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Chapter 1 

Partially Ordered Algebraic Systems 

Introduction and History 

Lattices, and in particular lattice ordered groups (£-groups), have been studied for almost 

100 years. Dedekind [7 and 8] is credited for having started the work on lattices by the 

publication of his papers around the turn of the century. However, it was G. Birkhoff [3] 

who really was the driving force behind the development and promotion oflattice theory. 

And as he points out in [ 4 ], " ... lattices give important results concerning classical 

analysis, ... measure theory, general topology, and other aspects of modern functional 

analysis." He closes his talk by stating that " ... lattices can do things for you, no matter 

what kind of mathematician you are!" Throughout the 1930's, 40's, and 50's major 

contributions were made in the area of general lattice theory. During the 40's and 50's 

£-groups were developed as applications to functional analysis, these were purely group 

theoretic questions about the orderability of groups. During the 60's and 70's attention 

was on partially ordered groups and equational classes of £-groups, also known as 

varieties. The 80's seemed to be a time of development of structure properties within 

varieties of £-groups, including an analysis of free products and free £-groups. During the 

last 20 years, emphasis has been in the area of universal algebra and structure and 

existence theorems for free objects in different varieties. 

In this chapter we review some of the basic definitions and the notation necessary for our 

study of free extensions of partial £-groups. A more complete discussion can be found in 

Fuchs [9 and 10] and Birkhoff [3]. 
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Background and Notation 

If a binary relation :S is defined on a set G such that for all a, b, c E G the following 

hold: 

1). Reflexive: a :S a 

2). Antisymmetric: a :S b, b :S a :::} a = b 

3). Transitive: a :S b, b :S c :::} a :S c 

then ( G, :S ) is called a partially ordered set ( abbreviated: po set) and :S is called a 

partial order. Throughout this document it will be clear what symbol designates the 

partial order and we will denote by G the po set ( G, :S ) . 

If G and G' are po sets, a mapping c.p : G --+ G' is called isotone if it is single valued and 

preserves order, that is a :S b =} a' :S b', where < and < are the partial orders of G 
G G' G G' 

and G', respectively. 

G is trivially ordered if, for all a, b E G, a :S b =} a = b. If a i. band b i. a, that is a 

and bare not comparable, we denote this by allb. The order :S is called total if, in 

addition to G being a poset, for all a, b E G, either a :S b orb '.S a. If Bis a subset of G, 

we say that B has an upper bound (lower bound) if and only if there exists an element 

x E G such that b :S x ( x :S b) for every element b E B. We say x is the least upper 

bound (greatest lower bound) for B if x is an upper bound (lower bound) and if y is any 

other upper bound (lower bound), then x '.S y (y :S x). We denote the least upper bound 

(greatest lower bound) of { a, b} by sup{ a, b} (inf{ a, b} ). A poset G is called a lattice if 

for all a, b E G, both sup{ a, b} and inf{ a, b} exist in G. If these elements exist, they are 

unique and are denoted by a V b and a A b, and are called the join and meet, respectively. 

Alternatively, a lattice may be defined as an algebraic system in which two operations, 

V and A, are defined such that for all a, b, c E G the following laws hold: 
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1 ). Idempotent 

2). Commutative 

3). Associative 

4). Absorption 

a V a = a and a I\ a = a 

a V b = b V a and a I\ b = b I\ a 

( a V b) V C = a V (b V C) and ( a I\ b) I\ C = a I\ (b I\ C) 

( a V b) I\ a · - a and ( a I\ b) V a = a 

If ( G, I\ , V ) is a lattice and we define a :S b if and only if a I\ b = a, or a V b = b, then 

it can be easily shown that the above four properties show ( G, :S ) is a po set, such that 

inf{ a, b} exists for all a, b E G. Since this is such an important concept and an idea that is 

used constantly, we prove 

Theorem 1.1: Under the conditions discussed in the previous paragraph, 

a I\ b = c if and only if inf{ a, b} = c. 

Proof ( --+ ) Suppose a I\ b = c, then a = a V ( a I\ b) = a V c, so a 2: c, 

similarly, b 2: c, hence c is a lower bound. Now suppose d is another lower bound of a 

and b, then c I\ d = (a I\ b) I\ d = a I\ (b I\ d) = a I\ d = d, therefore inf{a, b} = c. 

( ..- ) Suppose inf{a, b} = c, then c :Sa, b, so a I\ c = c and b I\ c = c. 

But then (a I\ b) I\ c = a I\ (b I\ c) = a I\ c = c, so that c :Sa I\ b. On the other hand 

( a I\ b) V b = b, so a I\ b :S b, similarly a I\ b :S a. Hence a I\ b is a lower bound for a, b, 

hence a I\ b :S c. Therefore a I\ b = c. D 

Throughout this paper we will use + to denote the group operation of any group. A 

partially ordered group (po group) is a set G such that the following hold: 

1). (G, +) is a group, 

2). ( G, :S ) is a poset, and 

3). a :S b ~ c +a+ d :S c + b + d, for all c, d E G. 
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Property 3, which ties the group operation to the partial order, is called by various names, 

homogeneity law, isotone property of ~, and an amusing one, the monotony law. This 

last one probably lost something in the translation from German to English! A set G is 

called a lattice ordered group (.e-group) if G is a po group, such that for all a, b E G, 

a A b and a V b both exist in G. The class of £-groups is equationally definable. 

We now collect a brief list of useful properties, definitions, and· examples of po groups and 

£-groups. 

In a po group, G, we say an element a is positive if a ~ 0 and negative if a ~ 0. The 

collection of positive elements, denoted by P = { a E G : a ~ 0}, is called the positive 

cone ofG, sometimes denoted by a+, while the negative cone is denoted by -Panda

(or even -G+). In this manner the partial order ~ is uniquely determined by the 

corresponding positive cone, that is 

(*) a~ bis equivalent to (b - a) E P, and to (-a+ b) E P. 

As a result, we will adopt the common practice and slightly abuse the language and say 

"the partial order P" when we mean "the partial order with the positive cone P." In 

addition there are some conditions on a subset P of G that determine a partial order on G. 

These are given below. 

Theorem 1.2: A subset P of a group G is the positive cone of some partial order 

of G, if and only if the following three conditions are satisfied: 

1). P+P ~ P 

2). g + P - g ~ P, for all g E G. 

3). P n -P = {O}. 
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In other words, P is a normal subsemigroup of G containing no other element along with 

its inverse except 0. Furthermore, G is totally ordered if, in addition, G satisfies 

4). PU-P=G. 

Sketch of Proof By using ( *) above to define :S from P, if P is given. Then we · 

notice that reflexivity of :S is equivalent to O E P, antisymmehy is equivalent to 3), 

transitivity is equivalent to I), and the isotonicity of :S is equivalent to 2). The total 

order (i.e. for all a E G, a ~ 0 or a :S 0), is equivalent to 4). D 

A partial order Pis said to be semi-closed if whenever na E P, for n E z+, we have 

aEP. 

A po group G, is an £-group if and only if for all a E G, a V O exists in G ( or dually a I\ 0 

exists in G). 

Theorem 1.3: The following hold for any £-group G: 

I). c - (a I\ b) + d = (c - a+ d) V (c - b + d), and dually. 

2). a - (a I\ b) + b = a Vb, (special case of I). 

3). a+ b = (a I\ b) + (a Vb), if G is abelian. 

4). a V (b I\ c) = ( a V b) /\ ( a V c ), and dually--the distributive property. 

5). na ~ 0, Jorn~ 0::::} a ~ 0, i.e. G is semi-closed. 

6). na = 0, for n =I= 0 ::::} a = 0, i.e. G is torsion-free. 

7). a I\ b = 0 and c ~ 0 ::::} a I\ (b + c) = a I\ c. 

8). a I\ b = 0 and a I\ c = 0 ::::} a I\ (b + c) = 0, (special case of 7). 

Let cp: G--+ H, be a map between two £-groups. Then we say cp is an 

1 ). f-homom01phism, if cp is a group homomorphism and 

cp(a I\ b) = cp(a) /\ cp(b) and cp(a Vb)= cp(a) V cp(b). 
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2). £-monomorphism, if <p is an injective £-homomorphism. 

3). £-epimorphism, if <pis an onto £-homomorphism, such that <p(G+) = H+. 

4). f-isomorphism, if <pis a bijection such that <p and <p-1 are £-epimorphisms. 

In an analogous way we define an order preserving homomorphism: a-homomorphism, if 

a~ b ~ <p(a) ~ <p(b), an a-monomorphism, a-epimorphism, and a-isomorphism are 

defined similarly. 

A partial order P on a po group G, induces a partial order on a subgroup H of G under 

which H is again a po group, in this case we have H+ = H n a+. If A ~ G a poset, is 

such that x E A, whenever a, b E A, x E G and a ~ x ~ b, we say A is a convex subset 

of G. A convex subgroup of a po group G, is a subgroup of G which is a convex subset 

of G. A subgroup B of a po group G, is a convex subgroup of G if and only if B+ is a 

convex subset of a+. The intersection of convex subgroups is again convex, so we 

denote by { X}, to mean the convex subgroup generated by X. We call a normal convex 

subgroup of a po group G, an a-ideal, and a normal convex subgroup of an £-group G, 

which is also a sublattice, we call an £-ideal. 

If G is an f-group, and N an £-ideal of G, we can make G / N into an £-group by defining 

g + N 2:: h + N if and only if there exists k EN such that k + g 2:: h. An equivalent 

definition is ( G / N) + is the image of a+ under the natural homomorphism of G onto 

G / N. This partial order may again be called induced. The next theorem should look 

familiar. 

Theorem 1.4: Let <p : G --+ H, be an £-homomorphism onto G and H. 

1). A normal subgroup N of G is the kernel of an £-homomorphism if and 

only if it is convex. 
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2). The kernel, ker <p, is an £-ideal. 

3). If N is an £-ideal ofG, then the set of right cosets G/ N can be provided 

with an order which makes it an £-group, so the natural map G -+ G / N is 

an £-homomorphism. 

4). G /ker <p is £-isomorphic to H. 

Examples 

We close this chapter by giving several examples of po groups and £-groups, some of 

which we will refer to throughout this paper. 

Example 1.5: Let G be Z, Q, or JR where :::; has the usual meaning. These are 

all po groups, £-groups, and in fact totally ordered groups. Note that there are only two 

orders on Z and Q, both of which are total, however, this is not true of R 

Definition 1.6: Let { Gi : i E I} be a collection of £-groups. We define the 

cardinal product, niEJGi, to be the usual Cartesian product of the Gi, with all operations 

being performed componentwise. The order inherited from the lattice operations is 

determined componentwise by the orders of the cardinal factors, i.e. the Gi. When only 

two £-groups, G1 and G2, are involved in a cardinal product we refer to the cardinal sum 

and write G 1 EE G2. The symbol EE is intended to distinguish this cardinal sum from the 

frequently occurring group direct sum G1 ffi G2 where no order is involved. In particular, 

consider the following example. 

Example 1.7: Let G be Z x Z, Q x Q, or JR x JR and define (x, y) E c+ if x 2:'.: 0 

and y ~ 0. These are all po groups and £-groups, but they are not totally ordered. Based 

on the previous definition, these are called the cardinal sum, denoted by: Z EE Z, 
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(Q [±] (Q, and R [±] R, respectively. The positive cone in all cases is the first quadrant, 

including the axes, as illustrated by the following diagram 

...................... ... .......... ········· ............. ········· ............. ········· ... ·········· ........ . ... .......... ········· ...................... ... .......... ......... . 
(Zl±IZ)- ::: :::::::::: ::::::::: ...................... ... .......... ........ . ... .......... ........ . ... .......... ........ . ... ·········· ········· ...................... ... •···•···•· ·•···•··· ...................... ... .......... ........ . 

• • (Zl±IZt 

Figure 1 -- Z [±] Z 

Example 1.8: Let G be Z x Z, (Q x (Q, or JR x R, only define ( x, y) E a+ if 

x > 0, or x = 0 and y ~ 0. This is the standard lexicographic order, denoted by Z o Z, 

(Q o (Q, or Ro R respectively. All of which are totally ordered. A variation of this total 

order is to take any line y = mx with (x, y) Ea+ ify :::'.: mx when x ~ 0, or y < mx 

when x < 0. Thus there are uncountably many total orders on (Q x (Q, for example. The 

shaded areas in the diagrams below represent the positive cones for the lexicographic 

order on (Q o (Q and (Q x (Q. Each of the respective orders are total orders. 

i::::::.::::::.:::::.·::::::.:::::.·::::::.:::::.·:·:::::t:~:~:.•:::: .• ::::: .• :::::.·:::::.·::::: .• :::::.•::::::t:.~:~: .• :::: .• ::::: .• ::::::.::::: .• ::::::.:::::.·::::::t:.~:~:.·::::.···:::::i::::::.:::::.•:::::.·:::::.·::::::t:.~:~: .• ::::.:::::.·::::::.:::::.·::::::.::::: .• ::::::t:.~:~: .• :::: .• :::::.·::::::···:::::l:::::.·:::::.·:::::.i:;;::I .At~! !111!\,llllltli ,,di!tl!llill 1 111111 
(Q a Qt a+ 

Figure 2 -- Lexicographic Order 
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Example 1.9: Let G be the additive group of continuous functions on [O, 1 ], and 

let f Ea+ if f(x) ~ 0 for all x E [O, 1]. This is a po group and an £-group. Notice in 

figure 3a, his positive, f and g are neither positive nor negative, but f V g exists and is 

positive, where f V g = max{f(x), g(x)} for all x E [O, 1]. 

Example 1.10: Let H be all polynomials on [O, 1], and as in example 1.9, f EH+ 

if f(x) ~ 0 for all x E [O, 1], then His a po subgroup of G, but not an £-subgroup of G. 

His not even an £-group, since there may not be a "smallest" polynomial larger than both 

making up the join. For example, in figure 3a, even though f and g are polynomials, there 

does not exist a smallest polynomial larger than both f and g. So f V g does not exist in 

H. 

Example 1.11: Let K be the additive group oflinear functions on [O, 1], and let 

f EK+ if f(x) ~ 0 for all x E [O, 1]. Then K is a subgroup of the G described in 

example 1. 9. K has the same partial order as G and is indeed a po subgroup of G. K is 

an £-group, but K is not a sublattice of G. This is because there is a "smallest" linear 

function bigger than both in the functions in the join. It is merely the straight line 

connecting the maximums on [O, 1]. Ifwe look at figure 3b we see that again both f and g 

are neither positive nor negative, but that f V g is positive and is the smallest straight line 
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larger than both f and g. 

0 0 

Figure 3a -- C[O, 1] Figure 3b -- Linear functions on [O, 1] 
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Introduction 

Chapter 2 

Partial £-Groups 

Prior to now, partial £-groups, have not been considered in the most general sense. All 

work previously done has been when the underlying group was a partially ordered group. 

In a restricted way, a partially ordered group is a partial £-group, where the only lattice 

operations considered are among comparable elements. That is, a I\ b is in the partial 

£-group if and only if a ~ b or b ~ a, in other words when a I\ b = b or a I\ b = a, 

respectively. In the context of free extensions, the only mappings considered were 

a-homomorphisms (order preserving group homomorphisms) rather than partial 

£-homomorphisms (lattice preserving group homomorphisms). In this chapter we define 

and clarify the concept of partial £-groups and look at some of its properties as well as 

some examples. 

Notation and underlying assumptions 

We will work only in A, the variety of abelian £-groups. G will denote a torsion free, 

abelian group. Additive notation (+)will be used for the group operation. P will denote 

the positive cone of a partial order on G, so ( G, P) will mean G is a partially ordered 

group with the order determined by the positive cone P. 

Definition 2.1: Let G be a torsion free abelian group. By a partial operation in 

G we mean an equality formed by applying lattice and group operations to some specific 

elements of G. If r is a collection of partial operations in G that are consistent with all 

£-group laws, then (G, r) is called a partial £-group. Note that if (G, r) is a partial 
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.e-group and both a Ab= c and a Vb= dare in r for all a, b E G and some c, d E G, 

then (G, r) is an .e-group. 

We look for conditions on r that enable us to embed (G, r) into a partial order on G so 

that all partial operations in r are preserved. Consider the following examples: 

Example 2.2: Let G = Z x Z, and r = { (1, 0) A (0, 1) = (0, O)}, then (G, r) is 

the partial .e-group with just one partial lattice operation. In this example, we can embed 

(G, r) in a partial order on G, by defining Pr = {n(l, 0) + m(O, 1) : n, m > O}. See the 

diagram below 

(0,1) 

(1,0) 

Figure 4 -- Partial .e-Group 

Later we will show that (G, Pr) is an .e-group. However consider the following example. 

Example 2.3: Let G = Z, and r = {1 AO= 0 and 1 VO= 2}, then (G, r) can 

never be embedded in (G, P) where Pis a partial order on G. This is because, in any 

partial order, a Ab = a is equivalent to a :s; b, which is also equivalent to a Vb = b. In 

this example, we would need for 1 V O = 1, for us to be able to embed ( G, r) into a 

partially ordered group. Also in a partially ordered group, if a Vb= c, then 

c = sup{ a, b }, if and only if -c = inf{-a, -b }. In our example this leads to the 

following: 1 VO= 2 {::} -1 V -2 = 0 {::} -(1 A 2) = 0 {::} 1 A 2 = 0. It is important to 

note that in this example with G = Z, that 1 and 2 are not linearly independent. 
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We now look at some of the £-group properties that are satisfied when the partial 

operations exist in r. When we say "a dual statement holds", we mean an equivalent 

statement holds if V 's are replaced by /\ 's and vice versa. 

A partial order on an £-group is uniquely determined by defining a I\ b = b if and only if 

a 2:: b. We define the same order in a partial £-group, by saying if a I\ b = b exists in r, 

then a 2:: b. This does not imply there is a partial order on G, only that there is part of an 

order on G and if G could be extended to a partially ordered group, the "order" 

determined by those operations in r would still have to hold. 

We list some of the algebraic rules that hold for partial £-groups if and only if all meets and 

joins listed in the statement exist in r. All of these have a dual statement. 

1). al\(bVc)=(al\b)V(al\c). 

2). c + ( a I\ b) + d = ( c + a + d) I\ ( c + b + d). 

3). c - (a I\ b) + d = (c - a+ d) V (c - b + d). 

4). al\(bVc)=(al\b)V(al\c). 

5). If a I\ b = 0 and c I\ 0 = 0, then a I\ (b + c) = a I\ c. 

6). If a I\ b = 0 then a V b = a + b. 

Now we look at conditions on r when (G, I') can be extended to a partial order. 

Theorem 2.4: Let M be an index set and let 

r = { ai I\ aJ = 0 for i -/= j and i, j E M} 

and suppose that all the ai 's are linearly independent with respect to integers. That is, 

the elements making up the partial equations in I' form a collection of pairwise disjoint, 
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integer linearly independent elements from G. Define 

Pr= {~miai: mi~ Ofor I a finite subset of M}. 
iEJ 

then Pr is a positive cone of some partial order on G. 

Proof We recall from Theorem 1.2 that we need to show that Pr satisfies the 

following three properties: 

1). Pr +Pr~ Pr 

2). g + Pr - g ~ Pr for all g E G 

3). Pr n -Pr= {O} 

By the definition of Pr and the fact that G is abelian, Pr + Pr ~ Pr and 

g + Pr - g ~Pris clear. So we must only show that Pr n -Pr= {O}. To this end, 

suppose x E Pr n - .Pr, so x E Pr and -x E Pr, thus we have 

x = Lmiai and 
iEJ 

with mi , rj ~ 0 for all i and j. Now let K be a common refinement of the finite index 

sets (i.e. K = I U J), then we have 

0 = L ( mk + rk )ak and by linear independence we have 
kEK 

0 = mk + rk, for all k, but mk, rk ~ 0, thus 

0 = mk = rk for all k EK, therefore 

O=x. D 

Later we will show that the free extension of ( G, r), denoted by :F ( G, r) exists if and 

only if r is a collection of partial operations all of whose elements that satisfy the 

equations in rare pairwise disjoint integer linearly independent. Next we show that all the 

operations in rare preserved in the partial order defined by r. 
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Theorem 2.5: r is preserved in Pr, that is if ai I\ ai = 0 in r then 

inf{ai, aj} = 0 in Pr. 

Proof We need to show that O ~ inf{ ai, ai} in Pr. Clearly ai , ai 2 0, since they 

are in Pr. Hence O is a lower bound. Now suppose f::; ai , aj. We need to show f::; 0. 

Since ai - f 2 0 and aj - f 2 0 then after a common refinement of the finite index sets 

(i.e. K = I U J, with IKI = n) we have 

ai-f = Lmkak 

aj - f = LTkak, so these lead to 

(*) -f = m1a1 +m2a2 + ... +(mi- l)ai + ··· +mnan 

-f = T1a1 + T2a2 + · · · + (Tj - l)aj + · · · + Tnan, subtracting from(*) 

0 = (m1 - T1)a1 + .. ·+(mi - 1 - Ti)ai + .. · 

+ (mj - Tj + l)aj + · · · + (mn - Tn)an, so by independence 

0 = ffil - T1 = ··· = ffii -1- Ti=···= ffij - Tj + 1 =•••=fin - Tn 

0 ::; Ti = mi - 1, so by (*),therefore 

f ::; 0. D 

Before we proceed we notice some results from £-group theory that we need to be true in 

Pr. 

Theorem 2.6: If a I\ b = 0 and c 2 0 then a I\ c = a I\ ( c + b ). 

Proof 

a/\c=a/\(O+c) 

(1) =a/\((a/\b)+c) 

(2) =a/\(a+c)/\(b+c) 

(3) =a/\(b+c). 

The reason (2) follows from (1) is that in an £-group + distributes over A's and V's. 
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(3) follows from (2) because > is isotone and since c 2:: 0, we have a+ c 2:'.'. a, hence 

(a+c)Aa=a. D 

An immediate corollary is the following: 

Corollary 2.7: If a Ab= 0 then na A mb = Ofor n, m EN. 

Proof' From Theorem 2.6, let c = a orb above and use induction twice. D 

Now we show that this same property still holds in our particular Pr. 

Theorem 2.8: Let Pr be as defined in Theorem 2. 4, then for all n, m E z+, 

nai A maj = 0, whenever i =/= j. 

Proof' Since by Theorem 2.5, ai A aj = 0, so ai, aj 2:: 0 in Pr. Hence for any 

n, m 2:: 0, we have that nai, mai 2:: 0, thus O is a lower bound. So suppose e :s; nai, maj 

in Pr, then nai - e and maj - e E Pr. Then we have 

nai - e = l:}kak 

maj - e = :~:::>kak 
(*) -e = r1a1 + ... + (ri - n)ai + ... +rnan 

-e = s1a1 + · · · + Siai + · · · + (sj - m)aj + · · · + snan 

0 :s; si = (ri - n), this follows from linear independence. 

Now since (ri - n) 2:: 0, it follows by ( *) that -e E Pr, in other words e :s; 0. Therefore 

0 = inf{nai, maj} or nai A maj = 0. D 

Recapping what we have done up to now, we started with a set r of partial operations and 

extended ( G, r) to a partially ordered group ( G, Pr). We now tum the question around 
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and ask, ifwe start with a partial order P, and collect all the disjoint elements that exist 

because of P, can we form a new partial order. The next theorem answers this question 

affirmatively. 

Theorem 2.9: Let G be a torsion free abelian group with partial order P. 

Define rP = { ai A aj = 0 that exist because of P}, and form PrP as in Theorem 2.4. 

Then PrP = P. 

Proof' First notice that P ~ Prp, since all ai A aj = 0 in P, by definition hold in 
k 

Prp- Now suppose x E PrP then x = I:(nipij + mijbi), where aip and bij are in rp. 
j=l 

But again by the definition ofrp, since ai. A bi. = 0, then ai., bi. E P. But Pis a partial 
J J J J 

order, hence closed under +, therefore we have x E P. 

Before we continue we need another definition and some properties relating to Pr. 

Definition 2.10: A partial order, P, on a group G, is said to be semi-closed if 

whenever na E P for n 2:: 0 we have that a E P. 

D 

We do not require (G, Pr) to be semi-closed, but we can embed Pr in a partial order that 

is semi-closed. We do this as follows. Define 

Pr = { x E G : nx E Pr for some n 2:: O}. 

We prove several important properties about P that we will make use oflater. 

Theorem 2.11 Assume G is a torsion-free abelian group and Pr is the partial 

order generated by r as defined in Theorem 2. 4. Then 

A). Pr~ Pr. 

BJ. Pr is semi-closed 
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C). Pr is a positive cone for G. 

D). If Pr is not semi-closed, there does not exist a total order with positive 

cone T such that Pr ~ T but Pr Sf: T. 

Proof of A): Ify E Pr, then ny E Pr, soy E Pr. 

Proof of B): Ifmx E Pr, then (nm)x E Pr, so x E Pr. 

Proof of C): i). Suppose x, y E Pr then nx, my E .Pr, so m(nx), n(my) E Pr, 

so mnx + mny E Pr, so mn(x + y) E Pr, thus x + y E Pr. ii). Clearly 

g + Pr - g ~ Pr since G is abelian. iii). Suppose x E Pr n - Pr, then 

x E Pr and x E -Pr or -x E Pr. Thus nx E Pr and m(-x) E Pr. So 

nmx, -nmx E Pr, hence nmx = 0, but G is torsion free, so x = 0. 

Proof of D): Suppose there exists a total order with positive cone T such that 

Pr~ T and yet Pr rJ,. T. Then there exists x E Pr and x (/:. T. So 

nx E Pr~ T for some n > 0. But total orders are semi-closed, so x ET, 

a contradiction. 

There is an interesting claim made by Weinberg [24]. He states in his paper (without 

proof), Theorem 1.3, pg 188, the following: Let P be a semi-closed partial order of G. 

Then if x (/:. - P then there exists a total order of G that contains both P and x. 

Here we prove this theorem by removing the semi-closed requirement on P and use 

instead P. First we need a lemma. 

Lemma 2.12: Suppose x (/:. -P and define 

Q = {y E G : y = nx + mp, where p E P, n, m ~ O}. 

Then Q is a positive cone of some partial order on G and Q 2 { P,x }. 

Proof' Clearly Q 2 {P,x} since x = lx + 0 E Q, and p = 0 + lp E Q. Also 
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g + Q - g ~ Q since G is abelian. If a, b E Q then a= nx + mp1 and b = rx + BP2, for 

some n, m, r, s 2:: 0. So a+ b = (n + r)x + lp3 E Q, where p3 = mp1 + sp2 . 

Therefore Q + Q ~ Q. Finally, if a E Q n -Q, then a E Q and -a E Q. Hence we have 

a= nx+mp1 and 

-a= rx + BP2, but Q is closed, so 

0 = a - a= (n + r)x + p3where p3 = mp1 + BP2, hence 

(n + r)(-x) = -(n + r)x = p3 E P, so 

-x E P, or 

x E -P, a contradiction unless n + r = 0, but n, r 2:: 0, so 

n = r = 0, hence 

a = mp1 = -sp2, which implies that a, -a E P, and 

a=O. 

Therefore Q n -Q = {O}, and Q is a positive cone for G. D 

Theorem 2.13: Let P be a partial order, which is not necessarily semi-closed, of 

a torsion-free abelian group G. If x (/:. - P, then there exists a total order with positive 

cone T 2 {P,x}. 

Proof" Since G is a torsion-free abelian group, it is CJ*. That is every partial order 

can be extended to a total order (see Theorem 3.21). By lemma 2.12 Q is a partial order 

on G and thus can be extended to a total order with positive cone T and we have 

T 2 Q 2 {P,x}. D 

Having proved some results regarding P, we return to a theorem to show that the partial 

operations determined by r are preserved in Pr. This is very important, when later we 

need to embed ( P, r) in an £-group to show the existence of free extensions. 
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Theorem 2.14: ai I\ aj = 0, for i # j, still holds in Pr. 

Proof" Since ai, aj E Pr by the definition of .Fr and from Theorem 2.11 Pr ~ Pr. 

Then ai, aj ~ 0 in Pr. Now suppose es ai, aj in Pr. Then ai - e and aj - e E Pr. 

Thus l(ai - e) and m(aJ - e) E Pr, for some l, m EN. Hence we have 

l(ai - e) = L}kak 

m(aj - e) = Lskak 

(*) -le= r1a1 + ... + (ri - l)ai + ··· +rnan 

-me= $1a1 + ··· + (sj- m)aj + ··· +snan 

-mle = mr1a1 + · · · + m(ri - l)ai + · · · + mrnan 

-mle = ls1a1 + · · · + lsiai + · · · + l(sj - m)aj + · · · + lsnan 

0 S lsi = m(ri - l). 

But m ~ 0, hence ri - l ~ 0. Thus by ( *) -le E Pr. Thus l( -e) E .Fr, so -e E Pr, and 

hence -e ~ 0, so that es O in Pr. Therefore O = inf{ai, aj} in .Fr, or ai I\ aj = 0 in JI;] 

The next theorem demonstrates that in order for us to construct a partial order on G, then 

the only r we need to consider is the collection of partial operations consisting of disjoint 

meets. 

Theorem 2.15: Let 

r = {ao I\ a')'= Ca: ai5, a')', Ca E G} and 

r = {(ai5 - Ca) I\ (a')' - Ca) = 0: ai5, a')', Ca E G} 

If there exists a partial order with positive cone P, such that r is preserved, then r is 

also preserved in P, and conversely. 

Proof" Suppose r is preserved in some partial order on G with positive cone P. 
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Then since a0 I\ a1 = ca in r, by definition then ca = inf{ a6, a1 }, thus a6, a1 2::: ca in P 

and so (ao - ca), (a1 - ca) 2::: 0. Now suppose that dis any other lower bound for 

( a0 - ca), ( a1 - ca), that is d ::; ( a0 - ca), ( a1 - ca). Then ( d + ca) ::; a0, a1 , hence 

(d + ca) ::; Ca, and therefore d::; 0, so that O = inf{(a6 - ca), (a1 - ca)} in P. Thus 

( ai5 - Ca) I\ ( a1 - Ca) = 0, and f is preserved. An entirely similar argument ShOWS the 

converse is also true. D 

Theorem 2.16: If ( a I\ b = c) E r is preserved in some partial order on G with 

positive cone P, then -c = -a V -bin P. 

Proof" By definition of a I\ b = c, we have c ::; a, b, thus -a, -b ::; -c, so that 

-c is an upper bound of -a and -b. Further suppose that d 2::: -a, -b. Then a, b 2::: -d 

and therefore, c 2::: -d. Then d 2::: -c, and thus -c = sup{ -a, -b}. In other words, 

-c = -a V-b. 

In light of the previous two theorems, we can without loss of generality, assume that r 

contains only A's (meets) and that all A's in rare equal to 0, that is r is a collection of 

partial operations representing pairwise disjoint elements. 

We now list other results about the relationships of r, .Pr, and Pr. 

So that our examples are a little easier to visualize we consider first a r with only one 

lattice operation. Let r = {a I\ b = O}, .Pr= {na + mb: n, m 2::: O}, and Pr be the 

semi-closure of Pr. After our examples we will generalize to an arbitrarily larger. 

Theorem 2.17: Jf x, y E Pr, say x = n1a + m1b and y = n2a + m2b, with 

D 

n1 , n2 , m 1 , m2 E z+, then x I\ y exists and is determined by the minimum of each of the 

coefficients of x and y. That is, x I\ y = min{n1, n2}a + min{m1, m2}b. 
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Proof Clearly x, y 2:: min{ n1, n2}a + min{ m 1, m2}b in Pr. So we need only 

show this sum is the greatest lower bound of x and y. To that end consider the following 

cases: 

Case 1: n1 :::; n2 and 1n1 :::; m2. But then x :::; y and thus x /\ y = x. 

Case 2: n2 :::; n1 and m2 :::; m1. But then y:::; x and thus x /\ y = y. 

Case 3: n 1 :::; n2 and m2 :::; rn1. Let c = n1a + m2b. We'll show c = inf{x, y}. Now 

supposed:::; x, y. Then x - dandy - d E Pr. So 

x - d = n3 a + rn3b 

y - d = n4a + m4b, so 

- d = (n3 - n1)a + (rn3 - m1)b, and 

- d = (n4 - n2)a + (m4 - m2)b, so 

c - d = (n1 + n3 - n1)a + (m2 + m4 - m2)b 

above is true since m3 - m1 = m4 - rn2, so 

c - d = n3a + m4b 2:: 0, therefore 

c 2:: d, in other words 

c = inf{x, y}. 

Case 4: Similar to case 3 only n2 :::; n1 and m1 :::; rn2. 

Hence x /\ y exists when x, y 2:: 0, and x /\ y = min{ n1, n2}a + min{ m1, m2 }b. D 

An immediate corollary, at least with this simpler, indicates that the only disjoint 

elements occur along the "lines" from the origin generated by a and b. This is particularly 

useful in our examples of Z x Z that follow. 

Corollary 2.18: If x /\ y = 0 in Pr and neither x nary is 0, then x = na and 

y=mb. 

Proof By Theorem 2.17 above, 0 = x /\ y = min{ n1, n2 }a + min{ m1, m2 }b. So 
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by independence, min{ n1, n2} = min{ m 1, m 2} = 0, but neither x nor y are 0. So if 

n1 = 0, then n2 #- 0, m1 f:. 0, and m2 = 0 or x = m1 b and y = n2a. On the other hand 

Theorem 2.19: If x A y = c in Pr, and x, y E Pr, then there exists a k E z+ 

such that kx A ky = kc in Pr. 

Proof By hypothesis we have x, y, c, x - c, y - c E Pr. Thus 

D 

nx, my, re, s(x - c), t(y - c) E Pr, for n, m, r, s, t E z+. Let k = nmrst. Then by 

Theorem 2.17, kx A ky exists in Pr, say kx A ky = t. Hence kx A ky = tin .Pr, since 

Pr~ Pr and Pr preserves the order from Pr. But kx A ky = k(x A y) = kc in .Pr. The 

last statement holds because Pr is semi-closed and both kx A ky and k(x A y) exist in Pr, 

and in an abelian £-group n(x Ay) = ny Any. Hence t = kc in Pr so j(t - kc)= 0 in 

Pr, but G is torsion-free, sot= kc in Pr. D 

Examples 

Before we generalize these results to an arbitrarily larger, we first consider some 

examples of positive cones, Pr and Pr, generated by a simpler, and look at when r 

forces (G, Pr) and (G, Pr) into being an £-group. These examples are interesting in their 

own right. 

Example 2.20: Let G = Z x Z, and let a = ( a1, a2), b = (b1, b2) be two linearly 

independent points in G. That is assumer= {a Ab= O}, and let 

Pr= {na + mb: n, m ~ O}, which is a positive cone for G, and let Pr be the semi

closure of Pr. Let 
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Theorem 2.21: .lfdetAl(a1,a2,b1,b2) then (Z x Z,Pr) isanl!.-group. 

Furthermore, if detA = ± 1, then Pr = .Pr. 

Proof From /!.-group theory, we need only show that for all z E Z x Z, z V 0 

exists. Let z E Z x Z, say z = (z1, z2). Now the Pr boundary lines are 

li : y = ( :: ) x and 

l2 : y = ( :: ) x, so that 

Pr = { ( u1, u2) E Z x Z : ( u1, u2) falls "between" li and l2}. 

Now consider the lines through z parallel to li, 12, say l~ and z;. Since li and l2 are not 

parallel, one ofl~ or z;must intersect l1 or l2. Without loss of generality, suppose z; 
intersects ti. See figure 2.5, below. 

l' a 

(a1' \) 
(z1, za) 

11 

r 1 

Figure 2.5 -- (Z x Z, Pr) is an /!.-group 

Then we have the following: 

(1) 
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(2) 

(3) 

Hence x, y E Z, since in (2) and (3) detAl(a1, a2) 

Thus the lines Zi and z; intersect at integer points, hence z VO E Z x Z. To finish the 

proof, suppose detA = 1, then since Pr~ Pr, we need only show Pr~ Pr. For 

simplicity, assume the boundary lines have positive slopes and that O ~ ~ ~ :: . Now 

suppose ( u, v) E Pr and thus ( u, v) is "between" li and l2. Then there exists n, m, r ;::: 0 

such that n( a1 , a2) + m(b1, b2) = r( u, v). Note that if ( u, v) are between li and l2 then in 

this case v;::: ~u and v ~ :u, so that b1v - b2u;::: 0 and ll2U - a1v;::: 0. So consider 

r(u,v) = n(a1,a2) +m(b1,b2), then 

ru = na1 + mb1 and 

(*) rv = na2 +mb2, so we have 

rua2 = na1 a2 + mb1 a2 and 

0 ~ r(ua2 - va1) = m(a2b1 - a1b2) = m, since detA = 1, thus 

m E Z, and substituting into ( *) we have 

rv = na2 + r(a2u - a1v)b2, or 

na2 = r(v + a1b2v - a2b2u) 

= r((l + a1b2)v - a2b2u) 

= r(a2b1v - a2b2u), so that 

n = r(b1v - b2u);::: 0, and thus n E Z 

Therefore ( u, v) E Pr 

Can there be any points missing between Pr and Pr? By that we mean can there be a 
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point between the boundary lines, not in Pr and also not in Pr? In other words is Pr what 

we think it is? That is, if ( u, v) ~ Pr but ( u, v) is "between" the boundary lines of Zi and 12 

does there exist k E z+such that k(u, v) E Pr, i.e. (u, v) E Pr? As in the previous 

example we will assume O :S t :S :: , so detA > 0. Now consider the following 

(1) 

(2) 

k(u, v) = n(a1, a2) + m(b1, b2), hence 

ku = na1 + mb1, and 

kv = na2 + mb2, so (1) x a2 - (2) x a1 gives 

m(a2b1 - a1b2) = k(a2u - a1v), note a2u - a1v 2::: 0 

k(a2u-a1v) 
m = d A , so from (1) we get 

et · 

k(b1v - b2u) 
n = detA , also note that b1 v - b2u > O, thus 

n,m2::0. 

So pick k to be any multiple of detA, then k ( u, v) E Pr. 

There actually is a slightly weaker condition for Pr to be an .e-group that we mention in 

the next corollary, however, the determinant condition seems to be the most useful. 

Corollary 2.22: If detA divides all row and diagonal products, then (Z x Z, Pr) 

is an .e-group. 

Proof' In the proof of Theorem 2.21 note that in equations 2 and 3, if 

detAI ( a1 b1, a1 b2, a2 b1, a2 b2), then x and y are integers. These are merely the row and 

diagonal products of A. D 

Notice in the following example, the positive cone is generated by (2,0) and (2,2), which is 

not semi-closed, i.e. (1, 1) ~ Pr, so Pr # Pr. Note that I~ ~ I = 4 and 4/(2, 2, 2), but 

4 does divide all row and diagonal products, so Pr is an .e-group. A sample of Pr is given 
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in the diagram below. In the diagram, notice that (6, 7) A (7, 5) = (4, 5). None of those 

points are in (G, Pr), but they are all in (G, Pr). 

(2,2 

Figure 6 --A Pr that is an £-group 

We consider one final example here. 

Example 2.23: We demonstrate where given a certain r, the generated positive 

cone, Pr is such that all A's in Pr exist, but not all A's in Pr exist. Let G = Z x Z, 

a = ( 1, 1), and b = ( -1, 1), so 

Pr= {n(l,1) +m(-1,1): n,m E z+}. 

Then Pr is all integer ordered pairs "between" the lines y = x and y = -x (i.e. y > lxl). 
Now by what was done in Theorem 2.17, x A y exists for all x, y E Pr. But we show that 

(0, 6), (5, 6) E Pr, yet (0, 6) A (5, 6) does not exist in Pr. 

To this end note that (0, 6) = 3(1, 1) + 3(-1, 1) E Pr~ Pr and (5, 6) E Pr since 

2(5, 6) = 11(1, 1) + 1(-1, 1) E Pr. Also note that both (2, 3) and (3,3) are smaller than 

both (0, 6) and (5, 6). This follows from (0, 6) - (2, 3) = (-2, 3) E Pr, since 

2(-2, 3) = 1(1, 1) + 5(-1, 1) E Pr and (5, 6) - (2, 3) = (3, 3) E Pr. Also 

(0, 6) - (3, 3) = ( -3, 3) E Pr ~ Pr and (5, 6) - (3, 3) = (2, 3) E Pr since 

2(2, 3) = 5(1, 1) + 1(-1, 1) E Pr. But (2, 3) II (3, 3) (i.e. not comparable) since 

(2, 3) - (3, 3) = (-1, 0) ft. ±Pr or ±Pr. So neither (2, 3) nor (3, 3) can be the 

inf{(O, 6), (5, 6)}. 
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Now suppose (0, 6) A (5, 6) = ( u, v) in Pr. This implies that (-u, 6 - v), 

(5 - u, 6 - v), (u - 2, v - 3), and (u - 3, v - 3) are all in Pr. Note the last two come 

from the fact that if ( u, v) = inf{ (0, 6), (5, 6)}. Then ( u, v) ~ (2, 3) and (3, 3). Because 

all these are in Pr (that is y .~ x and y ~ :__x) we have the following inequalities: 

6 - V ~ -U and 6 - V ~ U 

6-v~5-u and 6-v~u-5 

V - 3 ~ U - 2 and V - 3 ~ 2 - U 

v - 3 ~ u - 3 and v - 3 ~ 3 - u 

these lead to the following 

(1) 6 ~ v-u and 6~v+u 

(2) l~v-u and ll>v+u 

(3) v-v~l and v+u~5 

(4) v-u~O and v+u~6 

Now (2) and (3) imply that 1 ~ v - u ~ l, or v - u = l, while (1) and (4) imply that 

6 ~ v + u ~ 6, or v + u = 6. Thus 2v = 7 or v = 7 /2, and u = 5/2, but 

(5/2, 7 /2) ¢:. Z x Z. Therefore (0, 6) A (5, 6) does not exist in Pr. Notice in the figure 

below, that the potential meet misses all integer coordinates, indicated by the "white 

space" and ends up on the cell (5/2, 7 /2). 

Figure 7 -- A Pr that is not an £-group 
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Generalized r 
We now generalize the above results for an arbitrarily large pairwise disjoint r, namely 

r = {ai A aj = 0: i -1- j and i,j EM, some index set}. 

This leads to 

Theorem 2.24: If x, y E Pr then x A y exists and is the minimum value of the 

coefficients of x and y, as described below: 

x = Lxniai,for finite I 
iEJ 

Y = Lynjaj, for finite J, then 
jEJ 

x Ay = Ln~ak,for K = I U J, where 
kEK 

Proof From now on we assume that K is a common refinement of the finite 

subsets I, J. For notational benefit the x and y "pre-subscript" on the ni and nj are to 

identify that these integers go with the x and y variables. Also for ease of use, let 

c = x A y. Clearly x, y ~ c. 

Cases 1 and 2: x ~ y or y ~ x. These work just as in Theorem 2 .17. 

Case 3: Suppose there exists some i's and j's such that nk. < nk. while nk. > nk .. X ,-y' X 1-y J 

We show that c = inf{x, y}. Supposed::; x, y, then x - dandy - d E Pr. So 

Y - d = Ly1nkak, hence 
kEK 
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- d = L)x1nk - xnk)ak 
kEK 

- d = ~::)y1nk - ynk)ak, so for all k, by independence 
kEK 

(2) c - d = L)n~ + x'nk - xnk)ak, which simplifies to 
kEK 

(3) c - d = Linkak ~ 0, where i = x' ory', therefore 
kEK 

c ~ d, and thus we have 

C = inf{x,y}. 

The reason (3) follows from (2) is that in (2), for all k EK, nk = xnk, or ynk, So if 

nk = xnk then we are left with x1nk while if nk = ynk then we can substitute by (1), and 

we are left with y1nk. 

Theorem 2.25: If x I\ y = 0 in Pr and neither x nor y is 0, say 

x = Lxniai and y = Lyniaj 
iEJ jEJ 

and if Ix = { a/s that make up x} and Jy = { a/s that make up y }, then Ix n Jy = (/J. 

That is, if ai is in the sum that makes up x, then it is not in the sum that makes up y. 

Proof' If x I\ y = 0, then by Theorem 2.24 above, 0 = E nkak, where 
kEK 

D 

nk = min{xnk, Ynk}, but by linear independence, nk = 0, for all k. Thus for each k, the 

corresponding coefficient for ak must be O in either the x variable or the y variable. So for 

example, if ni =/= 0 in x, so that ai is in Ix, then the corresponding ni must be O in y, so 

that ai would not be in Jy, D 

30 



Theorem 2.26: 1f x I\ y = c in Pr, and x, y E Pr, then there exists k E z+ such 

that kx I\ ky = kc in Pr. 

Proof This follows exactly as in Theorem 2.19, since it only deals with Pr and Pr 

and not the construction of x or y. D 

Now consider the following situation, suppose r' has only two partial operations in 

Z x Z, that is let r' = { e1 I\ e2 = e2 /\ e3 = O}. Then r' is not pairwise disjoint, yet still 

generates the same partial order as r = { e1 I\ e2 = e2 /\ e3 = e1 I\ e3 = O}, as shown in 

the figure below. 
. ................. . ................... 

ii F~ftf/ ............. 

······· ····················· . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
........................... 
·························· 

Figure 8 -- Minimal r 

This leads us to consider if there is a minimal r' that generates the same partial order. We 

use Zorn's lemma to prove the following. 

Theorem 2.27: Jf G is a po group with positive cone P, then there exists a 

minimal r such that Pr = P. 

Proof Let X = Set of all r's, where r is a collection of partial operations of the 

form a I\ b = c such that Pr = P. Where 

Pr= {Lniai: ni E z+, I a finite subset of M}. 
iEl 

Since in a po group, a I\ b = c if and only if (a - c) I\ (b - c) = 0, we may as well 
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assume all partial operations in r have the form a I\ b = 0. First X f=- r/J, since if 

r = { x I\ 0 = 0: x E P}, then clearly Pr = P. Next, let C be a chain in X, and let 

f = n {r : r E C}. Then if p E Pr then p is the linear combination of /\ 's in r, which 

are contained in all r's, sop is a linear combination of /\'sin r EC. Hence p E Pr = P 

and Pr ~ P. On the other hand, if p E P then since Pr = P, for all r EC, then p E Pr, 

for all r EC, thus p E Pr, so P ~ Pr. Therefore P = Pr, and by Zorn's Lemma there 

exists a minimal element of X, say r'. D 

Theorem 2.28: Let ( G, P) be an abelian po group such that x I\ y exists for all 

x,y E P. IJH = P-P = {x-y: x,y E P}, then (H, P) isanR.-group. 

Proof First we show that His a group. His closed since if a, b E H, then 

a = x1 - y1 and b = x2 - y2, where x1, x2, y1, y2 E P. Since G is abelian, then 

a+ b = (x1 + x2) - (y1 + y2) EH. That (H, +) is associative follows since (G, +) is, 

and clearly OE H, since O E P. Finally, if a EH, then a= x - y and thus 

-a= y - x EH. To show (H, P) is an £-group we need only show that a I\ 0 exists for 

all a E H. To that end, let a E H, so that a= x - y, for some x, y E P. So we need 

only show that (x - y) I\ 0 = (x I\ y) - y. First (x I\ y) - y is a lower bound for x - y 

and 0. Since x I\ y exists by assumption, then x, y ~ x I\ y, so that x - y ~ (x I\ y) - y 

and O ~ (x I\ y) - y. Finally supposed :S x - y, 0, so that d + y :S x and d + y :Sy, 

thus d + y :S x I\ y. Sod :S (x I\ y) - y. Therefore (x I\ y) - y = inf{ a, O}, and thus 

(H, P) is an £-group. D 
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Introduction 

Chapter 3 

Existence of Free Extensions 

The concept of a free algebra has a rich and interesting history. With the tools now 

available, the study of free algebras has shifted from creating all possible "words" using 

"letters" from a set and operations from the algebra to using universal mapping properties. 

This perhaps has the disadvantage of not "seeing" what a particular free object looks like, 

but is overshadowed by the advantage of discovering the similarities within a class of 

algebras and the properties shared by subalgebras within that particular class, not to 

mention the fact that some of the proofs are very elegant. Intuitively a free algebra can be 

thought of as the loosest way possible of constructing an algebra in a particular class from 

a set and the operations defined by the class of algebras. 

There has been quite a bit of work done looking at free .e-groups in various varieties as 

well as free products, but there has been precious little done when it comes to partial 

.e-groups. Bernau [2], Conrad [6], and Weinberg [24] were among the first to look at free 

.e-groups. Many interesting results were obtained, even though in most cases the 

underlying group was equipped only with the trivial order. 

In this chapter we define what a free extension of a partial .e-group is, determine when they 

exist and explore some of their properties. We begin with some definitions. 

Free f-groups 

Definition 3.1: Let Ube any variety of .e-groups and let X be a nonempty set. 
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The algebra :Fu(X) is called the U-free £-group if :Fu(X) EU, X generates :Fu(X) as an 

£-group, and whenever H E U and f3 : X ---+ H is a map, then there exists an 

£-homomorphism,\ : :Fu(X) ---+ H, such that f3 = ..\i. That is, the following diagram 

commutes: 

't 
x---Fu(X) 

f3 
H 

Figure 9 -- U-free £-group 

This is the standard definition of a free £-group over a set (i.e. no structure). It has been 

known for sometime that U-free £-groups in any variety exist for any nonempty set X (see 

Powell [22] and Birkhoff [3]). Weinberg [24] defined the free £-group over a partially 

ordered group as follows: 

Definition 3.2: Let (G, P) be a torsion-free abelian group with semi-closed 

partial order P. An £-group :Fw(G, P) is afree £-group over (G, P) if 

i). there exists an o-isom01phism 'I/;: (G, P) ---+ :Fw(G, P), 

ii). '1/;(G, P) generates :Fw(G, P), and 

iii). if (3: (G, P) ---+His an a-homomorphism into an £-group, then 

there exists an £-homomorphism,\: :Fw(G, P) ---+ H, such that (3 = ..\'I/;. That is, the 

following diagram commutes: 
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(G,P) 
1/J 

Fw(G,P) 

~ ,\ 

{3 
H 

Figure 10 -- Weinberg free £-group 

We now define what we mean by a free extension of a partial £-group and then we 

compare the differences in the definitions. 

Definition 3.3: Let (G, r) be a partial £-group. G is assumed to be a torsion-free 

abelian group with partial lattice operations defined by r. An £-group F(G, r) is the free 

extension of the partial £-group ( G, r) if 

i). there exists a partial £-monomorphism i : ( G, r) ~ F ( G, r), 

ii). i(G, r) generates F(G, r) as an £-group, and 

iii). if {3: (G, r) ~His a partial £-homomorphism into an £-group, then 

there exists an £-homomorphism,\ : (G, r) ~ H such that ,\i = {3. That is, the following 

diagram commutes: 

(G,r)--'l -F(G,r) 

H 

Figure 11 -- Free extension 

The difference between Weinberg's definition and ours rests solely in item i). Weinberg 

requires his embedding to be an order preserving isomorphism. This means a ~ b if and 
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only if 'if;( a) ::::; 'if;(b). Since the image of 'if; is an £-group, this requires that the partial 

order of the underlying group be semi-closed. This follows from the fact that an £-group 

is semi-closed or isolated as some authors call it (see Fuchs [9]). Thus 

na ~ 0 

{::} 'if;(na) ~ 0 

{::} mp( a) ~ 0 

{::} '1/J(a) ~ 0 

On the other hand, our definition only requires that the embedding be a monomorphism 

that preserves the partial lattice operations. For example if a I\ b = 0 in r then 

i( a) /\ i(b) = 0. As a result, we do not need to require that any partial order extending 

the partial lattice order on the underlying group be semi-closed. 

Now because £-groups are distributive lattices, + distributes over /\ and V, and the 

definition requires that ( G, r) generate :F ( G, r), we see that elements of :F ( G, r) can be 

represented in the form 

_V _/\ i(giJ), where I and J are finite and YiJ E G 
iE/JEJ 

Before we continue we show that if free extensions exist, they are unique. 

Uniqueness 

Theorem 3.4: If F 1 ( G, r) and F2 ( G, r) are free extensions of the partial 

£-group (G, r), with ,\1, ,\2 as the respective £-homomorphisms, then there exists a 

unique £-isomorphism cp : F 1 ( G, r) -t :F2 ( G, r), such that the following diagram 

commutes: 
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(G,r) 
A1 

F1(G,r) 

~ (fJ 

,\2 

Figure 12a -- Uniqueness of Free Extensions 

Proof By definition there exists £-homomorphisms <p1 and <p2 so that the 

following diagram commutes: 

A1 
(G,r)---F1(G,r) 

Figure 12b -- Uniqueness of Free Extensions 

Thus if x E F1 (G, r), then 

= (()2 ( f ) (()1 A1 (gij)) 

= (()2 ( V /\ A2 (9ij)) 
I J 

= V /\ A1 (g .. ) 
I J iJ 

=X 
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Thus <p2 <p1 is the identity on F 1 ( G, r), and similarly <p1 <p2 is the identity on F 2 ( G, r). 

Therefore <p 1 is an £-isomorphism. D 

Since we are no longer looking at the free £-group over a set, we are now faced with 

another problem. Do any free extensions of partial £-groups exist and if they do, under 

what circumstances? We answer this question by invoking a theorem ofR. S. Pierce [15, 

see page 101 ], which we state below for completeness. 

Existence 

Theorem 3.5: Let Ube a class of partial algebras of type T which is closed 

under the formation of direct products and subalgebras. Let A be a partial algebra of 

type T such that there is a partial monomorphism of A to some partial algebra belonging 

to U. Then there exists a U-free extension of A. 

We restate this theorem in terms of partial £-groups and varieties. 

Theorem 3.6: If ( G, r) is a partial £-group in a variety U, then the U-free 

extension, Fu ( G, r), exists ff and only if ( G, r) can be embedded in an £-group in the 

variety U, using a partial f-homom01phism. 

Because we are only considering torsion-free abelian groups in the abelian variety A, we 

will refer to the A-free extension of (G, r) as the free extension of (G, r), and will denote 

it by F(G, r). We now are in a position to show some properties and relationships 

among free extensions of partial £-groups and partially ordered groups. 

Properties 

Theorem 3.7: Let 
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r = {ao I\ a"(= Ca: ao,a7,Ca E G} and 

r' = {(ao - Ca) I\ (a"( - Ca)= 0: ao,a7,Ca E G} 

Then F(G, r) exists if and only if F(G, r') exists. 

Proof' (---+) Suppose F(G, r) exists. Ifwe can embed (G, r') in an £-group, 

then by Theorem 3.6, F(G, r') exists. To this end, let (G, r') ~ (G, r) ~ F(G, r), 

where i is the inclusion map, and 'Y is an embedding. Define (3 = "(i. Now (3 is clearly a 

group monomorphism, because both 'Y and i are. We only need to show that (3 preserves 

all the /\ 's (meets) ofr' in F(G, r). But in F(G, r), 

f3(ca) = ')'(ca) = ')'(ao I\ a7) = ')'(ao) I\ ')'(a7 ), so 

0 = (1'(a0) I\ ')'(a'Y)) - ')'(ca), hence 

0 = (1'(ao) - ')'(ca)) I\ (1'(a7 ) - ')'(ca)), thus 

0 = ')'(a0 - ca) I\ ')'(a7 - ca), hence 

0 = f3(a0 - ca) I\ (3(a7 - ca) 

So f3 is a partial £-monomorphism, hence F(G, r') exists. 

(+--)An entirely similar argument works the other way. 

Under these conditions, an even stronger statement can be made. 

Theorem 3.8: Under the hypotheses of Theorem 3. 7, 

F (G, rJ ~ F (G, r'). 

D 

Proof' Let (G,r') ~ (G, r) ~ F(G, r) as above. Let /3' be a partial 

£-homomorphism from (G, r') to any HE A. Define f3: (G, r)---+ H by (3i = (3'. Now 

suppose that a0 I\ a7 =Cain (G, r). We need to show that f3(a0) I\ f3(a7) = f3(ca) in H. 

This follows from: 
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= ((3'(ao) - (3'(ca)) I\ ((3'(a7 ) - (3'(ca)) 

= ((3'(ao) I\ (3'(a7 )) - (3'(ca) 

= (3( ao) I\ (3( a7 ) - (3( ca). 

Thus (3 is a partial .e-homomorphism, so there exists a unique A: F(G, r) -+ H, an 

.e-homomorphism, so that A1 = (3. Therefore, A1i = (31, and the following diagram 

commutes. 

(G, r') 
i 

(G, r) 
, 

F(G, r) - -
~ j/3 / 

(3' A 
H 

Figure 13 -- F(G, r) ~ F(G, r') 

Thus by uniqueness of free extensions, F(G, r) ~ F(G, r'). 

We now turn our attention to comparing the free extension of ( G, r) with the free 

extensions of ( G, Pr) and ( G, Pr). Recall that 

r = { ai I\ aj = 0 : i =f. j and i, j E M, some index set} 

.Pr = {~niai : ni ~ 0, I a finite subset of M}. 
iEJ 

.Pr = { x E G : nx E Pr for some n ~ 0}. 

Before the next theorem, we recall a fact from .e-group theory that we will need. 

Lemma 3.9: If a I\ b = 0 then a + b = a V b, and in general if ai I\ aj = 0 for 
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n n 
if=. j then Eai = V ai. This follows from: 

i=l i=l 

a+b=a-(a/\b)+b 

= a+ (-a V -b) + b 

= (0 + b) V ( a + 0) 

=bVa 

A straight forward application of induction completes the proof 

Theorem 3.10: If :F( G, r) and :F( G, Pr) exist, then they are the same. 

Proof' Let ( G, r) ~ ( G, Pr) ~ :F( G, Pr) be embeddings. Let H E A, and 

D 

( G, r) ! H be a partial £-homomorphism. Define ( G, Pr) .I!..+ H by (3i = (3'. Clearly, (3 

is a group homomorphism, since both (3' and i are. Next suppose x I\ y = 0 in Pr. Then 

by Theorem 2.25, the collection of a/s that make up x are disjoint from the collection of 

a/s that make up y. Thus 

f3(x) I\ f3(y) = f3'(x) I\ f3'(y) 

(2) = V [xnif3'(ai)j\ynif3'(aj)] 
jEJ 
iEJ 

(3) = 0. 

(1) follows from the previous lemma, the fact that (3' preserves all defined lattice 

operations, and because all elements in rare pairwise disjoint. (2) follows from the 
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distributive property off-groups. (3) follows from Theorem 2.25 and pairwise 

disjointness being preserved by /31• 

Therefore, f3 is a partial l-homomorphism artd thus there exists a unique £-homomorphism, 

A : F ( G, Pr) -+ H such that kyi = /31 so that the following diagram commutes. 

(G, r) 
i 

(G,Pr) 
'Y 

F(G,Pr) - -
~. 1/1 / 

/3' A 
H 

Figure 14 -- F(G, r) ~ F(G, Pr) 

Therefore, by uniqueness of free extensions, F(G, r) ~ F(G, Pr). D 

The next theorem ties the free extension of ( G, Pr) to the free extension of ( G, Pr). 

Theorem 3.11: If F(G, Pr) and F(G, Pr) exist, then they are the same. 
i - 'Y -

Proof Let ( G, Pr) -+ ( G, Pr) -+ F( G, Pr) be embeddings. Let H E A, and 

( G, Pr) ! H be a partial £-homomorphism. Define ( G, Pr) !!.+ H by (3i = (31 • Clearly, f3 

is a group homomorphism, since both /31 and i are. Next suppose x A y = 0 in Pr, so that 

x, y E Pr. Hence by Theorem 2.26, there exists k E z;+ such that kx, ky E Pr and 

kx A ky = 0 in Pr. Then we have 

k(f3(x) A f3(y)) = k(f3'(x) A f3'(y)) 

= kf3'(x) A kf3'(y) 

= /31 (kx) A /31 (ky) 

= (31(kx A ky) 

= /3' (0) 

=0 
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but HE A and all £-groups are torsion-free, so O = {3(x) I\ {3(y). Therefore, {3 is a 

partial Z-homomorphism and hence there exists a unique £-homomorphism, 

,\ : F ( G, Pr) ---+ H such that kyi = {31 so that the following diagram commutes. 

(G,Pr) 
i 

(G,Pr) 
'Y 

F(G,Pr) - -
~ 1/l / 

{3' ,\ 

H 

Figure 15--F(G,Pr) ~ F(G,Pr) 

Therefore, by uniqueness of free extensions, F(G, Pr)~ F(G, Pr). 

Therefore, if the free extensions exist, then F(G, r) ~ F(G, Pr)~ F(G, Pr). 

D 

We have looked at several properties pertaining to the partial £-group (G, r), the partial 

orders (G, Pr) and (G, Pr) generated by r, and the associated free extensions. We need 

to ask when a free extension does not exist. The next theorem answers this question and 

in the next chapter we construct free extensions and show when they do exist . 

Theorem 3.12: Let M be some index set. If r = { ai I\ aj = 0 : i, j E M} and 

the collection of ai 's that make up the partial operations in r are linearly dependent then 

the free extension F ( G, r) does not exist. 

Proof' Suppose the free extension did exist and Eniai = 0, for some ni I- 0. 
iEJ 

Since this is a finite list, regroup and put all positive coefficients on one side of the 

equality and the negative coefficients on the other. After renumbering and relabeling, if 

necessary, we have 
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k 

k m 

Lnipii = Lns1as1,, with nii, n 81 ~ 0, for all j, l, so 
j=l l=l 

k 

Lnijaij ~ ns1 as1 , hence 
j=l 

but L (nipij I\ ns1 a81 ) = 0, since ai's and a:s are disjoint, hence 
j=l 

Embeddings 

ns1 as1 = 0, but £-groups are torsion-free, so 

a81 = 0, which is a contradiction. D 

I 

We have already shown we can embed ( G, r) into ( G, Pr) and thus into ( G, Pr). In this 

section we now show how to embed ( G, Pr) into an £-group so that we can invoke 

Theorem 3. 6 to ensure the existence of the free extension, F ( G, r). The approach we 

take here is to embed ( G, Pr) into appropriate factor groups, that inherit the order from 

( G, Pr) and in such a way that the partial order of the factor groups can be extended to a 

total order. Finally, we will form the cardinal sum of these total orders, which is an 

£-group, thus completing our embeddings, such that the partial orders in r still hold. 

We first need to examine some properties of the convex, normal subgroups ( ai, aj) 

generated by ai, aj E r, for all i =I= j. These are defined as 

(ai, aj) = {x E GI nai + maj ::S x ::S n'ai + m'aj, where n, m, n', m' E Z}. 
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Theorem 3.13: (ai, aj) = {x E GI x = nai + maj, with n, m E Z}. 

Proof Let x E (ai, aj) then nai + maj ::s; x ::s; n'ai + m'aj, so x - (nai + maj) and 

n' ai + m' aj - x are both in Pr. Thus we have, after a common refinement of the finite 

index sets (K = I U J, IKI = k). 

x - (nai + maj) = 2:}tat 
tEK 

I I '"' n ai + m aj - x = L ... ltat, so 
tEK 

x = r1 a1 + · · · + ( n + ri)ai + .. · + ( m + r j )aj + .. · + rkak 

-x = s1a1 + · · · + (si - n')ai + · · · + (sj - m')aj + · · · + skak 

0 = (r1 + s1)a1 + .. · + (n + ri + Si - n')ai + .. · 

+ (m + Tj + Sj - m')aj + · · · + (rk + sk)ak. 

Therefore by linear independence and since rt, St > 0 we have, 

0 = rt = St, for all t i= i, j, hence 

Next we show that these convex normal subgroups have nothing in common, except 0. 

Theorem 3.14: Let (ai, aj) be the convex normal subgroup generated by 

ai, aj Er, then 

n (ai, aj) = {O} 
i/j 

i,jEM 

D 

Proof We break this down into two cases, one where the cardinality of r is 3 and 

the other where it is bigger. 

Case 1: If lrJ = 3, then we have (a, b) n (a, c) n (b, c) and suppose xis in the 

intersection, then by Theorem 3 .13 we have 
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x = na + mb = ra + sc = qb + tc, thus we get 

0 = (n - r)a + mb - sc, and 

0 = ra - qb + (s - t)c, and by independence we have 

0 = n - r = m = s = q = r = s - t, hence 

x=O 

Case 2: If Ir!,~ 4, then there exist ai, aj, ak, a1, all distinct. Hence if 
x E n (ai, aj), then x E (ai, aj) n { ak, a1} and by Theorem 3.13 we have 

if=j 

x = nai + maj = rak + sa1, thus 

0 = nai + maj - rak - sa1, hence by independence, 

0 = n = m = r = s, hence x = 0. D 

Recall the definition of the semi-closure of these convex normal subgroups, (ai, aj), 

denoted by (ai, aj) = {x E G: nx E (ai, aj), for some n E Z}. So as a Corollary of the 

previous Theorem, we have 

Corollary 3.15: Let (ai, aj) be the pure, convex normal subgroup generated by 

n (ai, aj) = {O}. 
i,f,j 

i,jEM 

Proof: Let X E n (ai, aj), so X E (ai, aj) for all i =I= j. Thus ffiijX E (ai, aj) so 
if=j 

(Ilmij)x E n (ai, aj) = {O}. But G is torsion free, so x = 0. D 
i:/:.j i:/:.j 

Before we continue we need to recall some group theoretic properties and definitions, as 

well as some additional partial order concepts .. 
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Definition 3.16: For x E G, n EN, xis divisible by n, if there exists y E G such 

that x = ny. 

Definition 3.17: For some fixed n E N, define 

nG = {g E G : g = nx, for some x E G}. 

H is a pure subgroup of G if H n nG = nH for all n E N. Since H n nG ~ nH is 

always true, we need only show nH ~ H n nG for H to be pure. That is, if h = ng, for 

h E H and g E G then there exists an h' E H such that h = nh'. In other words, if an 

element of H is divisible by n in G then it is also divisible by n in H. 

Theorem 3.18: Let X be any subset of G and (X) the convex normal subgroup 

generated by X, then (X) is a convex, normal, pure subgroup of G. 

Proof: Normality: This follows from G being abelian. 

Convexity: Suppose x :::; c :::; y, and x, y E (X), then nx E (X) and 

mx E (X) for some n, m E Z. So nmx :::; nmc :::; nmy 

and nmx, nmy E (X) which is convex so nmc E (X), thus 

c E (X). Therefore (X) is convex. 

Purity: Suppose x E (X) n nG, say x = ng and x E (X). Hence 

mx E (X) hence m(ng) E (X) or (nm)g E (X), so 

g E (X), thus x E n(X), hence (X) is pure. 

Theorem 3.19: Suppose G is torsion free, then H is pure if and only if G / H is 

torsion free. 

D 

Proof: ( -+ ) Suppose H is pure. Let k E G / H, say k = g + H and suppose 

nk = 0, that is suppose ng EH, say ng = h. But His pure so there exists h' EH such 
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that nh' = h, but nh' = h = ng, so n(h' - g) = 0. But G is torsion free so h' - g = 0, 

hence h' = g, thus g E H, therefore G / H is torsion free. 

( +- ) Suppose G /His torsion free. Let x E nG n H, say x E Hand 

x = ng. But ng = x EH and G /His torsion free so g EH, thus x E nH, hence His 

pure. D 

Definition 3.20: A group G is called an O* -group if every partial order of G can 

be extended to a total order of G. 

Theorem 3.21: [Fuchs 9] An abelian group is an O* -group if and only if it is 

torsion-free. 

Now since quotient groups inherit the partial order from the underlying group, that is, 

using the natural homomorphism, the positive cone of ( G, Pr)/ ( ai, aj) is the image of the 

positive cone of ( G, Pr). So in light of the above definitions and theorems, since ( ai, aj) 

is pure, then ( G, Pr)/ ( ai, aj) is torsion-free, hence an O* -group, and therefore has a total 

order '.nj, so that '.ni 2 ((G, Pr)/ (ai, aj) )+. To complete our embeddings we need to 

embed ( G, Pr) into the cardinal sum of all quotient groups ( G, Pr)/ ( ai, aj), for all i =J. j 

so that the partial lattice operations are preserved. We do this by defining the map: 

a : (G,Pr) ---t [I] ( G / (ai, aj)) 

by the following, for all g E G: 

We need to show the following: 

i,/,j 
i,jEM 

a(g) = IT (g + (ai, aj)). 
i,/,j 

i,jEM 
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Theorem 3.22 The map, a, as defined above is an order preserving partial 

R.-monomorphism. 

Proof' 1). a is a group homomorphism. 

a(g + h) = II ((g + h) + (ai, aj)) 
i,f.j 

i,jEM 

= II ((g + (ai, aj)) + (h + (ai, aj) )) 
i,f.j 

i,jEM 

i,f.j 
i,jEM 

= a(g) + a(h) 

i,f.j 
i,jEM 

2). a preserves order since on each component of the product 

( G / ( ai, aj)) + is the image of ( G, Pr)+ under the natural homomorphism of G onto 

G/ (ai, aj), 

3). a is a monomorphism, for suppose a(g) = a(h), then 

a(g - h) = 0 = II ( (ai, aj) ), thus 
i,f.j 

i,jeM 

. g - h En (ai, aj) = {O}, so 
i,f.j 

i,jeM 

g= h. 

4). Finally, we show a preserves the lattice operations in r, that is 

0 = a(ai A aj) = a(ai) A a(aj), 

Now since we are in a partial order, this is equivalent to showing that 

II ((ai,aj)) = inf{a(ai),a(aj)}, 
i,f.j 

i,jeM 

Now a( ai) ~ 0, since ai ~ 0 and 
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a(a·) - (· · · (a· a·) · · · (a· ak) · · · a·+ (a· ak) · · ·) > 0 
i - ' i, J ' ' i, ' ' i J' ' - . 

So O is a lower bound for a(ai). Now pick k E [±](G/ (ai, aj)), such that 
i-fcj 

k :S a(ai), a(aj), say k = TI (gij + (ai, aj)). We need to show k :S 0. But 
i#j 

II(g .. + (a· a·)) < (· · · (a· a·) ·· · (a· ak) · · · a·+ (a· ak) ···)and iJ i, J - ' i, J ' ' i, ' ' i Jl ' 
i#j 

< (·· · (a· a·) · · · a·+ 1a· ak) · · · (a· ak) · ··) so 
- ' i, J ' ' J \ i, ' ' Jl ' ' 

gij + (ai, aj) :S (ai, aj), for all i =I- j, therefore 

k :S 0, therefore 

a(ai) I\ a(aj) = 0 

Thus we have that a is an order preserving partial £-monomorphism. D 

Now since the cardinal product of a collection ot total orders is an £-group, this completes 

all our embeddings, hence by Theorem 3.6, :F(G, r) exists. We have established the 

following embeddings: 

(G,r) ~ (G,Pr) ~ (G,Pr) ~ [±](G/(ai,aj)) ~ [±J(G/(ai,aj))r,. 
i#j i#j •J 

Before we close with an interesting comparison of existence theorems, we show that we 

can relax the requirement that r be pairwise disjoint. All we require is for the elements of 

r to be disjoint and linearly independent. 

Definition: 3.23: lfr' is a collection of partial operations on the partial £-group 

( G, r) whose equations are disjoint meets and whose elements are linearly independent, 

we say that r is the pairwise disjoint completion ofr' ifr 2 r' and all equations of meets 

in r are pairwise disjoint, that is r = { ai I\ aj = 0 : i =I- j}. 

Theorem 3.24: Let ( G, r') be a torsion-free abelian partial £-group whose 

50 



partial lattice operations are disjoint and whose elements are linearly independent, then 

F(G, r') exists. Furthermore, there is an R-epimorphismjrom F(G, r') onto F(G, r), 

where r is the pain-vise disjoint completion ofr'. 

Proof Let r be the pairwise disjoint completion ofr' by adding enough lattice 

operations to maker pairwise disjoint. Thus by the above embeddings and Theorem 3.6, 

F(G, r') exists. Now embed (G, r') into (G, r) by the inclusion map i. Let 'Y' and 'Y be 

the embeddings into the corresponding free extensions. That is 

'Y' : (G, r') -t F(G, r') 

'Y : ( G' r) -t F ( G' r) 

By existence of free extensions, there exists an £-homomorphism, 

,\: F(G, r') -t F(G, r) such that A"'f'(x) = 'Yi(x) = 'Y(x) for all x E G. That is the 

following diagram commutes. 

F(G,r') 

i ,\ 
(G, r) 

~ 
'Y F(G, r) 

Figure 16 -- Disjoint vs Pairwise Disjoint 

Now let y E F(G, r), say y = V /\ "'f(Xij), where Xij E G, and Rand Sare finite index 
R S 

sets. Then we have 

= ,\(x) 
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where x = V /\ 1' ( xiJ.) E F ( G, r'), thus ,\ is an £-epimorphism. Therefore 
R S . 

F(G, r')/ker ,\ ~ F(G, r). 

We now compare an existence theorem used by Weinberg [24], Conrad [6], and Bernau 

[2] to our existence theorem. The theorem below can be found in Conrad [see 5, 

page 6.8, Corollary II]. We then close this chapter with a discussion of the differences 

and similarities of these two theorems, along with some examples. 

Theorem 3.25: [Conrad] For an abelian po-group G, the following are 

equivalent. 

1). There exists a free £-group over G. 

2). There exists an o-isomorphism of G into an £-group. 

3). G+is the intersection of total orders. 

4). The partial order ofG is semi-closed 

Theorem 3.26: For an abelian partial £-group (G, r), the following are 

equivalent. 

1 '). The .free-extension of the partial £-group ( G, r) exists. 

2 '). There exists an embedding of ( G, r) into an £-group. 

3'/4'). The partial lattice operations of rare disjoint, and the elements of these 

operations are (integer) linearly independent. 

Proof" That l' and 2' are equivalent follows from Theorem 3.6. That 2' and 3'/4' 

are equivalent follows from Theorems 2.4, 3.12, and 3.24. 

D 

D 

Example 3.27: Let G = (Z x Z), with r = {(2, 0) /\ (0, 2) = (0, O)}. Then 

Pr= {n(2, 0) + m(O, 2) : n, m 2:: O} and Pr= (Z x zt. Therefore by Theorem 3.26, 
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F ( G, r) exists, and is in fact Z [±] Z. Also note by Theorem 3 .10, that 

F(G, r) = F(G, Pr). See diagram below 

(0,2) 
, (Zl±IZt 

(2,0) 

(G,Pr) (G, Pr)= F(G,r) = z [±] z 

Figure 17 -- Pr not semi-closed, F(G, r) still exists 

On the other hand, (G, Pr) is not semi-closed, since 2(1, 1) = (2, 2) E Pr, but 

(1, 1) r/. Pr. Therefore by Theorem 3.25 Fw(G, Pr) does not exist. 

However, as in Weinberg's case, ifwe assume G is a semi-closed partially ordered group 

with positive cone P, and we let r = { a A O = 0 : a E P}, then our ( G, r) is a partial 

R-group whose only elements are comparable ones. Recall, a ~ b if and only if 

(a - b) ~ 0 if and only if (a - b) AO= 0. Now by Theorem 3.25, Fw(G, P) does exist. 

But by Theorems 3.24 and 3.26, F(G, r) also exists. Ifwe further assume that the 

specific elements that satisfy the partial operations of r are linearly independent, then 

Fw(G, P) ~ F(G, r). 

Theorem 3.28: Under the conditions discussed above, 

Fw(G, P) ~ F(G, r). 

Proof' By Theorem 2.9 PrP = P = P, since Pis semi-closed. Let HE A and 

let i: (G, r) -+ (G, P) be the inclusion map. Let (31 : (G, r) -+ H be a partial 

R-homomorphism. Define (3: (G, P) -+ H by (3(i(x) = (31 (x). Clearly (3 is well-defined. 

It is also clear that (3 is a group homomorphism since (31 and i both are. It remains to 
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show that (3 preserves order. To this end, let x E P. We need to show (3(x) ~ 0. So we 

have 

(3(x) = (3i(x) 

= /31 ( x ), but x E P so x I\ 0 = 0, but /31 is a partial £-homomorphism, so 

~ 0. 

Therefore, (3 is an o-homomorphism. Therefore, A."fi = /31• Hence by uniqueness of the 

free extension, F(G, r) ~ Fw(G, P). That is, the following diagram commutes. 

(G,r) 
't 

(G,P) 
'Y 

Fw(G,P) - -
~ 1/3 / 

/3' ,\ 

H D 

Figure 18 -- F(G, r) ~ Fw(G, P) 

Thus when our r contains the comparable elements, and no others, our free-extension 

coincides with Weinberg's. On the other hand, we .have partial £-groups whose 

free-extensions do exist, that do not exist under Weinberg's existence conditions. We turn 

our attention to the actual construction of the free-extensions in the next chapter. 

54 



Introduction 

Chapter 4 

Construction of Pree Extensions 

With the foundation we now have, we are in a position to construct free extensions of 

partial .e-groups. Showing they exist actually gives us insight into how the construction 

should go. The goal seems straightforward enough, generate an .e-group from G, in such 

a way that all the partial lattice operations still hold, while at the same time, for any 

£-group, H, we have an £-homomorphism, extending G. In other words, our object 

satisfies the universal mapping property. Generating the .e-group is easy enough. It is 

ensuring that we have an £-homomorphism that provides us the challenge. We try to use 

some techniques and ideas of those who have gone before, Weinberg [24 and 25], Bernau 

[2], Conrad [6], and Powell and Tsinakis [17, 18, and 20], to name but a few. The 

approach they have used is both simple and brilliant. Form the direct product of all total 

orders that preserve the partial lattice operations, then generate a sublattice so that the 

mapping property is satisfied. To do this we need some additional notions. 

Positively Independent 

Definition 4.1: A nonempty set A, of a partially ordered abelian group G, is said 

to be positively independent, if for any finite subsets {a1 , ... , an}~ A\{O} and 

{k1, ... , kn} ~ z+, we have ki = 0 for each i = 1, ... ,n, whenever E~=l kiai Ea-. 

An important result from this definition, which we will make repeated use of, follows. 

Theorem 4.2: Let A be a nonempty subset of a partially ordered torsion-free 

abelian group G. There exists a total order on G with positive cone T ~ ( a+ U A) if 
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and only if A is positively independent. 

Proof" ( ---+ ) Suppose there exists a total order on G with positive cone 

T 2 ( a+ U A). Let { a1, ... , an} ~ A\ { 0} and { k1, ... , kn} ~ z+ and suppose 

E7=1 kiai E G-. Now E7=1kiai ET since ki ~ 0 for all i, and {a1, ... ,an}~ A~ T. 

On the other hand E7=1 kiai E -T, since E7=1 kiai E -G ~ -T. Therefore 

E~=l kiai = 0. Now if at least one ki # 0, then kiai can be written as a linear 

combination of the others, so after renumbering, if necessary, k1 a1 = E 7=2 kiai E -T, so 

that k1a1 ET n -T = 0. But G is torsion-free, so ai = 0, a contradiction. Therefore 

ki = 0, for all i = 1, ... , n. 

( +- ) Suppose A is positively independent. Define 

P = {Lniai + g : ni E z+, ai E A, g E G+}. 

Clearly, P 2 (G+ U A). We now show that Pis a positive cone, of some partial order on 

G. That P + P ~ P and g + P - g ~ P both hold, follows easily since G is an abelian 

partially ordered group, and sums of positive integers are positive. Finally, we show that 

P n -P = {O}. To this end, suppose x E P n-P, so x E P and -x E P, that is 

x = Lniai + gi, and 

-x = Lmiai + g2, so that 

0 = L(ni + mi)ai + (91 + 92), thus 

L(ni + mi)ai = -(g1 + 92) Ea-, so 

0 = ni + mi, since A is positively independent 

0 = ni = mi, because ni, mi ~ 0, so we have 

X= 91 

-x = g2, which implies that 

X E G+ n G-, therefore 

x=O. 
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Therefore, P is a positive cone of some partial order on G which is an O* -group. So 

there exists a total order with positive cone T 2 P 2 ( c+ U A). D 

Intuitively, this means that if there exists a positive integer linear combination of elements 

of A that end up in the negative cone, then there is no way to surround both A and c+ by 

a total order. For example, in the following diagram, there is no way to draw a straight 

line, in Z x Z, that keeps A and c+ on the same side of the line. 

Figure 19 -- Positively Independent 

Generated Sublattice 

We now have all the necessary machinery to finish our construction which culminates in 

the following theorem. 

Theorem 4.3 Let G be a torsion-free abelian group with partial lattice 

operations defined by 

r = { ai I\ aj = 0 for i =f- j and i, j E M some index set}. 

Then the free extension of ( G, r) is the sub lattice generated by the diagonal map, 

defined by 
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1(g) = (· · ·, ([±](g + (ai, aj) )r,.), · · ·) 
i cf.j •J 

where A ;s the collection of all total orders extending the partial orders of G / ( ai, aj), 

and 1},j are the positive cones of total orders such that 1},j 2 ( G / ( ai, aj)) + for all 

1},j E A. In other words 

F(G,r) = { ~ ~,(9rs): R, Sarefiniteindexsets}. 

Proof' First, we show I is an embedding. Clearly, 1 is a group homomorphism. 

Next suppose g E ker,, then 1(g) = 0, in other words, g E n (ai, a3-) = {O}, so g = 0, 
icf.j 

hence I is a monomorphism. Now because of the natural epimorphism from 

( G, Pr) ---+ ( G / ( ai, aj), Pr/ ( ai, aj)), every component extends the inherited order from 

(G, Pr). That is, 0 = ,'(0) = 1(ai I\ aj) = 1(ai) I\ ,'(aj), for all i =f. j. Therefore, 1 is a 

partial P-monomorphism .. 

Now let ,6 : ( G, r) ---+ H E A, be a partial P-homomorphism. Without loss of generality, 

we can assume H is totally ordered. This follows because H E A ~ n, the variety of 

representable £-groups. That is, His contained in a product of totally ordered groups, 

each of whose projection maps are onto. Since the free extension, F(G, r), exists there is 

an P-homomorphism A: F(G, r)---+ H so that A1 = ,6. Now H = TI Hi where each Hi 

is totally ordered and each projection map, Ki : H ---+ Hi, is onto. Hence for each i there 

exists a unique Ai such that An = 1ri,6, Thus 

Ai(,(g)) = 1ri(,6(g)) 

= 1ri(A(,(g))), so 

Ai = 1riA, for all i. 

This is illustrated in the following commutative diagram. 
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(G, r) 
'Y F(G,r) 

{3~ /A 
Ai 

H 

Ki~ 
Hi 

Figure 20 -- H E A ~ R, Variety of representable £-groups 

So if x E F(G, r) and A(x) f= Othen Ai(x) = KiA(x) for all i and since Ki are projection 

maps, there exists some i such that KiA(x) -/= 0 hence Ai(x) -/= 0. But Ai is well-defined so 

x f= 0. So whatever happens in H because of\ a similar thing happens in some totally 

ordered group Hi because of the projection map. 

Now ifwe can exhibit an £-homomorphism, 

such that <.p"f = {3, then by uniqueness of free extensions, :F(G, r) will be the sublattice 

generated by 'Y, as described in the theorem. To this end define <.p, by 

<.p(V A"((9rs)) = V Af3(9rs) 
R S . R S 

where R and S are finite index sets. Clearly, <.p is the right map, provided it is 

well-defined! Hence we need only show that 

V A f3(9rs)-/= 0::::} V A "/(Yrs)-/= 0. 
R S R S 

Since, by assumption, H is totally ordered we can break this down into two cases. 

Case 1: V A f3(9rs) > 0. 
R S 
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Then there exists ro such that /\ f3(gr 8 ) > 0 for alls. Hence f3(gr08 ) > 0, for alls. So s 0 

Yras r/:. ker (3, for all s. Now ker f3 is an o-ideal, so G /ker f3 is isomorphic to a subgroup of 

H. Since subgroups of totally ordered groups are totally ordered, G /ker f3 is totally 

ordered, so (Yras + ker /3) > 0, for aH sin G /ker (3. 

Claim 1: {Yras : s ES} is positively independent in G. 
n 

Proof' Suppose L ksYros E a-, ks ~ 0. We need to show that ks = 0, for alls. 
s=1 

n 

But f3(EksYras) EH- since /3 is an o-homomorphism and His totally 
s=l 

n 

ordered, hence Eksf3(gr0s) EH-, but f3(Yras) EH+, for alls, so 
s=1 

n 

ksf3(Yros) EH+, for alls, so Eksf3(Yras) EH+. Hence 
s=1 

n 

L ksf3(Yros) = 0, thus ksf3(9ros) = 0, for all s. But H is torsion-free, so 
s=l 

k8 = 0, for all s. 

Claim 2: {Yras + (ai, aj)} is positively independent in G / (ai, aj), 
n 

Proof' Suppose Lks(Yros + (ai,aj)) E (G/(ai,aj))-, then 
s=1 

n n 

L ksYros + (ai, aj) E a-I (ai, aj), hence E ksYros E a-' so by the 
s=l s=l 

previous claim, ks = 0, for all s. 

Note that in Claim 2 above, we use the fact that ( G / H)- = a-/ H. This follows since, if 

x E ( G /Hf, then x = g + H, with g + H :::; H. So g :::; h', and g - h' :::; 0. Thus 

g - h' E a-' and hence g - h' + H E a-I H. But g - h' + H = g + H = x, so 

X E a- I H. On the other hand, suppose X E a- I H, say X = g + H with g E a-. That 

is, g :::; 0, thus g + H :::; H, so x E ( G / H)-. 
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Therefore, by Theorem 4.2 there exists a total order with positive cone 1ij such that the 

following is true 

V /\ (Yrs+ (ai, aj) )r. .. > 0, therefore 
R S Q 

[±](v /\ (Yrs+(ai,aj))r. .. ) =/-0,thus 
i=/=j R S •J 

II ([±] ( V /\ (Yrs+ (ai, aj) )r. .. )) =/- 0, therefore 
·..J_· R S •J 

T;jEA irJ 

Case 2: V /\ f3(9rs) < 0. 
R S 

Because £-groups are distributive lattices, we'll use the following notation from 

Anderson and Feil [1] and Conrad [5]: 

/\ Vars = V /\ arf(r), where sR is all permutations on R. 
R S 3R R 

So using this and the inverse properties of the lattice operations of £-groups we have 

0 > V /\ f3(9rs), SO 
R S 

0 < -( V /\ f3(9rs)), which is, by lattice inverse operations 
R S 

= I\ V {3(-Yrs), and because £-groups are distributive, this is 
R S 

= V /\ {3(-grf(r)), so there exists an f E SR such that 
sR R 

0 < I\ {3(-grf(r)), for all r ER, therefore 
R 

0 < (3( -grf(r) ), for all r. 
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Hence -grf(r) (/. ker /3, so as with Case 1, {-grf(r)} is positively independent in G. Thus, 

{ -gr f ( r) + ( ai, aj)} is positively independent in G / ( ai, aj). Therefore there exists a total 

order with positive cone T;,j such that the following is true 

( (G / (ai, aj) t, { -grf(r) + (ai, aj)}) C T;,j, thus 

(-grf(r) + (ai, aj))T. > 0, for all r, thus 
•J 

VA (-Yrf(r) + (ai,aj)),,, .. > 0, therefore 
sR R -'iJ 

A V (-Yrs+ (ai, aj) ),,, __ > 0, or equivalently 
RS -'~ 

V A (Yrs + (ai, aj)) < 0, hence 
R S 

11 ([±]( V A (Yrs+ (ai,aj))r,.)) f. 0, therefore 
·...t.· R S 'J 

T;jEA t-rJ 

So c.p is well-defined, and by its definition it is an .e-homomorphism. So by uniqueness of 

free extensions we have 

F(G,r) = {~~,(Yrs): R, Sare.finiteindexsets}. D 
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Introduction 

Chapter 5 

Structure of Free Extensions 

Prior to this we have been concerned with the existence of free extensions of partial 

.e-groups and their construction. We now turn our attention to some of the characteristics 

and attributes contained in the structure of these free extensions. The ideas we discuss in 

this chapter are the subalgebra property, disjoint sets, and cardinal decomposition. 

In universal algebra, the subalgebra property is an important idea that enables one to look 

at smaller objects and still retain the essence of a larger free object. Since we are dealing 

with partial .e-groups, which are partial algebras, we have to define in our context what a 

reasonable subalgebra property is. 

In the study of £-groups, disjoint sets or orthogonal elements have many interesting 

properties. They can be put into equivalence classes called filets or carriers. The 

collection of these carriers forms a lattice. Also each equivalence class, consists of those 

elements that are orthogonal to the same set and forms a convex subsemigroup. Since all 

.e-groups are infinite, and often uncountably infinite, it is interesting that in some cases the 

size of these pairwise disjoint sets cannot be uncountable. 

Finally, an algebra, in a split exact sequence tells you more about the structure of the 

object in question. In £-groups an analogous characteristic is whether or not the object 

has a nontrivial cardinal decomposition. 
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We examine each of these ideas briefly. 

Subalgebra Properties 

In universal algebra, there is really only one reasonable way to define the subalgebra of an 

algebra. However, in our setting we are dealing with partial algebras and as Gratzer [14, 

page 80] points out there are three ways to define a subalgebra of a partial algebra. Using 

his terminology, these are subalgebra, relative subalgebra, and weak subalgebra. Pierce 

[15, page 28] also mentions that there is" ... no obvious "right way" to define subalgebras 

of relational systems." Although there is not universal agreement on what is meant by a 

subalgebra of a partial algebra or rather what is the most useful definition, we get the 

distinct feeling that Grazter and Pierce lean toward the relative subalgebra concept. We 

state this below in universal algebra notation and then in the context of partial £-groups. 

See Gratzer [ 14] and Pierce [ 15] for a more complete discussion of subalgebras. 

Definition 5.1: Let A= (A; Fe)e<p be a partial algebra of similarity type T. A 

subset B of A determines a subalgebra of A if the condition 

b E '.D(Fe) n B7 (e\mplies Fe(b) EB 

is satisfied. An algebra B of type Tis called a subalgebra of A if B ~ A, B determines a 

subalgebra of A, and B = AIB ( = (B; Fen BT(t;))t;<p the restriction of A to B). 

For our purposes we will say the subalgebra property holds for free extensions in the 

variety of £-groups U, if whenever Hand Gare partial £-groups with H ~ G, there is an 

£-monomorphism i.p: Fu(H) --t Fu(G), where Fu(H), Fu(G) are the U-free extensions 

of Hand G, respectively. That is, H ~ G => Fu(H) ~ Fu(G). 

Powell and Tsinakis [ 17 and 18] have shown that the corresponding subalgebra property 
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holds for free products in A, the variety of abelian .e-groups. It is interesting to note that 

there are uncountably many other varieties for which the subalgebra property fails for free 

products (see Powell and Tsinakis [17, 21, and 22]). 

In our setting, however, H and G discussed above are partial .e-groups. Therefore we 

need to modify the definition of the subalgebra property in applying it to free extensions to 

what appears to be the most natural way. Unfortunately this is not as easy as it seems. 

The next theorem shows that the "subalgebra property" holds for a fixed rover two 

different abelian torsion-free groups. 

Theorem 5.2: For afixedr, if (G1, r) ~ (G2, r) then :F(G1, r) ~ :F(G2, r). 

Proof Embed (G1, r) into (G2, r) by the inclusion map, and let lk be 

embeddings into the corresponding free extensions. That is, 

11: (G1,r)--+ F(G1,r) 

12 : (G2, r) --+ F(G2, r). 

Then 12i: (G1, r) --+ :F(G2, r) is a partial f-homomorphism. Hence there exists an 

£-homomorphism ,\1: :F(G1, r)--+ F(G2, r) such that A111 = 12i. That is, the following 

diagram commutes. 

(G1, r) 
11 

:F(G1,r) 

~ 
i 

Figure 21 -- Subalgebra Property 
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But 'Yk (fork= 1, 2) are the diagonal maps from 

defined by 

where ai, aj Er. Now since r is fixed for both G1 and G2 we have that the positive 

cones, P1 and P2, induced by rare the same, say P. But since G1 ~ G2, all total orders 

that extend (G1, P) also extend (G2, P). Thus if A1 is the collection of total orders on 
I 

G1 with positive cone T 2 P and A2 is a similar collection for G2, then A2 2 A1. Hence 

on G1, 'Yl = "'(2 on all total orders in A1. Therefore if x E ker A1, say x = V A "'(1 (xij ), 
R S 

where Rand Sare finite index sets and all Xij E G1, then 

0=,\1(x) 

= A1(V A"'f1(Xij)) 
R S 

=X. 

Thus ,\1 is an £-monomorphism and hence :F(G1 , r) ~ F(G2 , r). 

The next result, using a fixed group G, but different r's, leads us to believe, that the 

subalgebra property fails in the A variety, which we do verify by an example. 

Theorem 5.3: For a fixed group G, if r 1 ~ r 2, then there exists an 
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R-epim01phism .-\1 : F(G, r1) --t F(G, r2). 

Proof Embed (G, r 1) into (G, r 2) by the inclusion map i. Let 'Yi be embeddings 

into the corresponding free extensions. That is 

"/1 : (G, r1) --t F(G, r1) 

"/2 : (G, r2) --t F(G, r2) 

By the existence of free extensions, there exists an £-homomorphism, 

.-\1 : F(G, r1)--+ F(G, r2) such that .-\111 (x) = 12i(x) = 72(x) for all x E G. That is, 

the following diagram commutes. 

"/1 

Figure 22 -- Fixed G, different r's 

Now let y E F(G, r2), say y = V A 72(xij), where Xij E G, and Rand Sare finite index 
R S 

sets. Then we have 

where x = V A 71 (xij) E F(G, r 1). Thus .-\1 is an R-epimorphism. Therefore 
R S 

The following example verifies the above theorem and shows that in some cases the 
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subalgebra property does not hold. 

Example 5.4: 

Let G = Z, 

r 1 = { 0 /\ 0 = 0}, and 

r2 = {1 /\ 0 = 0 /\ 0 = O}, so that 

(G, r1) ~ (G, r2) 

We show that F(G, r 1) <f: F(G, r 2). In particular, F(G, r 2) = (Z, z+), since (G, r 2) 

embeds into (Z, z+) which is an £-group. On the other hand (Z, r1) embeds into 

(Z, {O} ), that is the partially ordered group Z, with the trivial order. But this is the free 

abelian group on one generator and by Birkhoff [3] the free £-group on one generator is 

Z [±] Z, which is not totally ordered. Now since (Z, z+) is totally ordered and all 

£-subgroups of totally ordered groups are totally ordered we have that Z [±] Z <f: Z. 

Disjoint Sets 

Let m be an infinite cardinal. If G is an £-group, then G is said to satisfy the 

m-disjointness condition if every set S of pairwise disjoint elements has cardinality less 

than m. Based on the results above and the results of Powell and Tsinakis [19] we show 

that free extensions of partial £-groups can have uncountably large disjoint sets. 

Weinberg [25] has shown that free extensions of partially ordered groups with the trivial 

order satisfies the N 1 -disjointness condition. This is extension of the fact that free abelian 

£-groups satisfy the N1 -disjointness condition. In general, Powell and Tsinak:is [ 19] have 

shown that free objects in any variety (in a countable language) satisfy the N1-disjointness 

condition. Hence free £-groups in any variety of £-groups have no uncountable disjoint 

sets. However free extensions of partial £-groups is another matter. In the following 
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examples we use the result that for Gi, a collection of totally ordered groups, 

:F( ~ Gi) = LJai. 
iEJ iEJ 

Example 5.5: Let G = Z [±]Zand r == {a I\ 0 = 0: a~ O}. The positive cone 

generated by Pis P = (Z [±] zt. Thus (G, P) is an £-group so that (G, P) = :F(G, r). 

But 

:F(Z [±] Z, r) ~ Z U Z 

~ (Z [±] Z) U (Z [±] Z) 

~ :F ( { X1, X2}) 

and since :F( { x1, x2}) satisfies the Ni-disjointness condition (Powell [19] and 

Weinberg [25]), so does :F(Z [±] Z, r). 

Example 5.6: Let G = R [±] R, with r as in the previous example, so that the 

positive cone generated by r is P = (R [±] R) +. Powell and Tsinakis [ 19] have shown 

that R U R has an uncountably large disjoint set and since :F (R [±] R, r) ~ R U R, then 

:F(R [±] R, r) also has an uncountably large disjoint set. 

In light of the subalgebra property discussed above for a fixed rand G1 ~ G2, if A is a 

disjoint set of :F(G1 , r) then A will also be a disjoint set of :F(G2 , r). So we only need 

look at disjoint sets in "small" groups for a fixed r. 

Cardinal Decomposition 

For an £-group, G, to be cardinally indecomposable means that G cannot be written as a 

nontrivial cardinal sum, that is if G = H [±] K, then either Hor K is 0. Unlike the 

results of Bernau [2] and Powell and Tsinakis [16], free extensions of partial £-groups can 
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be cardinally decomposed. 

Example 5. 7: Let G = [±] zn and r = { ei A ej = 0 : i =f=. j, where ei is the 

standard basis vector for zn}. Then the positive cone generated by r is Pr= ( [±] zn)+ 

and hence ( G, Pr) is an £-group. Thus :F( G, Pr) = [±] zn. 
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Chapter 6 

Construction from Simple r 

Introduction 

While the construction of free extensions of a partial £-group ( G, r) are of interest for 

arbitrarily larger, it is frequently the case that the free extension of an abelian group with 

only a very small r may be equally important. In this chapter we look at some special sets 

r of partial operations and determine corresponding free extensions. 

One Comparable Lattice Operation 

Let r = { a A O = 0}. For ( G, r) to be embedded in an £-group we need a positive cone 

P on G with a E P. 

Theorem 6.1: P = { na : n 2'.: O} is a positive cone of Gin which r is preserved 

Proof' Recall from Theorem 1.2, for P to be a positive cone it must satisfy the 

following three properties: 

(I) P+P ~ P; 

(2) g + P - g ~ P; and 

(3) P n -P = {O}. 

( 1) and ( 2) are trivial since the sum of positive integers is positive and G is abelian. 

To prove (3), let x E P n -P, then x E P and -x E P. Sox= na and -x = ma for 

some n, m 2'.: 0. Hence ( n + m )a = 0, but G is torsion-free and a =I- 0, so n + m = 0. 

But n, m 2'.: 0, son= m = 0, therefore x = 0. That r is preserved in P follows easily 

from the fact that O is a lower bound of O and a, and if d is any other lower bound, then 

d :::; 0, therefore O = inf{ a, O} in P. D 
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We can easily generalize the above in the case where r = { a A b = a}, just define 

P = {n(b - a) : n :2: O}. 

Since P only contains comparable elements we can apply Weinberg's construction to 

obtain F(G, P). However, Weinberg required that P be semi-closed. He needs this 

because his construction is based upon P = n T, where the intersection is over all total 

orders that contain P. This is true if and only if Pis semi-closed (see Conrad [5]). Since 

P £;;; P, we can embed P into P via the inclusion map and apply Weinberg's construction 

to P. This is the sub lattice generated by the diagonal map of the direct product over A, 

the collection of all total orders with positive cone T, containing P. That is, the natural 

sub lattice of il ( G, T E r). So if ,y: ( G, P) --+ F ( G, P) is an embedding and H E A and 

(3: ( G, P) --+ H is a partial o-homomorphism, then there exists a unique o-homomorphism 

,\: F(G, P) --+ H such that ,\,y = (3. That is, the diagram below commutes. 

(G, P) 
'Y 

F(G, P) 

Figure 23 -- Simple r -Weinberg case 

Two questions come to mind: Does F( G, r) exist? If so, what does it look like? 

Theorem 6.2: F(G, r) exists and F(G, r) ~ F(G, P), where 

P = {x E G: nx E P, n :2: O} and P = {na: n :2: O}, as defined earlier. 

Proof' This follows as an easy application of Theorems 3.6 and 3.10. D 

One Non-comparable Lattice Operation 

Let r = { a A b = O : a, b, 0 all distinct}. Does F( G, r) exist, and if so, what does it look 

like? According to Theorem 3. 6, F ( G, r) exists if and only if ( G, r) can be embedded in 
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an £-group by some partial £-homomorphism. We approach the problem like we did in the 

earlier chapters. First embed (G, r) into a po group, i.e. (G, P), such that the lattice 

operations in rare preserved in P. Then embed (G, P) in an £-group, so·we can apply 

Theorem 3.6 to ensure the existence of :F(G, r). By then, it will be more clear what the 

free extension should look like. First notice when the free extension does not exist. 

Theorem 6.3: If a, bare integer dependent (i.e. there exist integers n, m f. 0 yet 

na = mb ), then the free extension does not exist. 

Proof Suppose the free extension does exist. Since it is an £-group we must have 

a I\ b = 0, but na = mb, and neither n not mis 0. Without loss of generality, suppose 

n ~ m, then 

n-m ~ 0, so 

(n - m + m)a = mb, hence 

(n - m)a +ma= mb, so that 

ma::; mb, thus 

m(b - a) ~ 0, but £-groups are semi-closed, so 

b - a ~ 0, hence 

b ~ a, which finally leads to 

a = b I\ a = 0, a contradiction. 

Theorem 6.4: If a and b are linearly independent with respect to integers, then 

there exists a positive cone P, such that r is presen,ed 

Proof Suppose a, bare integer linearly independent, i.e. 

na + mb = 0 => n = m = 0. Define P = { na + mb : n, m ~ O}. As before, for P to 

be a positive cone it must satisfy the following three properties: 

(1) P+P ~ P; 
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(2) g + P - g ~ P; and 

(3) P n-P = {O}. 

( 1) and ( 2) are clear since the sum of positive integers is positive and G is abelian. 

(3) Let x E P n -P. So we have x E P and -x E P, thus 

x = na + mb, and 

-x = ra + sb, for some n, m, r, s 2'. 0, thus 

0 = (n + r)a + (m + s)b, so by linear independence, 

0 = n + r = m + s, and since n, m, r, s 2'. 0, 

0 = n = r = m = s, therefore 

x=O. 

Finally, we must show r is preserved in P, that is O = a I\ bin P or equivalently, 

0 = inf(a, b) in P. Clearly a, b 2'. 0, so suppose a, b 2'. d, hence a - d, and b - d E P. 

Hence 

a - d = n1 a + m1 b and 

b - d = n2a + m2b for n1, m1, n2, m2 2: 0, these imply 

(*) - d = (n1 - l)a +m1b and 

- d = n2a + (m2 - l)b, subtracting this from (*)yields 

0 = (n1 - 1 - n2)a + (1 + m1 - m2)b, which implies 

0 = (n1 - 1 - n2) = (1 + m1 - m2), hence 

n1 - 1 = n2 2: 0, thus from ( *) we have - d E P or 

d ::; 0, therefore 

0 = inf{ a, b}. 

The above work can be generalized as follows. Suppose r = { a I\ b = c} and that 

( a - c) and ( b - c) are linearly independent. We then define 

P = {n(a - c) + m(b - c): n, m 2'. O}. By an argument similar to the one above we 
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can show P is a positive cone for a partial order on G. We can further claim that not only 

is a I\ b = c in P, but (a - c) /\ (b - c) = 0 in P. 

First we show c = inf(a, b) in P. Clearly c :s; a, b since (a - c) and (b - c) E P. So 

supposed :s; a, b, then (a - d) and (b - d) E P, so we have 

a - d = n1 ( a - c) + m1 (b - c) 

b - d = n2(a - c) + m2(b - c), and these lead to 

~ d = ( n1 - 1 )a - n1 c + m1 (b - c ), and 

- d = n2(a - c) + (m2 - l)b - m2c, which lead to 

(*) c - d = (n1 - l)(a - c) +m1(b- c), and 

c - d = ~(a - c) + (m2 - l)(b - c), subtracting these two give 

0 __:_ (n1 - 1 - n2)(a - c) + (m1 - m2 + l)(b - c), hence 

0 = n1 - 1 - n2 = m1 - m2 + 1, which follows from independence, so 

n1 - 1 = n2 2: 0, so from ( *) we have that 

c - d 2: 0, so c 2: d, therefore 

c = inf{ a, b} in P. 

Finally we show O = inf{ ( a - c), (b - c)}. Clearly O is a lower bound since ( a - c) and 

(b - c) E P. Next supposed :s; a - c and b - c, hence d + c :s; a, b, sod+ c is a lower 

bound for a, b, hence d + c :s; c = inf( a, b). Therefore d :s; 0, so 

0 = inf{(a - c), (b - c)}. Hence (a - c) I\ (b - c) = 0 in P. 

We wish to embed (G, P) into an £-group so we can invoke Theorem 3.6 to prove 

:F(G, P) exists. Here is a brief plan of attack: 

1). Look at some of the properties of the normal convex subgroup generated by a, 

denoted by (a) = { x E G : na :s; x :s; ma, for some n, m E Z} 
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2). Look at some of the properties of the pure closure of (a), denoted by 

(a) = { x E G : nx E (a) for some n E Z}. This is the smallest pure subgroup 

containing (a). 

3). Look at some of the properties of the semi-closure of P, denoted by 

P = { x E G : nx E P, for some n E N}. 

4). Embed (G, P) ~ (G, P). 

5). Since G is torsion free and (a) is pure, then G / (a) is torsion free and hence G / (a) is 

an O* -group, so there exists a total order with positive cone T 1, extending G / (a). 

6). Since the above works equally well for G / (b), we will have the following 

embeddings: 

(G,r) ~ (G,P) ~ (G,P) ~ (G/(a)[±]G/(b)) ~ ((G/(a),T1)[±](G/(b),T2)). 

Therefore by Theorem 3. 6, :F ( G, r) exists. 

Now for some of the details. First, some properties of (a) and (b). 

Theorem 6.5: (a) is the infinite cyclic group [a] generated by a. 

Proof Clearly [a] ~ (a), since na ::; na ::; na. Now let g E (a), so ra ::; g ::; sa, for 

some r, s E Z. Hence (g - ra) and (sa - g) E P. So we have the following: 

g - ra = n1a + m1b and 

sa - g = n2a + m2b, now these lead to 

(1) g = (r + n1)a + m1b, and 

(2) - g = (n2 - s)a + m2b, adding (1) and (2) yield 

0 = (r + n1 - s + n2)a + (m2 + m1)b, so by linear independence 

0 = m2 + m1, but m1, m2 ~ 0, so 

0 = m1 = m2. Thus by (1) 

g = (r+n1)a E [a]. So 
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(a) ~ [a], therefore 

(a)=[a]. 

Theorem 6.6: (a) n (b) = {O}. 

Proof' Let x E (a) n (b), hence by the previous theorem, x E [a] n [ b ]. So 

D 

x = na and x = mb, thus na = mb, and by independence, n = m = 0, so x = 0. D 

Theorem 6.7: (a) n (b) = {O}. 

Proof' Let x E (a) n (b), so nx E (a) and mx E (b), for some n, m E Z. Hence 

nmx E (a) n (b) = {O}, but G is torsion free, so x = 0. D 

Since (a) is a normal convex pure subgroup, G / (a) makes sense and inherits the order 

from G. This holds equally well for G / (b), so define a as follows: 

a: (G,P) ---t (G/(a)[±]G/(b)) bya(g) = (g+ (a), g+ (b)). 

We show the following: 

Theorem 6.8: a is a partial f-monomorphism. 

Proof' a is a group homomorphism: 

a(g+h) = (g+h+ (a), g+h+ (b)) 

= (g +(a)+ h + (a), g + (b) + h + (b)) 

= (g +(a), g + (b)) + (h + (a), h + (b)) 

= a(g) + a(h). 

a is 1 - 1: Suppose a(g) = a(h), then 

77 



0 = a(g - h), so 

= (g - h + (a), g - h + (b) ), thus 

g - h E (a), and 

g - h E (b), hence 

g - h E (a) n (b) = 0, therefore 

g=h. 

a preserves order: This follows since ( G / (a))+ inherits the order from P via the 

natural map. Therefore, a is an o-monomorphism. 

Finally, a is a partial £-monomorphism. Since our only partial lattice operation in 

r is a I\ b = 0, we only need to show that a(a I\ b) = a(a) I\ a(b). And since a I\ b = 0, 

we only need show a(a) I\ a(b) = a(O) = ((a), (b)). We'll do this by showing: 

inf{ a(a), a(b)} = ( (a), (b) ). First ( (a), (b)) is a lower bound since a, b ~ 0, hence 

a(a) = ( (a), a+ (b)) ~ ( (a), (b) ), and similarly a(b) = (b + (a), (b)) > ( (a), (b) ). Now 

suppose k E (G/ (a) [±JG/ (b)) is a lower bound for {a(a), a(b)}. So 

k = (g + (a), h + (b)) ::S a(a), a(b ). Hence (g + (a), h + (b)) ::S ( (a), (b) ). Therefore 

( (a), (b)) = inf{ a(a), a(b)} = a(a) I\ a(b). D 

Now since (a) and (b) are pure subgroups, by an earlier property G / (a) and G / (b) are 

torsion free. So G / (a) and G / ( b) are CJ* -groups, hence there exist total orders with 

positive cones T1 and T2, respectively, extending the orders of G / (a) and G / (b). This 

completes all our embeddings stated earlier, so by Theorem 3.6, :F(G, r) exists. To 

recap, we have the following embeddings: 

(G,r)---t (G,P)---t (G,P)---t (G/(a)[±]G/(b))---t ((G/(a),T1)[±](G/(b),T2)). 

Now lets see what :F(G, r) looks like. 
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Theorem 6.9: :F( G, r) = { V /\ 'Y(9jk) : J, Kare finite index sets}. This is the 
J K 

sublattice generated by the diagonal map 

'Y: (G,r) ~ Il((G/(a),Ta)[±](G/(b),Tb)) 
A 

de.fined by 

7(g) = ( .. ·, (g + (a),g + (b) ), .. ·) 

where A is an index set over total orders with positive cones Ta and n such that 

Ta,n 2 (G/(a))+,(G/(b)t, respectively. 

Proof' Now if 7(g) = 0 then g E (a) n (b) hence g = 0, so 'Y is 1 - 1. And because of 

the natural epimorphism, (G / (a),P /(a)) inherits the order from (G, P), thus every 

component of the direct product maintains the meet (i.e. a I\ b = 0), hence 

7( a I\ b) = 7( a) /\ 'Y(b). Therefore 'Y is a partial £-monomorphism. 

Now let (3 : ( G, r) ~ H E A, be a partial £-homomorphism. Without loss of generality, 

we can assume H is totally ordered. If we can exhibit an £-homomorphism, 

t.p: Il((G/(a),Ta)[±](G/(b),Tb)) ~ H 
A 

such that 'P'Y = {3, then by uniqueness of free extensions, :F(G, r) will be the sublattice of 

Il((G/(a), Ta)[±] (G/(b), n)) generated by T To this end define t.p, by 
A 

t.p( V /\ 'Y(Yrs)) = V /\ f3(9rs), where R, Sare finite index sets. Clearly, t.p is the right 
RS RS 

map, provided it is well-defined! Hence we need only show that 

V /\ f3(9rs) =f. 0 :::} V /\ 'Y(Yrs) =f. 0. Since His totally ordered we can break this down 
R S R S 

into two cases. 

Case 1: V /\{3(grs) > 0. 
R S 
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Then there exists ro such that A /3(Yros) > 0 for alls, hence /3(yr0J > 0, for alls. So 
s 

Yros ¢:. ker (3, for all s. Now ker (3 is an o-ideal, so G /ker (3 is isomorphic to a subgroup 

of H. Since subgroups of totally ordered groups are totally ordered, G /ker (3 is totally 

ordered, so (Yros + ker /3) > 0, for alls in G /ker (3. 

Claim 1: {Yros : s E S} is positively independent in G. 
n 

Proof: Suppose E ksYros E a-, ks ~ 0. We need to show that ks = 0, for alls. 
s=l 

n 

But /3(EksYros) EH- since (3 is o-homomorphism and His totally ordered, hence 
s=l 

n 

E ksf3(Yros) E H-, but /3(Yros) E H+,for alls, SO ksf3(Yros) E H+, for alls, SO 
s=l 

n n 

Eksf3(Yros) EH+. Hence Eksf3(YroJ = 0, thus ksf3(Yros) = 0, for alls. But His 
s=l s=l 

torsion-free, so ks = 0, for all s. 

Claim 2: {9ros + (a)} is positively independent in G / (a). 
n n 

Proof' Suppose Eks(Yros + (a)) E (G/(a))-, then EksYros + (a) Ea- /(a), 
s=l s=l 

n 

hence E ksYros E a-, so by the previous claim ks = 0, for all s. 
s=l 

Therefore there exists a total order with positive cone T~ such that the following hold: 

T~ ::> ((G/(a))+, {Yros + (a)}) 

(Yros +(a)) > 0, for alls, therefore 

A (Yros +(a)) > 0, thus 
s 

V A (Yrs + (a)) > 0, therefore 
R S 

V A "/(Yrs) =f. 0 in Il((G/(a), Ta)[±] (G/(b), n)). 
R S A 

Case 2: V A /3(Yrs) < 0. 
R S 
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Because £-groups are distributive lattices, we'll use the following notation from 

Anderson and Feil ( and Conrad): 

So we have 

A Vais = V A aif(i), where SR is all functions f: R --t S. 
R s sR R 

0 > V A f3(9r8 ), SO 
R S 

0 < -( V A f3(9r8 )) = A V {3(-grs) 
R S R S 

= V A {3(-grf(r)), so there exists an f E SR so that 
sR R 

0 < A {3(-grf(r)), for all r ER, therefore 
R 

0 < {3(-grf(r)), for all r. 

Hence -grf(r) fl_ ker {3, so as with the first case, { -grf(r)} is positively independent in G. 

Thus, { - 9r 1 ( r) + (a)} is positively independent in G / (a). Therefore there exists a total 

order with positive cone T~ such that 
, ~+ ~ 

T0 :J ((G/(a)) , { -grf(r) + (a)}) so that 

0 < (-grf(r) +(a)), for all r E R, hence 

0 < A (-grf(r) + (a)), SO 
R 

0 < V A (-grf(r) +(a)), which is 
sR R 

= A V (-grs + (a)) 
R S 

= - V A (9rs +(a)). 
R S 

Therefore O > V A (9rs +(a)), thus 
R S 

So "Y is well-defined and we are done! Note that throughout all this we could have 
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generalized tor= { a Ab= e: a, b, e all distinct}. We would have then defined 

P = { n( a - e) + m(b - e) : n, m ~ O}. 

Three Pairwise Disjoint Partial Lattice Operations 

Theorem 6.10: Let r = {a Ab= b A e = a Ac= O}, with a, b, e, 0 all distinct, 

further suppose a, b, e are linearly independent with respect to integers. De.fine 

P = { na + mb + re : n, m, r ~ O}, then P is a positive cone of G. 

Proof Clearly P + P ~ P and g + P - g ~ P, since the sum of positive 

integers is still positive and G is abelian. So we need to show: P n -P = {O}. To this 

end, let x E P n -P, then x E P and -x E P. So we now have 

x = n1 a + m1 b + r1 e and 

-x = n2a + m2b + r2e for some ni, mi, ri ~ 0, i = 1, 2. Hence 

0 = (n1 + n2)a + (m1 + m2)b + (r1 + r2)e. 

But a, b, e are linearly independent, so n1 + n2 = m1 + m2 = r1 + r2 = 0, but 

ni, mi, ri ~ 0, so n1 = n2 = m1 = m2 = r1 = r2 = 0. Therefore x = 0. 

Theorem 6.11: Jfr = { a Ab = b A e = a A e = O} and a, b, e are linearly 

dependent, then the free extension does not exist. 

Proof For suppose the free extension does exist, and na + mb +re= 0 where 

not all n, m, rare 0. Then consider the following cases. 

Case 1: n,m,r ~ 0. Then -na = mb +re E P, so na, -na E P, hence 

na = 0. But G is torsion free so a= 0, a contradiction. 

Case 2: n, m, r :'.S 0. This is similar to Case 1. 

Case 3: Some coefficients are positive and some are negative. Leave all positive 

coefficients alone and move all negative coefficients to the other side. Hence both the left 

hand side and right hand side are positive, say na = -mb - re. So that na ~ -mb thus 
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na I\ -mb = -mb, but a I\ b = 0, so na I\ -mb = 0. Hence -mb = 0 and since G is 

torsion free, b = 0, a contradiction. 

Theorem 6.12: r is preserved in P. That is, 

0 = inf{ a, b} = inf{ a, c} = inf{ b, c} in P. 

Proof' We'll show O = inf{ a, b }, since the others follow analogously. Clearly 

a, b 2:: 0 since a, b E P, hence O is a lower bound. So suppose f ~ a, b. We need to 

show f ~ 0. But since f ~ a, b, then a - J, b - f E P. Hence we have 

a - f = n1 a + m1 b + r1 c and 

b - f = n2a + m2b + r2c, these imply 

(*) -f = (n1 - l)a + m1b + r1c, and 

- f = n2 a + ( m2 - 1 )b + r2c, subtracting from ( *) we have 

0 = (n1 - 1 - n2)a + (m1 + 1 - m2)b + (r1 - r2)c, 

0 = n1 - 1 - n2 = m1 + 1 - m2 = r1 - r2, from independence, so 

0 ~ n2 = n1 - 1, so by ( * ), 

- f E P, therefore 

f ~ 0. 

Now consider (a, b), (a, c), (b, c), the convex normal subgroups generated by {a, b}, 

{ a, c }, {b, c} respectively. So in particular 

(a, b) = {x E GI n1a + m1b ~ x ~ n2a + ffi2b, where ni, mi E Z}. 

Theorem 6.13: (a, b) = {x E GI x = na + mb, with n, m E Z}. 

Proof' Let x E (a, b) then n1a + m1b ~ x ~ n2a + ffi2b, so x - (n1a + m1b) 

and n2a + m2b - x are both in P, thus we have 

x - (n1a + m1b) = n3a + m3b + r3c 
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(1) x = (n1 + n3)a + (m1 + m3)b + r3c 

-x = (n4 - n2)a + (m4 - m2)b + r4c 

0 = (n1 +n3 +n4 - n2)a 

+ (m1 + m3 + m4 - m2)b + (r3 + r4)c, so 

r3 = r4 = 0, from independence and since r3, r4 2: 0, so by (1) 

x = na+mb. 

Theorem 6.14: (a, b) n (a, c) n (b, c) = {O}. 

Proof Suppose x is in the intersection, then we have 

x = na + mb = ra + sc = qb + tc, thus we get 

0 = ( n - r )a + mb - sc, and 

0 = ra - qb + (s - t)c, and by independence we have 

0 = n - r = m = s = q = r = s - t, hence 

x=O. 

Theorem 6.15: (a, b) n (a, c) n (b, c) = {O}. 

D 

D 

Proof This follows from theorem above. Suppose x is in the intersection. Then 

nx E (a, b), mx E (a, c), and rx E (b, c), thus nmrx E (a, b) n (a, c) n (b, c). Hence 

nmrx = 0. But G is torsion free, so x = 0. 

Theorem 6.16: a I\ b = a I\ c = b I\ c = 0 still holds in P. 

Proof Recall P = {x E G: nx E P}. 

Since a, b E P ~ P, then a, b 2'. 0 in P. So suppose e ::S a, bin P, then a - e and 

b - e E P. Thus n(a - e) and m(b - e) E P, for some n, m EN. Hence 

(1) n(a - e) = n1a + m1b + r1c 

(2) m(b - e) = n2a + m2b + r2c, now (1) and (2) lead to 
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(3) -ne = (n1 - n)a + m1b + r1c 

(4) -me= n2a + (m2 - m)b + r2c, multiply (3) by m and (4) by n 

(5) -mne = m(n1 - n)a + mm1b + mr1c 

(6) -nme = nn2a + n(m2 - m)b + nr2c, by independence we have 

m(n1 - n) = nn2 ~ 0, and m ~ 0, hence n1 - n ~ 0, thus by (3) -ne E P. 

Thus n(-e) E P, so -e E P, hence -e ~ 0, so that e :S 0. Therefore O = inf{ a, b} in 

P, or a I\ b = 0 in P. A similar argument works for a I\ c and b I\ c in P. D 

Following the earlier plan of attack we now wish to embed ( G, P) into some O* -group. 

Define a: (G, P) ---+ (G / (a, b) [±] G / (a, c) [±] G / (b, c)) by the following 

a(g) = (g + (a, b), g + (a, c), g + (b, c) ). We need to show a is an £-monomorphism: 

Clearly a is a a-homomorphism, since ( G / ( a, b)) + is the image of P under the natural 

homomorphism of G onto G / (a, b). That a is 1 - 1 follows from theorem 6.15 above. 

Suppose a(g) = a(h). Then a(g - h) = 0 = ( (a, b), (a, c), (b, c) ). Thus 

g- h E (a,b) n (a,c) n (b,c) = 0. So, g = h. 

Finally we need to show a preserves the lattice operations: 0 = a(a I\ b) = a(a) I\ a(b). 

So we must show that ( (a, b), (a, c), (b, c)) = inf{ a(a),a(b )}. Now a(a) ~ 0, since 

a~Oanda(a)=((a,b), (a,c), a+(b,c))~((a,b), (a,c),(b,c))=O. Sopick 

k E (G / (a, b) [±] G / (a, c) [±] G / (b, c) ), such that k '.S a(a ), a(b ). We need to show 

k '.S 0. Say k = (g1 + (a, b), g2 + (a, c), g3 + (b, c) ), then we have 

k '.S ( (a, b), (a, c) , a+ (b, c)) and 

:S((a,b),b+(a,c), (b,c)),so 
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g1 + (a,b) :s.; (a,b) 

g2 + (a, c) :s.; (a, c) 

g3 + (b, c) :s.; (b, c), therefore 

k :s.; 0. 

Therefore, a( a) /\ a(b) = 0. The other lattice operations follow analogously. Hence we 

have that a is an £-monomorphism. 

Now since (a, b), (a, c), (b, c) are pure then G / (a, b), G / (a, c), and G / (b, c) are torsion 

free, hence O* -groups. So there exist total orders, hence forming £-groups, with positive 

cones Ti, T2, and T3, extending G / (a, b), G / (a, c), and G / (b, c), respectively. This 

completes all our embeddings (shown below), so by Theorem 3.6, :F(G, r) exists. We 

have established the following embeddings: 

(G, r) -+ (G, P) -+ (G, P) 

-+ (G/(a,b)[±]G/(a,c)[±]G/(b,c)) 

-+ ((G / (a, b), T1) [±] (G / (a, c), T2) [±] (G / (b, c), T3)). 

Finally, we have 

Theorem 6.17: :F(G, r) = { V /\ "!(9sk) : J, Kare finite index sets}. That is, 
J [( 

:F(G, r) is the sublattice generated by the diagonal map 

"/: (G,r)-+ IJ((G/(a,b),T1) [±] (G/(a,c),T2) [±] (G/(b,c),T3)) 
A 

where "I is defined by 7(g) = (· · ·, (g + (a, b), g + (a, c), g + (b, c) ), · · · ), and A 

is an index set over total orders with positive cones as discussed above. 

Proof The proof of this claim is identical to the one given earlier. 

86 



Bibliography 

[1] M. Anderson and T. Feil, Lattice-Ordered Groups, An Introduction, Kluwer 
Academic Publishers, 1988. 

[2] S. Bernau, "Free Abelian Lattice Groups", Math. Ann. 180(1969), 48-59. 

[3] G. Birkhoff, Lattice Theory, 3rd ed, Amer. Math. Soc. Colloq. Puhl. 25, 
Providence, 1967. 

[4] G. Birkhoff, "What Can Lattices do for You?", J.C. Abbott (ed.), Trends in 
LATTICE THEORY, 1-40, by Van Nostrand Reinhold Co.,1970 

[5] P. Conrad, Lattice-Ordered Groups, Tulane University, New Orleans, 1970. 

[6] P. Conrad, "Free Lattice-Ordered Groups", J. Algebra 16(1970), 191-203. 

[7] R. Dedekind, "Uber Zerlegungen von Zahlen <lurch ihre grossten gemeinsammen 
Teiler", Festschrift Techn. Hoch. Branuschweig (1897), and Ges. Werke, Vol. 2, 
103-148. 

[8] R. Dedekind, "Uber die von drei Moduln erzeute Dualgruppe", Math. Ann. 
53(1900), 371-403, and Gest. Werke, Vol. 2, 236-271. 

[9] L. Fuchs, Partially Ordered Algebraic Systems, Permagon Press, Oxford, 1963. 

[10] L. Fuchs, Teilweise geordnete algebraische Strukturen, Vandenhoeck and 
Ruprecht,, Gottingen, 1966. 

[11] G. Gratzer and E. T. Schmidt, "Characterizations of congruence lattices of abstract 
algebras", Acta. Sci. Math. 24(1963), 34-59. 

[12] G. Gratzer, Lattice Theory, First Concepts and Distributive Lattices, W.H. Freeman 
and Company, San Francisco, 1971. 

[13] G. Gratzer, General Lattice Theory, Academic Press, New York, 1978. 

[14] G. Gratzer, Universal Algebra, 2nd ed, Springer-Verlag, New York, 1979. 

[15] R. S. Pierce, Introduction to the Theory of Abstract Algebras", Holt, Rinehart, and 
Winston, New York, 1968. 

[16] W. B. Powell and C. Tsinakis, "Free products of abelian £-groups are cardinally 
indecomposable", Proc. Amer. Math. Soc. 86(1982), 385-390. 

[17] W. B. Powell and C. Tsinakis, "Free products in the class ofabelian £-groups", 
Paci.fie J. Math. 104(1983), 429-442. 

88 



NOTE 

ATTENTION: page 87 is not missing. The Author has informed us that 
the pages are just miss-numbered. 

OSU Library 
Bindery Processing Unit 



[18] W. B. Powell and C. Tsinakis, "Free products oflattice ordered groups", Algebra 
Universalis 18(1984), 178-198. 

[19] W. B. Powell and C. Tsinakis, "Disjointness conditions for free products of 
£-groups", Arkiv. der Math. 46(1986). 491-498. 

[20] W. B. Powell and C. Tsinakis, "Free Products in Varieties of Lattice-Ordered 
Groups", A.M.W. Glass and W.C. Holland (eds.), Lattice-Ordered Groups, 278-
307, Kluwer Academic Publishers, 1989 . 

[21] W. B. Powell and C. Tsinakis, "Amalgamations ofLattice-Ordered Groups", 
A.M.W. Glass and W.C. Holland (eds.), Lattice-Ordered Groups, 308-327, 
Kluwer Academic Publishers, 1989 . 

[22] W. B. Powell, "Universal Aspects of the Theory of Lattice-Ordered Groups", J. 
Martinez (ed.), Ordered Algebraic Structures, 11-49, Kluwer Academic 
Publishers, 1989 . 

[23] J. Rotman, lhe Theory of Groups, Boston, Allyn and Bacon, 1965. 

[24] E.C. Weinberg, "Free Lattice-ordered Abelian Groups", Math. Ann. 151(1963), 
187-199. 

[25] E.C. Weinberg, "Free Lattice-ordered Abelian Groups. II", Math. Ann. 159(1965), 
217-222. 

89 



VITA 

Robert R. DeCloss 

Candidate for the Degree of 

Doctor of Philosophy 

Dissertation: FREE EXTENSIONS OF PARTIAL £-GROUPS 

Major Field: Mathematics 

Biographical: 

Personal Data: Born in Long Beach, California, February 4, 1948, the son of 
Irvine D. and Elva J. DeCloss. 

Education: Graduated from Watsonville High School, Watsonville, CA in June 
1966. Received Bachelor of Arts degree in Mathematics from Point Loma 
Nazarene College (formerly known as Pasadena College) in June 1970. 
Received Master of Arts degree in Mathematics in June 1972 from 
Claremont Graduate School. Completed the requirements for the Doctor 
of Philosophy degree with a major in Mathematics at Oklahoma State 
University in December 1994. 

Experience: After receiving master's degree, went to work for computer company, 
started computer consulting firm in 1982, in 1986 went to Northwest 
Nazarene College in Nampa Idaho to teach mathematics. Came to 
Oklahoma State University in 1990 to start work on Ph.D. 

Professional Memberships: American Mathematical Society, Mathematical 
Association of America. 




