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CHAPTER 1
INTRODUCTION

A Riemann surface is a topological surface which has a complex structure. It
locally looks like the complex plane. Specifically, it is a complex one-dimensional
connected manifold; it is a connected Hausdorft space, along with an open cover

{U4} and homeomorphisms z, : U, — C such that
260 25" 1 25(Ua N Up) = 2a(Us N Up)

is holomorphic whenever U, N Us # 0§ (see Figure 1.1). The z,’s are called local

coordinates on the Riemann surface.

(CK_\

Figure 1.1: Local coordinates on a Riemann surface

A map between two Riemann surfaces f : S — T is holomorphic if for every local
coordinate z on S and every local coordinate w on T, w o f o z~! is holomorphic.
(This is a mapping from a subset of C into C.) Two Riemann surfaces are conformally
equivalent if there is a biholomorphic homeomorphism between the two. There may
be many ways to put a complex structure on a topological surface, and we consider

two Riemann surfaces as the same if they are conformally equivalent.



A Riemann surface has type (g, n) if the surface has genus g and n punctures. The
moduli or Riemann space R, ,, is the space of conformal equivalence classes of Riemann
surfaces of type (g,n). If 3¢ — 3+ n > 0 then the conformal equivalence class of a
Riemann surface of type (¢, n) depends on 3g—3+n complex parameters called moduls.
The basic goal of Teichmiiller theory is to find a natural way to associate Riemann
surfaces with their moduli; the lengths of geodesics, the meromorphic differentials,
and similar objects associated with the Riemann surface should depend in an explicit
way on the moduli. The moduli space is not (in general) a manifold, and is difficult to
study from an analytic point of view. However, if each Riemann surface is marked by
distinguishing a set of generators for its fundamental group, then the resulting space
has a natural complex structure and can be realized as a bounded domain in C™.
The space of marked Riemann surfaces of type (g,n) is called the Teichmiiller space
and is denoted by T, ,. If 3¢ —3 4+ n > 0 then T}, is a space of complex dimension
39 — 3 + n. The moduli space Ry, is the quotient of Teichmiiller space T, by the
modular group of surfaces of type (g,n). (The modular group of a surface is the group
of homotopy classes of orientation-preserving homeomorphisms of the surface; it is
also called thevmappz'ng class group.)

Riemann surfaces are closely related to Kleinian groups. A matrix (a b) €

c d
SL(2,C) acts on C = CU {oo} via the action

az+b
cz+d

Z

Since (Z 3) and (:Z :2) yield the same action, we restrict our attention to the
group PSL(2,C) (which is isomorphic to the group of M6bius transformations). For
a subgroup I' of PSL(2,C), the regular or ordinary set Q(T) is the set of points z € ¢
for which there is some neighborhood V' such that g(V) NV = 0 for all but finitely
many g € I'. The free regular set Q°(T') is the set of points z € C for which there is

some neighborhood V such that g(V) NV = 0§ for all nontrivial g € I'. The limit set



A(T') is the complement of (T') in C. A Kleinian group is a discrete subgroup G of
PSL(2,C) such that Q(G) # 0.

The action of an element of PSL(2,C) is characterized by the square of its trace.
(The trace of an element in PSL(2,C) is well-defined up to sign.) If 1 # ¢ €
PSL(2,C), then g is parabolic if the square of its trace is 4, hyperbolic if the square of
its trace is real and larger than 4, elliptic if the square of its trace is nonnegative, real
and less than 4, and lozodromic otherwise. Parabolic transformations have exactly
one fixed point, and all others (except the identity) have exactly two.

‘For a Kleinian group G, the quotient space {}(G)/G is the set of equivalenée
classes of points z € Q(G), where two points z,y € Q(G) are equivalent if and only if
there is some g € G with g(z) = y. The space Q(G)/G is a (possibly disconnected)
Riemann surface. The transition functions (the functionsp 2o 0 z5') on Q(G)/G are
the elements of G. The group G represents the Riemann surface S if there is an
open subset Qg of Q(G) which is invariant under the action of G such that /G is
conformally equivalent to S.

The components of ((G) are also called the components of G. The Kleinian
group G is a function group if it has an invariant component A(G). A function group
G is a b-group if A(G) is simply connected. A torsion-free b-group G is terminal if
(QG)—A(G))/G is a union of thrice-punctured spheres. (There is only one conformal
equivalence class of Riemann surfaces of type (0,3).)

A fundamental domain D for a Kleinian group G is an open subset of 2(G) such
that no two points in D are equivalent under the action of G, yet the closure of D
contains a point from the equivalence class of every point in Q(G), and such that the
boundary of D consists of points in A(G) and a collection of curves; the intersection
of one of these curves with ((G) is a side, and for each side s, there is some g € G
such that g(s) is also a side of D.

Let G denote a b-group and let v denote an oriented simple closed curve on



A(G)/G. Let 7 : A(G) — A(G)/G denote the natural projection. Pick base points
zo and Zo on A(G)/G and A(G), respectively, such that 7(Zo) = zo. Now 7 is
homotopic to some loop o based at zo. Let 4 denote the lift of 4o with starting
point Zo. Let Z denote the final point of 4. Then there is some g € G such that
9(Zo) = Z. Furthermore, g is unique since A(G) is simply connected. Under the
natural isomorphism 71(A(G)/G, o) — G, the free homotopy class of v gets mapped
to g. We say that g represents . Since g depends upon the choice of the base point,
the element representing v is not unique; but it is unique up to conjugacy in G. If v is
not oriented, then g and g~! represent 4. If G is any Kleinian group (not necessarily
a b-group) representing the Riemann surface S = Qo/G and 7 is a loop on S, then
an element g € G represents « if there is an arc 4 in o invariant under (g) such that
the projection of 4 onto S is freely homotopic to 7.

A Fuchsian group I is a Kleinian group which leaves some disc U in C fixed; such
groups are conjugate in PSL(2,C) to subgroups of PSL(2,R), which leave the upper
half plane H fixed. The uniformization theorem states that every Riemann surface
of type (¢g,n), 3¢ —3+n >0, is conformally equivalent to H/T' for some Fuchsian
group I' which leaves H fixed.

The Bers embedding of Teichmiiller space ([Ber70]) is an embedding into a bounded
domain in the Banach space of cusp forms of weight -4 for a Fuchsian group I', defined
in the lower half plane.

The embedding of T, , with which we are concerned first appeared in [MasT74],

and is sometimes called the Maskit embedding:

Theorem 1.0.1 Let S be a marked Riemann surface of type (g,n), 3¢ —3 +n > 0.
Then S can be realized as A(G)/G, where G is a terminal b-group with invariant
component A(G). The group G is unique up to conjugation in PSL(2,C), and is

generated by transformations which represent the elements of the fundamental group



of S specified by the marking.

The group G depends upon 3g — 3 +n complex parameters in the upper-half plane
H. Thus, T, is embedded in HP9=3+",

In [Kra88] and [Kra90a] I. Kra shows that for 3¢ — 3 + n > 1, the group G
can be algebraically constructed from simpler groups via amalgamated free products
and HNN extensions using Maskit’s First and Second Combination Theorems. Kra
promises to show that this construction and the Bers and Maskit embeddings of Te-
ichmiiller space are “essentially the same” in the forthcoming second part of his paper
[Kra90a]. Maskit’s book Kleinian Groups ([Mas87]) contains a detailed description
of his theorems. For the convenience of the reader we now present the theorems as
they first appeared in [Mas65] and [Mas68].

Suppose two groups G; and G, have a common subgroup J, and [G; : J] > 1 and
[Gy : J] > 1. The word g; - - - g, is a normal form if g; € (G, U G;) — J for all ¢, and
whenever ¢; € G, g;—1 and g;41 are iﬁ (G4, and whenever ¢; € G, ¢;—1 and g;4+1 are in
G;. Two normal forms are equivalent if one can be written as ¢ - - - g, and the other
as (g1J1)(Ur g272) - - - (Jilign ), where each j; € J. Defining multiplication of normal
forms to be concatenation of words, the equivalence classes of normal forms make
up a group denoted by G; x5 G5, called the amalgamated free product of Gy and G,
across J, or the free product of Gy and G, across the amalgamated subgroup J.

Maskit ([Mas65]) defines a fundamental set of a Kleinian group G to be a nonempty
subset D of the free regular set such that g(D) N D = { for all nontrivial ¢ € G and
such that the union over all ¢ € G of g(D) is the free regular set. The following

theorem is Maskit’s First Combination Theorem.

Theorem 1.0.2 Let Gy and Gy be Kleinian groups with a common cyclic subgroup
H. For each m = 1,2 let D,, be a fundamental set for G,,; and let D3 be a fun-
damental set for H. Let E, = Ureg M(Dmn). Suppose Ey U E; = Q°(H) and the



interior of By N EyN D3 is nonempty. Suppose finally that there is some simple closed
curve v in the interior of £y U E; U A(H) which is invariant under H, such that the
closure of ¥ N D3 is in the interior of Ey N Ey and such that v separates Ey — E; and
E; — E,. Then the group G generated by Gy and G, is Kleinian, G = Gy *g G2, and

E, N FE;N D3 is a fundamental set for G.

Now suppose J; and J; are subgroups of a group G, and suppose there is some
element f such that fJ; f~' = J;, but (f) NG = {1}. The word f* g1 f*2gy--- f*"gn
is a normal form if each g; € G; g; # 1 for i # n; o; # 0 for ¢ # 1; if &; < 0 and
gi-1 € Jy then a;_y < 0; and if o; > 0 and ¢;—y € J; then ¢;_; > 0. The normal
forms fig1 -+ fgi f* 51 f 2 f**2 giva - f*"gn and f¥1g1 -+ fHgi f* 42 gisa -+ fOgn
are equivalent if j, = f*¥j7'f~*. Equivalence classes of normal forms form a group
called the HNN extension of G by f, which is denoted by G;.

The following theorem is known as Maskit’s Second Combination Theorem. Let

Y denote the closure of the set Y.

Theorem 1.0.3 Suppose J; and J; are cyclic subgroups of the Kleinian group Go, D
is a fundamental set for Go, f is a Mobius transformation such that (f) N Go = {1},
and Y; and Y, are disjoint Jordan domains with disjoint boundary curves C; and Cs,
respectively. Let Yy = C— (Y1UY3). Suppose that the interior of YaN D is nonempty,
Ys U Cy is a fundamental set for (f), fIif™* = Jo, f(C1) = Ca, and for m =1
and 2, DN Cp C °(Go) and Ujes,, J(DNYm) = Yo NQ°(Go) = Yoo N Q°(Jm). Let
G = (Go, f). Then G = Goxy, G is Kleinian, and DN (Y3U C1) is a fundamental set
for G.

The Maskit embeddings of Teichmiiller spaces in H*9~3*" can be studied by study-
ing their boundaries. If a simple closed geodesic on a surface in T} , is pinched to
a point, the resulting surface lies on the boundary of 7, , and is called a cusp. If

a maximal set of disjoint simple closed geodesics on the surface are simultaneously



pinched to points, the resulting surface on the boundary of Ty, is a mazimal cusp.
L. Bers first conjectured in 1970 ([Ber70]) that cusps are dense in the boundary of
his embedding of Teichmiiller space; but he showed that, in the sense of dimension,
most boundary points are not.cusps. C. McMullen ([McM91a]) showed that maximal
cusps are dense in the boundary of the Bers embedding; his proof extends to the
Maskit embedding also. Thus, if we know the location of all the maximal cusps in
the Maskit embedding, then we know the shape of the boundary.

A loxodromic or hyperbolic element representing a simple closed geodesic on
A(G)/G becomes parabolic when the geodesic is pinched to a point. Hence, if we can
tell where the elements representing these gepdesics become parabolic, we will know
where the cusps are.

The one-dimensional Teichmiiller spaces are T7; and Tp4. A maximal set of
disjoint simple closed geodesics on either a once-punctured torus or a four-times
punctured sphere consists of exactly one geodesic. D. Wright ([Wri]) has found a
nice way to construct the elements in the groups representing once-punctured tori
from the simple closed geodesics. Rational numbers are assigned to the simple closed
geodesics and cusps. C. McMullen has communicated to us that he can prove that this
assignment can be extended to a homeomorphism from the real line to the boundary
of T1 ;. The rational numbers are assigned to cusps in such a way that if p/q and
r/s are Farey neighbors (that is, gr — ps = =£1), then all the cusps corresponding
to rationals between p/q and r/s can be computed using only information about the
simple closed curves corresponding to p/q and r/s. Adding the Farey neighbors in
the Farey sense (p/q® r/s = (p+r)/(¢+ s) ) yields a new Farey neighbor for p/q
and r/s. Hence the formation of rationals by Farey sequences reveals the simplicial
structure of the boundary of T} ;.

Our first main result is that there is a one-to-one correspondence of the simple

closed geodesics on a once-punctured torus with the simple closed geodesics on a



sphere with four punctures such that the representative elements in the group for the
four-times punctured sphere are conjugate to the squares of the representative ele-
ments in the group for the once-punctured torus. This implies that the corresponding
elements become parabolic at the same places, so the cusps are at the same places.
It follows that the embeddings of T7; and T4 are the same.

The two-dimensional Teichmiiller spaces are Tp5 and 77 2. The maximal sets of
disjoint simple closed geodesics on five-times punctured spheres and twice-punctured
tori consist of two geodesics. For the results of the one-dimensional cases to be
generalized to these cases, we need to know when two simple closed geodesics are
disjoint. In our second main result we find a suitable assignment of pairs of rational
numbers to sets of disjoint simple closed geodesics on a five-times punctured sphere.
These pairs of rationals are used to compute the number of intersection points of sets
of simple closed geodesics on a five-times punctured sphere. In the future we hope to
use this result to study the simplicial structure of the boundary of Tgs.

In our final result we study the bihblomorphic map from 737 to the upper half
plane H. This abstract map has been known for some time, but no way had been
seen to actually use the map to compute the image of specific points in 77,. The
map involves integrating an abelian differential on a Riemann surface of type (1,1).
We construct a specific Poncaré series and use it to construct the abelian differential.
We then approximate the Poincaré series and use this approximation to compute the

image of any point in T3 ,;. An error bound for the approximation is specified.



CHAPTER 2
ONCE-PUNCTURED TORI

2.1 The embedding of 7;;

This section follows Wright ([Wri]), where a more detailed description is presented.
Let T' denote the Kleinian group generated by the parabolic transformations S;

and Sy, where Si(z) = z + 2 and S3(2) = 327 (see Figure 2.1). Let Hy denote the

St

Figure 2.1: The action of the group T’

lower half plane. Then the ordinary set Q(T") is HUH],, and the quotient space Q(T') is
the union of two triply-punctured spheres. To construct a surface of type (1,1) (that
is, a once-punctured torus), cut off two punctures from H/T along simple closed
curves, and glue the simple closed curves together. To achieve this algebraically
we want to find a transformation 7' which conjugates S; to S;. The assumption
T'S,T~' = Sy implies that T(z) = T,(z) = ; + z for some complex parameter z.
In order for the surface Hy /T to remain unchanged, it is necessary to consider only

those values of « for which Im(z) > 0. Now let G, denote the HNN extension of T
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by T, (see Figure 2.2). The group G, is generated by S; and T,. The Teichmiiller

it/2

\:n
S,

Figure 2.2: The action of the group Gy, t > 2

space T, is embedded in H as the set of all z € H for which G, is a terminal b-
group and A(G;)/G, is a once-punctured torus; the marking on A(G,)/G, is the
distinguished set of generators of m1(A(G;)/G.) represented by the set of group
elements {S1,7,}. Let M;,; denote the embedding of 717 in H. Wright ([Wri]) has
shown that {z : Im(z) > 2} C My; C {2z : Im(2) > 1}, ¢ € M, if and only if

T+ 2¢€ M,,and z € M, if and only if -7 € M.

2.2 Words in the group G,

In this section we develop a way to parametrize the conjugacy classes of elements
of the group G, which represent the simple closed geodesics on A(G;)/G.. Let h
be a homeomorphism from A(G;)/G; to the once-punctured torus (C — L;)/(z —
z+ 1,z — z + 1), where L; denotes the lattice {n + m¢ : n,m € Z}. Then the
homotopy class of any simple closed geodesic on A(G,)/G, is determined by the

homotopy class of its image in (C — L;)/(z — z + 1,2z — z + i) under k. Every
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simple closed curve on (C— L;)/(z +— z+1, z — z+1) is homotopic to a curve whose
lifting to the unit square {z : 0 < Re(z) < 1,0 < Im(z) < 1} is the union of disjoint
segments connecting different sides of the square. These segments will intersect the
top and bottom sides of the square in the same number ¢ of points, and they will
intersect the left and right sides in the same number p of points. Hence it is possible
to deform the curve so that the disjoint segments in its lifting are all line segments all
with slopes either Z or —Z. If the greatest common divisor of p and ¢ is d, then the
disjoint line segments will project to d curves on the once-punctured torus; therefore,

we can assume p and ¢ are relatively prime.

The elements of G, can be thought of as words in the letters S;, S7*, Ty and T 1.
The words which represent simple closed geodesics on A(G,.)/G, can be parametrized

by pairs of relatively prime integers.

Let Q denote the set of pairs of relatively prime integers (p, ¢) (hereafter written
p/q) such that ¢ > 0 unless ¢ = 0 and p = £1, and p # 0 unless ¢ = 1. Give
Q the same ordering as the rationals, except that —1/0 < p/q < 1/0 whenever
q # 0. We refer to the set Q as the eztended rationals. If p/q and n/m are in Q and
gn — pm = %1, then p/q and n/m are called Farey neighbors. Define and addition &
on Farey neighbors (p/g,n/m) in Q by p/g®n/m = (p+n)/(¢+m). Every p/qg € Q
can be written as a finite sum @ of —1/0, 0/1 and 1/0. Note that if p/q and n/m
are Farey neighbors, then p/q and p/q @ n/m are Farey neighbors, as are p/q¢ ® n/m

and n/m. Note also that if p/q¢ < n/m then p/q < p/g® n/m < n/m.

Let S = Syand T =T,. For p/q € @, define words W/, € G in the following way.
Let [y] denote the smallest integer greater than or equal to y. For 0/1 < p/q < 1/0,
define

Wp/q = X1 Xz XP-HD
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where

X; € {T'l,S} for 1 <j<p+yq,

and for n = 0,1,..,p—1,if [%] +n < j < fﬁ%lﬁ] +n, then X; = T~%; and if
J= ]'1”—';—125] +n+1, then X; = S. Also define

W—p/q =WY, - Yoy,

where
Y; = {T_l if Xppgs1-5 =T 7
T8 i Xprguio; =S,

Finally define Wy, = T

The words W/, and W_,,, represent the simple closed geodesics on A(G.)/G.
which correspond to the simple closed curves on (C — L;)/{z — 2+ 1,2 — 2 + 1)
whose liftings to the unit square cross the top and bottom sides of the square g times
and cross the left and right sides of the square p times. (See Figure 2.3.) For W/,
p/q > 0, the segments of the liftings in the square can be deformed to line segments
of slope —2; and for W_,,, —p/q < 0, they can be deformed to line segments of slope
%. Hence every simple closed geodesic on A(G,)/G is represented by a unique W,
p/q € Q, p/qg > —1/0. (The words W_ij0 = S7' and Wy o = S represent the same
geodesic.)

There is a nice concatenation law for the words W),;,. We first prove two lemmas.

Lemma 2.2.1 Ifr/s and p/q are Farey neighbors, r/s < p/q, r > 0, 0 < n < 2r,

and p does not divide n, then fﬁp‘l] = [22]. Also, ]"’Zpﬂ] =gqand [B] =q+ 1.

Proof: Since sp—rg=1,

ns _ nsp

ro rp
. nrqg+n

= -
n n
_mM_n



13

S1

Figure 2.3: The geodesic represented by the word W_; o = S;' T, 'T,!

Thus
ngy _ (ns
o0 < 12,

First suppose n = r. Then

and since p > 2 we have % <1, s0

ns

nq
1< 41
25 < 2+
which implies
ns ng
21 < [T,
2 < 12
Next suppose n = 2r. Then

ns n 2
[—]=23=—q+—.
r p p

Now if p = 2, then r = 1 and n = 2, which contradicts the hypothesis that p does

not divide n. If p > 3, then
ns

[

nq
) <1241

and

nsy g
<.
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Finally suppose r does not divide n. Then %I and 2* are not integers. If [Epi-l +

[2¢] then there is some integer K such that

n ns
Mogp
p T

Clearly K — 2% > % and 22 — K > >, which imply that

1 1 _2
R
r p~p T P

But since
ns _nqg  n
r p TP
and n < 2r,
ns n 2
pe_M
r p P

This contradiction shows [22] = [%2].
The second part of the lemma follows from the string of equalities [22] = [*£4] =
g+ =q+1.

q.e.d.
Lemma 2.2.2 Ifr >0, p/g=r/s@® u/v, and r <n < p then |'L"—_J—)3] +s=[21].

Proof: Suppose u divides n. Then [L"—;—r)—’i] =0 (o] =g [lose] =] g,
Also, [R] =[2+ 2] =2+ L] =2 +1

Next suppose u does not divide n. Then by Lemma 2.2.1, if r < n < p then
[er)) = [=Y] Now since 2 = 2 4+ 2 for all , 22 < s and [%] — s <
2] - [2) < [ - 9] = [erley,

If n = p the result is obvious. Otherwise, qu and g"——urm are not integers. If

|'Ep1'| —s# [gn——url’i], then there is some integer K with

7_12_8<K<____(n—r)v
P u
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MoreoverK—(Ep‘L—s)Z%andin—;r)ﬂ—KZ%,soLj)ﬂ—(%‘l—s)Z%—%l.Onthe
other hand,
(n—r) (nq ) (n—r)v (nv n )
—(——-35) = —(—+——s
u P U v pu
™ n
= §—=— — —
u  pu
Now sincen > r, & > L = rfuzuw _ 11 Thyg
pU U pu u P
TV n ro 1 1
§———— < §——+——~—
u  pu v p u
su—1 1 1
= §— S ——
u P u
_1
s

This contradiction finishes the proof.

g.e.d.

Proposition 2.2.3 If r/s,u/v € Q, ru > 0, and su —rv = 1, then W, sguse =
Wr/sWu/u'

Proof: Let p/¢ = r/s & u/v. First assume that r > 0. Then W, , W, =
X1 X3+ Xojugstv, Where for n = 0,1,...,r — 1, if [22] 4+ n < j < f@#E] + n,
X;=T Y andif j = [&?ﬁ] +n+1, X;=S8;andforn=r;r+1,..,r+n—1,if
[in—j)ﬂ] +(n—-r)<j-r—s< [gﬂ:—l)ﬂ] +(n—r),X;=TYHandif j—r—s=
|’£n—_1;:l—l)£-| +(m—r+1), X; = S. Now Lemma 2.2.1 implies that [22] = [22] for
0 < n <r. Lemma 2.2.2 implies that [gn—”urﬁ] + s = [”;‘l] forr <n <p So
Worg = WrjsWaye.

Next suppose r = 0. Thenu=s=p#1, and so [E] =¢=wv+1 and [2] = v,
and Wy, = Wy 1 W1y,

Finally, if r < 0 and u < 0, then the proposition follows from the first case and
the fact that —p/q = —u/v & —r/s.

q.e.d.
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The rest of this section will be useful in the next chapter. For any word W, let

{(W) denote the length of W; that is, the number of letters in W.

Proposition 2.2.4 Suppose r/s,n/m € Q, 0/1 <r/s < n/m, and sn —rm = 1.

Then there are words Wy, Wy in the letters T~ and S such that
W'r/sWn/m = WlT_ISW%

Wn/m W'r/s = VVIST_1 W27

and {(Wy) =n+m —1.
Proof: We use induction. If /s = 0/1 and n/m = 1/0, then W, /;W, /,, = T~1S and
WomWeps = ST! and n 4+ m — 1 = 0, so the proposition is true in this case.

Now suppose the proposition is true for the Farey neighbors (r/s,n/m); we prove
the proposition for the Farey neighbors (r/s,p/q) and (p/q,n/m), where p/q =1/s®

n/m. Now

W,./_.,Wp/q = W,./,,W,./_.,Wn/m = ,/SWIT‘ISW2,

and

WP/QWT/S = WT/SWn/mWT/s = Wr/swlsT_IW%

and {(W,;;W1) = p+ ¢ — 1, so the result holds for the Farey neighbors (r/s,p/q).
Similarly,

Wp/an/m = r/sWn/mWn/m = WlT_ISW2Wn/ma
Wn/me/q = Wn/mWr/sWn/m = WIST_1W2Wn/ma

and {(W;) = n +m — 1, so the result holds for (p/q,n/m).

Corollary 2.2.5 Let plg=r[s@®n/m,0/1 <r/s. Let

(Wyso)? = X1 Xz -+ - Xapyag
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and

(VVr/s)z(VVn/m)2 = 1/1}/2 e }/2p+2qa

where

X;,Y; e {T7',S} for 1 <j<2p+2q.

Then X; =Y, for all j except j=p+qandj=p+q+1, and Xp1g =S =Yoiq11

—T-1 —
and Xpyop1 =177 = Ypiq.

Proof: Since

Wo1a)® = WeysWoymWoejsWajm

and

(WT/S)2(Wn/m)2 = Wr/sWr/sWn/m Wn/ma

the result follows immediately from Proposition 2.2.4.

q.e.d.

Proposition 2.2.6 For 0/1 < p/q < 1/0, the word (W,;,)* can be uniquely decom-
posed into a product of the words Xpr = T2, Yy, = T71S™T1, and S™ for positive

integers n.

Proof: For 0/1 < p/q < 1/0, the word W,, is a product of the letters T-! and
S. Since there are an even number of letters T~! in the word (W,/,)?, the unique
decomposition is clear.

q.e.d.



CHAPTER 3
SPHERES WITH FOUR PUNCTURES

3.1 The embedding of Tp 4

To construct a surface of type (0,4), take two thrice-punctured spheres, cut off a

puncture from each along simple‘closed curves homotopic to the punctures, and glue
the simple closed curves together. To achieve this algebraically, let A, B; and B,
denote parabolic transformations with different fixed points, where AB; and AB, are
parabolic. The groups Gy = (A, B;) and G2 = (A, By) each represent two thrice-
punctured spheres. |
1

(Here we make no distinction between Mobius transformations and the corresponding
1—=z b

c 1+=z
trace must be —2 (if the trace were 2, then B; would fix o0). This implies that ¢ = —1.

1 4
Conjugate so that A(oo0) = o0, A(0) = 4, and B1(0) = 0. Then A = (0 )

elements of PSL(2,C).) Write B, = ( ) Since AB, is parabolic, its

1— 2
Since B; € PSL(2,C), b = z%. So B, = ( lx 11 > Denote this element by
- T
1 0
B; . Now B; must have the same form as B,, but since B1(0) =0, By = ( . 1).

Let H, denote the amalgamated free product Gy *4 G; (see Figure 3.1). Then H,
is generated by A, By and B;,. The embedding of Ty 4 into H is the set of z € H
for which H, is a terminal b-group and A(H,)/H, is a four-times punctured sphere.

Denote this set by Mg 4.
Proposition 3.1.1 z € My 4 if and only if z + 2 € My 4.

Proof: It is easy to check that AB,, = B{;_'_Z. Thus H, = (A, By,B;;) =
(A, B1,AB, ;) = (A, BI,B£;+2) = Hpys, so H, and H,,, represent the same Rie-
mann surface, differently marked.

q.e.d.
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Figure 3.1: The action in the group H,, Im(z) > 2

Proposition 3.1.2 2 € My, if and only if —T € Mo 4.

Proof: Define J(z) = —2. Then J~! = J, and JAJ = A~!, JB;J = B, and
JB;J = B{,lE Thus, J maps the limit set of H, to the limit set of H_z.

q.e.d.
Proposition 3.1.3 If Im(x) > 2 then x € My4.

Proof: In light of Propositions 3.1.1 and 3.1.2, we assume 0 < Re(z) < 1. Let Ds
denote the vertical strip {z : —2 < Re(z) < 2}; Ds is a fundamental set for (A). The
set

D1=D3n{22|2—1|21, |Z+1l>1}

is a fundamental set for the group Gy = (A, By). Also, the set
Dy=Dsn{z:jz—(z=1|>1,|]z—(z+1)]>1, |z2—(z —3)| > 1}

is a fundamental set for the group Gy = (A, By ;).
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Figure 3.2: Using Maskit’s First Combination Theorem

Choose a number ¢ with 1 < ¢t < Im(z)—1, and let v = {z : Im(z) = t}. By
Maskit’s First Combination Theorem (Theorem 1.0.2), H, = (G1,G2) = G1*(4) G2 is
a Kleinian group with fundamental set D = D; N D,. The action of H, on D clearly
represents two triply-punctured spheres and one four-times punctured sphere.

q.e.d.

3.2 Words in the group H,

We will now construct specific words in the group H, which represent the simple
closed geodesics on A(H;)/H,. Label the four punctures on A(H,)/H, as q1, g2,
gs and ¢4, and connect the four punctures with four arcs as in Figure 3.3. The
union of the arcs separates the surface into two components St and S~. Any simple
closed geodesic on A(H,)/H, is the union of disjoint segments in S* and S~. If any
segment has two endpoints on the same arc, the geodesic can be deformed so that
this segment vanishes. Since we are ‘only concerned with the homotopy class of the

simple closed geodesic, we can assume each segment connects different arcs.
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92 arc 1 a1
G-
arc 2 arc 4
S’+
g3 arc 3 04

Figure 3.3: The surface A(H,)/H,

Each crossing of an arc corresponds to a letter in the word in H, representing the
geodesic. Each letter is one of A*!, B!, BF! or I for the identity. The letters Bi!
and B! correspond to opposite arcs as do the letters A*! and I. It is not difficult
to see that the number of crossings on opposite arcs is the same.

Now for each p/q € Q, define a word K., € H; in the following way. For
0/1 < p/q <1/0, define |

Kp/q =X1 Xz Xp+2q7

where

X; €{B,B{", By, By, A,A7'} for 1<j<p+2q,
and forn =0,1,...,p— 1, if ('z;—lq] +n<j< ('Q"—:—IB-] + n, then

x B, if j+nisodd
7T I Byt if j+nis even;

if [L——l—%:l N+n<y < I'L———l—2”:2 1 + n, then

ij{Bl_l if 7 4+ n is odd

By if j + n is even;
and if j = f%] +n + 1, then

X, = A if 7+ n is odd
77 A7 if j+nis even.
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Also define
K—p/q =YYy Yorag,

where

( By if Xpi2041-5 = Byl
B! if Xpya041-j = Ba;
By if Xpiag41-5 = BrY;
Byt if Xpyag41-5 = By
A Xpiagproj = AT
LA™ i Xpya001es = A.

Finally define Ky/; = B1 By L

B;! B;!

A I A I
B! B!

K12 = BiBy'B'ByA K_ /2= A"'B71B,B; B;!

Figure 3.4: Simple closed curves on A(H,)/H,

The words K,;, and K_,/, represent the simple closed curves which cross the
arcs corresponding to BE! and B3F' exactly ¢ times each and which cross the arcs
corresponding to A*! and I exactly p times each. Clearly for pg # 0 there are exactly
two homotopy classes of simple closed curves of this type which are homotopic to
geodesics (so the curves are not homotopic to punctures or homotopically trivial). If
pqg = 0 then there is only one homotopy class. Hence every simple closed geodesic
on A(H;)/H, is represented by a unique K,;, where p/q € Q and p/q > —1/0. See

Figure 3.4.
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Recall that S(z) = S1(z) = z + 2, and define the new words K, in the following

way. For 0/1 < p/q <1/0, let

Kp/q =X1Xp-- X2p+24>

where

X; € {B1,B;',5,57'} for 1<j<2p+2q,

and forn =0,1,...,2p— 1, if [Epi] +n<j< I—I"—:lm] + n, then

ij{Bl if 7 4+ n is odd

B;' if j 4+ nis even;
and if j = fi"’—;lﬁ] +n + 1, then

ij{s if j+n is odd

S=1 if j + n is even.

Also define
R—P/q =YYy Yopiag,

where 1
B, if Xopyoq+1-5 = By ;

B! if Xoprag41-j = B
S if Xopyagrr-j = S
5—1 lf X2p+2q+1-—j = S

Y, =

Finally define f{o/l = B, B;".
Proposition 3.2.1 For all p/q € Q, Kyq = Kyq as Mébius transformations.

Proof: Write out the word K/, as X1X; - - - X}, 15,, where each X is one of the letters
A BE' or Bf'. First assume 0/1 < p/q. By definition, for n = 0,1,...,p — 1, if
[1—)—2":1 N+n<y< '—g__)_zn:2 2] + n, then

ij{Bl_l if j 4+ n is odd

B, if j + n is even;
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and if j = [Q’i;ﬁﬁ"] +n +1, then

Xj:{A if 7 4+ n is odd

A~ if j + nis even.

Write each A as the product SS and each A~! as S~1S~1. Then use the identities
ByS = S7'B;1

and

Bl"lS‘l = SB]

to move letters S*! to the left and change all the letters B, and B;! appearing in
the word K/, into the letters B;' and B;. The remaining word is K /q-

The proof for p/q < 0/1 is exactly the same, except we use the identities
S7'B;' = B,S

and

SB2 - B{IS_I

to move letters S*! to the right and change all the letters By and By !into B;! and
B. |

q.e.d.

Lemma 3.2.2 Ifr >0, p/g=r/s®u/v, 2r <n < 2p, and n # p, then [";1'] — 25 =
(=201 Also, if p > 2r, then [@=200] = g — 25 4 1.

Proof: Suppose u divides n. Then [@%fm] = M4 [-2v] = m gy [2=@w)
o 4 [2] — 2s. Now T=2+rso [H] =2+ [2].fu=1and p<n<2p,
then [2] = 2 and [Z] = [2] = 2. If u = 1 and n < p, the statement is vacuous

since r > u implies 2r > p. If u > 2 and n < 2p, then 1 < [;"ﬂ < [%] <1, and so

[2] = [2] = 1. Thus the result follows.
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Next suppose u does not divide n. Lemma 2.2.1 implies that if 2r < n < 2p then
!ﬂ—ﬁﬁ — @_—_21& ng _ 2rq7 _ n—2r)v . ns _ ng n 2rg
[ 1= [*= ]Thusf,, p1—f£——Lu ]. Now since =4 < 2s.

P rp? p

n n 2r n 2r _ rin=27)v
Thus [22] — 2s < [24] — [29] < [2 — 0] = [(a=2oley,

If n = 2p then [%1] — 25 = 2¢ — 25 = 2v, and [in_—lfr)ﬂ] = [22] = 2v also.
If n = 2r +u then [L’l_uﬁlﬁ] = v, and

ny o, _ 2rtu)
fp12 [

= s+¢qg—2s

Otherwise, 21 and m_—j—r)—q are not integers. If [2] — 25 # [L’Ef—rﬁ], then there is

some integer K with

-2
E—23<K<——(n T)v.

p u
MoreoverK—(%}—%)Z;—)and LE%M—KZ%,SO m‘_gzm—(ﬁpi"%)?-;?'*'%' On

the other hand,

n—2rjv n n—2r)v nv n
(___)_(_q_QS) - _(___)__(_+__23)
u P u u pu
_ g _2rv_n
B u  pu

Now since n > 2r, & > 2 — 2rtu-v) _ 20p—v) _ 2(% -4 > L _1 Thus
) v p

’ pu — pu pu pu

2rv n 2rv 1 1
28— ——=—— < 28— —++— — —
U pu U p u

_ 23_23u—2 _1___1_

U P u
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1 1
p u

|
2|

+
N

Hence the result follows for n # p.
The second part of the lemma follows from the equalities [Q_—f—rﬂ] = ftr—?ﬂ] =

o =lo-stil=v-stl=g-2s+1

q.e.d.
Proposition 3.2.3 Suppose p/q=r/s ®ufv, ru >0,
-k'r/s-f(u/v =X Xp--- X2p+2q7

and

kp/q =Y1Ya - Yopiog,

where

X;,Y; € {B1,B;,8,571} for 1 <j <2p+2g.

Then X; =Y, for all j except j =p+qandj=p+q+1, and Yqq = p'_ﬂqﬂ and

Yotgr1 = Xp4q.

Proof: First suppose that r > 0. By definition, for n = 0,1,...,2r — 1, if [2*] +n <
j < (gn—tllf] + n, then

B, ifj+nisodd
Xi=3 1 .. .
B> if j +n is even;

and if j = (il’?—k]-i—n-i—l,then

X; =

J

S if 7 4+ n is odd
S~ if j +n is even;
and for n = 2r,2r+1,...,2p—1,if [("—_;21)3] +n—2r < j—2r—-2s < f@:%ﬂ)ﬂ] +n—2r,

then
B, ifj+nisodd
X; =

B;' if j +n is even;
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andifj—2r—23:]'£n—_%)1'|+n—2r+l, then

S if j + n is odd
X; =

S™1 if j + n is even.

Since p/q = r/s ® u/v, r/s and p/q are Farey neighbors. Lemma 2.2.1 gives the
result for 1 < 5 < 2r42s. If 2r < p,then Y; = X; for 1 < j < 2r+2s. If
2r > p, then Y; = X; for 1 < j < 2r + 2s, except Xpiq Xp4q+1 = B3 'S or B;.S~! and
YpiqYpiqe1 = S71B;! or SB, respectively. Similarly, Lemma 3.2.2 gives the result
for 2r +2s+1 <5 <2p+2q.

Now if r = 0, then s = 1, u = 1, and p = 1. Thus [B] = ¢ = v +1 and
[E] = pv = v; and ]'—2-51] —2s =2¢— 2 =2v and [22] = 2v. The conclusion thus
holds for r > 0.

Note that if p/¢ = r/s ® u/v, then —p/q = —u/v & —r/s. It follows from the
definition of the words I~{_p/q that the proposition also holds for the cases where
r,u < 0. |

q.e.d.

3.3 The relationship between the words in G, and the words in H,

Let M denote the transformation M(z) = z + 1.
Theorem 3.3.1 If0/1 < p/q < 1/0, then MK, , M~ = (W,,,)%.

Proof: We will show that MK,,,M~' = (W,/,)? using induction. The statement
can easily be checked for p/¢ = 0/1 and 1/0. Assume the statement is true for
r/s and n/m, where sn — rm = 1 and rn > 0; we show the statement is true for

p/q=r/s ®n/m. So, by assumption,

-Al-f{'r/s-[N{'n/m-Al—1 = (W"'/s)z(W"/m)2'
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Write
(Wr/s)2(Wn/m)2 =U,U0,--- U2p+2q,

where

Uj e {T,S} for 1<j <2p+2q.

Also, write

(Wr/s)2(Wn/m)2 = ‘/1‘/2 e VN,

where

‘/j € {XM7YM,1;YM,2,YM,3,---aS’ 52,53,...} fOT 1 S] S N.

Define the words Xg and Yk, by Xk = B;B;' and Yg, = B,S™"B;'. Then
Xy = MXkM™Y, Yo = MYg,M™1, and S™ = MS"M~'. Further, define the
words f/j, 1<j3< N, by

Vi={ Ygn ifV; =Yy,

Sn V=S

Then

Now by Corollary 2.2.5, Up4441 = S. Suppose Up4,4+1 appears in the word Vj; in
the decomposition

(Wr/s)2(Wn/m)2 = ‘/1‘/2 e VN. |

Then V;, = Yarn or Vj; = S™ for some n. If V;; = Y, then by Corollary 2.2.5
(Wyp) =WVar o Vit STES™ T Wi g1 -+ Ve

But
-f{r/s-f{n/m = ‘71‘72 vt %0_1B15_nB2—1‘~)j0+1 e VN,
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so by Proposition 3.2.3,
f{p/q =Vl ‘%0_15315—"+1B;1{~/j0+1 N V.

So in this case Mf{,,/qM'1 = (Wp/)?.
If, on the other hand, V;, = S™, then by Cofollary 2.2.5 and Proposition 2.2.6,

Vie—1 = T7'S™T~! for some m and
(Woo)? = ViVl -+~ Viy o T S™ 1671V, 1o V.
In this case,
KojsKnjm = ViVy - VigoaBi1S™ By S"Vig 41 -+ - Vi,
and by Proposition 3.2.3,
Koo =ViVy -+ Vigoa BIS™™ 1 B71S™ W, 1 -+ Uiy

Again, MK,;,M~" = (W,/,)%.

Corollary 3.3.2 For all p/q € Q, MK, M~ = (W,;,)>

Proof: By Theorem 3.3.1, we need only show the result for p/q < 0/1. Again we use

K/, Assume p/q > 0/1, and write
(Wp/q)2 =UU;--- Uy,

where

Uj € {XM,YM,I,YM’Q,YM,3’ vy 9, 52,53, } for 1 <j3<N.

(Here, if U; = S™, then U;41 # S™.) Then by definition,

(W—p/q)2 =WV Wy,
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where )
Xnm if Uvy1—; = X

Vi=< Yu—n i Unii-; = Yarm;
S if UN+1_]' = S,
Also, by the definition of K_,/q, if

Ry = a0y - O,

where
U; € {Xx, Y, Y2, Yic, -y 5,52, 8%,...} for 1 < j <N,
then
K_ppg =WV, Wy,
where

Xk if Unvpioj = Xk
Vi = Yi—n if Ung1_j = Y
S if Ungao; = S™
Now, as in the proof of Theorem 3.3.1,

MV,M™ =V, for 1 <j <N;

50 ‘]W-K--p/cr]w_1 = (W-—p/q)2-

Theorem 3.3.3 M;; = My..

Proof: Let Y denote the boundary of the set Y. If ¢ is a cusp on dM 3, then there
is some word W/, which becomes accidentally parabolic at z = c¢. But (W,,)? is
conjugate to Kp, by Corollary 3.3.2. Thus, c is a cusp on dMp4 also. Likewise, if ¢
is a cusp on OMy 4, then ¢ is a cusp on OM; ;.

Now C. McMullen ([McM91a]) has proven that cusps are dense in the boundary
of Teichmiiller space. Thus, OM;; = OMy4. Since both M;; and My 4 contain the
set {z : Im(z) > 2} (Proposition 3.1.3 and Proposition 2.3 of [Wri]), M1, = Mp4.

q.e.d.
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I. Kra (8.6 of [Kra90a]) gave a different proof of Theorem 3.3.3 using normalizers
of the groups G, and H, to construct the identity map from Mp 4 to M; ;. Corollary

3.3.2 does not follow from the arguments there.



CHAPTER 4
SPHERES WITH FIVE PUNCTURES

4.1 The embedding of T

To construct surfaces of type (0,5), take a surface of type (0,4) and a surface of type
(0,3), cut off a puncture from each along simple closed curves homotopic to the punc-
tures, and glue the simple closed curves together. This is the same basic construction
used to create surfaces of type (0,4), and just like in that case, the algebraic building
tools are the amalgamated free product and Maskit’s First Combination Theorem.
Here the group representing the surface of type (0,5) will be the amalgamated free
product of H, (the group representing a surface of type (0,4) ) with a group repre-
senting a surface of type (0,3) across a common cyclic parabolic subgroup. Let P
be a Mobius transformation such that PAP~1 = B; and PB;P™! = A. Then the
0 _02) (and P(z) = —2). Also,

1

matrix for P is (
2

3 1 4
PBy P = ( T ) — Bs..
¥ .—z_ l—x y

4

Thus, the following elements are parabolic: A, By, By, Bs y, ABy, AB3 ;, ByBs . (We
now use the complex parameter y in the transformation Bs to distinguish it from the
parameter in B;.) The group (B1, Bs,) represents a surface of type (0,3). Let H,,
denote the amalgamated free product of H, with (Bi, Bs,) across (B). (See Figure
4.1.) The embedding of Ty s is the set of all (z,y) € H? such that H,, is a terminal
b-group and A(H,,)/H., is a surface of type (0,5). We denote this set by Mo s.

Note that since the fixed point of B: , is z, the fixed point of Bs, is —45. Also, if
Bz, takes the closed curve C to Cs, then Bs, takes P(C)) to P(C3).

The next two propositions are the analogues to Propositions 3.1.1 and 3.1.2 for

M0y5.

32
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"/
B,

Figure 4.1: The action in the group H,,

Proposition 4.1.1 (z,y) € Mos if and only if (z + 2,y) € Moy if and only if

(z,y+2) € Mygs.

Proof: Since AB,, = B{,;_,_z; H,y = Hy 42, Likewise, BiBsy, = B3, .5, 50 Hyy =
H; y+2. Thus the groups Hyy, Hyi2, and Hy .o all represent the same Riemann
surface, differently marked.

q.e.d.
Proposition 4.1.2 (z,y) € Mys if and only if (—T,—7) € Mos.

Proof: Define J(z) = —%. Then J™' = J and JAJ = A7, JB,J = B{', JB3,J =
B;ls:, and JBs,J = B;!;. Hence J maps the limit set of H,, to the limit set of

H_z 5.

q.e.d.

Proposition 4.1.3 (z,y) € Mo if and only if (y,z) € Mos.
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Proof: The proposition follows from the equalities PAP~! = B,, PB,P~! = A,
PB;,P™' = B;, and PB3,P~! = B,,.

q.e.d.

Proposition 3.1.3 has no single analogue for My s, for there are infinitely many.

For example, if we fix z = 21, then it is easy to see using Maskit’s First Combination

Theorem that (z,y) € Moy if Im(y) > 4.

4.2 Curves on spheres with five punctures

In order to understand the geometry of the cusps on the boundary of Tps we must
study simple closed curves on surfaces of type (0,5). Let S denote a surface of type
(0,5). Label the punctures ¢, ..., ¢s, and connect the 5 punctures with 5 arcs, labelled
arc 1 to arc 5 in a counter-clockwise direction such that arc j connects ¢; and ¢;41

(see Figure 4.2). (Here the indices on ¢ are taken modulo 5.) The union of the 5

qs

Figure 4.2: Punctures and arcs on S

arcs divides S into two components. Call these components S* and S~. Let 5 be
a simple closed curve on S which is not homotopic to a puncture and which is not

homotopically trivial. We call such a curve admissible. The curve n divides S into



35

two components, one which contains two punctures, and the other which contains
three punctures. Call the component with two punctures A(7).

The 5 arcs will intersect 7 in an even number NV of points (since 7 is closed). From
now on we will refer to these points as the arc intersection points. Label these points
P, ..., Py in a counter-clockwise direction around the arcs, starting and ending at the
puncture gq;.

The component A(7) can be thought of as a thin strip on S, where the two sides
of the strip meet near the two punctures inside A(7). The sides make up the curve 7,
and if  has an orientation then the direction is opposite on different sides, and the
component A(7n) consistently lies on the left or on the right of . See the examples

in Figure 4.3.

Figure 4.3: Simple closed curves on S

Let n; denote the minimal number of arc intersection points in arc ¢, 1 < 7 < 5,
over all simple closed curves homotopic to 5. Then since N = 37_ n; is even,
exactly 0, 2, or 4 of the integers n; are odd. Since A(7) contains exactly two of
the five punctures, the arc intersection points occur in pairs on each arc except at
the two ends of the strip A(n) where the two punctures occur. We call the integers
(n1,...,ns) the arc intersection numbers of . (Henceforth, take all arc numbers and

indices of punctures and arc intersection numbers modulo 5; and take all indices of



36

arc intersection points modulo N.)

One can tell which two punctures A(n) contains by the parity of the integers n;.
If n; and n;;, are the only odd integers of the five, A(n) contains the punctures g;
and ¢;4;. If n; is the only even integer of the five, A(7) contains the punctures ¢;1,

and gjys.

Proposition 4.2.1 The component A(n) of S contains the puncture g; if and only

if nj 4+ njy1 —njys is odd.

Proof: If A(n) contains g;, then either n; and n;;, are the only odd arc intersection
numbers, or n; and nj4; are the only;9dd ones, or all arc intersection numbers are
odd except either n; 4 or n;;2. The proposition follows.

q.e.d.
Proposition 4.2.2 For each j, n; < njia + njis.

Proof: Starting with an arc intersection point P, on arc j, follow the oriented
geodesic on which it lies. It is not difficult to see that the geodesic must pass through
arc j + 2 or arc j + 3 before returning to arc j. The proposition follows.

q.e.d.

Proposition 4.2.3 For some j, nj+nj11 = N/2. Furthermore, on one side S¢ of S
(either ST or S~ ), each segment of n N S¢ has one endpoint on either arc j or j + 1
and the other on arc j+2, j+3 or j + 4.

Proof: Consider the disjoint segments of 7 N ST and n N S~. If any one of these
segments in ST connects arcs ¢ and 7 + 1, then there can be no such segment in S~
because 7 is simple and not homotopic to a puncture.

Suppose there is a pair of adjacent arcs such that there is no segment of either

n NSt or n NS~ which connects the adjacent arcs. Then if the puncture between
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these arcs is filled in, 5 cannot be deformed to make any arc intersection number
smaller. Hence 5 can be thought of as a simple closed curve on a sphere with four
punctures. Since the arc intersection numbers on a sphere with four punctures must
be equal on opposite arcs, the index j must exist.

On the other hand, suppose there is no such pair of adjacent arcs. There is some
segment in 7N .S*; denote the endpoints of the segment by P; and Py, where ¢ < k. If
k =1+ 1, then this segment connects adjacent arcs. Otherwise, there is a segment in
n N St with endpoints P; and P,,, where 1 < £ < m < k. Continuing in this manner,
we see that there must exist a segment in 7 N ST with endpoints P, and P41, and
this seglﬁent connects adjacent arcs. Furthermore, by looking at the segments with
endpoints P, where m < 1 and m > k, it is not difficult to see that there must be
some other segment in 7N S* which connects another pair of adjacent arcs. Hence at
least two pairs of adjacent arcs are connected by segments in 7N S, and likewise at
least two pairs of adjacent arcs are connected by segments in N S™. Let S¢ denote
the side on which exactly two pairs of adjacent arcs are connected by segments. If
the pairs of arcs are 7, 1+ 1 and 7+ 2, 7 + 3 for some 7, then clearly n;y; +n;p0 = N/2
and each segment in 5S¢ has one endpoint on arc ¢ + 1 or ¢ + 2 and the other on arc
t+ 3, ¢+ 4 or . Otherwise, the pairs are ¢, 2+ 1 and ¢ + 1, ¢ + 2 for some :. In this
case, n;41 = N/2, but this contradicts Proposition 4.2.2.

q.e.d.

Deform S so that the five punctures all lie in the same plane. Then let p denote

the reflection in this plane.

Proposition 4.2.4 If two admissible simple closed curves have the same arc inter-
section numbers then they are either homotopic or one is homotopic to the reflection

p of the other.

Proof: Suppose an admissible simple closed curve 5 on S has the arc intersection
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numbers (nq,...,ns). Let j denote the index such that n; + nj4; = N/2. Then on
one side S¢ of S (either S* or S7) each segment must have one endpoint on arc j
or j + 1 and the other endpoint on arc j + 2, 7 + 3 or j + 4. Now start with an arc
intersection point P on arc ¢, 72 # j + 2,7 + 4. Following 7 in either direction, n must
cross arc ¢ + 2 or ¢ + 3 before returning to arc . If n;1p + n;43 > n;, then n must
cross arcs ¢ + 2 and ¢ + 3 exactly n;42 + niy3 — n; times more often than it crosses
arc ¢ before it returns to P. Hence there must be n;;, + n;13 — n; segments in S~¢
which help 7 to do so. There must be arc intersection points P and Pr4; on arcs
1+ 2 and ¢ + 3, respectively, which are connected by a segment in S~¢, and the other
Niy2 +niys — n; — 1 segments must connect endpoints of the form Py_s, Pry14¢. Since
(nj+2 +mj4s — 1) + (Rigs + s — njg1) + (nj + 11 — nyps) = N/2, all the segments
of §7¢ have been characterized.

Now if p is another admissible simple closed curve with the same arc intersection
numbers, then the segments of 4 must adhere to the same characterizations as the
segments of 7, except the side S¢ might be different, in which case u is homotopic to
p(n).

q.e.d.

We now want to consider pairs of disjoint simple closed curves on S. If each
geodesic in a pair of disjoint simple closed geodesics on S is pinched to a point, the
resulting surface is no longer a sphere with five punctures, and it is a maximal cusp
on the boundary of Tps. We define the arc intersection numbers of a set of simple
closed curves on S to be the sum of the arc intersection numbers of each of the curves
in the set.

Each oriented admissible simple closed curve on S is represented by an element of
H, ,, unique up to conjugation in H;,. The letters in this word can be obtained by
following the curve through the arcs 1 through 5. Each time an arc is crossed, one of

the letters A, By, B,, Bs, I, or an inverse of one of these letters is added to the word.
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Figure 4.4 shows which arcs are associated to which letters and gives an example of

the word obtained for a specific oriented curve.

q2 q2

B2,z‘
A
Bs,
5
q4 q4

q3 q3

B,

Figure 4.4: The curve represented by the word ByIB B3I B! = B,B,BsB;!

Theorem 4.2.5 Let (ny,...,ns5) be the arc intersection numbers for a pair of disjoint
simple closed geodesics on S. If (z,y) is the mazimal cusp on the boundary of Ty s
corresponding to this pair of geodesics, then (=%, —y) is a mazimal cusp which corre-

sponds to the other pair of geodesics on S with arc intersection numbers (nq,...,ns).

Proof: If X;X;---X; and Y Y2---Yx are the words corresponding to one pair
of disjoint simple closed geodesics with arc intersection numbers (n1,...,ns), then
XT1X;t--- X7t and Y7'Y5 - Y7! are the words corresponding to the other pair
of geodesics with the same arc intersection numbers. Define J(z) = —Z. Then
JAJ = A7, JB\J = B!, JBy,J = B;l;, and JBs,J = B3l!;. Since X is
parabolic if and only if JXJ is parabolic, the theorem follows.

q.e.d.
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Theorem 4.2.6 If the mazimal cusp (z,y) corresponds to the arc intersection num-
bers (ny,n2,n3,n4,ns), then (y,z) is a mazimal cusp which corresponds to the arc

intersection numbers (ng,nz,ng,nq,ns).

Proof: Define P(z) = —4/z. Then PAP™! = By, PB,P™' = A, PB;,P~' = B3,
and PB;,P~! = B,,. The theorem follows.

q.e.d.

Proposition 4.2.7 Fixr the nonnegative integers ny, ng, na, and ny. Then there
are at most two possible values of ns for which (ni,...,ns) satisfies the properties

nj +njt1 = N/2 for some j and n; < niyo + niys for all 1.

Proof: The integer ns is uniquely determined by the index j for which n; + n;4; =
N/2 is satisfied.

Suppose first that ny + ny > ns + n3 and ny +ny > n3 +ny. Then 7 =1, 4, or 5.
If ny > ny4, then j # 4, otherwise ns = ny +ny + n3 — ngy > ns + na, contradicting the
second property. Likewise, if n; < ny4, then j # 5. If ny = ny4, then whether j =4 or
j =5, ns = ny + ng. So, if nq + ny > ny + n3 and ny + ny > n3 + n4, then ns can
assume at most two distinct values.

Suppose next that n; + n3 > ny +ng and ny + n3 > n3 + ny. Then j = 2, 4, or 5.
If ny > n4 then j # 4; if ny < ng then j # 5; and if n; = ny then whether j = 4 or 5,
N5 = Ng + Ns.

The case n3 + ng > ny + ny and n3 + ng > ny + n3 follows similarly.

q.e.d.

Suppose we are given a set of simple closed curves on S with arc intersection num-
bers (n1,...,ns). We associate to this set the pair of extended rationals (52/n1, 73/n4),
where 7, and 73 are defined as follows. If ngy < ny, then |ns] = ny and s3] =
(ns + ng — n1). If ngy > nq, then |ns] = (n1 + n2 — ny) and |ns| = ns. If there is

a segment in S~ connecting arcs 1 and 2 then let n; be positive; if there is such a



41

segment in ST then let 7, be negative. If there is a segment in St connecting arcs 3

and 4, then let 55 be positive; if there is such a segment in S~ then let 73 be negative.

Theorem 4.2.8 If there are two simple closed curves on S which yield the same

extended rationals (n2/n1,m3/n4), then the curves are homotopic.

Proof: It is clear how the arc intersection numbers n; through ns can be recon-
structed from the pair of extended rationals. By Proposition 4.2.7, there are only two
possibilities for ns; but the signs of 7; and n3 (along with the integers ny through ny)
determine the index 7 for which nj +nj+1 = N/2. By the proof of Proposition 4.2.7,
the last arc intersection number nj is completely determined. Since the signs of 7,
and 73 are known, the theorem follows from Proposition 4.2.4.

q.e.d.



CHAPTER 5
INTERSECTION NUMBERS

5.1 Formulas for intersection numbers of multiple curves

A multiple curve on a surface is a set of disjoint simple closed curves on the surface,
none of which is homotopic to a puncture or homotopically trivial. The intersection
number of two multiple curves 5 and g, denoted by «(n, ), is the minimum number of
intersection points of 7; and p;, where 7; and g, range over all multiple curves isotopic
to n and p, respectively. Define the binary operation * on Q by ng/ny * pa/my =

nyp2 —myne. Further define the binary operation * on pairs of extended rationals by

(n2/n1,m3/n4) * (p2/m1, p3/ma) = (n2/n1 * pa/m1) + (n3/na * pa/ma).

Theorem 5.1.1 Let 13/ny and ps/my denote the rational numbers of two multiple

curves ) and p, respectively, on a sphere with four punctures. Then

un, 1) = 2|na/ny * pa/ma|.

Proof: Let L denote the lattice {n + mi : n,m € Z}, and consider the Riemann
surface S = (C — L)/G, where G is the group generated by z — z+ 2, z — z + 2,
and z — —Z. The surface S is a sphere with four punctures. Thus we can consider
the two multiple curves to lie on S.

If the theorem is true for admissible simple closed curves  and g, then any
multiple curve on S is represented by a rational number \;/¢;, where the greatest
common divisor of |A;| and #; is the number of components of the multiple curve.
Thus, if the theorem is true for admissible simple closed curves, it is also true for
multiple curves. Hence we can assume that n and p are admissible simple closed

curves.

42
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Let z be a point in C — L which projects to a point on 7. Then the loop 7 lifts to
a curve 7} from z to = + 29, + 2n42. The curve 7 lies completely within the rectangle
with vertices z, = + 27,2, = + 2n1¢, and z + 29, + 2n,2. Consider all the liftings of
the curve y. The minimal number of intersection points of 7 and p must equal the
minimal number of intersection points of 7 with the liftings of x.

Now 2|n2|m; of the liftings of x4 must cross the line segment from z to = + 27,, and
2|p2]ny of the liftings of g must cross the line segment from = + 27, to = + 27, + 2n,3.

Suppose sgn(nz) = sgn(p2). Then all the liftings of g within the rectangle connect
the line segments from z to z +2n,¢ and z to =+ 27, to the line segments from z + 27
to z + 292 + 2n1¢ and z + 2n;¢ to = + 2192 + 2ny¢. In this case it is clear that the
minimal number of intersection points of 7 with the liftings of u is |2|nz|mq1 —2|p2|n4].
Since sgn(n2) = sgn(us), this expression is equal to 2|n2/ny * gz /m4].

On the other hand, suppose sgn(72) # sgn(ps). Then all the liftings of x4 within
the rectangle connect the line segments from z to z+2n,7 and z+2n47 to £+2n17+2n;
to the line segments from z to = + 25, and z + 27, to = + 292 + 2n4i. In this case the
minimal number of intersection points is |2|ns|my + 2|p2|n1| = 2|n2/n1 * p2/ma|.

q.e.d.

We note that Theorem 5.1.1 implies that 7;/n; and ps/m; are Farey neighbors
if and only if the intersection number of the corresponding simple closed curves is
2. This may be helpful when we try to generalize the notion of Farey neighbors for

multiple curves on spheres with five punctures.

Theorem 5.1.2 Suppose the arc intersection numbers of two multiple curves 1, u
on a sphere S with five punctures are (ny,...,ns) and (ms,...,ms), with rational
numbers (nz/n1,n3/na) and (p2/ma, ps/ma), respectively. Suppose also that ny+n, =

ng and my + mqo = my. Then

(1, 1) = 2|nz/nyg * pa/myl.
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Proof: If n; + n; = ng and m; + my; = my4 then by the proof of Proposition 4.2.4,
there is no segment of either multiple curve in either S* or S~ which connects arcs
1 and 2. Thus, if we fill in the puncture g, the multiple curves cannot be deformed
in such a way that their arc intersection numbers are reduced. The surface with ¢,
filled in is a sphere with four punctures. Re-label the arcs between punctures so that
the union of arcs 1 and 2 (along with the filled-in puncture) becomes arc 1, and arc j
becomes arc j — 1 for 3 < j < 5. Then the rationals for the multiple curves are 73/n4
and p3/my, so the result follows from Theorem 5.1.1.

q.e.d.

Let n and u be two multiple curves on a sphere S with four punctures. Consider
the segments of N ST and n N S~. If any segment has an endpoint on arc 1, then
orient the segment so that it is directed towards arc 1. If any segment has an endpoint
on arc 3, direct the segment away from arc 3. If a segment has an endpoint on arc
2 or 4, direct the segment so that the direction does not change at the endpoint on
that arc. If p only intersects arcs 2 and 4, then direct the segment in St from arc 2
towards arc 4. Orient the segments of 4 N.ST and u N S~ using the same rules. The
directions of the segments cannot in general be combined to give a direction on 7 or
i. At any intersection point of 7 and u, traveling along 7 in the positive direction, if
the segment of p is directed from left to right, we call the intersection point positively
oriented (with respect to n); and if the segment of x is directed from right to left, we

call the intersection point negatively oriented (with respect to 7).

Lemma 5.1.83 Deform n and u so that the number of intersection points of the two
curves 1s minimized. Suppose 12/n1 > po/my. Then all intersection points are pos-
itively oriented. If na/ny < pa/my then the all intersection points are negatively

oriented.
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Proof: Consider S to be the surface (C — L)/G, where L is the lattice {n 4+ mz :
n,m € Z} and G is the group generated by z — 242, z — 2+ 2 and z — —Z.
Consider all the liftings of 7 and g in the fundamental rectangle 0 < Re(z) < 2,
0 < Im(z) < 1. Direct each of these liftings in the same way the corresponding

segments on S are directed.

Suppose 13/ny > pz/my. Then the ratio of the number of points on the vertical
sides of the rectangle to the number of points on the horizontal sides is greater for
the curve n than for p. If uy > 0 then each of the lifts of the segments of n and u
is directed from the right vertical side or the bottom horizontal side of the rectangle
to the left or top side. Thus the intersection points are positively oriented. If u; < 0
and n2 > 0 then each lift of a segment of 7 is directed from the bottom or right side
to the top or left side and each lift of a segment of u is directed from the bottom or
left side to the top or right side. Hence the intersection points are positively oriented.
Likewise, if ys < 0 and 7, < 0, each lift of any segment is directed from the bottom
or left side to the right or top side of the rectangle, and so the intersection points are

positively oriented.

If na/ny < pg/my, the result follows by switching the roles of  and p.

Theorem 5.1.4 Suppose the arc intersection numbers of two multiple curves n and
i on a sphere S with five punctures are (nq,...,ns) and (my,...,ms), with rational
numbers (n2/n1,13/na) and (p2/ma, pa/ms), respectively. Suppose ny + ns = ny +
ny + ng and myg + ms = my + mg + m3. Then if n2/n1 * po/my and ns/ng * p3/my

have the same sign, then

«n, 1) = 2|(n2/n1,n3/n4) * (p2/m1, pa/ma)|.
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If no/ny * pa/my and n3/ny * pa/my have opposite signs, then

un,u) = 2|ng/ny * pa/ma| + 2|na/ng * ps/may|

—  min{dnymy, 4|nz/ny * pa/myl, 4|n3/na * us/ma|}.

Proof: Since n4 + ns = n; + nqy + n3 and my + ms = my + mq + ma, we have ny > ny,
my > my, ns = (01 +n2—ng) +n3 = |n2| +n3, ms = (my+me—my) +m3z = 2| +ms,
sgn(nz) = sgn(ns), and sgn(u2) = sgn(us). Construct a simple closed curve C on S
whose intersection numbers are (0,1,0,0,1), where the arc intersection point on arc 2
lies so that |7;] of the arc intersection points of 7 on arc 2 are closer to the puncture
g2 and n4 — n; are closer to ¢s; and where the C' arc intersection point on arc 5 lies
so that |n;| of the arc intersection points of 7 on arc 5 are closer to ¢; and n3 are
closer to ¢gs. Construct C so that p(C) = C, where p : § — S is the reflection in the
plane through the punctures of S. Next deform the curve u so that |us| of the arc
intersection points of u on arc 2 are closer to ¢ than the arc intersection point of C
on arc 2, and my4 — m; are closer to gs; and so that |us| of the arc intersection points
of p on arc 5 are closer to ¢; than the arc intersection point of C, and mg3 are closer
to g5 (see Figures 5.1 and 5.2).

The multiple curves n and ¢ may intersect the curve C in several points, henceforth
called C-intersection points. Now deform n and u by fixing their arc intersection
points but moving their C-intersection points so that p identifies each C-intersection
point on 5 with another C-intersection point on 5 and each C-intersection point on u
with another C-intersection point on u; we do this while keeping each curve simple.

Cut S along C, and identify p(z) with z for each point z on C. By making punc-
tures g¢ and ¢7 at the points where C intersects arcs 2 and 5, we obtain a sphere
S4 with four punctures and a sphere Ss with five punctures. The multiple curves
n and p have become multiple curves on each of these spheres, with arc intersec-

tion numbers (nh I772|an1a l772|)7 (mla l”2lam1a Iﬂ2]) on S4 and (n17n4 - n17n37n47n3)7
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qa

Figure 9.1: Cutting S along C




Figure 5.2: After the cut and paste

48
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(m1,mg — my, m3, my, m3) on Ss.

By Theorem 5.1.1, there are a minimum of 2|ny/ny * pa/m;| intersection points of
the multiple curves on Sy, and by Theorem 5.1.2 there are a minimum of 2|n3/n4 *
ps/my] intersection points on Ss.

Now fill in the punctures g¢ and ¢7 and unglue the identification performed on C
and glue back S4 and S5 along C.

First suppose that n2/n1 * po/my and ns/n4 * ps/m4 have the same sign. Then
by Lemma 5.1.3, all intersection points of n with ¢ have the same orientation. Hence
no deformation can cancel intersection points. To see this suppose it is possible to
deform n and p and cancel intersection points. Then there is at least one component
of S —{nUp} that disappears when this deformation is performed. Furthermore, the
boundary of one of these disappearing components must contain exactly two of the
intersection points of n and u. We call a component of S — {n U u} whose boundary
contains exactly two intersection points of 7 with y a lens. There can be no punctures
contained in the disappearing lens, or the deformation could not take place.

Now delete the point of intersection of arc 2 with C from S to make a sphere
S’ with six punctures. Arc 2 can now be separated into two arcs, arcs 2a and 2b,
where arc 2a connects ¢, and the new puncture gg, and arc 2b connects g¢ with g.
Each time n and p pass through arcs 1, 2a, 2b, 3, 4 or 5, either both their directions
change or they both stay the same. Since the intersection points on the boundary of
the lens in question have the same orientation, the lens must contain some puncture.
The lens cannot contain any puncture except gg, or 7 and g could not be deformed
on S across the puncture to make the lens disappear. But no lens can contain only
the puncture gg by the construction of C.

Hence the minimal number of intersection points of 7 with y is 2|n5s/n1 * pa/mq|+
2|n3/ng * p3/my|. Since n2/nq * pa/mq and n3/ny * p3/my4 have the same sign, this

expression is equal to 2|(nz/n1,n3/n4) * (u2/m1, ps/m4)).
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Next suppose 72/ny * pa/my and n3/nyg * ps/m4 have opposite signs. Then the
intersection points in Sy and Sy are oriented differently. It also follows that sgn(ns) =
sgn(ns) = sgn(p2) = sgn(us).

Suppose the intersection points in Sy are negatively oriented with respect to 7.
Orient the curve C so that for any point « in C N ST and any point 3in C N S™, the
points «, # and gg occur in that order.

Let z denote a C-intersection point on 7 and let y denote a C-intersection point
on u. Suppose the points z, y and ¢gg occur in that order on C, and suppose there
is no C-intersection point z on C such that z, z and y occur in that order on C.
Since all the intersection points in S, are negatively oriented, and all the intersection
points in S5 are positively oriented, the component of S — {5 U u} containing thé
segment of C' from = to y must be a lens containing no punctures. Hence 7 can
be deformed to make this lens disappear. When this deformation is performed, the
points z and y are interchanged on C. Cancelling positively and negatively oriented
intersection points in this manner, we can continue until either all of the differently
oriented intersection points have cancelled, or until for any C-intersection point = on
n and any C-intersection point y on u, the points y, ¢ and ¢g occur in that order on
C. The latter case happens when we have interchanged exactly 2nym; C-intersection
points, and we have cancelled 4n;m; of all the intersection points. At this stage, any
lens whose boundary contains differently oriented intersection points must contain gg,
and it must also contain another puncture, since the intersection points are oriented
differently, so no more cancellation can occur on the five-times punctured sphere S.

If the intersection points in S, are positively oriented, the same argument works
by interchanging the roles of  and .

q.e.d.

If the arc intersection numbers of two multiple curves satisfy n; + nj11 = nj42 +

Nj4s+nj44 and m;+mjpy = mjyo+mjyz+m;iq for some j, then a cyclic permutation
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of the indices will set 7 = 4 so that Theorem 5.1.4 applies. This cyclic permutation
corresponds to a rotation of the multiple curves on S. If there is no such j, the
intersection number may be more difﬁcultl to compute. The existence of such a j
implies that each of the two multiple curires is carried by one of two train tracks.

A train trackon S is a graph 7 on S consisting of edges called branches and vertices
called switches. The branches meeting at a switch must be tangent there. Each branch
is assigned a nonnegative integer called a weight. Each switch is oriented, and the
sum of all weights on the branches leading to a switch with positive orientation must
equal the sum of all the weights on the branches leading to the switch with negative
orientation. A multiple curve 7 is carried by the train track 7 if there is a map
¢ : S — S homotopic to the identity such that ¢(n) C .

One possible train track on S which carries a multiple curve whose arc intersection
numbers satisfy ng + ns = ny + ny + ns is shown in Figure 5.3. The other possibility

is the reflection p of this train track.
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Figure 5.3: A train track
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5.2 Actions of the modular group

The modular group of a surface is the group of homotopy classes of orientation-
preserving homeomorphisms of the surface. In this section we study the effects of the

modular group on the arc intersection numbers of simple closed curves on a surface

of type (0,5).

Lemma 5.2.1 Let (ny,...,ns5) be the arc intersection numbers of one or more simple
closed curves on S. Let S¢ denote either ST or S™. Suppose there is no segment in
S¢ connecting arcs 1 and 1 + 1. Let o denote an arc in S¢ from the puncture g1
to the puncture q;—1. Then the minimal intersection number of o with the curves is

n; + niy1.

Proof: Each arc intersection point on arc ¢ and arc ¢ + 1 must be the endpoint of a
segment in S¢. Since none of these arcs can connect arcs z and ¢ + 1, each one must
intersect o at least once. Clearly one can deform o to intersect each of these segments
exactly once.

q.e.d.

Lemma 5.2.2 Let (ny,...,n5) be the arc intersection numbers of one or more dis-
joint simple closed curves on S. Let S¢ denote either St or S™. Suppose there is a
segment in S¢ connecting arcs ¢ and ¢ + 1. Let o denote an arc in S¢ from g;4 to
gi—1- Then the minimal intersection number of o with the curves is the mazimum of

2ni43 — n; — ngy1 and [n; —ngg .

Proof: Suppose first that n;y3 > n; and n;43 > n;41. Then n; + nyp1 — ngy3 is less
than or equal to the minimum of n; and n;y;. There are n; + n;y; arc intersection
points on arcs z and 7 + 1, 2(n; 4+ n;41 — ni43) of which are connected by segments in
S¢. Thus there are n; + n;y1 — 2(n; + niy1 — Nip3) = 21,43 — n; — niy1 points on arcs i

and ¢+ 1 which are endpoints of segments in 5S¢ not connecting arcs ¢ and : +'1. Each
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of these segments must intersect o at least once, and clearly ¢ can be deformed to
intersect these segments only once. Since n;13 > n; and n;43 > niy1, the maximum
of 2n,43 — n; — nyp1 and |n; — iy 18 2n443 — N; — Ny
Suppose next that n;,3 is less than one of n; and n;;;. Without loss of generality,
assume that n; > n;y;. Then of the n; + n;y; arc intersection points on arcs ¢ and
1+ 1, exactly 2n; 4, of these are connected by segments in S¢. Thus there are n; —n;44
points on arcs 7 and 7 + 1 which are endpoints of segments in 5S¢ not connecting arcs
i and ¢ + 1. Hence in this case the minimal intersection number of ¢ with the curves
18 1 — Myy1.
q.e.d.
Let S’ be the surface obtained by interchanging the punctures ¢; and ¢s via a half
Dehn twist which takes arc 2 to an arc in S'~ and arc 5 to an arc in S’t, and which
leaves the other three arcs invariant (reversing the direction of arc 1). Label the arcs,
punctures, and arc intersection numbers of S’ as arc 1’ through arc &', ¢ through ¢;

and n} through n} in the usual way. (So, for example, ¢; = g5 and ¢}, = ¢2.)

Lemma 5.2.3 Suppose there is no segment of the disjoint simple closed curves on S
connecting arcs 1 and 2 in ST. Then there is no segment of the corresponding curves

connecting arcs 1’ and 2' in S't.

Proof: The inverse image of arc 2’ in S is an arc « from ¢, to g5 contained in S*.
Any arc intersection point on arc 1 must be an endpoint of a segment in ST which
crosses arc . This crossing point becomes an arc intersection point on arc 2/, and
the segment in ST connecting the arc intersection point on arc 1 to the crossing point
on arc ¢ becomes a segment in S’” connecting arcs 1’ and 2'. Since the curves are
disjoint, there is no segment connecting arcs 1’ and 2’ in §’*. If there are no arc
intersection points on arc 1, then the arc intersection numbers of S and §’ are equal.

q.e.d.
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Lemma 5.2.4 Suppose there is a segment of one or more disjoint simple closed
curves connecting arcs 1 and 2 in S*. Suppose the arc intersection numbers sat-
isfy ng > ny and ngy > ny. Then there is a segment of the corresponding curves

connecting arcs 1' and 2/ in S’ .

Proof: There are n; arc intersection points on arc 1, of which n; + n, — n4 are
connected to arc intersection points on arc 2 by segments of the curves in S *. Thus
there are n; — (ny + ny — ny) = ny — na arc intersection points on arc 1 which are
endpoints of segments in S* which cross any arc a from ¢; to ¢s in S*. Such an arc
« is the inverse image of arc 2’ in S. The ny — ny segments in S* connecting the arc
intersection points on arc 1 to the crossing points on arc a become segments in S’
connecting arcs 1’ and 2’

q.e.d.

Lemma 5.2.5 Suppose there is a segment of one or more disjoint simple closed
curves connecting arcs 1 and 2 in S*. Suppose the arc intersection numbers sat-
isfy n1 > nyg and ny > ng. Then there is a segment of the corresponding curves

connecting arcs 1’ and 2' in S'”.

Proof: Since ny > ng4, n1 + ny — ng > ng, so there are ny segments of the curves in
St connecting arcs 1 and 2. Thus, of the n, arc intersection points on arc 1, n; — ng
of these are endpoints of segments in S* which must cross any arc « in S* kfrom go
to gs. The n; — ny segments in S* connecting the arc intersection points on arc 1 to
the crossing points on arc a become segments in S’~ connecting arcs 1’ and 2’.

q.e.d.

Lemma 5.2.6 Suppose there is a segment of one or more disjoint simple closed
curves connecting arcs 1 and 2 in S*. Suppose the arc intersection numbers sat-
isfy ng > ng and ny > ny. Then there are no segments of the corresponding curves

connecting arcs 1’ and 2' in S'™.
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Proof: Since ny > n4, n; + ny — ng > ny, so there are n; segments of the curves
in ST connecting arcs 1 and 2. Thus, none of the arc intersection points on arc 1
a're endpoints of segments in ST which must intersect an arc « in S* from ¢ to gs.
Since there is a segment of the curves connecting arcs 1 and 2 in S*, any segment
connecting arc 1’ and 2’ in '~ must correspond to segments in St which connect arc
1 and such an arc a.

q.e.d.
Theorem 5.2.7 n, =52 + n;.

Proof: Suppose first that n; > 0. Then there is no segment connecting arcs 1 and
2 in S*. If ny > ng4, then n; = ny, and by Lemmas 5.2.1 and 5.2.3, 5, = n} =
n1 + n2 = 92 + n1. If ny < ny then 52 = ny + ny — ny, and by the same lemmas,
My =Ny +ny —ny =ny +ng +ng —ng =g+ ny.

Suppose for the rest of the proof that n2 < 0; we split this part of the proof
into three cases. For the first case, suppose ny > n; and ngy > ny. Then 5, =
—(n1 + nz — n4), and by Lemmas 5.2.2 and 5.2.4, ny, = 2ny — ny — np and n} =
ny+ny—ny=2ng—n; —nyg+n; —ng=ng—ng =12+ n;.

For the second case, suppose n; > ny and n; > ny. Then np, = —n,, and by
Lemmas 5.2.2 and 5.2.5, n}, = n; — ny and 95 = n) = ny — ng = 12 + ny.

For the last case, suppose that ny > ng and ny > ny. Ilf ng > ny, then g = —(n1+

n2 — ng), and by Lemmas 5.2.2 and 5.2.6, ny = ny —ny and 9 = —(ny +ny —ny) =
—(n1 +n2 —ny —ny) = ng —ng = N2+ ny. If ng < ny then g, = —ny, and by the
same two lemmas, n}, = ny, — ny and 7, = —n), =1, + ny.

q.e.d.

Corollary 5.2.8 Suppose there are two sets of disjoint admissible simple closed curves

on S with rational numbers (n2/n1,n3/na) and (p2/mq, ps/ms). Let (nh/ni,ni/nk)
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and (py/my, ps/my) be the rational numbers of the associated sets of curves on S'.

Then (n9/n1,7m3/na) * (p2/ma, pa/ma) = (my/ni, ma/my) * (u/mi, pa/my).

Proof: By the construction of S, n] = ny, 73 = 93, nj = ny, mjy = my, ps = ps, and
mj = my4. By Theorem 5.2.7, nj = 9o+ ny and p), = po + my. Thus, npj/n] * ub/m) =
nN2/n1 * fia/my, and the corollary follows. ‘

q.e.d.

Lemma 5.2.9 Suppose the arc intersection numbers of two disjoint sets of disjoint
admissible simple closed curves on S are (ny,...,ns) and (mq,...,ms). For1 <i<
5 let 4; =mn;+m;. Lt N =30 n; and L =32 4;. Then if €; + £;1, = L/2, then
n; + njp = N/2.

Proof: If £;+¢;.1 = L/2, then there is a side S¢ of S (either S* or S~) on which each
segment of the curves has one endpoint on arc j or j + 1 and the other on one of the
three other arcs. Since the curves with arc intersection numbers (nq,...,n;) form a
subset of the curves with arc intersection numbers (41, ...,%s), each segment in S¢ of
the curves with arc intersection numbers (n4, . ..,ns) must have one endpoint on arc j
or j+1 and the other endpoint on one of the three other arcs. Hence n;+n;.; = N/2.

q.e.d.

Lemma 5.2.10 Suppose the arc intersection numbers of two disjoint sets of disjoint
admissible simple closed curves on S are (ny,...,ns) and (my,...,ms). Then, for

each 1, if n; > n;p3 then m; > m;y3, and if n; < n;y3 then m; < myys.

Proof: If n; > n4 then there must be a piece of the curves with arc intersection
numbers (nq,...,ns) which starts on arc 1, eventually passes through arc 3 and
returns to arc 1 before touching arc 4. If m; < my then there must be a piece of

the curves with arc intersection numbers (my,...,m4) which starts on arc 4, passes



58

through arc 2 and returns to arc 4 before touching arc 1. But these two pieces must
intersect. So the cases ny > ng, m; < my and ny; < ny4, m; > my cannot occur.
q.e.d.
Lemma 5.2.11 Suppose the arc intersection numbers of two disjoint sets of disjoint
admussible simple closed curves on S are (n1,...,ns) and (m,...,ms), and the ra-
tional numbers of these sets are (nz2/n1,nms/n4) and (p2/mi, us/ms4). Let j denote an
index such that nj+nj11 = njyo+njps+ nj_g and m;+mjqy1 = Mjyo+mjps+mjpq.

Then |(n2/n1,n3/n4) * (p2/m1, ua/ms)| is equal to:

(i) |(nimg — ming) + (namy — many) — (nimy — mang)|, if j =1, 2, or 8; or
(11) |(nimg — ming) — (n3my — mgny) — (nimg — many)|, if j = 4; or

(iit) |(nime — miny) — (namy — many) + (nimy — mang)|, if j = 5.
Proof: This is an easy computation using the definitions of the rational numbers
and the operator *.

q.e.d.
Let S be the surface obtained by rotating S so that arc 7 = arc 1 —1 and §; = ¢;_1

for 1 <1 < 5. Let  and ji denote the images of 7 and g under this rotation.

Lemma 5.2.12 Suppose the arc intersection numbers of two disjoint sets of disjoint
admissible simple closed curves on S are (ni,...,ns) and (mq,...,ms), with rational

numbers (92/n1,m3/n4) and (pz/my, ps/ms). Let S denote the surface described above.
Then

|(n2/n1,m3/n4) * (p2/ma, pa/ma)| = |(12/71,13/114) * (fz/ iy, fis/1iig)]-

Proof: For notational purposes, let N denote |(12/7i1, 7s/153) * (12 /7741, iz /m4)]. Sup-
pose first that 7 = 1, 2, or 3. Then

|(n2/m1,m3/n4a) * (p2/ma, pa/ma)| = |(nimg—maing) + (namy—many) — (namyg —myng)|
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by Lemma 5.2.11, and if j = 1 or 2 then

N = |(nsmq — msng) + (nems — mana) — (nsms — msns)|

= | = (nymgy — myng) — (namyg — mang) + (nimg — myng)|.

If 3 = 3 then

N = l(nSml - msnl) - (nzms - mzns) - (nsms - msns)l
= |(nimg — myng) + (nzmy — many) — (n1mg — mynyg)|.

Next suppose j = 4. Then

[(n2/n1,m3/na) * (pa/ma, pa/ma)| = [(namy —ming) — (namy—mang) — (nimg—ming)|

by Lemma 5.2.11, and

N = |(nsmy — msny) — (ngms — mang) + (nsms — msns)|

= | — (nimgy — ming) + (namy — manyg) + (n1m4 — myng)|.
Finally suppose j = 5. Then
|(n2/n1, 13/ na) * (2/ma, ps/ma)| = |(n1ma—mins) — (nama—many) + (n1my —many)|
by Lemma 5.2.11, and

N = |(nsmy — nims) + (nams — mang) — (nsms — msns)|

= | = (nimy — mynz) + (namyg — many) — (Rymy — Mmynyg)|.

q.e.d.
Magnus ([Mag34]) has proven the following theorem (see also [Bir74], p. 164).

Let g1,...,9, denote the punctures of an n-times punctured sphere S, .
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Theorem 5.2.13 The modular group of S, is generated by a half Dehn twist about
a curve enclosing q; and q, which interchanges q1 and g, and a rotation which takes

gi 10 git1 for 1 <i < n—1 and which takes g, to ¢1.
By this theorem, Corollary 5.2.8 and Lemma 5.2.12, we have proven the following

Theorem 5.2.14 Suppose the arc intersection numbers of two disjoint sets of dis-
joint admissible simple closed curves on S are (ni,...,ns) and (m4,...,ms), with

rational numbers (n2/n1,m3/n4) and (p2/mi, ps/ma). Then the formula

l(n2/n1a 7]3/714) * (#2/mla ﬂ3/m4)|
ts invariant under the modular group of S.

Corollary 5.2.15 Suppose the arc intersection numbers of two disjoint admissible

simple closed curves on S are (ny,...,ns) and (mi,...,ms), with rational numbers

(12/n1,m3/n4) and (p2/m1, p3/ma). Then

[(n2/n1,m3/n4) * (p2/m1, pa/my4)| = 0.

Proof: There is an element of the modular group which takes the curve with ra-
tionals (m,/m1,73/n4) to the curve with rationals (0/1,0/0); thus we may assume
(12/n1,7m3/n4) = (0/1,0/0) and my > my. Hence |(nz/n1,m3/na) * (p12/m01, pia/ma)| =
|pt2| = mg. Since the curves are disjoint, mq = 0.

q.e.d.

5.3 Tables of cusps on the boundaries of My4 and My

Tables 5.1 and 5.2 show some of the cusps on the boundaries of My4 = M;; and
Moys. For the cusps on the boundary of Mp4, the rational number represents the

simple closed curve on the four-times punctured spheres which is pinched to a point.
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For the cusps on the boundary of My, the pair of rationals is the sum of the pairs of
rationals of the two disjoint simple closed curves on the five-times punctured spheres

which are simultaneously pinched to points. All decimals are approximations.

p/q Kyp/q cusp
0/1 B, B;! 2%
1/1 BiB,A 2+ 2
1/2 B1B;'B'B,A 1 ++/31
1/3 B1B;'BB,B{ B, A | 0.581 + 1.694s
1/4 | BiB; B B;' B BB B, A | 0.352 + 1.7213

Table 5.1: Cusps on the boundary of Mg 4

(n2/n1,m3/14) words in H,, cusp
(0/2,0/1) B\B;', B;'B;! (2, 47)
(0/1,0/2) - B;'B;!, B;'A (41,2:)
(2/2,0/1) B1B,A, B;'BA (2 + 24, 44)
(0/2,1/1) B\B;', B;'B:B, (21,2 + 41)
(0/3,1/2) B,B;', B;'B;B, By ' B;! (21,1 4+ /37 + 2i)

(0/3,-1/2) B\B;', B,B;'B;' B, B; (26, —1 + /35 + 2)
(1/2,1/2) B;'B3B,, B;'B;A™! (1 +/Ti,1 4+ /T5)
(=1/2,1/2) B;'B;', B,B3B, A (=14 V70,1 4+ /T0)

(—=1/2,-3/2) BBy BsA, ByByBsBi | (—1+Ti, -3+ /i)

(0/4,1/3) | ByB;', B;'B3sB; BsB1 By B3 | (24,0.581 + 1.694: + 27)

Table 5.2: Cusps on the boundary of Mgy s



CHAPTER 6

HIGHER DIMENSIONAL TEICHMULLER SPACES

Kra’s construction of surfaces of type (g,n) involves 3g — 3 + n amalgamated free
products and HNN extensions (see [Kra88]). Let S denote a Riemann surface of type
(g,n). A mazimal partition P on S is a maximal set of nonhomotopic simple closed
curves on S, none of which is homotopic to a puncture or homotopically trivial. There
are 3g — 3 + n curves in any maximal partition on S. The set S — P is topologically
a union of 2¢g — 2 + n thrice-punctured spheres. (This is sometimes called the “pair
of pants” decomposition of S, since a thrice-punctured sphere is homeomorphic to a

“pair of pants”.)

Hence, S can be constructed by gluing 2g — 2+ n pairs of pants together along the
curves of the maximal partition. Start with any one of the pairs of pants, and pick
one of its boundary curves. This boundary curve corresponds to one of the curves
in the maximal partition; and there is some other boundary curve corresponding
to the same curve in the partition. Glue the boundary curves together to make a
new surface S’. If the boundary curves both lie on the same pair of pants then an
HNN extenston is used; if the boundary curves are on different pairs of pants an
amalgamated free product is used. Next choose another boundary curve on 5/, and
glue it to the corresponding boundary curve. If this boundary curve is also on S’, an
HNN extension is used; otherwise an amalgamated free product is used. Continuing
in this way, the surface S is constructed from the 2¢g — 2 + n pairs of pants using ¢

HNN extensions and n — 3 + 2¢g amalgamated free products.

62



63

6.1 Surfaces of type (1,2)

Start with the group representing a surface of type (0,4): H, = (A, By, B;,;). We want
to cut off two punctures and glue the boundary curves together to form a surface of
type (1,2). As this problem is solved for the T case, we need only conjugate; that is,
we find a Mdbius transformation P so that PS;P~! = (AB;)*! and PS,P~! = BF!.
Then if PS;P~! = AB,, then PS;P~! must be B; and

2 0
P = (\{;n 1 >’
Ven  Von
where n = +i. On the other hand, if PS;P~! = (AB;)™!, then PS;P~! must be

Von 0
(% )
Vn  Ven

Br!, and

where n = +1. In the first case,
PT P"lﬂ— (—ia: —1 22')

and in the second case,

i i—iz —2
PT. P~ = i .
T2
If we set Q,(z) to be the Mobius transformation determined by the first matrix, then
Qin(ty) =2 — viy%, so @), takes circles in H tangent to R at 0 to circles in the lower

half plane tangent to R at 2. Thus we discard this case and we set
i—iz —2
Q- = iz A

Quis( ) = @+ D) =

Then @Q,(0) = 2,

and

2t 2 2t 2
utiv\" -)—(2 — ) =713
IQ + (’U + 'U) ( + 'U)l lvl
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Thus @Qu+:,(2) takes the circle of radius %, center % (v > 0) to the circle with radius
%, center 2 + % Qu+iv(z) takes the interior of the first circle to the exterior of the
second, since Qu+w( H) = M € R - {2}.

Let J,, denote the HNN extension of H, by @),. (See Figure 6.1.) The embedding
of T 2 is the set of all (z,y) € H? such that J;, is a terminal b-group and A(J,y)/ sy

is a surface of type (1,2). Denote this set by M .

_2

Figure 6.1: The action in the group J,,

Since M1 = Mo 4, one might wonder whether the same is true for My s and M 5.
It is known that Ty 5 and T3 » are biholomorphic (see, for example, [Gar87]). However,
it is not true that My s and M s, as we have defined them here, are the same set
in H?. For example, the point (z,y) = (3.2¢,2.5¢) is in M; 2 but not Mys. Maskit’s
Second Combination Theorem can be used to show that (3.2¢,2.5¢) € My,. This
point is not in Mo s because Ba3.9:B3 4.5 is parabolic; the point (3.2¢,2.5¢) is a cusp
on the boundary of My s. In fact, if z = —8/y, then B, B3, is parabolic.

In a forthcoming paper, L. Keen, J. Parker and C. Series ([KPS]) promise to
generalize the Farey series enumeration of simple closed curves on once-punctured

tori to an enumeration of the simple closed curves on twice-punctured tori. It will be
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interesting to see the relationship between their enumeration of simple closed curves
on twice-punctured tori and the enumeration of simple closed curves on five-times
punctured spheres presented in this thesis. (The Teichmiiller spaces 73 2 and Ty 5 are

the only ones of complex dimension 2.)

6.2 Surfaces of type (2,0)

Start with the group representing a surface of type (1,2): Jz, = (A, By, B2z, Q). To
find a transformation which will cut ‘off two punctures and glue the boundary curves
together, we need only conjugate. Let P(z) = z — z, and define R,, = PA™1Q,P~".
Let J., . denote the HNN extension of J,, by R; .. The embedding of T3, is the
set of all (z,y,2) € H® such that J,, , is a terminal b-group and A(J;,.)/Jzy,. 1S @
surface of type (2,0). The transformation R, cuts the surface of type (1,2) at the
two punctures corresponding to the points z and z +2 and glues the boundary curves

together to form the surface of type (2,0). Note that R;;ABZ,:BR:B,Z = B, , and

2 2

2 2

(zz+22+2)  —i(2224+2z2+4z+4)

See Figure 6.2.

A. Haas and P. Susskind ([HS92]) have studied simple closed curves on surfaces
of type (2,0) from the viewpoint of train tracks. They have derived a formula for
the number of components of a multiple curve determined by an integral weight
train track on the surface. Similar methods might be used to determine intersection

numbers of simple closed curves on surfaces of type (2,0).
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Figure 6.2: The action in the group Jgy,,



CHAPTER 7

THE BIHOLOMORPHIC MAP FROM T7; TO THE UPPER HALF
- PLANE

The purpose of this chapter is to construct and approximate the explicit biholo-
morphic map from T;; to H. This map involves the integration of an abelian dif-
ferential on a Riemann surface. The abelian differential can be constructed using a

cusp form for a Kleinian group. We start with a discussion of automorphic forms.

7.1 Automorphic forms

Let T be a Kleinian group. Suppose F(z) is a function which is meromorphicin Q(I')
and satisfies F'(y(2))y'(2)? = F(z) for all ¥ € I'. Let P denote a parabolic element
of I' with fixed point p. Then there is a constant ¢ such that
11
P(z)—p z-p

+c

for all z. Thus,

SO

Therefore,

(P(2) = p)"F(P(2)) = (P(z) —p)*

= (z_p)ZqF(z)’

and so the function (z — p)* F(z) is invariant under the group (P).
Since P is parabolic, there is a circular disc which is precisely invariant under

27

(P). The map z — t = exp(c(z_p)) sends this disc onto a punctured disc around the

67
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origin. Furthermore, exp(cé’fp)) = exp(c(i’r_ip)) if and only if z = P*(w) for some

integer n. Since (z — p)*F(z) is invariant under (P) and meromorphic in Q(T),
there is a function ¢(¢), meromorphic in the punctured disc around the origin, so that
g(t) = (2 —p)?*F(z). Then F is meromorphic (holomorphic) at p if g is meromorphic
(holomorphic) at the origin.

If F(z) is meromorphic on (T") and on the set of parabolic fixed points of I', and
F(v(2))Y'(2)? = F(2) for every v € T, then F' is an automorphic form of weight -2q
for ', or an automorphic q-form for I'. Likewise, F' is a holomorphic automorphic
g-form for I if it is holomorphic on (T') and on the set of parabolic fixed points of -
I, and F(y(2))y'(2)? = F(z) for all y € T".

A cusped region for the fixed point p of the parabolic element P € T is a circular
disc D in A(T') which is precisely invariant under (P) such that ¢(D) N D = @ for all

g € I' = (P). For a proof of the following theorem, see page 117 of [Kra72] and page
47 of [Kra84b].

Theorem 7.1.1 Let ' be a finitely generated, non-elementary Kleinian group with
invariant component A(T), and let A\(z) denote the Poincaré metric on A(T') . Let
F be a holomorphic automorphic q-form for I'. Then the following conditions are

equivalent:

(1) J,A79(2)|F(2)|dz dy < oo, where w is any fundamental domain for the action
of I' on A(T),

(ti) if p is a fized point of the parabolic element P € ', and {z,} is a sequence of

points in a cusped region for p with z, — p, then F(z,) — 0;
(iii) the function g(t) = (z — p)*?F(z) vanishes at t = 0;

(iv) sup{A~4(2)|F(2)|:z € A(I')} < o0.
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If any of the above conditions hold, then F(2) is a cusp form of weight -2¢ for I .

The surface A(G,)/G, is a punctured torus. (In this chapter we follow the no-
tation of [Wri] and use G, instead of G,.) This means there is a neighborhood of
the puncture conformally equivalent to the punctured disk. Denote the puncture on
A(G,)/G, by Py, and let A(G,)/G, denote the surface with the puncture filled in.
That is, let p denote the fixed point of the parabolic element P € GG,. There is a disc
D contained in A(G,) which is precisely invariant under (P) in G, so that D/(P)
is naturally embedded in A(G,)/G,.. Since P is parabolic, there must be a constant

¢ so that

21t
¢(z—p)

for z € C. The map z — exp( ) is a conformal map from D onto a punctured
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disc around the origin A — {0}. Furthermore, exp(c(z_p)) = exp(c(w_p)) if and only if

z = P™(w) for some integer n. Hence, this map induces a conformal homeomorphism

¢ : D/{P) — A — {0}. Define £(P,) = 0. Then A(G,)/G, is the Riemann surface
A(G,L)/G,., along with another point Py and a coordinate chart (D/{P) U Py, £).
Given a Riemann surface S, a (holomorphic) ¢-differential { on S is an assignment
of a (holomorphic) function f to each local coordinate z on S such that f(z)(dz)?
is invariant under change of local coordinates. A 1-differential is called an abelian
diﬁérential; a 2-differential is called a quadratic differential. If G is a Kleinian group,

and F'is a (holomorphic) automorphic form of weight —2¢ for G, then F' projects to
a (holomorphic) g-differential on Q(G)/G.

Lemma 7.1.2 If F(z) is a cusp form of weight —2q for G, then the corresponding

g-differential on A(G,)/G,, has a pole of order < g — 1 at the puncture.

Proof: Let p denote a parabolic fixed point of G, and let g(t) = (2 — p)*?F(z). We
want to find the order of the g-differential F'(z) dz? at the puncture Py of A(G,)/G,..
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. _ 271 dz _ c(z—p)?
Now since t = exp(c—(—;p—)), &= J_z—m)t— Thus,

e (z_p)zq 2) d2?
F(2)dz? = ———(z—p)zqF( )d
_9(t) dzy,
e

_ 9 (C(z—P)2>q(dt)q

dt)?

(z—p)2 \ —2mit

€ \a 4t
—27rit) )

= g(t)(

Hence, the order of F(z)dz? at Py is the order at ¢ = 0 of ¢(t)(===)?dt?, which is

—2mit

ordeg(t) — g.
Since F'(z)dz? is a cusp form, ordog(t) > 1, so the order of F(z)dz? at F, is
> 1 — g; so F'(z)dz? has a pole at Fy of order < ¢ — 1.

q.e.d.

Lemma 7.1.3 The sum of the residues of an abelian differential over all points on

a compact Riemann surface is zero.

Proof: Let { be an abelian differential on a compact Riemann surface. Triangulate
the surface so that no pole of { lies on the boundary of any triangle, and each triangle
contains no more than one pole of (. Denote the triangles by Ti, ..., T, and their
boundaries by 073, ..., 0T,. Then the sum of the residues of { over all points on the

surface is i=1Jar; (- This sum is zero since each side of each triangle appears

1
27
twice in opposite directions.

q.e.d.

Proposition 7.1.4 If F(z) # 0 is a cusp form of weight -4 for G, then F' is nonzero
on A(G)).

Proof: The cusp form F' projects to a quadratic differential f on A(G,)/G, which

is holomorphic on A(G,)/G,. Furthermore, by Lemma 7.1.2, f has at most a simple
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pole at the puncture P,. Let g # 0 denote a holomorphic abelian differential on
A(G,)/G,. Then g is nonzero, since it is defined on a compact Riemann surface
of genus 1. (This follows from the Riemann-Roch Theorem; see [FK91}.) Thus, 'gi
is a meromorphic abelian differential on A(G,,)/G,., holomorphic on A(G,)/G, and
having at most a simple pole at F;. By Lemma 7.1.3, *gi must be a holomorphic
abelian differential. Therefore, -5 is nonzero on A(G,)/G,, and so F is nonzero on
A(G,).

q.e.d.

Lemma 7.1.5 Suppose ) is an open set in C, and {fn(2)}32, is a sequence of holo-
morphic functions on Q. If f[o 32, [fu(2)|dzdy < oo, then 352, fu(z) converges

absolutely uniformly on every compact subset of ).

Proof: Let K be a compact set in 2, and let r > 0 be less than the distance from K
to the boundary of Q. If 29 € K and f is holomorphic on § then by the mean value

property for holomorphic functions (see, for example [Con78]),

= z)dz d
= T //D(zo,r) T

where D(z,r) denotes the disc around zo with radius r. Hence

Ig_i:_fn(z())l < = //D(W)Ian )\ de dy
7rr2//K|an 2)] de dy

T n—]

IN

where K, denotes the set of points z € § such that z € K or the distance from z to
K is less than r.

q.e.d.

Let N denote the subgroup of GG, generated by S;, and consider the set of right

cosets of N in G,: {Ng : g € G,}. Two cosets Ng; and Ng, are the same if
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and only if go¢7' € N; that is, if and only if g, = SP¢, for some integer n. Since
(519)'(2) = S1(9(2))g'(2) = ¢'(2) for all g € G, g;(2) = g4(z) for any two elements
g1, g2 In the same right coset. Let T denote any set consisting of exactly one element

from each right coset. Then Py(z) = 3" ¢y ¢'(2)? is well-defined for any integer q.

Proposition 7.1.6 The series 3_,cv ¢'(2)? converges absolutely uniformly on com-

pact subsets of A(G) to a cusp form of weight -4 for G,,.

Proof: Let V denote the vertical strip {z : 0 < Re(z) < 4}, and let w be any
fundamental domain for the action of G, on A(G,). For each right coset of N = (57)

in G, choose a representative g; so that g;(w) is contained in V. Then

//wlZgé(zfldwdy < //wz 19(2)*| dz dy

g;€Y g;€T

= % [[ 16 dedy

g;€Y

=3 //gj(w) dz dy

g;€Y

< //A(G,,)nv de dy

< oo.

By Lemma 7.1.5, the series 3,y g'(z)? converges absolutely uniformly on compact
subsets of w. Since w was an arbitrary fundamental domain, this series converges
absolutely uniformly (to a holomorphic function) on compact subsets of A(G,,).

To show that P,(z) is an automorphic 2-form for G, note that if v € G, then

P(v(2))Y(2)? = Y d'(v(2)¥(2)?

geY

= Y ((g07)(2))?

geY

— Z h/(z)2

h=govy€eY

= Py(2).



Since [f, |P:(z)|dzdy < oo for any fundamental domain for the action of G, on
A(G,), Pa(z) is a cusp form of weight -4 for G,,.
q.e.d.
We prove in Section 7.2 that P,(z) = Pa(u;2) is not identically zero on A(G,).
By Proposition 7.1.4, P,(p;2) is never zero on A(G,), so it has an analytic square
root there. In fact, y/Pa(y; 2) is a cusp form of weight -2 for G,,. To prove this, let F
be the lift to A(G,,) of the nontrivial holomorphic abelian differential on A(G,)/G,.
Then F? is a cusp form of weight -4 for G,. By the Riemann-Roch Theorem (see, for
example, [FK91], especially page 77), the complex dimension of cusp forms of weight
-4 for G, is one. Hence there is some constant ¢; € C with F? = ¢; Po(y; 2). Thus, if
c2 = ¢i, then either F = cg\/m or F = —cz\/}m. Since F' projects to the
holomorphic abelian differential on A(G,)/G,,, it is a cusp form of weight -2 for G,,.
Let ( denote the abelian differential on m which is the projection of
Py(p;2). Then {(} is a basis for the space of holomorphic abelian differentials on
A(G,)/G,. (This space has complex dimension 1 by the Riemann-Roch Theorem.)
Choose a base point Qg on A(G,)/G,, and let {a,b} be the canonical basis for
T (m, Qo), so that the loops a and b have exactly one point in common and
the angle from the positive direction on the a loop to the positive direction on the
b loop at the point of intersection is positive and less than 7 radians. (Then if @ is
any point in A(G,), then any curve in A(G,) from @ to S51(Q) projects to a loop
on A(G,)/G, in the homotopy class of a, and any curve in A(G,) from Q to T,(Q)

projects to a loop on A(G,)/G,, in the homotopy class of b.) Now define ¢ : M;; — H

by () = 7= .

a

Proposition 7.1.7 Im(y(x)) > 0.

Proof: We will show that Im(f, { - f, () > 0. First cut A(G,)/G, along the loops

a and b to produce a rectangle R with sides a4, a_, by, and b_, where the sides a,
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and a_ are identified by G, to make the a loop (and similarly for b; and b_). Let g¢
denote an antiderivative of /P(z) in R. Then if z_ and z, are points on b_ and by
identified by G, then g(z4) — g(2-) = [, (; similarly, if w_ and w, are points on a_
and a, identified by G, then g(w;) — g(w-) = [, {. Thus,

a4

- \RD b

a_

Figure 7.1: The orientation of R

R e S
= 51; :/a_(yg_(ng)c)] +2li[/b+(§C—(§—ZE)C)]
= sl L+ fefd]
- g fpanc[ ]

= m([¢- [0

On the other hand, if we write ¢ = u + v, then { = du + i dv and

g 1
Q_€ = —(udu+vdv+iudv—ivdu)
2t 21

_ udu+vdv+udv—vdu

B 2i 2

B d(u2+v2)+udv—vdu

B 43 2

Thus, by Green’s Theorem (see, for example, [Buc78]),
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1 i = / udv —vdu
21 8Rg — Jar 2

// dudv > 0.
R

q.e.d.

Let G, denote the group (z — z+1,z — z+7), and define@ : A(G,)/G, — C/G,
by @(P) = WT(L}%ZC-), where 7. : C — C/G- is the natural projection. We will show
that @ is a conformal homeomorphism. We use divisors to do so. A divisor on a
Riemann surface is a formal symbol Y n; P;, where each n; is an integer and each P; is
a point on the surface. The degree of the divisor 3" n;P; is the sum " n;. The group
of divisors on a surface is the free abelian group on the points of the surface. We
choose to write the unity in this group as 0.

If f is a meromorphic function on a Riemann surface, the symbol (f) denotes the
divisor 3" n;P;, where the P;’s are the zeros and poles of f, and n; is the order of the
zero or pole P;; if P; is a zero, then n; > 0, and if P; is a pole then n; < 0. A divisor
is principal if it is (f) for some f.

Now extend @ to a map @; from the group of divisors on m to the group
of divisors on C/G, by defining @,(}" n;P;) = 3 n;a(F;).

A slightly more general statement than the following theorem is due to Abel; a

proof appears in [FK91].

Theorem 7.1.8 A divisor D on A(G,)/G, is principal if and only if deg(D) = 0
and oy(D) = 0.

Proposition 7.1.9 The map @ is a conformal homeomorphism.

Proof: Let £, denote the lattice {m + n7: n,m € Z}. Let ¢; and ¢, be two paths

in A(G,)/G, from Qo to P. Then ¢;c;" is homotopic to ma + nb for some m,n € Z;

¢ Jgett .
o %?( - é‘i:? = fjlf;— =m + nt € L,. Thus, @ is well-defined.
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P

Now let z be a local coordinate vanishing at P. Then @(z) = 7?5’(—( + % =

P
( z zjaz z . .
ff%( + I ”sz( ) ,s0@(z) = @, and @ is holomorphic.

Since @ is holomorphic and non-constant, the Open Mapping Theorem (see [Con78],

for example) guarantees that @(A(G,)/G,) is open in C/G,. Since A(G,)/G, is com-
pact, so is @(A(G,)/G,). Since C/G, is Hausdorff, @(A(G,)/G,,) is closed in C/G,.
Thus, @ is surjective.
Finally, to show that @ is injective, suppose there are two distinct points P, P’
on A(G,)/G, such that @(P) = @(P'). Then by Abel’s Theorem (Theorem 7.1.8),
P — P’ is a principal divisor on A(G,)/G,; but by the Riemann-Roch Theorem there
is no meromorphic function on a closed surface of genus 1 with a simple pole at one
point and no other poles. (See page 269 of [Spr57), for example.) This contradiction
finishes the proof.
g.e.d.
Let 13 = a(Fp), and let L. denote the lattice {w+m :w € L;}. Then the map
a:A(G,)/G, — (C—L;+)/G,, which is the restriction of @ to the punctured surface,
is also a conformal homeomorphism. Furthermore, it clearly preserves the marking.

Now choose a base point @ € A(G,) and define ¢ : A(G,) — C — L+ by

o(2) = Jg VPa(s; 2) dz

§[Pa(sz) d=

Let m, : A(G,) — Q(G,)/ G, be the natural projection. Then aom, =7, 0, so ¢
must map any fundamental domain for the action of G, on A(G,,) onto a fundamental

rectangle in C — L,+. It follows from the following proposition that ¢ is surjective.

Proposition 7.1.10 The map ¢ satisfies the equations ¢(S1(z)) = ¢(z) + 1 and

P(Tu(2)) = p(2) + 7.

Proof: First note that 13/ Pa(p;2)dz = [51/Pa(;2 +2)dz = [§+/Pa(;2) dz
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and
/T“("‘) Po(u; 2) d= / Po(p To(2))T,'(2) d=
Ndr = )
T.(@) 2 145 0 PRV H
= [ VBT (22 dz
= /Q\/Pg(,u;z)dz.
Thus,
J5T /Pl ) dz
P(S1(2) =
fQ Py(p; z) dz
TP de 55\ Papi2) de
3PP z)dz  [G 1 Palps; 2) dz
= 14 ¢(2).
Also,
JTul2 Py(p;2) dz
o(Tu(z) = =

fg+2 Py(p; ) d=
fg“(Q) Py(p; 2) dz f%i‘(g)) Py(u; z) dz

&P 2)dz  J3T [ Pa(s ) dz
= T+ ¢(2).

S; /( ) _ Py (p32) . . £ 1
1NCE L\ Z) = f 32 mdz 1§ never z€ro, @ 18 a coniormal map.
Q 2 (45

Proposition 7.1.11 The map ¢ : A(G,) = C — L.+ is a covering map.

Proof: We have shown that ¢ is a continuous surjection. Let z € C— L,«. Choose a
fundamental rectangle R for C — £+ such that z is in the interior of R. Then there
is a connected open neighborhood N of z contained in R. Now pick any connected
component of ¢~ }(N) in A(G,) and any fundamental domain F for the action of

G, on A(G,) which contains that component in its interior. Then each connected
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component of ¢™!(N) is an open set contained in a G, translate of F' of the form
g(F), where g = T2 ST™ - - T7w ST and 37_; n; = Y7, m; = 0. We have shown that
every point in C— L+ has an open neighborhood which is evenly covered by a union of
disjoint open sets in A(G,,), each one to which the restriction of ¢ is a homeomorphism
onto N. (These restrictions of ¢ are homeomorphisms by Proposition 7.1.9 and the
fact that a o 7w, = 7, 0 .)

q.e.d.
Lemma 7.1.12 Let R,(z) = p— z. Then R,G,R;' =G,.

Proof: Easy computations show that R,S1R;' = S;" and R, T, R;' =T,
q-e.d.
Recall that Py(z) = X, ¢'(2)?, where T is any set of right coset representatives
of (S1) in G,.

Lemma 7.1.13 For z € A(G,), Pa(z) = Po(p — 2).

Proof: By Lemma 7.1.12, the set of right cosets of (S1) in G, equals the set of right
cosets of (S1) in R,G,R;!. Thus,

Py(z) = 3 4(2)

g€T

= ) _(RiogoR;')(z)’

g€T

= 2 U(Buog)(B ())& ()

g€T

= 2 [(Ruog)(u—2)

g€eT

= Y [R,(g(p —2)d'(n— 2)]*

g€T

= > g(p-2)

g€eT

= Py(p—2).

q.e.d.
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Lemma 7.1.14 P(u;z) = Py(—1; —2).

Proof: Define J(z) = —z. Then J~! = J, and JT,,J = T_z, and JS;J = S7".

We first claim that for any g € G,, [(JgJ)(2)]* = [(J¢'J)(2)]*. Given any
g = TnSr .- TSP in Gy, define the length of g to be 3o_;(Ini| + |mi]). We
will use induction on the length of g to prove our claim. First, it is easy to compute
that for & = Sy, S7*, Ty, or T, %, [(JRJ)'(2)]* = [(JA'J)(2)]>. Assume the claim is
true for all words of length n, and let g have length n + 1. Then g = hg;, where
h =25, 87%, Ty, or T; ', and g; has length n. Thus,

(gTYEP = [(ThTTgd) ()P
= (R Tad)E) - (Jad) ()P
= (KNI I)E) - (o))
= [IFad)E) - (Ta TP
= [N (=2)- (o) B
= (Fa(-2) g (-)F
= (b (D)
= [Jg'J(2)

Now as g varies over all the right coset representatives of (S;) in G, JgJ varies

over all the right coset representatives of (S;) in G_z. Therefore, since for any g € G,

¢()? = [TgDFF = TTaTT()F, the equality Py(s; 2) = Fo(—F %) must
hold.

q.e.d.

Lemma 7.1.15 Fiz y=1t,¢ > 2. Let L, denote the horizontal line segment x + i%,
—1 < x < 1; and let L, denote the vertical line segment 1y, % <y < L. Then Py(z)

is real on L, and L,.
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Proof: By Lemmas 7.1.13 and 7.1.14, Py(z) = P»(—%) = P,(it + Z). In particular,

t 2
f0r0§y§5—77

Pz +ilz 1) = Bylit+a+i(;—v)
= Pyfit+z+ily-3))

= Pe+ils+u),

and setting y = 0 into both sides of this equation yields Py(z + 1) = Py(z + 13).

Thus, P,(z) is real on L,. Likewise,

Pia+i(z —v) = Pale+i(5+y)
= Pit-z-i(;+y)

= Py—z+ i(—;— _y)).

Setting = 0 into both sides here yields P;(i(§ —y)) = P(i(5 — y)), which proves
that Py(z) is real on L.
q.e.d.

Recall now that the map ¢ : M; ; — H is defined by

Jo\/P2(z) dz

P(p) = WEEr

where {a,b} is a basis for the fundamental group of A(G,)/G,, a corresponding to

S1 and b corresponding to T),.

Proposition 7.1.16 The map ¢ : My, — H takes the imaginary ray in My, to the

imaginary ray in H.

Proof: Since P,(z) is nonzero on A(G,,), there are two possible cases: either Py(z) >

0 on Ly and Ly, or P5(z) < 0 on Ly and Ly. (The line segments Ly and L, intersect
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at the point Zi.) Thus, on Ly and Ly, 1/P2(2) is either real or pure imaginary. In

either case,

i LA/ Pa(2) dz
i) = ——
v (fa v F2(?) dz)

i

[Pz +1id)da
f; JPa(iy) i dy

A Pae + i) da

= —(it).

q.e.d.

Proposition 7.1.17 The map ¢ : M1 — H satisfies the equation (p + 2n) =

P(p) + n, for any integer n.

Proof: Let P;(y;z) denote the function 3,ev(,) ¢'(2)?, where T () is any set of
right coset representatives of (S;) in G,. Since T,42, = S7T,, the set of right
cosets of (S1) in G, is the same as the set of right cosets of (S1) in Gui2,. Thus,
Py(p;2) = Po(p + 2n; 2) for any p € M.

Now 1 : M; 1 — H is defined by

b(y) = fb(u) \/Pz(ﬁﬁz) dz

Jatw) \/P2(u; z)dz

where a(u) and b() are curvesin A(G,,) projecting to the generators of 71 (A(G,)/G,)

corresponding to S; and 7, respectively. Thus,

VPo(p + 2n;2)dz
¢(ﬂ+2n) _ fb(;z+2n) 2(# )

fa(p,+2'n.) \/P2(ﬂ + 2n; Z) dz

fb(u+2n) V Pz(ﬂ) Z) dz

Jatutany VP2l 2) dz
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Since Tyyon = SPT,, Guian = G, and the set of curves of types a(p) and a(p + 2n)
are the same. Furthermore, b(y + 2n) can be chosen to be a curve of the type b(yu)

followed by n curves of the type a(g). Then

Pp(p+2n) = fb(#)\/mdernfa(u) Py(p; z) dz

o VP z)dz [ou/Pa(ps 2) dz

= p(p) +n.
qee.d
Lemma 7.1.18 A(G_z) = {-Z:2€ A(G,)}.
Proof: Let J(z) = —%. Then JG,J™! = G_z, so A(G_z) = J(A(GL)).
q.e.d

Proposition 7.1.19 ¢(—f) = —¢(p).

Proof: Let b(—%) and a(—%) be curves in A(G_z) from some base point @ to
)

T_z(Q)= 21 —7and to $1(Q

=1 = @) + 2, respectively. Then let —b(—f) and —a(—%)

denote the negative conjugates of the curves b(—%) and a(—f); that is, —b(—%) and

—a(—7) are curves from —Q to %'5 + p and —Q — 2, respectively. By Lemma 7.1.18,

these curves lie in A(G}). Thus,

— _ emVP(—E2) dz
Y(-F) = =
Jaemy VP2 (—H5 2) dz
=5 VP (=15 —2) d(-Z)
[ oy g

s V P 2) d(Z)

Ia VP (1 2) d(Z)
ST JPy(p3 2) dz

T [P o) d-
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q.e.d.

Notice that Proposition 7.1.16 follows immediately from Proposition 7.1.19.

Corollary 7.1.20 1 takes the ray Re(u) = 1 in My, to the vertical ray Re(t) = %

in H.
Proof: Propositions 7.1.17 and 7.1.19 imply that

Plit+1) = —p@t—1)

= —Plit—1+2)—1

= —pt+1)+1.

Thus, Re(y(éit + 1)) = 1.

q.e.d.

7.2 Eichler cohomology and the non-vanishing of the series

We begin by defining terms and notation. Throughout, we assume I' is a non-
elementary Kleinian group with co € (I'). (A Kleinian group is non-elementary
if its limit set contains more than two points; if this is true then the limit set must
be uncountable.)

Let ¢ be an integer > 2. Let D be any I-invariant subset of the Riemann sphere.
Then I' acts on functions F' on D by the formula (F - v)(2) = F(y(2))y'(2)'7%

Let II,_, denote the vector space of polynomials in one complex variable of degree

less than or equal to 2¢ — 2.
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A mapping x : I' = Iz.—2 is a cocycle for T' if x(m172) = x(71) - 2 + x(72) for all
1,72 €I'. A cocycle is a coboundary if there is some p € 3,5 with x(y) =p-v—p
for all v € I'. The first Eichler cohomology space H(I',Il5,—2) is the set of cocycles
modulo the coboundaries.

If A €T is parabolic, then a cocycle x is parabolic with respect to A if there is
some p € I, with x(A)(z) = (p- A)(2) — p(z). Note that if x is parabolic with
respect to A, and Az = z, then since A'(z) =1, x(A)(z) = 0.

A function F on D is an Eichler integral if for each v € T' there is some x(v) €
II34—2 such that the restriction of () to D is F' -y — F. In this case x is a cocycle
for T, called the period of the Eichler integral F, and we write x = pd(F).

We assume that z is a parabolic fixed point of I. Let P, denote the set of elements
of " which are parabolic and fix z, and let T'; denote all the elements of I' which fix
z. Let n = [I'; : P;]. Then z is ¢g-admissible if ¢ is congruent to 0 modulo n. The
point z is a cusp if P, has rank 2, or if z represents two punctures on Q(T")/I', or if
it represents one puncture on Q(T')/I" and there are two disjoint discs in Q(T') which
are precisely invariant under P, in IT".

The following theorem is due to L. Ahlfors ([Ahl82]) and D. Sullivan ([Sul81]).

Theorem 7.2.1 Let {a,} and {b,} be sequences of complez numbers and assume
Y. lan| converges. Then the series Y, J23— converges absolutely almost everywhere
in C. It converges in L' on compact sets. Also, if the b, are distinct, and the limit

function is zero almost everywhere, then a, = 0 for all n.

Proof: Fix a compact set K in C. Then there is a constant C(K) depending only

on K such that

//K Ialb]d:r dy < C(K)|al.

|2 -
So since }°, |an| converges, the series ) -22— converges in L' on K. In particular, it
—Un

converges absolutely almost everywhere.
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In order to prove the last part of the proposition we use the idea of a distribution.
A distribution is a linear functional on the space C°(C). (Distributions must be
continuous in a certain topology; see [Rud73], for example.) If A is a distribution,

then its partial derivative with respect to Z is defined by

Any locally integrable function ¢ induces a distribution A, by the formula

// 2) de dy.

So if g is a locally integrable function, then

( // 2) dz dy.

Thinking of _% as a distribution, then, for f € C*(C),

(g(z—b //cz—b@‘ )dwdy = maf(b).

(For a proof of the last of the above equalities, see [Rud87}, for example.) Therefore,
by Lebesgue’s Dominated Convergence Theorem ([Rud87], page 29), for any f €
¢ (0),

(T 2N = = [ )2 f(2)) dady

= -% /[C<z _"bn)(%f(z))dwdy
= Y anf(b)

So if 3~ ;22— = 0 almost everywhere, then 3" a,, f(b,) = 0 for every f € C;°(C). If the
b, are distinct, then a, = 0 for each n. For example, to show that a; = 0, take a

sequence fi € C(C) such that fi(d) = 1, the support of fi is contained in a ball
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around b; of radius 1, and such that |fi(z)] < 1. Then 0 = a; + Ex, where Ex — 0
as k — oo since Y |a,| converges.
q.e.d.

The following lemmas and theorem are due to I. Kra and appear in [Kra84a).

Lemma 7.2.2 Let z be a fized point of a parabolic element of I'. Assume oo € Q(T').

If z is a cusp, then Y. cr/p, |7’(.7:)|2 converges.

c

b
Proof: Let v = (a d) € SLy(C). Then ¢ = 0 for only finitely many elements of

I, and

ZI ]. Zl |c|_4 ].

el dl T G o= o)l
where 3’ means we sum over the elements where ¢ # 0. We can choose representatives
7 such that y~*(o0) is in the closure of a fundamental domain for P,. Then, since =
is a cusp, it is easy to see that |z — y7!(c0)| is bounded below by a positive number.
Since oo € (T'), >l cr/p, le|™* convérges. (See, for example, [For51], page 104.)

q.e.d.

Lemma 7.2.3 Let I' be a non-elementary Kleinian group with co € Q(I'). Let x be

a g-admissible fized point of a parabolic element of I'. Assume z is a cusp and ¢ > 2.

Let
o= Y

~€L/Px 7($) - (

Then 1(z,-) is a holomorphic Fichler integral for I' which is not identically zero.

Proof: Theorem 7.2.1 and Lemma 7.2.2 imply that the series converges in L! on
every compact subset of C. Since each of the terms 71(%)5}% is holomorphic on Q(I')
and L' convergence of holomorphic functions on any subset B of C implies uniform

convergence on compact subsets of B, 1(z,-) must be holomorphic on every compact

subset of Q(T').
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Recall that z is g-admissible if, for n = [[; : P;], ¢ = 0 modulo n. Now for
g,h € T/P;, g(z) = h(z) if and only if (A~ 0 g) € T,/P,. Any generator v of
/P, satisfies 7'(z) = €?"/" so if = is g-admissible, then 4/(z)? = 1. Thus, if z is
g-admissible, then

b= ¥ % 7(@) _ - 7' ()

b
~€T/Ty~ely/Ps 1T — ¢ ~err, 1T~ ¢

and all yz are distinct in I';/P,. Since 4'(z)? is not zero for any v € I'/ P,, Theorem
7.2.1 implies that v (z, () is not identically zero.
To show that ¥(z,-) is an Eichler integral for I' on Q(I'), fix g € I'. Then
7 (=)

1/’(%9(())9'(()1_"—1/)(:10,{) = ___g’(é')l—fI_ Z 7/(x)q

ver/p; TE 9¢ ~er/p, 12T ¢

B werZ/P,[(;:)—(gC) A4S %c(_—)_(]
g’(7-"16)qv’(-"fc)qg’l(C)1‘q1 3 7’(w)"]

e, (2 = Q)g'(r)7g'(() 1T —¢

-y 7 (2)ly'(v2)""2g ()5 = 1]

~€T/P; 7z —¢

Now
g (ve) 5 ()7~ 1
is a polynomial in { of degree 2q — 1 that vanishes at { = vz. So for each v € T,

7'(2)g'(y2)1"7g'(¢)3 79 — 1]
T —¢

is an element of IIz,_,. Since the series converges in L! on every compact subset of C,

it converges uniformly on compact subsets on C. Thus, ¥(z,¢(¢))g'({)*"? — ¥(z,()
is in Igq—g.

q.e.d.

Let x = pd(v(z,-)). Then the above proof shows that for any g € I', x(¢)({) can

be extended as a polynomial from (I') to the whole complex plane. In particular,
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for z € A(T),

x(9)(z) = Lim x(g)(¢)-

cen(n)
Lemma 7.2.4 Let P € T' be parabolic with the g-admissible fized point z. Let x =
pd((z,)). Then x(P)(z) £0.

Proof: Since oo € Q(T'), there is some circle C whose interior contains A(T'). Since

X(P) is a polynomial on C, and z is g-admissible,

x(P)a) = — [ XEE,

InidJc z—=zx

- L[y (AP e

2miJet A, (z—z)(yz — Pz) (z—2z)(yz—2)

where n = [['; : P;]. Since the sum converges uniformly on C,

W= ¥ [T e

~eTIT, )(yz — Pz) (z —z)(yz — 2)

Each of the integrals in the sum above is the sum of the residues of

N A@P@T ey
& = e =P Goo)(12=2)

b
at the poles of f(z). If 4 is the identity, then it is easy to compute that if P = (a )
c
in SL2(C) then

2¢(q — %)(cw + d)%a2
(cz —a)

Res(f;z) =
1 1)
= (q_E)P (:B),

since P is parabolic and fixes z. If 4 is not the identity, then straightforward com-

putations yield the equalities

Res(f;vz) = M,

YT —
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(P19)(@)"
(P~

and Res(f;z) = 0. Kra proves that Z[:’yﬁf - ((}f__ll,;y))(g;”)_(;] converges to 0, where the

Res(f; (P7'v)(2)) = -

sum is over all representatives of I'/I'; except the identity, in his paper [Kra84a).
Thus, X(P)(z) = n(g — §)P"(z) 0.
q.e.d.

Theorem 7.2.5 Let z be a g-admissible parabolic fized point of the non-elementary
Kleinian group I'. Assume oo € QI'), z is a cusp, and ¢ > 2. Let

o 0) = ol ) = (90 — A
90( 7C)—(PF( ’C) (2q 1)!7€§Pz ('7:1:—6)24.

Then ¢(z,-) is a holomorphic automofphic form of weight (—2q). Furthermore,
o(z,-) is not identically zero on any component A of I' which is invariant under
P,.

Proof: First note that

d2q-—1

(P(‘Ta C) = 'd_Cm"/)(‘Ta C)

So ¢(z,-) is holomorphic by Lemma 7.2.3. Now ¢(z, () can be rewritten in the form

oo, =@-1 Y LI oy > O

~€T/ Py (z —y~1()% - ~EP\T (z —~()x
Written in this new way, it is easy to see that ¢(z,() is an automorphic form of
weight (—2q).
Next, suppose A i1s a component of I' which is invariant under the parabolic

element P, where P fixes z. Let x = pd(¢(z,-)). By Lemma 7.2.4, x(P)(z) # 0.

Now
X(P)(z) = lim x(P)(),
¢EA
and for { € A,

X(P)(¢) = #(z, POP'(¢)'~* ~ (z, ().
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If ¥(z,() is a polynomial for { € A, then
X(P)(@) = limfip(z, POP(O) = (a, )] = .
¢ea
This contradiction shows that (z,-) is not a polynomial in A, and so E‘?—{:}zﬁ(z, ()
cannot be identically zero in A.

q.e.d.

Corollary 7.2.6 For g > 2, the series
> )
YE(S1\Gp

is not identically zero on the invariant component of G,.

Proof: Choose A = (Z 2) € SLy(C) such that A(co) € (G,). Then co €
A(Q(G,)) = Q(A1G,A), and A=1(c0) is a g-admissible parabolic fixed point of
A1G, A. Also, A=}(00) is a cusp for A~1G, A. To simplify notation, let T = A=1G, A
and let & = A~1(c0). Then P, = (A~15; A), so

P95 > (A A7)

YE(S1)\Gy ~YEP\I
= > AEATOW(ATOIAT ()"

YyEP\TI

Y (A4 ()
rerar  (YATIC+ d)™

Y (ATI)(ATH ()"
e (AT - D
_ 7' (AT ATY) (€)"
= 2 e - A

~yEP\TI
e ser(a A7),

Since A™Y(A(G,)) is a component of T’ invariant under P., ¢r(z, A™'(¢)) is not
identically zero in A(G,,).

q.e.d.
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7.3 The error in approximating the series

Proposition 7.3.1 Let g = g1g2+--gn € (S1) \ Gu, g1 = TF', gigiy1 # 1 for 1 <
1 <n-—1, and g; € {Sl,Sl_l,Tu,Tu_l} for1 < i < n. Suppose 0 < Re(p) < 2 and

Im(p) > 2. Then
(i) if gu = T,, then g™ (co) is inside I(T,);
(it) if gn =T, then g~'(o0) is inside I(T");
(i) if go = S1, then g7'(o0) is to the left of Re(z) =1;
(iv) if go = S7*, then g™ (00) is to the right of Re(z) = 1.

Proof: We use induction on the length of the word n. If n = 1, then g = T’fl and
the proof is clear. Assume the proposition is true for all words of length < n; we
want to show its truth for words g of length n+ 1. Write g = g192 - - - gny1- We divide
the rest of the proof into cases.

First suppose gn+1 = Si. Then if g, = Sy, g7!(00) is to the left of Re(z) = —1 by
the induction hypothesis. If g, = T}, then g7 --- g7'(c0) is in I(7},), and so g~*(o0)
is to the left of Re(z) = —1. If g, = T, then g;'--- g7 ' (o0) is in I(T"), and since
Re(p) <2, g7'(00) is to the left of Re(z) = 1.

The cases work similarly if g,41 = S7*. In this case, if g, = S;* then g71(00) is
to the right of Re(z) = 3. If g, = T, then g~(oc0) is to the right of Re(z) = 1. Also,
since Re(y) > 0, if g, = T' then g7"(00) is to the right of Re(z) = 1.

Next suppose gn+1 = T,. Then if g, = T}, also, then g7 --- g7} (00) is inside I(T},)
by hypothesis. Since the isometric circles of 7, and T,;' do not intersect, g="(o0) is
inside I(T},). If g, = S;, we must consider the previous letter also. If g,—19, = 515,
then g;'---g7'(00) is to the left of Re(z) = —1, which is outside I(T,;"), and so

g~ (00) is inside I(T,). If gn-19n = TuSh1, then g1, --- g7 (00) is inside I(T}), and
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g7t 97" (o) is to the left of Re(z) = —1, and so g~*(o0) is inside I(T},). If gn—1gn =
T;'Sy, then g7, -~ g7'(00) is inside I(T; '), and g, --- gy '(c0) is outside I(T, '),
so g~!(00) is inside I(T},). If g, = S7! we must likewise consider the previous letter.
If gn_1gn = S7' ST, then g7 --- g7 (o) is to the right of Re(z) = 3, which is outside
I(T; '), so g7'(o0) is inside I(T},). If gn-19n = T, ST, then g;; - g7'(00) is inside
I(T,),and g;!--- g7 (c0) is below the horizontal line Im(z) = 1 and since Im(x) > 2,
g7t g7 (00) is outside I(T;1); thus g~'(co) is inside I(Ty). If gn-1gn = T, ST,
then g1, -~ g7"(o0) is inside (T '), g7 -+ g7'(00) is outside I(T ), and g~"(o0)
is inside I(T,.).

Finally suppose gn41 = T;'. Then if g, = T!, then g;*---g;'(c0) is inside
I(T;"), which is outside I(T,); thus g~'(oo) is inside I(T;"'). If gn-19n = 5151,
then g;'---gy'(00) is to the left of Re(z) = —1, so g7'(o0) is inside I(T;"). If
gn-19n = 1,51, then again g7* -- -gl'l(voo) is to the left of Re(z) = —1, and g~*(o0)
is inside I(T;'). If gn_1gn = T,'S1, then gy g7 (00) is inside I(T;'), and
g.1 - 97" (00) is above the line Im(z) = 1 (because Im(yu) > 2), so g, --- g7 (0c0) is
outside I(T,) and ¢g7*(co) is inside I(T;"). If gn_1g. = S7'S7* then g+ - g7 ' (o0)
is to the right of Re(z) = 3, which is outside I(T},), so g~'(oo) is inside I(T;"). If
gn—19n = T, ST, then g2, --- g7'(00) is inside I(T}), and g7'--- g7 (o) is outside
I(T,), so g~*(c0) is inside I(T;*). Finally, if gn_19, = T, S7", then g;2; -+ g7 *(o0)
is inside I(T; ') and g;'--- g7 (o0) is above the line Im(z) = 1, and outside I(T},),
s0 g~ (c0) is inside J(T1).

q.e.d.

Corollary 7.3.2 Under the hypotheses of Proposition 7.3.1, if g, = T,, S1, or S7t,
then g='(o0) is outside I(T;1); if gn = T, S1, or 877, then g='(o0) is outside
I(T,).

Proof: Suppose g, = T,,. Then by Proposition 7.3.1, g~!(o0) is inside I(T,), which
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is disjoint from I(T;'). By similar reasoning, if g, = T, then g~'(oo) is outside
I(T,).

Now if g, = S; or Sl_l, we consider the previous letter. If g,_1g9, = 5151 or
T,S1, then by the proposition, g~'(o0) is to the left of Re(z) = —1; so g~ !(c0) is
outside I(T},) and I(T;"). If gn_19, = T;'S), then g~*(c0) is above the horizontal
line Im(2) = 1 and to the left of the line Re(z) = Re(x) — 1; so g™'(c0) is outside
both isometric circles. If g,—19, = S7'S7! then g71(o0) is to the right of Re(z) = 3
and outside I(7,) and I(T;"). If gn_19, = T;1S7", then g=(c0) is to the right of
Re(z) = Re(u) + 1, which is outside I(T,) and I(T;!). Finally, if gn-19, = T,S7",
then g~'(o0) is to the right of Re(z) = 1 and below Im(z) = 1; so g~'(o0) is outside
the isometric circles.

q.e.d.

Suppose we want to find a bound on | ¥ ¢'(20)?|, where H is some subset of
(S1) \ G, and 2z € A(G,). By the mean value property for holomorphic functions

(see [ConT8], for example),

= Y dzd
7T7°2 //_D(zo,r) 7ay;

where D(zo,r) is a disk around 2o with radius r in which ¢’(z)? is holomorphic. Thus,

dz d
- 71'7‘2 //D(zo,r) I 7ay-

The last integral equals -L; times the area of g(D(20,7)). The following proposition

1s now clear.

Proposition 7.3.3 Suppose D(zq,r) is contained in some fundamental domain for

G,. Then
2 Im(p)

wr2

Yo l9'(20)] <

g€(S1\Gpu
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We need only estimate the series at points zg for which 0 < Re(29) < 1. (In order
to integrate the square root of the series over the curves a and b, we can use the
identity Pp(p;2) = Po(p; p — 2) and integrate from & — 1 to 4 for the curve a and
from i to £ for the curve b. Since 9 (1 + 2) = ¥(¢) + 1, we can restrict our attention
to the cases 0 < Re(y) < 2.) Suppose we choose r so that D(zg,r) lies inside the
vertical strip {z : —=3/2 4+ Re(it)/2 < Re(z) < Re(y)/2 + 1/2}, inside A(G,), and
outside the isometric circle of T}, !, and so that T,(D(zo,r)) lies outside the isometric
circle of T,. Then we can bound ¥ |¢'(20)?|, depending on H, as follows.

Suppose H consists of those words of the form ¢, 'g, where g; is fixed. Since
T ' takes the outside of I(T; ') to the inside of I(T},), T, g(D(z0,r)) lies inside
I(T,). By Corollary 7.3.2, g7'(co) lies outside I(T}); so g; takes the inside of I(T},)
to the inside of g1(1(T,)). Thus, ¥ |¢'(20)?| is less then — times the area of the
disk g1(I(T,)).

Next suppose H consists of words of the form ¢,7,57'g or ¢:T,T,g. Then
T,57'g(D(z0,7)) and T,T,g(D(zo,r)) are inside I(T;*), and by Corollary 7.3.2,
91 ' (00) is outside I(T;"). Thus, Yz |¢'(20)?| is less than -L; times the area of the
disk g,(I(T;1)).

Now suppose H consists of words of the form ¢; 5757 !g. Then S!S g(D(z0,7))
is to the left of the line Re(z) = Re(g) — 3, and by Proposition 7.3.1, g7 (o) is inside
I(T,), inside I(T"), or to the right of Re(z) = 1. Thus ¥ g |¢'(20)?| is less than 5
times the area of the disk g;(D;), where D; = {2z : Re(z) < Re(u) — 3}.

Suppose H consists of words of the form ¢;5151¢g. Since 51519(D(zo,r)) is inside
the half space D, = {2z : Re(z) > 5/2}, if g1 ends in T}, or S; then ¥z |g'(20)?| is less
than 15 times the area of the disk g;(D,).

Finally suppose H consists of words of the form ¢;5,T,g, where g; ends in S,
or T,. Since g;'(c0) is to the left of Re(z) = 1 and S;T,g(D(z0,7)) is to the right

of Re(z) = 1, ¥ |¢'(20)?| is less than —X; times the area of the disk g1(Ds), where
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D; = {z: Re(z) > 1}.

We have considered sufficiently many cases for H; we have found error bounds
for ¥ |9’ (20)?| in the cases where H contains words of the forms ¢:T}; 'g, ¢:T,.S7 g,
aT,T.9, 157 ST9, ¢1T,51519, ¢15151519, ¢1515:T,g, and ¢: 1,5, T, 9.

7.4 The error in approximating the integral of the square root of the

series

Lemma 7.4.1 Let z € A(G,) and let k > d(g7'(o0),2) for all g € (S1) \ G.. Let
r be any positive number such that there is a fundamental domain for G, containing

the disk of radius r about z. Then

( > g,(z)z)" o 16 [Im(u)? 20 In()
9E(S1\Gu

= w22 Y g'(2)2P2 T k22| 291(2)2]1/2'

Proof: To compute the second derivative, we compute

(VErer) =5 (Coe) ™ £ 5

and
, " 1 , -3/2 —4c 2
( Zg (z)2> = - Z (Zg (2)2) : (Z (cz+d)5)
1 , -1/2 20c?
+ 5(ZdEr) (Z m).
Thus,
" (z 4c , )2 z 2OC2e
] 2 < (cz+d) (cz+d)
'( Zg (2) ) - 4,291(2)2,3/2 2[29'(2)211/2
2

4|7 g'(2)2*? 2|5 ¢'(2)2"?
r1 \2 ;1

4 (C@w) | 10 T

KT g(2)2P? KT g(2)2]?
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4 (2-Im(p))? 4 10-2-Im(p)
TS g (2 rk? [ (2)?
16 [Im(p)]? 20 Im(p)
RS g ()P rkirz [T g (2)2]

The symbol ¥~ denotes the sum over all g(z) = ‘”'H’ for which ¢ # 0.

q.e.d.

Lemma 7.4.2 Let z € A(G,) and let k > d(g7'(00),2) for all g € (S1)\ G,. Let
r be any positive number such that there is a fundamental domain for G, containing

the disk of radius r about z. Then

=\ 3840 Im(u)]* 5760[Im(p)]°
]< ge(g):\cyg(zy) T wktr8| T ¢'(2)272 T w3kir8| Y g'(2)?]5/2
3120[Im(p))? 840 Im(p)

7r2k47'4| 291(2)2'3/2 7rk4r2| Eg/(z)2|1/2‘

Proof: Compute the derivatives

(\/ngzv)m - (Zg’iz>2)’5/2 (Z(—%)
Eo) " (S ) (Setw)

N = =W oW

and

(fTotr)” = -2(Toer)™ (Z(—*_fz)—)

r ) (EwT1 ) i)
(T o)™ (Z (—20;—@—)
o) (E ) (Swta)
(o)™ (£ 22555).

| !
= w

N =
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Then the proof is just like that of Lemma 7.4.1.

q.e.d.

Lemma 7.4.3 Suppose k > d(g7'(o0),2) for all g € (S1) \ G,. Suppose D(z,r) is

contained in some fundamental domain for G,. Then

( )y g’(z)z)
g€(S1\Gp

< - Im(p).

wkr?

Proof:

= (@)
Z —4c

(cz +d)°

:4211 1

2+ 4] Jez +d*

( Y g’(z)2)
9€(S1)\Gp

IN

IA

N

r 1
P> lez + d|*
2 Im(p)

wre

q.e.d.

Corollary 7.4.4 Suppose k > d(g'(c0),2) for all g € (S1) \ G.. Suppose the
minimum possible value of | Y. g'(2)?| among n > 2 equidistant values along a line
segment of length £ is n. Finally suppose that for any z on this line segment, D(z,r)

is contained in some fundamental domain of G,. Then, on this line segment,

1 8
- 2(n—1) wkr? m(k)

9E(S1\Gp
Suppose we want to approximate [° f(z)dz. Take a partition of [a, b] using points
a =12 <22 << &y = b, where z; = a + (¢ — l)ﬁ Let T,(f) denote the

approximation of f: f(z) dz using the trapezoid rule with these points; that is,

1) = g |+ 25 e + ).
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Theorem 7.4.5 Suppose |f(z) — g(z)| < € for all z € [a,b]. Then

maz (b—a)?
ol

[ f@)de ~T(9)

ab] |f"($)|m +2(b— a)e.

Proof:

[ i -100)| <

[ etz = 10|+ 11.07) - 1)

max (b—a)® b—a

= ey Pty

-2(n — 1)e.

Here we use the standard error bound for the trapezoid rule (see, for example,
[King4)).
q.e.d.

Since we are interested in integrating the square root of the series, we are interested

in bounding |\/z — vz + €e?|. It is clear that

Vz—\z+ e < e-max (\/E),
| = €-max -2—-\17_-;|,

where the maximum is over the line segment from z to z + ee?’. Thus,

€
<

f(z) =/ f(z) + €6 < ——————.
i) =i < s

Corollary 7.4.6 Suppose |f(z) — g(z)| < € for all z € [a,b]. Then

[Vi@a-rm| < M| (V@) | et
_db-a)
o i

Proposition 7.4.7 Suppose K,, Ky, M,, My, ¢,, and €, are complex numbers such
that K, = M, + ¢, and K, = Mb + e and || < C, and |6 < Cy. Suppose
also that C, < |M,|. Then

K, M,
K, M,

< Ch + CaIMbl )
- IMaI - Ca lMa|2 - Ca|Ma|
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Proof:

K, M, KM, — K, M,

K, M, ~ K. M,
_|(My+ &) My — (M, + €)M,

(M, + €)M,

< &M, €. M,
S M| | MEt M,
< Cy Co| My

IMa' - Ca * IMa|2 - CaIMa|‘

7.5 Computer considerations

When we integrate the square root of the Poincaré series, we must be careful to use
a consistent branch of the square root. The FORTRAN package used for these com-
putations uses the negative real axis for the branch cut for the square root function.
Thus, if the Poincaré series stays away from the negative real axis on the curves a and
b, the branch of square root is consistent. This will be guaranteed by the following

corollary to Lemma 7.4.3.

Corollary 7.5.1 Suppose k > d(g7'(c0),2) for all g € (S1) \ G,.. Suppose the
minimum possible value of Re(Y" g'(2)?) among n > 2 equidistant values along a line
segment of length £ is n. Finally suppose that for any z on this line segment, D(z,r)

is contained in some fundamental domain of G,. Then, on this line segment,

Re ( Z g’(z)2) 21— 2(nlf_ 1) : W]fr2 ) Im(lu)

€(S1)\Gy

7.6 Examples

The FORTRAN program which implements the arguments used in this chapter to
approximate the map 9 : M;; — H is presented in the appendix. We used the

program to compute the image of several points.
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Our first goal was to test a conjecture concerning the image of real trace rays in
M. L. Keen and C. Series ({KS93]) define the real trace ray of the word W,,, to
be the unique branch of the set of z in M, for which the trace of W/, is real and
larger than 2, where the real part of this branch lies between 2p/q and 2p/q + 2 for
Im(z) large enough. It was thought for some time that 3 took the real trace ray for

|54

»/q b0 the vertical line Re(z) = p/q in H. Our computer approximations show this

to be false. For example, the point .65388 + 47 is to the right of the real trace ray
for W13, but ¢(.65388 + 47) was computed to be .32700+ 1.11749¢, with a maximum
error in absolute value less than 0.00472. Hence, ¥ must take this point to the left
side of the ray Re(z) =1/3 in H.

It is also of some interest which point is mapped to ¢, which is the point in H
representing the square torus. We know by Proposition 7.1.16 that »~!(:) = ¢: for
some t > 2. The computer program was used to prove that 3.75 < ¢ < 3.78. As the
approximations in the program were probably better than the error bound suggested,

we can guess that ¢ is approximately 3.765.

7.7 Kra’s biholomorphic map My, — H

Recall that the map M;; — H was given by

= fb(p.) Cll»
H .G

where {{,} is a basis for the space of holomorphic abelian differentials on A(G,)/G,,
and {a,b(x)} is a canonical basis for the fundamental group of A(G,)/G,. By the
Riemann-Roch Theorem there are no holomorphic abelian differentials on a surface
of type (0,4), so the map My 4 — H cannot be constructed in the same way.

Recall that, up to a constant multiple,

Cu= Z g'(2)%dz.

9E(S1)\Gy
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When we try to do the same thing for the group H, = (A, By, B2 ), the error is that

0z)=| > (=)
9E(A\H,

then 0(g(z))g'(z) = 6(z) for most g € H,, but 8(g(z))g'(z) = —6(z) for all parabolic

if

g € H, which “correspond to punctures”. Let I'g denote the subgroup of H, consisting

of those g € H, for which 6(g(2))¢'(z) = 6(z). Kra ([Kra88]) shows that
To = (By'B,, B;'ABy, By, ByAB,A, A~ ' By ' A™' B!, B?).

Let Gy = (A, B?,B{'AB,) and Go; = (A, B3, B;'AB,). Then Go; and Gog
represent surfaces of type (0,4). The amalgamated free product Goi*4Go; 1s a surface
of type (0,6). The HNN extension of Go;*4Goz by B;'B, is Ty; the element By B,
conjugates By'AB; to B{'AB;, and cuts off two punctures, gluing the boundary
curves together to produce a surface of type (1,4). See Figure 7.2.

Since [H, : I'o) = 2, A(To) = A(H,). Let {a,b(z)} be a canonical basis for the
fundamental group of A(T)/To, and let {(,} be a basis for the space of holomorphic

abelian differentials on A(Lg)/I'o. Then Kra’s map My, — H is given by

Juls

One such holomorphic abelian differential on A(Ty)/Ip is given by {, = 6(z)dz,

T

for this is invariant under change of local coordinates on A(I'g)/I¢ (but not on
A(H;)/Hy).

Define v : My 4 — H by

o el _
¢( )'— faCx -

Let G, denote the group generated by z — z+ 1 and z +— z + 7. Pick a base

point Qo € A(T9)/To and define @ : A(Tg)/I'¢ — C/G; by

()= v, (L)



A
RB% B;'AB,

Bf BB, :

A

Cos Goz

B;'B;

Iy

Figure 7.2: The geometry of I'y
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where 7, : C — C/G, is the natural projection.

For a proof of the following proposition, see the proof of Proposition 7.1.9.
Proposition 7.7.1 @ is a conformal homeomorphism.

Pick a base point Q € A(I'p) and define ¢ : A(I'g) — C by

I
fa. Cl‘ fa. Cl‘ .

p(2) =

Proposition 7.7.2 ¢(Az) = ¢(2)+1, p(B;'B12) = p(2)+7, and (B, z) = —¢(2).

Proof: Let
f B, Q C:c
C =
S
Then
L
(P(A ) - fa C:c +
— fé‘;Q ‘” f C
A f@+
= 14¢(2).
Next, we have
B;'B;z
¢(By'Biz) = _fQ_L_C_x_Ci+C
gy
fa Cl‘ fa C:L‘
= T+¢(z).

Finally, since By is in H, but not I'y, we have

Y. ¢(Bi(2))*Bi(z > g
SE(ANH, V g€(ANH.
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and so
Biz
oBiz) = o
— fngC‘” C fl?lléc‘”
- e TYtTa
= —¢(2).

q.e.d.

Corollary 7.7.3 Let (z) = 7, and let G. denote the group (z — z + 1,2z
z+ 7,2z = —2z). Let L, denote the lattice {n/2 + m7/2 : n,m € Z}. Then the
surface A(H,)/H; is conformally equivalent to the surface (C— L;;2)/G,.

Proposition 7.7.4 Let Py(z,z) denote Yyeianm, §'(2)*. Then Py(=T,—Z) = Py(z, 2).

Proof: Define J(z) = —z. Then JAJ™! = A~Y; JB,J™! = B{'; and JB;,J ! =
B;!;. Now the proof is the same as for Lemma 7.1.14.

q.e.d.

Proposition 7.7.5 (—-%) = —¢(z).

Proof: First note that if Q) is any point in A(H,), then

BB (Q) = — B2 (Q)
/622 Pyz,z)dz = /32 v/ Pa(z,2)dz

1(Q)
BZ,:(Q)
N /BI(Q) —\/ Pa(z, B33(2)) (B,) (2) dz
Q S
L;;Bl(Q)W z

By1By(Q) — ===
/Q Py(z,z)dz.

Notice also that

—B2,-EB1 (Q) = B2,1‘B]_1 (—@-)
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Thus,

$(~F) = fb(—z)\/P2( ,2)dz
fa\/mdz

iz P (=7, -2) d(—2)

Jzy/P(-%,—7) d(-Z)

Iz V Pz, 2) dz

N e

Sl O A ———
ff 2-=71(Q) Py(z,z)dz

f_g VP (z,2)dz

:_gz,-EBﬂQ) Py(z,2)dz

2 o NP2z, 2)d2
O

f 0-d Pg(z z)dz

Proposition 7.7.6 ¢(z + 2n) = ¢(z) + n for every integer n.

Proof: Since AB,, = Bj..,,, the set of right cosets of (4) in H, is the same as the
set of right cosets of (A) in Hyqy. Thus, Py(z,2) = Pa(z + 2,2) for any z € My .

Hence

bot2) = Dt VPa(z +2,2)dz
f“ mdz
= fb(”"‘?) mdz.
Ja \/Mdz
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Since By ,,2B1 = AB; B, the curve b(z+2) is the projection of any curve in A(H42)

from any point Q) to AB;,.B(Q). Thus

féle,:Bl(Q) Py(z,z)dz
12 /Pale, ) ds
fQB'z,::Bl(Q) \/m dz + f’ﬁ?ﬁé@ Py(z,2)d>
3% \/Pa(a, 2) dz
fQBz,:Bl(Q) mdz L
1° \/Bia.z) dz

P(r +2)

But

B2 :B1(Q) B :BI(Q)
/Q ? JPi(z,2)dz = / ? (¢, B;2(2)) (B72)'(2) dz

Q
B;:Bi1(Q)
= / @ Pz, 2)dz
B;:(Q
Q B;,B1(Q)
/‘2(Q)‘/ T,2) dz+/ > v/ P2z, 2) dz,
and [¢ _2(Q),/P 2(z,2)dz = 0 since

/_2(Q)\/P2(z,z) dz

B3,z(Q)
/ _22B © \ /Pz(a:,z) dz
2,z

o VPia, BRI (B3 (2
_/_2(Q)\/P2(x,z) dz

I

Thus, ¥(z +2) = ¥(z) + 1.

Proposition 7.7.7 Ty is conjugate to a subgroup of G..

Proof: Let M(z) = z + 1. Then the following equalities hold:

MB'By ,M™' = 8172571
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MB;AB,,M™" = ST, S{*T;'sT!

MB;;M-1 ST, STt
M(By AP?M™ = T,S7'T71S,
M(AT'ByYWM™ = STMTOIS|T,

MB*M™ = T:'$,T,8;

Let G2 = MToM-1.
Proposition 7.7.8 [G, : G%] = 4.

Proof: The four distinct right cosets of G, in G, are G}, G}, - 51, G - T, and
GY, - $1T,. To prove this assertion it suffices to show that G, contains every word
g € G, which decomposes into an even number of letters 7| uﬂ and an even number of
letters Sit'. (For then, G- Sy consists of those words consisting of an even number of
letters T! and an odd number of letters Si'; and similarly for G- T, and Gﬁ -517,..)

It is easy to see that every word g € G, which has an even number of letters T
and an even number of letters SE! is a product of the following words and their in-
verses: T2, S, $1T2S1, T,53T,, T,51T,S1, TSy ' T,S1, T,51 T 1Sy, and T,87 ' T2 5.
Since each of these words is in the group GY, the proof is complete.

q.e.d.

Note that Proposition 7.7.8 implies that A(G,) = A(GY) = M(A(To)) = M(A(H,));

and A(G,) = M(A(H,)), where M(z) = z + 1.

Theorem 7.7.9 The diagram in Figure 7.3 commutes.

Proof: Since A(G,) = A(GY), ¢, is a holomorphic abelian differential on A(G})/G5.
Since A(GS)/G), and A(To)/To are conformally equivalent, ¢, and (; differ by a con-

stant multiple (that is, if {, = f(2)dz and {; = ¢g(z)dz, then g(M~'(z)) dz = cf(z)d=
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id

H

Figure 7.3: The maps to H

for some constant c). Pick base points Q on A(GY)/GY and Q' = meM~'#7"(Q) on
A(To)/To, where m; : A(GY) — A(GY)/GS and 7 : A(To) — A(Io)/To are the

natural projections. Then

fb(u) Qbu - 2 fb(p) Qbu
fa(u) C}L 2]0.(;1.) Cﬂ
QIQT;‘(Q) ¢,
259,

59¢

fQ TR2@ .
1T2M QI
fo M@

fM 1S M(Q’)C
BT @,
f“‘Q' G
f —I(Q ) CZ‘

fAQ' (o

72(Q)
f —I(QI) C:L‘

i
e B; . B1(Q") ¢
. e
fb(z) Cz
fa(z) Cz '
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PSI.F

This program will sum the relative Poincare
Series at points along the "a" and "b" curves. It will
output the error bound.

THRESHOLDS

double precision eps, bnd

SUM OF THE SERIES

complex*16 asum(100000), bsum(100000)

ERROR. BOUND FOR THE SERIES AT A POINT

double precision error

THE VALUE IN TEICHMULLER SPACE

complex*16 mu

IMAGINARY PART OF MU

double precision t

POINTS AT WHICH TO CALCULATE SERIES

complex*16 z0

GENERATORS

complex*16 y(4,4)

LEVEL IN TREE

integer lev,maxlev,numterms

TAG LIST =1, 2, 3, or 4

integer tag(100000)

MATRIX LIST

complex*16 x(4,100000)

ARE WE FAR ENOUGH IN THE TREE?

logical farenuf

MAKE SURE TREE TRAVERSED ONCE

integer treepart

NUMBER OF POINTS AT WHICH WE WILL CALCULATE SERIES

real n

ANSWERS

double precision ansl, ans2, relasum(100000), imasum(100000)
double precision ans3,ans4,relbsum(100000),imbsum(100000)
complex*16 ansa,ansb

RADIUS OF DISK, DISTANCES TO LIMIT SET, ERRORS IN INTEGRALS
double precision r,ka,kb,totaerr,totberr

ERROR IN FINAL ANSWER

double precision finerr

MINIMUM ABS VAL OF SERIES ON a AND b CURVES, AND MINIMUM REAL PARTS
double precision minaabs, minbabs, minarel, minbrel



22

VALUE OF \pi
double precision pi

common /gens/ y
common /tree/ x, tag
common /level/ lev
common /flag/ farenuf

READ INPUT VALUES

write(*,*) ’Enter value of mu.’
read(*,*) mu

t = dimag(mu)

write(*,*) ’Enter value for epsilon.’
read(*,*) eps

write(*,*) ’Enter bound on matrix size.’
read(*,*) bnd

write(*,*) ’Enter number of points (> 1) at which to ’
write(*,*) ’calculate the series. ’
read(*,*) n

CALCULATE GENERATORS AND INITIAL POINT
error = 0.0 ‘
call calgen(mu) '

r = (t - sqrt(t*xt-4*t+8))/2

if(r .gt. 0.5) r = 0.5

kb = r

ka=r + t/2 -1

write(*,*) ’mu = ’,mu

write(*,*) ’eps = ’,eps

write(*,*) ’bnd ’,bnd

write(*,*) ’n = ' ,n

write(*,*) ’r = ’,r

write(*,*) ’ka = ’,ka

write(*,*) ’kb = ’,kb

~

INITIATE TREE
tag(1)=2
x(1,1)=y(1,2)
x(2,1)=y(2,2)
x(3,1)=y(3,2)
x(4,1)=y(4,2)
do 22 index =1, n
asum(index) = 1.0
bsum(index) 1.0
continue
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40

33

417

999

121

maxlev = 1
lev = 1
numterms

fl
O =

treepart

MAIN BRANCHING

if(lev .eq. 1 .AND. tag(l) .eq. 2)then
treepart = treepart + 1
if(treepart .eq. 2)then
tag(1)=4
treepart = 0
x(1,1)=y(1,4)
x(2,1)=y(2,4)
x(3,1)=y(3,4)
x(4,1)=y(4,4)
end if
end if
if(lev .eq. 1 .AND. tag(l) .eq. 4)then
treepart = treepart + 1
if (treepart .eq. 2)go to 999
end if ,
call test(eps,bnd,error,mu)
if(farenuf) go to 417

do 33 index = 1, n
20 = (mu/2)-1+(index-1)/(n-1)
(THESE ARE THE POINTS ALONG HALF THE a CURVE)
asum(index)=asum(index)+1/((x(3,lev)*z0 + x(4,lev))**4)
20=(0,1)+(index-1)*((mu/2)~-(0,1))/(n-1)
(THESE ARE THE POINTS ALONG HALF THE b CURVE)
bsum(index)=bsum(index)+1/((x(3,lev)*z0 + x(4,lev))**4)

continue

numterms = numterms+1

call forwrd

if(lev .gt. maxlev)maxlev = lev

if (maxlev .gt. 99990) go to 666

go to 40

GO BACK TO FIRST AVAILABLE TURN AND TURN ONCE
call bckwrd
go to 40

error = error/(r*r)
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122

(THE \pi WASN’T CALCULATED INTO AREAS OF DISKS.)

(NOW WE HAVE CALCULATED THE SERIES AT PTS ALONG THE a AND
write(k,x*)

write(*,%) *the error bound for the series is ’,error
write(*,*) ’maximum level attained was ’,maxlev
write(*,%*) ’the number of terms summed was ’, numterms

do 66 index = 1, n
relasum(index) = dreal(sqrt(asum(index)))
imasum(index) = dimag(sqrt(asum(index)))
relbsum(index)=dreal (((mu/2)-(0,1))*sqrt(bsum(index)))
imbsum(index)=dimag(((mu/2)-(0,1))*sqrt(bsum(index)))

continue

CALCULATE REAL PART OF INTEGRAL OVER a CURVE

call trapezoid(relasum, n, ansi)

CALCULATE IMAGINARY PART OF INTEGRAL OVER a CURVE

call trapezoid(imasum, n, ans2)

ansa=2%ans1+(0,2)*ans2

write(*,*) ’The integral over the curve a equals ’,ansa

pi = 3.141592
minaabs = cdabs(asum(1))

minbabs = cdabs(bsum(1))
minarel = dreal(asum(1))
minbrel = dreal(bsum(1))

do 122 index = 2,n

122

b CURVES)

if(cdabs(asum(index)) .1t. minaabs) minaabs = cdabs(asum(index))

if (cdabs(bsum(index)) .1t. minbabs) minbabs

cdabs (bsum(index))

if(dreal(asum(index)) .lt. minarel) minarel = dreal(asum(index))

if (dreal(bsum(index)) .1lt. minbrel) minbrel
continue '
minaabs = minaabs - error
minbabs = minbabs - error
minarel = minarel - error
minbrel = minbrel - error
write(*,*) ’min. abs. val. on curve a before derivative:
minaabs=minaabs-(4*t)/((n-1)*pixka*r*r)
minarel = minarel - (4%t)/((n-1)*pikka*r*r)
write(*,*) ’min. abs. val. on curve a after derivative: °
if(minaabs .le. O)then

dreal (bsum(index))

’ ,minaabs

, Minaabs

write(*,*) ’Need more points (n) to get finite error bound.’

end if
write(*,*) ’The real part of the series on the a curve ’
write(*,%) ’is at least ’,minarel



666

123

call interr(m,error,r,ka,totaerr,t,minaabs)
write(*,*)
write(*,*) ’The error in the integral over a is less than ’,totaerr

CALCULATE REAL PART OF INTEGRAL OVER b CURVE

call trapezoid(relbsum, n, ans3)

CALCULATE IMAGINARY PART OF INTEGRAL OVER b CURVE

call trapezoid(imbsum, n, ans4)

ansb=2*%ans3+(0,2)*ans4

write(*,*) ’The integral over the curve b equals ’,ansb

write(*,*) ’min. abs. val. on curve b before derivative: ’,minbabs
minbabs = minbabs - (4*t*cdabs((mu/2.0)-(0,1)))/((n-1)*pixkb*r*r)
minbrel = minbrel - (4*t*cdabs((mu/2.0)-(0,1)))/((n-1)*pixkb*r*r)
write(*,%*) ’min. abs. val. on curve b after derivative: ’,minbabs
write(*,%*) 'The real part of the series on the b curve ’

write(*,%*) ’is at least ’,minbrel

call interr(n,error,r,kb,totberr,t,minbabs)
totberr=totberr*cdabs((mu/2)-(0,1))

write(*,x)

write(*,*) ’The error in the integral over b is less than ’,totberr

write(*,*)

write(*,*) ’psi(’,mu,’) = ’,ansb/ansa
finerr=totaerr*cdabs(ansb)/(cdabs(ansa**2)~totaerrxcdabs(ansa))
finerr=finerr+totberr/(cdabs(ansa)-totaerr)

write(*,*) ’The modulus of the final error is less than ’,finerr
stop

end

GO FORWARD IN TREE
subroutine forwrd

- complex*16 x(4,100000)

integer tag(100000)
complex*16 y(4,4)
integer lev

common /tree/ x, tag
common /gens/ y
common /level/ lev

tag(lev+1l) = tag(lev) +1
if(tag(lev+1l) .eq. 5) tag(lev+l) =1
x(1,lev+1)=x(1,lev)*y(1,tag(lev+1))+x(2,lev)*y(3,tag(lev+1))
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x(2,lev+1)=x(1,lev)*y(2,tag(lev+1) ) +x(2,1lev) *y(4,tag(lev+l))
x(3,lev+1)=x(3,1lev)*y(1,tag(lev+1) ) +x(4,lev) *y(3,tag(lev+l))
x(4,lev+1)=x(3,lev)*y(2,tag(lev+1) ) +x(4,lev) *y(4,tag(lev+l))
lev=lev+l

if(lev .gt. 99990) write(*,%) ’level too high!!!’

return
end

GO BACKWARD IN TREE
subroutine bckwrd
integer lev

logical endbr

common /level/ lev

call branch(endbr)
if (endbr .AND. lev .NE. 1) go to 10

return
end

GO TO NEXT BRANCH
subroutine branch(endbr)
logical endbr
complex*16 x(4,100000)
complex*16 y(4,4)
integer tag(100000)
integer lev, i, j

common /tree/ x, tag
common /gens/ y
common /level/ lev

TERMINATE PROGRAM IF LEV IS 1
if(lev .eq. 1) return

TURN AT LEV

i=tag(lev)-1

if(i .eq. 0) i=4

j=i+2

if(j .gt. 4) j=j-4

if(j .ne. tag(lev-1)) go to 110

124



125

o GO BACK ONE MORE LEVEL
lev=lev-1
endbr = .true.
return

c TURN AT LEV

110 tag(lev)=1i

x(1,lev)=x(1,lev-1)*y(1,tag(lev))+x(2,lev-1)*y(3,tag(lev))
x(2,1lev)=x(1,lev-1)*y(2,tag(lev))+x(2,lev-1)*y(4,tag(lev))
x(3,1lev)=x(3,lev-1)*y(1,tag(lev))+x(4,lev-1)*xy(3,tag(lev))
x(4,1lev)=x(3,lev-1)*y(2,tag(lev))+x(4,lev-1)*xy(4,tag(lev))

endbr = .false.
return
end
c CALCULATE GENERATORS AND INITIAL POINT

subroutine calgen(mu)
complex*16 mu

c GENERATORS
complex*16 y(4,4)

common /gens/ y

y(1,1) = (1,0)
y(2,1) = (2,0)
y(3,1) = (0,0)
y(4,1) = (1,0)

y(1,3) = y(4,1)
y(2,3) = -y(2,1)
y(3,3) = -y(3,1)
y(4,3) = y(1,1)

y(1,2) = (0,-1)*mu
y(2,2) = (0,-1)
y(3,2) = (0,-1)
y(4,2) = (0,0)

y(1,4) = y(4,2)
y(2,4) = -y(2,2)
y(3,4) = -y(3,2)
y(4,4) = y(1,2)

return
end



TEST: SIZE OF MATRIX SMALL ENOUGH, FAR ENOUGH ALONG TREE;
AND CALCULATE ERROR BOUND FOR THIS BRANCH OF THE TREE

subroutine test(eps,bnd,error,mu)

double precision sizem, eps, bnd, error, radius, t
complex*16 x(4,100000), mu, ta, tb, tc

logical farenuf

integer tag(100000), lev, nlev, mlev

common /flag/ farenuf
common /tree/ x, tag
common /level/ lev

sizem = cdabs(x(1,lev))+cdabs(x(2,lev))+cdabs(x(3,lev))
sizem = sizem+cdabs(x(4,lev))
farenuf = .FALSE.

if(lev .le. 3) return
mlev = lev - 2
nlev = lev - 1
if( (tag(lev) .eq. 1) .and. (tag(nlev) .eq. 1) )then
if( (tag(mlev) .eq. 1) .or. (tag(mlev) .eq. 2) )then
(WORD ENDS IN SSS OR TSS)
ta = x(1,mlev)/x(3,mlev)

tb=(x(1,mlev)*(2.5)+x(2,mlev))/(x(3,mlev)*(2.5)+x(4,mlev))

tes(x(1,mlev)*(2.5,1)+x(2,mlev))
te=tc/(x(3,mlev)*(2.5,1)+x(4,mlev))
if(radius(ta,tb,tc)**2 .1t. eps)then
error=error+radius(ta,tb,tc)**2
farenuf = .TRUE.
end if
end if
end if
if(tag(lev) .eq. 3)then
if(tag(nlev) .eq. 3)then
(WORD ENDS IN S~{-1}s~{-1})
t = dimag(mu)
ta=x(1,mlev)/x(3,mlev)
tb=(x(1,mlev)*(t-3.0)+x(2,mlev))
tb=tb/ (x(3,mlev)*(t-3.0)+x(4,mlev))
te=(x(1,mlev)*(t-3.0+(0,1))+x(2,mlev))
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te=tc/ (x(3,mlev)*(t-3.0+(0,1))+x(4,mlev))
if (radius(ta,tb,tc)**2 .1t. eps)then
error=error+radius(ta,tb,tc)**2
farenuf = .TRUE.
end if
end if
if(tag(nlev) .eq. 2)then
(WORD ENDS IN TS~{-1})
ta=x(1,mlev)*(mu+(1,0))+x(2,mlev)
ta=ta/(x(3,mlev)*(mu+(1,0))+x(4,mlev))
tbsx(1,mlev)*(mu-(1,0))+x(2,mlev)
tb=tb/(x(3,mlev)*(mu-(1,0))+x(4,mlev))
tc=x(1,mlev)*(mu-(0,1))+x(2,mlev)
te=tc/ (x(3,mlev)*(mu-(0,1))+x(4,mlev))
if(radius(ta,tb,tc)**2 .1t. eps)then
error=error+radius(ta,tb,tc)**2
farenuf = .TRUE.
end if
end if
end if
if(tag(lev) .eq. 2)then
if(tag(nlev) .eq. 2)then
(WORD ENDS IN TT)
ta=(x(1,mlev)*(mu+(1,0))+x(2,mlev))
ta=ta/(x(3,mlev)*(mu+(1,0))+x(4,mlev))
tb=(x(1,mlev)*(mu-(1,0))+x(2,mlev))
tb=tb/ (x(3,mlev)*{mu-(1,0))+x(4,mlev))
te=(x(1,mlev)*(mu-(0,1))+x(2,mlev))
te=te/ (x(3,mlev)*(mu-(0,1))+x(4,mlev))
if(radius(ta,tb,tc)**2 .1t. eps)then
error = error + radius(ta,tb,tc)**2
farenuf = .TRUE.
end if
end if
if(tag(nlev) .eq. 1)then

if( (tag(mlev) .eq. 2) .or. (tag(mlev) .eq. 1) )then

(WORD ENDS IN TST OR SST)
ta=x(1,mlev)/x(3,mlev)

tb=(x(1,mlev)+x(2,mlev))/(x(3,mlev)+x(4,mlev))
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te=(x(1,mlev)*(1,1)+x(2,mlev) )/ (x(3,mlev)*(1,1)+x(4,mlev))

if(radius(ta,tb,tc)**2 .1t. eps)then
error=error+radius(ta,tb,tc)**2
farenuf = .TRUE.
end if
end if
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end if
end if
if(tag(lev) .eq. 4)then
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(WORD ENDS IN T~{-1}; ASSUME D(zO,r) IS OUTSIDE I(T"{-1}).)

ta=(x(1,nlev)+x(2,nlev))/(x(3,nlev)+x(4,nlev))
tb=(x(2,nlev)-x(1,nlev))/{(x(4,nlev)-x(3,nlev))
tc=(x(1,nlev)*(0,1)+x(2,nlev))/(x(3,nlev)*(0,1)+x(4,nlev))
if(radius(ta,tb,tc)**2 .1t. eps)then
error=error+radius(ta,tb,tc)**2
farenuf = .TRUE.
end if
end if
if({sizem .GE. bnd) .and. (.not. farenuf))then
farenuf = .TRUE.
write(*,*) *ERROR IN ERROR TERM; MATRIX SIZE TOO LARGE’
write(*,%*) *MATRIX SIZE = ’,sizem
end if
return
end

OUPUT THE RADIUS OF THE CIRCLE THROUGH

THE COMPLEX POINTS A,B,C. ASSUMES POINTS ARE NOT
COLINEAR. USES INTERSECTION OF PERPENDICULAR
BISECTORS TO COMPUTE CENTER.

double precision function radius(a,b,c)
complex*16 a,b,c,center
double precision ar,ai,br,bi,cr,ci,centr,centi,temp

ar = dreal(a)
ai = dimag(a)
br = dreal(b)
bi = dimag(b)
cr = dreal(c)
ci = dimag(c)

if(ai .eq. bi)then

temp = bi
bi =ci
cl = temp
temp = br
br = cr
cr = temp
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if(bi .eq. ci)then

temp = ai

ai = bi

bi = temp

temp = ar

ar = br

br = temp
end if

centr = (ar-br)*(ar+br)/(2.0%(bi-ai))

centr = centr - (br-cr)*(br+cr)/(2.0%(ci-bi))

centr = centr + (ci-ai)/2.0

centr = centr/((ar-br)/(bi-ai) -~ (br-cr)/(ci-bi) )

centi = ((ar-br)/(bi-ai))*(centr - (ar+br)/2.0)+(ai+bi)/2.0
center = centr + (0,1)*centi

radius = cdabs(center - a)

return
end

TRAPEZOID RULE

subroutine trapezoid(dat, n, ans)
function values

double precision dat(100000)
real n

answer = ans

double precision ans

ans = dat(1) + dat(n)
do 55 index = 2, n-1

ans = ans + 2*dat(index)
continue
ans = (1/(2*n-2))*ans .
return
end

CALCULATE ERROR IN INTEGRAL APPROXIMATION
subroutine interr(n,error,r,k,toterr,t,minabs)

real n
double precision minabs,toterr,pi,t,r,k,error

toterr = 0.0
pi = 3.141592
toterr=(16xt*t)/ (pi*pixk*k* (r**4)*(minabs**(1.5)))
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toterr=toterr+(20*t)/(pixkxk*r*r*(sqrt(minabs)))
toterr=toterr/(12x(n-1)*(n-1))
toterr=toterr+error/(sqrt(minabs))

WE INTEGRATE OVER HALF OF THE CURVE a OR b
toterr = 2*toterr

return

end
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