-section.

The ACF pedestrian detection

The ACF pedestrian detection was proposed by Dollár et al. [117]. In this de-

tection algorithm, the features of channels are aggregated for better detection. The

channels include normalized gradient magnitude, histograms of oriented gradients

(six channels), and LUV color channels. The detailed ACF pedestrian detector is

displayed in Figure VII.8. Given an input image I, the 10 channels C = Ω(I) are

divided into 4 × 4 blocks; and pixels in each block are summed. A feature pyramid is

a multi-scale representation of an image I where channels Cs are computed at every

scale s. Scales are sampled evenly in log-space, starting at s = 1, with typically four

to 12 scales per octave. Note that an octave is the interval between one scale and

another with half or double its value. The feature pyramid is proposed and proven to

be fast constructed in [117]. Then a Boosting detector is used to train and combine

decision trees over these features to distinguish objects from the background by using

the multiscale sliding-window approach.
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Figure VII.8: The overall diagram of the ACF pedestrian detector.

Results

Figure VII.9 shows the detection results at different locations on the simulated

testbed. Multiple-pedestrian detection results are presented in Figure VII.10. The

region of interest is limited to 420 × 100 pixels. In this dissertation, the pedestrian

and lane detections are executed in the same MATLAB code. With the given size

of ROI, the system can detect pedestrians correctly within 15 m with a frequency of

≈20 fps. If the pedestrian is too far, the occupied pixels are too small, the system

does not have enough information for detection. To solve the long-distance detection

problem, the up-sampling technique can be performed by doubling the size of the

ROI. Therefore, the detection distance can increase up to 30 m with a trade-off speed

decreasing to ≈15 fps.
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(a)

(b)

(c)

(d)

Figure VII.9: Pedestrian detected at different locations and sizes.
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(a)

(b)

(c)

Figure VII.10: Multiple pedestrians detected at different locations.
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VII.2 Vehicle behavior models used by the CAS

The collision avoidance system (CAS) calculates the vehicle actions based on the

external risk analysis. In the CAS, the ego vehicle is treated as an autonomous vehi-

cle surrounded by other human-driven vehicles. The CAS is based on our’s previous

work [46] with two general tasks shown in Figure VII.11. In the first task, the ve-

hicle’s future state is predicted. Similar to [177], the proposed CAS relies on the

intention of the human-driven vehicles to predict their trajectories in the near future

(5 seconds ahead; and two consecutive predictions are done in 0.5 seconds apart). For

that reason, behavior models are utilized. These models store the position transitions

of both human-driven and autonomous vehicles with respect to the selected inten-

tion/action. The intentions of other vehicles are inferred by the intention recognition

described in Chapter IV. Both the Human-driven vehicle Dynamic Model (HDM)

and Autonomous vehicle Dynamic Model (ADM) have the same structure which is a

Gaussian process model [127]. In the second task, a control algorithm is used to de-

termine the optimized action that the co-pilot needs to take to have safe and smooth

driving.

Figure VII.11: General overview of the proposed CAS system.

The following sub-sections detail how behavior is represented. First, the terms
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and assumptions that are used in the formulation of the CAS are presented. Second,

the HDM and the ADM are discussed. Next, both behavior models are presented in

the Gaussian Models and trained by the Gaussian Process.

VII.2.1 Term definition and assumptions

The behavior models are utilized to store the information about the transitions of

vehicles from one location to another in time. To explicitly describe this transition,

we have to know the physical state of the vehicle. However, it is impossible to keep

track of many parameters of the vehicle at the same time and learn their effect on the

transition itself. Therefore, the Markov assumption, which only considers important

parameters seems to be a reasonable assumption. Hence, it is assumed that at any

certain time, all information regarding the physical state of the vehicle is completed

and enough to predict the next state. To reproduce the motion of a vehicle, we must

obtain its previous location on the road, steering wheel angle, orientation, velocity,

and acceleration of the vehicle. By acquiring all of this data, the new state of the

vehicle can be predicted after some finite time, assuming that the acceleration and

steering wheel have not been changed in this time.

However, the use of this data would make the model very complex. So, to make it

simple, this work only considers the location (X, Y ) and velocity V as a state of the

vehicle, with an assumption that all other readings are approximately small enough or

negligible. For example, the vehicle is assumed to be located in the location (x, y) with

velocity v at time t, then its state is defined as s(x, y, v, t). The behavior model stores

the transition to the next state s′(x′, y′, v′, t+ 1). Note that the longitudinal position

y and the lateral position x of the vehicle are chosen as the location parameters.

The probabilistic transition from one state to another stores the probability dis-

tribution of the next location of the vehicle over the whole state space if the initial

state is given. The transition probability may be unique for each input vector, which
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Figure VII.12: The prediction of future occupied locations is made based on the

shared intention.

is given by the tuple (s, a). The action a might be given by any intentional and

unintentional policy-action from the action set A.

VII.2.2 Human-driven vehicle Dynamic Models (HDM)

In this sub-section, the relationship between human behaviors and maneuvers is

discussed. In his paper, Ortiz defined a driver’s behaviors to be the set of actions

caused by the aim of the person [128]. This can be interpreted that the human driver’s

behaviors can be effectively separated from his/her intentions and resultant actions.

Let us consider the Human-driven vehicle Dynamic Model (HDM) first.

Normally, human drivers use visual signals to notify others about the intention

which they are going to perform. Such knowledge is important to plan a trajectory

109



with respect to the future changes in the environment and to increase the safety as well

as making the driving comfort. However, when using only visible communication, it

is hard to share intentions between drivers within a group of vehicles. Today, the ad-

vanced ITS provides us a framework which supports communication between vehicles

such as Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), or through radio

transmitters equipped in vehicles. Therefore, we can share the intentions between

drivers and thus estimate the possible future locations of all surrounding vehicles as

in the example shown in Figure VII.12. To obtain the driver’s intention, the intention

recognition system presented in Chapter IV can be utilized.

VII.2.3 Autonomous (co-pilot) vehicle Dynamic Models (ADMs)

Similar to an HDM, an ADM stores the transitions of the autonomous vehicle with

respect to the selected action. The intelligent vehicle utilizes low-level control signals

to control the vehicle such as steering, gas, and brake, but they are not sufficiently

effective for high-level decision making. For this reason, the driving task has been

decomposed into two levels. At the low level, a control algorithm allows the vehicle

to follow the lane and keep the chosen speed. This task can be easily done by using

proportional-derivative PD controller minimizing the difference between the target

values and the actual lateral location and velocity of the vehicle. At a higher level, a

decision-making algorithm chooses an action from the set of actions available to the

vehicle such as changing lane and speed. In the CAS, the algorithm may know that

the vehicle should change lane, but it may not know the way it happens, how long

it takes, or the interim states of the vehicle between the actual state and the target

state. To learn these rules, the decision-making algorithm requires a probabilistic

transition model connecting the initial state with the desired state via all temporal

states.

It is found out that the ADM model may be learned as effective as the HDM
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model. Since the action spaces are different, it should be trained separately from the

HDM, but the internal structures of both models are absolutely the same which are

the Gaussian models and learned by the Gaussian Process.

VII.2.4 Gaussian models

Figure VII.13 shows an example of a Gaussian distribution of traveling between

the two points. There is an infinite number of routes that can be built from the point

(x, y) to the point (x′, y′). However, it can be assumed that the routes between these

two points will be a Gaussian distribution against the single most probable route

between these two points. This assumption is based on the assumption that the road

path is free between two points, and there is no impossible locations on the road at

any limited time.

To store the transitions, it might be possible to find a separate Gaussian dis-

tribution over X and Y separately. However, this probability distribution will be

symmetric against the axes while the actual trajectory of changing lane is diagonal.

For this reason, Vectored Gaussian Processes (VGPs) are used. The VGPs store the

covariance between X and Y states which may make the trajectory diagonal.

VII.2.5 Gaussian Process

The Gaussian Process (GP) is a supervised learning method widely used to learn

a relation between input/output pairs from a training dataset in such a way to be

able to predict the output when given system inputs. Generally, there are two types

of supervised learning methods which use a parametric or a non-parametric model.

While the parametric model considers that the nature of the function is known with

pre-specified complexity, the non-parametric model is used when the nature of the

function is unknown. In the CAS, the dataset is represented by the transition from one

point to another, mainly due to the intent of the human performing this transition.

111



Figure VII.13: An example of Gaussian distribution when traveling between two

points.

The GP is a Bayesian nonparametric method operating in Reproducing Kernel Hilbert

Space widely used for signal estimation in control systems [178] and can be written

as:

f(j) ∼ GP (m(j), k(j, j′)) (VII.2)

where m(j) is the mean of a given dataset D = {j1, j2, ...jN}; and k(j, j′) is the

covariance kernel used for approximating the covariance of the dataset j ∈ D and

other values j′. The Radial Basis Function kernel (RBF) is utilized for k(j, j′) as

follows:

k(j, j′) = exp

(
−||j − j

′||2

2σ2

)
(VII.3)

Since the choice of the trajectory depends on the human driver, it is therefore natural

to use the RBF kernel shown in Equation (VII.3). This kernel function allows to

exponentially weigh the error during the training.

In order to budget the number of kernels, Csato’s sparsification method [179]

is employed. This method implements an upper bound on the cardinality of the

basis vector and allocates RBFs to reduce the regression error. If the novelty of
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information for the new incoming data exceeds the threshold, the basis vector set is

updated. Otherwise, only the weights and covariance are updated.

4v(t) ∼ GPi(v0, t) (VII.4)

v(t) = v0 +4v(t) (VII.5)

(4x(t),4y(t)) ∼ GPi(x0, y0, v(t), t) (VII.6)

x(t) = x0 +4x(t) (VII.7)

y(t) = y0 +4y(t) (VII.8)

In the proposed system, five independent GPs were built - one for each intention.

Each GP has two stages. Equation (VII.4) shows the first stage in which the change

in the velocity 4v at each time for that particular intention i is estimated by the GP.

In the second stage as shown in Equation (VII.6), the system predicts the change in

the location (4x,4y) when GP is given time t, velocity v(t) and the vehicle’s current

location (x0, y0). These GP estimators were used to develop HDM/ADM blocks as

discussed in greater detail in [180].

VII.3 Control algorithm of the CAS

In the real world, it is not easy to exactly predict the intention of a driver. For

example, under a specific situation, the predicted probability of the keep-current-

state intention is 90%. However, there are still small probabilities of other intentions

that could occur such as 4% for changing lane left, 2% for changing lane right, 1%

for decreasing speed, and 3% for increasing speed. So, implementing the collision

avoidance system with only one maximum probability intention may not address

all the possibilities which can be covered by a probability distribution of intentions

shown in Figure VII.14. This section discusses the implementation of the probability

distribution of intentions on the CAS.
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Figure VII.14: An example of the probability distribution of intentions.

In this dissertation, the ego vehicle is assumed to be controlled by the CAS when

it is in the autonomous driving mode. It takes action based on the probability dis-

tribution of intentions from other human-driven vehicles. The CAS algorithm was

developed originally in MATLAB with trajectory prediction (5 seconds ahead) based

on one single intention from the human driver. The new goal is to improve the algo-

rithm with the probability distribution of five intentions. So, five trajectories must

be predicted at each time step. If doing this task sequentially, the computation time

would be increased. Hence, five trajectories must be predicted in parallel with the

help of the C++ multiple thread functionality which is not available in MATLAB.

Figure VII.15 illustrates the overall system’s flowchart. On its main thread, the C++

program makes a connection through UDP to the Carnetsoft simulator which can

send out information of all vehicles on road.

The driver intention recognition is also done in the main thread with the probabil-

ity distribution of five intentions. The C++ program then creates five threads which

would call the MATLAB function to predict trajectories of five intentions. Each

114



Figure VII.15: Flowchart of implementing the probability distribution of intentions

with C++ and MATLAB.

thread would take information from the human-driven vehicle and one intention as

inputs. Then the output is generated as a predicted trajectory (T ) which includes an

array of the mean (xmean, ymean) and the variance (xvar, yvar) in 5 seconds with 0.5

second time-steps.

The ego vehicle is named as c1, and the nearby vehicles are named as cj, j = 2, ..., n.

A collision between vehicles happens when the ego vehicle c1 and one or more vehicles

reach the same location at the same time. The probability of the ego vehicle c1 being

in state s ∈ S(x, y, t) is defined as Pc1(s). The probability of vehicle c2 being in the

state s is defined as Pc2(s). Then, the probability of collision is a probability when
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Figure VII.16: Predictions in 5 seconds ahead of the distributions of possible locations

of the ego vehicle (red) and another vehicle (blue). The scenario is shown when the

human driver intends to merge right.

both vehicles are in the same state:

P (collision of c1with c2 in s) = P (c1 = s, c2 = s)

= Pc1(s)Pc2(s) (VII.9)

For a nearby vehicle cj, its probability in the state s ∈ S(x, y, t) with each intention

i = 1, ..., 5 is estimated as Pcji(s). Then, the total probability of cj in the state s with

five intentions is:

Pcj(s) = P (cj = s) =
5∑
i=1

KiPcji(s) (VII.10)

where Ki is the probability of intention i. We also need to predict the trajectory and

the probability of the ego vehicle c1. Figure VII.16 shows the distributions of possible
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locations of the ego vehicle (c1) and another vehicle (c2) in an example scenario.

Then, the total probability of collision between them becomes:

P (collision of c1with c2 in s)

=
∑
S

P ((c1 = s) AND (c2 = s))

=
tmax∑
0

ymax∑
ymin

xmax∑
xmin

(Pc1(x, y, t)Pc2(x, y, t)) (VII.11)

where tmax is the time horizon; xmin, xmax, ymin and ymax determine the road space.

In general, the collision happens when the ego vehicle (c1) is in the same location

(x, y) with other vehicles (cj, j = 2, ..., n) at the same time t. According to this

assumption, the total probability of collision between the ego vehicle and other nearby

ones is defined as:

P (collision of c1 with other vehicles in s)

=
∑
S

P ((c1 = s) AND (c2 = s OR ... OR cn = s))

=
tmax∑
t0

ymax∑
ymin

xmax∑
xmin

(
Pc1(x, y, t)

n∑
j=2

Pcj(x, y, t)

)
(VII.12)

Then, the cost J for each action a ∈ A = {1, ..., 5} corresponding to {keeping the

vehicle’s current state, changing lane left, changing lane right, speeding up, slowing

down} can be calculated as follows.

J = P (collision, a) + Cost(a) + Penalty(v′) + Penalty(x′, y′) (VII.13)

where Cost(a) is the cost of the action a according to the rank of preferences (less

annoying actions have less cost), Penalty(v′) is a penalty for driving with the speed

different from the speed limit defined on the digital map, Penalty(x′, y′) is a penalty
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for being off-road to motivate the vehicle to follow the road.

Cost(a) =



Ca1 if a = 1

Ca2 if a = 2

...

Can if a = n

(VII.14)

Penalty(v′) = ||Vdesired − v′||Pv (VII.15)

Penalty(x′, y′) =


Pout if x′, y′ /∈ Road

0 if x′, y′ ∈ Road

(VII.16)

where Cai , Pv and Pout are manually defined penalty coefficients for the constrained

optimization problem. They are selected so that the values of Cost(a), Penalty(v′),

and Penalty(x′, y′) are in the range of [0,1]. Generating the optimal action to avoid

collision is a necessary process in a typical CAS [181]. Unlike [181] which utilizes

the “minimal future distance” (MFD), the proposed optimization process relies on

estimating the least cost, J∗.

J∗ = argmin
a∈A

J (VII.17)

The action/intention that generates the least cost is the best action/intention to be

chosen by the co-pilot. A control signal corresponding to this action is also generated.

Then the co-pilot’s intention along with its control signal and the probability of

collision are sent to the collaborative driving block to generate the suitable control

for the ego vehicle.

VII.4 Evaluation

In this dissertation, the human driver’s intentions and their probability distribu-

tion are predicted as presented in Chapter IV. Ten driving tests from five subjects
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Figure VII.17: Reaction times of the ego vehicle with human intentions. int #2:

changing lane left, #3: changing lane right, #4: speeding up, #5: slowing down. no

int: always using intention #1, do not consider other intentions.

(five minutes for each subjects) were conducted to evaluate the performance of the

CAS. The performance of the system using a single intention only was evaluated first

by calculating the reaction time of the autonomous vehicle. This is the time from

when the human driver in another vehicle change his intention until when the ego

vehicle changes its behavior. Figure VII.17 illustrates the average reaction time of

both using and not using intentions. The intention #1 (keeping the vehicle’s current

state) is the default intention. So, the reaction time of this intention is not estimated.

In this experiment, “no int” means that the driver’s current intention is unknown.

The results show that using predicted human intentions can let the ego vehicle have

faster reactions to avoid collisions than not using predicted intentions.

The performance of the CAS using the probability distribution was also evaluated

via the ego vehicle’s reaction time shown in Figure VII.18. In this experiment, “no

int” means that the driver’s probability distribution of intentions is unknown but the

prior knowledge of the probability distribution of intentions is given. This information

can be collected by recording the behavior of a random traffic in a certain location on
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Figure VII.18: Reaction times of the ego vehicle with the probability distribution of

human intentions. int #2: changing lane left, #3: changing lane right, #4: speeding

up, #5: slowing down.

the road (a bride, a tree, etc.) for a long time. The results from Figure VII.17 and

VII.18 show that the average reaction time of using the probability distribution of

intentions (≈ 0.4 seconds) is slower than using only one intention (≈ 0.25 seconds).

This is true because of the longer computation time of five different trajectories at the

same time. Even with parallel computing, the computation is still slower than using

only one intention because the computer resource must be shared between the five

threads. Moreover, the communications between C++ and MATLAB applications

also take longer than those between MATLAB applications only. However, the delay

in reaction time of this method is not significant, and it can help the ego vehicle

cover all the possibilities that the human-driven vehicle can take to make a suitable

action. In addition, using the multi-thread method is faster than sequentially using

a single thread of five intentions (with an average reaction time of ≈ 0.8 seconds).

So, the computation time is sacrificed to gain an advantage which covers all intention

possibilities. However, it is also proved that despite the delay, the collision avoidance
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algorithm can react quickly enough for the ego vehicle to avoid collisions.

VII.5 Summary

This chapter presents a collision avoidance system (CAS) which utilizes the in-

formation from the video-based external risk assessment. The external risk analysis

includes a lane departure warning system and a pedestrian detection system. Based

on the external risk analysis and the probability distributions of intentions from other

drivers, the CAS can determine the best action the ego vehicle should take in the near

future.
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CHAPTER VIII

COLLABORATIVE DRIVING FRAMEWORK

A collaborative driving framework, which considers conditions such as the ego ve-

hicle’s status, the driver’s drowsiness, and his/her drowsiness intensity, is proposed.

The framework takes inputs from two agents which are the human driver and the

autonomous driver (co-pilot) whose action is generated by the CAS. This chapter

presents the ideas behind the collaborative driving framework, the experimental re-

sults, and discussions regarding the overall system’s behaviors.

VIII.1 Collaborative driving framework

The control from the human driver and the control from the co-pilot are integrated

to generate the final control of the vehicle. The human driver’s control is obtained

from the vehicle control system through the steering wheel, and the gas and brake

pedals while the co-pilot’s control is generated by the CAS algorithm, which includes

the preferred lateral position and velocity. In order to fuse the two control inputs,

the CDS converts the human driver’s control input to the preferred lateral position

and velocity. The overall collaborative driving framework is shown in Figure VIII.1.

In the first stage, the prediction is estimated by the posterior probability p(a|Oh, Oc).

Oh is the ego vehicle’s control data (steering angle, gas and brake pedal positions).

Oc is the vehicle state data (positions, heading angles, and speeds) of all vehicles.

Equation (VIII.1) presents the posterior probability calculated using the Bayesian

theorem.

p(a|Oh, Oc) =
p(Oh, Oc|a)p(a)

p(Oh, Oc)
(VIII.1)
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Figure VIII.1: The collaborative control framework.

Here, Oh and Oc are assumed to be independent. Then the posterior probability can

be inferred by fusing the likelihood functions as in Equation (VIII.2).

p(a|Oh, Oc) =
p(Oh|a)p(Oc|a)p(a)

p(Oh)p(Oc)
(VIII.2)

The human driver’s intention/action can be inferred by using the Hidden Markov

Model classification as described in Chapter IV, from which the likelihood of each

action a from the human, p(a|Oh) can be obtained. On the other hand, the CAS

algorithm can estimate the likelihood of all five actions, p(a|Oc). Then, the difference

of entropy, dE, between the human driver’s intended actions and the co-pilot’s actions

is calculated. The better the prediction is, the larger the difference dE is.

dE =
∑
a

p(a|Oh) log p(a|Oh)

−
∑
a

p(a|Oh, Oc) log [p(a|Oh, Oc)] (VIII.3)

The ego vehicle’s final control U is calculated as follows:
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U =u(dE)F + (1− u(dE))G (VIII.4)

F =Uh(1− β) + βUct (VIII.5)

G =u(α− αT )[(1− u(dl −D))Uct + u(dl −D)Ucs ]

+ [1− u(α− αT )]

× [u(λ− λT )Uct + (1− u(λ− λT ))Uh] (VIII.6)

u(n) =


0, n < 0

1, n ≥ 0

(VIII.7)

β =
1

1 + e−c1×dE+c2
(VIII.8)

Uh is the control input from the human driver; Uct and Ucs are the co-pilot’s control

inputs to drive the ego vehicle temporarily and stop the ego vehicle at the roadside,

respectively; u(n) is a unit step function. The reason that the unit step function

is chosen to represent the control formulation is to have a complete separation of

controls under each scenario. α is the human driver’s drowsiness probability; αT

is a threshold to determine if the driver is drowsy; λ is the probability of collision

estimated by Equation (VII.12); λT is the threshold to determine if the ego vehicle

is in a dangerous state; dl is the drowsiness level, which is accumulated when the

driver gets drowsy multiple times; D is the drowsiness level threshold to determine

how deep the driver is getting into the drowsy state; β is a sigmoid function with the

range of [0,1]. If β approaches 1, the co-pilot has more control of the ego vehicle. If

β approaches 0, the control input relies mostly on the human driver. c1 and c2 are

the characteristic coefficients of the sigmoid functions.

In the proposed collaborative driving framework, two predicted actions (from the

human driver and the co-pilot) are compared. If they agree with each other (dE ≥ 0),
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it means that the human driver is controlling the ego vehicle safely no matter his/her

status. So, the final control is F as in Equation (VIII.5) to assist the human to drive

safely. For example, if the co-pilot’s best action is changing to the left lane and the

driver also wants to do that task, the control input is a fusion of controls from both

the driver and the co-pilot. Then the ego vehicle can change to the left lane more

quickly. When dE is a small positive value, and the two predicted actions agree but

not much, the fused control input relies more on the human driver. When dE is a large

positive value, the co-pilot and the human driver have a strong agreement. Therefore

the fused control input relies more on the co-pilot, and the human does not need to

apply much control on the ego vehicle in this situation.

If the driver’s and the co-pilot’s predicted actions do not agree with each other

(dE < 0), it means that the driver does not drive safely according to the co-pilot. In

this case, the final control is G. As shown in Equation (VIII.6), G is determined based

on three conditions which are the driver’s probability of drowsiness, drowsiness level,

and the probability of collision between the ego vehicle and other nearby vehicles. If

the driver is not drowsy (α < αT ) and the probability of collision is low (λ < λT ),

he/she is free to manually drive the ego vehicle with the control input Uh. If the driver

is not drowsy, but the probability of collision with another vehicle is high (λ ≥ λT ),

it is possible that he/she is distracted and not focusing on the driving task. At this

moment, the co-pilot should take over the control to drive the ego vehicle temporarily

with the control input Uct .

To ensure safe driving, it is not wise to let the driver control the vehicle if he/she

keeps getting drowsy. Therefore, some thresholds of drowsiness level are set. When

the driver’s drowsiness level (dl) increases beyond the threshold (D), it should be safer

for him/her to stop the vehicle. This is also the time for the co-pilot to kick in and

control the vehicle to stop at a safe place at the roadside while triggering an alarm

to wake up the driver. After the vehicle stops, it is better to turn off the engine to
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avoid any unnecessary control from the driver while he/she is drowsy. After waking

up, the human driver has to press the deactivate button (or ignition key) to control

the vehicle again.

In the fusion part, Equation (VIII.5), the control of the ego vehicle relies on

how much the human and the co-pilot agree, which is estimated by the value β in

Equation (VIII.8). Because β is a smooth sigmoid function, the transition between

the controls of the human and the co-pilot system will be smooth. Moreover, in the

driving simulator, the ego vehicle can be programmed to run by specifying its desired

velocity and lateral position which is described in Chapter III. Hence, when the

newly-desired velocity and lateral position are estimated by the system, the driving

simulator will gradually control the ego vehicle from the old status to the new one.

Therefore, the transition will be smooth and safe.

VIII.2 Experiments & results

Figure I.1 presents the external risk analysis, which is done through a camera

placed inside the ego vehicle. However, due to the lack of hardware facilities and

the safety concerns associated with real road tests, the research is conducted on

the assisted-driving testbed, which is useful for preliminary studies. In the assisted-

driving testbed, it is only possible to detect and localize vehicles which are in front

of the ego vehicle. It is impossible to use a camera to detect vehicles behind the ego

vehicle. Therefore, their precise locations obtained from the driving simulator are

utilized for the collaborative driving framework. In the real-world implementation,

LiDAR sensors, sonar sensors, or a set of multiple cameras can be used to detect and

localize moving objects surrounding the ego vehicle.

The collaborative driving algorithm was evaluated on the testbed in different

scenarios with the following parameters: αT = 0.7, λT = 0.7, D = 2, c1 = 10 and

c2 = 5. The control input as in Figure VIII.2 and VIII.3 has five possible values as:
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Figure VIII.2: Results of the ego vehicle’s lateral position. (a): the steering angle

controlled by the driver; (b): predicted lateral position from the co-pilot; (c): control

input; (d): real lateral position; (e): the driver’s state: 0 = non-drowsy, 1 = drowsy.

• 1: Uh. If the prediction is not good (dE < 0), the human driver is non-drowsy

(α < αT ), and the ego vehicle is not in any dangerous situation (λ < λT ), then

he/she can control the ego vehicle at this moment.

• 2: Uct . If the prediction is not good (dE < 0), and the human driver is non-

drowsy (α < αT ), but the ego vehicle is in a dangerous situation (λ ≥ λT ), then

the co-pilot controls the ego vehicle temporarily.

• 3: Uct . If the prediction is not good (dE < 0), and the human driver is drowsy

(α ≥ αT ) for the first time (dl < D), then the co-pilot controls the ego vehicle

temporarily.
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Figure VIII.3: Results of the ego vehicle’s velocity. (a): the gas value controlled

by the driver; (b): predicted velocity from the co-pilot; (c): control input; (d): the

vehicle’s real velocity; (e): the driver’s state: 0 = non-drowsy, 1 = drowsy.

• 4: Ucs . If the prediction is not good (dE < 0), and the human driver is drowsy

(α ≥ αT ) for the second time (dl ≥ D), then the co-pilot controls the ego vehicle

to stop at the roadside.

• 5: F . If the prediction is good (dE ≥ 0), the co-pilot can assist the human driver

by fusing the control inputs from both the human driver and the co-pilot.

Note that the control inputs 2 and 3 are similar in two different conditions. That is

to let us keep track of the conditions and display the results easily.

Figure VIII.2 and VIII.3 present the results with the lateral position input and

velocity input, respectively of an experiment as shown in Figure III.11. In Figure

VIII.2 (b) and (d), the black dashed lines indicate the road centerlines, while the
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Figure VIII.4: The trajectory of the ego vehicle with different control inputs.

black solid lines represent the solid road lines beyond which is the roadside. From

the beginning, the co-pilot assists the human driver to increase the speed. In Figure

VIII.3(a) and (b), from the frame 220, the co-pilot and the human driver do not

agree with each other while the driver becomes drowsy and the ego vehicle is in the

safe zone, so the co-pilot temporarily controls the ego vehicle. In the meantime, an

alarm signal is triggered to wake up the driver. From the frame 300 - 370, the human

driver wakes up so he can manually control the ego vehicle. After that, he becomes

drowsy again, and the drowsiness level is leveraged. Therefore the co-pilot takes

over the control and drives the ego vehicle to stop at the roadside (the frame 400 -

550 in Figure VIII.2(d) and VIII.3(d)). When the driver wakes up, he presses the

deactivation button to manually drive the ego vehicle back to the road. At the frame

850, the co-pilot and the human driver do not agree (Figure VIII.3(a) and (b)), and

the ego vehicle is too close to a leading vehicle while the human driver is not drowsy.
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Figure VIII.5: Average reaction times of the collaborative driving system with differ-

ent control inputs.

At this moment, the human driver is deduced to be distracted, and the co-pilot kicks

in to control the ego vehicle temporarily and triggers a voice alarm to alert the driver.

Overall, the system responded as expected with smooth transitions in trajectory as

shown in Figure VIII.4.

In addition, the reaction time of the collaborative driving system with different

control inputs is evaluated. Ten-minute driving tests from three subjects were con-

ducted. Because different control inputs correspond to different states of the driver

and the ego vehicle, the reaction time of each control input is defined as follows.

• The reaction time of the control input 2 is the elapsed time from the moment

the driver takes an action differently from that of the co-pilot, and the ego

vehicle is in a dangerous situation, until it takes action.

• The reaction time of the control inputs 3 and 4 is the elapsed time from the

moment the driver becomes drowsy and takes an action differently from that of
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the co-pilot, until the ego vehicle reacts.

• The reaction time of the control input 5 is the elapsed time from the moment

the predicted actions of the human driver and the co-pilot agree with each other,

until the ego vehicle takes action.

• The reaction time of the control input 1 is the elapsed time from the moment

the states of the control inputs 2, 3, 4, and 5 change back to that of the control

input 1, until the ego vehicle reacts.

The results are shown in Figure VIII.5. It can be observed that the average reaction

times of the system with control inputs 3 and 4 are approximately 2.8 seconds. This

is reasonable because these controls rely on the drowsiness detection, which needs

about 2.5 seconds to detect the status change from non-drowsy to drowsy (Figure

V.9). However, the control inputs 2 and 5 do not require the drowsiness detection.

Therefore, the system just needs around 0.6 seconds to react to these changes of these

control inputs. On the other hand, the reaction time of the control input 1 has a large

variation because it is estimated based on the changes from all other control inputs.

Its average time is approximately 1.5 seconds.

VIII.3 Discussions

It is worthwhile to discuss the impact of the detection failures to the system per-

formance. The proposed collaborative driving framework has two conditional layers

to determine the vehicle’s final control. The first layer is to check if the control in-

puts from the driver and the co-pilot agree. Then, the second layer checks the driver’s

state and the vehicle’s state (the possibility of collision). In the first layer, if the two

control inputs agree, the driver’s control input is safe no matter the driver’s state.

Therefore, false detections in this situation are not needed to be worried about. If

the two control inputs do not agree. In this case, there might be false positives and
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false negatives in the driver drowsiness detection. For false negatives (i.e., the driver

is actually drowsy, but he/she is detected to be non-drowsy), the system lets the

driver control the vehicle by himself/herself. However, when the vehicle is in a dan-

gerous state, e.g., the vehicle is about to collide with other vehicles due to the driver’s

drowsiness, the co-pilot takes over the control to ensure the traffic safety. For false

positives (i.e., the driver is actually non-drowsy, but he/she is detected to be drowsy),

the co-pilot takes over the control and triggers a voice alarm to alert the driver about

the switching in the driving mode. In this case, the input from the human driver is

ignored. The duration of such a case is usually short. However, if this lasts for an

extended time, a push-button on the dashboard can be implemented for the driver to

override the co-pilot.

The proposed collaborative driving framework will also bring some changes to

the normal driving experience. When the human driver applies a control input (e.g.,

steering, accelerating, or braking), it is analyzed by the collaborative driving system

to determine if it is safe or not. If the system predicts that it is safe, this control

input is sent to the vehicle’s engine. If the system asserts that it is dangerous (when

the probability of collision is high or when the driver is drowsy), the co-pilot’s control

input is used to control the vehicle. Therefore, the system can ensure the traffic

safety. There are three scenarios when the co-pilot involves in the vehicle’s responses:

• When the driver takes an action which is different from that of the co-pilot, and

the ego vehicle is in a dangerous situation.

• When the driver becomes drowsy and takes an action which is different from

that of the co-pilot.

• When the predicted actions of the human driver and the co-pilot agree with

each other.

In the first two cases, the driver may observe that the co-pilot’s involvement is un-
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predictable. However, the involvement is necessary to make sure that the ego vehicle

does not collide with other vehicles. So the unpredictable responses of the vehicle

in these two cases are necessary because they ensure the traffic safety. In the last

case, the final control input is a fusion of the driver’s control input and the co-pilot’s

control input. Hence, there might be some unpredicted responses. To address this

issue, a voice interface is implemented to alert the driver. In this way, the driver can

be prepared when the system starts the collaboration, which can improve the driver’s

satisfaction.

VIII.4 Summary

This chapter presents the development of a collaborative driving framework which

aims to improve transportation safety. The framework integrates two agents: an au-

tomated co-pilot and a human driver. The co-pilot calculates control actions to avoid

collision with nearby vehicles and runs in parallel with the human driver. The co-

pilot’s decisions can be fused with the human driver’s decisions or override his/her

decisions depending on the driver’s status and environmental conditions. This frame-

work improves the safety of driving in different dangerous scenarios and ensures seam-

less transitions between driving modes.
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CHAPTER IX

CONCLUSIONS & FUTURE WORKS

This chapter concludes this dissertation and discusses some works that can be

improved in the future.

IX.1 Conclusions

This dissertation proposes a driver assistance system to improve safety for future

ITS systems. The system analyzes both internal and external risk factors. The

internal risk analysis includes the driver’s intention, drowsiness, and distraction. The

intention detection system can detect intentions including slowing down, speeding

up, changing lane left, changing lane right and keeping the vehicle’s current state. In

addition, a driver drowsiness detection system is presented. It takes two input types:

steering wheel angles and driver’s facial images. Also, a system which could detect

distracted-driving behaviors and alert the human driver is proposed. In terms of the

external risk analysis, the driver assistance system is developed with both lane and

pedestrian detection capabilities. The system can detect different line types (broken

or solid) and trigger a warning signal during departure. On the other hand, the

pedestrian detection system works correctly within 30 m. The CAS system utilizes

the external risk analysis and the probability distribution of intentions from other

human-driven vehicles to generate the best action that the ego vehicle should take. A

collaborative driving framework which integrates two agents: a co-pilot and a human

driver is proposed. The co-pilot always runs the CAS in parallel with the human

driver and gives assistance if necessary. This framework enables safe driving in a
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variety of dangerous scenarios while ensuring seamless transitions between driving

modes.

To validate the proposed framework, an ITS testbed which includes both physical

and simulated setups is developed. The testbed can perform remote configuration

including remote data selection and remote trajectory design so that the client can

design his/her own experiments. Moreover, the ITS testbed can help the client per-

form driver analysis such as intention prediction and drowsiness detection to enhance

safety. In addition, an assisted-driving testbed is developed by adding two embed-

ded boards to the simulated testbed. The assisted-driving testbed is utilized for the

real-time distraction detection system.

The results of this dissertation have been partially published in [39,165,180,182–

188].

IX.2 Future works

IX.2.1 Internal risk analysis

Currently, the collaborative driving framework only utilizes the driver’s intention

and drowsiness from the internal risk analysis. However, as mentioned above, driver

drowsiness is just one type of driver distraction. Therefore, it is believed that the

distraction detection system could replace the drowsiness detection system in the

collaborative driving framework. There are many ways to enhance the distraction de-

tection system. Currently, the similarities in postures of different behaviors result in

incorrect classifications. The behaviors that have more misclassifications are “drink-

ing”, “hair and makeup” and “texting on the phone - left”. To improve the accuracy,

the proposed approach can be combined with the face-based approach as in [71, 72]

or replace the last fully-connected layers by the traditional classifiers such as SVM or

HMM to classify the distracted behaviors [73]. In addition, the distraction detection

system can be enhanced by using other sensing modalities. For example, microphones
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Figure IX.1: Pedestrian and vehicle detection in YOLO.

can be utilized to capture the sounds and voices in the car, which offer rich clues to

detect different distracted driving behaviors. Moreover, the distraction detection sys-

tem performance could be enhanced by using the image from the driver’s face as an

additional input because it provides useful information about his/her status.

IX.2.2 External risk analysis

The video-based external risk assessment can detect lanes and pedestrians. Vehicle

detection, which can be considered as a special type of object detection, is the next

step to complete the external risk analysis. Similar to pedestrian detection, there

are several challenges in video-based vehicle detection. There are a wide variety of

vehicle types and colors, and other vehicles can approach from any direction, which

may make their shapes change especially when the ego vehicle is moving as well.

With the rapid evolution of parallel computing and deep learning, robust tools

which detect vehicles are available. Figure IX.1 shows the pedestrian and vehicle

detections with YOLO, an open source deep CNN object detection algorithm [189].

The program runs on an NVIDIA Jetson TK1 board with a frame rate of 10-12 fps

and 1-2 second delay. The TX1 board has only 4 GB of RAM and a Quad ARM A57

136



Figure IX.2: The two simulator setup.

L2 CPU. If YOLO is implemented on a more powerful computer, the performance

would be improved.

IX.2.3 Vehicle-to-Vehicle (V2V) communication

In order to create more realistic scenarios, an additional driving simulator that is

similar to the current one can be utilized. Both simulators can share data through

the V2V communication. Another human driver can control this new simulator and

create any desired interference. The setup of two simulators for V2V communication is

presented in Figure IX.2. In the proposed system, the left-side vehicle is programmed

to create some behaviors such as blocking, pushing from behind and changing lane

to disrupt the ego vehicle’s driving.

A more complicated scenario can also be assumed as shown in Figure IX.3. The

driver in the right simulator is driving a bus which is stopping on the road while the

driver in the left simulator is driving a car whose view is blocked by the bus. The bus

can detect a pedestrian crossing the road in front of it. In this situation, a system

that shares the pedestrian’s current location and displays it on the simulator screen
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Figure IX.3: A view-blocking scenario.

of the car can be implemented. This can alert the driver to take precautions. The

pedestrian detection algorithm can detect the distance between the pedestrian and

the bus and use the camera calibration process to map 2D-pixel coordinates into 3D

real-world coordinates. Then, 3D real-world coordinates can be shifted from the bus

to the car based on the relative positions of the two vehicles. Then, they are mapped

back to 2D-pixel coordinates and displayed on the screen of the car.

One of the most common errors in automated systems is that sensors fail to work.

We can also consider scenarios where the sensor has noisy output. By considering the

noisy environment, the system can be made more realistic and robust. Moreover, it

can also request the information from surrounding vehicles to obtain more accurate

decisions. For implementing this approach in the proposed system, noisy sensor

readings such as distance to other vehicles, pedestrians or lanes can be assumed by

adding a Gaussian noise to the original readings. Then, sensor fusion algorithms such

as Kalman filter or particle filter can be used to fuse the sensor readings from both

vehicles to have better estimations and predictions of the vehicle state.
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IX.2.4 Driver-vehicle communication protocol

A protocol for communication between the co-pilot and the human driver can

be developed. The system detects the driver’s intention which is considered to have

the highest priority. Then the co-pilot compares the human driver’s intention with

its generated best action. If they do not match, the co-pilot can inform the driver

whether he/she wants to wait or process his/her current intention. For example, the

driver wants to change lane but the co-pilot detects it is not safe to do that. It would

inform the driver that it is not safe and recommend the human driver to wait for a

certain time to change lanes.

IX.2.5 Security

Security is also a challenging problem. When the vehicles share their information

with each other, hackers can remotely hack the vehicles, steal the driver’s information

or even paralyze the control. This can cause serious traffic accidents because the

human driver totally loses the control of the vehicle. Therefore developing a protocol

that can secure the self-driving vehicles from cyber-attacks is also a potential research

area.
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