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CHAPTER I
INTRODUCTION
Problem Statement

Ground water is the most abundant supply of fresh water
lying beneath the Earth's land surface. In the United States,
groundwater supplies about 25 percent of the nation's
domestic, agricultural, and industrial water, with about half
of all U.S. homes depending on it for drinking water supply
(Moseley, 1988). Moreover, as part of the hydrologic cycle,
it serves as a reservoir to rivers, streams, and lakes during
dry seasons.

Unfortunately, ground water has been negatively affected
by human activities. Chemicals from pesticides, fertilizers,
sewage waste, and hazardous wastes from industrial dumping
sites are finding their way into more and more aquifers.
Likewise, through the natural discharges of an aquifer, such
as springs and seeps, ground water contaminants can return to
pollute surface water. Therefore, in a sense, pollution of
ground water is pollution of water everywhere.

In many years people thought that ground water was of

adequate quality for drinking due to the natural process of



filtration where soil and rocks filter out contaminants. It
wasn't until Rachel Carson (1962) portrayed the results of
environmental contamination by pesticides, in her book Silent
Spring, that ground water pollution was brought into public
view. In fact, ground water contamination has become an
environmental issue as increasing incidents of ground water
contamination were reported during the past two decades. For
example, wide-spread aquifer contamination by overuse of a
pesticide was found in the potato-growing region of Long
Island, New York (Carcel, 1587).

Researchers have labored to develop mathematical models
to predict the mobility and persistence of chemicals in the
unsaturated zone of the soil profile. More recently, the
presence of gaseous volatile organic compounds in the
unsaturated zone has caused new concern in ground water
research. For example, in the United States, the EPA has
estimated that fiwve to 15 percent of underground storage tanks
that hold approximately 14 billion gallons of gasoline are
leaking (Moseley, 1988). The leaked gasoline can pose a
serious threat to health and safety. The common chemicals
found in gasoline, such as benzene, toluene, and lead, are
toxic. Benzene is a proven human carcinogen, toluene is one
of the toxic chemicals regulated by the Clean Air Act 1990,
and lead causes disorders of the central nervous system. To
clean up all the leaks nationwide, the EPA estimates that it

will cost $7.5 billion, excluding possible health or property



damage awards due to law suits (Moseley, 1988).

Gasoline and other volatile organics, such as crude oil,
are used in abundance all over the world in wvehicles and
industry. In comnection with ground water, the problem is not
in the use of these organics, but rather in the possible
disasters that can occur when storing and 'transporting them.
Because they are handled in such large amounts, when a
disaster happens, the ecological effect on fresh water can be
catastrophic. |

The most challenging problem in dealing with ground water
contamination is to predict the movement and fate of the
contaminants. In order to clean up when the pollution occurs,
one needs to locate the high concentration area needing
remediation, and to discern the pollutants' migratory path and
extent. The ability to predict the movement of contaminants
can also contribute to the prevention of pollution by
forecasting possible disasters.

Even though gasoline and other wvolatile organic
contaminants are immiscible in both air and water, they
dissolve into the water phase within the saturated zone and
also volatilize into the soil gas phase within the unsaturated
zone. Baehr (1987) used a mathematical model of vapor and
solute transport 1in the unsaturated =zone to show that
- significant amounts of gasoline hydrocarbons can partition
into the water in the unsaturated zone. They can percolate

into the ground and leave zones of the residual contaminant in



the pore structure. Such residuals form a long-lasting source
of contaminants that will migrate into the wvapor phase and
eventually dissolve into the ground water (Mendoza and Frind,
1990) .

Numerical models have contributed to the understanding of
multiphase transport of volatile organics in the unsaturated
zone. However, since it is wvery difficult to observe and
measure most transport processes, several problems are still
ahead for researchers to explore. Jury et al. (1987) pointed
to the lack of detailed and accurate experimental data as
factors limiting further development of computational models.
Brown (1991) summarized some wmwain aspects that remain
unaddressed in existing research, namely: (1) the small
amounts of experimental data available to verify the theory,
(2) difficulties of independent parameter measurement, and (3)
the limitations of chemical linear adsorption and phase
equilibrium assumptions.

Model usefulness depends on the accuracy of determining
model parameters and the validation of model performance. On
one hand, the accuracy of model predictions should ideally
depends on the accuracy of model parameters. Unfortunately,
most model parameters are not measurable. Some investigators
have used inverse techniques in solute transport studies,
however the application of these methods to volatile organic
transport modeling is stiil new. On the other hand, any

envirommental fate and transport model must be tested for



predictive performance before it can generally be useful as an
aid to regulatory decision making. Thus the purpose of
assessing model performance is to quantify the uncertainty of
model predictions, which results from two primary sources:
uncertainty in the model structure and uncertainty in the
model parameters.

The assessment of model performance from parameter
uncertainty and experimental data verification for volatile
organic transport has received little attention. Few articles
about the evaluation methodology of general solute transport
models have been found in the literature. According to Loague
(1990) , well-defined procedures for testing models are not yet
available, despite tremendous model development efforts.
Pennell (1990) also mentioned that an accepted method or
systematic approach for the validation of pesticide simulation

models does not exist.
Study Objectives

Up until now, the attempts at solving inverse problems
andv quantifying uncertainty in model predictions for volatile
organic transport has not been seen in published works.
Therefore, the objective of this research is to develop a
systematic methodology which combines well established methods
to pursue the following two goals:

1. Estimate parameters for volatile organic transport.

2. Quantify uncertainty in model predictions due to



- uncertainty in these parameter estimates.
General Procedure

A compositional multiphase model developed by Baehr
(1987) was selected for this study. This model describes the
multiphase transport of petroleum products composed of
different components. The numerical solution of this model
assumes that only diffusive transport is a significant
transport mechanism for gas and immiscible phases.

—Although there are many parameters involved in this
model, my interest 1s focused on the following four
parameters: (1) the partition coefficient between the gas and
the aqueous phases, (2) the partition coefficient between the
aqueous and solid phases, (3) the tortuosity in the gas phase,
and (4) the tortuosity in the aqueous phase.

Bayesian statistical theory was used to estimate the
optimal values and distributions of these parameters. Monte
Carlo simulation was employed to determine the uncertainty of
model output.

This dissertation is organized as follows: Chapter 2
reviews the related literature; Chapter 3 describes the
volatile organic transport model employed in this research;
Chapter 4 contains estimation and uncertainty theories and
develops a methodology to use these theories; results and
analyses are presented in Chapters 5 and 6, and finally,

Chapter 7 summarizes the results and presents the conclusions.



CHAPTER IT
LITERATURE REVIEW

Volatile organic transport modeling involves basic
principles of hydrogeology, chemistry, soil science, and
mathematics. The results achieved by investigators from these
and other branches of science are extensive and scattered.
Thus it is necessary to narrowly focus this review on topics
of immediate interest. This research relates to three major
subjects: modeling of wvolatile solute transport, the
estimation of model parameters, and the uncertainty analysis
of estimated parameters. Accordingly, this chapter summarizes
present knowledge>and identifies problems for future research

within these topics.
Modeling of Volatile Solute Transport

Modeling of wvolatile solute transport combines
mathematical representations of several transport processes to
predict the behavior and fate of contaminants. This section
reviews the transport processes of volatile organics, the

governing equations, and specific applications.



The Mechanisms of Vapor Phase Organic Transport

The transport of contaminants in the vapor phase may
occur due to both advection and diffusion and is influenced by
phase partitioning and degradation (Falta et al., 1989).
Vapor phase advection may result from vapor density gradients
or vapor pressure gradients. In the published literature,
there is not a clear understanding of which condition favors
each driving force (Mendoza and Frind, 1990). Density-driven
flow may be of special concern for many organic chemicals
found at cont'aminated sites. When organic liquids evaporate,
the density of the vapor in contact with the liquid changes
with respect to the ambient soil gas. Diffusion is of greater
significance in the gas phase than in the aqueous phase,
because gas-phase diffusion coefficients are much larger than
aqueous-diffusion coefficients. Both dispersive and diffusive
transport may contribute to total flux for the gas flow
system. However, experimental data showed that diffusion
predominates over mechanical dispersion for gas-phase
transport unless velocities are very high (Brusseau, 1991).
Usually, diffusive flux in the gas phase, J, is modeled by
Fick's First Law (Baehr, 1990):

ax
5 dz

J=-cwD"0 (1)

where ¢ is the vapor-phase molar density (c=4.46 x 10> mol/cm?

for an ideal gas at standard temperature and pressure), @ is



the molecular weight of the constituent, I’ is the diffusion
coefficient of the organic constituent in air, 6, is air
filled porosity, X is the mole fraction of the constituent in
the vapor phase, Z is vertical distance, and {, is Fick's
First Law estimate of tortuosity. Tortuosity represents the
internal geometry of the porous media, and may be a function
of 6,. |

Recent research has shown that Fick's First Law is not
appropriate under some circumstances of interest. According
to Thorstenson and Pollock (1989), the accuracy of Fick's
First Law depends primarily on the relative magnitudes of the
viscous and diffusive flux components and Fick's First Law is
not adequate to deal with stagnant gases. Baehr and Bruell
(1990) also pointed out that equations based on Fick's First
Law are not appropriate for some systems, for example, systems
where the concentration in the gas phase is not dilute or
where significant evaporative fluxes occur. They recommended
the Stefan-Masxwell equatiohs to provide a more comprehensive
model for quantifying steady-state transport when a vapor
phase 1is composed of arbitrary proportions of its
constituents.

When a volatile liquid organic chemical is spilled on the
soil or leaks from a tank into the soil, it will begin to
partition into the liquid and vapor phases, and then become
dissolved in soil moisture and adsorbed onto the surfaces of

soil minerals and organic matter (Silka, 1988). Accurate



description of contaminant transport 1in a subsurface
multiphase system requires the interphase partitioning of
individual chemical components among all phases present. Even
though such partitioning between phases is complicated, the
common assumption that an equilibrium condition exists among
the phases present can simplify the problem.

Raoult's ILaw is usually employed to quantify the
equilibrium between the nonaquéous liquid and vapor phases

(Corapcioglu and Baehr, 1987),

e o
ng giXiYi (3)

where subscript g represents the gas phase, subscript 1
represents the nonaqueous phase, p' is the vapor pressure over
the pure constituent, o is the molecular weight of the
chemical, R is the universal gas constant, T is temperature;

H; is an equilibrium partition coefficient, C

y 1s the

concentration of the chemical in the gas-phase, x; is the mole
fraction of the chemical in the nonaqueous phase, and y; is
the activity coefficient for the chemical which adjusts for
nonideality.

This analysis will be limited to a single volatile solute
that does not exist in a separate phase. Under these
restrictions, Henry's Law 1is applied to express the

equilibrium between the air and water phases as:
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Khz—g (4)

where K, is Hém:y's Law constant at a specified temperature,
C;, is the concentration of the vapor phase, and (G is the
concentration of the agqueous phase.

Besides the partitioning between the vapor and aqueous
phases, soil organic and mineral materials can adsorb some
volatile organics to a lesser extent. Usually, soil solids
are surrounded by water layers of at least several molecules
thickness. The process of partitioning between the vapor
phase and the solid phase then becomes a two-step process from
the vapor into the water and subsequently from the water onto
the soil solids (Silka, 1988). At equilibrium, the degree of
partitioning between the soil solids and the soil moisture is

expressed as:

Kd=—s (5)

where K; 1is the partition coefficient or distribution
coefficient, C, is the mass of chemical adsorbed per unit dry
mass of soil solids, and C; is the concentration of the

chemical in the soil moisture.

The Governing Equation

A governing equation is the mathematical representation

or model which combines various transport processes through

11



the principle of mass conservation to describe the actualm
transport system. Brown and McWhorter (1990) derived a one-
dimensional multiple phase transport equation which is general
in nature and can be applied to any one-dimensional volatile
solute transport case in a homogeneous porous media. The

equation is formed as:

C.=R,Co=R;C;=R,C, (6)

oc, 9 D; Dy ac, 491, 9 ocC, Py, 1 _1, 0
{eﬁ—_a((ﬁl-‘-—-ﬁ;)—a}—) E"'?g)-g;*'(ﬁ(}: —E;)-a}-(qfql))ct (7)

where R=V/R,+0,/R;+0,/R;, 6, is the volumetric solution
content, V is the solid phase volume, 6, is the gas phase
volume, C. is the total solute concentration, C,, C;, and C,
are the solute concentrations in the three phases, R,;, R;,
and R, are relationships that equate the individual
concentrations to the total, p; and p, are densities of
solution and gas, and g and g, are volume fluxes of

solution and gas phases.

Application and Unaddressed Problems

Many mathematical models can simulate diffusive transport
in the vapor phase. Jﬁry et al. (1984) introduced a screening
model for describing pesticide volatilization, leaching, and 4
degradation in the soil. They performed tests on 35 chemicals
to determine the diffusive mobility and general persistence in
the soil. Corapcioglu and Baehr (1987) developed a
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compositional multiphase model to describe the fate of
hydrocarbon constituents of petroleum products introduced to
soils as an immiscible liquid. Their results showed that
diffusive transport in the unsaturated zone is a significant
transport mechanism in ground water. Silka (1988) presented
a two-dimensional diffusive transport model. He computed an
effective diffusion coefficient that incorporates the effects
of tortuosity, moisture content, and the organic carbon
content of soil.

Several investigators also addressed the importance of
including density-driven advection as a transport mechanism in
the unsaturated zone. Falta et al. (1989) suggested that
significant advective gas flow will zresult from the
evaporation of wvolatile 1liquids in soils giving a high
permeability. Mendoza and McAlary (1990) studied the
potential effects of density-driven vapor advection in the
saturated zone. Their results showed that advection becomes
increasingly important as the soll permeability increases.
However, diffusion still dominates near the periphery of the
vapor plume because the density gradient diminishes at lower
concentration. They concluded that neglecting advection may
underestimate the rate of wvapor transport. They also
suggested that experimental data are necessary to validate the
theoretical basis for the density-driven advection of vaporé
in further research. In another paper, Mendoza and Frind

(1990) used breakthrough curves obtained experimentally to
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determine whether density gradients are likely to play a role.
Their results showed that the advective mechanism can be
highly effective in mobilizing organic wvapors and thus in
accelerating the contamination of a ground water system.

Gierke et al. (1990) presented a comprehensive model that
considered air and water advection and dispersion in the
direction of flow, mass transfer resistance at the air-water
interfaces, partitioning between the air-water phase, and
sorption to soil organic matter from aqueous solution. The
validation compared the breakthrough curves obtained from
model simulations and experiments. Their results indicated
that both liquid dispersion and diffusion in immobile water
are important. Vapor diffusion i1s not important when the
average pore water velocities are greater than 0.02 cm/s. The
rates of mass transfer across the air-water and the mobile-
immobile water interfaces are rapid.

All the studies discussed above assumed homogeneocus
media and phase partitioning equilibrium. However, many
studies have shown that the assumption of homogeneity of
porous media does not reflect reality. Observations of
pesticide residues 1in agricultural fields 1long after
application also support the invalidity of the local
equilibrium assumption about sorption (Brusseau, 1991).

Models that incorporate heterogeneity and nonequlibriate
mass transfer are beginning to appear in the literature.

Abriola and Pinder (1985) developed a multiphase approach to
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describe the simultaneous transport of a chemical contaminant
in three physical forms: as a nonaqueous phase, as a soluble
component of an aqueous phase, and as a mobile fraction of a
gaSeous phase. They used a heterogeneous porous medium and
incorporated diffusion, dispérsion, and interphase mass
exchange into the transport model. Interphase mass exchange
is considered as local equilibrium.

Brusseau (1991) presented a model that incorporates the
effects of physical heterogeneity and rate-limited sorption on
gas-phase advection and.dispersion. He assessed performance
of the model by comparing simulations to data obtained from
the literature. However, he simulated the model only under
steady flow conditions. Sleep and Sykes (1989) accounted for
nonequilibrium conditions with respect to interphase mass
transfer, but they considered the saturated zone only.

Although research continues and much work has been
reported in the related literature, there exist many important
areas that need further research. Brown (1991) summarized the
existing problems as:

1) There are minor amounts of experimental data available

to verify the theory. As stated by Jury et al. (1987),

"further development of such computational models 1is

limited by a dearth of detailed and accurate experimental

data." :

2) The distributed parameters make  independent
measurement of the parameters difficult.

3) The assumptions of phase equilibrium are not well
justified.
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Estimation of Model Parameters

Improvements 1in the precision of model predictions
depend on the ability to accurately determine the model
parameters. For ground water flow and solute transport
models, most parameters are distributed. | The response of the
system is governed by a partial differential equation, and
parameters embedded in the equation are spatially dependent
(Yeh, 1986). Unfortunately, these parameters are seldom
measurable. Even 1f one can measure some of them in the
laboratory, there still exists no well-defined correlation
between laboratory and field wvalues. To deal with this
problem, investigators since the mid-70's have developed
various parameter estimation techniques that optimize
parameters from observations of dependent variables along with
initial and boundary conditions. The following sections
review the relevant literature dealing with the parameter
estimation, along with specific applications to solute

transport in the vadose zone.

General Parameter Estimation Procedures

The most popular statistical methods applied are least
squares, maximum likelihood, and Bayesian theory. The
following sections discuss the theory, application, evolution,
and the evaluation of these three methods.

Least Squares Method Originally, the least squares
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method was developed to estimate regression coefficients. It
also provides the basic idea and basic optimal objective
function in a mathematicai form (Yan, 1990). The idea is to
estimate parameters by minimizing the sum of error squares

between model output and observed ocutput responses as:
N
MinY [Y,-n (X,, P)]? (8)
n=1

where Y, is observed output, 7 is model output, X, is model
input, N is the number of observations, and P is a parameter
vector.

This simple form is called the ordinary least sgquares
method (OLS). Kool and Parker (1988) stated that the OLS
formulation has probably been the most popular for parameter
estimation problems due to its simplicity and the minimum
amount of information required. However, it requires
assumptions of uncorrelated errors and constant variance to
provide unbiased and minimum variance estimate.

When the assumptions of the constant wvariance and
uncorrelated errors are violated, weighted least squares
(WLS), also known as generalized least squares (GLS), can be
used to satisfy the assumptions. The WLS can be formulated

as:
N
MinY" [Y,-n (X,, P)1"W(Y,n (X,, P)) (9)
n=1

where W is a symmetric weighting matrix that corrects for
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unequal error variances.

Jacquard et al. (1965) reported the first application of
least squares to the inverse problem. They divided a
petroleum reservoir into zones of constant permeability and
used a variational method to minimize the sum of squared head
residuals. Their method was not sufficient to get a stable
and unique solution. Korganoff (1970) improved this method by
imposing penalty criteria (based on computed parameters) to
residual errors which reduced unwarranted oscillation.

— Maximum Likelihood Method The maximum likelihood method
considers model parameters as unknown but deterministic. The
objective of this method is to find the parameters that
maximize the likelihood of obtaining the measured data, given
the joint probability density function of all measurements.
This method assumes that the errors are normally distributed
(Kool and Parker, 1988).

Carrera and Neuman (1986) employed vthis method to
estimate aquifer parameters along with the prior information.
They ’examined the prior errors affecting the solutions and
concluded  that, after transforming some  parameters
logarithmically, the error distributions should not be too far
from a normal distribution. Since not all the factors which
contributed to the prior errors can be quantified
statistically, Carrera and Neuman expressed the covariance
matrices of these errors in terms of several parameters which

can be estimated jointly with the hydraulic parameters. They

18



also pointed out that the maximum likelihood concept might be
useful for selecting the best ground water models.

Bayesian Estimates Bayesian estimates that incorporate

prior information were first applied to aquifer parameter
estimation by Gavalas et al. (1976). This method considered
model parameters as random variables with a defined
probability distribution and introduces a statistically based
smoothing criterion.

In Bayesian theory, parameter wvector P is a random
variable with probability distribution f(P), and the
probability distribution of observation Y depending on P can

be expressed as:

£(Y,P)=f(Y/P) f(P)=f(P/Y) £(Y) (10)
and
_ £(Y/P) £(p)
£(P/Y) 9 (11)

where f(P) 1s the prior probability distribution of
parameters, and f (P/Y)is the posterior distribution of P given
Y. The parameters are estimated by maximizing f(P/Y).

The prior information required for Bayesian estimation
includes the mean and covariance matrix of the parameters.
Gavalas et al. (1976) have shown that Bayesian estimation
reduces to a quadratic minimization problem, provided the
parameters and the measurement errors aré normally distributed

and the model is linear in parameters.
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Critical Evaluation The maximum likelihood method allows

more flexible assumptions than least squares and produces
smaller parameter variances when errors have non-constant
variances and are correlated (Yan, 1990). The Bayesian
estimate is a convenient method to evaluate parameter
uncertainty which also considers the penalties that can arise
in the action space due to incorrect specification of the
unknown parameter value (Yan, 1990). However, the Bayesian
estimation can be impractical if the required prior
information is not reliable because inaccurate prior
information can make the estimates worse instead of reducing
uncertainty (Yeh, 1986). Box and Tiao (1973), though, did
provide a noninformative form of Bayesian estimates to avoid
the negative effect of inaccurate prior information. This
method considers a prior‘ distribution as a uniform
distribution which reflects minimal knowledge of a parameter,

thus relies more on observed data.

I11-Posedness in Parameter Estimation

Carrera and Neuman (1986) defined ill-posedness as a
functional relationship, h(x,t)=F(p;(x)), between a set of
spatially varying parameters. The problem is properly posed
if and only if the following three conditions are satisfied:
(1) to every h(x,t) there corresponds a solution, p;(x), (2)
the solution is unique for any given h(x,t), and (3) the

solution depends continuously on h(x,t) (the solution is
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stable). An inVerse problem is ill-posed if it fails to
satisfy one or more of these three requirements.

As a misbehavior of the inverse solution, the cause of
ill-posedness is not always well understood. However,
researchers characterize it as nonidentifiability,
nonuniqueness, and instability. According to Yeh (1986),
identifiability addresses the question of whether it is
possible to obtain unique solutions of the inverse problem,
which means if different parameter sets can lead to a given
output, the parameters are unidentifiable. Carrera and Neuman
(1986) pointed out that identifiability refers to the forward
relationship and uniqueness refers to the inverse relationship
or minimization process. Stability means that small errors in
the observed data must not result in large changes in the
computed parameters. Therefore, instability manifests itself
as spatially oscillating parameters.

Kool and Parker (1986) pointed out that correlation among
parameters often causes ill-posedness. This is especially
true when parameters are negatively correlated because a
change in one parameter will balance a corresponding change in
the correlated parameter and can lead to the same model
prediction.

He also pinpointed observed data as a cause of 1ill-
posedness in two different ways. On one hand, insufficient
experimental data may cause an objective function insensitive

to one or more of the parameters. This might also result in
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large estimation variance for parameters. On the other hand,
if the estimated parameters are too sensitive to observed
data, instability will occur because small measurement errors
can cause significant errors in parameter estimates.

Up until now, there are no definite ways to solve ill-
posedness problems because solutions vary with different
circumstances and some problems might even be unsolvable.
However, wheh ill-posedness occurs, checking model structure,
observed data, and dimensionality of parameter space can
better help solve problems. Model structure should be checked
because the nonlinearity in a model and the insensitivity of
model predictions to model parameters could lead to ill-
posedness. -Observed data should be checked for its
sufficiency and accuracy, and prior information about
parameters can help solve the problem. High dimensionality of
parameter space always complicates problems because of more
interactions among parameters. Therefore, parameters that do
not have much impact on model predictions should be excluded

to reduce the dimensionality.

Bpplication to Solute Transport

Solute transport is such a complex phenomenon that the
relevant transport processes are hard to identify. As a
result, there are few examples of inverse models in the
literature involving solute transport (Keidser and Rosbjerg,

1991). Volatile organic transport is even more complex due to
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the existence of multiple phases, thus examples dealing with
parameter estimation of this particular interest have not been
seen in publications. The following refers to single phase
solute transport only. -

Murty and Scott (1977) estimated the dispersion
coefficient from observed data for solute concentrations.
Their results showed that the accuracy of parameter estimation
depends on both the accuracy of the solution to the transport
model and the measurements of the concentration values. Umari
et al. (1979) also estimated the dispersion coefficient from
observations in the field. They used a general nonlinear
program to minimize the discrepancy between calculated and
bbserved'values of the concentration profile. Kool and Parker
(1988) reviewed the status of parameter estimation techniques
and their utility for determining key parameters affecting
water flow and solute transport in the vadose zone. They
pointed out that efforts are needed to extend parameter
estimation methods to more complex field conditions. These
conditions wusually require models that can fit soil
heterogeneity, variable and uncertain boundary conditions,
simultaneous flow and transport, and complex biochemical
processes and other phenomena.

Jury and Sposito (1985) used least squares, maximum
likelihood, and the method of moments estimation procedures
for field-scale wvalidation. They found that these three

procedures gave different parameter estimates for a given set
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of data.

Wagner and Gorelick (1986) combined a contaminant
transport simulation with a weighted least squares procedure
to estimate parameters that characterize the transport of
contaminants. They showed the importance of using Monte Carlo
analysis to quantify the reliability of parameter estimates.
They concluded that nonlinear regression technique can provide
accurate and reliable estimates of the nonlinear parameters
when large random errors are present in the data.

—Knopman and Voss (1989) developed a multiobjective
sampling design that addressed model discrimination, parameter
estimation, and cost of field sampling. They estimated
parameters by minimizing some measure related to variance and
covariance of parameters. | They also indicated that
sensitivity of solute concentrations to a change in a
parameter contributes information to the relative variance of
a parameter estimate. |

Since contaminants are primarily transported as dissolved
components in the water phase, modeling of contaminant
transport and fluid flow i1is strongly coupled. Thus,
optimizing both flow arid transport parameters simultaneously
has recently received more attention. Strecker and Chu (1986)
first estimated both flow and transport parameters in a two-
stage approach. In the first stage, they estimated
transmissivity controlling the flow process. In the second

stage, they estimated dispersivity representing the solute
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transport process. Keidser and Rosbjerg (1991) modified the
two-stage approach. In the first stage, the transmissivity
field was estimated using both head and concentration data.
Transferring the estimated transmissivity field to the secoﬁd
stage, the transport parameters were optimized based on the
concentration measurements. The second stage repeated the
stage one estimation to adjust the transmissivity parameters
using the optimized parameters.

Mishra and Parker (1989) used a combined simulation-
optimization method to deal with the estimation of soil
hydraulic and transport parameters from transient unsaturated
flow. They used a nonlinear weighted least squares algorithm
to estimate unknown model parameters by minimizing deviations
between concentrations, water content, and pressure heads
obtained from hypothetical experiments. They found that
simultaneous estimation of hydraulic and transport properties
yields smaller estimation errors for model parameters than a

stage-wise method.
Uncertainty Analysis of Model Predictions

Uncertainty analysis procedures quantify'the range or the
probability distribution of model predictions. Considering
parameters involved in a solute transport model random
variables makes model predictions random variables as well.
According to Haan (1977), a variable that is a function of

other random variables is also a random variable. The
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probability that a random variable equals a fixed value is
zero. Therefore, a model prediction is meaningless unless its
uncertainty represented by a range or a probability
distribution is quantified.

Uncertainty in model predictions results from natural
uncertainty, inadequacy in the model structure, and errors in
the model parameters. To date, the evaluation of uncertainty
in model performance has focused more on paraméter uncertainty
than on the other sources. The following sections review the
relevant literature dealing with uncertainty analysis, along

with a critical evaluation.

General Uncertainty Analysis Procedures

The current approaches to uncertainty analysis include
deterministic, simulation, and nonparametric approaches. Each
of these methods are summarized here in a general sense.

Deterministic Approach  The deterministic approach is an
analytic method based on a Taylor series expansion about a
fixed point, usually the mean of the input variables. Only
first or second-order terms of the Taylor series are typically
used (Doctor, 1989).

Considering a univariant random function Y=£f(X), the
Taylor series expansion of Y can be written as:

1 *f
2 gx?

Y= () + 2L (X-p) + (X-p) 2+ .. (12)
X
where u, is the mean of the variable X.
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Neglecting the terms that include second-order or higher
partial derivatives, the first-order method estimates the mean

and variance of Y by:

E(Y)=f(p,) (13)

and
Var<Y)=<g—f{)2<Var<X))2. (14)

In a multivariate case, first-order analysis can be stated as:

Y=f(M,)+(X-M,) b7 (15)

where M, is a vector of means, and FF is the transposition of
a vector of partial derivatives (Zhang, 1990). The variance

of this estimate can be written as:

Var (v)=bTC,b (16)

where C, 1s the covariance matrix of the functionally
dependent variables X. The second-order method is similar to
the first-order method, but the former is more accurate since
the mean of Y is conditioned on the mean and variance of X.

Several researchers have employed the first and second-
order analysis methods based on Taylor series expansions in
hydrologic research. Mishra and Parker (1988) applied first-
order analysis to assess the reliability of unsaturated flow
model predictions subject to parameter uncertainty. Andrews
et al. (1987) also used the first-order analysis to evaluate
the uncertainty of ground water travel time.
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Simulation Approach The simulation approach is often
called the Monte Carlo method. This method uses random or
pseudorandom numbers for solution of a model. For uncertainty
analysis, this method requires a known probability
distribution for each model parameter so that pseudorandom
samples can be generated from the distribution. This method
then runs the model at a large number of points in the input
parameter space, and produces a probability density function
(pdf) for the output variable. Because of its simplicity and
the ability to deal with complex sgystems, the Monte Carlo

method has been commonly used in many fields.

Nonparametric Approach A nonparametric approach, known
as the "bootstrap", is often used to estimate the reliability
of model prediction. The bootstrap constructs an empirical
distribution output by resampling a set of N independent
observations rather than makes prior 'assumptions about the
shape of the output distribution. Such assumption has been
one of the limiting factors for statistical theory (Zhang,
1990). Willmott et al. (1985) described the application of
the bootstrap in calculating the reliability of model
prediction. Suppose the N observations (X;,X,,...... ,Xy) are
from a distribution D. A bootstrap sample (D*) of size N is
randomly chosen one element at a time from D with replacement.
Once a D" has been selected, a bootstrap measure of the
accuracy of model prediction may be calculated. If this

process is repeated B times, it yields an empirically derived
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frequency distribution that approaches the true distribution

as B becomes large. The standard error of the mean is given

by:

5
o=l gog X, (k)12 (17)

Critical Evaluation

The advantage of the first and second-order methods is
that they are simple to use. They evaluate only the model and
the partial derivatives at the mean wvalue of the input
variables. The disadvantage is that they are applicable only
to some simple models assuming that the uncertainty in the
model output can be completely described by a mean and
variance.

There are some apparent drawbacks associated with the
simulation method. For example, it requires intensive
computation, assumes complete representation of the population
distribution by the available sample, and becomes complex when
the input variables are dependent. However, the simulation
method is simple to use and is powerful for dealing with
complex models. Its intensive computational requirement is
becoming less important as computers are becoming more
powerful and faster. Its concern about assumed probability
distributions can be solved by incorporating stochastic
parameter estimation procedures.

According to Willmott et al. (1985), the bootstrap method
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has two advantages over its parametric counterparts: (1f
assumptions about the underlying but unknown frequency
distribution of output do not affect the method's wvalidity;
(2) confidence can readily be established for any accuracy
measure of interest even if its distributicnal characteristics
previously have not been derived and cataloged. However, the
bootstrap is limited when few sample observations are

available because it assumes the observed data represent the

true population.

Recommendation

This review demonstrates the principle of basic volatile
solute transport processes, the development of solute in vapor
phase transport modeling, the application of various
techniques in parameter estimation, and ways to quantify
errors by uncertainty analysis. Accordingly, the growth and
challenge in the field of ground water pollution control are
also illustrated. There exist many important areas that need
further research to reliably predict the behavior of volatile
contaminants in the subsurface system.

As this review demonstrates, the wvolatile solute
transport processes are so complicated that the scientific
understanding of the importance of various processes is still
inadequate. Moreover, even 1if a perfect model can be
established to reliably describe the behavior of contaminants

in the subsurface, accuracy of the model prediction still
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depends on the accuracy of model parameters.

Existing parameter estimation procedures have their own
advantages and drawbacks. The application in solute transport
shows that investigators have the tendency to use the simplest
method, like the least squares method. Unfortumately, the
least squares method is not always applicable, since its
assumptions about constant variance and normally distributed
errors may not always reflect reality. Therefore,
application of other parameter estimation procedures need to
be investigated.

Estimated parameters always contain errors that will
affect the model predictions. Therefore, uncertainty analysis
quantifying the uncertainty of estimated parameters is
essential for a model to be useful. However, the application
of parameter uncertainty analysis in ground water pollution
control is quite new, and many more thorough investigations in
this field are expected in the future.

Apparently, each of the three areas surveyed in this
chapter reveals much room for researchers to explore. This
study will develop a systematic methodology investigating
parameter estimation and uncertainty analysis. This
methodology will employ Bayesian estimates to study parameters
involved in a volatile organic transport model developed by
Baehr (1987) in depth. It will also use Monte Carlo analysis
to quantify uncertainty in model predictions due to errors

associated in parameter estimation.
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CHAPTER III
VOLATILE ORGANIC TRANSPORT MODEL

This research used a compositional multi-phase-model for
volatile organic transport developed by Arthur L. Baehr of the
U.S. Geologic Survey (Baehr, 1987). This model is referred to
as Baehr's model throughout this dissertation. The following
sections describe the model formulation, its application to
this research, and the characteristics of parameters of

interest.
Model Formulation

Baehr's model is a two-dimensional mathematical model
developed to deal with multiphase transport of petroleum
contaminants. Petroleum products 1like gasoline involve
different kinds of constituents such as benzene, toluene, and
xylene. These hazardous hydrocarbons can be dissolved and can
enter an aquifer through the unsaturated zone, where each
constituent can either migrate as a solute in the water phasé,
a vapor in the air phase, and an immobile constituent in the
oil phase, or be adsorbed in the solid phase. The total

quantity of chemical per unit soil volume can be written as:
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C=ppCst0;C;40,C;+6,C, (18)

where C, is the adsorbed chemical concentration, C; is the
dissolved chemical concentration, C; is the immiscible
chemical concentration, C, 1s the vapor chemical
concentration, p, is soil bulk density, and 6;, 6,, and 6,
represents volumetric water content, air content, and
nonaqueous liquid content respectively.

The governing equation starts with the mass conservation

equation:

-%—it +V'J=Sources-Sinks (19)

where J is the total mass flux, the source is the total
chemical mass gain (which equals zero for the total system),
and the sink is the total chemical mass loss which eventually
equals the total rates of molecular transformation due to
microbial and abiotic reactions.

The total mass flux is quantified by the advective-

dispersive model as:

J;=q;C;-D4,VC; (20)

J,=q;C;-D9,VC,; (21)
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J,=q,C,~D°VC, (22)

where q;, g, and g, are the specific discharge for the oil,
water, and air phases, respectively, Dy D% and Df are‘ the
hydrodynamic dispersion tensor for the chemical in each phase.

The hydrodynamic dispersion tensor can be decomposed into
functions of physical properties of the porous media, the

moving fluid, and the chemical constituent:

D=b,+d 0L, (23)

where 6, is the mechanical dispersion coefficient, d; is the
molecular diffusion constant, & is the tortuosity of each
phase, and f represents different phases.

When combining these transport processes together, the

compositional multi-phase diffusive model is defined as:

—aa—t [Ce0,+C10,+Capp+Ci0;] +V [T+ T+ T;] =-Ry;, (24)

where R,;,, denotes the total rate of microbial and abiotic
degradation.

In its application, Baehr's (1987) numerical model
assumed that the immiscible phase is at residual saturation
and neglected C; and J;. The model also assumed that the air
phase is at atmospheric pressure and the porous media is
homogeneous, isotropic, and isothermal.

Baehr's model employed equilibrium approximations to
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partition among the air, water, and adsorbed phases. The
partitioning between the air and water phase is modeled by the

approximation to Henry's law:

C,=K,C; (25)

where K, is the air/water partition coefficient of the
chemical. This equilibrium relationship provides a K, that
is independent of the porous media.

The partitioning between the aqueous phase and solid

- phase is modeled by the linear isotherm,
C.=K,C; (26)

where K; is an adsorption isotherm constant.
In conjunction with Henry's Law, the following

relationship is obtained:

c;% c,. (27)

Thus when neglecting biodegradation, the governing
equation can be written in terms of either the air or water
phase concentration in the unsaturated zone. For the gas
phase, neglecting gas advection, the governing equation will

be simplified as:
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a

ac,
52 *V [bVCy+eC,] =0 (28)

a=0,+(0,+K,pp) /K, (29)
b=-((8,+D;) /K,+D,) (30)

. c=q,;/ K, ‘ (31)
D,=d 0k, (32)

D,=d,0,E;. | (33)

The numerical solution to this system was obtained for a
radially symmetrical geometry (Baehr, 1987), where the
unsaturated porous media is assumed to be isothermal and
air/water partition coefficients were assumed constant.
Porosity, water content, tortuosity, hydrodynamic dispersion
coefficients, adsorption coefficients, and the wvolumetric

water flux were also assumed constant.
The Model Application in This Research
This research applied the transport model described above
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to the experimental data measured by Yu (1995). This
experiment measured toluene gas phase concentration profiles
at different times by running a vertical soil column with 45
cm diameter and 25 cm height. Toluene gas was sampled by
syringe at various depths and times. Concentrations were
measured immediately with a gas chromatograph with a flame
ionization detector. The soil was uniformly packed with
toluene so that the initial concentration was constant. The
bottom of the soil column was sealed and the top of the column
was open to the atmosphere. The water content was uniform and
well below saturation. While some drying at the top occurred
during the test, the modeling ignored water transport.
Conditions under which the transport model was run are
consistent with this column test. Therefore, the boundary

condition at the bottom was:

¢ (34)

2 lbottom t=0 .
dz '

This equation implies that the bottom of the soil column is
impervious to vapors and that no mass can escape from it. The

boundary condition at the surface is:

=0. (35)

Cg]surface, t

The initial condition is:
Cql 0, ,=CcoOnstant. (36)

Parameter inputs involved in this model can be classified
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into three groups: geometry parameters, soil property
parameters, and chemical property parameters. Table I lists
the wvalues wused for each group (consistent with the
experimental conditions). This research focused on
tortuosities in the air phase and water phase, and partition
coefficients between the water-air phase and between the

water-solid phase.
Characteristics of the Model Parameters

Tortuosity is a measure of the added resistance to
diffusion imposed by the structure of the medium (Kreamer et
al., 1988). As a major component that determines the rate of
diffusion of a given chemical, it is independent of the
chemical properties and is dependent on the pore geometry.

Although many experimental methods have been developed to
measure tortuosity either in labs or in fields, they have not
been able to give reliable results. For lab methods, coring
and repacking samples can substantially change the structure
of the medium, thus causing a variance between lab results and
field wvalues. On the other hand, field tests are time
consuming and expensive, and require skilled people to analyze
the data. Moreover, Kreamer et al. (1988) reported that the
tortuosity they measured may be in error by as much as 40%.
There are also empirical equations that can estimate
tortuosity. However, significant discrepancies among these

estimates have been reported. Kreamer et al (1988) summarized
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Table T

The Description of Parameter Inputs for Baehr's Model

Geometry

Parameters

Soil Properties

Chemical
Properties

(Toluene)

Column Diameter
45 cm

Column Height
25 cm

Porosity
0.4

water content
0.17

bulk density
1.59 gm/cm?

water recharge
0.0

Longitudinal
Mechanic
Dispersion
Coefficient
0.0 cm?/s

Transverse
Mechanical
Dispersion
Coefficient
0.0 cm?/s

Air Phase
Tortuosity
0.34

Water Phase
Tortuosity
0.1

Specific Volume
1.14 g/cm?

Molecular Weight
92

Solubilities
0.515 E-3 cm’/g

Molecular
Diffusion
Coefficient in
Water

10 cm?/s

Molecular
Diffusion

Coefficient in Air

0.1 cm?®/s

Henry's Constant
0.26

Adsorption
Coefficient
0.43
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that under the same condition, the tortuosity estimated by Lai
et al. (1976) is 0.13 while that estimated by Marshall (1959)
is 0.47. These large variations suggest that the empirical
equations tend to be applicable only to the materials and
conditions for which they were developed.

The adsorption coefficient is the ratio of the amount of
chemical adsorbed per unit weight of soil to the concentration
of the chemical in solution at equilibrium. It represents the
extent to which an organic chemical partitions itself between
the solid and solution phases. It is determined by several
physical and chemical properties of both the chemical and the
soil. However, for soils with high organic carbon content,
basing the adsorption coefficients on soil organic carbon (K,.)
rather than on total mass (Kj; can eliminate some influence of
soil properties. Even so, studies show that the spread of
values obtained from a number of different soils generally
results in an uncertainty ranging from 10% to 140% (Lyman,
1990). Errors also arise from the use of simple adsorption
isotherms, such as the linear adsorption isotherm when the
isotherms could be nonlinear (Villeneuve et al., 1988).

The Henry's law constant is conventionally defined as a
ratio of partial pressure in the vapor to the concentration in
the liquid (Mackay et al., 1981) . However, it 1is more
convenient to express it as a dimensionless ratio of
concentration in vapor phase and concentration in water phase.

Mackay et al. (1981) summarized three general methods that can
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be used to measure the Henry's law constant: 1) measurement of
the ratio of wvapor pressure and solubility, 2) direct
measurement of air and aqueous concentrations in a system at
equilibrium, and 3) measurement of relative changes in
concentration within one phase, while effecting a near-
equilibrium exchange with the other phase. According to
Gossett (1987), the first method suffers from the lack of
reliable solubility data, the second method is difficult to
carry out where concentrations are low, and the third method
suffers i1f equilibrium is hard to reach. He proposed a
modified equilibrium partitioning in closed system method
which achieved 3-4% C, in measured Henry's constant. However,
he concluded that the precision deteriorated dramatically for

compounds with very low Henry's constant.
A Comment On Model Form

Equations 28 to 33 form a second order, partial
differential equation for the air phase solute concentration
in terms of time and space. The coefficients, a and b are
lumped parameters, which combine phase partition coefficients
(K, and K;) and soil transport properties (§; and ¢;) (the
other input parameters are usually well defined). Equations
such as these are notorious for both their difficulty of
solution, and even more importantly, the difficulty of
estimating their parameters from experimental data. This

inverse problem of parameter estimation is traditionally
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approached by trial and error procedures which simply match_
simulated model output to measured data. Of course with a
lump parameter model, an error in the estimate of one
parameter can be compensated by the‘appropriate error in
another.. This problem is made worst by the uncertainties
introduced by measurement errors. Thﬁs, the utility of any
model, or the benefit of laboratory measurements, is
questionable unless some procedure is available to quantify
both the uncertainty associated with input parameters and the
accuracy of any model prediction based on them. Unless that
can be done, process based models such as this have little

advantage over pure empiricalism.
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- CHAPTER IV
ESTIMATION AND UNCERTAINTY THEORY

This chapter will discuss the basic Bayes' theorem
underlying this research and procedures used in parameter
estimation and uncertainty analysis for wvolatile organic

transport.
Basic Theory

Baves' Theorem

Consider a random wvariable Y with a vector of n
observations y=(yi,...,¥,). It has a Jjoint probability
distribution p(y/0), which depends on the wvalues of k
parameters 6=(0,,...,0,). Suppose that € is also a random
variable and has a probability distribution p(f), then from

the definition of conditional probability:

p(y/0)p(0)=p(y,0)=p(6/y)p(y) . (37)

When given the observed y, the conditional distribution

of @ is:
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p(6/y)=2UL0B(O) (38)

Note that

o(y) =fp(y,e) de=fp(y/e)p(e) dd=constant. (39)

Therefore p(y) is only a constant which assures p(6/y) of

integrating to 1. This leads to:

p(6/y)=cpo(y/6)p(6) . (40)

In this expression, p(#) is the prior distribution of 6 and it
represents the known information about 6 before observing y;
p(8/y) is the posterior distribution of 6 given y and it tells
the information of 6 after knowing y. ¢ is a normalizing
constant to ensure that p(0/y) integrates to 1. P(y/0) will

be explained in the following section.

The Tikelihood function Given the observation of y, the

probability distribution p(y/f) may be regarded as a function
of # rather than y. This function is called the likelihood
function of € for given y. When the observation y is
independent and identically distributed, the likelihood

function is:

1(08/y) =p(¥1: Yar o+ 2 ¥a/0) =[] P(¥,/6) . (41)
1=1

where II represents product. This leads to another form of
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Bayes' theorem:

p(6/y)=1(8/y)p(0). (42)

The likelihood function here is a function through which
the observed y modifies prior knowledge of 6.

Sequential Nature of Bayes' Theorem One important aspect

of Bayes' theorem is that it allows updating information on 6
when taking more cbservations of y. Therefore for an initial

sample of observations Vit
p(8/y,)=p(0)1(8/y,) (43)

When we have a second sample of observations y, distributed

independently of the first sample, then:
p(0/y,,y,)<p(0)1(0/y,) 1(0/y,) <p(8/y,) 1(8/y,) (44)

Apparently, the posterior distribution for 6 given y;,
serves as the prior distribution for the second sample. If we
have n independent ocbservations, the posterior distribution

can be recalculated after each new observation:
p(B/yl, v I.Vm) “p(B/yl, - ,Ym_l)l(e/}’m) M=2,...,n (45)

This provides a process of learning from experience. The
interesting thing is that the advantage of Bayes' Theorem is
also its disadvantage. Incorporating prior information can
improve the results. However, questionable prior information

might lead to faulty results. This is the reason that people
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may hesitate to choose this method. Box and Tiao (1973)
provided noninformative prior distributions to address this

problem.
Noninformative Prior Distributions

A noninformative prior distribution is a uniform
distribution that reflects minimal prior knowledge of the
parameters. Noninformative prior distribution will have
virtually no effect on the resulting posterior probability
(Edwards 1988). That is, the prior distribution provides
little information relative to what is provided by the
intended experiment.

Mathematically, a non-informative prior is defined as:

£(8/%) =— £O)L(0/x) _ L(0/x) ~1(0/x) .
« 46
[£©)26/008 [L(6/2 B (46)
This concept means that the noninformative prior is a uniform
distribution: f (#)=constant.
In the case of the Normal mean with n and ¢ known, the

likelihood function can be written as (Box and Tiao, 1973):

1(8/0,y) <exp[-—L (8-7,)*] (47)

where y is a random variable, y;, is the sample mean of y, and
0 is the mean of the population. Apparently, the data enters
the likelihood only via the sample mean. Therefore, when the
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likelihood is expressed in terms of 6, the sample mean y;
affects only the location of the likelihood curve. That is,
the likelihood function is completely determined a priori
except for its location. This is called the data translated
likelihood function.

However, it is possible that the immediate interest is
not 0 itself but the reciprocal k=6-. In this case, the
noninformative prior in terms of k can be evaluated as

(Wilson, 1990):
£ (k) =£(0) | 2| k2 (8) =k c (48)

Here it is obvious that the prior distribution for k is not
constant. Therefore, the standardized likelihood function
will not only change locations but also spread with different
sets of data. The spread of the distribution is then biased
by the selection of the variable and is in conflict with the
original goal of selecting a uniform prior. When this
happens, it is necessary to derive a parameter transformation
that produces the data-translated likelihood function. The
noninformative prior for the normal distribution of o
introduces this concept.

Consider a standardized likelihood function with an
unknown standard deviation and a known mean € for n observed

values of x:
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- (Xi"e)z

1(o/x,0)=Ko"exp[-
1=1 202

] (49)

where K is the normalizing constant. This equation can be

evaluated using s? defined as:

2=i = _ 2
5 HIZ; (x,-6) (50)
and
1(o0/x,0)=Ko™"exp|- s” 1. (51)
— 202
This 1is not data translated. Now consider the
transformed variable: k=log o and dk=o’de. Box and Tiao

(1973) showed the resulting transformed distribution is data
translated. Therefore the appropriate locally uniform
distribution can be written as f (k)=constant, then this prior

can be written as:

S

£(o) =£(k) |- ]=<. (52)

do

For an independent variable, the joint probability
density function can be written as f(0,0)=£f(0)f (o). For a
normal-gamma function, the appropriate noninformative priors
for each marginal distribution can be written as £ (0)=c; and
f(o)=c,/0. Therefore the joint probability can be written as

f(0,0)=c/o for 020 and £(0,0)=0 for 0<0, where c incorporates

c, and c,.
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Posterior Distribution

Based on the above Bayes Theorem, suppose that we have a
model f(x,0) which is used to simulate the output (y;,...,¥)"
as a fﬁnction of inputs (x,...,%,) and parameters(@,,...,0,),
where T represents transposition. The observed model ocutputs

can be expressed as:
y=f(x,0) +e (53)

where € 1s the residual.

Box and Tiao (1973) used independent and exponential-
power distributions with zero mean to describe the stochastic
nature of the residuals. According to them, the probability
density function for each of these residuals can be expressed

as:

—_-(‘)(B) _ € 2/ (1+B)
f(€) — exp [ C(B)IUI

] (54)

where f is a parameter between -1 and 1 and w(f) is defined

as:

- [P(1.5(1+B))]1/2 55
OB = 0.5 (24177 (55)

and c(f) is defined as:

S L(L.5(1+B)) ya/qap)
c(B) =l ey (56)

The parameter B is a measure of kurtosis that describes the
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non-normality of the observation data. The observation data
have a normal distribution when f=0, a double exponential
distribution when f=1, and a rectangular distribution when f=-
1.

Assuming prior independence between the vector of the
model parameter and the standard deviation of the residuals,
an appropriate noninformative prior probability density

function can be given as:

p'(0,0)=1/0. (57)

By Bayes' Theorem, the posterior probability density
function is proportional to the product of the prior

probability density function and the likelihood function:

expl-c(B) Y | Z[/0P] (58)

1=1

p’(6,0/B,€) =

0.IH-l

By integrating the above equation with respect to o, the

distribution of 6 can be obtained as:
p//(e/ﬁle) oc [E Ieilz/(1+ﬁ)] -n(1+p)/2 . (59)
1=1

In terms of observed y;, the probability density function of

0 can be written as:

= 2/ (1+B)
[E ly;-£(x;,0) | ] -n(1+p) /2
p//(e/p,y) = i=1 . (60)

n

(Y lys£ (%, 8) 2/ (+9)] -a2+B) /29
[13 |
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The point estimate of 6 is taken as the mode of the posterior
probability density function of € (the mode is the most

frequently occurring value) and can be found by searching:

n

min (Y |y;-£(x;,0) [2/@+9)] (1)

1=1

In this research, y; was substituted by a measured
concentration profile, f(x;,0) was the simulated concentration
profile producéd by Baehr's model, and 6 represented the four
parameters specified in Chapter III. p was assumed to be zero
which represents a normal distribution for residuals.

We have so far considered only observations made from a
single model response. However, contaminant transport models
often produce several outputs. Incorporating more observed
information into parameter estimation should help the problem
become better posed. Suppose that the model produces m
outputs and each output has n observations, then the residual
between the model simulation and observation will be an n x m
matrix. Assume that the error vector is distributed as the m-
variate Normal M,(0,})), where } is the m x m covariance matrix
of residuals. The joint distribution of the n wvectors of

error €=(€;,€5,...,€,)" 1is:

plelX,0) =] p(e,]X,0) . (62)
u=l

Expanding Equation 62 yields:
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ple|X,0) = (2m) -™/2|¥|/2exp (—%E e/Tle,) . (63)
u=1

Letting

5(0)=15;;(0;,6,)1=1) €,€,;] | (64)

u=1

then the exponent in the previous equation can be expressed

as:

Zleu’Z'leu=trS(6)E‘l= 0%75,,(6;,0;) (65)

1=1 73=1

where tr S(0) means the trace of the matrix S(6). Given these

observations, the likelihood function can be written as:
1(6,%|y) °=p(<-:|2,6)°=|E|'“/2exp[—%tr2‘15(6)] . (66)

Now for the prior distribution of the parameters (6,)}),

assume that 6 and } are approximately independent so that

p’(6,X) =p’(6) p' (%) . (67)

When taking 6 as locally uniform and applying Jeffreys' Rule
for multiple parameters to the covariance matrix of the

residuals },

p’(0) xconstant (68)

and
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L (e
p/(D) =T 2", (69)

Now the posterior joint probability density function is
proportional to the product of the likelihood function and the
prior joint probability density function. When integrating

out ), the marginal distribution of 6 will simply be
p(Bly) <|s(0) | /2 (70)

and the "most probable" wvalue of 6 will be

min|s(0) |. (71)

Note that this is a general derivation for multiple model
responses cases. When applied in this research, only two
model responses were considered. Therefore, S(6) was a 2 x 2
matrix, y represented the two sets of measured toluene gas
concentration profiles at different times, n represented the
number of data points involved in a concentration profile, and

0 represented parameters specified in Chapter III.
Parameter Estimation Procedure

The foregoing part of this chapter has provided a method
for solving parameter estimation problems. This section will
present the procedure that applies the present methodologies
to solve Equations 60 and 61 or 70 and 71. This will lead to
the point estimates (the estimation of an optimal set of

parameters) and the marginal distribution estimate.
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The Point Estimates

The point estimates can be obtained by using optimizétiom.
techniques to solve Equation 61 or Equation 71. A vast number
of optimization methods exist. There seems to be no answer to
the question of which is the best strategy. This research
chose the simplex method over other methods because of
simplicity. Moreover, for only a few variables, the simplex
method is robust and reliable (Schwefel, 1981).

Nelder and Mead (1964) developed the basic concept. A
siméiex:has N+1 vertices, where N is the number of parameters.
For two variables, there will be three vertices arranged as an
equilateral triangle. The objective function is evaluated at
all the vertices. The vertex with the largest objective
function value is replaced by its reflection in the midpoint
of the other wvertices, or the expansion of the reflection,
and/or the contraction of the reflection, depending on which
is the best.

The criterion for ending the search is to test whether
the variance of the objective function values at the vertices
of the simplex is less than a prescribed limit. The following
steps describe how the algorithm works:

(1). Select initial wertices (X;,...,X.1). The

coordinates of each vertex are a set of n-dimensional

parameters (Xji, ... ,Xy) -
(2) . Calculate objective function values for initial
vertices.
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(3) . Determine the point corresponding to the largest

value.

(4) . Find the center of mass of these points by
1 .
%3, = LY %5,5) =% 5] (72)

where x;  is the rejected point and x; . is the center of mass
of the remaining points.
(5). Determine the tentative new point to replace the

rejected point by using 6=1 with

X n=Xg gt (1+0) (%) =% ) (73)

1

where a equals 1 for regular simplex, 2 for expanding simplex,
and 0.5 for contracting simplex.
(6) . Decide whether a different point using contraction
or expansion should be obtained using the following criteria:
a. Expanding simplex: if the tentative new point gives a
value that is better than the current best value, then
calculate a new point and its function value using this
expansion equation (a=2). If the expanded point is
better than the tentative point, then use the expanded
point, otherwise, use the tentative point.
b. Contracting simplex: if the tentative new point gives
a value that is worse than the second worst point, then
calculate a new point and its function value using the

contraction equation (#=0.5). If the contracted point is
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better than the tentative point, then use it, otherwise,

use the tentative point.

(7). Repeat steps (2) through (5) until the tolerance
value is acceptable.

The weak point of this method is that the fixed searching
parameter @« limits the advancement of the searching. Marsili-
Libelli and Castelli (1987) modified this method by making the
searching parameter adaptive. Their modification enables the
determination of a local minimum in the search direction each
time an expansion is performed. This feature allows the
algorithm to adapt the pattern search parameters to the
particular shape of the cbjective function.

Marsili-Libelli (1992) applied this modified method to
parameter estimation of ecological models. His results proved
that this method well fit cases where the minimum lies in a
narrow trough in the parameter space. This research employed
the modified method to search for the optimal set of

parameters.

Marginal Distribution

The other goal of parameter estimation is to obtain the
marginal probability distribution for each parameter by
integrating Equation 60 or Equation 70. This research
employed Monte Carlo integration because of its simplicity and
its ability to deal with multidimensional problems.

The detailed theory can be found in Davis and Rabinowitz
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(1975) . Suppose we want to compute :

b
I= f f(x)dx (74)

then the mean value of f(x) over the interval [a,b] is I/(b-
a). If we sample f(x) so that x is from a random uniform

distribution, then the sample mean would be
£==% £(x;). (75)

Therefore, the sample mean £ could be an approximation of the

mean value I/ (b-a), which leads to:

b
f (x)dx~-——-[f(x1)+ L +E(x) ], (76)

The variance of this estimate is O(1/N), where N is the sample
size. Rubinstein (1981) described the weighted Monte Carlo
integration for variance reduction:

1. Generate X;,...,X, from U(0,1).

2. Arrange X;,...,X, in the increasing order.

3. Estimate the integral by
f fx)dx=—-[2 (%) +£ (X301) ) (X501 (77)

where X,=0 and Xg,=1.
In two dimensional case, the variance of this estimation
is 0(1/N?) which gives a standard error of O(1/N). Therefore,

in order to achieve the two significant figures of accuracy
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(with a standard error less than 0.005), we need to sample x
about 2500 times (with a standard error=1/2500=0.004).
Assumptions The goal of parameter estimation is to get
unbiased and consistent estimates. Since parameter estimation
that relies on mathematical and statistical inferences
requires assumptions, it is important to state and check
assumptions carefully. If assumptions are violated, the
estimated parameters and the predicted output are biased.
The following assumptions are used in most parameter

estimation methods:

] Errors have zero mean.

. Errors have a constant variance.
] Errors are uncorrelated.

° Errors are normally distributed.

These assumptions are often violated in inverse problems.
More serious difficulties arise due to violation of the
constant variance and uncorrelated errors assumptions which
often occur in practical problems. For instance, error
variances are commonly found to increase with the magnitude of
the property being measured. Unequal error variances also
result when the observation vector contains different types of
measurement expressed in different units.

If any assumptions are violated, the general procedure is
to transform the data so that the transformed data satisfy the
assumptions. Commonly, transformation of data will overcome

violations of the assumptions. However, non-constant variance
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and non-normality camnot always be eliminated by
transformations. Some commonly used techniques for data

transformation include:

° standardization,

° ARMA model transformation to eliminate the
autocorrelation,

° reciprocal transformation,

. power transformation, and

° Logarithmic transformation.

The last four transformations can often change the error
properties 1in several aspects simultaneously, such as
eliminating non-constant variance, and non-normal
distribution. Another commonly used method for correcting the
non-constant variance is the weighted least-squares method

mentioned in Chapter II (Equation 9).
Uncertainty Analysis Procedure

- Chapter II discussed the idea that the prediction of
uncertainty ultimately relates to three basic sources: natural
uncertainty, parameter uncertainty, and model structure
uncertainty. In fact, to date, the evaluation of uncertainty
has focused more on parameter uncertainty than on the other
two sources. The estimation of model parameters is subject to
greater errors when few measured data are available to form
the estimates. Also, the performance measures are influenced

more by some parameters than by others. Therefore, when we

59



quantify model uncertainty, we are looking at two aspects:
1. Sensitivity analysis that studies each wvariable to
understand its relative importance in the model.

2. Joint uncertainty analysis that quantifies the
uncertainty of model response influenced by the uncertainty of

all parameters.

Sensitivity analysis

There are two ways to conduct sensitivity analyses. One
basic approach is to introduce small perturbations in the
various processes and parameters of the model and to study
their relative effe-cts on the output variable of interest.
This method requires intensive computation for accurate
calculation, however, it is sufficient for a rough analysis.

The other method is to consider a sensitivity as a
partial derivative, which represents the change in model

prediction resulting from a change in a model parameter. If

Y=£(X,,...,X), then the relation is:
_ oy X;
S= o (78)

1

where S is the sensitivity index of Y with respect to change
in X;.

Determining the sensitivity of the variable Y to each of
the input variables X;, ..., X, at the point (x;,...,x;) requires
the calculation of n partial derivatives. Solute transport
models are too complex to calculate the partial derivatives
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directly.

Usually, both deterministic and statistical approaches
can be used to deal with this problem. Deterministic
sensitivity analysis is a numerical estimate of the partial
derivative of Y with respect to X, at the point x;,...,x,.
Statistical method evaluates the model at many points in the
input space and then fits a response surface of the input
variables to the output variables. |

The problem with deterministic sensitivity analysis is
that it has difficulty dealing with correlated input variables
(Doctor, 1989). Thus, this research will use the statistical
method of partial regression techniques incorporated with a
Monte Carlo simulation to complete the sensitivity analysis.

The response surface can be represented by a linear model

(Doctor, 1989):

Y=a+) P,X;+e (79)
where f; is the partial regression coefficient which is the
estimate of the sensitivity of Y to the input variable X;.

Equation 79 is a linear approximation to the nonlinear
model. Following Tiscareno-Lopez et al (1993), it is assumed
that "the linear model is able to assess unbiased estimates of
sensitivity indices of model parameters of a complex nonlinear
model when a large number of model simulations are performed."

This equation can be standardized as:
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Y*=Y P, X" +e (80)
where Y'=(Y-Y,)/0,, X'=(X-X,)/0,, Y, is the mean of Y, X, is the
mean of X, o, and o, are standard deviations of Y and X, and
p* is the standardized partial regression coefficient. The
value of X can be simulated from the estimated probability
distribution.

For the standardized partial regression coefficients to
be reasonable estimates of the sensitivity, the response
surface must give an adequate representation of the function.
For lack of a better test, this adequacy is measured by the

multiple correlation coefficient, R?, defined as:

Y (r-9)?
E (Y-:_Ym-:) 2

R2=1- (81)

where ¥ is the estimated value of Y*, ¥,* is the mean of Y.
In a strict sense, RF? does not directly measure how precisely
B* can estimate S in Equation 78, but high values of R? must

imply a reasonable estimate.

Uncertainty Analysis

This research employed the Monte Carlo simulation method to
accomplish uncertainty analysis. The procedure includes the
following steps:

1. Generate parameter samples from the estimated
distribution achieved in the foregoing procedure.

2. Run the transport model on these parameters to get a
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sample of model outputs.

3. Analyze the model output sample to obtain its

distribution.

4. Quantify its uncertainty by the coefficient of

variation C, and other statistics.

Generating parameters samples is alWays the critical step
of the Monte Carlo simulation method. If parameters are
independent, the sample can be directly generated from the
marginal pdf's because the joint probability density function
(pdf) of the parameters is simply the product of the
univariate pdfs. However, many model parameters are not
independent which means that the joint pdf is not the product
of the univariate pdf's. In this case, the generated
parameter samples have to preserve the covariance. This
research chose the procedure given by Haan (1977) which uses
principle components to generate multivariate normal parameter
samples, along“with.empiiical.modificaticmlsuggestedﬁby'nxylor

and Bender (1988). Chapter VI will explain this further.
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CHAPTER V
PARAMETER ESTIMATION RESULTS
Preliminary Sensitivity Analysis

The difficulty of parameter estimation is at least
proportional to the number of parameters. The purpose of the
preliminary sensitivity analysis 1s to qualitatively
investigate the impact of each parameter on model output.
Insensitive parameters should be excluded from the estimation
process. The sensitivity analysis method described in Chapter
IV was not used here (Chapter VI will discuss the application
of this method). The qualitative method used here is to
introduce small perturbations in a parameter of the model
while fixing the others as constants to study its impact on
the output variable.

The volatile organic transport model (Baehr, 1987) used
in this research produces two output variablesv: the
concentration profile (the concentration distribution along
the soil colum at different times) and total mass that
escaped from the soil surface during a certain time interval.
The change in output corresponding to the change of each input
parameter while keeping the others constant was investigated.
Modeling conditions were described in Chapter III with nominal
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parameter values listed in Table I. Results are compared for
5 and 21 hours of wvolatilization to compare long and short
term sensitivity.

Figures 1 and 2 plot the simulated toluene gas phase
concentration versus depth for five and 21 hours in the soil
column, with different water phase tortuosities (&;). The
plots show that as the tqrtuosity in the water phase was
changed from 0.2 to 1 by increments of 0.2, the concentration
profiles remained approximately the same. Likewise, Figures
3 and 4 depict the effect of water phase tortuosity on the
mass transfer out of colum after five hours and 21 hours.

Apparently, tortuosity in the water phase is not an
important factor under the conditions of this research. This
is due to the molecular diffusion coefficient in the water
phase being very small (1 x 107°), relative to the wvapor
diffusion coefficient of 0.1. Therefore, it is not necessary
to include water phase tortuosity in the estimation pfocess
used here.

Figures 5 and 6 show the concentration profiles after
five hours and 21 hours with different tortuosities in the air
phase (£,). Tortuosity in the air phase was increased from
0.2 to 1 by increments of 0.2. The toluene concentration
shows dramatic corresponding change, especially at the bottom
of the column. Comparing Figures 5 and 6, it appears that the
concentration profile 1s more sensitive to air phase

tortuosity later in the simulation.
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Figures 7 and 8 plot the total toluene mass escaped from
the column surface and the mass remaining in the column versus
tortuosity in the aif phase after five hours and 21 hours,
respectively. Both plots show a significant sensitivity to
air phase tortuosity. Again, the sensitivity to air
tortuosity is greater in later hours. However, the
sensitivity becomes smaller as air phase tortuosity reaches
its higher range, which is consistent with the results of the
concentration profiles.

Figures 9 and 10 are the concentration profiles after
five hours and 21 hours, respectively, with different values
of Henry's constants (¥,). Unlike the effect of air phase
tortuosity, the sensitivity increases with Henry's constant.
On the other hand, the sensitivity is larger early in the
simulation. Figures 11 and 12 plot the corresponding toluene
mass escaped. Henry's constant is again sensitivé in both
cases and more so for the early time.

Figures 13 through 16 demonstrate the concentration and
mass changes corresponding to the change of the solid phase
adsorption coefficient (K;) within the range of 0.2 to 1.0.
Notice that, in Figures 15 and 16, the mass remaining in the
column shows an increase as the adsorption coefficient is
increased. On the contrary, Figures 13 and 14 show that the
concentration profile decreases as the adsorption coefficient
increases, which 1s due to plotting the gas phase

concentration, and not the total concentration. When the
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adsorption coefficient increased, the mass partitioned into
the gas phase decreased, which reduced the gas phase
concentration. - Figures 13 and 14 illustrate that the
concentration profile is more sensitive to the adsorption
coefficient in early time. It is interesting that the
adsorption coefficient in its lower range affects the
concentration profile dramatically early, while it has little
effect at later times.

This analysis has shown that the tortuosity in air phase,
Henry's constant, and the adsorption coefficient all have an
important impact on model output. However, each parameter
behaves differently in terms of time and its range. Air phase
tortuosity is more sensitive in its lower range and at a later
time. Henry's constant is more sensitive at its higher range
and at an earlier time. The adsorption coefficient is more
sensitive in its lower range and at an earlier time.

To better demonstrate combined sensitivity, Figures 17
through 21 present the total toluene mass escaping the column
as a function of Henry's constant (K,) and air phase
tortuosity with the solid phase adsorption coefficient (Kj)
held constant. Generally speaking, the accumulated mass that
escaped increases as air tortuosity and Henry's constant
increases and decreases as the adsorption coefficient
increases. The interaction among these three parameters
affects model output as well. These five graphs (Figures 17

through 21) show that Henry's constant has less impact on
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model output with large tortuosity. In Figure 17, when airM
tortuosity is 0.1, the increase of Henry's constant by 0.8
almost doubles the mass escaping. When air tortuosity is 1.0,
the same increase of Henry's constant increases mass escapihg
by less than 10 percent. On the other hand, an increase of
the adsorption coefficient reduces the impact of air
tortuosity while it increases the impact of Henry's constant
slightly. Curves in Figure 21 are flatter than in Figure 17,
and the curve spread range is broader. Figures 18, 19, and 20
show-an uniform transition between the extremes. Thus, while

these are complex relations, they are well behaved.
The Optimal Estimates of Parameters

The Bayesian methodology described in Chapter IV combined
with an adaptive simplex method was used here to find a set of
optimal parameters for either Equation 61 or Equation 71. To
verify the estimation procedure, hypothetical simulated data
were used first to test the procedure, followed by the
experimental data. As for the hypothetical data, model
simulation results for given parameters were used as
observations fed into the estimating algorithm. Parameters
were taken from literature and experience. Henry's constant
for toluene is 0.26 (Baehr, 1987), air phase tortuosity was
calculated from the Millington and Quirk model (Brown and
McWhorter, 1990) as 0.34, and the adsorption coefficient was
taken from Yu (1995) as 0.43.
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The simulated results fed into the Bayesian algorithm
were corrupted with additive noise to better model real data.

The noise was added by:
Yi=Ymi+ei,i=1,2, vaa I (82)

where Y; is the value fed into the Bayesian algorithm, Y, is
the simulated result and € is an uncorrelated random noise
sample drawn from a Gaussian distribution with zero mean and
standard deviation o. Various values of o were used to study
the effect of measurement error on parameter estimates.

If parameters estimated by the algorithm are close to the
given parameters within an acceptable tolerance, the algorithm
is considered. feasible. Before getting into an optimal
search, it is necessary to study the characteristics of the
objective function because of the apparent nonlinearity in

model parameter structure.

Objective Function Response Surface and Contours

The wvolatile organic transport model employed in this
research produces concentration profiles across the plume at
different times. These outputs were used as observations in
the objective function equations 61 and 71 described in
Chapter IV.

Using One Concentration Profile Equation 61 was used
here as the objective function to find optimal estimates for
air phase tortuosity, Henry's Law constant, and the adsorption
coefficient. Figures 22 through 27 demonstrate the three-
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dimensional response surfaces and two-dimensional contours in
two-parameter space with the third parameter fixed. The
response surfaces show the objective function over the entire
domain, while the contours are best suited for locating the
minimum.

It is apparent from the contour maps that the minima of
the objective function fall within an optimal range and there
are many local minima. For Henry's constant and adsorption
coefficient space, there are two optimal ranges. — These
characteristics reflect that the three parameters are
correlated due to the model structure. Apparently, the data
used in the objective function are not sufficient to overcome
the interrelationship among parameters, therefore it 1is
necessary to use more information.

Using Two Concentration Profiles Equation 71 was

employed to bring in two concentration profiles at different
times. Figures 28 through 33 show the resulting response
surfaces and contour maps. The difficulty due to the
correlation between air phase tortuosity and the adsorption
coefficient has been reduced. Similarly, the situation for
air phase tortuosity and Henry's constant has been improved by
bringing in more information. The global minimum exists
within a narrow trough. However, Figure 33 shows that the
correlation between the adsorption coefficient and Henry's
constant has not been overcome because there are still many

local minima.
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The straight contour lines in Figure 33 reflect the
linear relationship between Henry's constant and the
adsorption coefficient. From the governing equétion in
Chapter III, we can see that the adsorption coefficient K; and

Henry's constant K, form the coefficient additively:

K 0
azeg+?:pb+7(i . (83)
Therefore,
Kfi"_eg_r(h_& _ (84)
Py Pb

Ky is linearly related to K, in the model formulation.
This is more clear if the physical meaning of these two
parameters is considered. Both parameters are phase
partitioning coefficients. For a certain mass amount, the
change in phase partitioning coefficients must offset one
another to assure the same total mass. Therefore, these two
parameters are not identifiable if both of them are considered
uncertain.

Chapter II discussed that reducing the dimensionality of
the parameter field can overcome some identifiability problems
associated with spatially varying parameters. Since Henry's
constant is easier to measure than adsorption coefficient, it
will not receive further consideration in this analysis and it

will be set to its nominal value for the remaining analysis.
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The Optimal Results

The ob] ective contour map plotted in Figure 29 shows that
a global minimum exists. However, due to the interaction
between the two parameters, the objective function does
exhibit elongated regions around the minimum. It is well
known that many direct search methods perform poorly or fail
altogether for this kind of situation. Therefore, an adaptive
search algorithm based on the simplex search method of Nelder
and Mead (1964) and modified by Marsili-Libelli and Caslelli
(1987) was used here. Chapter IV described the theory of the
search technique. The only constraints placed on the optimal
parameters were that air tortuosity is less than unity and
greater than zero and the adsorption coefficient is greater
than zero.

This analysis intends to emphasize how the error in
observation measurement would affect the parameter estimation
results. Fifteen sets of hypothetical observations were
constructed with Equation 82, thus, adding noise with
different standard deviations (o) to the simulated data with
given model parameters. Fifteen values of o were used from
0.1 to 0.8 by an increment of 0.05. Even for the same
variance, different realizations of observations would have
different results. Therefore, 15 randomly chosen realizations
of observations were used for each noise variance. This
implies that for each noise variance, there is a distribution
of optimal parameters.
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Figures 34 and 35 present the behavior of the estimated
parameters as increasing noise is added to the simulated
results. Clearly, as the noise variance increases, the mean
of each estimated parameter tends to exhibit Ilarger
oscillations around the true wvalues. The 95% confidence
interval of the mean increases as well. When observation
error is large, not only does the optimal estimate drift more
from the true value, but the estimate itself is also less
reliable. Such solution instability is not rare with inverse
problems. Carrera and Neuman (1986) summarized several
studies that wused the hydraulic head data to estimate
hydraulic conductivity. He stated that when the head data
are corrupted by noise, the computed conductivity wvalues
exhibit uncontrolled spatial oscillations due to some
" improperly posed" problems in the governing partial
differential equations. He also suggested that smoothing
observed head data can overcome this instability. Under the
conditions specified in this research, Figures 34 and 35
clearly show that when the standard deviation of the noise is
less than 0.35 mg/l, the optimal estimates can be considered
stable. This result could serve as a criterion to judge the
quality of measured data.

To provide a qualitative feel for this level of noise,
Figures 36 and 37 plot the simulated results of two
realizations with noise standard deviations of 0.3 and 0.4.

Apparently, this range of measurement error is not too
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difficult to achieve. In fact, many data measured in the lab‘"

could even be less noisy than this (Roll, 1995).

Application to Experimental Data

The procedure tested above is now applied to lab data
described in Chapter III. The data were obtained by the
experiment reported by Yu (1995) under thé conditions listed
previously. Figure 38 shows the concentration profiles
measured at different times. Two profiles measured at 13 and
21 -hours were chosen to construct the objective function
(Equatkion 71) . All the data inputs are the same as those used
in the above testing procedure. The search algorithm reached
the optimal estimates of 0.42 for air phase tortuosity and
0.39 for the adsorption coefficient. These two optimal
estimates were put back in the program to produce a new
simulation. Figures 39 and 40 compare the simulated
concentration profiles using estimated parameters and measured
data. The simulated data fit lab data very well. Similar
comparisons for lab data obtained at other times appear in
Figures 41 through 45. Not too surprisingly, since these data
were not used as the criteria of the optimal search, they did
not fit as well as the data measured at 13 and 21 hours.

One purpose of a point estimator for model parameters is
to make judgements regarding the stochastic nature of the
associated residuals (Edwards, 1988). Chapter III stated the

least squares assumptions that this estimation algorithm must
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meet to justify the results being unbiased and consistent
optimal estimates. If the estimates obtained here result in
residuals that violate those assumptions, Equation 72 cannot
be used to estimate the joint probability density functions of
the model parameters directly. A data transformation must be
conducted first until thQse assumptions are satisfied.
Figures 46 and 47 are the plots of concentration
residuals at 13 and 21 hours. The residuals do not show any
obvious trends or non-constant variance. Therefore, the
necessary assumptions underlying the estimation procedure are
considered to be satisfied and Equation 72 can be used to
estimate the joint probability density function of model

parameters.
Marginal Distribution of Parameters

We have obtained the optimal estimates for each model
parameter. However, the algorithm considers each model
parameter as a random variable that is best represented by a
probability distribution. Therefore, the ultimate goal of the
estimation algorithm developed in this research is to obtain
the probability distribution for each model parameter.

The marginal probability density function of a model
parameter was obtained by integrating the joint probability
distribution of parameters described by Equation 70, respect
to other parameters. When the number of parameters involved

in the joint probability is greater than 2, this integral is
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multidimensional. Monte Carlo integration described in
Chapter IV (Equation 77) was employed here to deal with
possible multidimensional integration. The simulation sample
size N was chosen as 3000 to achieve the two significant
figures of accuracy (with a standard error less than 0.005).

To investigate how observed error would affect the
estimation, the hypothetical observations described previously
were used here first as well. Figures 48 and 49 depict the
probability density function of air phase tortuosity for two
groups of observation errors. Likewise, Figures 50 and 51
depict the probability density function of the adsorption
coefficient for two groups of observation errors. These
Figures clearly show that as the uncertainty in observations
increases, the uncertainty in parafnéter estimation increases.
In a more explicit way, Figures 52 and 53 depict the
relationship of the half height width of each distribution,
the mode, and the observation error. The half height width is
the width of the distribution at one half the maximum height.
As the standard deviation of observation error increases from
0.05 to 0.55, the half height width of the distribution
increased from 0.011 to 0.101 for air tortuosity. For the
adsorption coefficient, the half height width increases from
0.0195 to 0.185. The mode also showed an increasing tendency
departing from the true value.

Table II and Table III summarize the detail statistics of

each distribution for air tortuosity and the adsorption
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coefficient respectively. Table II shows that the standard
deviation of estimated air tortuosity distribution increases
from 0.00429 to 0.047 while the standard deviation of

observation error increases from 0.05 to 0.55.

Table II

Statistics of Estimated Air Tortuosity for Synthetic Data

Synthetic Mean Mode Standard Skewness Kurtoisis

Data Error , Deviation
0.05 0.339 0.34 0.00429 -0.659 6.78
0.1 0.332 0.33 0.00837 -0.441 3.93
0.15 0.334 0.34 0.01 -0.230 3.58
0.2 0.343 0.34 0.013 -0.247 3.54
0.25 0.313 0.32 0.022 -0.492 3.46
0.3 0.339 0.34 0.020 -0.268 4.47
0.35 0.339 0.34 0.022 -0.408 3.61
0.4 0.342 0.35 0.027 -0.524 3.68
0.45 0.288 0.29 0.037 -0.255 2.87
0.5 0.336 0.34 0.042 -0.094 2.98
0.55 - 0.358 0.37 0.047 -0.536 3.66
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Similarly, Table III shows that the standard deviation of
the estimated adsorption coefficient increases from 0.011 to

- 0.084.

Table III
Statistics of Estimated Adsorption Coefficient

for Synthetic Data

Synthetic Mean Mode ‘Standard  Skewness Kurtoisis

Data Error Deviation
0.05 0.436 0.43 0.011 0.496 5.14
0.1 0.446 0.45 0.017 0.304 3.75
0.15 0.44 0.44 0.02 0;i26 3.55
0.2 0.423 0.42 0.03 0.103 3.52
0.25 0.471 0.47 0.038 0.%37 3.17
0.3 0.399 0.39 0.042 0.46 4.1
0.35 0.42 0.42 0.048 0.175 3.44
0.4 0.424 0.42 0.051 0.218 3.38
0.45 0.499 0.5 0.069 -0.114 3.0
0.5 0.518 0.52 0.069 -0.165 3.3
0.55 0.43 0.42 0.084 0.378 3.52
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The measured data were then used. Figures 54 and 55
illustrate the marginal probability distribution for air
tortuosity and the adsorption coefficient respectively, based
on lab data. Table IV summarizes the statistics of model
parameters estimated from measured data. The covariance of
the two parameters then was determined by integrating their
joint probability density function P(6/Y) described by
Equation 70. Since f# here 1s a wvector of these two
parameters, P(8/Y) can be written as P(0,,60,/Y), thus the

covariance between these two parameters can be calculated by
cov(8,,8,) =ff(61—p.l) (6,-u,) P(6,,0,/Y) dd,de, (85)

where 6, and 6, represent air tortuosity and the adsorption
coefficient, respectively, u, is the mean of 0,, u, is the mean
of #,, and Y represents the two sets of measured toluene gas
concentration profiles. The correlation coefficient listed in
Table IV was derived from the covariance and standard

deviation of each parameter.
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Table IV

Statistics of Estimated Parameters for Lab Data

Statistics Air Tortuosity Adsorption

Coefficient

Mean 0.417 0.392

Mode 0.42 0.39

Standard Deviation 0.014 0.039

Skewness -0.498 0.275

~ Kurtosis 4.21 3.67

Coeffcient of 0.033 0.1

Variation

Correlation -0.707
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CHAPTER VI
UNCERTAINTY ANALYSIS RESULTS

This chapter applies the Monte Carlo simulation described
in Chapter III to study the uncertainty of model prediction
caused by the uncertainty of model parameter. Two questions
will be addressed: 1) What significant effect does a model
parameter have on model output and what is their relative
importance? 2) What relationship exists between the

distributions of model input and output?
Data Sampling From the Estimated Distribution

Chapter V has provided the marginal probability
distribution for each model parameter. However, in
uncertainty analysis we need to use actual parameter values
drawn from their distribution. The following paragraphs will
present the sampling process and assess the quality of the
sampled data.

The results in Chapter V showed that the correlation
coefficient between air tortuosity and the adsorption
coefficient is -0.707. Therefore, these two parameters cannot
be considered independent. The generated data should preserve

the means, variances, covariance, and correlations between
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these two parameters. Haan (1977) described a procedure which
uses principal components to generate a multivariate normal
distribution. Figures 56 and 57 show the comparisons of
distributions of the two estimated parameters and normal
distribution. Apparently, they are not exactly normal
distributions because their kurtosises are greater than 3
which 1is the kurtosis of a normal distribution. Air
tortuosity especially, has a relatively greater probability
concentration near the mean than does the normal distribution.
So the adjusted procedure includes the following steps (Taylor
and Bender, 1988):

1. Use the means, variances, and correlation matrix to

generate a multivariate normally distributed data X

according to the procedure given by Haan (1977).

2. Calculate the cumulative probability level for data

X.

3. For each data value of X, use its probability level

as a reference and apply it in the distribution estimated

from lab data to get Y with the same probability level.

Y 1is then the data generated from the estimated

distribution.

10,000 samples were generated for each parameter using
this method. They were analyzed again to see if they preserve
the means, variances and covariance of the population. All

parameter statistics were matched within 0.1%.
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Sensitivity Analysis

This section will answer the first question posed at the
beginning of this chapter. A statistical sensitivity analysis
described in Chapter III was performed to rank model
parameters in terms of their contribution to overall error in
model predictions.

The 10,000 samples of each parameter generated from the
preceding paragraphs were put back in thevvolatile organic
transport model to produce a corresponding model output, the
total toluene mass escaping the colum. In fact, by testing,
a sample size around 3000 is enough to produce stable results.
A multiple linear regression analysis was then performed using
the standardized parameter samples and model output. If the
response surface approximation is sufficiently close to the
model over the region of interest evaluated by sufficiently
large R?, standardized partial regression coefficients can be
used as estimates of sensitivity.

It has been established that there is interaction between
the two model parameters ({; and K;) , which this research has
been studying. Doctor (1989) recommended the use of a step-
wise regression procedure to deal with mutually dependent
input variables. Step—wise regression approximates the model
output by sequentially adding or deleting variables to the
response surface until adding more variables cannot improve
the R? criterion substantially.

Since there are only two parameters involved, the first
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step conducted the regression by including either parameter,
while the second step included both parameters. Table V
sunmarizes the regression results. When the regression
includes air tortuosity alone, its R? is 0.74 while the
standardized regression coefficient is 0.86. When the
adsorption coefficient was included alone, R? is 0.93 and the
regression coefficient is -0.96. When air tortuosity and the
adsorption coefficient were both included in the regression,
R? is 0.999, while the partial regression coefficient is 0.37

for air tortuosity, and -0.71 for the adsorption coefficient.

Table V

Results of Step-wise Regression on Ranks

Variables Included Standardized R?
Regression
Coefficient
Air Tortuosity 0.86 0.74
Adsorption Coeff. -0.96 0.93
Air Tortuosity & 0.37 0.999
Adsorption Coeff. -0.71

Including two parameters in the regression apparently
does improve the R? criterion; A sufficiently large R* also
demonstrates that the partial regression coefficients are
reasonable estimates of the sensitivity index.
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These results clearly showed that the adsorption
coefficient has the greatest effeét on the total mass leaving
the column. Therefore, the uncertainty in the adsorption
coefficient would contribute more to model output uncertainty
than the uncertainty in air tortuosity. The sensitivity of
the adsorption coefficient is almost twice that of air
tortuosity's sensitivity index. Specifically, one standard
deviation change in the adsorption coefficient will lead to a
0.71 standard deviation change in the model prediction. The
same degree of change in air tortuosity will lead to a 0.37
standard deviation change in the model prediction.

Notice that the sensitivity index of the adsorption
coefficient appears with a negative sign. A positive index
means that an increase in the input variable increases the
predicted model variable in proportion to the sensitivity
index. A negative index means that an increase in the input
variable decreases the model prediction in proportion to the
index.

These differences will be more apparent when considering
the physical meanings of these parameters and the model
predictions. The model prediction here is the total mass
escaped from the column to the atmosphere. Soil with a larger
adsorption coefficient will retain more organic compound in
the columm. Similarly, when air tortuosity increases, the
effective diffusion coefficient increases, which speeds up the

diffusive transport process making the organic compound leave
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the column faster.
Uncertainty Analysis

This section answers the second question posed at the
beginning of this chapter. The Monte Carlo simulation method
described in Chapter III was employed to provide information
on the wvariability in model output as a function of
uncertainty in the input wvariables. In other words, the
volatile organic ﬁmdel was evaluated at a large number of
points in the input parameter space. An.empirical'pdf for the
output variable was constructed from the results.

As described in the sensitivity analysis, the volatile
organic transport model was run on the generated 10,000
parameter samples. The totalkmaSs leaving the columm at 21
hours serves as the output for the uncertainty calculations.
Figure 58 shows the probability distribution of model output
due to parameter variability. The squares represent the
distribution of model output, and the solid line is normal
distribution. It appears that the normal distribution
describes the distribution of model output well.

Table VI summarizes statistics of the empirical
distribution. The minimum value of model output is 439 mg and
the maximum value is 616 mg, which gives a range of 177 mg.
The mean is 563 mg and the standard deviation is 24 mg. The
95% confidence interval of the mean is 1.50, which indicates

the probability is 95% that the interval 525 to 528 contains
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the mean.

Uncertainty is usually characterized by the coefficient
of variation (C,) which measures the dispersion. C, is the
standard deviation divided by the mean. In Table IV, the
coefficient of variation for parameter air tortuosity is 0.033
and for the adsorption coefficient is 0.1. Table VI shows
the coefficient of variation for model output is 0.05. One
can discern from these results that with a known range of
model parameters, a specific range for model output can be
expected.

Table VI

Properties of Total Mass Leaving Column at 21 Hours

Due to Model Parameter Uncertainty

Total Mass Leaving Column (mg)

Mean 527

Standard Deviation 24
Minimum 439
Maximum 616
Skewness -0.034
Kurtosis 3.30
Confidence Interval 1.50
Coeff. of Variation (C,) 0.05
Number of Cases 10000
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However, it would be more conclusive to quantify how the
change of parameters' uncertainties would affect the
uncertainty of model output. A simple way to quantify the
relationship between parametei: uncertainty and model output
uncertainty is to run the transport model on more parameter
profiles. These parameter profiles will have the same mean
but different standard deviations.

Standard deviations were chosen so that the C, varies
between 0.1 and 0.6. As the standard deviation increases,
negative numbers occur in the generated parameter profiles.
Since the negative sign contradicts the physical meaning of
model parameters, the insignificant tails of parameter
distributions were cut off to assure positive numbers for
parameter profiles. However, when standard deviation is large
enough, negative occurrences increase effectively and the tail
becomes significant, which is why the C, was chosen under 0.6.

The transport model was run on these new parameter
profiles. Figures 59 through 68 show the probability
distributions of new parameter profiles and corresponding
model output resulting from these new runs. Since the same
standard deviations were used to generate both air phase
tortuosity and the adsorption coefficient, distributions of
these two parameters look very much the same except the
location of the mean. Thus only distributions of air phase
tortuosity were plotted. As the coefficients of variation of

model parameters increase, the probability distribution of
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model output disperses as well, which shows increasing
uncertainty. Table VII summarizes the coefficient of
variation of model output and corresponding C, of the
parameters. As the C, of the parameter increases from 0.1 to
0.6, the model output's C, increases from 0.037 to 0.293.
Figure 69 illustrates this relationship. The solid line

represents the corresponding regression equation:

MC,=0.574xPC,~0.00824 (86)

where MC, is the coefficient of variation for model output, PC,
is the coefficient of variation for model parameters. PC, is
the combined factor for both air phase tortuosity and the
adsorption coefficient. Figure 69 shows the regression line
fits the calculated data very well with a R* of the regression
of 0.986.
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Table VII
Impact of Model Parameter Uncertainty

on the Uncertainty Of Model Output

C, of Model Parameters C, of Model Output
0.1 0.037
0.2 0.111
0.3 0.172
0.4 0.230
0.5 0.268
0.6 0.293
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Chapter VII
SUVMMARY AND CONCLUSIONS
Summary

From the dawn of the industrial revolution, pollution has
been an increasingly major environmental concern. Water
pollution is especially disastrous not only because of health
factors but also because contaminants in water can easily
migrate to surrounding areas. Cleaning up water pollutants
can be a very difficult and costly task. This is particularly
truewwhen concerning ground water pollution because of its
proximity. Therefore, it is very beneficial for decision
makers to have scientific suggestions in order to identify
areas of high concentrations and movement of pollutants so
that water can be pumped out for treatment or insitu
remediations can be implemented. This is where the importance
of volatile organic transport modeling can be clearly seen,
because mathematical modeling is an important tool for
predicting the fate and movement of pollutants in ground
water.

Volatile organic transport models often involves many
parameters controlling various  transport and phase
transferring processes. Apparently, the usefulness of a model
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depends on the precision of its predictions about contaminantm
movement and the confidence of this precision. The precision
of model predictions depends on the ability to determine model
parameters precisely. The confidence dependé on the ability
to quantify model uncertainty. Howevér, since volatile
organic transport in subsurface water is a complex multiphase
phenomenon, attention has been focused on understanding its
transport processes by establishing mathematical models, thus
leaving plenty of room for researchers to investigate model
application. It was my intention to explore this area by
studying model parameter estimation and model uncertainty
quantification.

A multiphase compositional organic transport model
(Equations 28 to 33) developed by Baehr (1987) was used in
this research. Of the many parameters involved in this model,
four coefficients that control major transport and phase
transferring processes were of interest. They included air
phase tortuosity (¢,), water phase tortuosity (§;), Henry's
constant (K,), and the adsorption coefficient (K;). These
parameters are lumped together in the model to form two other
parameters (a and b). The distributive nature of these
parameters along with the lumping make them very difficult to
estimate from experimental data. Moreover, because they are
lumped together, the change in one parameter can be offseted
by the change in another parameter. Estimation would be even

less reliable when measurement errors are introduced.
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Therefore, methodologies which can estimate these parameters
and quantify the accuracy of model predictions are in need in
order to make models such as this useful.

A systematic methodology which employs well established
mathematical techniques has been developed to achieve this
goal. The purpose of this methodology is to first determine
each model parameter's thimal estimate along with its
probability distribution, and then quantify the uncertainty of
model predictions due to the errors in parameter estimation,
using the estimated parameter distributions.

A typical procedure for estimating a parameter is to
collect field or laboratory data and then analyze the error
between that data and model outputs under certain values of
the required parameters, so that the desired parameter
minimizes the error. This research used lab data measured by
Yu (1995), which included toluene vapor concentration profiles
cross the column at different times as the gas escaped from
the top.

The first part of this methodology, parameter estimation
algorithm employed Bayesian statistical inferences to
accomplish two tasks. First, it has provided the optimal
estimates for each parameter which minimizes the errors
between model outputs and observed data, using the modified
adaptive simplex method. For example, it was found in Chapter
V that under the experimental condition used in this research,

the optimal estimate of air tortuosity is 0.42, and the
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optimal estimate of the adsorption coefficient is 0.39. These
estimates can then be used in this model to predict the
movement of contaminants when applied to other similar cases.
Secondly, this algorithm has produced a probability
distribution for each parameter, which reflects reality more
than the optimal estimates alone. With this probability
distribution, we can tell the mean, the standard deviation,
and the possible range of a parameter; For example, we can
say, from Table IV in Chapter V, that under}the experimental
condition used in this research, the mean of air phase
tortuosity estimate is 0.42 with a standard deviation of 0.01
which tells how confident this estimate is. Likewise, the
mean of the adsorption coefficient estimate is 0.39 with a
standard deviation of 0.04. The marginal distribution of each
parameter was obtained by integrating the joint distribution
of these two parameters uéing' Monte Carlo integration. This
method was used because of its simplicity.

Along with these estimates, several relevant concerns
have been addressed, such as reducing dimensionality of
parameter space, evaluating the effect of observed data on the
behavior of objective function, and quantifying the
uncertainty of parameter estimation induced by errors in
observed data. The first concern needs to be addressed
because high dimensional parameter space increases the chance
of ill-posedness as well as the difficulty of computation.

The other two concerns were addressed because they serve as a
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guilde to experiment about how much information is sufficient
and what quality the measured data should meet, in order to
get meaningful parameter estimates.

A preliminary sensitivity analysis was conducted to
describe the impact that the change of each parameter had on
model outputs. It was found that water phasé tortuosity had
little impact on model outputs, thus it was excluded from the
estimation process to reduce dimensional difficulty.

The question about how much observed data are sufficient
to construct a well behaved objective function has been
addressed by analyzing the characteristics of error function
using both single (one set of measured toluene gas
concentration profile) and two model outputs (two sets of
measured toluene gas concentration profiles). When single
model output was used, the error contours plotted on every
two-parameter space show valleys containing many local minima
which indicate high correlation among the parameters.
Therefore, information brought in the analysis was not
sufficient to identify the optimal parameter.

When two model outputs were used, the contour map for air
phase tortuosity and the adsorption coefficient shows a global
minimum which means the correlation between air phase
tortuosity and the adsorption coefficient was reduced by
bringing in the second set of measured data. However, Henry's
constant and the adsorption coefficient remained correlated.

This is because these two parameters are negatively correlated
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due to their physical definition. Since the adsorption
coefficient is more uncertain and harder to measure than
Henry's constant, this research eliminated Henry's constant to
reduce correlation difficulty, leaving two parameters for
further analysis.

To find out how experimental error would affect parameter
estimation, hypothetical data with different error standard
deviation were used. It was then discovered when the error
standard deviation in observed data was less than 0.35 mg/1,
parameter estimates are stable and reliable. This result
serves as a guide to analyze and decide if lab data are
usable.

The second part of the methodology developed in this
research (i.e. uncertainty analysis  algorithm) has
accomplished two tasks as well. First, through sensitivity
analysis, it was found that the sensitivity coefficients of
the adsorption coefficient and air phase tortuosity are 0.7
and 0.3 respectively. These numbers indicate that the
adsorption coefficient has more effect on‘ model outputs than
air phase tortuosity does. Such a result can help a modeler
to pay more attention to the more sensitive parameter when he
does modeling. Secondly, through joint uncertainty analysis,
this algorithm produced an empirical probability distribution
corresponding to the parameter distributions estimated
earlier. For example, when the standard deviations of the

estimated adsorption coefficient and air phase tortuosity are
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0.01 and 0.04 respectively, the standard deviation of model
prediction is 24 mg. Further more, it provides a linear
regression equation (Equation 69 in Chapter VI) to quantify
the relationship between model prediction uncertainty and
parameter uhcertainty. |

Specifically, 10,000 samples for each parameter were
generated from the estimated marginal distributions and were
put back in the transport model to produce corresponding model
outputs. Parameter sensitivity analysis was conducted by
performing a multiple linear regression using these generated
parameter samples as independent variables and produced model
outputs as dependent variables. The regression coefficients
of this multiple linear regression approximate sensitivity
index of parameters. BAn empirical probability distribution of
model outputs obtained from these generated parameter samples
was analyzed to quantify its uncertainty (C,) due to model
parameter uncertainty. Parameters were resampled from the
hypothetical distribution with different C,'s to quantify the
relationship between parameter uncertainty and model output

uncertainty.
Conclusions

Of the four parameters studied, water phase tortuosity
was found insensitive to model output because of the small
molecular diffusion coefficient. The other three parameters

were highly interactive because of the way the model was
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structured. The numerical difficulty induced by parameter d
interaction could be reduced to some extent by bringing in
more information, such as using two model outputs.

Errors in observed data affect the éccuracy of parameter
estimation significantly. For the point estimates, the
increasing variance of obsefvation error tends to cause the
optimal estimates to drift more from the true value, and the
confidence interval to increase. It was concluded that when
the standard deviation of observation error was less than 0.35
mg/Ll;- the estimated results could be considered reliable.
However, an interesting point is that we can only refer to a
tendency here, because different realization of data will
result in different accuracy. It is ©possible that
observations with a larger error variance will result in a
more accurate estimation. On the other hand, the marginal
distributions of parameters demonstrated a steadily increasing
variance which directly corresponds with the wvariance of
| observation error. Different realization of data affects the
mode‘ of the distribution but not the wvariance of the
distribution.

Sensitivity analysis showed that the model output is more
sensitive to the parameter controlling the adsorption process
than to the parameter controlling the diffusion process.
Uncertainty analysis showed that the model output distributes
normally when the estimated parameter distribution was used.

Surprisingly, its uncertainty is less than the parameters'
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uncertainty which is quantified by C,. Finally, A linear
relationship between parameter uncertainty and model output

uncertainty was quantified.
Recommendations for Further Studies

This research is the first study for parameter estimation
and uncertainty quantification in volatile organic transport
modeling. The modeling conditions were simplified to keep
consistent with experimental conditions being carried out by
others. The following are suggestions for future
investigation:

1. Only one multiphase organic transport model was used in
this study. Therefore, the results of this study might be
model specific. Similar studies conducted for other models
will still be meaningful. Subsurface multiphase contaminant
transport is such a complex phenomenon that it is not
realistic to expect a numerical model to represent its every
attribute. If several models which favor different driving
forces are available, the methodology developed in this
research can be applied to them to show how model parameters
behave under different circumstances.

2. More complicated conditions could be included, such as two
dimensional flow, transient water flow, and gas advection. Of
particular interest in terms of gas advection would be the
analysis of conditions when vapor and liquid transport were

equal in magnitude.
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3. This study emphasized the impact of model parameter
uncertainty on model prediction uncertainty, not a validation
of the transport model. Verifying model predictions with
experimental déta could be an interesting topic. The exact
form of the vapor tortuosity coefficient for both very dry and
almost saturated soil deserves additional consideration.

4. Since parameter estimation process repeatedly uses the
numerical transport model, the time efficiency of the
numerical model is critical to the time efficiency of
parameter estimation. Therefore, improvement on this aspect

is worth mentioning.
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Figure 34. Impact of observation error on the
estimates of air phase tortuosity (§,).
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Figure 36.

Demonstration of observation error with a

standard deviation of 0.3 mg/l.
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Figure 37. Demonstration of observation error with a
standard deviation of 0.4 mg/1.
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Figure 38. Measured toluene air phase concentration
profiles at different times (Yu, 1995).
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Figure 41. Verification of measured air phase toluene
concentrations and model simulation with

estimated parameters at 2 hours (K,=0.39
and §,=0.42).
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Figure 42. Verification of measured air phase toluene

concentrations and model simulation with
estimated parameters at 5 hours (K ,=0.39
and §,=0.42).

142



o LabData

Simulation

Concentration (mg/l)

0 ¢— i f i ; —
0 5 10 15 20 25
Column Depth (cm)
Figure 43.

Verification of measured air phase toluene
concentrations and model simulation with
estimated parameters at 9 hours (K4;=0.39
and §,=0.42).
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Figure 44. Verification of measured air phase toluene
concentrations and model simulation with
estimated parameters at 27.5 hours
(Ks=0.39 and 5920.42) .
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Figure 50. Marginal probability distributions of the
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. standard deviations.
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profiles at 13 hours and 21 hours.
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c*************************************************************

C* This program searches the minimum using modified

C* adaptive Simplex method

C* ___________________________________________________________
C* Function of Subroutines

c*

C* Subroutine Baehr:

*
*
*
*
*
*

C* This is the multiphase compositional model developed by*

C* Baehr (1987). All the inputs this model requires are

C* contained in this subroutine except parameters to be

C* estimated, which are wired in from the main program.

C* The computation of objective function was added to this
C* subroutine and the result was fed back to the main

C* program.

C*

C* Subroutine Expansion:

C* This subroutine was designed to expand a simplex until
C* the local minimum has been reached.

C*

C* Subroutine GRN:

C* This subroutine generates random numbers from N(0,1)

C* (Zhang, 1990)

G e e R el b L R R DI
C* Definition of Variables

C*

C* NHZ : Number of data points in a concentration profiles
C* NP : Number of parameters
C* MP : Number of simplex vertices (MP=NP+1)
C* PRMT: Parameter value at each vertex
C* YS0 : Measured data
C* EE : Objective function value
C* FTOL: Error tolerance standard
C* RTOL: Relative error tolerance
C* ITVAX :Maximum number of iterations
C************************************************************
PARAMETER (NHZ=17, NP=2,MP=3 ,NMAX=6)
COMMON/SIMP/PRMT (3) ,YS,EE
COMMCN/EXPA /PR, PCEN, ALPHA, DELTA, NDIM, S, P, YPR, THI
COMMON /NORM/ ZIN
DIMENSION P (NP,MP),Y (MP) ,PR(NMAX) , PRR (NMAX) , PCEN (NMAX) ,
* YS (NHZ, 2) , PO (NP, MP)
DIMENSICN S(2),YSO(NHZ,2),ZN(200),SIGMA(100)
DATA FTOL, ITMAX,ALPHA,BETA/1.0E-10,100,1.0,0.5/
OPEN (UNIT=5,FILE="'START.DAT')
Cx**x**Thig file contains starting points for each vertex.
OPEN (UNIT=6,FILE='SIGVA.DAT')
Cx***x*Thig file contains standard deviation in observations.
OPEN (UNIT=7, FILE='OPTIM.DAT')
Cx*x***xThig file contains the optimal estimates.
OPEN (UNIT=8,FILE='0OBS.DAT")
Cx*x***Thig file contains measured data.
read(5,*) DELTA, ((p0(ii,jj),II=1,NP),JJ=1,MP)
read (8, *) ((ys0(iz,]j),I2Z2=1,NHZ),J=1,2)
WRITE (*,*) 'TYPE IN THE NUMBER OF DIFFERENT STD'
READ (*, *)NS1
WRITE(*,*) 'TYPE IN THE SAMPLE SIZE'
READ (*, *)NS2
READ(6,*) (SIGMA(I),I=1,NS1)
DO 111 KK=1,NS1
WRITE (7,*) 'SIGVA=", SIGMA (KK)
DO 111 KJ=1,NS2
WRITE (*,*) 'SAMPLE="',KJ, 'SIGMA=", SIGVA (KK)
CAIIL, GRN (NHZ)
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Cr**+**xCorrupt measured data with noise
DO 223 J=1,2
DO 224 IZ=1,NHZ
1ZJ=1Z+(J-1) *NHZ
YS(IZ,J)=YS0(IZ,J)+SIGMA(KK)*ZN (IZJ)
224 CONTINUE
223 CONTINUE
DO 323 I=1,MP
DO 323 J=1,NP
P(J,I)=P0(J,I)
323 CONTINUE
NDIM=NP
CHr**+*Run transport model on starting points
DO 122 I=1,MP
DO 121 J=1,NP
PRMT (J) =P (J, I)
121 CONTINUE

CALL BAEHR
Y (I)=EE
122 CONTINUE
MPTS=NDIM+1
ITER=0
1 T1.0=1
Cc write(*,*) 'iter="', iter
C write(7,*) 'iteration="', iter
C WRITE(7, ' (/1X,A)') 'Vertices of final 2-D simplex and'
C WRITE(7, ' (1X,A) ') 'objective values at the vertices:'
C WRITE(7, ' (/3X,A,T11,A,T23,A,T35,A/) ') 'I',
C *!'CA', '"HAW', 'OBJECTIVE'
C DO 313 I=1,MP
C WRITE (*, ' (1X,I3,4F15.5)"') I,(P(J,I),J=1,NP),Y(I)

Cr****Find the vertex with the worst objective function value
iF(Y(1) .GT.Y(2)) THEN ‘
THI=1
INHI=2
ELSE
THI=2
INHI=1
ENDIF
DO 11 I=1,MPTS
IF(Y(I).LT.Y(ILO)) ILO=I
IF(Y(I).GT.Y(IHI))THEN
INHI=IHI
IHI=I
ELSE IF(Y(I).GT.Y(INHI))THEN
IF(I.NE.IHI) INHI=I
ENDIF
11 CONTINUE
Cx****Calculate the relative error
RTOL=2 . *ABS (Y (IHI) -Y (ILO)) / (ABS (Y (IHI) ) +ABS (Y (ILO) ))
IF(RTOL.LT.FTOL) GOTO 999
IF (ITER.EQ.ITMAX) goto 999
ITER=ITER+1
DO 12 J=1,NDIM
PCEN(J) =0.
12 CONTINUE
Cx****Calculate the coordinates of the simplex mass center
DO 14 I=1,MPTS
IF(I.NE.IHI)THEN
DO 13 J=1,NDIM
PCEN (J) =PCEN(J) +P (J, I)
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13 CONTINUE
ENDIF
14 CONTINUE
Cr****Calculate the reflection point of the worst vertex and run transport
Cx****model on the new simplex
DO 15 J=1,NDIM
PCEN(J)—PCEN J) /NDIM
PR (J) =PCEN (J) +ALPHA* (PCEN (J) -P (J, IHI))
if (pr(j) .1E.0.0) pr(j)=1.0E-5
PRMT (J) =PR (J)
15 CONTINUE
CALL BAFHR
YPR=EE
Cxxx*x*Tf the reflection point gets the best objective function value,
C*****gearch along this direction until a local minmum is reached.
IF(YPR.LE.Y (ILO) ) THEN
CALL EXPANSION
DO 18 J=1,NDIM
P(J,IHI)=S(J)
18 CONTINUE
Y (IHI)=YPR
Cx*x*x*xTf the reflection point results in worse objective function value,
Cr****contract the simplex.
ELSE IF (YPR.GE.Y (INHT))THEN
IF(YPR.LT.Y(IHT) ) THEN
DO 19 J=1,NDIM
P(J, IHI)=PR(J)
19 CONTINUE
Y (IHT) =YPR
ENDIF
DO 21 J=1,NDIM
PRR (J) =BETA*P (J, IHI) + (1. -BETA) *PCEN (J)
if (prr(j) .1E.0.0) prr(]) =1.0E-5
PRMT (J) PRR(J)
21 CONTINUE
CALL BAFHR
YPRR=EE \
IF(YPRR.LT.Y (IHT) ) THEN
DO 22 J=1,NDIM
P(J, IHT) =PRR(J)
22 CONTINUE
' Y (IHI) =YPRR
ELSE
DO 24 I=1,MPTS
IF(I.NE.ILO)THEN
DO 23 J=1,NDIM '
PR(J)=0.5*(P(J,I)+P(J,ILO))
If (pr(j).1E.0.0) pr(j)=1.0E-5
PRMT (J) =PR (J)
P(J,I)=PR(J)
23 CONTINUE
CALL, BAEHR
Y (I)=EE
ENDIF
24 CONTINUE
ENDIF
ELSE
DO 25 J=1,NDIM
P(J, IHT)=PR(J)
25 CONTINUE
Y (IHI)=YPR
ENDIF
GO TO 1
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999 CONTINUE

C WRITE(7,'(/1X,A,I3)"') 'Iterations: ',ITER
C WRITE(7,'(/1X,A)‘) 'Vertices of f1na1 2-D simplex and'
C WRITE (7, ' (1X,A) ') 'objective wvalues at the vertices:
C WRITE(7 '(/3%X,A,T11,A,T23,A,T35,A/) ! ‘1Y,
C 'CA', 'HSW' 'OBJECTIVE
C DO 113 I=1,MP
C WRITE(7,'(1X,I3,4F15.5)') I,(P(J,I),Jd=1,NP),Y(I)
c write(*,*) 'ee=',y (1)
C 113 CONTINUE
WRITE(7,*)P(1,1),P(2,1)
111 CONTINUE
END
C

SUBROUTINE EXPANSION
COMMON/SIMP/PRMT (3) , ¥S,EE
COMMON/EXPA/PR, PCEN, ALPHA, DELTA, NDIM, S, PP, YPR, IHI
DIMENSION PR(6),PCEN(6),¥S(17,2),X1(2,100),X2(2,100),X3(2,100)
DIMENSION FIB(1000),D(2),XP(2,1000),X0Q(2,1000),R(1000),PP(2,3)
*, S(2),P(2),0(2),XP1(2)
FX1=YPR
Cx****Cglculate the unidirectional search step.
DO 160 J=1,NDIM
X1(J,1)=PR(J)
160 CONTINUE
Cr+*++*Thig loop adjusts DELTA until X2 is better than X1.
100 DO 170 J=1,NDIM
X2 (J,1)=PCEN (J) + (ALPHA+DELTA) * (PCEN (J) -PP (J, THI) )
170 PRMT(J)=X2(J,1)
CALL BAEHR
FX2=EE
IF(FX2.LT.FX1) GOTO 150
DELTA=DELTA/2
IF(DELTA.LT.1E-4) THEN
DO 177 J=1,NDIM
177 S(J)=X1(J,1)
GOTO 1000
ENDIF
GOTO 100
Cr****FIB represents Fibonacci number which is used to decide search step.
150 FIB(1l)=1
FIB(2)=1
DO 400 J=1,NDIM
D(J)=X2(J,1)-X1(J,1)
X3(J,1)=X2(J,1)+D(J) *FIB(1)
400 PRMT(J)=X3(J,1)
CALL: BAEHR
FX3=EE
K=1
IF(FX3.GT.FX2) GOTO 425
410 K=K+1
IF(K.GE.3) FIB(K)=FIB(K-1)+FIB(K-2)
DO 420 J=1,NDIM

420 PRMTZ

c write(*,*) 'fx2=',£fx2, 'fx3=", £x3
IF (FX3.LT.FX2) GOTO 410
425 NK=K
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464
460
470

482

484

490

492
480

494
1000

555

IF (NK.GT.2) GOTO 460
DO 464 J=1,NDIM
S (J)=X2 (J,NK)
YPR=FX2
CONTINUE
GOTO 1000
DO 470 J=1,NDIM
P(J)=X1(J,NK)
Q(J) =X3 (J,NK)
DO 480 IK=NK,2,-1
R(IK)=FIB(IK-1)/FIB(IK)
DO 482 J=1,NDIM
XQ(J, IK) =P (J)+R(IK)* (Q(J) -P(J))
PRMT (J) =XQ (J, IK)
CALL BAEHR
FXQ=EE
DO 484 J=1,NDIM
XP (J, IK) =Q(J) -R(IK) * (Q(J) -P(J))
PRMT (J) =XP (J, IK)
CALL RAEHR
FXP=EE
IF (FXQ.LT.FXP) THEN
DO 490 J=1,NDIM
Q(J) =XP(J, IK)
XP (J, IK-1) =XQ(J, IK)
XQ(J,IK-1)=P(J)+R(IK)* (Q(J)-P(J))
ELSE
DO 492 J=1,NDIM
P(J)=XQ(J, IK)
X0 (J, IK-1) =XP (J, IK)
XP(J,IK-1)=0Q(J) -R(IK) * (Q(J) -P(J))
ENDIF
CONTINUE
DO 494 J=1,NDIM
IF (FXQ.LT.FXP) THEN
S (J) =XQ(J, IK)

SUBROUTINE GRN (N)
COMMON,/NORM/ ZN
DIMENSION ZN (200)

ZN(J) = ((-2*ALOG(UL) ) **0.5) *COS (2*3.14159*U2)
ZN (J+N) = ( (-2*ALOG (U1) ) **0.5) *SIN(2*3.14159*U2)
CONTINUE

RETURN

END
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