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Abstract:

Levy processes application is becoming a hot topic in financial modeling and empirical calibration
on recent decades. Due to the infinite divisibility, independent and stationary increments properties,
Levy processes match the market price dynamics intuitively.

In this thesis, some properties of Levy processes which outbreak the restricts of classic continuous
Black-Scholes model with jumps are explored. Moreover, the explicit sensitivities for the bond
price according to the log-normal distributed compound Poisson processes are deduced strictly.
Meanwhile, the analytic illustrations are provided.

To find the inherent Levy processes evidences of the market, the S&P 500 index option prices
are studied since those are the easiest and representative data source. Besides the classic Black-
Scholes model, the Heston model is considered since its stochastic volatility embedding. Then
non-iid models which violate the assumption of identically and independently distributed jumps
are checked for next. Furthermore, Levy processes are discussed for the Partial Integro-Differential
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CHAPTER 1

BLACK-SCHOLES-MERTON MODEL WITH POISSON JUMPS

In a financial market, the price variation over time of financial instruments can be studied by Black-

Scholes-Merton(BSM) model basically. The BSM model is the fundamental tool to discover the

mechanism of price movement.

1.1 Black-Scholes-Merton Model

The Black-Scholes-Merton model is a mathematical method in using Brownian motion and trying

to describe the continuous case of price changing over time.

1.1.1 The BSM Model

Assume that we are in the setting of the standard Black-Scholes model like a perfect market. Stock

price is assumed to follow a geometric Brownian motion:

St = S0exp((µ−
1

2
σ2)t+ σWt).

Here, W is a standard Brownian motion under the probability measure P.

Let the starting value of assets is S0. Then by Ito-Doeblin formula, we have:

dSt
St

= µdt+ σdWt.

For the discount price S̃(t) = e−rtS(t), there is

d(S̃(t)) = d(e−rtS(t))

= −re−rtS(t)dt+ e−rtdS(t)

= S̃(t)((µ− r)dt+ σdWt.

That means

dS̃(t)

S̃(t)
= (µ− r)dt+ σdWt = σ(

µ− r
σ

dt+ dWt).

To make sure we have a no arbitrage market, the return of investment should be the interest

rate. There are two theorem we needed as Radon-Nikodym and Girsanov to change the measure .
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Theorem 1.1.1 [1] (Radon-Nikodym) Q is absolutely continuous with respect to P if and only if

there exists a random variable Z ≥ 0 such that for any subset A ∈ A,

Q(A) =

∫
A

Z(ω)dP(ω).

Z is called density of Q with respect to P, and Z = dQ
dP .

Theorem 1.1.2 [1] (Girsanov) If
∫ t

0
θ2
sds <∞ a.s. and Zt = exp(−

∫ t
0
θsdWs− 1

2

∫ t
0
θ2
sds) > 0 is a

martingale. Under Q with density ZT with respect to P , W̃t = Wt +
∫ t

0
θsds is a standard Brownian

motion.

Let µ−r
σ = θ, due to the fact

∫ t
0
θ2
sds = θ2t < ∞ and Lt = exp(− 1

2θ
2t − θWt) is a martingale,

then by theorem 1.1.2,

dS̃(t)

S̃(t)
= σ(θdt+ dWt) = σdW̃t.

Where W̃t = θt+Wt is a martingale in (Ω,Q) with Q is the risk-neutral measure.

Then we have,

dS(t)

S(t)
= µdt+ σdWt

= µdt+ σ(dW̃t −
µ− r
σ

dt)

= rdt+ σdW̃t.

For a perfect, no arbitrage market, the discount portfolio value Ṽ (t, St) = e−rtV (t, St) should be

a martingale. In other words, EQ[Ṽ (T )|Ft] = Ṽ (t) for 0 < t < T .

Setting S(t) = x,then by Ito-Doeblin formula:

d(Ṽ (t, S(t))) = d(e−rtV (t, x))

= −re−rtV dt+ e−rtVtdt+ e−rtVxdx+
1

2
e−rtVxxdxdx

= e−rt[−rV dt+ Vtdt+ Vxx(rdt+ σdW̃t) +
1

2
Vxxx

2σ2dt]

= e−rt[(−rV + Vt + rxVx +
1

2
σ2x2Vxx)dt+ σxVxdW̃t]

The last result should have no dt term since Ṽ is a martingale, then we have the Black-Scholes

partial differential equation:

−rV + Vt + rxVx +
1

2
σ2x2Vxx = 0 (1.1)

2



1.1.2 The Solution of BSM Model for European Call Price

To solve the equation (1.1), we need to use the normal distribution property of Brownian motion

and the definition of martingale.

For a European call price c(t, S(t)) with the payoff as V (T ) = (S(T ) − K)+. Then under the

risk-neutral measure,

c(t, S(t)) = Ẽ[e−r(T−t)(S(T )−K)+|Ft].

With constant σ and r, stock price becomes:

S(t) = S(0)exp(σW̃ (t) + (r − 1

2
σ2)t),

and then,

S(T ) = S(t)exp(σ(W̃ (T )− W̃ (t)) + (r − 1

2
σ2)τ)

= S(t)exp(−σ
√
τY + (r − 1

2
σ2)τ).

where τ = T − t and Y is the standard normal random variable

Y = −W̃ (T )− W̃ (t)√
T − t

.

and now the exponential part of S(T ) is independent to Ft.

Therefore,

c(t, S(t)) = Ẽ[e−r(T−t)(S(T )−K)+|Ft]

= Ẽ[e−rτ (S(t)exp(−σ
√
τY + (r − 1

2
σ2)τ)−K)+]

=
1√
2π

∫
R

e−rτ (xexp(−σ
√
τy + (r − 1

2
σ2)τ)−K)+e−

1
2y

2

dy

=
1√
2π

∫ d−(τ,x)

−∞
e−rτ (xexp(−σ

√
τy + (r − 1

2
σ2)τ)−K)e−

1
2y

2

dy

{xexp(−σ
√
τy + (r − 1

2
σ2)τ) > K ⇔ y < d−(τ, x) =

1

σ
√
τ

[log
x

K
+ (r − 1

2
σ2)τ ]}

=
1√
2π

∫ d−(τ,x)

−∞
xexp(−σ

√
τy − 1

2
σ2τ − 1

2
y2)dy − 1√

2π

∫ d−(τ,x)

−∞
e−rτKe−

1
2y

2

dy

=
x√
2π

∫ d−(τ,x)

−∞
exp(−1

2
(y + σ

√
τ)2)dy − e−rτKN(d−(τ, x))

=
x√
2π

∫ d−(τ,x)+σ
√
τ

−∞
exp(−1

2
z2)dz − e−rτKN(d−(τ, x))

= xN(d+(τ, x))− e−rτKN(d−(τ, x)).

where

d+(τ, x) = d−(τ, x) + σ
√
τ =

1

σ
√
τ

[log
x

K
+ (r +

1

2
σ2)τ ].

With this solution, the BSM pde equation (1.1) can be verified explicitly.

3



1.2 BSM Model with Poisson Jumps

For the real world, financial market always has the interruption events which is called jumps occur

and make the price changing be discontinuous. The simple improvement of continuous BSM model

is considering the Poisson jumps.

In this section, we will discuss the fundamental jump process as Poisson process and the call

pricing for asset driven by a Brownian motion and a compound Poisson process further. (See details

in [1] )

1.2.1 Poisson Process

Definition 1.2.1 [1] Let τ be a random variable with density

f(t) =


λe−λt, t ≤ 0

0, t < 0

where λ is a positive constant. We say τ is an exponential random variable.

The expectation can be computed by an integral by parts:

Eτ =

∫ ∞
0

tf(t)dt =
1

λ

.

The cumulative distribution function is:

F (t) = P (τ < t) =

∫ t

0

λe−λudu = 1− e−λt, t ≥ 0,

and hence

P (τ > t) = e−λt, t ≥ 0.

Then

P (τ > t+ s|τ > s) =
P (τ > t+ s and τ > s)

P (τ > s)
=
P (τ > t+ s)

P (τ > s)

=
e−λ(t+s)

eλs
= e−λt.

In other words, after waiting s time units, the probability that we will have to wait an additional

t time units is the same as the probability of having to wait t time units when we starting at time

0. This property for the exponential distribution is called memorylessness [1].
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Definition 1.2.2 [1] There is a sequence τ1, τ2,...of independent exponential random variables, all

with the same mean 1
λ . The first event we called ”jump” occurs at time τ1, the second occurs at

time τ2 after the first, the third occurs at τ3 ,etc. The Poisson process N(t) counts the number of

jumps that occur at or before time t.

The τk random variables are called the interarrival times. The arrival times are

Sn =

n∑
k=1

τk.

Note that at the jump times N(t) is defined so that it is right − continuous (i.e., N(t) =

lims↓tN(s)). We denote by F(t) the σ-algebra of information acquired by observing N(s) for

0 ≤ s < t.

The jumps are arriving at an average rate of λ per unit time since the expected time between

jumps is 1
λ . We say the Poisson process N(t) has intensity λ.

Now we can see some lemma and theorems for Poisson process without proof. (See details in [1])

Lemma 1.2.1 [1] For n ≥ 1, the random variable arrival times Sn has the gamma density

gn(s) =
(λs)n−1

(n− 1)!
λe−λs, s ≥ 0.

Lemma 1.2.2 [1] The Poisson process N(t) with intensity λ has the distribution

P (N(t) = k) =
(λt)k

k!
e−λt, k = 0, 1, ....

Theorem 1.2.1 [1] Let N(t) be a Poisson process with intensity λ > 0, and let 0 = t0 < t1 < ... < tn

be given. Then the increments

N(t1)−N(t0), N(t2)−N(t1), ..., N(tn)−N(tn−1)

are stationary and independent, and

P (N(tj)−N(tj−1) = k) =
λk(tj − tj−1)k

k!
eλ(tj−tj−1), k = 0, 1, ...

Base on this probability, we can calculate the expectation and variance of Poisson increment

N(t)−N(s) as

E[N(t)−N(s)] = λ(t− s)

V ar(N(t)−N(s)) = λ(t− s)

Theorem 1.2.2 [1] Let N(t) be a Poisson process with intensity λ. We define the compensated

Poisson process

M(t) = N(t)− λt.

Then M(t) is a martingale.
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1.2.2 Compound Poisson Process

The Poisson jump has the step size of one only, we need to construct a new jump process called

compound Poisson process with random step size for the financial market.

Definition 1.2.3 [1] Let N(t) be a Poisson process with intensity λ, and let Y1, Y2... be a sequence

of independent identically distributed random variables with mean β = EYi. We assume the random

variable Yi are also independent of the Poisson process N(t). Then the compound Poisson process

is

Q(t) =

N(t)∑
i=1

Yi, t ≥ 0. (1.2)

The jumps in Q(t) occur at the same times as the jumps in N(t), but whereas the jumps in N(t)

are always of size 1, the jumps in Q(t) are of random size as Yi.

Like the simple Poisson process N(t), the increment of the compound Poisson process Q(t),

Q(t)−Q(s) =

N(t)∑
i=N(s)−1

Yi, 0 ≤ s < t

are independent. Moreover, Q(t)−Q(s) has the same distribution as Q(t− s) because N(t)−N(s)

has the same distribution as N(t− s).

The mean of compound Poisson process is βλt. On average, there are λt jumps in the time

interval [0, t], the average jump size is β, and the number of jumps is independent of the size of the

jumps. Hence EQ(t) is the product βλt.

Theorem 1.2.3 [1] Let Q(t) be the compound Poisson process defined above. Then the compen-

sated compound Poisson process

Q(t)− βλt

is a martingale.

Though the compound Poisson process has the random step size, alternatively we can present

the same process with compound Poisson of fixed step size.

Theorem 1.2.4 [1] (Decomposition of a compound Poisson process). Let y1, ...yM be a finite set

of nonzero numbers, and let p(y1), ..., p(yM ) be positive numbers that sum to 1. Let Y1, Y2, ... be a

sequence of independent, identically distributed random variables with P (Yi = ym) = p(ym),m =

1, ...,M . Let N(t) be a Poisson process and define the compound Poisson process

Q(t) =

N(t)∑
i=1

Yi
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For m = 1, ...,M ,let Nm(t) denote the number of jumps in Q of size ym up to and including time t.

Then

N(t) =

M∑
m=1

Nm(t) and Q(t) =

M∑
m=1

ymNm(t).

The processes N1, ...NM defined this way are independent Poisson process, and each Nm has intensity

λp(ym).

1.2.3 Jump Process and Their Integrals

For then, we need to derive the stochastic integral for the process with jumps, either the Poisson

process or compound Poisson process.

Definition 1.2.4 [1] Let (Ω,F , P ) be a probability space, and let F , t ≥ 0,be a filtration on this

space. We say that a Brownian motion W is a Brownian motion relative to this filtration if W (t)

is F(t) -measurable for every t and for every u > t the increment W (u) −W (t) is independent of

F(t). Similarly, we say that a Poisson process N is a Poisson process relative to this filtration if

N(t) is F(t)-measurable for every t and for every u > t the increment N(u)−N(t) is independent

of F(t). Finally, we say that a compound Poisson process is a compound Poisson process relative to

this filtration if Q(t) is F(t)-measurable for every t and for every u > t the increment Q(u)−Q(t)

is independent of F(t).

We wish to define the stochastic integral [1]∫ t

0

Φ(s)dX(s)

where the integrator X can have jumps. We consider in this section will be right-continuous and of

the form

X(t) = Xc(t) + J(t) = X(0) + I(t) +R(t) + J(t) (1.3)

= X(0) +

∫ t

0

Γ(s)dW (s) +

∫ t

0

Θ(s)ds+ J(t) (1.4)

where X(0) is the nonrandom initial condition, I(t) is the Ito-integral part and R(t) is the Riemann

integral part of X.

So, the quadratic variation of this continuous part Xc(t) is [1]

[Xc, Xc](t) =

∫ t

0

Γ2(s)ds,

or

dXc(t)dXc(t) = Γ2(t)dt.
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We assume that J does not jump at time zero, has only finitely many jumps on each finite time

interval (0, T ], and is constant between jumps, which is called pure jump process. [1]

Definition 1.2.5 [1] A process X(t) of the form (1.3), with Ito integral part, Riemann integral part,

and pure jump part will be called a jump process.

A jump process X(t) is right-continuous and adapted. Because both I(t) and R(t) are continuous,

the left continuous version of X(t) is [1]

X(t−) = X(0) + I(t) +R(t) + J(t−).

The jump size of X at time t is

∆X(t) = X(t)−X(t−) = ∆J(t) = J(t)− J(t−).

Definition 1.2.6 [1] Let X(t) be a jump process of the form (1.3) and let Φ(s) be an adapted

process. The stochastic integral of Φ with respect to X is defined to be∫ t

0

Φ(s)dX(s) =

∫ t

0

Φ(s)Γ(s)dW (s) +

∫ t

0

Φ(s)Θ(s)ds+
∑

0<s≤t

Φ(s)∆J(s).

Or

Φ(t)dX(t) = Φ(t)dI(t) + Φ(t)dR(t) + Φ(t)dJ(t) = Φ(t)dXc(t) + Φ(t)dJ(t).

Theorem 1.2.5 [1] Assume that the jump process X(s) of form (1.3) is a martingale, the integrand

Φ(s) is left-continuous and adapted, and

E

∫ t

0

Γ2(s)Φ2(s)ds <∞ for all t ≥ 0.

Then the stochastic integral
∫ t

0
Φ(s)dX(s) is also a martingale.

Theorem 1.2.6 [1] Let X1(t) and X2(t) be two jump processes defined as 1.3, then

[X1, X1](t) = [Xc
1 , X

c
1 ](t) + [J1, J1](t) =

∫ t

0

Γ2
1(s)ds+

∑
0<s≤t

(∆J1(s))2.

and

[X1, X2](t) = [Xc
1 , X

c
2 ](t) + [J1, J2](t) =

∫ t

0

Γ1(s)Γ2(s)ds+
∑

0<s≤t

∆J1(s)∆J2(s).

Remark 1.2.1 [1] Generally, the cross variation between two processes is zero if one of them is

continuous and the other has no Ito integral part.

Specially, let W (t) be a Brownian motion and M(t) = N(t)− λt be a compensated Poisson process

relative to the same filtration F(t). Then

[W,M ](t) = 0, t ≥ 0.

And hence, W (t) and N(t) are independent.
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1.2.4 Stochastic Calculus for Jump Processes

As the same as continuous case, we now introduce the Ito formulas for jump processes.

Theorem 1.2.7 [1] (Ito-Doeblin formula for on jump process) Let X(t) be a jump process and f(x)

a function for which f ′(x) and f ′′(x) are defined and continuous. Then

f(X(t)) = f(X(0)) +

∫ t

0

f ′(X(s))dXc(s) +
1

2

∫ t

0

f ′′(X(s))dXc(s)dXc(s)

+
∑

0<s≤t

[f(X(s))− f(x(s−))].

Theorem 1.2.8 [1] (Two-dimensional Ito-Doeblin formula for process with jumps) Let X1 and X2

be jump processes, and let f(t, x1, x2) be a funtion whose first and second partial derivatives appearing

in the following formula are defined and are continuous. Then

f(t,X1(t),X2(t)) = f(0, X1(0), X2(0)) +

∫ t

0

ft(s,X1(s), X2(s))d(s)

+

∫ t

0

fx1(s,X1(s), X2(s))dXc
1(s) +

∫ t

0

fx2(s,X1(s), X2(s))dXc
2(s)

+
1

2

∫ t

0

fx1,x1(s,X1(s), X2(s))dXc
1(s)dXc

1(s)

+

∫ t

0

fx1,x2(s,X1(s), X2(s))dXc
1(s)dXc

2(s)

+
1

2

∫ t

0

fx2,x2
(s,X1(s), X2(s))dXc

2(s)dXc
2(s)

+
∑

0<s≤t

[f(s,X1(s), X2(s))− f(s,X1(s−), X2(s−))]

Corollary 1.2.1 [1] (Ito’s product rule for jump processes). Let X1(t) and X2(t) be jump processes.

Then

X1(t)X2(t) =X1(0)X2(0) +

∫ t

0

X2(s)dXc
1(s) +

∫ t

0

X1(s)dXc
2(s)

+ [Xc
1 , X

c
2 ](t) +

∑
0<s≤t

[X1(s)X2(s)−X1(s−)X2(s−)]

=X1(0)X2(0) +

∫ t

0

X2(s−)dX1(s) +

∫ t

0

X1(s−)dX2(s) + [X1, X2](t).

1.2.5 Change of Measure for Compound Poisson Process

Just as we use Girsanov’s Theorem to change the measure so that a Brownian motion with drift

becomes a Brownian motion without drift, we can change the measure for Poisson processed and

compound Poisson process.For a Poisson process, the change of measure affects the intensity. For a

compound Poisson process, the change of measure can affect both the intensity and the distribution
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of the jump sizes. We also include a Brownian motion component in the process under consideration.

[1]

We define [1]

Z(t) = e(λ−λ̃)t(
λ̃

λ
)N(t).

then the process Z(t) satisfies

dZ(t) =
λ̃− λ
λ

Z(t−)dM(t).

In particular, Z(t) is a martingale under P and EZ(t) = 1 for all t.

We may now fix a positive time T and use Z(T ) to change the measure by defining [1]

Q(A) =

∫
A

Z(T )dP for all A ∈ F .

Theorem 1.2.9 [1] (Change of Poisson intensity). Under the probability measure Q, the process

N(t), 0 ≤ t ≤ T is Poisson process with intensity λ̃.

For compound Poisson process, let λ̃1, ..., λ̃M be given positive numbers, and set

Zm(t) = e(λm−λ̃m)t(
λ̃m
λm

) and Z(t) =

M∏
m=1

Zm(t)

Then the process Z(t) is a martingale. In particular, EZ(t) = 1 for all t.

Fix T > 0, because Z(t) > 0 almost surely and EZ(t) = 1, we can use Z(t) to change the

measure, defining [1]

Q(A) =

∫
A

Z(T )dP for all A ∈ F .

Theorem 1.2.10 [1] (Change of compound Poisson intensity and jump distribution for finitely

many jump sizes). Under Q, Q(t) is a compound Poisson process with intensity λ̃ =
∑M
m=1 λ̃, and

Y1, Y2, ... are independent,

Q{Yi = ym} = p̃(ym) =
λ̃m

λ̃
.

Using the same technique, we can get combined case as

Theorem 1.2.11 [1] (Change of compound Poisson intensity and jump distribution for continuum

of jump sizes). Under the probability measure Q, the compound Poisson process Q(t), 0 ≤ t ≤

T as (1.2), is a compound Poisson process with Intensity λ̃.Furthermore, the jumps in Q(t) are

independent and identically distributed with density f̃(y).

Furthermore, we also can change the measure for a compound Poisson process and a Brownian

motion as
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Theorem 1.2.12 [1] Under the probability measure Q, the process

W̃ (t) = W (t) +

∫ t

0

Θ(s)ds

is a Brownian motion, Q(t) is a compound Poisson process with intensity λ̃ and independent, iden-

tically distributed jump sizes having density f̃(y), and the processes W̃ (t) and Q(t) are independent.

1.2.6 Underlying Asset Driven by a Brownian Motion and a Compound Poisson Jump

Process

For the price driven by a Brownian motion and a compound Poisson process, we discuss the risk-

neutral measure change which is suitable for no arbitrage market.

Consider the compound Poisson process Q(t) as (1.2), we decompose it due to theorem 1.2.4.

And

Q(t)− βλt = Q(t)− t
M∑
m=1

λmym

is a martingale. [1]

For the underlying asset price driven by [1]

S(t) = S(0)exp{σW (t) + (α− βλ− 1

2
σ2)t}

N(t)∏
i=1

(Yi + 1).

Define the continuous stochastic process

X(t) = S(0)exp{σW (t) + (α− βλ− 1

2
σ2)t},

and the jump process

J(t) =

N(t)∏
i=1

(Yi + 1).

Then S(t) = X(t)J(t).

The Ito-Doeblin formula for a continuous process says that

dX(t) = (α− βλ)X(t)dt+ σX(t)dW (t).

At the time of the ith jump, J(t) = J(t−)(Yi + 1) and hence

∆J(t) = J(t)− J(t−) = J(t−)Yi = J(t−)∆Q.

That means dJ(t) = J(t−)∆Q and it also holds at nonjump times, with both sides equal to zero.

[1]

11



Therefore, Ito’s product rule for jump process implies [1]

dS(t) = dX(t)J(t)

= X(t−)dJ(t) + J(t−)dX(t) + [X,J ](t)

= X(t−)J(t−)dQ(t) + J(t−)(α− βλ)X(t)dt+ J(t−)σX(t)dW (t)

= S(t−)dQ(t) + (α− βλ)S(t)dt+ σS(t)dW (t)

since X and J are independent, and J(t) = J(t−) for continuous part.

We now undertake to construct a risk-neutral measure. Let θ be a constant and let λ̃1, ...λ̃M be

positive constants. Define [1]

Z0 = exp{−θW (t)− 1

2
θ2t}

Zm(t) = e(λm−λ̃m)t(
λ̃m
λm

)Nm(t)

Z(t) = Z0(t)

M∏
m=1

Zm(t)

Q(A) =

∫
A

Z(T )dP for all A ∈ F .

Then [1]

(1) the process W̃ (t) = W (t) + θt is a Brownian motion.

(2) each Nm is a Poisson process with intensity λ̃m, and

(3) W̃ and N1, ..., Nm are independent of one another.

Define [1]

λ̃ =

M∑
m=1

λ̃m, p̃(ym) =
λ̃m

λ̃
.

Under Q, the process N(t) =
∑M
m=1Nm(t) is Poisson with λ̃, the jump-size random variables

Y1, Y2, ... are independent and identically distributed with Q{Yi = ym} = p̃(ym), and Q(t)− β̃λ̃t is

a martingale, where

β̃ = ẼYi =

M∑
m=1

ymp̃(ym) =
1

λ̃

M∑
m=1

λ̃mym.

The probability measure Q is risk-neutral if and only if the mean rate of return of the stock

under Q is the interest rate r. i.e. [1]

dS(t) = (α− βλ)S(t)dt+ σS(t)dW (t) + S(t−)dQ(t)

= rS(t)dt+ σS(t)dW̃ (t) + S(t−)d(Q(t)− β̃λ̃t).
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This is equivalent to the equation [1]

α− βλ = r + σθ − β̃λ̃,

which is called market price of risk equation for this model. Or,

α− r = σθ +

M∑
m=1

(λm − λ̃m)ym.

Let us choose some θ and λ̃1, ...λ̃M satisfying the market price of risk equation. Then, we have

[1]

dS(t) = rS(t)dt+ σS(t)dW̃ (t) + S(t−)d(Q(t)− β̃λ̃t)

= (r − β̃λ̃)S(t)dt+ σS(t)dW̃ (t) + S(t−)dQ(t).

(1.5)

with solution

S(t) = S(0)exp{σW̃ (t) + (r − β̃λ̃− 1

2
σ2)t}

N(t)∏
i=1

(Yi + 1). (1.6)

In this equation (1.6), the drifting term α is replaced by interest rate r. That means the market has

no arbitrage due to the asset return value of r.

1.2.7 Call Pricing for Jump Process

In this section, the call price formula is obtained due to the properties of Brownian motion and

compound Poisson process.

For the next, we use C(τ, x) to denote the standard Black-Scholes-Merton call price on a geometric

Brownian motion with volatility σ when the current stock price is x, the time to maturity is τ , the

interest rate r, and the strike price is K. [1]

C(τ, x) = xN(d1(τ, x))−Ke−rτN(d2(τ, x))

Where N is the standard normal distribution function and

d1,2 =
1

σ
√
τ

[log(x/K) + (r ± 1

2
σ2)τ ].

We have

C(τ, x) = Ẽ[e−rτ (xexp{−σ
√
τY + (r − 1

2
σ2)τ} −K)+]

where Y is a standard normal random variable under Q.

Theorem 1.2.13 [1] For 0 ≤ t < T , the risk-neutral price of a call,

V (t) = Ẽ[e−rτ (S(t)−K)+|F(t)]
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is given by V (t) = c(t, S(t)), where

c(t, x) =

∞∑
j=1

e−λ̃τ
(λ̃τ)j

j!
ẼC(τ, xe−β̃λ̃τ

j∏
i=1

(Yi + 1)) (1.7)

Proof. [1] Let t ∈ [0, T ) be given and define τ = T − t. Then from (1.6),

S(T ) = S(t)exp{σ(W̃ (T )− W̃ (t)) + (r − β̃λ̃− 1

2
σ2)t}

N(T )∏
i=N(t)+1

(Yi + 1).

S(t) is F(t)-measurable and then from independence,

V (t) = Ẽ[e−rτ (S(T )−K)+|F(t)] = c(t, S(t)),

where

c(t, x) =Ẽ[e−rτ (xeσ(W̃ (T )−W̃ (t))+(r−β̃λ̃− 1
2σ

2)t

N(T )∏
i=N(t)+1

(Yi + 1)−K)+]

=Ẽ[Ẽ[e−rτ (xeσ(W̃ (T )−W̃ (t))+(r−β̃λ̃− 1
2σ

2)t

×
N(T )∏

i=N(t)+1

(Yi + 1)−K)+|σ(

N(T )∏
i=N(t)+1

(Yi + 1))]]

=Ẽ[Ẽ[e−rτ (xe−β̃λ̃τexp{−σ
√
τY + (r − 1

2
σ2)t}

×
N(T )∏

i=N(t)+1

(Yi + 1)−K)+|σ(

N(T )∏
i=N(t)+1

(Yi + 1))]]

where Y = − W̃ (T )−W̃ (t)√
τ

∼ N(0, 1) under Q. And since
∏N(T )
i=N(t)+1(Yi + 1) is σ(

∏N(T )
i=N(t)+1(Yi + 1))-

measurable and Y is independent of σ(
∏N(T )
i=N(t)+1(Yi + 1)), we may get

Ẽ[e−rτ (xe−β̃λ̃τexp{−σ
√
τY + (r − 1

2
σ2)t}

×
N(T )∏

i=N(t)+1

(Yi + 1)−K)+|σ(

N(T )∏
i=N(t)+1

(Yi + 1))]

= C(τ, xe−β̃λ̃τ
N(T )∏

i=N(t)+1

(Yi + 1)).

It follows

c(t, x) = E[C(τ, xe−β̃λ̃τ
N(T )∏

i=N(t)+1

(Yi + 1))].

On the other hand, we note that conditioned onN(T )−N(t) = j, the random variable
∏N(T )
i=N(t)+1(Yi+

1) has the same distribution as
∏j
i=1(Yi + 1). And

P{N(T )−N(t) = j} = e−λ̃τ
(λ̃τ)j

j!
.

�
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Remark 1.2.2 [1] (Continuous jump distribution). Suppose the jump sizes Yi have a density f(y)

rather than a probability mass function p(y1), ..., p(ym), and this density is strictly positive on a set

B ⊂ (−1,∞) and zero elsewhere. In this case, we can use

β = EYi =

∫ ∞
−1

yf(y)dy.

For a risk-neutral measure, we can use

β̃ = ẼYi =

∫ ∞
−1

yf̃(y)dy.

Theorem 1.2.13 still holds.

1.2.8 Partial Integro-Differential Equation

In the calculation of previous section, we can reach the partial integro-differential equation (PIDE)

since the discount call price should be a martingale.

Theorem 1.2.14 [1] The call price c(t, x) of ( 1.7) satisfies the equation

−rc(t, x) + ct(t, x) + (r − β̃ − λ̃)xcx(t, x) +
1

2
σ2x2cxx(t, x)

+ λ̃[

M∑
m=1

c(t, (ym + 1)x)− c(t, x)] = 0, 0 ≤ t < T, x ≥ 0.

(1.8)

and the terminal condition

c(T, x) = (x−K)+, x ≥ 0.

Proof. [1] From 1.5, the continuous part of the stock price satisfies dSc = (r−β̃λ̃S(t)dt+σS(t)dW̃ (t).

Therefore, the Ito-Doeblin formula implies

e−rtc(t, S(t))− c(0, S(0))

=

∫ t

0

e−rt[−rc+ ct + (r − β̃λ̃)S(u)cx +
1

2
σ2S(u)cxx]du

+

∫ t

0

e−ruσS(u)cxdW̃ (u) +
∑

0<u≤u

e−rt[c(u, S(u)− c(u, S(u−))]

For the last term, if u is a jump time of the mth Poisson process Nm, the stock price satisfies
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S(u) = (ym + 1)S(u−). then

∑
0<u≤u

e−rt[c(u, S(u)− c(u, S(u−))]

=

M∑
m=1

∑
0<t≤u

e−rt[c(u, (ym + 1)S(u−)− c(u, S(u−))]∆Nm(u)

=

M∑
m=1

∫ t

0

e−rt[c(u, (ym + 1)S(u−)− c(u, S(u−))]d(Nm(u)− λ̃mu)

+

∫ t

0

e−rt[

M∑
m=1

λ̃m

λ̃
c(u, (ym + 1)S(u−)− c(u, S(u−))]λ̃du

=

M∑
m=1

∫ t

0

e−rt[c(u, (ym + 1)S(u−)− c(u, S(u−))]d(Nm(u)− λ̃mu)

+

∫ t

0

e−rt[

M∑
m=1

p̃(ym)c(u, (ym + 1)S(u−)− c(u, S(u−))]λ̃du

Hence, we get

d(e−rtc(t, S(t))

=e−rt{−rc+ ct + (r − β̃λ̃)S(u)cx +
1

2
σ2S(u)cxx

+ λ̃[

M∑
m=1

p̃(ym)c(u, (ym + 1)S(u−)− c(u, S(u−))]}dt

+ e−rtσS(t)cxdW̃ (t)

+

M∑
m=1

e−rt[c(t, (ym + 1)S(t−)− c(t, S(t−))]d(Nm(t)− λ̃mt)

The integratorsNm(t)−λ̃t in the last term are martingales under Q, and the integrands e−rt[c(t, (ym+

1)S(t−)− c(t, S(t−))] are left-continuous. Therefore, the integral of this term is a martingale. Like-

wise, the integral of the term e−rtσS(t)cxdW̃ (t) is a martingale. Since the discounted option price

appearing on the left-hand side is also a martingale, the remaining term is a martingale as well. i.e.

by replacing S(t) as x, the Partial Integro-Differential equation (1.8) holds. �
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Corollary 1.2.2 [1] The call price c(t, x) (1.7) satisfies

d(e−rtc(t, S(t))

=e−rtσS(t)cxdW̃ (t)

+

M∑
m=1

e−rt[c(t, (ym + 1)S(t−)− c(t, S(t−))]d(Nm(t)− λ̃mt)

=e−rtσS(t)cxdW̃ (t) + e−rt[c(t, S(t))− c(t, S(t−))]dN(t)

+ e−rtλ̃[

M∑
m=1

p̃(ym)c(t, (ym + 1)S(t−)− c(t, S(t−))]dt

=e−rtσS(t)cxdW̃ (t) + e−rt[c(t, S(t))− c(t, S(t−))]dN(t)

+ e−rtλ̃E[∆c(t, S(t))]dt

(1.9)

Remark 1.2.3 [1] (Continuous jump distribution). There are modification of equation (1.8) and

(1.9) for the case when the jump sizes Yi have a density f̃(y) under the risk-neutral measure Q. The

term
∑M
m=1 p̃(ym)c(t, (ym + 1)S(t−) would be replaced by

∫∞
−1
c(t, (y + 1)S(t−))f̃(y)dy.

1.2.9 Underlying Asset Dynamics Associated with Log-normal Jumps

For the call price formula (1.7), there is a special case of log-normal jumps which can be presented

explicitly for further discussion.

Suppose V is the total market value of the assets of the firm. The dynamics of V are given by

the following jump-diffusion process under risk-neutral measure [5]

V (t) = V (0)exp{σW (t) + (r − βλ− 1

2
σ2)t}

N(t)∏
i=1

(Yi + 1)

where µ, λ, β and σ are positive constants. N(t) is a Poisson process with intensity λ. Yi is the jump

size with expectation β. And Brownian motion W (t), Poisson process N(t), jump Yi are mutually

independent. We assume that Yi is identically independent distributed and Yi + 1 is log-normal

random variables, such that

ln(Yi + 1) ∼ N(µ0, σ
2
0)

That implies β = EYi = eµ0+ 1
2σ

2
0 − 1. Then, we get continuous case as

V (t) = V (0)exp{σW (t) + (r − βλ− 1

2
σ2)t}(Yi + 1)N(t)

Let V (t) = f(X(t)) where f(x) = V (0)ex with

X(t) = σW (t) + (r − βλ− 1

2
σ2)t+N(t)ln(Yi + 1)
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is a jump process. Then the continuous part is

Xc(t) = σW (t) + (r − βλ− 1

2
σ2)t,

and jump part is

J(t) = N(t)ln(Yi + 1).

By Ito-Doeblin formula for one jump process [5]

dV (t) = df(X(t))

= f ′(x)dXc(t) +
1

2
f ′′(x)dXc(t)dXc(t) + [f(X(t)− f(X(t−))]dN(t)

= V (t)(r − βλ− 1

2
σ2)dt+

1

2
V (t)σ2dt+ (V (t)− V (t−))dN(t)

= V (t)[(r − βλ)dt+ σdW (t)] + V (t−)YidN(t)

(1.10)

Theorem 1.2.15 [5] Let H be the price of any derivative security with payoff at time T contingent

on the firm’s V . Using Merton’s result, we know that the assumption that the jump risk is not

systematic and that arbitrage opportunities are excluded, the derivative price H must satisfy the

following equation

−rH +Ht + V (r − βλ)HV +
1

2
σ2V 2HV V + λE[∆H(t, V )] = 0

Proof. Denote Yi+1 = ν follows log-normal distribution with density function p(ν). Since e−rtH(t, V (t))

is a martingale. For

dV (t) = V (t)[(r − βλ)dt+ σdW (t)] + V (t−)YidN(t) = dV c(t) + dJ(t).

Then

d(e−rtH(t, V (t)))

=e−rt{−rHdt+Htdt+HV dV
c +

1

2
HV V dV

cdV c

+

∫ ∞
0

(H(t, νV )−H(t, V ))p(ν)dνdN(t)}

=e−rt{−rH +Ht + V (r − βλ)HV +
1

2
σ2V 2HV V

+

∫ ∞
0

(H(t, νV )−H(t, V ))p(ν)dνλ}dt

+HV V σdW (t) +

∫ ∞
0

(H(t, νV )−H(t, V ))p(ν)dνd(N(t)− λt)
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should has no dt term since W (t) and N(t)− λt are martingales. Hence

−rH +Ht + V (r − βλ)HV +
1

2
σ2V 2HV V +

∫ ∞
0

(H(t, νV )−H(t, V ))p(ν)dνλ

= −rH +Ht + V (r − βλ)HV +
1

2
σ2V 2HV V + λE[H(t, νV )−H(t, V )]

= −rH +Ht + V (r − βλ)HV +
1

2
σ2V 2HV V + λE[∆H(t, V )]

= 0

�

1.2.10 Call Pricing for Log-normal Jumps

Due to the log-normal distribution of jump size Yi, the call price can be calculated explicitly with

some new defined parameters.

Lemma 1.2.3 For call option price of Black-Scholes, xN ′(d1) = Ke−rτN ′(d2). Let St = x, T − t =

τ , Kt = Ke−r(T−t). Since

N ′(y) = (

∫ y

−∞

1√
2π
e−

x2

2 dx)′ =
1√
2π
e−

y2

2

and also,

d2
1 − d2

2 = (d1 + d2)(d1 − d2)

=
2

σ
√
τ

(log(x/K) + rτ)σ
√
τ

= 2(log(x/K) + rnτ)

Then,

KtN
′(d2) = Kt

1√
2π
e−

d22
2 = Kt

1√
2π
e−

d21
2 +

d21−d
2
2

2

= Kt
1√
2π
e−

d21
2 eln(x/K)+rτ = x

1√
2π
e−

d21
2

= xN ′(d1)

Utilizing this Lemma, the call price is achieved as below with some parameter modifications.

Theorem 1.2.16 [4] For log-normal case of jump’s size distribution, the price of call option CJ is

CJ(V, τ, r, σ) =

∞∑
n=0

(λ′τ)n

n!
e−λ

′τC(V, τ, rn, σn) (1.11)

where C(V, τ, rn, σn) is the standard Black-Scholes formula for a call and

λ′ = λ(1 + β),
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rn = r + nγ/τ − λβ,

σ2
n = σ2 + nσ2

0/τ,

γ = ln(1 + β) = µ0 +
1

2
σ2

0 .

Proof. Since ln(Yi + 1) ∼ N(µ0, σ
2
0), and Y1, Y2, ... are i.i.d.

E[

n∑
i=1

ln(Yi + 1)] = nµ0

V ar(

n∑
i=1

ln(Yi + 1)) = nσ2
0

And
n∑
i=1

ln(Yi + 1) ∼ N(nµ0, nσ
2
0).

Then there is the normal distribution variable Y ,

Y = σ(W (T )−W (t)) + nln(Yi + 1) ∼ N(nµ0, σ
2τ + nσ2

0) = N(nµ0, σ
2
nτ),

we have

ξ =
Y − nµ0√

σ2
nτ
∼ N(0, 1).

On the other hand, denote

d1n =
1

σn
√
τ

[ln
x

K
+ (rn +

1

2
σ2
n)τ ] = d2n + σn

√
τ .

For call option, we get

S(T ) = S(t)e(r− 1
2σ

2−βλ)τ+σ(W (T )−W (t)) ×
n∏
i=1

(Yi + 1) > K.

Since independence of Yi’s,i.e.

S(T ) = S(t)e(r− 1
2σ

2−βλ)τ+σ(W (T )−W (t))+nln(Yi+1) > K.

Therefore, we have

(r − 1

2
σ2 − βλ)τ + Y > ln(K/x)

(r − 1

2
σ2 − βλ)τ +

√
σ2
nτξ + nµ0 > ln(K/x)√

σ2
nτξ −

1

2
σ2τ − 1

2
nσ2

0 > ln(K/x)− rnτ√
σ2
nτξ −

1

2
σ2
nτ > ln(K/x)− rnτ

Which is ξ > −d2n.
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Base on (1.7), we can get

CJ(V, τ, r, σ) = E[e−rτ (xe−βλτeσ(W (T )−W (t))+(r− 1
2σ

2)τ ×
n∏
i=1

(Yi + 1)−K)+]

= E[e−rτ (xe−βλτeσ(W (T )−W (t))+(r− 1
2σ

2)τ+
∑n
i=1 ln(Yi+1) −K)+]

= E[e−βλτ+nγ(xe−rτ+Y−nγ+(r− 1
2σ

2)τ − e−rτ+βλτ−nγK)+]

= e−βλτ+nγE[(xe
√
σ2
nτξ+nµ0−nγ− 1

2σ
2τ − e−rnτK)+]

= e−βλτ+nγ(

∫ ∞
−d2n

(xe
√
σ2
nτy− 1

2σ
2
nτ − e−rnτK)e−

y2

2 dy)

= e−βλτ+nγ(

∫ ∞
−d2n

xe−
(y−σn

√
τ)2

2 dy − e−rnτKN(d2n))

= e−βλτ+nγ(

∫ ∞
−d1n

xe−
z2

2 dz − e−rnτKN(d2n))

= e−βλτ+nγ(xN(d1n)− e−rnτKN(d2n))

= e−βλτ+nγC(V, τ, rn, σn).

Combining with the summation term, we get

CJ(V, τ, r, σ) =

∞∑
n=0

(λτ)n

n!
e−λτe−βλτ+nγC(V, τ, rn, σn)

=

∞∑
n=0

(λτ)n

n!
e−λ(β+1)τenln(β+1)C(V, τ, rn, σn)

=

∞∑
n=0

(λ′τ)n

n!
e−λ

′τC(V, τ, rn, σn)

�

1.2.11 The Influence of Jump Intensity in the Log-normal Jump Process

Beyond the previous analysis, we want to know what is the contribution of jump in the call price.

Proposition 1.2.1 The call price is increasing in λ.
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Take partial derivative with respect to λ,

∂CJ(V, τ, r, σ)

∂λ
=

∞∑
n=1

[n(λ′τ)n−1(1 + β)
τ

n!
e−λ

′τC(V, τ, rn, σn)]

+

∞∑
n=0

[
(λ′τ)n

n!
(−τ)(1 + β)e−λ

′τC(V, τ, rn, σn)] +

∞∑
n=0

[
(λ′τ)n

n!
e−λ

′τ ∂C(V, τ, rn, σn)

∂λ
]

=

∞∑
n=1

[
n

λ

(λ′τ)n

(n)!
e−λ

′τ)C(V, τ, rn, σn)] +

∞∑
n=0

[
(λ′τ)n

n!
(−τ)(1 + β)e−λ

′τC(V, τ, rn, σn)]

+

∞∑
n=0

[
(λ′τ)n

n!
e−λ

′τ ∂C(V, τ, rn, σn)

∂λ
]

=

∞∑
n=1

[
(λ′τ)n

n!
e−λ

′τC(V, τ, rn, σn)(
n

λ
− (1 + β)τ)] + (−τ)(1 + β)e−λ

′τC0(V, τ, rn, σn)

+

∞∑
n=0

[
(λ′τ)n

n!
e−λ

′τ (xN ′(d1n)
∂d1n

∂rn
(−β)−Ke−rnτ (−τ)(−β)N(d2n)

−Ke−rnτN ′(d2n)
∂d2n

∂rn
(−β))]

=

∞∑
n=1

[
(λ′τ)n

n!
e−λ

′τC(V, τ, rn, σn)n(
n

λ
− (1 + β)τ)] + (−τ)(1 + β)e−λ

′τC0(V, τ, rn, σn)

+

∞∑
n=0

[
(λ′τ)n

n!
e−λ

′τ (−Ke−rnττβN(d2n))]

=

∞∑
n=1

[
(λ′τ)n

n!
e−λ

′τCn(V, τ, rn, σn)(
n

λ
− τ − βτ + βτ

−Ke−rnτN(d2n)

Cn(V, τ, rn, σn)
)]

− τ(1 + β)e−λ
′τC0(V, τ, rn, σn)− e−λ

′τKe−r0ττβN(d20)

=

∞∑
n=1

[
(λ′τ)n

n!
e−λ

′τCn(V, τ, rn, σn)(
n

λ
− τ − βτ xN(d1n)

Cn(V, τ, rn, σn)
)]

− e−λ
′ττ((1 + β)C0(V, τ, rn, σn) +Ke−r0τβN(d20))

=

∞∑
n=1

[
(λ′τ)n

n!
e−λ

′τCn(V, τ, rn, σn)(
n

λ
− τ − βτ xN(d1n)

Cn(V, τ, rn, σn)
)]

− e−λ
′ττ(C(V, τ, rn, σn)0 + βxN(d10))

=

∞∑
n=0

[
(λ′τ)n

n!
e−λ

′τCn(V, τ, rn, σn)(
n

λ
− τ − βτ xN(d1n)

Cn(V, τ, rn, σn)
)]

where we used the fact that

∂d1

∂rn
=
∂d2

∂rn
,

xN ′(d1n) = Ke−rnτN ′(d2n),

Cn(V, τ, rn, σn) = xN(d1n)−Ke−rnτN(d2n).

Since n can be a very large number in the sum, then the term n
λ − τ −βτ

xN(d1n)
Cn

is positive for most

cases. That means the partial derivative w.r.t λ is positive. So the call price is increasing against λ.
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In fact, since λ is the intensity of Poisson process, λ increasing means the jump rate is bigger,

the fluctuation will make the call price go up.(See Figure 1.1.)

Figure 1.1: Call price - λ (λ is from 0.01 to 0.2 with step size 0.01, V = 100, K = 110, τ = 2,

σ = 0.2, r = 0.05, µ0 = −0.2, σ0 = 0.6, upbound of summation n = 50.)
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CHAPTER 2

EMPIRICAL STUDY

Empirical study is an important part of financial research by using empirical data to verify model

validity and try to make a prediction. In financial mathematics, the major method is quantitative

analysis.

2.1 Heston Model

In the last four decades, many modifications were made to relax the restrictions of Black-Scholes

model of 1973. Heston model is a solid way by setting the volatility as a stochastic process as well.

2.1.1 Model Dynamics

The Heston model assumes that the underlying stock price St follows a Black-Scholes stochastic

process.And the stochastic variance vt follows a CIR process. Then the Heston model has the

bi-variate system of SDEs [7]:

dSt =µStdt+
√
vtStdW1(t) (2.1)

dvt =κ(θ − vt)dt+ σ
√
vtdW2(t) (2.2)

Where µ is the drift, κ is the mean reversion speed for the variance, θ is the long-run mean, σ is

the volatility of the variance, dW1 and dW2 are two Brownian motions with correlation coefficient

ρ. We denote v0 as the initial value of the variance.

Indeed, replacing σ = 0 and θ = vt and letting σBS =
√
vt, the Heston model is reduced to

general Black-Scholes equation.

By Girsanov’s theorem, under the risk-neutral measure Q, the new process SDEs are:

dSt =rStdt+
√
vtStdW̃1(t) (2.3)

dvt =κ(θ − vt)dt+ σ
√
vtdW̃2(t) (2.4)

If the stock pays a continuous dividend yield q, we may replace r in the equation (2.3) as r − q.
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2.1.2 Solution of Heston Model

Like the result of BSM model, the Heston equations also have the solution of a difference including

two expressions of probability.

For a European call option written on a stock with strike price K and time-to-maturity τ , has

price C(t, τ) subject to C(t, τ) = max{S(t+ τ, 0)−K, 0} with solution:

C(t, τ) = S(t)Π1(t, τ ;S,R, V )−KB(t, τ)Π2(t, τ ;S,R, V ) (2.5)

Where the risk-neutral probability, Π1 and Π2, are represented by the respective characteristic

functions fj ’s for the SVJ model(see Bates ([17]), Heston([18]), Scott([13]) and Bakshi et al ([22])):

Πj(t, τ ;St, Rt, Vt)) =
1

2
+

1

π

∫ ∞
0

Re[
e−iφlnKfj(t, τ, St, Rt, Vt;φ)

iφ
]dφ, j = 1, 2 (2.6)

f1 =exp{−iφlnB(t, τ)− θv
σ2
v

[2ln(1− [ξv − κv + (1 + iφ)ρσv](1− e−ξvτ )

2ξv
)]

− θv
σ2
v

[ξv − κv + (1 + iφ)ρσv]τ + iφlnS(t)]

+ λ(1 + µJ)τ [(1 + µJ)iφe(iφ/2)(1+iφ)σ2
J − 1]− λiφµJτ

+
iφ(iφ+ 1)(1− e−ξvτ)Vt

2ξv − [ξv − κv + (1 + iφ)ρσv](1− e−ξvτ )
},

f2 =exp{−iφlnB(t, τ)− θv
σ2
v

[2ln(1− [ξ∗v − κv + iφρσv](1− e−ξ
∗
vτ )

2ξ∗v
)]

− θv
σ2
v

[ξ∗v − κv + iφρσv]τ + iφlnS(t)]

+ λ(1 + µJ)τ [(1 + µJ)iφe(iφ/2)(iφ−1)σ2
J − 1]− λiφµJτ

+
iφ(iφ− 1)(1− e−ξ∗vτ)Vt

2ξ∗v − [ξ∗v − κv + iφρσv](1− e−ξ∗vτ )
},

where setting R(t) = R as a constant and B(t, τ) = e−rτ in the model, and

ξv =
√

[κv − (1 + iφ)ρσv]2 − iφ(iφ+ 1)σ2
v

ξ∗v =
√

[κv − iφρσv]2 − iφ(iφ− 1)σ2
v

The SV model can be obtained by setting λ = 0.

2.1.3 Empirical Test with SSE Results for S&P 500 Index

The Standard & Poor (S&P) 500 option index is a kind of American stock market index, which

synthesize the market values of 500 largest companies who have the common stock in NYSE or
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NASDAQ. It becomes the most popular subject in financial quantitative study since it is represen-

tative and easy to achieve.

CollectN option prices on S&P 500 option and taken from the same period. For each n = 1, ..., N ,

setting τn and Kn be the time-to-maturity and the strike prices of the n-th option respectively. Let

Ĉn(t, τn,Kn) be the observed price and Cn(t, τn,Kn) the model price as determined by equation

(2.5). The difference between Ĉn and Cn is a function of V (t) and parameters. Define

ε = Ĉn(t, τn,Kn)− Cn(t, τn,Kn)

Then sum of squared dollar pricing errors is defined by

SSE(t) = min

N∑
n=1

| ε

BSV ega
|2. (2.7)

where BSV ega is the Black-Scholes sensitivity of the option price with respect to the market implied

volatility Vt:

BSV ega = Se(−qτn)n(dn)
√
τn

with

dn =
ln(S/Kn) + (r − q + V 2

n /2)τn
V 2
n

√
τn

and n(x) = e−x
2/2/
√

2π is the standard normal density(see Lewis([29]) or Christoffersen et al.([30])).

Considering the S&P 500 index option during September 2012 to August 2013, the previous half

year’s data, from September 4th 2012 to February 28th 2013, is treated as in-the-sample and the

latter period, from March 1st 2013 to August 30th 2013, as out-of-sample.

Before the data analysis, we need to exclude some prices. The filtration includes three criteria[22].

First, the options expire within six days are eliminated since they could induce liquidity related

biases. Second, the option price which is low than $ 3
8 is excluded. Finally, quotes should satisfy the

arbitrage restriction:

C(t, τ) ≥ max(0, S0 −K,S0e
−qt −Ke−rt),

where the q is the treasure bond rate, which is taken as the dividend yield in the study.

The data is download from the website of Warton Research Data Services (WRDS). After the

filtration, 27,363 prices are extracted from the in-the-sample 176,105 entries. Meanwhile, 34,468

observations are left from the out-of-sample 203,709 prices.

The parameters are estimated by fmincon function in Matlab to find the group of parameters

which make the SSE value be the minimum.

For in-the-sample, total is 27, 363 prices. The parameters are listed in Table 1 and 2.
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κ θ σ ρ Vt SSE

20.0000 0.0112 0.7329 0.1954 imp.V 2
t 5.12

12.8826 0.0125 0.1399 0.7938 0.0089 4.13

Table 2.1: Heston Model Parameters Optimal Estimation for No Jump Case.

κ θ σ ρ Vt λ µj σj SSE

19.9994 0.0109 0.7244 0.1921 imp.V 2
t 0.5207 0.0001 0.0002 5.10

13.2477 0.0131 0.1551 0.6891 0.0090 0.0530 -0.0001 0.0009 4.09

Table 2.2: Heston Model Parameters Optimal Estimation for With Jump Case

SSE Average Error Average Relative Error

BSM 96.35 15.81 4.4620

No jump 5.1238 1.9272 0.6035 (Vt = imp.V 2
t )

4.1293 1.8763 0.5400 (estimate Vt)

With jump 5.1045 1.8982 0.5770 (Vt = imp.V 2
t )

4.0942 1.8305 0.5082 (estimate Vt)

Table 2.3: Comparison with BSM and Heston models for in-the-sample Data

The comparison with BSM model listed in Table 3.

For out-of-sample, total is 34, 468 prices, use the parameters of in-the-sample estimation, results

as in Table 4.

SSE Average Error Average Relative Error

BSM 104.62 17.23 2.4976

No jump 6.6083 2.9657 0.5995 Vt = imp.V 2
t

5.3216 2.6315 0.4717 (estimate Vt)

With jump 6.5496 2.9459 0.5856 Vt = imp.V 2
t

5.2743 2.5960 0.4561 (estimate Vt)

Table 2.4: Comparison with BSM and Heston models for out-of-sample Data

Heston model has the sum of squared error dramatically less than BSM model by comparing

the consequence in the tables above. We can also see for in-the-sample, the SSE values,averages

of |CHeston − Cmarket| and averages of relative error |CHeston−CmarketCmarket
| improved 1%, 2% and 6%

respectively when jump was considered. And for out-of-sample, 1%, 1%, and 3% respectively.
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2.2 Option Pricing with Non-IID Jumps

There is an important assumption of jumps diffusion model as we discussed before is that jumps

should be identically and independently distribution (IID). In Camara and Li([16]), the non-iid case

was considered and the formulas can be modified with dividend yield q.

2.2.1 Jumps with Time-varying Means

The first non-iid case can happen only on the means of the price jumps.

Corollary 2.2.1 [16] (Jumps with time-varying means)

Let Yi ∼ N(αi, γ
2) and Cov(Yi, Yj) = 0. Then

Pc =
e−λT

K1

∞∑
n=0

(λ′nT )n

n!
(S0e

−qTN(d1,n)−Ke−rnTN(d2,n)) (2.8)

where

d1,n =
ln(S0

K ) + (rn − q +
σ2
n

2 )T

σn
√
T

, d2,n = d1,n − σn
√
T ,

λ′n = λeᾱn+γ2/2, σ2
n =

n

T
γ2 + σ2,

rn = r − ln(K1)

T
+
n

T
(ᾱn +

γ2

2
), ᾱn =

n∑
i=0

αi
n
, ᾱ0 = 0.

Where

K1 =
e−λT

K1

∞∑
n=0

(λ′nT )n

n!
, λ′n = λeᾱn + nγ̄n/2,

ᾱn =

n∑
i=0

αi
n
, γ̄n =

n∑
i=1

n∑
j=1

γij
n2
, ᾱ0 = 0, γ̄0 = 0.

For the case with jumps, the parameters are using Vt = 0.009, λ = 0.053, α = µJ = −0.0001,

γ = σJ = 0.0009 consistently.

For corollary 2.2.1, take n = 50, µ1 = µ2 = µ3 = µJ = −0.0001, µ4 = −0.03, µ5 = −0.01, µ6

and the others µi are zeroes; σi = σJ . We got the results as SSE = 96.3076 for in-the-sample,

SSE = 104.5680 for out-of-sample. They are very close to BSM model results.

2.2.2 Jumps with Time-varying Variances

The second non-iid case may occur on the variances of the price jumps only.

Corollary 2.2.2 [16] (Jumps with time-varying variances)
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Let Yi ∼ N(α, γ2
i = γii) and Cov(Yi, Yj) = 0. Then

Pc =
e−λT

K1

∞∑
n=0

(λ′nT )n

n!
(S0e

−qTN(d1,n)−Ke−rnTN(d2,n)) (2.9)

where

d1,n =
ln(S0

K ) + (rn − q +
σ2
n

2 )T

σn
√
T

, d2,n = d1,n − σn
√
T ,

λ′n = λeα+γ̄2
n/2, σ2

n =
n

T
γ̄2
n + σ2,

rn = r − ln(K1)

T
+
n

T
(αn +

γ̄2
n

2
), γ̄2

n =

n∑
i=0

γ2
i

n
, γ̄2

0 = 0.

For corollary 2.2.2, take n = 50, µi = µJ = −0.0001; σ1 = σ2 = σ3 = σJ = 0.0009, σ4 = 0.05,

σ5 = 0.03, σ6 = 0.01 and the others are zeroes. The results are SSE = 96.3075 for in-the-sample,

SSE = 104.5680 for out-of-sample.

2.2.3 Autocorrelated Jumps

The third case of non-iid is only on the autocorrelations of price jumps.

Corollary 2.2.3 [16] (Autocorrelated Jumps)

Let Yi ∼ N(α, γ2) and Cov(Yi, Yl) = γ2ρil. Then

Pc =
e−λT

K1

∞∑
n=0

(λ′nT )n

n!
(S0e

−qTN(d1,n)−Ke−rnTN(d2,n)) (2.10)

where

d1,n =
ln(S0

K ) + (rn − q +
σ2
n

2 )T

σn
√
T

, d2,n = d1,n − σn
√
T ,

ρ̄n =

n∑
i=1,i6=l

n∑
l=1

ρil
n(n− 1)

, ρ̄0 = 0, ρ̄1 = 0

λ′n = λeα+ γ2

2 [1+(n−1)ρ̄n], σ2
n =

n

T
γ2[1 + (n− 1)ρ̄n] + σ2,

rn = r − ln(K1)

T
+
n

T
(α+

γ2

2
[1 + (n− 1)ρ̄n]).

As using the parameters from Heston model, Vt = 0.009, λ = 0.053, α = µJ = −0.0001,

γ = σJ = 0.0009, ρil,i6=l = 0.6891, n = 50, the estimation results are: SSE = 93.1146, average of

absolute error is 15.4337,and the average of relative error is 4.3081 for in-the-sample. Respectively,

results are 101.0453, 16.8378, 2.4303 for out-of-sample.

Optionally, suppose autocorrelation is 0.95 between two consecutive jumps and decreases for 5

percent for every next period. Choose n = 15, then the farthest autocorrelation is 0.3. The same

outcomes are obtained for either in-the-sample or out-of-sample.
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2.3 Comparison of BSM Model and Non-iid Cases.

With the models of three cases of non-iid price jumps distribution, we may compare with classic

BSM model together.

Firstly, the half year in-the-sample and out-of-sample data are compared within BSM model and

non-iid cases.

In-the-Sample SSE
Average

Error

Average

Relative

Error

improvement

percent

BSM 96.35 15.81 4.462

Cor 1 96.3076 15.8093 4.4606 (Vt = imp.V 2
t ) 0.044% 0.004% 0.031%

93.1146 15.4337 4.3081 (Vt = 0.009) 3.358% 2.380% 3.449%

Cor 2 96.3075 15.8093 4.4606 (Vt = imp.V 2
t ) 0.044% 0.004% 0.031%

93.1146 15.4337 4.3081 (Vt = 0.009) 3.358% 2.380% 3.449%

Cor 3 (n=50) 96.3076 15.8093 4.4606 (Vt = imp.V 2
t ) 0.044% 0.004% 0.031%

93.1145 15.4337 4.3081 (Vt = 0.009) 3.358% 2.380% 3.449%

(n=15) 96.3076 15.8093 4.4606 (Vt = imp.V 2
t ) 0.044% 0.004% 0.031%

93.1146 15.4337 4.3081 (Vt = 0.009) 3.358% 2.380% 3.449%

Out-of-Sample

BSM 104.62 17.23 2.4976

Cor 1 104.568 17.2294 2.4967 (Vt = imp.V 2
t ) 0.050% 0.003% 0.036%

101.0453 16.8378 2.4303 (Vt = 0.009) 3.417% 2.276% 2.695%

Cor 2 104.568 17.2294 2.4967 (Vt = imp.V 2
t ) 0.050% 0.003% 0.036%

101.0452 16.8378 2.4303 (Vt = 0.009) 3.417% 2.276% 2.695%

Cor 3 (n=50) 104.568 17.2294 2.4967 (Vt = imp.V 2
t ) 0.050% 0.003% 0.036%

101.0453 16.8378 2.4303 (Vt = 0.009) 3.417% 2.276% 2.695%

(n=15) 104.568 17.2294 2.4967 (Vt = imp.V 2
t ) 0.050% 0.003% 0.036%

101.0453 16.8378 2.4303 (Vt = 0.009) 3.417% 2.276% 2.695%

Table 2.5: Non-iid Cases Analysis for Two Half Years Data

Table 5 shows the comparison with BSM model and three non-iid cases for half-year samples.

Checking the results, the improvement percentages are around 3% for the three noniid corollaries

when Vt is fixed as 0.009.

Meanwhile, we want to know the sensitivities for parameters α and γ. Furthermore, the influence
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of combined movements in both is tested. We checked one day data for simplicity.

For one day data, we analysis 3 cases: First is let α increase from −0.03, −0.01 to −0.0001 then

stay. γ is always 0.0009; Second is let α be fixed in −0.0001, γ decrease from 0.05, 0.03 to 0.01,

then stay in 0.0009; Third case is α increase from −0.03, −0.01 to −0.0001 then stays. Meanwhile γ

decreases from 0.05, 0.03 to 0.01, then stays in 0.0009. Choosing the two first days of the half-year

samples then the results are listed in Table 6.

The improvement percentages show that both case 2 and 3 are better than the setup of table

5 but the case 1 is worse. And the case 2 has the best improvement. In-the-sample data has

more upgrading percentage than out-of-sample. Corollary 1 and corollary 2 have almost the same

improvement effects considering 0.03% fluctuation.

In summary, the non-iid cases model don’t have the dramatic different result with BSM model

since the non-iid formulas are derived from the classic BSM model without uniform distributions.

The core dynamics doesn’t change a lot.
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In-the-sample (9/4/2012) (272 prices)

SSE
Average

Error

Average

Relative

Error

Improvement

Percent

BSM 1.0997 15.7474 2.8612

Cor 1 1.0519 15.2809 2.7669 4.35% 2.96% 3.30%

Case 1 1.0614 15.3664 2.7961 3.48% 2.42% 2.28%

Case 2 1.0423 15.1907 2.7537 5.22% 3.54% 3.76%

Case 3 1.049 15.2544 2.7722 4.61% 3.13% 3.11%

Cor 2 1.0519 15.2809 2.7669 4.35% 2.96% 3.30%

Case 1 1.0614 15.3664 2.7961 3.48% 2.42% 2.28%

Case 2 1.0426 15.1929 2.7541 5.19% 3.52% 3.74%

Case 3 1.0492 15.2561 2.7724 4.59% 3.12% 3.10%

Out-of–sample (3/1/2013) (187 prices)

SSE
Average

Error

Average

Relative

Error

Improvement

Percent

BSM 0.5747 16.2018 4.5028

Cor 1 0.5572 15.8389 4.3612 3.05% 2.24% 3.14%

Case 1 0.5623 15.9257 4.4041 2.16% 1.70% 2.19%

Case 2 0.5521 15.7393 4.345 3.93% 2.85% 3.50%

Case 3 0.5551 15.7959 4.3655 3.41% 2.51% 3.05%

Cor 2 0.5572 15.8389 4.3612 3.05% 2.24% 3.14%

Case 1 0.5623 15.9257 4.4041 2.16% 1.70% 2.19%

Case 2 0.5523 15.7425 4.3461 3.90% 2.83% 3.48%

Case 3 0.5553 15.7984 4.3663 3.38% 2.49% 3.03%

Table 2.6: Noniid Cases Analysis of one Day Data for In-the-sample and Out-of-sample.
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CHAPTER 3

OPTION PRICING WITH LEVY JUMPS

Levy process is named after French mathematician Paul Levy. In recent two decades, Levy processes

are studied in financial quantitative analysis in lots of literature. Levy process is a category of

stochastic processes which have independent and stationary increments. Levy process is thus an

analog of random walk which is the basic simulation of dynamics of market price over time.

3.1 Levy Processes and Levy Jumps

The classic definition of Levy process is:

Definition 3.1.1 [2] (Levy process) A cadlag (right continuous and left limit exists) random process

is a Levy process if it has X0 = 0 and:

1. independent increments;

2. stationary increments;

3. stochastic continuity.

The measure ν on Rd is called Levy measure:

ν(A) = E[#{t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ A}], A ∈ B(Rd).

Any Levy process may be decomposed into the sum of a liner drifting term, a Brownian motion

and pure jumps. This is called Levy-Ito decomposition theorem.

Theorem 3.1.1 (Levy-Ito Decomposition) [2] Let Xt be a Levy process on Rd and ν its Levy mea-

sure.

1. ν is a Radon measure on Rd\{0} and verifies:∫
|x|≤1

|x|2ν(dx) <∞,
∫
|x|>1

ν(dx) <∞.

2. The jump measure of X, denoted by JX , is a Poisson random measure on [0,∞) ×Rd with

intensity measure ν(dx)dt.
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3. There exist a vector γ and a d-dimensional Brownian motion Bt with covariance matrix A

such that

Xt = γt+Bt +X l
t + lim

ε↓0
X̃ε
t . (3.1)

where

X l
t =

∫
|x|≥1,s∈[0,1]

xJX(ds× ds)

X̃ε
t =

∫
ε≤|x|<1,s∈[0,1]

x(JX(ds× dx)− ν(dx)ds)

=

∫
ε≤|x|<1,s∈[0,1]

xJ̃X(ds× dx).

The terms in equation (3.1) are independent and the convergence in the last term is a.s. and uniform

in t on [0,T].

Any Levy process can be characterized by its characteristic function, which is said Levy-Khinchin

representation theorem.

Theorem 3.1.2 (Levy-Khinchin representation) [2] Let Xt be a Levy process on Rd with charac-

teristic triplet (A, γ, ν). Then

E[eiz·Xt ] = etψ(z), z ∈ Rd.

where

ψ(z) = −1

2
z ·Az + iγ · z +

∫
Rd

(eiz·x − 1− iz · x1|x|≤1)ν(dx).

Three simple examples are listed afterward to show how to decide the Levy triplets:

Example 1. For a 1-dimensional Brownian motion Wt ∼ N(0, t). Then the characteristic

function is:

E[eizWt ] =
1√
2πt

∫
R

eizxe−
x2

2t dx =
1√
2πt

∫
R

e−
(x−itz)2−(itz)2

2t dx = et(
−z2
2 ).

which means it has the Levy triplet as (1,0,0).

Example 2. For a Poisson process Nt with density λ. The characteristic function is:

E[eizNt ] =

∞∑
x=0

eizx
e−λt(λt)x

x!
= e−λteλte

iz

= eλt(e
iz−1).

thereafter,

ψ(z) = λ(eiz − 1).

Denote δ1 as the Dirac function at single point x = 1.

Then the Levy triplet is (0, 0, λδ1).
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Example 3. For a compound Poisson process Qt =
∑Nt
i=1Xt, where Xt’s are iid with density

f(x). The characteristic function is:

E[eizQt ] =E[E[eiz
∑Nt
i=1Xt |Nt = n]] = E[E[eizX1 ]n|Nt = n]

=

∞∑
n=0

(φX1
(z))nP (Nt = n) = eλt(φX1

−1).

where φX1 = E[eizX1 ] =
∫
R
eizxf(x)dx is the characteristic function if X1. Therefore,

ψ(z) = λ(φX1
− 1) =

∫
R

λ(eizx − 1)f(x)dx

since
∫
R
f(x) = 1.

So the Levy triplet is (
∫ 1

−1
λxf(dx), 0, λf(x)).

Theorem 3.1.3 [2] Let (Xt) be a Levy process on R with characteristic triplet (A, ν, γ).

1. (Xt) is a martingale if and only if
∫
|x|≥1

|x|ν(dx) <∞ and γ +
∫
|x|≥1

xν(dx) = 0.

2. exp(Xt) is a martingale if and only if
∫
|x|≥1

exν(dx) < ∞ and A
2 + γ +

∫
R

(ex − 1 −

x1|x|≤1)ν(dx) = 0.

For a jump-diffusion process,

Xt = σWt + µt+ Jt = Xc(t) + Jt.

The Ito formula is

f(Xt)− f(X0) =

∫ t

0

f ′(Xs)dX
c
s +

∫ t

0

σ

2
f”(Xs)ds

+
∑

0≤s≤t,∆Xs 6=0

[f(Xs− + ∆Xs)− f(Xs−)]

=

∫ t

0

f ′(Xs)dXs +

∫ t

0

σ

2
f ′′(Xs)ds

+
∑

0≤s≤t,∆Xs 6=0

[f(Xs− + ∆Xs)− f(Xs−)−∆Xsf
′(Xs−)].

since dXc
s = dXs −∆Xs.

This is also true for Levy process. Due to the Ito formula and Levy-Khinchin decomposition, we

have

Theorem 3.1.4 (Martingale-drift decomposition of functions of a Levy process) [2] Let (Xt) be a

Levy process with Levy triplet (σ2, γ, ν) and f : R→ R is a C2 function. Then Yt = f(Xt) = Mt+Vt

where M is the martingale part as

Mt = f(X0) +

∫ t

0

f ′(Xs)σdWs +

∫
[0,t]×Rd

J̃X(ds× dy)[f(Xs− + y)− f(Xs−)],
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and Vt is a continuous finite variation process:

Vt =

∫ t

0

σ2

2
f ′′(Xs)ds+

∫ t

0

γf ′(Xs)ds

+

∫
[0,t]×R

dsν(dy)[f(Xs− + y)− f(Xs−)− yf ′(Xs−)1|y|≤1].

3.2 Change Measure

As what we discussed before, the utilization of Levy process in financial market also needs the

risk-neutral measure change. There is the general theorem about the equivalence of Levy processes,

proof is referred to [3] for more details.

Theorem 3.2.1 Let (Xt,P) and (Xt,Q) be two Levy processes on R with characteristic triplets

(σ2, γ, ν) and (σ′2, γ′, ν′). Then P|Ft and Q|Ft are equivalent for all t if and only if three following

conditions are satisfied

1. σ = σ′;

2. The Levy measures are equivalent with∫
R

(eφ(x)/2 − 1)2ν(dx) <∞.

When P and Q are equivalent, the Radon-Nikodym derivative is

dP|Ft
dQ|Ft

= eUt .

with

Ut = ηXc
t −

η2σ2t

2
− ηγt+ lim

ε↓0
(

∑
s≤t,|∆Xs|>ε

φ(∆Xs)− t
∫
|x|>ε

(eφ(x) − 1)ν(dx)).

Here (Xc
t ) is the continuous part and η is such that

γ′ − γ −
∫ 1

−1

x(ν′ − ν)(dx) = σ2η

if σ > 0 or zero if σ = 0.

Ut is a Levy process with characteristic triplet (aU , νU , γU ) given as

aU = σ2η2,

νu = νφ−1,

γU = −1

2
σ2η2 −

∫
R

(ey − 1− y1|y|≤1)(νφ−1)(dy).
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3.3 Option Pricing with Levy Jumps

In the BSM model, the dynamics of asset price is described as an exponential of Brownian motion

with drifting term like

St = S0exp(µt+ σWt) = S0exp(Bt),

where Bt = µt+ σWt.

Replace Bt by a Levy process, we get St = S0expXt, where Xt is a Levy process. We call it as

exponential-Levy model.

3.3.1 Exponential of Levy Process

For the exponential of Levy process, the similar result is given as theorem 3.1.4:

Theorem 3.3.1 [2] Let (Xt) be a Levy process with Levy triplet (σ2, γ, ν) satisfying∫
|y|≥1

eyν(dy) <∞.

Then Yt = exp(Xt) is a semimartingale with decomposition Yt = Mt+At, Mt is the martingale part

Mt = 1 +

∫ t

0

Ys−σdwt +

∫
[0,t]×R

Ys−(ez − 1)J̃X(dsdz),

and the continuous finite variation drift part is

At =

∫ t

0

Ys−[γ +
σ2

2
+

∫
R

(ez − 1− z1|z|≤1)ν(dz)]ds.

Therefore, (Yt) is a martingale if and only if

γ +
σ2

2
+

∫
R

(ez − 1− z1|z|≤1)ν(dz) = 0.

3.3.2 European Option with Levy Process and PIDE

With exponential-Levy model, the European option price can be studied as well and we have the

PIDE result since the martingale property.

Consider the European option with maturity T and payoff H(ST ) which satisfies Lipschitz con-

dition |H(x) −H(y)| ≤ c|x − y| for some c > 0. The option value is C(t, s) = e−rτE[H(ST )|Ft] =

e−rτE[H(Ste
rτ+Xτ )]. The risk-neutral dynamic of St is then given by [2]

St =S0 +

∫ t

0

rSu−du+

∫ t

0

Su−σdWu +

∫ t

0

∫
R

(ex − 1)Su−ĴX(dudx),

where ĴX is the compensated jump measure of the Levy process X and Ŝt = eXt is a martingale:

dŜt

Ŝt−
= σdWt +

∫
R

(ex − 1)ĴX(dtdx),

verifies supt∈[0,T ]E[Ŝ2] <∞.
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Proposition 3.3.1 (Backward PIDE for European option with Levy process)[2] Consider a market

with the risk-neutral dynamics of asset given by an exponential Levy process St = S0exp(rt + Xt),

where (Xt) is a Levy process with Levy triplet (σ2, γ, ν) under Q such that S̃t = e−rtSt = eXt is a

martingale.

Suppose
∫
|y|≥1

e2yν(dy) <∞. If either σ > 0 or

∃β ∈ [0, 2], lim
ε↓0

ε−β
∫ ε

−ε
|x|2dν(x) > 0,

then the value of a European option with terminal payoff H(ST ) is given by C(t, s) : [0, T ]×(0,∞)→

R, which is continuous and verifies the partial integro-differential equation:

∂C

∂t
(t, S) + r

∂C

∂S
(t, S) +

σ2S2

2

∂2C

∂2S
(t, S)− rC(t, S)

+

∫
ν(dy)[C(t, Sey)− C(t, S)− S(ey − 1)

∂C

∂S
(t, S)] = 0

(3.2)

on [0, T ]× (0,∞) with the terminal condition:

C(T, S) = H(S).

Proof. [2] Applying the martingale Ĉ(t, St) = e−rtC(t, St),

dĈ(t, St) =e−rt[−rC +
∂C

∂t
(t, St−) +

σ2S2
t

2

∂2C

∂S2
(t, St−)dt+

∂C

∂S
(t, St−)dSt]

+e−rt[C(t, St−e
∆Xt))− C(t, St−)− St−(e∆Xt − 1)

∂C

∂S
(t, St−)]

=a(t)dt+ dMt, where

a(t) =e−rt[−rC +
∂C

∂t
+
σ2S2

t−
2

∂2C

∂S2
](t, St−)

+

∫
R

e−rt[C(t, St−e
x)− C(t, St−)− St−(ex − 1)

∂C

∂S
(t, St−)]ν(dx),

dMt =e−rt[
∂C

∂t
(t, St−)σSt−dWt +

∫
R

[C(t, St−e
x)− C(t, St−)]ĴX(dtdx)].

Since the payoff function H is Lipschitz, C is Lipschitz w.r.t x as well:

C(t, x)− C(t, y) = e−tτ [E[H(xerτ+XT−Xt ]− E[H(yerτ+XT−Xt ]]

≤ c|x− y|E[eXτ ] = c|x− y|,

since eXt is a martingale with expectation of 1.

Then the predictable random function C(t, St−e
x)− C(t, St−) satisfies:

E[

∫ T

0

dt

∫
R

|C(t, St−e
x)− C(t, St−)2|]ν(dx) ≤ E[

∫ T

0

dt

∫
R

c2(e2x + 1)S2
t−ν(dx)

≤c2
∫
R

(e2x + 1)ν(dx)E[

∫ T

0

S2
t−dt] <∞.
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so by the isometric property, the compensated integral∫ t

0

∫
R

e−rt[C(t, St−e
x)− C(t, St−)]ĴX(dtdx)

is a martingale.

On the other hand, C is Lipschitz, sup∂C∂S (t, .) ≤ c insults

E[

∫ T

0

S2
t−|

∂C

∂S
(t, St−)dt| ≤ c2E[

∫ T

0

S2
t−dt] <∞.

Then
∫ T

0
σSt−

∂C
∂S (t, St−)dWt is also a martingale by isometry.

Thereafter, Ĉ is a martingale makes the dt term is zero, that means a(t) = 0. We proved PIDE

(3.2). �
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CHAPTER 4

BASIC CREDIT RISK ANALYSIS WITH JUMPS

The financial market has a big part which is called credit market or bond market. The participants

can issue new debts or securities on the credit market. Credit risk is the crucial problem for the loss

risk of borrower’s failure to meet the obligations.

4.1 Basic Credit Risk Concepts

Assume that we are in the setting of the standard Black-Scholes model, i.e. we analyze a market

with continuous trading which is frictionless and competitive with assumptions. (See [4])

1. agents are price takers.

2. there are no transaction costs.

3. there is unlimited access to short selling and no indivisibilities of assets.

4. borrowing and lending through a money-market account can be done at some riskless, continu-

ously compounded rate r.

We want to price bonds issued by a firm whose assets are assumed to follow a geometric Brownian

motion:

dVt = µVtdt+ σVtdWt

Here, W is a standard Brownian motion under the probability measure P.

Let the starting value of assets is V0. Then by Ito-Doeblin formula:

Vt = V0exp((µ−
1

2
σ2)t+ σWt)

We take it to be well known that in an economy consisting of these two assets, the price C0 at

time 0 of a contingent claim paying C(VT ) at time T is equal to

C0 = EQ[e−rtCT ]

where Q is the equivalent martingale measure under which the dynamics of V are given as

Vt = V0exp((r −
1

2
σ2)t+ σWQ

t )
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Here, WQ
t is a Brownian motion and we can see that the drift term µ has been replaced by r.[4]

Now, assume that the firm at time 0 has issued two types of claims: debt and equity. In the

simple model, debt is a zero-coupon bond with a face value of D and maturity date T . We think of

the firm run by the equity owners. At maturity of bond, equity holder pay the face value of debt

precisely when the assets value is higher than the face value of the bond. On the other hand, if

assets are worth less than D, equity owners do not want to pay D. And since they have limited

liability they don’t have to do that. Bond holders then take over the remaining assets of VT instead

of the promised payment D. With this assumption, the payoffs to debt, BT , and equity, ST , at date

T are given as:

BT = min(D,VT ) = D −max(D − VT , 0)

ST = max(VT −D, 0)

From the structure, debt can be viewed as the difference between a riskless bond and a put option,

and equity can be viewed as a call option on the firm’s assets. [4]

We assumed there are no transaction costs, bankruptcy costs, taxes and so on for simpleness.

We then get VT = BT + ST . Given the current level V and volatility σ of assets, and the riskless

rate r, we denote the Black-Scholes model of European call as C(Vt, D, σ, r, T − t) with strike price

D and maturity time T , [4] i.e.

C(Vt, D, σ, r, T − t) = VtN(d1)−De−r(T−t)N(d2)

Where N is the standard normal distribution function and

d1,2 =
ln(Vt/D) + (r ± 1

2
σ2)(T − t)

σ
√
T − t

,

d1 − d2 = σ
√
T − t.

Applying the Black-Scholes formula to price these options, we obtain the Merton model for values

of debt and equity at time t as:

St = C(Vt, D, σ, r, T − t)

Bt = De(−r(T−t)) − P (Vt, D, σ, r, T − t)

From the put-call parity for European options on non-dividend paying stocks

C(Vt)− P (Vt) = Vt −De−r(T−t)
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We get

Bt = De(−r(T−t)) − P (Vt)

= De(−r(T−t)) + Vt −De(−r(T−t)) − C(Vt)

= Vt − C(Vt)

= Vt − (VtN(d1)−De−r(T−t)N(d2))

= Vt(1−N(d1)) +De−r(T−t)N(d2).

4.2 Basic Credit Risk Analysis with Compound Poisson Jumps

For the BSM model with Levy jumps, we may consider the case of compound Poisson jumps which

has the explicit formula for the the call price. Therefore, the bond price is obvious from the call-put

parity and equality VT = BT + ST .

Suppose asset value Vt has dynamics of jumps, then the equity value St is priced as a call option

CJ with jumps. First, we focus the compound Poisson jumps with i.i.d.log-normal distributed Yi+1

(ie, ln(Yi + 1) ∼ N(µ, δ2)) which has the explicit formula, the price of call option CJ is (1.11)([6]):

CJ(Vt, D, τ, σ
2, r, δ2, λ, k) =

∞∑
n=0

(λ′τ)n

n!
e−λ

′τC(Vt, D, τ, σn, rn)

where C(Vt, D, τ, σn, rn) is the standard Black-Scholes formula for a call and

k = E(Yi),

λ′ = λ(1 + k),

rn = r + nγ/τ − λk,

σ2
n = σ2 + nδ2/τ,

γ = ln(1 + k) = µ+
1

2
δ2.

In advance, some facts of general Black-Scholes call price are listed:

Cx = N(d1) = ∆ > 0,

Cτ =
Stσ

2
√
τ
n(d1) +Kre−rτN(d2) = Θ > 0,

Cσ = St
√
τn(d1) = V ega > 0,

Cr = τKe−rτN(d2) = Rho > 0,

CK = −e−rτN(d2) < 0.
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4.2.1 Sensitivities of Bond Pricing for Log-normal Jumps Process

Since the explicit formula, the derivatives with respect to all parameters are disclosed as the sensi-

tivities of bond price.

Proposition 4.2.1 (i) The bond price is increasing in Vt for log-normal jumps process.

(ii)
∂Bt
∂x
∈ (0, 1).

Let Vt = x, T − t = τ. Then we check the partial derivative of Bt with respect to x.

Hence,

∂Bt
∂x

=
∂

∂x
(Vt − CJ(Vt, D, τ, σ

2, r, δ2, λ, k))

= 1− ∂

∂x
(
∞∑
n=0

(λ′τ)n

n!
e−λ

′τC(Vt, D, τ, σn, rn))

= 1−
∞∑
n=0

(λ′τ)n

n!
e−λ

′τ ∂C(Vt, D, τ, σn, rn)

∂x
)

= 1−
∞∑
n=0

(λ′τ)n

n!
e−λ

′τN(d1n)

=

∞∑
n=0

(λ′τ)n

n!
e−λ

′τ (1−N(d1n)) ∈ (0, 1).

Where
∑∞
n=0

(λ′τ)n

n! e−λ
′τ = 1 is convergent.

It is clear that the bond price goes up as Vt increases.(See Figure ??).

Proposition 4.2.2 (i) The bond price is increasing in face value D for log-normal jumps process.

(ii)
∂Bt
∂D
∈ (0, e−(r−λk)τ ).

In fact,

∂CJ(Vt, D, τ, σ
2, r, δ2, λ, k)

∂D
=

∂

∂D
(

∞∑
n=0

(λ′τ)n

n!
e−λ

′τC(Vt, D, τ, σn, rn))

=

∞∑
n=0

(λ′τ)n

n!
e−λ

′τ ∂C(Vt, D, τ, σn, rn)

∂D

= −
∞∑
n=0

(λ′τ)n

n!
e−λ

′τe−rnτN(d2n)

= −
∞∑
n=0

(λ′τ)n

n!
e−λ

′τe−(rτ+nγ−λkτ)N(d2n)

= −e−(r−λk)τ
∞∑
n=0

(λ′τ)n

n!
e−λ

′τe−nγN(d2n)

∈ (−e−(r−λk)τ , 0).

Then,
∂Bt
∂D

= −∂CJ(Vt, D, τ, σ
2, r, δ2, λ, k)

∂D
∈ (0, e−(r−λk)τ ).
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Figure 4.1: Bond price - Vt. (Vt is from 80 to 120 with step size 2, D = 110, τ = 2, σ = 0.2, r = 0.05,

λ = 0.1, µ = −0.2, δ = 0.6, upbound of summation n = 50.)

Figure 4.2: Bond price - D. (D is from 80 to 120 with step size 2, Vt = 100, τ = 2, σ = 0.2, r = 0.05,

λ = 0.1, µ = −0.2, δ = 0.6, upbound of summation n = 50.)
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Definitely, increasing the face value typically will produce a larger payoff. (See Figure 4.2).

Proposition 4.2.3 The bond price is decreasing in volatility, σ, for log-normal jumps process.

Mathematically,

∂CJ(Vt, D, τ, σ
2, r, δ2, λ, k)

∂σ
=

∂

∂σ
(

∞∑
n=0

(λ′τ)n

n!
e−λ

′τC(Vt, D, τ, σn, rn))

=

∞∑
n=0

(λ′τ)n

n!
e−λ

′τ ∂C(Vt, D, τ, σn, rn)

∂σn

=

∞∑
n=0

(λ′τ)n

n!
e−λ

′τx
√
τn(d1n)

= x
√
τ

∞∑
n=0

(λ′τ)n

n!
e−λ

′τn(d1n) > 0.

Then,
∂Bt
∂σ

= −∂CJ(Vt, D, τ, σ
2, r, δ2, λ, k)

∂σ
< 0.

When the volatility goes up, Bt must decrease because the sum of St and Bt remains unchanged,

call price increases as Vt is more fluctuable. (See Figure 4.3).

Figure 4.3: Bond price - σ. (σ is from 0.05 to 0.5 with step size 0.01, Vt = 100, D = 110, τ = 2,

r = 0.05, λ = 0.1, µ = −0.2, δ = 0.6, upbound of summation n = 50.)

Proposition 4.2.4 (i) The bond price is decreasing in risk-free interest rate r for log-normal jumps

process.

(ii)
∂Bt
∂r
∈ (−τDe−(r−λk)τ , 0).
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Actually,

∂CJ(Vt, D, τ, σ
2, r, δ2, λ, k)

∂r
=

∂

∂r
(

∞∑
n=0

(λ′τ)n

n!
e−λ

′τC(Vt, D, τ, σn, rn))

=

∞∑
n=0

(λ′τ)n

n!
e−λ

′τ ∂C(Vt, D, τ, σn, rn)

∂rn

=

∞∑
n=0

(λ′τ)n

n!
e−λ

′ττDe−rnτN(d2n)

= τDe−(r−λk)τ
∞∑
n=0

(λ′τ)n

n!
e−nγN(d2n)

∈ (0, τDe−(r−λk)τ ).

Then,
∂Bt
∂r

= −∂CJ(Vt, D, τ, σ
2, r, δ2, λ, k)

∂r
∈ (−τDe−(r−λk)τ , 0).

Since the call option increases as r goes up, Bt must decrease the money market looks more

attractive.(See Figure 4.4).

Figure 4.4: Bond price - r. ( r is from 0.01 to 0.1 with step size 0.002, Vt = 100, D = 110, τ = 2,

σ = 0.2, λ = 0.1, µ = −0.2, δ = 0.6, upbound of summation n = 50.)

Proposition 4.2.5 (i) The call price is increasing in time-to-maturity, τ , for the log-normal jumps

process if r − λk ≥ 0.

(ii) The bond price is decreasing in time-to-maturity, τ , for the log-normal jumps process r−λk ≥

0.
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∂CJ(Vt, D, τ, σ
2, r, δ2, λ, k)

∂τ
=

∂

∂τ
(

∞∑
n=0

(λ′τ)n

n!
e−λ

′τC(Vt, D, τ, σn, rn))

=

∞∑
n=1

[n(λ′τ)n−1 λ
′

n!
e−λ

′τCn(Vt, D, τ, σn, rn)] +

∞∑
n=0

[
(λ′τ)n

n!
(−λ′)e−λ

′τCn(Vt, D, τ, σn, rn)]

+

∞∑
n=0

[
(λ′τ)n

n!
e−λ

′τ (
∂C(Vt, D, τ, σn, rn)

∂τ
+
∂C(Vt, D, τ, σn, rn)

∂rn

∂rn
∂τ

+
∂C(Vt, D, τ, σn, rn)

∂τ

∂σn
∂τ

)]

=

∞∑
n=1

[
(λ′τ)n−1

(n− 1)!
λ′e−λ

′τCn(Vt, D, τ, σn, rn)] +

∞∑
n=0

[
(λ′τ)n

n!
(−λ′)e−λ

′τCn(Vt, D, τ, σn, rn)]

+

∞∑
n=0

[
(λ′τ)n

n!
e−λ

′τ (
∂C(Vt, D, τ, σn, rn)

∂τ
+
∂C(Vt, D, τ, σn, rn)

∂rn

∂rn
∂τ

+
∂C(Vt, D, τ, σn, rn)

∂τ

∂σn
∂τ

)]

=

∞∑
n=0

[
(λ′τ)n

n!
λ′e−λ

′τ (Cn+1(Vt, D, τ, σn, rn)− Cn(Vt, D, τ, σn, rn))]

+

∞∑
n=0

[
(λ′τ)n

n!
e−λ

′τ (
∂C(Vt, D, τ, σn, rn)

∂τ
+
∂C(Vt, D, τ, σn, rn)

∂rn

∂rn
∂τ

+
∂C(Vt, D, τ, σn, rn)

∂τ

∂σn
∂τ

)]

=S1 + S2,

Separately, we consider the 1st part S1 and 2nd part S2, Since

∂C(Vt, D, τ, σn, rn)

∂n
= xN ′(d1n)

∂d1n

∂n
−De−rnτ (−∂rn

∂n
)τN(d2n) +De−rnτN ′(d2n)

∂d2n

∂n

= xN ′(d1n)(
∂d1n

∂n
− ∂d2n

∂n
) +De−rnτγτN(d2n) > 0

Where we used the facts:

xN ′(d1n) = Ke−rnτN ′(d2n),

d1n − d2n = σn
√
τ ⇒ ∂d1n

∂n
− ∂d2n

∂n
=

1

2
√
σn

δ2

τ

√
τ > 0.

That means the function C(Vt, D, τ, σn, rn) is increasing w.r.t n, such that S1 part is positive.

For S2, we taking partial derivative of C(Vt, D, τ, σn, rn) w.r.t τ ,
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S2 =
∂C(Vt, D, τ, σn, rn)

∂τ
+
∂C(Vt, D, τ, σn, rn)

∂rn

∂rn
∂τ

+
∂C(Vt, D, τ, σn, rn)

∂τ

∂σn
∂τ

=
xσn
2
√
τ
n(d1n) +Drne

−rnτN(d2n) + τDe−rnτN(d2n)[nγ(−τ−2)]

+ x
√
τn(d1n)[

1

2
(σ2
n)−

1
2nδ2(−τ−2)]

=
1

2
√
τ
xn(d1n)

σ2
nτ − nδ2

σnτ
+De−rnτN(d2n)

rnτ − nγ
τ

=
1

2
√
τ
xn(d1n)

σ2

σn
+De−rnτN(d2n)(r − λk).

here r−λk is non-negative as the condition, then S2 is also positive, such that the initial
∂CJ(Vt, D, τ, σ

2, r, δ2, λ, k)

∂τ

is positive.

Hence
∂Bt
∂k

= −∂CJ(Vt, D, τ, σ
2, r, δ2, λ, k)

∂k
< 0. Bt is decreasing due to the value of call increases

when time-to-maturity is bigger. (See Figure 4.5).

Figure 4.5: Bond price - τ with condition satisfied. (τ is from 0.1 to 5 with step size 0.1, Vt = 100,

D = 110, σ = 0.2, r = 0.05, λ = 0.1, µ = −0.2, δ = 0.6, upbound of summation n = 50.)

In some extreme case, when S2 is very small as a negative number, the sum of S1 and S2 can be

negative which causes the tendency of Bt w.r.t τ is not decreasing. (See figure 4.6.)

Proposition 4.2.6 The bond price is decreasing in δ for the log-normal jumps process.
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Figure 4.6: Bond price - τ trend is somehow increasing when condition r − λk ≥ 0 is not satisfied

at extreme case. (Here k = 199.34 under µ = 0.8, δ = 3. λ = 0.1, r = 0.05. r − λk = −19.88,

Vt = 12, D = 10. τ is from 0.1 to 5 with step pace 0.1.)

We have

∂CJ(Vt, D, τ, σ
2, r, δ2, λ, k)

∂δ
=

∂

∂δ
(

∞∑
n=0

(λ′τ)n

n!
e−λ

′τC(Vt, D, τ, σn, rn))

=

∞∑
n=0

(λ′τ)n

n!
e−λ

′τ ∂C(Vt, D, τ, σn, rn))

∂σn

∂σn
∂δ

=

∞∑
n=0

(λ′τ)n

n!
e−λ

′τx
√
τn(d1n)

2nδ

τ

=
2xδ√
τ

∞∑
n=0

(λ′τ)n

n!
e−λ

′τn(d1n)n > 0.

Then,
∂Bt
∂δ

= −∂CJ(Vt, D, τ, σ
2, r, δ2, λ, k)

∂δ
< 0. (See Figure 4.7).

Proposition 4.2.7 The bond price is decreasing in λ for the log-normal jumps process.

From property (1.2.1), we know
∂CJ(Vt, D, τ, σ

2, r, δ2, λ, k)

∂λ
> 0. Therefore,

∂Bt
∂λ

= −∂CJ(Vt, D, τ, σ
2, r, δ2, λ, k)

∂λ
<

0 holds. (See Figure 4.8).

Proposition 4.2.8 The bond price is decreasing in k for the log-normal jumps process.
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Figure 4.7: Bond price - δ. (δ is from 0.01 to 1 with step size 0.02, Vt = 100, D = 110, τ = 2,

σ = 0.2, r = 0.05, λ = 0.1, µ = −0.2, upbound of summation n = 50.)

Figure 4.8: Bond price - λ. (λ is from 0.01 to 0.2 with step size 0.01, Vt = 100, D = 110, τ = 2,

σ = 0.2, r = 0.05, µ = −0.2, δ = 0.6, upbound of summation n = 50.)
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Since

∂CJ(Vt, D, τ, σ
2, r, δ2, λ, k)

∂k
=

∂

∂k
(

∞∑
n=0

(λ′τ)n

n!
e−λ

′τCn(Vt, D, τ, σn, rn))

=

∞∑
n=1

[n(λ′τ)n−1λτ

n!
e−λ

′τCn(Vt, D, τ, σn, rn)] +

∞∑
n=0

[
(λ′τ)n

n!
(−τλ)e−λ

′τCn(Vt, D, τ, σn, rn)]

+

∞∑
n=0

[
(λ′τ)n

n!
e−λ

′τ ∂Cn(Vt, D, τ, σn, rn)

∂k
]

=

∞∑
n=1

[
n

1 + k

(λ′τ)n

(n)!
e−λ

′τ)Cn(Vt, D, τ, σn, rn)] +

∞∑
n=0

[
(λ′τ)n

n!
(−λτ)e−λ

′τCn(Vt, D, τ, σn, rn)]

+

∞∑
n=0

[
(λ′τ)n

n!
e−λ

′τ ∂Cn(Vt, D, τ, σn, rn)

∂k
]

=

∞∑
n=1

[
(λ′τ)n

n!
e−λ

′τCn(Vt, D, τ, σn, rn)(
n

1 + k
− λτ)] + (−λτ)e−λ

′τC0(Vt, D, τ, σn, rn)

+

∞∑
n=0

[
(λ′τ)n

n!
e−λ

′τ (xN ′(d1n)
∂d1n

∂rn
(

n

(1 + k)τ
− λ)

−De−rnτ (−τ)(
n

(1 + k)τ
− λ)N(d2n)−De−rnτN ′(d2n)

∂d2n

∂rn
(

n

(1 + k)τ
− λ))]

=

∞∑
n=1

[
(λ′τ)n

n!
e−λ

′τCn(Vt, D, τ, σn, rn)(
n

1 + k
− λτ)] + (−λτ)e−λ

′τC0(Vt, D, τ, σn, rn)

+

∞∑
n=0

[
(λ′τ)n

n!
e−λ

′τ (De−rnτ (
n

1 + k
− λτ)N(d2n))]

=

∞∑
n=1

[
(λ′τ)n

n!
e−λ

′τCn(Vt, D, τ, σn, rn)(
n− λ′τ
1 + k

)
Cn(Vt, D, τ, σn, rn) +De−rnτN(d2n)

Cn(Vt, D, τ, σn, rn)
)]

− λτe−λ
′τC0(Vt, D, τ, σn, rn)− e−λ

′τDe−r0τλτN(d20)

=

∞∑
n=1

[
(λ′τ)n

n!
e−λ

′τCn(Vt, D, τ, σn, rn)(
n− λ′τ
1 + k

)
xN(d1n)

Cn(Vt, D, τ, σn, rn)
)]

− e−λ
′τλτ(C0(Vt, D, τ, σn, rn) +De−r0τN(d20))

=

∞∑
n=1

[
(λ′τ)n

n!
e−λ

′τ (
n− λ′τ
1 + k

)xN(d1n)]− e−λ
′τλτxN(d10)

=

∞∑
n=0

[
(λ′τ)n

n!
e−λ

′τ (
n− λ′τ
1 + k

)xN(d1n)].

where we used the fact that

∂d1

∂rn
=
∂d2

∂rn
,

xN ′(d1n) = De−rnτN ′(d2n),

Cn(Vt, D, τ, σn, rn) = xN(d1n)−Ke−rnτN(d2n).

Since n goes to larger and large in the sum, then the term n−λ′τ
1+k is positive for most cases. That

means the partial derivative w.r.t k is positive. Then,
∂Bt
∂k

= −∂CJ
∂k

< 0.
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Figure 4.9: Bond price - k. (k = exp(µ+ 1
2σ

2)− 1, where µ is from −0.1 to 0.2 with step size 0.01,

Vt = 100, D = 110, τ = 2, σ = 0.2, r = 0.05, λ = 0.1, δ = 0.6, upbound of summation n = 50.)

4.2.2 Summary

In total, the bond price with compound Poisson jumps has propositions listed as:

1.(i) The bond price is increasing in Vt for log-normal jumps process.

(ii)
∂Bt
∂x
∈ (0, 1).

2.(i) The bond price is increasing in face value D for log-normal jumps process.

(ii)
∂Bt
∂D
∈ (0, e−(r−λk)τ ).

3.The bond price is decreasing in volatility, σ, for log-normal jumps process.

4.(i) The bond price is decreasing in risk-free interest rate r for log-normal jumps process.

(ii)
∂Bt
∂r
∈ (−τDe−(r−λk)τ , 0).

5.(i) The call price is increasing in time-to-maturity, τ , for the log-normal jumps process if

r − λk ≥ 0.

(ii) The bond price is decreasing in time-to-maturity, τ , for the log-normal jumps process r−λk ≥

0.

6.The bond price is decreasing in δ for the log-normal jumps process.

7.The bond price is decreasing in λ for the log-normal jumps process.

8.The bond price is decreasing in k for the log-normal jumps process.
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CHAPTER 5

NUMERICAL ANALYSIS PRICING OF LEVY PROCESS

By analyzing how to solve the PIDE (3.2) which is derived in exponential Levy processes dynamics.

We found it is extremely difficult to get the theoretical solution since two facts. Firstly, it is a

backwards partial differential equation with the boundary condition of maturity time. Secondly, the

integral part in the equation is very tough to handle. Fortunately, we can use Fourier transform to

estimate the solution numerically.

5.1 Fast Fourier Transform Method to Price Levy Process Dynamics

The Levy-Khinchin representation theorem reveals the characteristic function of Levy process.

Which is the key to connect Fourier transform due the the similar mathematical form.

5.1.1 Basic Concepts

We consider the integrand as a Fourier transform form:

φ(u) =

∫ ∞
−∞

eiuxf(x)dx

It can be recovered by using inverse Fourier transform to get function f(x) as

f(x) =
1

2π

∫ ∞
−∞

e−iuxφ(u)du.

Recall the European call pricing for asset price St. The characteristic function of logarithm value

X = lnSt is defined as

φX(u) = E[eiuX ] =

∫ ∞
−∞

eiuxpX(x)dx. (5.1)

where pX is the risk neutral density for the random variable X.

The characteristic functions are analytically known in many financial cases in lots of literature.

Which makes the pricing models become very easy to utilize the Fourier transform to the dynamics of

log price coupled with divisible process of independent increments. When the characteristic function

is given naturally by Levy-Khinchin representation theorem.
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In those processes, we chose three typical models to discuss. First is general hyperbolic process

introduces by Barndorff-Nielsen (1977) [10]. Second is normal inverse Gausian derived by Barndorff-

Nielsen (1997) [11] as a subclass of general hyperbolic processes. Third is CGMY model which

contains the variance gamma (Madan and Senata (1987)[19]) as a subclass proposed by Carr, Geman,

Madan, and Yor (1999) [20].

With the known characteristic functions, the numerical results of risk neutral probability was

obtained in many literature as Bakshi and Madan [12] and Scott [13]:

P (ST > K) = Π2 =
1

2
+

1

π

∫ ∞
0

Re[
e−iulnKφT (u)

iu
]du.

The delta of the option Π1 is given numerically as:

Π1 =
1

2
+

1

π

∫ ∞
0

Re[
e−iulnKφT (u− i)

iuφT (−i)
]du.

Therefore, assuming constant interest rate r and zero dividends, the call option price is:

C = SΠ1 −Ke−rTΠ2.

5.1.2 Fourier Transform for Option Price

Suppose f(XT ) is the risk neutral probability density function of underlying value XT . Denote

qT (x) as the risk neutral density of log price xT = lnXT . k = lnK is the log value of strike price

K. Then the characteristic function of xT is

φx(z) =

∫ ∞
−∞

eizxT q(xT )dxT .

Therefore the European call option price CT (k) has the form [23]:

E[(XT −K)+] =

∫ ∞
K

(XT −K)f(XT )dXT =

∫ ∞
k

(exT − ek)q(xT )dxT

=

∫ ∞
k

(ex − ek)q(x)dx = CT (k).

where we get rid of the subscript T in the last step for simplicity. Then the Fourier transform of

CT (k) is

ΦT (z) =

∫ ∞
−∞

eizkCT (k)dk =

∫ ∞
−∞

(

∫ ∞
k

(ex − ek)q(x)dx)dk

=

∫ ∞
−∞

∫ x

−∞
eizk(ex − ek)q(x)dkdx

=

∫ ∞
−∞

q(x)(

∫ x

−∞
eizk(ex − ek)dk)dx.
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We changed the integral order due to Fubini’s theorem in the last step. Therefore,∫ x

−∞
eizk(ex − ek)q(x)dk =

∫ x

−∞
eizk(ex)q(x)dk −

∫ x

−∞
eizk(ek)q(x)dk

= ex
eizk

iz
|x−∞ −

e(iz+1)k

iz + 1
|x−∞.

Then the Fourier transform has a singularity point at zero for the first term. In Carr and Madan

(1999) [21], we use the damping function eαk to solve the issue of convergence. Define:

cT (k) = eαkCT (k).

Hence,

ΦT (z) =

∫ ∞
−∞

eizkeαkCT (k)dk =

∫ ∞
−∞

(eαk
∫ ∞
k

(ex − ek)q(x)dx)dk

=

∫ ∞
−∞

∫ x

−∞
e(α+iz)k(ex − ek)q(x)dkdx

=

∫ ∞
−∞

q(x)(

∫ x

−∞
e(α+iz)k(ex − ek)dk)dx.

Check the integral again, we can get:∫ x

−∞
e(α+iz)k(ex − ek)q(x)dk =

∫ x

−∞
eizk(ex)q(x)dk −

∫ x

−∞
eizk(ek)q(x)dk

= ex
e(α+iz)k)

α+ iz
|x−∞ −

e(α+iz+1)k

α+ iz + 1
|x−∞ = ex

e(α+iz)x)

α+ iz
− e(α+iz+1)x

α+ iz + 1

=
e(α+iz+1)x

(α+ iz)(α+ iz + 1)
.

Now, the Fourier transform results of dampening call price is [23]

ΦT (z) =

∫ ∞
−∞

q(x)
e(α+iz+1)x

(α+ iz)(α+ iz + 1)
dx

=
1

(α+ iz)(α+ iz + 1)

∫ ∞
−∞

q(x)ei(z−(α+i)i)xdx

=
φ(z − (α+ 1)i)

(α+ iz)(α+ iz + 1)
.

On the other hand, the modified call price characteristic function is

ΦT (z) =

∫ ∞
−∞

eizkeαkCT (k)dk

Therefore,we can solve the CT (k) by the inverse Fourier transform,

CT (k) =
e−αk

2π

∫ ∞
−∞

e−izkΦT (z)dz =
e−αk

π

∫ ∞
0

e−izkΦT (z)dz,

where the characteristic function ΦT (z) can be determined according to particular Levy processes.
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The last result is true since the call price ought to be a real number, the imaginary part of

integral should be odd and the real part is even.

The put price formula is in the same mode since the put value PT (x) is the expectation of

(K −XT )+.(See Hirsa 2011 [23])

5.1.3 Price Approximation with FFT Algorithm

Fast Fourier transforms are used in modern applications in engineering, science, and mathematics

widely. The Cooley-Turkey FFT algorithm can reduce the N2 multiplication of discrete Fourier

transform to NlnN by using a divide. Gilbert Strang described the FFT in 1994 as ”the most

important numerical algorithm of our lifetime” and it was included in Top 10 Algorithms of 20th

Century by the IEEE journal.

The Fourier transform allow us to compute the option price when the PIDE can’t be solved but

the characteristic function is known. Due to the derived formula of last section, set up the upper

bound of integral is a and then the equidistant interval length is η = a/N . And the integral interval

endpoints are zj = (j − 1)η for j = 1, 2, ..., N + 1. Then the discretized sum applying trapezoidal

rule is:

CT (k) =
e−αk

π

∫ ∞
0

e−izkΦT (z)dz ≈ e−αk

π

∫ a

0

e−izkΦT (z)dz

≈ e−αk

π
(e−iz1kΦT (z1) + 2e−iz2kΦT (z2) + ...+ 2e−izNkΦT (zN )

+ e−izN+1kΦT (zN+1))
η

2

=
e−αk

π

N∑
j=1

e−izjkΦT (zj)wj .

where wj = η
2 (2− δj−1).

Furthermore, we can use Simpson rule such that wj = η
2 (3 + (−1)j − δj−N ). Where δn is the

Dirac function which is 1 when n = 0 and 0 otherwise.

Since FFT algorithm is computing such summation:

ω(k) =

N∑
j=1

e−i
2π
N (j−1)(k−1)x(j), for k = 1, 2, ..., N. (5.2)

where N = 2n have to be the power of 2 as the restrict of FFT algorithm.

We now need to change the form of CT (k) to formula (5.2). Setting b = Nλ
2 , define the strike
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logarithm value as ku = −b+ λ(u− 1), for u = 1, 2, ..., N which changes for −b to b. That means

CT (ku) ≈ e−αku

π

N∑
j=1

e−izj(−b+λ(u−1))ΦT (zj)wj

=
e−αku

π

N∑
j=1

e−iλη(j−1)(u−1)eibzjΦT (zj)wj .

Therefore we can see λη = 2π
N satisfies the form of FFT algorithm and xj = eibzjΦT (zj)wj .

For the last step, the interpolation is utilized to find the call price value of lnK according to the

scheme of CT (ku) values.

Considering discount factor of constant rate r, apply the discount factor to call price value:

CT (k) =
e−rT e−αk

π

∫ ∞
0

e−izkΦT (z)dz.

The same modification applies to FFT results.[21][24]

For an example, FFT algorithm [24] for simple Black-Scholes model is attached as figure (5.1).

5.2 Several Typical Levy Processes in Finance and Numerical Sensitivity Studies

In this section, the brief descriptions of some kinds of typical Levy processes are given and the

explicit density function and characteristic functions are listed. Therefore the explicit formulas of

FFT algorithm are decided and we may discuss the sensitivities again the parameters.

5.2.1 General Hyperbolic (GH) Distribution

General Hyperbolic distribution is a class of Lebesgue continuous infinitely divisible distribution of

5 parameters. The Lebesgue density is [10][25]

ρGH(x+ µ) =
eβx√

2πα2λ−1δ2λ

δ
√
α2 − β2

Kλ(δ
√
α2 − β2)

(α
√
δ2 + x2)λ−1/2Kλ−1/2(α

√
δ2 + x2).

The domain of parameters is: λ ∈ R, α > 0, β ∈ (−α, α), δ > 0, µ ∈ R2. Where Kλ and Klm−1/2

are the modified third kind of Bessel functions with the order as subscripts.

The characteristic function was given by Prause (1999)([26]):

φ(u) = eiµu
δ
√
α2 − β2

Kλ(δ
√
α2 − β2)

Kλ(δ
√
α2 − β2 + iu)2)

δ
√
α2 − β2 + iu)2

.

Setting parameter λ = 1 yields the class of hyperbolic distribution with 4 parameters.Applying

K1/2(z) =
√
π/(2z)d−z, the density is

ρ(α,β,δ,µ)(x+ µ) =
eβx

2αδ2

δ
√
α2 − β2

K1(δ
√
α2 − β2)

eα
√
δ2+x2

.
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Figure 5.1: Black-Scholes code FFT algorithm
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At the very beginning, we borrowed some calibration parameters of call option prices of S&P 500

index from Wim [9]. Which estimates the model parameters by minimizing the root-mean-square

error for the price differences of market and models.

For GH model, we have α = 3.8288, β = −3.8286, δ = 0.2375, ν = −1, 7555. Base on this group

data, we computed several call prices around the existing parameters. See table (5.1).

GH

Call price Call price Call price Call price

St=9.5 0.4975 K=10.5 1.3978 T=1 0.2087 r=0.01 0.4296

10 0.7224 11 1.1407 1.25 0.3274 0.02 0.4938

10.5 0.9929 11.5 0.9154 1.5 0.4558 0.03 0.5641

11 1.3037 12 0.7224 1.75 0.5884 0.04 0.6403

11.5 1.6486 12.5 0.5611 2 0.7224 0.05 0.7224

q=0 0.7224 α = 0 0.0376 β = −8 -0.2219 Cont. β=1 0.5801

0.005 0.6738 2 0.0873 -6 0.2093 3 NaN

0.01 0.6276 3.8288 0.7224 -3 0.5936 4 -0.9794

0.015 0.5837 6 0.2116 -3.8286 0.7224 5 -0.0523

0.02 0.5419 8 0.1634 0 0.5375 8 1.095

δ=-0.5 NaN ν=-3 0.3328

0.1 0.1278 -1 1.8584

0.2375 0.7224 0 0.7224

0.5 2.2071 1 9.9999

1 4.8908 2 10

Table 5.1: Prices trend of GH model parameters. (The price is increasing w.r.t to St, T, r, δ, is

decreasing w.r.t to K, q. The price is a sort of symmetric w.r.t. α. And there are no tendency about

β and ν. The β part is extremely wired since it is the asymmetry parameter of general hyperbolic

distribution.)

By checking the data, we can judge that the price is increasing w.r.t to St, T, r, δ, is decreasing

w.r.t to K, q. The price is a sort of symmetric w.r.t. α. And there are no tendency about β and ν.

The β part is extremely wired since it is the asymmetry parameter of general hyperbolic distribution.

59



Visualize the trends, we get some figures list below from figure (5.2) to (5.10).

Figure 5.2: GH model for call prices - S. (n=16, S=90 with step size 3, K=120, T=2, r=0.05,

q=0,α = 3.8288, β = −3.8286, δ = 0.2375, ν = −1.7555.)

5.2.2 Normal Inverse Gaussian (NIG) Distribution

Setting λ = −1/2, we have Normal Inverse Gaussian distribution from hyperbolic. The characteristic

function is given as

φα,β,δ,µ = eiµueδ
√
α2−β2−δ

√
α2−(β2+iu)2 .

For NIG model, we have α = 6.1882, β = −3.8941, δ = 0.1622 [9]. There is no µ given, we can

set it as 0 as the initial value since it is the drifting term of process.

Therefore, we have the table (5.2).

For NIG model, call price increases w.r.t. St, T, r, positive δ and µ, decreases w.r.t. K, q, α. For

the parameter β, the behavior is undetermined since NIG is a special case of GH model.

The figures are omitted since they are almost the same with GH process.

5.2.3 The Carr-Geman-Madan-Yor (CGMY) Class of Distribution

The CGMY distribution class is defined by Carr, Geman, Madan and Yor (1999) [20]. The Levy

density is

KCGMY =
C

|x|1+Y
exp(

G−M
2

x− G+M

x
|x|).
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Figure 5.3: GH model for call prices - K. (n=16, S=100,K=90 with step size 3,T=2,r=0.05,q=0,α =

3.8288, β = −3.8286, δ = 0.2375, ν = −1.7555.)

Figure 5.4: GH model for call prices - T. (n=16, S=100,K=120,T=1 with step size 0.2, r=0.05, q=0,

α = 3.8288, β = −3.8286, δ = 0.2375, ν = −1.7555.)
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Figure 5.5: GH model for call prices - r. (n=16, S=100, K=120, T=2, r=0.01 with step size 0.01,

q=0, α = 3.8288, β = −3.8286, δ = 0.2375, ν = −1.7555.)

Figure 5.6: GH model for call prices - q. (n=16, S=100, K=120, T=2, r=0.05 q=0 with step size

0.01, α = 3.8288, β = −3.8286, δ = 0.2375, ν = −1.7555.)
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Figure 5.7: GH model for call prices - α. (n=16, S=100, K=120, T=2, r=0.05 q=0, α = 0.8288 with

step size 0.5, β = −3.8286, δ = 0.2375, ν = −1.7555.)

Figure 5.8: GH model for call prices - β. (n=16, S=100, K=120, T=2, r=0.05 q=0 , α = 3.8288,β =

−1.8286 with step size 0.5,δ = 0.2375, ν = −1.7555.)
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Figure 5.9: GH model for call prices - δ. (n=16, S=100, K=120, T=2, r=0.05 q=0, α = 3.8288,

β = −1.8286, δ = 0.0375 with step size 0.2,ν = −1.7555.)

Figure 5.10: GH model for call prices - ν. (n=16, S=100, K=120, T=2, r=0.05 q=0 , α = 3.8288,

β = −1.8286, δ = 0.0375, ν = −2.7555 with step size 0.2.)
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NIG

Call price Call price Call price

St=9.5 0.4979 K=10.5 1.3851 T=1 0.2091

10 0.721 11 1.133 1.25 0.3286

10.5 0.9882 11.5 0.9114 1.5 0.4573

11 1.2943 12 0.721 1.75 0.5891

11.5 1.6331 12.5 0.5612 2 0.721

r=0.01 0.4307 q=0 0.721 α=5.8 0.7954

0.02 0.4945 0.005 0.6729 6 0.7547

0.03 0.5642 0.01 0.6271 6.1882 0.721

0.04 0.6398 0.015 0.5835 6.4 0.719

0.05 0.721 0.02 0.5421 6.6 0.6874

β=-9 -5.43E+208 δ=-2 NaN µ=-0.01 0.6271

-6 2.3036 0 -1.04E-07 -0.005 0.6729

-3.8941 0.721 0.1622 0.721 0 0.721

0 0.556 2 3.7332 0.005 0.7713

5 0.9341 8 6.9534 0.01 0.8239

Table 5.2: Prices trend of NIG model parameters. (Call price increases w.r.t. St, T, r, positive δ

and µ, decreases w.r.t. K, q, α. For the parameter β, the behavior is undetermined since NIG is a

special case of GH model.)
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The characteristic function is

φCGMY = exp{CΓ(−Y )[(M − iu)Y −MY + (G+ iu)Y −GY ]}.

For the CGMY model, we have C = 0.0244, G = 0.0765,M = 7.5515, Y = 1.2945 [9]. Check the

table(5.3).

Call price is increasing w.r.t. St, T, r, C,G, Y , and decreasing w.r.t. K, q,G,M .

The figures are omitted since the same mode.

5.3 Empirical Test for S&P 500 Call Option With Levy Processes

As the last part of empirical test, those three types of Levy Processes are checked by optimal

parameters searching. The comparison with previous Heston model is considered as well.

For the data of S&P 500 option prices, we may check the SSE values for these three Levy pro-

cesses. The first step is to estimate the parameters for in-the-sample data, which is from September

4th 2012 to February 28th 2013. The task is to make the SSE value be the minimum by using Matlab

optimal function ”fmincon”. And then the SSE value is calculated by using estimated parameters

from the first step for out-of-sample data, which is from March 1st 2013 to August 30th 2013.

As the initial parameter values for the optimal searching, results of Wim [9], which calibrated

the S&P 500 option index as well are referred. For the GH model, the initial values are α = 3.8,

β = −3, δ = 1, ν = 2. The CGMY model use C = 0.02, G = 0.08, M = 7.55, Y = 1.3. The NIG

model utilize α = 6, β = −3, µ = 0.01, δ = 1. And all the estimations have upper bound of 20 and

lower bound of −20.

Table (5.4) below shows the parameters estimation and the corresponding SSE values.

From the final results, we can check that the Levy processes have the equivalent order of magni-

tude of SSE values with Heston model but slightly larger. The greatest in-the-sample SSE result is

7.57 for GH model and the lowest is 4.13 for NIG model, the average is 6.21. The greatest out-of-

sample SSE estimation is 8.15 for CGMY model and the lowest is 5.81 for NIG model, the average

is 7.13. According to Heston model, the greatest is 5.12 and lowest is 4.10 for in-the-sample with

average of 4.61, the greatest is 6.61 and lowest is 5.27 for out-of-sample with average of 5.94. By

comparison, and the NIG model has the both lowest answers in the three kinds of Levy processes

and very close to Heston model.
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CGMY

Call price Call price Call price

St=9.5 0.4969 K=10.5 1.4056 T=1 0.2077

10 0.7231 11 1.1456 1.25 0.326

10.5 0.9957 11.5 0.9178 1.5 0.4544

11 1.3095 12 0.7231 1.75 0.5878

11.5 1.6581 12.5 0.5607 2 0.7231

r=0.01 0.4286 q=0 0.7231 C=0.01 0.2832

0.02 0.493 0.005 0.6742 0.02 0.6004

0.03 0.5637 0.01 0.6277 0.0244 0.7231

0.04 0.6404 0.015 0.5835 0.03 0.8676

0.05 0.7231 0.02 0.5416 0.035 0.9876

G=0.065 0.7276 M=7.45 0.7244 Y=1.2 0.623

0.07 0.7256 7.5 0.7237 1.25 0.6736

0.0765 0.7231 7.5515 0.7231 1.2945 0.7231

0.08 0.7217 8 0.7176 1.3 0.7295

0.085 0.7199 8.5 0.712 1.35 0.7918

Table 5.3: Prices trend of NIG model parameters. (Call price is increasing w.r.t. St, T, r, C,G, Y ,

and decreasing w.r.t. K, q,G,M .)
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GH model α β δ ν SSE

in-the-sample -17.3388 15.6454 0.3554 -17.6347 6.92

out-of-sample -17.3388 15.6454 0.3554 -17.6347 7.43

CGMY model C G M Y SSE

in-the-sample 4.47E-06 4.5725 6.8383 1.9975 7.57

out-of-sample 4.47E-06 4.5725 6.8383 1.9975 8.15

NIG model α β µ δ SSE

in-the-sample 19.999 -15.421 -0.1667 0.2295 4.13

out-of-sample 19.999 -15.421 -0.1667 0.2295 5.81

Heston model Cases SSE

in-the-sample No jump and Vt = imp.V 2
t 5.12

No jump and estimate Vt 4.13

With jump and Vt = imp.V 2
t 5.10

With jump and estimate Vt 4.10

out-of-sample No jump and Vt = imp.V 2
t 6.61

No jump and estimate Vt 5.32

With jump and Vt = imp.V 2
t 6.55

With jump and estimate Vt 5.27

Table 5.4: SSE estimations according to 3 types of Levy Processes comparing previous Heston

models. (The in-the-sample data comes from September 4th 2012 to February 28th 2013 and the

out-of-sample data comes from March 1st 2013 to August 30th 2013. These three Levy processes

have the equivalent order of magnitudes with Heston model for the final SSE. The greatest in-the-

sample SSE result is 7.57 for GH model and the lowest is 4.13 for NIG model, the average is 6.21.

The greatest out-of-sample SSE estimation is 8.15 for CGMY model and the lowest is 5.81 for NIG

model, the average is 7.13. According to Heston model, the greatest is 5.12 and lowest is 4.10

for in-the-sample with average 4.61, the greatest is 6.61 and lowest is 5.27 for out-of-sample with

average 5.94. By comparison, and the NIG model has the both lowest answers in the 3 kinds of

Levy processes and very close to Heston model.)
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GH model α β δ ν SSE

Sept. 4th 2012 3.1068 2.0105 0.4748 -18.3818 0.0415

CGMY model C G M Y SSE

Sept. 4th 2012 4.72E-06 1.4314 7.2307 1.9984 0.0453

NIG model α β µ δ SSE

Sept. 4th 2012 9.2051 -9.2051 -1.1726 0.3160 0.0530

Table 5.5: Parameters calibration of three Levy processes for the first day, Sept. 4th 2012.

5.3.1 Two Scenario Calibrations for One Day Prediction.

To detect the prediction of Levy processes, another test about daily SSE computation is undertaken.

We use 273 option prices of September 4th 2012 as in-the-sample data and 187 prices of the first

day of second half year, March 1st 2013, as out-of-sample data.

Table (5.5) shows the parameter results of three Levy processes for in-the-sample case.

With the first day parameters, the out-of-sample results are listed in the table (5.6) as below.

The SSE values are computed under two scenarios: using the first day parameters and using the

first half year parameters.

In table (5.6), for example, the SSE value in the first row is 0.0415, and the SSE value for second

row is 0.0845. The results of out-of-sample by using one day calibration parameters are more than

double of in-the-sample SSE values. On the contrary, the SSE value on third row is 0.02774, which

means by using the 1st year’s optimal parameters, the value becomes almost the half. The effect of

NIG model is as dramatic as around fourfold.

The SSE values change declares the fact that the prediction error should be narrowed by using

previous long period calibration parameters, not the one day optimal parameters far away from the

history.

5.3.2 Daily Prediction Results Comparison with Previous Heston Models

For the daily calibration, the parameter of Heston models are estimated by Matlab optimal function

and listed in table (5.7).

With Heston models parameters, table (5.8) shows the results and comparison of Levy processes

with previous Heston model.

Comparing the four cases of Heston models, the SSE values show some facts of oscillation. For

the first case, the estimation of out-of-sample by using 1st day parameters has SSE value as 0.0271.
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GH model α β δ ν SSE

Sept. 4th 2012 3.1068 2.0105 0.4748 -18.3818 0.0415

March 1st 2013(using 1st day Para’s) 3.1068 2.0105 0.4748 -18.3818 0.084492

March 1st 2013(using 1st half year Para’s) -17.3388 15.6454 0.3554 -17.6347 0.027741

CGMY model C G M Y SSE

Sept. 4th 2012 4.72E-06 1.4314 7.2307 1.9984 0.0453

March 1st 2013(using 1st day Para’s) 4.72E-06 1.4314 7.2307 1.9984 0.085249

March 1st 2013(using 1st half year Para’s) 4.47E-06 4.5725 6.8383 1.9975 0.02879

NIG model α β µ δ SSE

Sept. 4th 2012 9.2051 -9.2051 -1.1726 0.3160 0.053

March 1st 2013(using 1st day Para’s) 9.2051 -9.2051 -1.1726 0.3160 0.20194

March 1st 2013(using 1st half year Para’s) 19.999 -15.421 -0.1667 0.2295 0.013898

Table 5.6: Estimation about one day of out-of-sample, March 1st 2013, in three Levy processes.

(The SSE value in the first row is 0.0415, and the SSE value for second row is 0.0845. The results of

out-of-sample by using one day calibration parameters are more than double of in-the-sample SSE

values. On the contrary, the SSE value on third row is 0.02774, which means by using the 1st year’s

optimal parameters, the value becomes almost the half. The effect of NIG model is as dramatic as

around fourfold.)

Heston para’s for Sept. 4th 2012

no jump and

Vt = imp.V 2
t

κ θ σ ρ SSE

19.9998 0.0546 2.0127 -0.0172 4.31E-02

no jump and

estimate Vt

κ θ σ ρ Vt SSE

4.7985 0.0062 0.1664 0.9984 0.009 5.87E-03

with jump and

Vt = imp.V 2
t

κ θ σ ρ λ µj σj SSE

4.7747 0.322 2.4965 0.4356 0.0034 0.5415 1.2229 3.66E-02

with jump and

estimate Vt

κ θ σ ρ Vt λ µj σj SSE

5.9353 0.0073 0.1242 0.9984 0.0098 1.59E-04 -0.0518 1.0009 6.75E-03

Table 5.7: Optimal parameters for four cases of Heston models according to Sept. 4th 2012.
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Levy Processes Cases SSE

in-the-sample GH model 0.0415

Sept. 4th 2012 CGMY model 0.0453

NIG model 0.0530

out-of-sample GH model 0.0845

March 1st 2013 CGMY model 0.0852

(using 1st day Para’s) NIG model 0.2019

out-of-sample GH model 0.0277

March 1st 2013 CGMY model 0.0288

(using 1st half year Para’s) NIG model 0.0139

Heston model Cases SSE

in-the-sample no jump and Vt = imp.V 2
t 0.0431

Sept. 4th 2012 no jump and estimate Vt 0.0059

with jump and Vt = imp.V 2
t 0.0366

with jump and estimate Vt 0.0068

out-of-sample no jump and Vt = imp.V 2
t 0.0271

March 1st 2013 no jump and estimate Vt 0.0857

(using 1st day Para’s) with jump and Vt = imp.V 2
t 7.4027

with jump and estimate Vt 0.1025

out-of-sample no jump and Vt = imp.V 2
t 0.0278

March 1st 2013 no jump and estimate Vt 0.0202

(using 1st half year Para’s) with jump and Vt = imp.V 2
t 0.0484

with jump and estimate Vt 0.0807

Table 5.8: Comparison with three types of Levy processes and Heston models. (Comparing the four

cases of Heston models, the SSE values show some facts of oscillation. Extraordinarily, the third

case of SSE value is 7.4027 for using first day estimation parameters, which looks protruding large.

However, the three Levy processes have the same shrink trend when we use the long period data

calibration parameters. For example, the NIG model has the change from 0.2019 to 0.0139 and lower

than any Heston model. Which means The Levy processes have the more stable prediction which is

expectable with less error.)
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And SSE value becomes 0.0278, a little bit bigger, for using first half year parameters. But for the

second case, the SSE value becomes from 0.0857 to 0.0202 which means lower. Extraordinarily, the

third case of SSE value is 7.4027 for using first day estimation parameters, which looks protruding

large. However, the three Levy processes have the same shrink trend when we use the long period

data calibration parameters. For example, the NIG model has the change from 0.2019 to 0.0139 and

lower than any Heston model. Which means The Levy processes have the more stable prediction

which is expectable with less error.

In summary, the SSE values of Levy processes have the same order of magnitude with Heston

models we did before and even slightly greater. However, when we check the one day prediction

for out-of-sample data, we can see that the Levy processes have the shrink effect and more stable

than Heston models. And also, the NIG model has the lowest SSE value prediction within all the

models.
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CHAPTER 6

CONCLUSIONS

In financial term structure study, Brownian motion is the fundamental method to simulate the

dynamics of asset price movement over time. Black-Scholes-Merton model studied the continuous

case that asset price follows geometric Brownian motion.

Generally, the price activity has jumps which can be observed in the real financial market. For

this case of discontinuity, the simple scenario of one kind of Levy processes, compound Poisson

process, are considered. And the explicit call/put price formulas can also be derived when the jump

size follows log-normal distribution base on the fundamental BSM model. Therefore, the sensitivities

of parameters for bond pricing are arising after the complicated mathematical deduce.

Empirical study reveals the knowledge of history data from the market. In the period we selected,

the sum of squared error (SSE) of BSM model can be around 100 for half year S&P 500 option index.

When loosening the restriction of iid jumps condition, we have the SSE results of non-iid cases are

less than the BSM model a little. The advanced Heston model which considers the volatility is also

a stochastic process has the SSE value less than 10. The Heston model provide a excellent approach

to remove the limitation of BSM model which fixes volatility constant.

Levy processes are outstanding methods in term structure research for financial mathematics

since their infinitely divisible, independent and stationary increments properties match financial

market intuitively. For the exponential of Levy process, the PIDE can be derived but it is very

hard to solve. Fourier transform method can be used to solve the question numerically due to the

analogy form of Levy process’ characteristic function derived from Levy-Khinchin theorem. Three

typical cases of Levy processes, GH model, NIG model, CGMY model are calibrated by using fast

Fourier transform (FFT) method numerically. Not only the parameter sensitivities of these Levy

processes are checked. But also we can see all of them have the SSE result of half year data below

10 as Heston model does. Furthermore, the Levy processes have the shrink effect and more stable

prediction for chosen data.
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