
INVESTIGATION OF FAST AND HYBRID

(FAST/DISCRETE-EVENl) MODELING

APPROACHES FOR SIMULATION OF

MANUFACTURING SYSTEMS

By

MANOJ N. DUSE

Bachelor of Engineering
University of Poona

Poona, India
1988

Master of Engineering
National Institute for Industrial Engineering

Bombay, India
1989

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
July, 1994

COPYRIGHT

By

MANOI NARAYAN DUSE

July, 1994

INVESTIGATION OF FAST AND HYBRID

(FAST/DISCRETE-EVENT) MODELING

APPROACHES FOR SIMULATION OF

MANUFACTURING SYSTEMS

Thesis Approved:

ii

Aq{NOWLEDGMENTS.

Getting an opportunity to become an active player in the Advanced Modeling ., .

Methodologies research project being pursued at the Center for Computer Integrated

Manufacturing was one of the most significant events in my last three and half years of

stay at this university. This dissertation is dedicated to the Center for CIM without which

this dissertation would not have taken birth. Implicitly, it is dedicated to the founder of

this center, Dr. Joe H. Mize and to the whole research team working on this project.

First and foremost, I would like to thank my parents, two sisters and brothers-in

law for all the encouragement and moral support they have provided to me. To my best

roommate Avinash and to my true friend Gharpure, thank you for all the help you have

offered me over the last three years. Special thanks to Ameya and Rashmi for making

my stay in Stillwater more enjoyable.

Thanks to Dr. Mize, my adviser, for being a great source of motivation,

inspiration and encouragement. · My sincere appreciation to all the committee members

for providing their invaluable input during this research. To Dr. Karnath, thank you for

offering me all the help, guidance, and support, especially during the initial periods of

my stay at this university.

I also thank the AT&T Foundation and the Oklahoma Center for Integrated

Design and Manufacturing for providing significant financial support during my graduate

studies. Finally, I would like to express my appreciation to all others who have

contributed towards earning my Ph.D.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION.. 1

Simulation of Manufacturing Systems.. 1
Motivation Behind This Research... 3
Overview of the Dissertation .. ;..................... 4

II. ST A TEMENT OF THE PROBLEM.. 6

Implementation Approaches... 6
Modeling Approaches... 10
Problem Statement.. 12

ill. BACKGROUND OF THE STUDY... 13

Underlying Rationale of Fast Simulation.. 13
Review of Previous Work... 15
Fast Simulation - Unanswered Questions.. 24
Hybrid Simulation.. 24
Hybrid Simulation - Unanswered Questions... 28

N. STATEMENT OF THE RESEARCH.. 29

Research Goal... 29
Research Objectives.. 29
Research Scope and Limitations... 31
Research Contributions... 32

V. RESEARCH PLAN.. 34

Performance Measures.. 34
Selection of Modeling and Simulation Environment............................. 35
Research Plan... 35

VI.FAST SIMULATION -CONCEPTUAL FRAMEWORKS AND
MODELS... 45

Nomenclature... 45

iv

Chapter Page

Split Topology.. 46
Merge (Join) Topology... 48
Assembly Topology.. 53
Tandem Line - Stations With Single and Unreliable Servers................. 59
Tandem Line - Stations With Parallel Servers....................................... 67

VII. FAST SIMULATION - IMPLEMENTATION, VALIDATION, AND
E.XECUTJON EFFICIENCY .. ~........... 72

Implementation :.:... 72
Validation of Fast Simulation Models... 74
Execution Performance of Fast and Discrete Event Simulation.............. 76

VIII. HYBRID MODELIN'"G... 83
\' l.

Model Partitioning Guidelines for Configuration of Hybrid Models...... 83

Relevance of Concepts From PDES ... ~·· 86
Implications of Fast Simulation Models for Hybrid Modeling............... 88

IX. HYBRID SIMU~A TION _... 93

DES-FS Interface Interaction.. 93
FS-DES Interface Interaction.. 95
Hypothesis of Diminishing Marginal Speed-up..................................... 105
Some Qualitative Remarks About Hybrid Simulation............................ 107

X. RESEARCH SUMMARY, CONTRIBUTIONS, AND FUTURE
RESEARCH... 110

Research Summary... 110
Research Contributions... 113
Future Research.. 114

BIBLIOGRAPHY •...... ,.. 117

V

LIST OFT ABLES

Table Page

I. Event List Manipulation Algorithms.'... 8

II. Performance of Event List Manipulation Algorithms................................... 9

ill. Performance of Fast and Discrete Event Simulation for a Tandem Line.~.... 18

N. Partial Trace of Parallel Server Node Simulation•.....•.. ~........................ 20

V. Performance of Fast and Discrete Event Simulation for an Assembly
Topology... 23

VI. Experimental Scenarios for Tandem Line With Parallel Servers.................. 38

VII. Experimental Scenarios for Testing Hypothesis of Diminishing Marginal
Speed-up... 43

vm. Fast Simulation of a Merge Topology... 52

IX. Fast Simulation of an Assembly Topology.. 58

X. Fast Simulation of a Tandem Line With a Parallel Server Station................ 69

XI. Classes Implemented for Fast Simulation.. 72

XII. Classes Implemented for Discrete Event Simulation.................................... 73

XIII. Other Utility Classes... 74

XN. Performance of Fast and Discrete Event Simulation for a Tandem Line
Witll U me liable Servers.. 77

XV. Performance of Fast and Discrete Event Simulation for a Tandem Line
With Parallel Server Stations (Effect of Number of Servers)..................... 77

XVI. Performance of Fast and Discrete Event Simulation for a Tandem Line
With Parallel Server Stations (Effect of Run Length)................................ 79

XVII. Performance of Fast and Discrete Event Simulation for a Tandem Line
With Parallel Server Stations (Effect of Number of Stations).................... 80

vi

Table Page

xvm. Performance of Fast and Discrete Event Simulation for a Tandem Line
With Parallel Seiver Stations (Effect of Utilization).................................. 81

XIX. A Trace of Hybrid Simulation... 98

XX. Experimental Results Supporting the Hypothesis of Diminishing Marginal
Speed-up... 106

·.)

vii

LIST OF FIGURES

Figure Page

1. Framework for Real-time Control Using Simulation................................... 3

2. A Tandem Line With Finite Buffers.. 15

3. Blocking Phenomenon... 16

4. Pseudocode for Fast Simulation of a Tandem Line With Single Servers...... 17

5. Comparison of Execution Time for a Tandem Line..................................... 19

6. A Tandem Line With Parallel Servers... 20

7. An Assembly Topology... 21

8. Pseudocode for Fast Simulation of an Assembly Topology.......................... 22

9. Comparison of Execution Time for an Assembly Topology......................... 23

10. Simultaneous Model Execution... 25

11. Sequential Model Execution.. 26

12. Diminishing Marginal Speed-up.. 31

13. A Hybrid Modeling Scenario... 39

14. An Alternative Hybrid Modeling Scenario.. 40

15. Model Interdependency ... ·........ 41

16. Experimental Manufacturing System... 43

17. A Split Topology... 46

18. A Merge Topology.. 48

19. Pseudocode for Fast Simulation of a Merge Topology................................. 50

20. Pseudocode for Fast Simulation of an Assembly Topology (Infinite
Buffers at the Assembly Station)... 54

viii

Figure Page

21. Pseudocode for Fast Simulation of an Assembly Topology (Finite
Buffers at the Assembly Station)... 57

22. State Transition Diagram for Station With Failure (No Blocking)............... 60

23. Station With Unreliable Server (Infinite Buffers).. 61

24. State Transition Diagram for Station With Failure and Blocking................. 62

25. A Ta11.dem Line... 64

26. Comparison of Execution Times as a Function of Number of Servers
(Tandem Line With Parallel Server Stations)... 78

27. Comparison of Execution Times as a Function of Number of Parts
(Tandem Line With Parallel Server Stations)... 79

28. Comparison of Execution Times as a Function of Number of Stations
(Tandem Line With Parallel Server Stations)... 80

29. Comparison of Execution Times as a Function of Station Utilization
(Tandem Line With Parallel Server Stations)... 81

30. Hybrid Model Configured for Sequential Execution Scheme....................... 84

31. Hybrid Model Configured for Simultaneous Model Execution.................... 85

32. A Snapshot of an Embedded Fast Simulation Model................................... 87

33. A Hybrid Model Which Embeds a Fast Simulation Model of a Tandem
Llne With a Parallel Server Station... 89

34. DES-FS Interf'ace Interaction.. 94

35. DES-FS Interface Interaction Logic.. 94

36. FS-DES Inte.rf'ace Interaction.. 96

37. A Hybrid Simulation Scenario,....... 97
\

38. Legend for Understanding the Trace of Hybrid Simulation.......................... 97

39. Smalltalk-SO code for the Unclog Event Routine... 103

40. Unclogging the DESWorkStation.. 105

41. Marginal Speed-up vs. Degree of Hybridness.. 106

42. A Scenario Modification Example for a Hybrid Simulation Model.............. 108

ix

CHAPTER I

INTRODUCTION

Simulation of Manufacturing Systems

Discrete event simulation is a widely used tool for predicting and evaluating the

performance of manufacturing systems. Simulation models can include detailed

information about the system and allow representation of unique features of

manufacturing systems. Computer simulation involves replication of time-variant

behavior of the system as defined in the simulation model for gathering observations

about the performance measures of interest. Simulation of manufacturing systems is the

most preferred alternative for performance evaluation when (i) the mathematical

assumptions which underlie analytic solution procedures are not satisfied and/or (ii) one

is interested in assessing the transient performance of a manufacturing system rather than

its steady-state behavior [Askin 1993]. The role of simulation in manufacturing can be

broadly categorized into two groups viz. (a) Design/Analysis and (b} Operations Control.

Desiim and Analysis of Manufacturin& Systems

While designing new manufacturing facilities, especially during the initial stages

of the planning activities, one generally employs analytical tools to provide rough

estimates of system performance measures. Taking this rough-cut evaluation of the

design alternatives as input, the list of alternative designs is then narrowed down to the

potentially attractive ones. These potential design alternatives are then simulated to

1

2

choose the most favorable design alternative. Use of simulation during the final design

stages helps to minimize the risk associated with the inability of the manufacturing

system to meet the required performance criteria [Dunn 1985]. Even after implementing

the chosen design alternative, one may be forced to improve the performance of the

manufacturing system either because of competitive forces or changing customer

demands [Suri and deTreville 1992]. In order to meet the time-based competition, one

may be forced to cut down lead times and in such cases, simulation can aid in analyzing

the manufacturing system to identify the bottleneck operations. Several applications of

simulation in the design and analysis of manufacturing systems can be found in

Heginbotham [1985].

Operations Control of Manufacturing Systems

Traditional approaches to scheduling and control of manufacturing systems

include scheduling algorithms and mathematical programming applications. More

recently, several researchers have identified the potential of simulation in developing

shop-floor control systems. The two major applications of simulation in implementing

shop-floor control systems are [Erickson et al. 1987]:

[1] Scheduling and Sequencing: The various alternatives are simulated at the

beginning of some production window using actual starting conditions of the system and

the alternative which best satisfies the performance measure is then implemented.

[2] Contingency Control: Contingencies like machine failures, expedited orders,

raw material changes and other problems that are unavoidable regardless of good system

maintenance and scheduling may not be considered explicitly while generating the

schedules. In order to respond to these unforeseen occurrences in the best possible way,

simulation can be used to evaluate the effectiveness of various actions such as changing

the schedules, rerouting the orders, etc.

Harmonosky [1990] has proposed a framework for real-time control which uses

simulation for evaluating the performance of manufacturing systems under various

control decision options. This framework helps in understanding how simulation fits

within the overall shop-floor control structure.

~-- System Control
ata Acquisition

~_C_o_m __ u_te_r_~ Control Commands

S stem Status

Update Simulation With
Current S stem Status

Simulation
Model

Control Options

Figure 1. Framework for Real-time Control Using Simulation

(Adapted From Harmonosky [1990])

Motivation Behind This Research

3

Simulation models can mimic a complex, real-world manufacturing system as

closely as understanding permits and needs require, but often require high computational

time. This "computational time intensive" aspect of simulation has tended to limit the

use of simulation to an off-line, design and analysis mode. Though execution efficiency

of simulation models is not critical for design and analysis of manufacturing systems,

efforts in this direction will always be welcomed. Speeding-up the simulation execution

will allow us to consider more detailed models of the system and will permit evaluation

of a much larger set of design alternatives. Gains in execution efficiency of simulation

can even make search-based optimization more attractive for designing manufacturing

systems.

In order to enable the application of simulation for real-time operations control,

research efforts should be directed at improving the execution efficiency of simulation

models, which is the primary motivation of this research. The importance of improving

the execution speed of simulation models is reflected in the following quote from

Harmonosky [1992]:

4

" ... When using any manufacturing scheduling and control system, the amount of time it
takes to make decisions will directly affect the degree to which the system is controllable
in real-time. In a system that uses simulation for scheduling and control, the CPU time
to perform simulation runs accounts for most of the decision making time and directly
affects the ability of a manufacturing system to control its actions in real-time."

Though traditionally real-time control refers to an immediate response to some

event in a system, the speed of response for decision making may actually depend upon

system parameters such as magnitudes of part processing times [Harmonosky and

Robohn 1991]. Ranky [1988] suggests that new schedules should be generated within 5

to 10 seconds for a medium sized FMS in a CIM environment. Even when the definition

of real-time is not as demanding as above, faster execution of simulation models provides

the added advantage of improving the confidence in decision making by increasing the

number of replications and/or by lengthening the "look-ahead window" for simulation.

Overview of the Dissertation

The remainder of this dissertation is presented in nine chapters. Chapter II

reviews the various research efforts made so far for improving the execution efficiency

of simulation. The scope of this study is then defined by presenting a concise statement

of the problem for this research. The literature relevant for this research is reviewed in

Chapter ill. Several unanswered research questions are also identified in Chapter III, a

subset of which forms the basis for defining the objectives of this research. Research

5

goals and objectives are defined in Chapter IV along with the scope and limitations of

this research. The expected contributions from this research effort are also outlined in

this chapter. This is followed by Chapter V which discusses the performance measures

to be used, experimental scenarios, and the various phases of this research. Chapter VI

deals with the modeling abstractions;conceptual frameworks, and simulation models for

fast simulation of a subset of manufacturing network topologies. Chapter VII provides a

brief overview of the object-oriented implementation and validation; the comparison of

simulation .execution times for discrete event and fast simulation is also presented in this

chapter. Chapter VIII focuses on hybrid modeling whereas Chapter IX deals with the

hybrid simulation issues. Chapter X is the concluding chapter that presents the research

summary, its contributions, and directions for further research.

CHAPfERil

STATEMENT OF THE PROBLEM

Research efforts directed at increasing the execution efficiency of simulation

models can be categorized into two groups, viz. Implementation Approaches and
.. -

Modeling Approaches. What follows is a brief review of significant research

accomplishments in each of the above two categories.

Implementation Approaches

These approaches attempt to speed-up the execution of simulation by

concentrating on the implementation of a simulation model.

Parallel Discrete Event Simulation (PDES)

This approach involves execution of a discrete event simulation model on a

parallel processor which requires partitioning of the simulation model into distinct units

to be executed on different processors. The various processors need to communicate

with each other in order to take care of event interdependencies. Several researchers

have investigated the potential of parallel simulation for simulating manufacturing

systems [Nevison 1990, Nicol 1988]. The communication overhead which reduces the

gain in execution efficiency obtained by using parallel processors can become a

significant problem in the case of complex manufacturing systems. Current research is

6

7

directed at developing communication strategies and strategies for partitioning the model

so as to minimize the communication load [Bhuskute 1993].

Improvin& the Data Structures Used for Event Calendars

In discrete event simulation, some mechanism must be provided for causing the

events to occur at the proper simulation clock time. This is usually referred to as the

Time Flow or the Time Advance Mechanism of simulation. The two common types of

time advance mechanisms employed in simulation are:

Fixed time increment

Variable time increment

It has been shown by Nance [1971] that variable time increment is more efficient of the

two mechanisms. In variable time increment, a list of future events is maintained in the

event calendar and events are removed/executed in the order of simulation clock time.

The simulation clockis incremented to the time of the next event after executing all the

current events.

The implication of the data structure used for storing/removing events from the

calendar for execution efficiency of simulation has been recognized by several

researchers. A summary of comparative performance of various data structures and

algorithms has been reported in Adam and Dogramaci [1979]. Four different simulation

models were used as representative of closed queueing systems for evaluating the

performance of various future event list algorithms. Three of the models used were

simulations of computer and communication systems and the fourth one modeled the

classical machine-repairman model. The various algorithms evaluated are listed along

with their brief description in Table I. Experiments were carried out for twelve cases,

seven of which belonged to the computer and communications systems category whereas

the remaining five belonged to the machine-repairman model. Trace-driven simulation

8

was used to measure the perlormance of each algorithm in terms of average time required

to perlorm the insertions to and deletions from the future event list. Use of trace driven

simulation helped to eliminate the overhead associated with random variate generation,

gathering of statistics, and execution of events.

TABLE!

EVENT LIST MANIPULATION ALGORITHMS

ALGORITHM DESCRIPTION

LLB Linked linear list; search be!tins from back (high time end) of the list

LLF Linked linear list; search be!tins from front (low time end) of the list.

MLF Multiple linear lists; search starts from the front of all lists.

MMF Linear list with pointer to the middle record; search begins from the

front of the half to which the new record belongs.

HEP Heap data structure.

VAU, All three are variations of linked linear list with special array of

FRA,&HNR pointers which are used to divide the list logically into many shorter

sublists; scanning starts from the back of the list

Execution time was used as a perlormance measure rather than the average

number of comparisons required for an insertion because it takes into account the other

computational overhead incurred in implementing each of the event list manipulation

algorithms. The results have shown that no data structure or algorithm is superior to all

others and the perlormance varies with the model being simulated. The rankings of the

algorithms are summarized in Table II. Though V AU algorithm has lowest average rank,

it is not the best perlormer in all cases, the worst ranking being 4. Furthermore, it

requires an upfront effort to calculate the number of sublists to be used for event

manipulation and its performance may be sensitive to the value of this parameter.

TABLE II

PERFORMANCE OF EVENT LIST MANIPULATION ALGORITHMS

ALGORITHM AVERAGE MINIMUM MAXIMUM

RANKING RANKING RANKING

LLB 7.67 4 8

LLF 3.42 1 8

MLF 4.58 3 7

MFF 3.17 2 6

HEP 4.00 1 7

VAU 2.00 1 4

FRA 5.08 3 7

HNR 6.08 3 7

9

Reeves [1984] also has studied the performance of various algorithms under certain

conditions and has found ternary heaps to be more attractive for event manipulations.

Improved Mem01:y Management Procedures

Object-oriented simulation environments are attractive from the modeling

viewpoint but have a significant drawback of slow execution speed. Attempts have been

made by Beaumariage and Roberts [1991] to correct this deficiency to the extent

possible. They studied the memory allocation and garbage collection policies of the

Smalltalk/V environment and suggested the concept of a "recycling model".

During the execution of simulation, several objects are created and discarded

from the same class hierarchies. The space allocated to discarded objects is reclaimed

during the garbage collection and compacted periodically for allocating space for newly

created objects. The recycling model attempts to minimize this overhead by maintaining

10

a collection of discarded objects memory segments (rather than reclaiming via garbage

collection) for each class being recycled. When a new object is to be created, this

collection is checked for reuse of previously allocated memory segments. The

hypothesis behind this concept is that the time required to initialize and recycle used

memory segments will be less than the time used to dynamically allocate the memory

and to compact the active object memory. Initial investigation of this concept has shown

that savings in execution time of about 1.5% can be achieved for models oflow

utilization systems. Moreover, such efforts are platform-specific and extendibility of the

results to other environments like Smalltalk-SO remains to be studied.

Modeling Approaches

These approaches attempt to make simulation more execution efficient by

focusing on the model development (abstraction) process.

Hybrid Modeling Using Observation Based Metamodels

The behavior of the detailed model of a subsystem is observed over time and then

either an analytical function is determined which describes the relationship between input

variables and performance measures or a cumulative distribution function is fitted from

which samples can be drawn to create metamodels of the subsystems [Pratt 1992]. Use

of such analytical relationships eliminates the need for simulating the detailed models of

those subsystems and, in turn, makes the simulation more execution efficient

Hybrid Madelin~ Usin~ Queuein~ Network Based Metamodels

Recent developments have made it possible to employ queueing networks for

performance evaluation of fairly complex manufacturing systems. Queueing networks

11

can now deal with general service/arrival time distributions, multiple customer classes

and open/closed network configurations [Segal and Whitt 1989]. These recent advances

in queueing networks are exploited by creating queueing network submodels of

subsystems which can be solved analytically and then embedding them in simulation

models of larger systems [Shantikumar and Sargent 1983].

The above two approaches have been proposed primarily for estimating the

steady-state performance of the system and not for analyzing its transient behavior. In

addition to this limitation, use of these approaches can only provide approximate

estimates of the performance measures.

Fast Simulation

· The fast simulation models developed so far [Chen and Chen 1990] are based on

identifying the relationships between arrival and departure times of customers at any

given node. In pure fast simulation models, one does not have to maintain a list of events

as required in traditional discrete event simulation. The absence of overhead related to

the time advance mechanism makes the execution of such models more efficient which is

the underlying rationale for using fast simulation. Fast simulation models developed so

far can handle only tandem lines with single server-finite/infinite buffer stations. Several

research questions need to be addressed to broaden the applicability of this technique.

Hybrid (Fast/Discrete-EvenO Simulation

Karnath [1994] has proposed a concept of a new hybrid approach to the simulation

of queueing network models. The rationale for proposing such a hybrid approach is as

follows:

For certain scenarios, for example, networks with state dependent routings and

dynamic job priorities, the fast simulation approach may be very complex and may not

12

be computationally superior. The hybrid simulation approach can potentially combine

the execution efficiency of fast simulation with the modeling power and flexibility of the

discrete event approach.

However, several research questions need to be addressed before such a hybrid

approach can be employed for simulation of manufacturing systems. A more detailed

discussion of this hybrid approach is deferred to Chapter ill which also presents a list of

several unanswered questions to be investigated for conceiving such hybrid models.

The phrase "hybrid simulation" is used in the literature to describe an approach

which combines simulation with analytical models. The term hybrid, used hereafter in

this dissertation, refers to a simulation approach which employs discrete event simulation

for one part of the system and fast simulation for anothet' .

Problem Statement

All of the approaches, which have the potential to improve execution efficiency,

should not be seen as mutually exclusive alternatives since research efforts in one

direction can complement those in others. A synergistic combination of all these

approaches could ultimately provide the much needed execution efficiency to simulation.

Though current research efforts are mainly concentrated on improvements in individual

approaches, especially in Parallel/Distributed Simulation and Metamodeling, the research

community will soon realize the need for integrating the above research efforts.

The objective of this research is nm.m integrate the various research efforts];mUQ

make significant contribution to the evolving field of fast simulation and its use in hybrid

simulation. Thus, the problem statement for this research can be summarized as follows:

To investigate the potential and the limitations of fast and hybrid simulation
techniques for performance evaluation of manufacturing systems.

• Since two different modes of simulation are employed while simulating such hybrid models, the resulting
simulation approach can also be referred to as "multi-mode simulation."

CHAYfERID

BACKGROUND OF THE STUDY

Underlying Rationale of Fast Simulation

While developing a discrete event simulation (DES) model of a system, one can

select from the three world views viz. (i) Event Scheduling Approach, (ii) Process

Interaction Approach, and (iii) Activity Scanning Approach [Pritsker 1986]. The

following sub-sections briefly describe these three world views.

Event Scheduling Am,roach

Events define a set of simultaneous state changes and the model's state remains

unchanged between events. Events are stored in an event list or agenda in the time order

of their occurrences. Actions associated with an event are kept in modules called event

routines and execution of such event routines can schedule new events (or remove

events) which are again placed on the event list at the appropriate position. The

simulation clock is updated to the next imminent event on the list and the event routine

· corresponding to that event is executed after removing that event from the list

Process Interaction Approach

A process is a sequence of logically connected events which involve the same simulation

entity (object). All the actions associated with these logically connected events are

13

14

grouped into a single module called the life cycle of that simulation entity. The behavior

of the system can be represented by a set of processes whose event sequences, when

merged, contain all the events that occur in the system [Mitrani 1982]. An equivalent of

the event list is maintained in this approach also, but the entries on the list are processes

ordered according to the time of next event in their respective sequences. Each process

on the list also remembers the state in which a process was last suspended from which to

start when it will be taken for execution.
- -

Activity Scannin~ Awroach

Kreutzer [1986] describes this approach as follows:

" ... An activity is a conceptual closure of some time-consuming action performed by an
entity. It is typically guarded by a set of conditions under which it may start, and
finishes after a specified time period. The programmer only needs to describe the
conditions under which a particular event may occur. It is then up to the model
execution monitor to make sure they are triggered at the right time."

The activity scanning approach is computationally expensive compared to the

previous two approaches. Even with event scheduling and process interaction

approaches, a lot of computational overhead is incurred while searching the event list for

inserting new events at the proper position in the list. As the number of events in the

system increases, this overhead also increases significantly. If one can eliminate the need

for the event list and hence, the overhead associated with it, simulation can become more

computationally attractive. The main theme of fast simulation is to achieve this by

identifying the relationships between the arrival and departure times of customers at any

node. The research efforts which have attempted to exploit this concept are briefly

reviewed in the following sections.

15

Review of Previous Work

Fast Simulation Model - Tandem Line With Sin~le Server. Infinite/Finite Buffer Stations

The following relations are identified for single server-infinite/finite buffer

stations in Chen and Chen [1990] and are based on the assumptions of reliable servers,

FCFS queue discipline, and a single customer class.

Let di,j = departure time of jth customer from ith station

Sij = service time of jth customer at ith station

The service start time (sst) of jth customer at ith station= max(di-1,j, di,j-1)

and di,j = max(di-lj, di,j-1) + Sij for infinite buffers.

Figure 2. A Tandem Line With Finite Buffers

In the case of finite buffers, illustrated in Figure 2, two cases should be considered:

[1] Manufacturing Blocking:

In this case, if the customer at node i sees the buffer of node i+ 1 to be full as he

completes his service, then he waits at node i until space becomes available in the buffer

of node i+l.

[2] Communication Blocking:

H the customer who is to receive service at node i sees that node i is idle but

buffer at node i+ 1 is full, then he cannot start service until space becomes available in the

buffer of node i+ 1. Though relationships between arrival and departure times can be

identified for both the types of blocking, only manufacturing type blocking is relevant for

this research.

16

While developing fast simulation models of tandem lines with single server

finite/infinite buffer stations, Chen and Chen [1990] have adopted a "customer-by

customer" view, i.e.; they focus on a particular customer and his flow along the tandem

line. A particular part/customer, once taken for processing, is processed completely

through the fast simulation model of a tandem line and then it departs from the last node

of the tandem line. This procedure is then repeated for the next customer. Thus, when

the fast simulation model takes the nth customer for processing, all previous n-1

customers have been processed completely through the tandem line. This "customer-by

customer" view of a tandem line allows blocking to be taken into account. This is

illustrated below using a partial tandem line shown in Figure 3.

>

buffer capacity= 3 (excludes the one with server)

Figure 3. Blocking Phenomenon

The nth customer, after finishing the service at node 1 at time t, will be blocked if

there is no space available in the input buffer of node 2. There will be space available in

the input buffer of node 2 at time t, if and only if, the n-4th customer has departed from

node 2 by time t. If the n-4th customer departs from node 2 at time t1 > t, then the nth

customer will be blocked at node 1 from time t to time tl. Thus, to determine the actual

departure time of parts from node 1, one needs the knowledge of departure times of

preceding parts from the following node. Use of "customer-by-customer" view ensures

that this n-4th customer's departure time (from node 2) is known while determining the

departure time for the nth customer (from node 1). The generalized relationship between

arrival and departure times is as follows:

di,j = max { [max(di-1,j, di,j-1) + Si,j], di+lJ-Cbi+1+l) I

where bi+ 1 is the buffer capacity of i+ 1th station excluding the one in server.

The term di+lj-(bi+i+l) determines whether space will be available at the next station

when the jth customer finishes its service at the ith station.

17

Thus, fast simulation of such a tandem line involves processing one customer at a

time through all the nodes and collecting statistics about time-in-queue and utilization

during this pass. The pseudocode presented in Figure 4 illustrates the fast simulation

approach taken by Chen and Chen [1990].

For customer = 1 to tota/NoOfCustomers (N) do

{ Generate arrival time of customer.

For node = 1 to tota/Nodes (M) do

{Determine the time at which service can start at that node.

Generate processing time.

Determine departure time for the customer:

(seivice end time + blocking, if any)

Collect statistics about time in queue, blocking, and utilization}

Collect statistics about time-in-system}

Calculate performance measures like throughput, etc.

Figure 4. Pseudocode for Fast Simulation of a Tandem Line With Single Seivers

The perlormance measures were calculated as follows:

Average Utilization of node i =-i- :f s 1 j

dM,N j=l

Throughput of node i = TPi = _..!:!_
dM,N

Average waiting time (time in queue) at node i = Wi = ~ :f (s s t 1,j - d 1_1,j)
N j=t

Average blocking time at node i = Nl I, [d 1,j -(s s t 1,j + s 1.j)]
j=l

Averagetimeinsystem=~ I, [dM,j - arri valTimej]
N j=t

18

The savings in execution time obtained by Chen and Chen [1990] using fast

simulation models of tandem lines instead of discrete event (event scl)eduling approach)

simulation are presented in Table ill.

TABLEill

PERFORMANCE OF FAST AND DISCRETE EVENT SIMULATION FOR A
TANDEM LINE

Number of Stations Execution Time (min.)

Fast

10 ,9

20 18
30 27
40 36
50 45
60 53
70 62
80 71
90 80
100 90

All nodes have finite buffers of capacity 5.
Utilization = 0.9

DES

16

35
58
85

116
151
190
233
295

360

Execution Time Savings Ratio (%)

Ratio(%)

56 44

51 49
47 53.

..

42 58
39 61

35 65
33 67
30 70
27 73
25 75

Run length of 100,000 customers

Figure 5 shows that run-time required by the traditional (discrete event)

simulation increases "exponentially" as the number of stations (system size) is increased,

but the time needed for fast simulation is only a linear function of the number of stations

in the tandem line. In addition to this, Chen and Chen [1990, 1993] have made the

following observations:

[l] The memory requirements for fast simulation can be significantly less than that

required for discrete event simulation.

[2] The run time increases linearly with the number of customers (simulation run length)

for both fast and traditional simulation.

[3] The run time needed by traditional simulation increases with average utilization but

the run time for fast simulation is not influenced by the change in average

utilization.

400
350

-300
].250
.! 200
1-

::J 150 a..

u1ooi=:=:::!=:~~~:=::::::'.:==:=:=:=:== 50
0

10 20 30 40 50 60 70 80 90 100

Nurrber of nodes

--•- Fast Simulation -·-•- Discrete EventSimulation

Figure 5. Comparison of Execution Time for a Tandem Line (Single Server)

For obtaining accurate performance measures of the system and for estimating

confidence intervals, several replications (simulation runs) are required. This would

have a multiplying effect on the execution time savings achieved by using fast

simulation.

Fast Simulation Model - Tandem Line With Parallel Server, Infinite Buffer Stations

Karnath, Bhuskute, and Duse [1992] have developed and implemented a fast

simulation.model of a tandem line with parallel server, infinite buffer stations.

19

20

Consider a partial tandem line with parallel server station with capacity 3 (capacity = # of

parallel servers at that node) as shown in Figure 6 .

.. Figure 6. A Tandem Line With Parallel Servers

From the partial trace of parallel server node simulation presented in Table IV, it is seen

that the order in whicff the customers depart from the parallel server node is not the same

as the order in which they arrive at that node. This implies that one cannot adopt a

"customer-by-customer" view while developing fast simulation models of tandem lines

which include parallel server nodes. If we adopt this view, we will end up processing

customer# 4 through the next node before customers# 5, 6, and 7; whereas actually

customers # 5, 6, and 7 arrive at the next node before customer# 4.

TABLE IV

PARTIAL TRACE OF PARALLEL SERVER NODE SIMULATION

Customer Arrival Start of Service Departure time Departure
ID# time Service time Server 1 Server2 Server 3 Seauence

1 1 1 2 3 1
2 2 2 3 5 2
3 4 4 5 9 3
4 5 5 8 13 7
5 6 6 4 10 4
6 7 9 2 11 6
7 8 10 0.5 10.5 5

21

To determine the proper order of departure from such a parallel server node, Karnath,

Bhuskute, Duse [1992] have adopted a "node-by-node" view of the tandem line, i.e., they

focus on a particular node and process all the customers through that node (while

updating the order of departures appropriately).

This model was validated by comparing the performance measures obtained by

fast simulation with those obtained by running a discrete event simulation model. The

speed-up achieved for such models was not investigated.

In order to develop fast simulation models of a tandem line which have

combinations of finite buffer and parallel server nodes, there are conflicting requirements

in terms of the view to be adopted. Presence of a finite buffer feature suggests the use of
- - -· -

a "customer-by-customer" view of a tandem line, whereas presence of a parallel server

node requires the use of a "node-by-node" view of a tandem line. Does it mean that this

is an infeasible case for fast simulation? or can we find a "third view" which would be

able to handle both the finite buffer and parallel server features?

Fast Simulation Model - Assembly Topology With Single Server. Infinite Buffer Stations

A fast simulation model for the topology shown in Figure 7 was investigated for gain in

execution speed and encouraging results were obtained. In the assembly topology shown

Part
Pl 0 0

0 0

(All stations have infinite buffer capacity)

(The assembled part is made of one part of type Pl and three parts of type P2)

Figure 7. An Assembly Topology

22

in Figure 7, when a sufficient number of component parts are available and the assembly

station is idle, the parts are removed from the input buffers of the assembly station in the

form of an assembly kit and the kit is then assembled at that assembly station. The

pseudocode for fast simulation of the above assembly topology is presented in Figure 8.

[1] Process one part of type Pl through feeder line 1 using the fast simulation

model of the tandem line and store its departure time from machine Ll as dLl·

[2] Process three parts of type P2 through feeder line 2 and store the departure

time of third part from machine L2 as dL2·

[3] The earliest time at which all the required components are available at the

assembly node for next assembly is:

max [dL1,dL2l

The time at which parts are removed from input buffers for next assembly is:

max { max[dL1,dL2l, departure time of last assembled part from the

assembly node }

[4] Process this assembled part through the remaining stations after the assembly

node.

[5] This cycle of steps 1 to 4 is repeated until sufficient parts are assembled.

Figure 8. Pseudocode for Fast Simulation of an Assembly Topology

The above procedure can be easily generalized to handle any product structure for the

assembled part. Table V shows the comparison of execution times for an assembly

topology with three feeder lines. One component is required from each feeder tandem

line per assembly and the assembled part is then further processed through four stations.

Figure 9 shows that execution time increases "exponentially" for discrete event

simulation whereas it increases only linearly for fast simulation.

TABLEV

PERFORMANCE OF FAST AND DISCRETE EVENT SIMULATION FOR AN
ASSEMBLY TOPOLOGY

Total number of nodes Execution Time (min.) Execution Time (min.)

Fast Simulation Discrete Event Simulation

35 5.17 16.1

65 9 37.25

95 10.5 66

125 13.8 102

155 17 146

23

Both fast and discrete event simulation models were implemented in Turbo Pascal on 386-based computer systems
running at 25 MHz and equipped with numerical coprocessors.

160
140

-:- 120
C

], 100
G)

80 .s
I-
::::::, 60
~ 40

20
0

35 65 95 125 155

Total no. of nodes

- ... •-- Fast Simulation ---•-- Discrete Event Simulation

Figure 9. Comparison of Execution Time for an Assembly Topology

24

Fast Simulation - Unanswered Questions

1. Are any of the existing world views appropriate for fast simulation? Hnot, can

an appropriate world view be formulated? As described earlier in this section, one can

employ one of the following world views for executing discrete event simulation models:

event scheduling;

process interaction;

activity scanning.

These approaches were developed for discrete event simulation and research efforts made

so far have not identified any world views for fast simulation.

2. Is the fast simulation technique capable of handling all the typical features of a

manufacturing system? or When is fast simulation the most appropriate technique?

Chen and Chen [1990] have demonstrated that fast simulation models can be developed

for tandem lines with single server, finite/infinite buffer stations. Karnath, Bhuskute, and

Duse [1992] have developed fast simulation models for tandem lines with parallel servers

and infinite buffer stations. Numerous other configurations need to be studied for

determining the feasibility of using the fast simulation technique.

3. H one develops fast simulation models of typical manufacturing network

building blocks, then can these models be integrated to create a fast simulation model of

a system which contains a combination of such network building blocks?

Hybrid Simulation

This approach to simulation gains execution efficiency by employing fast

simulation models for some part of the system being simulated. Introduction of fast

simulation models will tend to reduce the total number of events and the average event

25

insertion time, thereby reducing the total simulation execution time. Following are the

proposed schemes that can be used for configuration and execution of hybrid simulation

models.

Simultaneous Model Execution

Hybrid Simulation Model

Discrete-Event Simulation Model

Fast Simulation Model

Figure 10. Simultaneous Model Execution.

In this scheme of model execution (Figure 10), the two types of models

communicate by the following mechanism. The discrete event simulation (DES) model

invokes the fast simulation (FS) model by passing on the part to be processed through the

FS model. The FS model processes the part completely through that model and

schedules an arrival at the next station which is embedded in the DES model. This

method of executing the model assumes that the part, once passed on to the FS model,

can be processed completely before executing the next event on the event list of the DES

model. This assumption may be violated if the FS model involves features like stations

with parallel server and assembly lines. Hence, configuring a hybrid model in this

fashion will significantly limit the types of manufacturing configurations that can be

modeled as FS models within a hybrid model.

Sequential Model Execution

Hybrid Simulation Mode

.. -..... ---.. --.......... -.. -....... ---.
' '

' ----------- -- ----

~--------········-·----~.
~ :

' ' ' ' I••••••••••••••••••••••'

Discrete-Event Simulation Model

Fast Simulation Model

Figure 11. Sequential Model Execution

26

In this scheme of model execution (Figure 11), the DES and FS models are

executed sequentially with each DES model having its own time advance mechanisms

like event calendar and simulation clock. By employing this scheme of execution one

can uncouple the FS model from the DES model which will allow a variety of

manufacturing configurations to be modeled as FS models. One severe limitation of this

type of hybrid model configuration is that the various DES models have to be totally

independent of each other in order to allow sequential execution, i.e., the flow of material

from one model to another must be unidirectional and one model must not depend on

another in terms of requirement for status information. Hence, by following the above

mentioned method of hybrid model configuration, one will be constrained in terms of

27

types of manufacturing systems that can be modeled, for example, unidirectional push

systems. Thus, there is a trade off between modeling flexibility and scope for increasing

concentration of FS models within the hybrid model.

In order to embed certain fast simulation models inside a hybrid model, one may

have to resort to the sequential model configuration scheme. However, in the sequential

model execution case, the speed-up achieved by the use of FS may be offset/amplified

because of the "decomposition" of the rest of the system into two or more DES models.

Whether such a decomposition will offset/amplify the speed-up will be determined by the

net impact of the following two factors:

[l] Factor amplifying the speed-up:

The average length of the event list per DES model will be reduced for some of

the DES models (those which are not preceded by the FS model) and this will result in

less event list manipulation overhead per event

[2] Factor offsetting the speed-up:

Due to the sequential nature of the model execution, the FS model will have to

initialize the event list of the downstream DES model representing arrival of all the parts

exiting the FS model (in traditional DES simulation, the event list will have only one

arrival event per part type rather than all the events for all the parts which enter the

simulation). This will drastically increase the average event list length leading to higher

event list manipulation overhead. This effect may be toned down if (i) these arrival

events are stored separately from the other events which are scheduled dynamically

during the run-time of that DES model, or (ii) one schedules a next arrival to the

downstream DES model by reading from the departure time data provided by the

preceding FS model.

Whether following such a scheme of executing a hybrid model to increase

concentration of fast simulation models is attractive from the speed-up point of view or

not needs to be studied in the light of the above discussion.

28

Hybrid Simulation - Unanswered Questions

1. Why and when would one want to create hybrid simulation models?

2. Are there any general principles or strategies that can guide the partitioning of

the model into fast and discrete event segments?

3. Is one particular scheme of hybrid model execution superior to another in

terms of execution efficiency?

4. Should one strive for maximum possible concentration of fast simulation

models within the hybrid model?

5. Are there any implications of using hybrid models for model management and

reusability?

6. Can fast simulation models be developed independently without worrying

about their implications for hybrid modeling?

7. Can the speed-up to be gained be predicted based on the structure of a hybrid

model? Such predictions can be used for answering trade-off questions like "Are you

ready to make the approximation XYZ for creating a hybrid model if the speed-up to be

achieved would be increased by so much?" This question will not be dealt with in this

research and no additional assumptions will be made for creating hybrid simulation

models just for the sake of speeding up the execution.

CHAPfERIV

STATEMENT OF THE RESEARCH

Research Goal

The overall goal of this research is to (i) investigate the potential and limitations

of the fast simulation technique and (ii) lay the foundations for hybrid discrete event/fast

simulation of manufacturing systems. In order to achieve this research goal, six research

objectives have been identified.

Research Objectives

Objectives Related to the Fast Simulation Technique

OBJECTIVE 1 Identify the possible views (conceptual frameworks) that

can be employed for generating fast simulation models. A subset of possible

manufacturing system configurations will be investigated for identifying the set of views

that can be used while developing fast simulation models. This set of views will form

the input to objective 2.

OBJECTIVE 2 Determine if any one of these views has the potential to

serve as the "world view" for developing fast simulation models. If a particular view

identified in objective 1 is capable of handling the entire subset of manufacturing system

topologies investigated, then it becomes the candidate for serving as the "world view" for

29

30

fast simulation. This world view should then be evaluated in terms of its ability to

handle other configurations that were not included in the subset used for this research.

This research would only provide the list of candidates, if any, which have the potential

to serve as the "world view".

OBJECTIVE 3 Identify manufacturing network topologies which cannot or

should not be handled by the fast simulation technique. If one cannot develop fast

simulation models for certain configurations, then one needs to resort to discrete event

simulation. Even if one can create fast simulation models, they may not be superior in

terms of their execution efficiency, in which case, discrete event simulation needs to be

employed.

Objectives Related to the Hybrid Simulation Technique

OBJECTIVE4 Determine the execution scheme that needs to be used in

order to embed fast simulation models of certain manufacturing configurations within the

hybrid simulation models. The type of execution scheme employed for hybrid

simulation models, in turn, has implications for modeling flexibility.

OBJECTIVES Demonstrate the feasibility of the hybrid simulation

technique and provide a set of guidelines for identifying subsystems which are amenable

to fast simulation and for creating hybrid simulation models.

OBJECTIVE6

Marginal Speed-up:

Test the following initial hypothesis of Diminishing

Given a discrete event system, if one gradually increases the "degree of hybridness" or

"concentration of fast simulation models in the hybrid model" and then measures the

marginal speed-up (incremental savings achieved), one may observe the following

behavior:

Marginal
Speed-up

· Degree of hybridness ·

Figure 12. Diminishing Marginal Speed-up

31

In other words, at first, cumulative speed-up will increase at a much faster rate

and then it will saturate. When operating in the saturation zone of this curve, additional

efforts to increase the concentration of FS models will not provide any significant speed

up. If this hypothesis is confirmed, then one need not strive for increasing the

concentration of FS models after a certain limit. This means that one can let DES handle

certain features which require a sequential execution scheme if modeled as FS models

and not lose significantly in terms of execution efficiency.

Research Scope and Limitations

The author's experience with the preliminary work done previously shows that the

two issues viz. (i) development of fast simulation models and (ii) their use in hybrid

simulation are closely interrelated. Tight coupling between these two issues implies that

32

it would be highly ineffective to handle them in a totally independent manner. Thus, it is

important to include both research domains in the agenda of this research. This restricts

the investigation of fast simulation technique to a few chosen manufacturing system

configurations; the actual set of configurations which will be investigated is defined in

Chapter V. Numerous other types of manufacturing systems would then still remain to

be investigated.

As a result of scoping the research to a limited set of configurations, this research

will not be able to claim any of the views employed for developing fast simulation

models as a "world view". A world view for fast simulation of manufacturing systems

can probably evolve only after a fairly complete set of manufacturing systems has been

investigated.

The algorithm used for event list manipulations is one of the factors which can

influence the execution efficiency of discrete event simulation. This factor will be fixed

at one level while comparing the performance of fast and discrete event simulation.

Identifying the best data structure and algorithm for event list manipulation is not the

focus of this research. Hence, the actual savings in computational time should be seen

only in the context of such fixed variables.

Research Contributions

The primary contribution of this research would be the improvement in execution

efficiency of simulation models. It would bring the dream of using simulation for real

time control of manufacturing systems one step closer to reality. It is anticipated that the

following contributions will be made to the body of modeling and simulation knowledge,

while pursuing the above mentioned primary contribution:

• Realization of the potential and limitations of applicability of fast simulation

technique to manufacturing systems.

• Development of fast simulation models for a subset of manufacturing system

configurations.

33

• Proof-of-concept of hybrid (fast/discrete-event) simulation within the OSU-OOM

Environment$.

• Insights into hybrid simulation which would serve as guiding principles for the

generation of hybrid simulation models.

$ Object-Oriented Modeling Environment being developed as a part of the Advanced Modeling
Methodologies research project at Oklahoma State University.

CHAPTERV

RESEARCH PLAN

Performance Measures

In the case of fast simulation, savings in simulation execution time is the primary

performance measure. For hybrid simulation, performance measures can be broadly

divided into two categories viz. (i) quantitative measures and (ii) qualitative measures.

Quantitative Measures

1. Simulation execution time: This is the direct measure of the execution

efficiency of the simulation. The gain in execution efficiency can be measured only in

the context of hardware, language used, and programming optimization.

2. Average length of event list, average number of comparisons required per

insertion of new event, and total number of events scheduled: These are factors which

contribute to the speed-up. These factors are absolute measures in the sense that they are

independent of the hardware and language used. Hone decides to rely on these measures

rather than measuring execution time, then one would be guilty of neglecting other

differences in execution overheads between pure DES and hybrid simulation.

34

35

Qualitative Measures

1. Difficulty/awkwardness of model generation

2. Complexity of model management

3. Ease of model modification for experimentation

Qualitative arguments will be made for and against hybrid simulation in the context of

the above issues. The insight and experiences gathered during this research effort will be

the main source for assessing the above mentioned performance measures.

Selection of Modeling and Simulation Environment

Several researchers have demonstrated that use of the object-oriented paradigm is

much better than traditional (procedural) programming for modeling and simulation of

manufacturing systems [Adiga and Gadre 1990, Beaumariage 1990, Mize et al. 1992].

There is an increasing trend towards the use of object-oriented modeling and simulation

environments for the reasons of ease of modeling, higher modeling reusability, flexibility

and maintainability. Hence, for this research, the OSU-OOM Environment [Bhuskute et

al. 1992] will be used for both the fast and hybrid simulation. In addition to this, use of

the OSU-OOM modeling environment as a test-bed for the research will also lead to

enhancement of the modeling environment itself.

Research Plan

In order to satisfy the various research objectives, the research will be conducted

in the following phases:

PHASE I

For identifying the potential views that can be utilized for developing FS models,

the following set of manufacturing network topologies will be investigated:

36

1. tandem line with parallel server, infinite buffer stations

2. tandem line with parallel server, finite/infinite buffer stations

3. merge Goin) and split topologies

4. assembly topology with finite buffers at the assembly station

5. tandem line with unreliable stations

If any particular view can handle all the above topologies, then it becomes the candidate

for "world view". After this phase of research, objectives 1 and 2 will have been

satisfied. Realization of the limitations of the fast simulation approach will occur during

this stage of the research which will partially satisfy objective 3 and will also provide

input for phase VI.

PHASE IT

Develop fast simulation models for the above set of manufacturing topologies and

validate those by creating discrete event simulation models for the same set of

manufacturing topologies. Since there are no additional approximations or assumptions

required for fast simulation (other than those made while creating DES models), the

developed models must provide exactly the same results as those obtained by executing

the DES models.

Phase III

Determine the gain in execution speed obtained by the use of fast simulation

models. Since the event scheduling approach is the most execution efficient approach for

discrete event simulation, the gain in execution efficiency realized by the use of fast

simulation will be calculated with respect to the equivalent DES model implemented

using the event scheduling approach. At the end of this research phase, one would be in

a position to decide as to which manufacturing topologies should not be modeled by the

37

fast simulation technique and thus, would contribute towards satisfaction of research

objective # 3. The speed-up achieved for networks with assembly and merge

configurations is mainly influenced by the speed-up obtained for tandem lines which

serve as building blocks for the above configurations. Hence, the proposed

experimentation deals only with tandem lines with parallel servers and tandem lines with

single, unreliable servers.

Tandem Line With Parallel Server, Infinite Buffer Stations. The speed-up

can potentially be influenced by the number of parallel servers at each node. To study

the behavior of speed-up with respect to the above factor, experimentation is proposed in

Table VI (set# 1). All the nodes have parallel servers so that the effect of modeling

parallel server nodes with fast simulation can be isolated from that of modeling single

server nodes. In set# 1, the average utilization of each node will be kept constant for all

scenarios by adjusting the mean processing time of the parallel servers. In addition to

this set of experiments, three other sets of experiments as presented in Table VI will be

carried out to investigate the behavior of speed-up with respect to number of nodes,

number of customers, and average utilization. In set # 4, the average utilization will be

varied by varying the mean processing time of the parallel servers.

Tandem Line With Unreliable Servers. The objective is to study the

behavior of speed-up with respect to different failure rates. To achieve this objective, a

set of experiments will be conducted with five different failure rates keeping all other

factors like number of nodes, number of customers, and repair time distribution fixed at

the same level for all the scenarios.

Set#

1

2

3

4

TABLE VI

EXPERIMENT AL SCENARIOS FOR TANDEM LINE WITH PARALLEL
SERVERS

38

No. of nodes No. of servers No. of customers Average utilization
2
3

20 4 30,000 0.75
5
6

10,000
20,000

20 3 30,000 0.75
40,000
50,000

10
15
20 3 30,000 0.75
25
30

0.5
0.6

20 3 30,000 0.7
0.8
0.9

PHASEN

Evaluate the appropriateness of views adopted for generating fast simulation

models in the context of hybrid simulation. This exercise will help in identifying the

implications of the view employed for developing FS models for operationalization of

hybrid simulation models and will lead to fulfillment of objective # 4. The following

initial thoughts about hybrid simulation would illustrate the fact that development of FS

models has implications for operationalizing the hybrid approach to simulation:

Consider the scenario shown in Figure 13 in which the fast simulation model of

an assembly line is embedded within the hybrid model. As described in the earlier

section, fast simulation of an assembly line involves determining the departure times of

39

the component parts from the last stations in the feeder line, i.e., machines 3 and 6 in this

case. It can be seen that arrivals to machine 3, which is the first station in the feeder line,

is not an external arrival and its arrival time will not be known until the appropriate event

is executed in the DES model.

Discrete Event Simulation Model

Part
Pl

Fast Simulation Model
I----••••••••••••••••••"'••••"'••••••••••••••

(All machines have infinite buffer capacity)

Figure 13.·A Hybrid Modeling Scenario

One can solve this problem in two ways:

[l] Execute the two models sequentially; first run the DES model completely so that

the information required for executing the FS model is made available. This approach

has memory implications because one has to store all the parts departing from the DES

model so that they can be introduced into the FS model. As described earlier, one also

loses modeling flexibility by adopting such a sequential execution scheme.

[2] Modify the hybrid model as shown in Figure 14:

The two types of models will communicate by the following means:

DES----> FS

FS ---> DES

activate FS model when part exits the DES model.

schedule proper events on the event list of the DES model.

The two DES models in this alternative will have a common simulation clock. Choosing

this alternative means that we will not use a FS model of an assembly line in the above

hybrid model even though it is possible to have one.

. . .

iscrete Event Simulation Models

\

~ --·-- --.. ---·------- . ----- -·---·-------··--

Fast Simulation Model

Figure 14. An Alternative Hybrid Modeling Scenario

PHASEV

40

Define a set of criteria for determining the need to resort to the hybrid

simulation technique and for identifying the potential candidates for which FS models

will be used within the hybrid simulation environment. Concepts from parallel discrete

event simulation will be studied for relevance while developing such a set of criteria.

Completion of this research phase will partially satisfy objective # 5. The following

initial observations about the hybrid simulation models illustrate how the Parallel

Discrete Event Simulation (PDES) concepts could be useful in this research phase:

Some of the problems that can arise in the case of hybrid simulation may be very

similar to those with parallel discrete event simulation. The activities performed within

fast simulation (though it does not maintain any simulation clock as such) can be out of

sync with the main simulation clock. Preserving the causality principle, which is the key

issue in PDES, seems to have significance even for hybrid simulation, especially for

identifying potential candidates which can be modeled as fast simulation models.

For example, consider the system shown in Figure 15. Suppose we have developed a FS

model for a tandem line which is a part of the bigger system and for some reason (may

be because of complex queue disciplines), we have decided to model the rest of the

system as a DES model.

---------- Fast Simulation Model __________ . .

Discrete Event Simulation Model

+ - - - -+ Dependency
(All machines have infinite buffer size)

Figure.15. Model Interdependency

41

An arrival to machine 1, say attime Tl, will trigger the fast simulation model and the

part will be processed through machines 1, 2, and 3 and an arrival event will be

scheduled, say at time T2. This event will introduce the part into the DES model at the

proper simulation clock time. Thus, the topology of the system allows creation of such a

hybrid model. Now consider the case that one of the features of the system is to ask the

operator at machine 2 to help the operator at machine 4 whenever failure occurs at that

machine. If the failure event is to occur at machine 4 between time Tl and T2, then the

arrival-event time (from FS model to DES model) T2 is no longer valid. An occurrence

of a certain event in the DES model may require the undoing of some of the activities of

the FS model violating the causality principle. Thus, even though the two models are to

be executed on the same processor, such interactions between two heterogeneous models

can be a significant problem. This example also serves as an illustration of the fact that

the topology of the system is not the only factor influencing the identification of

subsystems which can be modeled as FS models within a hybrid model.

42

PHASE VI

Make modifications to the existing OSU-OOM environment for generating and executing

hybrid simulation models. Demonstrate the feasibility of a hybrid simulation technique

by simulating and.validating a proof-of-concept, prototype hybrid simulation model

Implementing a prototype hybrid simulation model will also provide the insight for

developing guidelines for partitioning the model. Completion of this research phase

would satisfy research objective # 5.

PHASEVIl

Run a series of experiments to test the hypothesis of diminishing marginal speed-up.

The size of the subsystem that is modeled by fast simulation is not a true indicator of the

degree of hybridness. This is because not every element of the system contributes in the

same proportion to the total number of events. Hence, the experiments should be

designed such that all the subsets of the system which will be incrementally replaced by

fast simulation models should be homogeneous in terms of their contribution to the total

number of events. The manufacturing system that will be used for experimentation is

depicted in Figure 16. All the assembled parts need one unit of each of the components.

In order to ensure that all the subsystems which are replaced incrementally by the

fast simulation model are homogeneous in terms of their contribution to the total number

of events, the following assumptions are made:

1. All part arrivals follow the same deterministic distribution for time between

arrivals and processing times at each node have the same deterministic distribution.

2. Each subsytem contains the same number of nodes.

3. All buffers have infinite capacity.

Table VIl shows the various scenarios of hybrid simulation that will be evaluated for

testing the- hypothesis of marginal speed-up.

-yl 9

43

-----:.=-~1
L---------

r - - - - ..., Sub-systems which will be replaced
- - - - - ..I incrementally by fast simulation

Figure 16. Experimental Manufacturing System

TABLE VII

EXPERIMENT AL SCENARIOS FOR TESTING HYPOTHESIS OF DIMINISIDNG
MARGINAL SPEED-UP

Scenario No. Subsystems replaced by fast simulation

1 Subsystem# 1

2 Subsystem# 1 and 2

3 Subsystem# 1 to 3

4 Subsystem# 1 to 4

5 Subsystem# 1 to 5

6 Subsystem# 1 to 6

7 Subsystem# 1 to 7

8 Subsystem# 1 to 8

9 Subsystem# 1 to 9

At the end of this research phase, objective 6 will be satisfied.

44

The following chapters present the outcome of the research process which was

conducted within the framework of the research phases outlined above. Chapters VI and

VIl deal with the fast simulation technique, whereas the hybrid simulation approach is

the focus of Chapters VIII and IX. The summary of the research outcomes and the

contribution of this research are presented in Chapter X.

CHAPTER VI

FAST SIMULATION - CONCEPTUAL FRAMEWORKS AND MODELS

This chapter focuses on the modeling abstractions, relationships for fast

simulation, conceptual frameworks which form the basis for developing fast simulation

models, and the fast simulation models of various manufacturing network topologies.

The topologies are presented in the order in which they were investigated which (i)

portrays the evolution of various relationships and abstractions and (ii) explains the

reasoning behind the need for new abstractions and conceptual frameworks. The

following section defines some common nomenclature which is used hereafter in this and

the following chapters.

i

j

STij

bi

SSTi,j

SET·· lJ

OT·· lJ

Nomenclature

index for machine

index for part or Work Flow Item (WFI)

Service Time of jth part on ith machine

Input buffer capacity of ith machine (excluding the one with the seiver)

Service Start Time of jth part on ith machine

= max {DTi-lj, DTij-1} [a]

Service End Time = SSTij + STij

Departure Time of jth part on ith machine

(same as SETi,j if input queue of downstream machine has infinite capacity)

= max {SETij, DTi+lj-[bi+i+l]} [b]

45

Split Topology

The relationships [a] and [b] defined in the previous section rely on the index of parts

and hence, are not useful when dealing with topologies like split and merge. This

happens because these equations assume that the sequence in which parts are processed

on various machines is the same for all the machines, which is true only in the case of

tandem lines with single server stations. The following example illustrates this in the

context of a split topology.

part # 8 departs
and needs service
at machine 6

Figure 17. A Split Topology

46

As seen from Figure 17, part # 8 which has finished its processing on machine 2 will be

the 5th part that will be processed on machine 6. Thus, it is obvious that the index of the

part loses its significance when it starts its processing along either of the two branches.

Hence, it is necessary to get rid of the reliance on the part index to make such

relationships general enough so that they can be employed for topologies other than a

tandem line with single server stations.

Eliminatin& the De,pendency on Part Index - Conce,pt of Time Histozy

The relationship [b] suggests that departure ti.me of jth part from machine i =

max [service completion ti.me on machine i,

departure ti.me of j-Cbi+ 1 + l)th part from machine i+ 1]

47

Since, the real interest is in the arrival time of that part to the next machine in its routing,

the jth departing part can be seen as the kth arrival to the next machine in its routing. For

evaluation of blocking of the kth arrival to a particular machine, what is really required is

the departure time of the k-Cbi+ 1 + l)th departure from that machine which need not be

the departure time of the j-Cbi+ 1 + l)th part (for topologies like merge and split).

Modeling the evaluation of blocking using the above logic eliminates the

dependency on the sequence in which parts are processed on various machines. This is

achieved by maintaining the chronological history of departure times for each machine (it

is more sensible to store the departure times with machines rather than with individual

parts).

depTimeSi : Departure Time History of ith machine (maintained for last bi+ 1 parts).

History initialized to zero at the start of simulation; it is updated whenever

departure of the part from that machine is fast simulated; it is discarded

once it has been used for the evaluation of the blocking of arriving parts.

The relationship [b] then takes the following form:

DTi,j = max {SETij, depTimeSi+i£first]} [d]

where i+ 1 refers to the next machine in the routing of jth part.

If this jth part is the kth arrival, then depTimeSi+ i[first] provides the

departure time of the k-Cbi+1+l)th departure from that machine.

The relationship [a] then takes the following form:

SSTij = Service Start Time of jth part on ith machine

= max {DTi-lj, depTimeSi[last]} [c]

depTimeSi[last] provides the departure time of the last part processed on

that machine and i-1 refers to the previous machine on that part's routing.

The relationships [c] and [d] are more general in nature and also take care of special

cases such as tandem lines with single server stations. (Relationships [c] and [d] boil

down to relationships [a] and [b] for this special case). The machine indices are to be

interpreted according to the order of that machine in that part's routing, rather than the

physical arrangement of machines.

The "customer-by-customer" view is appropriate for developing fast

simulation models of split topology provided that one employs relationships [c] and [d]

instead of using relationships [a] and [b] ..

Merge (Join) Topology

Consider the merge topology shown in Figure 18:

~o o

0

0
Part ni

--UI) 0 0 --3l[rJID9
Figure 18. A Merge Topology

48

In the above figure, m stands for number of part types (customer classes) and 4

represents number of stations on the ith merging tandem line. In discrete event

simulation, one would simulate the m different external arrival processes by scheduling

initial arrival events on the calendar. The part-arrival event initiates/fires the processing

of the arrived part; the part either immediately receives service or joins the queue. One

can try to follow similar logic and determine the time of next arrival by comparing the

values of variables representing the time of next arrival for different external arrival

processes.

49

Assume that the first arrival is of part type 2. One fast simulates the processing

of this part across the tandem line and then needs to fast simulate its processing at the

merge node. But one does not know yet as to which part will arrive first at the merge

node since parts which arrive later than this part can reach the merge node earlier than

this part. Hence, one cannot further fast simulate the processing unless one -has simulated

processing of at least one part across each of the merging lines.

So, the fast simulation.of this part is temporarily abandoned and this part is added

to the list of parts maintained in the order of their departure times (from the last stations

of merging lines). The focus of fast simulation is then shifted to the processing of next

arrival until it reaches the merge node. This is repeated until all arrivals have been

processed up to the stage of the merge node. Using the list of parts, one can then further

fast simulate the processing across the merge node. The following points about the

preceding discussion should be noted:

[1] A view similar to the "customer-by-customer" view has been employed with a

difference that instead of fast simulating the processing of an arrived part in one shot

(i.e., from the entry into the system until it exits the system), one fast simulates only to

the extent possible. The fast simulation is carried out in two passes viz. (i) fast

simulation of processing across the merging lines, and (ii) fast simulation at the merge

node and thereafter.

[2] This alternative is viable if and only if the buffer at the merge node has infinite

buffer capacity. If this is not so, then for determining whether parts which have

completed the service at stations 4 (i = 1, 2, ... , m) will be blocked or not, one needs to

have the information about previous departures from the merge node. Because of the use

of a two-pass approach, this information will not be available when one is fast simulating

the processing across the merging lines.

The next question which arises is, what if one encounters a finite buffer at the

merge node?

50

Merge Node With Finite Buffer

Even if one decides to abandon the fast simulation of part type 2 as one did in the

infinite buffer case, one cannot determine its departure time from the L2 station and has

to abandon the fast simulation with this part still at station L2 waiting for its "fate" (what

time will it be able to depart from here?) to be figured out Such abandoning of fast

simulation will start filling the merging lines by parts with "unknown fate" and after a

certain stage will prevent the progress of fast simulation. This will happen because in

order to determine the time at which service can start, one needs the knowledge of

departure time of previous parts and such information would not be available due to the

parts which are still waiting for their fate to be decided.

Thus, it is clear that one may not want to use such arrival initiated/fired fast

simulation for merge topology (especially in the case of a finite buffer at the merge

node). Since determination of which part arrives first to the merge node is critical for the

progress of fast simulation across the merge node, one may want to depart from such an

arrival initiated approach to what will be called a "need driven" approach. The concept

and the pseudocode for fast simulation based on this approach is illustrated in Figure 19.

fori= 1 tom do

{ determine SETi = service end time of next part at station Lj}

for "certain number of parts" do

{minSET = min (SET1, SET2, ... ,SETm)

nextLine = mergingLine which has SET equal to minSET.

determine the departure time (considering blocking) of the part corresponding to

minSET from station LnextLine and process it across the merge node.

determine SET nextLinel

Figure 19. Pseudocode for Fast Simulation of a Merge Topology

51

The "need" refers to the need of information as to which merging lines will

provide the first arrival at the merge node. One views the merge node as if it asks the

feeding merging lines to process the parts as and when it requires it. Unlike the infinite

buffer case, the fast simulation is carried out in one pass only but the view adapted here

still differs from the ·~customer-by-customer" view in that the customer whose processing

is next simulated across the merge node can be different from the customer whose

processing was fast simulated across one of the merging lines .. Hence, this view can be

referred to as "customer-by-customer-with-switching".

Illustrative Example

Fast simulation of a merge topology based on the above framework is presented

in Table vm. The scenario used for that fast simulation is described below:

• Three tandem lines (for part types Pl, P2, and P3) merge at the merge node.

• Input buffer at the merge node has a capacity of 2.

• The station downstream to the merge node has infinite capacity. Hence, at the merge

node; DT =SET= SST+ ST

• What happens along the tandem lines is· captured only in terms of the SET on the last

stations of the merging tandem lines.

• What happens beyond the merge node is not included.

Follow the trace of fast simulation from the shaded row. The last part whose

processing was fast simulated across the merge node was fed by the merging line for part

Pl. Each of the other two lines have a part with unknown departure time (only SETs are

known, 8.5 and 6 respectively). As per the need driven approach, the merging line for

part Pl is asked to fast simulate the processing of the next arrival to that line. Assume

that the SET of that part at the last station of the merging line is determined to be 9. Next

Part which refers to the part corresponding to minSET is now determined to be of type

TABLE VIII

FAST SIMULATION OF A MERGE TOPOLOGY

Last Station • Merging Last Station • Merging Last Station • Merging Merge Node
Line (Part T:vpe Pl) Line (Part T:vpe P2) Line (Part T:vpe P3) Inout Buffer Caoacit =2)

SET DT SET DT SET DT Next Part Type SST ST DT depTimes
(Pl) (Pl) (P2) (P2) (P3) (P3) (min SET) ro.001
4

3
6 P2 - min(4,3,6)

max r3.0l = 3 max r3.01 = 3 5 8 roo.s1
3.5 P2 - min(4.3.5.6)

max f3.5.0l = 3.5 max r3.5,81 = 8 2 10 ro.8.101
I(/.{:· ·z .• ~.}\w,.<h)L°--.;i.,:· \t&:t)J ····.).-·.c·······<zz-·····:;:.:<: ._:····:··:._._-·.< ·····;:_.;:·· •• ·::":;J\r:tft<·; \pi)i::jiddi418.5~6l:'/.··. ·_···.:·····»·,:·-;::··,·;:···:·.-.-;;··-,._·;;:·::· ··.-_·;····.:··:· ·tf<ti} .:.A:.:.:.:tt=:.tttt:.
ff\tl:.:.l tmatJ4lOl= 4/:HW /tltK+ ltHlf:Jft.:.·.ft,¥.tHVH tltt@r. _.:t:t.:H:tt.LJlJ.:.r+:tr .:.t.:.:.t.t.rn:.:.:.:.:.:.:.:.:.:.:.:nAfLt.tt tmax44ll01 m::.tottt .:.:n.t.rf t17tt+ US~to=l1Utl

9 P3- min(9.8.5.6)
max r6.8l = 8 max rs.111 = 17 3 20 no 11.201

29 P2- min(9,8.5,29)
max rs.5.101 = 10 max no.201 = 20 1 21 rt7.20.21l

11 Pl - min(9.11 29)
max r9 171 = 17 max rt7.211 = 21 4 25 r20.21.251

33 P2 - min(33,l 1.29)
max r11.201 = 20 max r20.25l = 25 2 27 [21,25,271

30 P3 - min(33.30 29)
max r29 211 = 29 max r29.271 = 29 3 32 r25.27.32l

~
The fast simulation at the last station of the merging tandem line has to be abandoned even before one can determine the departure
time for the part which intends to join the merge node. This is because (potentially) several other parts may try to join the queue of
the merge node before it. If one disregards this fact and goes ahead to determine the departure time without ensuring that no other
part can join the queue before it, then it would lead to incorrect evaluation of blocking and hence, of departure time.

53

P3. Fast simulation of the part along line 1 is now abandoned and the part is left at the

last station with SET = 9. The focus of fast simulation is now switched to part type P3.

Its departure time is calculated to be 8 as per relationship [d]. The processing of this part

is then next fast simulated across the merge node using relationships [c] and [d]. The

SST is determined to be 17 and DT is determined to be 20 based on the arbitrarily

assumed service time of 3. The departure time history (depTimes) is then updated and

the fast simulation progresses following a similar cycle.

Assembly Topology

Infinite Buffers

The concept of "simulate to the extent possible and then temporarily abandon"

has to be employed for this case because the earliest start time of assembly cannot be

determined until we know the arrival times of all the required components. The arrival

fired/'mitiated approach in combination with the two-pass scheme will work only for

infmite buffers but, in the case of fmite buffers, this approach will again suffer from the

limitations similar to those identified in the context of the merge scenario. Hence, once

again we need to resort to the "need driven approach" for fast simulation. The

pseudocode for fast simulation of an assembly topology with infmite buffers is presented

in Figure 20 (for one example of an assembly topology, refer to Figure 7). Tenn ni in

the pseudocode denotes the quantity of ith component required to make one assembly.

Thus, the conceptual framework of "customer-by-customer-with-switching" in

which/as/ simulation is continued only to the extent possible and then abandoned also

forms the basis for fast simulation of an assembly topology with infinite buffers at the

assembly station.

54

[I] Fast simulate enough WFls from each of the feeder lines and create an assembly kit

for the next assembly.

1 to: (number of components) do: [:ii

a. Fast simulate ni WFis from feeder line corresponding to ith component

b. Store these WFis in a kit]

[II] Fast simulate the assembly kit across the assembly node and thereafter.

1. Decide earliest start time (EST) for the assembly, i.e., the time at which all the

parts required for the assembly·are available.

2. Decide the service start time (SST)= max (EST, last departure time)

3. Collect time in queue statistics for the WFis in the kit

4. Determine the departure time for the assembly.

Repeat steps .1 and II until required number of assemblies have been simulated.

Figure 20. Pseudocode for Fa.st Simulation of an Assembly Topology
(Infinite Buffers at the Assembly Station)

Finite Buffers

The assembly topology with finite buffers looks structurally similar to the merge

topology, but the following differences should be noted.

• The input buffer of an assembly station has separate queues for each type of

component which goes into the assembly. Hence, in order to determine the departure

time of a WFI (i.e., evaluate blocking possibility) which has finished the service at

the last station of a feeder line, one does not have to be concerned about the arrivals

to the assembly node from the remaining feeder lines. In the case of merge topology,

due to the shared physical queue, one cannot derive the departure time from the last

stations of a merging line without fast simulating all the parts that may reach the

merge node earlier, across the merge node.

ss

• The abstraction of an assembly node for developing a fast simulation model differs

considerably from that of the merge node. For every part arriving at the merge node,

there is a corresponding departure time history available for determining the blocking

time, if any, for the parts intending to leave the merging line. In the case of an

assembly node, the arriving component parts are logically destroyed (lose their

identity}once they go into the assembly. Thus, the departure time history refers only

to the assembled parts leaving the assembly node and not to each of the component

parts that arrived. In addition to this, the assembly node at some point of time can

hold more than one WFI of any component type depending upon the bill of material;

which is not the case with the merge node. ·Also, it is realistic to assume that if a

WFI of one component type is present in the queue and the assembly station is idle, it

will not leave the queue until sufficient quantities of all components are available to

start the assembly. Due to these factors, the departure information is not directly

useful for modeling the blocking of last stations on individual feeder lines. So, an

alternative relationship needs to be developed.

The whole idea behind maintaining the departure time history is to enable the

determination of blocking possibility for future arrivals. In.the case of tandem lines, if

the [n - Chi+ 1 + l)]th part has departed from the i+ 1th station before the nth part finishes

its service from the ith station, then the nth part will find a place in the input queue of the

i+ 1th station and hence, will not be blocked. This decision can also be reached from the

queue removal time history instead of departure time history as follows:

If the [n - Cbi+ 1)]th part has been removed from the input queue of the i+ 1th station

before the nth part finishes its service from the ith station, then the nth part will find a

place in the input queue of the i+ 1th station and hence, will not be blocked.

Thus, one needs to maintain the queue removal time history for each of the input buffers

which will be used for evaluation of blocking of the corresponding feeder line. The

56

reasoning for getting rid of the dependency on part index applies equally well even when

the notion of queue removal time is used instead of the notion of departure time. The

new versions of relationships based on the notion of queue removal time are presented

below:

QRTi · Queue Removal Time History of ith machine (maintained for last bi parts).

History initialized to zero at the start of simulation; it is updated whenever

service start time(time at which part is removed from the queue) for any

part processed on that machine is fast simulated; it is discarded once it has

been used for the evaluation of the blocking of arriving parts.

The relationship [b] then takes the following form:

DTiJ = max {SETiJ, QRTi+1[first]} . · [fJ ..

where i+ 1 refers to the next machine in the routing.

The departure time of the last part processed on that machine needs to be

stored separately when using this relationship.

The relationship [a] then takes the following form:

SSTiJ = max {DTi-lJ, time oflast departure from ith machine} [e]

where i-1 refers to the previous machine in the routing.

The pseudocode for the finite buffer case needs modification to incorporate use of

queue removal time history for evaluation of blocking and maintenance of such time

history at the assembly node. The pseudocode is presented in Figure 21 (modifications

are shown in italics).

In conclusion, the notion of queue removal time history is more meaningful for

the development of a fast simulation model for an assembly topology, whereas the

abstraction of departure time history wcis meaningful enough/or the previous network

topologies.

57

[I] Fast simulate enough WFis from each of the feeder lines and create a kit for the next

assembly.

1 to: (number of components) do: [:ii

a. Fast simulate n; WF/sfrom afeeder line corresponding to ;th component.

The departure time from the last station of the feeder line is dictated by the queue

removal time history. Since one has updated queue removal history of the ith input

queue (for Di parts) using the SST of the last assembly, it allows one to evaluate the

blocking of the next Di arrivals, even though one has not fast simulated (i.e., has not

determined queue removal times) previous WFls (at the most Di·l) across assembly node.

b. Store these WFis in a kit.]

[m Fast simulate the assembly kit across the assembly node and thereafter.

1. Decide earliest start time (EST) for ~e assembly, i.e., the time at which all

parts required for the assembly are available.

2. Decide service start time (SST) = max (EST, departure time of last assembly)

3. Collect time in queue statistics for the WFis in the kit

4. Upda.te the queue removal time history for all the input queues.

(queue removal time= SST, based on the assumption that parts are not removed from

input queues until sufficient quantities of all the parts are available for next assembly)

5. Determine the departure time for the assembly.

Repeat steps I and]I until required number of assemblies have been simulated.

Figure 21. Pseudocode for Fast Simulation of an Assembly Topology
(Finite Buffers at the Assembly Station)

Illustrative Example

Fast simulation of an assembly topology is illustrated in Table IX and is based on

the following scenario:

• The assembled part requires two of part type Pl and one of part type P2.

~

Last station of tandem line
which feeds part type Pl

SET DT
(Pl) (Pl)

5 max f5,01 = 5
7 max f7,0l = 7

----------------- ---------~--- ------- ------- --------------------- -------~----------

TABLE IX

FAST SIMULATION OF AN ASSEMBLY TOPOLOGY

Last station of tandem line
which feeds part type P2

SET DT
(P2) (P2)

10 maxfl0,01 = 10

lastDT
0

Assembly Station
(Input Buffer Capacities : 3 for Pl and 2 for P2)

EST SST ST QRT-Pl
ro,0,01

ro.01
fOl

QRT-P2
ro.01

ro1
maxf7 ,10] = 10 maxf 10,01 = 10 ro,10,101 ro.101

5
\Kki_:/\ :...:=.J :.:.t.:. f....Lt.::/:t.£..t..w:::.:.:..:.: : .•. . "··+.t,.<':A.::N:.\\.,:.:·.::..::..:.. '·· . :t.:S.·h.t:.:.: x ,:,:·':.:.::: .. ::.:::.::::::...:., ... :J, .. t .. ::.:.:. .. • . .\/ .. ·., ... :.:.:'.: .. :.: . .,:::,:,.:.::,:if.:::i/.1 .. :.: ,: .. : :/ .. ::::.(r: .• Ju.:.:::::. f< ,·.: ... ·:
8 max rs.01 = 8 fl0,101
9 max f9,10l = 10 flO]

12 max[12,0l = 12 flOl
maxfl0,121 = 12 maxf12,151 = 15 fl0,15,151 fl0.151

3
18

11 max fl l, 101= 11 f15,151
13 max f13,151= 15 f15l

21 maxf21,10l= 21 f15l
maxf15,21 l = 21 max[21,18] = 21 [15,21,21] f15,211

4
25

Updating the QRT history can occur only after knowing the SST. (One updates the QRT history for each of the input buffers for Di
parts when one determines the time at which assembly can be started). Even though updating can be done only after knowing SST,
the "used history" needs to be discarded once it has been used for the evaluation of blocking. Failure to do so can result in erroneous
results.

59

• Input buffer for part type Pl has capacity 3 and that for part type P2 has capacity 2.

• What happens along the component feeder lines is captured only in terms of the SET

of parts intending to leave the last stations of the feeder lines.

• What happens beyond the assembly station is not included.

• To keep this manual fast simulation simple enough, it is assumed that the

downstream station after the assembly has infinite buffer capacity.

Follow the fast simulation from the row which is lightly shaded. The last

departure from the assembly station has occurred at time 15. The processing of two parts

of type Pl and one part of type P2 is then fast simulated. The departure times of these

parts from the last stations of the feeder lines are determined to be 8, 10, and 12,

respectively. The elements of queue :removal time history of the assembly station (QRT

Pl & QRT-P2) which· were used in the calculation of departilre time are discarded.

Earliest start time fotthe assembly kit is max(l0,12)=12 and the service start time is

max(l2,15)=15. The component parts leave their respective queues at time 15 and this

service start time is used to update the queue removal time history of the assembly

station. QRT-Pl is changed from [10] to [10,15,15] and QRT-P2 is changed from [10]

to [10,15]. Service time is arbitrarily assumed to be 3 and the assembled part leaves the

assembly station at time 18 (lastDT of assembly station is updated) and its processing

beyond the assembly station is then fast simulated.

Tandem Line - Stations With Single and Unreliable Servers

Infinite Buffers

The state transition diagram for stations with infinite buffers and single,

unreliable servers based on the assumption that failures can occur even when the server is

idle is depicted in Figure 22.

Nomenclature:

.Start ..
Service

NFfi : Next Failure Tune of ith machine

TIFi : Time To Failure for ith machine

RTi : Repair Time for ith machine

Failure

Repair

Figure 22. State Transition Diagram for Station With Failure (No Blocking)

FastSimulation Model.

SSTi,j = max { arrival time, last departure time} = max {DTi-1,j , DTi,j-1}

while (SSTi,j > NFfi)

{ SSTi,j = max [SSTi,j , CNFri + RTi)l start of service may get delayed

NFTi = NFTi + RTi + TIFi }

60

The above while block fast simulates "idle--> failed-idle--> idle" transitions (if

any) in order to determine the earliest time at which service can start. Executing

this block is equivalent to simulating a failure and a repair event. Setting the time

at which next failure will occur is like scheduling a next-failure-event. This block

is not required, if one assumes that a machine cannot fail when it is idle.

SETi,j = SSTi,j + STi,j

while (SETi,j > NFTi)

{ SETi,j = SETi,j + RTi service completion delayed by repair time

NFfi = NFTi + RTi + TIFi }

DTi,j = SETi,j (since no blocking)

Illustrative Example. Figure 23, which portrays the processing of WFI # 5, will

help in understanding the logic of fast simulation. The following initial values are

61

assumed: NFf= 12 time of last departure = 5 arrival time of WFI # 5 = 30

Previous
Departure

~
4

Arrival
ofWFl#5

c=J Idle

umm Busy

Start of
Service of
WFl#5

Arrival
ofWFl#6

Departure
ofWFl#5

Next Failure

Start of
Service of
WFl#6

. - Failed-Busy

1111 Failed-Idle

Figure 23. Station With Unreliable Seiver (Infinite Buffers)

SST= max { 30, 5} = 30.

SST is greater than NFf which implies that a failure will take place which can delay the

start of processing and hence, "while loop" is executed (assume RT=4; TTF=9).

SST= max { SST, (NFf + RT) } = max { 30, (12 + 4) } = 30.

NFT = NFT +RT+ TTF = 12 + 4 + 9 = 25

SST is still greater than NFf and hence, "while loop" is executed once again (assume

RT=8 and TTF=lO).

SST= max { SST, (NFf + RT) } = max { 30, (25 + 8) } = 33.

NFT=NFT+RT+TTF=25 + 8 + 10=43

Now, SST is less than NFf and hence "while loop" will not be executed.

SET = SST + ST = 33 + 20 = 53.

SET is greater than NFf and hence, "while loop" is executed (assume RT=7; TTF=l4).

62

SET= SET +RT= 53 + 7 = 60.

NFf =NFf +RT+TTF=43 +7 + 14=64.

SET is now less than NFf and hence, "while loop" will not be executed.

DT= SET= 60.

Thus, processing of WFL# 5 is completed and this will set the starting conditions (last

departure = 60 and NFf = 64) for processing of the next WFI. Failures may not be so

frequent in reality and hence, the "while block" may not be executed during processing of

everyWFI.

Finite Buffers

Assumptions: 1.

2.

Machine can fail when it is idle.

Machine can unblock itself even when it is failed.
.,

The state transition diagram for stations with finite buffers and single, unreliable servers

based on the above assumptions is shown in Figure 24.

Start
Service Service

Endof
Service

Failure

Repair

Failure

Repair

Unblock

Figure 24. State Transition Diagram for Station With Failure and Blocking

Based on these assumptions, the following relationships are identified for fast

simulating the processing of a WFI at such a station.

Fast Simulation Model.

SSTij = max {DTi-lj , DTij-1}

while (SSTij .> NFTi)

{ SSTij = max [SSTij , <NFTi + RTi)l

NFTi = NFTi + RTi + TTFi}

The above while block fast simulates the following transitions (if any)

1 1 e --> All -1 e --> 1 e (") ll"dl £:..!led "ell "ell II

(ii) "blocked--> failed-blocked--> blocked--> idle"

(iii) "blocked--> failed-blocked--> failed-idle--> idle"

in order to determine. the earliest time at which service can start

SETij = SSTi,j + STij

while (SETij > NFTi)

{ SETij = SETij + RTi

NFTi = NFTi + RTi + TTFi}

DTij = max { SETij, DTi+lj-[bi+l+l] }. This will not work !

63

We need anofher while block to take care of failures, if we work under the

assumption that a machine cannot unblock itself when it is failed. This block will

then fast simulate transition# (ii); whereas transition# (iii) will be invalid under

this assumption.

The following section explains why the above "blocking evaluation relationship" based

on the departure times may not work for stations with single, unreliable servers.

Why the above blocking evaluation relationship may not work. Consider the

following trace of simulation for a tandem line shown in Figure 25:

(buffer capacity= 1)

CD >]®
Figure 25. A Tandem Line

1. nth part departed from machine 2 at time 15 and the queue was empty at that time;

2. machine 2 failed at time 15.5;

3. n+lth part arrived at machine 2 at time 16;

4. machine 2 was repaired at time 18 & then+ 1th part started its service on machine 2

. at time 18;

5. n+ 1th part departed from machine 2 at time 23;

6. n+2nd part finished its service on machine 1 at time 17 .5;

In discrete event simulation, the n+2nd part will be blocked by machine 2 since its

input queue will be full (n+ 1th part is still in the queue at time 17 .5) and will depart at

time 18 when the machine is repaired. Infast simulation, departure time of the jth pa.rt

from machine i = max [service completion time on machine i,

departure time of j-Cbi+1+1)th part from machine i+l]

Thus, departure time of n+2nd part from machine 1 =

max [service completion time on machine 1,

departure time of n+2-(1 + 1) part from machine 2] =

max [17 .5, 15] = 17 .5 (not blocked)

An error occurs in the determination of departure time!

64

The above relationship for calculation of departure time is based on the

assumption that if the machine is not busy actively processing any part and a part is

waiting to receive service at that machine, then the part will leave the queue and occupy

65

the server no matter what the status is of that machine. This inherent (implicit)

assumption that needs to be made for using departure time history for evaluation of

blocking is nowhere brought out explicitly inany of the previous work on fast

simulation. The logic of determining departure time based on departure time history can

fail in the case of unreliable servers with. finite buffer capacity because the above

assumption may get violated (machine can be in failed-idle state when the part arrives

and the service for that part can be started only after the machine is repaired). The

transitions:

idle--> failed-idle--> idle (with queue empty when the machine fails and

failure occurs before 'the arrival of the next part)

blocked---> failed-blocked---> failed-idle--> idle

violate the above assumption; whereas the transition "busy-> failed-busy--> busy" does

not lead to violation of the. above assumption ..

What follows is an illustration of how "blocked --> failed-blocked--> failed-idle

--> idle" transition can also lead to violation of the above mentioned assumption.

1. nth part on machine 2 is blocked by a downstream machine at time 30;

2. . machine 2 fails at time 32;

3. machine 2 gets unblocked at time 34 (can get unblocked even if failed) and nth

part departs at time 34;

4. machine is repaired at time 40;

5. queue is not empty at time 40;

Thus, even if the nth part departs from machine 2 at time 34, the next part cannot start its

service until time 40 and leads to a violation of the assumption.

It should be noted that these violations occur because one allowed failures of idle

machines, unblocking of machines in the failed state, and parts to stay in the queue even

when there is a space available with the server. The most obvious (intuitive) solution to

66

this problem is to modify the departure time history to take care of the above cases in the

following way:

Whenever the above transitions occur, overwrite the departure time history by the

time at which the machine gets repaired (the time history maintained is no longer the

pure departure time history) and_use that for evaluation of blocking.

In order to find a "better and cleaner" way to achieve this, the usefulness of the

notion of queue removal times was evaluated for this case. Fortunately, as it turned out,

if one relies on the abstraction of queue removal times then one does not have to be

constrained by the implicit assumption (described above) which was -a prerequisite for

using departure time -history for evaluation of blocking. The relationship to be used for

evaluation of blocking (when one employs the concept of queue removal times) is

presented below:

DTi,j = max { SETij,-QRTi+lj-[bi+l1 } - [g]

Now, reconsider the first trace of simulation. In fast simulation,

departure time of jth part from machine i =

max [service completion time on machine i,

queue removal time of fj-Cbi+ 1)]th part from input queue of machine i+ 1]

Thus, departure time of n+2nd part from machine 1 =

max [service completion time on machine 1,

queue removal time of [n+2-(l)]th part from input queue of machine 2] =

max [17.5, 18] = 18 (blocked)

Correct determination of departure time!

In conclusion, the notion of queue removal time history is a simple but very

powerful concept (much more general than the notion of departure time history) and

should be adopted as a generic modeling abstraction for fast simulation. Recall that the

notion of queue removal times was used effectively also for the fast simulation of

assembly topology with finite capacity of input buffers at the assembly station.

67

Tandem Line - Stations With Parallel Servers

In the case of a tandem line with single server and finite buffer stations, a

customer-by-customer view was employed for fast simulation. On the other hand, in the

case of a tandem line with parallel servers and infu:rl~ buffer stations,. a node-by-node

view was employed to take care of the fact that the order in which customers depart from

the parallel server node can be different from the order in which they arrive at that node.

It was pointed out in Chapter ill that the simultaneous presence of these two features

(viz. parallel server and finite buffe~) impose conflicting requirements in terms of the

view to be adopted for fast simulation. Following is the proposed conceptual framework
, .

for fast simulation of such a tandem line.

[1] Focus on the first part and fast simulate its processing through the tandem line

until it first encounters a parallel server node. One cannot further fast simulate the

processing of this part because parts arriving later can depart from the parallel server

earlier than this part. Hence, one has to abandon the fast simulation after partially fast

simulating the processing at the parallel server. The phrase partially is used since only

service end time (SE1) can be determined and determining the actual departure time

needs the evaluation of blocking possibility which can be done only after the parts which

will depart earlier than this part are fast simulated across the parallel server node. Thus, .

one has to fast simulate only to the extent possible and then abandon the fast simulation.

When a parallel server is "filled" with n such abandoned parts, where n = capacity of the

parallel server, one will be in a position to determine which part will depart first from the

parallel server (until then, one needs to loop through n such passes). This departing part

may further encounter a parallel server node, in which case one may again have to

abandon the fast simulation at that station. After the last parallel server node in the

tandem line, the processing of the part will be fast simulated until it leaves the tandem

line. The phase of fast simulation until the first part leaves the tandem line can be

referred to as a cranking phase. (The fast simulation is running but does not churn out

any part or departure from the tandem line until a certain period of time has passed).

68

[2] After the cranking phase, all the parallel server stations are filled with abandoned

parts to the level of n-1. Fast simulation of one additional arriving part will be enough to

trigger the departure from all the parallel· server nodes. Since there is one part with each

of the servers, the one with the minimum SET will depart first and any further arrivals

cannot overtake/depart earlier than this part. Once the departure of one of the n

abandoned parts is fast simulated. the parallel server station will again be left with n-1

abandoned parts and the cycle repeats. The server from which departure takes place

becomes the candidate for processing the next arrival. It is to be noted that, the

"customer-by-customer-with-switching" view has been employed for this fast simulation

where switching occurs at multiple stages, potentially one at every encounter with a

parallel server node.

Note: The case of tandem line with parallel server and infinite buffers can also be

handled by the above framework. Relationship [fJ, which does not depend on the part

index and hence on the sequence in which parts are processed on various machines, was

used in this topology. Queue removal time abstraction was used effectively for this

topology also.

Illustrative Example

Fast simulation of a tandem line with a parallel server station based on the above

framework is illustrated in Table X. Following are the terms used in that table:

--------~----------------

TABLEX

FAST SIMULATION OF A TANDEM LINE WJTH A PARALLEL SERVER STATION
!

Upstream Station Parallel Server Station
<Inuut Buffer Capacity = 4, Number of Servers ~ 3)

Downstream Station
<Inuut Buffer Capacity = 2)

PIO SET DT SID SST QRT ST

ro.o.o 01
1 5 max[5,0] 1 max[5,0] [0,0,0,5] 3

=5 =5
2 6 max[6,0] 2 max[6,0] [0,0,5,6] 4

=6 =6
3 7 niax[7,0] 3 max[7,0] [0,5,6,7) 0.5

'= 7 =7

4 8.5 max[8.5,0] 3 max[8.5,7.5] [5,6,7,8.5) 1
= 8.5 = 8.5

6 11.5 max[ll.5,6] 3 tmax[ll.5,9.5] [7,8.5,11,11,5] 1.5
= 11.5 '= 11.5

SERVER! SERVER 2 SERVER 3 SPID SST QRT lastDT=

SET
0
8

(SID) SST +ST
last OT SET last DT ·· SET· last DT
0 0 0 0 . 0 0,01 0

10

7.5 -. 3
3)

rnax[7.5,0] max[7.5,0] [0,7.5] 7.5+5.5
=7.5 =7.5 = 13

9.5 1
1)

max[8,0] max[8,13] [7.5,13] 13+2
= 8 ; = 13 '= 15

!.

max[l0,13)=
13

13

max[9.5;7.5J max[9.5,15] [13,15) 15+1
= 9.5 . = 15 = 16

2
2)

max[13,16] [15,16] 16+0.5
= 16 = 16.5

70

SID ID of the Server which will provide the service (Next server to which work

will be assigned is the one which became free first)

PIO Part ID

SPID PIO of part to which the focus of fast simulation is switched

(corresponds to the one which has minimum SE1)

The scenario for fast sirtuilation depicted'fa Table Xis' describecf below:--·
. . . ' ~

• Capacity of the input queue of the parallel server station is 4.

• The parallel server station has three ·servers. · .

• The station downstream to parallel server station has input queue capacity of 2.
.. . .. ~ ~ ' ' .. . ' ...

• What happens before the parallel server station is captured only in terms of the SET

of parts at the upstream station. ·

• · The downstream station is-never blocked.- -- - --- --- · -

Follow the fast simulation from the row which is lightly shaded. Part (PIO =

5) completes its service at µpstream station at time 11 and then the QRT history of the

parallel server station is used for evaluation of blocking. The part departs at time

max(ll,5) = 11 and is assigned to server 1 which had become free first This part starts

its service at time max(l 1,8) = 11. The QRT history of the parallel server station is

updated and the service start time is determined to be 14 (arbitrary service time of 3 is

assumed). The fast simulation of this part is then abandoned at this station. The parallel

server station is now filled with 3 abandoned parts (with SETs of 10, 9.5, and 14) and

hence, a departure from this station can be triggered. SPID is then determined to be 4 as

it has the minimum SET of 9.5. This part (PIO = 4) was abandoned before at server 3.

Departure time of this part from server 3 is then determined to be max(9.5,7.5) = 9.5

using the QRT history of the downstream station. This part starts its service at

downstream station at time max(9.5,15) = 15 and then the QRT history of the

downstream machine is updated using this service start time. This part departs at time 16

71

(arbitrary service time of 1 assumed) whose processing across the remaining tandem line

will be further fast simulated. The fast simulation will then proceed by focusing on the

next arrival and will follow a similar cycle.

This chapter has formed the basis for developing fast simulation models of

various manufacturing network topologies .. The implementation of fast simulation

models based on the relationships, modeling abstractions, and conceptual frameworks

presented in this chapter is one of the subjects of Chapter VII. Chapter VII also deals

with the validation of fast simulation models using equivalent discrete event simulation

models; The results of various experiments coriducte,t to test the speed-up obtained by

the use of fast simulation approach are also discussed in the next chapter.

CHAPTER VII

FAST SIMULATION - IMPLEMENTATION, VALIDATION

AND EXECUTION EFFICIENCY

Implementation

The fast simulation models for all the manufacturing network topologies were

implemented in an object-oriented language viz. ObjectWorks/Smalltalk:-80 R4.0.

Various classes implemented for creating fast simulation models are shown in Table XI.

TABLE XI

CLASSES IMPLEMENTED FOR FAST SIMULATION

Class Brief Description ..

Station Abstract class which models common characteristics of

fast and discrete event simulation resources

FSWorkStation A single server workstation which uses fast simulation

approach to process parts and can have either reliable or

unreliable server

FSAssemblyStation An assembly station which uses fast simulation approach
and maintains ORT historv for each of component parts

FSServer Models an individual server of a parallel server station

FSParServerStation A parallel server station; all the servers at this station

share a common oueue removal time history

TimeHistory This construct provides for maintaining the departure or

queue removal time historv of fast simulation resources

TimeRecord Individual time field in the time history

72

73

The fast simulation models were validated by running equivalent discrete event

simulation models. Table XII shows the various classes implemented for developing and

executing discrete event simulation models.

TABLE XII

CLASSES IMPLEMENTED-FOR DISCRETE EVENT SIMULATION

Class · Brief Description - · · ..

Station-- - . " .. Abstract class which models common-characteristics of
- - - ' . fast and discrete event simulation resources . -

W-0rkStation ····-·· .. A single server workstation used in discrete event
.... . 'h' ... simulation .. which can handle failures and blocking . -

-AssemblyStation A dedicated.assembly station used in discrete event

simulation which has one input buffer for each of the

component parts •

Server A server which is t>art of a t>arallel server station·

ParServerStation A parallel server station used in discrete event simulation;

each server is fed from a common input queue

Buffer An in1>ut buffer of a machine which has infinite ca1>acity

FiniteBuffer An input buffer with a finite capacity

MultipleBuffer Models input buffer of an assembly station

Event Holds event time and a pointer to the event routine

EventList A doubly linked list of events in the order of event time

Simulation Holds resources, work flow generators, event list; drives

the simulation by executing next event and coordinates

statistics collection at the end of simulation

Other "utility classes" which were used in both fast and discrete event simulation

are listed in Table XIII. Many of the classes described in. the above tables were taken

from the OSU - QOM class library [Beaumariage 1990, Bhuskute et al. 1992] and were

modified as required to meet the specific needs of this research.

Class

Operation

Routing

WorkFlowltem

TABLEXID

OTHER UTILITY CLASSES

Brief Description

Represents a processin~ task on a particular machine

An ordered collection of operations which models the

flow of a part

A part which visits various machines for processing as

per its routj.IJ.g; instances of this class hold information

such as queue entry #m~ an.cl system arriv~ time which

is used in calculation of perlormance measures.

WorkFlowltemGenerator Generates arrival of parts using the specified :e~obability

distribution for inter-arrival time

RandomNew Uniform random number ~enerator
-··

Probability Distributions Provide various types of random variates

StatisticsCollection Classes Collect and summarize observations for generating

statistics for various types of perlormance measures

Validation of Fast Simulation Models

The fast simulation models of each topology described in the previous chapter

were validated by constructing and simulating equivalent discrete event models. The

following perlormance measures were used for the purpose of validation:

1. Utilization

2. Time In Queue

3. Blocking Time

4. Time In System

5. Throughput

Summary statistics of the above measures used for validation included the following

values: 1. Mean

2. Variation

74

75

3. Minimum Observation

4. Maximum Observation

5. Number of Observations

Since no approximations were· made while developing fast simulation models, the

results of fast simulation matched exactly with those of discrete event simulation.

However, in order to get resm.ts whic~ ~atch exactly with tho~e of discrete event

simulation, one cannot employ.a common randomnumber generator. The following.

section explains this factor in detail. - · ··-· .. · ·· ·

Need-for Usin-g "Dedicated Random Number Generator" for Each Source of Randomness

The sequence in which random variates are generated in discrete event simulation

is different from that of fast simulation. For example, while simulating a tandem line

one possible sequence of random variates generated could be:

time between arrival

service time at machine 1

time between arrival

service time at machine 2

and so on

In fast simulation, when one is using a "customer-by-customer" view for simulating a

tandem line with single server stations, the sequence of random variates generated would

be as follows:

time between arrival

service time at machine 1

service time at machine 2

service time at machine n

76

time between arrival

service time at machine 1, and so on

Because of this inherent difference in the sequence in which random variates are

generated, it is not possible for,fast simulation to give results which are exactly the same

as those obtained by discrete event simulation when one is using a single random number

generator for all the variates. Hence, in order to obtain results by fast simulation which

are exactly the same as discrete event simulation, multiple random number generators

were used. Each source of randomness, i.e.; each random variate was allotted a

dedicated random number generator while ensuring that each generator in fast simulation

had an initial seed value the same as that used in discrete event simulation.

Another alternative to get around this problem could be to eliminate all the

sources of randomness from simulation for the purpose of validation. But rather than

imposing this restriction of deterministic values on the validation process, the above

mentioned solution was employed for the validation of fast simulation models.

Execution Performance of Fast and Discrete Event Simulation

All the simulations were executed on a SUN SPARCstation IPC. The execution

speed (in all cases) is the mean of four observations. This was required to average out

the inherent variation in CPU time (caused by the variation in initial memory occupancy

status and background garbage collection). In order to reduce the overheads of

generating random numbers/random variates (which is incurred in both fast and discrete

event simulation), all the processing times were assumed to be deterministic. The

following tables and graphs present the savings achieved by the use of fast simulation

models and also show the trend in savings with respect to certain parameters. It was also

ensured that the two simulation approaches were equivalent in terms of the type of

statistics they collect so that neither of the two simulation approaches was penalized or

77

favored. The set of experiments designed for testing the execution speed-up was defined

in Chapter 5 (Research Phase Ill).

TABLE XIV

PERFORMANCE OF FAST AND DISCRETE EVENT SIMULATION FOR A
TANDEM LINE WITH UNRELIABLE SERVERS

Time Between Execution Time (sec.) Execution Time (sec.) Savings(%)

Failures Fast Simulation Discrete Event Simulation

260 .. 177 .. 332 46.7
200 179 -·· 336 46.7
140 179 · · 341 47.6 --,

80 181 347 47.9
20 185 404 54.3

Number of stations (all with single server) = 20 Processing time = 2.S Repair Time = 2.0

Number of parts = 20,000 Mean time between arrivals = 3.0 Infinite Buffers

Savings are defined as: (Execution time for DES - Execution time for FS)/Execution time for DES

• It can be seen from Table XIV that the use of fast simulation for tandem lines is

attractive even after including the feature of unreliable servers.

TABLE XV

PERFORMANCE OF FAST AND DISCRETE EVENT SIMULATION FOR A
TANDEM LINE WITH PARALLEL SERVER STATIONS

(EFFECT OF NUMBER OF SERVERS)

Number of Execution Time (sec.) Execution Time (sec.)

Servers

2
3
4
5

6

Number of stations = 20

Number of parts = 30,000

Fast Simulation Discrete Event Simulation

381 722
414 848
427 976
443 1115
457 1219

Utilization= 0.7S

Mean time between arrivals = 4.0

Savings(%)

47.3
51.1
56.3
60.3
62.5

1300
1100

CPU Time 900
{se·c) , 700

500.__~~--1.---__.:....---11------af--------
300+-~~~--+-~~~~+--~~~""""+-~~~---i

2 3 4

Number.of Severs

5

--•- Fast Simulation • . Discrete Evenf
Simulation -

6

Figure 26. Comparison of Execution Times as a Function of Number of Servers
(Tandem Line With Parallel Server Stations)

78

• Table XV shows that use of the fast simulation technique is execution efficient even

for simulating tandem lines with parallel server stations.

• The execution time for both fast and discrete event simulation increases with the

number of servers but the CPU time for discrete event simulation increases at a faster

rate as compared to the fast simulation (Figure 26). Thus, the greater the number of

servers at the parallel server station, the higher the savings achieved by employing

fast simulation.

• The increase in execution time for fast simulation can be attributed to the "switching

task". The higher the number of servers, the higher the time required to determine

the part to which the focus of fast simulation needs be shifted. The increase in CPU

time for discrete event simulation can be attributed to the fact that the average length

of the event list increases with the increase in number of servers at the parallel server

station.

TABLE XVI

PERFORMANCE OF FAST AND DISCRETE EVENT SIMULATION FOR A
TANDEM LINE WITH PARALLEL SERVER STATIONS

(EFFECT OF RUN LENGTH)

79

Number of Parts Execution Time (sec.) Execution Time (sec.) Savings(%)

Fast Simulation Discrete Event Simulation

10,000

20,000

30,000

40,000

50,000

Number of stations = 20

Number of servers = 3

135

272

409

546

687

273 50.6

545 50.3

815 49.8

1113 51.0

1386 50.4

Utilization= 0.75

Mean time between arrivals = 4.0

• The execution time increases linearly with the number of parts processed for both fast

and discrete event simulation; the rate of increase for discrete event being higher than

that for fast simulation (Figure 27).

1400
1200
1000
800

CPU Time (sec) 600

400
200

0 +----------------------!
10000 20000

• Fast Simulation

30000
Number of Parts

40000 50000

" Discrete Event Simulation

Figure 27. Comparison of Execution Times as a Function of Number of Parts
(Tandem Line With Parallel Server Stations)

TABLE XVII

PERFORMANCE OF FAST AND DISCRETE EVENT SIMULATION FOR A
TANDEM LINE WITH PARALLEL SERVER STATIONS

(EFFECT OF NUMBER OF STATIONS)

80

Number of Execution Time (sec.) Execution Time (sec.) Savings(%)

Stations Fast Simulation Discrete Event Simulation

10 236 377 37.5

15 307 604 49.1

20 386 845 54.3

25 458 1212 62.2

30 · 540 1714 68.5

Number of parts = 30,000

Number of servers = 3

Utilization= 0.75

Mean time between arrivals = 4.0

• The execution time required for discrete event simulation increases drastically with

the increase in number of stations (Figure 28). This is also reflected in the increase in

percentage savings achieved with the increase in number of stations.

1800
1600
1400
1200
1000

CPU Time (sec) 800

600
400!::::::====---
200
0+------1-------+-----+------i

10 15

• Fast Simulation

20
Number of stations

25

• Discrete Event Simulation

30

Figure 28. Comparison of Execution Times as a Function of Number of Stations
(Tandem Line With Parallel Server Stations)

TABLEXVfil

PERFORMANCE OF FAST AND DISCRETE EVENT SIMULATION FOR A
TANDEM LINE WITH PARALLEL SERVER STATIONS

(EFFECT OF UTILIZATION)

Utilization Execution Time (sec.) Execution Time (sec.) Savings(%)

Fast Simulation Discrete Event Simulation

0.5 323 675 52.1
0.6 315 729·. 56.8
0.7 316 781 .. 59.6
0.8 317 827 61.7
0.9 314 874 64.0

Number of stations = 20

Number of servers = 3

Mean time between arrivals= 4.0 Number of parts = 30,000

81

• The execution speed for fast simulation is not affected by the utilization level;

whereas the execution time for discrete event simulation increases with the utilization

(Figure 29). Thus, higher savings can be achieved by employing fast simulation

when stations have higher utilization. Similar observations were made by Chen and

Chen [1990] for tandem lines with single server stations.

900

800 l~~~~~~~~~.....-~~~___.....--~~~~
700

600
CPU Time (sec)

500

400

300
200 +--~~~~+--~~~~t--~~~~1--~~~---1

0.5 0.6

• Fast Simulation

0.7
Utlllzatlon

0.8

• Discrete Event Simulation

0.9

Figure 29. Comparison of Execution Times as a Function of Station Utilization
(Tandem Line With Parallel Server Stations)

82

Thus, it can be concluded that the fast simulation models do have the potential to

provide significant execution speed-up for the cases considered above.

The following chapter deals primarily with three topics viz. (i) identification of

implications of fast simulation·models for hybrid modeling, (ii) evaluation of

appropriateness of synchronization solutions employed in PDES for hybrid modeling, and

(iii) guidelines for partitioning the.model into discrete event and fast simulation

segments. Chapters VI and VII, in which issues of conceptual frameworks, models, and

attractiveness of fast simulation from the viewpoint of execution efficiency were

discussed, have set the stage for discussion in Chapter VIII.

CHAPTER VIII

HYBRID MODELING

Hybrid simulation models are the models in which some parts of the system are

represented by discrete event simulation (DES) models whereas other parts are

represented by fast simulation (FS) models. Identifying guidelines for partitioning the

system model into the two different types of simulation models is important for

developing hybrid simulation models and is the topic of the first section of this chapter.

Model Partitioning Guidelines for Configuration of Hybrid Models

If one views the manufacturing system as a network in which nodes represent the

machines and arcs represent the flow of parts, then one can define the model partitioning

(into FS and DES model segments) in terms of the cuts across the arcs of the network.

Every cut will form an interface between the two different types of model segments.

Hence, the guidelines for model partitioning can be described by defining the "valid

cuts".

Sequential Model Execution

Since the model segments are executed sequentially, any given cut will be valid

only if the input buffer of the machine that corresponds to the downstream node of the

arc across which the cut is being taken (i.e., machine B in Figure 30) has infinite

capacity. When parts intend to leave a particular model segment, say MSl, after

83

finishing service from machine A, one cannot evaluate the possibility of blocking by

downstream machine B since one has not yet simulated the model segment that follows

MS 1 (i.e., model segment MS2) and hence, the restriction of infinite buffer capacity.

The same is true in the case of FS --> DES interface.

Hybrid Simulation Mode

MachineB
J-+~;~ID

MS2
··----------------~ ' '
~ :

' ' . -----. -... -.. ------·

Discrete-Event Simulation Model

Fast Simulation Model

Figure 30. Hybrid Model Configured for Sequential Execution Scheme

Simultaneous Model Execution

84

DES--> FS Interface. When a particular part Pl intends to leave the DES model

and enter the FS model, one needs to evaluate the possibility of blocking by the

downstream machine (which is a part of the FS model). In this execution scheme, the

processing of the parts that enter the FS model is fast simulated as and when the parts

enter the FS model. This means that one has fast simulated the processing of all parts

which entered the FS model previous to this part, Pl. In other words, one can obtain the

information from the FS model that is required to evaluate the blocking of parts

intending to leave the DES model. This implies that, under this type of execution

scheme, a cut that forms the DES --> FS interface is valid even if the input buffer of the

machine corresponding to the downstream node of the arc (arc across which the cut is

being tak:~n) has finite capacity.

85

FS --> DES Interface. When a part enters the FS model (say at time 50), its

processing is fast simulated and then it has to leave the FS model after getting processed

on machine A as shown in Figure 31. One determines the service end time of this part on

machine A (assume it to be 76) and then for determining the departure time, one has to

evaluate the possibility of blocking by downstream machine B, which is a part of the

DES model. The DES model might not have progressed up to the time corresponding to

the service end time of that part (in fact, µES:titne_ would still be 50).

Machine A

]Do > 000 oo o oo JD o-....._]l]o

1'/\1'.. FS-DES Interface
: ' · -----------: FS Model of a Tandem Line

with Single Server Stations

0 0 0 Machines in tandem

Figure 31. Hybrid Model Configured for Simultaneous Model Execution

Thus, one has no knowledge about the state of that downstream machine

(machine B) at time 76 when the part intends to enter the DES model and hence, one

cannot yet determine the time at which it would be able to join the input queue of

machine B and also cannot schedule a corresponding event on the DES event calendar.

86

(This event, hereafter referred to as an "exit event", represents the exit of the part from

the FS model). In such cases, one has to leave the part in the FS model with "unknown

fate". Accumulation of such parts (parts with unknown fate) in the FS model can

"clog/prevent" further progress of the FS model. But if the input buffer of the

downstream machine B has infinite capacity, the question of blocking does not arise.

The departure time of the part is equal to the service end time and hence, one does not

need any knowledge.of the state of the downstream machine and can schedule the "exit

event" on the event calendar with event time equal to 76. In conclusion, a cut that forms

the FS --> DES interface is always valid irrespective of the input buffer capacity of the

machine corresponding to the downstream node of the arc (arc across which the cut is

being taken).

However, dealing with the clogging phenomenon which is encountered when the

downstream node of the arc (arc across which cut is taken to form the FS-DES interface)

has a finite buffer imposes additional computational overhead. Hence, model

partitioning based on such a cut may not always lead to the expected execution

efficiency. The detailed description of the clogging process and the operational solution

for dealing with clogging in the context of hybrid modeling is deferred to Chapter IX.

Relevance of Concepts From PDES

In PDES (Parallel Discrete Event Simulation), each submode! implemented on an

individual processor has its own simulation clock and the synchronization between

simulation clocks of various processors is achieved by establishing an appropriate

communication protocol between various processors (submodels). Use of proper

communication between various processors can avoid the problems of violating the

causality principle in the case of PDES. Even though a FS model is like a "submode!

87

being executed on a different processor", all the elements within the same FS model can

potentially progress to different simulation times as shownin Figure 32.

00

In Discrete Event Simulation Model

Fast Simulation Model

QRT= [1.0,2.5]

time of last
departure = 2.8

[2.0,3.0]

4.1

[3.0,4.3]

4.9

Figure 32. A Snapshot of an Embedded Fast Simulation Model

00

As seen from Figure 32, machine n has progressed up to simulation time 2.8,

whereas machine n+2 has reached simulation time of 4.9 and thereby has passed ahead of

machine n in simulation time. Thus, there is no global simulation clock for the fast

simulation model and this aspect of FS model is very different from the submodel being

executed on a separate processor in PDES. Due to this lack of notion of a global

simulation clock in FS, keeping the FS totally in sync with DES does not appear to be a

viable alternative. Thus, though the problems in PDES and Hybrid Simulation are

similar to a certain extent, the solutions are not transferrable.

Given that the FS models can go ahead of the DES model in simulation time, one

should not only follow the guidelines for partitioning the model into DES and FS

segments, but also ensure that the FS models are isolated from the rest of the DES model.

In other words, FS models should be free from any interdependencies on the DES model.

88

For example, no control logic in the DES model should affect the flow of parts in the FS

model.

Implications of Fast Simulation Models for Hybrid Modeling

Fast simulation models were developed in Chapter VI for a certain set of

manufacturing network topologies. It was also realized in Chapter VII that these fast

simulation models do really have the potential for improving the execution efficiency of

simulation. In order to effectively embed previously developed fast simulation models

within the hybrid models, one needs to revisit them and identify their implications for

configuring and executing the hybrid models.

Tandem Line With Parallel Server Stations

Consider the hybrid model shown in Figure 33 that embeds the fast simulation

model of a tandem line which has one parallel server station (three servers). Assume that

two parts, pl and p2, enter the fast simulation model (after an end of service event is

executed at some station in the DES model) at DES-time 1 and 11 respectively. Further,

assume that one has abandoned the fast simulation of these two parts at the parallel server

station with service end times determined as 15 and 25. One cannot determine the time

at which they will depart from the parallel server station until one fast simulates the

processing of additional parts that enter the FS model (evaluation of blocking cannot be

done correctly since one does not yet know as to which part will depart first from the

parallel server station). Hence, there are two parts which have entered the fast simulation

model but for which there are no "exit events" (from FS model back into the DES model)

on the event calendar. Since the DES-time does not advance when one fast simulates the

part within the FS Model, the DES-clock is still at time 11. Assume that when the DES

clock advances to time 38, a third part, p3, enters the fast simulation model. One fast

simulates its processing along the tandem line until it reaches the parallel server station

where one abandons its fast simulation after determining its service completion time to

be, say, 53.

-> 000 ~~ 000

~ FS-DES Interlace
·--------····
'•••••••••• I

000

FSModel

Single server stations arranged in tandem

Figure 33. A Hybrid Model Which Embeds a Fast Simulation Model
of a Tandem Line With a Parallel Server Station

89

At this stage, one is in a position to decide as to which of these three parts will

depart first from the parallel server station. It turns out that part p 1 will depart first and

hence, its processing is fast simulated across the remaining tandem line and it is

determined that this part will leave the fast simulation model (of the tandem line) at time,

say, 19. To represent its entry back into the DES model, one needs to schedule an "exit

event" on the DES event calendar to be executed at time 19. But, by now, the DES-clock

has already advanced to time 38. This leads to the problem of "delayed events" (delayed

in terms of the time at which they are scheduled on the event calendar).

Had the FS model consisted of a tandem line with all single server stations, one

could have fast simulated the processing of a part which entered the FS model across the

complete tandem line instantaneously. The word instantaneously means that the "exit

90

event" can be scheduled at the same time as when the part entered the FS model. In other

words, the DES-clock does not progress during the entry and exit of the part into and

from the FS model. Hence, one can embed the FS model of the tandem line with single

server stations within the hybrid model without encountering the problem of "delayed

events".

One can solve this problem of "delayed events" by any one of the following:

(i) employing, if possible, the sequential execution scheme for the hybrid model;

(ii) excluding that segment of the tandem line which contains the parallel server

station from the FS model and modeling that segment as a DES model;

(iii) establishing some way of communication between the FS and DES models.

Two kinds of communication can be established between the two models:

(a) Broadcast the "simulation time advance" message to all such fast

simulation models so that they can take appropriate actions. For example, in the

above scenario, the fast simulation of part p 1 can be restarted (i.e., evaluation of

blocking can be done) when DES-time is to advance beyond time 15. This is

because if the DES-time is to advance beyond 15, then no part could enter the FS

model later and still depart from the parallel server station before part pl. Such

broadcasting of the "simulation time advance" messages to fast simulation models

at every time-advance could hamper the execution gain to be achieved by the use

of fast simulation.

(b) Insert the events corresponding to service end time of the parts abandoned

at the parallel server station into the event list of the DES model. In the above

scenario, at DES-time 15, there would be two events on the event list of the DES

model, one corresponding to part pl (event time 15) and the other corresponding

to part p2 (event time 25). The objective of inserting such events is to restart the

fast simulation of parts abandoned at the parallel server station at appropriate

DES-time. Before the DES-time is advanced beyond time 15, one such event

91

would be encountered which would result in restarting the fast simulation of part

pl from the parallel server station (i.e., evaluation of blocking can now be done).

This is valid because if the DES-time is to advance beyond 15, then no part could

enter the FS model later and still depart from the parallel· server station before

part pl departs; This form of communication would be effective only when one

is dealing with fast simulation models of tandem lines with very few parallel

server stations. If all the ,stations of a tandem line have parallel servers, then

.. employing fast simulation models for such tandem lines may not lead to any

.savings in execution time.

Assembly and Merge To.polo~ . •.· .

Fast simulation models for these topologies were developed based on the "need

driven approach" as described in Chapter VI. It was pointed out in Chapter V that

embedding fast simulation models of such topologies within the hybrid model would

necessitate the use of a sequential model execution scheme. If the use of sequential

model execution is not feasible, one has to exclude the assembly and merge nodes from

the fast simulation model and model those as parts of the discrete event simulation

model. Another alternative would be to stick to the arrival driven/fired approach and

deal with the clogging process that would arise as a result of employing this approach.

Embedding the other topologies viz.

1. Tandem lines with single server stations

finite or infifiite buffers

reliable or unreliable servers

2. Split topology

within the hybrid model configured for simultaneous model execution does not lead to

any such problems.

92

The next chapter deals with the implementation of "interface interactions" that

arise during the execution of hybrid simulation models. The interface interactions

represent the communication between two different types of simulation models. Chapter

IX also presents the experimental results for hybrid simulation which support the

hypothesis of diminishing marginal speed-up.

CHAPI'ERIX

HYBRID SIMULATION

Classes developed for implementing fast simulation models and for validating

those models using discrete event simulation were reused to implement the hybrid

simulation. No additional classes were required to implement the hybrid simulation

approach. Either additional behavior was added to the already existing classes or

changes were made to some of the methods to model the interactions between the two

types of the simulation models. The following sections describe the need for such

interaction and explain how it is achieved in the context of hybrid simulation.

DES-FS Interface Interaction

Consider Figure 34 in which an end of service event is executed to represent part

9 finishing its service at machine 2. Thus, part # 9 intends to depart from machine 2 at

time 1.4 in order to receive service at machine 3 which is a part of the fast simulation

model. The snapshot of the status of the discrete event model and the time history of the

fast simulation model are also shown in Figure 34. Machine 2 (in DES model)

communicates with machine 3 (in FS model) in order to determine if part# 9 would have

found space in the input queue of machine 3 at this simulation time. Though machine 3

does not have the notion of status, it will respond to this query by looking into its queue

removal time history. Not only can machine 3 respond to this query, but it will also be

able to figure out the "end of blocking" time for machine 2, if blocking had occurred

(i.e., if this part would not have found place in the input queue of machine 3).

93

In Discrete Event Simulation Model
V,

~
part#9
queue length= 1

time of last departure= 3.1
queue removal time history = .(2, 2.8] .. -·- --. --.. - -.. -·-- ... --.... --.......... --- --.... -... · 1

buffer size = 2
·' . . .
' . .
-··'

DES-PS Interface .
' - - - .. - -- - .. - - - - - - .. - - • '9'"

Fast Simulation Model :

simulation time = 1.4

Figure 34. DES-FS Interface Interaction

. . -~ -· .

.

94

The pseudocode which represents the logic used-by machine 3 for responding to

the above queries is presented in Figure 35.

haslnputSpaceForPart: aJ>art

return true if QRT[first] of this machine is less than or equal to arrival time of

aPart to this machine (service end time at upstream machine)

endOffllockingTime

return QRT[first] and discard this piece from the time history

Figure 35. DES-FS Interface Interaction Logic

This interaction is very different from that between two machines which are in a

DES model. In the latter case, the machine getting blocked informs the blocking

machine so that the blocking machine could unblock the blocked machine whenever its

input queue can accept additional parts. Thus, the end of blocking is a conditional event

95

in the sense that its time is not known in advance when the blocking begins. However, in

hybrid simulation, a blocked machine has a' priori knowledge of the time at which

blocking will end and hence, can schedule a deterministic "end of blocking event". The

end of blocking event is needed to reset the status of the blocked machine and to allow

the blocked part to enter the FS model.

In this example, machine 3 cannot accept part # 9 at this simulation time because

QRT[first] = 2 is greater than arrivalTime = 1.4 and also provides the information that

this part will be blocked-until time equal to QRT(first] ~ 2. Tlus end of blockirig time is

used for scheduling an "end .of blocking'..' event on _the event list of the.hybrid simulation.

This event will be executed by machine 2 at simulation time equal to 2. ·-After the -

execution of .this .event, machine 2 will be unblocked .and part # 9 will be allowed to enter

the fast siniulation model · :

FS-DES Interface Interaction

This type of interaction needs to be handled separately depending upon the buffer

capacity of the DES resource at the FS-DES interface. The following two sub-sections

deal with this interaction for the cases of infinite and finite buffers.

Infinite Buffer Case

As described earlier in Chapter vm, the concept of an "exit event" was used for

modeling the interaction between the FS and DES models. This is elaborated in more

detail using the scenario portrayed in Figure 36. Part # 5 has entered the FS model and

its processing has been fast simulated. It was de~ned that this part will finish its

service at machine 2 at time 3.4. This part intends to leave the FS model and eventually

enter the DES model to receive service at machine 3. Since machine 3 has an infinite

buffer, part# 5 will definitely be able to join its input queue at time 3.4.

' '
Fast Simulation Model

:······ ·-·---------..... -- --- . --- ·--

part# 5
J seivice end time=3.4

.... -- ... ---... ---. ----. ---------------

~

FS-DES Interface

infinite buffer

/
In Discrete Event Simulation Model

simulation time = 1.8

Figure_36_. FS-DES Interface Interaction

96

The DES model has progressed only up to time 1.8 and-the status of machine 3 (part# 5
-- .

joiitlng the ~put queue) should only be changed at simu_l~tion time of 3.4. This is. __

achieved by scheduling· an -exit event on the event list1o -be executed at simulation time

of 3.4. The event routine c<>rrespondJng to this event is to be executed bf machine 3 and

will simply result in accepting the part into its input queue.

Finite Buffer Case

It was mentioned in Chapter VIII that the FS-DES interface interaction in the

finite buffer case can lead to the clogging of fast simulation. This section is aimed at

describing the clogging process and the way to handle it in the hybrid simulation.

The Cloe;~ne; Phenomenon. In order to understand why a finite buffer at the FS

DES interface leads to clogging, consider the hybrid modeling scenario depicted in Figure

37. Machines 1 and 5 are in the discrete event simulation model; whereas machines 2, 3,

and 4 are part of the fast simulation model. In addition to machines 1 and 5, the discrete

event segment of the hybrid model could potentially embed many other parts of the

system.

In Discrete Event Simulation Model

Fast Simulation Model -. ------ ---------- .. -- --... -... ----. --............ -.. -------...... "'··------- -- '
. '

'
' . '

(All buffers have capacity of 2)

Fi~e 37. A Hybrid Simulation Scenario

A partial trace of a manual simulation for this scenario is shown in Table XIX.

The legend for understanding this trace of simulation is presented in Figure 38.

97

Event Details Event Type, Event Time, (machine #, part#)

Event in italics indicates the ."next-event"

Status of machine in DES model

History of machine in FS model

{ queue length, busy(b) or idle(i)}

{[queue removal times], last departure time}

Figure 38. Legend for Understanding the Trace of Hybrid Simulation

At the start of the simulation, the event list had only one arrival event (arrival of

part# 1 at machine 1) to be executed at simulation time 0.0. Execution of this event leads

to an EndOfService (EOS) event for part # 1 at machine 1 (arbitrary service time of 1.0

assumed). An arrival event representing the arrival of the next part at time 0.5 is also

scheduled on the event list The snapshot of the hybrid simulation at time O (after

execution of current events) is shown in the column corresponding to t=O.O. The time

history of all the machines embedded in the fast simulation model is still in the initialized

state. At time 0.5, another arrival event is executed as a result of which the second part

joins the queue of machine 1. The snapshot after executing this event is shown in column

t=0.5. The next event on the calendar is an end of service event to be executed at time

98

TABLE XIX

A TRACE OF HYBRID SIMULATION

t= 0.0 t= o.s t= 1.0 t= 1.5

Arr 0.5 (1,#2) Arr 1.5 (1,#3) Arr 1.5 (1,#3) Arr 3.0 (1,#4)

BOS 1.0 (1,#1) EOS 1.0 (1,#1) BOS 2.5 (1,#2) EOS 2.5 (l,#2)

Unclog 4.0 (4) Unclog 4.0 (4)

Machine 1 {0,b} Machine 1 {1,b} Machine 1 {0,b} Machine 1 {1,b}

Machine 5 {0,i} Machine 5 {0,i}

Machine 2 {[0.0,0.0),0.0} Machine 2 {[0.0,1.0),2.0}

Machine 3 {[0.0,0.0),0.0} Machine 3 {[0.0,2.0),3.0}

Machine 4 {[0.0,0.0],0.0} Machine 4 { [0.0,3.0),#1 ?}

#1 set=4, depTime=?

t=2.S t= 2.9 t=3~0 t=3.l

Arr 3.0 (1,#4) Arr 3.0 (1,#4) Arr3.l (1,#5) Arr 3.2 (1,#6)

EOS 2.9 (1,#3) Unclog 4.0 (4) BOS 3.15 (1,#4) EOS 3.15 (1,#4)

Unclog 4.0 (4) Unclog 4.0 (4) Unclog 4.0 (4)

Machine 1 {0,b} Machine 1 {0,i} Machine 1 {0,b} !Machine 1 {1,b}

Machine 5 {0,i} Machine 5 (0,i}

Machine 2 {[1.0,2.5),2.8} Machine 2 ([2.5,2.9),3.2}

Machine 3 {[2.0,3.0),4.1} Machine 3 ([3.0,4.1),4.5}

Machine 4 ([3.0,#2?],#1 ?} Machine4 {[#2?,#3?],#1 ?}

#1 set=4, depTime=? #1 set=4, depTime=?

#2 Qit=4.l, qrt=sst=? #2 qjt=4.1, qrt=sst=?

#3 Qit=4.5, qrt=sst=?

t = 3.15 t=3.2 t=3.3 t=3.S

Arr 3.2 (1,#6) Arr 3.3 (l,#7) Arr 4.2 (1,#8) Arr 4.2 (1,#8)

BOS 3.5 (1,#5) BOS 3.5 (1,#5) EOS 3.5 (1,#5) BOS 4.6 (1,#6)

Unclog 4.0 (4) Unclog 4.0 (4) Unclog 4.0 (4) Unclog4.0 (4)

Machine 1 (0,b} Machine 1 {1,b} Machine 1 (2,b} Machine 1 {1,b}

Machine 5 (0,i} Machine 5 (0,i}

Machine 2 {[2.9,3.2),4.0} !Machine 2 {[3.2,4.0),4.2}

Machine 3 {[4.1,4.5),#47} Machine 3 {[4.5,#5?],#47}

#4 set=5.l, depTime=? #4 set=5.l, depTime=?

#5 qjt=4.2, qrt=sst=?

Machine4 ([#2? ,#37),#1?} Machine4 ([#2? ,#37),#1?}

#1 set=4, depTime=? #1 set=4, depTime=?

#2 qjt=4.1, qrt=sst=? #2 Qit=4.1, qrt=sst=7

#3 qjt=4.5, qrt=sst=? #3 qjt=4.5, qrt=sst=?

99

Table XIX (Coritinued)

t = 4.0 (step i) (step ii) (step iii) (step iv)

Arr4.2 (1,#8) Arr 4.2 (1,#8) Arr 4.2 (1,#8) Arr4.2 (1,#8)

BOS 4.6 (1,#6) BOS 4.6 (1,#6) BOS 4.6 (1,#6) BOS 4.6 (1,#6)

BOS 6.1 (5,#1) BOS 6.1 (5,#1) BOS 6.1 (5,#1) BOS 6.1 (5,#1)

Unclog 4.4 (4) Unclog 4.4 (4) Unclog 4.4 (4)

Machine 1 {1,b} Machine 1 { l ,b} Machine 1 { 1,b} Machine 1 {1,b}

Machine 5 {0,i} Machine 5 {0,b} Machine 5 {0,b} Machine 5 {0,b}

Machine 2 {[3.2,4.0],4.2} Machine 2 {[3.2,4.0],4.2} Machine 2 {[3.2,4.0],4.2} Machine 2 {[3.2,4.0],4.2}

Machine 3 {[4.5,#5?],#4?} Machine 3 {[4.5,#5?],#4?} Machine 3 ([4.5 ,#5? J ,5.1) Machine 3 ([4.5,5.l],#5?}

#4 set=5.l, depTime='l #4 set=5.l, depTime='l #4 set=5.l, depTime=5.l #5 qjt=4.2, qrt=sst=5.l

set=5.7, depTime=?

#5 qjt=4.2, qrt=sst='l #5 qjt=4.2, qrt=sst='l #5 qjt=4.2, qrt=sst='l

Machine 4 ([#2? ,#3?],4.0} Machine 4 ([4.1,#3?],#2?} Machine4 {(#3?,#4?],#2?} Machine4 {[#3?,#4?],#2?}

#1 set=4, depTime=4 #2 qjt=4.l, qrt=sst=4.l #2 set=4.4, depTime='l #2 set=4.4, depTime=?

set=4.4, depTime=i

#2 Qit=4.l, art=sst='l #3 qjt=4.5, qrt=sst='l #3 qjt=4.5, qrt=sst='l #3 qjt=4.5, art=sst=?

#3 qjt=4.5, qrt=sst='l #4 qjt=5 .1, qrt=sst= i #4 qjt=5.l, art=sst=?

100

equal to 1.0. Part # 1 can depart from machine 1 (no blocking) and enters the fast

simulation model. Part # 2 starts its service at machine 1 leading to the scheduling of an

end of service event to be executed at time 2.5 (service time of 1.5 assumed). Flow of

part# 1 across machines 2, 3, and 4 is fast simulated as per the relationships [e] and [fj

defined in Chapter·VI and the time history of all the machines in the fast simulation model

is correspondingly updated (arbitrary values of service times were assumed). This new

time history can be seen from the snapshot of the hybrid simulation presented in the

column corresponding to t=l.0. However, at machine 4 we can determine only its service

end time (SET=4.0) and not the departure time. This happens because the necessary

status information (i.e., queue size of machine 5 at time equal to 4.0) is not available to

the fast simulation model at this simulation time. Thus, one needs to abandon this part at

machine 4 in the fast simulation model with "unknown fate". The unknown piece of time

history in the fast simulation model is shown by question marks.

Backpropa&ation of Clo&&in&. As seen from the above example, first

machine 4 gets clogged when part #1 cannot exit from the FS model back into the DES

model because the DES and hence machine 5 has not yet progressed up to simulation time

t=4.0. As the hybrid simulation progresses, an arrival event is executed at time 1.5 and

part # 3 joins the queue of machine 1. The status of machine 1 at this time is shown in

column t=l.5. An end of service event is executed at time 2.5 and part# 2 departs at the

same time from machine 1 (no blocking) and its flow across machines 2, 3, and 4 gets fast

simulated. The updated status of machine 1 and updated time history of machines 2, 3,

and 4 can be seen from the column correspon~g_to time 2.5. However, at machine 4,

the QRT or SST of part #2 cannot be determined since the time of the last departure from

machine 4 is not yet known (only the queue join time, QJT, is known to be 4.1). Thus,

the progress of fast simulation is again prevented at machine 4 and part # 2 is also left

with unknown fate at machine 4 in the fast simulation model. Similarly, part# 3 enters

101

the fast simulation model at time 2.9 and is left with unknown fate at machine 4 due to the

inability to determine its QRT or SST. After executing two arrival events at time 3.0 and

3.1, an end of service event is executed at time 3.15 when part# 4 enters the fast

simulation model and its flow across machines 2 and 3 gets fast simulated. However,

departure time of part #4 from machine 3 cannot be determined because doing so requires

knowledge of the QRT history of machine 4 (specifically QRT of part #2) which is not

yet known. Thus, the "clogging phenomenon" further backpropagates from machine 4 to

machine 3. As the hybrid simulation progresses, two arrivals occur at time 3.2 and 3.3

and then, at time 3.5, part # 5 finishes its service at machine 1 and enters the fast

simulation model. However, at machine 3, the QRTor SST ofpart#5 cannot be

determined since the time of last departure· from machine 3 is not yet known. Thus, the

progress of fast simulation is again prevented at machine 3 and part # 5 is left with

unknown fate at machine 3 in the fast simulation model. Such clogging can potentially

backpropagate until it completely clogs machine 2.

Dealing With Clogging. As seen from the above discussion, one can manage

to keep up the progress of hybrid simulation even though the clogging occurs within the

fast simulation model. What is needed is some mechanism which will ensure that the fast

simulation model is unclogged as soon as the required piece of information is available.

To achieve this, the concept of an "Unclog Event" is proposed. Such an unclog event is

put on the event list when DES cannot provide the required status information to the FS

model. Such an unclog event was put on the event list at time 1.0 when fast simulation of

part # 1 at machine 4 required the status information of machine 5, which is a part of the

DES model. This unclog event is to be executed by machine 4 and is shown in the

column corresponding to time t=l.0. Unclog event time represents the time at which

required status information would be available to the FS model. For example, the unclog

event in the above hybrid simulation scenario is scheduled to be executed at time 4.0

102

because that is the time when DES would provide the required status information to the

clogged fast simulation model. The unclogging process is initiated as a result of

executing such an unclog event. The following section throws more light on how this

unclogging process works.

The Unclogging Process. The unclog event is to be executed by the machine

which scheduled it Since the clogging started at machine 4 and then backpropagated, the

unclogging should start at machine 4 and then a backward pass should be initiated to give

all the upstream machines a chance to unclog themselves based on the newly available

time history of downstream machines. When the unclog event is executed at time 4.0,

machine 5 may accept part # 1 which has finished its .service at machine 4 or it may block

machine 4 depending upon its status at that time. In general, execution of the unclog

event will lead to one of the following two cases:

[1] Machine in the FS model at the FS-DES interface will be blocked and the exact

departure time of the blocked part still will not be known. Thus, execution of the

unclog event does not provide any additional knowledge about the "unknown piece

of time history" and hence, the unclogging process cannot yet be initiated.

[2] No blocking is encountered and the exact departure time of the part which was left

with unknown fate (with the machine at the FS-DES interface) can now be

determined. Availability of this new piece of time history implies that the

unclogging process can be triggered at this simulation time.

The code for the routine (method) to be implemented for executing the unclog event is

shown in Figure 39. In the hybrid simulation example being considered, part# 1 will be

accepted by machine 5 (queue is not full) and the time of last departure from machine 4 is

determined to be 4.0. The updated time history at this stage is shown in the column

corresponding to t=4.0 (step i). This situation belongs to case [2] described above and

hence, will result in initiation of the unclogging process. Machine 4 has two parts (parts #

103

2 and 3) with unknown QRT. QRT time of part# 2 is determined to be 4.1 and its seivice

end time is calculated (SET=4.4). However, its departure time cannot yet be decided and

hence, at this stage, yet another unclog event with event time 4.4 is scheduled on the event

list

unclogSelfAndBackPass
self islnCloggedStatus
ifl'rue:

itFalse:

[mac:= next station in the routing ofWFI® left with unknown departTime (unknownDepWFI).
mac isDESResource
ifl'rue:

itFalse:

[this machine is at the FS-DES interface
(mac haslnputSpaceFor: unknownDepWFI)
ifl'rue:

itFalse:

[case (ii) - can trigger unclogging
lastDepartTime := currentSimulationTime.
mac provideServiceTo: unknownDepWFI.
qOfUnknownQRT isEmpty
itFalse:

[some wfi was left with this machine with unknownQRT
aWFI := qOfUnknownQRT removeFirst
self provideServiceTo: aWFI.
give upstream machines a chance to unclog themselves
aWFI upStreamStn unclogSelfAndBackPass]]

[case (i) can not unclog yet
Inform mac that it is blocking this machine]]

[this machine is followed by another FSWorkStation
Determine the departure time of unknownDepWFI using reJation for blocking.
Collect blocking statistics and update lastDepTime
mac provideServiceTo: unknownDepWFI.
qOfUnknownQRT isEmpty
itFalse:

[aWFI := qOfUnknownQRT removeFirst
self provideServiceTo: aWFI.
aWFI upStreamStn unclogSelfAndBackPass]]

[this machine is not in clogged status
Do nothing]

@ WFI (Worlc Flow Item) is synonymous with Part

Figure 39. Smalltalk:-80 code for the Unclog Event Routine

The snapshot of the simulation at this stage is shown in the column titled "step ii".

The control of the unclogging process is then backpassed to machine 3 and thus, it is

104

given a chance to unclog itself. Machine 3 then interacts with machine 4, which is also in

the FS model, to determine the departure time of part# 4 using the new QRT history of

machine 4. The departure time is then calculated to be 5.1 using the standard fast

simulation relationships. The processing of part # 4 at machine 4 is then fast simulated

but is immediately abandoned because the QRT time cannot yet be determined. This

happens due to lack of knowledge of the time of last departure from machine 4 and thus,

part# 4 is then left with unknown QRT at machine 4. The status of the hybrid simulation

is depicted in the column titled "step iii". Machine 3 then starts fast simulating the

process~g of part# 5 and determines its QRT to be 5.1 and service end time to be 5.7.

The departure time of this part from machine 3 cannot be determined because of the

unknown piece of information in QRT history of machine 4. Thus, part# 5 is left with

unknown departure time at machine 3. Machine 2 is then given a chance to unclog itself

but it is not in the clogged state and hence, does nothing. The final snapshot of the

simulation at the end of the unclogging process is shown in the column titled "step iv".

The backpass of the unclogging process ends here and the hybrid simulation proceeds

further by executing the next event on the event list

In case (i) where the blocking occurs, the FSWorkStation at the interface would be

unblocked by the downstream DESWorkStation at some future time. At that simulation

time, the FSWorkStation at the interface would execute the same unclogSelfAndBackPass

routine to initiate the unclogging process.

In this hybrid simulation example, the clogging could have backpropagated right

up to machine 2 and the QRT time history of that machine would have had all unknown

elements. In such a case, it would disable machine 1 to schedule the "end of blocking

event". Machine 1 also, in this sense, could get clogged. During the unclogging process,

control of the unclogging process would also be backpassed to machine 1 giving it a

chance to schedule the "end of blocking event" using the newly available QRT history of

machine 2. The code for this is shown in Figure 40.

unclogSelfAndBackPass
If this machine was blocked without scheduling the endOjBlocking event, then
schedule it with the newly available information. No backpassing required.

isClogged
iITrue:

[mac := nextStation on the routing of blocked part
Determine end of blocking time by interacting with mac.
Schedule the "end of blocking event"
Set status to unclogged]

itFaise: ·
. [nothing to be unclogged
unclogging process terminates here]

Figure 40. Unclogging the DESWorkStation

105

Thus, "unclog event" provides a mechanism for taking care of the finite buffer

interface interaction between the FS and DES models. It allows one to take a cut along

the arc whose downstream DESResource has a finite buffer.

Hypothesis of Diminishing Marginal Speed-up

An initial hypothesis of diminishing marginal speed-up was formulated in

Chapter N and is reproduced below:

"Given a discrete event system, if one gradually increases the degree of hybridness

or concentration of fast simulation models in the hybrid model and then measures

the marginal speed-up (incremental savings) achieved, one may observe that this

marginal speed-up decreases as the degree of hybridness increases".

A series of experiments based on the experimental manufacturing system defined in

Figure 16 (Chapter V) was conducted for hybrid simulation. The results of this hybrid

simulation were validated by an equivalent pure discrete event simulation model The

experimental results are presented in Table XX which support the initial hypothesis. The

marginal speed-up or incremental saving is defined as the difference between execution

time for "nth degree of hybridness" and that for "n+ 1th degree of hybridness". The

values for simulation execution times are averages of ten observations.

TABLE XX

EXPERIMENTAL RESULTS SUPPORTING THE
HYPOTI:IESIS OF DIMINISHING MARGINAL SPEED-UP

106

Degree of Subsystems Replaced by Simulation Execution Time Incremental Savings

Hybri.dness Fast Simulation Model (Seconds) <Marlrlnal S1>eed-un)

0 none 1523.1 -
1 : ·1 1393.5 129.6

2 land2 1285.7 107.8

3 1 to 3 1201.9 83.8

4 1 to4 1115.6 86.3

5 1 to 5 1041.5 74.1

6 1 to 6 966.4 75.1

7 1 to 7 909.8 56.6

8 1 to 8 856.8 53

9 1 to 9 800.9 55.9
Nwnber of stations per subsystem = 5 Time between arrivals for each part type = Deterministic 5.5
Nwnber of arrivals for each part type= 20000 Service time at each station= Deterministic 5.2

-130
~ 120
en
- 110 a.
i' 100
°i 90
[80

en 70
13
.5 60
en
i3 50
~ 40-i--~-t--~--~--~---~--~---~--~--1

1 2 3 4 5 6 7 8 9

Degree of Hybridness

Figure 41. Marginal Speed-up vs. Degree of Hybridness

It can be seen from Figure 41 that, overall, there is a decreasing trend in marginal

speed-up with respect to an increase in the degree of hybridness.

107

Some Qualitative Remarks About Hybrid Simulation

The hybrid simulation approach introduces additional complexities during the

processes of model development, scenario modification, and model maintenance. The

following sections explain how these additional complexities arise during the abo_ve three

processes.

Model Development Process

While creating hybrid simulation models, one has to deal with the following

phases which are not encountered during the generation of pure discrete event models:

1. Deciding as to which segments of the model should be handled by fast simulation;

2. Modeling interactions between the two different types of models.

These additional activities make the hybrid model development process more difficult

and complex as compared to the development of pure discrete event models. Another

reason why the model development process appears more complex is the current status of

hybrid simulation research which is still in its budding stage. As greater insight is

obtained, one would be in a position to develop some knowledge base for making some

of the decisions involved in the model development process. Moreover, if the simulation

product vendors see the potential of this approach and provide "automatic model

generation facility" (similar to developing simulation code from the network model

specification in SLAM System), then most of the complexities would be eliminated,

thereby freeing the user from such responsibilities.

Scenario Modification Process

The scenario modification process also appears to be a complex one, primarily

because of the following factors:

1. Identifying the implications of modifying some part of the model for

model segmentation;

2. Reconfiguration of the model due to the changes in the scenario.

108

The following example will help in understanding the above mentioned factors.

Consider the hybrid model shown in Figure 42, in which machine 4 bas an operator who

exclusively attends to that machine.

In Discrete Event Simulation Model

~ ~
00

000

Fast Simulation Model

Figure 42. A Scenario Modification Example for a Hybrid Simulation Model

As a part of the scenario modification, it is proposed to depart from the dedicated

operator policy and the same operator is now assigned the responsibility of catering to

the needs of machines 4 and 8. The implication of this scenario modification is that the

original model segmentation is no longer valid and that machine 4 can no longer be part

of the fast simulation model but needs to be included in the discrete event simulation

model. The changed model segmentation scheme implies that the hybrid model needs to

be reconfigured to take account of the new segmentation scheme. Once again, these

complexities would be alleviated by the availability of a rule-base and automatic model

generators.

109

Model Maintenance Process

Finally, the task of model maintenance needs to be evaluated in the context of the

hybrid approach. After the model has been used, it needs to be maintained to keep it in

step with the evolution of the real system. The same factors which were attributed the

responsibility of making the scenario modification more complex, once again come into

the picture when one is dealing with the model maintenance task. Maintaining the model

to reflect the changes in the real system is very similar to the scenario modification

process - the only difference being that model modification in the context of the scenario

modification process is initiated as a result of conceiving a "what-if' change; whereas

model modification in the context of the model maintenance process is initiated as a

result of a change in the real system.

Thus, when one adopts the hybrid approach to simulation for improving

execution efficiency, one needs to deal with these added complexities. When modeling

and simulation environments evolve and include facilities like those mentioned earlier,

these processes of model development, scenario modification, and model maintenance

would become more manageable.

CHAPTERX

RESEARCH SUMMARY, CONTRIBUTIONS, AND FUTURE RESEARCH

Chapters VI through IX have presented the detailed outcomes of this research.

The first section of this chapter is intended to summarize the research results and to link

the research outcomes with the research objectives defined in Chapter IV. The

contributions of this research to the field of Industrial Engineering, specifically to the

"Modeling and Simulation - Body of Knowledge", are also identified in this chapter.

This chapter ends with the section which defines a possible agenda for future research.

Research Summary

Six research objectives were defined in Chapter IV which served as the driving

force for this research. The following sub-sections present the highlights of the research

outcomes and identify their contributions to the various research objectives.

Modelin& Abstractions, Conceptual Frameworks, and Relationships

The first objective of this· research was to identify the possible conceptual

frameworks that can be employed for developing fast simulation models. A subset of

manufacturing network topologies was identified in Chapter V and was investigated for

generating fast simulation models. During this investigation, which was the subject of

Chapter VI, it was realized that "customer-by-customer" and "node-by-node" conceptual

frameworks have limited applicability; the "node-by-node" framework being more

110

111

restrictive of the two. The "customer-by-customer" framework was useful for split

topology and tandem lines with single, unreliable servers. A new conceptual framework

viz. "customer-by-customer-with-switching" was identified during the investigation of

the remaining topologies. The "customer-by-customer" framework can be seen as a

special case of the above framework where no switching (shifting the focus of fast

simulation) is required. The "customer-by-customer-with-switching" framework which

is based on the simulate to the extent possible and then abandon concept emerged as the

one which has the potential for serving as the "world view" for fast simulation. This also

led to the satisfaction of the second research objective which was to identify candidates

for serving as the world view for fast simulation. Even though identifying new modeling

abstractions and relationships for fast simulation was not explicitly stated as a research

objective, the following results were also accomplished (these can be thought of as the

by-products of the investigation process described in Chapter VI):

• A new modeling abstraction of Queue Removal Time was identified and it was seen

that it is a more generic abstraction for fast simulation than the abstraction of

departure time.

• The concept of Time History provided more flexibility to the fast simulation

technique by eliminating the dependence on part index.

• New relationships were defined based on the "queue removal time history" for

developing fast simulation models of various topologies.

The above contributions, along with the new conceptual frameworks, played crucial roles

in extending the applicability of the fast simulation technique to other topologies.

Fast Simulation - Validation and Execution Efficiency

With the power of newly developed abstractions, conceptual frameworks, and

relationships, it was possible to develop fast simulation models for all the topologies

112

which were included in the scope of this research. Significant speed-up was achieved in

all cases by the use of fast simulation; detailed results were presented in Chapter VII.

Development of fast simulation models, their validation using pure discrete event

simulation models, and testing the execution efficiency led to the accomplishment of the

third research objective which was to identify any topologies which cannot or should not

be modeled by the fast simulation approach.

Implications of Fast Simulation Models for Hybrid Modeling

The fast simulation models were revisited in Chapter VIII with the aim of

identifying the implications of embedding them within the hybrid models. These

implications, if any, were defined in terms of the execution scheme that needs to be

employed for enabling the embedding of fast simulation models of various topologies

within the hybrid models. This phase of the research satisfied the fourth research

objective.

Hybrid Modeling- Partitioning Guidelines and Proof-of-Conce.pt

In Chapter VIII, guidelines were proposed for partitioning the model into FS and

DES segments. The communication that takes place between the two types of model

segments (i.e., interactions at the interface of FS and DES models) was elaborated in

Chapter IX. A prototype hybrid model was configured for the manufacturing system

described in Figure 16 and the hybrid simulation results were validated by running an

equivalent pure DES model. This served the purpose of demonstrating the feasibility of

the hybrid simulation approach on a proof-of-concept basis. Thus, the fifth research

objective was also satisfied.

113

Hypothesis of Diminishin~ .Marginal Speed-up

The initial hypothesis was stated in Chapter N, to be validated as a part of the

sixth research objective. A series of experiments was conducted in the context of an

experimental manufacturing system defined in Figure 16 and encouraging results were

obtained which supported the initial hypothesis of diminishing marginal speed-up. The

actual results of this experimentation were presented in Chapter IX. This contributed

towards the satisfaction of the sixth research objective.

Research Contributions

Simulation is being widely employed for the design and analysis of

manufacturing systems in an off-line mode. However, application of simulation for an

on-line control of manufacturing systems is still prohibitive due to the high execution

time requirements. Improving execution efficiency of simulation is the main concern for

enabling use of simulation in an on-line mode and is the primary contribution of this

research. It should be noted that several other research efforts in the areas of integrated

modeling frameworks, knowledge representation for manufacturing domain, and

acquisition/elicitation of control knowledge are also contributing towards realizing the

goal of simulation-based on-line control of manufacturing systems. The specific

contributions of this research to the "Modeling and Simulation - Body of Knowledge" are

as follows:

• New modeling abstractions, relationships, and conceptual frameworks were

developed for generating fast simulation models of topologies other than tandem lines

with single server stations. This contribution single handedly gives significant power

to the fast simulation technique.

• Attractiveness of the fast simulation approach from the viewpoint of savings in

execution time was established for certain types of manufacturing topologies.

• Feasibility and viability of the hybrid simulation approach was demonstrated on a

proof-of-concept basis by generating and validating hybrid simulation models of a

prototype manufacturing system.

• Insights were provided for configuring and executing hybrid simulation models of

manufacturing systems.

• This research has laid the foundation for further research in the area of fast

simulation and its use within hybrid simulation.

114

Even though this research was conducted in the context of manufacturing systems,

several contributions are applicable or at least adaptable for the simulation of other types

of systems such as information systems.

Future Research

Several unanswered questions were identified in Chapter m and only a partial set

was chosen for inclusion in the scope of this research. These remaining unanswered

questions, along with the offshoots of this research process, can set one possible agenda

for future research. The following are some of the significant issues that deserve

inclusion in this future research agenda:

Concq,tual Frameworks

The conceptual framework of "customer-by-customer-with-switching", in which

customers are fast simulated to the extent possible and then abandoned, was identified as

the one which was meaningful for the whole set of manufacturing topologies investigated

in this research. In order to realize the potential of this framework, one should

investigate more features like batch nodes, queue disciplines other than First Come First

115

Served and examine the applicability of this framework. If this framework alone is

inadequate to handle such features, then new, more general conceptual frameworks need

to be developed for fast simulation.

Fast Simulation

The fast simulation approach is limited by the type of statistics it can generate

without significantly losing its execution efficiency. Further research should be directed

at identifying the potential of fast simulation in terms of its ability to provide other types

of statistics such as queue length distributions or any state information such as queue

length at a particular simulation time without sacrificing the speed-up in execution time.

Aru,roximate Hybrid Simulation Models

An arbitrary, self-imposed constraint of no additional assumptions should be

made for generating hybrid simulation models was adhered to during the entire scope of

this research. It is, by all means, conceivable to slacken this constraint for the purpose of

hybrid modeling with the intentions of achieving greater savings in execution time [Hunt

1994]. Investigation along this line of approach can potentially lead to several other

research questions. Developing trade-offs between loss of accuracy and additional

savings in execution time can be one possible outcome of such research efforts.

Predictin2 Speed-up

In order to make trade-off decisions brought out above, one should be in a

position to predict the speed-up that can be achieved for a particular hybrid simulation

model. Further research efforts should also be directed towards predicting the speed-up

based on the structure of the hybrid simulation model.

116

Intemtion of Various Ap_proaches

Synergistic integration of various approaches such as Parallel Discrete Event

Simulation, Fast Simulation, and Metamodeling can potentially provide the required

execution efficiency to simulation. Directing efforts towards achieving such integration

of various approaches can further give rise to several other research questions.

BIBLIOGRAPHY

Adam, N.R. and A. Dogramaci. 1979. Current Issues in Computer Simulation. New
York, NY: Academic Press, Inc.

Adiga, S. and M. Gadre. 1990. "Object-Oriented Software Modeling of a Flexible
Manufacturing System." Journal of Intelligent and Robotics Systems 3: 147-165.

Askin, R.G. and C.R. Standridge. 1993. Modeling and Analysis of Manufacturing
Systems. New York, NY: John Wiley & Sons, Inc.

Beaumariage, T.G. 1990. "Investigation of an Object-Oriented Modeling Environment
for the Generation of Simulation Models." Ph.D. dissertation, Oklahoma State
University.

Beaumariage, T.G. and C.A. Roberts. 1991. "Object-Oriented Modeling: Attempts at
Improving Model Execution Speed." In Proceedings of the SCS Multi.conference
on Object-Oriented Simulation 1991, edited by R.K. Ege, 93-99.

Bhuskute, H. 1993. "Application of Parallel Processing for Object-Oriented Discrete
Event Simulation of Manufacturing Systems." Ph.D. dissertation, Oklahoma State
University.

Bhuskute, H., M. Duse, J. Gharpure, D. Pratt, M. Karnath, and J. Mize. 1992. "Design
and Implementation of a Highly Reusable Modeling and Simulation Framework
for Discrete Part Manufacturing Systems." In Proceedinis of the 1992 Winter
Simulation Conference, edited by J.J. Swain, D. Goldman, R.C. Crain, and J.R.
Wilson, 680-688.

Chen, L. and C. Chen. 1990. "A Fast Simulation Approach for Tandem Queueing
Systems." In Proceedin&s of the 1990 Winter Simulation Conference, edited by
0. Balci, R. Sadowski, and R. Nance, 539-546.

Chen, L. and C. Chen. 1993. "A Fast Simulator for Tandem Queueing Systems."
Computers and Industrial En~neerin& 24, no. 2: 267-280.

Dunn, P.L.C. 1985. "Risk Avoidance by Independent Simulation." In Proceedinis of the
First International Conference on Simulation In Manufacturini, edited by W.B.
Heginbotham, 23-36.

117

118

Erickson, C., T. Miles, and A. Vandenberge. 1987. "Simulation, Animation and Shop
Floor Control." In Proceedings of the 1987 Winter Simulation Conference, edited
by A. Thesen, H. Grant, and W. Kelton, 649-653.

Harmonosky, C.M. 1990. "Implementation Issues: Using Simulation for Real-Time
Scheduling, Control, and Monitoring." In Proceedings of the 1990 Winter
Simulation Conference, edited by 0. Balci, R. Sadowski, and R. Nance, 595-598.

Harmonosky, C.M. and S.F. Robohn. 1991. "Real-Time Scheduling in Computer
Integrated Manufacturing: A Review of Recent Research." International Journal
of Computer Integrated Manufacturing 4, no. 6: 331-340.

Harmonosky, C.M. 1992. "Investigating Simulation for Real-Time Control in Computer
Integrated Manufacturing." In Proceedings of the 1992 NSF Design and
Manufacturing Systems Conference: 857-860.

Heginbotham, W.B. 1985. Proceedings of the First International Conference on
Simulation in Manufacturing. North Holland.

Hunt, C. 1994. "Fast Simulation of Open Queueing Systems." Masters thesis, University
of Oklahoma.

Karnath, M. 1994. "Recent Developments in Modeling and Performance Analysis Tools
for Manufacturing Systems." To appear in Computer Control of Flexible
Manufacturing Systems, edited by S. Joshi and J. Smith, Chapman Hall, London.

Karnath, M., H. Bhuskute, and M. Duse. 1992. "Fast Simulation Techniques for
Queueing Networks." Center for Computer Integrated Manufacturing, Working
Paper Series: CIM-WPS-92-MKl. Oklahoma State University.

Kreutzer, W. 1986. System Simulation: Programming Styles and Languages, Addison
Wesley Publishing Company, 41.

Mitrani, I. 1982. Simulation Techniques for Discrete Event Systems, Cambridge
University Press, 20.

Mize, J.H., H. Bhuskute, D. Pratt, and M. Karnath. 1992. "Modeling of Integrated
Manufacturing Systems Using an Object-Oriented Approach." DE Transactions
24, no. 3: 14-26.

Nance, R.E. 1971. "On Time Flow Mechanisms for Discrete Systems Simulation."
Management Science 18, no. 1: 59-73.

Nevison, C. 1990. "Parallel Simulation of Manufacturing Systems: Structural Factors." In
Proceedings of the scs Multiconference on Distributed Simulation 1990, edited
by D. Nicol, 17-22.

119

Nicol, D. 1988. "Parallel Discrete Event Simulation of FCFS Stochastic Queueing
Networks." In Proceedings of the 1988 Winter Simulation Conference, edited by
M. Abrams, P. Haigh, and J. Comfort, 124-137.

Pratt, D.B. 1992. "Development of a Methodology for Hybrid Metamodeling of
Hierarchical Manufacturing Systems Within a Simulation Framework." Ph.D.
dissertation, Oklahoma State University.

Pritsker, A.A.B. 1986. Introduction to Simulation and SLAM II. 3rd ed. New York, NY:
Halsted Press.

Ranky, P.O. 1988. "A Real-Time, Rule-Based FMS Operation and Control Strategy in
CIM Environment.;Part I." International Journal of Computer Integrated
Manufacturing 1, no. 1: 55-72.

Reeves, C.M. 1984. "Complexity Analyses of Event Set Algorithms." The Computer
Journal 27, no. 1: 72-79.

Segal, M. and W. Whitt. 1989. "A Queueing Network Analyzer for Manufacturing." In
Proceedings of the Eighth International Teletraffic Con~ss: 1146-1152. North
Holland.

Shantikumar, J.G. and R.G. Sargent 1983. "A Unifying View of Hybrid
Simulation/Analytic Models and Modeling." Operations Research 31, no. 6:
1030-1052.

Suri, R. and S. deTreville. 1992. "Rapid Modeling: The Use of Queueing Models to
Support Time-Based Competitive Manufacturing." In Proceedings of the
German/U.S. Conference on Recent Developments in Operations Research, edited
by G. Fandel.

/;
VITA

Manoj N. Duse

Candidate for the Degree of

Doctor of Philosophy

Thesis: INVESTIGATION OF FAST AND HYBRID (FAST/DISCRETE-EVENT)
MODELING APPROACHES FOR SIMULATION OF MANUFACTURING
SYSTEMS

Major Field: Industrial Engineering and Management

Biographical:

Personal Data: Born in Poona, India, on November 24, 1967, the son of Narayan P.
and Nalini N. Duse.

Education: Graduated from S. P. College, Poona, India in May 1984; received
Bachelor of Engineering degree in Mechanical Engineering from University
of Poona, Poona, India in May .1988; received Master of Engineering degree
in Industrial Engineering from National Institute for Industrial Engineering
(NITIE), Bombay, India in December 1989. Completed the requirements for
the Doctor of Philosophy degree at Oklahoma State University in July 1994.

Experience: Distribution Executive, Asian Paints (India) Ltd., Bombay, India, from
February 1990 to December 1990; Research Assistant, Center for Computer
Integrated Manufacturing, School of Industrial Engineering and Management,
Oklahoma State University, from March 1991 to June 1994.

Professional Memberships: Institute of Industrial Engineers, Operations Research
Society of America, Tau Beta Pi, Alpha Pi Mu.

