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CHAPTER 1 

INTRODUCTION 

A Riemann surface is a topological surface which has a complex structure. It 

locally looks like the complex plane. Specifically, it is a complex one-dimensional 

connected manifold; it is a connected Hausdorff space, along with an open cover 

{Ua} and homeomorphisms Za : Ua -+ (C such that 

is holomorphic whenever Ua n Uf3 =J. 0 (see Figure 1.1). The za's are called local 

coordinates on the Riemann surface. 

- _/ Up 
, ' 

/ I \ 
I I I 
I u \ I 
\ (){ '-1 

' / 

Za 

Figure 1.1: Local coordinates on a Riemann surface 

A map between two Riemann surfaces f : S --+ T is holomorphic if for every local 

coordinate z on S and every local coordinate w on T, w o f o z-1 is holomorphic. 

(This is a mapping from a subset of (C into <C.) Two Riemann surfaces are conformally 

equivalent if there is a biholomorphic homeomorphism between the two. There may 

be many ways to put a complex structure on a topological surface, and we consider 

two Riemann surfaces as the same if they are conformally equivalent. 
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A Riemann surface has type (g, n) if the surface has genus g and n punctures. The 

moduli or Riemann space R9 ,n is the space of conformal equivalence classes of Riemann 

surfaces of type (g, n). If 3g - 3 + n > 0 then the conformal equivalence class of a 

Riemann surface of type (g, n) depends on 3g-3+n complex parameters called moduli. 

The basic goal of Teichmiiller theory is to find a natural way to associate Riemann 

surfaces with their moduli; the lengths of geodesics, the meromorphic differentials, 

and similar objects associated with the Riemann surface should depend in an explicit 

way on the moduli. The moduli space is not (in general) a manifold, and is difficult to 

study from an analytic point of view. However, if each Riemann surface is marked by 

distinguishing a set of generators for its fundamental group, then the resulting space 

has a natural complex structure and can be realized as a bounded domain in cm. 

The space of marked Riemann surfaces of type (g, n) is called the Teichmiiller space 

and is denoted by T9 ,n, If 3g - 3 + n > 0 then T9 ,n is a space of complex dimension 

3g - 3 + n. The moduli space R9 ,n is the quotient of Teichmiiller space T9 ,n by the 

modular group of surfaces of type (g, n ). (The modular group of a surface is the group 

of homotopy classes of orientation-preserving homeomorphisms of the surface; it is 

also called the mapping class group.) 

Riemann surfaces are closely related to Kleinian groups. A matrix (: ! ) E 

SL(2, C) acts on C =CU { oo} via the action 

az+ b 
z f--7 • 

cz+d 

(a b) (-a -b) Since and yield the same action, we restrict our attention to the 
C d -C -d 

group PSL(2, C) (which is isomorphic to the group of Mobius transformations). For 

a subgroup r of PS L(2, C), the regular or ordinary set f!(f) is the set of points z E C 

for which there is some neighborhood V such that g(V) n V = 0 for all but finitely 

many g E r. The free regular set f! 0 (f) is the set of points z E C for which there is 

some neighborhood V such that g(V) n V = 0 for all nontrivial g E r. The limit set 
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A(f) is the complement of n(r) in C. A Kleinian group is a discrete subgroup G of 

PSL(2, C) such that O(G) =J 0. 

The action of an element of PSL(2, C) is characterized by the square of its trace. 

(The trace of an element in PSL(2, C) is well-defined up to sign.) If 1 =J g E 

P SL(2, C), then g is parabolic if the square of its trace is 4, hyperbolic if the square of 

its trace is real and larger than 4, elliptic if the square of its trace is nonnegative, real 

and less than 4, and loxodromic otherwise. Parabolic transformations have exactly 

one fixed point, and all others (except the identity) have exactly two. 

For a Kleinian group G, the quotient space O(G)/G is the set of equivalence 

classes of points x E fl( G), where two points x, y E fl( G) are equivalent if and only if 

there is some g E G with g(x) = y. The space O(G)/G is a (possibly disconnected) 

Riemann surface. The transition functions ( the function~ zO/ o z-;;1) on fl( G) / G are 

the elements of G. The group G represents the Riemann surface S if there is an 

open subset 0 0 of O(G) which is invariant under the action of G such that 0 0 /G is 

conformally equivalent to S. 

The components of fl( G) are also called the components of G. The Kleinian 

group G is a function group if it has an invariant component Ll( G). A function group 

G is a b-group if Ll( G) is simply connected. A torsion-free b-group G is terminal if 

(0( G)-Ll( G))/G is a union of thrice-punctured spheres. (There is only one conformal 

equivalence class of Riemann surfaces of type (0,3).) 

A fundamental domain D for a Kleinian group G is an open subset of fl( G) such 

that no two points in D are equivalent under the action of G, yet the closure of D 

contains a point from the equivalence class of every point in O(G), and such that the 

boundary of D consists of points in A( G) and a collection of curves; the intersection 

of one of these curves with 0( G) is a side, and for each side s, there is some g E G 

such that g( s) is also a side of D. 

Let G denote a b-group and let I denote an oriented simple closed curve on 
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~(G)/G. Let 1r: ~(G) ~ ~(G)/G denote the natural projection. Pick base points 

x0 and x0 on ~(G)/G and ~(G), respectively, such that 1r(x0 ) = x0 • Now , is 

homotopic to some loop 10 based at x 0 • Let i denote the lift of ,o with starting 

point x0 • Let x denote the final point ofi. Then there is some g E G such that 

g(x0 ) = x. Furthermore, g is unique since ~(G) is simply connected. Under the 
~ 

natural isomorphism 1r1(~(G)/G, x0 ) ~ G, the free homotopy class of, gets mapped 

tog. We say that g represents,. Since g depends upon the choice of the base point, 

the element representing, is not unique; but it is unique up to conjugacy in G. If, is 

not oriented, then g and g-1 represent 1 . If G is any Kleinian group (not necessarily 

ab-group) representing the Riemann surface S = f!0/G and, is a loop on S, then 

an element g E G represents I if there is an arc i in n0 invariant under (g) such that 

the projection of i onto Sis freely homotopic to,. 

A Fuchsian group I' is a Kleinian group which leaves some disc U in C fixed; such 

groups are conjugate in PSL(2, <C) to subgroups of PSL(2, JR), which leave the upper 

half plane IHI fixed. The uniformization theorem states that every Riemann surface 

of type (g, n ), 3g - 3 + n > 0, is conformally equivalent to IHI/I' for some Fuchsian 

group r which leaves IHI fixed. 

The Bers embedding of Teichmiiller space ([Ber70]) is an embedding into a bounded 

domain in the Banach space of cusp forms of weight -4 for a Fuchsian group r, defined 

in the lower half plane. 

The embedding of T9 ,n with which we are concerned first appeared in [Mas74], 

and is sometimes called the Maskit embedding: 

Theorem 1.0.1 Let S be a marked Riemann surface of type (g, n), 3g - 3 + n > 0. 

Then S can be realized as ~(G)/G, where G is a terminal b-group with invariant 

component ~(G). The group G is unique up to conjugation in PSL(2,C), and is 

generated by transformations which represent the elements of the fundamental group 
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of S specified by the marking. 

The group G depends upon 3g - 3 + n complex parameters in the upper-half plane 

IHI. Thus, T9 ,n is embedded in 1HI3g-3+n. 

In [Kra88] and [Kra90a] I. Kra shows that for 3g - 3 + n > 1, the group G 

can be algebraically constructed from simpler groups via amalgamated free products 

and HNN extensions using Maskit's First and Second Combination Theorems. Kra 

promises to show that this construction and the Bers and Maskit embeddings of Te­

ichmiiller space are "essentially the same" in the forthcoming second part of his paper 

[Kra90a]. Maskit's book Kleinian Groups ([Mas87]) contains a detailed description 

of his theorems. For the convenience of the reader we now present the theorems as 

they first appeared in [Mas65] and [Mas68]. 

Suppose two groups G1 and G2 have a common subgroup J, and [G1 : J] > 1 and 

[G2 : J] > 1. The word 91 · · · 9n is a normal form if 9i E (G1 U G2) - J for all i, and 

whenever 9i E G1, 9i-1 and 9i+i are in G2, and whenever 9i E G2, 9i-1 and 9i+i are in 

G1 . Two normal forms are equivalent if one can be written as g1 • · · 9n and the other 

as (gii1)(i11g2j2) · · · (j;;~1gn), where each ji E J. Defining multiplication of normal 

forms to be concatenation of words, the equivalence classes of normal forms make 

up a group denoted by G1 *J G2, called the amalgamated free product of G1 and G2 

across J, or the free product of G1 and G2 across the amalgamated subgroup J. 

Maskit ( [Mas65]) defines a fundamental set of a Kleinian group G to be a nonempty 

subset D of the free regular set such that g(D) n D = 0 for all nontrivial g E G and 

such that the union over all g E G of g(D) is the free regular set. The following 

theorem is Maskit 's First Combination Theorem. 

Theorem 1.0.2 Let G1 and G2 be Kleinian groups with a common cyclic subgroup 

H. For each m = 1, 2 let Dm be a fundamental set for Gm; and let D3 be a fun­

damental set for H. Let Em = UheH h(Dm). Suppose E1 U E2 = n°(H) and the 
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interior of E1 n E 2 n D3 is nonempty. Suppose finally that there is some simple closed 

curve I in the interior of E 1 U E 2 U A(H) which is invariant under H, such that the 

closure of I n D3 is in the interior of E1 n E 2 and such that I separates E1 - E2 and 

E 2 - E1. Then the group G generated by G1 and G2 is Kleinian, G = G1 *H G2, and 

E1 n E 2 n D3 is a fundamental set for G. 

Now suppose J1 and J2 are subgroups of a group G, and suppose there is some 

element f such that f J11-1 = J2' but (!) n G = { 1}. The word r~1 91Ja2 92 ... Jan 9n 

is a normal form if each 9i E G; 9i -/- 1 for i -/- n; ai -/- 0 for i -/- 1; if ai < 0 and 

9i-l E J1 then ai-l ~ O; and if ai > 0 and 9i-1 E J2 then ai-1 2: 0. The normal 

£ f a fa· Jk · f k · fa· fa d fa fa· fa·+ fa orms 191... '9i )I - )2 •+ 3 gi+3... ngn an 191... '9i ' 3 9i+3... ngn 

are equivalent if j 2 = Jk j 11 J-k. Equivalence classes of normal forms form a group 

called the HNN extension of G by f, which is denoted by G* J. 

The following theorem is known as Maskit 's Second Combination Theorem. Let 

Y denote the closure of the set Y. 

Theorem 1.0.3 Suppose J1 and J2 are cyclic subgroups of the Kleinian group G0 , D 

is a fundamental set for G0 , f is a Mobius transformation such that (f) n Go= {1}, 

and Yi and Y2 are disjoint Jordan domains with disjoint boundary curves C1 and C2 , 

respectively. Let Y:i = <C- (Yi U l':2). Suppose that the interior of Y:i n D is nonempty, 

Y:i U C1 is a fundamental set for (f), J Jd-1 = J2, J( C1) = C2, and for m = 1 

and 2, D n Cm C !1°(Go) and UieJmj(D n Ym) = Ym n !1°(Go) = Ym n !1°(Jm). Let 

G = (Go, f). Then G = Go*J, G is Kleinian, and D n (Y:i U C1 ) is a fundamental set 

forG. 

The Maskit embeddings of Teichmiiller spaces in 1HI39 -3+n can be studied by study­

ing their boundaries. If a simple closed geodesic on a surface in T9 ,n is pinched to 

a point, the resulting surface lies on the boundary of T9 ,n and is called a cusp. If 

a maximal set of disjoint simple closed geodesics on the surface are simultaneously 
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pinched to points, the resulting surface on the boundary of T9 ,n is a maximal cusp. 

L. Bers first conjectured in 1970 ([Ber70]) that cusps are dense in the boundary of 

his embedding of Teichmiiller space; but. he showed that, in the sense of dimension, 

most boundary points are not.cusps. C. McMullen ([McM9la]) showed that maximal 

cusps are dense in the boundary of the Bers embedding; his proof extends to the 

Maskit embedding also. Thus, if we know the location of all the maximal cusps in 

the Maskit embedding, then we know the shape of the boundary. 

A loxodromic or hyperbolic element representing a simple closed geodesic on 

~( G) / G becomes parabolic when the geodesic is pinched to a point. Hence, if we can 

tell where the elementsrepresenting these geodesics become parabolic, we will know 

where the cusps are. 

The one-dimensional Teichmiiller spaces are T1,1 and T0 ,4 • A maximal set of 

disjoint simple closed geodesics on either a once-punctured torus or a four-times 

punctured sphere consists of exactly one geodesic. D. Wright ([Wri]) has found a 

nice way to construct the elements in the groups representing once-punctured tori 

from the simple closed geodesics. Rational numbers are assigned to the simple closed 

geodesics and cusps. C. McMullen has communicated to us that he can prove that this 

assignment can be extended to a homeomorphism from the real line to the boundary 

of T1,1 . The rational numbers are assigned to cusps in such a way that if p/q and 

r/s are Farey neighbors (that is, qr - ps = ±1), then all the cusps corresponding 

to rationals between p/ q and r / s can be computed using only information about the 

simple closed curves corresponding to p/ q and r / s. Adding the Farey neighbors in 

the Farey sense (p/q EB r/s = (p + r)/(q + s) ) yields a new Farey neighbor for p/q 

and r / s. Hence the formation of rationals by Farey sequences reveals the simplicial 

structure of the boundary of T1,1 . 

Our first main result is that there is a one-to-one correspondence of the simple 

closed geodesics on a once-punctured torus with the simple closed geodesics .on a 
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sphere with four punctures such that the representative elements in the group for the 

four-times punctured sphere are conjugate to the squares of the representative ele­

ments in the group for the once-punctured torus. This implies that the corresponding 

elements become parabolic at the same places, so the cusps are at the same places. 

It follows that the embeddings of T1,1 and T0 ,4 are the same. 

The two-dimensional Teichmiiller spaces are T0 ,5 and T1 ,2 . The maximal sets of 

disjoint simple closed geodesics on five-times punctured spheres and twice-punctured 

tori consist of two geodesics. For the results of the one-dimensional cases to be 

generalized to these cases, we need to know when two simple closed geodesics are 

disjoint. In our second main result we find a suitable assignment of pairs of rational 

numbers to sets of disjoint simple closed geodesics on a five-times punctured sphere. 

These pairs of rationals are used to compute the number of intersection points of sets 

of simple closed geodesics on a five-times punctured sphere. In the future we hope to 

use this result to study the simplicial structure of the boundary of To,5· 

In our final result we study the biholomorphic map from T1,1 to the upper half 

plane IHI. This abstract map has been known for some time, but no way had been 

seen to actually use the map to compute the image of specific points in T1,1 . The 

map involves integrating an abelian differential on a Riemann surface of type (1,1). 

We construct a specific Poncare series and use it to construct the abelian differential. 

We then approximate the Poincare series and use this approximation to compute the 

image of any point in T1,1 . An error bound for the approximation is specified. 



CHAPTER 2 

ONCE-PUNCTURED TORI 

2.1 The embedding of T1,1 

This section follows Wright ([Wri]), where a more detailed description is presented. 

Let r denote the Kleinian group generated by the parabolic transformations Si 

and S2, where S1(z) = z + 2 and S2(z) = 2z~l (see Figure 2.1). Let IHIL denote the 

s 

1 

Figure 2.1: The action of the group r 

lower half plane. Then the ordinary set n(r) is IHIU lHIL' and the quotient space n(r) is 

the union of two triply-punctured spheres. To construct a surface of type (1,1) (that 

is, a once-punctured torus), cut off two punctures from IHI/f along simple closed 

curves, and glue the simple closed curves together. To achieve this algebraically 

we want to find a transformation T which conjugates S2 to S1 . The assumption 

TS2T- 1 = S1 implies that T(z) = Tx(z) = ; + x for some complex parameter x. 

In order for the surface IHIL /f to remain unchanged, it is necessary to consider only 

those values of x for which Im(x) > 0. Now let Gx denote the HNN extension of r 

,g 
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by Tx (see Figure 2.2). The group Gx is generated by S1 and Tx. The Teichmiiller 

it 2 

s 

1 

Figure 2.2: The action of the group Git, t > 2 

space T1,1 is embedded in IH[ as the .set of all x E IH[ for which Gx is a terminal b­

group and 6.(Gx)/Gx is a once-punctured torus; the marking on 6.(Gx)/Gx is the 

distinguished set of generators of 1r1(6.(G:c)/Gx) represented by the set of group 

elements {Si, Tx}. Let M1,1 denote the embedding of T1,1 in IHl. Wright ([Wri]) has 

shown that {z : Im(z) > 2} C M 1,1 C {z : Im(z) > l}, x E M 1,1 if and only if 

x + 2 E M1,1, and x E M1,1 if and only if -x E M 1,1 . 

2.2 Words in the group Gx 

In this section we develop a way to parametrize the conjugacy classes of elements 

of the group Gx which represent the simple closed geodesics on 6.(Gx)/Gx. Let h 

be a homeomorphism from 6.(Gx)/Gx to the once-punctured torus (C - Li)/(z 1-+ 

z + l,z i--+ z + i), where Li denotes the lattice {n + mi : n,m E Z}. Then the 

homotopy class of any simple closed geodesic on 6.(Gx)/Gx is determined by the 

homotopy class of its image in (C - Li)/ (z i--+ z + l, z i--+ z + i) under h. Every 
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simple closed curve on (C-Li)/ (z ~ z + 1, z ~ z + i) is homotopic to a curve whose 

lifting to the unit square { z : 0 ::; Re( z) ::; 1, 0 ::; Im( z) ::; 1} is the union of disjoint 

segments connecting different sides of the square. These segments will intersect the 

top and bottom sides of the square in the same number q of points, and they will 

intersect the left and right sides in the same number p of points. Hence it is possible 

to deform the curve so that the disjoint segments in its lifting are all line segments all 

with slopes either !1. or - !1.. If the greatest common divisor of p and q is d, then the 
p p 

disjoint line segments will project to d curves on the once-punctured torus; therefore, 

we can assume p and q are relatively prime. 

The elements of Gx can be thought of as words in the letters S1 , S11, Tx and Tx-I· 

The words which represent simple closed geodesics on b:..(Gx)/Gx can be parametrized 

by pairs of relatively prime integers. 

Let Q denote the set of pairs of relatively prime integers (p, q) (hereafter written 

p/q) such that q > 0 unless q = 0 and p = ±1, and p =j:. 0 unless q = 1. Give 

Q the same ordering as the rationals, except that -1/0 < p/q < 1/0 whenever 

q =j:. 0. We refer to the set Q as the extended rationals. If p/q and n/m are in Q and 

qn - pm= ±1, then p/q and n/m are called Farey neighbors. Define and addition EB 

on Farey neighbors (p/q,n/m) in Q by p/qEBn/m = (p+n)/(q+m). Every p/q E Q 
can be written as a finite sum EB of -1/0, 0/1 and 1/0. Note that if p/q and n/m 

are Farey neighbors, then p/q and p/q EB n/m are Farey neighbors, as are p/q EB n/m 

and n/m. Note also that if p/q < n/m then p/q < p/q EB n/m < n/m. 

Let S = S1 and T = Tx. For p/ q E Q, define words Wp/q E Gx in the following way. 

Let rYl denote the smallest integer greater than or equal toy. For 0/1 < p/q::; 1/0, 

define 
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where 

and for n = 0, l, ... ,p - 1, if r~l + n < j ::; r(n~l)ql + n, then Xi = r-1; and if 

j = r(n~l)ql + n + l, then Xi = S. Also define 

where 

{ r-1 
y;.-

J - s-1 
if Xp+q+i-i = r-1; 
if Xp+q+i-i = S. 

Finally define W0; 1 = r-1 • 

The words Wp/q and W-p/q represent the simple closed geodesics on D..(Gx)/Gx 

which correspond to the simple closed curves on (<C - Li)/ (z ~ z + l, z ~ z + i) 
whose liftings to the unit square cross the top and bottom sides of the square q times 

and cross the left and right sides of the square p times. (See Figure 2.3.) For Wp/q, 

p/ q > O, the segments of the liftings in the square can be deformed to line segments 

of slope-;; and for W-p/q, -p/q < 0, they can be deformed to line segments of slope 

;· Hence every simple closed geodesic on D..(Gx)/Gx is represented by a unique Wp/q, 

p/q E (Q, p/q > -l/0. (The words W_1; 0 = s-1 and W1; 0 = S represent the same 

geodesic.) 

There is a nice concatenation law for the words Wp/q· We first prove two lemmas. 

Lemma 2.2.1 If r/s and p/q are Farey neighbors, r/s < p/q, r > 0, 0::; n::; 2r, 

and p does not divide n, then r~l = r~sl. Also, r7;1 = q and r71 = q + l. 

Proof: Since sp - rq = l, 

ns nsp 

r rp 
nrq+n 

rp 

nq +~. 
p rp 
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Figure 2.3: The geodesic represented by the word W_1; 2 = S:11Tx- 1Tx-l 

Thus 

First suppose n = r. Then 

and since p 2:: 2 we have ! < 1, so 

ns nq 
r-1 < r-1 + 1, 

r p 

which implies 

Next suppose n = 2r. Then 

Now if p = 2, then r = 1 and n = 2, which contradicts the hypothesis that p does 

not divide n. If p 2:: 3, then 
ns nq 

r-1 < r-1 + 1 r p 

and 
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Finally suppose r does not divide n. Then 7 and :s are not integers. If f7l # 

r:s1 then there is some integer K such that 

nq I{ ns -< <-. 
p r 

Clearly I{ - !!2. > l and !!.!!. - I{> l, which imply that 
p - p r - r 

ns nq 1 1 2 
---> -+- >-. 
r p - p r p 

But since 
ns nq n -=-+-
r p rp 

and n < 2r, 
ns nq 2 
---<-. 
r p p 

This contradiction shows f7l = f:sl. 
The second part of the lemma follows from the string of equalities f 7l = f 1~r9l = 

fq+~l=q+l. 
q.e.d. 

Lemma 2.2.2 If r > 0, p/q = r/s EB u/v, and r ~ n ~ p then f<n:r}vl + s = f7l, 

Proof: Suppose u divides n. Then f<n7}vl = ':' + r-~vl = ':' + f1:sul = n: + 1- s. 

Also f !!2.l = f !!!!. + 21.1 = nv + f 21.l = !!!!. + 1. 
'P u pu u pu u 

Next suppose u does not divide n. Then by Lemma 2.2.1, if r ~ n ~ p then 

f (n~r)ql = r<n:r>vl. Now since :s -
r~l - f!;l ~ r~ - !;l = r(n~r)ql. 

!!2. + ..!!... for all n !!l < s and f !!2.l - s < 
p rp 'P P 

If n = p the result is obvious. Otherwise, 7 and (n7}v are not integers. If 

r~l - s i= r<n:r>v1, then there is some integer K with 

nq I{ (n - r)v 
--s< < . 
p u 
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Moreover K - (!!:!l. - s) > l and (n-r)v - K > 1 so (n-r)v - (!!:!L - s) > l + 1, On the 
p - p u - u' u p - p u 

other hand, 

(n - r)v _ (nq _ s) 
u p 

( n - r )v _ ( nv + !.:. _ s) 
u u pu 
rv n 

s----. 
u pu 

Now since n > r ..!!... > ..!... = r+u-u = 1 - l. Thus - 'pu-pu pu u p 

rv n 
s----

u pu 

This contradiction finishes the proof. 

rv 1 1 
< s--+---

u p u 
SU - 1 1 1 

- s- +---
u p u 

1 

p 

q.e.d. 

Proposition 2.2.3 If r/s, u/v E Q, ru > 0, and su - rv = 1, then Wr/sEBu/v = 

Proof: Let p/q = r/s EB u/v. First assume that r > 0. Then Wr;sWu/v = 

X1X2 · · · Xr+u+s+v, where for n = 0, 1, .... , r - 1, if r7:.sl + n < j ~ r<n~l)sl + n, 

Xi = r-1; and if j = r<n~i)sl + n + 1, Xi = S; and for n = r, r + 1, ... , r + n - 1, if 

rcn7)vl + (n - r) < j - r - s ~ rcn-:+i)vl + (n - r), Xi = T-1; and if j - r - s = 

r<n-:+i>vl + (n - r + 1), Xi = S. Now Lemma 2.2.1 implies that r7:.sl = r7l for 

0 ~ n ~ r. Lemma 2.2.2 implies that rcn~rlvl + s = r~l for r ~ n ~ p. So 

Wp/q = WrjsWu/v· 

Next suppose r = 0. Then u = s = p = 1, and so r2;1 = q = V + 1 and r71 = v, 

and W1/q = Wo/1 W1/v· 

Finally, if r < 0 and u < 0, then the proposition follows from the first case and 

the fact that -p/q = -u/v EB -r/s. 

q.e.d. 
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The rest of this section will be useful in the next chapter. For any word W, let 

C(W) denote the length of W; that is, the number of letters in W. 

Proposition 2.2.4 Suppose r/s,n/m E Q, 0/1 ~ r/s < n/m, and sn - rm= 1. 

Then there are words W1 , W2 in the letters r-1 and S such that 

and C(W1 ) = n + m - 1. 

Proof: We use induction. If r/s = 0/1 and n/m = 1/0, then Wr;sWn/m = r-1s and 

Wn/m Wr/s = sr-1 and n + m - 1 = 0, so the proposition is true in this case. 

Now suppose the proposition is true for the Farey neighbors ( r / s, n / m); we prove 

the proposition for the Farey neighbors (r/s,p/q) and (p/q,n/m), wherep/q = r/sffi 

n/m. Now 

and 

and C(Wr;sW1) = p + q - 1, so the result holds for the Farey neighbors (r/s,p/q). 

Similarly, 

Wp/qWn/m = Wr;sWn;mWn/m = W1T-1SW2Wn/m, 

Wn/m Wp/q = Wn/m Wr/s Wn/m = W1ST-l W2 Wn/m, 

and £(W1 ) = n + m - 1, so the result holds for (p/q, n/m). 

q.e.d. 

Corollary 2.2.5 Let p/q = r/s ffi n/m, 0/1 ~ r/s. Let 
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and 

where 

Then Xj = Yj for all j except j = p + q and j = p + q + l, and Xp+q = S = Yp+q+l 

and Xv+q+i = r-1 = Yp+q. 

Proof: Since 

and 

(Wr;s) 2 (Wnjm) 2 = Wr/s Wr/s Wn/m Wnjm, 

the result follows immediately from Proposition 2.2.4. 

q.e.d. 

Proposition 2.2.6 For 0/l ::; p/q ::; 1/0, the word (Wpjq) 2 can be uniquely decom­

posed into a product of the words XM = r-2 , YM,n = r-1 snr-1 , and sn for positive 

integers n. 

Proof: For 0/1 ::; p/q ::; 1/0, the word Wp/q is a product of the letters r-1 and 

S. Since there are an even number of letters r-1 in the word (Wp/q)2, the unique 

decomposition is clear. 

q.e.d. 



CHAPTER 3 

SPHERES WITH FOUR PUNCTURES 

3.1 The embedding of T0 ,4 

To construct a surface of type (0,4), take two thrice-punctured spheres, cut off a 

puncture from each along simple closed curves homotopic to the punctures, and glue 

the simple closed curves together. To achieve this algebraically, let A, B1 and B2 

denote parabolic transformations with different fixed points, where AB1 and AB2 are 

parabolic. The groups G1 = (A, B1 ) and G2 = (A, B2 ) each represent two thrice­

punctured spheres. 

Conjugate so that A(oo) = oo, A(O) = 4, and B1(0) = 0. Then A= (~ ~)· 

(Here we make no distinction between Mobius transformations and the corresponding 

( l-x b ) elements of PSL(2,C).) Write B2 = . Since AB2 is parabolic, its 
C l+x 

trace must be -2 (if the trace were 2, then B 2 would fix oo ). This implies that c = -1. 

Since B2 E PSL(2, C), b = x2. So B2 = ( 1 - x x2 ) . Denote this element by 
-1 1 +x 

B2,x. Now B1 must have the same form as B2 , but since B1(0) = 0, B1 = ( ~l ~). 

Let Hx denote the amalgamated free product G1 *A G2 (see Figure 3.1). Then Hx 

is generated by A, B1 and B2,x. The embedding of T0 ,4 into lH[ is the set of x E lH[ 

for which Hx is a terminal b-group and !::..(Hx)/ Hx is a four-times punctured sphere. 

Denote this set by Mo,4· 

Proposition 3.1.1 x E Mo,4 if and only if x + 2 E Mo,4· 

Proof: It is easy to check that AB2,x = Bi;!+2· Thus Hx = (A, B1, B2,x) = 

(A,B1,AB2,x) = (A,B1,B2,!+2) = Hx+2, so Hx and Hx+2 represent the same Rie­

mann surface, differently marked. 

q.e.d. 
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Figure 3.1: The action in the group Hx, Im(x) > 2 

Proposition 3.1.2 x E M 0 ,4 if and only if -x E M 0 ,4 • 

Proof: Define J(z) = -z. Then J-1 = J, and JAJ = A-1, JB1J = B1'\ and 

J B2,xJ = B2,~x· Thus, J maps the limit set of Hx to the limit set of H-x· 

q.e.d. 

Proposition 3.1.3 If Im(x) > 2 then x E M0 ,4 • 

Proof: In light of Propositions 3.1.1 and 3.1.2, we assume O ~ Re(x) ~ 1. Let D3 

denote the vertical strip {z: -2 ~ Re(z) < 2}; D3 is a fundamental set for (A). The 

set 

is a fundamental set for the group G1 = (A, B1). Also, the set 

D2 = D3 n {z: lz - (x -1)1 2: 1, lz - (x + 1)1 > 1, lz - (x - 3)1 > 1} 

is a fundamental set for the group G2 = (A, B2,x)· 
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'Y 

Figure 3.2: Using Maskitis First Combination Theorem 

Choose a number t with 1 < t < Im(x) - 1, and let 1 = {z : Im(z) = t}. By 

Maskit's First Combination Theorem (Theorem 1.0.2), Hx = (G1, G2) = G1 *(A) G2 is 

a Kleinian group with fundamental set D = D1 n D2 • The action of Hx on D clearly 

represents two triply-punctured spheres and one four-times punctured sphere. 

q.e.d. 

3.2 Words in the group Hx 

We will now construct specific words in the group Hx which represent the simple 

closed geodesics on t:J..(Hx)/ Hx. Label the four punctures on t:J..(Hx)/ Hx as qi, q2, 

q3 and q4, and connect the four punctures with four arcs as in Figure 3.3. The 

union of the arcs separates the surface into two components s+ and s-. Any simple 

closed geodesic on t:J..(Hx)/ Hx is the union of disjoint segments ins+ and s-. If any 

segment has two endpoints on the same arc, the geodesic can be deformed so that 

this segment vanishes. Since we are only concerned with the homotopy class of the 

simple closed geodesic, we can assume each segment connects different arcs. 
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q2 arc 1 q1 

I 
I 

.&,. ~ s-

arc 2 arc 4 

s+ 

arc 3 

Figure 3.3: The surface D..(Hx)/ Hx 

Each crossing of an arc corresponds to a letter in the word in Hx representing the 

geodesic. Each letter is one of A±1 , Bf1 , Bf1 or I for the identity. The letters Bf1 

and Bf1 correspond to opposite arcs as do the letters A±1 and J. It is not difficult 

to see that the number of crossings on opposite arcs is the same. 

Now for each p/ q E Q, define a word I<p/q E Hx in the following way. For 

0/1 < p/q ~ 1/0, define 

where 

and for n = 0, 1, ... ,p- 1, if f7l + n < j ~ f (2n;l)ql + n, then 

and if j = f (2n;2)ql + n + 1, then 

{
A 

X·-
J - A-1 

if j + n is odd 

if j + n is even; 

if j + n is odd 

if j + n is even; 

if j + n is odd 

if j + n is even. 



Also define 

where 

A 

Yj= 

I 
I 

/ 
/ 

B1 
B-1 1 
B2 
B-1 2 
A 
A-1 

I 

if Xp+2q+1-j = B2\ 
if Xp+2q+1-j = B2; 

if XP+2q+1-i = H11; 
if Xp+2q+1-i = B1; 

if Xp+2q+1-i = A-1; 

if Xp+2q+1-j = A. 

A 

Figure 3.4: Simple closed curves on l.l.(Hx)/ Hx 

22 

I 

The words J{p/q and K-p/q represent the simple closed curves which cross the 

arcs corresponding to Bf1 and B{1 exactly q times each and which cross the arcs 

corresponding to A±l and J exactly p times each. Clearly for pq # 0 there are exactly 

two homotopy classes of simple closed curves of this type which are homotopic to 

geodesics (so the curves are not homotopic to punctures or homotopically trivial). If 

pq = 0 then there is only one homotopy class. Hence every simple closed geodesic 

on l.l.(Hx)/Hx is represented by a unique J{p/q where p/q E Q and p/q > -l/0. See 

Figure 3.4. 
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Recall that S(z) = S1(z) = z + 2, and define the new words Kp/q in the following 

way. For 0/1 < p/q S 1/0, let 

where 

and for n = 0, 1, ... , 2p - 1, if r~l + n < j S r<n~l)ql + n, then 

if j + n is odd 

if j + n is even; 

and if j = r(n+l)ql + n + 1, then 
p 

{ 
S if j + n is odd 

Xj = s-1 if j + n is even. 

Also define 

where 
B1 if X2p+2q+1-j = B21; 
Bi1 if X2p+2q+I-j = B1; 

S if X2p+2q+1-j = s-1; 
s-1 if X2p+2q+1-j = s. 

Finally define K0; 1 = B1B21. 

Proposition 3.2.1 For all p/q E (Q\ Kp/q = Kp/q as Mobius transformations. 

Proof: Write out the word Kp/q as X 1X 2 · · · Xp+ 2q, where each Xj is one of the letters 

A±1 , Bf1 or Bf1 . First assume 0/1 S p/q. By definition, for n = 0, 1, ... ,P - 1, if 

r(2n;l)ql + n < j s r(2n;2)ql + n, then 

if j + n is odd 

if j + n is even; 



and if j = r<2n~2)ql + n + l, then 

{
A 

X·-
J - A-I 

if j + n is odd 

if j + n is even. 
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Write each A as the product 8 8 and each A-1 as 3-13-1 . Then use the identities 

and 

to move letters 3±1 to the left and change all the letters B2 and B11 appearing in 

the word Kp/q into the letters Bi1 and B1 . The remaining word is Kp/q· 

The proof for p/q < 0/1 is exactly the same, except we use the identities 

and 

to move letters 3±1 to the right and change all the letters B2 and B11 into Bi1 and 

B1. 

q.e.d. 

Lemma 3.2.2 If r > 0, p/q = r/ s (J) u/v, 2r 5. n 5. 2p, and n =/ p, then r7l - 2s = 

r<n-:r>vl. Also, if p 2:: 2r, then r<p-:r)vl = q - 2s + 1. 

Proof: Suppose u divides n. Then r<n-:r)vl = :V + r- 2:vl = :U + r2-:sul = 
!!!!. + r.al - 2s. Now !!!l. = !!!!. + ..!!... so r!!!l.l = !!!!. + r..!!...l . If u = l and p < n < 2p 
u u p u pu' p u pu - ' 

then r!l = 2 and r ;J = r~l = 2. If u = l and n < p, the statement is vacuous 

since r 2:: u implies 2r 2:: p. If u 2:: 2 and n 5. 2p, then 1 5. r p: l 5. r!l 5. 1, and so 

r :U l = r!l = 1. Thus the result follows. 



25 

Next suppose u does not divide n. Lemma 2.2.1 implies that if 2r ::; n ::; 2p then 

f (n-2r)ql = f (n-2r)vl. Thus f!?:i - ~l = f (n-2r)vl. Now since ~ = !?:i + .!.le., ~ < 2s. 
p u p p u r p rp p 

Thus f7l - 2s ::; f7l - f 71 ::; f7 - 71 = f (n-:r)vl · 

If n = 2p then f7l - 2s = 2q - 2s = 2v, and r(n-:r)vl = r2~v1 = 2v also. 

If n = 2r + u then r(n-:r)vl = v, and 

nq r-1 -2s 
p 

r(2r+u)ql -2s 
p 

(q + pql - 2s 
p p 

(q + ql - 2s 
p 
sp-1 r + ql - 2s 

p 
1 

rs+ q- -1 - 2s 
p 

s + q- 2s 

V. 

Otherwise, 7 and (n-:r)v are not integers. If f7l - 2s -=/ f (n-:r)vl, then there is 

some integer K with 

nq K (n -2r)v 
- -2s < < . 
p u 

Moreover K - (!?:9. - 2s) > !. and (n- 2r)v - K > l so (n-2r)v - (!?:i - 2s) > l + l. On 
p - p u - u' u p - p u 

the other hand, 

( n - 2r )v _ ( nq _ 28) 
u p 

(n - 2r)v _ (nv + !!.._ _ 2s) 
u u pu 

2rv n 
2s----. 

u pu 

Now since n > 2r .!!... > 2r = 2(r+u-u) = 2(p-u) = 2(1 - 1) > l - 1, Thus 
- 'pu-pu pu pu up up 

2rv n 
2s---- < 

u pu 

2rv 1 1 
2s- -+- - -

u p u 
2su - 2 1 1 

2s - +- - -
u p u 



Hence the result follows for n =f. p. 

2 1 1 
2s - 2s + - + - - -

u p u 
1 1 -+-. 
u p 
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The second part of the lemma follows from the equalities f (p-~r)vl = f(-r~u)vl = 

r V - su:I l = r V - S + t l = V - S + l = q - 2s + l. 

q.e.d. 

Proposition 3.2.3 Suppose p/q = r/s EB u/v, ru ~ 0, 

and 

where 

Then Xi = Yj for all j except j = p + q and j = p + q + l, and Yp+q = x;~q+I and 

Yp+q+i = Xp+q· 

Proof: First suppose that r > 0. By definition, for n = 0, l, ... , 2r - 1, if f:sl + n < 

j ~ r(n:l)sl + n, then 

X· = {B1 
3 n;1 

and if j = r(n:l)sl + n + l, then 

X·={S 
3 s-1 

if j + n is odd 

if j + n is even; 

if j + n is odd 

if j + n is even; 

and for n = 2r,2r+l, ... ,2p-1, if r<n-:r)vl +n-2r < j-2r-2s ~ r(n-2:+I)vl +n-2r, 

then 

{ 
B1 if j + n is odd 

X·-
3 - B21 if j + n is even; 
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and if j - 2r - 2s = r<n-2:+I)vl + n - 2r + 1, then 

Xi= { 
S if j + n is odd 

s-1 if j + n is even. 

Since p/q = r/s EB u/v, r/s and p/q are Farey neighbors. Lemma 2.2.1 gives the 

result for 1 :::; j :::; 2r + 2s. If 2r < p, then Yj = Xj for 1 :::; j ::; 2r + 2s. If 

2r ~ p, then Yj = Xi for 1 :::; j:::; 2r + 2s, except Xp+qXp+q+I = B21S or B1S-1 and 

Yp+qYp+q+l = s-1 B21 or SB1 , respectively. Similarly, Lemma 3.2.2 gives the result 

for 2r + 2s + 1 :::; j :::; 2p + 2q. 

Now if r = 0, then s = l, u = l, and p = l. Thus ra1 = q = V + l and p 

r~l = pv = v; and r~l - 2s = 2q - 2 = 2v and r~l = 2v. The conclusion thus u p . u 

holds for r ~ 0. 

Note that if p/q = r/s EB u/v, then -p/q = -u/v EB -r/s. It follows from the 

definition of the words fLp/q that the proposition also holds for the cases where 

r,u < 0. 

q.e.d. 

3.3 The relationship between the words in G:i: and the words in H:i: 

Let M denote the transformation M ( z) = z + l. 

Theorem 3.3.1 If 0/l:::; p/q:::; 1/0, then MKp/qM-1 = (Wp/q) 2 • 

Proof: We will show that MKp/qM-1 = (Wp/q) 2 using induction. The statement 

can easily be checked for p/q = 0/l and 1/0. Assume the statement is true for 

r/s and n/m, where sn - rm = l and rn ~ O; we show the statement is true for 

p/q = r/s EB n/m. So, by assumption, 
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Write 

where 

Also, write 

where 

Vj E {XM,YM,1,YM,2,YM,3,· .. ,S,S2,S3, ... } for 1-5:_j -5:_ N. 

Define the words XK and YK,n by XK = B1B:;1 and YK,n = B1s-n B:;1. Then 

XM = MXKM-1, YM,n = MYK,nM-1, and sn = MSnM-1. Further, define the 

words "Vj, 1 -5:_ j -5:_ N, by 

{ 
XK if Vj = XM' 

"Vj = YK,n if Vj = YM,n, 

sn if Vj = sn. 

Then 

Now by Corollary 2.2.5, Up+q+I = S. Suppose Up+q+I appears in the word Vj0 in 

the decomposition 

Then YJo = YM,n or YJo = sn for sonie n. If YJo = YM,n, then by Corollary 2.2.5 

But 
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so by Proposition 3.2.3, 

So in this case MKp/qM- 1 = (Wp/q)2. 

If, on the other hand, VJ0 = sn, then by Corollary 2.2.5 and Proposition 2.2.6, 

YJ0 -1 = T-1 SmT-1 for some m and 

In this case, 

and by Proposition 3.2.3, 

q.e.d. 

Corollary 3.3.2 For all p/ q E Q, M Kp/qM-1 = (Wp/q )2 • 

Proof: By Theorem 3.3.1, we need only show the result for p/q < 0/1. Again we use 

i<p/q· Assume p/q > 0/1, and write 

where 

(Here, if U; = sn, then U;+i =f:. sm.) Then by definition, 



where 

{ 

XM if UN+I-j = XM; 

Vj = YM,-n if UN+I-j = YM,ni 

s-n if UN+I-j = sn. 
Also, by the definition of l<-p/q, if 

where 

then 

where 

- - - -
J{p/q = U1U2 ···UN, 

- 2 3 · 
Uj E {XK, YK,1, YK,2, YK,3, ... , S, S , S , ... } for l ::; J ::; N, 

Vj = {::_n 
s-n 

if UN+I-j = XK; 

if UN+I-j = YK,n; 

if {jN+I-j = Sn. 

Now, as in the proof of Theorem 3.3_.l, 

MV.M-1 = V:· for l < J. < N· 
J J - - ' 

Theorem 3.3.3 M1,1 = Mo,4· 
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q.e.d. 

Proof: Let 8Y denote the boundary of the set Y. If c is a cusp on 8M1,1 , then there 

is some word Wp/q which becomes accidentally parabolic at x = c. But (Wp/q) 2 is 

conjugate to Kp/q by Corollary 3.3.2. Thus, c is a cusp on 8M0 ,4 also. Likewise, if c 

is a cusp on 8M0,4 , then c is a cusp on 8M1,1 . 

Now C. McMullen ([McM9la]) has proven that cusps are dense in the boundary 

of Teichmiiller space. Thus, 8M1,1 = 8M0 ,4 • Since both M1,1 and M 0 ,4 contain the 

set {x: Im(x) > 2} (Proposition 3.1.3 and Proposition 2.3 of [Wri]), M1,1 = M0 ,4 • 

q.e.d. 



31 

I. Kra (8.6 of [Kra90a]) gave a different proof of Theorem 3.3.3 using normalizers 

of the groups Gx and Hx to construct the identity map from Mo,4 to M1,1- Corollary 

3.3.2 does not follow from the arguments there. 



CHAPTER 4 

SPHERES WITH FIVE PUNCTURES 

4.1 The embedding of To,s 

To construct surfaces of type (0,5), take a surface of type (0,4) and a surface of type 

(0,3), cut off a puncture from each along simple closed curves homotopic to the punc­

tures, and glue the simple closed curves together. This is the same basic construction 

used to create surfaces of type (0,4), and just like in that case, the algebraic building 

tools are the amalgamated free product and Maskit's First Combination Theorem. 

Here the group representing the surface of type (0,5) will be the amalgamated free 

product of H:r: (the group representing a surface of type (0,4) ) with a group repre­

senting a surface of type (0,3) across a common cyclic parabolic subgroup. Let P 

be a Mobius transformation such that P AP-1 = B1 and P B1P-1 = A. Then the 

matrix for Pis G ~2) (and P(z} = -1). Also, 

-l J (1 + X 4 ) PB2:r:P = 2 = B3:r:· 
' _L 1-X ' 

4 

Thus, the following elements are parabolic: A, Bi, B2,:r:, B3,y, AB1, AB2,:r:, B1B3,y· (We 

now use the complex parameter y in the transformation B3 to distinguish it from the 

parameter in B2 .) The group (B1 , B3,y} represents a surface of type (0,3). Let H:r:,y 

denote the amalgamated free product of H:r: with (B1 , B3,y) across (B1 ). (See Figure 

4.1.) The embedding of T0 ,5 is the set of all ( x, y) E lHl2 such that H:r:,y is a terminal 

b-group and ti(H:r:,y)/ H:r:,y is a surface of type (0,5). We denote this set by M0 ,5 • 

Note that since the fixed point of B2,:r: is x, the fixed point of B3,y is -;· Also, if 

B2,:r: takes the closed curve C1 to C2 , then B3,:r: takes P(C1 ) to P(C2). 

The next two propositions are the analogues to Propositions 3.1.1 and 3.1.2 for 

Mo,s, 

32 
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A 

Ba,y 
~ 

Figure 4.1: The action in the group Hx,y 

Proposition 4.1.1 ( x, y) E M0 ,5 if and only if ( x + 2, y) E Mo, 5 if and only if 

(x, y + 2) E Mo,s-

Proof: Since AB2,x = B2",;;+2, Hx,y = Hx+2,y· Likewise, B1B3,y = B3,t+2, so Hx,y = 

Hx,y+2· Thus the groups Hx,y, Hx+2,y and Hx,y+2 all represent the same Riemann 

surface, differently marked. 

q.e.d. 

Proposition 4.1.2 (x, y) E M0 ,5 if and only if (-x, -y) E Mo,s-

Proof: Define J(z) = -z. Then 1-1 = J and JAJ = A-1 , JB1J = B11, JB2,xJ = 

B2}_x, and J B3,yJ = B3,:y. Hence J maps the limit set of Hx,y to the limit set of 

q.e.d. 

Proposition 4.1.3 (x,y) E Mo,s if and only if(y,x) E Mo,s-



Proof: The proposition follows from the equalities PAP-1 

P B2,xp-l = Ba,x and P Ba,yp-l = B2,y• 
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A, 

q.e.d. 

Proposition 3.1.3 has no single analogue for M0 ,5 , for there are infinitely many. 

For example, if we fix x = 2i, then it is easy to see using Maskit's First Combination 

Theorem that ( x, y) E M0 ,5 if Im(y) > 4. 

4.2 Curves on spheres with five punctures 

In order to understand the geometry of the cusps on the boundary of T0 ,5 we must 

study simple closed curves on surfaces of type (0,5). Let S denote a surface of type 

(0,5). Label the punctures q1 , ... , q5 , and connect the 5 punctures with 5 arcs, labelled 

arc 1 to arc 5 in a counter-clockwise direction such that arc j connects qi and qi+l 

(see Figure 4.2). (Here the indices on q are taken modulo 5.) The union of the 5 

arc 1 s------- s+ 

Figure 4.2: Punctures and arcs on S 

arcs divides S into two components. Call these components s+ and s-. Let 'f/ be 

a simple closed curve on S which is not homotopic to a puncture and which is not 

homotopically trivial. We call such a curve admissible. The curve 'f/ divides S into 
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two components, one which contains two punctures, and the other which contains 

three punctures. Call the component with two punctures A(17). 

The 5 arcs will intersect 77 in an even number N of points (since 77 is closed). From 

now on we will refer to these points as the arc intersection points. Label these points 

Pi, ... , PN in a counter-clockwise direction around the arcs, starting and ending at the 

puncture q1. 

The component A( 17) can be thought of as a thin strip on S, where the two sides 

of the strip meet near the two punctures inside A(77). The sides make up the curve 77, 

and if 77 has an orientation then the direction is opposite on different sides, and the 

component A( 17) consistently lies on the left or on the right of 77. See the examples 

in Figure 4.3. 

Figure 4.3: Simple closed curves on S 

Let ni denote the minimal number of arc intersection points in arc i, 1 ~ i ~ 5, 

over all simple closed curves homotopic to 77. Then since N = Ef=1 ni is even, 

exactly O, 2, or 4 of the integers ni are odd. Since A( 17) contains exactly two of 

the five punctures, the arc intersection points occur in pairs on each arc except at 

the two ends of the strip A(77) where the two punctures occur. We call the integers 

(ni, ... , n5 ) the arc intersection numbers of 77. (Henceforth, take all arc numbers and 

indices of punctures and arc intersection numbers. modulo 5; and take all indices of 
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arc intersection points modulo N.) 

One can tell which two punctures A(77) contains by the parity of the integers ni, 

If ni and ni+2 are the only odd integers of the five, A( 17) contains the punctures Qi 

and Qi+i. If nj is the only even integer of the five, A( 17) contains the punctures Qj+I 

and Qj+3 • 

Proposition 4.2.1 The component A(17) of S contains the puncture Qj if and only 

if nj + nj+1 - nj+3 is odd. 

Proof: If A( 17) contains Qj, then either nj and ni+2 are the only odd arc intersection 

numbers, or nj and nj+I are the only+(i)dd ones, or all arc intersection numbers are 

odd except either niH or nj+2 , The proposition follows. 

q.e.d. 

Proposition 4.2.2 For each j, nj ~ n;+2 + ni+3. 

Proof: Starting with an arc intersection point Pk on arc j, follow the oriented 

geodesic on which it lies. It is not difficult to see that the geodesic must pass through 

arc j + 2 or arc j + 3 before returning to arc j. The proposition follows. 

q.e.d. 

Proposition 4.2.3 For some j, nj + ni+I = N /2. Furthermore, on one side St of S 

(either s+ ors-}, each segment of 17 n St has one endpoint on either arc j or j + 1 

and the other on arc j + 2, j + 3 or j + 4. 

Proof: Consider the disjoint segments of 77 n s+ and 77 n s-. If any one of these 

segments in s+ connects arcs i and i + l, then there can be no such segment in s­

because 77 is simple and not homotopic to a puncture. 

Suppose there is a pair of adjacent arcs such that there is no segment of either 

77 n s+ or 77 n s- which connects the adjacent arcs. Then if the puncture between 
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these arcs is filled in, T/ cannot be deformed to make any arc intersection number 

smaller. Hence T/ can be thought of as a simple closed curve on a sphere with four 

punctures. Since the arc intersection numbers on a sphere with four punctures must 

be equal on opposite arcs, the index j must exist. 

On the other hand, suppose there is no such pair of adjacent arcs. There is some 

segment in T/ n s+; denote the endpoints of the segment by Pi and Pk, where i < k. If 

k = i + l, then this segment connects adjacent arcs. Otherwise, there is a segment in 

T/ n s+ with endpoints P.e and Pm, where i < f < m < k. Continuing in this manner, 

we see that there must exist a segment in T/ n s+ with endpoints Pn and Pn+I, and 

this segment connects adjacent arcs. Furthermore, by looking at the segments with 

endpoints Pm where m < i and m > k, it is not difficult to see that there must be 

some other segment in T/ n s+ which connects another pair of adjacent arcs. Hence at 

least two pairs of adjacent arcs are connected by segments in T/ n s+, and likewise at 

least two pairs of adjacent arcs are connected by segments in T/ n s-. Let se denote 

the side on which exactly two pairs of adjacent arcs are connected by segments. If 

the pairs of arcs are i, i + 1 and i + 2, i + 3 for some i, then clearly ni+I + ni+2 = N /2 

and each segment in se has one endpoint on arc i + 1 or i + 2 and the other on arc 

i + 3, i + 4 or i. Otherwise, the pairs are i, i + 1 and i + 1, i + 2 for some i. In this 

case, ni+I = N /2, but this contradicts Proposition 4.2.2. 

q.e.d. 

Deform S so that the five punctures all lie in the same plane. Then let p denote 

the reflection in this plane. 

Proposition 4.2.4 If two admissible simple closed curves have the same arc inter­

section numbers then they are either homotopic or one is homotopic to the reflection 

p of the other. 

Proof: Suppose an admissible simple closed curve T/ on S has the arc intersection 
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numbers (n1 , ••• , n 5). Let j denote the index such that nj + nj+I = N/2. Then on 

one side SE of S ( either s+ or s-) each segment must have one endpoint on arc j 

or j + 1 and the other endpoint on arc j + 2, j + 3 or j + 4. Now start with an arc 

intersection point P on arc i, i -=/ j + 2, j + 4. Following 77 in either direction, 77 must 

cross arc i + 2 or i + 3 before returning to arc i. If ni+2 + ni+3 > ni, then 77 must 

cross arcs i + 2 and i + 3 exactly ni+2 + ni+3 - ni times more often than it crosses 

arc i before it returns to P. Hence there must be ni+2 + ni+3 - ni segments in s-E 
which help 77 to do so. There must be arc intersection points Pk and Pk+I on arcs 

i + 2 and i + 3, respectively, which are connected by a segment in s-E, and the other 

ni+2 + ni+3 - ni -1 segments must connect endpoints of the form Pk-£, Pk+1+£· Since 

(nj+2 + nj+3 - nj) + (nj+3 + ni+4 - nj+I) + (nj + ni+I - nj+3) = N/2, all the segments 

of s-E have been characterized. 

Now ifµ is another admissible simple closed curve with the same arc intersection 

numbers, then the segments of µ must adhere to the same characterizations as the 

segments of 77, except the side SE might be different, in which caseµ is homotopic to 

p( 77). 

q.e.d. 

We now want to consider pairs of disjoint simple closed curves on S. If each 

geodesic in a pair of disjoint simple closed geodesics on S is pinched to a point, the 

resulting surface is no longer a sphere with five punctures, and it is a maximal cusp 

on the boundary of T0 ,5 • We define the arc intersection numbers of a set of simple 

closed curves on S to be the sum of the arc intersection numbers of each of the curves 

in the set. 

Each oriented admissible simple closed curve on S is represented by an element of 

Hx,y, unique up to conjugation in Hx,y· The letters in this word can be obtained by 

following the curve through the arcs 1 through 5. Each time an arc is crossed, one of 

the letters A, Bi, B2 , B3 , I, or an inverse of one of these letters is added to the word. 
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Figure 4.4 shows which arcs are associated to which letters and gives an example of 

the word obtained for a specific oriented curve. 

A 

B1 

Figure 4.4: The curve represented by the word B21 B1B31 B11 = B2B1B3B11 

Theorem 4.2.5 Let (n1 , ... , n5 ) be the arc intersection numbers for a pair of disjoint 

simple closed geodesics on S. If ( x, y) is the maximal cusp on the boundary of T0 ,5 

corresponding to this pair of geodesics, then ( -x, -y) is a maximal cusp which corre­

sponds to the other pair of geodesics on S with arc intersection numbers ( n1 , ... , n 5 ). 

Proof: If X 1X 2 • • • X1 and Yi};··· YK are the words corresponding to one pair 

of disjoint simple closed geodesics with arc intersection numbers (n1 , ... , n5 ), then 

X11 X21 · · · X11 and r;_-1 i,,;-1 · · · Yi 1 are the words corresponding to the other pair 

of geodesics with the same arc intersection numbers. Define J(z) = -z. Then 

J AJ = A-1 , J B1 J = B11 , J B2,xJ = B2,:x, and J B3,yJ = B3,:y. Since X is 

parabolic if and only if J X J is parabolic, the theorem follows. 

q.e.d. 
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Theorem 4.2.6 If the maximal cusp ( x, y) corresponds to the arc intersection num­

bers (n1,n2,n3,n4,n5), then (y,x) is a maximal cusp which corresponds to the arc 

intersection numbers (n4, n3, n2, ni, ns). 

Proof: Define P(z) = -4/z. Then PAP-1 = B1 , PB1P-1 = A, PB2,xP-1 = B3,x, 

and P B3,yP-1 = B2,y. The theorem follows. 

q.e.d. 

Proposition 4.2. 7 Fix the nonnegative integers ni, n 2, n3, and n4. Then there 

are at most two possible values of n5 for which (n1 , ... , n5 ) satisfies the properties 

ni + ni+l = N /2 for some j and ni ~ ni+2 + ni+3 for all i. 

Proof: The integer n 5 is uniquely determined by the index j for which ni + ni+l = 

N /2 is satisfied. 

Suppose first that n1 + n 2 2:: n 2 + n3 and n1 + n 2 2:: n3 + n4. Then j = 1, 4, or 5. 

If n1 > n4, then j =f:. 4, otherwise n 5 :..._ n1 + n 2 + n3 - n4 > n 2 + n3, contradicting the 

second property. Likewise, if n1 < n4 , then j =f:. 5. If n1 = n4 , then whether j = 4 or 

j = 5, ns = n2 + n3. So, if n1 + n2 2:: n2 + n3 and n1 + n2 2:: n3 + n4, then ns can 

assume at most two distinct values. 

Suppose next that n 2 + n3 2:: n1 + n2 and n 2 + n3 2:: n3 + n4. Then j = 2, 4, or 5. 

If n1 > n4 then j =f:. 4; if n1 < n4 then j =f:. 5; and if n1 = n4 then whether j = 4 or 5, 

ns = n2 + n3. 

The case n3 + n4 2:: n1 + n 2 and n3 + n4 2:: n 2 + n3 follows similarly. 

q.e.d. 

Suppose we are given a set of simple closed curves on S with arc intersection num­

bers ( n1 , ... , n5 ). We associate to this set the pair of extended rationals ( q2 / n1 , q3/ n4 ), 

where q2 and q3 are defined as follows. If n4 ~ n1, then l'T/21 = n2 and l'T/31 = 

(n3 + n4 - n1). If n4 > n1, then l'T/21 = (n1 + n2 - n4) and l'T/31 = n3. If there is 

a segment in s- connecting arcs 1 and 2 then let q2 be positive; if there is such a 
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segment in s+ then let TJ2 be negative. If there is a segment in s+ connecting arcs 3 

and 4, then let TJ3 be positive; if there is such a segment in s- then let TJ3 be negative. 

Theorem 4.2.8 If there are two simple closed curves on S which yield the same 

extended rationals ( TJ2/ n1 , TJ3 / n4 ), then the curves are homotopic. 

Proof: It is clear how the arc intersection numbers n1 through n4 can be recon­

structed from the pair of extended rationals. By Proposition 4.2.7, there are only two 

possibilities for n5 ; but the signs of T/2 and TJ3 (along with the integers n1 through n4 ) 

determine the index j for which ni + ni+I = N/2. By the proof of Proposition 4.2.7, 

the last arc intersection number n5 is completely determined. Since the signs of TJ2 

and TJ3 are known, the theorem follows from Proposition 4.2.4. 

q.e.d. 



CHAPTER 5 

INTERSECTION NUMBERS 

5.1 Formulas for intersection numbers of multiple curves 

A multiple curve on a surface is a set of disjoint simple closed curves on the surface, 

none of which is homotopic to a puncture or homotopically trivial. The intersection 

number of two multiple curves 'T/ andµ, denoted by l('TJ, µ), is the minimum number of 

intersection points of 'T/l and µ1, where 'T/l and µ1 range over all multiple curves isotopic 

to 'T/ and µ, respectively. Define the binary operation * on Q by 'T/2/n1 * µ2/m 1 = 

n 1µ 2 - m1'f/2. Further define the binary operation * on pairs of extended rationals by 

('T/2/n1, 'TJ3/n4) * (µ2/m1, µ3/m4) = ('TJ2/n1 * µ2/m1) + ('TJ3/n4 * µ3/m4). 

Theorem 5.1.1 Let 'TJ2 /n1 and µ2/m1 denote the rational numbers of two multiple 

curves 'T/ andµ, respectively, on a sphere with four punctures. Then 

Proof: Let L denote the lattice {n + mi : n, m E Z}, and consider the Riemann 

surface S = (C - L)/G, where G is the group generated by z 1--+ z + 2, z 1--+ z + 2i, 

and z 1--+ -z. The surface S is a sphere with four punctures. Thus we can consider 

the two multiple curves to lie on S. 

If the theorem is true for admissible simple closed curves 'T/ and µ, then any 

multiple curve on S is represented by a rational number A2/ £1, where the greatest 

common divisor of j).2j and £1 is the number of components of the multiple curve. 

Thus, if the theorem is true for admissible simple closed curves, it is also true for 

multiple curves. Hence we can assume that 'T/ and µ are admissible simple closed 

curves. 
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Let x be a point in C- L which projects to a point on q. Then the loop 'f/ lifts to 

a curve ij from x to x + 2q2 + 2n1i. The curve ij lies completely within the rectangle 

with vertices x, x + 2q2, x + 2n1i, and x + 2q2 + 2n1i. Consider all the liftings of 

the curve µ. The minimal number of intersection points of rJ and µ must equal the 

minimal number of intersection points of ij with the liftings of µ. 

Now 2 I q2 I m1 of the liftings of µ must cross the line segment from x to x + 2q2, and 

2lµ 2 ln1 of the liftings ofµ must cross the line segment from x + 2q2 to x + 2q2 + 2n1 i. 

Suppose sgn(q2) = sgn(µ2). Then all the liftings ofµ within the rectangle connect 

the line segments from x to x + 2n1 i and x to x + 2q2 to the line segments from x + 2q2 

to x + 2q2 + 2n1i and x + 2n1i to x + 2q2 + 2n1i. In this case it is clear that the 

minimal number of intersection points of ij with the liftings of µ is I 2 I TJ2 I m1 - 21 µ2 I n1 I­

Since sgn(q2) = sgn(µ 2), this expression is equal to 2lq2/n1 * µ2/mil-

On the other hand, suppose sgn(q2) =f. sgn(µ2). Then all the liftings ofµ within 

the rectangle connect the line segments from x to x+2n1i and x+2n1i to x+2n1i+2q2 

to the line segments from x to x + 2q2 and x + 2q2 to x + 2q2 + 2n1i. In this case the 

minimal number of intersection points is l2ITJ2lm1 + 2lµ2ln1I = 2lq2/n1 * µ2/m1l-

q.e.d. 

We note that Theorem 5.1.1 implies that q2/n1 and µ2/m1 are Farey neighbors 

if and only if the intersection number of the corresponding simple closed curves is 

2. This may be helpful when we try to generalize the notion of Farey neighbors for 

multiple curves on spheres with five punctures. 

Theorem 5.1.2 Suppose the arc intersection numbers of two multiple curves 'f/, µ 

on a sphere S with five punctures are (n1 , ••• , n 5 ) and (m1 , ••• , m5), with rational 

numbers (TJ2/n1, rJ3/n4) and (µ2/m1, µ3/m4), respectively. Suppose also that n1 +n2 = 

n4 and m1 + m2 = m4. Then 
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Proof: If n1 + n2 = n4 and m1 + m 2 = m4 then by the proof of Proposition 4.2.4, 

there is no segment of either multiple curve in either s+ or s- which connects arcs 

1 and 2. Thus, if we fill in the puncture q2 , the multiple curves cannot be deformed 

in such a way that their arc intersection numbers are reduced. The surface with q2 

filled in is a sphere with four punctures. Re-label the arcs between punctures so that 

the union of arcs 1 and 2 (along with the filled-in puncture) becomes arc 1, and arc j 

becomes arc j - 1 for 3 ::; j ::; 5. Then the rationals for the multiple curves are rt3 /n4 

and µ3 /m4 , so the result follows from Theorem 5.1.1. 

q.e.d. 

Let rt and µ be two multiple curves on a sphere S with four punctures. Consider 

the segments of rt n s+ and rt n s-. If any segment has an endpoint on arc 1, then 

orient the segment so that it is directed towards arc 1. If any segment has an endpoint 

on arc 3, direct the segment away from arc 3. If a segment has an endpoint on arc 

2 or 4, direct the segment so that the direction does not change at the endpoint on 

that arc. If rt only intersects arcs 2 and 4, then direct the segment in s+ from arc 2 

towards arc 4. Orient the segments of µ n s+ and µ n s- using the same rules. The 

directions of the segments cannot in general be combined to give a direction on rt or 

µ. At any intersection point of rt and µ, traveling along rt in the positive direction, if 

the segment ofµ is directed from left to right, we call the intersection point positively 

oriented (with respect to rt); and if the segment ofµ is directed from right to left, we 

call the intersection point negatively oriented ( with respect to rt). 

Lemma 5.1.3 Deform rt andµ so that the number of intersection points of the two 

curves is minimized. Suppose rt2/n1 > µif m1 • Then all intersection points are pos­

itively oriented. If rt2 /n1 < µ 2 /m1 then the all intersection points are negatively 

oriented. 
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Proof: Consider S to be the surface (C - L)/G, where Lis the lattice {n + mi : 

n, m E Z} and G is the group generated by z i---+ z + 2, z i---+ z + 2i and z i---+ -z. 

Consider all the liftings of 'f/ and µ in the fundamental rectangle O ::; Re( z) ::; 2, 

0 ::; Im( z) ::; 1. Direct each of these liftings in the same way the corresponding 

segments on S are directed. 

Suppose 'f/2/n1 > µ2/m1. Then the ratio of the number of points on the vertical 

sides of the rectangle to the number of points on the horizontal sides is greater for 

the curve 'f/ than for µ. If µ2 2:: 0 then each of the lifts of the segments of 'f/ and µ 

is directed from the right vertical side or the bottom horizontal side of the rectangle 

to the left or top side. Thus the intersection points are positively oriented. If µ2 < 0 

and 'f/2 2:: 0 then each lift of a segment of 'f/ is directed from the bottom or right side 

to the top or left side and each lift of a segment of µ is directed from the bottom or 

left side to the top or right side. Hence the intersection points are positively oriented. 

Likewise, if µ2 < 0 and 'f/2 < 0, .each· lift of any segment is directed from the bottom 

or left side to the right or top side of the rectangle, and so the intersection points are 

positively oriented. 

If 'f/2/n1 < µ2/m1, the result follows by switching the roles of 'f/ andµ. 

q.e.d. 

Theorem 5.1.4 Suppose the arc intersection numbers of two multiple curves 'f/ and 

µ on a sphere S with five punctures are (n1 , .•. , n5 ) and (mi, ... , m5), with rational 

numbers (TJ2/n1, TJ3/n4) and (µ2/m1, µ3/m4), respectively. Suppose n,4 + n5 = n1 + 
n2 + n3 and m4 + m5 = m1 + m2 + m3. Then if TJ2/n1 * µ2/m1 and TJ3/n4 * µ3/m4 

have the same sign, then 
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t( 11, µ) 2l112/n1 * µ2/m1 I+ 2l11a/n4 * µ3/m4I 

min{4n1m1, 4l112/n1 * µ2/m1I, 4l11a/n4 * µa/m4I}. 

Proof: Since n4 + ns = n1 + n2 + na and m4 + ms = m1 + m2 + ma, we have n4 ~ n1, 

m4 ~ m1, ns = (n1 +n2-n4)+na = l112l+na, ms= (m1 +m2-m4)+ma = lµ2l+ma, 

sgn(112) = sgn(113), and sgn(µ2) = sgn(µ3). Construct a simple closed curve Con S 

whose intersection numbers are (0,1,0,0,1), where the arc intersection point on arc 2 

lies so that 1112 I of the arc intersection points of 11 on arc 2 are closer to the puncture 

q2 and n4 - n1 are closer to q3; and where the C arc intersection point on arc 5 lies 

so that 1112 I of the arc intersection points of 11 on arc 5 are closer to q1 and na are 

closer to qs. Construct C so that p(C) = C, where p: S-+- Sis the reflection in the 

plane through the punctures of S. Next deform the curveµ so that lµ 2I of the arc 

intersection points of µ on arc 2 are "closer to q2 than the arc intersection point of C 

on arc 2, and m4 - m1 are closer to q3; and so that lµ2I of the arc intersection points 

of µ on arc 5 are closer to q1 than the arc intersection point of C, and m3 are closer 

to qs (see Figures 5.1 and 5.2). 

The multiple curves 11 andµ may intersect the curve C in several points, henceforth 

called C-intersection points. Now deform 11 and µ by fixing their arc intersection 

points but moving their C-intersection points so that p identifies each C-intersection 

point on 11 with another C-intersection point on 11 and each C-intersection point onµ 

with another C-intersection point on µ; we do this while keeping each curve simple. 

Cut S along C, and identify p( x) with x for each point x on C. By making punc­

tures q6 and q7 at the points where C intersects arcs 2 and 5, we obtain a sphere 

S4 with four punctures and a sphere Ss with five punctures. The multiple curves 

11 and µ have become multiple curves on each of these spheres, with arc intersec­

tion numbers (n1, 11121, ni, 11121), (m1, lµ2I, mi, lµ21) on 84 and (n1, n4 - ni, na, n4, na), 
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Figure 5.1: Cutting S along C 
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q4 

Figure 5.2: After the cut and paste 
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(m1, m4 - m1, m3, m4, m3) on S5• 

By Theorem 5.1.1, there are a minimum of 2j172/n1 * µ2/m1j intersection points of 

the multiple curves on S4 , and by Theorem 5.1.2 there are a minimum of 2j173/n4 * 

µ3/m4j intersection points on S5 • 

Now fill in the punctures q6 and q7 and unglue the identification performed on C 

and glue back S4 and S5 along C. 

First suppose that 172/n1 * µ2 /m1 and 173/n4 * µ3/m4 have the same sign. Then 

by Lemma 5.1.3, all intersection points of 17 withµ have the same orientation. Hence 

no deformation can cancel intersection points. To see this suppose it is possible to 

deform 1J and µ and cancel intersection points. Then there is at least one component 

of S - { 1J U µ} that disappears when this deformation is performed. Furthermore, the 

boundary of one of these disappearing components must contain exactly two of the 

intersection points of 17 and µ. We call a component of S - { 17 U µ} whose boundary 

contains exactly two intersection points of 17 with µ a lens. There can be no punctures 

contained in the disappearing lens, or the deformation could not take place. 

Now delete the point of intersection of arc 2 with C from S to make a sphere 

S' with six punctures. Arc 2 can now be separated into two arcs, arcs 2a and 2b, 

where arc 2a connects q2 and the new puncture q6 , and arc 2b connects q6 with q3. 

Each time 1J and µ pass through arcs 1, 2a, 2b, 3, 4 or 5, either both their directions 

change or they both stay the same. Since the intersection points on the boundary of 

the lens in question have the same orientation, the lens must contain some puncture. 

The lens cannot contain any puncture except q6 , or 17 and µ could not be deformed 

on S across the puncture to make the lens disappear. But no lens can contain only 

the puncture q6 by the construction of C. 

Hence the minimal number of intersection points of 1J withµ is 2j172/n1 * µ2/m1 J + 

2j173/n4 * µ3/m4j. Since 172/n1 * µ2/m1 and 1J3/n4 * µ3/m4 have the same sign, this 

expression is equal to 2j(172/n1, 1J3/n4) * (µ2/m1, µ3/m4)j. 
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Next suppose 172/n1 * µ2/m1 and 773/n4 * µ 3 /m 4 have opposite signs. Then the 

intersection points in S4 and S5 are oriented differently. It also follows that sgn( 772) = 

sgn(773) = sgn(µ2) = sgn(µ3). 

Suppose the intersection points in S4 are negatively oriented with respect to 77. 

Orient the curve C so that for any point 0:: in C n s+ and any point /3 in C n s-, the 

points 0::, /3 and q6 occur in that order. 

Let x denote a C-intersection point on T/ and let y denote a C-intersection point 

on µ. Suppose the points x, y and q6 occur in that order on C, and suppose there 

is no C-intersection point z on C such that x, z and y occur in that order on C. 

Since all the intersection points in S4 are negatively oriented, and all the intersection 

points in S5 are positively oriented, the component of S - { 77 U µ} containing the 

segment of C from x to y must be a lens containing no punctures. Hence 'I} can 

be deformed to make this lens disappear. When this deformation is performed, the 

points x and y are interchanged on C. Cancelling positively and negatively oriented 

intersection points in this manner, we can continue until either all of the differently 

oriented intersection points have cancelled, or until for any C-intersection point x on 

17 and any C-intersection point yonµ, the points y, x and q6 occur in that order on 

C. The latter case happens when we have interchanged exactly 2n1m1 C-intersection 

points, and we have cancelled 4n1m1 of all the intersection points. At this stage, any 

lens whose boundary contains differently oriented intersection points must contain q6 , 

and it must also contain another puncture, since the intersection points are oriented 

differently, so no more cancellation can occur on the five-times punctured sphere S. 

If the intersection points in S4 are positively oriented, the same argument works 

by interchanging the roles of 17 and µ. 

q.e.d. 

If the arc intersection numbers of two multiple curves satisfy nj + nj+l = nj+2 + 

nj+3 +ni+4 and mj+mi+l = mj+2 +mi+3 +mi+4 for somej, then a cyclic permutation 
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of the indices will set j = 4 so that Theorem 5.1.4 applies. This cyclic permutation 

corresponds to a rotation of the multiple curves on S. If there is no such j, the 

intersection number may be more difficult to compute. The existence of such a j 

implies that each of the two multiple curves is carried by one of two train tracks. 

A train track on S is a graph r on S consisting of edges called branches and vertices 

called switches. The branches meeting at a switch must be tangent there. Each branch 

is assigned a nonnegative integer called a weight. Each switch is oriented, and the 

sum of all weights on the branches leading to a switch with positive orientation must 

equal the sum of all the weights on the branches leading to the switch with negative 

orientation. A multiple curve T/ is carried by the train track r if there is a map 

efJ : S -+ S homotopic to the identity such that efJ( T/) C r. 

One possible train track on S which carries a multiple curve whose arc intersection 

numbers satisfy n4 + n5 = n1 + n2 + n3 is shown in Figure 5.3. The other possibility 

is the reflection p of this train track .. 
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5.2 Actions of the modular group 

The modular group of a surface is the group of homotopy classes of orientation­

preserving homeomorphisms of the surface. In this section we study the effects of the 

modular group on the arc intersection numbers of simple closed curves on a surface 

of type (0,5). 

Lemma 5.2.1 Let (ni, ... , n5) be the arc intersection numbers of one or more simple 

closed curves on S. Let Sf denote either s+ or s-. Suppose there is no segment in 

Sf connecting arcs i and i + l. Let a denote an arc in Sf from the puncture qi+I 

to the puncture qi-I· Then the minimal intersection number of a with the curves is 

ni + ni+I· 

Proof: Each arc intersection point on arc i and arc i + 1 must be the endpoint of a 

segment in Sf. Since none of these arcs can connect arcs i and i + 1, each one must 

intersect a at least once. Clearly one can deform a to intersect each of these segments 

exactly once. 

q.e.d. 

Lemma 5.2.2 Let ( ni, ... , n 5) be the arc intersection numbers of one or more dis­

joint simple closed curves on S. Let Sf denote either s+ or s-. Suppose there is a 

segment in Sf connecting arcs i and i + l. Let a denote an arc in Sf from qi+I to 

qi-I· Then the minimal intersection number of a with the curves is the maximum of 

2ni+3 - ni - ni+I and lni - ni+I 1 · 

Proof: Suppose first that ni+3 ~ ni and ni+3 ~ ni+I · Then ni + ni+I - ni+3 is less 

than or equal to the minimum of ni and ni+I · There are ni + ni+I arc intersection 

points on arcs i and i + 1, 2(ni + ni+I - ni+3) of which are connected by segments in 

Sf. Thus there are ni + ni+I - 2( ni + ni+I - ni+3) = 2ni+3 - ni - ni+I points on arcs i 

and i + 1 which are endpoints of segments in Sf not connecting arcs i and i +l. Each 
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of these segments must intersect a at least once, and clearly a can be deformed to 

intersect these segments only once. Since ni+3 ;::: ni and ni+3 ;::: ni+i, the maximum 

of 2ni+3 - ni - ni+1 and lni - ni+i I is 2ni+3 - ni - ni+l · 

Suppose next that ni+3 is less than one of ni and ni+l · Without loss of generality, 

assume that ni ;::: ni+l · Then of the ni + ni+1 arc intersection points on arcs i and 

i + 1, exactly 2ni+l of these are connected by segments in SE. Thus there are ni - ni+l 

points on arcs i and i + 1 which are endpoints of segments in SE not connecting arcs 

i and i + 1. Hence in this case the minimal intersection number of a with the curves 

q.e.d. 

Let S' be the surface obtained by interchanging the punctures q1 and q5 via a half 

Dehn twist which takes arc 2 to an arc in S'- and arc 5 to an arc in S'+, and which 

leaves the other three arcs invariant (reversing the direction of arc 1). Label the arcs, 

punctures, and arc intersection numbers of S' as arc 1' through arc 5', q~ through q~ 

and n~ through n; in the usual way. (So, for example, q~ = q5 and q; = q2 .) 

Lemma 5.2.3 Suppose there is no segment of the disjoint simple closed curves on S 

connecting arcs l and 2 in s+. Then there is no segment of the corresponding curves 

connecting arcs l' and 2' in S'+. 

Proof: The inverse image of arc 2' in S is an arc a from q2 to q5 contained in s+. 

Any arc intersection point on arc 1 must be an endpoint of a segment in s+ which 

crosses arc a. This crossing point becomes an arc intersection point on arc 2', and 

the segment in s+ connecting the arc intersection point on arc 1 to the crossing point 

on arc a becomes a segment in S'- connecting arcs 1' and 2'. Since the curves are 

disjoint, there is no segment connecting arcs 1' and 2' in S'+. If there are no arc 

intersection points on arc 1, then the arc intersection numbers of S and S' are equal. 

q.e.d. 
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Lemma 5.2.4 Suppose there is a segment of one or more disjoint simple closed 

curves connecting arcs 1 and 2 in s+. Suppose the arc intersection numbers sat­

isfy n 4 > n1 and n 4 > n 2 . Then there is a segment of the corresponding curves 

connecting arcs 11 and 21 in S 1-. 

Proof: There are n1 arc intersection points on arc 1, of which n1 + n 2 - n4 are 

connected to arc intersection points on arc 2 by segments of the curves in s+. Thus 

there are n1 - ( n1 + n 2 - n 4 ) = n 4 - n 2 arc intersection points on arc 1 which are 

endpoints of segments in s+ which cross any arc a from q2 to q5 in s+. Such an arc 

a is the inverse image of arc 21 in 3. The n4 - n2 segments in 3+ connecting the arc 

intersection points on arc 1 to the crossing points on arc a become segments in S1-

connecting arcs 11 and 21• 

q.e.d. 

Lemma 5.2.5 Suppose there is a segment of one or more disjoint simple closed 

curves connecting arcs 1 and 2 in 3+. Suppose the arc intersection numbers sat­

isfy n 1 2 n4 and n1 > n 2 • Then there is a segment of the corresponding curves 

connecting arcs 11 and 21 in 3i-. 

Proof: Since n1 2 n 4 , n1 + n 2 '- n 4 2 n 2 , so there are n 2 segments of the curves in 

3+ connecting arcs 1 and 2. Thus, of the n1 arc intersection points on arc 1, n1 - n2 

of these are endpoints of segments in s+ which must cross any arc a in 3+ from q2 

to q5• The n1 - n2 segments in 3+ connecting the arc intersection points on arc 1 to 

the crossing points on arc a become segments in 31- connecting arcs 11 and 21• 

q.e.d. 

Lemma 5.2.6 Suppose there is a segment of one or more disjoint simple closed 

curves connecting arcs 1 and 2 in s+. Suppose the arc intersection numbers sat­

isfy n2 2 n4 and n2 2 n1 . Then there are no segments of the corresponding curves 

connecting arcs 11 and 21 in S 1-. 
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Proof: Since n2 2: n4, n1 + n2 - n4 2: n1, so there are n1 segments of the curves 

in s+ connecting arcs 1 and 2. Thus, none of the arc intersection points on arc 1 

are endpoints of segments in s+ which must intersect an arc a in s+ from q2 to q5 • 

Since there is a segment of the curves connecting arcs 1 and 2 in s+, any segment 

connecting arc 1' and 2' in S'- must correspond to segments ins+ which connect arc 

1 and such an arc a. 

q.e.d. 

Theorem 5.2. 7 'f/; = ry2 + n1. 

Proof: Suppose first that ry2 2: 0. Then there is no segment connecting arcs 1 and 

2 .in s+. If n1 2: n4, then ry2 = n2, and by Lemmas 5.2.1 and 5.2.3, 'f/; = n; = 

n1 + n2 = 'f/2 + n1. If n1 < n4 then 'f/2 = n1 + n2 - n4, and by the same lemmas, 

'f/~ = n~ + n; - n~ = n1 + n1 + n2 - n4 = 'f/2 + n1. 

Suppose for the rest of the proof that ry2 < O; we split this part of the proof 

into three cases. For the first case, suppose n4 > n1 and n4 > n 2. Then ry2 

-(n1 + n2 - n4), and by Lemmas 5.2.2 and 5.2.4, n; = 2n4 - n1 - n2 and 'f/~ 

For the second case, suppose n1 2: n4 and n1 > n2. Then ry2 = -n2, and by 

Lemmas 5.2.2 and 5.2.5, n~ = n1 - n2 and 'f/~ = n~ = n1 - n2 = 'f/2 + n1. 

For the last case, suppose that n2 2: n4 and n2 2: n1. If n4 2: n1, then 'f/2 = -(n1 + 
n2 - n4), and by Lemmas 5.2.2 and 5.2.6, n~ = n2 - n1 and 'f/~ = -(n~ + n~ - n~) = 

-(n1 + n2 - n1 - n4) = n4 - n2 = 'f/2 + n1. If n4 < n1 then 'f/2 = -n2, and by the 

same two lemmas, n~ = n2 - n1 and 'f/~ = -n~ = ry2 + n1. 

q.e.d. 

Corollary 5.2.8 Suppose there are two sets of disjoint admissible simple closed curves 
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and (µ;/m~, µ;Jm~) be the rational numbers of the associated sets of curves on S'. 

Then (1J2/n1,1J3/n4) * (µ2/m1,µ3/m4) = (17;/n~,17~/n~) * (µ;Jm~,µ;Jm~). 

Proof: By the construction of S', n~ = n1 , 1]~ = 173, n~ = n4, m~ = m 1 , µ; = µ3, and 

m~ = m4. By Theorem 5.2.7, 17; = 172 + n1 andµ;= µ2 + m 1 . Thus, 17;/n~ * µ;Jm~ = 

1J2/n1 * µ2/mi, and the corollary follows. 

q.e.d. 

Lemma 5.2.9 Suppose the arc intersection numbers of two disjoint sets of disjoint 

admissible simple closed curves on S are (n1 , ... , ns) and (m1 , ... , ms). For 1 ::; i ::; 

5, let fi = ni + mi. Let N = I:f=1 ni and L = I:f=1 fi. Then if fi + fi+l = L/2, then 

ni + ni+i = N/2. 

Proof: If ej +ej+l = L/2, then there is a side SE of S (either s+ ors-) on which each 

segment of the curves has one endpoint on arc j or j + 1 and the other on one of the 

three other arcs. Since the curves with arc intersection numbers ( n1 , ... , ns) form a 

subset of the curves with arc intersection numbers (£1 , ... ,fs), each segment in SE of 

the curves with arc intersection numbers (n1 , ••• , ns) must have one endpoint on arc j 

or j + 1 and the other endpoint on one of the three other arcs. Hence nj +ni+l = N /2. 

q.e.d. 

Lemma 5.2.10 Suppose the arc intersection numbers of two disjoint sets of disjoint 

admissible simple closed curves on S are ( n1 , ••• , ns) and ( m1 , ... , ms). Then, for 

each i, if ni > ni+3 then mi ;?: mi+3, and if ni < ni+3 then mi ::; mi+3· 

Proof: If n1 > n4 then there must be a piece of the curves with arc intersection 

numbers (n1 , ••• , ns) which starts on arc 1, eventually passes through arc 3 and 

returns to arc 1 before touching arc 4. If m1 < m4 then there must be a piece of 

the curves with arc intersection numbers ( m 1 , ••. , m4 ) which starts on arc 4, passes 
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through arc 2 and returns to arc 4 before touching arc 1. But these two pieces must 

intersect. So the cases n 1 > n 4, m1 < m4 and n1 < n4, m1 > m4 cannot occur. 

q.e.d. 

Lemma 5.2.11 Suppose the arc intersection numbers of two disjoint sets of disjoint 

admissible simple closed curves on S are ( n 1, ... , ns) and ( m1, ... , ms), and the ra­

tional numbers of these sets are ('rJ2/n1,'f/3/n4) and (µ2/m1,µ3/m4). Letj denote an 

index such that nj + nj+l = nj+2 + nj+3 + nj+4 and mj + mj+l = mj+2 + mj+3 + mjH. 

Then l("12/n1, 'f/3/n4) * (µ2/m1, µ3/m4)I is equal to: 

Proof: This is an easy computation using the definitions of the rational numbers 

and the operator *· 

q.e.d. 

Let S be the surface obtained by rotating S so that arc z = arc i - 1 and qi = qi-l 

for 1 :S i :S 5. Let ~ and µ denote the images of 'f/ and µ under this rotation. 

Lemma 5.2.12 Suppose the arc intersection numbers of two disjoint sets of disjoint 

admissible simple closed curves on S are (n1, ... , ns) and (m1, ... , ms), with rational 

numbers ('rJ2/n1, 'f/3/n4) and (µ2/mi, µ3/m4). Let S denote the surface described above. 

Then 

Proof: For notational purposes, let N denote I ( 172/ n1, ifa/ n4) * (fid m1, µ3/ m4) 1- Sup­

pose first that j = 1, 2, or 3. Then 



by Lemma 5.2.11, and if j = 1 or 2 then 

N l(nsm1 - msn1) + (n2m3 - m2n3) - (nsm3 - msn3)J 

- I - (n1m2 - m1n2) - (n3m4 - m3n4) + (n1m4 - m1n4)J. 

If j = 3 then 

N l(nsm1 - m5n1) - (n2m3 - m2n3) - (nsm3 - m5n3)J 

J(n1m2 - m1n2) + (n3m4 - m3n4) - (n1m4 - m1n4)J. 

Next suppose j = 4. Then 

by Lemma 5.2.11, and 

N l(nsm1 - msn1) - (n2m3 - m2n3) + (nsm3 - msn3)J 

I - (n1m2 - m1n2) + (n3m4 - m3n4) + (n1m4 - m1n4)J. 

Finally suppose j = 5. Then 

by Lemma 5.2.11, and 

N - l(nsm1 - n1ms) + (n2m3 - m2n3) - (nsm3 - m5n3)J 

- I - (n1m2 - m1n2) + (n3m4 - m3n4) - (n1m4 - m1n4)J. 
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q.e.d. 

Magnus ([Mag34]) has proven the following theorem (see also [Bir74), p. 164). 

Let qi, ... , qn denote the punctures of an n-times punctured sphere Sn. 
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Theorem 5.2.13 The modular group of Sn is generated by a half Dehn twist about 

a curve enclosing q1 and qn which interchanges q1 and qn and a rotation which takes 

qi to qi+I for 1 ~ i ~ n - 1 and which takes qn to q1. 

By this theorem, Corollary 5.2.8 and Lemma 5.2.12, we have proven the following 

Theorem 5.2.14 Suppose the arc intersection numbers of two disjoint sets of dis­

joint admissible simple closed curves on S are (n1, ... , ns) and (m1, ... , ms), with 

rational numbers ('T/2/n1, r,3/n4) and (µ2/mi, µ3/m4). Then the formula 

is invariant under the modular group of S. 

Corollary 5.2.15 Suppose the arc intersection numbers of two disjoint admissible 

simple closed curves on S are (n1, ... , ns) and (m1, ... , ms), with rational numbers 

(r,2/n1, r,3/n4) and (µ2/m1, µ3/m4). Then 

Proof: There is an element of the modular group which takes the curve with ra­

tionals (r,2/n1, r,3/n4) to the curve with rationals (0/1, 0/0); thus we may assume 

(r,2/n1, r,3/n4) = (0/1, 0/0) and m1 ~ m4. Hence l(r,2/n1, r,3/n4) * (µ2/.,,;,1, µ3/m4)I = 

lµ2 I -:-- m2. Sirice the curves are disjoint, m2 = 0. 

q.e.d. 

5.3 Tables of cusps on the boundaries of M0,4 and Mo,s 

Tables 5.1 and 5.2 show some of the cusps on the boundaries of M0 ,4 = M1,1 and 

M0,s. For the cusps on the boundary of M0 ,4 , the rational number represents the 

simple closed curve on the four-times punctured spheres which is pinched to a point. 
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For the cusps on the boundary of M0 ,5 , the pair of rationals is the sum of the pairs of 

rationals of the two disjoint simple closed curves on the five-times punctured spheres 

which are simultaneously pinched to points. All decimals are approximations. 

p/q Kp/q cusp 

0/1 B1Bi1 2i 

1/1 B1B2A 2 + 2i 

1/2 B1Bi1 H11 B2A 1 +v'3i 

1/3 B1H21 B1B2H11 B2A 0.581 + l .694i 

1/4 B1Bi1 B1Bi1 H11 B2H11 B2A 0.352 + 1. 721i 

Table 5.1: Cusps on the boundary of M0 ,4 

(r,2/n1, TJ3/n4) words in Hc,y cusp 

(0/2,0/1) B B-1 B-1B-1 1 2 , 3 2 (2i, 4i) 

(0/1,0/2) · B-1 B-1 B-1 A 3 2 , 3 ( 4i, 2i) 

(2/2,0/1) B1B2A, H31 B2A (2 + 2i, 4i) 

(0/2,1/1) B1Bi1, Bi1 B3B1 (2i, 2 + 4i) 

(0/3,1/2) B B-1 B-1 B B B-1 B-1 12,2 321 3 (2i, 1 + v'3i + 2i) 

(0/3, -1/2) B1Bi1, B2B31 Bi1 B1B3 (2i, -1 + v'3i + 2i) 

(1/2,1/2) Bi1 B3B1, Bi1 B3A-1 (1 + v7i, 1 + v7i) 

(-1/2, 1/2) Bi1 B31, B2B3B1A (-1 + v7i, 1 + v7i) 

(-1/2, -3/2) B2B1B3A,B2B1B3B11 (-1 + v7i, -3 + v7i) 

(0/4,1/3) B1Bi1, Bi1 B3B2B3B1Bi1 B31 (2i, 0.581 + l.694i + 2i) 

Table 5.2: Cusps on the boundary of Mo, 5 



CHAPTER 6 

HIGHER DIMENSIONAL TEICHMULLER SPACES 

Kra's construction of surfaces of type (g, n) involves 3g - 3 + n amalgamated free 

products and HNN extensions (see [Kra88]). Let S denote a Riemann surface of type 

(g, n). A maximal partition Pon Sis a maximal set of nonhomotopic simple closed 

curves on S, none of which is homotopic to a puncture or homotopically trivial. There 

are 3g - 3 + n curves in any maximal partition on S. The set S - Pis topologically 

a union of 2g - 2 + n thrice-punctured spheres. (This is sometimes called the "pair 

of pants" decomposition of S, since a thrice-punctured sphere is homeomorphic to a 

"pair of pants".) 

Hence, S can be constructed by gluing 2g - 2 + n pairs of pants together along the 

curves of the maximal partition. Start with any one of the pairs of pants, and pick 

one of its boundary curves. This boundary curve corresponds to one of the curves 

in the maximal partition; and there is some other boundary curve corresponding 

to the same curve in the partition. Glue the boundary curves together to make a 

new surface S'. If the boundary curves both lie on the same pair of pants then an 

HNN extension is used; if the boundary curves are on different pairs of pants an 

amalgamated free product is used. Next choose another boundary curve on S', and 

glue it to the corresponding boundary curve. If this boundary curve is also on S', an 

HNN extension is used; otherwise an amalgamated free product is used. Continuing 

in this way, the surface S is constructed from the 2g - 2 + n pairs of pants using g 

HNN extensions and n - 3 + 2g amalgamated free products. 
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6.1 Surfaces of type (1,2) 

Start with the group representing a surface of type (0,4): Hx = (A, B1 , B 2,x). We want 

to cut off two punctures and glue the boundary curves together to form a surface of 

type (1,2). As this problem is solved for the T1,1 case, we need only conjugate; that is, 

we find a Mobius transformation P so that PS1P-1 = (AB1 )±1 and PS2P-1 = Bf1 • 

Then if P S1P-1 = AB1 , then P S2P-1 must be B1 and 

p = (v'2n 
-1 

~ 

0 ) 
1 ' 

v12n 

where n = ±i. On the other hand, if PS1P-1 = (AB1 )-1, then PS2P-1 must be 

B11 , and 

0 ) 
1 ' 
~ 

where n = ±1. In the first case, 

and in the second case, 

_ 1 (i - ix -2i) PTxP = . . 
IX " -2 -z 

If we set Qx(z) to be the Mobius transformation determined by the first matrix, then 

Qiv( iy) = 2 - v!%2 , so Qx takes circles in lHI tangent to IR at O to circles in the lower 

half plane tangent to IR at 2. Thus we discard this case and we set 

_ (i - ix -2i) Qx- . . 
IX " -- -z 
2 ' 

Then Qx(O) = 2, 
4i 2i 2 

IQu+iv(-) - (2 +-)I= -I I' 
V V V 

and 
2i 2 2i 2 

IQ u+iv ( - + - ) - ( 2 + - ) I = -I 1 · 
V V V V 
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Thus Qu+iv(z) takes the circle of radius ~'center~ (v > 0) to the circle with radius 

~' center 2 + ~- Qu+iv(z) takes the interior of the first circle to the exterior of the 

second, since Qu+iv(~) = 2<u;l) E IR - {2}. 

Let lx,y denote the HNN extension of Hx by Qy. (See Figure 6.1.) The embedding 

of T1,2 is the set of all ( x, y) E lHl2 such that lx,y is a terminal b-group and ~( lx,y) / lx,y 

is a surface of type (1,2). Denote this set by M1,2 • 

:i:-2 

Figure 6.1: The action in the group lx,y 

Since M 1,1 = M 0 ,4 , one might wonder whether the same is true for M 0 ,5 and M 1,2 . 

It is known that T0 ,5 and T1,2 are biholomorphic (see, for example, [Gar87]). However, 

it is not true that M0,5 and M1,2, as we have defined them here, are the same set 

in lHl2. For example, the point (x, y) = (3.2i, 2.5i) is in M1,2 but not M0 ,5 • Maskit's 

Second Combination Theorem can be used to show that (3.2i, 2.5i) E M1,2 • This 

point is not in M0,5 because B2,3•2iB3,2.si is parabolic; the point (3.2i, 2.5i) is a cusp 

on the boundary of M0,5 • In fact, if x = -8/y, then B 2,xB3,y is parabolic. 

In a forthcoming paper, L. Keen, J. Parker and C. Series ([KPS]) promise to 

generalize the Farey series enumeration of simple closed curves on once-punctured 

tori to an enumeration of the simple closed curves on twice-punctured tori. It will be 
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interesting to see the relationship between their enumeration of simple closed curves 

on twice-punctured tori and the enumeration of simple closed curves on five-times 

punctured spheres presented in this thesis. (The Teichmiiller spaces T1 ,2 and T0 ,5 are 

the only ones of complex dimension 2.) 

6.2 Surfaces of type (2,0) 

Start with the group representing a surface of type (1,2): Jx,y = (A, B1 , B2,x, Qy). To 

find a transformation which will cut off two punctures and glue the boundary curves 

together, we need only conjugate. Let P(z) = x - z, and define Rx,y = P A-1QyP-1 • 

Let Jx,y,z denote the HNN extension of Jx,y by Rx,z· The embedding of T2,o is the 

set of all (x,y,z) E lHl3 such that Jx,y,z is a terminal b-group and !:i(Jx,y,z)/Jx,y,z is a 

surface of type (2,0). The transformation Rx,z cuts the surface of type (1,2) at the 

two punctures corresponding to the points x and x + 2 and glues the boundary curves 

together to form the surface of type (2,0). Note that R;,;AB2,xRx,z = B2,x and 

-i(x2 z+2;z+4x+4) ) 
-i(xz+2) · 

2 

See Figure 6.2. 

A. Haas and P. Susskind ([HS92]) have studied simple closed curves on surfaces 

of type (2,0) from the viewpoint of train tracks. They have derived a formula for 

the number of components of a multiple curve determined by an integral weight 

train track on the surface. Similar methods might be used to determine intersection 

numbers of simple closed curves on surfaces of type (2,0). 
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Figure 6.2: The action in the group lx,y,z 



CHAPTER 7 

THE BIHOLOMORPHIC MAP FROM T11 TO THE UPPER HALF , 
PLANE 

The purpose of this chapter is to construct and approximate the explicit biholo­

morphic map from T1,1 to IHI. This map involves the integration of an abelian dif­

ferential on a Riemann surface. The abelian differential can be constructed using a 

cusp form for a Kleinian group. We start with a discussion of automorphic forms. 

7.1 Automorphic forms 

Let r be a Kleinian group. Suppose F(z) is a function which is meromorphic in f!(f) 

and satisfies F(,(z)),'(z)q = F(z) for all I E r. Let P denote a parabolic element 

of r with fixed point p. Then there is a constant c such that 

for all z. Thus, 

so 

Therefore, 

1 1 
---=--+c 
P(z) - p z - p 

P'(z) = (P(z) - p) 2 
z-p 

(P(z) - p)2qF(P(z)) - (P(z) - p)2q F(z) 
P'(z)q 

- (z - p)2qF(z), 

and so the function (z - p)2qF(z) is invariant under the group (P). 

Since P is parabolic, there is a circular disc which is precisely invariant under 

(P). The map z 1-+ t = exp(c(!:iP)) sends this disc onto a punctured disc around the 
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ongm. Furthermore, expC(::_ip)) = expC(!~P)) if and only if z = pn( w) for some 

integer n. Since (z - p) 29 F(z) is invariant under (P) and meromorphic in D(f), 

there is a function g(t), meromorphic in the punctured disc around the origin, so that 

g(t) = (z-p) 29F(z). Then Fis meromorphic (holomorphic) at p if g is meromorphic 

(holomorphic) at the origin. 

If F(z) is meromorphic on D(f) and on the set of parabolic fixed points of r, and 

F(,(z));'(z) 9 = F(z) for every I E r, then Fis an automorphic form of weight -2q 

for r, or an automorphic q-form for r. Likewise, F is a holomorphic automorphic 

q-form for r if it is holomorphic on D(f) and on the set of parabolic fixed points of 

f, and F(,(z));'(z) 9 = F(z) for all, Er. 

A cusped region for the fixed point p of the parabolic element P E r is a circular 

disc D in .6.(f) which is precisely invariant under (P) such that g(D) n D = 0 for all 

g E r - (P). For a proof of the following theorem, see page 117 of [Kra72] and page 

4 7 of [Kra84b]. 

Theorem 7.1.1 Let r be a finitely generated, non-elementary Kleinian group with 

invariant component .6.(f), and let -\(z) denote the Poincare metric on .6.(f) . Let 

F be a holomorphic automorphic q-form for r. Then the following conditions are 

equivalent: 

(i) Jfw -\2- 9(z)IF(z)I dx dy < 00 1 where w is any fundamental domain for the action 

of r on .6.(f); 

(ii) if p is a fixed point of the parabolic element P E r, and { Zn} is a sequence of 

points in a cusped region for p with Zn ~ p, then F(zn) ~ O; 

(iii) the function g(t) = (z - p)29 F(z) vanishes at t = 0; 

(iv) sup{-\-9 (z)IF(z)I: z E .6.(f)} < oo. 
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If any of the above conditions hold, then F(z) is a cusp form of weight -2q for r . 
The surface D..(Gµ)/Gµ is a punctured torus. (In this chapter we follow the no­

tation of [Wri] and use Gµ instead of Gx.) This means there is a neighborhood of 

the puncture conformally equivalent to the punctured disk. Denote the puncture on 

D..(Gµ)/Gµ by P0 , and let D..(Gµ)/Gµ denote the surface with the puncture filled in. 

That is, let p denote the fixed point of the parabolic element P E G /J,' There is a disc 

D contained in D..( G µ) which is precisely invariant under (P) in G µ, so that D / (P) 

is naturally embedded in D..(Gµ)/Gµ, Since Pis parabolic, there must be a constant 

C SO that 

1 1 ---· =--+c 
P(z) - p z - p 

for z E C. The map z i---+ exp(c(;:~)) is a conformal map from D onto a punctured 

disc around the origin D..- {O}. Furthermore, expCc!:~)) = expCc!~P)) if and only if 

z = pn(w) for some integer n. Hence, this map induces a conformal homeomorphism 

e : D/(P) ~ D.. - {0}. Define e(Po) = 0. Then D..(Gµ)/Gµ is the Riemann surface 

D..(Gµ)/Gµ, along with another point Po and a coordinate chart (D/(P) U Po, e). 

Given a Riemann surface S, a (holomorphic) q-diff erential ( on S is an assignment 

of a (holomorphic) function f to each local coordinate z on S such that f(z)(dz)q 

is invariant under change of local coordinates. A 1-differential is called an abelian 

differential; a 2-differential is called a quadratic differential. If G is a Kleinian group, 

and Fis a (holomorphic) automorphic form of weight -2q for G, then F projects to 

a (holomorphic) q-differential on O(G)/G. 

Lemma 7.1.2 If F(z) is a cusp form of weight -2q for Gµ, then the corresponding 

q-differential on D..( Gµ)/Gµ has a pole of order:::; q - l at the puncture. 

Proof: Let p denote a parabolic fixed point of Gµ, and let g(t) = (z - p)2qF(z). We 

want to find the order of the q-differential F(z) dzq at the puncture P0 of D..(Gµ)/G/J,' 



N • t _ ( 21ri ) dz c(z-p)2 Th ow smce - exp c(z-p) , dt = _21rit . us, 

F(z)dzq = (z - p)2q F(z) dzq 
(z - p)2q 

g(t) (dz)q(dt)q 
(z - p) 2q dt 

g(t) (c(z - p)2) q ( dt)q 
(z - p)2q -21rit 

C 
g(t)(--. )qdtq. 

-21rzt 
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Hence, the order of F(z) dzq at P0 is the order at t = 0 of g(t)(_2:it)qdt\ which is 

ord0g(t) - q. 

Since F(z) dzq is a cusp form, ord0g(t) 2:: 1, so the order of F(z) dzq at P0 is 

2:: 1 - q; so F(z) dzq has a pole at P0 of order::; q - 1. 

q.e.d. 

Lemma 7.1.3 The sum of the residues of an abelian differential over all points on 

a compact Riemann surface is zero. 

Proof: Let ( be an abelian differential on a compact Riemann surface. Triangulate 

the surface so that no pole of ( lies on the boundary of any triangle, and each triangle 

contains no more than one pole of(. Denote the triangles by Ti, ... , Tn, and their 

boundaries by 0T1, ... , oTn. Then the sum of the residues of (overall points on the 

surface is 2~i I:j=I f0ri (. This sum is zero since each side of each triangle appears 

twice in opposite directions. 

q.e.d. 

Proposition 7.1.4 If F(z) =/- 0 is a cusp form of weight -4 for Gµ, then Fis nonzero 

on ~(Gµ), 

Proof: The cusp form F projects to a quadratic differential f on ~(Gµ)/Gµ which 

is holomorphic on ~(Gµ)f Gw Furthermore, by Lemma 7.1.2, f has at most a simple 
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pole at the puncture P0 • Let g -=/:- 0 denote a holomorphic abelian differential on 

!)..( G µ) / G w Then g is nonzero, since it is defined on a compact Riemann surface 

of genus 1. (This follows from the Riemann-Roch Theorem; see [FK91).) Thus, ; 

is a meromorphic abelian differential on !)..(Gµ)/Gµ, holomorphic on !)..(Gµ,)/Gµ and 

having at most a simple pole at P0 • By Lemma 7.1.3, i. must be a holomorphic 
g 

abelian differential. Therefore, i. is nonzero on !)..(Gµ)/Gµ, and so Fis nonzero on 
g 

q.e.d. 

Lemma 7.1.5 Suppose n is an open set in C, and {fn(z)}~=l is a sequence of holo­

morphic functions on n. If ffn I:~=l lfn(z)I dx dy < oo, then I:~=l fn(z) converges 

absolutely uniformly on every compact subset of n. 

Proof: Let J{ be a compact set in n, and let r > 0 be less than the distance from J{ 

to the boundary of n. If z0 E J{ and f is holomorphic on n then by the mean value 

property for holomorphic functions (see, for example [Con78]), 

f(zo):;::: ~ / / f(z) dx dy, 
1rr JJn(z0 ,r) 

where D(z0 , r) denotes the disc around z0 with radius r. Hence 

k 

I I: fn(zo)I 
n=j 

< ,,~2 flc.,,) t fn(z)f dx dy 

< ,,~2 fl. [ t fn(z)f dxdy 

where Kr denotes the set of points z E n such that z E J{ or the distance from z to 

J{ is less than r. 

q.e.d. 

Let N denote the subgroup of Gµ generated by Si, and consider the set of right 

cosets of N in Gµ: {Ng : g E Gµ}. Two cosets Ng1 and Ng2 are the same if 
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and only if 92911 E N; that is, if and only if 92 = S191 for some integer n. Since 

(S19)'(z) = S~(9(z))9'(z) = 9'(z) for all 9 E Gµ, 9~(z) = 9~(z) for any two elements 

91 , 92 in the same right coset. Let T denote any set consisting of exactly one element 

from each right coset. Then Pq(z) = LoET 9'(z)q is well-defined for any integer q. 

Proposition 7.1.6 The series LoET 9'(z)2 converges absolutely uniformly on com­

pact subsets of ~(Gµ) to a cusp form of weight -4 for Gµ. 

Proof: Let V denote the vertical strip {z : 0 < Re(z) < 4}, and let w be any 

fundamental domain for the action of Gµ on ~(Gµ). For each right coset of N = (S1 ) 

in Gµ, choose a representative gi so that 9i(w) is contained in V. Then 

11 I L gj(z)21 dx dy < 11 L l9j(z)21 dx dy 
w OjET w OjET 

I: 11 l9j ( z )21 dx dy 
OjET w 

I: 11 dxdy 
OjET Oj(w) 

< 11 dxdy 
Ll(G,..)nV 

< oo. 

By Lemma 7.1.5, the series LoET 9'(z)2 converges absolutely uniformly on compact 

subsets of w. Since w was an arbitrary fundamental domain, this series converges 

absolutely uniformly (to a holomorphic function) on compact subsets of ~(Gµ). 

To show that P2 (z) is an automorphic 2-form for Gµ, note that if I E Gµ, then 

P2(,(z)),'(z)2 - L g'(,(z))2,'(z)2 
gET 

- I:((9 o 1)'(z))2 

gET 

- I: h'(z)2 
h=no"YET 

- P2(z). 
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Since Jfw IA(z)I dx dy < oo for any fundamental domain for the action of Gµ on 

!J..(Gµ), P2(z) is a cusp form of weight -4 for Gw 

q.e.d. 

We prove in Section 7.2 that A(z) = P2(µ; z) is not identically zero on !J..(Gµ). 

By Proposition 7.1.4, A(µ; z) is never zero on !J..(Gµ), so it has an analytic square 

root there. In fact, ,VA(µ; z) is a cusp form of weight -2 for Gw To prove this, let F 

be the lift to !J..(Gµ) of the nontrivial holomorphic abelian differential on !J..(Gµ)/Gw 

Then F 2 is a cusp form of weight -4 for Gw By the Riemann-Roch Theorem (see, for 

example, [FK91], especially page 77), the complex dimension of cusp forms of weight 

-4 for Gµ is one. Hence there is some constant c1 EC with F 2 = c1A(µ; z). Thus, if 

c~ = c1, then either F = c2JA(µ; z) or F = -c2JP2(µ; z). Since F projects to the 

holomorphic abelian differential on !J..(Gµ)/Gµ, it is a cusp form of weight -2 for Gw 

Let ( denote the abelian differential on !J..(Gµ)/Gµ which is the projection of 

J P2 (µ; z). Then { (} is a basis for the space of holomorphic abelian differentials on 

!J..(Gµ)/Gw (This space has complex dimension 1 by the Riemann-Roch Theorem.) 

Choose a base point Q0 on !J..( Gµ)/Gµ, and let { a, b} be the canonical basis for 

1r1(!J..(Gµ)/Gµ, Q0 ), so that the loops a and b have exactly one point in common and 

the angle from the positive direction on the a loop to the positive direction on the 

b loop at the point of intersection is positive and less than 1r radians. (Then if Q is 

any point in !J..(Gµ), then any curve in !J..(Gµ) from Q to S1 (Q) projects to a loop 

on !J..(Gµ)/Gµ in the homotopy class of a, and any curve in !J..(Gµ) from Q to Tµ(Q) 

projects to a loop on !J..(Gµ)/Gµ in the homotopy class of b.) Now define 'i/J: M1,1 --+ IH[ 

by -ip(µ) = T = :!..tc..f.f, (. 

a( 

Proposition 7.1.7 Im('i/J(µ)) > 0. 

Proof: We will show that Im(Ja ( · Jb () > 0. First cut !J..( G µ) / G µ along the loops 

a and b to produce a rectangle R with sides a+, a_, b+, and b_, where the sides a+ 
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and a_ are identified by G µ to make the a loop ( and similarly for b+ and b_). Let g 

denote an antiderivative of JP2(z) in R. Then if z_ and z+ are points on b_ and b+ 

identified by Gµ, then g(z+) - g(z_) =fa(; similarly, if w_ and W+ are points on a_ 

and a+ identified by Gµ, then g(w+) -g(w_) = Jb(. Thus, 

21. / g( 
i JaR 

a_ 

Figure 7.1: The orientation of R 

;i [1_ g( -1+ g(l + ;i [1+ g( -1_ g(l 
;i [1_ (g( - (g + 1 oo] + ;i [1+ (g( - (g-1 oo] 
;i [-1 ( 1 ( + 1 ( 7JJ 
;i [2iim(1 ( · 1 o] 
Im(1 ( · 1 (). 

On the other hand, if we write g = u + iv, then (=du+ i dv and 

g( 

2i 
;/udu + vdv + iudv - ivdu) 

udu + vdv udv - vdu 
2i + 2 

d( u2 + v2) u dv - v du 
4i + 2 . 

Thus, by Green's Theorem (see, for example, [Buc78]), 



21. / g( 
Z JaR 

f udv - vdu 

JaR 2 

Jl dudv > 0. 
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q.e.d. 

Let Gr denote the group (z ~ z+l, z ~ z+r), and define a: ,6.(Gµ)/Gµ-+ Cf Gr 

by a(P) = 7rr( 1°/\ where 'Irr : C -+ C/Gr is the natural projection. We will show 

that a is a conformal homeomorphism. We use divisors to do so. A divisor on a 

Riemann surface is a formal symbol I:, niPi, where each ni is an integer and each Pi is 

a point on the surface. The degree of the divisor I:, niPi is the sum I:, ni. The group 

of divisors on a surface is the free abelian group on the points of the surface. We 

choose to write the unity in this group as 0. 

If f is a meromorphic function on a Riemann surface, the symbol (f) denotes the 

divisor I:, niPi, where the Pi's are the zeros and poles off, and ni is the order of the 

zero or pole Pi; if Pi is a zero, then ni > 0, and if Pi is a pole then ni < 0. A divisor 

is principal if it is (f) for some f. 

Now extend a to a map a 1 from the group of divisors on ,6.(Gµ)/Gµ to the group 

of divisors on Cf Gr by defining a1(E niPi) = I:, nia(Pi). 

A slightly more general statement than the following theorem is due to Abel; a 

proof appears in [FK91]. 

Theorem 7.1.8 A divisor D on ,6.(Gµ)/Gµ is principal if and only if deg(D) = 0 

and a 1 (D) = 0. 

Proposition 7.1.9 The map a is a conformal homeomorphism. 

Proof: Let Cr denote the lattice { m + nr : n, m E Z}. Let c1 and c2 be two paths 

in ,6.( Gµ)/Gµ from Q0 to P. Then c1c21 is homotopic to ma+ nb for some m, n E Z; 

~ ~ fcl c-l ( £ Th · 11 d fi d so Ja ( - Ja' = Tc = m + nr E r• us, Q'. IS we - e ne . 
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Now let z be a local coordinate vanishing at P. Then a( z) 

J,QP ( rz ~dz '( ) 12 (z) . . + Jo V>2l"'J so a z = and a 1s holomorph1c J. ( ' ( ' . a a a 

Since a is holomorphic and non-constant, the Open Mapping Theorem (see [Con78], 

for example) guarantees that a(fl.(Gµ)/Gµ) is open in C/GT. Since fl.(Gµ)/Gµ is com­

pact, so is a(fl.(Gµ)jGµ), Since C/GT is Hausdorff, a(fl.(Gµ)/Gµ) is closed in C/GT. 

Thus, a is surjective. 

Finally, to show that a is injective, suppose there are two distinct points P, P' 

on fl.( Gµ)/Gµ such that a(P) = a(P'). Then by Abel's Theorem (Theorem 7.1.8), 

P - P' is a principal divisor on fl.(Gµ)/Gµ; but by the Riemann-Roch Theorem there 

is no meromorphic function on a closed surface of genus 1 with a simple pole at one 

point and no other poles. (See page 269 of [Spr57], for example.) This contradiction 

finishes the proof. 

q.e.d. 

Let 71 = a( Po), and let CT. denote the lattice { w + T1 : w E CT}. Then the map 

a: fl.(Gµ)/Gµ-+ (C-CT. )/Gn which is the restriction of a to the punctured surface, 

is also a conformal homeomorphism. Furthermore, it clearly preserves the marking. 

Now choose a base point Q E fl.( Gµ) and define r.p : fl.( Gµ) -+ C - CT. by 

Let 7rµ: fl.(Gµ)-+ fJ0(Gµ)jGµ be the natural projection. Then a o 7rµ = 1rT o r.p, so r.p 

must map any fundamental domain for the action of Gµ on fl.( Gµ) onto a fundamental 

rectangle in C - CT •. It follows from the following proposition that r.p is surjective. 

Proposition 7.1.10 The map r.p satisfies the equations r.p(S1(z)) = r.p(z) + 1 and 

r.p(Tµ(z)) = r.p(z) + T. 

Proof: First note that JQt; J P2 (µ; z) dz 



and 

Thus, 

cp(S1(z)) 

Also, 

1: JP2 (µ; Tµ(z))Tµ'(z) dz 

1: JP2 (µ; Tµ(z))Tµ'(z) 2 dz 

1: JP2 (µ;z)dz. 

JQ+2 JP2(µ; z) dz 

Jg+2 JP2(µ; z) dz 

J8+2 JP2(µ; z) dz JQt~ JP2(µ; z) dz 

- J8+2 JP2(µ; z) dz+ Jg+2 JP2(µ; z) dz 

1 + cp(z). 

-
JJ1.CZ> J P2(µ; z) dz 

Jg+2 JP2(µ; z) dz 

JJ"(Q) JP2(µ; z) dz JJ:(~~ JP2(µ; z) dz 

J8+2 JP2(µ; z) dz + J8+2 JP2(µ; z) dz 

T + cp(z). 

Since cp' ( z) = J,CJ+~ is never zero, cp is a conformal map. 
Q P2(µ;z) dz 

Proposition 7.1.11 The map cp: ~(Gµ)---+<C-Cr• is a covering map. 
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q.e.d. 

Proof: We have shown that cp is a continuous surjection. Let z E C- Cr• . Choose a 

fundamental rectangle R for C - Cr• such that z is in the interior of R. Then there 

is a connected open neighborhood N of z contained in R. Now pick any connected 

component of cp-1(N) in ~(Gµ) and any fundamental domain F for the action of 

Gµ on ~(Gµ) which contains that component in its interior. Then each connected 
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component of c.p-1 (N) is an open set contained in a Gµ translate of F of the form 

g(F), where g = r;1 Sf1 • • • r;r Sfr and Li=t ni = Li=t mi = o. We have shown that 

every point in C-Lr• has an open neighborhood which is evenly covered by a union of 

disjoint open sets in~( Gµ), each one to which the restriction of c.p is a homeomorphism 

onto N. (These restrictions of c.p are homeomorphisms by Proposition 7.1.9 and the 

fact that a o 7rµ = 1r,,. o c.p.) 

q.e.d. 

Lemma 7.1.12 Let Rµ(z) = µ - z. Then RµGµR; 1 = Gw 

Proof: Easy computations show that RµS1R;1 = S11 and RµTµR; 1 = T;: 1 • 

q.e.d. 

Recall that A(z) = LgET g'(z)2, where Tis any set of right coset representatives 

of (S1 ) in Gw 

Lemma 7.1.13 For z E ~(Gµ), P2(z) = A(µ - z). 

Proof: By Lemma 7.1.12, the set of right cosets of (S1 ) in Gµ equals the set of right 

cosets of (S1 ) in RµGµR; 1 • Thus, 

gEl' 

L(Rµ o go R;1 )'(z)2 

gEl' 

L[(Rµ o g)'(R;1 (z))(R; 1 )'(z)]2 

gEl' 

L[(Rµ o g)'(µ - z)] 2 

gEl' 

2:[R~(g(µ - z))g'(µ - z)] 2 

gEl' 

I: l(µ - z)2 
gEl' 

P2(µ - z). 

q.e.d. 
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Lemma 7.1.14 P2(µ; z) = P2(-µ;-z). 

Proof: Define J(z) = -z. Then J-1 = J, and JTµJ = T_µ, and JS1J = S11 . 

We first claim that for any g E Gµ, [(JgJ)'(z)] 2 = [(Jg'J)(z)]2. Given any 

g = T';:1 Sf"1 .. ·T'(:rSfr in Gµ, define the length of g to be Ei=i(lnil + !mil). We 

will use induction on the length of g to prove our claim. First, it is easy to compute 

that for h = S1, S11, Tµ, or T;:1, [(JhJ)'(z)]2 = [(Jh'J)(z)]2. Assume the claim is 

true for all words of length n, and let g have length n + l. Then g = hg1, where 

h = S1, S11 , Tµ, or T;:1, and g1 has length n. Thus, 

[( J gJ)'(z )]2 [(JhJ J g1J)'(z)] 2 

- [(JhJ)'(Jg1J)(z) · (Jg1J)'(z)]2 

[(Jh'J)(Jg1J)(z) · (Jg1'J)(z)]2 

[(Jh'g1J)(z) · (Jgi'J)(z)]2 

- [( Jh'g1)(-z) · ( J gi')(-z)]2 

- [J(h'g1(-z) · g1'(-z))]2 

[J((hg1)'(-z))]2 

- [Jg' J(z )]2. 

Now as g varies over all the right coset representatives of (S1 ) in Gµ, JgJ varies 

over all the right coset representatives of (S1 ) in G-µ· Therefore, since for any g E Gµ, 

[g'(z)] 2 = [(Jg'J)(-z)]2 = [(JgJ)'(-z)]2, the equality P2(µ; z) = P2(-µ; -z) must 

hold. 

q.e.d. 

Lemma 7.1.15 Fixµ= it, t > 2. Let L1 denote the horizontal line segment x + i!, 
-1 ::; x ::; 1; and let L 2 denote the vertical line segment iy, f ::; y ::; !· Then P2 (z) 

is real on L1 and L2. 
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Proof: By Lemmas 7.1.13 and 7.1.14, P2(z) = P2(-z) = P2(it + z). In particular, 

for O < y < i - 1 
- - 2 t' 

A(x + i(i - y)) P2(it + X + i(i - y)) 

t 
P2(it + X + i(y - 2)) 

. t 
P2(x + z( 2 + y)), 

and setting y = 0 into both sides of this equation yields A(x +if) = A(x +if). 

Thus, P2(z) is real on L1 • Likewise, 

A(x + i(i + y)) 

A(it-x-i(i+y)) 

A(-x + i(!-y)) 2 . 

Setting x = 0 into both sides here yields P2 ( i( ! - y)) = P2 ( i( ! - y) ), which proves 

that P2 (z) is real on L2 • 

q.e.d. 

Recall now that the map 'ljJ : M1,1 --+ IHI is defined by 

Jb~dz 
'l/J(µ)= ~ ' 

fay A(z) dz 

where {a,b} is a basis for the fundamental group of fj,,(Gµ)/Gµ, a corresponding to 

S1 and b corresponding to Tµ-

Proposition 7.1.16 The map 'ljJ : M1,1 --+ IHI takes the imaginary ray in M1,1 to the 

imaginary ray in IHI. 

Proof: Since P2(z) is nonzero on fj,,(Gµ), there are two possible cases: either A(z) > 

0 on L1 and L2, or A(z) < 0 on L1 and L2. (The line segments L1 and L2 intersect 
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at the point ~i.) Thus, on L1 and L2, JA(z) is either real or pure imaginary. In 

either case, 

( 
If JA(iy) i dy ) 

I~ 1tJA(x + i~) dx 

If JA(iy)idy 
t 

I~ 1 JA(x + i~) dx 

-i/;(it). 

q.e.d. 

Proposition 7.1.17 The map if; M1,1 --t lHI satisfies the equation if;(µ + 2n) = 

if;(µ)+ n, for any integer n. 

Proof: Let P2(µ;z) denote the function LgEi(µ)9'(z) 2, where T(µ) is any set of 

right coset representatives of (S1 ) in Gµ- Since Tµ+2n = SfTµ, the set of right 

cosets of (S1 ) in Gµ is the same as the set of right cosets of (S1 ) in Gµ+2n· Thus, 

P2(µ; z) = P2(µ + 2n; z) for anyµ E M1,1-

N ow if; : M1 ,1 --t lHI is defined by 

Ib(µ) V P2 (µ; z) dz 
if;(µ)= v , 

Ia(µ)P2(µ; z) dz 

where a(µ) and b(µ) are curves in~( Gµ) projecting to the generators of7r1 (~( Gµ)/Gµ) 

corresponding to S1 and Tµ, respectively. Thus, 

if;(µ+ 2n) = 
Ib(µ+2n) JP2(µ + 2n; z) dz 

Ia(µ+2n) JP2(µ + 2n; z) dz 

Ib(µ+2n) JP2(µ; z) dz 

Ia(µ+ 2n) JP2(µ; z) dz· 



82 

Since Tµ+2n = SfTµ, Gµ+ 2n = Gµ and the set of curves of types a(µ) and a(µ+ 2n) 

are the same. Furthermore, b(µ + 2n) can be chosen to be a curve of the type b(µ) 

followed by n curves of the type a(µ). Then 

'ljJ(µ + 2n) 
fb(µ) J P2(µ; z) dz fa(µ) J P2(µ; z) dz 
-'-~===--+n-'--~===--
fa(µ) J P2(µ; Z) dz fa(µ) J P2(µ; Z) dz 

'ljJ(µ) + n. 

q.e.d. 

Proof: Let J(z) = -z. Then JGµJ- 1 = G-µ, so ~(G-Ti) = J(~(Gµ)). 

q.e.d. 

Proposition 7.1.19 'ljJ(-µ) = -'ljJ(µ). 

Proof: Let b(-µ) and a(-µ) be curves in ~(G-µ) from some base point Q to 

T_Ti( Q) = ! - µ and to S1( Q) = Q + 2, respectively. Then let -b(-µ) and -a(-µ) 

denote the negative conjugates of the curves b(-µ) and a(-µ); that is, -b(-µ) and 

-a(-µ) are curves from -Q to -~ + µ and -Q - 2, respectively. By Lemma 7.1.18, 

these curves lie in ~(Gµ). Thus, 

'ljJ(-µ) = 
fb(-µ) .jA(-µ; z) dz 

fa(-µ) JP2(-µ;z)dz 

LbHI} J A(-µ; -z) d(-z) 

La(-Ti) .jP2(-µ; -z) d(-z) 

LbHI} V P2(µ; z) d(z) 

La(-µ) ·/P2(µ; z) d(z) 

f~~(-Q) JP2(µ; z) dz 

f~~- 2 .jA(µ; z) dz 



f~&(-Q) JP2(µ; z) dz 

f~3- 2 ,jA(µ; z) dz 

- -¢(µ). 
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q.e.d. 

Notice that Proposition 7.1.16 follows immediately from Proposition 7.1.19. 

Corollary 7.1.20 'lj; takes the ray Re(µ) = 1 in M 1,1 to the vertical ray Re(r) = f 
in JHI. 

Proof: Propositions 7.1.17 and 7.1.19 imply that 

'lj;(it+l) -'lj;(it-1) 

- -¢(it -1 + 2) - 1 

-¢(it+ 1) + 1. 

Thus, Re('lj;(it + 1)) = f. 
q.e.d. 

7 .2 Eichler cohomology and the non-vanishing of the series 

We begin by defining terms and notation. Throughout, we assume r is a non­

elementary Kleinian group with oo E n(r). (A Kleinian group is non-elementary 

if its limit set contains more than two points; if this is true then the limit set must 

be uncountable.) 

Let q be an integer~ 2. Let D be any I'-invariant subset of the Riemann sphere. 

Then r acts on functions Fon D by the formula (F · ,)(z) = F(,(z)),'(z)1-q. 

Let II2g_2 denote the vector space of polynomials in one complex variable of degree 

less than or equal to 2q - 2. 
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A mapping X : r -* Il2q-2 is a cocycle for r if x(,n2) = x( 11) · 12 + x(,2) for all 

,1, ,2 E r. A cocycle is a coboundary if there is some p E Il2q_2 with x( 1 ) = p · 1 - p 

for all, E r. The first Eichler cohomology space H 1(f, Il2q_2) is the set of cocycles 

modulo the coboundaries. 

If A E r is parabolic, then a cocycle x is parabolic with respect to A if there is 

some p E Il2q_2 with x(A)(z) = (p · A)(z) - p(z). Note that if x is parabolic with 

respect to A, and Ax= x, then since A'(x) = 1, x(A)(x) = 0. 

A function F on D is an Eichler integral if for each , E r there is some x( 1 ) E 

Il2q-2 such that the restriction of x(,) to Dis F · 1 - F. In this case xis a cocycle 

for r, called the period of the Eichler integral F, and we write x = pd(F). 

We assume that x is a parabolic fixed point of r. Let Px denote the set of elements 

of r which are parabolic and fix x, and let r x denote all the elements of r which fix 

x. Let n = [rx : Px], Then xis q-admissible if q is congruent to O modulo n. The 

point x is a cusp if Px has rank 2, or if x represents two punctures on f!(r) /r, or if 

it represents one puncture on f!(r)/r and there are two disjoint discs in f!(r) which 

are precisely invariant under Px in r. 

The following theorem is due to L. Ahlfors ([Ahl82]) and D. Sullivan ([Sul81]). 

Theorem 7.2.1 Let {an} and {bn} be sequences of complex numbers and assume 

En lanl converges. Then the series En z~?n converges absolutely almost everywhere 

in CC. It converges in L1 on compact sets. Also, if the bn are distinct, and the limit 

function is zero almost everywhere, then an = 0 for all n. 

Proof: Fix a compact set K in CC. Then there is a constant C ( K) depending only 

on K such that 

So since En lanl converges, the series E z~?n converges in L1 on K. In particular, it 

converges absolutely almost everywhere. 
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In order to prove the last part of the proposition we use the idea of a distribution. 

A distribution is a linear functional on the space C~(<C). (Distributions must be 

continuous in a certain topology; see [Rud73], for example.) If A is a distribution, 

then its partial derivative with respect to z is defined by 

a a 
(-=A)(!) = -A(-f). 
az oz 

Any locally integrable function g induces a distribution Ag by the formula 

Ag(!)= ]k,g(z)f(z)dxdy. 

So if g is a locally integrable function, then 

Thinking of z~b as a distribution, then, for f E C~(C), 

a a - i~· a a (~_j-b))(f) = - -ba_f(z)dxdy = 1raf(b). 
uz z - IC z - z 

(For a proof of the last of the above equalities, see [Rud87], for example.) Therefore, 

by Lebesgue's Dominated Convergence Theorem ([Rud87], page 29), for any f E 

C~(C), 

- ]k,CL z ~\)(:zf(z))dxdy 

- L ]k,(z ~\)(!f(z))dxdy 

7r L anf(bn)· 

So if I: z~bn = 0 almost everywhere, then I: anf(bn) = 0 for every f E C~(C). If the 

bn are distinct, then an = 0 for each n. For example, to show that a1 = 0, take a 

sequence fk E C~(C) such that fk(b1 ) = 1, the support of fk is contained in a ball 
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around b1 of radius f, and such that lfk(z)I ::; 1. Then O = a1 + Ek, where Ek --+ 0 

as k --+ oo since I: lanl converges. 

q.e.d. 

The following lemmas and theorem are due to I. Kra and appear in [Kra84a). 

Lemma 7.2.2 Let x be a fixed point of a parabolic element of r. Assume oo E !1(f). 

If x is a cusp, then I:'YEr/Px l,'(x)l2 converges. 

Proof: Let 1 = ( ac db) E SL2(C). Then c = 0 for only finitely many elements of 

r, and 

""' i - ""' I 1-4 i L..t 4 - L..t C 4, 
'YEr/Px Jex+ di 'YEr/Px Ix - ,-1 (00)1 

where I:' means we sum over the elements where c =/:- 0. We can choose representatives 

1 such that ,-1 ( oo) is in the closure of a fundamental domain for Px. Then, since x 

is a cusp, it is easy to see that Jx - ,-1(oo)J is bounded below by a positive number. 

Since 00 E n(r), I:~H/Px lcJ-4 converges. (See, for example, [For51), page 104.) 

q.e.d. 

Lemma 7.2.3 Let r be a non-elementary Kleinian group with oo E !1(f). Let x be 

a q-admissible fixed point of a parabolic element of r. Assume x is a cusp and q ~ 2. 

Let 
,'( X )q 

ip(x,() = L (x)- ( 
'YEr/Px I 

Then if;(x, ·) is a holomorphic Eichler integral for r which is not identically zero. 

Proof: Theorem 7.2.1 and Lemma 7.2.2 imply that the series converges in L1 on 

every compact subset of C. Since each of the terms ;;;)~: is holomorphic on !1(f) 

and L1 convergence of holomorphic functions on any subset B of C implies uniform 

convergence on compact subsets of B, ip(x, ·) must be holomorphic on every compact 

subset of n(r). 
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Recall that x is q-admissible if, for n = [f x : Px], q _ 0 modulo n. Now for 

g,h E f/Px, g(x) = h(x) if and only if (h-1 og) E fx/Px. Any generator, of 

f x/Px satisfies ,'(x) = e21rifn, so if xis q-admissible, then ,'(x)q = l. Thus, if xis 

q-admissible, then 

and all ,x are distinct inf x/Px. Since ,'(x)q is not zero for any, E f /Px, Theorem 

7.2.1 implies that 1P(x, () is not identically zero. 

To show that 1P(x, ·) is an Eichler integral for f on f!(f), fix g Er. Then 

1P(x,g(())g'(()1-q -1P(x,() = 

Now 

is a polynomial in ( of degree 2q - 1 that vanishes at ( = 1x. So for each , E r, 

,'(x)q[g'(,x)q-fg'(()f-q -1] ,x -( 
is an element of Il2q_2 • Since the series converges in L1 on every compact subset of CC, 

it converges uniformly on compact subsets on CC. Thus, 1P(x,g(())g'(()1-q -1P(x,() 

is in II2q-2 . 

q.e.d. 

Let x = pd(1P(x, ·)). Then the above proof shows that for any g Er, x(g)(() can 

be extended as a polynomial from f!(f) to the whole complex plane. In particular, 



for z E A(f), 

x(g)(z) = lim x(g)((). ,-z 
,en(r) 
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Lemma 7.2.4 Let P E r be parabolic with the q-admissible fixed point x. Let x = 

pd(?j;(x, ·)). Then x(P)(x) -f. 0. 

Proof: Since oo E n(r), there is some circle C whose interior contains A(f). Since 

x(P) is a polynomial on C, and xis q-admissible, 

x(P)(x) 

where n = [I'x: Px], Since the sum converges uniformly on C, 

n f ,'(x)qP'(x)1-q ,'(x)q 
x(P)(x) = 21ri L lc[(z - x)(,x - Pz) - (z - x)(,x - z)]dz. 

,.,er/r"' . 

Each of the integrals in the sum above is the sum of the residues of 

,'(x)qP'(x)1-q ,'(x)q 
f(z) = (z - x)(,x - Pz) - -(z---x-)(-,x---z-) 

at the poles of f(z). If, is the identity, then it is easy to compute that if P = (: ! ) 
in SL2 (C) then 

Res(f;x) 
2c( q - !)(ex+ d) 2q-2 

(ex - a) 

(q- ~)P"(x), 

since P is parabolic and fixes x. If, is not the identity, then straightforward com­

putations yield the equalities 

,'(x )q 
Res(!; 1x) = , 

,x-x 
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-1 (P-1,)'(x)q 
Res(f;(P 1 )(x)) = -(P-I,)(x)-x' 

and Res(!; X) = 0. Kra proves that I:[~~~r - /:.=-11"/V(~)~:i converges to 0, where the 

sum is over all representatives of r /I' x except the identity, in his paper [Kra84a). 

Thus, x(P)(x) = n(q- !)P"(x) -1- 0. 

q.e.d. 

Theorem 7.2.5 Let x be a q-admissible parabolic fixed point of the non-elementary 

Kleinian group r. Assume 00 E n(r)J X is a cusp! and q ~ 2. Let 

,'(x )q 
cp(x, () = cpr(x, () = (2q - l)! L ( x _ ( 

"/Er/Px I 

Then cp(x, ·) is a holomorphic automorphic form of weight (-2q). Furthermore1 

cp( x, ·) is not identically zero on any component ~ of I' which is invariant under 

Proof: First note that 
d2q-I 

cp(x, () = d(2q-I 'lj;(x, (). 

So cp(x, ·) is holomorphic by Lemma 7.2.3. Now cp(x, () can be rewritten in the form 

Written in this new way, it is easy to see that cp(x, () is an automorphic form of 

weight (-2q). 

Next, suppose ~ is a component of r which is invariant under the parabolic 

element P, where P fixes x. Let x = pd('lj;(x, ·)). By Lemma 7.2.4, x(P)(x) -1- 0. 

Now 

and for ( E ~' 

x(P)(x) = limx(P)((), ,-x 
(EA 

x(P)(() = 'I/J(x, P()P'(()1-q - 'I/J(x, (). 



If 'lj;(x, () is a polynomial for ( E ~' then 

x(P)(x) = Iim['lj;(x, P()P'(() 1-q - 'lj;(x, ()] = 0. ,_"' 
(EL!. 
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This contradiction shows that 'lj;(x, ·) is not a polynomial in ~' and so t2qq~1 'lj;(x, () 

cannot be identically zero in ~-

q.e.d. 

Corollary 7.2.6 For q 2:'.: 2, the series 

E ,'(()q 
'YE{S1)\Gµ 

is not identically zero on the invariant component of Gµ-

Proof: Choose A = (: !) E SL2 (C) such that A(oo) E n(Gµ)- Then oo E 

A-1(n(Gµ)) = n(A-1GµA), and A-1(00) is a q-admissible parabolic fixed point of 

A-1GµA. Also, A-1 (00) is a cusp for A-1GµA. To simplify notation, let r = A-1GµA 

and let x = A-1(00). Then Px = (A-1S1A), so 

E ,'(()q 
-yE(S1)\G,, 

L A'(,A-l()q,'(A-l()q(A-1 )'(()q 
-yEPz\r 

Since A-1(~(Gµ)) is a component of r invariant under Px, c,or(x, A-1 (()) is not 

identically zero in ~(Gµ)-

q.e.d. 
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7 .3 The error in approximating the series 

Proposition 7.3.1 Let g = 9192 · · · 9n E (S1) \ Gµ, 91 = T;1, 9i9i+I -:/ 1 for l ::; 

i::; n - l, and 9i E {S1,S11,Tµ,T; 1} for l::; i::; n. Suppose O :s; Re(µ)::; 2 and 

Im(µ) > 2. Then 

(i) if 9n = Tµ, then g-1 ( oo) is inside I (Tµ); 

(ii) if 9n = T;1, then g-1(00) is inside I(T;1); 

(iii) if 9n = S1, then g-1 ( oo) is to the left of Re( z) = 1; 

(iv) if 9n = S11 , then g-1 (00) is to the right of Re(z) = l. 

Proof: We use induction on the length of the word n. If n = l, then g = T;1 and 

the proof is clear. Assume the proposition is true for all words of length _::; n; we 

want to show its truth for words g of length n + l. Write g = g1g2 · · · 9n+l · We divide 

the rest of the proof into cases. 

First suppose 9n+I = S1. Then if 9n = S1, g-1 ( oo) is to the left of Re( z) = -1 by 

the induction hypothesis. If 9n = Tµ, then g;;1 · · · g11(oo) is in I(Tµ), and so g-1(00) 

is to the left of Re(z) = -1. If 9n = T;1, then g;;1 · · · g11(oo) is in J(T;1), and since 

Re(µ)::; 2, g-1(00) is to the left of Re(z) = 1. 

The cases work similarly if 9n+I = S11. In this case, if 9n = S11 then g-1 ( oo) is 

to the right of Re(z) = 3. If 9n = Tµ then g-1 (00) is to the right of Re(z) = 1. Also, 

since Re(µ) ~ 0, if 9n = T;1 then g-1 ( oo) is to the right of Re( z) = 1. 

Next suppose 9n+I = Tw Then if 9n = Tµ also, then g;;1 · · · g11 ( oo) is inside I(Tµ) 

by hypothesis. Since the isometric circles of Tµ and T;1 do not intersect, g-1 ( oo) is 

inside I(Tµ), If 9n = S1, we must consider the previous letter also. If 9n-19n = S1S1, 

then g;;,1 · · · g11 (oo) is to the left of Re(z) = -1, which is outside I(T;;1), and so 

g-1 (00) is inside I(Tµ), If 9n-19n = TµS1, then g;;~1 · · ·g11(oo) is inside I(Tµ), and 
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9:;;,1 · · · 911 ( oo) is to the left of Re(z) = -1, and so 9-1( oo) is inside I(Tµ). If 9n-19n = 

T;:1S1, then 9:;;21 · · · 911 (00) is inside I(T;:1), and 9:;;1 · · · 911 (00) is outside I(Tµ- 1), 

so 9-1 (00) is inside I(Tµ). If 9n = S11 we must likewise consider the previous letter. 

If 9n-19n = S11 S11, then 9:;;,1 ... 911 ( 00) is to the right of Re( z) = 3, which is outside 

I(T;:1), so 9-1 (00) is inside I(Tµ). If 9n-19n = TµS11, then 9:;;21 · · · 911 (00) is inside 

I(Tµ), and 9:;;,1 · · · 911 (00) is below the horizontal line Im(z) = 1 and since Im(µ)> 2, 

9:;;,1 ... 911(00) is outside I(T;:1); thus 9-1(00) is inside I(Tµ)• If 9n-19n = r;:1s11, 

then 9:;;,21 ···911(00) is inside I(T;:1), 9:;;_1 .. ·911(00) is outside I(T;:1), and 9-1(00) 

is inside I(Tµ). 

Finally suppose 9n+1 = r;:1. Then if 9n = r;:1, then 9:;;,1 ... 911 ( 00) is inside 

I(T;:1), which is outside I(Tµ); thus 9-1 (00) is inside I(T;:1). If 9n-l9n = S1S1, 

then 9:;; 1 • • • 911 (00) is to the left of Re(z) = -1, so 9-1 (00) is inside I(T;: 1 ). If 

9n-19n = TµS1, then again 9:;;,1 · · · 911 (00) is to the left of Re(z) = -1, and 9-1(00) 

is inside I(Tµ- 1). If 9n-19n = r;:1S1, then 9:;;21 ···911 (00) is inside J(T;: 1 ), and 

9:;;,1 • • • 911 (00) is above the line Im(z) = 1 (because Im(µ)> 2), so 9:;;,1 • • • 911 (00) is 

outside I(Tµ) and 9-1(00) is inside J(T;:1). If 9n-19n = S11S:11 then 9:;;,1 · · · 911(00) 

is to the right of Re(z) = 3, which is outside I(Tµ), so 9-1 (00) is inside I(T;:1). If 

9n-19n = TµS11, then 9:;;21 · · · 911 ( oo) is inside I(Tµ), and g:;;, 1 • • • 911 ( oo) is outside 

I(Tµ), so 9-1 (00) is inside I(T;:1). Finally, if 9n-19n = T;:1S11, then 9:;;~ 1 • • • 911(00) 

is inside I(T;: 1 ) and 9:;;,1 · · · 911(00) is above the line Im(z) = 1, and outside I(Tµ), 

so 9-1 ( oo) is inside I(T;:1 ). 

q.e.d. 

Corollary 7.3.2 Under the hypotheses of Proposition 7.3.1, if 9n = Tµ, S1, or S11, 

then 9-1 (00) is outside I(Tµ- 1); if 9n = T;:1, Si, or S:1-1, then 9-1 (00) is outside 

I(Tµ). 

Proof: Suppose 9n = Tw Then by Proposition 7.3.1, 9-1 (00) is inside I(Tµ), which 
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is disjoint from J(T;;1). By similar reasoning, if 9n = T;;1, then g-1(00) is outside 

Now if 9n = S1 or S 11 , we consider the previous letter. If 9n-I9n = S1S1 or 

TµS 1 , then by the proposition, g-1 (00) is to the left of Re(z) = -1; so g-1(00) is 

outside I(Tµ) and J(T;;1 ). If 9n-I9n = Tµ- 1 S1 , then g-1 (00) is above the horizontal 

line Im( z) = 1 and to the left of the line Re( z) = Re(µ) - 1; so g-1 ( oo) is outside 

both isometric circles. If 9n-I9n = s;-1s;-1 then g-1(00) is to the right of Re(z) = 3 

and outside I(Tµ) and J(T;;1). If 9n-I9n = rµ- 1s;-1, then g-1(00) is to the right of 

Re(z) = Re(µ)+ 1, which is outside I(Tµ) and J(T;;1). Finally, if 9n-I9n = TµS11 , 

then g-1(00) is to the right of Re(z) = 1 and below Im(z) = 1; so g-1(00) is outside 

the isometric circles. 

q.e.d. 

Suppose we want to find a bound on I LiH g'(z0 )21, where H is some subset of 

(S1 ) \ Gµ and z0 E ~(Gµ), By the mean value property for holomorphic functions 

(see [Con78], for example), 

g'(zo)2 = ~ JJ, g'(z)2 dx dy, 
1rr D(zo,r) 

where D(z0 , r) is a disk around z0 with radius r in which g'(z) 2 is holomorphic. Thus, 

lg'(zo)21 ~ ~ j' [ lg'(z)21 dxdy. 
1rr Jn(z0 ,r) 

The last integral equals 1r;2 times the area of g(D(z0 , r) ). The following proposition 

is now clear. 

Proposition 7.3.3 Suppose D(z0 , r) is contained in some fundamental domain for 

Gµ- Then 

" I'( )21 2Im(µ) ~ g Zo ~ 2 , 

gE(S1)\Gµ 7rr 
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We need only estimate the series at points z0 for which O :::; Re(z0 ) :::; 1. (In order 

to integrate the square root of the series over the curves a and b, we can use the 

identity A(µ; z) = A(µ;µ - z) and integrate from ~ - 1 to ~ for the curve a and 

from i to ~ for the curve b. Since 'lj;(µ + 2) = '!j;(µ) + 1, we can restrict our attention 

to the cases O :::; Re(µ) :::; 2.) Suppose we choose r so that D( z0 , r) lies inside the 

vertical strip {z : -3/2 + Re(µ)/2 :::; Re(z) :::; Re(µ)/2 + 1/2}, inside Ll(Gµ), and 

outside the isometric circle of T;-1, and so that Tµ{D(z 0 , r)) lies outside the isometric 

circle of Tw Then we can bound L-H lg'(z0 )21, depending on H, as follows. 

Suppose H consists of those words of the form g1T; 1g, where g1 is fixed. Since 

T;1 takes the outside of J(T;1) to the inside of I(Tµ), T; 1g(D(z0 ,r)) lies inside 

I(Tµ). By Corollary 7.3.2, g11 ( oo) lies outside I(Tµ); so g1 takes the inside of I(Tµ) 

to the inside of g1(I(Tµ)). Thus, L-H lg'(z0 )2J is less then 11";2 times the area of the 

disk 91 (J(Tµ) ). 

Next suppose H consists 'of words of the form g1TµS11g or g1TµTµg. Then 

TµS11g(D(z0 ,r)) and TµTµg(D(z 0 ,r)) are inside J(T;1), and by Corollary 7.3.2, 

g11 ( oo) is outside J(T;1 ). Thus, L-H Jg'(z0)2 I is less than 11";2 times the area of the 

disk g1(J(T;1)). 

Now suppose H consists of words of the form g1 S11 S11 g. Then S11 S11 g( D( z0 , r)) 

is to the left of the line Re( z) = Re(µ) - 3, and by Proposition 7 .3.1, g11 ( oo) is inside 

I(Tµ), inside J(T;1), or to the right of Re(z) = 1. Thus L-H Jg'(z0 )21 is less than 11";2 

times the area of the disk g1(D1), where D1 = {z: Re(z) < Re(µ) - 3}. 

Suppose H consists of words of the form g1S1S1g. Since S1S1g(D(z0 , r)) is inside 

the half space D2 = {z: Re(z) > 5/2}, if 91 ends in Tµ or S1 then L-H Jg'(zo)21 is less 

than 11";2 times the area of the disk 91 ( D2). 

Finally suppose H consists of words of the form g1S1Tµg, where g1 ends in S1 

or Tw Since g11(oo) is to the left of Re(z) = 1 and S1Tµg(D(z 0 ,r)) is to the right 

of Re( z) = 1, L-H Jg' ( zo )21 is less than 11";2 times the area of the disk g1 ( D3 ), where 
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D3 = {z: Re(z) > 1}. 

We have considered sufficiently many cases for H; we have found error bounds 

for En jg'(z0)2j in the cases where H contains words of the forms g1T;1g, g1TµS'11g, 

g1TµTµg, g1S11S11g, g1TµS1S1g, g1S1S1S1g, g1S1S1Tµg, and g1TµS1Tµg. 

7.4 The error in approximating the integral of the square root of the 

series 

Lemma 7.4.1 Let z E .6.(Gµ) and let k ~ d(g-1(00),z) for all g E (S1) \ Gµ- Let 

r be any positive number such that there is a fundamental domain for Gµ containing 

the disk of radius r about z. Then 

( ) 

II 

, 2 < 16 [Im(µ)]2 20 Im(µ) 
L g (z) - 1r2k2r41 Eg'(z)2j3/2 + 1rk2r21 Eg'(z)2jI/2 · 

gE(S1)\G,. 

Proof: To compute the second derivative, we compute 

and 

Thus, 
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< 4 (2·Im(µ)) 2 + 10·2-Im(µ) 
1r2k2r4 J:Z:g'(z)2J3/2 1rk2r2 J:Z:g'(z)2J1/2 

16 (Im(µ )]2 20 Im(µ) 
- 1r2k2r4 J:Z:g'(z)2l3/2 + 1rk2r2 J:Z:g'(z)211;2· 

The symbol :Z:' denotes the sum over all g(z) = ~;:~ for which c =f. 0. 

q.e.d. 

Lemma 7.4.2 Let z E Li(G11 ) and let k ~ d(g-1(00),z) for all g E (S1) \ Gµ- Let 

r be any positive number such that there is a fundamental domain for G11 containing 

the disk of radius r about z. Then 

( ) "" I: g'(z )2 
gE(S1)\Gµ 

< 3840[/m(µ)] 4 + 5760[/m(µ)] 3 

1r4k4r8J :Z:g'(z)2J7/2 1r3k4r6J :Z:g'(z)2J5/2 

+ 3120(/m(µ)] 2 840 Im(µ) 
1r2k4r4J :Z:g'(z)2J3/2 + 1rk4r2J :z=g'(z)2Jl/2" 

Proof: Compute the derivatives 

and 
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Then the proof is just like that of Lemma 7.4.1. 

q.e.d. 

Lemma 7.4.3 Suppose k 2'. d(g- 1 (00),z) for all g E (S1 ) \ Gµ- Suppose D(z,r) zs 

contained in some fundamental domain for Gµ- Then 

( L g'(z)2), :S ,r!r, . Im(µ). 
gE(S1}\Gµ 

Proof: 

( ) 

I 

I: g'(z)2 
gE(S1}\Gµ 

q.e.d. 

Corollary 7.4.4 Suppose k 2'. d(g- 1(00),z) for all g E (S1 ) \ Gµ- Suppose the 

minimum possible value of I I:;g'(z)21 among n 2'. 2 equidistant values along a line 

segment of length .e is 'f/. Finally suppose that for any z on this line segment1 D( z, r) 

is contained in some fundamental domain of Gµ- Then1 on this line segment1 

L g'(z)2 2: 'f/ - .e . _8_. Im(µ). 
gE(S1}\Gµ 2(n - 1) 1rkr2 

Suppose we want to approximate J; f(x) dx. Take a partition of [a, b] using points 

a = X1 < x2 < · · · < Xn = b, where Xi = a+ (i - 1)!=.~. Let Tn(f) denote the 

approximation of J; f(x) dx using the trapezoid rule with these points; that is, 
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Theorem 7.4.5 Suppose Jf(x) -g(x)J ~ E for all x E [a,b]. Then 

11b max 11 (b-a) 3 

f(x)dx-Tn(g) ~ [ b]Jf (x)I ( )2 +2(b-a)L 
a a, 12 n - I 

Proof: 

ll f(x)dx -T.(g)I < ll f(x)dx -Tn(f)I + ITn(f) -Tn(Y)I 

max 11 (b- a)3 b - a 
< [a,b]Jf (x)l12(n-1)2 + (n-1) · 2(n-l)L 

Here we use the standard error bound for the trapezoid rule ( see, for example, 

[Kin84]). 

q.e.d. 

Since we are interested in integrating the square root of the series, we are interested 

in bounding I vz - J z + EeiB J. It is clear that 

lvz - Jz + Eei81 < f. max I ( vz)'j 
1 

f • max 2-vz , 
where the maximum is over the line segment from z to z + Eeie. Thus, 

I~ - Vf(z) + EeiB' ~ ff(;TI· 
2 min Jf(z) J 

Corollary 7.4.6 Suppose Jf(x) - g(x)J ~ E for all x E [a, b]. Then 

fb ~ maxl(~)"I (b-a)3 

la yf(x)dx-Tn(y'g) < [a,b] yf(x) 12(n-I)2 

+ E(b - a) 

:.ti~· 
Proposition 7.4.7 Suppose Ka,Kb,Ma,Mb,Ea, and Eb are complex numbers such 

thai Ka = Ma + Ea and Kb = Mb + Eb and JEal ~ Ca and JEbJ ~ Cb. Suppose 

also that Ca< JMal· Then 

'

Kb Mb I Cb CaJMbJ 
Ka - Ma ~ JMaJ - Ca+ JMaJ 2 - CaJMaJ" 



Proof: 

I KbMa - Ka Mb I 
KaMa 

I (Mb+ tb)Ma - (Ma+ Ea)Mb I 
(Ma+ Ea)Ma 

< I tbMa I I EaMb I 
MJ + EaMa + MJ + EaMa 

< Cb CalMbl 
!Mal - Ca + IMal 2 - CalMal. 

7.5 Computer considerations 
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q.e.d. 

When we 'integrate the square root of the Poincare series, we must be careful to use 

a consistent branch of the square root. The FORTRAN package used for these com­

putations uses the negative real axis for the branch cut for the square root function. 

Thus, if the Poincare series stays away from the negative real axis on the curves a and 

b, the branch of square root is consistent. This will be guaranteed by the following 

corollary to Lemma 7.4.3. 

Corollary 7.5.1 Suppose k 2: d(g-1 ( oo), z) for all g E (S1 ) \ G w Suppose the 

minimum possible value of Re("L,g'(z)2) among n 2: 2 equidistant values along a line 

segment of length .e. is 'Tl. Finally suppose that for any z on this line segment, D( z, r) 

is contained in some fundamental domain of Gw Then, on this line segment, 

Re ( L g'(z) 2) 2: 'Tl - 2( ~ 1) · ks 2 • Im(µ). 
gE(S1}\G,,. n 7r r 

7 .6 Examples 

The FORTRAN program which implements the arguments used in this chapter to 

approximate the map 'ljJ : M1,1 -+ IHI is presented in the appendix. We used the 

program to compute the image of several points. 
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Our first goal was to test a conjecture concerning the image of real trace rays in 

M1,1 . L. Keen and C. Series ([KS93]) define the real trace ray of the word Wp/q to 

be the unique branch of the set of x in M1,1 for which the trace of Wp/q is real and 

larger than 2, where the real part of this branch lies between 2p/ q and 2p/ q + 2 for 

Im( x) large enough. It was thought for some time that 'ljJ took the real trace ray for 

Wp/q to the vertical line Re(z) = p/q in JHI. Our computer approximations show this 

to be false. For example, the point .65388 + 4i is to the right of the real trace ray 

for W1; 3 , but 'ljJ(.65388 + 4i) was computed to be .32700 + l.11749i, with a maximum 

error in absolute value less than 0.004 72. Hence, 'ljJ must take this point to the left 

side of the ray Re( x) = 1 /3 in JHI. 

It is also of some interest which point is mapped to i, which is the point in lHI 

representing the square torus. We know by Proposition 7.1.16 that 'ljJ-1 (i) = ti for 

some t > 2. The computer program was used to prove that 3.75 < t < 3.78. As the 

approximations in the program were probably better than the error bound suggested, 

we can guess that t is approximately 3. 765. 

7. 7 Kra's biholomorphic map Mo,4 ~ lHI 

Recall that the map M1,1 ~ lHI was given by 

lb(µ)(µ 
µ I-+ Ia(µ ' 

where{(µ} is a basis for the space of holomorphic abelian differentials on ~(Gµ)/Gµ, 

and {a, b(µ)} is a canonical basis for the fundamental group of ~(Gµ)/Gw By the 

Riemann-Roch Theorem there are no holomorphic abelian differentials on a surface 

of type (0,4), so the map M0 ,4 ~ lHI cannot be constructed in the same way. 

Recall that, up to a constant multiple, 

(µ = L g'(z) 2dz. 
9E(S1}\Gµ 
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When we try to do the same thing for the group Hx = (A, B1 , B2,x), the error is that 

if 

O(z) = I: g'(z)2, 
gE(A)\Hx 

then O(g(z))g'(z) = O(z) for most g E Hx, but O(g(z))g'(z) = -O(z) for all parabolic 

g E Hx which "correspond to punctures". Let f O denote the subgroup of Hx consisting 

of those g E Hx for which O(g(z))g'(z) = O(z). Kra ([Kra88]) shows that 

Let Gm = (A,B;,H11AB1 ) and G02 = (A,B?,B21AB2). Then Gm and Go2 

represent surfaces of type ( 0,4). The amalgamated free product Gm* A G02 is a surface 

of type (0,6). The HNN extension of G01 *AGo2 by B11 B2 is f o; the element B11 B2 

conjugates B21 AB2 to B11 ABi, and cuts off two punctures, gluing the boundary 

curves together to produce a surface of type (1,4). See Figure 7.2. 

Since [Hx : f 0] = 2, Li(f 0) = Li(Hx). Let { a, b(x)} be a canonical basis for the 

fundamental group of Li(f0)/f0, and let {(x} be a basis for the space of holomorphic 

abelian differentials on Li(f 0)/f 0. Then Kra's map M 0 ,4 -+ lHI is given by 

One such holomorphic abelian differential on Ll(f 0)/f O is given by (x = O(z) dz, 

for this is invariant under change of local coordinates on Li(f 0)/f o (but not on 

Define ¢ : M 0 ,4 -+ lHI by 

Let GT denote the group generated by z 1-+ z + l and z 1-+ z + T. Pick a base 

point Q0 E Ll(fo)/f o and define a : Li(f o)/f o-+ Cf GT by 

-( ) (fio (x) 
a p = 7r T fa (x ' 
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A 

fa 

Figure 7.2: The geometry of r0 
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where 7r7 : <C--+ <C/G7 is the natural projection. 

For a proof of the following proposition, see the proof of Proposition 7.1.9. 

Proposition 7. 7 .1 a is a conformal homeomorphism. 

Pick a base point Q E ~(f 0) and define r.p: ~(fo)--+ <C by 

Proposition 7.7.2 r.p(Az) = r.p(z)+l, r.p(B21B 1z) = r.p(z)+r, and r.p(B1z) = -r.p(z). 

Proof: Let 

Then 

Next, we have 

r.p(Az) 

It1Q (x 
C = - fa (x . 

Finally, since B1 is in Hx but not r 0 , we have 

I: g'(B1(z))2 B~ (z) = -
gE(A}\Hx 

I: g'(z)2, 
gE(A}\Hx 
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and so 

1.p(B1(z)) 

q.e.d. 

Corollary 7. 7.3 Let ip( x) = T, and let G~ denote the group (z r-+ z + I, z r-+ 

z + T, z r-+ -z). Let L,.;2 denote the lattice {n/2 + mT/2: n,m E Z}. Then the 

surface ,6..(Hx)/Hx is conformally equivalent to the surface (C- Lr;2)/G~. 

Proposition 7. 7.4 Let P2(x, z) denote I:ge(A)\Hx g'(z )2. Then P2(-x, -z) = P2(x, z). 

Proof: Define J(z) = -z'. Then JAJ-1 = A-1; JB1J-1 = B1'\ and JB2,xJ-1 = 

B:;":x· Now the proof is the same as for Lemma 7.1.14. 
' 

q.e.d. 

Proposition 7. 7.5 ip( -x) = -ip( x). 

Proof: First note that if Q is any point in ,6..(Hr:), then 

Notice also that 



Thus, 

1/J(-x) 
Ib(-x) JP2(-x, z) dz 

Ia JP2(-x,z)dz 

J_~ J A(-x, -z) d(-z) 

La JA(-x, -z) d(-z) 

f_~ J P2(x, z) dz 

La JP2(x, z) dz 

I-B;;~,:B1(Q) . Ip. ( ) d 
-Q y 2 x,z z 

f:~-4 JP2(x, z) dz 

r:t2·_3:Bi(Q) JP2(x,z)dz 

I~~-4 JP2(x, z) dz 

I~~xB1"1 (-Q) JP2(x, z) dz 

I~~-4 JP2(x,z)dz 

I~§;Bi(-Q) JA(x, z) dz 

I~~-4 JP2(x, z) dz 

-1/;(x). 

Proposition 7. 7.6 1/J(x + 2n) = 1/J(x) + n for every integer n. 
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q.e.d. 

Proof: Since AB2,x = Bi,!+2 , the set of right cosets of (A) in Hx is the same as the 

set of right cosets of (A) in Hx+2· Thus, A(x, z) = A(x + 2, z) for any x E Mo,4· 

Hence 

1/J(x + 2) 
Ib(x+2) J P2( X + 2, z) dz 

Ia JP2(x + 2, z) dz 

Ib(x+2) J A(x, z) dz 

Ia JA(x, z) dz . 
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Since Bi,!+2B1 = AB2,xB1, the curve b(x+2) is the projection of any curve in D.(Hx+2) 

from any point Q to AB2,xB1 ( Q). Thus 

But 

7/J(x + 2) 

J~Q jA(x,z)dz 

fg2,xB1(Q) J~P-2(-x-, z-) dz 

AQ. I + 1. JQ y A(x, z) dz 

rB2xB1(Q) V 
JQ 'A(x, z) dz 

and f~-2(Q) jA(x,z)dz = 0 since 
2,x 

{Q J A ( x, z) dz = 
}B;_;(Q) 

Thus, 7/J(x + 2) = 7/J(x) + 1. 

Proposition 7. 7. 7 r O is conjugate to a subgroup of Gx. 

Proof: Let M(z) = z + 1. Then the following equalities hold: 

MB- 1B M-1 = s r-2s-1 
1 2,x 1 x I 

q.e.d. 
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M(B A)2M- 1 
2,x T s-1r-1s 

X } X 1 

r-1s T s-1 
X 1 X } 

q.e.d. 

Proposition 7.7.8 [Gµ: G~] = 4. 

Proof: The four distinct right cosets of G~ in Gµ are G~, G~ · Si, G~ · Tµ, and 

G~ · S1Tµ- To prove this assertion it suffices to show that G~ contains every word 

g E G µ which decomposes into an even number of letters T;1 and an even number of 

letters Sf 1. (For then, G~ · S1 consists of those words consisting of an even number of 

letters T;1 and an odd number of letters Sf1 ; and similarly for G~ · Tµ and G~ · S1Tw) 

It is easy to see that every word g E G µ which has an even number of letters T;1 

and an even number of letters Sf1 is a product of the following words and their in­

verses: T;, Sf, S1T;S1, TµSfTµ, TµS1TµS1, TµS11TµS1, TµS1T;; 1S1, and TµS11T;;1S1. 

Since each of these words is in the group G~, the proof is complete. 

q.e.d. 

Note that Proposition 7.7.8 implies that Li(Gµ) = Li(G~) = M(Li(I'o)) = M(Li(Hµ)); 

and A(Gµ) = M(A(Hµ)), where M(z) = z + l. 

Theorem 7.7.9 The diagram in Figure 7.3 commutes. 

Proof: Since Li(Gµ) = Li(G~), (µ is a holomorphic abelian differential on Li(G~)/G~. 

Since Li(G~)/G~ and Li(f0)/f0 are conformally equivalent,(µ and (x differ by a con­

stant multiple (that is, if(µ= f(z) dz and (x = g(z) dz, then g(M- 1(z)) dz= cf(z) dz 
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id 
Mo,4 

IHI 

Figure 7.3: The maps to IHI 

for some constant c). Pick base points Q on fj.(G~)/G~ and Q' = 1r2M-1 1r11 (Q) on 

fj.(fo)/fo, where 1r1 : fj.(Q~) -+ fj.(Q~)/G~ and 1r2 : fj.(fo) -+ fj.(f0)/f0 are the 

natural projections. Then 

q.e.d. 
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C 

C 

PSI.F 

c This program will sum the relative Poincare 
c Series at points along the 11 a 11 and 11 b11 curves. It will 
c output the error bound. 

c THRESHOLDS 
double precision eps, bnd 

c SUM OF THE SERIES 
complex*16 asum(100000), bsum(100000) 

c ERROR BOUND FOR THE SERIES AT A POINT 
double precision error 

c THE VALUE IN TEICHMULLER SPACE 
complex*16 mu 

c IMAGINARY PART OF MU 
double precision t 

c POINTS AT WHICH TO CALCULATE SERIES 
complex*16 zO 

c GENERATORS 
complex*16 y(4,4) 

c LEVEL IN TREE 
integer lev,maxlev,numterms 

c TAG LIST= 1, 2, 3, or 4 
integer tag(100000) 

c MATRIX LIST 
complex*16 x(4,100000) 

c ARE WE FAR ENOUGH IN THE TREE? 
logical farenuf 

c MAKE SURE TREE TRAVERSED ONCE 
integer treepart 

c NUMBER OF POINTS AT WHICH WE WILL CALCULATE SERIES 
real n 

c ANSWERS 
double precision ans1, ans2, relasum(100000), imasum(100000) 
double precision ans3,ans4,relbsum(100000),imbsum(100000) 
complex*16 ansa,ansb 

c RADIUS OF DISK, DISTANCES TO LIMIT SET, ERRORS IN INTEGRALS 
double precision r,ka,kb,totaerr,totberr 

c ERROR IN FINAL ANSWER 
double precision finerr 
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c MINIMUM ABS VAL OF SERIES ON a AND b CURVES, AND MINIMUM REAL PARTS 
double precision minaabs, minbabs, minarel, minbrel 



c VALUE OF \pi 
double precision pi 

common /gens/ y 
common /tree/ x, tag 
common /level/ lev 
common /flag/ farenuf 

c READ INPUT VALUES 
write(*,*) 'Enter value of mu.' 
read(*,*) mu 
t = dimag(mu) 
write(*,*) 'Enter value for epsilon.' 
read(*,*) eps 
write(*,*) 'Enter bound on matrix size.' 
read(*,*) bnd 
write(*,*) 'Enter number of points(> 1) at which to, 
write(*,*) 'calculate the series. , 
read(*,*) n 

c CALCULATE GENERATORS AND INITIAL POINT 
error= 0.0 
call calgen(mu) 
r = (t - sqrt(t*t-4*t+8))/2 
if(r .gt. 0.5) r = 0.5 
kb= r 
ka = r + t/2 - 1 
write(*,*) 'mu= 
write(*,*) 'eps 
write(*,*) 'bnd 
write(*,*) 'n = 
write(*,*) 'r = 
write(*,*) 'ka = 
write(*,*) 'kb 

c INITIATE TREE 
tag(1)=2 
x(1,1)=y(1,2) 
x(2,1)=y(2,2) 
x(3,1)=y(3,2) 
x(4,1)=y(4,2) 

= 

, ,mu 
= , ,eps 
= , ,bnd 
, ,n 
, ,r 
, ,ka 
, ,kb 

do 22 index= 1, n 
asum(index) = 1.0 
bsum(index) = 1.0 

22 continue 
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maxlev = 1 
lev = 1 
numterms = 1 
treepart = 0 

C MAIN BRANCHING 

40 if(lev .eq. 1 .AND. tag(1) .eq. 2)then 
treepart = treepart + 1 
if(treepart .eq. 2)then 

tag(1)=4 
treepart = 0 
x(1, 1)=y(1,4) 
x(2,1)=y(2,4) 
x(3,1)=y(3,4) 
x(4,1)=y(4,4) 

end if 
end if 
if(lev .eq. 1 .AND. tag(1) .eq. 4)then 

treepart = treepart + 1 
if(treepart .eq. 2)go to 999 

end if 
call test(eps,bnd,error,mu) 
if(farenuf) go to 417 

do 33 index= 1, n 
zO = (mu/2)-1+(index-1)/(n-1) 

c (THESE ARE THE POINTS ALONG HALF THE a CURVE) 
asum(index)=asum(index)+1/((x(3,lev)*z0 + x(4,lev))**4) 
z0=(0,1)+(index-1)*((mu/2)-(0,1))/(n-1) 

c (THESE ARE THE POINTS ALONG HALF THE b CURVE) 
bsum(index)=bsum(index)+1/((x(3,lev)*z0 + x(4,lev))**4) 

33 continue 
numterms = numterms+1 
call forwrd 
if(lev .gt. maxlev)maxlev = lev 
if(maxlev .gt. 99990) go to 666 
go to 40 

c GO BACK TO FIRST AVAILABLE TURN AND TURN ONCE 
417 call bckwrd 

go to 40 

999 error= error/(r*r) 
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122 

c (THE \pi WASN'T CALCULATED INTO AREAS OF DISKS.) 

c (NOW WE HAVE CALCULATED THE SERIES AT PTS ALONG THE a AND b CURVES) 
write(*,*) 
write(*,*) 'the error bound for the series is ',error 
write(*,*) 'maximum level attained was ',maxlev 
write(*,*) 'the number of terms summed was ', numterms 

do 66 index= 1, n 
relasum(index) = dreal(sqrt(asum(index))) 
imasum(index) = dimag(sqrt(asum(index))) 
relbsum(index)=dreal(((mu/2)-(0,1))*sqrt(bsum(index))) 
imbsum(index)=dimag(((mu/2)-(0,1))*sqrt(bsum(index))) 

66 continue 
c CALCULATE REAL PART OF INTEGRAL OVER a CURVE 

call trapezoid(relasum, n, ans1) 
c CALCULATE IMAGINARY PART OF INTEGRAL OVER a CURVE 

call trapezoid(imasum, n, ans2) 
ansa=2*ans1+(0,2)*ans2 

C 

write(*,*) 'The integral over the curve a equals ',ansa 

pi= 3.141592 
minaabs = cdabs(asum(1)) 
minbabs = cdabs(bsum(1)) 
minarel = dreal(asum(1)) 
minbrel = dreal(bsum(1)) 
do 122 index= 2,n 

if(cdabs(asum(index)) 
if(cdabs(bsum(index)) 
if(dreal(asum(index)) 
if(dreal(bsum(index)) 

.lt. minaabs) 

.lt. minbabs) 

.lt. minarel) 

.lt. minbrel) 

minaabs = cdabs(asum(index)) 
minbabs = cdabs(bsum(index)) 
minarel = dreal(asum(index)) 
minbrel = dreal(bsum(index)) 

122 continue 
minaabs = minaabs - error 
minbabs = minbabs - error 
minarel = minarel - error 
minbrel = minbrel - error 
write(*,*) 'min. abs. val. on curve a before derivative: ',minaabs 
minaabs=minaabs-(4*t)/((n-1)*pi*ka*r*r) 
minarel = minarel - (4*t)/((n-1)*pi*ka*r*r) 
write(*,*) 'min. abs. val. on curve a after derivative: ' minaabs 
if(minaabs .le. O)then 

write(*,*) 'Need more points (n) to get finite error bound.' 
end if 
write(*,*) 'The real part of the series on the a curve' 
write(*,*) 'is at least ',minarel 



call interr(n,error,r,ka,totaerr,t,minaabs) 
write(*,*) 
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write(*,*) 'The error in the integral over a is less than ',totaerr 

c CALCULATE REAL PART OF INTEGRAL OVER b CURVE 
call trapezoid(relbsum, n, ans3) 

c CALCULATE IMAGINARY PART OF INTEGRAL OVER b CURVE 
call trapezoid(imbsum, n, ans4) 
ansb=2*ans3+(0,2)*ans4 

C 

write(*,*) 'The integral over the curve b equals ',ansb 

write(*,*) 'min. abs. val. on curve b before derivative: ',minbabs 
minbabs = minbabs - (4*t*cdabs((mu/2.0)-(0,1)))/((n-1)*pi*kb*r*r) 
minbrel = minbrel - (4*t*cdabs((mu/2.0)-(0,1)))/((n-1)*pi*kb*r*r) 
write(*,*) 'min. abs. val. on curve b after derivative: ',minbabs 
write(*,*) 'The real part of the series on the b curve' 
write(*,*) 'is at least ',minbrel 
call interr(n,error,r,kb,totberr,t,minbabs) 
totberr=totberr*cdabs((mu/2)-(0,1)) 
write(*,*) 
write(*,*) 'The error in the integral over bis less than ',totberr 

write(*,*) 
write(*,*) 'psi(',mu,') = ',ansb/ansa 
finerr=totaerr*cdabs(ansb)/(cdabs(ansa**2)-totaerr*cdabs(ansa)) 
finerr=finerr+totberr/(cdabs(ansa)-totaerr) 
write(*,*) 'The modulus of the final error is less than ',finerr 

666 stop 
end 

C 

c GO FORWARD IN TREE 
subroutine forwrd 
complex*16 x(4,100000) 
integer tag(100000) 
complex*16 y(4,4) 
integer lev 

common /tree/ x, tag 
common /gens/ y 
common /level/ lev 

tag(lev+1) = tag(lev) +1 
if(tag(lev+1) .eq. 5) tag(lev+1) =1 
x(1,lev+1)=x(1,lev)*y(1,tag(lev+1))+x(2,lev)*y(3,tag(lev+1)) 



x(2,lev+1)=x(1,lev)*y(2,tag(lev+1))+x(2,lev)*y(4,tag(lev+1)) 
x(3,lev+1)=x(3,lev)*y(1,tag(lev+1))+x(4,lev)*Y(3,tag(lev+1)) 
x(4,lev+1)=x(3,lev)*y(2,tag(lev+1))+x(4,lev)*y(4,tag(lev+1)) 
lev=lev+1 

if(lev .gt. 99990) write(*,*) 'level too high!!!' 

return 
end 

c GO BACKWARD IN TREE 
subroutine bckwrd 
integer lev 
logical endbr 

common /level/ lev 

10 call branch(endbr) 
if(endbr .AND. lev .NE. 1) go to 10 

return 
end 

c GO TO NEXT BRANCH 
subroutine branch(endbr) 
logical endbr 
complex*16 x(4,100000) 
complex*16 y(4,4) 
integer tag(100000) 
integer lev, i, j 

common /tree/ x, tag 
common /gens/ y 
common /level/ lev 

c TERMINATE PROGRAM IF LEV IS 1 
if(lev .eq. 1) return 

c TURN AT LEV 
i=tag(lev)-1 
if(i .eq. 0) i=4 
j=i+2 
if(j .gt. 4) j=j-4 
if(j .ne. tag(lev-1)) go to 110 
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c GO BACK ONE MORE LEVEL 
lev=lev-1 
endbr = . true. 
return 

c TURN AT LEV 
110 tag(lev)=i 

125 

x(1,lev)=x(1,lev-1)•y(1,tag(lev))+x(2,lev-1)*y(3,tag(lev)) 
x(2,lev)=x(1,lev-1)•y(2,tag(lev))+x(2,lev-1)*y(4,tag(lev)) 
x(3,lev)=x(3,lev-1)•y(1,tag(lev))+x(4,lev-1)*y(3,tag(lev)) 
x(4,lev)=x(3,lev-1)•y(2,tag(lev))+x(4,lev-1)*y(4,tag(lev)) 
endbr = .false. 
return 

end 

c CALCULATE GENERATORS AND INITIAL POINT 
subroutine calgen(mu) 
complex•16 mu 

c GENERATORS 
complex•16 y(4,4) 

common /gens/ y 

y(1,1) 
y(2,1) 
y(3,1) 
y(4,1) 

= 
= 
= 
= 

(1,0) 
(2,0) 
(0,0) 
(1,0) 

y(1,3) = y(4,1) 
y(2,3) = -y(2,1) 
y(3,3) = -y(3,1) 
y(4,3) = y(1,1) 

y(1,2) = (0,-1)•mu 
y(2,2) = (0,-1) 
y(3,2) = (0,-1) 
y(4,2) = (0,0) 

y(1,4) = y(4,2) 
y(2,4) = -y(2,2) 
y(3,4) = -y(3,2) 
y(4,4) = y(1,2) 

return 
end 



c TEST: SIZE OF MATRIX SMALL ENOUGH, FAR ENOUGH ALONG TREE) 
c AND CALCULATE ERROR BOUND FOR THIS BRANCH OF THE TREE 

C 

C 

subroutine test(eps,bnd,error,mu) 

double precision sizem, eps, bnd, error, radius, t 
complex*16 x(4,100000), mu, ta, tb, tc 
logical farenuf 
integer tag(100000), lev, nlev, mlev 

common /flag/ farenuf 
common /tree/ x, tag 
common /level/ lev 

sizem = cdabs(x(1,lev))+cdabs(x(2,lev))+cdabs(x(3,lev)) 
sizem = sizem+cdabs(x(4,lev)) 
farenuf = .FALSE. 

if(lev .le. 3) return 
mlev = lev - 2 
nlev = lev - 1 
if( (tag(lev) .eq. 1) .and. (tag(nlev) .eq. 1) )then 

if( (tag(mlev) .eq. 1) .or. (tag(mlev) .eq. 2) )then 
c (WORD ENDS IN SSS OR TSS) 

ta= x(1,mlev)/x(3,mlev) 
tb=(x(1,mlev)*(2.5)+x(2,mlev))/(x(3,mlev)*(2.5)+x(4,mlev)) 
tc=(x(1,mlev)*(2.5,1)+x(2,mlev)) 
tc=tc/(x(3,mlev)*(2.5,1)+x(4,mlev)) 
if(radius(ta,tb,tc)**2 .lt. eps)then 

error=error+radius(ta,tb,tc)**2 
farenuf = .TRUE. 

end if 
end if 

end if 
if(tag(lev) .eq. 3)then 

if(tag(nlev) .eq. 3)then 
c (WORD ENDS IN s-{-1}s-{-1}) 

t = dimag(mu) 
ta=x(1,mlev)/x(3,mlev) 
tb=(x(1,mlev)*(t-3.0)+x(2,mlev)) 
tb=tb/(x(3,mlev)*(t-3.0)+x(4,mlev)) 
tc=(x(1,mlev)*(t-3.0+(0,1))+x(2,mlev)) 
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C 

tc=tc/(x(3,mlev)*(t-3.0+(0,1))+x(4,mlev)) 
if(radius(ta,tb,tc)**2 .lt. eps)then 

error=error+radius(ta,tb,tc)**2 
farenuf = .TRUE. 

end if 
end if 
if(tag(nlev) .eq. 2)then 

(WORD ENDS IN Ts-{-1}) 
ta=x(1,mlev)*(mu+(1,0))+x(2,mlev) 
ta=ta/(x(3,mlev)*(mu+(1,0))+x(4,mlev)) 
tb=x(1,mlev)*(mu-(1,0))+x(2,mlev) 
tb=tb/(x(3,mlev)*(mu-(1,0))+x(4,mlev)) 
tc=x(1,mlev)*(mu-(0,1))+x(2,mlev) 
tc=tc/(x(3,mlev)*(mu-(0,1))+x(4,mlev)) 
if(radius(ta,tb,tc)**2 .lt. eps)then 

error=error+radius(ta,tb,tc)**2 
farenuf = .TRUE. 

end if 
end if 

end if 
if(tag(lev) .eq. 2)then 

if(tag(nlev) .eq. 2)then 
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c (WORD ENDS IN TT) 

C 

ta=(x(1,mlev)*(mu+(1,0))+x(2,mlev)) 
ta=ta/(x(3,mlev)*(mu+(1,0))+x(4,mlev)) 
tb=(x(1,mlev)*(mu-(1,0))+x(2,mlev)) 
tb=tb/(x(3,mlev)*(mu-(1,0))+x(4,mlev)) 
tc=(x(1,mlev)*(mu-(0,1))+x(2,mlev)) 
tc=tc/(x(3,mlev)*(mu-(0,1))+x(4,mlev)) 
if(radius(ta,tb,tc)**2 .lt. eps)then 

error= error+ radius(ta,tb,tc)**2 
farenuf = .TRUE. 

end if 
end if 
if(tag(nlev) .eq. 1)then 

if( (tag(mlev) .eq. 2) .or. (tag(mlev) .eq. 1) )then 
(WORD ENDS IN TST OR SST) 

ta=x(1,mlev)/x(3,mlev) 
tb=(x(1,mlev)+x(2,mlev))/(x(3,mlev)+x(4,mlev)) 
tc=(x(1,mlev)*(1,1)+x(2,mlev))/(x(3,mlev)*(1,1)+x(4,mlev)) 
if(radius(ta,tb,tc)**2 .lt. eps)then 

error=error+radius(ta,tb,tc)**2 
farenuf = .TRUE. 

end if 
end if 



end if 
end if 
if(tag(lev) .eq. 4)then 
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c (WORD ENDS IN T-{-1}; ASSUME D(zO,r) IS OUTSIDE I(T-{-1}).) 

C 

C 

ta=(x(1,nlev)+x(2,nlev))/(x(3,nlev)+x(4,nlev)) 
tb=(x(2,nlev)-x(1,nlev))/(x(4,nlev)-x(3,nlev)) 
tc=(x(1,nlev)*(0,1)+x(2,nlev))/(x(3,nlev)*(0,1)+x(4,nlev)) 
if(radius(ta,tb,tc)**2 .lt. eps)then 

error=error+radius(ta,tb,tc)**2 
farenuf = .TRUE. 

end if 
end if 
if((sizem .GE. bnd) .and. (.not. farenuf))then 

farenuf = .TRUE. 
write(*,*) 'ERROR IN ERROR TERM; MATRIX SIZE TOO LARGE' 
write(*,*) 'MATRIX SIZE= ',sizem 

end if 
return 
end 

c OUPUT THE RADIUS OF THE CIRCLE THROUGH 
c THE COMPLEX POINTS A,B,C. ASSUMES POINTS ARE NOT 
c COLINEAR. USES INTERSECTION OF PERPENDICULAR 
c BISECTORS TO COMPUTE CENTER. 
C 

double precision function radius(a,b,c) 
complex*16 a,b,c,center 
double precision ar,ai,br,bi,cr,ci,centr,centi,temp 

C 

C 

ar = dreal(a) 
ai = dimag(a) 
br = dreal(b) 
bi= dimag(b) 
er= dreal(c) 
ci = dimag(c) 

if(ai .eq. bi)then 
temp= bi 
bi= ci 
ci = temp 
temp= br 
br = er 
er = temp 

end if 



C 

C 

if(bi .eq. ci)then 
temp= ai 
ai = bi 
bi= temp 
temp= ar 
ar = br 
br = temp 

end if 
centr = (ar-br)*(ar+br)/(2.0*(bi-ai)) 
centr = centr - (br-cr)*(br+cr)/(2.0*(ci-bi)) 
centr = centr + (ci-ai)/2.0 
centr = centr/((ar-br)/(bi-ai) - (br-cr)/(ci-bi)) 
centi = ((ar-br)/(bi-ai))*(centr - (ar+br)/2.0)+(ai+bi)/2.0 
center= centr + (0,1)*centi 
radius= cdabs(center - a) 

return 
end 

c TRAPEZOID RULE 
subroutine trapezoid(dat, n, ans) 

c function values 
double precision dat(100000) 
real n 

c answer= ans 
double precision ans 

ans= dat(1) + dat(n) 
do 55 index= 2, n-1 

ans= ans+ 2*dat(index) 
55 continue 

C 

C 

ans= (1/(2*n-2))*ans. 
return 
end 

c CALCULATE ERROR IN INTEGRAL APPROXIMATION 
subroutine interr(n,error,r,k,toterr,t,minabs) 

real n 
double precision minabs,toterr,pi,t,r,k,error 

toterr = 0.0 
pi= 3.141592 
toterr=(16*t*t)/(pi*pi*k*k*(r**4)*(minabs**(1.5))) 

129 



toterr=toterr+(20*t)/(pi*k*k*r*r*(sqrt(minabs))) 
toterr=toterr/(12*(n-1)*(n-1)) 
toterr=toterr+error/(sqrt(minabs)) 

c WE INTEGRATE OVER HALF OF THE CURVE a OR b 
toterr = 2*toterr 
return 
end 
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