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CHAPTER I 

INTRODUCTION 

The methodology adopted in this work to investigate molecular systems 

on solid surfaces and in the gas phase is that of classical molecular 

simulations.1,2 Numerous studies published in the last three decades show 

that this method can be successfully used for many types of systems, such as 

simple molecular systems, 1 liquids,3 macromolecules,4 or crystals.5-6 However, 

limitations of the method occur for those processes which are quantally allowed 

but classically closed. Tunneling effects, scattering into classically forbiden 

states, and potential surface crossing are examples of processes which require 

investigations based on quantum mechanics or semiclassical methods.7-9 

Three main stages are generally involved in classical molecular 

simulations. In the first stage, a model for the molecular system subject to 

analysis is created. This model, given in the form of a potential-energy surface, 

contains the information related to molecular configurations, inter particle 

interactions and interactions between the molecular system and the 

environment. Obtaining an accurate potential-energy surface is a central goal 

of the theoretical and experimental efforts. In the construction of such a 

potential surface, the information available from dynamical and non-dynamical 

studies, from semiempirical and ab initio theories is included. This information 

is continuously updated as a result of newly refined data generated both 

experimentally and theoretically. This means that a potential-energy surface 

used in the elucidation of the characteristics of a given molecular system is 
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evolutionary in concept. 

The second step of the methodology involves the execution of molecular 

trajectories on the given potential-energy surface and for a given selection of 

the initial conditions. For this purpose, two main directions can be considered. 

In a deterministic situation, the interaction potential for the system will 

generate the forces between particles and correspondingly, the equations of 

motion which describe the dynamics of the system. In other words, the 

execution of molecular trajectories means the numerical integration of the 

classical equations of motion for the system of interacting particles. To do so, 

the equations of motion are approximated by adequate schemes, suited for 

numerical evaluation on a computer. Due to the transition from a description in 

terms of continuous variables with differential operators to a description with 

discrete variables and finite difference operators, the numerical analysis will be 

affected by errors. Depending upon the specific approximations, the level of 

errors will be different, but in principle, the error can be made as small as 

desired, restricted only by the speed and computing resources available. The 

end point of a trajectory is considered to occur when the moving particle enters 

in a region of phase space designated as product space.2 The boundaries of a 

such region are generally described in terms of different internal coordinates of 

the atoms, such as the separation of groups of atoms, or dihedral angles. 

Criteria to test whether the product molecules are in bound, quasi-bound or 

dissociative states can be found in Ref. 2. 

In stochastic cases, such as Monte Carlo simulations10, the deterministic 

trajectory is replaced by a Markov chain, in which case the set of molecular 

coordinates at a given moment depends only on the molecular configuration at 

the previous moment. 

The final part of molecular dynamics methodology refers to the analysis 
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of trajectories. This step includes extraction of information with relevance to the 

phenomenon of interest. The calculations of the reaction rates and cross 

sections, intramolecular and intermolecular energy transfer rates, or distribution 

of energy over the available degrees of freedom are typical examples of 

quantities determined at this step. 

It can be seen that a significant advantage of deterministic molecular 

dynamics simulations is related to the possibility of providing a detalied 

description of the individual particle motions and of the internal modes as a 

function of time, such that they can be used for a detailed characterization of the 

system's properties. In addition, due to the fact that different elements of the 

potential used in calculations are under the users' control, their role in 

determining a given property can be examined by changing specific 

contributions. 

It should be mentioned that deterministic molecular dynamics techniques 

are not appropriate for the investigation of infrequent motions or processes 

which have characteristic times longer than 100 ps, because these events are 

unlikely to occur spontaneously during the short time involved in the simulation. 

In these cases, the use of stochastic methods, such as Monte Carlo in 

combination with the Metropolis sampling procedure, 11 constitutes an 

alternative approach for description of these systems. 

We shall exemplify the application of the above presented methodology 

for particular cases in the next chapters. 

Structure of the Thesis 

Following the Introduction, we present in Chapter II the main theoretical 

methods that we have used in performing the molecular dynamics simulations. 

The essential elements for construction of potential-energy surfaces, selection 
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of initial conditions, analysis of the reaction products, as well as the Monte Carlo 

methodology are discussed. 

Chapter Ill describes the investigation of hydrogen-atom diffusion on a 

Si(111 )-(7x7) reconstructed surface. Following a review of the literature in this 

field, the potential-energy surface for hydrogen-lattice interactions is described. 

Next, the results of hydrogen diffusion obtained using Monte Carlo variational 

phase space theory are presented. 

Chapter IV reports studies of statistical effects in the skeletal inversion of 

bicyclo(2.1.0)pentane. The detailed procedure of construction of potential

energy surface for this molecule together with the results of classical trajectory 

calculations performed on this surface are discussed. 

In Chapter V, we extend the development of the potential-energy surface 

for bicyclo(2.1.0)pentane to a much more complex reaction, i.e. thermal 

deazetization of 2,3-diazabicyclo(2.2.1 )hept-2-ene. The results of classical 

trajectory calculations on this potential are also presented. 

Conclusions emerging from the analysis of these three systems are 

summarized in Chapter VI. 
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CHAPTER II 

THEORETICAL METHODS USED IN MOLECULAR DYNAMICS 

SIMULATIONS 

The goal of this chapter is to give a brief description of the essential 

elements used by us in construction of the potential-energy surfaces, integration 

of classical trajectories, Monte Carlo simulations, and in analysis of trajectories. 

In every particular case, the numerical analysis was performed using specific 

computer codes written by us, excepting the ab initio calculations which were 

done using the standard Gaussian 92 package of programs.12 

General Aspects of Potential-Energy Surfaces 

The Concept of Potential-Energy Surface 

The molecular dynamics simulations are performed assuming the validity 

of the Born-Oppenheimer approximation,13 which states that the Schrodinger 

equation for a molecule can be separated into a part describing the motions of 

the electrons and a part describing the motions of the nuclei. Moreover, these 

two sets of motions can be independently studied. In addition, it is assumed 

that the motion of the electrons is very fast relative to the nuclear motion, such 

that the energy of electrons may be computed in the field of stationary nuclei by 

solution of the time-independent Schrodinger equation. In molecular dynamics, 

the motions of the nuclei are studied without explicit examination of the 

electrons. In this case, the ground electronic state of the molecule will be a 
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function of the nuclear positions. For a system of N nuclei, the hypersurface 

which describes the potential energy in terms of the nuclear positions is called 

the Born-Oppenheimer surface. In the particular case of molecular dynamics, 

this surface is termed potential-energy surface.14 The investigation of the 

motion of nuclei on this potential surface is the objective of molecular dynamics 

simulations. 

Important Topological Regions of the Potential-Energy Surface 

As defined above, the potential-energy surface for a molecular system 

can be described in terms of the positions of the nuclei. This can be done using 

a set of orthogonal coordinates, usually Cartesian coordinates, or a set of 

internal coordinates such as bond lengths, bond angles or dihedral angles. 

Generally, a potential-energy surface presents a number of local minima which 

correspond to different equilibrium structures. These structures can represent 

different molecular conformations, different isomers, or the reactant and product 

molecules. 

These local minima are connected by an infinite number of different 

energy paths, but under most circumstances, configuration points close to the 

minimum-energy pathway will be followed in a given reaction. In the case of a 

potential-energy surface which describes a chemical reaction, it is therefore 

important to determine the minimum-energy path between the reactants and 

products. Particularly, the characterization of transition-states or first-order 

saddle points is of prime inJerest. On a multidimensional potential-energy 

surface, a first-order saddle point is defined as a point which is a maximum in 

one and only one direction, and minimum in all of the remaining independent 

directions.15 

In conclusion, a main goal in describing the potential-energy surface for 
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a given molecular system is the accurate location of the stationary points 

corresponding to reactants and products, and of the transition states along 

different reaction coordinates. 

Types of Data Used in Potential-Energy Surface Construction 

In the case of molecular dynamics, the Born-Oppenheimer surface for the 

nuclei is approximated by a set of parametrized potential functions to obtain the 

best fit of calculated and experimental properties of the molecules. These 

properties generally include the geometrical configurations and fundamental 

vibrational frequencies for reactants and products, thermochemical data (such 

as heats of formation, reaction endo- or exothermicities) and kinetic data (such 

as reaction rate constants, relative and absolute yields, or activation energies). 

A simplified way to describe the potential-energy surface for molecular 

systems is the use of molecular mechanics force fields.14,16-18 In this case, it is 

assumed that the force constants and the set of adjustable parameters 

optimized for a limited set of molecules can be transferred to other molecules. 

Currently, the available force fields for aliphatic hydrocarbons, such as MM216 

or MM317, 18 are adequate to describe with reasonable agreement the 

structures, heats of formation, conformational energies and rotational barriers. 

However, the assumption of transferability of the set of molecular parameters 

between different molecules should be analyzed in each case. Another 

disadvantage of these potentials is related to the fact that they can be used only 

for the study of equilibrium states since their accuracy for configurations far 

removed from the stationary points is low. Consequently, they are not useful in 

the study of molecular dynamics. 

The approach adopted by us is to construct specific potential-energy 

surfaces for individual molecular systems which are able to reproduce not only 
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equilibrium state properties, such as geometrical structure, enthalpy of 

formation or fundamental vibrational frequencies, but at the same time, data 

related to transition-state geometries, experimental activation energies or 

reaction profiles. Even though this procedure is more laborious than that used 

in molecular mechanics force fields, the complexity of the systems under 

investigation· requires this approach to the problem. 

Information Obtained Using Ab lnitio Calculations for 

Potential-Energy Construction 

A significant part of the work performed in the construction of potential

energy surfaces for different molecular systems is related to ab initio 

calculations. The purpose of these calculations is to extract the necessary 

information for a more comprehensive description of different points on the 

molecular potential surface. Consequently ab initio calculations constitute an 

important additional tool in molecular dynamics methodology. 

A significant difficulty in the construction of a realistic potential-energy 

surface is encountered in those cases when different experimental studies 

present results with significant differences or when the necessary data to 

construct such potentials are not available. In particular, this is the case for the 

majority of reaction transition states or biradical states, which are difficult to 

probe experimentally. 

We have used ab initio molecular orbital calculations for four main types 

of computations: a) geometry optimization for equilibrium and transition states; 

b) fundamental vibrational frequencies; c) bond dissociation energies; and d) 

determination of the enthalpy of formation. In all these cases, standard ab initio 

calculations have been performed using the Gaussian 92 package of 

programs.12 
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Eguilibrium and Transition States Geometries 

In the case of equilibrium states, the general methodology is to obtain 

the optimized geometries at the Hartree-Fock (HF)19 level using the internal 

basis sets 6-31 G* or 6-31 G**. 20,21 In this case, the term "optimization" refers to 

finding the minimum on an energy surface using a series of grid-points that 

explore the surface and converge to a local minimum. A geometry optimization 

begins at the initial molecular structure given as input, it computes the energy 

and the gradient at that point, and then determines the direction and the 

maximum size for the next step. A list of energy or gradient algorithms used in 

these calculations can be found in Ref. 22. The calculation is complete when 

the forces and the root~mean-square of forces are zero (within a given 

tolerance), and when the calculated displacements and their root-mean-square 

for the next step are below a cutoff value. 

In the HF approximation, each electron moves in a field which is the 

average over all other electrons. However, in the real situation, the motion of 

electrons is correlated such that the movement of every electron is influenced 

by the instantaneous positions of all other electrons. These limitations cause 

calculated HF energies to be above the exact values. In order to consider 

electron correlation, specific methods, such as limited configuration 

interaction19 or Moller-Plesset (MP) perturbation theory20 should be used. 

Extensive application of the above methodology for molecules having 

two to five heavy-atoms has been shown to give results in very close agreement 

with experimental data. For example, it has been shown that at the MP2/6-31 G* 

level, the mean absolute deviation between the calculated and experimental 

bond distances for a series of 16 two-heavy-atom hydrides is only 0.019 A for 
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multiple bonds.19 Moreover, while the MP2/6-31 G* bond lengths are greater 

than the corresponding experimental results, the magnitude of the differences is 

smaller than that corresponding to HF/6-31 G* values.19 

In most ab initio calculations performed to obtain the structures and 

energies of different molecules at a local minimum or at a transition state, we 

have followed this two-step procedure, i.e. the geometry is first optimized at the 

HF/6-31 G* level and then refined at the MP2/6-31 G* level. Our results for a 

number of intermediate-size molecules such as cyclopropane, cyclobutane, 

diazetine, ethylenediamine, bicyclo(2.1.0)pentane and 2,3-diazabicyclo(2.2.1) 

hept-2-ene show close agreement between the calculated and accurate 

experimental geometrical parameters. In addition, we have determined the 

optimized geometry of diazenyl biradical involved in thermal decompostion of 

2,3-diazabicyclo(2.2.1 )hept-2-ene for which no experimental data are available. 

Calculation of Fundamental Vibrational Freguencies 

The second type of information obtained from ab initio calculations are 

the surface curvatures which are related to the vibrational frequencies of the 

corresponding normal-modes. It is well known that in vicinity of a critical point, 

where all first derivatives are zero, the energy surface can be approximated as 

where 

E(q)= Eo + (1/2) L fii (qi-qiO)(qrqiO) 
i,j 
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Here qio and qi refer to the coordinates of the stationary point and of the 

geometry of interest, respectively. The force constant matrix, F, also called 

Hessian matrix, can be calculated either directly, using analytical second 

differentiation, or by numerical first differentiation of analytical first derivatives.15 

For a given molecule, the harmonic vibrational frequencies can then be 

determined as a solution of the secular F-G matrix equation, 23 

det(FG- Al)=O (11.3) 

where G-1 is the kinetic energy matrix and I is the unit matrix. The vibrational 

frequencies are related to the eigenvalues A of Eq. (11.3) by the relation 

A=(2nv)2. In mass-weighted coordinates, the G matrix is proportional to the unit 

matrix and the normal coordinates are the eigenvectors of the F matrix. 

Several important points are related to the calculation of fundamental 

frequencies. First, these frequencies are used to give a better characterization 

of the stationary points on the potential surface. This means that at local 

minimum, all vibrational frequencies should be real, while at first-order saddle 

points a single imaginary frequency should be found. In addition, the 

vibrational frequencies can be used to evaluate thermodynamical properties, 

such as reaction entropy or equilibrium isotope effects, or to determine 

temperature corrections of thermochemical data evaluated at O Kand zero-point 

energy .19 Analysis of the corresponding normal-eigenvectors offers the 

possibility of identifying the types of motion associated with a given vibrational 

mode and further, the assignment of spectra. 

Extensive computations of vibrational frequencies for polyatomic 

molecules 19,24-30 using ab initio calculations have shown that the results 

consistently larger by 10-15 % than the measured values. In order to correct 
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this overestimation of the calculated vibrational frequencies, different scaling 

factors have been proposed. It is generally accepted that at the HF/6-31 G* 

level, the fundamental frequencies should be uniformly scaled by a factor of 

0.8929,27,29,30 while at the MP2/6-31 G* level, the corresponding correction 

factor is 0.94.26 However, schemes which differentiate the scaling factors for the 

stretching modes relative to all the other modes have also been proposed.24,25 

We found good agreement between the scaled ab initio frequencies and 

the experimental data in the case of bicyclo(2.1.0)pentane. In addition, in the 

case of 2,3-diazabicyclo(2.2.1 )hept-2-ene molecule and the corresponding 

diazenyl biradical, the use of ab initio calculations is the only reliable source for 

the vibrational frequencies. The detailed results of these calculations are 

presented in Chapters IV and V. 

Calculation of Bond Dissociation Energies 

The third category of data extracted using ab initio calculations is related 

to bond dissociation energies. It has been shown 19 that the use of Hartree

Fock theory for direct calculation of the energy of a hemolytic dissociation 

process A-B -> A + B gives poor results relative to the experimental values. 

This fact can be easily understood since the correlation energy correction for 

the electrons forming a bond is a significant fraction of the total bond 

dissociation energy. Due to the fact that the correlation energy is omitted in 

Hartree-Fock calculations, it is expected that smaller dissociation energies will 

be obtained. This is due to the different error levels for the bonded A-B system 

and for the separated A and B system. 

A first method to improve the accuracy of the calculated bond

dissociation energies is the treatment of the correlation effects using a second

order Moler-Plesset (MP2) expansion or the successively higher order MP3 and 
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MP4 calculations. For one-heavy-atom hydrides comprising first-row elements, 

the general difference between the calculated and experimental data is within 

1 O kcal/mol.19 The quality of these results can be further improved by using 

larger basis sets and levels of correction. For example, in the case of methane, 

the bond dissociation energy calculated at the MP4/6-311 G** theoretical level 

differs by only 1.4 kcal/mol from the experimental value.19 However, 

calculations of bond-dissociation energies beyond fourth order in Moller

Plesset perturbation theory are not practical for large molecules. 

In our calculations, we have determined the cyclopropyl-H, cyclobutyl-H 

bicyclo(2.1.0.)propyl-H, bicyclo(2.1.0)butyl-H and bridgehead bicyclo(2.1.0)

pentane-H bond dissociation energies using the calculated energetical values 

at the MP4/6-31 G* level. The corresponding results will be presented in 

Chapter IV. 

More precise procedures developed for computation of the total energies 

of molecules at their equilibrium geometries are represented by Gaussian-1 

(G1 )30 and Gaussian-2 (G2)31 procedures. The main idea of these methods is 

to replace very large calculations at the QCISD(T)/6-311 +G(2df) and 

QCISD(T)/6-311 +G(3df,2p) levels with a succession of much smaller and 

correspondingly much faster calculations. The individual steps involved in 

these calculations are described elsewhere.30,31 For a set of 31 molecules, it 

has been found that the total atomization energies agree with experimental 

thermochemical data to an accuracy greater than 2 kcal/mol in case of G1 

theory, and 1.21. kcal/mol for G2 theory.30,31 However, the use of these 

methods for large molecules is still impractical. 

Calculation of Enthalpies of Formation 

The molecular energies and vibrational frequencies calculated using the 

13 



methods presented above can be further used to evaluate theoretically 

thermochemical data. In those cases where such experimental data are not 

available, theoretical methods constitute a reliable alternative to a speculative 

guess. As an illustration, we consider the case when the enthalpy of formation 

needs to be determined. In this case, a convenient method of calculation is the 

use of thermochemical cycles where all the enthalpies of formation except one 

are known.32 For a reaction of the general form 

A+B -->C+D, (11. 4) 

it follows that 

~Ht(A) = ~Ht(C) + ~Ht(D) - ~Ht(B) - ~ER I (11. 5) 

where 

~ER = (Ee+ Eo - EA - Es) + (TCc + TCo - TCA - TCs) . (11. 6) 

Here Ea is the total electronic energy and TCa is the corresponding thermal 

correction. For a polyatomic molecule, with the assumption of ideal gas 

behavior, the thermal corrections at temperature T from O K can be evaluated as 

normal 
modes 

TC= 4RT + NA ""' hvi 
L.J ehVj/kT _ 1 

(11. 7) 

where R is the ideal gas constant, k is the Boltzmann constant, h is the Planck 

constant and NA is Avogadro's number. For a linear molecule, the 4RT term in 
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(11.7), which includes translational, rotational and work term contributions, 

should be replaced with (7/2)RT. 

Two general rules are considered in this type of calculation. The first is 

related to the selection of working reactions which present the greatest degree 

of similarity between reactant and product sides. A good choice will minimize 

correlation· effects by their mutual cancellation. The second rule states that as 

large as possible basis sets should be used, along with high-level correlated 

methods. Accuracy within few kcal/mol has been reported using the above 

methods. 33,34 

We employed this method, with energy determined at the G1 level, for the 

case of the diazetine molecule (see Chapter IV), for which the experimental 

enthalpy of formation is not available. 

Procedures for Potential-Energy Surface Fitting 

Analytical Functional Forms Used in Description of Potential Interactions 

The use of theoretical dynamics methods in the study of a given 

molecular system assumes knowledge of the energy and its gradient for each 

point on the potential-energy surface. This means that, in principle, every 

method able to generate these two essential quantities for each molecular 

configuration can be a valid candidate for dynamical studies. 

From this point of view, the first choice would be the use of ab initio 

molecular orbital calculations. To the best of our knowledge, full trajectories 

calculations on ab inito potential-energy surface have not yet been reported for 

systems with more than 4 atoms. Instead, ab initio methods have been 

employed to evaluate the molecular energy and the energy derivatives only at a 

limited number of points. The potential surface is then generated by different 
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fitting procedures35-38 or by the moving interpolant technique.39 

The second alternative in obtaining the energy and its gradient is the 

development of a set of analytical potential functions able to fit the main features 

of the potential-energy surface.40 In this case, the molecular potential is written 

as a superposition of empirical functions for each of the valence internal 

coordinates, such as bond lenghts, bond angles and dihedral angles. This is 

the procedure used in the present work to describe polyatomic systems such as 

bicyclo(2.1.0)pentane, 2,3-diazabicyclo(2.2.1 )hept-2-ene or the diazenyl 

biradical. In these cases, the total molecular potential for states close to the 

equilibrium configuration is taken to be 

V = L V(rj} + L V(Si) + L V(tj}. (11.8) 
bonds angles torsions 

Here, the V(ri) term is the bond stretching potential for a bond with distance (ri), 

V(Si) represents the bending potential corresponding to the bond angle Si and 

V(ti) is the dihedral potential associated with the torsional angle (ti). 

For bond stretching potentials, Morse-type functions have been 

employed 

V(r) = D{exp[-2~ (r-rO) ]-2exp[-~ (r-rO)]} , (11.9) 

where D is the potential well depth, ~ is the curvature parameter and rO is the 

equilibrium distance. The parameters D and ~ are related to the harmonic force 

constant kr by the relation 

kr=2D~2. (11.10) 
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The bending potentials in Eq. (11.8) have the quadratic form 

V(0)= 0.5 ka (0-00)2 , (11.11) 

where ka is the force constant associated with the bond angle 0, which has the 

value 00 at equilibrium. 

For the torsional potential terms, different types of representations have 

been used, depending on the particular torsional configuration. In the cases 

when the dihedral angles are zero at equilibrium, the following functional forms 

have been employed41,42 

V(t)= 0.5 kc t2 (11.12) 

and 

(11.13) 

In Eq. (11.12) kt is the torsional force constant corresponding to the dihedral 

angle t. For a dihedral angle determined by a set of four atoms a-'Jf-y-8, the 

angles 01 and 02 in Eq. (11.13) represent the bond-angles a-'l'-Y and 'Jf-y-8, 

respectively. The advantage of the functional form given in Eq. (11.13) is that the 

torsional potential decreases to zero when either of the two angles 01 and 02 is 

equal to 180° and the dihedral angle is no longer defined. 

In the cases when the equilibrium dihedral angle is different from zero, 

the analytical form (11. 13) was replaced by 

(11.14) 
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where 'to represents the equilibrium value of the dihedral angle. 

In those cases when the torsional potential shape is a symmetric double

well, a convenient analytical representation can be obtained using a truncated 

cosine series.43 The use of this method is dependent on knowledge of the 

torsional barrier values and torsional frequencies. We have used a cosine 

series expansion for the potential term describing the flap motion in the skeletal 

inversion of bicyclo(2.1.0)pentane molecule. In this case, the flap potential 

shape as function of the flap angle contains two symmetric wells corresponding 

to equilibrium angles ±'tequil. and an additional well centered at 't=O. Details of 

this calculation are presented in Chapter IV. 

Connecting Important Regions on the Potential Surface 

The analytical forms given in Eqs. (11.8-11.14) can be successfully used to 

fit the potential surface for regions around different equilibrium states. However, 

in the practical cases involving reactions, the general form of the potential 

should be able to describe not only these local minima, but, at the same time, 

the intermediate regions which connect these minima. In particular, as it has 

been noted in the previous sections, the correct description of the region around 

the saddle points is of prime interest. 

A general procedure used to perform such connections on the potential

energy surface is the use of switching functions. These functions, which 

depend on the variables associated with the motion of the system along the 

reaction coordinate, should be continuous and have continuous first derivatives. 

In addition, their asymptotic limits should lead to the proper description of the 

critical points on the potential-energy surface. In addition, it is highly desirable 

that the switching function be sufficiently flexible to permit adjustment of the rate 

of variation between the asymptotic limits. 
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Generally, the switching functions can operate upon the global potentials 

describing different reaction channels or alternatively, on the individual terms of 

a given potential. 

In the former case, for a total potential described as 

V = VR + (VP - VR) S(y) , (11.15) 

a continuous monotonical variation of the switching function S(y) between the 

limits O and 1 will determine a corresponding variation of the total potential 

between VR (reactants) and VP (products). Here, y represents the set of 

variables associated with motion along the reaction coordinate. 

When modifications of the geometrical parameters, force constants or 

bond dissociation energies are needed along the reaction coordinate, the 

action of the switching functions can be limited to these parameters. In these 

cases, a form similar to that in (11.15) should be used with the parameter of 

interest instead of the potential values V. 

The particular functional forms of the switching functions used in our 

studies were either hyperbolic tangent or exponential. The specific forms will 

be described in the appropriate sections of Chapters IV and V. 

Force Constant Fitting Procedures 

After the analytical potential terms have been chosen, the next step is to 

fit the potential parameters to the totality of geometrical, thermochemical, 

spectroscopic and kinetic data available for a given system. 

In the first step of this procedure, the equilibrium coordinates are set 

equal to the corresponding experimental or ab initio calculated data. In 

addition, the experimental or ab inito calculated bond dissociation energies are 
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assigned to the corresponding terms in the Morse potential. The second step of 

the procedure consists in iterative adjustment of a trial set of force constants, 

such that the normal-mode frequencies fit the experimental or ab inito values. 

This step is generally achieved by direct normal-mode analysis23,44 or by 

power spectra calculations. When the frequency assignments are known, the 

simplest choice is to adjust the stretching frequencies first (by using only the 

curvature parameters in Morse potentials) and to proceed to the adjustment of 

the other modes. The final step of the fitting procedure is related to adjustment 

of the switching function parameters. Depending on the type of modification 

needed (geometrical or energetic), these parameters are iteratively adjusted to 

reproduce either specific geometries, as in the case of transition states or 

products of reaction, or different barrier heights or reaction profiles. At the end 

of this step, it is often neccesary to refine again the set of force constants. 

The initial stage of the fitting procedure is terminated when the following 

four types of tests are passed: 

The first test is related to verification of equality of the numerical and 

analytical derivatives of the potential for different molecular configurations. In 

addition, the initial reference states should be obtained upon back-integration of 

a trajectory. 

Second, the equilibrium geometries predicted by the potential should be 

determined using the damped trajectory method.45 In this procedure, the atoms 

are initially placed in a configuration near the local minimum being sought, with 

all initial momenta set to zero. The Hamiltonian equations of motion are then 

integrated until the total kinetic energy attains a maximum value. At this instant, 

the integration is halted and the momenta of all atoms are again set equal to 

zero. This procedure is repeated until the system converges to a local potential 

minimum. 
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At the equilibrium state, the set of fundamental frequencies and the 

corresponding zero-point energy are determined, using normal-mode analysis. 

The calculated values need to be in close agreement with experimental or ab 

inito determined data. 

Knowledge of the potential values at the equilibrium geometries for 

reactants and products, together with the corrresponding zero-point energies 

can be further used to determine the heats of reaction. The necessity of close 

agreement of the calculated data with theoretical or experimental values 

represents the fourth test of the potential. 

After the results of trajectory calculations on a given potential-energy 

surface are available, other small modifications of the potential parameters, 

especially those related to potential barrier, may be necessary in order to adjust 

the calculated reaction rates to experimental values. However, in these cases, 

the consequencies of energetic parameter modification on the other potential 

characteristics (see steps 2-4 of the testing procedure ) should be reanalyzed. 

Classical Trajectory Method 

Selection of Initial Conditions. The Projection Method 

The first step of classical trajectory calculations is related to the choice of 

initial conditions. In our studies, we were interested in the investigation of 

isolated molecular systems with a given total excitation energy, initially 

distributed over the vibrational degrees of freedom. For this purpose, we have 

used the projection method proposed by Raff.46,47 

The starting point of this method takes into account the fact that the 

instantaneous Cartesian velocities can be related to the normal mode velocity 

vectors by a set of normalized projection vectors. In matrix form, this can be 
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written as 

q( t) = L Q ( t) , (11.16) 

where L is the (3N x 3N) square matrix of the normalized projection vectors, 

q(t) is a (3N x 1) column vector whose elements are the Cartesian velocities, 

and Q (t) is a (3N x 1) column vector whose elements are the vibrational normal 

mode, center-of-mass, and rotation velocities. Considering Eq. (11.16), the 

normal-mode velocities are given by 

(11.17) 

The corresponding total kinetic energy T(t) may be written as a superposition of 

individual mode kinetic energies (Tj): 

3N 3N 

T(t) = L Ti(t) =Lai Of(t) 
j=1 j=1 

Here the mode constant ai is defined as 

3N 

ai=o.simiLff. 
i=1 

(11.18) 

(11.19) 

For the purpose of trajectory calculations, zero-point energy is first 

inserted into the molecule. This determines the initial normal-mode velocities, 

from which the initial Cartesian velocities are then computed using Eq. (11.16). 

The trajectory is then integrated for a random period of time t*. At this moment, 
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the trajectory is halted and the instantaneous normal-mode velocities are 

determined using Eq. (11.17). The system excitation can now be done by 

pumping a given vibrational mode j with energy Ep, such that its total kinetic 

energy becomes 

(11.20) 

The new normal-mode velocity 6j (t*) is then calculated as 

(11.21) 

and the corresponding Cartesian velocities are obtained from Eq. (11.16). From 

this point, taken as the time origin, the dynamics are followed using trajectory 

integration. 

A first advantage of this procedure is that the energy can be initially 

inserted either at random over vibrational modes, or into a given mode. In 

addition, this method is very useful for studies related to intramolecular energy 

transfer rates, which can be determined by monitoring the time variation of the 

projected normal mode velocities. 46,47 

Integration of Trajectories 

After the selection of initial conditions, the trajectories for a system of N 

atoms are obtained by integration of the Hamiltonian equations of motion 1,44 

aH(p,q) . 
----q· apj - I 

(i=1,2, ... ,3N) (11.22) 

23 



and 

a H(p,q) . 
-----p· dqj - I 

(i=1,2, ..... ,3N), (11.23) 

where H(p,q) is the Hamiltonian of the system, and p and q are the set of 6N 

generalized coordinates. Integration can be done using a variety of numerical 

methods.1,2 In our calculations, we have used the fourth-order Runge-Kutta 

method, 1 in a space-fixed Cartesian coordinate system. The trajectory is 

integrated until it reaches a region of phase space identified with the product 

states, or until a maximum time limit is reached. 

The equations of motion (11.22) and (11.23) are valid for those cases when 

the motion of the molecular system is governed only by the interatomic forces 

derived from the potential-energy surface. However, in some cases it is 

necessary to impose constraints on some of the internal variables of the system. 

These constraints require the modification of Hamilton's equations of motion to 

include the effect of appropriate virtual forces upon the system. This can be 

conveniently done using Lagrangian multipliers.1.44 

For a N-atom system with m constraints written in the form 

3N 

Iajiaqi =o. 
i=1 

U=1,2, ..... ,m) 

the modified Hamiltonian equations of motion become 

and 

24 

(11.24) 

(11.25) 



(11.26) 

where the Ai (i=1,2 .... ,m) are the Lagrangian multipliers. It can be shown1 that in 

this case, the general solution of the system (11.25) and (11.26) can be obtained 

iteratively by determining at each step the values aji and aji, computing the 

values of Ai by solving a set of m linear algebric equations, and then executing 

a numerical integration step. The detailed procedure can be found in Refs.1 

and 48. 

We have used this method to execute damped trajectories with 

constraints on the bond lengths. If the bond to be constrained connects two 

atoms (k and I), characterized by the set of coordinates {q3k+m}m=1,2,3 and 

{q31+m}m=1,2,3, then the coefficients aji in (11.24) corresponding to this constraint 

are 

(m=1,2,3) (11.27) 

and 

aj,31+m = -aj,3k+m (11.28) 

with all other aji=O, i*{3k+m, 31+m}m=1,2,3. 

Analysis of Trajectories 

In our studies, the analysis of trajectories was primarily related to 

calculation of first-order rate coefficients, intramolecular energy transfer 
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analysis, investigation of the reaction mechanism, and final energy distribution 

over the reaction products. In addition, power spectra calculations of the 

internal coordinates have been used to qualitatively test the 

statistical/nonstatistical character of the reactions. We begin this section with a 

brief presentation of the theoretical environment in which we analyzed the 

reactions of interest. 

RRKM theory 

To date, much evidence49 shows that the results of classical trajectory 

calculations of the intramolecular dynamics of vibrationally excited molecules 

agree with similar data obtained using both quantum mechanics and 

semiclassical theories. This indicates that when an accurate potential-energy 

surface is available, classical trajectories can be used to provide accurate 

information about the type of dynamics obeyed by the system. A particular role 

is played by classical trajectory calculations in investigation of the unimolecular 

reaction dynamics.1,49,50 

For an ensemble of molecules, each vibrationally excited with energy E, 

unimolecular decomposition has a random probability51, such that the number 

of undissociated molecules N(t) and the probability of decomposition P(E,t) at 

time tare 

N(t) = N(O) exp[ -k(E)t] (11.29) 

and 

P(E,t) = k(E) exp[ -k(E)t] (11.30) 
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In practical calculations, the rate coefficients k(E) can be extracted by fitting the 

distribution of lifetimes to equation (11.29), where the number of particles N(O) 

and N(t) are replaced by the total number of trajectories in the ensemble and 

the number of undissociated trajectories at time t. 

The main theory used to describe the statistical decomposition of 

unimolecular reactions is that developed by Rice, Ramsperger, Kassel and 

Marcus (RRKM).52 

The reaction scheme used in RRKM theory consists of the following 

steps: 

A+M AE dE + M 
I 

(11.31) 

A* M k2 'A+ M E,dE + ' (11.32) 

k+ 
A+ ---Products. (11.33) 

The mechanisms (11.31) and (11.32) correspond to the activation and deactivation 

processes of the molecule A. Here AE. dE is the concentration of A molecules in 

the system with energy between (E,E+dE) and M can represent a product 

molecule or a second molecule of reactant. The process (11.33) shows that from 

an energized state A* to products, the molecule should pass through a critical 

configuration A+. 

In RRKM theory, the determination of the microscopic unimolecular rate 

constant ka(E*) is based on several assumptions.49,52 In contradistinction to 

RAK theory,52 which considers the molecule as an ensemble of classical 

oscillators, RRKM theory uses the quantum-statistical-mechanic treatment for 

the normal modes of vibration. It is also assumed that for the molecular 
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energetical range (E,E+dE) there is an equilibrium between the molecules 

which are and are not in the critical configuration. This implies that the flux from 

A+ towards products is equal to the flux from A+ toward A* and consequently, 

the intrinsic rate constant for decomposition of A* is given by 

(11.34) 

where v is the frequency of passage from A+ and [A+]/[A*] is the concentration 

ratio of critical configurations to energized molecules. The relation (11.34) is 

valid in the hypothesis that vibrational energy redistribution within the energized 

molecule is much faster than the unimolecular reaction. This means that all 

vibrational quantum states of A* have equal probabilities per unit time of 

proceeding to products. 

In order to evaluate the k+ rate, the reaction is considered to take place 

along a critical coordinate. In this case, the motion along this critical coordinate 

can be described as a translational motion. 

Based on these assumptions, it is shown49-53 that the general 

expression for the microscopic unimolecular rate constant has the form 

k ( E) = G+ ( E - Ea ) 
a h N(E) 

(E;?: Ea) (11.35) 

where Ea is the critical energy for reaction. In Eq. (11.35), G+(E-Ea) represents 

the sum of states for the activated complex with energy equal to E and N(E) is 

the density of states for reactants at total energy E. 

In principle, the evaluation of the quantities in (11.35) can be done by 

exact counting procedures.52,53 However, for large values of E, approximate 
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procedures, such as Laplace inversion of the partition function or empirically 

fitted functions (for example the Whitten-Rabinovitch approximation) to 

approximate the results of exact counting, have been developed.52,53 

In the study of unimolecular reactions, the RRK expression for the 

microcanonical rate constant52 it is often used: 

k(E) = v [ (E-Eo)/E JS-1 (11.36) 

where Eo is the critical, minimum energy required for dissociation and s is the 

number of oscillators in the system. In the RRK theory, the molecule is 

considered to contain s independent oscillators and the unimolecular reaction 

takes place only if a given oscillator has an energy E larger than the critical 

amount of energy Eo. 

For unimolecular reactions, the rate coefficients at internal energy E 

obtained from trajectory calculations can be fitted with an equation of the type 

(11.36). In this case, the parameter s is the number of "effective" degrees of 

freedom participating in the reaction, and v is the frequency factor or high-

energy limit of the rate coefficient. The value of the s parameter is related to 

entropy effects.54 For large s values, the internal energy of the system available 

for motion along the reaction coordinate will tend to spread over more internal 

degrees of freedom, reducing the probability that a particular coordinate attains 

the necessary energy Eo for decomposition. 

Non-Statistical Behavior 

The basic assumption of RRKM theory is that a complete randomization 

of the internal energy takes place prior to reaction. This means that the 

energetically accessible phase space of the system is fully explored on a time 
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scale that is short relative to the reaction time. 

It is clear that when transitions between vibrational states of a molecule 

are slower than transitions leading to products, an "intrinsic" nonstatistical 

behavior occurs. 49,50 This is equivalent to the fact that the molecular phase 

space presents at least one additional bottleneck other than the one defining 

the critical configuration. Examples of such systems are low-barrier processes 

in conformer transformations.55,56 

Nonstatistical behavior can also be found for nonrandom excitation of the 

molecular vibrational states. This case was called "apparent" non-RRKM 

behavior by Hase and Bunker.57 If the RRKM model were valid for these cases, 

the randomization of the initial vibrational excitation energy would take place in 

a negligibly short time period. However, in practical cases it was found that the 

probability of a short lifetime with respect to reaction can be enhanced or 

reduced, depending on the initial location of the excitation energy within the 

molecule. Examples of both intrinsic and apparent non-RRKM unimolecular 

reactions can be found in Refs. 49,50,57. 

It is important to point out that the existence of an energy-decay rate out 

of a given bond that is fast relative to the unimolecular reaction rate is not a 

sufficient condition to guarantee that the statistical dynamics assumption will 

hold. That is for a particular molecular system, it might found that the 

intramolecular vibrational rate out of a given set of modes is fast relative to the 

unimolecular reaction rate but that the energy remains confined within a small 

subset of modes rather than becoming completely randomized over all internal 

degrees of freedom. In such a case, non-statistical dynamics will be the results. 

For example, it was found47,54,58-61 that the unimolecular bond cleavage 

processes in disilane and 1,2-difluoroethane are nonstatistical even though the 

reaction rates were much smaller than the intramolecular energy transfer rate 
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out of Si-H, C-F, or C-H vibrational modes. 

In a comparative study of statistical and nonstatistical behavior for bond 

fission reactions in 1,2-difluoroethane, disilane and the 2-chloroethyl radical, 

Sewell et a/.62 presented some general factors favoring nonstatistical dynamics 

in large polyatomic molecules. These factors are: 

(1} The internal energy is close to the dissociation threshold. This case 

takes place for polyatomic molecules where the ergodic threshold is 

significantly above the dissociation limit. 

(2) Motion along the reaction coordinate does not produce large 

energetic changes in one or more bonds in the remainder of the molecule. For 

the systems where such energetic changes takes place, there is an increased 

coupling between the reaction coordinate and the remainder of the molecule. 

This leads to increased intramolecular vibrational rates and a corresponding 

decrease in the reaction rates, which diminish the nonstatistical effects. 

(3) There exists a formation coordinate for the activated reactant that is 

strongly coupled to the dissociation coordinate, but only weakly coupled to the 

other internal coordinates of the molecule. This principle has been initially 

introduced by Newmann-Evans et a/.63 to explain the nonstatistical behavior of 

the branching ratio of the products obtained in thermal rearrangement of 1- and 

2-phenylbicyclo[2.1.1 ]hex-2-enes-5-d and trans-2-methyl-1-(trans-2-phenyl 

ethenyl}cyclopropane. It was argued63 that, if the reaction coordinate for 

formation of the intermediate were weakly coupled to all of the exit channels, it 

would be expected that statistical selection of the channels took place, as 

predicted by the RRKM theory. 

Detailed analysis of the factors above presented for different 

experimental and theoretical studies of nonstatistical reactions can be found in 

Ref. 62. 
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Mode Energies 

A problem of prime interest in classical dynamical studies is related to 

determination of the temporal variation of mode energies and calculation of the 

intramolecular energy transfer rates.46,47,59,64-67 In the bond or local-mode 

energy formulation,59,64-67 the main difficulty is related to the arbitrary definition 

of the bond energy, which generally assumes a mode separability which does 

not exist. In other words, many of the potential coupling terms involving the 

mode coordinates are eliminated. In particular cases when the potential or 

kinetic energy includes large coupling terms, the temporal variation of the mode 

energy may not accurately represent the actual intramolecular energy transfer 

that takes place. 

An alternative procedure, which eliminates the necessity of arbitrarily 

defining a bond or mode energy was introduced by Raff.46,47 The idea of the 

method is to use the kinetic energy, represented in the normal mode velocity 

system, instead of the total energy. This eliminates the influence of the 

potential-energy function coupling terms. The representation of kinetic energy 

in normal mode velocity coordinates can be done using the previously 

described projection method. In this case, the kinetic energy is diagonal and 

consequently, there are no coupling terms. The intramolecular energy transfer 

can be analyzed as a function of the time variation of the projected normal 

mode velocities. The total average energy in a given mode is then determined 

using the virial theorem, which states that the average total energy is 

equipartitioned between the kinetic and potential energy. From relation (11.18), 

the average total energy in a mode i is calculated as 
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t0 +~t t0 +~t 

(Ei)t=t* = 2(L1t]-1 f Ti(t)dt = 2[L1t]-1 f ajC~f(t)dt , (11.37) 

where t* represents a time in the interval to < t <to+ l1t. 

We used this method to follow the intramolecular energy flow in 

bicyclo(2. 1.0)pentane after the initial excitation of the flap mode. At given time 

intervals during trajectory calculations (generally 1 O time units (t.u.), where 

1 t.u.= 1.018 x 1 o-14 sec.), the trajectory is halted and the normal mode 

velocities Q(t) and individual mode kinetic energies are computed based on 

Eqs. (11.17) and (11.18). The time dependence of the mode kinetic energies 

makes it possible to follow the pathways of intramolecular flow and estimate the 

flow rates. 

Power Spectra 

A convenient way to obtain a more realistic description of the vibrational 

frequencies of a given molecule is the use of power spectra. In contradistinction 

to normal-mode analysis which provides a correct description of vibrations only 

at small energies, the use of power spectra is adequate independent of energy. 

This makes power spectra a useful tool in dynamical studies. 

Noid et a/.68 used the vibrational classical trajectories of anharmonic 

molecules to obtain the power spectrum of the dynamical variables. It was 

shown that in the vibrational quasiperiodic regime, the spectrum consists of 

sharp lines at the frequencies of the underlying molecular motions, while in the 

ergodic regime the spectral lines are broad, with intensity spread over a wide 

band of frequencies. Based on these characteristics, it results that power 

spectra can be used to qualitatively investigate the phase space structure of 
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molecules. 

Sewell et aJ.69 have shown that for the polyatomic molecules C2H4, SiH4 

and CH30NO, the spectral mode identity is retained even well above the 

threshold for dissociation, such that the dynamics of these systems is not fully 

ergodic. Chang et aJ.70 have used power spectra as a diagnostic tool to identify 

the presence of nonstatistical dynamics. For the 2-chloroethyl radical, known to 

exhibit statistical dynamics,62 the spectrum appears diffuse with a nearly 

complete loss of isolated structures at energies near or above the threshold. 

These characteristics were attributed to a very high level of mode-to-mode 

coupling and large intramolecular vibrational redistribution rates. On the other 

side, for 1,2-difluoroethane which exhibits a nonstatistical dynamics,47 the 

power spectrum maintains its discrete, isolated character of spectral bands. 

Two different methods can be used to calculate the power spectrum of a 

given dynamical variable q(t). 62,68 The first procedure is to evaluate the Fourier 

transform of the autocorrelation function 

10 (ro)= [lC{t)exp(-irot)dt], (11.38) 

where C(t) is the ensemble averaged autocorrelation function 

C(t) = < x(O) x(t) > . (11.39) 

The second procedure is based on the use of finite Fourier transform of the 

variable q(t) 

lq(co) = lim ..!.[ JT q(t)exp(-icot)dt] 
2 

T--+oo T 
-T 
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For a quasiperiodic system, it can be shown that in the limit T->oo the quantities 

(11.38) and (11.40) are identical.68 Specific algorithms to evaluate either (11.38) or 

(11.40) can be found in Ref. 71. 

We have calculated the power spectra from classical trajectories by 

recording the time history of the internal coordinates from single trajectories and 

by Fourier transforming the set of reduced coordinates. The composite 

spectrum was then determined as a superposition of the power spectrum of 

individual spectra. The detailed aspects of this method are given in Chapter IV. 

Variational Phase-Space Theory Methods 

A systematic method to estimate the reaction rates for classical systems 

is represented by the variational theory of reaction rates.72 The basic idea of 

this theory is that a reacting system can be described by the motion of a 

representative point in the phase space of the system. For this purpose, the 

phase space is divided by a trial surface into regions which correspond 

approximately to reactants and products. Evaluation of the flux at which 

representative points pass through this surface in one direction will give a 

measure of the reaction rate. Since a necessary condition for a reaction to take 

place corresponds to crossing the trial surface at least once, it results that this 

method gives an upper limit to the true classical rate. In practical calculations, a 

set of different dividing surfaces dependent on a set of parameters is chosen. 

The minimum flux obtained from this set of surfaces represents the best 

approximation of the true reaction rate for the given range of parameters 

variations. 

In the case of an ensemble of systems, each containing n classical 

particles, the variation of the number of systems, N(i), which are in a given 

chemical state i is given by 
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aN 
at J div(pv)d.Q = - J p(v-n)dS 

Q(i) S(i) 

(11.41) -=-

where .Q(i) is the phase space corresponding to state i, S(i) is the surface 

bounding .Q(i), p = p(p,q) is the density of representative points in the 6n

dimensional phase space, and n is the unit outward normal to dS. Here the 

number of systems N(i) is determined by 

N(i) = J pd.Q 
Q(i) 

(11.42) 

The reaction rate at which the representative points cross the boundary 

between state i and final states f can be written as 

J p(v-n)dS J p(v-n)dS 

K = S(f,i) = _S"'"-(f,~i)-=----

N(i) J pd.Q 
(11.43) 

Q(i) 

where S(f,i) is that part of the boundary on which (v·n) > 0. 

We assume that the internal degrees of freedom of the reactants are in 

local equilibrium and can therefore be described by a Boltzmann distribution 

p = Po exp (-H/ks T) , (11.44) 

where H is the Hamiltonian of the system. 

Combining Eqs. (11.43) and (11.44), it results 
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J exp(-H/k8 T) (v-n)dS 

K = S(f,i) 

J exp(-H I ks T)dQ 
.Q(i) 

(11.45) 

A first requirement to evaluate the minimum flux as described by (11.45) is 

the choice of the dividing surface in phase-space S(f ,i) between the reactants 

and products. In the general case, this surface is expressed as a function of the 

6n coordinates and momenta that define the phase-space of the system and the 

flux should be minimized with respect to this function. However, due to large 

computational requirements necessary to solve numerically such problems, 

approximate forms of the dividing surfaces have been considered. 

In a study of recombination and desorption of hydrogen on Si(111) 

surface73, the dividing surface has been determined as a linear combination of 

coordinates that describe the motions of adatoms relative to the Si(111) surface. 

Particularly, only the normal distance of the H2 center-of-mass to the surface 

and the H-H separation have been considered in definition of the dividing 

surface. Rice et aJ.74 have employed circular cylinder, elliptical cylinder and 

hyperbolic cylinder dividing surfaces to determine the jump frequencies of 

hydrogen atoms on the Si(111) surface. It was found74 that the minimum flux 

determined using circular cylinders is approximately 50 % larger than those for 

elliptical and hyperbolic cylinders. Ford et aJ.75 have employed spherical 

dividing surfaces in a study of oxygen atom diffusion in Ar and Xe faced-cubic

centered matrices. The examples presented above show that in practical 

cases, simplified types of dividing surfaces, which are adapted to the symmetry 

of the problem investigated, can be used. 

In addition to the decision of the optimum dividing surface, the next 
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important step in evaluation of the rate constant is related to the calculation of 

the multidimensional integrals involved in Eq. (11.45). Monte Carlo methods 

provide a convenient procedure to approximate these multidimensional 

integrals. These methods are described in the next paragraph. 

Monte Carlo Methods 

Importance sampling 

Monte Carlo procedures employ stochastic methods to estimate the 

values of multidimensional integrals.1 o Such an integral of interest is that 

represented in Eq. (11.45), but equally important are the thermodynamic 

averages of an observable for a given ensemble. We detail the analysis for the 

case of a system of particles in the canonical ensemble. In this case, the 

expectation value of a given observable F(q) has the form 

J F(q)exp(-H(q)/k8 T)dq 

(F)==-n-=--~~~~~ 
J exp(-H(q)/k8 T)dq 
Q 

(11.46) 

where H(q) is the Hamiltonian of the system. Here q denotes a representative 

state in the phase space Q. The simple Monte Carlo approximant of (11.46) is 

calculated as 

L F(qv) exp (-H(qv )/ ks T) 

(F)z---=-v-,--~~~~~~ L exp(-H(qv)lks T) 
V 
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where a set of random points in the phase-space are chosen, instead of using 

a regular set of points (as in common integration methods). However, this 

method is not useful due to the fact that the Boltzmann factor exp(-H(qv)/ks T) 

has a very rapid variation with H(qv). Since only configurations with low 

energies make a significant contribution to the average (11.47), these 

configurations are unlikely to be found in a reasonable calculation time. 

The alternative procedure to the evaluation of integrals such as (11.46) is 

to concentrate the sampling in the regions of the phase space which have the 

most important contribution to the integrals. This can be done using the 

"importance sampling" procedure.1, 1 o In this case, the points in phase space 

are selected not totally at random, but based on a probability distribution P(qv)

ln this case, (11.47) can be written as 

L [ F ( Qv ) / P ( qv ) ] W ( qv ) 

(F)~---'-v--=-=-~~~~~ I [ 1 1 P ( Qy ) 1 w ( Qy ) 

V 

where the weight function W(qv) is defined as 

W(qv) = Nw exp(-H(qv)lks T) P(qv). 

(11.48) 

(11.49) 

In (11.49), Nw represents a normalization constant. The specific form of the 

probability distribution P(qv) depends on the particular system analyzed, so that 

two important cases are further considered. 

When the equilibrium properties of the total system are of interest, the 

simplest choice of probability P(qv) is an analytical form proportional to the 

equilibrium Boltzmann distribution for state qv 
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P{qv) .... exp{-H{qv)lksT). {11.50) 

In this case, the points are evenly weighted and the Monte Carlo approximant 

{11.48) reduces to the simple arithmetical average 

{11.51) 

where M is the number of phase space points used for average. 

The general method to choose phase space points qv with probability 

given by {11.50) is to perform a Markov walk, for which a specified transition 

probability r{qv -> qv') characterizes the passage from one phase space point 

qv to another qv', It should be noted that the probability of transition in a given 

step {i+ 1) of a Markov chain is a function of the state at the ith step. 

It can be shown76 that a sufficient condition that the probability P{{qv}) 

converges toward Peq({qv}) is given by the detailed balance condition 

r(qv-> qv')exp[-H{qv)lksT] = r{qv'-> qv) exp[-H{qv') /ksT] (11.52) 

Due to the fact that this equation does not determine uniquely the transition 

probability,76 a possible choice is given by 

, {exp(-6H/k8 T) 
r{qv ~ qv )= 

1 

if 6H >0 

{11.53) 

otherwise, 

where 6H=H{qv')-H(qv), This sequential Markov walk procedure is known as 

Metropolis sampling.1 o 
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In practical calculations, a trial configuration in phase-space is generated 

by randomly modifying the canonical coordinates of one or more particles of the 

system. The change in system energy due to this trial move is evaluated. If the 

energy is decreased, the move is accepted. If the energy is increased by an 

amount 6H, the move is accepted with the probability exp[-6H/ks T]. It is 

generally accepted77 that the most rapid convergence for Metropolis walks 

occurs when the acceptance ratios are approximately 50% of the number of trial 

configurations. 

Another important situation considered here is the evaluation of the total 

flux of a representative phase-space point across a theoretical dividing surface 

(see Eq. (11.45)), in the case of a process which simulates the diffusion of a 

particle between two adsorption sites. In this case, we assume that the potential 

terms are functions only of the interparticle distances and that the total 

Hamiltonian of the system can be separated as 

H = H' + Vi, (11.54) 

where Vi is the interaction potential of the diffusing particle with the system (for 

example a lattice-gas potential interaction) and H' includes the rest of the total 

Hamiltonian terms. 

In this case, the choice of the probability distribution P(qv) in Eqs. (11.48) 

and (11.49) is done such that the states corresponding to the diffusion barrier, 

rarely accessible with unbiased sampling, become freely accessible. This can 

be done by selecting the probability distribution as74,75 

(11.55) 

41 



In order to sample phase space points with this probability, the previously 

described Markov walk procedure can be used, the total Hamiltonian H in (11.53) 

being replaced with H' from Eq. (11.54). 

Significant simplifications in the flux calculation are obtained in the case 

of spherical or cubic dividing surfaces, when integrals over momenta can be 

performed analytically and the Markov walk is considered only in the 

configuration space. Details of this procedure are presented in Chapter Ill. 

Several applications of Monte Carlo sampling techniques have been 

reported. 001178 has adapted a Monte Carlo sampling technique to calculate 

the unimolecular rate constant. Viswanathan et aJ.79 have applied the 

Metropolis Monte Carlo sampling procedure to evaluate the microcanonical rate 

coefficients for unimolecular dissociation of CH4 and SiH4 systems. A large 

number of recombination, desorption and surface-diffusion studies73,74,79-85 

have employed Monte Carlo techniques in connection with variational phase

space theory methods. Extensions of Monte Carlo methods for grand-canonic 

or isothermal-isobaric ensembles have also been considered.10,76,86 

We used the Monte Carlo method with importance sampling 

incorporated to evaluate the classical jump frequencies of hydrogen atoms 

between different binding sites on Si(111 )-(7x7) reconstructed surface. The 

results obtained in this case are given in Chapter Ill. 
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CHAPTER Ill 

DIFFUSION OF HYDROGEN ATOMS ON A Sl(111)-(7X7) 

RECONSTRUCTED SURFACE: MONTE CARLO VARIATIONAL 

PHASE-SPACE THEORY 

Introduction 

Understanding of the elementary processes involved in the chemistry 

occurring on silicon surfaces is a goal of great importance in modern surface 

science. These processes include surface chemisorption, dissociation, 

diffusion, chemical reaction and desorption. While molecular adsorption and 

desorption are related to the variation of the potential in a direction 

perpendicular to the surface, surface diffusion is dependent on the variation of 

the potential parallel to the surface, which is generally different on different 

crystal faces. Surface diffusion of chemisorbed atoms is particularly important 

in phenomena such as growth of crystals and thin films, heterogeneous 

catalysis, sintering and corrosion. Consequently, this subject has generated 

considerable interest, both for experimental and theoretical 

investigations. 7 4,84,85,87-99 

In this chapter we present the theoretical study performed by us to 

investigate hydrogen-atom diffusion on a Si(111 )-(7x7) reconstructed 

surface.1 oo The favorable premises to perform such a study are multiple. 

The first element is related to the existence since 1986, after more than 

27 years of experimental and theoretical research, of a well defined model for 
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the Si(111 )-(7x7) reconstructed surface, which today has received almost total 

support of surface scientists.99 This is the dimer-adatom-stacking fault (DAS) 

model, created by the group of Kunio Takayanagi101, 102 based on 

transmission electron diffraction studies. It is important to note that essential 

elements of the DAS model were incorporated from other experimental and 

theoretical studies, i.e., the model of 12 adatoms per 7x7 unit cell introduced by 

Binnig et al., 103 dimerization of the second layer atoms suggested by McRae et 

al.104 and the stacking-sequence faults introduced by Bennet et al.1 os 

Because silicon is a key element in the microelectronic industry and 

fabrication of the microstructural circuits is largely dependent on the processes 

taking place at surfaces, there is also a continuous interest of the scientific 

community in the investigation of the elementary chemical-reaction processes 

on silicon surfaces. A recent review of chemical processes of atoms and 

molecules on silicon surfaces can be found in Ref. 106. Of particular 

importance to our investigations is the experimental study performed by Reider 

et al., 107 in which the essential data related to hydrogen-atom diffusion on 

Si(111 )-(7x7) reconstructed surface have been reported. 

In Chapter II, it was noted that accurate dynamics studies require the 

development of an accurate potential-energy surface for the system. Bolding 

and Andersen 1 os have developed such a potential for silicon systems. This 

potential representes a generalization of the Tersoff form, 109 with the interaction 

between a pair of atoms depending on the environment of the pair. This 

potential is equally useful for small clusters of 2-10 atoms, crystal phases and 

the 2 x 1 and 7x7 reconstructions of Si(111) surfaces. 

Based on these considerations, we proceeded to investigate theoretically 

the interaction potential for the H atom-Si(111 )-(7x7) reconstructed surface and 

to analyze the diffusion process on this surface. 
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Before presentation of the potential-energy surface, computational 

methods and results of this study, we review in the next section the essential 

experimental and theoretical data on which our study was based. These data 

make reference to the DAS surface model, to energetic and spectroscopic data 

related to H-lattice interactions, to experimental diffusion studies reported by 

Reider et a/.107 and to other theoretical investigations of chemical processes of 

hydrogen on Si(111) surface.74 

DAS Lattice Model 

It is well known that in order to minimize the surface free energy, the 

semiconductor surfaces reconstruct, leading to structures significantly different 

from the corresponding bulk terminated surface. In the case of silicon, after 

cleaning in ultrahigh vacuum and cleavage, the Si(111) surface shows a (2x1) 

reconstruction pattern which transforms irreversibly into the (7x7) structure upon 

anealing above 390°C.89 Heating the surface above 890°C produces a 

reversible phase transition from Si(111 )-(7x7) to a Si(111 )-(1 x1) structure. The 

Si(111 )-(7x7) is the most stable phase of the Si(111) surface 11 o and has a unit 

cell 49 times larger than the ideal unreconstructed 1 x1 surface. Since the 

discovery of the (7x7) reconstruction of the Si(111) surface by low-energy 

electron diffraction (LEED) in 1959, 111 dozens of theoretical and experimental 

studies have been reported to explain the properties of this surface.101,102,110-

116 Here, we describe only the generally accepted model for the Si(111 )-(7x7) 

surface, i.e., the DAS model proposed by Takayanagi et a/.101, 102 

In this model, schematically shown in Figs. 1-3, there are 12 adatoms, 6 

rest atoms, 9 dimers, and one corner hole per surface unit cell. In one half of 

the unit cell delimited by the short diagonal, there is a stacking fault. The DAS 

model contains only 19 dangling bonds in the (7x7) unit cell, instead of 49 in the 
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unreconstructed surface. The number of dangling bonds is the smallest among 

various proposed models.116 Of these bonds, 12 are in the top layer (adatom 

layer), 6 are in the second layer (stacking fault layer) on atoms which are not 

bonded to the adatoms, and one is in the fourth layer, corresponding to the 

atom below the vacancy at the corner. 

Using the terminology adopted in Ref. 102, the adatoms in the first 

reconstructed layer (see Figs. 1 and 2) have a 2 x 2 structure at A sites. The 

atoms of the first reconstructed layer (Figs. 1 and 2) are located at C sites in the 

left subcell and at B sites in the right subcell. The third layer of the structure 

(see Figs. 1 and 3) is also a reconstructed layer. It contains two groups of 15 

atoms at A sites and 9 dimers on the sides of the triangular subcells. The next 

layers of the structure are unreconstructed, with the normal sequence as in the 

bulk Si(111) structure. Atoms in the first unreconstructed layer ( small dark 

circles in Figs 1 and 3) occupy A sites, while those in the next unreconstructed 

layer (small dots in Fig. 1) sit on "c" sites. The atoms in the right subcell are 

stacked with normal sequence, cAaB+adatoms, while the atoms in the left 

subcell are stacked with a faulted sequence, cAa/C+adatoms, where the slant 

indicates the stacking fault. For a more detailed description , a side view of this 

model can be found in Ref. 101 and 102. 

Since the DAS model was proposed by Takayanagi et a,.101,102, several 

different experiments have illustrated its basic correctness. For example, the 

model was confirmed by scanning tunneling microscopy (STM) studies103 

which revealed 12 protrusions inside the surface unit cell and deep holes in the 

corners, corresponding to the adatoms and corner vacancies. The presence of 

stacking fault islands, of the 12 adatoms and one corner vacancy were also 

supported by the X-ray diffraction measurements of Robinson et a/.113 Qian 

and Chadi115 have used the Keating model117 to calculate the total energies 
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for the class of (2n+ 1 )x(2n+ 1) reconstructed (111) surfaces. They have found 

that inside this class of surfaces, the DAS model has the lowest surface energy. 

The existence of a minimum surface energy for 7x7 structure relative to other 

types of reconstruced surfaces, such as 5x5 and 3x3, has been recently 

confirmed by massive parallel ab inito calculations with supercellls approaching 

1000 atoms. 116,118 

Selected Data on Elementary Chemical Processes of Hydrogen on 

Si(111 )-(7x7) Surfaces. 

The high interest in understanding of the interactions of hydrogen atoms 

with silicon surfaces is motivated by several factors. A first reason is due to the 

fact that understanding of hydrogen behavior on these surfaces can give a 

deeper insight into many of the gas-semiconductor interactions. As the smallest 

adsorbate, hydrogen can be found in various surface reactions. For example, 

species like H20, NH3, PH3, C3H 6 and SiH4 are known to chemisorb 

dissociatively on silicon surfaces and form silicon-hydrogen bonds.93, 119 Below 

the hydrogen desorption temperature, these reactions are often rate determined 

by hydrogen desorption. 

An additional factor of interest is related to the possibility of significant 

modification of the properties of the silicon surface by hydrogen atoms. For 

example, the density of defect states in the band gap of amorphous silicon can 

be reduced by saturating the silicon dangling bonds with hydrogen.120 

Processes like growth kinetics, or the stability of amorphous silicon are greatly 

influenced by the hydrogen content.93 

Another reason for studying the H-Si lattice interactions is based on the 

fact that the nature of binding sites on silicon surfaces can be inferred from the 

chemistry of H on Si(111 )-(7x7). Due to the fact that the reconstruction of silicon 
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surfaces results in formation of strained bonds which are weaker than those in 

bulk, these bonds are most easily attacked by adsorbates. Consequently, the 

reactivity of surfaces can be directly related to the relaxation of the strained 

bonds formed by reconstruction.92 

The nature of the hydride species on the hydrogenated Si(111 )-(7x7) 

surfaces has been investigated in a large number of studies.92, 119-124 It is now 

accepted that, depending on temperature and hydrogen exposure level, mono-, 

di- and trihydride species may be present on the surface.92 In the low coverage 

regime, H atoms are adsorbed on the adatoms sites and passivate the dangling 

bonds, with formation of adatom monohydrides as the dominant species.124 At 

higher coverage, the relaxation of adatoms takes place, either by insertion of H 

atoms into the backbonds of these atoms or by formation of adatom 

islands.92, 124 At low temperatures and high exposures, the insertion process 

takes place with the formation of adatom dihydride and ultimately, of unstrained 

trihydride species. At higher temperatures, the adatoms may diffuse over the 

surface and new Si-Si bonds between atoms can be formed. This process can 

further lead to formation of adatom islands.92, 124 A further increase in 

temperature determines relaxation of the rest-atom layer, with formation of a 

structure similar to that of the unrelaxed bulk (which is covered only by 

monohydride species). 

Additional fundamental data regarding the kinetics of H atoms on 

Si(111 )-(7x7) surfaces can be gathered by desorption studies.92,93, 119, 126-129 

Two different desorption states have been identified: P2, which has a maximum 

desorption rate at about 680 K and P1 with a maximum at 81 O K.127 The 

desorption peak corresponding to the P2 state was attributed to the 

decomposition of the di- and trihydride species, 122,124 while the p 1 state is 

related to the decomposition of the monohydride species. These studies reveal 
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that at high coverage, H2 desorption (~1 state) from the Si(111 )-(7x7) surface 

follows second-order kinetics, with an activation barrier in the range 59 to 62 

kcal/mol.93, 119,127 For the case of low coverage (0 < 0.3 ML) an intermediate 

desorption order of n=1.56 has been reported, together with an activation 

barrier of 55 kcal/mol.128 Based on the similarities of rovibrational-states 

distributions of H2 desorbed from both Si(100)-(2x1) and Si(111 )-(7x7), Zare et 

a/.129 suggested that desorption of hydrogen can be described as a 

recombinative process localized over a single atom. 

Knowledge of the experimental activation barrier for desorption of H2 

from the Si(111 )-(7x7) surface can be further used to determine an upper limit 

for the silicon-hydrogen bond strength. Indeed, the binding energy can be 

approximated as Esi-H=(Ed+EH-H)/2, where Ed is the activation barrier of 

desorption (assumed to be equal with the heat of adsorption) and EH-H is the 

experimental dissociation energy of H2 (=4.477 eV).126 In this calculation, it is 

assumed that there is no barrier to H2 adsorption. However, theoretical 

calculations by Raff et a/.85 predicted an activation barrier of 4.2 kcal/mol for H2 

adsorption on Si(111 ). Without considering this activation barrier, the binding 

energies determined using the above relation are overestimated. A list of 

binding energies for the Si-H bonds determined in different experimental 

studies is given in Table I. 

Direct identification of the types of hydride species existent on Si(111 )

(7x7) surfaces can be obtained using infrared spectroscopy, high resolution 

electron loss spectroscopy and monochromatic low-energy electron diffraction 

techniques.107,121-123,132-134 The results of these studies show that the 

scissoring and stretching modes of the SiH2 species are placed in the range 

880-900 cm-1 and 2064-211 O cm-1, respectively, while for SiH3 species, the 

defamation modes are identified around the 872 cm-1 spectral line. For the 
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silicon monohydride, the bending and stretching vibrations are found in the 

range 630-637 cm-1 and 2057-2100 cm-1, respectively. Selected values of the 

vibrational modes of Si-H, determined using different experimental and 

theoretical methods, are presented in Table I. 

Observation of the vibrational stretching modes of silicon monohydride 

by infrared spectroscopy122, 133,134 has provided evidence of the existence of 

different features as function of hydrogen coverage. At low coverages (0.05 

ML), a sharp absorption doublet in the region 2076 cm-1 (see also Table I) was 

found to belong to Si-H species, which have the dipole moment perpendicular 

to the surface. The presence of the doublet was attributed to the existence of 

different binding states on the Si(111 )-(7x7) surface. However, there is not yet 

a clear identification of these binding states.134 Upon increasing the hydrogen 

exposure, the presence of the doublet is maintained, but in this case, the dipole 

moment has a component parallel to the surface. Correspondingly, the 

monohydride species have been identified as tilted species (t-SiH) (see Table 

I). This fact was considered a consequence of the modification of the 

orientation in the average Si-H bond axis due to the increasing number of 

broken Si-Si bonds with increasing hydrogen coverage.134 However, it is not 

clear if some of the tilted monohydrides are not formed as a result of defect sites 

or of the surface preparation method.124 

The observation of thermal recombinative desorption of H2 from Si(111 )

(7x7) surface is an indication that hydrogen diffusion on this surface can take 

place. 

A direct quantitative characterization of this process was done by Reider 

et a/.94 They have investigated the diffusion of H atoms on the Si(111 )-(7x7) 

surface through optical second-harmonic diffraction from a submonolayer 

grating of adsorbed hydrogen. The hydrogen adsorbate grating was formed 
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through laser-induced thermal desorption in the field of two interfering laser 

beams (l=532 nm). In this technique, the laterally averaged hydrogen 

coverage can be monitored from the diffracted second-harmonic signaf.94 It 

was found that the thermally activated diffusion process had a barrier of 

Ea=1.5±0.2 eV and a preexponential factor Do of 1 o-3 cm2/s. 

The large value of the activation energy found in this study gives a 

measure of highly localized bonds as compared with the case of metal surfaces. 

However, the activation energy of H diffusion is significantly lower than that for 

desorption (-2.48 eV). On the other hand, the measured prefactor Do is 

comparable to that found for hydrogen on metal surfaces such as W(111 }, 

W(110) and Pt(111 ).135 

In contradistinction to metallic surfaces, the diffusion of H on the 

Si(111 )-(7x7) surface exhibits negligible quantum effects. Indeed, Reider et 

a/.94 have shown that tunneling processes are not expected to give a 

contribution to diffusivity larger than 1 o-15 cm2/s at 690 K, due to the existence 

of a large potential barrier. 

The theoretical investigation of the recombination and desorption of 

hydrogen from an ideal Si(111) surface was performed by Raff, NoorBatcha and 

Thompson,73 based on Monte Carlo variational transition-state theory. From 

analysis of the potential surface, a barrier of 2.52 eV for H2 

recombination/desorption and a 0.182 eV barrier to the back reaction were 

found. In addition, the activation parameters, determined from an Arrhenius plot 

of the minimized flux, were determined as 2.41 eV for the activation energy and 

0.202 cm2/s for the frequency factor. 

The dynamics of scattering and dissociative chemisorption of atomic 

hydrogen from fully and partially covered Si(111) surfaces have been 

investigated by Rice, Raff and Thompson136 by the classical trajectory method. 
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The energy and spatial distribution of hydrogen atoms scattered from the 

surface, the sticking probabilities and the mechanism of adsorption were 

studied as functions of initial azimuthal angle and surface coverage. The 

energy transfer from highly excited chemisorbed hydrogen atom to the surface 

was found to be a first-order process with a rate coeffcient of 1.74 x 1012 s-1. 

The thermal diffusion of H atoms on a Si(111) surface with partial 

hydrogen coverage was done by Rice, Raff and Thompson.74 The potential

energy surface used describes two kinds of binding sites, a covalent Si-H bond 

(top site) and an interstitial threefold bonding site (open site). Based on Monte 

Carlo variational phase-space theory, the calculated diffusional barriers 

between the two binding sites were found equal to 2.72 and 0.59 eV for top-to

open site and open-to-top site jumps, respectively. Due to the small witdth of 

the potential barrier, tunneling effects were found to give a significant 

contribution to the total diffusion rates at low temperatures (300 K). However, 

these contributions are sharply diminished with increasing the surface 

temperature. 

General Computational Model 

We have extended the previously described theoretical studies to the 

theoretical investigation of H-atom diffusion on Si(111 )-(7x7) reconstructed 

surface by the aid of variational phase-space theory methods. For this purpose, 

we have employed the general methods presented in Chapter II to construct a 

semiempirical potential-energy surface for hydrogen-lattice interaction. 

Canonical Markov walks with importance sampling were used to evaluate the 

flux across a set of dividing surfaces separating different adsorption sites. The 

minimum jump frequencies were then used as input to a set of coupled 

phenomenological kinetics equations that describe the diffusion rates of 
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adatoms between adjacent adsorption sites. The activation energy and the 

diffusion coefficients at 300, 500 and 800 K were determined and compared to 

experimental data. Calculated upper limits for the tunneling rates at 300, 500, 

and 800 K show that tunneling processes make only a small contribution to the 

total diffusion rate. 

Together with other similar studies,73,74,83-85,95-98 this work was 

designed to provide a deeper understanding of the elementary processes 

involved in the interaction of H, H2, SiH, and SiH2 molecules with Si surfaces. 

In our calculations, we have used a 292-atom lattice model for the 

Si(111 )-(7x7) surface containing all the atoms inside the (7x7) unit cell and the 

first ring of atoms outside the (7x7) unit cell, positioned in four layers. Of these 

atoms, 24 are in the first layer, 76 in the second layer, 94 in the third layer, and 

98 in the fourth layer. The 54 atoms inside the (7x7) unit cell in the first two 

layers are allowed to move. All other silicon atoms remain fixed in their 

equilibrium positions. 

For the purpose of future reference, the configuration of the 162 atoms 

with dangling bonds in the first two layers contained in 9 adjacent unit cells on 

the (7x7) DAS surface is presented in Fig. 4. 

Potential-Energy Surface 

We assume that the potential-energy surface that describes the 

H-Si(111 )-(7x7) system can be written in the separable form 

(111.1) 

where VL is the interaction between the lattice atoms and VgL is the hydrogen

lattice atoms interaction potential. The functional form of VL was developed by 
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Bolding and Andersen (BA)108 as a generalization of Tersoff's potential109 to 

describe silicon clusters, crystals, and surfaces.108 In particular, it was 

shown 108 that the BA potential successfully modeled the (7x7) reconstructed 

Si(111) surface. The parametrization of the potential was done by fitting a 

variety of data on silicon, including the equilibrium geometries and energies of 

silicon clusters with 2-10 atoms and the static properties of the crystal structures, 

including the cohesive energy, elastic constants of the diamond-lattice phase 

and lattice parameters. In addition, the condition that the point deffects energies 

of the diamond-lattice interstitials and vacancies were positive relative to the 

perfect diamond-lattice energy was imposed. This last requirement assures that 

the diamond crystal structure is the most stable phase at low tempertures. Other 

characteristics of the potential and the fitting procedure are discussed in 

Ref.108. 

The BA potential energy is represented by a sum of two-body potentials, 

each of which is dependent on the environment of the pair: 

(111.2) 

with 

(111.3) 

where nj is the distance between atoms i and j, VR, Vm and Va are the repulsive, 

pi bonding and sigma bonding potentials for an isolated silicon dimer, 

respectively, lij and lij are pi and sigma interference functions, respectively, 

and fc is a cutoff function that ranges from 1 to Oas nj varies from 3.45 to 3.75 A. 

The presence of fc attenuates the potential smoothly over this range, which is 
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equal to the second nearest neighbor distance in a tetrahedral diamond lattice. 

Both the p- and s- bonding interference functions are independently influenced 

by the environment. The sigma interference function contains three- and four

body terms, while the pi interference function contains three-, four-, and five

body terms. The explicit forms of these terms are given in Ref. 108. 

The interaction of the hydrogen atom with the lattice is described by a 

pairwise sum of Morse functions between the hydrogen atom and the lattice 

atoms in the first two layers 

v L = v(1) + v(2) 
9 gL gL (111.4} 

Here, V~L and V~22 denote the interaction between the hydrogen atom and the 

reconstructed lattice atoms with and without dangling bonds, respectively, in the 

first and second layers. We have omitted in our calculations the silicon atom 

with the dangling bond in the fourth layer. 

The functional form of V~L is given by 

18 
V~( = L ( D { exp[ -2~ (riH -r0 )]-2 exp [ -2~ (riH -r0 )]} 

i=1 

(111.5) 

In Eq. (111.5), Si is the angle between the surface normal and the vector from the 

ith lattice atom with dangling bonds in the first or second layer to the hydrogen 

atom. The modulus of this vector is denoted by nH-

The interaction of the hydrogen atom with silicon atoms without dangling 

bonds in the second layer is given by 
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54 
V~r = ID' { exp [ -2~' (riH -r~)] - 2 exp[ -~'(riH -r~) ]} 

i=19 

(111.6) 

In adjusting the parameters of the hydrogen-lattice interaction term, we 

have made use of the available experimental and theoretical data related to the 

equilibrium length and binding energies of the Si-H bond and the fundamental 

vibrational frequencies for SiH species on the Si(111 )-(7x7) surface (see Table 

I). The values for the potential parameters are given in Table II. Using this set 

of parameter values, we have evaluated the Si-H equilibrium distance, the 

binding energy. and the fundamental Si-H stretching and H-Si-Si bending 

frequencies. It can be seen in Table I that the results obtained using the present 

form of VgL are in close agreement with other theoretical and experimental data. 

Figure 5 shows the variation of the hydrogen atom-lattice interaction as a 

function of the distance in the direction of the surface normal, with the hydrogen 

atom positioned directly above atom A of the first silicon layer in Figure 4. 

Figures 6 and 7 illustrate the potential-energy surface experienced by a 

hydrogen atom as it is moved across the relaxed (7x7) lattice at a distance of 

3.0 a.u. above the surface plane. The contour plot given in Figure 7 shows the 

potential wells corresponding to the atoms with dangling bonds in the first layer. 

Computational Methods 

A. Monte Carlo Variational Phase-Space Theory 

In order to calculate the diffusion rate of a hydrogen atom on the DAS 

surface, we first evaluate the rate at which a hydrogen atom chemisorbed at the 

lattice site denoted by "A" in Figure 4 diffuses to other adsorption sites on the 
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surface. This process can be represented by 

*'-H + *"--> *' + *"-H (111. 7) 

where *' and *" denote two sites with dangling bonds. 

Using variational phase-space theory methods, the flux or jump 

frequency K(T) across a theoretical dividing surface, Sc, separating two binding 

sites is given by 

J d p J dq o( Sc ) Iv _1_ I exp ( - ~E) 
K(T)=.:,__---=-~~~~~~ 

J d p J dq exp ( - ~E) 
(111.8) 

where v _1_ is the velocity normal to the dividing surface Sc, ~=1/kT, o(Sc) is the 

Dirac delta function, and E is the system energy 

N 

E = L ( P~i + P~i + P~i) / 2 mi+ ( P~h + P~h + P~h)/2 mh + VL + V gL· (111.9) 
i=1 

Here, Pqi (q=x, y, z) are the components of the momentum of lattice atom i in the 

q direction. The subscript "i" runs over the moving lattice atoms and "h" denotes 

the hydrogen atom. 

The flux K(T), Eq. (111.8), depends on the form of the dividing surface Sc in 

phase space. In order to obtain the minimum flux, the dividing surface must be 

expressed as a general function of the 330 coordinates and momenta of the 

phase space and the flux minimized with respect to this function. However, in 

practice this is too computationally expensive. Therefore, we assume that the 

quantities in Eq. (111.8) are functions of the hydrogen-atom coordinates only. In 
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the case of cubic dividing surfaces and for the total energy given by Eq. (111.9), 

the integration over momenta in Eq. (111.8) can be done analytically. This yields 

3N 

J exp[ -V / (kT)] 8( q-qc) TI dqi 

K(T) = (v) q 3N i=1 

J exp[-V /(kT)lTI dqi 

(111.10) 

q ~1 

where <v> represents the average velocity of the hydrogen atom in the 

direction perpendicular to Sc, The delta function is unity when on the dividing 

surface and zero otherwise. 

Since the potential V is separable into a lattice potential plus a hydrogen

lattice interaction, Eq. (111.10) may be written in the form 

3N 
J exp [ -VL / (kT)] exp [ - V gL / (kT) ]8( q-qc) TI dqi 

K(T) = (v) q 3N i=1 (111.11) 

J exp[-VL /(kT)]exp[-VgL /(kT)]TI dqi 
q i=1 

The integrals in Eq. (111.11) are evaluated using standard Monte Carlo 

procedures with importance sampling as described in Ref. 73. This procedure 

requires a Markov walk in configuration space that is weighted by the canonical 

distribution function for the lattice, exp[-VL/kT]. By replacing the dividing surface 

with a dividing "slab" of sufficiently small width 11 w, the Monte Carlo 

approximant for K(T) is 
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M 

~ ~ { exp [ -V gL / (kT)] l(Sc,LlW) }j 

K(T) ""0.5 ~fflh J=1M , 
LlW 

L{exp [-V9L/(kT)]l(Qc)}j 

(111.12) 

j:::1 

where the sums are over the accepted moves in the Markov walk. l(Sc, Liw) is 

an operator that has a value of + 1 if, by the jth move, the hydrogen atom is 

within the volume bounded by surfaces Sc and Sc', where Sc' is a surface very 

close and parallel to Sc at a distance of Liw from Sc; otherwise l(Sc, Liw) is equal 

to zero. The operator I (!le) is equal to + 1 if the jth move leads to a state such 

that the hydrogen atom is inside the volume nc enclosed by the surface Sc. The 

factor of 0.5 is included to evaluate the flux in only one direction from the total 

flux in both outgoing and incoming directions. 

The procedure presented above allows the diffusing atom to move in a 

potential-free configuration space. The configuration-space points 

corresponding to the diffusion barrier, which are rarely accessible by unbiased 

sampling, become freely accessible under the stated conditions. 

The Markov walk is executed by moving the hydrogen atom and a lattice 

atom according to 

(111.13) 

where q'i and qi are the old and new x, y, and z-coordinates, Liq is the step-size 

parameter and ~1 is a random number selected from a uniform distribution on 

the interval [O, 1 ]. The choice of the lattice atom to be moved is cycled 

systematically over all 54 movable lattice atoms. The lattice step-size 

parameter was taken equal to 0.1 a.u. The width of the dividing slab, Liw 
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(=0.17 a.u.), is chosen to be slightly larger than the maximum step size of the 

hydrogen atom (Aqh =0.15 a.u.), to ensure that the hydrogen atom cannot 

traverse the dividing slab without entering its volume at least once. A trial move 

is accepted if it lowers the energy. if.a trial move results in a higher energy AVL, 

it is accepted with the probability exp(-AVL/kT), that is, the move is accepted if 

~2 < exp(-AVL/kT), where ~2 is a random number. If the move is rejected, the 

procedure is repeated from the original configuration. For each step of the 

Markov walk, a move of the hydrogen atom is accepted if its position is inside a 

reflecting surface located within distance Aw outside of Sc', 

B. Thermal Diffusion Eguations 

The thermal diffusion coefficient can be computed from the jump 

frequencies of the hydrogen atom between different adsorption sites. This can 

be done using the method described by NoorBatcha, Raff, and Thompson96 in 

a study of silicon diffusion on a Si(111) surface. The method involves the 

integration of a set of coupled, first-order differential equations which describe 

the time dependence of the concentration of diffusing atoms. Considering the 

ith site at a distance n from the reference site A (see Fig. 4), the variation of the 

diffusing atoms concentration at time t is given by: 

N 
Cj (t) = L[ -Kij Cj{t)+ Kji Cj (t)] 

i=1 
j~i 

(i = 1,2,3, ... ,N), (111.14) 

where Kij is the jump frequency from site i to site j and N is the total number of 

such sites considered. It is assumed that diffusion occurs only by single jumps 

between adjacent adsorption sites and that the barrier to diffusion is sufficiently 

large that each jump is uncorrelated with previous jumps. Since the actual 
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diffusion can involve both correlated motion and possibly multiple jumps, a 

diffusion coefficient calculated with these assumptions will be a lower bound of 

the real diffusion coefficient. However, we have verified using a limited number 

of trajectory calculations that the hypothesis of uncorrelated jumps from a given 

site, for example A in Figure 4, is justified. 

The solutions of Eqs. (111.14) are used to calculate the root-mean-square 

displacement 

N N 
(r2 (t)) = L [C j(t) rr (t)] / L [Cj(t)] (111.15) 

~1 ~1 

The thermal diffusion coefficient D, is then calculated by using Einstein's 

relation137 

(r2 (t)) = 2aDt , (111.16) 

where a is the dimensionality of diffusion. 

Results 

A, Classical Jump Freguencies 

Equation (111.12) was used to compute the jump frequency KAs of the 

hydrogen atom between sites "A" and "B" in Fig. 4 at temperatures of 300, 500, 

and 800 K. 

The region of interest for A->B diffusion is illustrated in Fig. 8. In this 

figure only lattice atoms with dangling bonds in the first two layers are shown. A 

section of the dividing surface used to evaluate the flux between the two sites is 
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also shown (see rectangle DFGH). Some characteristic dimensions are FD=16 

a.u. and AE=3.6 a.u., where E is the midpoint of the DF distance. The dividing 

surface is similar to that employed by Agrawal et af.85 in a study of Si diffusion 

on a Si(111 )-(7x7) reconstructed surface; the only difference is represented by 

the portion DEF which, in the Si-atom diffusion study85, was part of an ellipse 

with the major axis along FD and semiminor axis along AE. It was found85 that 

the calculated jump frequency is an insensitive function of the shape of the DEF 

boundary for side lengths 3.6 :::;; AE:::;; 4.0 a.u. This result was attributed to the 

fact that the density of reactant phase space is small for this range of lengths. 

In order to determine the minimum flux, we have used a set of 14 dividing 

surfaces that span the important regions of the configuration space of the 

system. A typical dividing surface section is illustrated in Fig. 8. The position of 

each of the 14 dividing surfaces is determined by the length FG which is varied 

over the range 1.6 :::;; FG :::;;10.16 a.u. Reflecting barriers to hydrogen were 

placed in the planes z=-2.4 a.u. below and z=4.0 a.u., above and parallel to the 

surface plane. These restrictions produce a faster convergence of the 

calculated jump frequencies while still averaging over the important regions of 

the configuration space of the system. 

Figure 9 shows the minimum energy along the diffusion path A->B 

obtained using the method introduced by Raff et af.73 The abscissa values of 

the points in Fig. 9 correspond to the specific distances FG of the dividing 

surfaces. The barrier height for the A->B jump is 1.52 eV. We found that the 

minimum value of the flux was obtained for the dividing surface centered at the 

barrier maximum. The (z,x) coordinates of the points corresponding to the 

minimum energy pathway are shown in Fig. 1 O. These results illustrate that 

A->B diffusion involves lattice penetration by the hydrogen atom. 

The calculated jump frequencies KA->B at 300, 500, and 800 K are 

62 



given in Table Ill and an Arrhenius plot of the values is shown in Fig. 11. A 

least-squares fit yields an activation energy of 1.548±0.004 eV and a frequency 

factor of (3.88±0.33) x 1012 s-1. The small difference of 0.02 eV relative to the 

results of the minimum-energy path calculation may be due to statistical errors. 

B. Diffusion Coefficients 

Starting from a chemisorbed atom at the lattice site denoted by A in Fig. 

4, we consider the diffusion to the other lattice sites with dangling bonds. 

Previous studies of silicon-atom diffusion on a DAS Si(111 )-(7x7) reconstructed 

surface,85 showed that the rate-controlling diffusion coefficient was determined 

by the jump frequencies between the triangular areas as shown in Fig. 4 and 

that these frequencies were insensitive to the equilibration rate within each of 

the triangular areas. Consequently, the jump frequencies between different 

pairs of atoms with dangling bonds in Fig. 4 can be classified into three groups: 

(1) Jumps from sites such as A to sites such as B, which are separated 

by about 12.6 a.u. Symmetry considerations indicate that KAs=KsA- Since it 

has been shown that KA->B is not affected by the nature of the DEF 

boundary,85 it is reasonable to assume that the presence of the R site has no 

significant influence on this jump frequency. We thus assume that the A->B 

jump frequencies given in Table Ill correspond to all types of jumps of distances 

12.6 a.u. In addition, we assume, as in the above mentioned study,85 that this 

jump frequency is rate-controlling for diffusion between the triangular areas 

shown in Fig. 4. 

(2) Jumps from site A to sites such as R, which are separated by a 

distance of about 8.5 a.u. For this process, we assume that the jump 

frequencies Kij are large relative to the KAs values ensuring quick equilibration 

over the sites within one of the large triangular areas shown in Fig. 4. 
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(3) We assume that the Kij jumps for distances greater than 12.6 a.u. are 

zero. It can be seen in Fig. 4 that the diffusion via site R from site A to A', 

separated by 14.5 a.u., would be very fast compared to the direct jump rate. 

Consequently, neglecting the direct, long-distance jumps is not expected to 

significantly affect the results for the overall diffusion coefficients. 

Under the assumption of instantaneous equilibration of the concentration 

of hydrogen atoms over all lattice sites within the triangular areas shown in 

Fig. 4, the diffusion model can be simplified by considering each nine-atom 

triangular unit as a single "lattice site". Thus, each {7x7) unit cell would have 

two such sites. Consequently, the diffusion process is considered to take place 

from a half-unit cell to a neighboring half-unit cell. This simplified diffusion 

model for 49 unit cells is illustrated in Fig. 12; note that there are three 

symmetrical sites, situated at 120° angles, about a given site. 

The diffusion coefficient for the two-site model shown in Fig. 12 was 

obtained by using Eqs. {111.14 )-(111.16) with the concentrations Ci{t) replaced with 

Ci{t)/9 and the jump frequencies Kij by 3Kij; the first change in the equations 

takes into account the fact that the total concentration in the triangular areas of 

Fig. 4 is nine times that at each lattice site at equilibrium, and the latter because 

there are three possible A->B jumps that result in diffusion between triangular 

areas. The initial conditions are Ci{t=0)=0 for i#A and CA{t=0)=1. 

In the study of Si atom diffusion on the Si{111 )-{7x7) reconstructed 

surface,85 it was shown that the temporal variation of the root-mean-square 

displacement contained two different slopes when finite jump frequencies over 

distances of 8.5 a.u. were considered. The first slope corresponds to short 

periods of time and characterizes the diffusion process inside the triangular 

areas shown in Fig. 4. The second region, at larger times, has a smaller slope 

of the < r2(t) > vs t and essentially measures the rate of diffusion from one 
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triangular area to another. This long-time behavior of < r2(t) > determines the 

rate-controlling diffusion coefficient, which was shown to be very insensitive to 

the equilibration rate within one of the triangular areas.as 

In our calculations, by assuming the instantaneous equilibration of the 

concentration of hydrogen atoms over all lattice sites within the triangular areas 

shown in Fig. 4, the temporal variation of < r2(t) > is expected to be 

characterized by a single slope. A typical result of the time variation of the root

mean-square displacement at 800 K is plotted in Fig. 13. Diffusion coefficients 

obtained from the slopes of < r2(t) > plots at 300, 500 and 800 K are given in 

Table Ill. An Arrhenius plot of these results is shown in Fig. 14. The slope of the 

linear least-squares fit gives an activation energy of 1.548±0.004 eV. The pre

exponential factor obtained from the intercept is 0.023±0.002 cm2/s. 

The activation energy obtained for hydrogen-atom diffusion on the 

Si(111 )-(7x7) surface is in very good agreement with the experimental value 

1.5±0.2 eV obtained by Reider et af.94 by an optical second-harmonic diffraction 

technique. This barrier to lateral motion corresponds to roughly half of the 

binding energy of 3.1 eV for atomic hydrogen on the silicon surface (see Table 

I). This result is consistent with the presence of highly localized bonds on the 

silicon reconstructed surface. 

The computed activation energy for the present system is significantly 

lower than the value of 2.6 eV calculated by Rice et af.74 for H diffusion on an 

unreconstructed Si(111) surface. This difference is primarily the result of the 

different nature of the adsorption sites involved in the two studies. Rice et af.74 

computed the hydrogen-atom diffusion coefficient between an atop site and an 

"open site" on the Si(111) surface whereas the present study considers 

diffusion between two atop sites on the Si(111 )-(7x7) reconstructed surface. As 

expected, the diffusion coefficient is highly sensitive to the site involved and 
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surface topology. 

C. Tunneling Contributions 

In a study of H atoms diffusion on Si(111) surface Rice, Raff and 

Thompson 74 have determined the tunneling rate by selecting the tunneling 

probability with the largest value among tunneling probabilities calculated from 

nine different paths. The nine possible paths were along lines parallel to the 

surface plane and selected such as to connect the diffusing particle in its 

random position to nine evenly-spaced points along the diameter of an 

attractive open-site well. A biased Markov walk was used to average over the 

reactant phase space. The results suggest that at 300 K and 600 K the rates 

calculated using the Monte Carlo random walk are lower than those calculated 

using the minimum energy path. At larger temperatures the results of the two 

methods coincide. 

In the present study we employ the minimum-energy diffusion path for 

A->B jumps in order to evaluate an upper limit for the tunneling rates. We 

have assumed that the tunneling process may be treated as one-dimensional 

and that we may extrapolate symmetrically, in the -x direction, the minimum 

energy diffusion path given in Fig. 9. Thus, the tunneling jump frequency 

between adsorption sites A and Bat temperature T can be approximated as 

Ea Eb 
J v(E) T p (E)e-E/kT dE + J v(E) T~ (E)e-E/kT dE 

Kt(T) = E=O E=Ea 
Eb 

(111.17) 

J e-E/kT dE 

E=O 

where Eb is the potential barrier height, Ea is the value of potential which 

66 



corresponds to the bottom of the well centered on the potential profile given in 

Fig. 9, v(E) is the hydrogen-atom vibrational frequency in the adsorption site at 

energy E, and T p(E) is the tunneling probability at energy E. 

The second term in Eq. (17) arises because of the minimum in the 

transition-state region (see Fig. 9). 

The vibration frequency v(E) can be calculated directly using 

(111.18) 

where mh is the hydrogen-atom mass and V(r) is the one-dimensional potential. 

The integral limit r1 is the turning point which corresponds to the condition 

V(r1)=E. Figure 15 shows a plot of these frequencies as a function of energy. 

The frequencies range from 2.7 x 1013 s-1 to 2.5 x 1012 s-1. Using the WKB 

(Wentzel-Kramers-Brillouin) semiclassical approximation138, the tunneling 

probability at energy E is given by 

r=r2 

T p(E) = exp (- 4h1t f -'1~2-m-h[V-(-r)---E] dr) (111.19) 

r=r1 

with r1 and r2 being the two points for which V(r1)=V(r2)=E. 

The computed tunneling jump frequencies and the corresponding 

tunneling diffusion coefficients are given in Table IV. An Arrhenius plot of the 

diffusion coefficients gives an activation energy of 1.48 eV and a pre

exponential factor of 4.9 x 1 o-4 cm2/s. As can been seen by comparing the 

classical and quantal diffusion rates, the tunneling contribution is small for the 

temperature range considered and decreases with increasing temperature. 
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The ratio of tunneling to classical diffusion rates varies from 0.5 at 300 K to 0.06 

at 800 K. 

Reider et af.94 concluded that for the temperature range 660-730 K used 

in their experiments, the contribution of quantum diffusion of hydrogen atoms on 

Si(111 )-(7x7) surface to the diffusivity does not exceed 1 o-15 cm2/s. Our results 

give contributions between 2.23 x 1 o-15 cm2/s at 660 Kand 2.73 x 1 o-14 cm2/s 

at 730 K. The slightly larger values obtained in the present study may be due to 

the one-dimensional approximation, which tends to overestimate the tunneling 

contribution; the values reported in Table IV represent upper limits to the 

experimental tunneling rates. 

Conclusions 

We have developed a potential for the interaction of hydrogen atoms with 

a reconstructed Si(111 )-(7x7) surface.1 oo The surface diffusion of hydrogen on 

the DAS reconstructed Si(111 )-(7x7) surface has been investigated using 

Monte Carlo variational phase-space theory methods. 73 The potential-energy 

surface of the system, which comprises a 292-atom lattice and the hydrogen 

atom, is expressed as a pairwise sum of a lattice potential and a hydrogen

lattice atom interaction potential. 

Monte Carlo variational phase-space calculations with importance 

sampling incorporated were performed by computing the minimum flux through 

planar dividing surfaces separating the two binding sites. Classical jump 

frequencies were computed at 300, 500, and 800 K. An Arrhenius fit to these 

jump frequencies yields an activation energy of 1.548±0.004 eV and a pre

exponential factor of (3.88±0.33)x1012 s-1. 

The minimum-energy diffusion path for sites separated by a 12.6 a.u. 

distance is obtained by using a Monte Carlo random walk procedure with 
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importance sampling. 75 The barrier height for the A->B jump obtained from 

these studies is 1.52 eV. 

The classical diffusion coefficients at 300, 500 and 800 K are computed 

by using a simplified diffusion model for 49 unit cells on the DAS surface and 

integrating the phenomenological rate equations describing diffusion of 

hydrogen on this surface. An Arrhenius fit to these values gives an activation 

energy of 1.548±0.004 eV and a pre-exponential factor of 0.023±0.002 cm2/s. 

The computed activation energy for thermal diffusion is in good agreement with 

the experimental value94 of 1.5±0.2 eV determined by an optical second

harmonic diffraction technique. 

Using the WKB semiclassical approximation, the upper limits of the 

tunneling diffusion rates between atop sites were estimated at 300, 500 and 

800 K. Our results show small tunneling contributions to the total diffusion rates. 
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Table 1 

The equilibrium length and binding energies of the Si-H bond and the 

fundamental vibrational frequencies for SiH species on the Si(111 )-(7x7) 

surface. The corresponding results obtained in our calculations are also 

indicated. 

Ref. Method re Binding energies Frequency ( cm-1) 

(a.u.) (eV) Species Stretch Bend 

[130] Self-consistent 2.93 

pseudopotential 

[131] Self-consistent 2.73 

pseudopotential 

[126] HF LCAO calc. 2.808 3.02 SiH 2274 630 

Tosa 3.1 - 3.2 

[127] Tosa 3.5 

[97] LITDb 3.49 

[119] LITOb 3.59 

[128] 10-SHGC 3.45 

[122] EELSd SiH 2100 630 

[123] EELSd n-SiH 2057 637 

t- SiH 2080 

[121] IRS SiH 2073 and 2077 

shifts to 2082 

and 2088 
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Table I (continued) 

Ref. Method re Binding energies Frequency (cm-1) 
(a.u.) (eV) 

[132] EELSd 

[133] EELSd 

[134] MIR-IRf 

Present calc. 2.81 3.26 
[100] 

aros-thermal desorption spectroscopy; 

bUTD-laser induced thermal desorption; 

Species 

SiH 

n-SiHh 

t- SiH9 

n- SiHh 

t1-SiH9 

t2-SiH9 

SiH 

cio-SHG-isothermal desorption second harmonic generation; 

dEELS-electron energy Joss spectroscopy; 

e1R-infrared spectroscopy; 

fMIR-IR-multiple internal reflection infrared spectroscopy; 
Qt-tilted -70° from the surface normal; 

hn-surface normal. 
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Stretch Bend 

2089 637 

2057 632 
2064 

2076 
2086 
2095 

2086 635 



Table II 

Hydrogen-lattice potential parameters. 

Parameter Value 

D (eV) 2.82 

p (a.u.-1) 0.82209 

req (a.u.) 2.873212 

D' (eV) 0.82 

P' (a.u.-1) 0.75 

r'eq (a.u.) 3.50 

ke (eV/rad2) 3.9728 

y (a.u.-2) 0.3521 
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Table 111 

Classical jump frequencies KAB and diffusion coefficients D as a function of the 

surface temperature. 

T (K) 

300 

500 

800 

(1 .57±0.15)x1 o-14 

(1 .96±0.1 O)x1 o-3 

(5.17±0.21)x10+2 

73 

D (cm2/s) 

(9.46±0.90)x1 o-29 

(1.18±0.06)x10-11 

(3.11±0.12)x10-12 



Table IV 

Tunneling jump frequencies Kt and diffusion coefficients D as a function of the 

surface temperature. 

T (K) 

300 

500 

800 

0.905x1 o-14 

0.872x1o-4 

0.360x10+2 

74 

D (cm2/s) 

o.544x1 o-2s 

o.525x1 o-1s 

o.216x10-12 
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Figure 1. The top view of the atomic structure of the DAS model of the Si(111 )

(7x7) reconstruction. Atoms at increasing depth are represented 

by circles of decreasing diameters. The larger black and open 

circles represent the adatoms and the atoms in the stacking fault 

layer, respectively. Smaller open circles represent the atoms in 

the dimer layer. Solid dark circles and dots represent atoms in the 

unreconstructed layers beneath the reconstructed surface. The 

left half of the unit cell contains the stacking fault. The parallelo

gram defines the unit cell. 
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Figure 2. Detail of the DAS surface containing the stacking fault layer (open 

circles) and the 12 adatoms (dark circles) at A sites with local 2 x 2 

structure. Two of the 6 rest atoms of the stacking fault layer are 

also indicated. 
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Figure 3. Detail of the DAS surface containg the layer with dimers along the 

sides of the triangular subunits (open circles) and the atoms in the 

next unreconstructed layer (solid circles). Most of the atoms in the 

unreconstructed layer are directly beneath second-layer atoms 

and are hidden from view. 
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Figure 4. The relative positions of the atoms with dangling bonds in the first 

(dark circles) and in the second (open circles) layers for nine 

adjacent unit cells on the (7x7) DAS surface. 
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Figure 5. Potential energy variation for the symmetric stretch of the Si-H bond 

with the H atom positioned directly above the adatom A in Fig. 4. 
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Figure 6. A perspective plot of the interaction potential VgL between the H atom 

and the relaxed (7x7) lattice as function of x and y coordinates in a 

plane parallel to, and 3.0 a.u. above atom A, of the top layer of the 

Si(111 )-(7x7) lattice as shown in Fig. 4. 
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Figure 7. Contour plot for the interaction potential VgL between the H atom and 

the relaxed (7x7) lattice as a function of x and y coordinates in 

atomic units in a plane parallel to, and 3.0 a.~. above atom A, of 

the top layer of the Si(111 )-(7x7) lattice. Contour levels are given 

in electron volts relative to the hydrogen atom at infinity. 
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Figure 8. Details of the cross section of the dividing surfaces used in the 

variational calculation. Dark and open circles represent the atoms 

with dangling bonds in the first and second layers, respectively. 
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Figure 9. Minimum-energy diffusion path for A->B jumps. The triangles de

note the values obtained in the variational calculations. The circles 

represented extrapolated results based on symmetry considera

tions. 

83 



-. :::::s . 
res -
N 

2.0 -

1.0 -

0.0 -

' 

-1.0 -

' 

-2.0 -

I 

••• • • • 

• • 
• 

• • 
• • 

• • • • 
'\. •• • 

-3.0 -1---.--,.--...--.... ,---.--.--,...--.... ,---.---.,.--..--.... ,---..---.,.--......-1 

- 2 0 2 4 6 8 10 12 14 

X (a.u.) 

Figure10. {x,z) coordinates of the points corresponding to the minimum-energy 

diffusion path given in Fig. 9. The triangles denote the values 

obtained in the variational calculations. The circles represent 

extrapolated results based on symmetry considerations. 
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Figure 11. Arhhenius plot of the A-> B jump frequencies given in Table Ill. 
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Figure 12. The simplified diffusion model for 49 unit cells on the DAS surface. 

Each triangle corresponds to the triangular region shown in Fig. 4 

and contains nine atoms with dangling bonds. 
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Figure 13. A plot of the mean-square displacement < r2(t) > as a function of time 

in units of 1.0x1 o-6 s. The triangles are the computed points and 

the straight line is the least-squares fit. 
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Figure 14. Arrhenius plot of the diffusion coefficients given in Table Ill. 
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Figure 15. The frequency of surface-plane vibration of the hydrogen atom in 

the well of the minimum-energy diffusion potential given in Fig. 7 

as a function of energy. 
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CHAPTER IV 

STATISTICAL EFFECTS IN THE SKELETAL INVERSION OF 

BICYCL0(2.1.0)PENTANE 

Introduction 

The unimolecular decomposition of energized molecules is commonly 

treated using some form of statistical rate theory. These theories assume a 

complete randomization of the internal molecular energy prior to reaction. That 

is, the energetically accessible phase space of the system must be fully 

explored on a time scale that is short relative to the reaction time. It has 

generally been assumed that this requirement will be fulfilled if the 

intramolecular energy transfer rate out of a given excited mode is large relative 

to the unimo.lecular reaction rate. It has likewise been assumed that under such 

conditions mode-specific chemical effects will not be observed. 

It is clear that mode-specific chemistry will be observed whenever the 

reaction rate is fast relative to the intramolecular energy transfer rate. However, 

it is now known that the inverse of this statement is not always true. That is, the 

existence of a very fast intramolecular energy transfer rate out of a given set of 

modes is not a sufficient condition to ensure the absence of mode-specific 

dynamical effects. It is possible to have a molecular system in which the IVR 

rate out of a given set of modes is fast relative to the unimolecular reaction rate 

but is such that the energy tends to remain confined within a small subset of 

modes rather than become completely randomized over all internal degrees of 
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freedom. Under such conditions, pronounced mode-specific and other 

nonstatistical effects will often be observed. 

By comparing the results of classical trajectory calculations with results 

obtained using classical variational transition-state theory methods, it has been 

found that the unimolecular reactions of many polyatomic molecules do not 

obey the fundamental assumption inherent in statistical theories of reaction 

rates that all phase-space points of energy E are equally weighted in the 

reaction. 47,54,58-60,62, 139 For example, Raff, Thompson and co-workers have 

found that bond fission rate coefficients for disilane and 1,2-difluoroethane 

computed by variational transition-state theory methods at energies 

substantially in excess of threshold are not rigorous upper bounds to the true 

classical rate coefficient computed by trajectory methods on the same potential

energy surface. 47,54,58,59, 139 It was further shown that this result occurs 

because of an incomplete global energy randomization on the time scale of the 

reaction even though the total intramolecular vibrational relaxation (IVR) rate 

out of a given mode is large compared to the reaction rate. 

Several examples of thermal unimolecular reactions for larger 

polyatomic molecules whose dynamics could not be explained using statistical 

theories have been recently review by 8. K. Carpenter.140 

An interesting reaction of this type is represented by the thermal 

decomposition of 2,3 diazabicyclo(2.2.1 )hept-2-ene-exo, exo-S,6-d2 (DBHD) 

(1) to bicyclo(2.1.0)pentane-exo,exo-2,3-d2 (2x), -endo, endo-2,3-d2 (2n), and 

molecular nitrogen (see Fig. 16). The intriguing aspect of this reaction is that 

the reaction products (2x) and (2n) are not formed in equal amounts as 

expected based on statistical theories of reaction rates and the symmetry of the 

reaction path described in Fig. 16.140-142 Consequently, there is considerable 

theoretical and experimental interest in this reaction. In particular, it is important 
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to determine if the preference for inversion of configuration is determined by the 

existence of nonstatistical effects in the reaction mechanism. 

We used the methods of molecular dynamics simulations to investigate 

the reaction mechanism of thermal decomposition of DBHD. The 

corresponding results are presented in Chapter V. In this chapter, we address 

the problem of the ring inversion dynamics of BCP, which corresponds to the 

product channel for the thermal decomposition of DBH. Before describing the 

calculation method and our results, we present in the next section a review of 

the available experimental and theoretical data related to the thermal skeletal 

inversion of BCP, which were used in the construction of the potential-energy 

surface for this system. 

Selected Data Related to Thermal Skeletal Inversion of 

Bicyclo(2.1.0) pentane 

The first study of thermal cis-trans isomerization reaction of 

2-methyl(2.1.0)bicyclopentane was reported by Chesick.143 The reaction was 

assumed to take place with an incomplete rupture of the bridgehead

bridgehead bond in the transition state and a partial release of the bicyclic 

strain. In addition, an activation energy of 38.9±0.8 kcal/mol has been 

determined from the analysis of reaction kinetics in the range 203.3 to 231.7° C. 

Later, using a microwave spectrometry technique, Mathur and Harmony144 

have obtained an activation energy of 38.5±1.4 kcal /mol for interconverting cis

exo- and cis-endo-2,3-dideuteriobicyclo(2.1.0)pentane. The similarity of the 

activation energy values obtained in these two studies reveals that the methyl 

group in 2-methyl(2.1.0)bicyclopentane has a small influence upon the 

activation process, which is primarily determined by partial breaking of the 

bridgehead-bridgehead bond. 
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A more precise determination of the activation parameters for skeletal 

inversion of cis-exo-2,3,-dideuteriobicylo(2.1.0)pentane has been reported by 

Baldwin and Ollerenshaw based on NMR spectroscopy.145 They have 

determined that for BCP the skeletal inversion equilibrium constant is 1, with an 

identical activation energy of 37.8±0.1 kcal/mol for interconversion of cis-exo 

<-> cis-endo systems. 

A great deal of interest in the thermal skeletal inversion of BCP was 

related to the characterization of the reaction transition state leading to 

1,3-cyclopentadiyl diradical. 

The direct experimental observation of the 1,3-cyclopentadiyl radical was 

first reported in 1975146 in an electron spin study under matrix-isolated 

conditions. Based on the temperature dependence of the electron spin 

resonance spectra and the technique of chemically-induced dynamic nuclear 

polarization (CIDNP}, it was concluded that the cyclopentadiyl radical has a 

triplet ground state, while the lowest singlet represents a transition state 

between the cis and trans bicyclopentanes.146 A barrier height of 2.3±0.2 

kcal/mol for formation of BCP from 1,3-cyclopentadiyl has been determined. 

However, it was noted146 that the experimental data were inconsistent with the 

predictions of Benson-type thermochemical calculations, which suggest the 

existence of a minimum on the singlet surface with a well-depth of 9 kcal/mol. 

This controversy between experimental data and thermochemical estimates 

was also emphasized in the study of Hermann and Goodman.147 Their 

experimental data, obtained using time-resolved photoacoustic calorimetry, 

also suggest that the singlet diradical is a transition state or a local minimum 

with a barrier for ring closure significantly smaller than that predicted from 

thermochemical estimates. 

A more quantitative characterization of the geometry of 1,3-cyclopenta-
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diyl radical has been obtained using ab initio electronic structure theory at the 

self-consistent-field (SCF) and configuration interaction, singles and doubles 

(CISD), levels of theory.148, 149 The theoretical studies of Conrad et a/.148 

represent the first theoretical prediction of the structure of a cyclic diradical. 

Based on two-configuration SCF calculations, they found that under the 

constraint of C2v symmetry, the triplet ground state is 0.9 kcal/mol below the 

singlet state, in good agreement with the work of Buchwalter and Closs.146 For 

the planar configuration of the diradical, a bridgehead C-C bond distance of 

2.37 A has been determined. A similar difference value of about 1 kcal/mol 

between the ground-state triplet and the singlet diradical has been found by 

Sherrill et a/.149 at the CISD level, together with additional evidence for the 

existence of a shallow local diradical minimum on the singlet potential-energy 

surface. In addition, a transition state of Cs symmetry which connects the 

ground state of BCP molecules with the singlet state of 1,3-cyclopentadiyl 

radical has been identified. 

General Calculation Method 

In the next sections of the present chapter, we describe the development 

of a potential-energy surface for BCP.150 This surface can be used to test 

different aspects of the molecular dynamics, but in the present work we focus on 

the skeletal inversion process. The general methodology used in this study is 

similar to that employed for analysis of other systems such as Si2He54, 

C2H4F241,42 and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX).151 The total 

potential is essentially expressed as a sum of bond stretching interactions, plus 

bending potentials along with torsional terms. Different asymptotic limits of the 

interaction terms are incorporated through multiplication by appropriate 

switching functions. Adopting a semiempirical methodology in the construction 
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of the potential-energy surface, we seek a parametrization of the potential terms 

which allows us to reproduce the maximum number of known physical-chemical 

features. The quantities used in the parameter adjustment include the 

equilibrium bond lengths, bond angles, and the experimental fundamental 

vibrational frequencies for the reactants and products, the exo- and 

endothermicities for each of the reaction channels, and the reaction profiles and 

barrier heights. The main difficulties of the above procedure are related to the 

lack of measured or calculated data in the critical regions of the potential. This 

is particularly true for various transition states for which the geometry, 

fundamental frequencies and barrier heights are not generally known. In these 

cases, the errors may be large, especially when the dynamical processes 

analyzed are sensitive to the topographical features that are not properly 

described. Another difficulty involves the fact that the mathematical functions 

and type of parametrization used to describe different features of the energy 

surface are often highly coupled. This makes parameter adjustment difficult and 

tedious. On the positive side, experience has shown that when structures, 

vibrational frequencies, reaction energetics, and potential barriers for all 

important reaction channels have been accurately fitted, the computed 

dynamics usually accurately reproduces the measured experimental results. 

The bond dissociation energies for BCP have been estimated using the 

available thermochemical data and results of ab initio molecular orbital 

calculations performed at the fourth order Moller Plesset (MP4) perturbation 

theory level using a 6-31 G** basis set. The potential parameters have been 

adjusted to reproduce the equilibrium geometry of BCP and of the 1,3-cyclo

pentadiyl radical, the barrier for the ring inversion, and the fundamental 

frequencies of BCP. For random energization of the vibrational modes in the 

range 100-250 kcal/mol, trajectory calculations have been performed to 
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determine the character of the reaction mechanism and to extract the 

microcanonical reaction rates. Using a projection method of the instantaneous 

Cartesian velocities onto the normal mode vectors and classical trajectory 

calculations, the skeletal inversion and the intramolecular energy flow in SCP 

are studied for different types of excitation. The character of the reaction 

dynamics has been also investigated using the results of power spectra 

calculated at different energization levels. The total intramolecular vibrational 

relaxation rates for the energy flow from the flap mode have been extracted from 

the time dependence of the average total normal-mode energy in this mode and 

compared with the microcanonical ring inversion rates. The totality of the 

results has been found to support the statistical character of the ring inversion of 

SCP. 

Potential-Energy Surface 

A. Evaluation of Bond-Dissociation Energies in BCP 

A major impediment in the development of a realistic, global potential

energy surface for BCP is the lack of data on bond dissociation energies. In this 

section, we present an approximate method for estimating these energies from 

thermochemical experimental data and ab initio quantum calculations. The 

atom designation and numbering used throughout this paper are given in Fig. 

17. 

The method utilized to determine the bond dissociation energies for BCP 

contains the following assumptions and computational steps: 

(1) We assume that the values of the C-C bond dissociation energies in 

cyclobutane and cyclopropane, which may be calculated using the available 

thermochemical data and the experimental C-H bond dissociation energies, 

96 



can be transferred to the corresponding C-C bonds in the cyclobutyl and 

cyclopropyl rings of BCP, excepting the bridgehead C-C bond. Since the BCP 

molecule possesses Cs symmetry, equal values of the bond dissociation 

energies for the equivalent C-H bonds in the cyclopropyl and cyclobutyl rings 

have been assumed. Similarly, the energies of the two C-H bonds at the 

bridgehead carbon atoms have been taken to be equal. 

(2) The C-H bond dissociation energies in cyclopropane, cyclobutane and BCP 

are calculated using ab initio molecular orbital methods at the MP4/6-31 G** 

level. However, due to the fact that accurate quantitative calculations of the 

bond dissociation energies require both larger basis sets and a higher level of 

correction for electron correlation, we expect the computed values to be close, 

but not identical to, the experimental data. Consequently, for the case of 

cyclopropane and cyclobutane, where the experimental C-H bond dissociation 

energies data are available, we have determined the ratio of theoretical 

(calculated) to experimental data. The resulting values of this ratio are 

assumed to be transferable to the case of the corresponding C-H bond 

dissociation energies in BCP, for which new estimated values were calculated. 

For the bridgehead C-H bonds, we assume that the average of the 

cyclopropane and cyclobutane ratios may be employed. 

(3) The bridgehead C-C bond dissociation energy in BCP was evaluated using 

the available thermochemical data for BCP and the C-C and C-H bond 

dissociation energies computed using the procedures described above. 

The ab initio molecular orbital calculations were carried out using the 

Gaussian 92 systems of programs.12 The structure of BCP was first optimized 

under Cs symmetry at the restricted Hartree-Fock (RHF) level using analytical 

gradients and the internal 6-31 G*20,21 basis set, and then refined within the 

Moller-Plesset152 perturbation theory approximation using both 6-31 G* and 
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6-31 G**20,21 basis sets. A parallel set of calculations was performed for 

cyclopropane (D3h symmetry) and cyclobutane (D2d symmetry). Harmonic 

frequency analyses using analytical second derivatives were carried out at the 

HF/6-31 G*//6-31 G* level of theory. The optimized geometries for all three 

molecular systems are compared with the available experimental data in Table 

V. 

In the case of BCP at the MP2/6-31 G* level, the root-mean-square 

deviation of the calculated data from the experimental values is 0.0052 A for 

bond lengths and 0.95° for bond angles; at the MP2/6-31 G** level, the same 

quantities are 0.0058 A and 0.85°, respectively. As can be seen, the agreement 

of calculated structural parameters with experimental values is very good. 

The effect of higher level corrections for electron correlation was 

obtained by single-point calculations at the MP4/6-31 G** level using the 

optimized geometries obtained at the MP2/6-31 G** level. Total energies of the 

previous optimized structures are given in Table VI. 

The energies of cyclopropyl, cyclobutyl and the corresponding radicals in 

BCP (see Table II) were calculated at the UMP4/6-31 G** level using the 

optimized MP2/6-31 G** geometries. In the case of the BCP molecule, the 

radicals obtained by removal of the hydrogen atoms Hs, Hg and H13 were also 

considered. The total energy of these radicals was calculated at a fixed 

MP2/6-31 G** geometry to assure minimum changes in the strain energy. Zero

point energies of the radical structures have been evaluated using the 

HF/6-31 G* geometries. 

The final values of the calculated bond dissociation energies are given in 

Table VII. These values include zero-point energy corrections scaled by a 

factor of 0.91 as recommended by Grev et a/.157 to take into account the fact 

that this level of theory generally yields vibrational frequencies that are too 
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large. As can be seen, there is fair agreement between the experimental and 

calculated C-H bond energies for cyclopropane and cyclobutane. The 

estimated values of C-H bond dissociation energies for BCP (column 3 in Table 

VII) have been evaluated using the scaling method previously described. 

The C-C bond dissociation energies in cyclopropane and cyclobutane 

have been calculated using the thermochemical data given in Table VIII and the 

experimental values of C-H bond energies presented in Table VII. The results 

obtained were transferred identically to the corresponding C-C bonds in the 

cyclobutyl and cyclopropyl rings of BCP. Finally, the bridgehead C-C bond 

dissociation energy in BCP (see Table VII) was determined using the 

thermochemical data given in Table VIII and the estimated C-H and C-C bond 

dissociation energies. 

8. General Requirements on the Potential-Energy Surface 

The first requirement imposed in the development of an empirical global 

potential is that its stationary points reproduce the equilibrium configuration for 

the system of interest. In the case of BCP, the molecular structure has been 

determined by both electron diffraction 163 and microwave spectroscopy.155, 156 

The results of these two studies contain significant discrepancies, particularly 

for the case of the C-C single bonds. In this study, we use the parameters 

reported in the microwave studies which are supported by several ab initio self

consistent field (SCF) calculations,164-166 as well as our results (see Table V). 

We note that in the equilibrium configuration, the angle between the planes of 

the three- and four-member rings, a, is 67.26° (see also Fig. 17). 

A second requirement used in the construction of the potential surface is 

related to the accurate prediction of the main features of the BCP geometry in 

the planar configuration corresponding to the 1,3-cyclopentadiyl radical. 
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A detailed investigation of the stationary points on the singlet surface of 

the diradical has been reported by Sherrill et a/.149 It has been found that the 

transition state, denoted Cs', which connects the ground state of the BCP 

molecule to the singlet diradical, has Cs symmetry and corresponds to an angle 

cxtr=24.96°. The theoretical investigations of the singlet surface at the TCSCF 

(two-configuration self-consistent field) level have revealed a complex structure 

around the singlet C2v structure (a=OO). Particularly, two equivalent C2 local 

minima and two equivalent transition states are found to be connected with a 

C2v state characterized as a saddle point. The C2 local minima are also 

connected via Cs transition states. However, the energetic differences between 

these local minima and transition states are small, i.e., less than 0.55 kcal/mol, 

which indicates that the diradical potential-energy surface is quite flat. For the 

total depth of the singlet diradical region relative to the Cs' transition state, a 

value of 1.28 kcal/mol was found at the CISD level.149 

For the purpose of the present study, we have chosen to adjust the 

parameters of the surface so as to reproduce the main features of the singlet 

diradical under C2v geometry. Relative to the equilibrium configuration of the 

BCP molecule, the most significant geometrical changes occur for the 

bridgehead C-C bond distance, for the H6-Cs-H6 bond angle and for the angles 

formed by the bonds of hydrogen atoms 6 and 7 with the cyclopropyl ring. 

These changes have been incorporated into the potential by specific 

modifications of the equilibrium bond distances and bon·d angles using 

switching functions which smoothly make connections between the limiting 

values of the geometrical parameters corresponding to the equilibrium and 

planar configurations. 

A key topographical feature of the potential-energy surface is the 

accurate prediction of the barrier height for skeletal inversion of BCP, for which 

100 



a value of 37.8 ± 0.1 kcal/mol has been found experimentally.146 This barrier 

height was taken to correspond to the transition-state geometry {Cs'} 

characterized by the angle <Xtr between the cyclopropyl and cyclobutyl planes. 

Finally, we require that the global potential predicts the BCP fundamental 

vibrational frequencies with acceptable accuracy. The experimental gas-phase 

vibrational spectra of BCP, together with assignments for all 33 fundamental 

frequencies, has been reported by Bragin and Guthais.162 However, to the best 

of our knowledge, a normal-coordinate analysis for BCP was not carried out 

and consequently, a complete set of force constants is still not available. Thus, 

we have iteratively adjusted the force constants in our potential to obtain the 

best fit possible. 

C. Technical Aspects of the Potential-Energy Surface 

We assume that the potential-energy surface of the BCP molecule can be 

described as a superposition of analytical functions of interatomic distances and 

bond angles. For the structure illustrated in Fig. 17, we have used the bond and 

angle assignments given in Table IX. The total potential-energy surface is 

constructed as follows: 

Vtotal = Vstretch + Vbend + Vdih + Vt1ap. {IV.1} 

The potential Vstretch represents a sum of bond stretching potentials 

which are taken to be Morse-type functions 

14 
V stretch= L Di{exp [ -2~i{ri - rp) ]-2 exp [ -2~i{ri -rP)]} 

i=1 
i;c4 
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where 

(IV.3) 

and 

(IV.4) 

In Equation (IV.2), Di represents the potential well-depth, ~i is the curvature 

parameter and r~ is the equilibrium bond distance for the bond with index i. 

The special form of the term i=4 in equation (IV.2) takes into account the 

increase of the bridgehead C-C bond distance as function of the decrease to 

zero of the flap angle a. 

The bending potential Vbend is taken to be a superposition of quadratic 

forms 

22 I O f O 1tCX 2 + o Sk·[S·-8. -(8· -e. )cos(--)] 
· I I I I I 2 • 

~9 ao 
(IV.5) 

where ki represents the bending force constant associated with the angle Si, 

which takes the value eio in the equilibrium configuration. The analytical form 

used for the angles 9-22 models the change of the equilibrium angles from the 

value eio to eit (i=9-22), corresponding to a variation of the flap angle from a=ao 

in the equilibrium state to a=O in the planar configuration. 

The dihedral potential Vdih in Eq. (IV.1) is given by 

V dih = O.Skd <1> 2 , (IV.6) 
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where kcj is the dihedral force constant and <I> is the C1-C2-C3-C4 dihedral 

angle with <l>= 0 in the equilibrium configuration. 

The flap potential, V11ap, is represented by a truncated cosine series 

6 

V11ap = Laicos(ja) 
j=O 

(IV.7) 

This form of the flap potential, together with the rest of the terms in Eq. (IV.1 ), 

assures a symmetric reaction profile for positive and negative flap angles, with a 

maximum fitted to the experimental value of the barrier height. The flap angle 

corresponding to the barrier maximum was taken equal to Cltr- In addition, the 

analytical expression used in Eq. (IV.7) reproduces the small well, whose depth 

is LiEgap = 1 kcal/mol, along the reaction profile between the angles -atr and <ltr· 

The flap angles ao=±67 .260 characterize the two equivalent equilibrium 

configurations for the ring inversion. 

The parameters no and eio in Eqs. (IV.2), (IV.3) and (IV.5) are adjusted to 

reproduce the equilibrium experimental geometry of BCP given in Table V. The 

values for r4f and eif have been fitted to the corresponding parameters 

evaluated by ab initio calculations 149 for the planar configuration. The 

preexponential Morse factors in Equation (IV.2) are set equal to the estimated 

bond dissociation energies given in Table VII. The parameters ao-aa in the flap 

potential, together with the other terms in the potential, have been adjusted to 

the computed reaction profile and the measured flap fundamental frequency. 

The remaining parameters of the potential, i.e. ~i, ki, kcj, have been adjusted to 

yield reasonable values for the remaining fundamental experimental 

frequencies. The numerical values of all parameters used in construction of the 

potential-energy surface are given in Tables X, XI, and XII. 
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D. Properties of the Potential Surface 

The equilibrium structures ,for the system have been determined by 

running damped trajectories. This method consists of computing a trajectory 

with all initial momenta set to zero. Each time the kinetic energy attains a 

maximum, all momenta are again set to zero. This procedure is repeated until 

the system converges to a local minimum. The predicted structure for BCP in 

the equilibrium configuration is in excellent agreement with reported 

experimental data (see Table V). The predicted structure for the planar 

configuration is given in Table XIII; together with the corresponding C2v 

structure determined by ab initio calculations.149 The small differences which 

appear for bond lengths are due to the fact that the other equilibrium bond 

lengths were not adjusted to the values specific for the planar configuration, 

with the exception of the r14 bond distance. 

The reaction profile and barrier height given by our potential for skeletal 

inversion in BCP are shown in Fig. 18. This figure shows the calculated values 

of the total potential as a function of the flap angle with all the other internal 

variables being relaxed to their most stable configuration. The barrier height is 

37.799 kcal/mot. The barrier crest occurs at <Xtr = ± 25.2°. This barrier height 

value is in very good agreement with the experimental value of 

37.8 kcal/mol.144 The depth of the potential well at top of the potential profile is 

1.6 kcal/mol, which is in good agreement with calculated data149 and 

experimental results, 145,146 which suggest a value in the range 1-3 kcal/mol. 

The experimental and calculated normal mode frequencies are 

compared in Table XIV. The calculated values were obtained using analytical 

second-derivatives of the potential. For the flap mode, the calculated frequency 
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v2=475 cm-1 differs by 59 cm-1 from the experimental value. The average root

mean-square deviation between the experimental and the calculated 

frequencies is 4 7 cm-1. 

Computational Procedures 

A. Trajectory Calculations 

In this section, trajectory methods are utilized to investigate the 

statistical/nonstatistical character of the ring inversion in BCP. In addition, the 

rate of energy transfer from the flap mode into all the other modes to which the 

flap mode is effectively coupled is caiculated. The overall objective is to 

determine the statistical or nonstatistical character of the dynamics followed in 

the ring skeletal inversion of BCP. 

In order to obtain qualitative information on intramolecular energy

transfer dynamics in BCP, two types of initial excitations have been used. Both 

procedures employ a projection method46,47 to insert energy either randomly or 

into a specified normal mode of the molecule. This method, described in 

Chapter II, is based on the calculation of the normal-mode velocities by 

projection of the Cartesian velocities onto the normal-mode vectors. The 

advantage of working with the normal-mode kinetic energy instead of the total 

energy comes from the fact that the kinetic energy matrix is diagonal when 

expressed in terms of the normal-mode velocities. Since there are no kinetic 

coupling terms and since the potential energy is not involved in this analysis, 

the procedure gives a classically exact description of the intramolecular energy 

flow in the molecule. 

With the molecule initially placed in the equilibrium configuration 

predicted by the semiempirical surface, zero-point vibrational energy is inserted 
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into the normal modes, while the normal mode velocities for rotation and 

translation are set to zero. The equations of motion in a space-fixed Cartesian 

coordinate system are integrated for a random period of time 

tr= ~Tm {IV.8} 

using a fourth-order ~unge Kutta routine 1 with a fixed step size of 0.01 time 

units {1 t.u.=1.018 1 o-14 s}. Four significant digits of energy conservation are 

generally achieved. In Eq. (IV.8}, ~ is a random number chosen uniformly on 

the interval [O, 1] and Tm is the vibrational period for the lowest frequency mode 

in the molecule. At this point, the desired excitation energy is then inserted 

either randomly or into a given normal mode. The time tr is taken to be zero for 

the purpose of rate calculations. The random choice of tr for an ensemble of 

trajectories assures a properly weighted average over the vibrational phases. 

In the case of a random distribution of the excitation energy, ensembles 

of 500-800 trajectories were calculated. Each trajectory was followed for 

maximum 500 t.u. 

The investigation of energy flow from the flap mode has been executed 

by exciting this mode only subsequently to zero-point energy partitioning as 

described above. The instantaneous normal-mode velocities or equivalently 

the mode kinetic energies are computed after every tenth integration step. The 

average total energy in mode i (i=1, 33} can then be calculated from 

t 0 +.1.t 

( Ei(t}) = 2 (Lit }-1 J Ki( t} dt , (IV.9} 

to 

where Ki(t} represents the normal-mode-kinetic energy of mode i and t is a time 

in the interval to~ t ~ to + Lit. The time interval Lit is chosen to average out most 
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of the fluctuations in Ki(t) due to the interconversion of potential and kinetic 

energy within the same mode. If the initial excitation energy is placed into mode 

i, the temporal variation of < Ei(t) > is directly related to the rate of energy flow 

from the mode i. For a first order relaxation process, the intramolecular vibration 

rate Ai can be deduced from equation59 

(IV.10) 

provided that there is only one time scale for energy relaxation from mode i. In 

Eq. (IV.10), < Ei(oo) > is the statistical equilibrium value. This expression has 

been used to evaluate the total intramolecular vibrational rate (IVR) coefficient 

"-2 from the flap mode. 

B. Power Spectra 

It was shown in Chapter II that the autospectral density function can 

provide useful information on the intramolecular dynamics of polyatomic 

molecules. Whenever quasiperiodic dynamics exist, sharp peaks 

corresponding to fundamentals and overtones will be present in the 

autospectral density function.68 In contrast, ergodic dynamics determine a 

relaxation of the autospectral density function with a corresponding broadening 

of spectra over a wide band of frequencies. 

The utilization of the power spectra obtained from classical trajectories 

has been proven to be a useful diagnostic tool for identifying the presence of 

statistical/nonstatistical dynamics in unimolecular reactions of large, complex 

molecules.69,70 Consequently, we have used this methodology in the present 

study to gain insight into the dynamics of ring skeletal inversion of BCP. 

For positive frequencies o:::;; f < oo, the autospectral density function of a 
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quantity x(t) is defined by71 

Gxx(f)=2 lim _!_(1Xr(f)1 2 ), 
T~oo T 

where Xr(f) is the finite Fourier transform of x(t) of length T, given by 

T 

Xr(f) = X(f,T) = J x(t) e-i 21tft dt 

0 

(IV.11) 

(IV.12) 

and < ... > represents an ensemble average, for fixed f, over nd sample records. 

In the case of stationary random data, it can be shown 71 that the 

autospectral density function Gxx(f) is twice the Fourier transform of the 

autocorrelation function and can be estimated as 

N 
k=0,1, ... ,-

2 
(IV.13) 

Here, each record segment of duration T =Ndt contains N data values {xjn}, 

n=O, 1, .. N-1, j=1,2, ... ,nd. The quantities Xj(fk) represent the Fourier components 

for each segment 

(IV.14) 

where dt is the sampling interval and fk is the kth frequency component of a set 

of N/2 +1 discrete frequencies in the range O ::;; fk::;; (2dt)-1. The fast Fourier 

transform (FFT) algorithm 167 provides a powerful technique for evaluation of the 

autospectral density function. Assuming the normalization condition of FFT 

coefficients (HI) is satisfied, Parseval's theorem167 gives 
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N-1 1 N-1 

L lxjnl 2 = NL 1Hd 2 · 
n=O 1=0 

(IV.15) 

For a given set of N data, the autospectral density function scaled to the 

sampling interval can be evaluated in terms of the (N/2+ 1) FFT coefficients 

as168 

A 1 I 12 Gxx(fN12) = N H N/2 · 

j=1,2, ... , { N -1) 
2 

(IV.16) 

In this case, the resolution of the spectrum is determined by the total length of 

the record 

1 1 
.M=-=-

T N~t 
(IV.17) 

In the present study, Eq. (IV.16) has been used to evaluate the power 

spectra by transforming the time histories of the internal coordinates (bond 

lengths, bond angles, etc.) from single trajectories. Before transforming, every 

data set of N sampling points was modified as follows 

n=0,1, ... ,N-1, j=1 ,2, ... ,nd, (IV.18) 

where <Xj> is the mean value of the N data recorded during trajectory j. The 

denominator in Eq. (IV.18) represents the absolute maximum deviation of the 
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values Xjn relative to the average value <Xj>. This procedure provides a set of 

dimensionless, reduced coordinates which are stationary, with zero average 

and with values in the range [-1,1]. The above method was used to evaluate the 

corresponding individual power spectra for every internal coordinate. The 

composite power spectrum was then calculated as a superposition of these 

individual spectra. 

Results and Discussions 

The ring inversion dynamics in BCP have been investigated for internal 

excitation energies between 100-250 kcal/mo I. In all calculations, zero point 

energy of 71.04 kcal/mol is partitioned into the normal modes using the 

projection method previously described.46,47 After averaging over the 

vibrational phases, the excitation energy is randomly distributed over the 33 

vibrational modes. 

Figure 19 shows the typical reaction coordinate (flap angle) as a function 

of time for a trajectory when ring inversion takes place. Initially, the flap angle 

vibrates around the equilibrium value. When the energy in the flap mode 

exceeds the barrier height, the ring inversion takes place. Subsequently, the 

flap angle vibrates around the new equilibrium position. 

Decay plots are obtained from ensembles of 500 trajectories for the 

energy range 130-250 kcal/mol and 700 trajectories for excitation energies 

between 100-120 kcal/mol. A panel of selected plots at different excitation 

energies is presented in Fig. 20. As can be seen, these plots generally exhibit a 

high degree of linearity, as expected for a first-order process in a statistical 

system. 

Microcanonical rate constants, k(E), have been extracted by least

squares fitting of the decay plots, using 
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In (Nt/No) = -k(E) t , (IV.19) 

where Nt is the number of unreacted trajectories at time t and No is the total 

number of trajectories in the ensemble. The rate coefficients obtained from the 

slopes of the least-square fits are given in Table XV. 

The rate coefficients data presented in Table XI have been fitted to the 

RRK equation52 

k(E) = v[ (E-Eo )/E] 8- 1 (IV.20) 

where Eo is taken to be the barrier height for reaction (Eo=37.8 kcal/mol). For a 

95% confidence interval,71 the resulting RAK parameters are v=1.22±0.26 ps-1 

and S=12.28±0.72. The least-squares regression coefficient is r=0.994. The 

RRK fit is shown as a curve in Fig. 21 together with the calculated rate 

coefficients. These results suggest that at internal energies between 100-250 

kcal/mol, the behavior of the system is statistical. However, coupling of the 

modes is not complete. This fact is suggested by the value of the s parameter in 

Eq. (IV.20), which is about one third of the full classical limiting value of 

3N-6=33. 

An additional investigation of the statistical/nonstatistical character of the 

ring inversion in BCP has been carried out using power spectra methods. In 

each case, ensembles of 20 trajectories were used in the calculations to mimic. 

the distribution of the classical initial conditions over a specified initial region of 

the phase space. The internal coordinates were recorded after every 40th 

integration step and the trajectories were followed for a time period of 818.8 t.u. 

A resolution of 4.0 cm-1 was obtained for all power spectra presented in this 

study. 
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The composite power spectra for BCP and for the flap angle at zero-point 

energy and at different excitation energies are shown in Figure 22. In the latter 

cases, internal excitation energies of 120 kcal/mol and 225 kcal/mol were 

initially distributed at random over the normal modes using projection 

methods.46,47 Analysis of the spectra for trajectories containing only zero-point 

energy [see Figs. 22(a) and 22(b)] shows that the spectral peaks corresponding 

to different modes are more distinct and well resolved. As the internal energy 

increases, a significant broadening of the spectral lines occurs which, at even 

higher energies, leads to the overlap of spectral features. This effect is directly 

related to the enhancement of the mode coupling, and consequently, to an 

increase of the intramolecular vibrational relaxation (IVR) rates, with the 

increase in the total excitation energy. In addition, a red shift of the spectra at 

higher energies is observed. The disappearance of discrete spectral bands at 

higher energies is even more pronounced in the spectra of the flap angle [see 

Figs. 22(b), 22(d) and 22(f)]. These results suggest a significant coupling of 

modes and correspondingly, an internal dynamics which can be well described 

by statistical theories. A similar interpretation was given for the case of 

unimolecular bond-fission reaction of 2-chloroethyl radical.70 In this same 

study,70 it was shown that the spectral bands for nonstatistical systems remain 

reasonably well resolved even at higher internal energies. 

A quantitative characterization of the intramolecular energy transfer in 

ring inversion reactions of BCP can be obtained by evaluating the total IVR rate 

for the energy flow from the flap mode. This can be done by examining the time 

dependence of the normal mode energi~s for different excitation levels of the 

flap mode. Ensembles of 20 trajectories, each initially having zero-point energy 

in all normal modes and a given excitation energy in the flap mode have been 

employed. 
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A typical result for the time variation of the instantaneous kinetic energy 

of the flap mode v2 is represented in Fig. 23. The initial state has zero-point 

energy inserted in all vibrational modes and an excitation energy of 30 kcal/mol 

in the flap mode. The oscillations in energy reflect the transformation of kinetic 

into potential energy, and vice versa. As can be seen, the amplitude of these 

oscillations decreases to near equilibrium levels after about 20 t.u. This result 

indicates a very fast energy flow out of the flap mode. 

The pathways of energy flow from the flap mode have been determined 

by examining the time variation of the kinetic energy in all the other normal 

modes. Figure 23 also shows the kinetic energy for the modes with the most 

significant increase in the energy envelope function. An examination of these 

plots indicates that the major transfer pathways are to the v21 and v24 modes 

which correspond to the bridgehead CH deformation and CH2 deformation 

motions. 

In order to determine the time variation of the average total energy of the 

v2 mode, ensembles of 20 trajectories with a duration of 500 t.u. have been 

computed. For every trajectory, the calculated average energy values have 

been obtained using Eq. (IV.9}, with a time interval ~t =30 t.u. A typical result is 

shown in Fig. 24 for an initial 30 kcal/mol excitation of the flap mode in excess of 

zero-point energy. As can be seen, after a rapid energetic transfer from the flap 

mode, the average mode energy is found to oscillate about the equilibrium 

value. The total average decay rate coefficient can be extracted using the 

exponential dependence given by Eq. (IV.10). The resulting total IVR rates for 

different excitation energies of the flap mode are presented in Table XVI. As 

can be seen, the total IVR rates are large compared to the ring inversion rates, 

which is a necessary condition for the absence of nonstatistical effects. 
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Summary 

We have developed a global potential-energy surface that describes the 

ring inversion in BCP. The potential includes bond stretching and bending 

terms as well as torsional terms. The geometrical parameters in the expression 

of the potential have been adjusted to reproduce the equilibrium structure of the 

BCP molecule and the planar configuration corresponding to the 

1 ,3-cyclopentadiyl radical. 

Bond dissociation energies in BCP have been estimated using the 

available thermochemical experimental data for cyclopropane, cyclobutane and 

BCP, as well as results of ab initio calculations carried out at the MP4/6-31 G** 

level of theory. Other potential parameters are adjusted to fit the experimental 

barrier height and the reaction profile. The force constant parameters in the 

potential are obtained by fitting the experimental fundamental vibrational 

frequencies. 

Projection methods46,47 and molecular dynamics simulations are used to 

investigate the type of statistics obeyed by the flap motion of BCP. For random 

energization of the vibrational modes in the range 100-250 kcal/mol, the results 

of the trajectory calculations suggest statistical behavior. The RRK parameters 

extracted from the analysis of the microcanonical rate constants for the ring 

inversion are v=1.22±0.26 ps-1, S=12.28±0. 72. Statistical dynamics are also 

indicated by the results of power spectra analyses, which show the existence of 

large modal couplings at high energies. 

The total IVR rates for energy transfer from the flap mode have been 

extracted from the temporal dependence of the average mode energy. For 

excitation levels between 30-60 kcal/mo!, the calculated IVR rates are 
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significantly higher than the ring inversion rates, which is a necessary condition 

for statistical theories to hold. 
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Table V 

Ab initio calculated and experimental observed geometries for cyclopropane, 

cyclobutane and bicyclo(2.1.0)pentane. 

Compound Bond or HF/ MP2/ MP2/ Exp.a) 
angle 6-31 G* 6-31 G* 6-31 G** 

cyclopropane R(C-C) 1.497 1.503 1.502 1.514±0.002 

R(C-H) 1.076 1.084 1.080 1.082±0.003 

S(H-C-H) 114.0 114.2 114.4 116.5 

cyclobutane R(C-C) 1.545 1.545 1.543 1 .548±0.003 

R(C-H) 1.084 1.094 1.090 1.092 
S(C-C-C) 88.53 87.91 87.78 87.2 

S(H-C-H) 108.47 108.74 108.9 

S(C-C-He) 117.69 118.43 118.58 

S(C-C-Ha) 111.68 110.99 110.77 

'C(C1-C2-C4-C3) 154.21 149.25 148.37 145-160 

bicyclo(2.1.0) R(C1-C2) 1.528 1.527 1.526 1 .528±0.002 

pentane R(C1-C4) 1.512 1.528 1.527 1.536±0.001 

R(C1-Cs) 1.493 1.499 1.498 1.507±0.002 

R(C2-C3) 1.558 1.559 1.558 1.565±0.001 

R(C1-Ha) 1.075 1.086 1.081 1.082±0.001 

R(Cs-Hs) 1.076 1.086 1.082 1.088±0.001 

R(C5-H7) 1.079 1.089 1.085 1.090±0.001 

R(C2-H9) 1.083 1.093 1.088 1 .085±0.001 

R(C2-H10) 1.085 1.096 1.091 1.097±0.001 

8(Hs-C5-H7) 114.0 114.3 114.6 116.7±0.1 

8(Ha-C1-Hs) 121.6 121.6 121.5 121.2±0.1 

8( Ha-C 1-H4) 129.0 128.8 128.9 128.6±0.1 

8(C1-C2-H9) 113.1 113.1 113.1 113.3±0.1 

S(C1-C2-H10) 115.9 115.7 115.7 115.2±0.1 
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Compound Bond or 
angle 

S(C3-C2-H9) 

S(C3-C2-H 10) 

S(H1-Cs-H6) 

S(H1-C5-H7) 

a 

Table V (continued) 

HR MPV MPV 
6-31 G* 6-31 G* 6-31 G** 

112.1 111.9 111.8 

116.9 117.0 117.0 

115.5 115.4 115.3 

120.4 120.1 119.9 

67.1 67.2 67.3 

ac3H6 (Ref. 153); C4Ha (Ref. 154); CsHa (Refs. 155,156). 
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Exp.a) 

111.9±0.1 

116.6±0.1 

114.7±0.1 

119.0±0.1 

67.26±0.18 



Table VI 

Total energies (Hartrees) for bicyclo(2.1.0)pentane, cyclopropane, cyclobutane 

and related radicals. Radicals (6), (9) and (13) correspond to elimination of 

hydrogen atoms Hs, Hg and H13 from BCP. 

Species 

bicyclo(2.1.0) 

pentane 

-radical (6) 

-radical (9) 

-radical (13) 

cyclopropane 

-radical 

cyclobutane 

-radical 

HF/6-31 G* 
//HF/6-31 G* 

-193.92696 

-117.05886 

-156.09720 

MP2/6-31 G* MP2/6-31 G** MP4/6-31 G** 
//MP2/6-31 G* //MP2/6-31 G** MP2/6-31 G** 

-194.574485 -194.639051 -194.712707 

-194. 027294 

-194.037981 

-194.030442 

-117.44857 -117.49714 -117.54594 

-116.86230 

-156.617990 -156.68278 -156.74879 

-156.07468 
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Table VII 

Calculated and experimental bond dissociation energies (kcal/mol) 

Compound/ MP4/6-31 G** Estimated values 

bond type 

cyclopropyl-H 108.06 106.38 

cyclopropane: C-C 71.35 

cyclobutyl-H 102.16 96.58 

cyclobutane: C-C 93.86 

bicyclo(2.1.0)propyl-H 109.26 107.33 

bicyclo(2.1.0)butyl-H 102.47 96.79 

bridgehead H 107.72 103.40 

bicyclo(2.1.0)pentane: 57.84 

bridgehead C-C 

a Experimental values from Ref. 158. 
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Table VIII 

Thermodynamic data for cyclopropane, cyclobutane and bicyclo(2.1.0)pentane. 

Molecule 

cyclopropane 

cyclobutane 

bicyclo(2.1.0)pentane 

8 From Ref. 159. 

b From Ref. 160. 

c From Ref. 161. 

~Hf° ZPE 
(kcal/mo I) (kcal/mo I) 

12.748 49.1C 

6.388 67.3C 

37.3b 71.58d 

d Estimated using the fundamental frequencies given in Ref. 162. 
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Table IX 

Bond and angle assignments for bicyclo(2.1.0)pentane. 

Distance between Label Angle between Label 

atoms atoms 

1-2 r1 4-1-2 01 
1-4 r2 1-2-3 02 

1-5 r3 2-3-4 03 

1-8 r4 3-4-1 04 

2-3 rs 4-5-1 05 

2-9 rs 5-1-4 es 

2-10 r7 1-4-5 07 

3-4 ra 6-5-7 ea 

3-11 rg 9-2-10 09 

3-12 r10 11-3-12 010 

4-5 r11 8-1-2 011 

4-13 r12 8-1-5 012 

5-6 r13 9-2-1 013 

5-7 r14 9-2-3 014 

1 0-2-1 015 
10-2-3 016 
11-3-2 017 

11-3-4 018 

12-3-2 019 

12-3-4 020 
13-4-3 021 

13-4-5 022 

6-5-4 023 
6-5-1 024 
7-5-4 025 
7-5-1 026 

8-1-4 027 
13-4-1 02a 
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Table x 

Equilibrium Morse parameters. 

Diatomic pair D (eV) Ro (A) Rt (A) 

C1-C2 4.0701638 1.7512728 1.528 

C1-C4 2.5081853 2.1456101 1.536 2.417 

C1-Cs 3.0940356 2.0086168 1.507 

C2-C3 4.0701638 1.7512728 1.565 

C1-Ha 4.4838582 1.8448380 1.082 

C2-Hg 4.1972209 1.8693807 1.085 

C2-H10 4.1972209 1.8693807 1.097 

Cs-Hs 4.6542795 1.8273350 1.080 

C5-H7 4.6542795 1.8273350 1.090 

Attenuation factor Value (A-1) 

bsw 1.55 
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Table XI 

Bending potential parameters. 

Angle a-~-y ka~y (eV/rad2) S0 (rad) St (rad) 

C2-C1-C4 8.7381 90.54 74.72 

C1-C2-C3 10.6105 89.45 105.27 

C4-C5-C1 8.1139 61.27 103.68 

C5-C1-C4 9.3622 59.36 38.15 

Hs-C1-C2 2.6838 126.31 123.3 

Hs-C1-Cs 2.6214 121.2 123.6 

Hs-C1-C4 3.1207 128.6 162.15 

Hs-Cs-C1 3.7449 114.65 112.0 

H7-C5-C1 3.7449 119.0 112.0 

Hs-C5-H7 1.5603 116.7 106.3 

H9-C2-H1 o 1.8724 109.32 

H9-C2-C1 3.8697 113.3 

H9-C2-C3 3.6824 111.9 

H10-C2-C1 3.8697 115.2 

H10-G2-C3 3.6824 116.6 

123 



Table XII 

Flap and dihedral potential parameters. 

Parameter Value 

(eV) 

ao 649.032257691 

a1 -1161.253421253 

a2 830.132209470 

a3 -462.038532829 

a4 192.012760921 

as -54.120663551 

a6 7.757472971 

Parameter Value 

(eV/rad2) 

Kd 4.4 
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Table XIII 

Predicted and ab initio calculated geometries for planar configuration. The 

distances are given in A and the angles in degrees. 

Parameter Predicted Geometry Ab lnitio Geometry (C2v)149 

R (C1-C2) 1.528 1.506 

R (C1-C4) 2.367 2.359 

R (C1-C5) 1.507 1.506 

R (C2-C3) 1.566 1.550 

R (C1-Ha) 1.082 1.083 

R (Cs-Hs) 1.088 1.098 

R (C5-H7) 1.090 1.098 

R (C2-H9) 1.084 1.096 

R (C2-H10) 1.096 1.096 
0 (Hs-C5-H7) 106.0 106.3 

e (Ha-C1-Hs) 122.0 123.6 

8 (Ha-C1-H2) 124.9 123.3 

0 (C1-C2-H9) 111.0 111.3 

8 (C1-C2-H10) 112.7 111.3 

8(C3-C2-H9) 109.5 111.3 

8 (C3-C2-H10) 114.0 111.3 

8 (C1 -C5-Hs) 111.8 112.0 

0 (C1-C5-H7) 111 .8 112.0 

't (C4-C3-C2-C1) 0.0 0.0 

't (C3-C2-C1-C5) 0.0 0.0 

't (C1-C5-C4-C3) 0.0 0.0 
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Table XIV 

Experimental and calculated frequencies for bicyclo(2.1.0)pentane. 

Mode Calculated Experimental 
(cm-1) (cm-1) 

v1 265 280 
v2 475 416 
V3 700 755 
V4 717 774 
vs 752 787 
vs 842 883 
V7 854 914 
va 859 922 
Vg 913 968 

V1Q 917 978 
v11 943 1012 

v12 1019 1030 

v13 1029 1053 
v14 1088 1106 
v15 1090 1195 
V16 1121 1198 
v17 1194 1218 

V18 1243 1238 
V19 1246 1279 

v20 1312 1280 

v21 1337 1325 
v22 1421 1332 

v23 1479 1446 
v24 1507 1465 
v2s 1548 1470 

V26 2899 2875 
v27 2901 2922 

v2a 2968 2936 

v29 2971 2945 
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Mode 

v30 

v31 

v32 

V33 

aFrom Ref. 162 

Table XIV (continued) 

Calculated 

(cm-1) 

2976 
2999 
3008 
3082 
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Experimental 

(cm-1) 

2965 
2982 
3058 
3070 



Table xv 

Microcanonical rate constants for flap motion in bicyclo(2.1.0)pentane for initial 

random energization. The correlation coefficients for the fitting are also 

indicated. 

Energy (kcal/mol) k(E) (ps-1) r 

100 0.0064 ± 0.0012 0.960 

110 0.0118 ± 0.0015 0.985 

120 0.0159 ± 0.0023 0.992 

130 0.0026 ± 0.0034 0.993 

140 0.0034 ± 0.0036 0.994 

150 0.0421 ± 0.0038 0.994 

160 0.0485 ± 0.0041 0.992 

170 0.0625 ± 0.0045 0.995 

180 0.0849 ± 0.0050 0.996 

190 0.1021 ± 0.0057 0.993 

200 0.1181 ± 0.0059 0.997 

210 0.1323 ± 0.0062 0.997 

225 0.1732 ± 0.0067 0.996 

250 0.2253 ± 0.0073 0.998 
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Table XVI 

Total IVR rates and other parameters for relaxation out of the flap mode. The 

parameters were obtained from least-squares fits of the average normal-mode 

decay. 

Energy (eV) 

1.30 

1.95 

2.60 

"-2 (ps-1) 

13.806 

14.160 

15.329 

<E(O)> (eV) 
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1.30370 

1.97011 

2.62057 

<E(oo)> (eV) 

0.11162 

0.15248 

0.17219 



Figure 16. The general reaction scheme for skeletal inversion of bicyclo(2.1.0) 

pentane obtained in thermal decomposition of 2,3 diazabicyclo 

(2.2.1 )hept-2-ene-exo-,exo-5,6-d2 (1 ). (2x) and (2n) represent 

the exo- and endo-deuterium labeled bicyclo(2. 1.0)pentane and 

(3) is the 1 ,3 cyclopentadiyl radical. 
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Figure 17. Atom designation and numbering for bicyclo(2.1.0) pentane. 
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Figure 18. The variation of the total potential as function of the flap angle. The 
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Figure 19. Temporal variation of the flap angle extracted from a trajectory for 

which ring inversion takes place. The abscissa unit is 1 t.u. = 

1.018 X 10-14s. 

133 



Figure 20. Decay plots for random excitation of the vibrational modes at the 

energies (a) E=120 kcal/mol, (b) 150 kcal/mol, (c) 180 kcal/mol 

and (d) 21 O kcal/mol in excess to zero-point energy. In each case, 

the line is a linear least-squares fit to the calculated points. 
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Figure 22. Power spectra for BCP in arbitrary units (a.u.) at: (a, b) zero-point 

energy, (c, d) 120 kcal/mol, (e, f) 225 kcal/mol. The excitation 

energies are initially distributed at random over the normal-modes 

in excess to zero-point energy. Plots (a), (c) and (e) represent the 

composite spectrum. The power spectrum of the flap angle is 

given in plots (b), (d) and (f). 
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Figure 23. Instantaneous mode kinetic energies for the modes with the highest 

increase in energy subsequent to the initial excitation of the flap 

mode v2. Initial state corresponds to excitation of the flap mode 

with 30 kcal/mol above zero-point energy. Each successive curve 

is displaced upward by 0. 75 eV to provide clarity. The abscissa 

unit is 1 t.u. = 1.018 x 10-14s. 
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Figure 24. Decay curve for the average mode energy of the flap mode initially 

excited with 30 kcal/mol in excess of zero-point energy. The solid 

curve is a nonlinear least-squares fit of the points with the 

equation (IV.10). 
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CHAPTERV 

MOLECULAR DYNAMICS STUDIES OF THE THERMAL DECOMPOSITION 

OF 2,3-DIAZASICYCL0(2.2.1 )HEPT-2-ENE 

Introduction 

As described in Chapter IV, we have developed150 a semiempirical 

potential-energy surface for bicyclo(2.1.0)pentane (SCP) and for 

1 ,3-cyclopentadiyl radical (see structures 5 and 6 in Fig. 25 for the 

corresponding deuterated compounds), which is fitted to the available 

experimental data and to the results of ab initio calculations for equilibrium 

structures, 149,155,156, 164-166 fundamental vibrational frequencies, 162 and the 

barrier for the ring inversion.145, 149 One of the main findings of our study (see 

Chapter IV) is that the results of classical trajectory calculations agree well with 

the predictions of statistical unimolecular theory, for random energization of the 

vibrational normal modes of SCP. This implies a fast energy flow relative to the 

reaction time. Indeed, we have found150 that the total intramolecular vibrational 

relaxation rates of the flap mode are significantly larger than the microcanonical 

ring inversion rates. These results do not indicate any nonstatistical effects in 

the channel corresponding to thermal SCP ring inversion. 

The availability of the potential-energy surface for SCP makes it possible 

to extend the study to a much more complex reaction, i.e., the thermal 

decomposition of 2,3-diazabicyclo(2.2.1 )hept-2-ene-exo, exo-5,6-d2 (DSHD) (1) 

to bicyclo(2.1.0)pentane-exo,exo-2,3-d2 (Sx), endo,endo-2,3-d2 (Sn) and 
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molecular nitrogen (see Fig.25). For this purpose, in the next section we 

analyze the experimental and theoretical data related to thermal decomposition 

of 2,3-diazabicyclo(2.2.1 )hept-2-ene (DBH). 

Selected Experimental and Theoretical Data 

Related to Thermal Decomposition of 

2,3-diazabicyclo(2.2.1 )hept-2-ene 

Despite the fact that studies of this reaction were first reported several 

decades ago, 141,169,170 the reaction mechanism still continues to be a source 

of intriguing interpretation. In 1961, Cohen et a/.169 reported the kinetics of 

decomposition of DBH in the gas phase at temperatures between 131.5°-

180.80C. They found that the reaction is characterized by first-order kinetics 

with an activation energy of 37.3±0.3 kcal/mol. The reaction mechanism was 

interpreted as a simultaneous rupture of two C-N bonds of the DBH molecule. 

Similar results have been obtained later by Crawford and Mishra.170 Their 

results show that in the temperature range 171.0°-202.4°C, DBH undergoes a 

first-order unimolecular decomposition with an activation energy of 36.9±0.2 

kcal/mo I. In their early study, Roth and Martin 141 a reported that thermolysis of 

DBHD at 180° C in the gas-phase (100-200 Torr) gives a 75:25 mixture of (5x) 

and (Sn). These results were initially interpreted as a concerted elimination of 

nitrogen with simultaneous back-lobe overlap of carbon-centered orbitals. 

Later, they proposed141 b a new mechanism involving a stepwise cleavage of 

the two C-N bonds and formation of the diazenyl biradical (DB) with back-side 

displacement of nitrogen by the carbon radical site. 

An alternative explanation of the reaction mechanism has been 

advanced by Allred and Smith.142 In their study of thermal decomposition of 

the exo and endo epimers of 5-methoxy-2,3-diazabicyclo(2.2.1 )hept-2-ene, the 
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inversion of stereochemistry was explained on the basis of interconvertion of 

pyramidal diradical-like intermediates, which are formed as a consequence of a 

"recoil effect" accompanying nitrogen departure, with closure of the ring before 

planarization. 

In the last few years, the controversial problem of concerted C-N bond 

cleavage of azoalkanes leading directly to the 1,3-cyclopentadiyl diradical vs. 

the one-bond cleavage involving DB appears to have been resolved, by both 

theoretical171 and experimental studies, 172-177 in favor of the latter mechanism. 

Using time-resolved coherent anti-Stokes Raman spectroscopy (CARS), 

Adams et a/.172 have shown that the measured N2 vibrational distribution of 

nascent N2 in photodissociation of 2,3-diazabicyclo(2.2.1 )hept-2-ene (DBH) 

can be explained by involving DB as an intermediate and correspondingly, a 

stepwise mechanism of cleavage of the two C-N bonds. A similar two-step 

mechanism was found in ultraviolet-induced dissociation of nonsymmetrical 

azoalkane 3-(methylazo)-3-methyl-1-butene.173 

Direct insight into the dynamics of the thermal decomposition of DBH was 

obtained by Simpson et aJ.174 using shock-tube methods. The vibrational 

energy content of the N2 reaction product was analyzed over the temperature 

range 900-1400 K. It was found that N2 is formed with low amounts of 

vibrational energy, while BCP contains vibrational energy in excess of the 

equilibrium distribution. Since a concerted C-N bond cleavage with the N-N 

axis perpendicular to the reaction coordinate would be expected to give highly 

vibrational excited nitrogen, 175 these results clearly support a stepwise 

dissociation mechanism. 

A comprehensive discussion of the question of one-bond vs. two-bond 

cleavage during decomposition of DBH has been given by Adam et a/.176, 177 

for different types of activation modes. It has been shown that the thermal and 
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long wavelength (11.>300 nm) photolyses lead exclusively to BCP, while photo

induced electron transfer, laser-jet and 185 nm-photolyses yield BCP and 

different cyclopentane derivatives. It has been suggested that a diazenyl 

diradical (1 D'cr,cr) resulting in a stepwise one-bond cleavage mechanism serves 

as a common intermediate in both pyrolyses and in 350-nm photolyses of 

DBHD, while a two-bond cleavage leading directly to the 1,3-cyclopentadiyl 

biradical is involved in 185-nm photolyses. A ratio of 2.94±0.02 for the 

exo/endo bicyclopentanes (Sx) and (Sn) has been reported for thermolysis of 

DBHD at 180°C.176 

For theoretical investigations of the thermal deazetization of DBH (see 

Figure 25), a point of significant interest is the development of a consistent 

model able to predict the observed preference for inversion of configuration to 

give the exo- labeled bicyclo(2.1.0)pentane (Sx) as the major product. 

In this direction, important steps have recently been taken by the group of 

B. K. Carpenter.140,178-179 In their kinetic studies on DBHD, a ratio of 4.74 for 

the rate constants leading to (Sx) and to (Sn) was reported, 179 with no 

statistically significant temperature dependence over the range 129.8-180.5°C. 

However, it should be noted that the errors propagated into this ratio were 

relatively large.140, 179 Using trajectory calculations on a dimensionally-limited 

potential-energy surface containing the C-N bond distance and the angle 

between the planes of the three- and four-membered rings in BCP as 

independent variables, they confirmed the preference for inversion of 

stereochemistry. Despite the disagreement between the experimental and 

calculated magnitude of the rate constant ratio leading to formation of the 

products (Sx) and (Sn), it was found that the computed product ratio is nearly 

independent of temperature. These results were directly related to the 

potential-energy surface used in the calculations, which had a single transition 
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state that could lead to different products.179 However, concerns about the use 

of a two-dimensional model for the potential-energy surface instead of one with 

proper dimensionality (39) have been expressed.140 

General Calculation Method 

In the present chapter, we present a more realistic characterization of the 

overall mechanism of the thermal decomposition of DBH.180 The study involves 

the development of an accurate potential-energy surface for this reaction and 

classical trajectories computed on that surface. Since it has been 

suggested140, 176-178 that the deazetization reaction shown in Fig.25 is not 

properly described by statistical theory, it is important to investigate the 

possibility of nonstatistical effects. As in similar studies,54,41,42, 151 we seek a 

parametrization of the potential terms that reproduces the most critical 

topographical features of the reaction: the geometrical structures, the potential 

curvatures at the local potential minima, and the relative energies of the 

reactants, products and transition states. In the present case, a major 

impediment to the construction of an empirical potential-energy surface is the 

lack of experimental or high-accuracy calculated data corresponding to the 

energy and geometry of DB, the critical transition states, and to the fundamental 

frequencies of DBH and DB. The geometries of DBH, the DB and of the 

transition state corresponding to breaking of the remaining C-N bond of 

diazenyl biradical have been determined at the second order Moller-Plesset 

perturbation theory (MP2/6-31 G*) and at Hartree-Fock (HF/6-31 G*) levels, 

respectively. The fundamental frequencies for both DBH and DB have been 

obtained based on ab initio calculations at MP2/6-31 G* level using the 

optimized geometries at the same level. The relative energy of the DB to DBH 

is determined by a combination of experimental heats of formation, barrier 
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heights and ab initio results. Finally, the bond-dissociation energies for DBH 

and DB were determined from experimental enthalpies of reaction and reported 

data for bond dissociation energies of BCP.150 Using a projection method of 

the instantaneous Cartesian velocities onto the normal mode vectors and 

classical trajectory calculations, the dissociation dynamics of 2,3-diaza

bicyclo(2.2.1 )hept-2-ene-exo, exo-5,6-d2 (DBHD) are investigated at several 

excitation energies in the range 60-175 kcal/mol. Qualitative investigation of 

the phase space structure and of the statistical character of the reaction has 

been done by calculating the power spectra of the internal coordinates. In 

addition, the distribution of energy among the reaction products is analyzed and 

compared to experimental data. 

Potential-Energy Surface 

A. Determination of the Eguilibrium Geometries 

The first problem to be solved in the development of a realistic, global 

potential-energy surface for DBH and DB is the determination of equilibrium 

geometries. The atom designations and numbering used throughout this paper 

for these two compounds are given in Figure 26. 

The molecular structure of DBH has been determined by both electron 

diffraction 181 and microwave spectroscopy.182 The overall structure of the 

molecule exhibits Cs symmetry, with the plane of symmetry passing through the 

bisector of the C2-C3, N 14= N 1 s bonds and Cs ( see Fig. 26a). However, a 

comparison of the internal coordinates reported in these studies shows 

significant discrepancies, except for certain bond lengths. This made it 

necessary to perform further theoretical investigations in order to obtain a more 

precise description of the DBH geometry and to clarify which of these results are 
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more accurate. 

The first theoretical determination of the DBH structure was reported by 

Boyd et a/.183 using CNDO (complete neglect of differential overlap) 

calculations. Despite only a fair-to-moderate agreement for bond distances, the 

calculated bond angles accurately reproduced the microwave results.182 

Additional support for the structure determined using microwave 

spectroscopy was obtained by the molecular mechanics studies of Kao and 

Huang.184 Based on a parametrized force field for azoalkanes, they predicted 

a geometrical structure of DBH which was found to be in good agreement with 

the results of the microwave study182; the main discrepancies occurred for the 

bridgehead HaC1 C5 angle and the angles between the planes C1N14N15 and 

C1C5C4, and C1N14N15 and C1C2C3, respectively. 

In this study, we have investigated the structure of DBH molecule by 

performing ab initio molecular orbital studies. The calculations were carried out 

using the Gaussian-92 system of programs.12 The structure of DBH was first 

optimized under Cs symmetry at the restricted Hartree-Fock (RHF) level using 

analytical gradients and the internal 6-31 G*20,21 basis set, and then refined 

within the Moller-Plesset (MP) 152 perturbation theory approximation. Both 

optimized geometries and corresponding experimental data from microwave 

study181 are presented in Table XVII. 

At HF/6-31 G* level, the root-mean-square deviation of the calculated 

values from the experimental data 182 is 0.013 A for bond lengths and 0.93° for 

bond angles; at the MP2/6-31 G* level, the same quantities are 0.037 A and 

0.32°, respectively. It can be seen that the agreement between the calculated 

structural parameters and experimental values is very good. Consequently, the 

data set of internal coordinates reported in Ref. 182 was chosen in the 

construction of our semiempirical potential-energy surface. 
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In the case of DB, a limited set of geometrical parameters obtained using 

semiempirical AM1 and unrestricted Hartree-Fock (UHF/6-31 G*) calculations 

was reported by Carpenter and co-workers.179 Their results show very similar 

structures for the singlet and triplet states of DB. This result is a consequence of 

the large distance between the unpaired spins of DB. 

In the present study, we have assumed very similar structures and 

energies for the triplet and singlet states of DB. In order to obtain a complete 

description of the biradical geometrical parameters, we have carried out a 

series of ab initio calculations. The equilibrium structure of the triplet state of DB 

was determined at both the unrestricted UHF/6-31 G* and UMP2/6-31 G* levels. 

Its structure is illustrated in Fig. 26, and the values of the geometrical 

parameters are given in Table XVIII An inspection of the data in Table XVIII 

shows that the main effect introduced by the electron correlation within second

order Moller Plesset perturbation theory is a decrease of the C-N distance (from 

1.843 A to 1.508 A) and of the bond angles H13C4C3 and H13C4C5. In addition, 

all dihedral angles of the carbon ring, and dihedral angles N14C4C3C2 and 

N1sN14C4C3 suffer significant modifications. 

For the transition-state corresponding to cleavage of the remaining C-N 

bond of DB, the geometrical parameters have been calculated at UHF/6-31 G* 

and UMP2/6-31 G* levels. The results are given in Table XVIII. 

B. Vibrational Spectra 

To the best of our knowledge, experimental values for the fundamental 

vibrational frequencies of DBH have not been reported. Consequently, a 

normal-mode analysis and a complete set of force constants for DBH are still 

not available. We have therefore computed analytical frequencies for every 

case of interest in order to have a better characterization of the ab initio 
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stationary points. 

Vibrational frequencies for DBH and DB have been obtained at both the 

HF/6-31 G* and MP2/6-31 G* levels. These data are presented in Table XIX. 

The HF/6-31 G* and MP2/6-31 G* values have been scaled by 0.8929 and 0.94, 

respectively185, 186 to take into account the overestimation of vibrational 

frequencies at these levels of theory. The corresponding zero-point vibrational 

energies are given in Table XIX. 

In order to assist the future spectroscopic analysis of DBH, we present 

the corresponding calculated infrared intensities in Fig. 27. 

We have verified the existence of a single imaginary frequency at the 

stationary point corresponding to the transition states given in Table XVIII. 

C. Bond Dissociation Energies 

An additional difficulty in the development of a global potential-energy 

surface for DBH and DB is the lack of data on bond dissociation energies. We 

used an approximate method for estimating these energies from 

thermochemical experimental data and ab initio quantum calculations. 

The method used to determine the bond dissociation energies for DBH 

involves the following assumptions and computational steps: 

(1) We assume that the previously reported150 values of the C-C and C-H bond 

dissociation energies in BCP can be transferred to the corresponding bonds in 

DBH. 

(2) Following Benson 187, we assume that the value of the C-N bond 

dissociation energy in DBH is equal to the value of the activation energy for 

azoisopropane (-47.5 kcal/mol). 

(3) The remaining unknown bond dissociation energy (N=N) is calculated to be 

135.4 kcal/mol by using the enthalpy of formation and zero-point energy for 
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DBH (see Table XX), and the set of estimated C-H, C-C and C-N bond 

dissociation energies. 

To obtain a measure of the accuracy of the N=N bond dissociation 

energy value, we have made an independent estimation of this bond energy in 

a similar environment. For this purpose, we have considered the hydrogenation 

reaction of dimethylenediazene (diazetine) (see also Fig. 28) leading to 

ethylenediamine 

(V.1) 

Based on the assumption of approximately equal values of the C-C, C-N and 

C-H bond dissociation energies in dimethylenediazene and ethylenediamine, 

the N=N bond dissociation energy can be determined using the enthalpies of 

formation and zero-point energies of these compounds (see Table XX), the 

strain energy of dimethylenediazene, and the values of N-H 

(-100.0 kcal/mol190) and H-H (-104.204 kcal/mol190) bond strengths. Except 

for the thermochemical data already published,32, 185,188,189 all the other 

quantities in Table XX were determined as follows: 

The strain energy in dimethylenediazene of 18.3 kcal/mol was estimated 

using group contributions taken from a compilation of Benson and O'Neal.187 

For ethylenediamine, Radom et a/.191 have found based on ab initio 

calculations at the 4-31 G level that the most stable conformations are tGg' and 

gGg' (see structures b and c in Fig. 28). Here, the symbols T and G refer to 

trans and gauche arrangements of nitrogen atoms about the central C-C bond, 

while symbols t, g and g' refer to the N-C-C-N dihedral angle with appropriate 

values 180°, 60° and -60°, respectively. Later, Alsenov et a/.192 have 

determined that the sequence of conformations with the most stable energies is 
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gGg', tGg' and tTt at 4-21 G level ( structures (b), (c) and (d) in Fig. 28). We have 

reoptimized these structures at the HF/6-31 G* level and in two cases at the 

MP2/6-31 G* level. The corresponding geometrical parameters are given in 

Table XXII together with their total and zero-point energies. Our results support 

the sequence of conformational energies given by Alsenov et al.192 The zero

point energy for ethylenediamine in Table XX was calculated for the most stable 

conformation found at HF/6-31 G* level, i.e. gGg'. 

As a result of this analysis, a N=N bond dissociation energy of 136.48 

kcal/mol is obtained, which is in close agreement with the value found using the 

first method presented. 

The enthalpy of formation of dimethylenediazene given in Table IV was 

determined using the methodology proposed by Sana and Leroy,32 with 

molecular energies predicted at the G1 level.185 

At the G1 level, the total energy is calculated as a superposition of 

corrections to the MP4/6-311 G** energy, carried out at MP(full)/6-31 G* 

geometry185 

EG1 = E[MP4/6-311 G**] + AE{+) + AE(2df) + AE(QCI) 

+ AE(HCL) + AE(ZPE) (V.2) 

Here, AE(+) represents the correction for inclusion of diffuse sp basis functions, 

AE(2df) gives extra d- and f- contributions for non-hydrogen atoms, AE(QCI) is a 

quadratic configuration interaction correction for residual correlation effects, 

AE(HCL)=-0.19ncx-5.95n~ gives an empirical higher level correlation correction 

as function of the number of ncx and n~ valence electrons, and AE(ZPE) 

represents the 0.8929 scaled zero-point vibrational HF/6-31 G* energy. 

The MP2(FU)/6-31 G* optimized C2v geometry of dimethylenediazene is 
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given in Table XXII and the absolute energies and corrections involved in 

relation (V.2) are presented in Table XXIII. 

As a working reaction we have considered the isogiric reaction 

(V.3) 

The corresponding enthalpy of formation for dimethylenediazene can be 

calculated using the individual enthalpies of formation, the total G1 energies 

and the temperature corrections given in Table XX. 

As described in Section A of this chapter, we evaluated the structures of 

DB and transition state determined by the cleavage of the remaining C-N bond 

of the biradical. The corresponding energy difference is • 6.32 kcal/mol at the 

UHF/6-31 G* level. In addition, if we assume that the energy difference 

between this transition state and the equilibrium state of DBH is equal to the 

measured activation energy of 37.3±0.3 kcal/mol, 169 then it follows that the DB 

energy is 31.0 kcal/mol above the DBH energy. 

For DB, we have assumed that the bond dissociation energies are given 

by the corresponding values in DBH, except for the N=N bond. The dissociation 

energy of this bond was found by imposing the condition that the energy 

difference between the DB and DBH molecule is 31.0 kcal/mol. 

The complete lists of all bond dissociation energies in DBH and DB are 

given in the next section. 

In order to estimate the value of the barrier crest in the case of a 

symmetric stretch of both C-N bonds in DBH, we used ab initio calculations at 

the HF/6-31 G* level on the singlet surface. The results show that the transition 

state corresponding to concerted breaking of both C-N bonds lies 

75.02 kcal/mol above the state of DBH. 
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D Technical Aspects of the Potential-Energy Surface 

It is most convenient to express the potential-energy surface in terms of 

analytical functions of the internal coordinates. For the structures illustrated in 

Fig. 26; we have used the bond and angle assignments given in Table XXIV. 

This notation is ·consistent with that previously used for describing the BCP 

potential-energy surface.150 

The total potential-energy surface for DBH and DB is constructed as 

follows: 

(V.4) 

Here, V 1 and V2 describe the potential terms which connect the DBH 

configuration (1) with DB (2) and (3) (see Fig. 25), respectively. The V3 term is 

the potential for the BCP molecule (see Ref. 100 and Chapter IV). The V4 term 

represents the N-N interaction in the N2 molecule. In the limit of infinite values 

of the coupling parameter A, the exponentially weighted average of V1 and V2 

potentials assures the selection of the minimum value between the V1 and V2 

terms. 

For the sake of brevity, we describe the formulation of V1 term only, which 

gives the mathematical dependence between the DBH potential terms and DB 

(2). The description of potential V2, which gives the DBH-DB (3) dependence is 

straightforward considering the symmetry of the problem observable in Fig. 25. 

We represent the V 1 potential as a sum of bond stretching interactions, 

bending potentials, and torsional terms: 
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V1 = V1 stretch+ V1 bend+ V 1 dih (V.5). 

The potential V 1 stretch represents a superposition of bond stretching 

potentials, taken to be Morse functions: 

16 

V 1stretch = L Di { exp [ -2 Pi(ri - rf)] - 2 exp [ -Pi(ri - rf)]}, (V.6) 
i=1 

where the parameters vary with the interatomic C-N bond distance rs 

(V.7) 

in the case Di(2);t:O, and 

(V.8) 

r~ = r~(1) 
I I 

for Di(2)=0. In Eqs. (V.5-V.8), Di represents the potential well depth, Pi is the 

curvature parameter, and qO is the equilibrium bond distance for the bond with 

index i. The indices (1) and (2) in the same equations refer to the parameters 

corresponding to DBH (1) and the DB (2). The switching function S3 in Eq. (V.7) 

assures a smooth change in the potential well depths, force constants and 
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equilibrium distances from the values specific to the DBH molecule [ index (1) ) 

to those characteristic of the DB [ index(2) ]. The switching function S3(rs) has 

the form 

(V.9) 

The bending potential V1 bend is taken to be a superposition of quadratic 

terms: 

(V.10) 

where 

(V.11) 

(V.12) 

if ki(2)=0. Here, the indices (1) and (2) correspond to DBH and the DB, and k 

represents the bending force constant associated with the angle Si, which takes 

the value eio in the equilibrium configuration. The switching function S4(rs) in 
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Eq. (V.12) attenuates the bending force constants when the C-N bond distance 

rs becomes large. Its functional form is 

(V.13) 

In addition, we attenuated the bending force constants corresponding to the 

C-C-N, H-C-N and C-N-N bond angles of DB as function of the remaining C-N 

bond distance. In these cases, the force constants ki(2) in Eq. (V.11) are 

multiplied by the switching function Ss(rs) 

where 

and 

0 (1) 2 S 5 (rs) = 1 - tanh [ w s (rs - rs ) ] . 

The dihedral potential V1dih in Eq. (5) is given by 

2 

V 1 dih = { L k~1.)i sin 3 (0i, 1) sin 3 (0i, 2) sin 2'ti 
i=1 

8 

+ L k~1.)i sin 3 (0i, 1) sin3 (0i, 2) [ cos'ti - cos'tf )]2 }Ss( rs, rs) 
i=3 

(V.14) 

8 

+ { L k~~? sin 3(0i, 1) sin3 (0i,2) [ cos'ti - cos'tf2)]2 }S7{ rs) , (V.15) 
i=3 

0 (1) 2 0 (1) 2 Ss(rs.rs)=exp{-ws[(rs-r5 ) +(rs-rs ) ]} (V.16) 
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(V.17) 

In Eq. (V.15), kd is the dihedral force constant for DBH (1) and DB (2) and 'tis 

the dihedral angle. The definitions of these angles are given in Table XXIV for 

both DBH and the DB. For every set of four atoms which define a dihedral 

angle, i.e., a-~-y-8 , the angles Si, 1 and Si,2 in Eq. (V.15) represent the 

corresponding bond angles a-~-y and ~-y-8, respectively. The form of Eq. (V.15) 

assures that the dihedral interactions vanish when either of the two angles Si, 1 

and Si,2 is equal to 180° and the dihedral angle is no longer defined. The use 

of switching functions S6(rs,r6) and S7(r5) determines the attenuation of the 

dihedral interactions for large C-N distances relative to the corresponding 

equilibrium values in DBH and DB. 

The analytical expression of V3 term in Eq. (V.4) is that previously 

described for the SCP molecule (see Chapter IV and Ref. 150). 

A Morse function was used for the N-N interaction in the N2 molecule: 

The connection between the potential terms representing the reactants 

and products is achieved by using the parametrized switching functions 

S1 (rs.r6) a:nd S2(rs.r6): 

and 
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S 2 (rs, r 6) = tanh [ w 2 ( rs - r ~ (1) ) 2 ] tanh [ w 2 ( r 6 - r ~ (1) ) 2 ] . (V.20) 

The values of the equilibrium parameters n0(1), eio (1) and 'Cio (1) in 

Eqs.(V.6)-(V.8},(V.1 O)-(V.12), (V.15) are adjusted to reproduce the experimental 

equilibrium geometry of DBH given in Table XVII. The values of the 

corresponding parameters for the DB (2), n0(2), eio (2) and -qo (2) are determined 

from the ab initio optimized geometry of DB at the UMP2/6-31 G* level (see 

Table XVIII). The preexponential Morse factors in Eqs. (V.6)-(V.8) are set equal 

to the estimated bond dissociation energies as described in paragraph C. The 

values of the switching parameters B, C, w1-w6 have been determined so as to 

reproduce the experimental value of the barrier height for the case of stepwise 

dissociation of DBH and the ab initio calculated barrier for the case of symmetric 

stretch of both C-N bonds in DBH. The remaining parameters of the potential, 

i.e., the cuNature parameters Pi(1), Pi(2), ki(1), ki(2) and kd)1), kd/2) were adjusted 

to the scaled values of fundamental vibrational frequencies for DBH and DB, 

respectively, which were determined by ab initio calculations at the MP2/6-31 G* 

level (see Table XIX). The values of the Morse parameters in the N2 potential 

term were taken from Refs. 190 and 193. The numerical values of all 

parameters used in construction of the potential, except for those specific to 

BCP, are given in Tables XXV-XXVII. 

E. Properties of the Potential-Energy Surface 

The equilibrium structures for the reactants and products were 

determined by using a damped trajectory method.45 In this procedure, the 

atoms are initially placed in a configuration near the local minimum being 

sought, with all initial momenta set to zero. The Hamiltonian equations of 
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motion are then integrated until the total kinetic energy attains a maximum 

value, at which point the integration is halted and the momenta of all atoms are 

again set to zero. This procedure is repeated until the system converges to a 

local potential minimum. 

The equilibrium energies obtained from the global potential are given in 

Table XXIX relative to separated atoms. The predicted heat of reaction for DBH 

decomposition is -13.17 kcal/mol, which is in good agreement with the 

experimental value of -12.26 kcal/mol calculated using the standard enthalpies 

of formation of DBH188 and BCP .160 The predicted structures for DBH, the DB, 

BCP and N2 are in excellent agreement with experimental and ab initio 

calculated data (see Tables XVII and XVIII). 

The fundamental vibrational frequencies for DBH and the DB (2) 

obtained using numerical second derivatives of the global potential surface are 

given in Table XXIX. The average root-mean-square deviation between the 

frequencies obtained from the global surface and the ab initio calculated values 

is 24.0 cm-1 for DBH and 26.8 cm-1 for DB (2). The corresponding normal mode 

frequencies for BCP have been previously reported. 150 

The reaction profiles for the case of stepwise and concerted breaking of 

the C-N bonds have been obtained using a combination of grid search and 

constrained damped trajectory methods.1 The execution of a constrained 

trajectory involves the integration of Hamilton equations of motion modified to 

include the effect of the virtual forces, which are determined by the constraint 

conditions and incorporated using the Lagrangian multipliers method (see 

Capter II and Ref. 1 ). 

In the case of a stepwise mechanism, we have assumed that the reaction 

coordinate between DBH and DB can be described with a function of the C-N 

bond subject to the greatest elongation. Proceeding from the diradical state, we 
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have characterized the complete deazetization reaction profile as a function of 

the length of the other C-N bond. In the case of practical calculations, after a 

given displacement of one of the C-N bonds, a constrained damped trajectory is 

calculated to relax the system to the most stable configuration consistent with 

the respective constraint. The process is then repeated starting from the 

relaxed structure obtained in the previous step. 

The reaction profile obtained from the analytical surface for the case of 

stepwise mechanism is shown in Fig. 29. In the first region, the variation of the 

potential was recorded as a function of the C1-N14 bond distance, with zero 

energy assigned to the DBH equilibrium state. The DB state corresponds to the 

final part of this variation, for r5=4.45 A. The depth of the potential well at the 

diradical site is about 1.31 kcal/mol. Starting from the diradical state, we have 

calculated the potential profile as a function of C4-N 1 s bond distance. The 

barrier height is 37.3 kcal/mol and the crest occurs at rs=1.73 A. In Fig. 30 we 

show the variation of the flap angle, determined by the plane of the atoms 

C1-C5-C4 and C1-C4-M, where M is the middle of the C2-C3 bond distance, 

corresponding to the potential variation given in Fig. 29. It can be seen from 

Fig. 30 that for the minimum energy path followed in this succession of bond 

distances, the variation of the flap angle seems to favor exo SCP as the final 

product, because the equilibrium flap angle for the diradical is -23.0°. A 

pictorial description of the molecular configurations for different points along this 

minimum energy path is shown in Fig. 31. 

In the case of a concerted increase of both C-N bond distances, the 

variation of the total potential is presented in Fig. 32. In this case, the 

calculation was performed using the double constraint rs=rs=constant, while all 

atoms were relaxed to the minimum potential energy consistent with these 

constraints. The barrier crest occurs for rs=rs=2.73 A and lies 66.8 kcal/mol 
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above the equilibrium DBH state. The position of the barrier crest is similar to 

that obtained in the ab inito calculations, but the calculated barrier is about 

8 kcal/mol lower than the corresponding value found at the HF/6-31 G* level. 

Computational Procedures 

In order to investigate the dissociation dynamics of the DBHD molecule 

on the analytical potential surface, we have used classical trajectory 

calculations1 at several internal energies. The overall objectives are to 

determine the ratio of bicyclo(2.1.0)pentane-exo,exo-2,3-d2 (Sx) and -endo, 

endo-2,3-d2 (Sn) predicted by the semiempirical potential and to investigate the 

statistical/nonstatistical character of the unimolecular decomposition reaction. 

The initial states of trajectories are prepared by first inserting zero-point 

energy into each of the DBHD vibrational normal modes using a projection 

method,46,47 while the normal mode velocities for rotation and translation are 

set to zero. Hamilton's equations of motion in a space-fixed Cartesian 

coordinate system are then integrated for a random period of time 

(V.21) 

using a fourth-order Runge-Kutta procedure, with a fixed step size of 0.01 time 

units (1 t.u.= 1.018x1 o-14 s). Four significant digits of energy conservation were 

obtained. In Eq. (V.21), ~ is a pseudo random number chosen from a 

distribution that is uniform over the interval [O, 1] and Tm is the characteristic 

period of the lowest frequency vibrational mode in DBHD. The purpose of this 

step is to average over the vibrational phases of the molecule. Subsequent to 

the above integration, the desired excitation energy is then inserted randomly 

into DBHD using projection techniques.46,47 The time tr is taken to be zero for 
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the purpose of rate calculations. From these initial conditions, trajectories are 

integrated until reaction occurs or until an upper limit of time, tmax, is reached. 

We used power spectra of classical trajectories as an additional tool to 

investigate the DBHD dynamics . Power spectra were obtained by transforming 

the time histories of internal coordinates (bond lengths, bond angles, etc.) from 

single trajectories using the method described in Chapter IV (see also Ref.150). 

The composite power spectrum was calculated as a superposition of the 

individual power spectra of the scaled internal variables. 

Results of Trajectory Calculations and Discussions 

The decomposition dynamics of DBHD were investigated for internal 

energies between 60-175 kcal/mol, initially distributed at random over the 39 

vibrational modes. 

Figures 33 and 34 show details of the typical temporal variation of the 

two C-N bonds and of the corresponding flap angle for reactions leading to the 

(Sx) and (Sn) products, respectively. In the case of bond lengths plots, the 

r(C4-N 15) curve is displaced upward by 2.5 A for clarity. Time is given in 

molecular units (1 t.u. = 1.018 x 1 o-14 s). It can be seen that the breaking of the 

C-N bonds occurs successively. Before reaching the product state, the BCP 

molecule oscillates momentarily in the well corresponding to 1,3-cyclopentadiyl 

radical. It has been previously shown 150 that this well is characterized by a flap 

angle ranging between ±25.2°. Although the statistical accuracy of our data is 

limited, the results suggest that those trajectories which pass through the 

cyclopentane-1,3-diyl radical well lead to a near unit ratio of (Sx) and (Sn) 

products as statistical theory would expect. However, not all trajectories leading 

to products are seen to pass through this well. Figure 35 illustrates such a case, 

in which there is no oscillation of the flap angle around the null value. 
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Trajectories of this type lead predominately to the (Sx) BCP product thereby 

producing an overall (Sx) : (Sn) ratio that is greater than unity. 

Decay plots are obtained from ensembles of 250 trajectories for the 

energy range 100-175 kcal/mol and 500 trajectories for excitation energies 

between 60-80 kcal/mol. A panel of selected plots at different excitation 

energies is presented in Fig. 36. It can be seen that these plots generally 

exhibit a high degree of linearity, which is a necessary condition for statistical 

behavior. 

Microcanonical rate constants k(E) have been extracted by least-squares 

fitting of the decay plots using 

ln(Nt/No) = -k(E) t ' (V.22) 

where Nt is the number of unreacted trajectories at time t and No is the total 

number of trajectories in the ensemble. The rate obtained from the slopes of the 

least-square fits are given in Table XXXI. 

The dependence of rate coefficients given in Table XXXI upon the 

internal excitation energy may be fitted with an acceptable degree of accuracy 

to a Rice-Ramsperger-Kassel (RRK) equation52 

(V.23) 

where Eo, 1 =37.3 kcal/mol and Eo,2 = 66.8 kcal/mol are the minimum energies 

required for DBHD decomposition via the DB path or the symmetric stretch of 

both C-N bonds, and s1 and s2 are the corresponding numbers of effective 

degrees of vibrational freedom. The resulting RRK fitted parameters are 

s1=4.75, s2=17.5, v1=6.25 ps-1 and v2=8 ps-1. The RRK fit is shown in Fig. 37. 

161 



For every excitation energy, we also present in Table XIV the calculated 

branching ratios giving the exo (Sx) and endo (Sn) bicyclopentanes. These 

results clearly show a preference for inversion of stereochemistry and are in 

qualitative agreement with the experimental resu lts.141 a, 176, 177 Nevertheless, 

the large error bars make it difficult to assess the energy dependence of the 

exo/endo ratio, particularly for low vibrational energies. However, the relatively 

weak dependence of the ratio upon E clearly suggests that over the narrow 

temperature range that has been investigated experimentally, no significant 

temperature dependence of the rate should be observed. This result is in 

agreement with the data reported by Carpenter at a/.179 

Simpson et af.17 4 have investigated the vibrational energy content of the 

fragments formed in thermal decomposition of DBH over the range 900-1400 K. 

Their results show that N2 is not formed with large amounts of vibrational 

energy, a result which further supports a stepwise dissociation mechanism. 

Indeed, the synchronous cleavage of the two C-N bonds is expected to yield N2 

in highly excited vibrational states, since the N-N axis would be orthogonal to 

the reaction coordinate and the variation of the N-N bond length from DBH to 

free nitrogen is large (ca. 0.148 A).175 In addition, it has been found174 that 

BCP is generally formed with an excess of vibrational energy over the 

equilibrium distribution. This result proves that the most significant energy 

release in the reaction takes place after the elimination of the N2 molecule. 

Based on the results of classical trajectories, we have computed the 

analogous energy distributions for the fragments of DBHD decomposition. 

Table XXXII gives the translational, rotational, and vibrational energy 

distributions of N2 and BCP at internal energies of 60-175 kcal/mol. In each 

case <FT>, <FR> and <Fv> denote the average fractions of energy partitioned 

into translational, rotational, and vibrational motion of the products, respectively. 
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The translational energies of the fragments were calculated with respect to the 

space-fixed origin (which coincides with the mass center of the system}. The 

rotational energy of the fragments was determined using 

Erot = ro · I · ro /2 , (V.24) 

where ro is the angular velocity vector (calculated relative to the mass center of 

the fragment} and I is the moment-of-inertia tensor, also calculated relative to 

the mass center of the fragment. The vibrational energy was approximated as 

the difference between the total internal energy and the rotational energy. 

The values given in Table XXXII show that most of the available energy is 

partitioned into the vibrational modes of BCP. The ratio of BCP to N2 

translational energy is, as it should be, determined by the fragment masses. 

Since there are 36 internal degrees of freedom in BCP and only three in N2, a 

completely statistical distribution would yield [<FR>+<Fv>]scp/[<FR>+<Fv>]N2 = 

12. The trajectory results give values ranging between 12.8 and 13.6. 

Further insight into the dissociation process can by gained by examining 

the internal energy distributions of the products resulting from DBHD 

deazetization. Figure 38 shows the total translational energy distributions for 

trajectories computed at 60 kcal/mol and 175 kcal/mol. The bandwidth for each 

histogram was determined using the method of Gislason and Goldfield,194 such 

that it varies with the total energy. It can be seen in Fig. 13 that the fragments 

emerge with small amounts of kinetic energy, which slowly increases when the 

total energy is increased. 

The normalized rotational and vibrational energy distributions of N2 

molecules formed in the deazetization reaction at total energies of 60 and 175 

kcal/mol are presented in Figs. 39 and 40. The average rotational energy 
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increases from 2.6 to 5.1 kcal/mol as the total energy is increased from 

60 to 175 kcal/mol. This small variation of the average rotational energy is 

expected since the bending force constants for C-N=N, H-C-N and C-C-N 

angles of DB approach zero as the C-N bond length is increased. However, the 

existence of some products with relatively high rotational energies (10-25 

kcal/mot) indicates that a considerable torque may occur. At 60 kcal/mol, the 

average vibrational energy of N2 is 7.0 kcal/mol, which is about twice the zero

point energy (3.37 kcal/mol). This value increases to 13.1 kcal/mol at 175 

kcal/mol. Although our calculations are performed at a much higher excitation 

energy than the experimental conditions employed by Simpson et aJ.174, it 

appears that they are in agreement with the experimental data, since at 60 

kcal/mot the majority of N2 molecules are formed with small amounts of excess 

vibrational energy. 

The vibrational energy distributions of BCP at 60 and 175 kcal/mol are 

given in Figure 41. As can be seen, there is a significant increase in the 

average vibrational energy with the total excitation energy. This result 

demonstrates that most of the available reaction energy is confined to 

vibrational modes of BCP, again in agreement with the data reported by 

Simpson etaJ.174 

In order to obtain a more accurate description of the vibrational energy 

distribution in the BCP product, we have also calculated the average normal

mode velocities in this molecule at the end of reactive trajectories. This was 

done by taking the average of the normal-mode-kinetic energies, calculated 

using the projection method previously introduced by Raff.46,47 For a given 

mode i, the average total energy can be expressed as 

(V.25) 
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where Ki(t) represents the normal-mode kinetic energy of mode i, and tis a time 

in the interval to ::;; t s; to+ ~t. The time interval ~t is chosen to average out most 

of the fluctuations in Ki(t) due to the interconversion of potential and kinetic 

energies within the same mode. In our calculations ~t=30 t.u. Ensembles of 20 

reactive trajectories, each initially having zero-point energy in all normal modes 

and a given excitation energy distributed at random over all modes have been 

considered in these calculations. At the end of trajectories, the normal-mode 

energies were determined for additional 300 t.u. In Fig. 42 we present the time 

variation of the root-mean-square deviations of the average normal mode 

energies, for the case of trajectories performed at 60 kcal/mo! initial excitation 

energy. As can be seen, there is a small temporal variation of these deviations, 

which correspond to limited variations of the mode energies around the 

average value. The small spread of the normal mode energies around the 

average value adds further support to the view that the reaction mechanism is 

well described by statistical theories. 

An additional means of investigation of the reaction mechanism is by the 

computation of power spectra for internal coordinates. In each case, ensembles 

of 20 trajectories were used in the calculations to represent the distribution of 

the classical initial conditions over a specified initial region of phase space. 

The internal coordinates were recorded after every 40th integration step 

(1 integration step=0.01 t.u.) and the trajectories were followed for a maximum 

period of 818.8. t.u. or until dissociation took place. A resolution of 4.0 cm-1 

was obtained for all power spectra presented in this study. The composite 

power spectra at zero-point energy and at 40, 70 and 100 kcal/mo! excitation 

energies are shown in Fig. 43. The excitation energies were initially distributed 

at random among the vibrational modes. As the internal energy increases, 

significant broadening of the spectral lines occurs, which, at higher energies, 
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leads to overlapping of the spectral features. This effect is directly related to the 

enhancement of the mode coupling, and consequently, to the increase of the 

intramolecular vibrational rates with the total energy.70 These results suggest a 

rapid redistribution of the available internal energy over the internal modes and 

correspondingly large intramolecular vibrational rates compared to the reaction 

rates. This is a necessary condition for the absence of nonstatistical effects. 

The totality of the above results suggests that the reaction mechanism is 

statistical. Indeed, the high degree of linearity of the decay plots, the 

microcanonical energy distribution in BCP, as well as the statistical energy 

partitioning between the reaction products support these conclusions. In 

addition, the significant broadening in power spectra with the overlapping of the 

vibrational bands further supports the statistical character of the reaction. 

Summary 

By extension of previously reported results for SCP, 150 we have 

constructed a global potential-energy surface that describes the thermal 

deazetization of the DBH molecule. The potential is written as a superposition 

of channel potentials connected by parametrized switching functions. 

The geometrical parameters in the expression of the potential were 

adjusted to reproduce the experimental equilibrium structure of the DBH 

molecule and the ab initio calculated configuration corresponding to DB. The 

bond dissociation energies in DBH and DB were estimated based on the 

reported values in BCP150 and the thermochemical experimental data 

available. The force constant parameters in the potential were determined by 

fitting the ab initio calculated values for DBH and DB. Other potential 

parameters were ajusted to fit the experimental and ab initio calculated barrier 

heights. The absolute difference between the experimental and predicted heat 
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of reaction for the thermal decomposition of DBH is 0.91 kcal/mol. 

Classical trajectory calculations on the analytical potential surface are 

used to investigate the dissociation dynamics of DBHD at several internal 

energies in the range 60-175 kcal/mol in excess of zero-point energy. The 

results show the following: 

(1) The total decomposition rate of DBHD is well described by a first-order 

rate law. The calculated microcanonical rate coefficients vary from 0.06 ps-1 at 

60 kcal/mol internal excitation to 1.96 ps-1 at 175 kcal/mol. 

(2) The preference for inversion of configuration takes place, with calculated 

branching ratios of (5x) to (Sn) between 1.8 and 2.2. However, the large errors 

of these ratios, particularly at low energies, make it difficult to estimate the 

dependence or independence of the branching ratios on the excitation energy. 

An investigation of the dynamics suggests that this ratio is the result of 

competition between two modes of reaction that involve post-transition-state 

effects. The first mode involves the formation of the symmetric, planar 

1,3-cyclopentadiyl radical which decays with near equal probability to both 

endo and exo BCP. The second mode involves the direct formation of SCP by

passing the shallow well for the 1,3-cyclopentadiyl radical. This mode favors 

the exo product since the equilibrium flap angle for the DB is -23°. 

(3) At 60 kcal/mol, the N2 molecules are formed with relatively small 

amounts of vibrational and rotational energies. These quantities increase with 

increasing the total excitation energy. The most significant amount of excitation 

energy remains concentrated in the vibrational modes of BCP molecule. 

(4) Computed power spectra indicate large modal couplings and overall 

statistical dynamics. Similar conclusions are suggested by the linear decay 

plots and the statistical partitioning of product energy. 

Hence, we expect RRKM theory calculations to yield results for the total 
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DBHD decomposition rate in good accord with the trajectory results. However, 

such statistical calculations will be unable to predict the exo/endo BCP ratio, 

since the underlying factors which produce this ratio are associated with post

transition state effects not addressed by statistical theories of reaction dynamics. 

This expectation is in good accord with criteria which we have previously 

suggested to favor statistical dynamics. 62 We have noted that whenever a 

unimolecular reaction produces significant bonding changes in the products 

relative to the original molecule, intermodal coupling and IVR rates are 

expected to be large. Hence, the dynamics will be statistical. In the present 

case, the bonding in BCP is significantly altered from that in DBHD. The 

observed statistical behavior of the reaction is therefore the expected result. 
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Table XVII 

Ab initio calculated and experimentally observed geometry for DBH. 

Parameter Exp.a) HF/6-31G* MP2/6-31G* 

C1-C2 1.542±0.004 1.547 1.549 

C1-Cs 1.534±0.001 1.526 1.525 

C2-C3 1.552±0.001 1.553 1.549 

C1-N14 1.503±0.004 1.480 1.494 

C1-Ha 1.087±0.002 1.078 1.090 

C2-H9 1.085±0.008 1.083 1.093 

C2-H10 1.093±0.001 1.082 1.092 

Cs-Hs 1.102±0.008 1.083 1.094 

C5-H7 1.088±0.008 1.083 1.094 
I 

N14-N15 ' 1 .246±0.004 1.220 1.275 
ob) 108.9±0.2 109.83 108.38 
~b) 128.3±0.8 128.88 129.06 

f') 122.8±0.8 121.28 122.55 

C1-C5-C4 91.3±0.1 90.94 91.80 

N14-C1-Ha 110.0±0.3 111.43 111.18 

C5-C1-Ha 119.7±0.1 119.59 119.84 

C2-C1-Ha 116.8±0.3 116.22 116.30 

H9-C2-H10 108.2±0.2 108.04 108.18 

Hs-C5-H7 111.4±0.1 110.04 110.28 

a) Ref. 182. 
b) These angles are defined in Fig. 26. 
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Table XVIII 

Calculated geometries of the diazenyl biradical and its transition state for 

nitrogen loss. 

Parameter UHF/6-31 G*. UMP2/6-31 G* 

bi radical TS bi radical TS 

C1-Cs 1.503 1.506 1.496 1.499 

C4-C5 1.535 1.524 1.533 1.522 

C2-C3 1.507 1.506 1.500 1.497 

C3.C4 1.532 1.521 1.527 1.512 

C2-C3 1.539 1.542 1.537 1.541 

Cs-Hs 1.085 1.086 1.095 1.097 

C5-H7 1.090 1.090 1.101 1.102 

C1-Ha 1.073 1.074 1.083 1.083 

C4-H13 1.084 1.078 1.094 1.088 

C2-H9 1.090 1.090 1.101 1.101 

C2-H10 1.086 1.086 1.097 1.097 

C3-H11 1.083 1.083 1.093 1.093 

C3-H12 1.085 1.085 1.095 1.098 

C4-H1s 1.491 1.792 1.508 1.787 

N14-N15 1.173 1.133 1.151 1.126 

C1-C5-C4 102.46 102.87 102.08 103.11 

C2-C1-Cs 111.50 111. 71 111.70 111.90 

C3-C4-C5 104.93 107.22 104.90 107.83 

C1-Cs-Hs 113.78 113.33 114.05 113.43 

C4-C5-Hs 112.34 112.33 112. 71 112.14 

C1-C5-H7 111.64 111.42 112.06 111.70 

C4-C5-H7 109.77 110.45 109.19 110.56 

C2-C1-Ha 124.39 124.35 124.39 124.31 

Cs-C1-Ha 124.01 123.93 123.90 123.62 

C1-C2-C9 111.10 111.05 111.35 111.34 

C3-C2-C9 110.78 110.67 110.66 110.42 
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Table XVIII (continued) 

Parameter UHF/6-31 G*. UMP2/6-31 G* 

bi radical TS bi radical TS 

C1-C2-H10 112.95 112.94 113.06 113.04 

C3-C2-H10 112.14 112.14 112.30 112.34 

C4-C3-H11 112.84 112.90 112.70 112.79 

C2-C3-H11 113.58 113.40 114.15 113.70 

C4-C3-H12 109.23 109.44 108.38 108.54 

C2-C3-H12 110.02 109.76 110.67 110.15 

C3-C4-H13 110.31 114.82 111.50 116.50 

C5-C4-H13 109.34 114.37 110.34 115.72 

C3_C4-N15 117.03 113.42 114.65 109.40 

C4-N1s-N14 120.31 116.34 127.02 122.46 

C2-C1-C5-C4 12.80 6.55 13.39 2.29 

C3-C4-C5-C1 -31.38 -24.98 -32.32 -21.06 

N 15-C4-C3-C2 161.84 152.29 160.95 147.09 

N14-N15-C4-C3 11 .11 12.59 0.93 -12.10 

171 



Table XIX 

The ab initio scaled vibrational frequencies for DBH and diazenyl biradical. The 

scaling factors are 0.8929 for HF/6-31 G* values and 0.94 for MP2/6-31 G* data. 

Zero-point energies (ZPE) are given in kcal/mol. 

Mode DBH Diazenyl biradical 

HF/6-31 G* sym MP2/6-31 G* sym UHF/6-31 G* UMP2/6-31 G* 

1 252.66 (A") 236.09 (A") 73.09 71.28 

2 392.35 (A') 380.21 (A') 138.38 141.35 

3 449.26 (A') 436.08 (A') 158.78 163.87 

4 506.85 (A") 492.82 (A") 209.29 237.44 

5 689.35 (A") 664.26 (A") 234.39 80.04 

6 759.72 (A') 751.52 (A') 389.93 380.66 

7 802.64 (A") 790.39 (A") 463.03 474.83 

8 804.33 (A') 803.53 (A') 555.70 528.43 

9 825.08 (A") 819.04 (A") 630.43 631.08 

10 852.24 (A') 838.28 (A') 783.19 782.02 

1 1 868.95 (A') 872.50 (A') 819.30 815.87 

12 918.15 (A") 897.57 (A") 858.51 879.39 

13 926.47 (A') 936.80 (A') 889.51 888.19 

14 958.91 (A') 950.27 (A") 911.31 905.34 

15 963.72 (A") 954.62 (A') 920.27 937.35 

16 1006.60 (A') 996.42 (A') 974.23 969.92 

17 1037.25 (A") 1014.91 (A") 1003.11 1025.98 

18 1117.66 (A") 1096.61 (A') 1053.94 1049.72 

19 1122.17 (A') 1099.45 (A") 1097.93 1094.50 

20 1200.38 (A') 1156.05 (A') 1154.14 1142.69 

21 1210.33 (A") 1178.66 (A") 1210.63 1195.58 

22 1237.82 (A") 1198.75 (A") 1250.32 1228.00 

23 1267.39 (A") 1233.64 (A') 1271.38 1243.87 

24 1295.35 (A') 1237.06 (A") 1289.91 1269.84 

25 1297.02 (A") 1252.44 (A") 1313.91 1286.88 
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Table XIX (continued) 

Mode DBH Diazenyl biradical 

HF/6-31 G* sym MP2/6-31 G* sym UHF/6-31 G* UMP2/6-31 G* 

26 1304.96 (A") 1263.38 (A") 1325.26 1312.24 

27 1322.13 (A') 1294.26 (A') 1349.09 1322.75 

28 1458.33 (A") 1379.59 (A') 1453.78 1444.30 

29 1464.80 (A') 1446.29 (A') 1457.51 1448.94 

30 1484.05 (A') 1450.56 (A") 1474.12 1465.04 

31 1668.81 (A') 1473.35 (A') 1522.35 2779.48 

32 2891.12 (A") 2942.74 (A") 2825.08 2870.87 

33 2900.10 (A') 2945.99 (A') 2828.28 2872.20 

34 2905.24 (A') 2949.82 (A') 2877.27 2933.22 

35 2930.91 (A") 2996.43 (A") 2888.09 2943.25 

36 2945.05 (A') 3007.91 (A') 2891.22 2947.90 

37 2949.77 (A') 3010.30 (A") 2903.25 2962.16 

38 2973.19 (A") 3011.00 (A') 2932.76 3002.18 

39 2977.55 (A') 3013.44 (A') 3020.41 3090.62 

ZPE 78.53 77.87 73.48 75.79 
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Table xx 

Thermochemical and ab initio calculated data for the compounds of interest. 

The enthalpies of formation and the thermal corrections (TC) are given in 

kcal/mol. The total G1 energies and zero-point energies are in hartrees and 

milihartrees respectively. 

Compound TC ZPE G1 energy 

C2H4N2 64.oa) 41.42a) 61.45b) -187.71074896a) 

H2 0.0 8.32C) 9.45d) -1.16501d) 

CH4 -17.90±0.0SC) 29.50C) 42.66d) -40.40772d) 

NH3 -10.97±0.1 c) 23.94C) 33.04d) -56.45477d) 

C2HaN2 -4.20±1.140) 106.88b) 

C5HaN2 49.56±0.64f) 

a) Obtained using the procedure described in the text. 

b) Ab initio calculated at the HF/6-31 G* level and scaled by 0.8929. 

c) Ref. 32. 

d) Ref. 185 

e) Ref. 189. 

f) Ref. 188. 
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Table XXI 

Ab initio calculated geometries (C2v symmetry) and energies (in hartrees) of 

dimethylenediazene (diazetine). 

Parameter HF/6-31 G* MP2/6-31 G* MP2(FU)/6-31 G* 

r{N-N) 1.229 1.290 1.289 

r{N-C) 1.470 1.489 1.487 

r{C-H) 1.082 1.093 1.093 
8{N-N-C) 96.01 94.76 94.75 

8{N-C-H) 112.98 112.50 112.49 

8{H-C-H) 109.75 109.70 109.72 

Energy -186.86780 -187.44469 -187.46086 
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Table XXII 

Optimized parameters (bond distances in A, angles in degrees), total energies 

(in hartrees) and zero-point energies (ZPE) (in kcal/mol) for conformations gGg' 

(1 ), tGg' (2) and tTt (3) of ethylenediamine. 

Parameter HF/6-31 G* MP2/6-31 G* 

(1) (2) (3) (1) (3) 

C2-C1 1.5216 1.5284 1.5328 1.5202 1.5324 

N3-C2 1.4509 1.4508 1.4526 1.4614 1.4645 

N4-C1 1.4582 1.4570 1.4525 1.4698 1.4645 

Hs-C2 1.0945 1.0875 1.0870 1.1054 1.0970 

Hs-C2 1.0858 1.0858 1.0870 1.0960 1.0970 

H7-C1 1.0912 1.0924 1.0870 1.1015 1.0970 

Ha-C1 1.0835 1.0864 1.0870 1.0937 1.0970 

H9-N3 1.0013 1.0023 1.0023 1.0183 1.0195 

H10-N3 1.0016 1.0027 1.0023 1.0194 1.0195 

H11-N4 1.0011 1.0014 1.0023 1.0181 1.0195 

H12-N4 1.0023 1.0026 1.0023 1.0193 1.0195 

N3-C2-C1 109.99 115.27 115.41 108.77 115.76 

N4-C1-C2 110.17 110.23 115.41 109.13 115.76 

Hs-C2-C1 108.67 108.91 109.35 108.40 109.20 

Hs-C2-C1 109.01 109.29 109.36 109.33 109.20 

H7-C1-C2 109.34 109.30 109.36 109.75 109.20 

Hs-C1-C2 108.41 109.17 109.36 108.11 109.20 

H9-N3-C2 111.04 109.11 110.96 110.24 109.38 

H10-N3-C2 109.28 110.17 110.95 107.09 109.38 

H11-N4-C1 111.05 111.13 110.95 110.13 109.38 

H12-N4-C1 110.65 110.54 110.96 109.34 109.38 

N4-C1-C2-N3 -64.76 -60.17 -179.95 -63.42 -179.84 

Hs-C2-C1-N4 60.05 61.38 -57.99 61.42 -57.90 

Hs-C2-C 1-N4 176.07 177.20 58.07 177.60 58.19 

Hs-C2-C 1-H7 52.19 52.09 -179.96 52.19 -179.86 
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Table XXII (continued) 

Parameter HF/6-31 G* MP2/6-31 G* 

(1) (2) (3) (1) (3) 

H7-C1-C2-N3 170.41 174.72 -57.97 171.15 -57.90 

Ha-C1-C2-N3 53.33 58.06 58.08 63.70 58.19 

H9-N3-C2-C1 173.53 50.54 -59.40 169.76 -57.82 

H10-N3-C2-C1 54.72 -66.03 59.51 53.43 57.83 

H11-N4-C1-C2 166.32 170.04 59.45 166.63 57.83 

H12-N4-C1-C2 -75.02 -71.43 -59.45 -77.03 -57.82 

Energy -189.26853 -189.26847 -189.26651 -189.85846 -189.85637 

ZPEa) 75.11935 75.06179 74.76919 

a) Unscaled values. 
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Table XXIII 

Total energies (in hartrees) and G1 corrections (in mhartrees) for 

dimethylenediazene. 

Method Energy (hartrees) Corrections (hartrees) 

HF/6-31 G*//HF/6-31 G* -186.8678022 

MP2/6-31 G*//MP2/6-31 G* -187.4446955 

MP2(FU)/6-31 G*// 

MP2(FU)/6-31 G* -187.4608610 

MP4SDTQ(FC)/6-311 G**// 

MP2(FU)/6-31 G* -187.5991155 ~E(HLC) = -0.06754 

MP4/6-311 +G**// 
MP2(FU)/6-31 G* -187.6075066 ~E(+) = -0.00839108 

MP4/6-311 G(2df)// 
MP2(FU)/6-31 G* -187.6974783 ~E(2df) = -0.09836278 

QCISD(T)/6-311 G**// 
MP2(FU)/6-31 G* -187.5979101 ~E(QCI) = 0.00120542 

ZPE//HF/6-31 G* 0.0688269 ~ZPE = 0.061455 

G1 -187.71074896 
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Table XXIV 

Bond and angle assignments for DBH and the diazenyl biradical. 

Distance between Label Angle between Label 
atoms atoms 

1 2 r1 1 2 3 01 

3 4 r2 2 3 4 02 

1 5 r3 2 1 14 03 
4 5 r4 3 4 15 04 

1 14 rs 1 14 15 05 
4 15 rs 4 15 14 0s 

1 8 r7 2 1 5 07 

4 13 rs 3 4 5 0a 

2 3 r9 5 1 14 09 

2 9 r1 o 5 4 15 010 

3 1 1 r11 1 5 4 011 

2 10 r12 1 2 9 012 

3 12 r13 4 3 11 013 

5 6 r14 1 2 10 014 

5 7 r1 s 4 3 12 015 

14 15 r16 9 2 10 016 
11 3 12 017 

Dihedral angle Label 2 3 1 1 018 

between atoms 3 2 9 019 

1 2 3 4 't1 2 3 12 020 

4 15 14 1 't2 3 2 10 021 

2 3 4 5 't3 1 5 6 022 

5 1 2 3 't4 4 5 6 023 

3 4 5 1 't5 1 5 7 024 

4 5 1 2 't6 4 5 7 025 

2 3 4 15 't7 6 5 7 02s 

14 1 2 3 ta 2 1 8 027 

3 4 15 14 't9 3 4 13 02a 
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Table XXIV (continued) 

Dihedral angle Label Angle between Label 
between atoms atoms 

15 14 1 2 t10 5 1 8 829 
15 14 1 5 t11 5 4 13 830 
5 4 15 14 't12 14 1 8 831 

15 4 13 832 
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Table XXV 

Morse parameters for: (a) DBH; (b) diazenyl biradical; and (c) nitrogen. 

Diatomic Pair D (eV) ~ (A-1) RO (1) (A)/ 
RO (2) (A) 

C1-C2(a) 4.07016381 1.75127282 1.542 

C1-Cs 4.07016381 1.68432026 1.534 

C1-N14 2.05979950 2.52155557 1.503 

C1-Ha 4.48385828 1.85236803 1.087 

C2-C3 4.07016381 1.75127282 1.552 

C2-H9 4.19722092 1.88719422 1.085 

C2-H10 4.19722092 1.88719422 1.093 

Cs-H6 4.65427959 1.78839197 1.102 

C5-H7 4.65427959 1.78839197 1.088 

N14-N1s 5.87151268 1.78578998 1.246 

C1-C2(b) 4.07016381 1.70692960 1.500 

C3-C4 4.07016381 1.70692960 1.527 

C1-Cs 4.07016381 1.68432026 1.496 

C4-C5 4.07016381 1.68432026 1.534 

C1-N14 0.00000000 4.454 

C4-N15 2.05979950 2.52155557 1.508 

C1-Ha 4.48385828 1.90214159 1.083 

C4-H13 4.48385828 1.82721090 1.094 

C2-C3 4.07016381 1.70692960 1.537 

C2-H9 4.19722092 1.84536203 1.101 

C3-H11 4.19722092 1.88896633 1.093 

C2-H1 o 4.19722092 1.86938077 1.097 

C3-H12 4.19722092 1.88896633 1.095 

Cs-H6 4.65427959 1.76765082 1.096 

C5-H7 4.65427959 1.75241217 1.101 

N14-N15 6.58788926 3.85674952 1.151 

N-N(C) 9.94388778 2.68503538 1.0977 
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Table XXVI 

Bending potential parameters for: (1) DBH and (2) diazenyl bi radical. 

Angle a-p-y k(1)cx~y 00(1) k(2)cx~y 00(2) 

(eV/rad2) (deg) (eV/rad2) . (deg) 

C1-C2-C3 10.0488273 102.0128 10.1736575 103.4348 

C2-C3_C4 10.0488273 102.0128 10.1736575 102.9737 

N14-C1-C2 1.6334026 103.5934 0.0000000 74.9737 

C3-C4-N15 1.6334026 103.5934 2.0703081 114.6518 

N15-N14-C1 3.8697347 108.3805 0.0000000 42.3496 

C4-N15-N14 3.8697347 108.3805 3.7449046 127.0249 

C5-C1-C2 10.0138749 102.8002 10.2011201 111.6992 

C3-C4-C5 10.0138749 102.8002 10.2011201 104.9016 

N14-C1-C5 2.8086784 100.6997 0.00.00000 39.0103 

C5-C4-N15 2.8086784 100.6997 2.8710935 110.6305 

C4-C5-C1 10.5356649 91.3000 10.2485556 102.0799 

C1-C2-H9 3.8697347 110.9012 4.0320139 111.3537 

C4-C3-H11 3.8697347 110.9012 4.0320139 112.7092 

C1-C2-H1 o 3.9071838 110.5533 4.0320139 113.0687 

C4-C3-H12 3.9071838 110.5533 4.0320139 108.3877 

H9-C2-H1 o 1.6852071 108.2000 2.1221126 106.1406 

H11-C3-H12 1.6852071 108.2000 2.1221126 107.8100 

C2-C3-H11 3.8697347 112.1424 4.0320139 114.1565 

C3-C2-H9 3.8697347 112.1424 4.0320139 110.6634 

C2-C3-H12 3.9071838 112.9742 4.0320139 110.6678 

C3-C2-H10 3.9071838 112.9742 4.0320139 112.2996 

C1-Cs-Hs 3.9633574 112.7917 3.9633574 114.0555 

C4-C5-Hs 3.9633574 112.7917 3.9633574 112.7138 

C1-C5-H7 3.9633574 113.6044 3.9633574 112.0677 

C4-C5-H7 3.9633574 113.6044 3.9633574 109.1944 

Hs-C5-H7 1.7476221 111.4000 2.1221126 106.7363 

C2-C1-Ha 2.6838483 116.8000 3.1207538 124.3918 

C3-C4-H13 2.6838483 116.8000 3.1207538 111.5069 
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Table XXVI (continued) 

Angle a-~-y k(1)<X~'Y 80(1) k(2)a~y 80(2) 

(eV/rad2) (deg) (eV/rad2) (deg) 

C5-C1-Ha 2.6214332 119.7000 2.7462634 123.8990 

C5-C4-H13 2.6214332 119.7000 2.7462634 110.3412 

N14-C1-Ha 2.7206732 110.9681 0.0000000 157.6100 

N15-C4-H13 2.7206732 110.9681 2.7830883 157.6100 
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Table XXVII 

Dihedral potential parameters for: (1) DBH and (2) diazenyl biradical. 

Angle a-~-y-6 kd(1) t0(1) kd(2) t0(2) 

(eV) (deg) (eV) (deg) 

1 2 3 4 2.5 0.0 2.7 30.0386 

41514 1 4.0 0.0 0.0 27.4086 

2 3 4 5 2.5 37.0537 2.4 39.4018 

5 1 2 3 2.5 37.0537 2.4 10.4277 

3 4 5 1 0.0 57.4701 2.4 32.3197 

4 5 1 2 0.0 57.4701 2.4 13.3957 

2 3 4 15 3.0 67.4721 3.0 160.9551 
14 1 2 3 3.0 67.4721 0.0 1.7288 

3 41514 0.0 72.1824 0.5 0.9301 

15 14 1 2 0.0 72.1824 0.0 125.9480 

15 14 1 5 3.5 33.9380 0.0 35.9421 
5 4 15 14 3.5 33.9380 0.5 119.2971 
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Table XXVIII 

Switching functions parameters used in Eqs. (V.4)-(V.20). 

Parameter Valuea) 

w1 3.8 

w2 3.901 

W3 8.0 

W4 3.0 

W5 2.0 

ws 2.0 

W7 6.0 

A 28.0 

8 0.98 

C 1.52 

a) The units are: A-2 for the Wi i=1, .. ,7 and C, ev-1 for A, and A-4 for 8. 
I 
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Table XXIX 

Equilibrium energies (not including zero-point energies) on the analytic surface. 

The separated atoms are taken as the potential zero. 

Molecule 

C5HaN2 (DBH) 

CsHa 

Diazenyl biradical 

186 

Total Potential (eV) 

-65.407090 

-55.971907 

-9.943887 

-64.065967 



Table XXX 

Calculated frequencies (cm-1) for DBH and diazenyl biradical. 

Mode DBH Diazenyl Biradical 

V 1 255.29 11.69 

v2 390.75 110.09 

V3 463.43 136.48 

V4 517.82 223.38 

V5 622.82 250.09 

VG 684.74 331.38 

V7 783.29 482.59 

va 796.38 589.32 
Vg 820.99 703.73 

V1Q 834.12 787.46 

v11 871.88 820.77 

v12 879.31 854.97 

v13 887.84 895.05 

v14 934.63 943.40 

v15 936.62 953.54 

V16 990.69 981.93 

V17 1012.90 991.09 

V18 1033.16 1041.00 

V19 1100.56 1133.97 

v20 1167.98 1157.68 

v21 1169.44 1168.49 

v22 1182.47 1196.06 

v23 1236.81 1242.94 

v24 1240.99 1248.70 

v25 1269.13 1282.17 

V26 1274.66 1305.88 

v27 1295.86 1387.66 

v2a 1357.42 1442.85 

v29 1383.05 1458.35 

vao 1437.21 1504.27 

V31 1455.22 2781.25 
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Table XXX (continued) 

Mode DBH. Diazenyl Biradical 

v32 2916.49 2877.11 

V33 2928.52 2881.82 

V34 2929.34 2932.12 

V35 2993.75 2943.88 

V36 2999.56 2952.48 

V37 3008.08 2965.51 

vaa 3011.59 3002.34 

V39 3011.69 3090.32 
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Table XXXI 

Microcanonical rates constants for diazetization of DBHD and the 

corresponding branching ratios for random initial energization. The correlation 

coefficients r of the fitting are also indicated. 

Energy(kcal/mol) k(E) (ps-1) r Nexo/Nendo 

60 0.0626±0.0047 0.997 1 .826±0.438 

80 0.1546±0.0067 0.995 1 .833±0.291 

100 0.3533±0.0103 0.993 2.029±0.325 

125 0.8461 ±0.0540 0.998 1 .863±0.248 

150 1.3070±0.0052 0.998 2.192±0.300 

175 1.9616±0.0000 0.995 2.378±0.329 
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Table XXXII 

Distribution of available energy among different products of dissociation of 

DBHD as a function of total excitation energy, in excess to zero-point energy. 

<FT>, <FR>, and <Fv> denote the fractions of available energy partitioned into 

translation, rotation, and vibration, respectively. 

Energy <FT> <FR> <Fv> 

{kcal/mo I) 

BCP N2 BCP N2 BCP N2 

60 0.0041 0.0103 0.0036 0.0180 0.9150 0.0488 

80 0.0037 0.0094 0.0034 0.0193 0.9160 0.0478 

100 0.0033 0.0083 0.0035 0.0181 0.9239 0.0426 

125 0.0032 0.0081 0.0035 0.0200 0.9161 0.0488 

150 0.0029 0.0072 0.0039 0.0019 0.9173 0.0485 

175 0.0029 0.0072 0.0034 0.0200 0.9156 0.0506 
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Figure 25. The general reaction scheme for thermal decomposition of 

2,3-diazabicyclo(2.2.1 )hept-2-ene-exo, exo-5,6-d2. 
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Figure 26. Atom designation and numbering for: a) 2,3-diazabicyclo(2.2.1 )hept-

2-ene and b) diazenyl biradical. 
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Figure 27. Calculated (MP2/6-31 G*) infrared spectra of DBH. 
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Figure 28. Pictorial view of dimethylenediazene (a) and ethylenediamine 

configurations: gGg' (b); tGg' (c) and tTt (d). 
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Figure 29. The variation of the total potential as a function of the C-N bond 

distances : a) r(C1-N14); b) r(C4-N1s) for the succesive cleavage 

reaction mechanism. 
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Figure 30. The variation of the flap angle as a function of the C-N bond 

distances: a) r(C1-N14); b) r(C4-N15) corresponding to the 

potential profile given in Figs. 29 a) and 29 b). 
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Figure 31. Panel showing different molecular structures corresponding to the 

potential profile given in Figs.4a and 4b. The configurations (a-d) 

correspond to rs values of 1 .503 A, 2.5 A, 3.5 A, and 4.45 A. The 

configurations (e) and (f) correspond to rs values of 1.73 A and 

3.sA. 
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Figure 32. The variation of the total potential as a function of the C-N bond 

distance for simultaneous stretching of both C-N bonds. 
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Figure 33. Temporal variation of (a) the C-N bond lengths r(C1-N 14) and 

r(C4-N1s)+2.5 A and (b) flap angle, for a trajectory leading to (Sx). 

r(C4-N1s) has been displaced upwards by 2.5 A to enhance the 

visual clarity. Time is given in units of 1.018 x 10-14 sec. 
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Figure 34. Temporal variation of (a) the C-N bond lengths r(C1-N14) and 

r(C4-N15)+2.5 A and (b) flap angle, for a trajectory leading to (Sn). 

r(C4-N15) has been displaced upwards by 2.5 A to enhance the 

visual clarity. Time is given in units of 1.018 x 10-14 sec. 
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Figure 35. Temporal variation of (a) the C-N bond lengths r(C1-N14) and r(C4-
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Figure 36. Decay plots for random excitation of the vibrational modes of DBHD 

at the energies (a) 60 kcal/mol; (b) 100 kcal/mol; (c) 125 kcal/mol; 

(d) 175 kcal/mol in excess of zero-point energy. In each case, the 

line is the result of linear least-squares fit to the calculated points. 



-0.0 0.0 

-0.1 - -0.5 - .... .... z z ........ ........ z z -0.2 - -1.0 -
C C -- -0.3 -1.5 

-0.4 -2.0 
0 100 200 300 400 500 0 100 200 300 400 500 

Time (t.u.) Time (t.u.) 
I\) 
0 
I\) 

o,-ac: 0 I 

- -1 - -1 .... .... 
z z 
........ -2 

........ 
z z - - -2 

C -3 - C -
-4 

-3 

-5 -4 
0 100 200 300 400 500 0 50 100 150 200 

Time (t.u.) Time (t.u.) 



2.0 
Calculated • 
Eq. (V.23) 

1. 5 -tn 
C. -.... 1. 0 --w -~ 

0.5 

0.0 

60 80 100 120 140 160 180 

Energy (kcal/mol) 

Figure 37. Microcanonical rate coefficients for the decomposition of DBHD as a 

function of excitation energy in excess of zero-point energy. The 

points are the calculated values. The line is a least-square fit of 

Eq. (V.23). 
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Figure 38. Normalized distribution of the total translational energy released in 

deazetization reaction of DBHD. Total energies are (a) 60 kcal/mol; 

(b) 175 kcal/mol. 
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Figure 39. Normalized distribution of the rotational energy of N2 molecules 

formed in deazetization reaction of DBHD. Total energies are (a) 

60 kcal/mol; (b) 175 kcal/mol. 
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Figure 40. Normalized distribution of the vibrational energy of N2 molecules 

formed in deazetization reaction of DBHD. Total energies are (a) 

60 kcal/mol; (b) 175 kcal/mol. 
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Figure 41. Normalized distribution of the vibrational energy of SCP molecules 

formed in deazetization reaction of DBHD. Total energies are (a) 

60 kcal/mol; (b) 175 kcal/mol. 
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Figure 41. Normalized distribution of the vibrational energy of BCP molecules 

formed in deazetization reaction of DBHD. Total energies are (a) 

60 kcal/mol; (b) 175 kcal/mol. 
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Figure 43. Composite power spectra for DBHD in arbitrary units at: (a) zero

point energy; (b) 40 kcal/mol; (c) 70 kcal/mol; and (d) 100 kcal/mol. 

The excitation energies, in excess to zero-point energy, are 

initially distributed at random over the normal-modes . 
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CHAPTER VI 

CONCLUSIONS 

Following the central idea expressed in the Preface, we have developed 

detailed models for three molecular systems one involving solid surfaces and 

two for reactions in the gas-phase: H-atoms on a Si(111 )-(7x7) surface, 

bicyclo(2.1.0)pentane, and 2,3-diazabicyclo(2.2.1 )hept-2-ene. In these last two 

cases, the theoretical models include description of 1,3-cyclopentadiyl and 

diazenyl biradicals, respectively. 

In all these cases, specific potential-energy surfaces have been 

constructed to describe either the hydrogen-lattice interaction or the reaction 

kinetics between different conformations, as in the case of skeletal inversion of 

bicyclo(2.1.0)pentane or unimolecular decomposition, as in the case of thermal 

deazetization of 2,3-diazabicyclo(2.2.1 )hept-2-ene. 

Obtaining an accurate potential-energy surface for every system 

analyzed was a central goal of our theoretical investigations. For this purpose, 

we have used the available theoretical and experimental data related to 

molecular conformations (geometrical parameters) of reactants, products and 

transition states, to thermochemical data (bond dissociation energies, 

enthalpies of formation or reaction), to spectroscopical data (fundamental 

vibrational frequencies), and to kinetic data (activation energies, reaction rate 

constants, branching ratios). In those cases when this type of information, 

essential in construction of potential-energy surfaces, was not available, we 

210 



presented alternative methods, based on ab initio calculations, to obtain the 

necessary data. In particular, we have used ab initio calculations to evaluate 

the geometries of molecular systems at equilibrium and in the transition states, 

their total energies and the curvature of the potential-energy surface at the 

position of the local minima. Based on these data, additional information 

related to enthalpy of formation, bond-dissociation energies and zero-point 

energies has been obtained. 

We have also presented in detail the general procedures for construction 

of a potential-energy surface that reproduces the available theoretical and 

experimental data. For this purpose, we analyzed the essential steps related to 

the choice of the analytical functional forms used in description of potential 

interactions and in connecting the important regions on the potential-energy 

surface. In addition, we have described the particular fitting and testing 

procedures of the potential parameters to the ensemble of geometrical, 

thermochemical, spectroscopic and kinetic data. 

Following the construction of potential-energy surfaces, we have 

presented the general strategy used to investigate the dynamics of molecular 

systems, using either trajectory methods or Monte Carlo calculations. In these 

cases, particular attention was paid to general methods and theories used in 

analysis of trajectories, intramolecular energy transfer and reaction mechanism. 

For the systems analyzed, the principal results can be summarized as 

follows: 

Diffusion of Hydrogen Atoms on a Si(111 )-(7x7) Reconstructed Surface 

The diffusion of hydrogen atoms on a reconstructed Si(111 )-(7x7) 

surface has been investigated using variational phase-space theory methods. 

The dimer-atom-stacking fault model of the reconstructed Si(111 )-(7x7) surface 
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proposed by Takayanagi et al. 101,102 was employed to describe a four-layer 

lattice structure containing 292 atoms. The lattice potential is that developed by 

Bolding and Andersen.108 We developed a potential for the interaction of 

hydrogen atoms with the reconstructed Si(111 )-(7x7) surface which reproduces 

the Si-H equilibrium distance, the binding energy and the fundamental Si-H 

stretching and H-Si-Si bending frequencies. This gas-lattice interaction 

potential is described by a sum of Morse functions and bending terms between 

the hydrogen adatom and the Si atoms in the first and second layers. 

Canonical Markov walks with importance sampling have been used to 

evaluate the flux across a set of planar dividing surfaces separating different 

adsorption sites. Classical jump frequencies were computed at 300, 500, and 

800 K. An Arrhenius fit to these jump frequencies yielded an activation energy 

of 1.548 eV and a preexponential factor of 3.88x1012 s-1. 

The minimum-energy diffusion path for sites separated by 12.6 a.u. 

distance was obtained using a Monte Carlo random walk procedure with 

importance sampling.75 The barrier height for the these jumps was found to be 

1.52 eV. 

The classical diffusion coefficients at 300, 500 and 800 K were obtained 

by integrating a system of phenomenological rate equations describing the 

diffusion of hydrogen atoms on a simplified model for 49 units cells on the DAS 

surface, followed by calculation of the slope in the plots giving the time variation 

of the root-mean-square displacement obtained from the solution of the rate 

equations. The computed activation energy for thermal diffusion was found to 

be 1.548 eV, and a pre-exponential factor of 0.023 cm2/s was determined, in 

good agreement with the experimental value.94 

Calculated upper limits for the tunneling rates at 300, 500 and 800 K 

show that tunneling processes make only small contributions to the total 
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diffusion rate. 

Statistical Effects in the Skeletal Inversion of Bicyclo(2.1.0)pentane 

We have developed a semiempirical potential-energy surface for 

bicyclo(2.1.0)pentane which includes bond stretching, bending and torsional 

terms. 

The bond dissociation energies were estimated using the available 

thermochemical data and results of ab initio molecular calculations performed 

at the fourth order Moller-Plesset perturbation theory level using a 6-31 G** 

basis set. The equilibrium geometry of bicyclo(2.1.0)pentane and 1,3-cyclo

pentadiyl radical, the barrier for ring inversion, and the fundamental frequencies 

of bicyclo(2.1.0)pentane obtained with our semiempirical potential-energy 

surface are in fair-to-good agreement with the measured and ab initio values. 

Projection methods46,47 and molecular dynamics simulations were used 

to investigate the type of statistics obeyed by the flap motion of 

bicyclo(2.1.0)pentane. For random energization of the vibrational modes, the 

results of trajectory calculations agree with the predictions of statistical 

unimolecular theory. The RRK parameters extracted from the analysis of 

microcanonical rate constants for the ring inversion are v=1.22±0.26 ps-1 and 

S=12.18±0.72. A global statistical behavior is also supported by the results of 

the power spectra calculated at different energization levels. The significant 

broadening and overlapping of the spectral bands, together with the 

disappearance of characteristic spectral features in the power spectra of the flap 

angle, indicate high intramolecular vibrational redistribution rates and overall 

statistical behavior. The total intramolecular vibrational relaxation rates for the 

energy flow out of the flap mode were extracted from the time dependence of 

the average total normal-mode energy in this mode. For initial excitation of the 
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flap mode in the range 30-60 kcal/mol, the calculated total intramolecular 

vibrational relaxation rates were found to be significantly larger than the 

microcanonical ring inversion rates. This result further supports the statistical 

character of the ring inversion in bicyclo(2.1.0)pentane. 

Molecular Dynamics Studies of the Thermal Decomposition of 

2,3-pjazabicyclo(2.2.1 )hept-2-ene 

The reaction dynamics of the thermal gas-phase decomposition of 

2,3-diazabicyclo(2.2.1 )hept-2-ene-exo, exo-5,6-d2 have been investigated 

using classical trajectory methods on a semiempirical potential-energy surface. 

The global potential was written as a superposition of different reaction channel 

potentials containing bond stretching, bending and torsional terms, connected 

by parametrized switching functions. Reaction channels for stepwise and 

concerted cleavage of the two C-N bonds of the reactant were considered in the 

construction of the potential. 

The geometries of 2,3-diazabicyclo(2.2.1 )hept-2-ene, the diazenyl 

biradical and of the transition state corresponding to breaking of the remaining 

C-N bond of diazenyl biradical were determined at the second order Moller

Plesset perturbation theory (MP2/6-31 G*) and at the Hartree-Fock (HF/6-31 G*) 

levels, respectively. 

The bond dissociation energies were estimated using the available 

thermochemical data and previously reported results for bicyclo(2.1.0)

pentane.150 The equilibrium geometries predicted by the semi-empirical 

potential for reactants and products, the barrier height for thermal nitrogen 

extrusion from 2,3-diazabicyclo(2.2.1 )hept-2-ene and the fundamental 

vibrational frequencies are in good to excellent agreement with the measured 

or ab initio calculated values. 

214 



Using a projection method of the instantaneous Cartesian velocities onto 

the normal mode vectors and classical trajectory calculations, the dissociation 

dynamics of 2,3-diazabicyclo(2.2.1 )hept-2-ene-exo, exo-5,6-d2 were 

investigated at several excitation energies in the range 60-175 kcal/mol. The 

results showed the following: 

(1) The thermal reaction takes place with a preference for inversion of 

configuration in the reaction products, the exo-labeled bicyclo(2.1.0) pentane 

being the major product. The exo/endo ratio of bicyclo(2.1.0) pentane isomers 

is found to vary between 1.8-2.2 for the energy range considered. 

(2) For random energization of the vibrational modes, the energy dependence 

of the rate coefficients can be described by an RRK expression. 

(3) The significant broadening and overlapping of the power spectral bands, 

together with the disappearance of characteristic features in the power spectra 

of the internal coordinates calculated at different energies, indicate high 

intramolecular vibrational redistribution rates and global statistical behavior. 

(4) The energy partitioning among products shows that the internal energy is 

preferentially distributed into the vibrational degrees of freedom in BCP, while 

N2 is formed with small amounts of rotational and vibrational energies. 

(5) Stepwise dissociation of the C-N bonds is the predominant mechanism 

which characterizes the N2 elimination from the parent molecule. 

(6) Although statistical theories of reaction rates, such as the Rice-Ramsperger

Kassel-Marcus (RRKM) theory, are unable to predict the product exo/endo ratio, 

this is not a result of the breakdown of the statistical assumption inherent in 

these theories, but is rather due to the fact that statistical theories do not 

address mechanistic questions related to post transition-state events. 

The results of the present investigation demonstrate that the method of 

molecular dynamics simulations represents a very powerful theoretical 
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methodology for the detailed investigation of molecular systems in both the 

condensed and gas phases. In addition, the incorporation of ab initio 

calculations in molecular dynamics studies represents a complementary 

procedure to determine the essential data necessary in the construction of 

potential-energy surfaces. However, following the development of 

computational systems and parallel processing techniques, a much larger 

interconnection of the ab initio and molecular dynamics simulations methods is 

expected. In the future, molecular dynamics simulations on ab initio calculated 

potential~energy surfaces will become a reference method in the investigation 

of medium-size and eventually large molecular systems. 
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