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rnAPTER I 

INTRODUCTION 

Problem Statement 

Ground water is the most abundant supply of fresh water 

lying beneath the Earth's land surface. In the United States, 

groundwater supplies about 25 percent of the nation's 

domestic, agricultural, and industrial water, with about half 

of all U.S. homes depending on it for drinking water supply 

(Moseley, 1988). Moreover, as part of the hydrologic cycle, 

it serves as a reservoir to rivers, streams, and lakes during 

dry seasons. 

Unfortunately, ground water has been negatively affected 

by human activities. Chemicals from pesticides, fertilizers, 

sewage waste, and hazardous wastes from industrial dumping 

sites are finding their way into more and more aquifers. 

Likewise, through the natural discharges of an aquifer, such 

as springs and seeps, ground water contaminants can return to 

pollute surface water. Therefore, in a sense, pollution of 

ground water is pollution of water everywhere. 

In many years people thought that ground water was of 

adequate quality for drinking due to the natural process of 

1 



filtration where soil and rocks filter out contaminants. It 

wasn't until Rachel Carson (1962) portrayed the results of 

environmental contamination by pesticides, in her book Silent 

Spring, that ground water pollution was brought into public 

view. In fact, ground water contamination has become an 

environmental issue as increasing incidents of ground water 

contamination were reported during the past two decades. For 

example, wide-spread aquifer. contamination by overuse of a 

pesticide was found in the potato-growing region of Long 

Island, New York (Carcel, 1987). 

Researchers have labored to develop mathematical models 

to predict the mobility and persistence of chemicals in the 

unsaturated zone of the soil profile. More recently, the 

presence of gaseous volatile organic corrpounds in the 

unsaturated zone has caused new concern in ground water 

research. For example, in the United States, the EPA has 

estimated that five to 15 percent of underground storage tanks 

that hold approximately 14 billion gallons of gasoline are 

leaking (Moseley, 1988). The leaked gasoline can pose a 

serious threat to health and safety. The common chemicals 

found in gasoline, such as benzene, toluene, and lead, are 

toxic. Benzene is a proven human carcinogen, toluene is one 

of the toxic chemicals regulated by the Clean Air Act 1990, 

and lead causes disorders of the central nervous system. To 

clean up all the leaks nationwide, the EPA estimates that it 

will cost $7.5 billion, excluding possible health or property 

2 



damage awards due to law suits (Moseley, 1988). 

Gasoline and other volatile organics, such as crude oil, 

are used in abundance all over the world in vehicles and 

industry. In connection with ground water, the problem is not 

· in the use of these organics, but rather in the possible 

disasters that can occur when storing and transporting them. 

Because they are handled in . such large amounts, when a 

disaster happens, the ecological effect on fresh water can be 

catastrophic. 

The most challenging problem in dealing with ground water 

contamination is to predict the movement and fate of the 

contaminants. In order to clean up when the pollution occurs, 

one needs to locate the high concentration area needing 

remediation, and tO diSCe:rn. the pollutants I migratory path and 

extent. The ability to predict the movement of contaminants 

can also contribute to the prevention of pollution by 

forecasting possible disasters. 

Even though gasoline and other volatile organic 

contaminants are immiscible in both air and water, they 

dissolve into the water phase within the saturated zone and 

also volatilize into the soil gas phase within the unsaturated 

zone. Baehr (1987) used a mathematical model of vapor and 

solute transport in the unsaturated zone to show that 

significant amounts of gasoline hydrocarbons can partition 

into the water in the unsaturated zone. They can percolate 

into the ground and leave zones of the residual contaminant in 
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the pore stru.cture. Such residuals form a long-lasting source 

of contaminants that will migrate into the vapor phase and 

eventually dissolve into the ground water (Mendoza and Frind, 

1990). 

Numerical models have contributed to the understanding of 

multiphase transport of volatile organics in the unsaturated 

zone. However, since it is very difficult to observe and 

measure most transport processes, several problems are still 

ahead for researchers to explore. Jury et al. (1987) pointed 

to the lack of detailed and accurate experimental data as 

factors limiting further development of computational models. 

Brown (1991) summarized some main aspects that remain 

unaddressed in existing research, namely: (1) the small 

amounts of experimental data available to verify the theory, 

(2) difficulties of independent parameter measurement, and (3) 

the limitations of chemical linear adsorption and phase 

equilibrium assumptions. 

Model usefulness depends on the accuracy of determining 

model parameters and the validation of model perfonnance. On 

one hand, the accuracy of model predictions should ideally 

depends on the accuracy of model parameters. Unfortunately, 

most model parameters are not measurable. Some investigators 

have used inverse techniques in solute transport studies, 

however the application of these methods to volatile organic 

transport modeling is still new. On the other hand, any 

environmental fate and transport model must be tested for 
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predictive perfonnance before it can generally be useful as an 

aid to regulatory decision making. Thus the purpose of 

assessing model perfonnance is to quantify the uncertainty of 

model predictions, which results from two primary sources: 

uncertainty in the model structure and uncertainty in the 

model parameters. 

The assessment of model perfonnance from parameter 

uncertainty and experimental data verification for volatile 

organic transport has received little attention. Few articles 

about the evaluation methodology of general solute transport 

models have been found in the literature. According to Loague 

(1990), well-defined procedures for testing models are not yet 

available, despite tremendous model development efforts. 

Pennell (1990) also mentioned that an accepted method or 

systematic approach for the validation of pesticide simulation 

models does not exist. 

Study Objectives 

Up until now, the attempts at solving inverse problems 

and quantifying uncertainty in model predictions for volatile 

organic transport has not been seen in published works. 

Therefore, the objective of this research is to develop a 

systematic methodology which combines well established methods 

to pursue the following two goals: 

1. Estimate parameters for volatile organic transport. 

2. Quantify uncertainty in model predictions due to 
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uncertainty in these parameter estimates. 

General Procedure 

A compositional rrn.iltiphase model developed by Baehr 

(1987) was selected for this study. This model describes the 

rrn.iltiphase transport of petroleum products composed of 

different components. The numerical solution of this model 

assumes that only diffusive transport is a significant 

transport mechanism for gas and irrmiscible phases. 

--·Although there are many parameters involved in this 

model, my interest is focused on the following four 

parameters: (1) the partition coefficient between the gas and 

the aqueous phases, (2) the partition coefficient between the 

aqueous and solid phases, (3) the tortuosity in the gas phase, 

and (4) the tortuosity in the aqueous phase. 

Bayesian statistical theory was used to estimate the 

optimal values and distributions of these parameters . Monte 

carlo sirrn.ilation was employed to determine the nncertainty of 

model output. 

This dissertation is organized as follows : Chapter 2 

reviews the related literature; Chapter , 3 describes the 

volatile organic transport model employed in this research; 

Chapter 4 contains estimation and uncertainty theories and 

develops a methodology to use these theories; results and 

analyses are presented in Chapters 5 and 6, and finally, 

Chapter 7 surmnarizes the results and presents the conclusions. 
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OIAPTER II 

LITERATURE REVIEW 

Volatile organic transport modeling involves basic 

principles of hydrogeology, chemistry, soil science, and 

mathematics. The results achieved by investigators from these 

and other branches of science are extensive and scattered. 

Thus it is necessary to narrowly focus this review on topics 

of irmnediate interest. This research relates to three major 

subjects: modeling of volatile solute transport, the 

estimation of model parameters, and the \lllcertainty analysis 

of estimated parameters. Accordingly, this chapter summarizes 

present knowledge and identifies problems for future research 

within these topics. 

Modeling of Volatile Solute Transport 

Modeling of volatile solute transport combines 

mathematical representations of several transport processes to 

predict the behavior and fate of contaminants. This section 

reviews the transport processes of volatile organics, the 

gove:r:ning equations, and specific applications. 
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The Mechanisms of Vapor Phase Organic Transport 

The transport of contaminants in the vapor phase may 

occur due to both advection and diffusion and is influenced by 

phase partitioning and degradation (Falta et al., 1989). 

Vapor phase advection may result from vapor density gradients 

or vapor pressure gradients. In the published literature, 

there is not a clear understanding of which condition favors 

each driving force (l-1endoza and Frind, 1990) . Density-driven 

flow may be of special concern for many organic chemicals 

found at contaminated sites. When organic liquids evaporate, 

the density of the vapor in contact with the liquid changes 

with respect to the ambient soil gas. Diffusion is of greater 

significance in the gas phase than in the aqueous phase, 

because gas-phase diffusion coefficients are much larger than 

aqueous-diffusion coefficients. Both dispersive and diffusive 

transport may contribute to total flux for the gas flow 

system. However, experimental data showed that diffusion 

predominates over mechanical dispersion for gas-phase 

transport unless velocities are very high (Brusseau, 1991). 

Usually, diffusive flux in the gas phase, J, is modeled by 

Fick's First Law (Baehr, 1990): 

__ be , dX 
J- C(i)D g~g dz (1) 

where c is the vapor-phase molar density (c=4 .46 x 10-s mol/cm3 

for an ideal gas at standard temperature and pressure), ~ is 
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the molecular weight of the constituent, rP is the diffusion 

coefficient of the organic constituent in air, f}g is air 

filled porosity, Xis the mole fraction of the constituent in 

the vapor phase, Z is vertical distance, and (g is Fick's 

First Law estimate of tortuosity. Tortuosity represents the 

internal geometry of the porous media, and may be a function 

of Og. 

Recent research has shown that Fick's First Law is not 

appropriate under some circumstances of interest. According 

to Thorstenson and Pollock (1989), the accuracy of Fick' s 

First Law depends primarily on the relative magnitudes of the· 

viscous and diffusive flux components and Fick's First Law is 

not adequate to deal with stagnant gases. Baehr and Bruell 

(1990) also pointed out that equations based on Fick's First 

Law are not appropriate for some systems, for example, systems 

where the concentration in the gas phase is not dilute or 

where significant evaporative fluxes occur. They recormnended 

the Stefan-Maxwell equations to provide a more comprehensive 

model for quantifying steady-state transport when a vapor 

phase is composed of arbitrary proportions of its 

constituents. 

When a volatile liquid organic chemical is spilled on the 

soil or leaks from a tank into the soil, it will begin to 

partition into the liquid and vapor phases, and then become 

dissolved in soil moisture and adsorbed onto the surfaces of 

soil minerals and organic matter (Silka, 1988). Accurate 
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description of contaminant transport in a subsurface 

multiphase system requires the interphase partitioning of 

individual chemical components among all phases present. Even 

though such partitioning between phases is complicated, the 

corrmon assumption that·an equilibrium condition exists among 

the phases present can simplify the problem. 

Raoult's I.aw is usually employed to quantify the 

equilibrium between the nonaqueous liquid and vapor phases 

(Corapcioglu and Baehr, 1987), 

H - Ci) • 
gi- R~ (2) 

(3) 

where subscript g represents the gas phase, subscript i 

represents the nonaqueous phase, p* is the vapor pressure over 

the pure constituent, Ct> is the molecular weight of the 

chemical, R is the universal gas constant, Tis temperature; 

Hgi is an equilibrium partition coefficient, Cg is the 

concentration of the chemical in the gas-phase, Xi is the mole 

fraction of the chemical in the nonaqueous phase, and Yi is 

the activity coefficient for the chemical which adjusts for 

nonideality. 

This analysis will be limited to a single volatile solute 

that does not exist in a separate phase. Under these 

restrictions, Heru:y's I.aw is applied to express the 

equilibrium between the air and water phases as: 
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(4) 

where Kh is Henry' s Law constant at a specified temperature, 

Cg is the concentration of the vapor phase, and Ci is the 

concentration of the aqueous phase. 

Besides the partitioning between the vapor and aqueous 

phases, soil organic and mineral materials can adsorb some 

volatile organics to a lesser extent. Usually, soil solids 

are surrounded by water layers of at least several molecules 

thiclmess. The process of partitioning between the vapor 

phase and the solid phase then becomes a two- step process f ram 

the vapor into the water and subsequently from the water onto 

the soil solids (Silka, 1988). At equilibrium, the degree of 

partitioning between the soil solids and the soil moisture is 

expressed as: 

(5) 

where ~ is the partition coefficient or distribution 

coefficient, Cs is the mass of chemical adsorbed per unit dry 

mass of soil solids, and C1 is the concentration of the 

chemical in the soil moisture. 

The Governing Egµation 

A governing equation is the mathematical representation 

or model which combines various transport processes through 
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the principle of mass conservation to describe the actual 

transport system. Brown and McWhorter (1990) derived a one

dimensional multiple phase transport equation which is general 

in nature and can be applied to any one-dimensional volatile 

solute transport case in a homogeneous porous media. The 

equation is formed as: 

where R=V/Rs+fJ1/R1+fJg/°Rg, 61 is the volumetric solution 

content, V is the solid phase volume, f)g is the gas phase 

volume, Ct is the total solute concentration, Cs, C1 , and Cg 

are the solute concentrations in the three phases, Rs, R1 , 

and Rg are relationships that equate the individual 

concentrations to the total, p1 and Pg are densities of 

solution and gas, and CIJ. and qg are volume fluxes of 

solution and gas phases. 

Application and Unaddressed Problems 

Many mathematical models can simulate diffusive transport 

in the vapor phase. Jury et al. (1984) introduced a screening 

model for describing pesticide volatilization, leaching, and 

degradation in the soil. They performed tests on 35 chemicals 

to determine the diffusive mobility and general persistence in 

the soil. Corapcioglu and Baehr (1987) developed a 
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compositional multiphase model to describe the fate of 

hydrocarbon constituents of petroleum products introduced to 

soils as an imniscible liquid. Their results showed that 

diffusive transport in the unsaturated zone is a significant 

transport mechanism in ground water. Silka (1988) presented 

a two-dimensional diffusive transport model. He computed an 

effective diffusion coefficient that incorporates the effects 

of tortuosity, moisture content, and the organic carbon 

content of soil. 

Several investigators also addressed the importance of 

including density-driven advection as a transport mechanism in 

the unsaturated zone. Falta et al. (1989) suggested that 

significant advective gas flow will result from the 

evaporation of volatile liquids in soils giving a high 

permeability. Mendoza and McAlary (1990) studied the 

potential effects of density-driven vapor advection in the 

saturated zone. Their results showed that advection becomes 

increasingly important as the soil permeability increases. 

However, diffusion still dominates near the periphery of the 

vapor plume because the density gradient diminishes at lower 

concentration. They concluded that neglecting advection may 

underestimate the rate of vapor transport. They also 

suggested that experimental data are necessary to validate the 

theoretical basis for the density-driven advection of vapors 

in further research. In another paper, Mendoza and Frind 

(1990) used breakthrough cmves obtained experimentally to 
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detennine whether density gradients are likely to play a role. 

Their results showed that the advective mechanism can be 

highly effective in mobilizing organic vapors and thus in 

accelerating the contamination of a ground water system. 

Gierke et al. (1990) presented a comprehensive model that 

considered air and water advection and dispersion in the 

direction of flow, mass transfer resistance at the air-water 

interfaces, partitioning between the air-water phase, and 

sorption to soil organic matter from aqueous solution. The 

validation compared the breakthrough curves obtained from 

model sitm.1lations and experiments. Their results indicated 

that both liquid dispersion and diffusion in immobile water 

are important. Vapor diffusion is not important when the 

average pore water velocities are greater than O. 02 cm/s. The 

rates of mass transfer across the air-water and the mobile

immobile water interfaces are rapid. 

All the studies discussed above assumed homogeneous 

media and phase partitioning equilibrium. However, many 

studies have shown that the assumption of homogeneity of 

porous media does not reflect reality. Observations of 

pesticide residues in agricultural fields long after 

application also support the invalidity of the local 

equilibrium assumption about sorption (Brusseau, 1991). 

Models that incorporate heterogeneity and nonequlibriate 

mass transfer are beginning to appear in the literature. 

Abriola and Pinder (1985) developed a tm.1ltiphase approach to 
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describe the simultaneous transport of a chemical contaminant 

in three physical forms: as a nonaqueous phase, as a soluble 

component of an aqueous phase, and as a mobile fraction of a 

gaseous phase. They used a heterogeneous porous medium and 

incorporated diffusion, dispersibn, and interphase mass 

exchange into the transport model. Interphase mass exchange 

is considered as local equilibrium. 

Brusseau (1991) presented a model that incorporates the 

effects of physical heterogeneity and rate-limited sorption on 

gas-phase advection and dispersion. He assessed performance 

of the model by comparing simulations to data obtained from 

the literature. However, he simulated the model only under 

steady flow conditions. Sleep and Sykes (1989) accounted for 

nonequilibrium conditions with respect to interphase mass 

transfer, but they considered the saturated zone only. 

Although research continues and much work has been 

reported in the related literature, there exist many important 

areas that need further research. Brown (1991) summarized the 

existing problems as: 

1) There are minor amounts of experimental data available 
to verify the theory. As stated by Jury et al. (1987), 
11 further development of such computational models is 
limited by a dearth of detailed and accurate experimental 
data. II 

2) The distributed parameters make independent 
measurement of the parameters difficult. 

3) The assumptions of phase equilibrium are not well 
justified. 
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Estimation of Model Parameters 

Improvements in the precision of model predictions 

depend on the ability to accurately determine the model 

parameters. For ground water flow and solute transport 

models, most parameters are distributed. The response of the 

system is governed by a partial differential equation, and 

parameters embedded in the equation are spatially dependent 

(Yeh, 1986) . Unfortunately, these parameters are seldom 

measurable. Even if one can measure some of them in the 

laboratory, there still exists no well-defined correlation 

between laboratory and field values. To deal with this 

problem, investigators since the mid-70 ' s have developed 

various parameter estimation techniques that optimize 

parameters from observations of dependent variables along with 

initial and boundary conditions. The following sections 

review the relevant literature dealing with the parameter 

estimation, along with specific applications to solute 

transport in the vadose zone. 

General Parameter Estimation Procedures 

The most popular statistical methods applied are least 

squares, maximum likelihood, and Bayesian theory. The 

fallowing sections. discuss the theory, application, evolution~ 

and the evaluation of these three methods. 

Least Smia,res Method Originally, the least squares 
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rr~thod was developed to estimate regression coefficients. It 

also provides the basic idea and basic optimal objective 

function in a mathematical form (Yan, 1990). The idea is to 

estimate parameters by minimizing the sum of error squares ' 

between model output and observed output responses as: 

N 

MinE [Yn-TJ (Xn, P)] 2 (8) 
n=l 

where Yn is obse:rved output, T/ is model output, ~ is model 

input, N is the number of obser:vations, and P is a parameter 

vector. 

This simple form is called the ordinary least squares 

method ( OLS) . Kool and Parker (1988) stated that the OLS 

formulation has probably been the most popular for parameter 

estimation problems due to its simplicity and the minimum 

amount of information required. However, it requires 

assumptions of uncorrelated errors and constant variance to 

provide unbiased and minimum variance estimate. 

When the assumptions of the constant variance and 

uncorrelated errors are violated, weighted least squares 

(WLS), also known as generalized least squares (GLS), can be 

used to satisfy the assumptions. The WLS can be formulated 

as: 

N 

MinL [Yn-TJ (Xn, P)] TW(Yn-TJ (Xn, P)) (9) 
n=l 

where W is a symmetric weighting matrix that corrects for 
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unequal error variances. 

Jacquard et al. (1965) reported the first application of 

least squares to the inverse problem. They divided a 

petroleum reservoir into zones of constant permeability and 

used a variational method to minimize the· sum of squared head 

residuals. Their method was not sufficient to get a stable 

and unique solution. Korganoff (1970) improved this method by 

imposing penalty criteria (based on computed parameters) to 

residual errors which reduced unwarranted oscillation. 

-----Maximum Likelihood Method The maximum likelihood method 

considers model parameters as unknown but deterministic. The 

objective of this method is to find the parameters that 

maximize the likelihood of obtaining the measured data, given 

the joint probability density function of all measurements. 

This method assumes that the errors are no:rmally distributed 

(Kool and Parker, 1988). 

Carrera and Neuman (1986) employed this method to 

estimate aquifer parameters along with the prior info:rmation. 

They examined the prior errors affecting the solutions and 

concluded that, after transforming some parameters 

logarithmically, the error distributions should not be too far 

from a no:rmal distribution. Since not all the factors which 

contributed to the prior errors can be quantified 

statistically, Carrera and Neuman expressed the covariance 

matrices of these errors in terms of several parameters which 

can be estimated jointly with the hydraulic parameters. They 
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also pointed out that the maximum likelihood concept might be 

useful for selecting the best ground water models. 

Bayesian Estimates Bayesian estimates that incorporate 

prior information were first applied to aquifer parameter 

estimation by Gavalas et al. (1976) -· This method considered 

model parameters as random variables with a defined 

probability distribution and introduces a statistically based 

smoothing criterion. 

In Bayesian theory, parameter vector P is a random 

variable with probability distribution £ (P) , and the 

probability distribution of observation Ydepending on P can 

be expressed as: 

and 

f ( Y, P) =f ( Y/ P) f (P) =f (P/ Y) f ( Y) 

f (P/Y) = f ( Y/ P) f (p) 
f(Y) 

(10) 

(11) 

where f(P) is the prior probability distribution of 

parameters, and f (P /Y) is the posterior distribution of P given 

Y. The parameters are estimated by maximizing f (P/Y) . 

The prior information required for Bayesian estimation 

includes the mean and covariance matrix of the parameters. 

Gavalas et al. (1976) have shown that Bayesian estimation 

reduces to a quadratic minimization problem, provided the 

parameters and the measurement errors are normally distributed 

and the model is linear in parameters. 
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Critical Evaluation 'Ihe maximum likelihood method allows 

more flexible assumptions than least squares and produces 

smaller parameter variances when errors have non-constant 

variances and are correlated (Yan, 1990). 'Ihe Bayesian 

estimate is a convenient method to evaluate parameter 

uncertainty which also considers the penalties that can arise 

in the action space due to incorrect specification of the 

unknown parameter value (Yan, 1990). However, the Bayesian 

estimation can be impractical if the required prior 

information is not reliable because inaccurate prior 

information can make the estimates worse instead of reducing 

uncertainty (Yeh, 1986). Box and Tiao (1973), though, did 

provide a noninformative form of Bayesian estimates to avoid 

the negative effect of inaccurate prior information. 'Ihis 

method considers a prior distribution as a uniform 

distribution which reflects minimal knowledge of a parameter, 

thus relies more on observed data. 

Ill-Posedness in Parameter Estimation 

Carrera and Neuman (1986) defined ill-posedness as a 

functional relationship, h (x, t) =F (pi (x) ) , between a set of 

spatially varying parameters. 'Ihe problem is properly posed 

if and only if the following three conditions are. satisfied: 

(1) to every h (x, t) there corresponds a solution, Pi (x), (2) 

the solution is unique for any given h (x, t), and (3) the 

solution depends continuously on h (x, t) (the solution is 

20 



stable) . An inverse problem is ill-posed if it fails to 

satisfy one or more of these three requirements. 

As a misbehavior of the inverse solution, the cause of 

ill-posedness is not always well understood. However, 

researchers characterize it as nonidentifiability, 

nonuniqueness, and instability. According to Yeh (1986), 

identifiability addresses the question of whether it is 

possible to obtain unique solutions of the inverse problem, 

which means if different parameter sets can lead to a given 

output, the parameters are unidentifiable. Carrera and Neuman 

(1986) pointed out that identifiability refers to the forward 

relationship and uniqueness refers to the inverse relationship 

or minimization process. Stability means that small errors in 

the observed data must not result in large changes in the 

computed parameters. Therefore, instability manifests itself 

as spatially oscillating parameters. 

Kool and Parker (1986) pointed out that correlation among 

parameters often causes ill-posedness. This is especially 

true when parameters are negatively correlated because a 

change in one parameter will balance a corresponding change in 

the correlated parameter and can lead to the same model 

prediction. 

He also pinpointed observed data as a cause of ill

posedness in two different ways. On one hand, insufficient 

experimental data may cause an objective function insensitive 

to one or more of the parameters. This might also result in 
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large estimation variance for parameters . On the other hand, 

if the estimated parameters are too sensitive to observed 

data, instability will occur because small measurement errors 

can cause significant errors in parameter estimates. 

Up until now, there are no definite ways to solve ill

posedness problems because solutions vary with different 

circumstances and some problems might even be unsolvable. 

However, when ill-posedness occurs, checking model structure, 

observed data, and dimensionality of parameter space can 

better help solve problems. Model structure should be checked 

because the nonlinearity in a model and the insensitivity of 

model predictions to model parameters could lead to ill

posedness. Observed data should be checked for its 

sufficiency and accuracy, and prior information about 

parameters can help solve the problem. High dimensionality of 

parameter space always COIT!Plicates problems because of more 

interactions among parameters. Therefore, parameters that do 

not have much ilT!Pact on model predictions should be excluded 

to reduce the dimensionality. 

Application to Solute Transport 

Solute transport is such a colT!Plex phenomenon that the 

relevant transport processes are hard to identify. As a 

result, there are few exalT!Ples of inverse models in the 

literature involving solute transport (Keidser and Rosbjerg, 

1991). Volatile organic transport is even more COIT!Plex due to 
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the existence of multiple phases, thus examples dealing with 

parameter estimation of this particular interest have not been 

seen in publications. The following refers to single phase 

solute transport only. 

Murty and Scott (1977) estimated the dispersion 

coefficient from observed data for solute concentrations. 

Their results showed that the accuracy of parameter estimation 

depends on both the accuracy of the solution to the transport 

model and the measurements of the concentration values. Urnari 

et al. (1979) also estimated the dispersion coefficient from 

observations in the field. They used a general nonlinear 

program to minimize the discrepancy between calculated and 

observed values of the concentration profile. Kool and Parker 

(1988) reviewed the status of parameter estimation techniques 

and their utility for detennining key parameters affecting 

water flow and solute transport in the vadose zone. They 

pointed out that efforts are needed to extend parameter 

estimation methods to more complex field conditions. These 

conditions usually require models that can fit soil 

heterogeneity, variable and uncertain boundary conditions, 

simultaneous flow and transport, and complex biochemical 

processes and other phenomena. 

Jury and Sposito (1985) used least squares, maximum 

likelihood, and the method of moments estimation procedures 

for field-scale validation. They found that these three 

procedures gave different parameter estimates for a given set 
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of data. 

Wagner and Gorelick (1986) combined a contaminant 

transport simulation with a weighted least squares procedure 

to estimate parameters that characterize the transport of 

contaminants. They showed the importance of using Monte Carlo 

analysis to quantify the reliability of parameter estimates. 

They concluded that nonlinear regression technique can provide 

accurate and reliable estimates of the nonlinear parameters 

when large random errors are present in the data. 

-- Knopman and Voss (1989) developed a multiobjective 

sampling design that addressed model discrimination, parameter 

estimation, and cost of field sampling. They estimated 

parameters by minimizing some measure related to variance and 

covariance of parameters. They also indicated that 

sensitivity of solute concentrations to a change in a 

parameter contributes information to the relative variance of 

a parameter estimate. 

Since contaminants are primarily transported as dissolved 

components in the water phase, modeling of contaminant 

transport and fluid flow is strongly coupled. Thus, 

optimizing both flow and transport parameters simultaneously 

has recently received more attention. Strecker and Chu (1986) 

first estimated both flow and transport parameters in a two

stage approach. In the first stage, they estimated 

transmissivity controlling the flow process. In the second 

stage, they estimated dispersivity representing the solute 
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transport process. Keidser and Rosbjerg (1991) modified the 

two-stage approach. In the first stage, the transmissivity 

field was estimated using both head and concentration data. 

Transferring the estimated transmissivity field to the second 

stage, the transport parameters were optimized based on the 

concentration measurements. The second stage repeated the 

stage one estimation to adjust the transmissivity parameters 

using the optimized parameters. 

Mishra and Parker (1989) used a combined sinru.lation

optimization method to deal with the estimation of soil 

hydraulic and transport parameters from transient unsaturated 

flow. They used a nonlinear weighted least squares algorithm 

to estimate unknown model parameters by minimizing deviations 

between concentrations, water content, and pressure heads 

obtained from hypothetical experiments. They found that 

sinru.ltaneous estimation of hydraulic and transport properties 

yields smaller estimation errors for model parameters than a 

stage-wise method. 

Uncertainty Analysis of Model Predictions 

Uncertainty analysis procedures quantify the range or the 

probability distribution of model predictions. Considering 

parameters involved in a solute transport model random 

variables makes model predictions random variables as well. 

According to Haan (1977), a variable that is a function of 

other random variables is also a random variable. The 
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probability that a random variable equals a fixed value is 

zero. Therefore, a model prediction is meaningless unless its 

uncertainty represented by a range or a probability 

distribution is quantified. 

Uncertainty in model predictions results from natural 

uncertainty, inadequacy in the model structure, and errors in 

the model parameters. To date, the evaluation of uncertainty 

in model performance has focused more on parameter uncertainty 

than on the other sources. The following sections review the 

relevant literature dealing with uncertainty analysis, along 

with a critical evaluation. 

General Uncertainty Analysis Procedures 

The current approaches to uncertainty analysis include 

deterministic, simulation, and nonparametric approaches. Each 

of these methods are surrrnarized here in a general sense. 

Deterministic Approach The deterministic approach is an 

analytic method based on a Taylor series expansion about a 

fixed point, usually the mean of the input variables. Only 

first or second-order terms of the Taylor series are typically 

used (Doctor, 1989). 

Considering a uni variant random function Y=f (X) , the 

Taylor series expansion of Y can be written as: 

Y=f(µ ) + Bf (X-µ ) +.±. a2f (X-µ ) 2+ ... 
x ax x 2 ax2 x 

(12) 

where µx is the mean of the variable X. 
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Neglecting the tenns that include second-order or higher 

partial derivatives, the first-order method estimates the mean 

and variance of Y by: 

(13) 

and 

Var ( Y) = ( ~i) 2 ( Var ( X) ) 2 • (14) 

In a multivariate case, first-order analysis can be stated as: 

(15) 

· where ~ is a vector of means, and l:1 is the transposition of 

a vector of partial derivatives (Zhang, 1990). '!he variance 

of this estimate can be written as: 

Var ( Y) =b Tc,p (16) 

where ex is the covariance matrix of the functionally 

dependent variables X. '!he second-order method is similar to 

the first-order method, but the fonner is more accurate since 

the mean of Y is conditioned on the mean and variance of X. 

Several researchers have employed the first and second

order analysis methods based on Taylor series expansions in 

hydrologic research. Mishra and Parker (1988) applied first

order analysis to assess the reliability of unsaturated flow 

model predictions subject to parameter uncertainty. Andrews 

et al. (1987) also used the first-order analysis to evaluate 

the uncertainty of ground water travel time. 
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Simulation Approach The simulation approach is often 

called the Monte Carlo method. This method uses random or 

pseudorandom numbers for solution of a model. For uncertainty 

analysis, this method requires a known probability 

distribution for each model parameter so that pseudorandom 

samples can be generated from the distribution. This method 

then runs the model at a large number of points in the input 

parameter space, and produces a probability density function 

(pdf) for the output variable. Because of its simplicity and 

the ability to deal with complex systems, the Monte Carlo 

method has been commonly used in many fields. 

Nonparametric .ApDroach A nonparametric approach, known 

as the "bootstrap", is often used to estimate the reliability 

of model prediction. The bootstrap constructs an empirical 

distribution output by resampling a set of N independent 

observations rather than makes prior assumptions about the 

shape of the output distribution. Such assumption has been 

one of the limiting factors for statistical theory (Zhang, 

1990). Willmott et al. (1985) described the application of 

the bootstrap in calculating the reliability of model 

prediction. Suppose the N observations (X1 ,X2 , •••••• ,XN) are 

from a distribution D. A bootstrap sample (D*) of size N is 

randomly chosen one element at a time fromDwith replacement. 

Once a D* has been selected, a bootstrap measure of the 

accuracy of model prediction may be calculated. If this 

process is repeated B times, it yields an empirically derived 
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frequency distribution that approaches the true distribution 

as B becomes large. The standard error of the mean is given 

by: 

B 

a= [-1-E (Xi-µ) 2] i/2. 
B-l 1=1 

(17) 

Critical Evaluation 

The advantage of the first and second-order methods is 

that they are simple to use. They evaluate only the model and 

the partial derivatives at the mean value of the input 

variables. The disadvantage is that they are applicable only 

to some simple models assuming that the uncertainty in the 

model output can be completely described by a mean and 

variance. 

There are some apparent drawbacks associated with the 

simulation method. For example, it requires intensive 

computation, assumes complete representation of the population 

distribution by the available sample, and becomes complex when 

the input variables are dependent. However, the simulation 

method is simple to use and is powerful for dealing with 

complex models. Its intensive computational requirement is 

becoming less important as computers are becoming more 

powerful and faster. Its concern about assumed probability 

distributions can be solved by incorporating stochastic 

parameter estimation procedures. 

According to Willmott et al. (1985), the bootstrap method 
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has two advantages over its parametric counterparts : ( 1) 

assumptions about the underlying but unknown frequency 

distribution of output do not affect the method's validity; 

(2) confidence can readily be established for any accuracy 

measure of interest even if its distributional characteristics 

previously have not been derived and cataloged. However, the 

bootstrap is limited when few sample observations are 

available because it assumes the observed data represent the 

true population. 

Recommendation 

This review demonstrates the principle of basic volatile 

solute transport processes, the development of solute in vapor 

phase transport modeling, the application of various 

techniques in parameter estimation, and ways to quantify 

errors by uncertainty analysis. Accordingly, the growth and 

challenge in the field of ground water pollution control are 

also illustrated. There exist many important areas that need 

further research to reliably predict the behavior of volatile 

contaminants in the subsurface system. 

As this review demonstrates, the volatile solute 

transport processes are so complicated that the scientific 

understanding of the importance of various processes is still 

inadequate. Moreover, even if a perfect model can be 

established to reliably describe the behavior of contaminants 

in the subsurface, accuracy of the model prediction still 
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depends on the accuracy of model parameters. 

Existing parameter estimation procedures have their own 

advantages and drawbacks. The application in solute transport 

shows that investigators have the tendency to use the simplest 

method, like the least squares method. Unfortunately, the 

least squares method is not always applicable, since its 

assumptions about constant variance and normally distributed 

errors may not always reflect reality. Therefore, 

application of other parameter estimation procedures need to 

be investigated. 

Estimated parameters always contain errors that will 

affect the model predictions. Therefore, uncertainty analysis 

quantifying the uncertainty of estimated parameters is 

essential for a model to be useful. However, the application 

of parameter uncertainty analysis in ground water pollution 

control is quite new, and many more thorough investigations in 

this field are expected in the future. 

Apparently, each of the three areas surveyed in this 

chapter reveals much room for researchers to explore. This 

study will develop a systematic methodology investigating 

parameter estimation and uncertainty analysis. This 

methodology will employ Bayesian estimates to study parameters 

involved in a volatile organic transport model developed by 

Baehr (1987) in depth. It will also use Monte Carlo analysis 

to quantify uncertainty in model predictions due to errors 

associated in parameter estimation. 
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CHAPTER III 

VOLATILE ORGANIC TRANSPORT MODEL 

This research used a compositional multi-phase-model for 

volatile organic transport developed by Arthur L. Baehr of the 

U.S. Geologic Survey (Baehr, 1987). This model is referred to 

as Baehr' s model throughout this dissertation. The fallowing 

sections describe the model formulation, its application to 

this research, and the characteristics of parameters of 

interest. 

Model Formulation 

Baehr' s model is a two-dimensional mathematical model 

developed to deal with multiphase transport of petroleum 

contaminants. Petroleum products like gasoline involve 

different kinds of constituents such as benzene, toluene, and 

x:y lene. These hazardous hydrocarbons can be dissolved and can 

enter an aquifer through the unsaturated zone, where each 

constituent can either migrate as a solute in the water phase, 

a vapor in the air phase, and an irrmobile constituent in the 

oil phase, or be adsorbed in the solid phase. The total 

quantity of chemical per unit soil volume can be written as: 

32 



where Cs is the adsorbed chemical concentration, C1 is the 

dissolved chemical concentration, Ci is the inmiscible 

chemical concentration, is the vapor chemical 

concentration, Pb is soil bulk density, and 01 , Og, and (Ji 

represents volumetric water content, air content, and 

nonaqueous liquid content respectively. 

The governing equation starts with the mass conservation 

equation: 

act: +V·J=Souxces-Sinks (19) at 

where J is the total mass flux, the source is the total 

chemical mass gain (which equals zero for the total system), 

and the sink is the total chemical mass loss which eventually 

equals the total rates of molecular transformation due to 

microbial and abiotic reactions. 

The total mass flux is quantified by the advecti ve

dispersi ve model as: 

(20) 

(21) 
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(22) 

where CJi., CJJ., and qg are the specific discharge for the oil, 

water, and air phases, respectively, D/, D/, and D/ are the 

hydrodynamic dispersion tensor for the chemical in each phase. 

The hydrodynamic dispersion. tensor can be decomposed into 

functions of physical properties of the porous media, the 

moving fluid, and the chemical constituent: 

(23) 

where ~f is the mechanical dispersion coefficient, 4: is the 

molecular diffusion constant, {£ is the tortuosity of each 

phase, and f represents different phases. 

When combining these transport processes together, the 

compositional multi-phase diffusive model is defined as: 

where Rt,io denotes the total rate of microbial and abiotic 

degradation. 

In its application, Baehr's (1987) numerical model 

assumed that the irrnniscible phase is at residual saturation 

and neglected Ci and ~- The model also assumed that the air 

phase is at atmospheric pressure and the porous media is 

homogeneous, isotropic, and isothennal. 

Baehr' s model employed equilibrium approximations to 
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partition among the air, water, and adsorbed phases. The 

partitioning between the air and water phase is modeled by the 

approximation to Henry's law: 

(25) 

where Kh is the air/water partition coefficient of the 

chemical. This equilibrium relationship provides a Kti that 

is independent of the porous media. 

The partitioning between the aqueous phase and solid 

phase is modeled by the linear isotherm, 

where Ka. is an adsorption isotherm constant. 

In conjunction with Henry's Law, 

relationship is obtained: 

(26) 

the following 

(27) 

Thus when neglecting biodegradation, the governing 

equation can be written in terms of either the air or water 

phase concentration in the unsaturated zone. For the gas 

phase, neglecting gas advection, the governing equation will 

be simplified as: 
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ac · 
a-g +V· [bVC +cc] =O at g g 

{28) 

{29) 

{30) 

{31) 

{32) 

{33) 

The numerical solution to this system was obtained for a 

radially symmetrical geomet:ry (Baehr, 1987), where the 

unsaturated porous media is assumed to be isothermal and 

air/water partition coefficients were assumed constant. 

Porosity, water content, tortuosity, hydrodynamic dispersion 

coefficients, adsorption coefficients, and the volumetric 

water flux were also assumed constant. 

The Model Application in This Research 

This research applied the transport model described above 
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to the experimental data measured by Yu (1995). This 

experiment measured toluene gas phase concentration profiles 

at different times by running a vertical soil column with 45 

cm diameter and 25 cm height. Toluene gas was sampled by 

syringe at various depths and times. Concentrations were 

measured inunediately with a gas chromatograph with a flame 

ionization detector. The soil was uniformly packed with 

toluene so that the initial concentration was constant. The 

bottom of the soil column was sealed and the top of the column 

was open to the atmosphere. The water content was uniform and 

well below saturation. While some drying at the top occurred 

during the test, the modeling ignored water transport. 

Conditions under which the transport model was run are 

consistent with this column test. Therefore, the boundary 

condition at the bottom was: 

dCgl _ 
dz bottom, t-0 · (34) 

This equation implies that the bottom of the soil column is 

impervious to vapors and that no mass can escape from it. The 

boundary condition at the surface is: 

(35) 

The initial condition is: 

Cgl t=o, z=constan t. (36) 

Parameter inputs involved in this model can be classified 
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into three groups: geometry parameters, soil property 

parameters, and chemical property parameters. Table I lists 

the values used for each group (consistent with the 

experimental conditions). This research focused on 

tortuosities in the air phase and water phase, and partition 

coefficients between the water-air phase and between the 

water-solid phase. 

Characteristics of the Model Parameters 

Tortuosity is a measure of the added resistance to 

diffusion imposed by the structure of the medium (Kreamer et 

al., 1988). As a major component that determines the rate of 

diffusion of a given chemical, it is independent of the 

chemical properties and is dependent on the pore geometry. 

Al though many experimental methods have been developed to 

measure tortuosity either in labs or in fields, they have not 

been able to give reliable results. For lab methods, coring 

and repacking samples can substantially change the structure 

of the medium, thus causing a variance between lab results and 

field values. On the other hand, field tests are time 

consuming and expensive, and require skilled people to analyze 

the data. Moreover, Kreamer et al. (1988) reported that the 

tortuosity they measured may be in error by as nruch as 40%. 

There are also empirical equations that can estimate 

tortuosity. However, significant discrepancies among these 

estimates have been reported. Kreamer et al (1988) summarized 
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Table I 

The Description of Parameter Inputs for Baehr's Model 

Geometry 

Parameters 

Column Diameter 
45 cm 

Column Height 
25 cm 

Soil Properties 

Porosity 
0 .4 

water content 
0.17 

bulk density 
1.59 gm/cm3 

water recharge 
0.0 

Longitudinal 
Mechanic 
Dispersion 
Coefficient 
0.0 cm2/s 
Transverse 
Mechanical 
Dispersion 
Coefficient 
0.0 cm2/s 

Air Phase 
Tortuosity 
0.34 

Water Phase 
Tortuosity 
0.1 

39 

Chemical 

Properties 

(Toluene) 

Specific Volume 
1.14 g/cm3 

Molecular Weight 
92 

Solubilities 
0. 515 E-3 cm3 /g 
Molecular 
Diffusion 
Coefficient in 
Water 
10-s cm2/s 

Molecular 
Diffusion 
Coefficient in Air 
0.1 cm2/s 

Henry's Constant 
0.26 

Adsorption 
Coefficient 
0.43 



that under the same condition, the tortuosity estimated by Lai 

et al. (1976) is 0.13 while that estimated by Marshall (1959) 

is 0.47. These large variations suggest that the empirical 

equations tend to be applicable only to the materials and 

conditions for which they were developed. 

The adsorption coefficient is the ratio of the amount of 

chemical adsorbed per unit weight of soil to the concentration 

of the chemical in solution at equilibrium. It represents the 

extent to which an organic chemical partitions itself between 

the solid and solution phases. It is determined by several 

physical and chemical properties of both the chemical and the 

soil. However, for soils with high organic carbon content, 

basing the adsorption coefficients on soil organic carbon (~c) 

rather than on total mass (~)can eliminate some influence of 

soil properties. Even so, studies show that the spread of 

values obtained from a number of different soils generally 

results in an uncertainty ranging from 10% to 140% (Lyman, 

1990). Errors also arise from the use of simple adsorption 

isotherms, such as the linear adsorption isotherm when the 

isotherms could be nonlinear (Villeneuve et al., 1988). 

The Henry's law constant is conventionally defined as a 

ratio of partial pressure in the vapor to the concentration in 

the liquid (Mackay et al., 1981) . However, it is more 

convenient to express it as a dimensionless ratio of 

concentration in vapor phase and concentration in water phase. 

Mackay et al. (1981) surmarized three general methods that can 
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be used to measure the Henry' s law constant : 1) measurement of 

the ratio of vapor pressure and solubility, 2) direct 

measurement of air and aqueous concentrations in a system at 

equilibrium, and 3) measurement of relative changes in 

concentration within one phase, while effecting a near

equilibrium exchange with the other phase. According to 

Gossett (1987) , the first method suffers from the lack of 

reliable solubility data, the second method is difficult to 

carry out where concentrations are low, and the third method 

suffers if equilibrium is hard to reach. He proposed a 

modified equilibrium partitioning in closed system method 

which achieved 3-4% c;,. in measured Henry's constant. However, 

he concluded that the precision deteriorated dramatically for 

corrpounds with very low Henry's constant. 

A Comment On Model Form 

Equations 28 to 33 form a second order, partial 

differential equation for the air phase solute concentration 

in terms of time and space. The coefficients, a and bare 

lumped parameters, which combine phase partition coefficients 

(Kh and Ka_) and soil transport properties (~g and (1 ) (the 

other input parameters are usually well defined). Equations 

such as these are notorious for both their difficulty of 

solution, and even more importantly, the difficulty of 

estimating their parameters f ram experimental data. This 

inverse problem of parameter estimation is traditionally 
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approached by trial and error procedures which sirrply match 

simulated model output to measured data. Of course with a 

lurrp parameter model, an error in the estimate of one 

parameter can be corrpensated by the appropriate error in 

another. This problem is made worst by the uncertainties 

introduced by measurement errors. Thus, the utility of any 

model, or the benefit of laboratory measurements, is 

questionable unless some procedure is available to quantify 

both the uncertainty associated with input parameters and the 

accuracy of any model prediction based on them. Unless that 

can be done, process based models such as this have little 

advantage over pure errpiricalism. 
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. CHAPTER IV 

ESTIMATION AND UNCERTAINTY THEORY 

This chapter will discuss the basic Bayes' theorem 

underlying this research and procedures used in parameter 

estimation and uncertainty analysis for volatile organic 

transport. 

Basic Theory 

Bayes' Theorem 

Consider a random variable Y with a vector of n 

observations y= (y1 , ••• ,YnJ. It has a joint probability 

distribution p (y/0), which depends on the values of k 

parameters 0= (Oi, ... , Ok). Suppose that O is also a random 

variable and has a probability distribution p(O), then from 

the definition of conditional probability: 

p(y/6)p(6)=p(y,6)=p(6/y)p(y). (37) 

When given the observed y, the conditional distribution 

of e is: 
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Note that 

p(8/y) = p(y/8)p(8) 
p(y) 

(38) 

p(y)=jp(y,8)d8=fp(y/8)p(8)d8=constant. (39) 

Therefore p (y) is only a constant which assures p (fJ/y) of 

integrating to 1. This leads to: 

p(8/y)=cp(y/8)p(8). (40) 

In this expression, p(O) is the prior distribution of O and it 

represents the Jmown information about O before observing y; 

p (0/y) is the posterior distribution of O given y and it tells 

the information of O after knowing y. c is a normalizing 

constant to ensure that p(O/y) integrates to 1. P(y/0) will 

be explained in the following section. 

The Likelihood function Given the observation of y, the 

probability distribution p (y/0) may be regarded as a function 

of O rather than y. This function is called the likelihood 

function of O for given y. When the observation y is 

independent and identically distributed, the likelihood 

function is: 

n 

1 (8/y) =p(y11 y 2 ,,,, ,Yn/8) =flp(yj8) · 
.1=1 

(41) 

where Il represents product. This leads to another fonn of 
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Bayes' theorem: 

p(6/y)~1(6/y)p(6). (42) 

The likelihood function here is a function through which 

the obse:rved ymodifies prior knowledge of 8. 

Sequential Nature of Bayes ' Theorem One important aspect 

of Bayes' theorem is that it allows updating information on 8 

when taking more observations of y. Therefore for an initial 

sample of observations y 1 : 

(43) 

When we have a second sample of observations y2 distributed 

independently of the first sample, then: 

Apparently, the posterior distribution for 8 given y 1 

se:rves as the prior distribution for the second sample. If we 

haven independent observations, the posterior distribution 

can be recalculated after each new observation: 

p(6/y1 ,,,, ,Ym) ~p(6/y1 ,,,, ,Ym-1 ) 1 (6/ym) ,m=2,,,, ,n (45) 

This provides a process of learning f ram experience. The 

interesting thing is that the advantage of Bayes' Theorem is 

also its disadvantage. Incorporating prior information can 

improve the results. However, questionable prior information 

might lead to faulty results. This is the reason that people 
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may hesitate to choose this method. Box and Tiao (1973) 

provided noninformative prior distributions to address this 

problem. 

Noninformative Prior Distributions 

A noninformative prior distribution is a uniform 

distribution that reflects minimal prior knowledge of the 

parameters. Noninf ormati ve prior distribution will have 

virtually no effect on the resulting posterior probability 

(Edwards 1988) . That is, the prior distribution provides 

little information relative to what is provided by the 

intended experiment. 

Mathematically, a non-informative prior is defined as: 

f(B/x)= f(6)L(6/x) = L(6/x) =l(B/x). ... ... 
J f(6) L(6/x) dfl JL(6/x) d6 

(46) 

This concept means that the noninformati ve prior is a uniform 

distribution: f(O)=constant. 

In the case of the Normal mean with n and u known, the 

likelihood function can be written as (Box and Tiao, 1973): 

(47) 

where y is a random variable, Ym is the sample mean of y, and 

8 is the mean of the population. Apparently, the data enters 

the likelihood only via the sample mean. Therefore, when the 
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likelihood is expressed in tenns of 8, the sarrple mean Ym 

affects only the location of the likelihood curve. That is, 

the likelihood function is completely determined a priori 

except for its location. This is called the data translated 

likelihood function. 

However, it is possible that the irrmediate interest is 

not 8 itself but the reciprocal k=0-1 • In this case, the 

noninformati ve prior in tenns of k can be evaluated as 

(Wilson, 1990): 

(48) 

Here it is obvious that the prior distribution fork is not 

constant. Therefore, the standardized likelihood function 

will not only change locations but also spread with different 

sets of data. The spread of the distribution is then biased 

by the selection of the variable and is in conflict with the 

original goal of selecting a unifonn prior. When this 

happens, it is necessary to derive a parameter transformation 

that produces the data-translated likelihood function. The 

noninformative prior for the normal distribution of u 

introduces this concept. 

Consider a standardized likelihood function with an 

unknown standard deviation and a known mean 8 for n observed 

values of x: 
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n (x.-6)2 
1 (a/x, 6) =Ka-nexp [ -k ~02 ] (49) 

where K is the normalizing constant. This equation can be 

evaluated using s2 defined as: 

and 

2 
1 (a/x, 6) =Ka-nexp [-~] . 

202 

This is not data translated. 

(50) 

(51) 

Now consider the 

transf armed variable: k=log a and dk=cr1da. Box and Tiao 

(1973) showed the resulting transformed distribution is data 

translated. Therefore the appropriate locally uniform 

distribution can be written as f(k)=constant, then this prior 

can be written as: 

I dkl C f(a) =f(k) - =-. 
da a 

(52) 

For an independent variable, the joint probability 

density function can be written as f((},a)=f(O)f(a). For a 

norrnal-garmna function, the appropriate noninforrnative priors 

for each marginal distribution can be written as f(O)=c1 and 

f(a)=c2/a. Therefore the joint probability can be written as 

f(O,a)=c/a for a~O and f(O,a)=O for a<O, where c incorporates 
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Posterior Distribution 

Based on the above Bayes Theorem, suppose that we have a 

model f (x, (}) which is used to siITn.llate the output (y1, .•• , yP) T 

as a function of inputs (x11 ••• ,Xm) and parameters (011 ••• , On), 

where T represents transposition. The observed model outputs 

can be expressed as: 

y=f (x, 8) +e (53) 

where c is the residual. 

Box and Tiao (1973) used independent and exponential

power distributions with zero mean to describe the stochastic 

nature of the residuals. According to them, the probability 

density function for each of these residuals can be expressed 

as: 

w ( n) e 2/ (l+Pl 
f ( e) = "' exp [ - c ( P ) I - I J 

0 0 
(54) 

where pis a parameter between -1 and 1 and w(PJ is defined 

as: 

w ( ) = 1r ( 1 . s ( 1 + p) ) J 112 

P ( 1 + p) rr ( o . s ( 1 + p) ) p12 

and c(P) is defined as: 

c{P) = [ r(1. 5 (l+P))] 1/(l+Pl. 
r(o.s(1+p)) 

(55) 

(56) 

The parameter pis a measure of kurtosis that describes the 
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non-no:r::mality of the observation data. '!he observation data 

have a no:r::mal distribution when /J=O, a double exponential 

distribution when /J=l, and a rectangular distribution when /J=-

1. 

Assuming prior independence between the vector of the 

model parameter and the standard deviation of the residuals, 

an appropriate noninfo:r::mative prior probability density 

function can be given as: 

p I ( 8 , 0 ) oc:1 / 0 . (57) 

By Bayes' 'Iheorem, the posterior probability density 

function is proportional to the product of the prior 

probability density function and the likelihood function: 

n 
p 11 (6 a/P e) oc:-1-exp [-c ( p) ~ I ei 121 (l+PJ) • (58) 

I I an+l ,f...,! a 
.1=1 

By integrating the above equation with respect to u, the 

distribution of 8 can be obtained as: 

n 
p"(8/P,e) oc[E lei12/(l+PlJ-n(l+P)/2, 

.1=1 

(59) 

In terms of obse:rved Yi, the probability density function of 

8 can be written as: 

n 2/ (1+Pl 
[L IYi-f(xi, 8) I ] -n(l+Pl/2 

P 11 (8/ p, y) =--1-~=-1-----------

f [L IYi-f(xi, 8) 12/(l+Pl] -n(1+P)/2d8 
i=l 
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The point estimate of 8 is taken as the mode of the posterior 

probability density function of 8 (the mode is the most 

frequently occurring value) and can be found by searching: 

n 

min [_E IYi-f (xi, 8) j2!<1 +PJ] • 
1=1 

(61) 

In this research, Yi was substituted by a measured 

concentration profile, f (xi, 8) was the simulated concentration 

profile produced by Baehr's model, and 8 represented the four 

parameters specified in Chapter III. /J was assumed to be zero 

which represents a normal distribution for residuals. 

We have so far considered only observations made from a 

single model response. However, contaminant transport models 

often produce several outputs. Incorporating more observed 

information into parameter estimation should help the problem 

become better posed. Suppose that the model produces m 

outputs and each output has n observations, then the residual 

between the model simulation and observation will be an n xm 

matrix. Assume that the error vector is distributed as the m

variate Normal .f4n ( 0, £) , where £ is the m x m covariance matrix 

of residuals . The joint distribution of the n vectors of 

n 
p(ejE,8) =Ilp(eulE,8), (62) 

u=l 

Expanding Equation 62 yields: 
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n 
p(e!E,e) = (21t) -mnl2 !El-nl2exp (- ~ _E eu1:E-1eu). (63) 

u=l 

Letting 

n 

sm) = [Sii mi, 6i)] = [_E euieuj] (64) 
u=l 

then the exponent in the previous equation can be expressed 

as: 

n m m 

L eu':E-1eu= trS m) :E-1 = _E _E aii5ii mi, 6i) (65) 
u=l .1=1 J=l 

where tr S (fJ J means the trace of the matrix S (fJ) . Given these 

observations, the likelihood function can be written as: 

1 m,Ejy) ocp(ejE, 6) ocjEj-nl2 exp [- ~ trE-1sm) l . (66) 

Now for the prior distribution of the parameters (fJ,[), 

assume that fJ and I are approximately independent so that 

p'm,E) ,;,,p'm)p 1 (E). (67) 

When taking fJ as locally uniform and applying Jeffreys' Rule 

for multiple parameters to the covariance matrix of the 

residuals I, 

p 1 m) occonstant (68) 

and 
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(69) 

Now the posterior joint probability density function is 

proportional to the product of the likelihood function and the 

prior joint probability density function. When integrating 

out[, the marginal distribution of O will simply be 

p (6 jy) DC Is (6) 1-n/2 (70) 

and the "most probable" value of O will be 

min1S(6) 1 · (71) 

Note that this is a general derivation for multiple model 

responses cases. When applied in this research, only two 

model responses were considered. Therefore, S(O) was a 2 x 2 

matrix, y represented the two sets of measured toluene gas 

concentration profiles at different times, n represented the 

number of data points involved in a concentration profile, and 

0 represented parameters specified in Chapter III. 

Parameter Estimation Procedure 

The foregoing part of this chapter has provided a method 

for solving parameter estimation problems. This section will 

present the procedure that applies the present methodologies 

to solve Equations 60 and 61 or 70 and 71. This will lead to 

the point estimates (the estimation of an optimal set of 

parameters) and the marginal distribution estimate. 
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The Point Estimates 

'Ihe point estimates can be obtained by using optimization 

techniques to solve Equation 61 or Equation 71. A vast number 

of optimization methods exist. There seems to be no answer to 

the question of which is the best strategy. 'Ihis research 

chose the simplex method over other methods because of 

simplicity. Moreover, for only a few variables, the simplex 

method is robust and reliable (Schwefel, 1981). 

Nelder and Mead (1964) developed the basic concept. A 

simplex has N+l vertices, where N is the number of parameters. 

For two variables, there will be three vertices arranged as an 

equilateral triangle. The objective function is evaluated at 

all the vertices. 'Ihe vertex with the largest objective 

function value is replaced by its reflection in the midpoint 

of the other vertices, or the expansion of the reflection, 

and/or the contraction of the reflection, depending on which 

is the best. 

'Ihe criterion for ending the search is to test whether 

the variance of the objective function values at the vertices 

of the simplex is less than a prescribed limit. 'Ihe following 

(X11 ••• , Xn+1) • 'Ihe 

steps describe how the algorithm works: 

(1) . Select initial vertices 

coordinates of each vertex are a set of n-dimensional 

parameters (x1i, ... ,~) . 

(2). Calculate objective function values for initial 

vertices. 
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(3). Determine the point corresponding to the largest 

value. 

(4). Find the center of mass of these points by 

n+l 

X, c=]:_ [ (°" X, .) -x. R] 
i, n +-! i,1 i, 

J=l 

(72) 

where xi, R is the rejected point and xi,c is the center of mass 

of the remaining points. 

(5). Determine the tentative new point to replace the 

rejected point by using 0=1 with 

x. N=x. R+ (1 +o:) (x. -x. R) 
l. 1 l. 1 l. 1 C 1, 

(73) 

where a equals 1 for regular simplex, 2 for expanding simplex, 

and 0.5 for contracting simplex. 

(6). Decide whether a different point using contraction 

or expansion should be obtained using the following criteria: 

a. Expanding simplex: if the tentative new point gives a 

value that is better than the current best value, then 

calculate a new point and its function value using this 

expansion equation ( a=2) . If the expanded point is 

better than the tentative point, then use the expanded 

point, otherwise, use the tentative point. 

b. Contracting simplex: if the tentative new point gives 

a value that is worse than the second worst point, then 

calculate a new point and its function value using the 

contraction equation (a=O. 5) . If the contracted point is 
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better than the tentative point, then use it, othe:rwise, 

use the tentative point. 

(7). Repeat steps (2) through (5) until the tolerance 

value is acceptable. 

'Ihe weak point of this method is that the fixed searching 

parameter a limits the advancement of the searching. Marsili

Libelli and castelli (1987) modified this method by making the 

searching parameter adaptive. 'Their modification enables the 

determination of a local minimum in the search direction each 

time an expansion is performed. . 'Ihis feature allows the 

algorithm to adapt the pattern search parameters to the 

particular shape of the objective function. 

Marsili-Libelli (1992) applied this modified method to 

parameter estimation of ecological models. His results proved 

that this method well fit cases where the minimum lies in a 

narrow trough in the parameter space. 'Ihis research employed 

the modified method to search for the optimal set of 

parameters. 

Marginal Distribution 

'Ihe other goal of parameter estimation is to obtain the 

marginal probability distribution for each parameter by 

integrating Equation 60 or Equation 70. 'Ihis research 

employed Monte carlo integration because of its simplicity and 

its ability to deal with nrultidimensional problems. 

'Ihe detailed theory can be found in Davis and Rabinowitz 
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(1975). Suppose we want to compute 

b 

I=J f(x) dx (74) 
a 

then the mean value of f(x) over the interval [a,b] is I/(b

a) . If we sample f (x) so that x is from a random uniform 

distribution, then the sample mean would be 

(75) 

Therefore, the sample mean f could be an approximation of the 

mean value I/(b-a), which leads to: 

b 

J b-a 
f (x) dx=~ [f(x1 ) +, , , +f (xn)] . (76) 

a 

The variance of this estimate is O (1/N) , where N is the sample 

size. Rubinstein (1981) described the weighted Monte carlo 

integration for variance reduction: 

1. Generate X11 •• • ,Xn from U(O, 1). 

2 . Arrange X1 , ••• , Xn in the increasing order. 

3. Estimate the integral by 

where Xa=O and ~+1 =1. 

(77) 

In two dimensional case, the variance of this estimation 

is O (1/N2) which gives a standard error of O (1/N). Therefore, 

in order to achieve the two significant figures of accuracy 
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(with a standard error less than 0.005), we need to sample x 

about 2500 times (with a standard error=l/2500=0.004). 

Assumptions The goal of parameter estimation is to get 

unbiased and consistent estimates. Since parameter estimation 

that relies on mathematical and statistical inferences 

requires assumptions, it is important to state and check 

assumptions carefully. If assumptions are violated, the 

estimated parameters and the predicted output are biased. 

The following assumptions are used in most parameter 

estimation methods: 

• Errors have zero mean. 

• Errors have a constant variance. 

• Errors are uncorrelated. 

• Errors are normally distributed. 

These assumptions are often violated in inverse problems. 

More serious difficulties arise due to violation of the 

constant variance and uncorrelated errors assumptions which 

of ten occur in practical problems. For instance, error 

variances are conmonly found to increase with the magnitude of 

the property being measured. Unequal error variances also 

result when the observation vector contains different types of 

measurement expressed in different units. 

If any assumptions are violated, the general procedure is 

to tra..i.~sform the. data so that the transformed data satisfy the 

assumptions. Corrmonly, transformation of data will overcome 

violations of the assumptions. However, non-constant variance 
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and non-normality cannot always be eliminated by 

transformations. Some cormnonly used techniques for data 

transformation include: 

• standardization, 

• ARMA model transformation to eliminate the 

autocorrelation, 

• reciprocal transformation, 

• power transformation, and 

• Logarithmic transformation. 

The last four transformations can often change the error 

properties in several aspects simultaneously, such as 

eliminating non-constant variance, and non-normal 

distribution. Another cormnonly used method for correcting the 

non-constant variance is the weighted least-squares method 

mentioned in Chapter II (Equation 9). 

Uncertainty Analysis Procedure 

Chapter II discussed the idea that the prediction of 

uncertainty ultimately relates to three basic sources: natural 

uncertainty, parameter uncertainty, and model structure 

uncertainty. In fact, to date, the evaluation of uncertainty 

has focused more on parameter uncertainty than on the other 

two sources. The estimation of model parameters is subject to 

greater errors when few measured data are available to form 

the estimates. Also, the perf orrnance measures are influenced 

more by some parameters than by others. Therefore, when we 
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quantify model uncertainty, we are looking at two aspects: 

1. Sensitivity analysis that studies each variable to 

understand its relative importance in the model. 

2. Joint uncertainty analysis that quantifies the 

uncertainty of model response influenced by the uncertainty of 

all parameters. 

Sensitivity analysis 

There are two ways to conduct sensitivity analyses. One 

basic approach is to introduce small perturbations in the 

various processes and parameters of the model and to study 

their relative effects on the output variable of interest. 

This method requires intensive corrputation for accurate 

calculation, however, it is sufficient for a rough analysis. 

The other method is to consider a sensitivity as a 

partial derivative, which represents the change in model 

prediction resulting from a change in a model parameter. If 

Y=f (X11 ••• , ~) , then the relation is: 

aY X-S- . i 

- axi Y (78) 

where Sis the sensitivity index of Ywith respect to change 

Determining the sensitivity of the variable Y to each of 

the input variables X1 , ••• , ~ at the point (x1 , ••• , ~) requires 

the calculation of n partial derivatives. Solute transport 

models are too complex to calculate the partial derivatives 
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directly. 

Usually, both deterministic and statistical approaches 

can be used to deal with this problem. Deterministic 

sensitivity analysis is a numerical estimate of the partial 

derivative of Y with respect to X1 at the point x11 ••• ,~. 

Statistical method evaluates the model at many points in the 

input space and then fits a response surface of the input 

variables to the output variables. 

The problem with deterministic sensitivity analysis is 

that it has difficulty dealing with correlated input variables 

(Doctor, 1989). Thus, this research will use the statistical 

method of partial regression techniques incorporated with a 

Monte Carlo simulation to complete the sensitivity analysis. 

The response surface can be represented bya linear model 

(Doctor, 1989): 

Y=a+E pixi+e (79) 

where pi is the partial regression coefficient which is the 

estimate of the sensitivity of Y to the input variable Xi. 

Equation 79 is a linear approximation to the nonlinear 

model. Following Tiscareno-Lopez et al (1993), it is assumed 

that "the linear model is able to assess unbiased estimates of 

sensitivity indices of model parameters of a complex nonlinear 

model when a large number of model simulations are perf armed. " 

This equation can be standardized as: 
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Y*=E P/X/+e (80) 

where Y*= (Y-Ym) /ay, X*= (X-Xm) /ax, Ym is the mean of Y, Xrrz is the 

mean of X, ay and ax are standard deviations of Y and X, and 

/J* is the standardized partial regression coefficient. The 

value of X can be simulated from the estimated probability 

distribution. 

For the standardized partial regression coefficients to 

be reasonable estimates of the sensitivity, the response 

surface must give an adequate representation of the function. 

For lack of a better test, this adequacy is measured by the 

multiple correlation coefficient, R2, defined as: 

(81) 

where T is the estimated value of Y*, Ym* is the mean of Y*. 

In a strict sense, R2 does not directly measure how precisely 

/J* can estimate S in Equation 78, but high values of R2 must 

imply a reasonable estimate. 

Uncertainty Analysis 

This research employed the Monte Carlo simulation method to 

accomplish uncertainty analysis. The procedure includes the 

following steps: 

1. Generate parameter samples from the estimated 

distribution achieved in the foregoing procedure. 

2. Run the transport model on these parameters to get a 
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sample of model outputs. 

3. Analyze the model output sample to obtain its 

distribution. 

4. Quantify its uncertainty by the coefficient of 

variation Cy- and other statistics. 

Generating parameters samples is always the critical step 

of the Monte Carlo sirrn.ilation method. If parameters are 

independent, the sample can be directly generated from the 

marginal pdf' s because the joint probability density function 

(pdf) of the parameters is simply the product of the 

uni variate pdf s. However, many model parameters are not 

independent which means that the joint pdf is not the product 

of the uni variate pdf' s. In this case, the generated 

parameter samples have to preserve the covariance. This 

research chose the procedure given by Haan (1977) which uses 

principle components to generate rrn.iltivariate normal parameter 

samples, along with empirical modification suggested by Taylor 

and Bender (1988). Chapter VI will explain this further. 
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CHAPTER V 

PARAMETER ESTIMATION RESULTS 

Preliminary Sensitivity Analysis 

'Ihe difficulty of parameter estimation is at least 

proportional to the number of parameters. The pw:pose of the 

preliminary sensitivity analysis is to qualitatively 

investigate the impact of each parameter on model output. 

Insensitive parameters should be excluded from the estimation 

process. The sensitivity analysis method described in Chapter 

IV was not used here ( Chapter VI will discuss the application 

of this method) . The qualitative method used here is to 

introduce small perturbations in a parameter of the model 

while fixing the others as constants to study its impact on 

the output variable. 

The volatile organic transport model (Baehr, 1987) used 

in this research produces two output variables: the 

concentration profile (the concentration distribution along 

the soil column at different times) and total mass that 

escaped from the soil surface during a certain time interval. 

The change in output corresponding to the change of each input 

parameter while keeping the others constant was investigated. 

Modeling conditions were described in Chapter III with nominal 
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parameter values listed in Table I. Results are compared for 

5 and 21 hours of volatilization to compare long and short 

term sensitivity. 

Figures 1 and 2 plot the simulated toluene gas phase 

concentration versus depth for five and 21 hours in the soil 

colurrm, with different water phase tortuosities (,1). The 

plots show that as the t~rtuosity in the water phase was 

changed from O .2 to 1 by increments of O . 2, the concentration 

profiles remained approximately the same. Likewise, Figures 

3 and 4 depict the effect of water phase tortuosity on the 

mass transfer out of column after five hours and 21 hours. 

Apparently, tortuosity in the water phase is not an 

important factor under the conditions of this research. This 

is due to the molecular diffusion coefficient in the water 

phase being ver:y small (1 x 10-5), relative to the vapor 

diffusion coefficient of O .1. Therefore, it is not necessar:y 

to include water phase tortuosity in the estimation process 

used here. 

Figures 5 and 6 show the concentration profiles after 

five hours and 21 hours with different tortuosities in the air 

phase (,g). Tortuosity in the air phase was increased from 

0 . 2 to 1 by increments of O. 2 . The toluene concentration 

shows dramatic corresponding change, especially at the bottom 

of the colurrm. Co'IT!Paring Figures 5 and 6, it appears that the 

concentration profile is more sensitive to air phase 

tortuosity later in the simulation. 
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Figures 7 and 8 plot the total toluene mass escaped from 

the column surface and the mass remaining in the column versus 

tortuosity in the air phase after five hours and 21 hours, 

respectively. Both plots show a significant sensitivity to 

air phase tortuosity. Again, the sensitivity to air 

tortuosity is greater in later hours. However, the 

sensitivity becomes smaller as air phase tortuosity reaches 

its higher range, which is consistent with the results of the 

concentration profiles. 

Figures 9 and 10 are the concentration profiles after 

five hours and 21 hours, respectively, with different values 

of Henry's constants (~). Unlike the effect of air phase 

tortuosity, the sensitivity increases with Henry's constant. 

On the other hand, the sensitivity is larger early in the 

sirm.1lation. Figures 11 and 12 plot the corresponding toluene 

mass escaped. Henry's constant is again sensitive in both 

cases and more so for the early time. 

Figures 13 through 16 demonstrate the concentration and 

mass changes corresponding to the change of the solid phase 

adsorption coefficient (Ka.) within the range of 0.2 to 1.0. 

Notice that, in Figures 15 and 16, the mass remaining in the 

column shows an increase as the adsorption coefficient is 

increased. On the contrary, Figures 13 and 14 show that the 

concentration profile decreases as the adsorption coefficient 

increases, which is due to plotting the gas phase 

concentration, and not the total concentration. When the 
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adsorption coefficient increased, the mass partitioned into 

the gas phase decreased, which reduced the gas phase 

concentration. Figures 13 and 14 illustrate that the 

concentration profile is more sensitive to the adsorption 

coefficient in early time. It is interesting that the 

adsorption coefficient in its lower range affects the 

concentration profile dramatically early, while it has little 

effect at later times. 

This analysis has shown that the tortuosity in air phase, 

Henry's constant, and the adsorption coefficient all have an 

important impact on model output. However, each parameter 

behaves differently in terms of time and its range. Air phase 

tortuosity is more sensitive in its lower range and at a later 

time. Henry's constant is more sensitive at its higher range 

and at an earlier time. The adsorption coefficient is more 

sensitive in its lower range and at an earlier time. 

To better demonstrate combined sensitivity, Figures 17 

through 21 present the total toluene mass escaping the colunm 

as a function of Henry's constant (Kh) and air phase 

tortuosity with the solid phase adsorption coefficient (~) 

held constant. Generally speaking, the accumulated mass that 

escaped increases as air tortuosity and Henry's constant 

increases and decreases as the adsorption coefficient 

increases. The interaction among these three parameters. 

affects model output as well. These five graphs (Figures 17 

through 21) show that Henry's constant has less impact on 
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model output with large tortuosity. In Figure 17, when air 

tortuosity is 0.1, the increase of Henry's constant by 0.8 

almost doubles the mass escaping. When air tortuosity is 1. O, 

the same increase of Henry's constant increases mass escaping 

by less than 10 percent. On the other hand, an increase of 

the adsorption coefficient reduces the impact of air 

tortuosity while it increases the impact of Henry's constant 

slightly. Curves in Figure 21 are flatter than in Figure 17, 

and the curve spread range is broader. Figures 18, 19, and 20 

show-an uniform transition between the extremes. Thus, while 

these are complex relations, they are well behaved. 

The Optimal Estimates of Parameters 

The Bayesian methodology described in Chapter rv combined 

with an adaptive simplex method was used here to find a set of 

optimal parameters for either Equation 61 or Equation 71. To 

verify the estimation procedure, hypothetical simulated data 

were used first to test the procedure, followed by the 

experimental data. As for the hypothetical data, model 

simulation results for given parameters were used as 

observations fed into the estimating algorithm. Parameters 

were taken from literature and experience. Henry's constant 

for toluene is 0.26 (Baehr, 1987), air phase tortuosity was 

calculated from the Millington and Quirk model (Brown and 

McWhorter, 1990) as 0.34, and the adsorption coefficient was 

taken from Yu (1995) as 0.43. 
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The simulated results fed into the Bayesian algorithm 

were corrupted with additive noise to better model real data. 

The noise was added by: 

(82) 

where Yi is the value fed into the Bayesian algorithm, ~ is 

the simulated result and e is an uncorrelated random noise 

sample drawn from a Gaussian distribution with zero mean and 

standard deviation a . Various values of a were used to study 

the effect of measurement error on parameter estimates. 

If parameters estimated by the algorithm are close to the 

given parameters within an acceptable tolerance, the algorithm 

is considered feasible. Before getting into an optimal 

search, it is necessary to study the characteristics of the 

objective function because of the apparent nonlinearity in 

model parameter structure. 

Objective Function Response Surface and Contours 

The volatile organic transport model employed in this 

research produces concentration profiles across the plume at 

different times. These outputs were used as observations in 

the objective function equations 61 and 71 described in 

chapter IV. 

Using One Concentration Profile Equation 61 was used 

here as the objective function to find optimal estimates for 

air phase tortuosity, Henry's law constant, and the adsorption 

coefficient. Figures 22 through 27 demonstrate the three-
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dimensional response surfaces and two-dimensional contours in 

two-parameter space with the third parameter fixed. The 

response surfaces show the objective function over the entire 

domain, while the contours are best suited for locating the 

minimum. 

It is apparent from the contour maps that the minima of 

the objective function fall within an optimal range and there 

are many local minima. For Hen:ry's constant and adsorption 

coefficient space, there are two optimal ranges. These 

characteristics reflect that the three parameters are 

correlated due to the model structure. Apparently, the data 

used in the objective function are not sufficient to overcome 

the interrelationship among parameters, therefore it is 

necessary to use more infonnation. 

Using Two Concentration Profiles Equation 71 was 

employed to bring in two concentration profiles at different 

times. Figures 28 through 33 show the resulting response 

surfaces and contour maps. The difficulty due to the 

correlation between air phase tortuosity and the adsorption 

coefficient has been reduced. Similarly, the situation for 

air phase tortuosi ty and Hen:ry' s constant has been improved by 

bringing in more infonnation. The global minimum exists 

within a narrow trough. However, Figure 33 shows that the 

correlation between the adsorption coefficient and Hen:ry' s 

constant has not been overcome because there are still many 

local minima. 
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The straight contour lines in Figure 33 reflect the 

linear relationship between Henry's constant and the 

adsorption coefficient. From the governing equation in 

Chapter III, we can see that the adsorption coefficient Ka. and 

Henry's constant~ form the coefficient additively: 

(83) 

Therefore, 

(84) 

~ is linearly related to Kh in the model formulation. 

This is more clear if the physical meaning of these two 

parameters is considered. Both parameters are phase 

partitioning coefficients. For a certain mass amount, the 

change in phase partitioning coefficients must offset one 

another to assure the same total mass. Therefore, these two 

parameters are not identifiable if both of them are considered 

uncertain. 

Chapter II discussed that reducing the dimensionality of 

the parameter field can overcome some identifiability problems 

associated with spatially varying parameters. Since Henry's 

constant is easier to measure than adsorption coefficient, it 

will not receive further consideration in this analysis and it 

will be set to its nominal value for the remaining analysis. 
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The Optimal Results 

The objective contour map plotted in Figure 29 shows that 

a global minirrn.im exists. However, due to the interaction 

between the two parameters, the objective function does 

exhibit elongated regions around the minimum. It is well 

known that many direct search methods perform poorly or fail 

altogether for this kind of situation. Therefore, an adaptive 

search algorithm based on the simplex search method of Nelder 

and Mead (1964) and modified by Marsili-Libelli and Caslelli 

(1987) was used here. Chapter IV described the theory of the 

search technique. The only constraints placed on the optimal 

parameters were that air tortuosity is less than unity and 

greater than zero and the adsorption coefficient is greater 

than zero. 

This analysis intends to emphasize how the error in 

observation measurement would affect the parameter estimation 

results. Fifteen sets of hypothetical observations were 

constructed with Equation 82, thus, adding noise with 

different standard deviations (a) to the sirrn.ilated data with 

given model parameters. Fifteen values of a were used from 

0 . 1 to O . 8 by an increment of O . 05 . Even for the same 

variance, different realizations of observations would have 

different results. Therefore, 15 randomly chosen realizations 

of observations were used for each noise variance. This 

implies that for each noise variance, there is a distribution 

of optimal parameters. 
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Figures 34 and 35 present the behavior of the estimated 

parameters as increasing noise is added to the simulated 

results. Clearly, as the noise variance increases, the mean 

of each estimated parameter tends to exhibit larger 

oscillations around the true values. The 95% confidence 

interval of the mean increases as well. When observation 

error is large, not only does the optimal estimate drift more 

from the true value, but the estimate itself is also less 

reliable. Such solution instability is not rare with inverse 

problems. Carrera and Neuman (1986) surmnarized several 

studies that used the hydraulic head data to estimate 

hydraulic conductivity. He stated that when the head data 

are corrupted by noise, the computed conductivity values 

exhibit uncontrolled spatial oscillations due to some 

"improperly posed" problems in the governing partial 

differential equations. He also suggested that smoothing 

observed head data can overcome this instability. Under the 

conditions specified in this research, Figures 34 and 35 

clearly show that when the standard deviation of the noise is 

less than 0.35 mg/1, the optimal estimates can be considered 

stable. This result could serve as a criterion to judge the 

quality of measured data. 

To provide a qualitative feel for this level of noise, 

Figures 36 and 37 plot the simulated results of two 

realizations with noise standard deviations of 0.3 and 0.4. 

Apparently, this range of measurement error is not too 
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difficult to achieve. In fact, many data measured in the lab 

could even be less noisy than this (Roll, 1995). 

Application to Experimental Data 

The procedure tested above is now applied to lab data 

described in Chapter III. The data were obtained by the 

experiment reported by Yu (1995) under the conditions listed 

previously. Figure 38 shows the concentration profiles 

measured at different times. Two profiles measured at 13 and 

21 -hours were chosen to construct the objective function 

(Equation 71) . All the data inputs are the same as those used 

in the above testing procedure. The search algorithm reached 

the optimal estimates of 0.42 for air phase tortuosity and 

O. 39 for the adsorption coefficient. These two optimal 

estimates were put back in the program to produce a new 

simulation. Figures 39 and 40 compare the simulated 

concentration profiles using estimated parameters and measured 

data. The simulated data fit lab data very well. Similar 

comparisons for lab data obtained at other times appear in 

Figures 41 through 45. Not too surprisingly, since these data 

were not used as the criteria of the optimal search, they did 

not fit as well as the data measured at 13 and 21 hours. 

One purpose of a point estimator for model parameters is 

to make judgements regarding the stochastic nature of the 

associated residuals (Edwards, 1988). Chapter III stated the 

least squares assumptions that this estimation algorithm must 
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meet to justify the results being unbiased and consistent 

optimal estimates. If the estimates obtained here result in 

residuals that violate those assumptions, Equation 72 cannot 

be used to estimate the joint probability density functions of 

the model parameters directly. A data transformation must be 

conducted first until those assumptions are satisfied. 

Figures 46 and 47 are the plots of concentration 

residuals at 13 and 21 hours. The residuals do not show any 

obvious trends or non-constant variance. Therefore, the 

necessary assumptions underlying the estimation procedure are 

considered to be satisfied and Equation 72 can be used to 

estimate the joint probability density function of model 

parameters. 

Marginal Distribution of Parameters 

We have obtained the optimal estimates for each model 

parameter. However, the algorithm considers each model 

parameter as a random variable that is best represented by a 

probability distribution. Therefore, the ultimate goal of the 

estimation algorithm developed in this research is to obtain 

the probability distribution for each model parameter. 

The marginal probability density function of a model 

parameter was obtained by integrating the joint probability 

distribution of parameters described by Equation 70, respect 

to other parameters. When the number of parameters involved 

in the joint probability is greater than 2, this integral is 
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multidimensional. Monte 

Chapter IV (Equation 77) 

Carlo integration described in 

was errployed here to deal with 

possible multidimensional integration. The simulation sarrple 

size N was chosen as 3000 to achieve the two significant 

figures of accuracy (with a standard error less than 0.005). 

To investigate how observed error would affect the 

estimation, the hypothetical observations described previously 

were used here first as well. Figures 48 and 49 depict the 

probability density function of air phase tortuosity for two 

groups of observation errors. Likewise, Figures 50 and 51 

depict the probability density function of the adsorption 

coefficient for two groups of observation errors. These 

Figures clearly show that as the uncertainty in observations 

increases, the uncertainty in parameter estimation increases. 

In a more explicit way, Figures 52 and 53 depict the 

relationship of the half height width of each distribution, 

the mode, and the observation error. The half height width is 

the width of the distribution at one half the maximum height. 

As the standard deviation of observation error increases from 

O. 05 to O. 55, the half height width of the distribution 

increased from 0.011 to 0.101 for air tortuosity. For the 

adsorption coefficient, the half height width increases from 

0.0195 to 0.185. The mode also showed an increasing tendency 

departing from the true value. 

Table II and Table III summarize the detail statistics of 

each distribution for air tortuosity and the adsorption 
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coefficient respectively. Table II shows that the standard 

deviation of estimated air tortuosity distribution increases 

from 0.00429 to 0.047 while the standard deviation of 

observation error increases from 0.05 to 0.55. 

Table II 

Statistics of Estimated Air Tortuosity for Synthetic Data 

Synthetic Mean Mode Standard Skewness Kurtoisis 

Data Error Deviation 

0.05 0.339 0.34 0.00429 -0.659 6.78 

0.1 0.332 0.33 0.00837 -0.441 3.93 

0.15 0.334 0.34 0.01 -0.230 3.58 

0.2 0.343 0.34 0.013 -0.247 3.54 

0.25 0.313 0.32 0.022 -0.492 3.46 

0.3 0.339 0.34 0.020 -0.268 4.47 

0.35 0.339 0.34 0.022 -0.408 3.61 

0.4 0.342 0.35 0.027 -0.524 3.68 

0.45 0.288 0.29 0.037 -0.255 2.87 

0.5 0.336 0.34 0.042 -0.094 2.98 

0.55 0.358 0.37 0.047 -0.536 3.66 
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Similarly, Table III shows that the standard deviation of 

the estimated adsorption coefficient increases from 0.011 to 

0.084. 

Table III 

Statistics of Estimated Adsorption Coefficient 

for Synthetic Data 

Synthetic Mean Mode Standard Skewness Kurtoisis 

Data Error Deviation 

0.05 0.436 0.43 0.011 0.496 5 .14 

0.1 0.446 0.45 0.017 0.304 3.75 

0.15 0.44 0.44 0.02 0.126 3.55 

0.2 0.423 0.42 0.03 0.103 3.52 

0.25 0.471 0.47 0.038 
0 

0.127 3.17 

0.3 0.399 0.39 0.042 0.46 4.1 

0.35 0.42 0.42 0.048 0.175 3.44 

0.4 0.424 0.42 0.051 0.218 3.38 

0.45 0.499 0.5 0.069 -0.114 3.0 

0.5 0.518 0.52 0.069 -0.165 3.3 

0.55 0.43 0.42 0.084 0.378 3.52 
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The measured data were then used. Figures 54 and 55 

illustrate the marginal probability distribution for air 

tortuosity and the adsorption coefficient respectively, based 

on lab data. Table IV summarizes the statistics of model 

parameters estimated from measured data. The covariance of 

the two parameters then was determined by integrating their 

joint probability density function P(8/Y) described by 

Equation 70. Since 8 here is a vector of these two 

parameters, P(8/Y) can be written as P(81 ,82 /Y), thus the 

covariance between these two parameters can be calculated by 

where 81 and 82 represent air tortuosity and the adsorption 

coefficient, respectively, µ1 is the mean of 811 µ2 is the mean 

of 82 , and Y represents the two sets of measured toluene gas 

concentration profiles. The correlation coefficient listed in 

Table IV was derived from the covariance and standard 

deviation of each parameter. 
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Table IV 

Statistics of Estimated Parameters for Lab Data 

Statistics 

Mean 

Mode 

Standard Deviation 

Skewness 

Kurtosis 

Coeffcient of 
Variation 

Correlation 

Air Tortuosity 

0.417 

0.42 

0.014 

-0.498 

4.21 

0.033 

80 

-0.707 

Adsorption 

Coefficient 

0.392 

0.39 

0.039 

0.275 

3.67 

0.1 



CHAPTER VI 

UNCERTAINI'Y ANALYSIS RESULTS 

'Til.is chapter applies the Monte carlo sirrru.lation described 

in Chapter III to study the uncertainty of model prediction 

caused by the uncertainty of model parameter. Two questions 

will be addressed: 1) What significant effect does a model 

parameter have on model output and what is their relative 

importance? 2) What relationship exists between the 

distributions of model input and output? 

Data Sampling From the Estimated Distribution 

Chapter V has provided the marginal probability 

distribution for each model parameter. However, in 

uncertainty analysis we need to use actual parameter values 

drawn from their distribution. 'Til.e following paragraphs will 

present the sampling process and assess the quality of the 

sampled data. 

'Til.e results in Chapter V showed that the correlation 

coefficient between air tortuosity and the adsorption 

coefficient is -0. 707. 'Til.erefore, these two parameters cannot 

be considered independent. 'Til.e generated data should preserve 

the means, variances, covariance, and correlations between 
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these two parameters. Haan (1977) described a procedure which 

uses principal components to generate a multivariate normal 

distribution. Figures 56 and 57 show the comparisons of 

distributions of the two estimated parameters and normal 

distribution. Apparently, they are not exactly normal 

distributions because their kurtosises are greater tban 3 

which is the kurtosis of a normal distribution. Air 

tortuosity especially, has a relatively greater probability 

concentration near the mean tban does the normal distribution. 

So the adjusted procedure includes the following steps (Taylor 

and Bender, 1988): 

1. Use the means, variances, and correlation matrix to 

generate a multivariate normally distributed data X 

according to the procedure given by Haan (1977). 

2. calculate the cumulative probability level for data 

X. 

3. For each data value of X, use its probability level 

as a reference and apply it in the distribution estimated 

from lab data to get Y with the same probability level. 

Y is then the data generated from the estimated 

distribution. 

10,000 samples were generated for each parameter using 

this method. They were analyzed again to see if they preserve 

the means, variances and covariance of the population. All 

parameter statistics were matched within 0.1%. 
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Sensitivity Analysis 

This section will answer the first question posed at the 

beginning of this chapter. A statistical sensitivity analysis 

described in Chapter III was perfonned to rank model 

parameters in tenns of their contribution to overall error in 

model predictions. 

The 10,000 samples of each parameter generated from the 

preceding paragraphs were put back in the volatile organic 

transport model to produce a corresponding model output, the 

total toluene mass escaping the colunm. In fact, by testing, 

a sample size around 3000 is enough to produce stable results. 

A multiple linear regression analysis was then perfonned using 

the standardized parameter samples and model output. If the 

response surface approximation is sufficiently close to the 

model over the region of interest evaluated by sufficiently 

large R2 , standardized partial regression coefficients can be 

used as estimates of sensitivity. 

It has been established that there is interaction between 

the two model parameters ( { g and ~) , which this research has 

been studying. Doctor (1989) recorrmended the use of a step

wise regression procedure to deal with mutually dependent 

input variables. Step-wise regression approximates the model 

output by sequentially adding or deleting variables to the 

response surface until adding more variables cannot improve 

the R2 criterion substantially. 

Since there are only two parameters involved, the first 
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step conducted the regression by including either parameter, 

while the second step included both parameters. Table V 

summarizes the regression results. When the regression 

includes air tortuosity alone, its R2 is O. 74 while the 

standardized regression coefficient is 0.86. When the 

adsorption coefficient was included alone, R2 is 0.93 and the 

regression coefficient is -0. 96. When air tortuosity and the 

adsorption coefficient were both included in the regression, 

R2 is 0.999, while the partial regression coefficient is 0.37 

for air tortuosity, and -0.71 for the adsorption coefficient. 

Table V 

Results of Step-wise Regression on Ranks 

Variables Included 

Air Tortuosity 

Adsorption Coeff. 

Air Tortuosity & 

Adsorption Coeff. 

Standardized 

Regression 

Coefficient 

0.86 

-0.96 

0.37 

-0.71 

0.74 

0.93 

0.999 

Including two parameters in the regression apparently 

does improve the R2 criterion. A sufficiently large R2 also 

demonstrates that the partial regression coefficients are 

reasonable estimates of the sensitivity index. 
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These results clearly showed that the adso:r:ption 

coefficient has the greatest effect on the total mass leaving 

the column. Therefore, the uncertainty in the adso:r:ption 

coefficient would contribute more to model output uncertainty 

than the uncertainty in air tortuosity. 

the adso:r:ption coefficient is almost 

The sensitivity of 

twice that of air 

tortuosity's sensitivity index. Specifically, one standard 

deviation change in the adso:r:ption coefficient will lead to a 

0.71 standard deviation change in the model prediction. The 

same degree of change in air tortuosity will lead to a 0.37 

standard deviation change in the model prediction. 

Notice that the sensitivity index of the adso:r:ption 

coefficient appears with a negative sign. A positive index 

means that an increase in the input variable increases the 

predicted model variable in proportion to the sensitivity 

index. A negative index means that an increase in the input 

variable decreases the model prediction in proportion to the 

index. 

These differences will be more apparent when considering 

the physical meanings of these parameters and the model 

predictions. The model prediction here is the total mass 

escaped from the column to the atmosphere. Soil with a larger 

adsorption coefficient will retain more organic compound in 

the column. Similarly, when air tortuosity increases, the 

effective diffusion coefficient increases, which speeds up the 

diffusive transport process making the organic compound leave 
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the column faster. 

Uncertainty Analysis 

This section answers the second question posed at the 

beginning of this chapter. The Monte Carlo simulation method 

described in Chapter III was employed to provide information 

on the variability in model output as a function of 

uncertainty in the input variables. In other words, the 

volatile organic model was evaluated at a large number of 

points in the input parameter space. An empirical pdf for the 

output variable was constructed from the results. 

As described in the sensitivity analysis, the volatile 

organic transport model was run on the generated 10, 000 

parameter samples. The total mass leaving the column at 21 

hours serves as the output for the uncertainty calculations. 

Figure 58 shows the probability distribution of model output 

due to parameter variability. The squares represent the 

distribution of model output, and the solid line is normal 

distribution. It appears that the normal distribution 

describes the distribution of model output well. 

Table VI summarizes statistics of the empirical 

distribution. The minimum value of model output is 439 mg and 

the maximum value is 616 mg, which gives a range of 177 mg. 

The mean is 563 mg and the standard deviation is 24 mg. The 

95% confidence interval of the mean is 1.50, which indicates 

the probability is 95% that the interval 525 to 528 contains 

86 



the mean. 

Uncertainty is usually characterized by the coefficient 

of variation ( Cv) which measures the dispersion. Cv is the 

standard deviation divided by the mean. In Table IV, the 

coefficient of variation for parameter air tortuosity is O. 033 

and for the adsor.ption coefficient is O .1. Table VI shows 

the coefficient of variation for model output is 0.05. One 

can discern from these results that with a known range of 

model parameters, a specific range for model output can be 

expected. 

Table VI 

Properties of Total Mass Leaving Column at 21 Hours 

Due to Model Parameter Uncertainty 

Total Mass Leaving Column (mg) 

Mean 

Standard Deviation 

Minimum 

Maximum 

Skewness 

Kurtosis 

Confidence Interval 

Coeff. of Variation (Cv) 

Number of Cases 

87 

527 

24 

439 

616 

-0.034 

3.30 

1.50 

0.05 
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However, it would be more conclusive to quantify how the 

change of parameters' uncertainties would affect the 

uncertainty of model output. A simple way to quantify the 

relationship between parameter uncertainty and model output 

uncertainty is to run the transport model on more parameter 

profiles. These parameter profiles will have the same mean 

but different standard deviations. 

Standard deviations were chosen so that the Cv varies 

between 0.1 and 0.6. As the standard deviation increases, 

negative numbers occur in the generated parameter profiles. 

Since the negative sign contradicts the physical meaning of 

model parameters, the insignificant tails of parameter 

distributions were cut off to assure positive numbers for 

parameter profiles. However, when standard deviation is large 

enough, negative occurrences increase effectively and the tail 

becomes significant, which is why the Cv was chosen under O. 6. 

The transport model was run on these new parameter 

profiles. Figures 59 through 68 show the probability 

distributions of new parameter profiles and corresponding 

model output resulting from these new runs. Since the same 

standard deviations were used to generate both air phase 

tortuosity and the adsorption coefficient, distributions of 

these two parameters look very much the same except the 

location of the mean. Thus only distributions of air phase 

tortuosity were plotted. As the coefficients of variation of 

model parameters increase, the probability distribution of 
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model output 

uncertainty. 

variation of 

disperses as well, which shows increasing 

Table VII surrrnarizes the coefficient of 

model output and corresponding ~ of the 

parameters . As the ~ of the parameter increases f ram O • 1 to 

0.6, the model output's~ increases from 0.037 to 0.293. 

Figure 69 illustrates this relationship. The solid line 

represents the corresponding regression equation: 

(86) 

where M~ is the coefficient of variation for model output, P~ 

is the coefficient of variation for model parameters. P~ is 

the combined factor for both air phase tortuosity and the 

adsorption coefficient. Figure 69 shows the regression line 

fits the calculated data very well with a R2 of the regression 

of 0.986. 
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Table VII 

Impact of Model Parameter Uncertainty 

on the Uncertainty Of Model Output 

Cv of Model Parameters 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

90 

Cv of Model Output 

0.037 

0.111 

0.172 

0.230 

0.268 

0.293 



Chapter VII 

SUMVIARY AND CONCLUSIONS 

Summary 

From the dawn of the industrial revolution, pollution has 

been an increasingly major environmental concern. Water 

pollution is especially disastrous not only because of health 

factors but also because contaminants in water can easily 

migrate to surrounding areas. Cleaning up water pollutants 

can be a very difficult and costly task. This is particularly 

true when concerning ground water pollution because of its 

proximity. Therefore, it is very beneficial for decision 

makers to have scientific suggestions in order to identify 

areas of high concentrations and movement of pollutants so 

that water can be pumped out for treatment or insitu 

remediations can be implemented. This is where the importance 

of volatile organic transport modeling can be clearly seen, 

because mathematical modeling is an importciilt tool for 

predicting the fate and movement of pollutants in ground 

water. 

Volatile organic transport models often involves many 

parameters controlling various transport and phase 

transferring processes. Apparently, the usefulness of a model 
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depends on the precision of its predictions about contaminant 

movement and the confidence of this precision. The precision 

of model predictions depends· on the ability to determine model 

parameters precisely. The confidence depends on the ability 

to quantify model uncertainty. However, since volatile 

organic transport in subsurface water is a complex multiphase 

phenomenon, attention has been focused on understanding its 

transport processes by establishing mathematical models, thus 

leaving plenty of room for researchers to investigate model 

application. It was my intention to explore this area by 

studying model parameter estimation and model uncertainty 

quantification. 

A multiphase compositional organic transport model 

(Equations 28 to 33) developed by Baehr (1987) was used in 

this research. Of the many parameters involved in this model, 

four coefficients that control major transport and phase 

transferring processes were of interest. They included air 

phase tortuosity ((g), water phase tortuosity ((1), Henry's 

constant (~), and the adsorption coefficient (I<;;i) • These 

parameters are lumped together in the model to form two other 

parameters (a and b). The distributive nature of these 

parameters along with the lumping make them very difficult to 

estimate from experimental data. Moreover, because they are 

lumped together, the change in one parameter can be offseted 

by the change in another parameter. Estimation would be even 

less reliable when measurement errors are introduced. 
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Therefore, methodologies which can estimate these parameters 

and quantify the accuracy of model predictions are in need in 

order to make models such as this useful. 

A systematic methodology which employs well established 

mathematical techniques has been developed to achieve this 

goal. The purpose of this methodology is to first determine 

each model parameter's optimal estimate along with its 

probability distribution, and then quantify the uncertainty of 

model predictions due to the errors in parameter estimation, 

using the estimated parameter distributions. 

A typical procedure for estimating a parameter is to 

collect field or laboratory data and then analyze the error 

between that data and model outputs under certain values of 

the required parameters, so that the desired parameter 

minimizes the error. This research used lab data measured by 

Yu (1995), which included toluene vapor concentration profiles 

cross the column at different times as the gas escaped from 

the top. 

The first part of this methodology, parameter estimation 

algorithm employed Bayesian statistical inferences to 

accomplish two tasks. First, it has provided the optimal 

estimates for each parameter which minimizes the errors 

between model outputs and observed data, using the modified 

adaptive simplex method. For example, it was found in Chapter 

V that under the experimental condition used in this research, 

the optimal estimate of air tortuosity is O. 42, and the 
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optimal estimate of the adsorption coefficient is O. 39. These 

estimates can then be used in this model to predict the 

movement of contaminants when applied to other similar cases. 

'secondly, this algorithm has produced a probability 

distribution for each parameter, which reflects reality more 

than the optimal estimates alone. With this probability 

distribution, we can tell the mean, the standard deviation, 

and the possible range of a parameter. For exarrple, we can 

say, from Table rJ in Chapter V, that under the experimental 

condition used in this research, the mean of air phase 

tortuosity estimate is 0.42 with a standard deviation of 0.01 

which tells how confident this estimate is. Likewise, the 

mean of the adsorption coefficient estimate is 0.39 with a 

standard deviation of O . 04 . The marginal distribution of each 

parameter was obtained by integrating the joint distribution 

of these two parameters using Monte Carlo integration. This 

method was used because of its sirrplicity. 

Along with these estimates, several relevant concerns 

have been addressed, such as reducing dimensionality of 

parameter space, evaluating the effect of observed data on the 

behavior of objective function, and quantifying the 

uncertainty of parameter estimation induced by errors in 

observed data. The first concern needs to be addressed 

because high dimensional parameter space increases the chance 

of ill-posedness as well as the difficulty of corrputation. 

The other two concerns were addressed because they serve as a 
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guide to experiment about how much infonnation is sufficient 

and what quality the measured data should meet, in order to 

get meaningful parameter estimates. 

A preliminary sensitivity analysis was conducted to 

describe the impact that the change of each parameter had on 

model outputs. It was found that water phase tortuosity had 

little impact on model outputs, thus it was excluded from the 

estimation process to reduce dimensional difficulty. 

The question about how much observed data are sufficient 

to construct a well behaved objective function has been 

addressed by analyzing the characteristics of error function 

using both single (one set of measured toluene gas 

concentration profile) and two model outputs (two sets of 

measured toluene gas concentration profiles). When single 

model output was used, the error contours plotted on every 

two-parameter space show valleys containing many local minima 

which indicate high correlation among the parameters. 

Therefore, infonnation brought in the analysis was not 

sufficient to identify the optimal parameter. 

When two model outputs were used, the contour map for air 

phase tortuosity and the adsorption coefficient shows a global 

minimum which means the correlation between air phase 

tortuosity and the adsorption coefficient was reduced by 

bringing in the second set of measured data. However, Henry's 

constant and the adsorption coefficient remained correlated. 

This is because these two parameters are negatively correlated 
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due to their physical definition. Since the adsorption 

coefficient is more uncertain and harder to measure than 

Heru:y' s constant, this research eliminated Heru:y' s constant to 

reduce correlation difficulty, leaving two parameters for 

further analysis. 

To find out how experimental error would affect parameter 

estimation, hypothetical data with different error standard 

deviation were used. It was then discovered when the error 

standard deviation in observed data was less than 0.35 rng/1, 

parameter estimates are stable and reliable. This result 

serves as a guide to analyze and decide if lab data are 

usable. 

The second part of the methodology developed in this · 

research (i.e. uncertainty analysis algorithm) has 

accomplished two tasks as well. First, through sensitivity 

analysis, it was found that the sensitivity coefficients of 

the adsorption coefficient and air phase tortuosity are 0.7 

and O . 3 respectively. These numbers indicate that the 

adsorption coefficient has more effect on model outputs than 

air phase tortuosity does. Such a result can help a modeler 

to pay more attention to the more sensitive parameter when he 

does modeling. Secondly, through joint uncertainty analysis, 

this algorithm produced an empirical probability distribution 

corresponding to the parameter distributions estimated 

earlier. For example, when the standard deviations of the 

estimated adsorption coefficient and air phase tortuosity are 
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0.01 and 0.04 respectively, the standard deviation of model 

prediction is 24 mg. Further more, it provides a linear 

regression equation (Equation 69 in Chapter VI) to quantify 

the relationship between model prediction uncertciinty and 

parameter uncertainty. 

Specifically, 10, 000 sarrples for each parameter were 

generated from the estimated marginal distributions and were 

put back in the transport model to produce corresponding model 

outputs. Parameter sensitivity analysis was conducted by 

performing a rrnrltiple linear regression using these generated 

parameter sarrples as independent variables and produced model 

outputs as dependent variables. The regression coefficients 

of this rrnrltiple linear regression approximate sensitivity 

index of parameters. An errpirical probability distribution of 

model outputs obtained from these generated parameter sarrples 

was analyzed to quantify its uncertainty (Cv) due to model 

parameter uncertainty. Parameters were resarrpled from the 

hypothetical distribution with different Cv's to quantify the 

relationship between parameter uncertainty and model output 

uncertainty. 

Conclusions 

Of the four parameters studied, water phase tortuosity 

was found insensitive to model output because of the small 

molecular diffusion coefficient. The other three parameters 

were highly interactive because of the way the model was 
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structured. The numerical difficulty induced by parameter 

interaction could be reduced to some extent by bringing in 

more information, such as using two model outputs. 

Errors in observed data affect the accuracy of parameter 

estimation significantly. For the point estimates, the 

increasing variance of observation error tends to cause the 

optimal estimates to drift more from the true value, and the 

confidence interval to increase. It was concluded that when 

the standard deviation of observation error was less than O. 35 

mg/1-, the estimated results could be considered reliable. 

However, an interesting point is that we can only refer to a 

tendency here, because different realization of data will 

result in different accuracy. It is possible that 

observations with a larger error variance will result in a 

more accurate estimation. On the other hand, the marginal 

distributions of parameters demonstrated a steadily increasing 

variance which directly corresponds with the variance of 

observation error. Different realization of data affects the 

mode of the distribution but not the variance of the 

distribution. 

Sensitivity analysis showed that the model output is more 

sensitive to the parameter controlling the adsorption process 

than to the parameter controlling the diffusion process. 

Uncertainty analysis showed that the model output distributes 

normally when the estimated parameter distribution was used. 

Surprisingly, its uncertainty is less than the parameters' 
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uncertainty which is quantified by. Cv. Finally, A linear 

relationship between parameter uncertainty and model output 

uncertainty was quantified. 

Recommendations for Further Studies 

This research is the first study for parameter estimation 

and uncertainty quantification in volatile organic transport 

modeling. The modeling conditions were simplified to keep 

consistent with experimental conditions being carried out by 

others . The fallowing are suggestions for future 

investigation: 

1. Only one multiphase organic transport model was used in 

this study. Therefore, the results of this study might be 

model specific. Similar studies conducted for other models 

will still be meaningful. Subsurface multiphase contaminant 

transport is such a complex . phenomenon that it is not 

realistic to expect a numerical model to represent its every 

attribute. If several models which favor different driving 

forces are available, the methodology developed in this 

research can be applied to them to show how model parameters 

behave under different circumstances. 

2. More complicated conditions could be included, such as two 

dimensional flow, transient water flow, and gas advection. Of 

particular interest in terms of gas advection would be the 

analysis of conditions when vapor and liquid transport were 

equal in magnitude. 
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3 . This study emphasized the impact of model parameter 

uncertainty on model prediction uncertainty, not a validation 

of the transport model. Verifying model predictions with 

experimental data could be an interesting topic. The exact 

form of the vapor tortuosity coefficient for both very dry and 

almost saturated soil deserves additional consideration. 

4. Since parameter estimation process repeatedly uses the 

numerical transport model, the time efficiency of the 

numerical model is critical to the time efficiency of 

parameter estimation. Therefore, improvement on this aspect 

is worth mentioning~ 
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Figure 30. Objective function response surface in air 
phase tortuosity (~g) and Henry's 
constant (Kh) space using two model 
outputs (adsorption coefficient set to 
0 . 43) . 
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C************************************************************* 
C* This program searches the minirrn.lffi using modified * 
C* adaptive Simplex method * 
C*-----------------------------------------------------------* 
C* Function of Subroutines * 
C* * 
C* Subroutine Baehr: * 
C* This is the multiphase compositional model developed by* 
C* Baehr (1987). All the inputs this model requires are * 
C* contained in this subroutine except parameters to be * 
C* estimated, which are wired in from the main program. * 
C* The computation of objective function was added to this* 
C* subroutine and the result was fed back to the main * 
C* program. * 
~ * 
C* Subroutine Expansion: * 
C* This subroutine was designed to expand a simplex until * 
C* the local minirrn.lffi has been reached. * 
~ * 
C* Subroutine GRN: * 
C* This subroutine generates random numbers from N(O, 1) * 
C* (Zhang, 1990) * 
C*-----------------------------------------------------------* 
C* Definition of Variables * 
~ * 
C* NHZ: Number of data points in a concentration profiles* 
C* NP Number of parameters * 
C* MP Number of simplex vertices (MP=NP+l) * 
C* PRMI': Parameter value at each vertex * 
C* YSO : Measured data * 
C* EE : Objective function value * 
C* FI'OL: Error tolerance standard * 
C* RTOL: Relative error tolerance * 
C* I'IMAX:Maxirrn.lffi number of iterations * 
C************************************************************* 

PARAMETER (NHZ=l 7, NP=2, MP=3, NMAX=6) 
COJ.VllV.ION/SIMP/PRMI'(3),YS,EE 
COMMON/EXPA/PR,PCEN,ALPHA,DELTA,NDIM,S,P,YPR,IHI 
COJ.VllV.ION/NORM/ZN 
DIMENSION p (NP,MP) I y (MP) I PR(NMAX) 'PRR(NMAX) 'PCEN(NMAX)' 

* YS(NHZ,2),PO(NP,MP) 
DIMENSION S (2), YSO (NHZ, 2), ZN(200), SIGMA(lOO) 
DATA FI'OL,I'IMAX,ALPHA,BETA/1.0E-10,100,1.0,0.5/ 
OPEN (UNIT=S' FILE= I START. DAT I ) 

C*****This file contains starting points for each vertex. 
OPEN(UNIT=6, FILE=' SIGMA.DAT') 

C*****This file contains standard deviation in observations. 
OPEN(UNIT=7,FILE='0PTIM.DAT') 

C*****This file contains the optimal estimates. 
OPEN(UNIT=8,FILE='0BS.DAT') 

C*****This file contains measured data. 
read(S,*) DELTA, ((pO(ii,jj),II=l,NP),JJ=l,MP) 
read(8, *) ( (ysO (iz,j), IZ=l,NHZ) ,J=l,2) 
WRI1E(*,*) 'TYPE IN THE NUMBER OF DIFFERENT S'ID' 
READ(*,*)NSl 
WRITE(*,*) 'TYPE IN THE SAMPLE SIZE' 
READ(*,*)NS2 
READ(6,*) (SIGMA(I),I=l,NSl) 
DO 111 KK=l,NSl 
WRITE (7, *) 'SIGMA=', SIGMA(KK) 
DO 111 KJ=l,NS2 
WRITE ( *' *) I SAMPLE= I 'KJ' I SIGMA= I ' SIGMA (KK) 
CALL GRN (NHZ) 
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C*****Corrupt measured data with noise 
DO 223 J=l, 2 
DO 224 IZ=l,NHZ 
IZJ=IZ+(J-l)*NHZ 
YS(IZ,J)=YSO(IZ,J)+SIGMA(KK)*ZN"(IZJ) 

224 CONTINUE 
223 CONTINUE 

DO 323 I=l,MP 
DO 323 J=l,NP 
P (J, I) =PO (J, I) 

323 CONTINUE 
NDIM:::::NP 

C*****Run transport model on starting points 
DO 122 I=l,MP 
DO 121 J=l,NP 
PRMI' (J) =P (J, I) 

121 CONTINUE 
CALL BAEHR 
Y(I)=EE 

122 CONTINUE 
MPTS=NDIM+l 
I1ER=0 
IL0=1 
write(*,*) 'iter=',iter 
write(7,*) 'iteration=',iter 

1 
C 
C 
C 
C 
C 
C 
C 
C 

WRI1E(7,' (/lX,A) ') 'Vertices of final 2-D simplex and' 
WRI1E (7, ' (lX,A) ') 'objective values at the vertices:' 
WRI1E(7, '(/3X,A,Tll,A,T23,A,T35,A/) ') '!', 

* I CA I , I HAW I , I OBJECTIVE I 
DO 313 I=l,MP 

C 313 
WRI1E(*,' (1X,I3,4Fl5.5) ') I, (P(J,I) ,J=l,NP) ,Y(I) 

CONTINUE 

C*****Find the vertex with the worst objective function value 
iF(Y(l) .GT.Y(2))THEN . 

IHI=l 
INHI=2 

ELSE 
IHI=2 
INHI=l 

.ENDIF 
DO 11 I=l,MPTS 
IF(Y(I) .LT.Y(ILO)) ILO=I 
IF(Y(I) .GT.Y(IHI))THEN 

INHI=IHI 
IHI=! 

ELSE IF(Y(I) .GT.Y(INHI))THEN 
IF(I.NE.IHI) INHI=I 

ENDIF 
11 CONTINUE 

C*****Calculate the relative error 
RTOL=2.*ABS(Y(IHI)-Y(IL0))/(ABS(Y(IHI))+ABS(Y(ILO))) 
IF(RTOL.LT.FTOL)GOTO 999 
IF(I1ER.EQ.I'IMAX) goto 999. 
I1ER=I1ER+l 
DO 12 J=l,NDIM 
PCEN(J) =0. 

12 CONTINUE 
C*****Calculate the coordinates of the simplex mass center 

DO 14 I=l,MPTS 
IF(I.NE.IHI)THEN 

DO 13 J=l,NDIM 
PCEN(J)=PCEN(J)+P(J,I) 
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13 CONTINUE 
ENDIF 

14 CONTINUE 
C*****calculate the reflection point of the worst vertex and nm transport 
C*****model on the new sinplex 

DO 15 J=l,NDIM 
PCEN(J)=PCEN(J)/NDIM 
PR(J)=PCEN(J)+ALPHA*(PCEN(J)-P(J,IHI)) 
if (pr(j) .lE.0.0) pr(j)=l.OE-5 
PRMT (J) =PR (J) 

15 CONTINUE 
CALL BAEHR 
YPR=EE 

C*****If the reflection point gets the best objective function value, 
C*****search along this direction until a local minmum is reached. 

IF(YPR.LE.Y(ILO))T.HEN 
CALL EXPANSION 
DO 18 J=l,NDIM 
P(J,IHI)=S(J) 

18 CONTINUE 
Y(IHI)=YPR 

C*****If the reflection point results in worse objective function value, 
C*****contract the sinplex. 

ELSE IF(YPR.GE.Y(INHI))T.HEN 
IF(YPR.LT.Y(IHI))T.HEN 

DO 19 J=l,NDIM 
P(J,IHI)=PR(J) 

19 CONTINUE 
Y(IHI)=YPR 

ENDIF 
DO 21 J=l,NDIM 
PRR(J)=BETA*P(J,IHI)+(l.-BETA)*PCEN(J) 
if(prr(j) .lE.0.0) prr(j)=l.OE-5 
PRMT(J)=PRR(J) 

21 CONTINUE 
CALL BAEHR 
YPRR=EE 
IF(YPRR.LT.Y(IHI))THEN 

DO 22 J=l,NDIM 
P(J,IHI)=PRR(J) 

22 CONTINUE 
Y(IHI)=YPRR 

ELSE 
DO 24 I=l,MPTS 
IF (I.NE . ILO) T.HEN 

DO 23 J=l,NDIM 
PR(J)~0.5*(P(J,I)+P(J,ILO)) 
If(pr(j) .lE.0.0) pr(j)=l.OE-5 
PRMT (J) =PR (J) 
P(J,I)=PR(J) 

23 CONTINUE 
CALL BAEHR 
Y(I)=EE 

ENDIF 
24 CONTINUE 

ENDIF 
ELSE 

DO 25 J=l,NDIM 
P (J, IHI) =PR (J) 

25 CONTINUE 
Y(IHI) =YPR 

ENDIF 
GO TO 1 
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999 CONTINUE 
C WRI'IE(7,' (/1X,A,I3) ') 'Iterations: ',I'IER 
C WRI'IE(7,' (/lX,A) ') 'Vertices of final 2-D sirrplex and' 
C WRI'IE(7,' (lX,A) ') 'objective values at the vertices:' 
C WRI'IE(7,' (/3X,A,Tll,A,T23,A,T35,A/) ') 'I', 
C * 'CA' I 'HSW' I 'OBJECTIVE' 
C DO 113 I=l,MP 
C WRI'IE(7,' (1X,I3,4Fl5.5) ') I, (P(J,I),J=l,NP),Y(I) 
c write(*,*) 'ee=' ,y(i) 
C 113 CONTINUE 

C 

WRI'IE(7,*)P(l,l),P(2,l) 
111 CONTINUE 

END 

SUBROUTINE EXPANSION 
COMLVION/SIMP/PRMT(3),YS,EE 
COMLVION/EXPA/PR,PCEN,ALPHA,DELTA,NDIM,S,PP,YPR,IHI 
DIMENSION PR(6),PCEN(6),YS(17,2),Xl(2,100),X2(2,100),X3(2,100) 
DIMENSION FIB(l000),D(2),XP(2,1000),XQ(2,1000),R(l000),PP(2,3) 

*, S(2) ,P(2) ,Q(2) ,XP1(2) 
FXl=YPR 

C*****Calculate the unidirectional search step. 
DO 160 J=l,NDIM 
Xl(J,l)=PR(J) 

160 CONTINUE 
C*****This loop adjusts DELTA until X2 is better than Xl. 

100 DO 170 J=l,NDIM 
X2(J,l)=PCEN(J)+(ALPHA+DELTA)*(PCEN(J)-PP(J,IHI)) 

170 PRMT(J}=X2(J,l) 
CALL BAEHR 
FX2=EE 
IF(FX2.LT.FX1) GOTO 150 
DELTA:DELTA/2 
IF(DELTA.LT.lE-4) 'IHEN 

DO 177 J=l,NDIM 
177 S(J)=Xl(J,l) 

GOTO 1000 
ENDIF 
GOTO 100 

C*****FIB represents Fibonacci number which is used to decide search step. 
150 FIB(l)=l 

FIB(2)=1 
DO 400 J=l,NDIM 
D{J} =X2 {J, 1) -Xl (J, 1) 
X3 {J, 1) =X2 (J, 1) +D (J) *FIB (1) 

400 PRMT(J)=X3{J,l) 
CALL BAEHR 
FX3=EE 
K=l 
IF(FX3.GT.FX2) GOTO 425 

410 K=K+l 
IF(K.GE.3) FIB(K)=FIB(K-l)+FIB(K-2) 
DO 420 J=l,NDIM 
Xl(J,K)=X2(J,K-l) 
X2(J,K)=X3(J,K-l) 
X3(J,K)=X2(J,K}+(X2(J,K}-Xl(J,K))*FIB(K)/FIB(K-l) 

420 PRMT(J)=X3{J,K} 
FX2=FX3 
CALL BAEHR 
FX3=EE 

C write(*,*) 'fx2=',fx2, 'fx3=',fx3 
IF(FX3.LT.FX2) GOTO 410 

425 NK=K 

183 



IF(NK.GT.2) GOTO 460 
DO 464 J=l,NDIM 
S (J) =X2 (J,NK) 
YPR=FX2 

464 CONTJNUE 
GOTO 1000 

460 DO 470 J=l,NDIM 
P (J) =Xl (J, NK) 

470 Q(J)=X3(J,NK) 
DO 480 IK=NK,2,-1 
R(IK)=FIB(IK-1)/FIB(IK) 
DO 482 J=l,NDIM 
XQ(J,IK)=P(J)+R(IK)*(Q(J)-P(J)) 

482 PRMT(J)=XQ(J,IK) 
CALL BAEHR 
FXQ=EE 
DO 484 J=l,NDIM 
XP(J,IK)=Q(J)-R(IK)*(Q(J)-P(J)) 

484 PRMT(J)=XP(J,IK) 
CALL BAEHR 
FXP=EE 
IF(FXQ.LT.FXP)THEN' 

DO 490 J=l,NDIM 
Q (J) =XP (J, IK) 
XP(J,IK-l)=XQ(J,IK) 

490 XQ(J,IK-l)=P(J)+R(IK)*(Q(J)-P(J)) 
ELSE 

DO 492 J=l,NDIM 
P (J) =XQ (J, IK) 
XQ(J,IK-l)=XP(J,IK) 

492 XP(J,IK-l)=Q(J)-R(IK)*(Q(J)-P(J)) 
ENDIF 

480 CONTJNUE 
DO 494 J=l,NDIM 
IF(FXQ.LT.FXP)THEN' 

S (J) =XQ (J, IK) 
YPR=FXQ 

ELSE 
S (J) =XP (J, IK) 
YPR=FXP 

ENDIF 
494 CONTJNUE 
1000 RE'IURN 

END 

SUBROUTJNE GRN (N) 
COMMON/NORM/ZN 
DIMENSION ZN(200) 
DO 555 J=l,N 
CALL RANDOM (Ul) 
CALL RANDOM(U2) 
ZN(J)=((-2*ALOG(Ul))**0.5)*COS(2*3.14159*U2) 
ZN(J+N)=((-2*ALOG(Ul))**0.5)*SIN(2*3.14159*U2) 

555 CONTJNUE 
RE'IURN 
END 
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