EFFECTS OF A KNOWLEDGE CONSTRUCTION
 EXERCISE ON THE FORMATION AND
 EVALUATION OF SOCIAL STUDIES
 GENERALIZATIONS AND STUDENT
 AUTHORITARIAN ATTITUDES

By
CLARANCE HENRI BENES

Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma
1982

Master of Science Oklahoma State University Stillwater, Oklahoma 1989

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF EDUCATION

December, 1994

EFFECTS OF A KNOWLEDGE CONSTRUCTION
 EXERCISE ON THE FORMATION AND EVALUATION OF SOCIAL STUDIES GENERALIZATIONS AND STUDENT AUTHORITARIAN ATTITUDES

Thesis Approved:

ACKNOWLEDGMENTS

I received a tremendous amount of support from numerous people. All are greatly appreciated and I wish to acknowledge those who helped me through some difficult times.

Committee members were especially helpful and each deserve special recognition for their contribution to this work. Dr. C. Warren McKinney was instrumental in getting me started in this research. Dr. Kay Bull spent hours on the phone with me working out details of the study. Dr. Gretchen Schwarz was supportive of me following my accident and I will always remember that kindness. Indeed all members were understanding and supportive during the months following the accident and I thank them.

A special thanks goes to my committee chair, Dr. John Steinbrink. He was always able to motivate me to the exact degree necessary and appropriate. I always felt that he believed I could finish even when my own doubts were monumental.

Emeritus professors Dan Selakovich and Russell Dobson deserve recognition for always being inspirational models for me.

A warm thanks goes to "Marvelous Marian" whose greetings made going up to the third floor of Gundersen a great pleasure.

My family deserves a different kind of thanks and gratitude for they gave me reasons to continue. My lovely wife Anne spent hours editing and supported me in numerous other ways. My son Peter has always been a joy, and I wanted to graduate before he did. Finding my daughter Angela after a twenty year search reminded me that perseverance pays off dearly. My dad and mom, who always believed in higher education and made it possible for their children, are happy to see this dream come true. I thank them and I am glad to be able to make them proud.

A special debt is owed to my grandmother, Barbora Altman, who in 1879 at age nine came to America along with her eleven year old brother, Karel. After being rejected by their stepmother who "didn't want the little brats around," she was able to find her uncle in Nebraska and start a new life and family there. I thank her for her courage and may she rest in peace.

Thanks to Sheba, our cat, who taught me how to rest those months following the accident. Also a thanks to the now departed Tom who taught me that you can still have fun even when you are in pain. May he stalk with pleasure at the Rainbow Bridge until I come looking for him.

TABLE OF CONTENTS

PAGE
INTRODUCTION 1
A. Background 1
B. Statement of the Problem 7
C. Purpose of the Study 9
D. Research Hypothesis 10
E. Assumptions 11
F. Definitions of Terms 11
G. Limitations of Study 13
II. REVIEW OF THE LITERATURE 15
A. Philosophical History 15
B. Definitions and Terminology 20
C. Generalization Formation as Critical Thinking 25
D. Teaching Generalizations 27
E. Early Research. 28
F. Critical Thinking Training \& Student Attitudes 30

1. Authority of Knowledge Position 30
2. Student Attitudes 33
G. Focus of Recent Research 34
H. Overview of Studies 36
I. Statistical Findings 38
J. Review of Authoritarian Research 41
III. METHODOLOGY 49
A. Introduction 49
B. Subjects 50
C. Instruments and Procedures 51
D. Design and Data Analysis 54
3. Preliminary Data 54
4. Hypothesis One 54
5. Hypothesis Two 55
E. Summary 55
IV. RESULTS 57
A. Demographic Data 57
B. Data Analysis 58
C. Tables Summarizing Findings 59
D. Summary of Findings 66
v. DISCUSSION 69
A. Summary of Treatment Effects 69
B. Generalization Hypothesis 70
C. Authoritarian Hypothesis 73
D. Other Findings 75
E. Conclusions 75
F. Recommendations 82
G. Summary 85
REFERENCES 86
APPENDIXES 105
APPENDIX A - Research Consent Form 105
APPENDIX B - Form Y Generalization Test 108
APPENDIX C - Form Z Generalization Test 117
APPENDIX D - Modified F-Scale Test 126
APPENDIX E-Knowledge Construction Exercise 130
APPENDIX F - Construction Knowledge Exercise 149
(Placebo lesson)
APPENDIX G - Experimental Design Model 160
APPENDIX H - Form Y Group Comparison 162
(Exp vs Control on pretest)
APPENDIX I - Form Z Group Comparison. 170
(Exp vs Control on pretest)
APPENDIX J - Form Y Sequence Comparison 178
(Pre vs Post control)
APPENDIX K - Form Z Sequence Comparison 185
(Pre vs Post control)
APPENDIX L - Form Y vs. Z Comparison 192
(pretest scores on all subtests)
APPENDIX M - Correlation: Form Y and Z 200
APPENDIX N - White Vs. Nonwhite Comparison 202(pretest scores on all subtests)
APPENDIX O - Form Y post test Group Comparison. 208(summary tables on all subtests)APPENDIX P - Form Y post test Group Interactions221(charts and post hoc analysis)APPENDIX Q - Form Z post test Group Comparison232
(summary tables on all subtests)
APPENDIX R - Nonwhite Authoritarian Scores 245
(AA \& AS summary tables)
APPENDIX S - White Authoritarian Scores 251
(AA \& AS summary tables)
APPENDIX T - White vs. Nonwhite Authoritarian Scores 258
(AA \& AS summary tables)
APPENDIX U - Correlations 263

LIST OF TABLES

Table Page
I. Readabilities Scores 53
II. Y Form and Z Form Comparison 60
III. Y Form Post Test 62
IV. Z Form Post Test 63
V. Authoritarian Means 64
VI. Correlations 66
VII. Z Post Experimental \& Control Means 72
VIII. Racial Group Authoritarian Scores 74
IX. Authoritarian Aggression Score Comparison 78
X. Authoritarian Submission Score Comparison 80

CHAPTER I

Effects of a Knowledge Construction Exercise on the Formation and Evaluation of Social Studies Generalizations and Student

Authoritarian Attitudes

Introduction

A. Background

A generally stated purpose of the social studies is to provide students with the knowledge, values, skills, and experiences they will need to participate in our global society (Jackson, 1992). The social studies generalization forms an important component of knowledge, along with facts and concepts, that make up the body of knowledge transmitted in social studies education (Naylor and Diem, 1987). These components of knowledge have received varying degrees of attention in social studies research. Facts are single pieces of data use in generalization formation. Facts are sometimes referred to as declarative knowledge or verbal information (Gagne, Briggs, \& Wager, 1988). Michaelis (1988) defined facts as "statements of information that include concepts, but they apply only to a specific situation." (p. 13). There has been a use of mnemonics to memorize facts for centuries. Simonides, who lived around 500 B.C., is
known as the "father of the art of trained memory" and this type of training continues in the twentieth century (Lorayne \& Lucas, 1975).

Research on concept learning has a long history, albeit not so long as mnemonics. A concept is an idea symbolized by words (Brownell and Hendrickson, 1950) and constitutes a good portion of what we learn. Ausubel (1960), Bruner (1960), and Klausmeier (1976), to mention a few, researched concept learning in the 1960s and 1970s. More recently, Yoho (1986), McKinney (1985), and others have analyzed the problem of what is the best way to teach concepts.

Research on teaching generalizations has not so vigorously continued into the 1980s and the 1990s. Generalizations utilize facts and concepts to make a statement that summarizes or concludes. Michaelis (1988) after pointing out that a set of facts can form a generalization, defined generalizations as "statements of broad applicability that contain two or more concepts and show the relationship between them." (p. 13). Ausubel (1960) advocated the use of advance organizers for teaching concepts and generalizations, which resemble a deductive approach. Taba (1967) developed a generalization teaching model that utilized a spiraling inductive approach. Most of this research focused on the acquisition of the generalization.

Most teachers still see their role as transmitters of knowledge, while the formation of social studies generalizations by students is a critical thinking and knowledge construction activity. Unfortunately, social studies generalizations are usually taught as facts, i.e., something to be memorized and not questioned thus robbing students of an exercise in knowledge construction. The very tentative nature of most social studies generalizations provides an excellent opportunity to teach important critical thinking skills. Understanding generalization formation will enable students to challenge and modify generalizations as data is examined through their own research or experience. For these reasons, Wehlage and Anderson (1972) view generalizations as both a product of student inquiry and valuable knowledge.

John Dewey (1938b) maintained that a hypothesis is a generalization to be tested and that the testing and modifying of hypotheses are both the means and goals of education. If testing and modifying of generalizations are as important as Dewey suggests, then the question remains whether there is a method or model that would enhance students' grasp of generalizations as well as improve their ability to form and evaluate generalizations.

While extensive research has been conducted on the acquisition and application of rules, this research may not apply to the typical social studies generalization. An examination of the definition of rule and its application reveals a major structural difference with the typical generalization made in the social studies. From Reigeluth (1983):

Learners have acquired a rule when they can demonstrate its application to previously unencountered instances. A rule is a relation between two or more concepts. An example is the use of 'Ohm's law," represented by $\mathrm{V}=\mathrm{IR}$, to solve electrical circuit problems. (p. 14)

This algorithmic definition has little to do with the divergent responses with the type of generalizations in the social studies that could be generated from the questions, "Why did Lee lose at Gettysburg?" or "What would you consider to be the successes and failures of President Clinton's first year in office." An examination of one of the more rigid rules in the social studies---the law of supply and demand--is not as algorithmic as rules found in the math and sciences. It presents a heuristic relationship between price, demand, and supply because it is a statement of probability. Likewise, the relationship between altitude and temperature is not as rigid as the rules governing math, sciences, and language. In addition, social
studies generalizations that summarize or conclude may not be applicable to previously unencountered instances.

If generalizations and rules had a similar structure, a major problem would still exist in attempting to transfer research findings in one area to another. Klauer (1989) found this the case when reviewing literature on homomorphic problems in analogical transfer. Despite the same basic structure of problems, his research found the correlation in analogical transfer "disappointingly low" (p. 180). A sample review of the research utilizing rule learning strategies or research found language or spelling rules used in thirteen studies, (Barat, 1983; Connell, 1987; Dunn \& Till, 1982; Feuerstein, 1983; Hoff, 1986; Johansen, 1981; Johansen \& Tennyson, 1983; Morgulas, 1982; Noel, 1983; Petretic-Jackson, 1981; Smith, 1968; Tennyson, Welsh, Christensen, Hajovy, 1985; Welsh, 1987) computer rules used in four studies, (Lee, 1989; Lipuma, 1988; Saudi, 1986; Spock, 1987) algebra or math used in two studies, (Diaz, 1990; Lee, 1985) chemistry used in two studies, (Hurtado, 1980, Tabachneck, 1982) and one study each in the area of music, physics, medicine, and biology (Harwood, 1974; Hardiman, Pollatsek, \& Well, 1986; Gluck \& Bower, 1988; Arnett, 1985). Not surprisingly, no study was found utilizing a social studies discipline. Because of the lack of rule learning research in the social studies
and the possibility that rule learning research findings would not transfer to social studies generalizations, this study reviewed the literature that concentrated on social studies generalizations.

Several studies have focused on training in critical thinking and its effect on students working with social studies generalizations. Stitt (1967) found that instruction in inferential thinking, or generalization formation, would significantly increase inference skills among sixth grade students. David W. David (1968) found that students who practice generalizing were better able to generalize. Alexander, White, Haensly, and Crimmins-Jeanes (1987) found that training in analogical reasoning significantly improved fourth grade students' ability to reason analogically. Torrance, (1972) in a review of the literature on creativity training, found it to be effective. A Meta-analysis by Rose and Lin (1984) supported Torrance's claim that creativity training could be effective in promoting creativity.

Benes, McKinney, and Hagen (1991) found that a training lesson in inductive and deductive reasoning did not significantly improved seventh grade students' ability to acquire social studies generalizations. However, in that study, the students with the higher academic records were beginning to respond to training but their scores were not significantly higher than their untrained peers. One possibility is that training would have been more
effective at the eighth grade level since all students would have matured some intellectually.

Other studies found significant changes in attitudes following critical thinking training (Kovalcik, 1979: Letzter, 1970; Tauran, 1967). Creativity training was found to have positive effects on related attitudinal measures (Reese, Parnes, Treffinger \& Kaltsounis, 1976; Shivley, Feldhusen \& Treffinger, 1972; Treffinger \& Ripple, 1969). No study was found that explores the effects of an exercise in knowledge construction on eighth grade student authoritarian attitudes and their ability to form and evaluate generalizations.

B. Statement of the Problem

Teaching eighth grade students the process of knowledge construction could influence their attitudes. Some research indicates student attitudes can be affected by students' experiences with generalizations. Boedeker (1971) was interested in what would reduce dogmatism in students. She found that presenting evidence first (an inductive approach in generalization formation) was superior to the deductive teaching approach in reducing dogmatism. The Boedeker (1971) study looked at other attitudinal changes in the students. She did not utilize knowledge construction or a critical thinking exercise but rather compared
teaching methods. The type of generalization taught has been found to affect the degree of dogmatism in students (Letzter, 1970). No study utilized a knowledge construction exercise to test its effect on generalization formation and evaluation and student's authoritarian attitudes. Since dogmatism and authoritarian attitudes are related (Adams \& Martray, 1980) and student experiences with generalizations has been found to affect their dogmatic attitudes (Boedeker, 1971; Letzter, 1970) it is possible that a knowledge construction exercise could affect student authoritarian attitudes.

A review of research concerning generalizations found that the studies concentrated on what effect various teaching techniques had on generalization acquisition (Benes, 1991). While some studies examined the effect of inductive and deductive teaching or training, these studies still focused on generalization acquisition. The degree of change in their attitudes should be examined since the student's ability to form a generalization even slightly different than that of his teacher would directly challenge the traditional role of authority the teacher has in our society (Simon, 1980).

Since some studies report an attitudinal change in the students following critical skill training, it follows that an exercise emphasizing the knowledge construction aspects of generalization formation could have a
significant effect not only in generalization formation and evaluation, but in students' authoritarian attitudes. Brooks and Brooks (1993) report that major resistance to constructivist pedagogy are from teachers concerned with classroom control. A constructionist pedagogy empowers student to construct their own understanding and therefore that can be seen as a threat to teacher authority of knowledge position. Teachers play a traditional role of authority in the area of knowledge construction for students. Brooks and Brooks (1993) report that teachers who oppose the constructivist classroom which emphasizes knowledge construction by students do so for reasons of control. These teachers see knowledge as power and as a behavior management device because students must be quiet to hear their information. An exercise in knowledge construction may affect a student's submission to idealized moral authorities. Student revelation about knowledge construction could also alter their own authoritarian aggression attitudes. An authoritarian aggression attitude is one that condemns those who oppose conventional values (Sanford, 1956).

C. Purpose of the Study

The purpose of this study is to investigate the effects of an exercise in knowledge construction on eighth grade students' authoritarian attitudes and their ability to form and evaluate generalizations. Specifically, this study
examined the effects of a knowledge construction exercise on the student's ability to recognize the best and the worst instances of generalizations, support for a generalization, and sources of information for a generalization. Additionally, following the exercise, a modified F-scale test utilizing the subscales of Authoritarian Aggression and Authoritarian Submission designed by Adorno, Frenkel-Brunswik, Levinson, and Sanford (1950) was used to measure authoritarian attitudes.

D. Research Hypothesis

This study was designed to investigate the following null hypotheses:

1. Regardless of sex, race, or ability, a knowledge construction exercise will have no significant effect on eighth grade student's ability to recognize the best and worst generalization following a given set of data.
2. Regardless of sex, race, or ability, a knowledge construction exercise will have no significant effect on eighth grade students' ability to recognize the best and worst support for a generalization.
3. Regardless of sex, race, or ability, a knowledge construction exercise will have no significant effect on eighth grade students' ability to recognize the best and worst source of information for generating a generalization.
4. Students receiving a knowledge construction exercise will have no
significant change in their authoritarian attitudes as measured by the modified F-scale test.

E. Assumptions

1. Students randomly selected will not be significantly different in ability to recognize the best and worst instances of generalizations, support for a generalization, or source of information for a generalization.
2. Students randomly selected will not be significantly different in their authoritarian attitudes.
3. Significant difference between randomly selected students in their ability to recognize best and worst instances of generalizations, support for a generalization and sources of information for a generalization will be due to treatment.
4. Significant difference in student's authoritarian attitudes will be due to treatment.
F. Definitions of Terms

For the purpose of this study, these terms will be operationally
defined as follows:
Knowledge Construction: The process of forming generalizations and selecting data and sources for generalization formation.

Generalization : A statement that synthesizes selected data referring to a relationship between certain facts, concepts, and/or statements about other relationships.

Facts: Events or observations that are rarely disputed and generally accepted as being true. Generalizations that experience an almost total degree of consensus will be and are considered facts. On the other hand, facts that are disputed can become generalizations.

Data: Same as facts.
Hypothesis: A generalization that is to be tested, having less consensus than generally accepted generalizations.

Low Achievement Group: Subjects who score below the median on the school measurements of achievements, i.e., academic scores and standardized statewide test scores or on the pretest.

High Achievement Group: Subjects who score above the median on the school measurements of achievements, i.e., academic scores and standardized statewide test scores or on the pretest.

Experimental Group: Subjects who received the treatment of a knowledge construction exercise.

Control Group: Randomly selected subjects who will take the same test measuring the ability to form and recognize sound generalizations without
the treatment of a knowledge construction exercise. All subjects will take the same test measuring authoritarian attitudes.

Modified F-Scale Score. A test instrument that measures authoritarian attitudes. Test was modified to remove response bias and consists of two subtests measuring authoritarian submission and authoritarian aggression. Authoritarian Submission . Submissive, uncritical attitude toward idealized moral authorities of the in-group (Sanford, 1956).

Authoritarian Aggression. Tendency to be on the lookout for, and to condemn, reject, and punish people who violate conventional values (Sanford, 1956).

F-scale Score: Total average score on either subscale of authoritarian submission and authoritarian aggression. Possible range of this average will be from one to seven with seven being a high authoritarian score. A score of one indicates low authoritarian attitudes and a score of four represents a neutral attitude toward an authoritarian position.

F. Limitations of Study

The main focus of the study is to measure the effect of a knowledge construction exercise on students' authoritarian attitudes and their ability to recognize best and worst instances of generalizations, support for a given generalization and sources for a generalization. Students were randomly
assigned to receive a knowledge construction exercise self-instructed booklet or a placebo exercise booklet with some of the same information but no lesson on knowledge construction. Students unable to read were given the lessons orally or via cassette tape. Subjects were drawn from rural communities in the Southwest consisting of a racial mix with the majority of subjects coming from the working and middle classes. The percentage of nonwhites was small and predominately Native American. The gender division was roughly 50% males and 50% females. With the exception of the gender division, the subjects were not an exact replica of the general population and will further limit the generalizability of findings.

All limitations normally experienced in statistical analysis were present in this study.

CHAPTER II.

REVIEW OF THE LITERATURE

A. Philosophical History.

Philosophers have consciously set before themselves the task of understanding the world and, in that process have looked at knowledge construction. They realize that in order to understand and live in our world, we organize information from our everyday experiences into generalizations. We attach different degrees of belief and certainty to these generalizations, ranging from an absolute belief to a willingness to abandon our tentative generalization at the first sign of conflicting evidence. This section will examine how five philosophers--Plato, Dewey, Rousseau, Hume, and Descartes-approached generalization formation from facts derived from everyday experiences. Their differences in opinion about knowledge and its construction parallels the difference modern researchers have in defining generalizations.

This section attempts to link the philosophers' ideas about two types of generalizations: the covering law generalization, which is law-like in nature, and the everyday tentative generalization, which is based on experiences and subject to revision. The epistemological issues discussed are limited to those utilized in knowledge construction formation.

Plato maintained that there were only two ways to know the truth: by visiting the land of the Forms or by the use of the dialectic method (Grube, 1988). The land of the Forms was the world of Ideas, immaterial essences, that contain the true and ultimate realities. Since neither of these avenues are simplistic, people generally make statements about their world based on sensory information. Plato referred to these inaccurate statements as opinions. Statements about the Forms, on the other hand, would hold true for all time. This kind of generalization is called a "covering law" generalization. It would seem that as far as Plato was concerned, no other type of generalization is possible or useful.

Dewey felt that experience was useful for understanding the world around us. Each new experience adds to our knowledge and contributes to our mastery of a "craft". Practice and experience creates the knowledge for better practice and more knowledge. For this reason, John Dewey (1938a) rejected knowledge as an end in itself and saw knowledge as a means for more knowledge. In this view, Dewey readily admitted to the changing nature of knowledge as it leads to a better understanding of the world.

Generalizations are an important element of Dewey's philosophy of education. The tentative generalization provides the material for the next generalization to be formed from experience. These generalizations would
be in the form of a hypothesis to serve in a scientific approach to probiem solving. Hypotheses are generalizations that are formed from previous experiences and then subjected to testing. The experience gained from experimentation would inform the researcher to what degree the hypotheses needs to be modified. With a new hypotheses, the process continues, i.e., testing and modifying the hypotheses or generalization. Scientific inquiry would continue to add to knowledge in the form of sound generalizations. These generalizations from experience, according to Dewey (1938a), form the means and goals of education.

Rousseau recognized the importance of experience in the education of Emile (Rousseau, 1979). Rousseau was actively involved in Emile's knowledge construction but had a particular structure of knowledge in mind. Rousseau, as Emile's tutor, expected Emile to make generalizations based on the experience Rousseau arranged for him. Certainly these generalizations were less formal than the scientific inquiry advocated by Dewey. Evidence to support Emile's generalizations was mostly subjective and the "data" was controlled by Rousseau. In fact, if Emile made the wrong generalization from his experience, Rousseau would arrange for another "experiment" in order for Emile to come to the "right" conclusion. In this way Rousseau is like Plato in that he believed in a truth such as a
covering law generalization or a form of the good. Rousseau was determined that Emile discover certain truths even if it meant Rousseau had to manipulate the experience. Unlike Dewey's belief that the learning experience was both the means and the goal of education, Rousseau saw experience only as a means. The generalization was of the utmost importance, not the experiences that may have caused the construction of that knowledge.

One philosopher who discounted the importance of cause was David Hume. In fact, Hume maintained that cause could not be proven: rather we perceive two events together and then believe in cause. He asserted that the connection cannot be proven between a cause and an effect but rather that events are simply conjoined (Steinberg, 1977). When the probability of the two events occurring together is high, we attach a greater belief to conjoining events as being an example of cause and effect. This connection between cause and effect, however, occurs only in our minds and cannot be proven. Hume's generalizations about experiences would always be tentative even if two events were always seen occurring together and never would he infer cause and effect. Even these generalizations would not constitute real knowledge for Hume.

Since a generalization is a form of an idea, Hume said that generalizations come from perceptions which are either impressions or reflections (Selby-Bigge, 1960). Hume claimed that no one has knowledge over and above one's own sensations and ideas. Any knowledge claims would involve inferences from these ideas and therefore a belief in cause and effect. Such induction is circular in Hume's views and therefore not rational. There can be no knowledge from perceptional generalizations, only from "relations of ideas." But this is not knowledge about observable phenomena, but rather knowledge about our own connections. How does one see abstractions in the form of impressions or reflections? Jonathan Harrison (1976), a critic of Hume, felt that Hume must refer to abstract idea. From the impression of an experience would come an idea or generalization.

Another philosopher who would be tentative in his formation of generalizations from experience would be the uncertain Rene Descartes. Descartes was willing to doubt all experiences except the experience of thinking which proved his own existence (Ulich, 1954). He felt that if thinking, however, would employ the step by step method of mathematics and its certainty, then knowledge would be possible through thinking alone. Descartes believed that all initially indubitable knowledge of what exists or
occurs is limited to those beliefs, feelings, and sensations each man has about himself. But, as Bertrand Russell (1921) pointed out, ideas about the past could be wrong since the world could have been created five minutes ago and our memories of the past could have started at that point. Furthermore, he argued, since speculation about the future is based on the past then the future is uncertain also. It appeared that Descartes was searching for law-like statements based on pure reason and would consider generalization formation or knowledge construction from everyday experiences as primarily subjective and non-universal in application.

The differences discussed here about the rigidiness of the nature of knowledge is very similar to the debate in the 20th century over the definition of generalization and rules. Dewey's beliefs about knowledge best summarizes the author's beliefs on generalizations.

B. Definitions and Terminology

A number of difficulties emerge when conducting a review of generalization research, the foremost being a lack of common terminology. Reigeluth (1983) complained that methods labeled "lecture" or "discussion" may vary more within each category than between categories. The definition of a generalization can vary depending on its usage and the discipline to which it is applied. In psychology, generalizing is often referring
to the selection of stimulus based on its similarity as opposed to discriminating between stimulus. Although related, this generalization formation can be accomplished by lower life forms since it does not require verbalization or a written statement. In other disciplines generalizations take the form of descriptions, principles, explanations, interpretations, laws, rules, hypotheses, evaluations, and predictions (Mehlinger, 1981). In an attempt to define generalizations for research purposes, W. L. Taylor (1941) defined a generalization as "...a statement of a principle that is based upon the apparent relationship existing between or among a number of specific instances or experiences" (p. 147). Later, Brownell and Hendrickson (1950) defined a generalization as "...any verbalized formulation of a relationship which is of broad applicability" (p. 28). Hanna (1957) offered a similar definition by stating that a generalization is "... a descriptive statement of broad applicability indicating relationship between two of more concepts" (p. 29). Some form of a definition referring to a statement about the relationship between two or more concepts has been used by researchers in recent years (e.g., Banks, 1990; Jarolimek, 1990; Maxim, 1991; Van Cleaf, 1991).

McKinney (1991) found a problem with a concept definition of generalization with its emphasis on just the relationship between concepts.

He felt that the synthesizing of facts better defines the generalization. Furthermore, McKinney (1991) stated that "The sequence of the generalization learning progresses from the prerequisite concepts, to facts (or data), to the synthesis of the facts into a generalization" (p. 3). Because of this view he offered this definition: "A generalization is synthesized factual information which states a relationship between two or more concepts" (McKinney, 1991, p. 3).

The definition of fact, essential to some definitions of what is a generalization, can present a problem. In some ways a fact is a generalization and likewise a generalization can be a fact. For example, the statement that it is 30 degrees outside sounds factual enough but a closer examination can indicate otherwise. "Degrees" is a measurement concept. Even " 30 " is a numerical concept. Add Fahrenheit or Celsius to the other concepts of " 30 " and "degrees" and you have a statement about the relationship between three concepts, i.e., a generalization. However, you can take a dictionary definition of fact, such as, "...that which has actual existence, whether subjectively or objectively considered...the reality of which is manifest in experience or may be inferred with certainty..." (Neilson, 1934, p. 908). The "certainty" element appears to the dividing line between what is a fact and what is a simple generalization. Data,
information, or generalizing statements that experience an extremely high degree of consensus can be and are considered facts. In this way, generalizations that are not disputed become facts.

Generalizations that state a high degree of reliability in a relationship are usually called rules. A rule usually has the connotation of being law-like. "I' before ' E ' except after ' C "' states a relationship that is rarely violated and the exceptions are usually made known. Social studies generalizations, on the other hand, are more tentative and less law-like in nature than a rule.

The tentative nature of the social studies generalization is not to be construed as a weakness. In fact, McNaughton (1969) maintained that a certain kind of vagueness in a generalization is a strength rather than a weakness. Taylor (1941) called generalizations a statement of probabilities. Because of the nature of social studies and for the purpose of social studies instruction, a good working definition of a social studies generalization is that it is a statement that synthesizes facts and concepts referring to the tentative relationship between certain facts, concepts, and generalizations.

Generalizations formed for testing become hypotheses. Facts and concepts that make up the generalization become the target for the investigation. For example, Dewey (1938b) said, "A generalization in the form of a hypothesis is a prerequisite condition of selection and ordering of
materials as facts" (p.498). Banks and Clegg (1985) saw little difference between hypothesis and generalization when they maintained that generalizations must be able to be stated in if-then statements. R.C. Phillips (1974) leaned toward this hypothesis definition when stating that a generalization is "... a law-like statement that expresses a relationship between two or more concepts" (p. 75). He felt that generalizations "summarize large quantities of facts or account for a whole rather than a partial situation" (p. 72).

Labels used in generalization research can be misleading. For example, the term "ruleg" is use for the deductive teaching of a social studies generalization, which is not necessary a rule (Herman. 1969). Ruleg or egrule is used to denote a deductive or inductive approach and not to designate the knowledge component to be learned. For this reason the ruleg or egrule approach can be used on rules, generalizations, and even concepts. Generally, the terminology of rules, principles, and laws are applied in the disciplines of language, science. and mathematics. Even when these terms are used in the social sciences, such as with the law of supply and demand, they still lack the rigidity of mathematics and science laws, such as multiplication rules and the law of gravity. Because of the uniqueness of the social studies generalization, this literature review is
limited to research on social studies generalizations. In some studies these generalizations may be called rules, but for the most part they are the typical social studies generalization that are usually tentative in nature.

Another difficulty with terminology was encountered when examining the teaching approach. As previously noted, there are four approaches to teaching generalizations: deductive, inductive, egruleg, and memorization. This terminology in the literature, however, is not always used. Frequently, such terms as "inquiry," "discovery," "expository," or "traditional" are employed (Hermann, 1969). Usually, inquiry and discovery approaches referred to an inductive approach, but not always. Likewise, expository and traditional approaches are generally deductive in nature. It was sometimes difficult to determine when the egruleg was actually being used. Sometimes this approach was used but not referred to as such. An attempt was made to determine which approach was utilized, although it was not always readily evident which approach was actually being used or if they were correctly identified.

C. Generalization formation as critical thinking.

Generalization formation is an exercise in critical thinking in social studies education. Students should be able to take numerous pieces of information and synthesize them to a single generalization. This is the
process W. L. Taylor (1941) called "economy of learning." Using similar processes, several generalizations can also be combined to form yet another generalization. An example of this can be extracted from comments made during the Gulf War. President Bush and others referred to the "lesson" of the Vietnam War. Supposedly because of the knowledge acquired from this "lesson," the American people were assured that mistakes made during the Vietnam War would not be repeated. Students and others may wonder what was this all important lesson from the Vietnam War. Chances are few people would express that lesson in exactly the same terms. Indeed the lesson could be expressed in many different statements, some reflecting viewpoints that would conflict with others. One thing is certain: any of these "lessons" or the one big "lesson" would be expressed in the form of a social studies generalization. In other words, the U.S. military involvement spanning two decades and all the turmoil on American streets and college campuses could be reduced to a single social studies generalization. The idea that a single "lesson" could be learned from the experience of Vietnam illustrates the special feature of a social studies generalization, which is that numerous pieces of information can be synthesized into a single statement.

Besides enabling the student to handle numerous bits of information, the student engages in other critical thinking activities. Generalization formation and application involve the student in exercising the critical thinking skills of synthesis and analysis (Bloom, 1956). Taylor (1941) maintained that generalizing is a reasoning act. Since generalizations play a dual role of transmitting knowledge while providing exercise in critical thinking development, generalization formation and acquisition deserves special attention from the researcher in the social studies.
D. Teaching generalizations

The actual teaching of the generalization for knowledge acquisition may be accomplished in four ways. A generalization may be taught inductively. This method (also known as egrule) presents the facts or data first, and then students synthesize the information into a generalization. A deductive method, known sometimes as ruleg, presents the generalization first, and then the students are given information that supports the generalization (Hermann, 1971). A third method combines an inductive and deductive approach and is known as egruleg. With this method the information is presented first, a generalization is formed, and then the generalization is applied to new instances. Finally, a fourth method for generalization acquisition is simply the presentation and memorization of
the generalization. Although this approach may seem to be unacceptable because of its lack of critical thinking involvement, the method is widely used, especially for simple generalizations. That is probably due to the perceived efficiency of presenting the generalization without evidence, which may not be provided or is assumed to be already known by the student. Generalizations presented this way actually become facts that rely on the authority of the teacher as the source of knowledge. A survey of grade school textbooks will quickly reveal the prevalence of this method. Presenting generalizations as facts, however, is not limited to elementary education and is fairly common at all levels of education.

E. Early Research

While looking at the importance of generalizations in education, C. H. Judd (1936) contended that progressives and conservatives agree on the goals of education. He felt that both philosophies maintained that the students should master generalizations and have the power to apply them. At what age should this begin?

Research reported that young students have the ability to generalize (Peterson, 1932; Edmistion, 1935; Croxton, 1936). According to Piagtian theory, children enter concrete operations around the years seven through twelve. The child can then operate on concrete objects or their
representations. Operations include serializing, extending, subdividing, and differentiation (Pulaski, 1971). Most importantly for this study is the child's ability to combine existing structures into new relationships.

This combining ability is the generalization formation skill of interest to this study. It will be assumed that an overwhelming number, if not all, eighth grade students in their second semester with an age range from thirteen to fifteen years will be operating at least at the concrete operational level. It is likely according to Piaget (1928), some students will be in the formal operation level of their cognitive development. The entry year for this level is eleven or twelve. At this stage the form of reasoning can be more enhanced and abstract. The students operating at this stage will have some advantages over the concrete operating child since they will be able to deduce from hypothetical hypotheses. Piaget (1928) called the ability to draw conclusions from facts not in the immediate observation or which cannot be accepted as true without qualifications as "formal deduction." All facts used in this study should be items that eighth grade students can accept as being true. No hypothetical evidence will be presented that is not the type students would encounter in normal social studies generalization formation.

It still remains a question as to which teaching method stimulates the greatest amount of critical thinking development. Another important question is whether the teaching method has an effect on the student's ability to recall the generalization. Also, will the development of a critical thinking skill (i.e., analysis, synthesis, evaluation, etc.) be affected differentially by the generalization teaching method? Regardless of the method of generalization acquisition, students may be asked to evaluate the quality, credibility, worth, or practicality of generalizations, and thus engage in additional critical thinking activities.

F. Critical thinking training and student attitudes.

1. Authority of knowledge position.

Yves Simon (1980) believes students obey teachers because of their authority of knowledge position. This position is eventually challenged by students possessing "powerful critical minds" (p.95). Until then the student is in a weak position, with the teacher constructing knowledge for him or her. Thomas Kuhn (1970) called beliefs, values, and techniques being shared by members of a given community a paradigm. Students are a part of a paradigm not of their own construction. For example, Yves Simon (1980) observed:

Since no scholar achieves any skill in any domain without having gone through a phase of apprenticeship and belief, the choice of a guide takes place at a time when the mind is still unable to estimate the value of theories and systems.... Throughout his life he is confronted with the necessity of trusting those who, on such and such a subject, know more than he does: until the last day of his research, his docility needs to be directed and stimulated. (p. 99) Ehman, Mehlinger, and Patrick (1974) maintained that there were two ideal teaching method types which they called, "method of authority" and "method of inquiry". An extreme case of method of authority, according to Ehman, Mehlinger, and Patrick (1974), would resembled this:

An extreme authoritarian teacher is one who tramples upon the rights and feelings of others. Such a person enjoys the exercise of power, fears debate, prefers an "orderly" classroom to one in which there is much activity, tends to use punishment more than reward, views students as undisciplined individuals who require control, and is uncomfortable in learning situations in which he is not acknowledged as the intellectual leader.

Certainly such an individual is unlikely to practice the method of inquiry. However, the method of authority is more than that of
an authoritarian personality, although those who have such personalities are likely to be examples (of such a teacher).
(p. 65-66).

Even the other extreme in teaching method, the method of inquiry, is not without authority. Again Ehman, Mehlinger, and Patrick (1974) pointed out that,

In the classroom all teachers practice authority in at least one sense. They are given the authority by school officials to keep school records, to assign grades to students, to determine what shall be taught each day, and---perhaps most important of all---to set the tone or "climate" of the classroom. We see no way that a teacher can avoid this type of authority; even if he shares portions of it with his students, it is always his prerogative to offer it, withhold it, or even to take it back once it was shared. (p. 65).

When the students reach the stage where they feel somewhat a peer with mentors, capable of challenging the experts on some points, and not in need of direction or stimulation, a power shift takes place. The dominant theory of power states that there is only a fixed amount of power (Baldwin, 1989). This is sometimes referred to as the "zero-sum" concept. This
theory maintains that for someone to have an increase of a quantity of power, there must be a decrease of the same quantity from other sources. In the case of teacher and student, the teacher, largely due to the authority of knowledge position, has the largest quantity of power in the relationship. Any action that would diminish the power of the teacher would automatically result in increased power for the student.

2. Student attitudes.

The teaching approach may affect student altitude toward the authority of knowledge. For example, L. C. Boedeker (1971) found that the deductive teaching approach increased student dogmatism. This means that by presenting the generalization first and then presenting the data that supports it, students will tend to recognize the generalization as dogma. Therefore, the deductive approach could be strengthening the teacher's authority of knowledge position. The inductive approach involves the students in the process of knowledge construction and may diminishe the teacher's authority of knowledge. Other studies examining generalizations found other student attitude changes (Kovalcik, 1979; Letzter, 1970; Tauran, 1967). These studies suggest that the generalization process may engage the student in some form of critical thinking that can change their attitudes.

G. Focus of Recent Research

One reason for the difficulty in determining the teaching approach was that the purpose of the study may not have been to look at approaches as a variable but rather to examine some other aspect of social studies generalizations. One study examined the appropriateness of certain social studies generalizations for lower elementary students (Beaubier, 1962). Two studies examined experimental models that did not necessarily compare approaches but were interested in the enriched content or complexity of the materials being presented (Armstrong, 1970; Greenblatt, 1963). Other studies examined correlational variables, such as Social Economic Status (SES) or reading comprehension, with the ability to generalize (Hills, 1964; Wulff, 1969).

Sometimes the teaching approaches were variables of interest in a study without looking at knowledge acquisition and critical thinking development. For example, Boedeker (1971) was mainly interested in the effect of the teaching approach on reducing dogmatism. She found that the discovery treatment (inductive) was superior to reducing dogmatism when compared to the presentation (deductive) treatment.

In studies that tested teaching approaches and their effect on knowledge acquisition and critical thinking skill development, there was a
tendency to not separate concept acquisition from generalization acquisition. Only seven studies were found that clearly examined the effects of the teaching approach on generalization acquisition (Beery, 1972; Benes, McKinney, \& Hagen, 1991; Black, 1981; Lahnston, 1972; Long, 1979; McKinney, Benes, Hagen, \& Beckham, 1991; Wallace, 1967). Other factors, such as grade levels, subjects, and use of programmed instruction, made these studies vary substantially.
G. D. Hermann (1969) found various problems in his review of the research on discovery learning. He reported that lack of common terminology presented a problem in the classification of the studies. He concluded that discovery techniques generally, but not necessarily, employ an inductive approach. Not only could discovery techniques employ a deductive approach but they also tend to utilize an egruleg approach. These discrepancies should be kept in mind when examining his review findings.

The most consistent finding Hermann (1969) reported in his review was statistically nonsignificant results (29 nonsignificant cases to 17 significant). Overall, the discovery technique, when compared to expository presentations, produced significant results at more than two to one ratio (12 cases to 5). Only in studies involving elementary students did the expository
or deductive approach produce a superior number of significant results to discovery techniques (3 to 1).

Hermann (1969) concluded that better retention is obtained from ruleg learning and better transfer is obtained from discovery learning. Early and late retention plus early and late transfer were the emphasis of his review. By his own admission there were several problems with this review. Hermann pointed out that improper methodology was commonly employed by researchers. Multiple interactions and confounding from the lack of control over test, time, \mathbb{Q}, and type of guidance made generalizability of results difficult. In addition, the subject matter varied greatly between experiments, not always utilizing a social studies discipline.

A majority of the studies (15) examined for this review took place during the 1960s and the 1970s. This is probably a result of interest in the new social studies movement, which emphasized inquiry and discovery learning. The number of studies about generalizations dropped sharply in the 1980s, and only recently has interest revived in social studies generalization research.
H. Overview of Studies

A clustering of generalization research appears around a couple of grades and social studies disciplines. Seventh grade students followed by
sixth grade students were subjects for four (Beery, 1972; Benes, McKinney, \& Hagen, 1991; Boedeker, 1971; Hagen, McKinney, \& Benes, 1991) and three studies (Beaubier, 1962, Greenblatt, 1963, Wulff, 1969), respectively. All other grades, including one undergraduate study, appeared only once or twice. No generalization study was found using the first or eleventh grade. Geography was by far the most frequently used social studies discipline for generalization research. It was taught in eight cases (Armstrong, 1970; Benes, McKinney, \& Hagen, 1991; David, 1968; Greenblatt, 1963; Hagen, McKinney, \& Benes, 1991; Lahnston, 1972), followed by four cases utilizing anthropology or sociology (Beaubier, 1962; Beery, 1972; Boedeker, 1971; Hills, 1964). History was the subject in three cases (David, 1968; Letzter, 1970; Stanton, 1970; Stanton, 1976). The subjects of economics (Armstrong, 1970; Hills, 1964) and government (Black, 1981; McKinney, Benes, Hagen, \& Beckham, 1991) were each found in two studies. One undergraduate study employed a psychology generalization (Long, 1979).

As previously mentioned, not all generalization studies were interested in testing one or more of the teaching approaches to generalization acquisition (inductive, deductive, egruleg, and memorization). However, ten studies examined the inductive and deductive approach, while only three examined the egruleg method (David, 1968; Letzter, 1970;

Stanton, 1976). Although the memorization of generalizations is probably the most frequently used approach in classrooms, no studies examined its effectiveness.

Most studies measure some critical thinking skill development. However, recall, retention, and identification were the most frequent skills measured. Some studies considered application and/or evaluation of generalizations. A few studies considered the ability to generalize. Over one half of studies employed teacher-made tests to measure results; the other half utilized some critical thinking instrument or standardized test.

I. Statistical Findings

Statistically significant results could be divided into two categories. One category would include those studies that revealed an effect of the teaching approach upon some critical thinking skill, while another category would include those studies that discovered something about the nature of social studies generalizations. Two studies that fell into the first category were similar in many aspects (Lahnston, 1972; Wallace, 1967). Both studies taught geography generalizations and tested third grade students. Wallace (1967) also included second grade students. Both studies compared the inductive approach to the deductive approach. Wallace also included what he called an intuitive approach. Both studies examined
retention or understanding plus transfer or application of geography generalizations. Both studies reported the deductive approach to be the most appropriate.

Findings from other studies indicate that the inductive approach was more effective. Long (1979) reported that among college undergraduates the inductive approach improved motivation and the retention of a generalization. Armstrong (1970) compared two types of inquiry approaches (both inductive). He concluded that the reflective inquiry approach produced significantly higher evaluation skills among average ability students. Boedeker (1971) found that dogmatism and prejudicial attitudes could be reduced by utilizing the inductive approach. Boedeker also found support for using the inductive approach to improve certain types of critical thinking.

David (1968) reported that the ability to generalize is enhanced by the egruleg method over the deductive approach. His experimental method included this teaching approach but also contained additional material to which the deductive group did not have access. In addition, his experimental group practiced generalizing. No other study attempted to compare the egruleg teaching approach with a teaching approach using only a inductive or deductive method.

A couple of studies dealt with the nature of the social studies generalization. Letzter (1970) found a difference in the "covering law" generalization and the "ideal type" generalization. "Covering law" social studies generalizations resemble more of a rule or principle of the type used in mathematics and science. "Ideal type" generalizations are more traditional to the social studies, i.e., tentative in nature. Letzter (1970) found that teaching the "ideal type" reduced dogmatism when compared to those students taught "covering law" generalizations in world history. Boedeker (1971) also witnessed attitudinal changes in both dogmatism and prejudice when students were taught inductively. These two studies may suggest that an attitudinal change may occur if a knowledge construction exercise in generalization formation is utilized. One area of possible change is in the area of respect for authority since Simon (1980) maintains that teachers play a major authority role when they are transmitting knowledge.

Hagen, McKinney, and Benes (1991) found that nonsupporting data in the development and review of a geography generalization can increase a student's ability to recognize that generalization. They reported that factual recall was slightly enhanced by the absence of nonsupporting data.

Beaubier (1962) discovered that certain anthropology and economic generalizations could be acquired by students in the sixth grade. Only
sociology generalizations proved too difficult for the sixth grade students to acquire.

Hills (1964) and Wulff (1969) found in similar studies that reading correlates with the ability to generalize. In addition, Hills found that IQ and vocabulary correlate with generalization ability.

Hermann (1971) did some research on egrule versus ruleg teaching methods using map locating rules. He reported no significant differences between groups in either the fifth or ninth grade. These findings were replicated in another study (Jacka \& Hermann, 1977). Although the lesson used in both studies was a geography type exercise, the rule was rigid and mathematical in nature. Different results may have occurred had a more typical social studies generalization, one tentative in nature, been utilized for the study.

J. Review of Authoritarian Research

The main focus of authoritarian research has been to identify personality traits that make up the authoritarian personality and to identify social influences that may have contributed to that personality. The authors of The Authoritarian Personality (Adorno, Frenkel-Brunswik, Levinson, \& Sanford, 1950) generated a list of subparts to the authoritarian personality that was summarized later by Sanford (1956, p. 1) as the following:

1. Conventionalism . Rigid adherence to conventional middle-class values.
2. Authoritarian Submission. Submissive, uncritical attitude toward idealized moral authorities of the in-group.
3. Authoritarian Aggression. Tendency to be on the lookout for, and to condemn, reject, and punish people who violate conventional values.
4. Anti-intraception. Opposition to the subjective, the imaginative, the tenderminded.
5. Superstition and Stereotypy . Belief in mystical determinants of the individual's fate; the disposition to think in rigid categories.
6. Power and Toughness. Preoccupation with the dominance-submission, strong-weak, leader-follower dimension; identification with power figures; exaggerated assertions of strength and toughness.
7. Destructiveness and Oynicism . Generalized hostility, vilification of the human.
8. Projectivity. Disposition to believe that wild and dangerous things go on in the world; the projection outward of unconscious emotional impulses.
9. Sex. Ego-alien sexuality; exaggerated concern with sexual "goings on," and punitiveness toward violators of sex mores.

These nine sub-scales make up the F-scale test that the authors contend defines the authoritarian personality (Adorno, Frenkel-Brunswik, Levinson, \& Sanford, 1950).

Hyman and Sheatsley (1954) criticized The Authoritarian Personality on a number of points. The samples were not representative; statistics and analyses were weak and inaccurate; education as a variable was not controlled; and alternative explanations were not considered. In addition, these critics felt that the overall effect of the shortcomings work in favor of the author's assumptions.

Asch (1952) challenged the notion that psychological processes can be found in the responses to attitude test items. Likewise, Titus and Hollander (1957) found that the "F-scale correlates most systematically with other paper-and-pencil measures, and least systematically with interpersonal behaviors, particularly as situational conditions are varied" (p. 62). Because of such concerns, Kelman and Barclay (1963) suggest that psychological and sociocultural conditions be considered before interpreting F-scale scores.

Kirscht and Dillehay (1967) maintain that the original F-scale measures only authoritarianism of the political right, citing research by Shils (1954), Jackson, Messick, and Solley (1957), Christe and Jahoda (1954), and Barker (1963). Considering that tendency, Rokeach (1960) developed his dogmatism scale that he hoped would measure only the tenacity with which beliefs are held and not focus on the actual beliefs. Despite this difference, Kirscht and Dillehay (1967) maintain that there is the problem of response bias with both scales and found a correlation of .88 between the F and D (Dogmatism) scale.

A bias problem exists when the answers that correspond with the variable being measured are all worded positively or all worded negatively. To counter the response bias problem, Berkowitz and Wolkon (1964) developed a forced-choice form. Kirscht and Dillehay (1967) assert that this form and the one developed by Smith (1965) are the only revisions that do not contain potential response bias. Carefully choosing items and these revisions may overcome some of the shortcomings they found in the original F-scale.

Bhushan (1982) looked at the studies related to the validity of the F-scale through the year 1978. He concluded that despite some problems the F-scale was a good intercultural measure of authoritarianism. The
response bias was controlled when negatively worded items were added. He pointed out that most reviewers criticize the F-scale for measuring only right-wing authoritarianism. However, Ray (1985) countered this notion later when he found that the F-scale had a high positive correlation with the Humanism Radicalism scale--a scale used to measure left-wing authoritarianism.

Bhushan (1980) developed a short form with both negative and positive worded items to use in India. Results using the Indian F-scale found it to have high reliability and validity. Sinha (1983) supported these findings with his assessment of the content and predictive validity of the Indian F-scale with the California F-scale. Bhushan (1985) pointed out later that due to political, spintual, and social background differences with Americans, the Indian authoritarian is not the same type of authoritarian as the American psychologists would assume.

Such arguments over interpreting F-scale results led earlier to a couple of studies that warned against jumping to any conclusion about a high F-scale score. Orpen (1973) found a low correlation between the Bogardis Social Distance Scale, a prejudice-proneness measure, and the F-scale under certain conditions. He pointed out that this could limit the ability to account for prejudice in all authoritarian settings. Yinon (1975) still
found, however, that his subjects who scored high on the F-scale exhibited more prejudice. Ray (1981) supported caution in broad interpretation of F-scale scores by finding no evidence that authoritarian behavior is psychopathological nor is there significant correlation between a balanced F-scale score and neuroticism.

McFarland (1985) investigated the internal consistencies of the F-scale test. He found that both age and education, with education being stronger, were linearly related to the internal consistency of the test. He concludes that there is a lower predictive power using the scale with nonadults but suggests that it is partly a measurement problem when subjects do not understand the items.

Using F-scale tests, researchers have been able to identify groups that tended to be more authoritarian. Nation and LeUnes (1983) found that among football players, Black seniors were more authoritarian than White seniors. Likewise, religious leaders were found to be the most authoritarian, with the intellectuals scoring the lowest on the F-scale test given to 1,000 religious, intellectual, governmental, and political leaders (Dubey, 1986). More recently, Pestell and Ball (1991) found that males were more authoritarian than female college students and that medical students were more authoritarian than law students. Higher education levels were
significant in increasing the authoritarian score for females but lowered the F-scale scores for the males (Pestell and Ball, 1991).

Cultures can account for some variations in F-scale scores.' Kenis (1977) found that Turks were more authoritarian than Americans. However, Lederer (1982) found American adolescents more authoritarian than West German adolescents in a 1981 study. Lederer's study compared F-scale scores with a similar study in 1945 that had the German youth more authoritarian than American youth. Duckitt (1983) found that language group was the best predictor of F-scale scores in his large community study conducted in South Africa.

Some attitudes have been found to correlate with authoritarianism as measured by the F-scale. Economic conservatism correlated positively with authoritarianism in a study by Sarkar and Hassan (1973). Teevan, Heinzen, and Hartsough (1988) also found a correlation supporting the idea that authoritarianism may result from a high need for achievement. Among students that made suicidal threats, Wenz (1978) found that a significant relationship with their F-scale scores existed. Authoritarian attitudes were not transferred to adopted children according to one study (Weinberg, 1983). Saiyadain (1975) found that knowing F-scale scores would help determine how supervisor behavior would be perceived by subordinates.

Two studies have found that training or education can effect F-scale scores. Parents who were taught democratic child-rearing principles experienced a significant decline in their authoritarian score (Meredith and Benninga, 1979). Likewise, university educated policeman did not have an increase in their authoritarian score following police officer experience whereas non-university educated colleagues did.

CHAPTER III

METHODOLOGY

A. Introduction

Studies have shown that critical thinking training can have a significant effect on student critical thinking skill in the social studies (Stitt, 1967; David, 1968; Alexander, White, Haensly, \& Crimmins-Jeanes, 1987). However, no study was found that took the approach that generalization formation and evaluation were viewed as knowledge construction and emphasized this in the training. Attitudinal changes were noted in some studies (Boedeker, 1971; Kovalcik, 1979; Letzter, 1970; Tauran, 1967) but no study was found that considered student authoritarian attitude changes following some critical thinking training. Gender was not a significant factor in most studies about generalizations but gender difference in authoritarian attitudes was found in the Pestell and Ball (1991) study among medical and law students. In addition, race was found to be a significant factor in the F scores (Nation \& Le Unes, 1983). Also different academic ability levels among students can be a factor (Armstrong, 1970). For these reasons, this study examined the effect of a Knowledge Construction Exercise, gender and race differences, and academic ability levels on the ability to form and evaluate generalizations and student authoritarian attitudes. The basic
procedure was to give all students a pretest on generalizations on day one. All students could remain in their regular classroom even if they chose not to participate in the study. On day two students received either the Knowledge Construction Exercise or a placebo lesson in a self-instruction booklet. On day three all students received a post test on generalizations followed by the 15 item modified F-scale test.

B. Subjects

There were 340 eighth grade students from seven rural schools that participated in this study. The parents or guardians of these students recieved a research consent form prior to the experiment. (See Appendix A.) The form and research procedures will be in compliance with the Institutional Review Board (IRB) policies that deal with human subjects and policies of the school board. These subjects attend rural schools in the Southwest located near a major state university. The population is predominately white, working and middle class. The subjects are from schools that have an eighth grade population ranging from 18 to 99.

For research purposes, students were grouped by sex, race, and achievement levels. Student achievement scores were utilized in some correlation comparisons once parental permission was obtained to view historical records. Pretest scores were used for high and low achievement
grouping since historical scores were not available on all students. From these groups students will be randomly assigned to either the experimental group or the control group.
C. Instruments and Procedures

Students took two generalization tests. These tests examined students' ability to recognize instances of the best and worst generalization, the best and worst support for a generalization, and the best and worst source for a given generalization. These two tests were examined by a committee of five university professors who determined they contain appropriate social studies generalization test items. Student scores on the two forms and their subtests were later be compared with student scores on the generalization formation and high order thinking skills portion of the lowa Tests of Basic Skills (ITBS). One school was given Form Z for their pretest and the other schools Form Y as their pretest. A copy of Form Y and Form Z with their answer sheets are in Appendix B and C respectively.

The two tests are each composed of six recognition subtests. Each subtest will have six items making a total of 36 items on each generalization test form. The six recognition subtests are: Recognizing the Best Generalization (BG), recognizing the Worst Generalization (WG), recognizing the Best Support (BP) for a given generalization, recognizing
the Worst Support (WP) for a specific generalization, recognizing the Best Source (BR) of information for a specific generalization, recognizing the Worst Source (WR) of information for a specific generalization.

Following the generalization pretest, a Knowledge Construction Exercise (KCE) self-instruction booklet was given to students randomly selected for treatment and a placebo self-instruction booklet was given to the control group. The Knowledge Construction Exercise emphasized that data is specifically selected, for a number of reasons, to form generalizations. The lesson also contained tips on recognizing the best and worst generalizations, best and worst support for a generalization, and best and worst sources of information for a specific generalization. The placebo lesson contained some factual information without any lesson on knowledge construction. A copy of the Knowiedge Construction Exercise and the placebo lesson with their answer sheets are in Appendix E and F respectively.

All students, following the Knowledge Construction Exercise and placebo lesson, took the revised F-scale test of authoritarianism and a post test on generalization formation and evaluation. The F-scale test contained the subscales measuring Authoritarian Submission (AS) and Authoritarian Aggression (AA). Eight items on the test will measure the students AA
score and 7 items will measure their AS score for a total of 15 items. The F-scale test was modified to remove response bias as suggested by Kirscht and Dillehay (1967). This was accomplished by wording approximately half of the items negatively. A copy of the modified F-scale is included in Appendix D.

Readability tests were performed on all instruments by computer analysis utilizing Lotus AmiPro 3.0® word processing software (CorrecText, 1990). Lotus AmiPro is a trademark of Lotus Development Corporation, copyright 1991, 1992. The results of the readability tests are reported in Table I.

TABLE I

READABILITY SCORES

	Form Y test	Form Z test	Knowledge Constructio n Exercise	Placebo Lesson	F-test
Flesch- Kincaid Score	7.2	7.2	6	6.5	7.5

A high percentage of the population sample took the lowa Tests of Basic Skills the third month of 1993 as seventh grade students. An average gain of one reading grade level in a year assured that the reading levels of instruments in Table I fell within the range or below the levels of
approximately 95% of the students in the sample. Students with the lowest scores will most likely be in special classes that are excluded from this study. The actual reading levels and ranges of the sample will be examined once permission is granted to view these scores.

D. Design and Data Analysis

1. Preliminary Data

Academic scores and other historical measurements of the subjects was obtained for statistical analysis purposes such as correlation studies. Information concerning gender and race be utilized as independent variables in the study. Scores from the pretest will be used for a median split into high and low achievement groups.

2. Hypothesis One

A Knowledge Construction Exercise given to eighth grade students should have an effect on student performance on the formation and evaluation of generalizations as measured by the six subtests. To investigate the effect of the Knowledge Construction Exercise an analysis of variance (ANOVA) will be employed on post test scores between experimental and control groups.

3. Hypothesis Two

Students that participate in a Knowledge Construction Exercise should experience a significant change in their authoritarian attitudes. To measure student authoritarian attitudes, a revised F-scale test that measures authoritarian aggression and authoritarian submission will be employed. To investigate the effect of the Knowledge Construction Exercise on student authoritarian attitudes a 2 achievement levels (High and Low) X 2 Sex (male and female) $\times 2$ treatment groups (experimental and control) analysis of variance (ANOVA) design will be employed for each racial group. Should the racial groups be of significantly different sizes, a randomly selected number from the larger group will be paired with the smaller group. an ANOVA will measured the differences between racial groups on both subscales of the F-scale test. A copy of the experimental design model is included in Appendix G.

E. Summary

A three day study involving approximately 340 eighth grade students study will measure the effect of a Knowledge Construction Exercise.

Students will remain in their regular classrooms and receive self-instruction booklets. The exercise's effects on student's ability to form and evaluate social studies will be examined. Dependent variables on this portion of the
study will be post test scores of the six subtests. In addition, the effect of the Knowledge Construction exercise on student authoritarian attitudes will be analyzed. Dependent variables on this portion of the study will be the Authoritarian Aggression (AA) subscale scores and the Authoritarian Submission (AS) subscale scores on the modified F-scale test. Results of these investigations will be reported in chapter four.

CHAPTER IV

RESULTS

A. Demographic data

Data were collected from seven rural schools in the Southwest within a 50 mile radius of a major state university during the months of March and April of 1994. The size of the eighth grade class in these schools ranged from 18 to 91 students. Of the 342 students who participated, nine students were unable to complete the study due to absences. There were 179 males and 154 female students who completed the authoritarian survey portion of the experiment. The population consisted of 275 whites and 58 nonwhite students. Of the Nonwhite group, 47 were Native American, five were African-American, four were Hispanic, and two were Asian-American.

To obtain individual student performance profiles on the lowa Tests of Basic Skills, consent forms were sent home for parents or guardians to sign. This test was taken by students in all schools the third month in 1993. Test profiles were not available on all students. A copy of the consent form is in Appendix A .

All students who participated in the three day study completed their instruments during school hours in their regular social studies classroom except at one school. School officials at that school wanted their eighth grade classes grouped together in the lunchroom a different hour each of
the three days of the study. When compared to another school of similar size, there were no significant differences between this school's pretest and post test performance $(p=.85)$ on the six subtest scores.
B. Data analysis.

Statistical analyses used in this study was done by software that referenced Bruning and Kintz's Computational Handbook of Statistics (Bruning and Kintz, 1987), or Keppel's Design and Analysis: A Researcher's Handbook (Keppel, 1982). In addition, some statistical analysis was conducted within the software program Quattro Pro@, version 5.0 (Borland International, Inc., 1993).

Pretest scores on the six subtests of the experimental and control groups taking the same form were compared and revealed no significant differences. Pretest scores from 104 students in the control group taking the Y form were compared with 104 students' pretest scores of the experimental group taking the same form. An analyses of variance (ANOVA) revealed no significant difference ($\mathrm{F}>.05$) on all six subtests. See Appendix H for complete summary tables. Likewise there was no significant difference ($P>.05$) between the experimental and control groups taking the Z form as a pretest on any of the sub tests. (See Appendix l.) The effect of the order of testing was examined. Ninety one students took the Z form of the six sub
tests as a pretest followed by an experimental or control lesson on the second day. Ninety-one students then completed the Y form of the six subtests for their post test. There were 253 students who completed the Z form as their post test. Randomly selected 46 students who took the Y form as a pretest were compared to the 46 students in the control group who took the Y form as a post test. Score comparison on all six subtests revealed no significant differences ($p>.05$). (See Appendix J.) Similarly, subtests scores of 90 students who were randomly selected from the control group taking the Z form as a post test were compared to subtest scores of 90 students who took the Z form as a pretest. No significant differences on the six subtests were found. See Appendix K for complete summary tables. C. Tables summarizing findings.

Having established that there were no differences in the experimental and control groups taking the same pretest, an analysis of variance (ANOVA) was conducted between the Y and Z forms taken as pretests.

Significant differences between test scores on some of the sub tests were found. See Table II. For complete summary tables comparing Y and Z forms on the subtests see Appendix L.

Table II
Y Form and Z Form Comparison

SUBTEST	Y FORM MEAN	Z FORM MEAN	P VALUE
BG	2.57	2.87	0.18
WG	2.66	2.61	0.81
BP	3.5	2.04	$<.001$
WP	2.86	2.43	0.06
BR	2.68	3.61	$<.001$
WR	3.03	2.86	0.45

Correlation between the two forms ranged from .20 on the Best Generalization (BG) subtest to .39 on the Best Source (BR) subtest. The correlation analysis was conducted on students in the control group who took the Y Form of the subtests as their pretest and Z form as their post test. See Appendix M for correlation results between the two forms on all six subtests. Because of significant difference between forms on some subtests and the moderately low correlation between forms, an ANOVA was conducted comparing control and experimental groups post test scores on the subtests of the two forms. Thus Y form post test scores were analyzed separately from Z form post test scores. Before this analysis, 55 students from the White group were randomly selected to compare subtest scores with the Nonwhite group. Because there was no significant
difference ($\mathrm{P}>.05$) on any of the subtests, the Nonwhite students scores were collapsed into the White group for the formation and evaluation of generalizations portion of the study. See Appendix N for complete summary tables.

There were 91 students who completed the Y form as their post test and an ANOVA measured significant difference between groups on some of the subtests. Seven group comparisons and 5 interactions were found significant reporting P values of less than .05 or .01 . See Appendix O for complete summary tables on Y form post test group comparison on all subtests. Table III shows mean squares and F scores on comparisons that were significant. See Appendix P for charts and post hoc analysis on Y form post test group significant interactions.

TABLE III

Y FORM POST TEST

SUBTEST	GROUPS	MS	F	P VALUE
BEST SUPPORT(BP)	HIGH vs. LOW	30.1	16.68	$\mathrm{P}<.01$
BP	MALE vs. FEM.	9.24	5.15	$\mathrm{P}<.05$
BP	LEVEL X SEX	10.69	5.96	$\mathrm{P}<.05$
BP	LEVEL X SEX X TREATMENT	8.3	4.63	$\mathrm{P}<.05$
WORST SUP (WP)	HIGH vs. LOW	20.33	12.38	$\mathrm{P}<.01$
WP	LEVEL X SEX X TREATMENT	7.117	4.33	$\mathrm{P}<.05$
BEST SOURCE (BR)	HIGH vs. LOW	10.69	6.61	$\mathrm{P}<.05$
BR	MALE vs. FEM.	20.87	12.9	$\mathrm{P}<.01$
BR	LEVEL X TRTMNT	8.91	5.51	$\mathrm{P}<.05$
WORST SOURCE(WR)	HIGH vs. LOW	14.98	8.99	$\mathrm{P}<.01$
WR	EXP. vs. CNTRL	20.25	12.15	$\mathrm{P}<.01$
WR	LEVEL X SEXX TREATMENT	15.45	9.27	$\mathrm{P}<.01$

There were 253 students who completed the Z form of the six subtests as their post tests and an ANOVA was utilized to compare scores between groups. See Appendix R for complete summary tables. Six group comparisons were found significant with P values less than .01. Table IV
shows mean squares and F scores on comparisons that were significant.

TABLE IV

Z FORM POST TEST

SUBTEST	GROUPS	MS	F	P VALUE
BEST GEN.	HIGH VS. LOW	89.84	46.12	$\mathrm{P}<.01$
WORST GEN.	HIGH VS. LOW	73.89	38.76	$\mathrm{P}<.01$
BEST SUPPORT	HIGH VS. LOW	28.14	20.35	$\mathrm{P}<.01$
WORST SUP	HIGH VS. LOW	49.39	27.79	$\mathrm{P}<.01$
BEST SOURCE	HIGH VS. LOW	98.28	45.18	$\mathrm{P}<.01$
WORST SOURCE	HIGH VS. LOW	29.12	17.46	$\mathrm{P}<.01$

There were 58 nonwhite students who completed the Authoritarian Aggression (AA) and the Authoritarian Submission (AS) subscale survey of the modified F-scale test. One group comparison was found statistically significant. The High achievement group had a significantly higher score on their AS survey than the Low achievement group with P value of less than .01. See Appendix R for complete summary table, and charts on the Nonwhite Authoritarian subscales.

There were 275 White students who completed the Authoritarian Aggression (AA) and the Authoritarian Submission (AS) subscale survey of the modified F-scale test. No differences between groups was found on the AS subscale. One interaction between Achievement and Treatment group comparisons was found significant $(\mathrm{P}<.05)$ on the $A A$ subscale. Because
of the exploratory nature of the authoritarian attitude portion of the study, a Neuman-Keuls test was used in a post hoc analysis to measure difference between means in the interaction. The differences between the means were found not significant. Complete summary tables, an interaction chart, charts on subscale scores, and the post-hoc test results are found in Appendix S. Table V reports the AA and AS means for each White and Nonwhite group.

TABLE V
AUTHORITARIAN MEANS

GROUP	AA	AS
WHITE HI MALE EXP	4.9	4.53
NONWHITE HI MALE EXP	4.43	4.49
WHITE HI MALE CNTRL	4.53	4.66
NONWHITE HI MALE CNTRL	4.08	4.79
WHITE HI FEMALE EXP	4.73	4.74
NONWHITE HI FEMALE EXP	4.8	5.01
WHITE HI FEMALE CNTRL	4.5	4.52
NONWHITE HI FEMALE CNTRL	4.5	5.02
WHITE LO MALE EXP	4.53	4.66
NONWHITE LO MALE EXP	3.84	4.18
WHITE LO MALE CNTRL	4.86	4.43
NONWHITE LO MALE CNTRL	4	3.97
WHITE LO FEMALE EXP	4.89	4.84
NONWHITE LO FEMALE EXP	4.35	4.27
WHITE LO FEMALE CNTRL	4.66	4.5
NONWHITE LO FEMALE CNTRL	4.33	3.95

Fifty eight students were randomly selected from the White groups for the purpose of comparison with the Nonwhite groups on the AA and AS subscales. Because the treatment effect was not significant for either racial group when analyzed separately, the experimental and control groups were collapsed in the comparison. White groups had a significantly higher Authoritarian Aggression score than the Nonwhite groups $F(1,108)=4.72$, $\mathrm{P}<.05$. On the Authoritarian Submission subscale, the High achievement group reported a significantly higher score than the Low achievement groups from both racial groups $\mathrm{F}(1,108)=13.356 \mathrm{P}<.01$. The White versus Nonwhite AA and AS summary table and charts are found in Appendix T.

Correlation analysis was conducted comparing scores on the six subtests with the two authoritarian subscales scores. Subtest scores of subjects were also compared with subtest scores taken from their seventh grade lowa Test of Basic Skills (ITBS). These ITBS subtest scores included Vocabulary Grade Equivalent (VGE), Reading Grade Equivalent score (RGE), and subjects Social Studies Grade Equivalent score (SSGE). There were 71 students who provided a complete set of data for this portion on the study. See Table VI for results and Appendix U for charts showing these correlations.

TABLE VI

CORRELATIONS

	BG	WG	BP	WP	BR	WR	AA	AS	VGE	RGE	SSGE
BG	1										
WG	0.42	1									
BP	0.29	0.19	1								
WP	0.46	0.19	0.3	1							
BR	0.41	0.39	0.3	0.35	1						
WR	0.23	0.25	0.2	0.29	0.4	1					
AA	0.01	-0.09	0	-0.05	-0.08	0.04	1				
AS	-0.03	0.12	-0.02	0.05	-0.04	0.06	0.24	1			
VGE	0.05	-0.08	0.24	0.23	0.18	0.1	0.15	-0.12	1		
RGE	0.11	0.11	0.44	0.19	0.26	0.26	0.15	-0.09	0.8	1	
SSGE	0.23	0.06	0.5	0.45	0.29	0.25	0.07	-0.19	0.36	0.79	1

D. Summary of findings

A total of 333 students from seven rural schools in the Southwest were the subjects for the study. Of this total 58 students belong to nonwhite racial groups, mostly Native American. Approximately half of the subjects received either a control or experimental lesson following a pretest. There were 253 subjects who took the Z form of the post tests and 91 subjects completed the Y form as their post test. There were no statistical differences in the scores of the experimental and control groups on their pretest. Also post test scores of the control group were not significantly different from the group taking the identical form as a pretest.

The Y and Z forms were found to be statistically different with a low to moderately low correlation on the subtests. For this reason the groups taking the Y form and the group taking the Z forms were analyzed separately. The 58 nonwhite students post tests scores did not differ from an equal number of randomly selected White students. The racial groups were therefore combined for the generalization formation and evaluation portion of the study. Based on pretest scores, students were placed in High or Low Achievement groups, experimental or control groups and grouped by sex.

When an ANOVA compared Z form control groups with Z form experimental groups, seven group comparisons and 5 interactions were found significant at the 95 or 99 percent level of confidence. Some important findings among the comparisons were that Female groups out performed the Male group on the Best Support (BP) subtest and the Best Source (BR) subtest. Additionally, the Control group had a statistically higher score than the Experimental group on the Worst Source (WR) subtest. One two way interaction was found on the BP subtest in the Levels X Treatment Group comparison. In addition, the BP subtest produce a significant three way interaction between Level, Sex, and Group. A two way interaction between Level and Sex was found in the BR subtest.

The 253 subjects taking the Z form as their post test produced fewer but consistent significant results. On all six subtests, the High achievement group had significantly higher scores than their Low achievement peers. There were no significant interactions in the Z form group comparison.

Because of the unequal size of the Nonwhite groups compared to the White groups (58 to 275), the Nonwhite groups were first analyzed separately. The Nonwhite High achievement group had a significantly higher score on their Authoritarian Submission (AS) subscale portion of the modified F-scale test than their Low achievement peers $F(1,57)=8.339$, $\mathrm{P}<$.01. In the White group, authoritarian attitudes did not differ between groups on the Authoritarian Aggression (AA) subscale. A post hoc test found no significant differences between the means in the significant interaction between the Achievement and Treatment groups.

To examine racial differences, an equal number of White subjects were paired with Nonwhite subjects. Fifty-eight White students were randomly selected for a racial group comparison on AA and AS subscales scores. The White groups had significantly higher AA scores at a 95% level of confidence than their Nonwhite peers. The High achievement group of both racial groups had significantly higher AS scores at a 99% level of confidence.

CHAPTER V

DISCUSSION

Social studies generalizations are an important component of social studies instruction. Generalizations utilize critical thinking skills in the formation and evaluation process while constructing a body of knowledge. Knowledge implies power and power implies authority. Traditionally, teachers have an authority of knowledge position before their students and primarily construct knowledge for their students' assimilation. Actively involving students in the knowledge construction process and thus sharing authority that is normally associated with knowledge may affect students' authoritarian attitudes. The purpose of this study was to determine what effects a knowledge construction exercise would have on student authoritarian attitudes and on student ability to form and evaluate social studies generalizations. In this chapter the major findings are discussed in relation to the hypotheses stated in chapter one. Other findings are discussed, other alternative interpretations are offered, implications of findings presented, and recommendations for future study will be presented.

A. Summary of Treatment Effects.

Each of the hypotheses specified that the treatment effect, a Knowledge Construction Exercise, would have a significant effect. The following are the stated hypotheses:

Hypothesis One

A Knowledge Construction Exercise given to eighth grade students should have an effect on student performance on the generalization test and its six subtests.

Hypothesis Two

Students who participate in a Knowledge Construction Exercise should experience a significant change in their authoritarian attitudes.

The hypotheses were not supported by the results. However, significant differences among groups were found in both the formation and evaluation portion of the study as well as in the authoritarian subscale measurements. Group differences were not consistent with the two forms, Form Y and Form Z. Although the treatment had no effect on student authoritarian scores, significant differences among groups were found on the two subscales of the F-scale test.

B. Generalization Hypothesis

The treatment had no effect on student ability to form or evaluate generalizations as measured by the six subtests, but other group differences were found. The two forms of the generalization test, Form Y and Form Z, produced different results on the post test measurement of formation and evaluation of generalizations. While the Form Z post test results were
consistent, that is, the high pretest achievers significantly outperformed their low pretest achievers on all subtests, the Form Y post test results were varied and in some ways bizarre. For example, female subjects did significantly better on the Best Support (BP) subtest ($\mathrm{P}<.05$) and the Best Source (BR) subtest $(\mathrm{P}<.01)$ on the Form Y post test. Sex was a factor in four of the six interactions (See Table II on page 60). On the Worst Source (WR) subtest Form Y post test subjects in the control group did significantly better than the experimental group ($\mathrm{P}<.01$).

Outside factors could have confounded the results on the Form Y post test. Results for the Form Y post test came from only one school. Just prior to the experiment, the social studies teacher had taught a lesson on generalization formation and evaluation. A significantly large number of the boys had been absent due to a baseball tournament. The female students, who outnumbered the male students and had higher achievement scores, had an advantage in the experiment due to their recent experience with generalizations. However, since no prior training had been given on finding the worst source for a generalization, the female students may have reacted negatively to the training for this subtest, thus explaining the control group superior means. The significant interactions involving sex, level, and/or group could also be explained by these nuisance variables. The researcher
believes these nuisance variables were not completely controlled by randomization. Cell sizes were also low, ranging from nine to fourteen students and means varied from 1.8 to 4.6 on the WR subtest. See Appendix P. For comparison, the range of means on the WR subtest of the Form Z post test were 2.25 to 3.72 with cell size ranging from 24 to 42 . See Appendix R.

The more consistent results on the Form Z post test failed to produce any important findings. High pretest scorers significantly outperform their Low pretest scoring peers, but this was to be expected. Experimental group means were barely higher than the control group means on five out of six subtests with the Worst Support (WP) control group producing a slightly higher mean. See Table VII.

Table VII
Z Form Exp \& Cntrl Means

Subtest	Exp Group	Cntrl Group
BG	2.9	2.57
WG	2.87	2.81
BP	2.33	2.22
WP	2.15	2.34
BR	3.69	3.52
WR	2.95	2.87

Male and female group means were almost identical (usually less than .1 difference) on five of the subtests. See Appendix R. The only exception occurred on the Worst Source (WR) subtest where the female group mean was 3.098 to the male group mean of 2.768 .

C. Authoritarian Hypothesis

The treatment effect, a Knowledge Construction Exercise, had no effect on students' authoritarian attitudes as measured by the two subscales of the modified F-scale test. However, group differences were found between high and low achievement groups and racial groups. Nonwhite students that scored high on the generalization pretest were grouped into the High Achievement group. These students had significantly higher Authoritarian Submission (AS) subscale scores than the Low Achievement group, $F(1,57)=7.4, P<.01$. See Appendix S.

There were 275 White students that provided data for the authoritarian portion of the study. No significant difference was found between groups on either authoritarian subscale but a significant interaction was found among White groups on their Authoritarian Aggression (AA) subscale. Treatment groups and Achievement groups had this significant interaction, but a post hoc test revealed no significant difference between
the means within the interaction. See Appendix T for complete summary tables, charts, and post hoc analysis.

There were 58 White students randomly selected for a White versus Nonwhite comparison on AA and AS scores. Whites were significantly higher than Nonwhites on the AA subscale score comparison. High Achievement groups of both racial groups had a significantly higher AS scores $\mathrm{F}(1,115)=13.36, \mathrm{P}<.01$ than the Low Achievement group. See Table VIII for mean comparison between the racial groups on AA and AS scores.

TABLE VIII
RACIAL GROUP AUTHORITARIAN SCORES

	WHITE AA	NONWHITE AA	WHITE AS	NONWHITE AS
HI FEMALE	4.48	4.69	4.68	5.01
HI MALE	4.85	4.27	4.83	4.63
LO FEMALE	4.68	4.35	4.34	4.15
LO MALE	4.55	3.91	4.35	4.1

The table reveals a consistent pattern of lower AA and AS scores among the Nonwhite groups except for High Achievement Females, which are higher than their White peers. On the AA subscale, Nonwhite High Females reported the highest score in the Nonwhite groups while White High Females report the lowest AA score in the White groups. The

Nonwhite High Female group reported the highest AS score, and the only authoritarian score that exceeded $5(5.009)$, while the High Male group led the White group with the highest score of 4.825. Cell sizes in this comparison were 13 for the males and 16 for the female groups.

D. Other Findings

Correlation analysis found a low to moderately low positive correlation between the generalization subtests (.19 to .46). These findings would support a claim of the subtests measuring different aspects of the formation and evaluation of generalizations. Extremely low positive and negative correlations were found between the generalization subtests and the two F-scale subscales (-. 09 to .12). This same low correlation pattern was found between the subtest scores of the lowa Test of Basic Skills (ITBS) and the F-Scale subscales(-. 19 to .15). The reading, vocabulary, and social studies grade equivalence scores (RGE, VGE, and SSGE) were moderately to highly positively correlated (.36 to .80) to each other.

E. Conclusions

The self-instruction booklet containing the Knowledge Construction Exercise (KCE) had no effect on student's ability to form or evaluate social studies generalizations or their authoritarian attitudes. This failure of the KCE could result from a number of factors. The notion of knowledge
construction and the sharing of that power with the student may not have been achieved in the treatment format. A single lesson in a self-instruction booklet may have been too weak a presentation of this idea. The search for the best or worse answers, although not as convergent as students generally experience in testing, may still lack the divergence necessary to make the point of knowledge construction. The fact that the lesson had no effect on helping students form or evaluate generalizations indicates perhaps another problem. The lesson may have covered too much in too little time to be of help to students. Average post test scores generally ran 50% or less on all subtests. These low scores may indicate that too little time was spent on this difficult lesson to achieve better results on the post test. Since the lesson failed to help students form or evaluate social studies generalizations any better, it seems unlikely that it would affect attitudes in the way it was intended. There is no indication that students felt they were actively involved in knowledge construction.

Although the KCE had no effect on authoritarian attitudes, group and racial differences were found. White students had a significantly higher score on their AA subscale than nonwhite students. The AA means were 4.634 for the White group and 4.326 for the Nonwhite group.

The Authoritarian Aggression (AA) mean scores of the two racial groups is not alarmingly high when compared to historical scores of adult groups. Authoritarian aggression was defined as the tendency to be on the lookout for, and to condemn, reject, and punish people who violate conventional values (Sanford, 1956). A mean score of four is interpreted by the authors of the F-scale test to mean a neutral position toward authoritarian aggression. Less than a mean score of four is interpreted to mean a tendency to be anti-authoritarian aggressive.

Looking at this study's AA subscale means and comparing that with scores by adult groups in the original study by Adorno, Frenkel-Brunswik, Levinson, and Sanford (1950) will offer a perspective useful in interpretation of those scores. The adult mean scores are scores that are from the same forms used in this study but included other subscales as well, so the comparison is not designed to be exact. Also "Mack" was a 24-year-old college freshman whom the study found high on ethnocentrism. "Larry" was a 28-year-old college student that the Adorno et. al. study found low on ethnocentrism. See Table IX.

TABLE IX
AA Score Comparison

White High Female	4.48	Testing Class Women	3.62
White High Male	4.85	San Quentin Men Prisoners	4.73
White Low Female	4.68	Psychiatric Clinic Women	3.69
White Low Male	4.55	Psychiatric Clinic Men	3.82
Nonwhite High Female	4.69	Men Veterans	3.74
Nonwhite High Male	4.27	Maritime School Men	4.06
Nonwhite Low Female	4.35	"Mack"	5
Nonwhite Low Male	3.91	"Larry"	3.4

At first glance it may look like the eighth grade population has more in common with San Quentin Men and "Mack" than anyone else. However, it must be remembered that eighth grade students have less education than most adults and studies have shown a negative relationship between authoritarian scores and years of education and age (McFarland, 1985). The San Quentin Men may be the only group that come the closest to the number of years of education of the eighth grade population. Although eighth grade student scores were less than the highly ethnocentric "Mack,"
ethnocentrism can be expected to be relatively high at this age. Ethnocentrism, however, may be less among the nonwhite population since they are not members of the dominant race of the society. Teevan, Heinzen, and Hartsough (1988) found a correlation supporting the idea that authoritarianism may result from a high need for achievement. This finding may explain the trend found in the High achievement groups.

The Authoritarian Submission (AS) scores revealed a consistent pattern. Authoritarian submission is defined as having a submissive, uncritical attitude toward idealized moral authorities of the in-group (Sanford, 1956). Nonwhite students who scored high on their pretest and thus were placed in the High achievement group, had a significantly higher AS score than their lower achieving peers. A similar phenomena occurred when White and Nonwhite subjects were compared. The High achievement group of both racial groups had a significantly higher AS score. This finding supports the idea that authoritarianism may result from a high need for achievement, A study by Teevan, Heinzen, and Hartsough (1988) found a similar correlation.

For a more exact comparison with adult scores from the Adorno, Frenkel-Brunswik, Levinson, and Sanford (1950) study, means were calculated from the same items used to make this study's AS subscale.
"Mack" and "Larry" AS subscale items were slightly different. Age and education will still be a factor in lowering the means for the adults. In addition, it is important to remember that the number of males in each eighth grade group for the comparison is only thitteen. Female group cell size was sixteen. See Table X.

TABLE X
AS Comparison

Nonwhite High Females	5.01	Female Adult groups	3.88
White High Females	4.68	Male Adult groups	4.12
Nonwhite High Males	4.63	"Mack"	4
White High Males	4.83	"Larry"	3.13
Nonwhite Low Females	4.15		
White Low Females	4.34		
Nonwhite Low Males	4.1		
White Low Males	4.35		

Clearly the students who did poorly on the generalization pretest have AS scores close to the adult scores when age and education are taken into account. The vast difference between the High achievers and the adult scores can partially be explained by the high achievement and authoritarian connection found by Teevan, Heinzen, and Hartsough (1988). To help explain other reasons for the difference, correlations should be examined.

There was an extremely low correlation between the six subtests and AS scores (-04 to .12) found in this study. This indicates that as a group the high pretest scorers are more authoritarian submissive but individually no pattern can be found between their AS scores and their subtest performance.

The subtest scores in turn did not correlate highly with any other measure used in this study except the SSGE score. With the exception that Worst Generalization (WG) scores had a positive correlation of only .06 with SSGE, the other subtests had a positive correlation of at least .23. The two Support subtests, Best Support (BP) and Worst Support (WP), had a positive correlation of .5 and .45. This is probably due to a good knowledge of the social studies which would aid in recognizing established generalizations and the facts that do or do not support them. The failure to produce equally moderate correlations with the Best Generalization (BG) and Worst Generalization (WG) subtests (. 23 and .06) is probably due to the lack of student experience in inductive reasoning with social studies generalizations. Usually students are given generalizations and then shown support for them, i.e., a deductive approach.

Clearly there are differences in authoritarian subscale scores among groups of eighth grade students. Race appears to be a factor and, to a
lesser degree, so does the sex of the student. Why a high score on the pretest seems to be the most significant factor for high authoritarian submission scores is difficult to explain since the subtest scores do not correlate well with other available measures. Perhaps students with a "submissive uncritical attitude toward moral authority" took the test more seriously and thus scored better than their peers. The low correlation between the subtest scores and AS scores limits this explanation to the high group only and not to the individuals within the group.

F. Recommendations

Further research is recommended to test the hypothesis that knowledge construction by students would alter their authoritarian attitudes. Students need to experience more than a limited introduction to the concept. A semester long teaching approach where students are given original documents and asked to formulate generalizations should accomplish this goal. In the process they also would be evaluating the best and worst support and sources for generalizations. Working in groups to form and evaluate generalizations would aid students in developing strategies for recognition of good sources, good supports for generalizations, and well worded generalizations that utilize the available information. This exercise
may cause the students to experience the shifting of the power of authority from the teacher to themselves when it comes to knowledge construction.

Before replicating this study, steps should be taken to improve the reliability of Form Y and Form Z. The test retest reliability of the two forms was found to be .71 for the Y Form and .68 for the Z Form when administered to 29 and 23 students with a day between each testing. Unreliable items should be deleted and additional items added to increase the overall reliability of the instruments.

Breaking this study's Knowledge Construction Exercise into three parts may facilitate its comprehension and positively effect student ability to form and evaluate generalizations. Teachers could teach three lessons and include more practice items. Although this approach resembles a traditional method, the subject matter of knowledge construction may still have an effect on student authoritarian attitudes. Therefore, a measurement of authoritarian attitudes following these lessons may reveal some changes.

A cooperative learning activity could be utilized to replicate a portion of this study. Students may experience knowledge construction with a slight modification of the materials. Students could be placed in groups of three to five students and given basically the same materials used in this study. The difference would be the absence of choices for choosing the best and
worst answers. The groups' answers could be submitted to the teacher who would write them on the chalk board. The class would then select the "best" answer and discuss the shortcomings of the rest. After a comfortable experience with this, students may be ready for individual testing.

This study revealed something that was expected: that authoritarian scores of eighth grade students would be higher than the general population because of their youth and limited years of education. However, the study was unable to find corresponding factors with high scores or to determine what anti-authoritarian effects schooling may have on students. Therefore a longitudinal study to trace the expected fall of these authoritarian scores would be useful in determining transitional years in student attitudes. Perhaps the institutional characteristics of public schooling itself is one of the contributing factors to high authoritarian scores. This may explain why another group of institutional members, the San Quentin Males, had authoritarian scores that came the closest to the eighth grade population. A longitudinal study that followed students through high school and beyond could shed some light on this question.

This study utilized only two subscales of the F-scale test. It may prove interesting to include the complete test to measure such elements as ethnocentrism, anti-Semitic attitudes, conventionalism, superstition and
stereotypic attitudes among the eighth grade population. Again, race and sex could be a factor in the differences found in the population.

G. Summary

In this chapter the results of a study involving 333 eighth grade students were examined in light of the hypotheses. A knowledge construction exercise had no effect on student ability to form or evaluate social studies generalizations. The exercise also had no effect on the authoritarian attitudes of the students. However, some group differences were discovered. High achievers on the generalization pretest were found to have higher scores on authoritarian subscale measures, especially the authoritarian submission scale. This trend was especially consistent with the Nonwhite group. White students were more authoritarian aggressive than the Nonwhite group. The authoritarian attitude survey findings were fairly consistent with those found in other studies involving adults. The shortcomings of the study were discussed along with recommendations for further research in both generalization acquisition and authoritarian attitude survey.

References

Adams, R. D. \& Martray, C. R. (1980, November). Correlates of teacher perceived problems. Paper presented at the Annual Conference of the Mid-South Educational Research Association, New Orleans, LA.

Adorno, T. W., Frenkel-Brunswik, E., Levinson, D. J., \& Sanford, N. R. (1950). The authoritarian personality. New York: Harper \& Brothers.

Alexander, P. A., White, C. S., Haensly, P. A. \& Crimmins-Jeanes, M. (1967). Training in analogical reasoning. American Educational Research Journal, 24, 387-404.

Armstrong, N. (1970). The effect of two instructional inquiry strategies on critical thinking and achievement in eighth grade social studies. Unpublished doctoral dissertation, Indiana University.

Arnett, P. P. (1985). Effects of feedback placement and completeness within Gagne's model for computer assisted instruction lesson development on concept and rule learning. Unpublished doctoral dissertation, University of Georgia.

Asch, S. E. (1952). Social Psychology. Englewood Cliffs, NJ: Prentice-Hall.

Ausubel. D. P. (1960). The use of advance organizers in the learning and retention of meaningful verbal material. Journal of Educational Psychology, 51, 267-272.

Baldwin, D. A. (1989). Paradoxes of Power. New York: Basil Blackwell Inc.

Banks, J. A. (1990). Teaching strategies for the social studies (4th Ed.). New York: Longman.

Banks, J., \& Clegg, A. (1985). Teaching strategies for the social studies: Inquiry, valuing, and decision making. (3rd ed.). New York: Longman.

Barat, P. K. (1983). The effects of two types of feedback, feedback display time and provision for background color selection on rule learning in computer assisted instruction. Unpublished doctoral dissertation, Syracuse University.

Beaubier, E. W. (1962). Capacity of sixth grade students to understand social science generalizations. Unpublished doctoral dissertation, University of South California.

Beery, R. W. (1972) The effects of two inquiry teaching strategies on the learning of sociological concepts and generalizations and the development of inquiry-related skills. Unpublished doctoral dissertation, University of Minnesota.

Benes, C. H. (1991, April). What does research say about teaching social studies generalizations? Paper presented at Rocky Mountain/Great Plains Regional Social Studies Conference, Overland Park, KS.

Benes, C. H., McKinney, C. W., \& Hagen, J. S. (1991, January). Effects of training in inductive and deductive reasoning on the acquisition of social studies generalizations. Paper presented at the meeting of the Southwest Educational Research Association, San Antonio, TX.

Berkowitz, N. H. \& Wolkon, G. (1964). A forced-choice form of the F scale---free of acquiescent response set. Sociometry, 27, 54-65.

Bhushan, L. I., \& Sahay, B. R. (1980). A short form of the Indian F-scale. Indian Psychological Review, 19(4), 43-45.

Bhushan, L. I. (1982). Validity of California F-scale: A review of studies. Indian Psychological Review, 23(1), 1-11.

Bhushan, L. I. (1985). Authoritarianism and F-scale in cross-cultural perspective. Psychological Studies, 30(2), 127-133.

Black, D. H. (1981). Comparison of inquiry and non-inquiry methods in the development of critical thinking. Unpublished doctoral dissertation, Vanderbilt University.

Bloom, B. S. (1956). Taxonomy of educational objectives: Cognitive domain. New York: David McKay.

Boedeker, L. C. (1971). Inquiry teaching strategies: Their effects on dogmatism. critical thinking and learning in a seventh grade sociology course. Unpublished doctoral dissertation, University of Minnesota.

Borland International Inc. (1993). Quattro Pro version 5.0. (Computer program). Scotts Valley, CA.

Brooks, J. G. and Brooks, M. G. (1993). In search for understanding: The case for constructivist classrooms. Alexandria, VA: Association for Supervision and Curriculum Development.

Brownell, W. A., \& Hendrickson, G. (1950). How children learn information, concepts, and generalizations. In N. B. Henry (Ed.), The Forty-Ninth Yearbook of the National Society for the Study of Education: Part 1:Learning and Instruction. Chicago: The University of Chicago Press.

Bruner, J. S. (1966). Toward a theory of instruction. New York: Norton.

Bruning, J. L. \& Kintz, B. L. (1987). Computational Handbook of Statistics. (2nd ed.). Glenview, IL: Scott, Foresman, and Company.

Christie, R. \& Jahoda, M. (Eds.). (1954). Studies in the Scope and Method of "The Authoritarian Personality." Glencoe, IL: Free Press.

Connell, P. J. (1987). Teaching language rules as solutions to language problems: A baseball analogy. Language. Speech. and Hearing Services in Schools, 18(3), 194-205.

CorrecText(®), (1990). Grammar Correction System: Readability statistics. (Computer program). Houghton Mifflin Company. Underlying technology developed by Language Systems, Inc. U.S. Patent Nos.4,868,750; 4,864,502, 4,864,501; 4,773,009; 4,771,401; 4,730,269; 4,580,241.

Croxton, W. C. (1936). Pupil's ability to generalize. School Science and Mathematics, 36, 627-634.

Dalley, A. F. (1975). University vs. non-university graduated policeman: A study of police attitudes. Journal of Police Science and Administration, 3(4), 458-468.

David, D. W. (1968). Conditions that foster growth in children's ability to generalize in elementary school social studies. Unpublished doctoral dissertation, Indiana University.

Dewey, J. (1938a). Experience and education. New York: Macmillan Publishing Company.

Dewey, J. (1938b). Logic: The theory of inquiry. New York: Holt, Rinehart, and Winston.

Diaz, L. A. (1990). The relation of rule retention and rule transfer to the algebra performance of minority community college students. Unpublished doctoral dissertation, Columbia University Teachers College.

Dubey, R. S. (1986). Authoritarianism in Indian leaders. Psychological Research Journal. 10(1), 16-23.

Duckitt, J. H. (1983). Authoritarianism and adjustment in an authoritarian culture. Journal of Social Psychology, 121(2), 211-212.

Dunn, C. \& Till, J. A. (1982). Morphophonemic rule learning in normal and articulation-disordered children. Journal of Speech and Hearing Research, 25(3), 322-333.

Edmiston, R. W. (1935). Testing generalizing ability. Peabody Journal of Education, 12, 246-251.

Ehman, L., Mehlinger, H., \& Patrick, J. (1974). Toward effective instruction in secondary social studies. Boston: Houghton Mifflin Company.

Feuerstein, P. N. (1983). The effects of the function a cartoon character serves within a printed text on rule learning. Unpublished doctoral dissertation, Florida State University.

Gagne, R. M., Briggs, L. J., \& Wager, W. W. (1988). Principles of Instructional Design. (3rd ed.) New York: Holt, Rinehart, and Winston.

Gluck, M. A. \& Bower, G. H. (1988). From conditioning to category learning: An adaptive network model. Journal of Experimental Psychology General, 117(3), 227-247.

Greenblatt, E. L. (1963). An exploratory study of the development of selected generalizations in social studies. Unpublished doctoral dissertation, University of Southern California.

Grube, G. M. A. (1988). Plato's republic Indianapolis: Hackett Publishing Company. (Original translation published 1974).

Hagen, J. S., McKinney, C. W., \& Benes, C. H. (1991, January). Effects of nonsupporting data on the acquisition of a social studies generalization. Paper presented at the meeting of the Southwest Educational Research Association, San Antonio, TX.

Hanna, P. R. (1957). Generalizations and universal values: Their implications for the social studies program. In N. B. Henry (Ed.), Social Studies in the Elementary School. The Fifty-Sixth Yearbook of the National Society for the Study of Education Part Il, Chicago: The University of Chicago Press.

Hardiman, P. T., Pollatsek, A., \& Well, A. D. (1986). Learning to understand the balance beam. Cognition and Instruction, 3(1), 63-86.

Harrison, J. (1976). Hume's moral epistemology, Oxford: Claredon Press.

Harwood, D. L. (1974). Perceptual and cognitive rule-learning in musical contexts (Doctoral dissertation, University of CA, Los Angeles, 1973). Dissertation Abstract International, 34, 5710B.

Hermann, G. D. (1969). Learning by discovery: A critical review of studies. The Journal of Experimental Education, 38, 58-72.

Hermann, G. D. (1971). Egrule vs. ruleg teaching methods: Grade, intelligence, and category of learning. The Journal of Experimental Education. 39, 22-33.

Hills, J. L. (1964). Dimensions of children's learning about social studies generalizations. Unpublished doctoral dissertation, University of Southern California.

Hoff, L. K. (1985). An investigation of knowledge of graphemic options for spelling in normal and learning disabled children. Unpublished doctoral dissertation, Northwestern University.

Hurtado, J. R. (1980). The effect of feedback within an instructional film presenting rule learning. Unpublished doctoral dissertation, Florida State University.

Hyman, H. H., \& Sheatley, P. B. (1954). "The Authoritarian Personality": a methodological critique. In R. Christie and M. Jahoda (Eds.), Studies in the Scope and Method of "The Authoritarian Personality." Glencoe, IL: Free Press.

Jacka, B. T., \& Hermann, G. D. (1977). Egrule vs. ruleg teaching: A replication. Journal of Experimental Psychology, 46, 15-20.

Jackson, D. N., Messick, S. J., \& Solley, C. M. (1957). How "rigid" is the "authoritarian"? Journal of Abnormal and Social Psychology, 54, 137-40.

Jackson, P. W. (Ed.). (1992). Handbook of research on curriculum. New York: MacMillian Publishing Company.

Jarolimek, J. (1990). Social studies in elementary education (8th Ed.). New York: Macmillan.

Johansen, K. J. (1980). Advisement information in rule learning using learner controlled. computer-assisted instruction. Unpublished doctoral dissertation, University of Minnesota.

Johansen, K. J. \& Tennyson, R. D. (1983). Effect of adaptive advisement on perception in learner-controlled, computer-based instruction using a rule-learning task. Educational Communication and Technology Journal, 31(4), 226-236.

Judd, C. H. (1936). Education as cultivation of the higher mental processes. New York: The Macmillan Company.

Kelman, H. C. \& Barclay, J. (1963). The F scale as a measure of breadth of perspective. Journal of Abnormal and Social Psychology, 67, 608-15.

Kenis, I. (1977). A cross-cultural study of personality and leadership. Group and Organization Studies, 2(1), 49-60.

Keppel, G. (1982). Design and Analysis: A researcher's handbook. (2nd ed.). Englewood Cliffs, NJ: Prentice-Hall, Inc.

Kirscht, J. P. \& Dillehay, R. C. (1967). Dimensions of authoritarianism: A review of research and theory. Lexington, KY: University of Lexington Press.

Klauer, J. K. (1989). Teaching for analogical transfer as a means of improving problem-solving, thinking and learning. Instructional Science, 18, 179-192.

Kovalcik, A. L. (1979). The effect of using children's literature to change fifth grade students' attitudes toward social studies as an area of instruction. Unpublished doctoral dissertation, University of Northern Colorado.

Kuhn, T. (1970). The structure of scientific revolutions. Chicago: The University of Chicago Press.

Lahnston, A. T. (1972). A comparison of directed discovery and demonstration strategies for teaching geographic concepts and generalizations. Unpublished doctoral dissertation, University of Washington.

Lederer, G. (1982). Trends in authoritarianism: A study of adolescents in West Germany and the United States since 1945. Journal of Cross Cultural Psychology, 13(3), 299-314.

Lee, O. M. (1985). The effect of type of feedback on rule learning in computer based instruction. Unpublished doctoral dissertation, Florida State University.

Lee, Y. J. D. (1989). The effects of feedback and second try in computerassisted instruction for a rule-learning task. Unpublished doctoral dissertation, University of Texas at Austin.

Letzter, F. P. (1970). An analysis and appraisal of two reflective methods in the teaching of world history. Unpublished doctoral dissertation, Columbia University.

Lipuma, J. (1988). The relationship between conditional reasoning, conditional rule learning and computer programming. Unpublished doctoral dissertation, Fordham University.

Long, V. O. (1979). Inductive vs. ruleg teaching Strategies: An action research study. Journal of Instructional Psychology, 6(2), 2-4.

Lorayne, H., \& Lucas, J. (1975). The memory book. New York: Ballantine Books.

Maxim, G. W. (1991). Social studies and the elementary school child. New York: Merrill.

McFarland, S. G. \& Sparks, C. M. (1985). Age, education, and the internal consistency of personality scales. Journal of Personality and Social Psychology, 49, 1692-1702.

McKinney, C. W. (1991, April). Issues related to teaching generalizations. Paper presented at the meeting of the Rocky Mountain/Great Plains Regional Social Studies Conference, Overland Park, Kansas.

McKinney, C. W., Benes, C. H., Hagen, J. S., \& Beckham, L. (1991, January). Effects of inductive and deductive reasoning and practice on fourth grade students' ability to form a social studies generalization. Paper presented at the meeting of the Southwest Educational Research Association, San Antonio, TX.

McNaughton, A. H. (1969). A generalization is a generalization. Teachers College Record, 70, 715-727.

Mehlinger, H. D. (Ed.). (1981). UNESCO Handbook for the teaching of social studies. Paris: UNESCO.

Meredith, R. \& Benninga, J. S. (1979). Counseling with parents to benefit children. Elementary School Guidance and Counseling. 14(1), 36-42.

Michaelis, J. U. (1988). Social studies for children: A guide to basic instruction. Englewood Cliffs, NJ: Prentice Hall.

Morgulas, S. S. (1982). The effect of information about sentence referents on children's observational learning of a syntactic rule. Unpublished doctoral dissertation, City University of New York.

Nation, J. R., \& LeUnes, A. (1983). A personality profile of the Black athlete in college football. ,Psychology: A Quarterly Journal of Human Behavior, 20(3), 1-3.

Naylor, D. T., \& Diem, R. A. (1987). Elementary and middle schools social studies. New York: Random, Inc.

Neilson, W. A. (ed.) (1934). Webster's New International Dictionary of the English Language 2nd edition. Northhampton, MS: G. \& C. Merriam Company.

Noel, K. L. (1983). The effects of advance organizers on transfer of rule learning. Unpublished doctoral dissertation, Florida State University.

Orpen, C. (1973). Sociocultural and personality factors in prejudice: The case of white South Africa. South African Journal of Psychology, 3, 91-96.

Pestell, R., \& Ball, J. R. (1991). Authoritarianism among medicine and law students. Australian and New Zealand Journal of Psychiatry, 25, (2) 265-269.

Peterson, G. M. (1932). An empirical study of the ability to generalize. Journal of General Psychology, 6, 90-113.

Petretic-Jackson, P. A. (1981). Children's acquisition of a miniature linguistic system: A comparison of signed and spoken languages.
Unpublished doctoral dissertation, Bowling Green State University.

Phillips, R. C. (1974). Teaching for thinking in high school social studies. Reading, MS: Addison-Wesley Publishing Co., Inc.

Piaget, J. (1928). Judgment and reasoning in the child. New York: Harcourt, Brace, and Company.

Pulaski, M. A. S. (1971). Understanding Piaget: An introduction to children's cognitive development. New York: Harper and Row.

Ray, J. J. (1981). Do authoritarian attitudes or authoritarian personalities reflect mental illness? South African Journal of Psychology, 11(4), 153-157.

Ray, J. J. (1985). Authoritarianism of the left revisited. Personality and Individual Differences, $\underline{\mathbf{6}}(\mathbf{2})$, 271-272.

Reese, H. W., Parnes, S., Treffinger, D., \& Kaltsounis, G. (1976). Effects of a creative studies program on Structure of Intellect factors. Journal of Educational Psychology, 68, 401-410.

Reigeluth, C. M. (Ed.). (1983). Instruction-design theories and models: An overview of their current status. Hillsdale, NJ: Lawrence Erlbaum Associates.

Rose, L. H., \& Lin, H. (1984). A meta-analysis of long-term creativity training programs. Journal of Creative Behavior, 18, 11-22.

Rousseau, J. (1979). Emile or on education (Allan Bloom Trans.). New York: Basic Books Inc.

Russell, B. (1978). Analysis of the mind. (original work published 1921) Humanities Press.

Saidi, H. (1985). The impact of advance organizers upon students' achievement in computer-assisted video instruction. Unpublished doctoral dissertation, University of Oklahoma.

Saiyadain, M. S. (1975). Effect of subordinate's personality on supervisory style. Indian Journal of Industrial Relations, 2(2), 161-176.

Sanford, N. (1956). The approach of the authoritarian personality. In J. L. McCary (Ed.), Psychology of Personality: Six Modern Approaches. New York: Logos Press, 1956.

Sarkar, S. N. \& Hassan, M. K. (1973). Economic conservatism as related to religion, caste, political affiliation and authoritarianism. Indian Journal of Psychology, 48(4), 64-70.

Selby-Bigge, L. A. (Ed.). (1960). A treatise of human nature by David Hume. London: Oxford Press. (Reprinted from the original edition in three volumes).

Shivley, J. E., Feldhusen, J. F., \& Treffinger, D. J. (1972). Developing creativity and related attitudes. The Journal of Experimental Education, 41(2), 63-69.

Simon, Y. R. (1980). A general theory of authority. Notre Dame: University of Notre Dame Press.

Sinha, J. N. (1983). A study of the Indian F-scale. Indian Psychological Review, 25(1), 19-22.

Smith, F. J. (1968). Rule learning in a miniature linguistic system (Doctoral dissertation, University of Wisconsin, Madison, 1967). Dissertation Abstracts International, 28, 4784B.

Smith, M. B. (1965). An analysis of two measures of "authoritarianism" among Peace Corps teachers. Journal of Personality, 33, 513-35.

Spock, P. A. (1987). Feedback and confidence of response for a rulelearning task using computer-assisted instruction. Unpublished doctoral dissertation, University of Texas at Austin.

Stanton, M. E. (1976). A new use for generalizations in the teaching of world history. Unpublished doctoral dissertation, Florida Atlantic University, Boca Raton, FL.

Steinberg, E. (ed.). (1977). David Hume, An enquiry concerning human understanding: A letter from a gentlemen to his friend in Edinburgh. Indianapolis: Hackett Publishing Company.

Stitt, H. S. (1967). Effects of instruction on children's inferential thinking. Unpublished doctoral dissertation, University of California, Los Angles, CA.

Taba, H. (1967). Teacher's handbook for elementary social studies. Palo Alto, CA: Addison-Wesley Publishing Company.

Tabachneck, A. S. (1982). The effects of immediate and delayed feedback on the retention of factual and rule learning. Unpublished doctoral dissertation, Michigan State University.

Tauran, R. H. (1967). The influence of reading on the attitudes of third graders toward Eskimos. Unpublished doctoral dissertation, University of Maryland.

Taylor, W. L. (1941). Generalizations in the social studies. The Social Studies, 32, 147-151.

Teevan, R. C., Heinzen, T. E., \& Hartsough, W. R. (1988). Personality correlates between need for achievement and subscales of the F-scale of authoritarianism. Psychological Reports, 62, 959-961.

Tennyson, R. D., Welsh, J. C., Christensen, D. L., \& Hajovy, H. (1985). Interactive effect of information structure sequence of information and process learning time on rule learning using computer-based instruction. Educational Communication and Technology Journal, 33(3), 213-223.

Titus, H. E. and Hollander, E. P. (1957). The California F scale in psychological research: 1950-1955. Psychological Bulletin. 3, 185-86.

Torrance, E. P. (1972). Can we teach children to think creatively? Journal of Creative Behavior, 6, 114-143.

Treffinger, D. J. \& Ripple, R. E. (1969). Developing creative problem solving abilities and related attitudes through programmed instruction. Journal of Creative Behavior, 3, 105-110.

Van Cleaf, D. W. (1991). Action in elementary social studies. Englewood Cliffs, NJ: Prentice Hall.

Wallace, R. C. (1965). The ability of certain pupils to understand and apply selected concepts and generalizations in geography. (Report No: Br-5-8426; (Eric Document Reproduction Service No. ED010091).

Wehlage, G., \& Anderson, E. M. (1972). Social studies curriculum in perspective: A conceptual analysis. Englewood Cliffs, NJ : Prentice-Hall.

Weinberg, R. A. (1983). A case of misplaced conjunction: Nature or nurture? Journal of School Psychology, 21(1), 9-12.

Weish, J. C. (1986). Interactive effect of content structure, practice item sequence. and process learning using computer-based instruction.
Unpublished doctoral dissertation, University of Minnesota.

Wenz, F. V. (1978). Breadth of perspective and suicide threats. Psychological Reports, 43(2), 649-650.

Wulff, K. R. (1969). A correlated study of reading and social studies inference and application of principles tests among disadvantaged rural Appalachian disadvantaged urban. and advantaged suburban students. Unpublished doctoral dissertation, Ohio University.

Yinon, Y. (1975). Authoritarianism and prejudice among married couples with similar or different ethnic origin in Israel. Journal of Marriage and the Family, 37(1), 214-220.

Yoho, R. F. (1986). Effectiveness of four concept learning strategies on social studies concept acquisition and retention. Theory and Research in Social Education, 14 (3), 211-223.

APPENDIX A

RESEARCH CONSENT FORM

RESEARCH CONSENT FORM

Your child is invited to take part in a research project that may help determine if a "knowledge construction exercise" will help his/her ability to form and evaluate social studies generalization. This study is part of an investigation entitled "Effects of a Knowledge Construction Exercise on the Formation and Evaluation of Social Studies Generalizations and Student Authoritarian Altitudes."
"1 give my consent for my child, \qquad , to participate in the research project and hereby authorize Clarance Benes, or associates or assistants of his choosing, to perform the following procedure:

Should student be randomly selecled, he/she will participate in a lesson known as a "knowledge construction exercise" in which the student will learn about generalization formation and evaluation, an important critical thinking skill.

The lesson may take up to two regular class periods and will be followed by an examination and attitude survey to be given during another class period. Participants will remain with their regular classroom teacher and receive self-instruction booklets.

Only the researchers will have access to the student name and records needed for and produced by this experiment. For research purposes only and prior to random selection, students will be grouped on the basis of gender, race, and achievement levels. From these groups students will be randomly selected for the experimental or control lesson. Historical achievement scores, such as the lowa Test of Basic Skills, and personal information and grades will be obtained from the school counselor, the classroom teacher, and/or other school officials. The data will be coded and remain confidential. Aner the coding, names will be removed and burned at the home of the researcher. Published results of the experiment will not ideniffy school or students.

The lesson is not unlike other activitics that students have had before and may be useful in research promoting critical thinking. Students may find the exercise interesting and enjoyable. There in no cont to the student and no fee paid to participate.

I understand that participation is voluntary, that there in no penalty for refusal to participale, and that I am free to withdraw my consent and participation in this project at any time without penalty after notifying the project director. Students who do not participate will remain with their regular teacher. Student's grade will not be affected in any way.

I may contact Clarance Benes at 624-2427 should I wish further information about the research. I may also contact the University Research Services, 001 Life Sciences East, Oklahoma State University, Stillwater, OK 74078; phone number 744-5700."
"I have read and fully understand the consent form. I sign it freely and voluntarily."

Date \qquad

OKLAHOMA STATE UNIVERSITY INSTITUTIONAL REVIEW BOARD HUMAN GUBJECTS REVIEW

```
Date: 02-23-94 IRBM: ED-94-062
Proposal Tit1e: EFFECTS OF A KNOWLEDGE CONSTRUCTION EXERCISE ON
THE FORMATION AND EVALUATION OF SOCIAL STUDIES GENERALIZATIONS
AND STUDENT ATTITUDES TOWARD AUTHORITY
Principal Investigator(s): John E"gteinbrink, Clarance Benes
Reviewed and Proceseed as: Exempt
```



```
APPROVAL STATUS SUBJECT TO REVIEW BY FULL INSTITUTIONAL REVIEW BOARD AT NEXT MEETING.
APPROVAL STATUS PERIOD VALID FOR ONE CALENDAR YEAR AFTER WHICH A CONTINUATION OR RENEWAL REQUEST IS REQUIRED TO BE SUBMITTED FOR BOARD APPROVAL. ANY MODIFICATIONS TO APPROVED PROJECT MUST ALSO BE SUBMITTED FOR APPROVAL.
```

Comments, Modifications/Conditions for Approval or Reasons for Deferral or Disapproval are as followe:

APPENDIX B

Form Y Generalization Test

Enclosed you mill Find a WIIIE LESSOH Dooklet

 and a YELLOH NHSWER Dooklet.> Dn nut wile on the PIIIE LESSON booklet.

> Write only on the YELLOW ANSWER Booklet.

Du not mille your name on either booklet. Begin now on page 1 on the WIIIE LESSON booklet.

1. An Amaican henid thal a lupg lineif numy allacked Kuwail. Kuwail is a amall Arabs couniry. Kuwail and ollier Arab nalions are members of the Uniled Nalions. Kuwnil nppealed le the UN Securily Coureil. Ir aet was given an ultimalum: Willidraw fiom Kenwail or a combined UN force would allack. On CNN (Cable News Network) you hear lial Anmican bumbs are diopping on Baglidad. Based ully outie facls above. find thr BEST and lin WORST geneializalion below. Be sule to maik your answeis ofi the eniswer sheel.
A. The Uniled Slales will usn live Uniled Nations to prolect ils oil interests.
B. The Uniled Nations is deferding one of ils mentbers against an aggressor by allacking linar.
C. The UN and line US are encouraging Alab nations to fight each ollier when they suppeil one ngnimal anmollver.
D. Kenwail has coinvinced lie US. Hal deslioying liad would be in the UN's best inleresls.
2. The: U.N. mission was lo make lise linefi atmy leave Kuwait. Aller the war onme general snid. "U.N. forcen wurn a decisive (major) victory over Irat in the Gulf War." Find below lie BEST nul WOAST suluou for lis generalizalion.
A. U.N. furces diove Iracji liooprs rut of Kuwait in less than 42 days.
B. Inaci lost all thil 600 of lier 1.700 tanikn.
C. Over 50.000 lratie were laken piremer. Thousands were killed.
D. Sndelam Hussein was still liay's dicilalur before and aller lie war.
3. Students read some nows linal compmed educalion systems. In China. Taiwan, and Japan it has been a rile not to nllow sludents to ask questions. Their school day and year are longer thati it is in the US. Their sludents score higher in mall and science llian Aınenicans. Clima. Taiwan, and Japan provides high schorl for only ils top sludenls. The US provides fres education for everyone Inough high school. The US leads the woild in new inventions. The best Ameilcan sludents do ns well or beller llinil the loy sludents anywhere. Mark the BEST and the WORST qeneralizalion on eniswer sheel.
A. America's educalion system may encornage inventors.
B. The selmools of China. Taiwan, anil Jopran ate the best.
C. The US will soon have beller beotes in malli and science.
D. Longer sclioui days and year will always lead to more ínventions.

Look carefully al the chart below.
Monthly Average Income and Education by Sex, 1990

4. Find the BEST and WORST generalization below and mark your answer sheet.
A. Men will a High School diploma make more than women with a bachelor's degree.
B. Men and women make more money when they have more education.
C. Men demand and gel more money because they are more intelligent.
D. Education increases income, with men's average income more than women's.
5. Joe thinks he knows why men make more money than women. He made this generalization: Men are usually larder and atronger than women so llay are paid more. Find below the BEST and WORST suppont for Joe's generalization.
A. Size and sirength can help one do their work in some construction jabs.
B. Some leachers with the same experience and education are paid the same.
C. Some women are as big and strong as men.
D. Very lew jobs require strong or large workers.
6. Judy was reading about the space race between the USA and the Soviet Union. Here is what she found.

Nnme	Mission	Year	Nation
Spulnik	Ist sntellite	1957	Soviet Union
1.mma I	ist ummanned probe (o) moon.	1959	Soviet Union
vuri A. ënparin	Ist mon In spruce	1961	Soviet Union
Suricgor I	Ist unmanned Innding on monn	1965	USA
Apoilo Il	ist men to \|nnl on the moon	1969	USA

Consider the data and find the BEST and the WORST generalization.
A. The Soviet Union gave up on the race to the moon in the early 1960 s .
B. The Soviets were ahead in the Space race in the late 1950s and early 1960s.
C. Alter trailing the Soviets. USA won the race to the moon in 1969.
D. The US was behind in the space race when the Soviels launched Sputnik .
7. Look at the two graphs below. One is about average yearly income per family in District A. B. and C. The ollier grapls is about the money spent per student in the thee districts' schools.

Yearly Income per Family Money per Student

Find the BEST and the WORST generalization using the facts from bolh graphs.
A. The richer the school district the more money is spent per student.
B. Yearly income in District A is more than 3 times that of District C.
C. Dist. B students get $\$ 1.000$ more than Dist. C but a $\$ 1000$ less than dist. A.
D. Regardless of where you live, the money spent per student is about the same.
8. One goal of Dr. Martin Luther King Jr. was better jobs for Black people. He felt that African Americans did not get the higher paying "while collar" jobs due to discrimination and prejudice. Servants and laborers make far less than white collar workers. Dr. King succeeded in bringing this and other issues to the atlention of the American people. Look at the two charts below and find the BEST and WORST generalization.

A. More whiles had white collar jobs than Blacks did in 1976.
B. The percent of Black laborers and servants in 1966 was nearly 50%.
C. Whites will not allow Blacks to have any more high paying jobs after 1976.
D. From 1966 to 1976 Blacks moved into higher paying jobs.
9. Thete is a new theory about the sinking of the U.S.S. Maine. Many Americans had believed that Spain sank the ship. A special type of explosive was used in the hatbor of Havana. Cuba to sink this ship. This event led to the Spanish American war of 1898. Cuban rebels were fighting the Spanish at the time of the sinking. This is the new theory stated as a generalization. Not Spain but Cuban rebels blew up the ship to gel the US in a war wilh Spain. Find below the BEST and the WORST suppoit for this generalization.
A. Only Cuban rebels had that type of explosives on the island.
B. Cubans and Spanish were seen in small boals in the harbor.
C. Spain rejected US peace offer after the sinking.
D. Some US property had already been destroyed in Cuba.
10. Students reading about dictalors in the 201 century found this generalization. "Dictalors oflen slart wars will ollher nations which cause millions of heir own people lo dia." From the lacts below find the BEST and the WORST gupporl for this generalizalion and mark your answer sheet.
A. Hitler, Germany's dictalor, slarted WW2. Millions died including Germans.
B. Slalin killed millions of Soviets while ruling the Soviet Union.
C. Mao Tse-lung killed millions of Chinese during his dictalorship in China.
D. Castro overllurew a dictalor to gain control of Cuba. He has fought in a few sinall wars in the last 30 years.
11. A mayor of a large city was running for reelection. She looked at some lacts about her city during her term. She decided on a campaign slogan. "Reelect the Mayot for she has done lhe cily good." Find the BEST and the WORST suppoil for her slogan below.
A. The cily population grew slightly.
B. The number of failed businesses has nol gone up.
C. More people are working in the cily then ever before.
D. There has been only a small increase in the crime rate.
12. The mayor in case \#11 got anolher lisl of facts aboul her cily during her term. Find the BEST and WORST suppoll for her slogan in this list.
A. There has been a no increase in the number of city workers.
B. Average salaries in the cily have gone up $\mathbf{1 2 \%}$.
C. The cily serves 10% more people.
D. The number of homeless people has gone up 5%.
13. Nexl year you will need to pick a science course. You want a good class will a good teacher. Your older brolher knows all the science teachers. He graduated last year. He look a lot of science courses at your school. Your best friend doesn't like one of the science teachers. This will be the first year for the new. pincipal who knows none of the teachers. Find the BEST and WOAST source for advise about your fulure science class.
A. Older brollier.
B. Best friend.
C. New principal.
D. A science teacher.
11. Mary has been reading about current events in Haiti. She plans to give a report about Haiti next Friday. Her title is. "Recent unrest in Haiti." Of the choices below. find the BEST and WORST source of information for her report.
A. Encyclopedia. 1990 edition.
B. Last month's Time magazine.
C. Book on Haiti published in 1991.
D. Last night's TV news report on Haiti.
15. Mary decides to change her report. Her title now is "Haiti in the 1980s." Find the BEST and WORST source for her new report.
A. Book on Haili published in 1991.
B. Encyclopedia. 1985 edition.
C. Today's newspaper ar licle on Haili.
D. A 1988 magazine article on Haiti.
16. Bart recently found some information about his great grandparents. They lived in Spain and moved to America in 1919. He generalized that their first years in America were hard. Find the BEST and WORST source of information.
A. Book on Spanish immigration. published in 1992.
B. Letlers from his great grandparents, dated 1920.
C. Current newspaper at ticle about immigrants from Europe.
D. His older brother's story about his trip to Spain.
17. Gail watched the movie "Geitysburg." It was about a very important battle of the Civil War. Over 200, 000 men under several generals fought in this batlle. Gail was interested in how well each of these generals fought during the battle. Of the choices below. find her BEST and WORST source of information.
A. A Noilhem general's eyewilness report of the batile.
B. A Southem general's eyewitness report of the battle.
C. A Southern newspaper account one month later.
D. A foreign observer's eyewitness report of the battle.
18. Gail continues to study about the battle of Gettysburg. This time she wants to know what effect the baltle had on people from the South. Find her BEST and WORST source for this from the list below.
A. ^ Noithem newspaper article.
B. Soulhern diaries.
C. Letters of Southern soldiers.
D. A Southern newspaper editioral.
\qquad

STIDFNT IIH Y

1. Hrsi (iemernlimelum (A) (13) (C) (1)) Wentser Cirncrniliznllon (A) (13) (C:) (1)
2. BEST Support (A) (13) (C') (1) wigesi suplout (A) (13) (C) (I)
3. Intesi (ienernlimillen (A) (13) (C) (1)
 (A) (13) (C) (I))
4. Brsil (enernllanilem (A) (II) (C) (I) WURSE Gencinitrallon (A) (13) (C) (1)
5. Brasi Suppoil (A) (i3) (C) (1)

Wenssi Supporl (A) (il) (C) (l)
6. Brast Cicurinllanden (A) (li) ((C) (l.))

Wentsi (irnernliznlfen (A) (13) (Cl) (1))
7. Hesit iencinltrniton (A) (13) (C: (1))

Wentsi (irmernilonitent (A) (l) (C') (I))

(A) (13) (C) (1)

(A) (13) (C) (1)
9. BEST Suploul
(A) (13) (?) (1))

WOREI Suppul
(A) (il) (l.) (I)

ANswivit silririv

Fili in nne. "nesi" anll gne "umnsi" nil each prestion.
 for example:
 1. HEST (n)(n)FR(D) Winnst (n)(1) (t)

10. 3rsi Supporl		
(1)) (13)	(C) (1)
WURST Suppurl		
) (I3)	(C) (1)

(1. BESTI Support
(A) (IB) (C) (I) westes Support (A) (B) (C) (D)
(2. IBPSTE Supmert (A) (13) (C) (1)) Wishes Support (A) (il) (C) (I)
13. 13pisiv Surrce
(A) (13) (C.) (1) WOHET Source (N) (13) (C) (1)
(1.4. I3 icsif Sinerce (N) (B) (C) (D) Wentest Sumrce (A) (II) (C) (I.)
15. 13 MSTV Sumec (A) (13) (C) (I) Worrsi' Sumce (A) (I3) (C) (I)
16. 130ST Somice (A) (13) (C) (1)) W(JR\&1 Sumfe (A) (IB) (C.) (l)
17. 1315:S1' Sumree (A) (13) (C) (D) W(B1RT Sinirce (A) (13) (C) (I)
18. Brisf Source (A) (I]) (C) (1)) WiORST Sburce (A) (B) (C) (1))
if you mant to change an ansher and you are unable to erase, milce the letter next to your cholee. Fof example: 1. HEST KME(B)FEP(D) A WOHST

APPENDIX C

Form Z Generalization Test

Enclosed you will Find a WIIITE LESSON Dooklet and a
 YELLOW NHSWER Booklet.

Do not witite on the WIIITE LESSOH booklet. Write only on the YELLOW ANSWER Booklet.

Do not wite your name on either booklet. Begin now on page 1 on the wilte LESSON booklet.

1. A group of students were reading about Mexico. They read that inany Mexicans are out of work. Mexicans that did work made little money because of no minimum wage law. There were many Mexicans who could not afford good health care. Find the BEST and the WORST generalization below.
A. Mexicans will need to work longer hours.
B. Mexicans are probably not as healthy as Americans.
C. Mexicans suffer from not having enough money.
D. Mexicans suffer from having a poor government.
2. The studenis continued to read about Mexico. Many Mexicans cross the border into the US. One political party has controlled the nation for many years. Opposing party candidates are sometimes shot at during elections. There are some people In the government that steal money. Recently, armed rebels captured a few towns. Find the BEST and the WORST generalization below.
A. Mexico's government may need to add a political party.
B. Mexicans may be entering the US to escape government and money problems.
C. Mexicans will return to Mexico when they find life much harder here in the US.
D. Mexican rebels may overthrow the government of Mexico.
3. Fred was reading about the L.A. riot. It seemed to him that the communist nations of China and Cuba have less trouble than we do. On TV you will hear reports of people upset with our government. Fred concludes that China and Cuba have less trouble than the US. Find below the BEST and WORST suppod for Fred's generalization.
A. China and Cuba control their newspapers, radio, and television shows.
B. The US allows free speech which encourages debate.
C. Unbiased reports coming out of China and Cuba do report trouble.
D. With only one political party. China and Cuba have fewer debates.
4. Cal wanted to know if "Tum Yums" were good or bad for his health. Of the choices below, find the BEST and WORST source of information.
A. A customer at a health food store.
B. A medical doctor.
C. His friends who eat "Tum Yums."
D. School lunch room cook.

Look carefully at the information on the two graphs. One is about the percentage of people living in rural areas. The other is about the size of farms.

Percent Living in Rural Areas
SIZE OF FARMS - 1860 TO 1980.

5. Consider the data from both graphs above. Find the BEST and the WORST generalization below.
A. At the current rate, the size of farms will continue to increase.
B. At the current rate, the number of Americans living in rural areas will continue to go down.
C. At the current rate, people will soon go back to living in rural areas.
D. Since 1900 the size of farms has gone up while the percentage living in rural areas has gone down.

Look at these two graphs about American farming.
PEOPLE FED BY ONE FARM WORKER MILLIONS OF ACRES FARMED

6. Find the Best and the Worst generalization.

A. The number of people fed by one farm worker has gone up since 1900.
B. The number of people fed and the total acres farmed has gone up since 1900.
C. The number of people fed by one farm worker and the total acres farmed will not continue to go up.
D. Since 1940 the total acres farmed has gone up at a very fast rate.
7. Medical research has brought some diseases under control. Small Pox, polio, and bubonic plague are no longer a major threat. Two deadly diseases, Cancer and AIDS, have not been controlled. Millions of dollars are spent each year for Cancer and AIDS research. More people die each year from these diseases.

Find the BEST and the WORST generalization.
A. Medical research needs more money to wipe out all diseases.
B. Research has controlled some diseases and continues to work on others.
C. Medical research cannot find a cure for some major diseases.
D. In the near future less people will die of AIDS and Cancer.
8. Dat reseatched religious culls. He found that they were small groups. Usually they were not pat of any major religions. A cult usually has a dictator type leader. He expects deep commitment fiom his followers. Followers must striclly obey many rules. Dan read a generalization. Some culls can become suicidal and violent against others. Find the BEST and the WOAST support for this generalization.
A. In "The Jonestown Massacre" 900 people committed suicide.
B. A cult. while fighting with police in Philadelphia, were killed in a fire.
C. One cull livers a simple life eating only vegelables and praying often.
D. After killing federal agents in Waco. Texas, cult leaders killed cult members and committed suicide.
9. Amy read some more about cults. She found this generalization. Most major seligions started out as religious cults. Look at the definition of cults on number 8. Find below her BEST and WORST sumporf for this generalization.
A. All major religions started out as small committed groups.
B. Most major religions have always had strong leaders.
C. Most major religions allow some beliefs and practices to vary.
D. Some religious people have been violent.
10. Sal found when reading about cults that not all sources agreed on what groups in America met the definition of "religious cult." He felt he needed to read more. Among the sources below, find the BEST and WORST source of information on whal groups in America are culls.
A. Literature from a Buddhisi temple.
B. A college study of religious cults.
C. A Christian bookstore.
D. An encyclopedia arlicle on religions.
11. The Middle East nation of Iraq is lead by Saddam Hussein. He appeared on television during the Gulf War. He told the Iraqi people. "The US, is an enemy that wants fo rob and deslroy lrag." Find below the BEST and WORST support for his generalization.
A. US supports Istael, an enemy of Irad. with military aid.
B. The US has said it will use force to secure oil from the Middle East.
C. Iraq is a Moslem nation, the United States is not.
D. The US has introduced Western ideas into Kuwait, Iraq's enemy.
12. Ann and Ken were talking about the Gulf War. They do not agree on why the US was involved in the war. Ken believes this. The US atiacked Iraq to protect her oil interests in the Middle East. Find below the BEST and WORST supporl for Ken's generalization.
A. The US imports oil from Saudi Arabia and Kuwait who each border Iraq.
B. It was the United Nations (UN) Ihat ordered Iraq's willdrawal from Kuwait.
C. Iraq was no direct threat to the US yet the US provided most of the troops.
D. Most of the world supported the altack and needs oil from the region.
13. John was reading about soccer teams. He wants to know what is the best soccer team in Australia. Find the BEST and WORST source of information.
A. The national soccer league of Australia.
B. Interview with several soccer players in Ausiralia.
C. Interview with the oldest sport fan in Australia.
D. A former coach of a soccer team in Australia.
14. Lee was reading about World War Two (WW2). He wanted to know what nation should get the most credit for defeating Germany. Was it the US or the former Soviet Union? What would most likely be the BEST and WOR'ST source of information for this question.
A. A texlloook of the former Soviet Union published in 1982.
B. A new American history textbook.
C. A neutral nation's account of the war published in 1991.
D. Japan's military reports during the war.
15. Sally wanted to buy a TV for her home. However, she knew little about the different brands. After gelting some facts she made up her mind. "Brand X is the best TV for the money." Find the BEST and the WORST source of information for Sally's decision.
A. Sally talked to her cousin Maud and others who had owned Brand X.
B. Sally compared all the ads from several brands.
C. Sally talked to a repairman, who works on TVs.
D. Sally read a magazine that compares and test products.
16. Students found these facts when reading about world religions. Islam is the religion found mainly in not th Arica and the Middle East. Clıristianity is found mainly in Eurnpe and the Americas. Buddhism is found mainly in the Orient. Hinduism was found mostly in India. Find the BEST and WORST generalization.
A. Nouth and South Americans have not been expose to other religions.
B. Christianity is rarely found in parts of the Middle East and Africa.
C. Religions appear to fullow some geographic patterns.
D. Followers of world ieligions appear to be scattered equally.
17. Jay kept a record on who got called on in Mr. Jones' class. During a discussion neally everyone wanted to answer the questions. Students would raise their hands. Mr. Jones called on different students each time. The class load 15 boys and 15 gils. Jay generalized that "Mr. Jones usually calls on boys more often than girls." Find the BEST and the WORST support for his generalization below.
A. Day $\# 1,5$ boys and 3 girls were called on.
B. Day H2, 4 hoys and 2 ginls were called on.
C. Day \#3, 6 boys and 5 gils were called on.
D. Day H4, 9 boys and 8 gils were called on.
18. Dining the 1980 s , the US had two Republican presidents. They were Monald Reagan and George Brish. Al was reading that during this period some people became rich. At the same time more people were becoming poor. Al wanted to know more about this trend. Find his BEST and WORST source of information below.
^. A in:h person.
B. A Iligh School teacher.
C. Republican paity headquaters.
D. US Census Bureat data.

Z
First ANI) Last NAME \qquad

2. BEST Generalization
(A) (B) (C) (D)
wORST Generallzation (A) (B) (C) (D)

3. BEST Suppurt (A) (13) (C) (D) wORSI Support
(A) (B) (C) (D)
4. BEST Source

> (A) (B) (C) (D) WORSF Source (A) (B) (C)
5. BEST Generallantion

WORSI Gencralization
(A) (B) (C) (D)
6. BEST Genersilization (A) (B) (C) (D)
wORST Generalization
(A) (B) (C) (D)
7. BEST Generallantion
(A) (B) (C) (D)
worst Generalization (A) (B) (C) (D)
8. BEST Support
(A) (B) (C) (D)

WORST Support
(A) (B) (C) (D)
9. BEST Support
(A) (B) (C) (D)

WORST Support
(A) (B) (C) (D)

10. BEST Source	
(A) (B) (C) ${ }^{(D)}$	change an
WORST Source	answer and you
(A) (B) (C) (D)	are unable to erase, orite
11. BEST Support	the letter
(A) (B) (C) (D)	next to your
WORST Support	For example:
(A) (B) (C) (D)	1.
12. BEST Support	Xh(B)\&5\%(D) UORST
(A) (B) (C) (D)	
WORST Support	A)88)(C)808
(A) (B) (C) (D)	

13. BEST Source
(A) (B) (C) (D) WORS1' Source
(A) (B) (C) (D)
14. BEST' Source
(A) (B) (C) (D)

WORST Source
(A) (B) (C) (D)
15. BEST Source
(A) (B) (C) (D)

WORST Source
(A) (B) (C) (D)
16. BEST Generallzation
(A) (B) (C) (D)
wORST Generalization
(A) (B) (C) (D)
17. BEST Support
(A) (B) (C) (D)

WORST Support
(A) (B) (C) (D)
18. BEST Source
(A) (B) (C) (D)

WORSI' Source
(A) (B) (C) (D)

APPENDIX D

Modified F-Scale Test

Finst and last Name
Student IDH \qquad

We are interested in whal 8 th graders think about a number of social issues. This is not an intelligence test or test of information. Therefore, there are no "right" or "wrong" answers. The best answer is your personal opinion. Only the researchers will see your responses.

Instructions:

1. Read each statement carefully and matk it according to your first reaction. It isn't necessary to take a lot of time for any question.
2. Answer each question by filling in one response in the answer column.

For example:

1. Red is a good color to wear in the summer. (SA) (MA) (10) (D) (MD) (SD)
$(S A)=$ STRONGLY AGREE
(MA) = MODERATELY AGREE
$(A)=$ AGREE slightly
$(D)=$ DISAGREE slightly
(MD) = MODERATELY DISAGREE
$(S D)=$ STRONGLY DISAGREE
Turn the page and begin.
2. One main Irouble loclay is that people talk loo much med work too litile.
3. Ohedience nud respect fir nuthurity ne pol the most impoitant vitues childicen showid lentr.
4. A person wheo hans had manners, lanlits, nud uplringing enn still expect to be liked nud necepted by decent people.
5. Science lins ins pince. Itht lhere nee miny inporinnt lhings that enn never loo undel stood by the humann mined.
6. Ath insull to your lowner should never le punished.
7. Fivety yerson slould have complete linith in some sulpermatural power who decisions he olveys willooul guestion.
8. Young people do not need strict discipline, meged determination, and the will to work null fighler fior finuily nul cominty.
9. Young people somelines get relvellions idens. As they grow inf they do not need to gel over liem or settle downt.
10. The tronble with lelling everytiody lave a sny in ruming the governinicut is lian so many people are just maturally slupid or fill of wild idens.
11. No anime, mominl, decent persent could ever think of lunting a close ficied or relntive.
 than mere pumishment; such criminals shoukl le publicly whipped, or worse.
12. Whint this cominty necels most, more than laves nuld political progranus, is a few courngeous, tiveless, devoled lenders in whom the people enn put llieir frith.
13. There is nolling wrong will a person who does nef feel a greal love, gratitude, nul respect for his prrenis.
14. In order for us to do good wotk it is not necessary that our our bosses outline carefitly wint is to be dene nude exactly how to go nlowi it.
15. Most of our social problems would le solved if we could somehois

16. (SA)(MA)(A)(I) (MI))(SI)
17. $(S \Lambda)(M \Lambda)(\Lambda)(1)(M I)(S I))$
18. (SA)(MA)(A)(I) (MI))(SI!)
19. (SA)(MA)(A)(I)(MI) (SI)
G. (SA)(MA)(A)(I)(MID)(SI)
20. (S^)(MA)(N)(I) (MI))(SI))
21. (SA)(MA)(N)(I) (MI))(SI))
22. (SA)(MA)(A)(I))(MD)(SI)
23. (SN)(MA)(A)(D)(MI) (SI)
11.(SA)(MA)(A)(D)(MD)(SI)
24. (SA)(MA)(N)(I)(MII)(SI)
25. (SA)(MA)(A)(I) (MI) (SD)
26. $(S \Lambda)(M \Lambda)(\Lambda)(D)(M D)(S I)$

EILL IH YOUR CHOICE, do hol CIRLCLE EXAHPLE: $(+1)(+2)(3)(\cdot 5)(+6)(\cdot 7)$

1. One main trouble today is that people talk 100 much and
2. $(+7)(+6)(5)(3)(+2)(+1)$

A+ work too little.
2. Obedience and respect for authority are not the most

S- inportant virlues children should learn.
3. A person who has bad manners, habils, and upbringing

A- can still expect to be liked and accepted by decent people.
4. Science has its place. But there are many important things St that can never be understood by the human mind.
5. An insult to your honor should never be punished.

A-
6. Every person should have complete faith in some

S+ supernatural power who decisions he obeys without question.
7. Young people do not need strict discipline, rugged

A- determination, and the will to work and fight for fanily and country.
8. Young people sometimes get rebellious idicas. As they
S. grow up they do not need to get over them or settle down.
9. The trouble with letting everybody have a say in running
9. The trouble with letting everybody have a sny in running
At the government is that so many people are just naturally stupid or full of wild idens.
10. No sane, nommal, decent person could ever think of

S+ hurting a close friend or relative.
11. Sex crimes, such as rape and child abuse, cleserve more

At Ihan mere pumishment; such criminals should be publicly whipped, or worse.
12. What this country needs most, nore than laws and
7. $(+1)(+2)(3)(+5)(+6)(+7)$
8. $(+1)(+2)(3)(+5)(+6)(+7)$
9. $(+7)(+6)(5)(3)(+2)(+1)$

St political programs, is a few courngeous, tireless, devoted leaders in whom the people can put their faith.
13. There is nothing wrong with a person who does not feel

A- a greal love, gratitude, and respect for his parents.
14. In order for tus in do good work it is not necessary that our 14. (+1) (+2)(3)(+5)(+6)(+7)

S- our bosses outline carefully what is to be done and exactly how to go about it.
15. Most of our social problems would be solved if we could someliow

A+ get rid of the inmoral, crooked, and weak minded people. $15 .(+7)(+6)(5)(3)(+2)(+1)$

APPENDIX E

Knowledge Construction Exercise

Enclused you will Find a WHITE LESSUH Bookret ant a YELLUW ANSVER Dook1et.

Do not wite on the WIITE LESSON booklet.

Write only on the YELLOW ANSWER Booklet. Do nol write your name on either booklet.

Begin now on page 1 on the UIIITE LESSON booklet.

WIEICOMI:'IO \wedge

RHOWLEDGE CONSTRUCTION EXERCISE

WHAT IS A KNOWLEDGE CONSTRUCTION EXERCISE?

When we take what we know and put it all togetler, making a single statement, we have constructed knowledge. That statement is called a generalization.

Generalization? You may not be sure what exnctly is a generalization. Nowever, inm sure that you have made them in the past and

 are probably maklag one nowl 1 genernlization can be defined as a concluston. It is a type of conclusion that we make from viewing the facts. For exnmple, suppose we henr n pollce car and see an nmbulance go by. We may make the generalization that there has been an nceldent. Single facts combine to help us form this generalization. All generalizations are made this wny.Facts play an important role when you make a generalization. Even n single fact can change n gencrallzation. For example, take our generalizntion about the necident. Suppose you henr on the rallo thint nn necidient was going to be staged nt 1:00
 P.M. todny to test the way n hosplini will respond. This is the very time we henrd the pollee and nmbulancel Then we may have to change our gencralliation. Therefore, n single fact can change our gencralization or make it completely falsel

Mike lias benten Joe playing ome-on-one basketball twenty times. Jue has won no games. A generallaition could be made that "Mike ALWAYS beats Joe playlng one-on-one basketball." Todny Mike loses to doe. Then the generniliation MIST be changed to something like "Mike wins most of the time!" A generallzation summarizes the facts.

Okay, I know what a generalizalion is so...?
Why leara how to make
gnneralizallons? You have all geen that It is esey to make poor generalizalions when some fate are nol known or juel lgnored. You all know peopla who ignare certain faels whon thay make elatoments asing ALWAYS or NEVER in thatr generalizetions. (For oxample, "The teseher le alware pleking on mel" or "She agver ealls on ma when I ralse my handl") We ean all make betier goneralizelions if we look at the faete a lirile eloser.

NOW TURN TO PAGE 1 IN YOUR ANSWER BOOKLET.

Let's check your answers.
1.

Row 1 went first 3 times.
Row 2 went first 3 times.
Row 3 went firsl 1 times.
Row 4 went first 2 times.
Row 5 went first 1 time.
A. Row 1 usually goes firsll (This is true but is unelear. It does not include facts from the other statements. There may be a better generalization.)
B. Row 2 goes firsta lotl fithis is also unclear. It does not compare Row 2 with ntice rows. How 1 and row 2 both went first 3 times. $)$
C. Row 4 goes first less than Rows 1 and 2 ((This is the best generalization because it uses more data-facts--and is clear.)
D. Row 5 never goes firsll (This is the worst gencralization because it goes against the fact that row 5 went first oncra.)
2.

Row 1 went first 4 times.
Row 2 went first 3 times.
Row 3 went first 1 time.
Row 4 went first 2 times.
Row 5 went first 0 times.
A. Row 1 always go firenl (Although row 1 goes first the most, it is not true that $i l$ alwass goes first. This is the worst generalization.)
B. Row 2 goos firsta lofl (This is true but is unclear. It also doesn't use any of the ntlier lata.)
C. Row 3 seldom goes firstl (This is like choice B. It is true but it is not clear wint scldom may menn in this case.)
D. Row 5 never goes firstl (This is clear for never means never! or the choices. It is the best.)

How did you do? To make good generalizations all related facts must be considered. In both cases a better generalization may have been possible. Look at case \#1. A better generalization may have been. "In the two week period. rows 1 and 2 each went first 30% of the time with the remaining rows going no more than 20% of the time." This generalization uses more of the data and is exact. There are still other ways to state a good generalization from the data. Always look for the statement that uses all of the known facts.

Case \#2. A better generalization may be. "Ranking the order of who went first the most was row 1. row 3. row 2. and row 4."

Remember, when you make a generalizalion you are constructing knowledge. The material you use in construction needs to be inspected for its quality.

In the first sentence no two or a newspaper story, The paper tries to answer the follouing questions: Who? What? Wien? Where? Mhy? and How?

These questions need to be asked. ninswer as many af them 75 possible fofore your Form of arcept a good generalization.

So...concerning the facts or data used in generalization formation ask...

WHO gre the sourees of the informalion? ' 'A, Are they RELIABLE sources of information? WHAT are the facts? Are ALL the relevant facts being considered? (That were used to make the generalization.)
WHEN were the facts collected? is Does the information come from ORIGINAL or SECONDARY sourees?
WHERE did the facls come from? is
Can the facts be CHECKED for securacy?
WHY were these facts collected? le the parpose or MOTIVE known? Okay, you need to ask these questions.
 How try to find the best and worst source of information for new knowledge construction!

GO TO PAGE 2 IN YOUR ANSWER BOOKLET.

Abstract

Which of the somrees ild you chose? Well, it is a trick question for the answer pEPIENS on what facts or generalizations are beling considered. For exnmple, an oliter brolher or slster would know more about what is galigg on fil thelr own llves than the UPI. The Ul'i would know more about what is goling on in the world. An encyelopedin is an excellent source of Informntion on most things. However, your tenclier may have more recent facts. The cucyelopedin dil not linve access to lolny's current eventsi ```let's look nt the question "WIAT nre the factsp" Suppose you are aware of relevant facts that were lgnored when a genernlizntlon was formed. lior exnmple, recall the Nlke and Joe basketball story on page onc. Knowling Hike lost one game, you would not be nble to necept the following genernilzation. "Mlke AIWAYS wins!" All relevant facts MUS' be cons lileredl```

When Inwyers defend thelr eltents. they present only the evidence that "Imilis" the cose in thefr favor. They liope the juige or jury wlll see thelr cilents based on the evilemee that they present. They are construcilng knowleige with n elear purpose in mind.

Consliter the fuestlon. "WIItN were the facts collected7". How old should your sources be?

GO TO PAGE 3 OF YOUR ANSWER BOOKLET.

 of the Jnformation depents on what kind of genernilintion you ner conslelering. The old letter coulid bien pood source of finformation about lise TINE It was written. It is mot niwnys the nowest information thint is the best. The best sources are OlllilNA, somrces. Tint menins firstinmd records. SIfCONIARY sources are second linmi sonrces. The sonrees could be orlalnal or scecondary depending on whit facts from the source nre used.
"Where dld the facts come from?" Thls could be n very Important juestlon to nak. for example, n tablold newapniper may report that Abraliam Ifticoln was revived from the dend for n short time. The report coulin't glve you nity racts nboul Wilitile this event linppen hecenose il was secrel. Knowlng where the Informatlon came from can niso liclp you answer the next questlon - Wiry?
"Itincol" is n" bind lender."

Why was this peneralifatlon furmed? it is sometimes
lielpful to know why the genernllintlon was formed. The motive can revenl a blas that catimake the grinerallzatlon worthless. To be blased menns to favor ane side and met to be nentral. If there is a strong bins, then certafin facts wlll be ignored on purpose. For exnmple, jook at these two sources:

Suurce fl
Source H2
Whon Confedernte Cungress...................... . . Lincoln's nepuiliman party

Whent 18G2 . I8G2
Where? Rtchmonil, virginln............................ Washington, d.c.
Why? Report necded to discredit limeoln Report needed to rally penple belind the President.
How? (wns Informatlong gnthered)................ . Report comes from supporters
Report comes from severnl of lificoln's war efforts.
Southern Semiors oplntons.
Wlthont knowing witht ellier report says, conld yout guess what the dffermee between them may be? Which report would be the most binsed? Would they buth be blased? Could n sumree be found that would not begin with a strong bins? DIns or fouvillsm can be elther mepative or positive. Nemember that to make a generalization, you mist chnose what facts you will use anli what somree is likely lo lic least bins.

Another exampte is nelvertisement. Itave you ever henrd of a commercial Lhat started somethlig like this... "Our product is not the best or the lowest in price, but we want you to buy it nnyway so we can make a profiti" i doubl If your will ever liear of such a commercial. The reason is that companies carefully select the informallon to form gemeralizations that favor their products. This does mot mean they are lyjng! in fact, there are laws agalnst fnlse advertising. look at the generallzations in the two nis on the next pinge.

IISSBII HIOHIII:I

Al HI

* Beat selllup car lin Amerleal
* Lowest frice for conr In tis cinssl
* 10.000 miles warrantyl
nd $1 / 2$
* More standard egulpmentl
- Hest selling car In the Warldt
* Lower repair costs than any car

Whlch car would you like lo bin? Do you need more racts? Defore you buy n car would you like to hear a report nbout the cars that was mot based? A completely mblased roporl on anythling lag going to be diffentt to rind.

^ DIFFERENT PERSPECTIVE...

Jamle recently returned from liurope. She was very hopiry to tell nil of her frlemis thit she "discovered Europel" Oic of lier friends asked her. "How coulal you have discovered somelhlag lhat was already discoverell? Jamle

Jnmle's friend winled to polnt ont the ubvions. "Jamle, weren't there peonde there in limope when you 'discovered' It? Don't yon think they dlscovered Rurope before you dlal" "Maylse so," damie was gulek to ada, "But l'm mot related to nny of them. so l'm still the firsti" (from leer family)

Some Nallve Amerfeans feel lhe same way about Columbins's discovery of Amerlca ns damle's frlend reels about Jamie's "dlscovery." we have all heard thai Columbus discovered Amerlen lit 1492 . Ilowever. IIke Jamle's discovery of Enrope, there were people already here. Some estlmate over 100 mlllon people llved lit North and South Amerlea at the time of Columbin's discoveryl Columbins gave the matlves the name "lmilans" because he thought he was somewhere near findin. Imaglac Jamle decidling to call all the
 people or Enrope "Chlnese" : She thouglit China was the maln country in Enropel

The history or the North Amerfcan continent lins malnly been wriften from n limropean perspective or vicwpolit. Columbus may linve been lise firsi Emropan to discover thls land. Ilowever. there are many who belleve the Vikings leat dolumbis by 600 yearsi The matives that llved here when Columbus arrived have storles and legemis aboul how their ancestors got liere. Anthropologists belleve that the first Immlgrants lo Norlh Amerlen came from Asla. They may have crossed the Herfing stralt finto Alaska aboul forty thousand years ngo. From there the people migrated soult

to warmer climates.
A small mmber of scienlists belleve that ligyplians came to America before Europeans. They may have salled to Soulh Amerfca about four thousand years ago. There is mo wrlllon evidence of thls expedllion.

What would be your genernlfantlon to this next questlon. Who was the flrst to discover Amerlen?

Let us book ngalin nt the difrerent perspectives. firom damic's perspretlve she discovered burope only becanse lt whs her first irlp. Members uf lier fomily, like her mom null dad, "ilscovered" America liefore she did.

The VikJugs wre probably the rirst Europenis to discover Ameriea. Thls may be true allhorh there is less cullemee for thils. The vikings did mot nmomice their discovery fo the world and it dil not lead to more explorallon liy ollier matlons.

Columbus was the first linroblean offis time lo discover Amerlen. Its descovery was imporinit. Jt jamelied min npe of explorntion nul colomizaljon.

The Epyptinns may lave bern the rirst Ardengs lo alscover Amerlea. Tiry would linve been entifer lhen columbus or ilie vikings. Even if the ligyifings dil (nul the cullence Is weak) they probably found people niteady lierr.

Peopic from Asin were probably the very first lo discover Amerlea. Thls Reneralizalfon is suphrtod by the finformaifongiven to you. it was the best generalizalfon. It ls based on the known facts.

In ench case nbove there was knowledge constructlon. linch viewpolnt or

 lienrlug. Supuace gour school's baskelball leam won an Important pame. Arter
 players is superlor lo thelr oppments. lior this renson they casly defented the ollore leam. llowever, the other selool's players may be sayling they had ant "off" theht. They may clalm that their maln player was slek. firom their prespective, they nie dust ns pool. If your school lind fost the game, you may be templed to flind reasons for the dereat. dust becanse perspectives nre llfferent, doesn't menn efther one is wrong.
 form of nu opiulon. tiememher, nin oululon is mot the same ns n fact. reople
 becomes n pood penerallintlon.

Hemember the slorg aboul doe alll Nlke? Nike woll 20 games and doe woll only one. Find the llist and the woms generallzation from cach of their perspectives.

go 10 Pabe 1 III YOUN nhSUER boomlet.

Do youn ser amything fil common with Joc's aml Mike's statements? doe and
 not sum up the racts of the past events. They are based on what they hope to Hinpiri. Cholce A of Mike's perspective is mot bnsed on facts. It is Mike's worsl pencralizalfor.

Joe mate three stalements that nre predictlons nul oploions. or those
 lhat ner known. Nike can play basketball nud is probnbiy aible to win pames in llor firture. Whon lookling for the worst gencrallzatlons, find those that go ngalnst the knowil racts.
 yon ran chenrly sec n difference. bach are empliastzing one fact over another. Jon Is rimphasizing his win and Mike is rmponsizing his past wins. Bach has constructed knowledge the way they watuted lo. Nelther gave false Information or staled n predicifon.

```
BEST GENERALIZATION GOOD GENERALIZAIION POOR GENERALIZATION WORST GENERALIZATION
    Uses all of
    the known
    racts. If
    prediction,
    it must
    state trend.
Uses some
        racts.
    plnions or
    predictions
        using
        unknown
        racts.
        Opinions or
        predictions
        that go
        against
        known
        racts.
```

60 TO PAEE S IN YOUR ANSWER BOOKLET.

Let us look at each case and your answer. Read ench cluice.

1. A. Whan raeing MO, AL will alway win ty a mile. (This is a prediction not based on facts at all. It is the verst gencralizalion.)
B. Mo enma in sanond with AL enming In nant to last. (This is wotded a lillic strange lecause it is From Xo's perspective but it is thue. Coming in "next to last" is IIIRST when there is only hivo people in lice tace!)
C. It was jast onn of many raens. (This is a true statement but it does not give much information. It is $f(x)$ genceal.)
D. Al will pertatly win most of the raens in the fature. (This is a prediction that may or may not be true. Predictions are a dilletent type of peneralization.)
A good gencralization reters only to facts lint are known. A good predielion MUST refer to the 'TRIENIS that is present in the frets. It will sny nomelling like "If the trend contimues..." 13ad predictions ignore the facts. A good prediction is still not na good as a gencralization that sums up the current facts. Avoil aceopting predictions as generalizalions.

The hest gencialization alouve is choice 13. Choice 13 sums up all the facts and is not a prediction or an opinion.
2. A. MO has an untrokon winning slreak of sevan ranne. (This is a tue stalement but incomplete. Other facts could le used to make a belter gencralization.)
B. Al had an anbroken winning sliman of aighl reons. (This slatement ignores some facts.)
C. At hat won the mort gamat but tr on a losing presk now. (This is the best generalization because it uses all the facts. It is not an opinion or predicion.)
D. Mo will win tha naxt envaral raeses. (titis is a prectiction that may or may not lie true. Nolling in the story fells us that M() will definitely wint lie nexa several races. Of lie four statements, this one is the werst generalization. 11 is an opinion and a prediction.)
3. A. Bob cold his Pamily not to tnvila Sam. (This is an opinion. It nssumes that Bob is a liar. There is no evidence that l3oh tell lics. This opinion is the worst gencralization of the four items.)
B. Beb donsn't likn Snm anymore. (Iltis oninionn is not based on any known facts. It could be true, stit is mot as had as statement 1 .)
C. Bob could n't halp leaving Sam out of the pariy. (This is the best gencralizaliont. It is based on lice facts. It is wnt ant opinion or a prediction.)
D. Bot's famly donsn't like Sam. (This opminion is not lased on the facts given in the story.) (Cherice In and t) may or may not be liue. No facts were given to suppott licm. Choice \mathbf{A} gocs against the facts of the story. Opinions or predictions that go against the facts are the worst kind of genctalizations.
4. A. It le going to gat holtar afiar this weak. (This prediction may not be true.)
B. It is mori likaly goling to gat enoler nexi weak. (This prediction claims the opyposite of the frend nolice this week. This is the svonst gencralization.)
C. If tha Irand emnthanas, It will gat hatine naxt wank. (This prediction is based on the conclition that the liend nunst comtinue. It is an good gencralizalion because it uses facts that are known.)
D. It eannol gel any holler nerl weok. (This prediction is not based on the facts. However. il may he true. This prediection is more likely to occur lian the predietion in choice "13". A trend usually stops before it reverses. Choice D ignores the trend in rising temperalures.)

hend encin choice

5. A. Both's grados will got bollor. (A peediction of hope not based on all of line racts.)
B. Both is nol a good sludenl. (it is not clear: wiat is meant by the term, "good student." This is an opinion based on unknown facts. lifis is the worst generallzation.)
C. Both's grades will probably gol worse over limo. (n prediction not based on all the racts. This statement points to the grade that uent down while ignoring other fatts.)
D. Overall, Both's grades have nol changod. (This statement looks at all tine racts. Beth had one grade go ul and one grade go dnum. the other tive grates remained the same. It 15 not all opinion or a prediction. it is the best generalization.
6. A. The map that they had been reading was wrong. (this is an opinion and not likely the ease. Hothing in the story indicated a moblem with (lie map.)
B. If they conlinue slong the river they will find ampor city. cnssuming everything in the story is turue this is the best generalization.)
C. This major river does not have: major oliy noar li. (this is a prediction. For te to be tive the map wnill have to be wrong. The story findicates lliat a majne city whil be round.)
D. Chiles do not rely on rivers for transporiation anymore. (this is an oninion. it gnes directiy against the facts of the story making it the morst generalization. liajor rivers are still used for (r-anspartation.)
7. A. Kris will dofiniloly nol win eny money. (lisis is a prediction based on the inu ofds or winning. it may or may not be tive.)
B. Kris has alrasdy won the money. (libis is a pecodiction. it may be true but the odus are very low. She does quality to win so it is possible.)
C. Conlosis like these are nol honerl. (tilis is an oninion. Hothing in the story indicates that this enntest is dishonest. Ho facts were glven about dishonest contestis. This is the wirst gencralization because it is an oninion with no facts sumporting_it.)
D. Kris may win some money in the conlosl. cihis prediction clearly states the possibility whehout being derinite. We know that ann didn't will any money. Hifis is qualified to win. This is the best generalizatinn.)

Sometimes gond generalizations state the possibility of something happening in "real terms." ror" example, if it is cinudy outside you may say. "it may rainf" nrter lnoking at the weather data the weather reporter gives a neccent chance of rain. absolute predictions are usually not gnod generalization.

GO TO PAGE 7 IN THE ANSWER BOOKLET.

1. Mrs. Adans' room is fill of atulents. She allows ene row of students to lenve for lunch. She calls another number of a row. She calls out row numbers until all have been dismissed. Ilank kept track fer lwo weeks what row rvent to limeh lirst. I Iere's his data.

Row 1 went lirst 3 times.
Row 2 rvent lises 3 tinues.
Row 3 went lirst 1 time.
Row 4 went firat 2 times.
Rove 5 svent lirst 1 lime.
A. Row I nemally goes limst
Mank the BEST generalizalion.
13. Row 2 goes first a lut!
(A) (I3) (C.) (I))
C. Row 1 goes first less lhan Row 1 and 21 Mark lie WORSI gencralization.
D. Row 5 never geoes lirs!!
(A) (13) (C) (I)
2. For the next two weeks Jockept a list like the one above. Ilere's his dala.

Resw I went lirsi 1 times.
Reove 2 went liss 3 times.
Rewv 3 wenl liast 1 line.
Rowv 4 svenl firsl 2 limes.
Row 5 went first 0 times.
A. Row 1 always goes firsi!
13. Rerv 2 goen lisal a latl
C. Row 3 sclidom gocs firsll
1). Row 5 neter goes firstl

Matk the BITST genctalizalion.
(1) (13) (C) (1)
Mark the WVORSI gencralization.
(A) (13) (C) (I)

RETURN TO LESSON BOOKLET PAGE 2.

3. Find the BEST and WORS' source.
A. United Press International (UPI)
B. Your teacher.
C. An encyclopedia.
D. An older brother or sister.

Mark the BESI Source.
(A) (B) (C) (D)

Mark the WORST Source.
$(A)(B)|C||D|$
4. Find the BESF and WURST source of information to answer the question, "Ilow old should your sources be?"
A. An old letter found in the attic.
B. The 10:00 News report last night.
C. A book published in 1989 .

Mark the BEST source.

(A) (13) (C) (1)

Matk the WOIRST source.
(A) (B) (C) (I)

5.
A. I always win.
B. I will always win.
C. Joe got lucky once, but it won't happen again.
D. I have won all the games until recently.

Mark the BEST generalization.
(A) (B) (C) (D)

Mark the WUORST generalization.
(A) (B) (C) (D)
6.

Joe's Perspective

A. I'm going to win all the games now.
B. After losing all the games, I will now win all of them.
C. Mike can't play basketball so I'll always win.
D. My losing streak has ended.

Mark the BEST gencralization.
(A) (B) (C) (D)

Mark the WORST generalization.
(A) (B) (C) (D)

RETURN TO LESSON BOOKLET PAGE 8

AN FEXFRCISE

1. At and MIU like to race only each olther. They do not race with other people. In the last race they tan a mile. N. won the iace by only a fev fect. NL and MO generalize aboult the race.
A. When bacing Mf(, NI, will alsvays win by a mile.
2. Ne catme in second with $\lambda 1$, coming
(.) Il was just one of many vaces.
1). AI, will probalily suin mest of the races in the littue.

Matk lis 13EST generalizalion.
(A) (13) (C.) (1)
Matk lic Wolest generalization.
(A) (B) (C) (C$)$
2. AI, and Nif) have raced 15 times. Ne) wom the last seven races. When they talk about these races thoy pencralize.
A. Af() has an molnoken svinning streak of seven taces.
13. AI. had an whinoken wiminge streak of cight races.
(. AI. has soon the mosi races but is on a losing streak now.
1). N(O will win the next several races.

Matk the BESWr gencralization.
(1) (13) (C) (1))
Matk the IVOIRSI gencralization.
(1) (13) (C) (I)
3. Bol and Sam are best liconds. Bob had a bithday and his family theev him a paty. Since Sam was mot a lamily member, le was not inviled. The party was a surphise for Bob so he did not have lime to invite anyone. Hoblold Sam these things. Find the Blisir and Worser generalization for Sam lo make aboul I3ob.
A. Joh tod his lamily not lo invile Sam.
13. Bol duesu't like Sam anymore.
(. IJoh coukdrit lielp leating Sam out of the paty.

1. Job's family docsn'l like Sam.

Matk the [3FSF generalizalion.
(\wedge) (I]) (C) (1)
Natk the IVOIRST gencralization.
(A) (I3) (C.) (I)
4. Amy kepla record of the daily high lemperatures for a week. She plotied them on the graph liclow.

A. II is going lo gel hofler afler this week.
13. It is most likely going to get eooler next week.
(.. If lise fend comfinmes, it swill get hofler next week.
1). It camol get aty hotler nexl week.

Matk the 13EST gencralization.
(1) (13) (C) (l)
Mark the WORS'I genctalization.
(A$)(\mathrm{I})(\mathrm{C})(\mathrm{I})$
5. Beth was looking at a record of her ninc week grades. In math she went from a "C." 40 a " 13 ". In science she made a "C" again. In English she dropped from a "C" to a "I)". In social studies she made a "C" again.
A. Betl's grades will get heller.
13. Beth is not a good student.
C. Beth's grades will prohably get worse over time.
I). Overall, Bellis grades have not changed.

Mark the BEST gencralization.
(A) (13) (C) (D)

Mark the WOIRST: generalization.
(A) (B) (C) (I)
6. Students reading about tivers fonnd that they were very inportant for the growilh of cities. Rivers provide a source of water and transpotation. Students looked at a map of Fiurope. They could not find any major city without a major river near it. The sludents Itaveled to Europe. They noticed that the highway followed the conse of a magor river. They traveled a shot distance along the river, but they spoted no city. On the basis of these facts lind the I3ISSI and WORST gencralization below.
A. The map they had been reading was wrong.
[3. If they continuc along the siver they will lind a major city.
C. This major tiver does not have a major city near it.
1). Citics do not tely on tivers for transpotation anymote.

> Mark the 13 BSV gencralization.
> (A) (13) (C.) (I))
> Mak the WORSY gencralization.
> (A) (13) (C) (D)
7. Ktis received a letter in the mail. She told her friends, "I've won! l've won!" Kris explains, "It says that if I an selected firom those with the matching number, I win ten million dollars! I have the matching numberl" Iler fiiend Ann lold her that she got a similar lefter last year. Amm won mothing. Anm's letter stated her chances of winning were one in ten million. On the basis of these facts, find the best and worst gencralization below.
A. Kris will definitely not win any money.
13. Kis has already won the money.
C. Contests like these are not honest.
1). Kitis may win some moncy in the contest.

Natk the BESV gencralization.
(A) (13) (C') (1)
Matk the WOHST gencralization.
(A) (13) (C) (D)

RETURN TO PAGE 9 IN THE LESSON BOOKLET.

Add up the number of times you picked the correct BEST generalization on pages 5 and 6 in this answer booklet. You may need to refer to pages 9 and 10 in the lesson booklet for the ansiwers.

Write that number liere. \qquad out of 7.

Add up the number of times you picked the correct WORST generalization on pages 5 and 6 in this answer booklet

Wite that number liere. \qquad out of 7.

Thank you very muchll
Please rate this knowledge construction lesson. Cross oul one choice below.
DISLIKED IT A LOT. DISIIKED IT A LITIIE. IT WAS OKAY. LIIKEDIT A IITIIE. LIKEDIT A I.OT:
-2
-1
0
11
$+2$

You may now tum in your lesson and answer booklet to your teacher. Thank you again.

APPENDIX F

Construction Knowledge Exercise

(Placebo Lesson)

Enclosed you will Find a WIIIE LESSUH Booklet and a YELLUW NMSWER Dooklet.

Do not urite on the UIIIE LESSON booklet. Write only on the YELLUW nNSWER Dooklet. Do not wite your name on either booklet. Begin now on page 1 on the WIITE LESSON booklet.

c:OHSTRUCIIONKNOWLEDEE EXERCISE

WHAT IS A CONSTRUCTION KNOWLEDGE EXERCISE?

He take some thing; font granted. tits lesson olla be about things in nor lues and what. they do for th s. First, a generator.

GENERATOR?

Yon may fol hoe sure what exactly n gemernlor is
 "Slog ont How!

 power from bintlerles bul the power in the battery is malntalued by n Remernlor.
 provide pincer for many types of lowly. Even if the:

 Isolated places where there is mother power

 mot n protnhle gromeritor like ln the previous example. Still there Most be n Renernlor at the power plant to produce the electrlelly that is combing through the lars. Otherwise we womb

Okay, I know what a generator ls so...? lie " In lie dark!"
fluting fiat sine you already knee what a generate mas. thy learn anymme about them Vol have also seen that sometimes it is easy in forget how much we rely on
 generators. Hut this lesson Is about ennstructinn. Your all kente people whin live in different: kinds of bouses. they may mater statements ming mitres we inurn fin their preferences about houses. (For example, "lite teacher salic she mill always live in a house" or" "She salt ne vet again tl she five ln an aprimenti") Regardless of ourpreferences, there are certain qualities that all houses have in common.

Rempmber, when you matere house yon meed constriertinn material. the material. you use in constrution meeds in be inspected for its quality.
nul hunses Hse sume surt
of material for the basic
shructibre - lloc or more
of materials to the left
call be used. Hhat
Irtermines ror the
tullder what material lie
will use?
There are some
fuestions that need to be
asked, and as maty of
liem ansurered as pussible
hefore you decide on the
materials
Sn. . concerning the
type of linuse goul want.
ask...

WIIO is going to live In the house?
WIIAT are the available malerials? (That will be used to make the house.)

WIIEN will eonsiruction begin?

WHERE is the house going to be buili?
WHY is the house needed al this lime?

Are they REASONABLE sure of whal lhey wanl?
Are ALL the materials being considered?

Can the owners live how long WITHOUT: house or le this a SECOND house? Can ll bo CHECKED for safoly?

1: II possible they may MOVE again?

0kay, after you liave asked these yuestions, there are other things to consider before you begin to construct some new house (or check someone's construction?)

THINGS TO CONSIDER

Asklng the questlons is the easy part. The noswers may not nlways be easy Io get. When you have an answer to one or more of these stx quest fons, there
 lomse you wanl and li ls mot mecessary to binll a new one. ('an you lhlak or other sourees that may provide jou with the laformation that gou need to flmi the housos gen wanl?
A. Classifled ad in the newspaper
II. Your high seloond tencher
C. \wedge Reallor's llsillif

II. An oliler hrolier or sister

Can you lhink of olher sumreas? Prohahly ane ar more of lhese sources

 home mad safelyl

Lat's us lawk al the safely guestlou "Wint are the risks?" Supose you are avare of volent starms la lhe aroa you want to live. That can't he

 here!"

When yon buy wr rent n house, joumay lanow Iltule aboul the constructlon or wion lollit the house. You hope lhey Julged llae nulorials strong emough for the Jotb. They were constractling jome home wllin alear purpose lin mind.
 following nomill lie a somree of laformatlon.
A. An tlile deed lo the liouse

13. The construethon report
(a. A bowk at the eomellomise:

 thlak or, "A lot more"? for the lalormatlon depends on what klitl of house or aparlment jon are constilerling. The oliler the house eonld mean it will be diffleult lo flud what rienli li was bullt. It is mot always the most lmportant Informatlon that your neod to know. The best source could be the ombilinat.

 lloe mesal.

IURN TO PAGE 4

 hombred and fifly yoass ago Abraham limeoln was allve. lle Ilved In a log liome for a briad Itme. filis type of lome coulal be lmilt mear a forest. Willelle this home was bulle provjad secourlig. knowing where ilow materlal tame from cian also lielf you answer the mext guestlon-killy

Why was the home meedeald it is somotlmess
 'The mollve can reveal the mededs that cant matio some bullding malerlal horlliless. liemember that fin urder to make a liouse forpensive, you mist chonse material llat is avallable at low cost. llowever, some maloriats
 canmol be used. If lhere ls a strung whal, then certaln material wll mot be adeynate. For example, consfder these two lomeses:
!!!! se_ll!

kilat? Show anll lee . Show dand Ice
Khen? Anstlate . Anytime
Whore? Aretle circic.............................. Australlan bestert.

llow? (was materfal gathereal)
Suow is cul from smon
banks and use as blocks
K'llomi limothig the constructlon method of elther louse, you cian guess what

 cllmate low or cold)?

 bere, mot even famlly members half the the!" It womla be silly lo hulld such a louse uniess jou were a hermil. Yous wold have to have all Ihe sumbles joul

 fhls does not menn they wll ulwass have It easy gettiog to thelr housed

Accoss prohlem ||I

* Car lravela on pavement onlyt

* Car is only G inches of grommil
* Al Jonse 1 miles of rough roals!

TIMN Tu NExit Pidili

Aifverilsement Ha

* Hest urf roal veliti:le lathe Worlu!
* More stambard eyulpment!
- Inveal ilfleway lakes vehicte lo It folimay.
 bulld or buy a house you might eonslider what other people are alolng aroumd the world. \wedge Jumfor high girl traveled to liurope. let's sce what sho fluls.

A DIFFERENT PERSPECTIVE...

Jamle recently retirmed from liorope. She was very hapry to tell all of her frlonds that she "iliscovered her dream homet" one of her friemis asked her, "Tell us what gou have dlscovered and why gou think it su spectni." damle replled, " 1 was the flest oue fin my family lo sec a castle. allil loved lt"

Jnmie's frlenil wanled to know more aboul the castle. "Inmie, weren't there boople llicre In Euroue stlll living in castles? Dom' you lliluk they are stlll hollding castles in Earobe?" "Maybe so," Jamle was qulck to mild. "laut im not sure and it lossn't matter, f'm still want to bulld omei" (lin Amerlea) Some Amerleans lfve lin homes that are a lot like the castles damie Ilscovered In liorope. We have all heard of Kings and Queens Itulup fil castles. Some of these castles are still lit very good condlton after humbeds of years. Ifowever, Ifke Jambe discovered In burope, Lhere were very very few people there that silli flve fin enstles. Some estimate ft wolld cost over 100 million dollars lo bullil even n small eastle lolay. Castles will Iast n long IIme because lhey are usually bullt with thlek stones. ln North and South Amerlen only a few natives bullt wllit stone.

In the history of the North Amerlean comt frent there lins many dfferent igpes of houses bulli. Alwass it depented \quad ipon the
 family needs and asallable materlals what lype of loome was

 quickly from lomfajo hlijes. Some mitives did bulld more permanet homes out of wood or stone. Europeans that came to Amerfea adapled some of the loone building melhoils from the matlves. $1,1 \mathrm{kew} / \mathrm{se}$, the nallves were able to trale for minterfals that would use lin billallig houses. The convoss fulckly replaced buffalo hlides fil many parts of the liest
 In leepre construetion.

A small momer of people arouml the world stll bullil homes exactly like lisel amestars. Thls is malnly loenuse of wile range of materinis avalable. Becanse of mass proluctlon ant transporintlon advances, these materials came be shlpped to most areas of the world.

Based on the realling mbove here are some fints for you to remenber.
A. Jamle discovered enstles when she went to liurope.
II. Stone lasts longer linti most malerlals.
C. Some Amerfeall lillves laked mulille homes.
I. The matcrial used tuday is diflerent from the past.
E. More materini is avallable to most people today.

ANSWHR BOMKI,N:F

 calls on a mumber of a totv olf sturiculs. They try to guess what kind of house she lives in. She calls ouf mon mombers imbil all have guessed. I lank kept tack of the guesses. I fere's his dita.

Ranv 1 wenl will a ice house.
Rowv 2 wenl swill a straw hotuse.
Rowv 1 ivent ivilis a mud hanise.
Row it wenl suill a house of slicks.
Rowv 5 went wilh a stome hut.
What do yom think'?
A. Rown 1 is centull
13. Renv 2 has nom inleal
('. Row 1 goce with nerything coazy!
1). Row 5 is never righll
li.. I ley! I need mone inlonmationl

If has 2 slories.
II can liokd 9 or uote kids.
It has sil umusual dorm:
The lop llow is stmall.
The teacher is not young.
Now what do you think?
A. The teacher is crazyl
13. Rove 2 caris lic iglill
(. Renv 4 might be righn!
1.) Row I mighl lise right!
fi. I need more infonmalionl

ANSIVER BOOKINCF

3. Your read in the newspaper that the town has sel a record on high temperatures. The high temperature has not been below 90 degrees for a month.

What abou your teacher's house?
A. Il can't be ice!
13. Il could be mud.
C. Steel is not unusual enough.
D. Wood and slome are common.
4. The teacher gives you a him. She tells
 yon that the homse used to be alive! What do you lhiuk now!
A. It can't be mul or stone.
B. It conded le strave or wood.
C. It is probably something else.
1). I still need more information.

 dannage. What do you lhink?
A. It candil be straw.
13. Never thought it was wood.
C. An lincyclopeclia ulghin help.

1). Ait ofler brother or sister may kiows.

 house before we go on to sonnelling cilse. What is the ataterial's
A. Woorl.
B. Dïe ticalud Silanv.
C. I. callour.
D. (ilass.

ANSWIER BOOKLIET

AN IEX RIRCISN:

1. List below some major considerations one must make before building or buying a lome.
A. Who? \qquad
2. What? \qquad
c. When'? \qquad
1). Where? \qquad
E. Why'? \qquad
3. List belows some sources ol information for locating a new home.
Λ. \qquad
4. \qquad
C. \qquad
$1)$. \qquad
5. In sclecling some matcials lor your house, list some major considerations below.
Λ. \qquad
6. \qquad .
. \qquad
D. \qquad
7. Exphain why canly white setitern, Aumerican ludians, and liskimos all had diflerent lypes of homes.
8. What svere the oniginal reasons for building a casste and why do few people live in them now?

APPENDIX G

Experimental Design Model

EXPERIMENTAL DESIGN MODEL

APPENDIX H

Form Y Group Comparison

 (Exp vs Control on pretest)
FORM Y EXP VS. CONTROL ON PRETEST

Analysis of Variance:One Way
Summary

Groups	Count	Sum	Average	
preYcontrol	104	1846	17.75	38.7
preYexp	106	1898	17.91	31.2

Analysis of Variance
Source of Variation

	SS	df	MS	F	P-value	F-crit
Between Groups	12.755	1	12.75	0.34	0.56	3.886
Within Groups	7884.8	208	37.55			
Total	7897.5	209				

Y FORM EXP VS. CNTRL ON PRETEST

Analysis of Variance:One Way			
Summary			
Groups	Count	Sum Average	Variance
YBGent	104	2992.875	2.01335
YBGexp	104	3112.99038	1.621266
Analysis of Variance			
Source of Variation			

	SS	df	MS	F	P-value	F-crit
Between Group	0.692	1	0.69231	0.380952	0.5378	3.887
Within Groups	374.4	206	1.81731			
Total		375.1	207			

Analysis of Uariance: One Uay

Summary

	Count Sum Average Variance				
Groups	104	276	2.65385	2.267	
YWGent	104	268	2.57692	1.936	

Analysis of Variance
Source of Variation

| | SS | of | MS | F | P-value F-crín | |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| Between Groups | 0.308 | 1 | 0.30769 | 0.146 | 0.7024 | 3.89 |
| Within Groups | 432.9 | 206 | 2.10157 | | | |
| | | | | | | |
| Total | 433.2 | 207 | | | | |

Analysis of Variance:One Way

Summary

Groups	Count		Sum Average Variance	
YBPent	104	366	3.51923	2.776
YBPexp	104	351	3.375	2.353

Analysis of Variance

Source of Variation

| | SS | df | MS | F | P-value | F-crit |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Between Groups | 1.082 | 1 | 1.08173 | 0.422 | 0.5168 | 3.887 |
| Within Groups | 528.3 | 206 | 2.56474 | | | |

Total 529.4207

Y FORM EXP VS. CNTRL ON PRETEST

Analysis of Variance:One Way

Summary PRETEST	Count Sum Average Variance			
YWPent	104	299	2.875	1.897
YWPexp	104	278	67308	1.601

Analysis of Variance
Source of Variation

| | SS | df | MS | F | P-value F-crit |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Between Groups | 2.12 | 122.12019 | 1.212 | 0.2722 | 3.887 |
| Within Groups | 360.3 | 2061.74883 | | | |
| Total | 362.4 | 207 | | | |

Y FORM EXP VS. CNTRL ON PRETEST

Analysis of Variance:One Way

Summary PRETEST	Count Sum Average Variance			
Groups				
YBRent	104	284	2.73077	2.16
YBRexp	104	318	3.05769	1.88

Analysis of Variance
Source of Variation

	SS	df	MS	F	P-value	F-crit
Between Groups	5.558	155.55769	2.751	0.0987	3.887	
Within Groups	416.1	206	2.01998			
Total	421.7	207				

Y FORM EXP VS. CNTRL ON PRETEST

Analysis of Variance:One Way

Summary PRETEST	Count Sum Average Variance			
Groups				
YWRent	104	322	3.09615	2.709
YWRexp	104	315	3.02885	2.514

Analysis of Variance
Source of Variation

	SS	df	MS	F	P-value F-crit	
Between Groups	0.236	1	0.23558	0.09	0.7642	3.887
Within Groups	538	206	2.61142			
Total		538.2	207			

APPENDIX I

Form Z Group Comparison

 (Exp vs Control on pretest)Analysis of Variance:One Way
Summary

	Count	Sum Average Variance	
Groups	47	750	15.9574
Z-preC	45	761	16.9111
ZpreE	27.8		

Analysis of Variance
Source of Variation

	SS	df	MS	F	P-value F-crit	
Between Groups	1.287	1	1.28723	0.04	0.8478	3.945
Within Groups	3197	92	34.7521			
Total	3198	93				

Z FORM EXP VS. CNTRL ON PRETEST

Analysis of Variance:One Way

Summary				
Groups	Count	Sum	Average	Variance
ZBGentri	45	132	2.933333	2.245
ZBGexp	45	132	2.933333	1.882
Analysis of Variance				

	SS	off	MS	F	P-value	F-crin	
Between Groups	0	1	0	0	1	3.95	
Within Groups	181.6	88	2.063636				

Analysis of Variance:One Way
Summary

Groups	Count	SuIn	Average	Variance
ZWGcntrl	45	143	3.177778	1.46768
ZWGexp	45	141	3.133333	1.52727

Analysis of Variance
Source of Variation

	$S S$	df	MS	F	P-value	F-crit
Between Groups	0.044444	1	0.044444	0.02968	0.863615	3.9493
WithIn Groups	131.7778	88	1.497475			
Total	131.8222	89				

Z FORM EXP VS. CNTRL ON PRETEST

Analysis of Variance:One Way
Summary

Groups	Count	Sum	Average	Variance
ZBPcntrI	45	98	2.177778	1.7404
ZBPexp	45	90	2	1.54545

Analysis of Variance
Source of Variation

	SS	df	MS	F	P-value	F-crit	
Between Groups	0.711111	1	0.711111	0.43283	0.51232	3.9493	
Within Groups	144.5778	88	1.642929				
Total		145.2889	89				

Z FORM EXP VS. CNTRL ON PRETEST

Analysis of Variance:One Way
Summary

Groups	Count	Sum	Average	Variance
ZWPcntrl	45	119	2.644444	1.96162
ZWPexp	45	105	2.333333	2.13636
Analysis of Variance				

Source of Variation

	SS	df	MS	F	P-value	F-crit
Between Groups	2.177778	1	2.177778	1.06285	0.30539	3.9493
Within Groups	180.3111	88	2.04899			
Total	182.4889	89				

Z FORM EXP VS. CNTRL ON PRETEST

Analysis of Variance:One Way
Summary

Groups	Count	Sum	Average	Variance
ZBRentrl	45	155	3.444444	1.84343
ZBRexp	45	177	3.933333	1.92727

Analysis of Variance
Source of Variation

	SS	df	MS	F	P-value	F-crit
Between Groups	5.377778	1	5.377778	2.8524	0.094778	3.9493
Within Groups	165.9111	88	1.885354			
Total	171.2889	89				

Analysis of Variance:One Way
Summary

Groups	Count	Sum	Average	Variance
ZWRentrI	45	128	2.844444	1.54343
ZWRexp	45	135	3	1.72727

Analysis of Variance
Source of Variation

	SS	df	MS	F	P-value	F-crit
Between Groups	0.544444	1	0.544444	0.33292	0.565417	3.9493
Within Groups	143.9111	88	1.635354			
Total	144.4556	89				

APPENDIX J

Form Y Sequence Comparison (Pre versus Post control)

Y FORM: PRE VS POST CONTROL

Analysis of Varlance:One Way

Summary

Groups	Coul Sum		Variance	
YBG-pre	46	135	2.93	1.9
YBG-PC	46	138	3	2.6
Analysis of Variance				

Source of Varlation

	SS	of			F	P-value
	F-crl					
Between Groups	0.1	1	0.1	0.0	0.8354	3.9
Within Groups	203	90	2.25			
Total	203	91				

Y FORM: PRE VS POST CONTROL

Analysis of Variance:One Way
Summary

Groups	Count			Sum Average	Variance
YWG-pre	46	121	2.83044	2.06039	
AYWG-PC	46	119	2.587	1.71449	

Analysis of Variance
Source of Varlation

	SS	df	MS	F	P-value F-crn	
Between Groups	0.043	1	0.0435	0.02304	0.8797	3.95
Within Groups	169.9	90	1.8074			
Totai	169.9	91				

Y FORM: PRE VS POST CONTROL

Analysis of Variance:One Way				
Summary				
Groups	Coun	Sum	Average	Variance
YBP-pre	46	160	3.47826	2.92
AYBP-PC	46	168	3.65217	2.32

Analysis of Variance
Source of Variation

	SS	df	MS	F	P-value F-crit	
Between Groups	0.696	1	0.69565	0.27	0.6077	3.9469
Within Groups	235.9	90	2.62126			
Total	236.6	91				

Y FORM: PRE VS POST CONTROL

Analysis of Varlance:One Way

Summary

| | Count Sum | Average Variance | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Groups | 46 | 144 | 3.1304 | 2.1 |
| YWP-pre | 46 | 139 | 3.0217 | 1.9 |
| AYWP-PC | | | | |
| Analysis of Variance | | | | |
| | | | | |
| | | | | |
| Source of Variation | | | | |

	SS	of	MS	F	P-value	F-cl
Between Groups	0.272	1	0.2717	0.1	0.7119	3.9
Within Groups	178.2	90	1.98			
Total	178.5	91				

Y FORM: PRE VS POST CONTROL

Analysis of Varlance:One Way
Summary

| Groups | Count | Sum | Average | Variance |
| :--- | :---: | :---: | :---: | :---: | :---: |
| YBR-pre | 46 | 126 | 2.7391 | 2.01932 |
| AYBR-PC | 46 | 134 | 2.913 | 2.61449 |

Analysis of Variance
Source of Variation

	SS	of	MS	F	P-value	F-crh
Between Groups	0.696	1	0.6957	0.30025	0.5851	3.95
Within Groups	208.5	90	2.3169			
Total						
	209.2	91				

Y FORM: PRE VS POST CONTROL
Analysis of Variance:One Way
Summary

Groups
SWR-pre
YWR-PC

YWount Sum Average Variance
Analysis of Variance

Source of Variation

| | SS | df | MS | F | P-value | F-crin |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Between Groups | 3.141 | 1 | 3.1413 | 1.2625 | 0.2642 | 3.95 |
| Within Groups | 223.9 | 90 | 2.4882 | | | |
| | | | | | | |
| Total | 227.1 | 91 | | | | |

APPENDIX K

Form Z Sequence Comparison

(Pre versus Post control)

Z FORM PRE VS. POST CONTROL

Analysis of Variance:One Way

Summary

Groups	Count	Sum	Average	Variance
preZBG	90	264	2.933333	2.04045
ZBGpc	90	237	2.633333	2.45955
Analysis of Variance				

Source of Variation

	SS	df	MS	F	P-value	F-crit
Between Groups	4.05	1	4.05	1.8	0.181422	3.89423
Within Groups	400.5	178	2.25			
Total	404.55	179				

Z FORM PRE VS. POST CONTROL

Analysis of Variance:One Way
Summary

Groups	Count	Sum	Average	Variance
preZWG	90	284	3.155556	1.48115
ZWGpc	90	260	2.888889	1.62797

Analysis of Variance
Source of Variation

	SS	df	MS	F	P-value	F-crit
Between Groups	3.2	1	3.2	2.05846	0.153117	3.89423
Within Groups	276.711	178	1.554557			
Total	279.911	179				

Z FORM PRE VS. POST CONTROL

Analysis of Variance:One Way
Summary

Groups	Count	Sum	Average Variance	
preZBP	90	188	2.08889	1.63246
ZBPpc	90	197	2.18889	1.34594
Analysis of Variance				

Source of Variation

	SS	df	MS	F	P-value	F-crit
Between Groups	0.45	1	0.45	0.30218	0.583211	3.89423
Within Groups	265.078	178	1.4892			
Total	265.528	179				

Analysis of Variance:One Way
Summary

Groups	Count	Sum	Average	Variance
preZWP	90	224	2.48889	2.05044
ZWPpc	90	223	2.47778	1.9377
Analysis of Variance				

Source of Variation

	SS	df	MS	F	P-value	F-crit
Between Groups	0.00556	1	0.00556	0.00279	0.957964	3.89423
Within Groups	354.944	178	1.99407			
Total		354.95	179			

Z FORM PRE VS. POST CONTROL

Analysis of Variance:One Way
Summary

Groups	Count	Sum	Average Variance	
preZBR	90	332	3.68889	1.92459
ZBRpc	90	322	3.57778	2.58377

Analysis of Variance
Source of Variation

	SS	of	MS	F	P-value	F-crit
Between Groups	0.55556	1	0.55556	0.24646	0.620195	3.89423
WIthin Groups	401.244	178	2.25418			
Total	401.8	179				

Analysis of Variance:One Way
Summary

Groups	Count	Sum	Average	
preZWR	90	263	2.92222	1.6231
ZWRpc	90	255	2.83333	1.96067

Analysis of Variance
Source of Variation

	SS	df	MS	F	P-value	F-crit
Between Groups	0.35556	1	0.35556	0.19843	0.656536	3.89423
Within Groups	318.956	178	1.79189			
Total	319.311	179				

APPENDIX L

Form Y vs. Z Comparison
(pretest scores on all subtests)

Y-TEST VS. Z-TEST AS PRE TEST

Analysis of Variance:One Way
Summary

| Groups | Count | Sum | Average | Variance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| YpreC | 92 | 1620 | 17.6087 | 42 |
| Z-preC | 92 | 1511 | 16.42391 | 29.3 |
| Analysis of Variance | | | | |
| | | | | |
| Source of Variation | | | | |
| | | | | |

	SS	df	MS	F	P-value	F-crit
Between Groups	63.197	1	63.19681	1.54	0.21607	3.892
Within Groups	7629.3	186	41.0179			
Total	7692.5	187				

YBG VS. ZBG ON PRE TEST

Analysis of Variance:One Way
Summary

| Groups | Count | Sum | Average | Variance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ZBGpre | 92 | 264 | 2.86957 | 2.18 |
| YBGpre | 92 | 236 | 2.56522 | 2.31 |
| Analysis of Variance | | | | |
| | | | | |
| Source of Variation | | | | |

	SS	df	MS	F	P-value	F-crit
Between Groups	4.1702	1	4.17021	1.77	0.18492	3.892
Within Groups	438.04	186	2.35507			
Total	442.21	187				

YWG VS. ZWG ON PRE TEST

Analysis of Variance:One Way
Summary

| Groups | Count | Sum | Average | Variance |
| :--- | :---: | :---: | :---: | :---: | :---: |
| ZWGpre | 92 | 240 | 2.6087 | 2.04 |
| WWGpre | 92 | 245 | 2.66304 | 2.34 |

Analysis of Variance
Source of Variation

	SS	df	MS	F	P-value	F-crit
Between Groups	0.133	1	0.13298	0.06	0.80978	3.892
Within Groups	425.67	186	2.28855			
Total	425.8	187				

YBP VS. ZBP ON PRE TEST

Analysis of Variance: One Way
Summary

Groups	Count	Sum	Average	Variance
ZBPpre	92	188	2.04348	1.69
YBP	92	322	3.5	2.96
Analysis of Variance				

Source of Variation

	SS	df	MS	F	P-value	F-crit
Between Groups	95.511	1	95.5106	39	$2.8 \mathrm{E}-09$	3.892
Within Groups	454.98	186	2.44612			
Total						
	550.49	187				

YWP VS. ZWP ON PRE TEST

Analysis of Variance:One Way

Summary

| Groüps | Count | Sum | Average | Variance |
| :--- | :---: | :---: | :---: | :---: | :---: |
| WWPpre | 92 | 263 | 2.8587 | 2.06 |
| ZWPpre | 92 | 224 | 2.43478 | 2.14 |

Analysis of Variance
Source of Variation

	SS	df	MS	F	P-value	F-crit
Between Groups	8.0904	1	8.09043	3.68	0.05674	3.892
Within Groups	409.37	186	2.20093			
Total	417.46	187				

YBR VS. ZBR ON PRE TEST

Analysis of Variance:One Way
Summary

| Groups | Count | Sum | Average | Variance |
| :--- | :---: | :---: | :---: | :---: | :---: |
| YBR | 92 | 247 | 2.68478 | 2.22 |
| ZBRpre | 92 | 332 | 3.6087 | 2.17 |

Analysis of Variance
Source of Variation

	SS	df	MS	F	P-value	F-crit
Between Groups	38.431	1	38.4309	16.3	$8 \mathrm{E}-05$	3.892
Within Groups	439.37	186	2.36222			
Total	477.8	187				

Analysis of Variance:One Way
Summary
Groups
YWR-C
ZWRpre

Analysis of Variance
Source of Variation

	SS	df	MS	F	P-value	F-crit
Between Groups	1.3617	1	1.3617	0.57	0.45209	3.892
Within Groups	446.06	186	2.39819			
Total	447.43	187				

APPENDIX M

Correlation: Form Y and Z

CORRELATION Y \& Z SUB TESTS

	ZBG-C	YBG-C
ZBG-C	1	
YBG-C	0.19789	1
	ZBP-C	YBP-C
ZBP-C	1	
YBP-C	0.31893	1
	ZBR-C	YBR-C
ZBR-C	1	
YBR-C	0.39389	1

	ZWG-C	YWG.
ZWG-C	1	
YWG-C	0.2514	1
	ZWP-C	YWP.
ZWP-C	1	
YWP-C	0.3097	1
	ZWR-C	
YWR-C	1	
YWR-C	0.3539	1

APPENDIX N

White Vs. Nonwhite Comparison (pretest scores on all subtests)

Analysis of Variance:One Way

Summary

| Groups PRE TEST | Count | Sum | Average | Variance |
| :--- | :---: | :---: | :---: | :---: | :---: |
| YWG WHITE | 55 | 144 | 2.61818 | 2.35152 |
| YBG NON-WHITE | 55 | 139 | 2.52727 | 1.47609 |

Analysis of Variance
Source of Variation

	SS	df	MS	F	P-value	F-crit
Between Groups	0.227	1	0.22727	0.11875	0.73106	3.929
Within Groups	206.7	108	1.9138			
Total	206.9	109				

WHITE VS. NON-WHITE PRETEST COMPARISON

Analysis of Variance:One Way

Summary

Groups PRE TEST Count Sum Average Variance
$\begin{array}{llllll}\text { YWG WHITE } & 55 & 144 & 2.61818 & 2.35152\end{array}$
YBG NON-MHITE $\quad 55 \quad 139 \quad 2.527271 .47609$
Analysis of Variance
Source of Variation

| | SS | df | MS | F | P-value | F-crit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Between Groups | 0.227 | 1 | 0.22727 | 0.11875 | 0.73106 | 3.929 |
| Within Groups | 206.7 | 108 | 1.9138 | | | |
| Total | 206.9 | 109 | | | | |
| | | | | | | |

WHITE VS. NON-WHITE PRETEST COMPARISON

Analysis of Variance:One Way

Summary

Groups	Count	Sum	Average	Variance		
YBP WHITE	55	181	3.280909	3.39529		
YBP NON-WHITE	55	181	3.472727	1.95758		
Analysis of Variance						
Source of Variation						
	SS	df	MS	F	P-value	F-crit
Between Groups	0.909	1	0.909091	0.33967	0.56124	3.929
Within Groups	289.1	108	2.676431			
Total	290	109				

WHITE VS. NON-WHITE PRETEST COMPARISON

Summary

Groups PRETEST Count Sum Average Variance

| VWP WHITE | 55 | 151 | 2.745455 | 2.2303 |
| :--- | :--- | :--- | :--- | :--- | :--- |

YWP NON-WHITE $\quad 55 \quad 151 \quad 2.7454551 .2303$
Analysis of Variance
Source of Variation

	SS	df	MS	F		P-yalue	F-crit
Between Groups	0	1	0	0	1	3.929	
Within Groups	186.9	108	1.730303				
Total	186.9	109					

WHITE VS. NON-WHITE PRETEST COMPARISON

Analysis of Variance:One Way						
Summary						
Groups PRETEST	Count	Sum	Average	Variance		
YBR WHITE	55	152	2.783636	2.10976		
YBR NON-WHITE	55	167	3.036364	2.51717		
Analysis of Variance						
Source of Variation						
	SS	df	MS	F	P-value	F-crit
Between Groups	2.045	1	2.045455	0.88415	0.34917	3.929
Within Groups	249.9	108	2.313468			
Total	251.8	109				

BEST SOURCE SUBTEST

APPENDIX O

Form Y post test Group Comparison (summary tables on all subtests)

Z-Y GROUP BEST GENERALIZATION TEST SUMMARY TABLE

SOURCE	SS	df	ms	F
Total	220.571	90		
Rows	8.793	1	8.793	3.901
Columns	3.912	1	3.912	1.735
Slices	7.594	1	7.594	3.369
R * C	2.995	1	2.995	1.329
$R \times 5$	6.050	1	6.050	2.684
$\mathrm{C} \times \mathrm{S}$	-1.274	1	-1.274	-0.565
$\mathbf{R} \times \mathbf{C} \mathbf{S}$	5.410	1	5.410	2.400
Error	187.091	83	2.254	

REFERENCE: Bruning, J. L. \& Kintz, B. L. (1987).
Computational handbook of statistics.
Glenview, IL: Scott, Foresman.

MEAN SCORE	STANDARI deviation	SAMPLE SIZE	
			ROW COMPARISONS
3.022	1.726	46	IIIGII, All Columis, all slices
2.400	1.289	45	LOW, ALL COLUMNS, All SLICES
			COLUMN COMPARISONS
2.500	1.515	44	all rows, male, all slices
2.915	1.569	47	All ROWS, PEMALE, AlL Slices
			SLICE COMPARISONS
2.422	1.453	45	All nows, all columns, exp
3.000	1. 602	46	ALL ROWS, ALL COLUMNS, CNTRL
			$\mathrm{R} \times$ C COMPARISONS
3,000	1.706	22	IIIGH, MALE, ALL TRIALS
3.042	1.744	24	HIGH, FEMALE, ALL TRIALS
2.000	1.087	22	Low, malb, All trials
2.783	1.350	23	LOW, FEMALE, ALL TRIALS
2.478			$\mathrm{R} \times \mathrm{S}$ COMPARISONS
3.565	1.581	23	HIGI, ALL COLUMNS, EXP
2.364	1.150	22	HIGH, ALL COLUMNS, CNTRL
2.435	1.409	23	LOW, ALL COLUMNS, CNTRL
			C x S COMPARISONS
2.346	1.440	26	AlL ROWS. MALE, EXP
2.722	1.592	18	ALL ROWS, MALE, CNTRL
2.526	1.464	19	ALL ROWS, FEMALE, EXP
3.179	1.582	28	ALL ROWS, FEMALE, CNTRL

MEAN SCORE	STANDARD DEVIATION	SAMPLE SIZE
-		
2.769	1.717	13
3.333	1.633	9
2.100	1.578	10
3.714	1.532	14
1.923	0.917	13
2.111	1.286	9
3.000	1.155	9
2.643	1.445	14

R x C x S COMPARISONS HIGH, MALE, EXP HIGH, MALE, CNTRL HIGH, FEMALE, EXP HIGH, FEMALE, CNTRL LOW, MALE, EXP LOW, MALE, CNTRL LOW, FEMALE, EXP LOW, FEMALE, CNTRL

$$
\begin{aligned}
& \text { Rows = High Low (level) } \\
& \text { Colum }=\text { Male Female (Sex) } \\
& \text { Slices }=\text { Exp Control (gre) }
\end{aligned}
$$

Z-Y GROUP WOMST GENIBRAI.I ZATION TRST' SUMMARY 'TABLE

ROW COMPARISONS
lifil, all Columns, all slices
low, All COLUMNS, ALL SLices
COLUMN COMPARISONS
$\begin{array}{ll}1.438 & 41 \\ 1.352 & 17\end{array}$
2.477
2.787
1.352

17
2.689
$1.503 \quad 45$
2.587
1.295

16
2.682
1.158

22
24
3.042
2.273

1. 399
2. 388

22
2.522
1.247

23

2.826	1.551	23
2.913	1.316	23
2.545	1.137	22
2.261	1.188	23
2.462	1.575	26
2.500	1.213	18
3.000	1.338	19
2.643	1.342	28

ALL HOWS, MALE, ALL. SLICES
All ROWS, FEMAlE, All Slices
SLICE COMPARISONS
^ll ROWS, All COLUMNS, EXP
AlL ROWS, ALL COLUMNS, CNTRL
R x C COMPARISONS HIGII, MALE, ALL TRIALS hilgif, female, all. thials Low. MALE, ALL TRIALS low, Female, all trials

R x S COMPARISONS
HIGH, ALL COLUMNS, EXP IIIGH, ALL COLUMNS, CNTRL LOW, ALL COLUMNS, EXP LOW, ALL COLUMNS, CNTRL

C x S COMPARISONS
AII. ROWS, MALE, EXP
AILL ROWS, MAIE, CNTRL
ALL ROWS, FEMALE, EXP
ALL ROWS, FEMALE, CNTRL

MEAN	STANIDARD	SAMPLE
SCORE	DEVIATION	SIZE

2.692	1.682	13
2.667	1.054	9
3.000	1.342	10
3.071	1.437	14
2.231	1.423	13
2.333	1.333	9
3.000	1.333	9
2.214	1.081	14

Z-Y GROUl' IBES' SUPPOHT TEST SUMMARY TABLE

SOURCE	SS	d r	ms	F	
Total	214.110	90			
Rows	30.096	1	30.096	16.767	$\mathrm{p}<.01$
Columns	9.245	1	9.245	5.150	$p<.05$
Slices	0.031	1	0.031	0.017	---
$\mathrm{n} \times \mathrm{C}$	10.694	1	10.694	5.958	p<. 05
$\mathrm{R} \times \mathrm{S}$	5.849	1	5.849	3.259	---
$\mathrm{C} \times \mathrm{S}$	0.909	1	0.909	0.506	---
$1 \mathrm{x} \times \mathrm{C}$ S	8.302	1	8.302	4.625	p<.05
Error	148.984	83	1.795		

REFFIRENCE: Bruning, J. L. \& Kintz, B. L.. (1987).
Computational handbook of statistics.
Glenview, IL: Scott, Foresman.

MEAN SCOHE	standaido DEVIATION	$\begin{gathered} \text { SAMPLEE } \\ \text { SIZE } \end{gathered}$	
			now Comparisons
4.239	1.432	46	Higif, all columns, all Slices
3.089	1.411	45	low, all columns, all slices
			COLUMN COMPARISONS
3.341	1.637	44	all rows, male. All slices
3.979	1.360	47	All hows, female, all slices
			SLICE COMPARISONS
3.689	1.561	45	AlL rows, ALL COLUMNS, EXP
3.652	1.507	46	All rows, all columns, CNTRL
			$\mathrm{R} \times \mathrm{C}$ COMPARISONS
4.273	1.388	22	high, male, all trials
4.208	1.471	24	High, female, all trials
2.409	1.302	22	LOW, MALE, ALL TRIALS
3.739	1.188	23	LOW, FEmale, all thials
			R $\times 5$ COMPARISONS
4.000	1.615	23	HIGII, All Columns. Exp
1.478	1.175	23	HIGIH, ALL COLUMNS, CNTRL
3.364	1.432	22	LOW, ALL COLUMNS, EXP
2.826	1.340	23	LOW, ALL COLUMNS, CNTRL
3.162	1.646	26	C x S COMPARISONS
3.167	1.607	18	ALL ROWS, MALE, EXP
1.000	1.376	19	ALL ROWS. MALE, CNTRL
3.964	1.349	28	ALL ROWS, FEMALE, CNTRL

$\begin{aligned} & \text { MEAN } \\ & \text { SCORE } \end{aligned}$	STANDARD DEVIATION	SAMPLE SIZE	
			$\mathrm{R} \times \mathrm{C} \times \mathrm{S}$ COMPARISONS
4.308	1.538	13	HIGII, MALE, EXP
4.222	1.133	9	HIGH, MALE, CNTRL
3.600	1.625	10	HIGH, FEMALE, EXP
4.643	1.172	14	HIGH, FEMALE, CNTRL
2.615	1.273	13	LOW, MALE, EXP
2.111	1.286	9	LOW, MALE, CNTRL
4.444	0.831	9	LOW, FEMALE, EXP
3.286	1.161	14	LOW, FEMALE, CNTRL

7.-Y GROUI' WORS'I SUlPPORT TEST SUMMARY TABLE

SOURCE	SS	df	ms	F	
Total	170.989	90			
Rows	20.332	1	20.332	12.375	$p<.01$
Columis	0.544	1	0.544	0.331	- - -
Slices	0.100	1	0.100	0.061	---
$\mathrm{R} \times \mathrm{C}$	3.685	1	3.685	2.243	---
$\mathrm{R} \times \mathrm{S}$	2.336	1	2.336	1.422	---
$\mathrm{C} \times \mathrm{S}$	0.508	1	0.508	0.309	---
$\boldsymbol{R} \times \mathbf{C} \times$	7.117	1	7.117	4.332	p<.05
Error	136.367	83	1.643		

REFERENCE: Bruning, J. L. \& Kintz, B. L. (1987). Computational handbook of statistics.

Glenview, 1L: Scott, Foresman.

$\begin{aligned} & \text { MEAN } \\ & \text { SCORE } \end{aligned}$	STANIDARI) DEVIATION	SAMPI.E SIZE	
			ROW COMPARISONS
3.157	1.192	46	HIGH, ALL COIUMNS, ALL SLICES
2.511	1.376	45	LOW, ALL COLUMNS, ALL SIIICES
			COLUMN COMPARISONS
2.909	1.443	44	ALL ROWS, MALE, ALL SLICES
3.064	1.295	47	ALL ROWS, FEMALE, ALL SLICES
			SLIICE COMPARISONS
2.956	1.382	15	MLI, ROWS. ALL COLUMNS, EXP
3.022	1.359	16	ALL ROWS, ALL COLUMNS, CNTRL
			$\mathrm{R} \times \mathrm{C}$ COMPARISONS
3.591	1.154	22	HIGH, MALE, ALL TRIALS
3.333	1.213	24	HIGH, FEMALE, ALL TRIALS
2.227	1.379	22	L.OW, MALE, ALL TRIALS
2.783	1.317	23	LOW, FEMALE, ALL TRIALS
			$\mathrm{R} \times \mathrm{S}$ COMPARISONS
3.261	1.293	23	HIGH. ALL COLUMNS. EXP
3.652	1.047	23	HIGH, ALL COLUMNS . CNTRL
2.636	1.400	22	LOW, ALL COLUMNS. EXP
2.391	1.343	23	LOW, ALL COLUMNS, CNTRL
			$C \times S$ COMPARISONS
2.962	1.506	26	ALL ROWS, MALE, EXP
2.833	1.344	18	ALL ROWS, MALE, CNTRL
2.917	1.19.1	19	ALL ROWS, FEMALE, EXP
3.143	1.355	28	ALL ROWS, FEMALE, CNTRL

MEAN			
SCORE	STANDARD DEVIATION	SAMPLE SIZE	
3.692	1.202	13	HIGH, MALE, EXP
3.444	1.066	9	HIGH, MALE, CNTRL
2.700	1.187	10	HIGH, FEMALE, EXP
3.786	1.013	14	HIGH, FEMALE, CNTRL
2.231	1.423	13	LOW, MALE, EXP
2.222	1.315	9	LOW, MALE, CNTRL
3.222	1.133	9	LOW, FEMALE, EXP
2.500	1.350	14	LOW, FEMALE, CNTRL

Z-Y GROUP Brist soullce TEST SUMMARY TABLE

MEAN SCORE	STANDARD DEVIATION	SAMPLE SIZE	
2.846	1.231	13	R XIGH, MALE, EXP
2.778	1.397	9	HIGH, MALE, CNTRL
2.600	1.114	10	HIGH, FEMALE, EXP
4.071	1.163	14	HIGH, FEMALE, CNTRL
2.077	1.071	13	LOW, MALE, EXP
1.444	1.165	9	LOW, MALE, CNTRL
3.556	0.956	9	LOW, FEMALE, EXP
2.786	1.473	14	LOW, FEMALE, CNTRL

Z-Y GROUP WORS' SOUIRCE TEST SUMMARY TABLE

SOURCE	SS	df	ms	F	
Total	200.462	90			
Rows	11.983	1.	14.983	8.988	p<. 01
Columns	6.749	1	6.749	4.049	---
Silces	20.249	1	20.249	12.147	p<. 01
$\mathbf{R} \times \mathbf{C}$	2.115	1	2.115	1.269	---
12×5	4.868	1	4.868	2.920	---
C $\times \mathrm{S}$	-2.317	1.	-2.317	-1.390	---
If. \times C S	15.153	1	15.453	9.270	$p<.01$
Error	138.362	83	1.667		

REFERENCE: Bruning, J. L.. \& Kintz. B. L. (1987). Computational handbook of statjstics. Glenview, IL: Scott, Foresman.

MIENN SCORE	S'TMNDARI) DEVIATION	SAMPLIE SIT.E
3.478	1.514	46
2.667	1.333	45
2.795	1.324	11
3.340	1.575	47
2.600	1.389	45
3.543	1.125	46
3.364	1.226	22
3.583	1.730	24
2.227	1.165	22
3.087	1.349	23
2.783	1.113	23
4.171	1.274	23
2.409	1.337	22
2.913	1.282	23
2.538	1.365	26
3.167	1.167	18
2.684	1.416	19
3.786	1.520	28

ROW COMPAIRISONS
IIIGH, ALL COLUMNS, ALL SLICES
LOW, ALL COLUMNS, ALL SLICES
COLUMN COMPARISONS
AlL ROWS, MALE, ALL SLICES
ALL ROWS, FEMALE, ALL SLICES
SH.ICE COMPARISONS
ALL. ROWS, AlL COLUMNS, EXP
ALI. 12OWS, ALL COLUMNS, CNTRL
r x C COMPARISONS
HIGII, MAIEE, ALL TRIALS
IIIGII, FEMALE, ALL TIRIALS
I.OW, MALE, ALI, TRIALS

LOW, FEMALE, ALL TIIALS
$R \times S$ COMPARISONS
HIGII, ALL COLUMNS, EXP
HIGII, AlL COLUMNS, CNTRL
LOW, ALIL COLUMNS, EXP
LOW, ALL COLUMNS, CNTRL
C x S COMPARISONS
ALL HOWS, MALE, EXP
ALL. ROWS, MALE, CN'TRL
ALL ROWS, FEMALE, EXP
ALL ROWS, FEMAIEE, CNTRL

MEAN
SCORE
(COR
3.231
3.556
2.200
4.571
1.846
2.778
3.222
3.000
1.187
1.257
1.470
1.116
1.167
0.916
1.133
1.464

SAMPLE SIZE

APPENDIX P

Form Y post test Group Interactions (charts and post hoc analysis)

TUKEY HSD TEST
THE CRITICAL DIFFERENCES ARE 0.976 (.05) AND 1.194 (.01).

COMPARISON

1	VS.	2
1	VS.	3
1	VS.	4
2	VS.	3
2	VS.	4
3	VS.	4

DIFFERENCE
-0.826
0.057
0.478
0.883
1.304
0.421

P-VALUE
N.S.
N.S.
N.S.
N.S.

P<.01
N.S.

$B P$

Z-Y GROUP INTERACTIONS

TUKEY LSD TEST
THE CRITICAL DIFFERENCES ARE 1.847 (.05) AND 2.169 (.01).

COMPARISON

	VS.	2
1	VS.	3
1	VS.	4
1	VS.	5
1	VS.	6
1	VS.	7
1	VS.	8
2	VS.	3
2	VS.	1
2	VS.	5
2	VS.	6
2	VS.	7
2	VS.	8
3	VS.	1
3	VS.	5
3	VS.	6
3	VS.	7
3	VS.	8
1	VS.	5
4	VS.	6
4	VS.	7
4	VS.	8
5	VS.	6
5	VS.	7
5	VS.	8
6	VS.	7
6	VS.	8
7	VS.	8

DIfFERENCE P-VALUE

$$
\begin{aligned}
& R \times C \times S \text { LevelXSexX Group } \\
& Z-Y B P^{\text {Len }}
\end{aligned}
$$

Z-Y GROUP INTERACTIONS

TUKEY HSD TEST

THE CRITICAL DIFFERENCES ARE $1.780(.05)$ AND $2.090(.01)$.

COMP	ARISON	DIFFERENCE	p-value
1	VS. 2	-0.325	N.S.
1	VS. 3	1.031	N.S.
1	vS. 4	-1.340	N.S.
1	VS. 5	1.385	N.S.
1	VS. 6	0.453	N.S.
1	VS. 7	0.009	N.S.
1	VS. 8	0.231	N.S.
2	VS. 3	1.356	N.S.
2	VS. 4	-1.015	N.S.
2	VS. 5	1.710	N.S.
2	VS. 6	0.778	N.S.
2	VS. 7	0.334	N.S.
2	VS. 8	0.556	N.S.
3	VS. 4	-2.371	$\mathrm{P}<.01$
3	VS. 5	0.354	N.S.
3	VS. 6	-0.578	N.S.
3	VS. 7	-1.022	N.S.
3	VS. 8	-0.800	N.S.
4	VS. 5	2.725	$\mathrm{P}<.01$
4	VS. 6	1.793	$\mathbf{P}<.05$
4	VS. 7	1.349	N.S.
4	VS. 8	1.571	N.S.
5	VS. 6	-0.932	N.S.
5	VS. 7	-1.376	N.S.
5	VS. 8	-1.154	N.S.
6	VS. 7	-0.444	N.S.
6	VS. 8	-0.222	N.S.
7	VS. 8	0.222	N.S.
		$\text { Level } \lambda$	$\times X$ Gkoug

Z-Y GROUP INTERACTIONS

TUKEY LSD TEST
THE CRITICAL DIFFERENCES ARE 1.051 (.05) AND 1.285 (.01).

COMPARISON	DIFFERENCE	P-VAL.UE	
1	VS. 2	0.065	N.S.
1	VS. 3	1.864	P $<.01$
1	VS. 4	0.534	N.S.
2	VS. 3	1.799	P $<.01$
2	VS. 4	0.469	N.S.
3	VS. 4	-1.330	P $<.01$

Z-Y GROUP INTERACTIONS

TUKEY BSD TEST
THE CRITICAL DIFFERENCES ARE
$1.051(.05)$ AND 1.285 (.01).

COMPARISON	DIFFERENCE	P-VAIUE	
1	VS. 2	0.065	N.S.
1	VS. 3	1.864	P $<.01$
1	VS. 4	0.534	N.S.
2	VS. 3	1.799	P $<.01$
2	VS. 4	0.469	N.S.
3	VS. 4	-1.330	P $<.01$

APPENDIX Q

Form Z post test Group Comparison (summary tables on all subtests)

BEST GENERALIZATION SUBTEST SUMMARY TABLE

SOURCE	SS	d f	ms	F	
Total	576.292	252			
Rows	89.836	1	89.836	46.124	p<. 01
Columns	0.009	1	0.009	0.005	---
Slices	6.609	1	6.609	3.393	---
$\mathrm{R} \times \mathrm{C}$	0.101	1	0.101	0.052	---
$\mathrm{R} \times \mathrm{S}$	0.666	1	0.666	0.342	---
$\mathrm{C} \times \mathrm{S}$	0.181	1	0.181	0.093	---
$\boldsymbol{R} \times \mathbf{C} \mathbf{S}$	1.699	1	1.699	0.872	---
Error	477.190	215	1.948		

MEFERENCE: Bruning, J. L. \& Kintz, B. L. (1987).
Computational handbook of statistics.
Glenview, 1L: Scott, Foresman.

$\begin{aligned} & \text { MEAN } \\ & \text { SCORE } \end{aligned}$	STANDARD DEVIATION	SAMPLE SIZE
3.357	1.456	126
2.165	1.315	127
2.751	1.593	142
2.766	1.395	111
2.897	1.511	146
2.570	1.486	107
3.366	1.540	71
3.345	1.338	55
2.141	1.397	71
2.196	1.201	56
3.186	1.134	72
3.185	1.467	54
2.324	1.357	74
1.943	1.220	53
2.869	1.587	84
2.586	1.587	58
2.935	1. 401	62
2.551	1.356	49

ROW COMPARISONS
IIIGII, ALL COLUMNS, ALL SLICES
LOW, ALL COLUMNS, ALL SLICES
COLUMN COMPARISONS
ALL ROWS, MALE, ALL SLICES
ALL ROWS, FEMALE, ALL SLICES
SLICE COMPARISONS
ALL ROWS, ALL COLUMNS, EXP
ALL ROWS, ALL COLUMNS, CNTRL
$R \times C$ COMPARISONS
IIIGH. MALE, ALL TRIALS
HIGII, FEMALE, ALL TRIALS
LOW, MALE, ALL TRIALS
LOW, FEMALE, ALL TRIALS
$R \times S$ COMPARISONS
HIGH, ALL COLUMNS, EXP
HIGH, ALL COLUMNS, CNTRL
LOW, ALL COLUMNS, EXP
LOW, ALL COLUMNS, CNTRL
C x COMPARISONS
ALL. ROWS, MALEE EXP
ALL ROWS, MALE, CNTRL
ALL ROWS, FEMALE, EXP
ALL HOWS, FEMALE, CNTRL

			R x C X S COMPARISONS
3.524	1.500	42	HIGH, MALE, EXP
3.138	1.570	29	HIGH, MALE, CNTRL
3.433	1.334	30	HIGH, FEMALE, EXP
3.240	1.335	25	HIGH, FEMALE, CNTRL
2.214	1.389	42	LOW, MALE, EXP
2.034	1.402	29	LOW, MALE, CNTRL
2.469	1.299	32	LOW, FEMALE, EXP
1.833	0.943	24	LOW, FEMALE, CNTRL

WORST GENERALIZATION SUBTEST SUMMARY TABLE

$\begin{aligned} & \text { MEAN } \\ & \text { SCORE } \end{aligned}$	STANDARD DEVIATION	SAMPLE SIZE	
			$\mathrm{R} \times \mathrm{C} \times \mathrm{S}$ COMPARISONS
3.405	1.432	42	HIGH, MALE, EXP
3.310	1.316	29	HIGH, MALE, CNTRL
3.516	1.563	31	HIGH, FEMALE, EXP
3.280	1.184	25	HIGH, FEMALE, CNTRL
2.357	1.461	42	LOW, MALE, EXP
2.207	1.095	29	LOW, MALE, CNTRL
2.219	1.515	32	LOW, FEMALE, EXP
2.458	0.999	24	LOW, FEMALE, CNTRL

BEST SUPPORT SUBTEST SUMMARY TABLE

SOURCE	SS	df	ms	F	
Total	376. 102	254			
Hows	28.143	1	28.143	20.352	p<. 01
Columns	0.212	1	0.212	0.153	---
Slices	0.708	1	0.708	0.512	---
$\mathrm{R} \times \mathrm{C}$	1.519	1	1.519	1.098	---
1 x ¢	1.059	1.	4.059	2.936	---
C $\times 5$	0.031	1	0.031	0.022	---
$\mathrm{R} \times \mathrm{C} \times \mathrm{S}$	-0.119	1	-0.119	-0.086	---
Error	341.549	247	1.383		

REFERENCE: Bruning, J. I.. \& KLntz, B. L. (1987). Computational handbook of statistics.

Glenview, IL: Scott, Foresman.

MEAN SCOHE	STANDM1RD DEV1ATION	SAMPILE SITE	
			ROW COMI'ARISONS
2.617	1.167	128	HIGH, AlL COl,UMNS, ALL SL.]CES
1.953	1.170	127	LOW, Alı COLUMNS, ALL SLICES
			COLUMN COMPARISONS
2.261	1.213	142	ALI. HOWS, MAIE, NLL SLICES
2.319	1.177	113	ALL ROWS, FEMALE, ALL SLJCES
			Slice Compali Sons
2.331	1.270	148	ALL ROWS, ALI. COLUMNS, EXP
2.224	1.130	107	AlL R
			R x C COMPARJSONS
2.662	1.186	71	HIGH, MALE, ALL TRIALS
2.561	1.140	57	HICH, FEMALE, AL1. TRIALS
1.859	1.166	71	LOW, MALE, ALI TRIMLS
2.071	1.163	56	LOW, FEMALE, ALL TRIMLS
			$R \times \mathrm{S}$ COMPARISONS
2.770	1.192	74	IIIGII, ALL COLUMNS, ExP
2.407	1.097	54	HIGII, ALL COLUMNS, CNTRL
1.892	1.192	74	LOW, ALL COLUMNS, EXP
2.038	1.132	53	LOW, ALL COI,UMNS, CNTRL
			C x S COMPARISONS
2.310	1.253	81	ALL nowS MALE, EXP
2.190	1.224	58	ALL ROWS, MALE, CNTRL
2.359	1.291	61	ALL HOWS, FEMAI.E, EXP
2.265	1.006	49	ALL ROWS, FEMALE, CNTRL

MEAN SCORE

STANDARD SAMPLE DEVIATION SIZE
1.139
1.220
1.256
0.933
1.160
1.172
1.225
1.067

42
29
32
25
42
29
32
24
$\mathrm{R} \times \mathrm{C} \mathrm{x}$ COMPARISONS
2.810
2.448
2.719
2.360
1.810
1.931
2.000
2.167

HIGH, MALE, EXP
HIGH, MALE, CNTRL
HIGH, FEMALE, EXP
HIGH, FEMALE, CNTRL
LOW, MALE, EXP
LOW, MALE, CNTRL
LOW, FEMALE, EXP
LOW, FEMALE, CNTRL

WORST SUPPORT SUBTEST SUMMARY TABLE

MEAN STANDARD SAMPLE SCORE DEVIATION SIZE

2.500	1.402	42	HIGC, XS COMPARISONS
2.724	1.310	29	HIGI, MALE, EXP
2.419	1.386	31	HIGH, FEMALE, CNTRL
2.680	1.378	25	HIIGH, FEMALE, CNTRL
1.738	0.977	42	LOW, MALE, EXP
2.000	1.313	29	LOW, MALE, CNTRL
1.969	1.185	32	LOW, FEMALE, EXP
1.917	1.222	24	LOW, FEMALE, CNTRL

beSt source subtest summary table

SOURCE	SS	dr	ms	$1{ }^{1}$	
Total	639.717	253			
Hows	98. 283	1	98.283	45.177	p<. 01
Columns	0.087	1	0.087	0.040	,
Slices	1.801	1	1.801	0.828	---
$\mathrm{R} \times \mathrm{C}$	3.921	1	3.921	1.802	---
$\mathrm{R} \times \mathrm{S}$	0.349	1	0.349	0.161	---
C $\times \mathrm{S}$	0.063	1	0.063	0.029	---
$\mathrm{R} \times \mathrm{C} \times \mathrm{S}$	0.031	1	0.031	0.014	---
Error	535.180	246	2.176		

REFERENCE: Bruning, J. L. \& Klntz, B. L. (1987). Computailonal handbook of statistics. Glenvlew, IL: Scott, Foresman.

$\begin{aligned} & \text { MEAN } \\ & \text { SCORE } \end{aligned}$	STANDARD DEVIATION	SAMPIIE SIZE	
			ROW COMPARISONS
4.244	1.390	127	IIIGH, ALI. COLUMNS, ALL SLICES
3.000	1.527	127	LOW, ALL COLUMNS, Al.L. SLITCES
			COLUMN COMPARISONS
3.606	1.644	142	AlLL ROWS, MALE, All. SLICES
3.643	1.511	112	AlL ROWS, FEMALE, ALL SLICLS
			SLICE COMPARISONS
3.694	1.606	147	ALIL ROWS, ALL COLUMNS, EXP
3.523	1.555	107	AIL ROWS, ALI, COLUMNS, CNTHL
			$\boldsymbol{n} \times \mathrm{C}$ COMPARISONS
4.338	1.373	71	HIGII, MALE, ALL TAIALS
4.125	1.402	56	HIGII, FEMALE, ALL TRIMLS
2.873	1.565	71	LOW, MALE, ALL TRIALS
3.161	1.461	56	LOW, FEMALE, ALL TIRIALS
			$R \times \mathrm{S}$ COMPARISONS
4.301	1.430	73	HIGH, ALL COLUMNS, EXP
4.167	1.330	54	HIIGII, ALL COLUMNS, CNTRL
3.095	1.544	74	I.OW, ALL COLUMNS, EXP
2.868	1.493	53	LOW, ALL COLUMNS, CNTRL
			C x S COMPARISONS
3.667	1.657	84	Al.L HOWS. MALE, EXP
3.517	1.621	58	ALL HOWS, MALE, CNTHL
3.730	1.535	63	Alf. ROWS, Flimale, EXP
3.531	1.172	43	Al,

MEAN SCORE	STANDARD DEVIATION	$\begin{array}{r} \text { SAMPLE } \\ \text { SIZE } \end{array}$	
			$R \times \mathrm{C}$ ¢ S COMPARISONS
4.381	1.463	42	HICII, MALE, EXP
4.276	1.229	29	IIIGII, MALE, CNTRL
4.194	1.378	31	HIGI, FEMALE, EXP
4.040	1.428	25	IIIGII, FEMALE, CNTRL
2.952	1.527	42	LOW, MALE, EXP
2.759	1.611	29	LOW, MALE, CNTRL
3.281	1.546	32	LOW, FEMALE, EXP
3.000	1.323	24	LOW, FEMALE, CNTRL

WORS' SOURCIE SURTEST SUMMARY TABLE

SOURCE	SS	d f	ms	I^{7}	
Total	500.094	253			
llows	19.386	1	49.386	27.791	p<. 0.1
Columns	6.844	1	6.814	3.851	---
Slices	0.362	1	0.362	0.203	---
$\boldsymbol{R} \times$	0.926	1	0.926	O. 521	---
$\mathrm{H} \times \mathrm{S}$	3.665	1	3.665	2.062	---
$\mathrm{C} \times \mathrm{S}$	0.487	1	0.487	0.274	---
$\boldsymbol{r} \times \mathrm{C} \mathbf{S}$	1.269	1	1.269	0.714	---
Error	137.157	246	1.777		

REFERIENCE: Bruning, J. L. \& Klntz, B. L. (1987). Computational handbook of statistics. ------------------------------------Glenview, II.: Scott, Foresman.

$\begin{aligned} & \text { MEAN } \\ & \text { SCORIE } \end{aligned}$	STANDARD DEVIATION	SAMPLIE SI 2 EL	
			ROW COMPARISONS
3.354	1.258	127	HIGIt, AhL. COLUMNS, AIL SI.ICES
2.472	1.402	127	LOW, AIL COIUMNS, ALI, SLICLSS
			COLUMN COMPAIIISONS
2.768	1.432	142	ALL HOWS, MALE, ALL SLICES
3.098	1.343	112	Al.L. ROWS, female , All Slif Cles
			SLITCE COMPARISONS
2.916	1.418	147	All. ROWS, AL.L. COLUMNS, EXP
2.869	1.381	107	AIL. HOWS, AL.L COLUMNS, CNTIRL
			If \times C COMPARISONS
3.155	1. 391	71	IIIGII, MALE, ALL TRIALS
3.607	1.012	56	HIIGII, FEMALE, ALIL TRIMLS
2.380	1.367	71	LOW, MALEE, MlL TRIALS
2.589	1.436	56	LOW, FEMALE, Al.I. TRIALS
			$\pi \times$ S COMPARISONS
3.288	1.308	73	IIIGII, ALL COLUMNS, EXP
3.144	1.181	54	III GIl, ALL COLUMNS , CNTRL
2.608	1.141	71	I.OW, AlL. COIJUMNS, EXP
2.283	1.323	53	LOW, ALL. COLUMNS, CNTIRL.
			C \times S COMPARISONS
2.774	1.417	84	ALL. HOWS, MAL, ${ }^{\text {, EXP }}$
2.759	1.454	58	ALIL IROWS, MAIE, ONTML
3.175	1.386	63	ALL, IROWS, IEMMAIE, EXP
3.000	1.278	49	ALI, IROWS, [PEMALIR, CNTRL

MEAN
 SCORE
 STANDARD
 SAMPLE DEVIATION SIZE

3.119	1.418	42
3.207	1.349	29
3.516	1.103	31
3.720	0.873	25
2.429	1.330	42
2.310	1.417	29
2.844	1.543	32
2.250	1.199	24

R x C x S COMPARISONS
HIGH, MALE, EXP
HIGH, MALE, CNTRL
HIGH, FEMALE, EXP
HIGH, FEMALE, CNTRL
LOW, MALE, EXP
LOW, MALE, CNTRL LOW, FEMALE, EXP LOW, FEMALE, CNTRL

APPENDIX R

Nonwhite Authoritarian Scores

 (AA \& AS summary tables)NON-WHITE AU'IIOHITARIAN AGGRESSION SUMMARY TABLEE

SOUMCE	SS	dr	ms	1
'lotal	41.157	57		
Rows	1.811	1	1.811	2.523
Columis	2.641	1	2.641	3.678
Slices	0.270	1	0.270	0.376
1 x C	0.002	1	0.002	0.002
$1 R \times S$	0.611.	1	0.611	0.892
C $\times 5$	-0.050	1	-0.050	-0.069
$\mathfrak{R} \times \mathbf{C} \times$	-0.062	1	-0.062	-0.087
Error	35.904	50	0.718	

REFERENCE: Hrunlng, J. L. \& KIntz, B. 1.. (1987). Computational handhook of statistics.

Glenview, Il: Scott, Foresman.

$\begin{aligned} & \text { MIEAN } \\ & \text { SCOMRE } \end{aligned}$	S'PANDARD DI:VIATION	SAMPIIE SI7E:	
			ROW COMPAIRISONS
4.500	0.773	29	HIGH, Alli. Columns, Ald Si.IClis
4.147	0.871	29	
			COIUMN COMPARISONS
4.087	0.793	26	Al.I. HOWS, MAIE, Al.l. SLICLES
4.516	0.833	32	Alıl, ROWS, Flimal.E, Al.l. Sl.ices
			Silicle ComiPnlisons
1.379	0.871	35	Al.J. ROWS. Al.I. COLUMNS, LEXP
1.239	0.790	23	Al.l, IROWS, Als. COl,UNNS, CN'IRI.
			IR \times C COMPARISONS
4.269	0.695	13	HICII, MALE, ALIL 'TRIALS
4.688	0.783	16	HIIGII, FEMALIE, ALIL Tllials
3.904	0.841	13	L.OW, MAIIE, ALL 'TIRIALS
1.341	0.845	16	LOW, PIEMALE, ALI. TRIALS
			IR \times S COMPAIIISONS
1.647	0.780	17	IIIGII, AILL COLUMNS, EXP
1.292	0.713	12	IllGil, Alli, COLUMNS, CNTRI.
4.125	0.876	18	L.OW, Al.l. COLUMNS EXP
4.182	0.862	11	LOW, Al.I. COLUMNS. CNTRL.
			C x S COMPARISONS
1.117	0.836	15	ALIL HOWS, MALEE EXI'
1.045	0.727	11	Al.t. IROWS, MAI.E, CNTHL
1.575	0.844	20	AlL. ROWS, IFlimal.E, EXI'
1.417	0.803	12	ALL, ROWS, FEMALE, CNTIRL.

MEAN SCORE	STANDARD DEVIATION	SAMPLE SIZE	
			R x C X S COMPARISONS
4.429	0.619	7	HIGH, MALE, EXP
4.083	0.731	6	HIGH, MALE, CNTRL
4.800	0.843	10	HIGH, FEMALE, EXP
4.500	0.629	6	HIGH, FEMALE, CNTRL
3.844	0.903	8	LOW, MALE, EXP
4.000	0.720	5	LOW, MALE, CNTRL
4.350	0.784	10	LOW, FEMALE, EXP
4.333	0.937	6	LOW, FEMALE, CNTRL

NON-WIITE AUTHOLITARIAN SUBMISSION SUMMARY TABLE

SOURCE	SS	df	ms	F	
Total	53.674	57			
Rows	7.399	1	7.399	8.339	$p<.01$
Columns	0.708	1	0.708	0.798	-.-
Slices	0.039	1	0.039	0.044	---
1 x C	0.411	1	0.111	0.163	---
17×5	0.535	1	0.535	0.603	---
$\mathrm{C} \times \mathrm{S}$	0.195	1	0.195	0.220	-. -
$\boldsymbol{R} \times \mathrm{C} \times \mathrm{S}$	0.028	1	0.028	0.032	---
Error	44.359	50	0.887		

REFERENCE: Bruning, J. L. \& Kintz. B. L. (1987). Computational handbook of statistics.

Glenvjew, IL: Scott. Foresman.

MEAN SCOIRE	STANDAHD DEVIATION	$\begin{array}{r} \text { SAMPLE } \\ \text { SIZE } \end{array}$	
			ROW COMPARISONS
4.812	0.845	29	HIGH, ALL COLUMNS, ALI, SLICES
4.128	0.939	29	LOW, AILL COIUMNS. ALL SLICES
			COLUMN COMPARISONS
4.363	1.060	26	ALl ROWS, M^I.E, All Slices
4.585	0.862	32	ALLL ROWS, FEMALE, ALL SLICES
			SLICE COMPARISONS
4.506	0.848	35	AlL ROWS, ALL COLUMNS, EXP
4.453	1.112	23	ALL ROWS, ALL COLUMNS, CNTRL
			1 x C COMPARISONS
1.626	0.901	13	HIIGI, MALE, ALL TRIALS
5.018	0.753	16	HIGH, FEMALE, ALL TIIALS
4.099	1.138	13	LOW, MALE, ALL TRIALS
4.152	0.738	16	LOW, FEMALE, ALL TRIALS
			IR x S COMPARISONS
1.798	0.622	17	H11GH, ALL COLUMNS, EXP
4.905	1.082	12	IIIGH, ALL COLUMNS, CNTHL
4.230	0.937	18	LOW, ALL COLUMNS. EXP
3.961	0.918	11	LOW, ALL COLUMNS, CNTRL
			C x S COMPARISONS
4.324	0.884	15	ALL ROWS, MALE, EXP
4.415	1.258	11	ALL ROWS. MALE, CNTRL
4.643	0.793	20	ALLL ROWS, FEMALE, EXP
4.488	0.957	12	ALL ROWS, FEMALE, CNTRL

MEAN SCORE	STANDARD DEVIATION	SAMPLE SIZE	
			R x C X S COMPARISONS
4.490	0.424	7	HIGH, MALE, EXP
4.786	1.225	6	HIGH, MALE, CNTRL
5.014	0.647	10	HIGH, FEMALE, EXP
5.023	0.902	6	HIGH, FEMALE, CNTRL
4.179	1.124	8	LOW, MALE, EXP
3.971	1.148	5	LOW, MALE, CNTRL
4.272	0.752	10	LOW, FEMALE, EXP
3.952	0.668	6	LOW, FEMALE, CNTRL

NON-WHITE AUTHORITARIAN SUBMISSION HIGH GROUP VS. LOW GROUP

N=29 HIGH MEAN 4.842 LOW MEAN 4.128

- NL-AS $\rightarrow \mathrm{NH}-\mathrm{AS}$

APPENDIX S

White Authoritarian Scores
(AA \& AS summary tables)

WHITE AUTHOLITARIAN AGGRESSION SUMMARY TABLE

SOUIRCI:	SS	119	ms	F	
Tolal	163.250	271			
lrows	0.026	1	0.026	0.045	---
Columis	0.016	1	0.016	0.027	-..-
Slices	0.906	1	0.906	1.549	---
$11 \times$	1.015	1	1.045	1.787	---
11×5	2.663	1	2.663	1.553	p<.05
C \times S	0.666	1	0.666	1.139	---
$\boldsymbol{R} \times$ O S	1.711	1	1.711	2.977	---
Error	156.186	267	0.585		

MEFEMENCE: Bruning, J. I.. \& Kintz, B. L.. (I987). Computational handbook of statistics.

Glenview, IL: Scott, foresman.

MIEAN SCOIIE	S'TANDAIRI DIEVIATION	SAMPIIE SITI:	
			InOW COMPARISONS
4.690	0.795	138	$11 \mathrm{lill}, \mathrm{NI} . \mathrm{L}$ COIUMNS, AI.L. SI.ICES
1.710	0.745	137	I.ow, ALI, COIUMNS, ALI. SLilCES
			COLAMN COMPAIIISONS
4.707	0.777	153	Al.I, IROWS, MAIIE, ALI, SLil CeS
1.692	0.762	1.22	ALI, IROWS, liEMALE, ALL, SLICES
			SliJ Cl: COMPAIPISONS
1.752	0.730	152	AlJ, HOWS, Al.I, COLUNNS, EXI'
4.636	0.814	123	ALL. HOWS, ALL COLUMNS, CNTIRL.
			Ir x C COMPAIRISONS
1.752	0.755	77	Illgil, MAIE, NLL TRIALS
1.613	0.836	61	HIGGI, leighnle, AlL. Thinls
1.661	0.796	76	L.OW, MALE, NLI, TILIALS
1.770	0.672	61	L.OW, FEMAI,E, NLI, TILIALS
			IR \times S COMPARISONS
4.831	0.736	76	IIIGII, ALI. COLUMNS, EXI'
4.518	0.830	62	Ilicil, Al.L, COLUMNS, CNTRL
1.673	0.715	76	l.OW, AL.L. COLUMNS, EXP'
4.756	0.778	61	LOW, ALL COLUMNS, CNTIRL
			C x S COMPAIISONS
1.716	0.742	92	AII, ROWS, MAIE, IEXP
1.693	0.826	61	ALIL HOWS, MALIE, CNTRL
1.806	0.706	60	Ali, ROWS, Flemalie, EXIP
4.581	0.798	62	ALI, ROWS, FEMAIEE, CNTHL

MEAN SCORE	STANDARD DEVIATION	SAMPLE SIZE	
-----		R x C x S COMPARISONS	
4.899	0.716	46	HIGH, MALE, EXP
4.532	0.757	31	HIGH, MALE, CNTRL
4.725	0.752	30	HIGH, FEMALE, EXP
4.504	0.897	31	HIGH, FEMALE, CNTRL
4.533	0.722	46	LOW, MALE, EXP
4.858	0.860	30	LOW, MALE, CNTRL
4.887	0.647	30	LOW, FEMALE, EXP
4.657	0.675	31	LOW, FEMALE, CNTRL

WHITE AUTHORITARIAN AGGRESSION

NEUMAN-KEULS TEST

$\begin{array}{r} \text { FOR } R=2 \\ 0.271 \end{array}$	THE THE	$\begin{aligned} & \text { E CRITICAI } \\ & \text { E .05 LEVEL } \end{aligned}$	DIFFRERENCES AND 0.356	ARE: AT THE	. 01	LEVEL.
COMPARISON		DIFFERENCE	(p-value			
1 VS. 2		0.155	N.S.			
2 VS. 3		0.083	N.S.			
3 VS. 4		0.075	N.S.			
FOR $\mathrm{R}=3$	THE	CRITICAL	DIFFERENCES	ARE:		
0.324 AT	TIIE	. 05 LEVEL	, AND 0.403	AT THE	. 01	LEVEEL.
COMPARISON		DIFFRERENCE	- p-value			
1 VS. 3		0.238	N.S.			
2 VS. 4		0.158	N.S.			
FOR $\mathrm{R}=4$	THE	CRITICAL	DIFFERENCES	ARE:		
0.355 AT	THE	. 05 LEVEI.	AND 0.431	At THE	. 01	LEVEL.
COMPARISON		DIPFERENCE	P-Value			
1 VS. 4		0.313	N.S.			

WHITE AUTHORITARIAN SUBMISSION SUMMARY TAHLE

MIEAN SCOHE:	STANDAIRI DEVINTION	$\begin{array}{r} \text { SAMIDLE } \\ \text { SIF.E } \end{array}$	
			HOW COMPARISONS
1.601	0.679	138	Illill, ALI, COLUMNS, ALIL Slices
4.613	0. 788	137	1.OW, ALI. COLUMNS, ALL SLICES
			COLAMN COMPARISONS
4.574	0.733	153	ALL HOWS, MALE, NLL SLICES
4.619	0.735	122	Al.L. NOWS, FEMALE, AI.L SLICES
			SLICE COMPARISONS
4.671	0.719	152	AIL ROWS, AI.I, COLUMNS, EXP
1.528	0.747	123	Als. hows, MLL COLUMNS, CNTRL
			If x C COMPALISONS
1.581	0.653	77	IIIGII, MAIL, Alll TRIALS
4.628	0.709	61	IIIGII, libmale, ald. Trials
1.568	0.806	76	l,OW, MALE, Ald 'thinls
1.670	0.760	61	LOW, FEMALE, ALI, THIALS
			Ir x S COMPARISONS
4.611	0.642	76	IIIGII, Als. COLUMNS, EXP
4.590	0.721	62	IlIGI, AILL COIUMNS, CNTHL.
1.731	0.783	76	LOW, Al.l. COILUNS, EXP
1.166	0.768	61	LOW, ALL. COLUMNS, CNJHL
			C x S COMPALISONS
4.593	0.682	92	AIII. ROWS MALE, EXP
4.546	0.803	6.1	ALL. ROWS, MAII?, CNTHL
4.790	0.756	60	Al.t, IROWS, FEMALE, EXP
4.511	0.687	62	ALIL IROWS, FEMALE, CNTRL.

MEAN	STANDARD	SAMPLE
SCORE	DEVIATION	SIZE

4.528	0.596	46
4.659	0.722	31
4.738	0.689	30
4.521	0.712	31
4.658	0.753	46
4.429	0.864	30
4.843	0.814	30
4.502	0.661	31

R x C x S COMPARISONS
IIIGH, MALE, EXP
HIGH, MALE, CNTRL
high, female, EXP higif, FEMALE, CNTRL
LOW, MALE, EXP LOW, MALE, CNTRL
LOW, FEMALE, EXP
LOW, FEMALE, CNTRL

APPENDIX T

White vs. Noriwhite Authoritarian Scores (AA \& AS summary tables)

WHITE vS. NON-WIITE AA COMI'ARISON SUAMARY TABIEE

SOURCE	SS	df	ms	F	
Tolal	71.671	115			
Hows	1.019	1	1.019	1.739	---
Columis	0.689	1	0.689	1.175	---
Slices	2.767	1	2.767	1.720	p<. 05
ก \times C	0.497	1	0.197	0.848	---
$\mathrm{H} \times \mathrm{S}$	0.802	1	0.802	1.368	---
C $\times 5$	2.164	1	2.161	3.691	---
$17 \times 0 \times 5$	0.114	1	0.111	0.706	---
Error	63.318	108	0.586		

HEFERENCE: Bruning, J. L.. R KJntz, B. L. (1987). Computational handloonk of statistics.

```
f;|⿻nvilew, Il: Scott, foresman.
```

Misin
scome

1.571	0.797	58
1.386	0.763	58
1.391	0.798	52
1.550	0.769	61

1.631	0.692	58
1.326	0.812	58

1.561	0.811	26
1.581	0.783	32
1.228	0.716	26
1.515	0.753	32
1.645	0.815	29
1.502	0.773	29
1.624	0.511	29
1.149	0.872	29
1.700	0.678	26
1.088	0.792	26
1.581	0.698	32
4.518	0.833	32

IROW COMPAITISONS
HIGH, ALL COIJMNS, ALL SLICES
low, Al.L COLUMNS . ALI, SII CliS
COHUMN COMIPARISONS
AII. IIOWS, MALE, ALL SLICES
ALL ROWS, FEMALE, ALL, SLICES
SLICE COMPARISONS
ALL IROWS, AIL COLUMNS, WIITTE
ALL ROWS, ALL COLUMNS, NON-WIITEE
I x C COMPARISONS
IIIGII, MAIE, ALL THIALS
IIICil, FEMALE, ALL, TRIALS
IOW, MALE, ALL TRIALS
LOW, FEMALE, ALL TRIALS
IR x COMPALISONS
HIGH, ALL COLIMMSS, WHITE
HIGH, ALL COLUMNS, NON-WHITE
LOW, Al.L COLIJMNS. WIITTE
L.OW, ALL COLUMNS, NON-WHIITE

C x COMPARISONS
AIL ROWS, MAIE, WHITE
AILL ROWS, MAIE, NON-WIIITE
ALL, ROWS, FEMAIEE, WIITE
ALI, HOWS. FEMALE, NON-WHITE
MEAN STANDARD SAMPLE SCORE DEVIATION SIZE

			R x C X S COMPARISONS
4.850	0.823	13	HIGH, MALE, WHITE
4.272	0.694	13	HIGH, MALE, NON-WHITE
4.479	0.769	16	HIGH, FEMALE, WHITE
4.690	0.782	16	HIGH, FEMALE, NON-WHITE
4.551	0.445	13	LOW, MALE, WHITE
3.905	0.841	13	LOW, MALE, NON-WHITE
4.683	0.601	16	LOW, FEMALE, WHITE
4.346	0.846	16	LOW, FEMALE, NON-WHITE

WHITE vS. NON-WHITE AS COMPARISON SUMMARY TABLE

SOURCE	SS	d 1	ms	F	
Total	83.135	--			
Rows	8.926	1	8.926	13.356	$p<.01$
Columns	0.133	1	0.133	0.199	---
Slices	0.106	1	0.106	0.159	---
$\mathrm{n} \times \mathrm{C}$	0.071	1	0.071	0.106	---
$11 \times S$	0.699	1	0.699	1.047	---
C $\times \mathrm{S}$	0.643	1	0.643	0.962	---
$\boldsymbol{R} \times$ (\times S	0.379	1	0.379	0.567	---
Error	72.177	108	0.668		

RIFEMENCE: Bruning, J. L. \& Kintz, B. L.. (1987). Computational handbook of statistics.
dilenview, ll: Scott, Foresman.

MIEAN
SCOHI:

4.791	0.722	58
4.236	0.871	58
1.476	0.915	52
1.544	0.785	64
4.511	0.716	58
4.483	0.958	58
4.726	0.720	26
1.843	0.720	32
4.225	1.016	26
1.214	0.731	32
1.743	0.579	29
1.838	0.838	29
4.344	0.782	29
4.128	0.939	29
4.588	0.726	26
4.363	1.060	26
4.507	0.706	32
1.581	0.854	32

IROW COMPARISONS
H1GH, ALL COLUMNS, ALL SLICES
Low, All, COLUMNS, ALL, Sl.ICES
COLUMN COMPARISONS
ALL HOWS, MALE, ALL SLICES
ALL ROWS, FEMALE, NLL SLICES
SLICE COMPARISONS
ALL ROWS, ALL COLUMNS, WHITE ALL IROWS, ALL COLUMNS, NON-WIITTE
n x COMPARISONS
HIGH, MAILE, ALL TRIALS
HIGII, FEMALE, ALL TRIALS
LOW, MALE, ALL TRIALS
LOW, FEMALE, ALL. TIRIALS
IR x S COMPARISONS
HIGI, ALL COLUMNS, WHITE
III (III, ALL COLUMNS, NON-WHITE
LOW, ALL COLIJMNS, WIITTE LOW, ALL COLUMNS, NON-WIIITE

C x S COMPARISONS
ALL, ROWS, MALE, WHITE
ALL ROWS, MALE, NON-WHITE
ALL HOWS, FEMALE, WHITE
ALL HOWS, FEMALE, NON-WHITE

MEAN SCORE	STANDARD DEVIATION	SAMPLE SI ZE	
			R x C X S COMPARISONS
4.825	0.453	13	HIGH, MALE, WHITE
4.627	0.901	13	HIGH, MALE, NON-WHITE
4.677	0.657	16	HIGH, FEMALE, WHITE
5.009	0.741	16	HIGH, FEMALE, NON-WHITE
4.352	0.859	13	LOW, MALE, WHITE
4.098	1.138	13	LOW, MALE, NON-WHITE
4.337	0.713	16	LOW, FEMALE, WHITE
4.152	0.737	16	LOW, FEMALE, NON-WHITE

APPENDIX U

Correlations

CORRELATIONS WITH AUTHORITARIAN AGGRESSION

CORRELATIONS WITH AUTHORITARIAN AGGRESSION

CORRELATIONS WITH AUTHORITARIAN AGGRESSION

CORRELATIONS WITH AUTHORITARIAN AGGRESSION

CORRELATIONS WITH AUTHORITARIAN AGGRESSION

CORRELATIONS WITH AUTHORITARIAN SUBMISSION

CORRELATIONS WITH AUTHORITARIAN SUBMISSION

CORRELATIONS WITH AUTHORITARIAN SUBMISSION

CORRELATIONS WITH AUTHORITARIAN SUBMISSION

CORRELATIONS WITH AUTHORITARIAN SUBMISSION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

CORRELATION

Clarance Henri Benes

Candidate for the Degree of

Doctor of Education

Thesis: EFFECTS OF A KNOWLEDGE CONSTRUCTION EXERCISE ON THE FORMATION AND EVALUATION OF SOCIAL STUDIES GENERALIZATIONS AND STUDENT AUTHORITARIAN ATTITUDES

Major Field: Curriculum and Instruction
Biographical:
Personal Data: Born in Pawnee, Oklahoma, December 15, 1950, the son of Edward Altman and Alice Leah Benes.

Education: Graduated from Morrison High School, Morrison, Oklahoma, May, 1969; received Bachelor of Science degree in Secondary Education and received Master of Science degree in Curriculum and Instruction from Oklahoma State University, Stillwater, Oklahoma in July, 1982 and in July, 1989 respectively. Completed the requirements for the Doctor of Education with a major in Curriculum and Instruction in December, 1994.

Professional Experience: Social studies teacher, Morrison Public Schools, Morrison, Oklahoma, August, 1982 to May, 1990; Teaching assistant, Department of Curriculum and Instruction, Oklahoma State University, August, 1990 to December, 1991; Supervisor, Entry Year Assistance Program, College of Education, Oklahoma State University, September, 1990 to May, 1992. Student Teacher Supervisor, Department of Curriculum and Instruction, Oklahoma State University March, 1991 to May, 1994.

Professional Membership: Association for Supervision and Curriculum Development.

