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PREFACE

The objective of this research is to develop the
multivariate (1) Exponential Weighted Moving Average principal
component (MEWMAPC) charts and (2) Zone principal component
(MZONEPC) charts for monitoring the mean vectér of a
multivariate process in a realistic environment. The
statistically-based models for the evaluation of the out-of-
control average run length (OOC ARL) of these charts are
developed. The ARL performance comparison among these charts
under both classical and optimal design approaches and other
existing multivariate control schemes has been performed.
Interactive FORTRAN programs have been constructed to help
theoreticians and practitioners in evaluation and design.of
these‘charts.
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ARL

CUSUM

Cl

C2

C3

c4

IEWMAPC

IZONEPC

Y

1

LCL

NOMENCLATURE

Average Run Length of a control chart
CUmulative SUM

Criterion 1 used in the design of the
{common k and common r)

Criterion 2 used in the design of the
(different h and common r)

Criterion 3 used in the design of the
(Common h and different r)

Criterion 4 used in the design of the
(different h and different r)

MEWMAPC

MEWMAPC

MEWMAPC

MEWMAPC

chart

chart

chart

chart

An integer set represents all the transient states
of the Markov chain associated with the IZONEPC

chart

Symmetrical control limit for the i*" IEWMAPC or
IZONEPC chart

The lower control limit for the i'" IEWMAPC or

IZONEPC chart (Note that h;=—hi)

: th

The upper control limit for the i~ IEWMAPC or

IZONEPC chart (Note that h;=h,)
Individual EWMA Principal Component

Individual ZONE Principal Component

The eigenvalue corresponding to the i“‘principal

component.
Matrix of eigenvalues
Lower Control Limit

Subgroup size
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m,; = The constant on which the lower bound of the run
length probability p,  (w,) is based

m, = The constant on which the upper bound of the run
length probability p,  (w,) 1s based

MC1 = Multivariate Cusum scheme 1 developed by
Pignatiello and Kasunic (1985)

MC2 = Multivariate Cusum scheme 2 developed by
Pignatiello and Runger (1990)

EWMA = Exponential Weighted Moving Average

MEWMA = Multivariate Exponential Weighted Moving
Average

MEWMAPC = Multivariate Exponential Weighted Moving

Average Principal Component

MCUSUM = Multivariate CUmulative SUM

MZONEPC = Multivariate ZONE Principal Component

n = Number of observations (samples or subgroups)
n} = The optimal run number of the i'" IEWMAPC or

IZONEPC chart

n = Minimum value of n;, for all i=1,2,...,p
n* = Maximum value of n;, for all i=1,2,...,p
N = Random variable represent the run length of the

MEWMAPC or MZONEPC chart

N = Random variable represents the run length for the
i*® IEWMAPC or IZONEPC chart

00C = Qut-0Of-Control

o) = The total number of characteristics monitored in a
multivariate process

p; , (w) = The cumulative probability that the run length of
o the i*" IEWMAPC or IZONEPC chart, starting from
the initial state W, is greater than a given
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EWMA control chart
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8 = Variance and covariance matrix for sample or
subgroup average
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multivariate process

" = The OOC mean vector of a multivariate process

z = The variance and covariance matrix of a
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CHAPTER I
THE RESEARCH PROBLEM
Purpose

The control chart is one of the most powerful and widely
used process control tools in industry. It was introduced in
1931 by Dr. Walter Shewhart. The standard control chart is
designed to detect the departure of the process level or
variation from its standard.

Since the early 1930's, practitioners have been looking
for new and better tools for statistical process control. 1In
this regard, many process control techniques have been
developed, such as Page's cumulative sum.chart (CUSUM), Wortham
and Ringer's exponential weighted moving average chart (EWMA)
and recently Jaehn's Zone control chart. These univariate
quality control charts have experienced tremendous success in
improving product quality in various manufacturing industries.

Another important field of statistical quality control is
in the simultaneous control of two or more related variables
when the quality depends on the joint effect of these variables
rather than on the effect of each variable separately. The
widely recognized pioneer work in this area was developed by

Harold Hotelling on testing of bombsights during 1947 to 1951.

1



He used the T? control chart as a tool for monitoring the
overall quality of a flight sight or lot by summing over the
appropriate number of bombs involved. Unfortunately, the field
was hampered by the lack of adequate computational resources.

With the advance of powerful computing capabilities and
the growth of iﬁterest in multivariate quality characteristics,
the stage has been set for renewed interest in developing
multivariate quality control techniques. During the 80's,
significant effort was directed towards this area resulting in
the establishment of many multivariate control charts.

One intuitively appealing method to monitor the quality
of a multivariate process is to apply a Shewhart chart to each
characteristic separately. The underlying process is consider
to be out-of-control (0CC) if one of these charts signaled.

Oné problem related to this approach is that the in-control ARL
and OOC ARL given a specified mean vector shift of the
composite set of the chart cannot be determined analytically
due to the existence of the correlation among those
characteristics.

Another method 1s to control all the characteristics
jointly. Most of the existing multivariate control charts are
developed under this methodology. The statistic used is either
the T° type or x2 type. The major advantage of using these
statistics is the proper reflection of the correlation
structure of the characteristics being studied. Another

advantage is the ease of calculation and simple construction of



these control charts. They require only a comparison of a
sample T2 or x? value with a single control limit. However,

the major drawback in using these control charts is that the
00C signal provides no indication leading to the identification
of the original 0OOC characteristic(s).

Another useful tool suggested by Jackson and Morris (1957)
for multivariate quality control is the method of principal
components. The basic idea of the method of principal
components is to perform principal axis rotation on original
intercorrelated characteristics and transform them into new
uncorrelated variables.

Jackson (1959, 1980, 1985) uses either Shewhart 3-sigma
control limits or 95 percent control limits to control the mean
of each principal component. He shows that the principal
component chart can be an effective control tool for
multivariate process control. He also reiterates that the
principal component chart provides information that might lead
to the identification of the 00OC characteristic(s).

The purpose of this research is to design and evaluate
multivariate statistical control procedures employing

(1) EWMA control charts

(2) Zone control charts
on principal components for monitoring the shift in the process
mean vector if the known process variance covariance matrix

remains unchanged during the production process.



The Problem of the Current Design and
Evaluation of Multivariate Quality

Control Procedures

The use of the statistical control chart to monitor and
control a production process was first introduced by Dr. Walter
Shewhart in 1931. Shewhart described that the purposes of the
control chart are: |

(1) to understand the inherent nature of a process and

identify the goal 6r standard of the process.

(2) to use as a tool for attaining that goal.

(3) to judge whether the goal has been changed.

The multivariate quality control chart shares the same
principles and goals as described by Dr. Shewhart. Instead of
monitoring a single characteristic of the output of a process,
the multivariate control chart simulfaneously monitors several
correlated characteristics that are important and contributive
to the quality of the product.

The three well—known multivariate quality control charts
for controlling the mean of a multivariate Normal process that
have been fully developed are: Hételling's T2 (or Chi-square)
control chart, the Multivafiate Cumulétive Sum {(MCUSUM) control
chart, and the Multivariate Exponentially Weighted Moving
Average (MEWMA) control chart. Analogous to univariate control
charts, the effectiveness and performance of these multivariate
control charts are measured by the average run length (ARL).

The ARL is defined as the expected number of subgroups taken



until a signal indicating a process change in the control
chart.

Under the assumption that the observations within and
between subgroups are random samples from a multivariate Normal
process, the ARL of the multivariate 72 or x2 chart for the
subgroup mean vector can be easily determined since the
underlying run length distribution is geometric. However,
there is no simple analytical or numerical solution for the ARL
of the MCUSUM or the MEWMA control charts. This is because the
statistic plotted on the MCUSUM or the MEWMA control chart is
derived not only from the most recent observation but from the
previous observations. Therefore, the ARL of these control
charts must be determined by simulation.

Previous research shows that the MCUSUM and the MEWMA
control charting techniques possess better statistical
performance than the T? or x2 control scheme. However, the
fact that the statistical performance of these charts can be
evaluated only by simulation makes the MCUSUM and the MEWMA
control charts impractical to use in industry.

The problem described above leads to the need for further
research on multivariate quality control technology. A

possible solution is to use the method of principal components.



Research Objectives

The primary objective of this research is listed as

follows.

Objective:

Develop multivariate

(1) EWMA principal component charts

(2) Zone principal component charts
under either a classical design or a
statistically optimum design approach as an
alternative to various types of multivariate
control charts for monitoring the mean vector
of a multivariate process in a realistic
environment. The statistically optimal
control chart is defined as a control chart
with a fixed in-control ARL which has the
smallest ARL for a specified or predetermined

shift in the mean vector.

To accomplish this objective, several subobjectives must

be met. The subobjectives are:

(1)

Develop a statistically-based model for evaluating

the performance of the multivariate

EWMA principal component chart.

Zone principal component chart.

Develop an algorithm to obtain the statistically
optimal design of the multivariate EWMA and Zone
principal component control charts under a

predetermined shift in the process mean vector.



(3)

(4)

(3)

Develop computer programs to evaluate the
statistical performance of the multivariate EWMA and
Zone principal component control charts and to
assist in the classical and statistically optimal
designs of these charts.

Investigate and compare the classical and optimal
design of the multivariate EWMA and Zone principal
component charts with other existing multivariate
quality control charts.

To conduct sensitivity analysis to study the effects
of the process parameters, which include the
correlation structure and the mean vector shift, on
the resulting statistical performance under the
optimal design of both multivariate principal

component control charts.

Contributions

This research provides benefits to both theoreticians and

practitioners. This study becomes the first of its kind to

provide:

(1)

(2)

(3)

A design of the multivariate EWMA principal
component control chart.

A design of the multivariate Zone principal
component control chart.

Analytical models to evaluate numerically the ARL

associated with both multivariate principal



component control charts.

(4) Computer programs to assist the user in the analysis
of the statistical performance of the proposed
principal component charts and in the designing of
an optimal multivariate EWMA or Zone principal
component control chart given that the user
specifies the in-control ARL and a specific shift in
the mean vector.

(5) Statistical performance comparisons among the x?,
the MCUSUM, the MC1, the MEWMA, and the proposed
multivariate principal component control charts
under classical design approach.

(6) Statistical performance comparison among the optimal
MEWMA and MEWMAPC control charts and among the
optimal MEWMAPC and MZONEPC control charts.

All of these are new developments to help practitioners in
the evaluation the statistical performance and design of the

multivariate EWMA and Zone principal component control charts.



CHAPTER II
LITERATURE SURVEY

The concept of variables control charts was first
introduced by Dr. Walter Shewhart (1931). Since then, wvarious
extensions and modifications of standard Shewhart quality
control charts have been developed.

Most of the existing control charting techniques, whether
univariate or multivariate in nature, are based on three
important assumptions as follows:

(1) The distribution of quality characteristic(s) to be
measured is assumed either univariate or
multivariate Normal.

(2) The mean and variance of the measured quality
characteristic are usually assumed relatively stable
at the target until a shock occurs that changes the
level of the process. Therefore, the state of the
process can be élassified as either at an in-control
state or at an out-of-control state.

(3) Successive subgroups and the observations within
subgroups are aésumed to be independent.

The fundamental idea behind the control chart is that

there are two sources of variation in the quality of a product:

chance causes and assignable causes. Dr. W. Edwards Deming
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(1982) refers to these as common cause and special cause
variation, respectively. The process, under the influence of
only common cause variations, is considered stable and
predictable. The process, under the influence of special
causes, 1s considered unstable. Thus, a search for one or more
assignable causes will be conducted and the corrective action
will be enforced.

Alt (1977) divides the practice of control charting
techniques into two phases. Phase I of the control chart is
used for analyzing past data for a lack of control and to
assist in establishing control charts when no standards are
given. On the other hand, phase II is used to detect any
departure of the underlying process from the standard value,
including the mean and the variability. The primary attention
of this research is directed towards phase II control charts
for the mean vector of the multivariate Normal process.

This chapter provides an overview of the existing
univariate and multivariate quality control techniques that
relate to the three principal component control charts under
consideration. The chapter is divided into three sections:

(1) statistical design of univariate control charts.
(2) statistical design of multivariate control charts.

(3) the method of principal components.
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Statistical Design of Univariate

Control Charts
The EWMA Control Charts

The exponential smoothing or the exponentially weighted
moving average (EWMA) techniques have found widespread
application in economics, inventory control, and forecasting.
Brown (1959) and Muth (1960) use this approach in short-term
forecasting of sales and inventory control. Roberts (1959)
develops a control chart using the EWMA (there called the
geometric moving average) to control a process mean. The EWMA
techniques give the most recent observation the greatest weight
with all previous observation's weights decreasing in a
geometric (exponential) progression from the most recent back
to the first. To demonstrate the EWMA technique, suppose that
subgroups of size M are taken successively and the subgroup
means 2},2%, ... are calculated. The successive values of the

EWMA statistic generated by subgroup mean 2; are:

EWMA, = (1-1) EWMA,__, + rX,, O<rsl, t=1,2,...

1

Here r is a smoothing constant and EWMA  is the value of the
EWMA after observation t, where the subscript t represents the
observation number as well as an index of a point in time.
Roberts also presents a graphical procedure for
generating the EWMA. Roberts evaluates the mean action time
(MAT), also known as the ARL, of the EWMA control chart by

simulation and provides several MAT curves for various
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smoothing constants (r). He also compares the properties of
control chart tests based on the EWMA with tests based on
ordinary moving averages. Roberts concludes that tests based
on the EWMAs compare most favorably with multiple run tests and
moving average tests with regard to simplicity and statistical
properties. Freund (1962) uses the MAT to compare the ability
of the CUSUM chart, the EWMA chart and the acceptance control
chart to detect process mean shifts. He suggests the use of
the MAT rather than the Operating Characteristic (OC) Curve to
determine the power of the control charts.

Wortham (1972) declares that the EWMA control chart is a
possible solution for the monitoring and controlling of
continuous flow processes. Wortham and Heinrich (1972) also
apply the EWMA to individual measurements. They point out that
this approach may be justified when the cost of inspection is
high or when expensive destructive testing is involved. Ng and
Case (1989) develop methodologies to construct the EWMA control
chart used for monitoring the sample means (EWMASM), sample
range (EWMASR), individuallobservations (EWMAID) and moving
range (EWMAMR). They provide extensive tables of factors for
constructing the control limits of these charts.

Hunter (1986) reviews the characteristics of the EWMA
control chart. He claims that the EWMA chart is easy to plot,
easy to interpret, and its control limits are easy to obtain.
Perhaps more important, the EWMA can be used as a method for

establishing real-time dynamic control in industrial processes.



He also points out that the EWMA can be viewed as a compromise
between Shewhart and CUSUM charting techniques.

Lucas and Saccucci (1990) propose several enhancements to
EWMA control schemes. They are:

(1) The fast initial response (FIR) feature that makes

the scheme more sensitive at start-up.

(2) A combined Shewhart-EWMA scheme that provides
protection against both large and small shifts in
the process mean.

(3) A robust EWMA scheme that gives extra protection
against outliers.

They show that large values of the smoothing constant r are
optimal for detecting small shifts,

Domangue and Patch (1991) develop the omnibus EWMA
control schemes that are capable of detecting changes in both
mean and standard deviation of the process. The omnibus EWMA
statistic is based oﬁ the exponentiation of the absolute value
of the standardized subgroup mean. Montgomery and Mastrangelo
(1991) present methods for applying statistical control charts
to autocorrelated data. ‘They show the EWMA statistic can be
used as an approximating procedure for monitoring
autocorrelated data.

The use of EWMA to control process variance is first
introduced by Wortham and Ringer (1971). They calculate the
EWMA statistic on sample variance and use the fact that the

limiting distribution of the statistic is Chi-square to

13
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construct the control limits. Sweet (1986) suggests two models
for the construction of the coupled EWMA control charts to
monitor the mean and the standard deviation or variance of a
process, simultaneously. They are the mean absolute deviation
model and the square deviation model. These are modifications
of the model proposed by Wortham and Ringer (1971). Ng and
Case (1989) suggest the use of the EWMA on the sample range.
They construct an EWMASR chart to monitor the process variance.
Crowder and Hamilton (1992) propose using an EWMA based on the
log transformation of the sample variance. They discuss the
properties of the log-variance EWMA chart and provide an
optimal design strategy. They show that the chart is superior
to the usual range chart or s’ chart in terms of its ability to
detect quickly the small increases in the standard deviation of
a Normal process.

Two methods that are often used to evaluate the run
length distribution of EWMA schemes are the Markov chain and
integral equation approaches. Lucas and Saccucci (1990)
evaluate the run length distribution using Markov chains.
Robinson and Ho (1978) present a numerical procedure using
recursive techniques and an Edgeworth expansion for the
approximation of the ARL of an EWMA chart. Both one-sided and
two-sided ARLs are tabulated for various settings of the
control limits, smoothing constant and shift in the level of
the process mean. They further show that the results agree

with those obtained by Roberts (1959). Waldmann (1986)
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proposes a general extrapolation method using integral
equations to derive the upper bound and lower bound of the run
length distribution of either the one-sided or two-sided EWMA
schemes. Crowder (1987a, 1987b) replaces the integral equation
with a system of linear algebraic equations and solves them
numerically using Gaussian quadrature. Then, the ARLs for in-
control and different mean shifts of the proceSs can be
determined. Hamilton and Cfowder (1992) present computer
programs for calculating the ARL of the log~-variance EWMA chart
using the same method as Crowder (1987a, 1987b) did. Gan
(1991a) provides a computer program that computes the
probability function of the run length N of an EWMA chart.
Then, the percentage points of the run length distribution can

be obtained from the probability function.
he Zone Control Chart

The Shewhart control chart is known to be insensitive in
detecting small to moderate shifts in the process mean. This
deficiency can be alleviated by using the supplementary runs
rules. The Western Electronic Company (1958), now ATS&T,
presents four runs rules to improve the sensitivity of the
Shewhart control chart. Since then, various runs rules have
been proposed and have been used by many companies. Nelson
(1984, 1985) collects a set of runs rules for the purposes of
convenience and uniformity of application. He points out that

the combination of these runs rules in usage will depend on the



circumstances. He also claims that the user needs to be alert
to any patterns of points that might indicate the presence of
special causes.

The application of the runs rules depends heavily on the
visual identification of special patterns of points plotted on
the control chart. A different technique‘in identification of
the runs from a control chart has been proposed by Imaizumi
(1955). He develops a Zone control chart (there, called thé
band-score control chart) using the sum of scores method to
control the temperature of a Coke Furnace at NIPPON KOKAN. He
divides the Shewhart control chart spread into 6 equal zones.
The zone scores of -3, -2, -1, 1, 2, and 3 are assigned
successively from the lowest zone to the highest zone. The

critical values of -6 and 6 are equal to the scores of the
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upper and lower out-of-control zones, respectively. An out-of-

control signal is triggered when the cumulative zone score is
outside of the range of both critical values. Toad (1958)
derives the formula to find the type I error of the Zone
control chart using the Markov chain approach and Feller's

" theorem.

Jaehn (1987a, 1987b, 1987c, 1989) proposes the Zone

control chart. He claims that the Zone control chart has

several advantages over the Shewhart charts, including (1) ease

of construction, (2) elimination of exact data plotting, (3)

operator involvement is simplified, (4) control chart tests for

process shifts are automatically incorporated, and (5) target
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and control limit changes are made quickly.

Jaehn's Zone control chart works the same as the band-
score control chart with the exception of the values of zone
scores assigned. Jaehn assigns zone scores of 1, 2, 4, and 8
to regions that are both above and below the central line.
Hendrix (1989) uses simulation to obtain the ARLs‘of the Zone
control charts with different sets of zone scores. He compares
the result with the Shewhart X-bar control charts.

The problem of the Zone control chart proposed by
Imaizumi, Toad and Jaehn are that the chart gives a high false
alarm rate when the process is in a state of statistical
control (S0SC). This violates the principle of the control
chart in that the false alarm rate should be low (nearly zero)
when the process is stable. Therefore, an improvement of the
zone control chart is needed.

Fang and Case (1990) mathematically formulate the Zone
control chart using a Markov chain. They develop an analytical
model to evaluate the ARLs of the Zone control chart and
provide suggestions on the improvement of the Zone control
charts.

Independently, David, Homer, and Woodall (1990) also
employ Markov chains to evaluate the performance of the Zone
control charts. They conclude that the assigned zone scores
will greatly affect the performance of the Zone control charts.
When the zone scores are properly assigned, the Zone control

charts outperform, based on the ARLs, the competing Shewhart X-
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bar control charts with supplementary runs rules.

Statistical Design of Multivariate

Control Charts

Introduction

Many quality control operations in industry consist of
making more than one type of measurement on a particular
inspected product because there is more than one characteristic
that needs to be controlied to achieve the quality goal. One
common practice to control several characteristics is to use
multiple Shewhart control charts. The implicit assumption in
this practice is that the characteristics are independent,
which is often incorrect.

Jackson (1956) shows that individual or separate control
of related variables will result in error of "over" or "under"
control. These errors become more pronounced if the
correlation between variables is higher. Another problem
assoclated with the use of multiple Shewhart charts to control
multivariate correlated variables is that there is no
scientific way to evaluate the statistical performance of the

joint effect of these control charts.

Hotelling's T2 _Control Charts

Hotelling (1931) generalizes the univariate t statistic
as a T? statistic for multivariate applications. Since then,

the T? statistic has been used extensively in the field of
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multivariate analysis. 1In 1947, Hotelling developed a control
chart using the T? statistic for the analysis of bombsight
data. The T? statistic for a single observation from a p-

characteristic process takes the form:

T? = (x-x%x)'8 Y (x-x)
where x is a p dimensional column vector representing the
observed values from p characteristics, x is»a p dimensional
sample or target meah vector, and 8§ is the p x p sample
variance and covariance matrix. The distribution of the T?
statistic is a function of the number of variables p and the
number of observations n used in estimating the variance and

covariance matrix 8. The T? distribution is related to the

well-known F distribution by the relationship:

) (n-1)p
(n- p) “p.n-p,a

where o is the probability of type I error. The quantity on
the right-hand side of the equal sign is the upper limit of the
T2 control chart. In working with squared quaﬁtities, only an

upper limit is required.

iptical Control art

Jackson (1956) introduces the elliptical control chart.

The equation for the ellipse in the bivariate case is,
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5:Sy | (x=F)?, (v-7)?_25,(x-X)(y-¥) |_ ,
SyS; =501 Sk s? S5.5;
7 o 2(n-1) F2,n-2,ot
n-2
where F, . _ is the upper (100a) percentile of the F

distribution with two and n-2 degrees of freedom, both x and y
are the observation means of a two-variate process, 5 and E;
are the standard deviation of variate x and y, respectively,
and %W,represents the covariance of x and y.

The values being plotted are the Hotelling T? statistics.

The statistic for the j** observation is,

132 = (xj—E)'S'l(xj—z?) .

where X= (X, y)' is the observation mean vector and

x, = (xj,)y)' is the 3*® observation. A point falling outside
the control ellipse is consider an out-of-control condition.
Therefore, proper investigation is needed. Jackson also shows
that both T? and the elliptical charts are equivalent. Ghare
and Torgersen (1968), Radharamanan (1986), and Alloway and
Raghavachari (1991) show that the elliptical control chart has
produced satisfactory results in practical applications
involving two variables. There are two drawbacks associated
with the operations of the elliptical control chart: (1) the

subgroup number is not preserved, and (2) the visual display of

the elliptical chart becomes impossible when the number of
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characteristics under consideration increases to three or more.

2

The Multivariate Shewhart X

Control Chart

Alt (1973) first introduces the multivariate equivalent
of the Shewhart control charts. The univariate Shewhart
control chart or x-bar chart can be considered as repeated
tests of significance of the hypotheses H : p = B, versus
H : n=#+u,. The areas above the UCL and below the LCL
correspond to the rejection regions for the likelihood ratio
test. Alt extends this fact to the multivariate case. Assume
that p-variate random variables are jointly distributed as a
p-variate Normal and that a subgroup of size M is selected
randomly. If the covariance matrix and mean of the p-variate
Normal are known, the likelihood ratio test (Anderson 1984) of
Hy:p=mn, versus H: n # pn, will reject the null hypothesis

if,
M(x-1,) EH (E-ng) > X q

where X is the vector of subgroup means, B, and ¥ are the
population mean and covariance matrix and X;Ax is the upper
(100a) percentile of the x2 distribution with p degrees of

freedom. The control limits are therefore defined as,

UCL = XI 4

LCL = 0.

where the statistics plotted are
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M(3-p,) 2 (x-n,) .

If this statistic exceeds the upper control limit, the process
mean is considered out—of—control and the cause(s) of variation
is (are) sought. Since the control limit of this chart is
determined by the )6 distribution, this chart is often referred
as the Chi-square control chart.

When the process parameters p, and Z are not known, the
unbiased estimates of the parameters must be used. Assume that
n rational subgroups of size M are taken from the process. Let
x; denote the (p x M) data matrix for subgroup j and x5

th

denote the i“" p-variate vector in subgroup j. Then, the

sample mean vector i% and the sample covariance matrices Sj
can be calculated. The unbiased estimates for p and ¥ are

given by,
n ' 1 M
)j x,, where x, = ( ﬁ) E x,;

x,)

>
H
SIH
M
s
=y
o
H
o
t0n
M
3?
|
Nl
3?

Alt (1982) shows that the statistic
___=' = ___'=
M(z% x) S (z% x)

is distributed as,

(nMp-np-Mp+ p)
(nM—n-p+1) p,nM-n-p+1°
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is Snedecor's F with vl and v2 degrees of freedom.

where Exl,vz

The estimates x and S should be updated frequently in the

early stage but not so often once the process has stabilized.
Alt (1973) also discusses the power or the probability of

type II error of the multivariate Shewhart chart (x2 chart).

He shows that the power depends on B; and % only through the

value of the noncentrality parameter A, where
A= mng)' 2 ng) .

Alt, Walker, and Goode (1980) investigate the effect, if
one of the population standard deviations changes, on the power
of the test under the bivariate case. They show that if the
two characteristics are positively correlated, the power of the
x? test is not a monotonicélly decreasing function of o, as is
the univariate case. This phenomenon can be explained by
Fisherian information theory.

Blank (1988) develops a multivariate x-bar and R chart
using the vector sum technique. He claims that the charts are
simple to construct and easy to use. Blank calculates the
vector sum, which is the Euclidean norm, of each subgroup mean
vector. The central line of the control chart for the vector
mean is the average of the vector sums and the control limits
are determined by either the correlation among different
variables or by the standard deviation of the vector sums.
However, Blank does not discuss the statistical performance of

the chart.
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Alloway and Raghavachari (1990) present an apbroach to
construct a trimmed mean multivariate control chart. They
dévelop the trimmed T? statistic for testing of the
multivariate mean vector. They also study the proposed control
chart under the bivariate Normal and bivariate contaminated
Normal population using simulation. The results indicate that
the Hotelling T? method is robust for distributions having
slightly heavier tails than Normal. However, for very heavy
tails, the proposed trimmed mean method comes closest to the

population centers and has a smaller standard error.

The Multiple Unjvariate

CUSUM Control Scheme

Woodall and Ncube (1985) introduce the use of a one-sided
or two-sided univariate CUSUM chart to monitor a p-dimensional
multivariate Normal process. They assume that the independent
p-characteristic random variables x, j=1,2, ... are
successive samples from a p-dimensional multivariate Normal
process with mean p, and variance-covariance matrix ¥. - The run
length of a one-sided procedure for detecting the positive mean

shift of the i" characteristic is:

N(i) =MIN { J: T ;, 2 H }.

where T, , = MAX{O0, T/ ,_, + x, .- k,}, J=1,2,... (2.1)

1,

In equation (2.1), X, , refers to the i*™ characteristic

of the J*® observation, Zfﬂj is the upper CUSUM of the ith
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characteristic after J observations, H;> 0 is the upper
decision interval or control limit for characteristic i,
and kﬁ is the reference value for characteristic i. The choice
of the reference value k, depends on the shift in the mean that
is considered to be important and needs to be detected quickly
for the i*" characteristic.

To detect shifts in either direction, the run length of

the two-sided CUSUM procedure is defined as:

+ + - - +

N(i) = MIN {J: T; ;2 H;

1 1

where Ti',J = MIN {0, T,

1

,a-1 F X, o+ kL.

and Zf,J is the lower CUSUM of the i™™ characteristic after J
observations. The run length of the multiple CUSUM procedure
is defined as,

N= MIN {N(1), N(2), ..., N()}.
Therefore, the process is considered out of control as soon as
any one of the multiple CUSUM control charts indicates an out
of control signal. This method has two obvious advantages. It
is very easy to understand and very easy to implement.
However, it has a major disadvantage in that the correlation
between the various quality characteristics is not taken into
account. Therefore, it is impossible to tell exactly what is

the significance level of the test.
The MCUSUM Control Schemes

Pignatiello and Kasunic (1985) propose a method, denoted
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by MC1l, to control the mean of a multivariate Normal
distribution. They call it the "Truly Multivariate CUSUM
Chart”. The CUSUM for the mean vector of the observations in

t* subgroup is defined as:

J

C = AE: (3, = 1y

i=t-g,.,+1

where i; is the mean vector of the i*® subgroup. Note that g+

is the number of subgroups since the most recent renewal (i.e.,
zero value) of the CUSUM. Therefore, the average of the
difference between the accumulated subgroup average and the

target value of the process mean is

1 1 =
—iC = = |-
t _— 2: x, ", .
[gt) (gt)i=t-gt+1 * °

Consequently, at subgroup t, the multivariate process mean
vector can be estimated to be (]q/gt)C%-+u°. It then follows
that a norm of C%,
1
el = (e,/=%,) ?
is a measure of the of the distance of the estimated mean of
the process from the target mean of the process. The

multivariate CUSUM scheme is constructed by defining MC1, as
MCl, = MAX{]c.] -kg, O}

and
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1

g..,r 1if MC1, >0
g{

i, otherwise

where the choice of the reference value k> 0 is discussed in
detail by Pignatiello and Runger (1990). The scheme operates
by plotting MClt on a control chart with an upper control
limit h. Because the MCl1 scheme can not be modeled as a simple
stationary Markov chain, Pignatiello and Runger (1990) use a
Monte Carlo simulation to evaluate the ARL performance of the
scheme.

Pignatiello énd Runger (1990) propose a method, denoted
by MC2, based on the square of the distance of the each
subgroup average from the target mean p, and then accumulate
those squared distances. They define the square distance of

the it subgroup mean from the target value n, as
D} = (X,-u,) " E (X, n,) (2.2)
1 i 0 4 0 *

For each i, Lf has a Chi-squared distribution with p degrees

of freedom. A one-sided CUSUM can now be defined as:
MC2, =MAX{0,MC2, ,+Di-k}.

with MC2 ;= 0. The primary difference in the two CUSUM charts
is that MC1l accumulates the subgroup mean vector prior to the
production of the quadratic forms, while MC2 calculates the
quadratic form for each subgroup mean and then accumulates the
values of those forms.

Moreover, Pignatiello and Runger (1990) compare MC1l and
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MC2 to the multiple univariate CUSUM charts given by Woodall
and Ncube (1985) and to the multivariate Shewhart x2 charts.
The results show that the ARL of the MCl chart outperforms the
other three charts in almost all cases.

Crosier (1988) also presents two multivariate cumulative
sum (MCUSUM) quality control schemes. The first CUSUM scheme
reduces each observation vector or subgroup mean vector to a T-
statistic (the square root of the right hand side of equation
(2.2)) and then forms a CUSUM of the T-statistics. Crosier
states that a problem with this method is that when a shift of
the mean is indicated, the procedure gives no indication of
where the shift occurs.

The second method derived by Crosier is a two-sided
vector-value CUSUM scheme. He shrinks the updated CUSUM toward
zero after each observation. The shrinkage is performed by
multiplication rather than by addition or subtraction. Crosier
defines the statistic G;, the CUSUM after the i®" subgroup meﬁn

vector, as

v,=0, 1if G, =<k
tx,-n,) [1-(k/G,)], otherwise
Note that H, is the target value, k>0 is the reference value

of the scheme or the allowable slack in the process, and G; is

the generalized length of the CUSUM vector before shrinking.
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Consequently, letting
1

— To-1 2
Vi = (v; z vi) ’

the scheme signals when \g>~h, where h is the decision
interval. The statistical performance of these schemes was
evaluated by simulation. Crosier states that both of the
methods reduce to the multivariate Shewhart chart when h
equals 0 and k equals the multivariate Shewhart control limit.
Note that the latter scheme will be used to make comparison
with the principal component chart proposed by this research.
Alwan (1986) presents a CUSUM control scheme based on the
sequential probability ratio test. He defines the statistic E,

as

E, =M, -p,) 7 (x,-p,)

1

and indicates that E, is distributed as a noncentral x?
distribution. Then, he proposes a sequential test in reverse
order on the noncentrality parameter of the distribution of
statistic E . Alwan shows that the decision equation of the
test is linear and therefore a standard V-mask can be
constructed.

Montgomery and Wadsworth (1972) suggest a multivariate
control chart for process dispersion. They use the random
variable log|S|, the logarithm of the determinant of the
sample variance and covariance matrix. The term |S| is also
called the sample generalized variance in the area of

multivariate analysis. Gnanadesikan and Gupta (1970) show that



the distribution of 1log|S| can be approximated by a Normal
distribution. Later, Alt (1985) proposes several control
charts based on the sample generalized variance. One method

uses the fact that in the bivariate case, the statistic

L
2(M-1)|8]?
1
[ 2417

is distributed as X° with 2M-4 degrees of freedom. The other
method is constructed using the first two moments of the |S|
and the property that most of the probability diétribution

of |8| is contained in the interval

1
E(]s])x3[vV(s]]?>.

Healy (1987) also proposes a CUSUM scheme based on the
sequential probability ratio test. He uses the concept of
discriminant analysis to develop a. procedure to distinguish
between a multivariate Normal with a "good" mean (ug) and one

with a "bad"™ mean (@,). Healy points out that the method does
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not depend on the number of variables. Therefore, the ARL does

not increase for large value of p. However, he indicates that
his procedure will not work if the direction of the shift is
unknown in advance.

Smith (1987) develops another multivariate CUSUM

procedure based on the likelihood ratio test. She also extends

the procedure to study shifts in the covariance matrix of a

multivariate Normal process and to study shifts in the
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probability of a multinominal process. Smith compares the
statistical performance of the procedure with Alt, Crosier and
Pignatiello's methods under the bivariate case using
simulation.

Hawkins (1991) suggests a CUSUM control scheme based on
the veétor z of scaled residuals from the regression of each
variable on all others. He shows that this approach can be
used to detect the mean shifts in several directions. Hawkins

also declares that this method is more effective than that of

Woodall and Ncube (1985).

The Multivariate EWMA Charts

Lowry (1989) develops a "MEWMA" scheme that is a natural
extension of the univariate EWMA procedure. She defines the

h

MEWMA for the it subgroup mean vector as

B,=Rx_.+ (I-RP

i i-1
where Q:= 0 is the initial MEWMA vector, i; is the mean vector

of the i“’subgroup of size M, and
R==diag{rl,r2,...,15}, O<r.<1, i=1,2,...,p

is the weighing matrix. The MEWMA chart gives an out of

control signal as soon as
2 _ 'yt
T, = BiZBiBi > h

where h>0 1is chosen to achieve a specified in-control ARL

and ZB is the covariance matrix of Bi. If there is no prior

i
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reason to weight past observations differently for the p
guality characteristics, Lowry suggests the use of a common r
value =r,= ...==rb==r‘. Moreover, she shows that given a

common weighing factor r value, the asymptotic covariance

matrix ZB as i-»o of the MEWMA statistics is defined as

B ]

Note that the MEWMA charts employed in the ARL performance
comparisons are designed using the asymptotic covariance

matrix.

The Method of Principal Components

The purpose of the method of principal components is to
reduce the dimensionality of a data set which consists of a
large number of interrelated variables, while retaining as much
as possible of the variation present in the data set. This
goal is achieved by transforming the original variables to a
new set of uncorrelated variables, the principal components.

This transformation is a principal axis rotation of the
variance and covariance matrix of the data set, and the
elements of the characteristic vectors or the eigenvectors of
the covariance matrix are the direction cosines of the new axes
related to the old. The transformed new uncorrelated variables
or the principal components are normally numbered in descending
order according to the amount of the variation. If most of the

variation of the original data can be attributed to the first
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two components, then these components can replace the original
variables without much loss of information.

The use of the method of principal components in the
field of multivariate quality control was first introduced by
Jackson and Morris in 1957. They investigate the quality
problem in a photographic process at Eastman Kodak Company.
Jackson and Morris ‘identify a large number (p) of correlated
variables that account for the quality of the process. They
notice that the use of Hotelling's T? may involve computational
problems since the determinant of the variance and covariance
matrix is near zero. The solution is to transform the original
p variables to lesser k principal domponents. They use the
Shewhart 30 control limits to monitor those k new variables and
find that the principal componeht charts can be handled by
production personnel quite easily.

Jackson (1959) suggests that the method of principal
components can be used both as a method of characterizing a
multivariate process and as a control tool associated with
control procedures. He shows that the 7? values calculated
from the principal components is the same as those calculated
from the original variables.

Hawkins (1974) examines the use of principal components
in the maintenance of reliability in a large data base. He
considers a base consisting of data vectors from a multivariate
Normal distribution. A total of 5 screening procedures is |

proposed. Hawkins declares that the principal component
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analysis has superior performance.

Jackson and Mudholkar (1979) propose procedures to test
the residual associated with principal component analysis.
These residuals are the difference between the original
observations and the predictions of them using less than a full
set of principal components. Procedures for testing the
residuals associated with a single observation and for an
éverall test for a group of observations,_given that the
underlying covariance matrix is known, are developed. They
declare that the proposed procedures may be quite useful in
detecting outliers in the data.

Jackson (1980) thoroughly discusses the concept of
principal components. He introduces and discusses two
alternative ways to scale characteristic vectors. Later,
Jackson (1981) extends the ability of principal component
charts from controlling a single observation vector to
controlling a subgroup of observation vectors. He also
discusses the sampling properties of vector coefficients and

characteristic roots.
Summary

A literature survey of the problems, contributions and
needs related to the objectives of the research is presented.
It is obvious that most of the multivariate control schemes are
very complex, difficult for others to accept, and beyond the

capability of most operators. Furthermore, the evaluation of
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the statistical performance of the multivariate control charts,
except T° or x° charts, depends heavily on simulation. This
fact severely undermines the utilization of the technology in
reality. Therefore, the successful applications of
multivariate control schemes in industry are scarce.

This survey substantiates that the most applicable
technique in the area of multivariate quality control might
rely on the development of principal component charts. The
currently available principal component charts use Shewhart
control limits for monitoring the process mean vector. No work
has been done to incorporate other quality control techniques,
such as the EWMA, and the Zone control cﬁarts, with the
principal components. Furthermore, the concept of the optimal
control chart has been fully developed under the univariate
case. It is deemed necessary to extend this concept to the
multivariate quality control area. Therefore, the tasks of the
formulation of the statistical models, using the EWMA and Zone
statistics to monitor the principal components of a
multivariate process and of the determination of the optimal
design parameters for those charts are yet to be accomplished.

This survey indicates that a need exists to:

(1) Derive the statistical performance evaluation models

for the proposed multivariate
a. EWMA principal component chart, and
b. Zone principal component control chart.

(2) Develop procedures to optimize the statistical



(3)
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performance of the proposed charts and to obtain
their parameters.

Develop computer programs to evaluate the
statistical properties of the principal component
charts and to help in searching the optimal design

parameters.



CHAPTER III

DEVELOPMENT OF STATISTICAL PERFORMANCE EVALUATION
MODELS OF TWO MULTIVARIATE PRINCIPAL

COMPONENT CONTROI SCHEMES
Introduction

The use of the method of principal components, or
principal component control charts, in the field of
multivariate quality control can be traced back to the late
50's. The methodology consists of (1) the transformation of a
set of multivariate correlated variables to a new set of
uncorrelated variables (the principal components), and (2) the
supervision of the principal components instead of the original
variables to maintain process integrity. Previous literature
shows that only the Shewhart control scheme is used to monitor
individual principal components. However, research shows that
the Shewhart control scheme is not sensitive in detecting small
to moderate shifts in the process mean. Therefore, it is
desirable to introduce another control scheme that brovides
better protection against small mean shifts in each principal
component.

Two multivariate principal component control schemes are
under study. These are the EWMA principal component control

37
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chart and the zone principal component control chart. A p-
variate multivariate principal component control chart is
composed of p individual principal component charts.
Therefore, the performance of the multivariate principal
component chart depends on the overall performance of those
individual charts.

For the multivariate EWMA principal component chart, the
ARL of an individual EWMA principal component chart is a
function of the control limits, the weight (r) used on the
current observations,'and the process shift. The integral
equation approach is employed to derive the run length
distribution of individual EWMA principal component control
charts.

For the multivariate Zone principal component control
chart, the area within the control limits of each individual
zone principal component chart is partitioned into six equal
regions and the zone scores from the bottom region to the top
region are set to be -2, -1, 0, 0, 1, and 2, respectively with
the critical scores of +4. Therefore, the ARL is a function of
the symmetrical. control limits and the process shift. The
Markov chain approach is used to derive the run length
distribution of individual Zone principal component charts.

The ARL for the composite set of EWMA and Zone individual
principal component control charts or the multivariate EWMA and

Zone principal component control chart can be determined by
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using the fact that individual principal component control
charts are mutually uncorrelated or independent given the
assumption that the process under consideration is multivariate
Normally distributed. 1In this research, the statistical models
for the evaluation of the ARL of these multivariate principal
component control charts are developed. Furthermore, models
and algorithms for the determination of statistical obtimal
parameters of these multivariate principal component control

charts are established.
Assumptions

The assumptions underlying this research are described as

follows.

(1) The multivariate process of interest has p
measurable quality characteristics and the
characteristics are multivariate Normally
distributed with known mean vector and covariance
matrix.

(2) The process can be classified as either at an in-
control state where the mean vector and the
covariance matrix are stable at the target or at an
out-of-control state where an assignable cause
shifts the mean vector to a known value.

(3) The covariance matrix of the process is assumed

unchanged even when the process reaches an out-of-
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control state.

(4) The process is neither self-correcting nor does it
degrade progressively. Therefore, once its mean
vector has shifted, it stays at the 00C condition
until being detected.

(5) Successive subgroups and the observations within
subgroups are assumed to be independent.

(6) The calculation of the 00C ARL is made under the
assumption that the shift of the process mean vector

has occurred prior to the application of the chart.

The Multivariate Process And The

Principal Component Analysis

It is a common practice in industry to make multiple
measurements on a manufactured item to evaluate its quality
during or after production. Such a productidn process is often
called a multivariate process.

Assume that a p characteristic multivariate process has a
multivariate Normal distribution with mean vector n, and
covariance matrix Z. To monitor the process, subgroups of size
M each are subsequently collected. In this research, interest
is centered on the stability of the process mean vector.
Therefore, when changes in the process cause the mean vector
to shift‘from its nominal value, it is necessary to detect the

change as soon as possible to ensure a uniform product quality.



Consider the px1 random vectors :?1, x,, X

A A each

representing the subgroup averages observed over time. Thus,
the subgroup average denoted by random variable 3; is
multivariate Normally distributed with mean n, and known

subgroup covariance matrix §, where
Z

S = —.
M

The assumptions of the known process mean vector B, and
process covariance matrix ¥ are made for simplicity. In
reality, these parameters will be estimated by collecting data
over a substantial amount of time from the process under
supervision and the Normality and the independent assumptions

need to be wvalidated.
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Since § is a pxp symmetric and nonsingular matrix, it may

be reduced to a diagonal matrix by premultiplying and

postmultiplying with an orthonormal matrix U, such that

U'sU=1L.

The diagonal elements of L, 1

17 1,, .., lp, are the

eigenvalues of § and the columns of matrix U, U, Uyy o eey up,

are the eigenvectors of §.

Define a pxl random vector ¥ and let
Y=U'X.

Then,
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- !
r=| N (U'm,, I

The transformation from the random vector E-to the random
vector Y is the principal axis transformation. The set of p
original correlatedvvariables, ii, g;, .« ey §; are now
transformed into a set of p new uncorrelated variables,

Yl, Y2 P Yp . The transformed variables are the

principal components of X. Therefore, the i™ principal

component is defined as

and it will have mean zero and variance li.
Each principal component Y, may be scaled to have unit

variance. Let Z, represents the i*" standardized principal

component. Then,

Suppose that the mean vector of the multivariate process
shifts from B, to B, . Then, the mean vector of the subgroup
average X will shift to W, . Furthermore, the mean of the

principal components Y; and Z, will change accordingly. The
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amount of shift corresponding to each principal component can

be shown as follows.
Amount of shift for Y, : u' (g, -n,)

ul' (p,-p,)
Vo

Therefore, the principal components also provide information

Amount of shift for Z,

that can be used to monitor the multivariate process.

Formulation Of The Statistical

Evaluation Model

The Cumulative Run Length Probability
Of An Individual EWMA Principal

Component Chart

The integral equation and the Markov chain are two
approaches available for the evaluation of the run length
distribution of the EWMA control scheme. Champ and Rigdon
(1991) show that both approaches are equivalent. However, they
suggest the use of the integral équation approach whenever an
integral equation can be established.

Let the probability density function of the i*® principal
component of the mean vector of the subgroup average x denoted
by random variable Z,= {zit}, i=1,2, ..., pand t =1, 2,

..., be fi(zi). It has been shown that f} is a standardized



Normal density function with mean of zero and variance of one
if the original process is in-control. Note that the EWMA of

h

the tﬂ‘subgroup average, Si obtained from the it

e
individual EWMA principal component control chart or the

IEWMAPC control chart is calculated by

S. = (1-.ri)S +r.z.  , O<ris]..

i,t i,t-1 i Tit

where S, = w, for some specified initial wvalue w, and

0
—oo<h;<wi<h;<oo. Here, h; and h are the lower and the
upper control limits, respectively and r; is the smoothing
constant of the i*" IEWMAPC control chart. Note that if the
weighing factor r, = 1, then the EWMA chart reduces to the
classical Shewhart chart.

Let the random variable AQ represent the run length of

the i*" IEWMAPC control chart. Then, define that

- +
PLM>ni)=pimih%), h;<w.<h;,

represents the cumulative probability that the run length of

the i*" IEWMAPC chart, starting from the initial state w., 1is

greater than a specified number n,. It is clear that
P(N.>n_ ) depends on the initial state S, ,=w,.
Let the i*" IEWMAPC chart initially start at w, . 1In

44

order for a sequence of EWMA to reach state .% ! nizl_ without

stopping or signaling OCC, the first EWMA value of the chart

denoted by s! must stay within the symmetrical control limits.
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That is, the possible values of the first observation Z;, must
satisfy the following equation.

s'=(l-r.)w, + r.z.
1 1 1 1

1

- +
1 hi<s§<hi.

Therefore, the cumulative run length probability p, n.(h&) can

be obtained following Crowder's (1987a) development.

1 ' i i’ Y '
pimi(wi) - 7 piﬂ%—l(si) £, ds; (3.1)
1

The function piﬂE(w.), h{(wi<h; can be computed recursively

starting with p, ,(w,) =1, hi'<wl.<hi+ . Note that f, is the

] 1

standard Normal density if the process is in-control. However,
if the process mean vector changes from B, to B, .@ becomes a

. . . ‘ ui(u1_uo) .
Normal density function with mean ————— and variance one.

o

1

The Cumulative Run Length Probability

Of An Individual Zone Principal

Component Chart

The Zone control scheme is designed to be simpler for
quality control personnel to apply. Figure 3.1 depicts the
structure of a Zone principal component control chart. The

region between LCL and UCL are divided into 6 equal zones. The



ZONE

Score Probability
4 p7
UCL
2 p5
1 p3
0 pl
CL
0 p2
-1 p4
-2 p6
UCL
-4 p8

Figure 3.1 Structure Of A ZONE Principal

Component Chart
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scheme works as follows:

(1) Determine the initial score di'O for the i*" Zone
principal component control chart. It is usually
set to be 0.

(2) The zone score of the current observation will be
added to the previous score if the observation falls
on the same side of the central line as the previous
one. Otherwise, the accumulation process ends and
the chart restarts based on the zone score of the
current observation.

(3) The O0C condition is signaled when the cumulated
zone score. is the same as or beyond the outermost
zone score.

The Markov chain approach is employed to derive the run
length distribution of the individual Zone principal component
chart. The Markov chain representation of the i Zone
principal component control chart or the IZONEPC control chart
has seven transient states that correspond to the value of the
,cumulative score which does not result in a O0C signal. Also,
there is one absorbing state that corresponds to the 0OC
signal. Table 3.1 shows the transient state representation of
the chain and Table 3.2 contains the transition matrix.

Let D= {1, 2, .. ., 7} denote the integer set that
represents all the transition states of the Markov chain and

let Q.(J, J") represent the transition probability from state



Table 3.1

STATE REPRESENTATION FOR the I™®
ZONE PRINCIPAL COMPONENT CHART
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State No. (D) 1 2 3 6 7
Cumulative Score -3 -2 -1 1 2 3
Table 3.2
The MARKOV CHAIN ONE STEP
TRANSITION MATRIX
Qr(J, J")
State J°'
1 2 3 4 5 6 7 | Absorbing
(=3) | (=2) | (-1) (0) (1) (2) (3)
1 (-3) p2 0 0 pl p3 p5 0 p4+p6+p7+p8
Z 2 (-2) p4 p2 0 pl p3 p5 0 p6+p7+p8
Sl o3 (-1 p6 p4 p2 pl p3 | p5 0 p7+p8
4 (0) 0 p6 p4 pl+p2 p3 p5 0 p7+p8
J 5 (1) 0 pé p4 p2 pl p3 p5 p7+p8
6 (2) 0 p6 p4 p2 0 pl | p3 p5+p7+p8
7 (3) 0 . p6 p4 p2 0 0 pl | p3+p5+p7+p8
Absorbing 0 0 0 0 0 0 0 1

Note: Number in parenthesis represents the corresponding
cumulative score.
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j to j' associated with the i'™ IZONEPC control chart. Let

P(N&I>ni) = Dp; nv(wi), w.€D, represent the cumulative

probability that the run length of the i“‘IZONEPC chart,
starting from the initial state w,, is greater than n, . Then,
(w.) can be derived as follows.

p, . W)= X p,,(d)ow,d) (3.2

forall d" €D
The function p.,  (w,), wW.€D can be determined recursively,
LA

starting with p, (w,) =1, w, eD.

0 I

Bounds For The Cumulative Run Length

Probability Of Individual Principal

Component Control Chart

Theoretically, equations (3.1) and (3.2) define the
cumulative run length probability of the IEWMAPC and the
IZONEPC control charts, respectively. However, unless the ARL
is small, it is not practical to evaluate (3.1l) or (3.2) to
obtain all of the proper values of the cumulative run length
probability. Woodall (1983) shows that the limiting form of
the upper tail of the run length distribution can be
approximated using the geometric distribution. Thus, for a
relatively small value of n., the cumulative probability that
the i'" principal component chart stops at the U%4-j)th subgroup

or later is
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j .
pi’ni+j(wi) Eelp]_,nl(wl)lo<el<1, j.=1, 2,..-,p,

where w, is the initial state and ei is the parameter of the
geometric distribution for i™ principal component chart.

Based on this fact, Waldmann (1986) derives an efficient method
for the determination of the value of n, by the construction
of the upper and lower bounds for the cumulative run length

probability P(N.,>n.) . The constants nﬁ on which the bounds

Ini

are based, are defined by Waldmann as

. sup P o (W)
M, n, = h ~<w,<h;® o (w)
(w.)
- inf i, n, i
v = ) ; (3.3)
Tt h o <w;<h; ion -1 (W;)

where 0/0 is defined to be 0. Utilizing the fact that

P (wi)s_piﬂﬁ_l(wi), it follows that Iani are well-defined

i n;

<1.

1

and that O<m; , <m;
Waldmann shows that for any integer n, and j, the

followings are true.

(3) (m},, )7 D, | (w,) 2 (m) 1) D, (W) (3.4)
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Part (1) of (3.4) contains the desired bounds for the
cumulative run length probability with suitable constants
mjﬂ%’ 0 sm;,nisng;% <1. Parts (2) and (3) guarantee improved
bounds at each step of iteration.

Furthermore, he also shows that given some mild and

natural assumptions there exists a constant m, .>0, such that

lim - _ lim _+ _
n.-so i,n; n.-o i,n i,o°
1
‘s . . +
The stabilization of the welght m; , wusually occurs for

pd

relatively small values of n, from a numerical point of view.

+

Similarly, the constant m; , of the i*"™ IZONEPC control

1,

chart are defined as

o _ang [ Pan ()

1,n; WiED pi,n.-l(wi)

mt = SUP Pi,n i) (3.5)
i,n; wieD pi,n.—l(wi)

m; , —m; ,<E€ (3.6)

holds is an optimal one for stopping the iteration process.
Note that the value of & is set to be 1¢1° in the computer

program.
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Determination Of The ARL Of The Multi-
variate EWMA And Zone Principal

Component Control Charts

All the mathematical developments discussed previously
can be used to obtain the run length of the univariate control
chart. However, the method for the evaluation of the run
length of the multivariate control chart has not been
developed. This section extends the mathematical developments
of the cumulative run length probability of the univariate
control charts to that of the multivariate control charts.

Previous discussion (p. 42) shows that p random variables
Zi,i =1,2,...,Dp representing the principal components are
mutually independent. Therefore, the run length of each
principal component N,, i =1,2, ..., p, which is a function
of Zi, are mutually independent, too. Let N' be the random
variable representing the run length of the composite set of p

individual principal component charts or the run length of the

multivariate principal component chart. Then,

p
pr(n'>n) = [[P(n,>n),n=0,1,2,... (3.7)
i=1
Let If, i=1,2,...,p denote the smallest value of n; that
satisfies (3.6) in the calculation of the cumulative run length

probability of the i*" principal component chart. Then the
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upper and lower bounds of the cumulative run length probability
of the i™ principal component chart, E”(AQ>JH and P"(N,>n),

respectively, are defined as

i 3 *
pinf(wﬂ, if n>n’.

LA

where W, is the initial EWMA value or Zone score.
Also define n" and n- to be the maximum and minimum

. .
values of n, . Thus,

—_ * * *
n*= max{n*, n', .. .y 0]}

- . * * *
n~=mmin{n,>,n,,. ..,np}

The upper and lower bounds for the cumulative run length
probability of the multivariate principal component chart,

Pr*(N'>n) and Pr (N >n), respectively, are

r

P
Hpi L (W) _ n<n~

=1 !

(=

P

+ max{0, n-n/} min{1, max {0, n-n}11
(m; ,*) e (w)
" ' A - 1,0 i,n] i
Pr*(N >n) =4 i=1

(Wi) )min{l,max{o,ni*—n}}, n-<n<n*

>((-pi,n

Let ARL" and ARL™ represent the upper and lower bounds



of the average run length of the composite set of the

individual principal component charts or the multivariate

principal component control chart, respectively. Then,
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In the equation listed above, the upper tail area or the

cumulative probabilities of the run length N, of the ith

. . *
principal component chart greater than n, or more are

approximated by the appropriate geometric distribution.

It is clear that

ARL - < ARL < ARL™,

Then, the ARL is approximated to be

(ARL™ + ARL ")

ARL ==

2
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Development Of Search Technique For
The Statistically Optimal

Design Parameters

The statistically optimal control chart is defined as a
control chart with a fixed in-control ARL which has the
smallest ARL for a specified or predetermined shift in the mean
vector. Therefore, the objective function to be minimized in
the optimai design of the two principal component control
charts is the.out—of—control ARL. The equality constraint is
the desired in-control ARL. Note that both the objective
function and the constraint are multi-dimensional nonlinear
equations and the closed form expression of the first
derivative of the objective function with respect to the design
parameters is not available. Thus, a direct search along the
constraint surface must be employed to determine the optimal
design parameters.

Chandler (196¢7) claims that a widely employed search
method in multi-dimensional minimization is to wvary the
parameters cyclically. The search starts by varying the first
parameter while all of the others are held fixed. When a local
minimum along this line has been reached, this parameter is
fixed and the second is varied. Cycling in this way will
eventually reach a local minimum of a smooth function, if one

exists. One shortfall is that the cyclic variation method
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usually works in a zig-zag mode when the resultant vectors of
any two successive complete cycles are nearly identical and the
length of those vectors is a very small fraction of the
distance to the minimum. Thus, the convergence can be very
slow.

Another well-known direct search method, the SIMPLEX
method, was developed by Nelder-Mead in 1965. The simplex
procedure solves a multivariable minimization problem by
forming a simplex and moving along the response surface. It
approaches the minimum by deleting the point with highest
objective function value or highest resultant rather than by
trying to move cyclically. Chandler (1975) claims that the
SIMPLEX method is excellent if the number of variables does not
exceed six or so. However, It is somewhat slow if there are
more variables.

In this research, there are two procedures, STEPIT and
UNICY, used in the optimization process. The algorithm used in
STEPIT and UNICY is developed by Chandler (1967). STEPIT is
basically a cyclic variation method with an accelerating
scheme. It expedites the search sequence by adopting a
criterion of collinearity of successive cycle resultants.
Whenever the resultants of the preceding two cycles satisfy the
collinearity criterion, the next attempt is made following the
direction of the last resultant. If this is successful, the

step size in the same direction will be increased. Otherwise,
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a parabolic interpolation is used to locate the minimum along
the line and the procedure returns to the cyclic variation
mode. Chandler claims that this method has been quite
successful on a wide variety of minimization problems.
Furthermore, it is either competitive with or outperforms other
published methods with more than five or ten parameters. The
UNICY procedure is a one dimensional version of STEPIT. It is
used to find the root of the equality constraint.

A limited study by the author (see Appendix J) shows that
STEPIT and SIMPLEX provide similar results in optimizing the
multivariate EWMA principal component chart. However, the
STEPIT procedure is slightly faster than the SIMPLEX procedure.
Therefore, STEPIT is used throughout this research.

In this research, the optimal multivariate EWMA and Zone
principal component control charts are studied. For the
multivariate EWMA principal compoﬁent chart, the design
parameters under optimization are the symmetrical control
limits hf and the weighing factors r;,. For the multivariate
Zone principal component chart,»the design parameters under
optimization are the symmetrical control limits hf. Thus, for
a multivariate principal component chart with m design
parameters, the search procedures employed are described as
follows.

(1) Identify a set of m-1 starting points. Note that a

good set of starting points will expedite the
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optimization process. Crowder's (1989) paper can be
used as a reference to get a good starting point for
r; . Also, experience shows that the initial values
of hf should be set wider for a process with a
larger number of characteristics.

(2) Incorporating the set of m-1 points, the UNICY
procedure can be used to find the m'™ point that
satisfies the constraint. Then, the objective
function is evaluated using those m points.

(3) Use STEPIT to identify the next set of m-1 points
along the m-1 dimensional space.

(4) For two successive sets of points, if the advancing
distance within each dimension is less than a
predetermined value, then fhe search is over.

Otherwise, go to step 3.
Summary

The multivariate process and the principal component
analysis have been introduced in this chapter. Statistical
models for the evaluation of the individual EWMA and Zone
principal component control charts are discussed. The integral
equation and the Markov chain approaches are used to derive the
run length distribution of the IEWMAPC and IZONEPC control
charts. Moreover, the mathematical development and derivation

to evaluate the ARL of the multivariate EWMA and Zone principal
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component control charts are fully developed. Waldmann's bound
method is adopted to facilitate the numerical evaluation of the
ARL performance of the MEWMAPC and MZONEPC control charts.

This chapter also introduces the concept of the
statistical optimal control chart. Based on this concept, the
procedures and algorithms for searching for the design
parameters of the optimal multivariate EWMA and Zone principal
component control chart is developed. The optimization
routines employed are STEPIT and UNICY developed by Chandler
(1975). Since the direct search method does not guarantee a
global minimum, it is common to use multiple starting points to
provide confidence that the optimal or near optimal solution
has been reached. Based on the experience gained in this
research, different starting points do create different sets of
design parameters in certain optimal MEWMA principal component
charts. However, the value of the objective function or the
O0C ARL are very similar. The computer programs developed in
this research include multiple sets of initial search points
that facilitate the optimization process and provide reliable

results.



CHAPTER IV
VERIFICATION OF THE COMPUTER MODELS
Introduction

The statistical models for the evaluation of the
performance or the ARL of either the individual or the
multivariate EWMA and Zone principal component control charts
have been developed in chapter III. It is obvious that the
closed form solution for the ARL cannot be obtained.
Therefore, numerical calculation through the use of the
computer 1s necessary. Several computer models or programs
using the FORTRAN language for the calculation of the ARL of
these principal component charts have been developed in this
research.

The ARL of the individual EWMA and individual Zone
principal component control charts obtained from the developed
models can be verified with the results from Crowder (1987a)
and Davis, Homer, and Woodall (1990), respectively.
Furthermore, the fact that the Shewhart chart is a special case
of both the EWMA and Zone principal component control charts
can be employed to verify the computer models for the
evaluation of the ARL of the multivariate EWMA and Zone

principal component control charts.
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ARL For Individual EWMA And Zone

Principal Component Charts

Crowder (l987a).presents a computer program to calculate
the ARL of the EWMA chart. The ARL values obtained from
Crowder's program and from the proposed computer models are
tabulated in Table 4.1 for various r values, control limits h,
and mean shifts. The symmetrical control limits used in

generating the ARL values are * 3.5 © and

EwMA'

o2 =(—r )02
EWMA (2 - 1)

where Oémm represents the asymptotic variance of the EWMA
statistics and ©? is the variance of the random variable which
generates the EWMA. Note that the principal component is
distributed Normally with mean of zero and standard deviation
of one. Therefore, the size of the mean shifts and the
symmetrical control limits discussed in this research are
measured in terms of the number of the standard deviation of
the principal component.

It is clear that the results from Crowder's program and
from the proposed computer model are identical with three
decimal places except the first and second rows of Table 4.1.
However, the largest percentage of difference is less than
0.005%, which is small enough to be neglected. This shows that

the computer model or program used in this research for



COMPARISON OF THE ARL OF EWMA CHARTS OBTAINED
FROM CROWDER'S COMPUTER PROGRAM AND FROM

TABLE 4.1

THE PROPOSED COMPUTER MODEL
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SHIFT h = .80295507 h = 1.32287566
0.00 4106.422* 4106.242 2640.163* 2640.145
0.25 385.291* 385.290 625.784* 625.784
0.50 64.718%* 64.718 123.431* 123.431
0.75 25.331~* 25.331 38.678* 38.678
1.00 14.790* 14.790 17.712* 17.712
1.25 10.372* 10.372 10.475* 10.475
1.50 8.005* 8.005 7.249%* 7.249
1.75 6.540* 6.540 5.522%* 5.522
2.00 5.548%* 5.548 4.471* 4.471
2.25 4.832* 4.832 3.772* 3.772
2.50 4.292* 4.292 3.277* 3.277
2.75 3.871%* 3.871 2.909* 2.909
3.00 3.535* 3.535 2.627% 2.627
3.25 3.262* 3.262 2.407* 2.407
3.50 3.035* 3.035 2.235* 2.235
3.75 2.839* 2.839 2.099* 2.099
4.00 2.662* 2.662 1.989* 1.989
Note: "*" represent results from Crowder's program



TABLE 4.1 (Continued)

63

SHIFT h = 202072594 h = 2.71108834
0.00 2227 .344%* 2227.329 2157.987* 2157.984
0.25 951.178* 951.179 1245.899* 1245.899
0.50 267.360%* 267.360 468.680* 468.680
0.75 88.697* 88.697 182.123* 182.123
1.00 35.973%* 35.973 78.052* 78.052
1.25 17.642* 17.642 37.150%* 37.150
1.50 10.192%* 10.192 19.626* 19.626
1.75 6.704%* 6.704 11.456* 11.456
2.00 4.861* 4.861 7.327* 7.327
2.25 3.782%* 3.782 5.076%* 5.076
2.50 3.096%* 3.096 3.760%* 3.760
2.75 2.632* 2.632 2.940%* 2.940
3.00 2.299%* 2.299 2.400%* 2.400
3.25 2.049* 2.049 2.026%* 2.026
3.50 1.852* 1.852 1.756* 1.756
3.75 1.690* 1.690 1.556* 1.556
4.00 1.553* 1.553 1.403%* 1.403
Note: "*" represent results from Crowder's program



64
calculating the ARL of the individual EWMA principal component
chart (IEWMAPC) is adequate.

Davis, Homer and Woodall (1990) provide a profile of the
ARL of the Zone chart with zone scores of 0, 1, 2 and 4, which
is identical to the Zone control schemé employed in this
research, and the symmetrical control limits of £ 3. Table 4.2
shows that the ARL calculations from the paper of Davis et al.
and from the proposed computer model are identical to two
decimal places. This verifies that the program employed to
calculate the ARL for the individual Zone principal component

chart (IZONEPC) is adequate.

ARL For Multivariate EWMA And Zone

Principal Component Charts

It is noted that the EWMA control chart with the weighing
factor r=1 and the critical values of *3 is equivalent to the
Shewhart control chart. Therefore, the proposed computer model
for the calculation of the ARL of the multivariate EWMA
principal component chart (MEWMAPC) is verified if the results
obtained from the proposed computer model for the MEWMAPC chart
using r=1 are comparable to the results from multiple
independent Shewhart charts given that both types of charts
have the same dimension.

Table 4.3 and 4.4 depict the profile of the ARL of the
multiple Shewhart charts and the MEWMAPC chart under various

mean shifts with two and three variates, respectively. It is



COMPARISON. OF THE ARL OF THE ZONE CHART OBTAINED

TABLE 4.2

FROM DAVIS, HOMER AND WOODALL'S PAPER AND
FROM THE PROPOSED COMPUTER MODEL

SHIFT DAVIS, HOMER PROPOSED MODEL
AND WOODALL'S
PAPER
0.00 95.05 95.05
0.20 67.63 67.63
0.40 35.54 35.54
0.60 19.52 19.52
0.80 12.01 12.01
1.00 8.19 8.19
1.20 6.06 6.06
1.40 4.76 4.76
1.60 3.91 3.91
1.80 3.31 3.31
2.00 2.86 2.86
2.20 2.51 2.51
2.40 2.23 2.23
2.60 2.00 2.00
2.80 1.81 1.81
3.00 1.65 1.65
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TABLE 4.3 -

COMPARISON OF THE ARL OBTAINED FROM TWO INDEPENDENT
SHEWHART CHARTS AND FROM THE MULTIVARIATE
EWMA PRINCIPAL COMPONENT CHART

WITH R = 1
MEAN SHIFT TWO INDEPENT MULTIVARIATE
SHEWHART CHARTS EWMA CHART
1ST 2ND WITH R=1
0.0 0.0 185.4495 185.4495
0.1 0.2 164.8397  164.8397
0.3 0.4 111.9975 111.9975
0.5 0.6 67.8191 67.8191
0.7 0.8 40.5576 40.5576
0.9 1.0 24.8224 24.8224
1.1 1.2 15.7114 15.7114
1.3 1.4 10.3161 10.3161
1.5 1.6 7.0336 7.0336
1.7 1.8 4.9817 4.9817
1.9 2.0 3.6657 3.6657
2.1 2.2 2.8017 2.8017
2.3 2.4 2.2229 2.2229
2.5 2.6 1.8288 1.8288
2.7 2.8 1.5575 '1.5575
2.9 3.0 1.3697 1.3697

Note : The symmetrical control limits for each Shewhart
chart and for each individual EWMA principal
component chart are identical at + 3.0



TABLE 4.4

COMPARISON OF THE ARL OBTAINED FROM THREE INDEPENDENT
SHEWHART CHARTS AND FROM THE MULTIVARIATE

EWMA PRINCIPAL COMPONENT CHART
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WITH R = 1
MEAN SHIFT THREE INDEPENT MULTIVARIATE
SHEWHART EWMA CHART
1ST 2ND 3RD CHARTS WITH R=1
0.0 0.0 0.0 123.8000 123.8000
0.1 0.2 0.3 100.0707 100.0707
0.4 0.5 0.6 50.8401 50.8401
0.7 0.8 0.9 23.7376 23.7376
1.0 1.1 1.2 11.7675 11.7675
1.3 1.4 1.5 6.3585 6.3585
1.6 1.7 1.8 3.7696 3.7696
1.9 2.0 2.1 2.4591 2.4591
2.2 2.3 2.4 1.7655 1.7655
2.5 2.6 2.7 1.3890 1.3890
2.8 2.9 3.0 1.1853 1.1853

Note

: The symmetrical control limits for each Shewhart
chart and for each individual EWMA principal

component chart are identical at + 3.0
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observed from both tables that the ARL for both types of charts
is equivalent. This shows that the computer model for the
calculation of the ARL of the MEWMAPC chart employed in this
research is adequate.

Analogously, the Zone chart with the upper, middle and
lower zone scores of 1, 0 and -1, respectively, the critical
values of +1 and the symmetrical control limits of * 3.0 is the
same as the Shewhart control chart. This is to say that the
specified Zone chart can be represented by two states which are
the in-~control state and the out-of-control state. Therefore,
the calculation of the ARL for the chart using the Markov chain
is identical to that of the Shewhart chart. Therefore, the
computer model for the calculation of the ARL of the MZONEPC
chart is adequate as long as that of the individual Zone

principal component chart is adequate.
Summary

The computer models or programs used in the research for
the calculation of the ARL'of the IEWMAPC, the IZONEPC, the
MEWMAPC and the MZONEPC charts are verified in this chapter.
The comparisons of either the results from the published
literature or from the multiple Shewhart charts show that the

models are adequate and proper to use.



CHAPTER V

THE DESIGN AND COMPARISON OF THE CLASSICAL
MULTIVARIATE EWMA AND ZONE PRINCIPAL

COMPONENT CONTROL CHARTS
Introduction

The classical design is one of the two most populér
design approaches in the area of the statistical quality
control chart. This approach emphasizes the general
performance of the chart under various process shifts instead
of a particular one. Therefore, profiles of the ARL
performance of charts for different values of parameters under
various size shifts are presented for the practitioner's
choice. Another approach in the design of the quality control
charts is the optimal design approéch. The optimal design
approach is discussed in the next chapter.

The classical design approach of two multivariate
principal component charts, MEWMAPC and MZONEPC, is discussed
in this chapter. Moreover, the statistical performance
comparisons of these charts, under the classical design
approach, with respect to four existing multivariate control
charts are also addressed. The four existing multivariate
control charts under comparison are Hotelling's x2 chart,

Crosier's (1988) MCUSUM chart, Pignatiello and Runger's (1990)
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MC1 chart, and Lowry's (1989) MEWMA chart.

The x?, MCUSUM, MC1 and MEWMA charts are known to be
directionally invariant. That is, the ARL performance of these
charts is determined only by the statistical distance of the
O0C mean vector y1; from the in-control mean vector y,, not by
the particular location of that mean vector. The statistical
distance is defined as the noncentrality parameter A, where

1

A - (ul_uo)'24(u1_po)]7‘

The value of A will be referred to as the size or the magnitude
of the mean vector shift in this research.

Note that the MEWMAPC and MZONEPC charts are non-
directionally invariant. That is, the ARL performance of these
principal component charts depends not only on the statistical
distance between the mean vector u; and p, but on the direction
of the difference between these two means as well. 1In order to
make meaningful comparisons among the principal component
charts, which are non-directionally invariant, with four types
of directionally invariant charts, it is necessary to consider
all the directions of shifts that generate a size of shift
equal to a given value of the noncentrality parameter A.
Therefore, the mean shifts of the MEWMAPC and MZONEPC charts
are calibrated to be equivalent to certain values of the
noncentrality parameter A.

Throughout this chapter, the covariance matrix is assumed

to be the identity matrix and the in-control mean vector is
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assumed to be 0. That is, the mean shifts under discussion are
the mean shift of each centralized principal component. Since
the mean shifts of the original variables from the multivariate
process can be transformed into the mean shifts of the
principal components and the principal components of the
process can be scaled such that theirkcovariance matrix is an
identity matrix and their mean vector is 0, the use of an
identity covariance matrix and a mean vector of 0 is not a
limitation.

For the classical design of the MEWMAPC chart, there is
not a priori reason to either weight past observations
differently or to set the control limits differently for the p
principal components being monitored. Therefore, common r and
common h, denoted by Cl, will be used for each classical
IEWMAPC chart. Similar arguments can be followed for the
classical design of the MZONEPC chart regarding the control
limits h. Here, common h will be employed for each classically

designed IZONEPC control chart.

The Classical Design Of The MEWMAPC

And The MZONEPC Charts
T Cla jcal ME C_Char

For the bivariate case, the shift in the mean vector of
either the process characteristic or the principal component

can be described by the following form:
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a dcosb %
u, - - _ , where 6=tan'1/%/and S - ya’+b? (5.1)
5sinb

where a and b are the mean shifts of the first and second
process characteristics or the first and second principal
components, respectively, and 6 is the direction of the shift.
Note that the value of O is equal to A in equation 5.1, if the
mean vector shift under consideration is measured with respect
to the centralized principal component instead of the original
characteristic.

Figure 5.1 shows the location of the mean vector shift of

1

B

Figure 5.1 The Graphical Representation Of The
Location of A Mean Vector Shift Of
The Centralized Principal Component
With A = &.
a two dimensional centralized principal component from in-
control mean 0 to p;,. The axes of the first and second

principal components are x and y, respectively. Note that all

possible locations of shifts of the mean vector of the
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centralized principal component with a specific A = & form a
circle. Therefore, the circle represents the locations of the
shift of the mean vector of the principal component with a size
of A.

Tables 5.1 to 5.3 display the ARL profiles of several
bivariate MEWMAPC charts for varying values of r. The in-
control or nominal ARL for the charts used in Tables 5.1 to 5.3
are calibrated to be 100, 200 and 370, respectively. Since the
MEWMAPC charts are non-directionally invariant, the ARL
performance of these charts at the size of the shift that was
represented by a particular value of the noncentrality
parameter, is not a constant. Thus, Tables 5.1 to 5.3 show the
range of all possible ARL performance of these charts at given
values of the noncentrality parameter. For example, given a
shift of size A = 0.5, the ARL of a bivariate MEWMAPC chart
with parameters r = 0.1 and h = 0.5597 will be within the range
of 21.200 to 22.542, depending on the direction © of the mean
vector shift.

As illustrated in these tables, small values of r are
more efficient in detecting a small process mean shift. This
is the same as for the univariate case. Note that the mean
shift is calibrated in terms of the wvalue of A. Figures 5.2 to
5.7 display the ARL performance of a bivariate MEWMAPC chart
with parameters r = 0.1 and h = 0.5597 {(nominal ARL = 100)
given that the various directions © of the mean shifts of two

principal components are calibrated to have noncentrality
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Table 5.1

ARL VALUES FOR MEWMAPC CHARTS (p = 2)
NOMINAL ARL = 100

A r =0.1 r = 0.2 r = 0.3

h = .5597 h = .8760 h = 1.1375
0.0 100.000 100.000 100.000
0.5 21.200-22.542 24.396-26.040 28.622-30.501
1.0 8.410-9.483 8.228-9.350 8.765-10.091
1.5 5.167-5.994 4.649-5.399 4.557-5.346
2.0 3.771-4.439 3.265-3.827 3.067-3.610
2.5 3.004-3.565 2.559-3.005 2.352-2.763
3.0 2.521-3.007 2.147-2.508 1.938-2.274

Table 5.1 (Continued)

A r = 0.4 r=20.5 r = 0.6

h = 1.3751 h = 1.6020 h = 1.8260
0.0 100.000 100.000 100.000
0.5 33.234-35.227 38.034-40.031 42.933-44.847
1.0 9.735~-11.339 11.084-13.004 12.826-15.069
1.5 4.675-5.571 4.959-6.020 5.415-6.697
2.0 2.996~-3.567 3.008-3.641 3.098-3.832
2.5 2.229-2.641 2.160-2.593 2.137-2.610
3.0 1.795-2.127 1.701-2.032 1.644-1.983




Table 5.1 (Continued)
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A r = 0.7 r = 0.8 r =10.9

h = 2.0531 h = 2.2886 h = 2.5376
0.0 100.000 100.000 100.000
0.5 47.880-49.647 52.835-54.409 57.753-59.109
1.0 15.005-17.551 17.680-20.482 20.919-23.901
1.5 6.075-7.633 6.995-8.879 8.257-10.507
2.0 3.276-4.155 3.565-4.645 4.009-5.355
2.5 2.160~-2.696 2.234-2.870 2.375-3.160
3.0 1.617-1.976 1.619-2.018 1.652-2.122
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Table 5.2
ARL VALUES FOR MEWMAPC CHARTS (p = 2)
NOMINAL ARL = 200

A r=0.1 r=0.2 r=0.3

h = .6248 h = .9608 h = 1.2384
0.0 200.000 200.000 200.000
0.5 27.715-30.633 34.830-38.810 43.821-48.557
1.0 9.812-11.427 9.868-11.730 10.969-13.368
1.5 5.852-6.957 5.279-6.332 5.261-6.440
2.0 4.,215-5.063 3.624-4.356 3.421-4.156
2.5 3.334-4.024 2.801-3.363 2.577-3.102
3.0 2.781-3.370 2.324-2.772 2.108-2.514

Table 5.2 {(Continued)

A r = 0.4 r = 0.5 r = 0.6

h = 1.4909 h = 1.7325 h = 1.9715
0.0 200.000 200.000 200.000
0.5 53.652-58.754 63.960-692.105 74.558-79.499
1.0 12.781-15.875 15.284-19.158 18.545-23.219
1.5 5.536-6.963 6.067-7.859 6.882—9.161
2.0 3.384-4.189 3.461-4.402 3.651-4.802
2.5 2.461-3.001 2.411-3.000 2.417-3.092
3.0 1.964-2.372 1.869-2.294 1.816-2.271




Table 5.2 (Continued)
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A r =20.7 r = 0.8 r=0.9

h = 2.2143 h = 2.4666 h = 2.7339
0.0 200.000 200.000 200.000
0.5 85.315-89.872 96.116-100.170 106.843-110.327
1.0 22.674-28.105 27.806-33.886 34.085-40.638
1.5 8.056-10.940 9.700—13.302 11.977-16.383
2.0 3.979-5.430 4,492~-6.355 5.271-7.680
2.5 2.486-3.294 2.633-3.641 2.888-~-4.193
3.0 1.799-2.308 1.822-2.419 1.893-2.632




Table 5.3
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ARL VALUES FOR MEWMAPC CHARTS (p = 2)
NOMINAL ARL = 370

A r = 0.1 r =0.2 r = 0.3
h = .6770 h = 1.2097 h = 1.3212
370.000 370.000 370.000

34.705-40.060

47.789-55.854

64.279-74.245

11.071-13.272

11.501-14.306

13.366-17.281

w [ i |INNFPIP O |O
olU> | Oo|lwvm | o |0 ioO

6.437-7.808 5.850-7.226 5.939-7.578

4.487-5.597 3.937-4.834 3.743-4.678

3.606-4.410 3.010-3.678 2.774-3.414

3.000-3.671 2.473-3.003 2.249-2.726

Table 5.3 (Continued)

A r = 0.4 r = 0.5 r =20.6

h = 1.5866 h = 1.8407 h = 2.0926
0.0 370.000 370.000 370.000
0.5 82.576-93.517 102.034~-113.188 122.268-133.053
1.0 16.340-21.680 20.482-27.433 25.966-34.589
1.5 6.417-8.524 7.267-10.059 8.563-12.269
2.0 3.750-4.823 3.908-5.224 4.226-5.914
2.5 2.669-3.343 2.643-3.406 2.690-3.602
3.0 2.109-2.593 2.021-2.540 1.978-2.558




Table 5.3 (Continued)
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A r = 0.7 r = 0.8 r=20.9

h = 2.3489 h = 2.6155 h = 2.8984
0.0 370.000 370.000 370.000
0.5 142.978-152.973 163.892~172.814 184.737-192.428
1.0 33.022-43.255 41.916-53.561 52.922-65.646
1.5 10.440-15.299 13.105-19.339 16.839-24.628
2.0 4.750-6.974 5.562-8.527 6.797-10.750
2.5 2.820-3.965 3.063-4.557 3.472-5.482
3.0 1.979-2.657 . 2.033-2.867