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PREFACE 

In this thesis we have examined the human retinal function and presented 

a fuzzy set theory based approach towards structuring a visual system. 

First, a visual system model based on the intensity dependent spread 

function (IDS) of the retina is discussed. Then it is combined with 

concepts from the fuzzy set theory to obtain a fuzzyfied model of a visual 

system.. The application of this fuzzyfied model to different types of 

images simplifies several complex situations, e.g., multiple occurrences of 

an object under different conditions, such as different amount of shading, 

contrast, etc. Another important issue is to quantify the improvement in 

enhancement. Two existing measures viz., Error Root Mean Square 

(ERMS) and Bimodality analysis are discussed and a new performance 

evaluation method is suggested. · Then the performance of the two visual 

system models is evaluated using the three methods. Evidently, the main 

advantage of using fuzzy set theory over the conventional probabilistic 

approach is found to be that it produces better quality results. 
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Image Processing: 

CHAPTER I 

INTRODUCTION 

Image processing is being used for the processing of pictures returned from 

deep space, as an investigation tool for exploring Earth's resources, for Earth-based 

astronomy, for wealth predictions, for automated inspection, for robotics -- to the 

digitized T-shirts at the amusement park, and so on. With imaging and graphics 

becoming such an important aspect of our world, people from very diverse disciplines 

are working together for the first time. Electronics engineers, graphic artists, video 

technicians, layout artists, document processing professionals and computer 

programmers -- all are affected by the video revolution. All these advances have 

resulted in the emergence of a newer discipline -- Image Processing. 

Image Processing Subdivisions: 

Image processing is concerned with the manipulation and analysis of pictures 

by computer [22]. When we "see" something, the light-sensitive cells behind the lens 

in our eyes capture a still image of the scene. Before we extract any information or 
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associate some meaning to the contents of this image, it needs to be processed (i.e., 

focussed, de-blurred, enhanced, etc.). Likewise, in an artificial visual system, we 

capture an image and process it in a similar fashion albeit digitally. Image processing 

is subdivided into the following three major areas: 

a) Digitization and compression: Capturing analog (continuous) form pictures and 

converting them into digital (discrete) form; efficient coding or approximation 

of images so as to save storage space or channel capacity. 

b) Enhancement, restoration and reconstruction: Improving degraded (blurry, 

noisy, low-contrast, etc.) images; reconstruction of images from sets of 

projections. 

c) Matching, description, and recognition: Comparing and registering images to 

one another; segmenting images into parts, measuring properties of and 

relationships among these parts, and comparing the resulting descriptions to 

models defining the classes of images. 

Image Enhancement: 

In a complete system, such as the human eye, all of the above operations are 

carried out in the given sequence; it looks at an object, the focus and light controls are 

adjusted for better picture quality, image is captured, enhanced, then reconstructed 

from projections from both eyes. Then this image is matched with previously known 

facts and an attempt is made to associate a meaning with it. 
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However, in the world of science, efforts are still being made to construct such 

a system. Several subsystems have been developed by researchers to model and mimic 

different sub-systems. In the present study, we will focus only on the subsystem of 

Image Enhancement. 

Different algorithms and techniques have been developed [25] for image 

enhancement and filtering based on various concepts from statistics, physics and other 

sciences such as sliding-windows, types of operations performed, and algorithmic 

implementation. 

Fuzzy Set Theory: 

Since Zadeh published his classic paper in 1965 [32], fuzzy set theory has been 

given more and more attention from researchers in a wide range of scientific areas, 

like decision-making models, control theory, are just to name a few. 

The aim of this dissertation is to discuss the application of fuzzy set theory to 

the design and development of computational algorithms and processes and its use in 

developing a model of a part of the human visual system to enhance digital images. In 

the following chapter, we shall formalize the problem and define the scope of our 

work. 
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Introduction: 

CHAPTER II 

THE PROBLEM 

It is observed by several researchers that structuring the visual system is still a 

challenge [3, 16, 22]. The human visual system is very powerful and so far no 

artificial system has been designed to match it. Furthermore, the human visual system 

is very complex in nature and to this date it has escaped an accurate formalization. 

Therefore, the researchers use its properties or approximating models to improve 

image processing systems and then study the results to learn more about how people 

see [20]. Before proceeding any further, let us examine the human retinal function: 

Human Retinal Function: 

When an image is to be enhanced so that at a later stage it can be interpreted 

by a human observer, the object of image processing, then, is to improve the 

subjective (visual) quality of the image as judged by that person. In simpler words, 

this is a process to match a given input image to the psychophysical properties of 

human visual perception. Psychophysical evidence has established that the human eye 
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views an object by catching the light reflected from the surface of that object. If the 

effective flux density in an image is I (absorbed photons per unit time) per unit area, 

then both the mean and the variance of the actual quantum catch (actual number of 

photons absorbed in a single unit of time) during the same unit time over an area A 

equals IA [5]. 

Now, suppose that the light conditions change and the illumination changes 

from I to I+ AI (where AI denotes a small change in the value of I). Then if we want 

to visually detect this change with an error rate of the order of 0.001, the effect of the 

incident quanta must be summed over an area A to obtain the quantity IA large 

enough that IA> 10/AI2• In other words, if the total number of quanta absorbed in the 

unit time are less than or equal to a certain quantity ( 10/A2 where A is the small 

change in the quantity I), the human eye is unable to detect the change in light 

conditions. 

Individual human photoreceptor collect these quanta over areas of the order of 

10-5 mm2 and perform the summation of their caught quanta over the temporal 

duration of the order of 0.1 sec. Therefore, below a certain light level, these 

photoreceptor cannot collect the required number of quanta and thus are unable to 

detect anything. We commonly refer to such light conditions as "dark." 

The IDS Principle: 

Spatial summation can thus be seen as pooling the retinal quantum catch over 

areas larger than a single receptor, allowing reliable contrast detection at scotopic and 
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mesopic illumination levels. An important property of spatial summation is that the 

summation area becomes smaller as illuminance increases and the summation area 

increases with decreasing level of illuminance. This allows the human eye to perform 

better under various light conditions by keeping the quantity IA large enough to hold 

the inequality IA> 10/A2. Intensity-dependent spatial summation has been formally 

described as: 

"Each point in the retinal image gives rise to a non-negative point-spread 

function whose height is directly proportional to image intensity at that point 

and whose volume remains constant -- so that the area covered by the point 

spread varies inversely with local image intensity. The output image is the sum 

of the point-spread functions generated around each input point." [ 5]. 

Different authors have implemented the IDS model using various statistical 

point spread functions. Most popular of these spread functions have been Gaussian 

function [2, 4, 5]. Other choices include cylindrical [2, 3], exponential [20], and 

conical functions [20]. 

A more detailed description of the IDS model and its assumptions will be 

presented in a later chapter. 

Shortcomings of the IDS Model: 

A common property of all these functions, and any other statistical point-spread 

function for that matter, is the way the summation is computed; all of which are 
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defined over a fixed area and are integrated over the same area. this generates two 

problems: 

a) These functions are defined over a continuous domain. However, for digital 

image processing the given input image is defined over a discrete domain. For 

instance, the digitized image is defined over the graytone levels { 0, 1, ... , 

255 }; whereas the IDS model is defined for all graytone levels in the closed 

interval [ 0, 255 ]. Consequently a lot of unnecessary computations have to be 

performed to compute the output image, which again is generated as a 

continuous image and is then mapped onto the discrete domain. Research is 

already in progress to develop a more applied IDS model suitable for discrete 

data [20]. 

b) These functions are defined over a fixed area regardless of the local 

illumination level. However, the IDS model requires these to be defined over a 

larger area in dimmer light conditions and smaller area under brighter 

conditions. This problem is solved by defining the point-spread function over a 

larger area and then after summation, the result is a threshold based on the 

local illumination level. This yields a lot of unnecessary computations that need 

not be computed if the spread function had taken into account the illumination 

level at the current pixel. 

Therefore, the IDS model needs to be refined to resolve the above shortcomings. 
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Fuzzy Set Theory: 

Fuzzy set theory was established by Zadeh [32] about thirty years ago and it 

has attracted more and more attention from researchers from a large spectrum of 

scientific areas. Its acceptance in Japan and the application to control problems has 

gained a :wider audience especially in the past few years. It can be viewed as a 

powerful tool for modelling human reasoning. Humans have a remarkable ability to 

analyze very large amounts of data captured by their sensory organs and make rational 

decisions in an environment of uncertainty and imprecision. 

The wide spectrum of applications of fuzzy set theory in general and its 

suitability to analyze human sensory data in particular has made it possible to be 

applied to several vision applications. Recent examples are the auto-focus cameras for 

still and video photography. The basic principle of these cameras is to adjust the 

focussing correctly using fuzzy set theory, to obtain a better picture in a short period 

of time. In a way, these cameras are the first attempt to model human vision. 

In light of all this, we find the fuzzy set theory a very powerful tool to modify 

the IDS model. 

In the following chapter, we present an overview of the work done on the IDS 

model so far along with some references to image processing in general as the 

necessary background. The last part of the literature overview shows some pointers to 

the fuzzy set theory. 
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Image Enhancement: 

CHAPTER III 

LITERATURE REVIEW 

Rosenfeld [23] has recently compiled a bibliography of nearly 1200 references 

related to computer vision, and image analysis arranged by subject matter. This survey 

paper shows the state of the art in computer vision and image analysis in 1991. 

Rosenfeld and Kak [24] have also discussed different algorithms for 

digitization, compression, enhancement, restoration and reconstruction. This book also 

provides good mathematical background for image processing and visual perception. 

V. T. Tom [28] has surveyed several adaptive techniques for image 

enhancement and filtering and has presented a taxonomy based on sliding-windows, 

types of operations performed, and algorithmic implementation. 

Negrate et. al. [18] have developed a window-based contrast enhancement and 

noise filtering technique for graytone images. They have evaluated their technique 

using the bimodality analysis as a quality measure compared to human response 

needed in most existing techniques. 
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Aghagolzadeh and Ersoy [1] have discussed three blockwise transform image 

enhancement techniques, viz., alpha-rooting, modified unsharp masking, and filtering 

modifications. They have compared the performance of these techniques to their own 

filtering technique motivated by the Human Visual System Response (HVSR), which 

also uses an overlap-save method to remove the block edge effects of the HVSR .. 

McCollum et. al., [16] have designed an inexpensive hardware system for TV­

rate high-speed image enhancement using the histogram modification technique based 

on the assumption that the statistical properties of images do not vary significantly 

from one TV frame period to another. 
I 

Tubbs [29] defined a family of image enhancement operators for context-free 

or context-sensitive enhancement that can be used either locally or globally. 

The IDS Model: 

The IDS model was presented by Comsweet and Yellott in 1985 [5]. In their 

paper in the Journal of Optical Society of America, they described the theoretical 

background and assumptions of the model. They have also shown similarities between 

IDS processing and physiological properties of the retina also referred to as lateral 

inhibition. 

A more elaborate discussion of the IDS is found in the Prentice Award Lecture 

by Comsweet [4]. This lecture focusses more on how the IDS processing takes place 

and how does it react to different intensities and discusses the Weber's law and Ricco's 

law. 
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Applications of the IDS Model: 

Alter-Gartenberg, Huck and Naryanaswamy [2] have shown that the reflectance 

recovery from the IDS bandpass data augments edge detection which can result in 

improved machine vision and image recovery. 

Naryanaswamy, Alter-Gartenberg and Huck [2, 3, 16] have applied the IDS 

model to an image coding scheme which is robust to variations in illumination 

conditions, preserves high structural fidelity and also provides a high compression 

ratio. 

Reese [22] has presented an adaptive, non-linear image enhancement method 

based on the IDS model. His method enhances edges, nonlinearly compresses the 

dynamic range and automatically adjusts to the local intensities in an image. 

Fuzzy Set Theory: 

Fuzzy set theory started with the seminal work of Zadeh in 1965 [32]. The 

rapid growth and popularity of the new field is shown by the fact that twelve years 

later Gains and Kohout [8] published a bibliography of 1150 articles related to 

different aspects of fuzzy set theory. In this paper, 750 citations were included to 

various applications of the fuzzy set theory including the introduction to fuzzy sets 

and its foundations, philosophy and logic of imprecision and vagueness, paradoxes, 

many-valued and other non-standard logic, fuzzyfication of mathematical systems. The 

remaining papers were about closely-related topics like linguistics, and psychology of 

vagueness. 
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Dubois and Prade [7] have written an excellent work on fuzzy set theory and 

the possibility theory, showing their relationship with and differences from the 

statistical probability theory. 

Gupta et al., [10, 11, 14] have collected a set of papers showing the advances 

in fuzzy set theory and applications in its first two decades. 

Klir and Folger [15] have written an excellent book on fuzzy sets, uncertainty, 

and information that can be used as a textbook for an introductory course on fuzzy set 

theory. 
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Introduction: 

CHAPTER IV 

THE IDS MODEL 

The IDS model was presented by Comsweet [4]. IDS stands for Intensity­

Dependent Spread functions or Intensity-Dependent spatial Summation. This model 

shows how the cells in the retina interact with the brightness perception. The basic 

idea underlying the model is that given an input image, I, the retina produces an 

output image, 0, using a spread function, S, such that every point in I contributes 

towards every point in 0, subject to input intensity at each point in I and distance 

between I and 0. The mathematical description of the model is as following [5): 

Definition I : Input image 

The input image I is defined as a two dimensional Euclidean space (an x-y 

plane), where x and y are the two spatial variables. Let I(x, y) denotes the intensity of 

the input image at point (x, y), where 

I(x, y) 0 for all x and y 
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Definition 2: Output image: 

The output image O is defined as another two dimensional Euclidean space (p­

q plane), where p and q are the two spatial variables .. Then O[l(x, y)] (p, q) denotes 

the output image intensity at point (p, q) when input image is I(x, y). When the input 

image is obvious, we simply use O(p, q) for the output image. 

Definition 3: Spread function: 

The spread function S has the generafform S {(x, y), (p, q), I)}, and it 

defines the relationship between the input image, I, and the output image, 0, such that 

every point in I contributes a non-negative point-spread value to every point in 0. The 

amount of this contribution depends on the input intensity at I(x, y) and the distance 

from (x, y) to (p, q). The spread function, S, satisfies the following necessary and 

sufficient conditions [ 5]: 

i) S is non-negative: 

This condition implies that the intensity level of any pixel in the given 

input image can only make either no contribution towards the enhancement· of 

its neighbors or it m~es a positive contribution. 

ii) S is spatially homogeneous and circularly symmetric: 

In other words, S can be expressed as a function of two real variables in 

the form 

S{[(x - p)2 + (y - q)2], I} = I(x, y) x S{l(x, y) x [(x - p)2 + (y - q)2]} 
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This property emphasizes the fact that when we are enhancing a pixel X in the 

given input image, any two pixels (a1, b1) and (a2, b2) at an equal distance 

from (x, y) have an equal chance to make a contribution towards the 

enhancement of the pixel (x, y). 

iii) The integral of S{[(x - p)2 + (y - q)2], I} over the p-q plane equals 1.0: 

Since the spread function is a probability function defining the probable 

contribution of each neighboring pixel towards the enhancement of a given 

pixel, the sum of all these probabilities must be 1.0. 

iv) No height of the spread function is greater than that at its center point (p, 

q) and this height is proportional to l(p, q), the intensity at that center 

point: 

This property underlines the fact that the original intensity level of a 

pixel X in the input image plays the biggest role in computing the enhanced 

intensity value for that pixel. No other pixel makes as much contribution 

towards the new value as the pixel X itself. 

Different statistical spread functions, like Gaussian, exponential, cylinder and 

cone have been used in the literature in image processing applications [2, 3, 4, 5, 20]. 

Some of these spread functions (e.g., cylinder and cone) are non-zero only for a finite 

distance from their center (radius of support), while some others (e.g., Gaussian and 
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exponential) extend over the entire plane. The region for which a spread function is 

non-zero is called its region of support. 

The output from IDS at some point (x, y) is defined as: 

O(x, y) = J/Jt l(p, q) S {l(p, q) [(x - p)2 + (y - q)2]} dp dq 

where O ::S p ::S M and O ::S q ::S N. This is also referred to as the fundamental equation 

of IDS. When we want to enhance an image or remove the noise from it, we compute 

the IDS output of the entire image. This forms a filter image. Then the enhanced 

image is obtained by adding the IDS image to the original image. 

Symbolically, 

E(x, y) = I(x, y) v O(x, y) 

In the following chapter, we shall present an overview of fuzzy set theory and 

its important properties and applications. 
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CHAPTER V 

AN OVERVIEW OF FUZZY SET THEORY 

Introduction: 

A fuzzy number can be considered as an extension to the concept of an 

interval of confidence [13]. This extension enables us to consider the confidence 

interval at several levels at the same time, and more generally at all levels in the range 

0 to 1. Then the maximum of presumption is at 1 and the minimum level of 

presumption is at 0. Also, the level of presumption p., p. E [O, l] gives an interval of 

confide~ce A,.=[A?>, A/,.>i, which is a monotonically decreasing function of p.; that is, 

( µ1 > µ) - (A", C A") 

OI (µ 1 > µ) ==> ([A}"'), A2<1&'l]i::.(.fA1(µ), Ai")] \;/ µ, µ1E[0,1] 

Let us assume, for example, that a certain job is to be completed between two 

dates, say February 21 and February 28. This is an interval of confidence [February 

21, February 28] and can also be represented as [O, 1]. Note that the underlying 

concept is independent of the interval size, that is 

\/ µ1 , µ2 E [0,1] 

This means that if p. increases, the interval of confidence never widens [13]. 
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Here, if we define X as a set in the classical sense, that is as a characteristic 

function µ,A from X to {O, 1}, such that 

= { 
1 

0 

iff 
iff 

XEA 
X (f A 

Then, a fuzzy set is a generalized subset of a classical set X with µ,A(x) E [0,1] 

being the grade membership of an element in the set A. Formally, a fuzzy set A with 

its finite numbers of supports X={x1,x2, ... ,xn} is defined as a collection of ordered pairs 

A = i = 1, 2, .... , n 

Clearly, A is a subset of X that has :rio sharp boundary [10]. Using this 

principle, other concepts from the classical set theory have been adopted into the fuzzy 

logic. These fuzzyfied concepts include: 

umon intersection complement 

support normalization and empty set 

Properties of a Fuzzy Set: 

The following properties have been associated with the above fuzzy set 

operations: 

a) commutativity: 

AuB=BuA 

b) associativity: 

A u (B u C) 

A n (B n C) 

; 

= 

= 
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c) idempotency: 

AuA=A 

d) distributivity: 

A u (B n C) 

A n (B u C) 

e) identity: 

Au4'>=A 

An4'>=4'> 

f) absorption: 

A u (A n B) = A 

g) complement: 
i 

h) involution: 

A 

i) De Morgan's laws: 

(A u B) = A n B 

j) equivalence formula: 

-(A u B) n (A u B) 

; 

= 

= 

; 

; 

; 

= 

= 

; 

= 

k) symmetrical difference formula: 

-(A n B) u (A n B) = 

1) boundedness: 

AnA=A 

(A u B) n (A u C) 

(A n B) u (A n C) 

AuX=X 

AnX=A 

A n (A u B) = A 

(1 - µA (X) ) / X 

A 

(A n B) = A u B 

-(A n B) u (A n B) 

(A u B) n (A u B) 

A fuzzy set A is said to be bounded if and only if for 
all«> 0, the corresponding sets A.= { x I fA (x) ~ 
«} are bounded. 

The only law of ordinary set theory that does not hold for fuzzy sets is the 

excluded-middle law: 

AuA#:X 
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Since the fuzzy set A has no definite boundary and neither has A, it may seem 

only natural that A and A overlap, which is always limited as 

min { µ A ( X ) ' µ A ( X ) ) 1/2 VA, \Ix 

For the same reason, Au A do not exactly cover X; however, 

min { µ A ( X ) ' µ A ( X ) ) 1/2 VA, \Ix 

Even though every operation that can be carried out using ordinary numbers 

can also be carried with fuzzy numbers, many properties change as we pass from one 

family to the other. Although this is important, it should not prevent us from using the 

concepts and theory of fuzzy numbers. The world of perception does not have sharp 

edges. It is full of ambiguity and uncertainty, and it is only reasonable to make use of 

the fuzzy set theory. 

Applications of Fuzzy Set Theory: 

Fuzzy sets allow information to be approximately summarized in a human-like 

fashion. It provides the right tool for approximate reasoning or for a generalized 

tolerance analysis. From this point of view the specification of a fuzzy system consists 

in a linguistic description of its behavior and/or assignment of fuzzy parameters to an 

ordinary mathematical model. Fuzziness may lie in the system itself or in its model. It 

is mainly a matter of human perception. 
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A great amount of work has already been accomplished. ·so far, fuzzy set 

, theory has largely been applied to scientific areas where man is somewhat involved. 

However, there are some exceptions like the detection of hazards in switching circuits, 

functional approximation and quantum mechanics [10]. The following is a brief listing 

of some of these achievements in fuzzyjication: 

a) Computer Science 

b) Biological and Medical Sciences 

c) Control Theory 

d) Economics 

e) Sociology 

t) Engineering 

In the next chapter, we shall explain how fuzzy set theory can be applied to 

construct spread functions and subsequently the fuzzy IDS model. 
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CHAPTER VI 

THE FUZZY IDS MODEL 

Fuzzy Spread Function: 

The IDS model enhances the image by creating bands at steps in intensities and 

the peak amplitude of the IDS output depends only on the ratio of intensities of two 

adjacent bands. This property enables the structure not only to enhance the contrast but 

also enhances the edges at the same time. 

We observe that the intensity level is constant in one band, changes as soon as 

we cross into the adjacent band and then remains constant in that band. We can 

consider this crossover as a "linguistic hedge" as defined by Zadeh [29]. Then we have 

"low intensity" on one side of this hedge and "high intensity" on the other side of this 

hedge. Then, we can consider each of these intensity levels as fuzzy subsets containing 

pixels of the same intensity [23]. Subsequently, we can consider the x-y plane as a 

fuzzy set with each point I(x, y) in the given image having a non-negative 

membership in this plane. Zadeh has defined the membership function of a fuzzy set 

as [29]: 
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S(x; a, b, c) = 0 X ~a 

= 2 {(x - a) / (c - a)} 2 a ~x ~b 

= 1 - 2 {(x - a) / (c - a)} 2 b ~x ~c 

= 1 X ~c 

with b = (a+ c) / 2 

Here, b is the crossover point which separates two adjacent intensity bands in 

the given image. The symbol S is used here because of the shape of this spread 

function as shown in Fig. 1. This is a very simple spread function compared to most 

statistical spread functions in use. However, it does not satisfy the second condition of 

the spread function, i.e., it is not circularly symmetric. 

We can overcome this problem by combining two S functions back to back to 

yield a more familiar looking bell-shaped spread function (see Fig. 2). We can further 

simplify this spread function by substituting c = 0 and b = 1 and rotating it about 

the z-axis, so that: 

r 

so that 

F(x,y) = 

= 

= 

..; x2 + y2 

0 

2(1-r)2 

1 - 2 r2 

for r > 1 

for Yz ~ r ~1 

for O ~ r ~ Yz 

Here, F is a fuzzy membership function as it maps the intensities of pixels into 

the interval [O, l]. We call F a fuzzy spread function if it satisfies all the conditions of 

a spread function. 
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Conditions for a Fuzzy Spread Function: 

We call F a fuzzy spread function if it satisfies the following conditions which 

are necessary and sufficient for a spread function in the IDS model. 

a. F is non-negative: 

By definition, 

F(x, y) 0 for all x, y 

b. F is peaked around the center: 

F (x, y) is maximum when x = 0 and y = 0 and the maximum value is 1. 

Therefore, the highest point of the fuzzy spread function, F, is its center point 

x = y = 0 and this height is proportional to l(p, q), the intensity at that center 

point. 

~ F is spatially homogeneous and circularly symmetric: 

If r ~ 1/2 then 

F (-x, -y) 

and if r s 1/2 then 

F (-x, -y) 

= 

= 2 { 1 - [ (x)2 + (y)2f" }2 

= F (x, y) 

= 1 - 2 [ (-x}2 + (-y}2] Y. 

= 1 - 2 [ (x)2 + (y)2) Y. 

= F (x, y) 
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Thus, F can be expressed in the fonn 

F {[(x - p)2 + (y - q)2], I} 

implying that F is spatially homogeneous and circularly symmetric. 

The volume of F is 1: 

We have already established the input image as a union of singleton fuzzy sets 

with each pixel representing its membership in the universal fuzzy graytone set. In 

other words, the intensity of illumination of a pixel is represented by its degree of 

membership in the contributing set. 

The fuzzy integral (also called the Sugeno's integral [30)) of a fuzzy function, 

F, with respect to its membership function, µ., is defined for a set A as: 

Here, A 

and 

t F dµ = supClE[O,oo] (« A µ (A n Fil)] 

The universal set [O, 255) 

alpha-cut of a unimodal continuous function F 
such that all µ. ~ a, where O :::S a :::S 1. 

Now, we have O :::Sa :::S 1; 0 :::S µ. :::S 1; andµ. ~ a. Since the maximum value of Fis 1 

(see part b above), that would also be the value of the fuzzy integral. 

Therefore, we see that the fuzzy spread function fulfills all the assumptions for 

an IDS spread function. 
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Introduction: 

CHAPTER VII 

IMPLEMENTATION ISSUES 

Computer science has its historical foundations in mathematics. Computing 

algorithms are developed using mathematical techniques. The performance of these 

algorithms is also evaluated using some mathematical techniques. However, most of 

these techniques and models have been evolved from continuous distributions and 

series. Whereas, present day computers are digital and hence are governed by discrete 

laws. Therefore, several issues need to be resolved when an algorithm is developed in 

a continuous domain and is then ported into a discrete domain. 

In this chapter we will discuss various issues and problems encountered while 

designing and implementing the two IDS models and how they have been resolved. 

Window size: 

Given an input image of 200 rows with 200 pixels in each row, the 

conventional IDS model assumes that each pixe1 in the input image has some non-· 

negative contribution towards every pixel in the enhanced image, and therefore, has to 

be computed for each pixel in the input image and then summed to produce one pixel 
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in the output image. Therefore, 200 x 200 computations to calculate one pixel in the 

output enhanced image. Now, if the output image is to be produced in the same size 

as the input image, the total number of 

computations will be: 

( 200 X 200 ) X ( 200 X 200 ) = ( 200) 4 

= 1.6 X 109 

However, for practical purposes a sliding window is used. The most commonly 

used spread function is Gaussian function which includes 95% points in the interval: 

[mean + standard deviation, mean - standard deviation) 

Window edges: 

The above approach works fine for most of the pixels in the input image. 

However, for the pixels on the extreme sides and comers, the enhancement window 

does not have enough pixels to correctly evaluate the spread function. Therefore, an 

approximate and inaccurate result is produced for such pixels. _ 

For our implementation we have chosen to ignore the very extreme pixels in 

the input image and their value is simply copied into the enhanced image. For a fair 

evaluation, this is done for both implementations of the conventional IDS and the 

fuzzyfied IDS model. The result is that in the enhanced image there is an extra edge 

on all four sides which is one pixel wide. On some images this edge is more visible 

than others. 
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Test images: 

Eleven test images were used for evaluation of our implementations. These 

images are frequently used in the image processing literature and present a fine blend 

of different combinations of pixel intensities. 

All the images used for our purposes are 200 x 200 pixels and have 256 

graytone levels. This choice was made so that the 320x200x256 VGA mode could be 

used. 

Test image format: 

The test images were obtained in different formats and sizes. For uniformity 

purposes they were all rescaled to 200 x 200 size. Also, they were all converted to 

Compuserve Graphical Information Format (GIF) 1987 non-interlaced format. 

Hardware: 

The computing machine used for this work was an IBM PC clone with the 

following configuration: 

Cyrix 486-DLC/40 CPU 

1 K Bytes internal cache 

128 K Bytes external cache 

4 Mega Bytes RAM with average access time = 60 nano sec 

Trident VGA card using VGA mode 13h = 320 x 200 x 256 

Viewsonic 6 super VGA monitor 
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Software: 

The implementation, testing and evaluation programs were developed using the 

following tools: 

MS-DOS ver 6.2 

Borland Turbo C 2.01 

Having resolved all the above issues, we got ourselves a fair and standardized 

environment to test and compare both the conventional IDS model and the fuzzyfied 

IDS model. 

In the following chapter we present some performance evaluation techniques 

that we used to evaluate and compare our algorithms. 
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Introduction: 

CHAPTER VIII 

EVALUATION TECHNIQUES 

A very important part of algorithm development is its implementation and 

testing. When the sole purpose of the algorithm is to improve or enhance the quality 

of an image, a need arises for evaluating its performance and comparing it with 

similar algorithms. 

Visual inspection: 

Images are used to present some information. When after applying an 

algorithm, an image presents more information or is more appealing we say that its 

quality has improved. In other words, the ultimate goal of image processing is to 

make an image more useful for its human users. Therefore, human visual inspection is 

a good test of performance. 

We have presented the eleven test images in the Appendix II as following: 

Appendix 11-1-a through 11-11-a 

Appendix II-1-b through II-11-b 

Appendix II-1-c through 11-11-c 
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Original images 

Conventional IDS enhanced images 

Fuzzyfied IDS enhanced images 



Histogram analysis: 

Histogram analysis is a very popular technique in the image processing 

literature [18]. Here, an image is converted into a frequency histogram where the x­

axis shows the graytone levels and the y-axis shows the number of pixels for each 

level. An histogram represents a higher contrast if the values are pulled towards the 

two far extremes i. e., bright white and the dark black levels. A more evenly 

distributed histogram shows a less sharper image. 

We have presented the eleven test images in the histogram format in the 

Appendix III as following: 

Appendix III- I -a through III-11-a 

Appendix III-1-b through III-11-b 

Appendix III-1-c through III-11-c 

Error Root Mean Square (ERMS) Analysis: 

Original images 

Conventional IDS enhanced images 

Fuzzyfied IDS enhanced images 

Statisticians use this technique to quantify the deviation of a given pattern from 

a standard pattern. Here, we can use this technique to find the difference between the 

original image O; and the enhanced image E;. We compute the sum of the squares of 

the difference between the corresponding pixels in both images. The resulting number 

is divided by the square of the size of the image N (both images are of the same 

size). The resulting value is called ERMS. 

ERMS (O,E) 
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We can evaluate the performance of an algorithm by this quantity, ERMS. A 

higher ERMS indicates more change and therefore, more enhancement for our 

purpose. On the other hand, a lower ERMS means smaller change and thus indicates 

less improvement for us. 

The ERMS values are shown in numerical form in Appendix IV-a and in 

graphical form in Appendix IV-b. 

Since our purpose is to evaluate the performance of two different methods, we 

have also computed the average ERMS of all eleven images, shown at the bottom row 

in Appendix IV-a and the last bars in the histogram in Appendix IV-b. 

Bimodality Analysis: 

One way of defining the contrast is the differentiation between two levels of 

graytone. Phillips et. al., as quoted in [18] stated that a good way to evaluate the 

separability of such classes is to use bimodality analysis. They defined the bimode for 

a population P as the Fisher distance between the two classes P1 and P2 of P, where 

Fisher distance is defined as: . 

FD ( t) 

where t 

Cl ( µ1 - µ2) 2 

(«1 af + «2 a~) 

graytone threshold that separates the two classes 

respective sizes for P, Pi, and P 2 

respective means for P, P1, and P2 

respective standard deviations for P, Pi, and P2 
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Obviously, a larger bimode value at a graytone level t indicates a high contrast ratio 

between pixel intensities more than t and those less than t. 

Now, it follows from the above discussion that a bimode is defined for each 

level of graytone. Since each of the images used in our research has 256 graytone 

levels, we have computed 256 bimodes for each image. Also, these bimodes were 

computed for each enhanced image obtained using the conventional IDS model as well 

as the fuzzyfied IDS model. The plots of these bimodes for each of the eleven test 

images are shown in the Appendices V-1 through V-11. 

Average Bimodality Analysis: 

The previous method presents a total of 256 values for each original image, 

conventionally enhanced image and the fuzzyfied enhanced image. These are a large 

numbers to really quantify the change in the quality of an image. 

One way of simplifying the issue is to compute an average of all the bimodes 

computed for an image. Thus we will have only three numbers, one for each original 

image, conventionally enhanced image and the fuzzyfied enhanced image. These 

average bimodes are shown in tabular form in Appendix VI-a and in the graphical 

form in Appendix VI-b. 

Again, our purpose being the evaluation of the performance of two different 

methods, we have also computed an average of all of the average of all eleven images, 

shown at the bottom row in Appendix VI-a and the last bars in the histogram in 

Appendix VI-b. 
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ERMS analysis of Bimodes: 

A major disadvantage of using an average to represent a set of values is that if 

one of these values is large or small enough, it can skew the whole representation. 

Therefore, it may be wiser to compute the square of the differences between bimodes 

of the original image and the enhanced image. Then we can obtain a single value by 

dividing the square root of the sum of these squares by the square of the population 

size, i.e., the number of the bimodes used in the research. In simpler words, we can 

represent a set of bimodes more accurately by its ERMS value. In this way we can 

control the effect of a single graytone level versus a set of these levels. 

These ERMS'ed bimodes are shown in tabular form in Appendix VII-a and in 

the graphical form in Appendix VII-b. 

Also, we did compute an average of all of the ERMS bimodes of all eleven 

images used in our research. These global averages are shown at the bottom row in 

Appendix VII-a and the last bars in the histogram given in Appendix VII-b. 

In the above discussion, we have shown some existing as well as new 

evaluation methods and presenting their results in numerical and graphical form. We 

are now ready to proceed to the next chapter to discuss our findings and to draw some 

conclusions from them. 
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Introduction: 

CHAPTER IX 

FINDINGS AND CONCLUSIONS 

Image contrast enhancement is a very delicate process. The original data are 

obtained from one medium of input and is targeted at another medium. In our case 

the input data are obtained from analogue camera and scanner and is targeted to be 

digitally displayed on the monitor of a PC. Our goal is to display these images so 

that they show maximum information while loosing minimum resolution. However, 

when continuous analog information is digitized, a certain loss occurs in the process of 

approximating discrete gray levels from continuous graytone. 

Also, while enhancing the contrast in an image, we are effectively substituting 

the gray level of a pixel with a lighter or darker level to increase its visibility amongst 

its neighbors. We can stretch this process to an extreme by substituting only black or 

white pixels and thus obtaining a very sharp two-level image. However, we will lose 

other details in the image, thus making the enhanced image less useful. 

Therefore, we must choose an algorithm which performs these substitutions 

while losing as little detail as possible. 
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In our research we have used an image contrast enhancement technique which 

models the human visual system, particularly the retinal function. This technique was 

developed using the boolean logic of black and white values. In real life, however, we 

deal with objects that are somewhat black, gray or white. Therefore, we extended the 

IDS prin~iple using concepts of fuzzy logic and thus o~tained a fuzzyfied IDS model. 

The next question was comparing the performance of these two models. 

Traditionally, an image is considered as a qualitative object and its quality is measured 

visually or by associating an average as a quantity. The problem in these cases is that 

an average provides a very biased representative. Simply put, if all the pixels in the 

image are uniformally distributed over the entire the graytone scale, an average is fine. 

But as the case is most of the time, some shades of gray occur more frequently in an 

image than others. Keeping this we also proposed a quantitative measure as a new 

metric to represent the quality of an image and help us determine more accurately the 

change in its quality. 

Now let us examine these two IDS models using these evaluation techniques. 

Visual inspection: 

The eleven test images used in our research are shown in Appendix II in three 

different forms: 

1. their original form 

11. enhanced using the conventional IDS model 

m. enhanced using the fuzzyfied model 
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We note the following observations about these images: 

a. The quality of the image on the VGA screen is different as we have 256 

graytone levels available to display the image. However, on paper we do not 

have such wide band of gray so we lose quality when printing on paper. 

b. The quality of the original images was fairly good while the improvements 

using the two enhancement methods were very close at certain levels. 

c. The overall quality of each of these images is improved. However, generally, 

there is no dramatic change in these images since both enhancement methods 

treat input image very delicately, trying to preserve as much detail as possible. 

d. Quality of an image is a human judgmental issue. One image may be preferred 

by one human while another one may be liked by some one else. 

Histogram analysis: 

The histograms for the eleven test images as well as the conventional IDS 

enhanced images and the fuzzyfied IDS enhanced images are shown in the Appendix 

III. We notice that the IDS enhancement process tries to redistribute the pixels among 

the graytone levels, making the resulting histogram more flat with lesser peaks. Also, 

our fuzzyfied method performs better by stretching this redistribution towards the 

extremes of the gray scale, producing a flatter histogram. 

Error Root Mean Square {ERMS) Analysis: 

We evaluate the performance of an algorithm using ERMS such that a higher 

ERMS indicates more change and therefore, more enhancement in our case. On the 

other hand, a lower ERMS means smaller change and thus less improvement for us. 
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The ERMS values are shown in numerical form in Appendix IV-a and in 

graphical form in Appendix IV-b. 

We notice that the ERMS values for fuzzyfied IDS are higher than their 

conventional IDS counterparts. This change does depend on the redistribution of 

pixels over the gray scale as well as the effect of the neighboring pixels· over the 

change in each pixel. 

Since our purpose is to evaluate the performance of two different methods, we 

have also computed the average ERMS of all eleven images, shown at the bottom row 

in Appendix IV-a and the last bars in the histogram in Appendix IV-b. We notice that 

this value is 3 .346 for the change from original to conventionally enhancement, while 

3.354 for the change from the original to fuzzyfied enhancement, showing a slight 

improvement over the conventional IDS enhancement. 

Bimodality Analysis: 

Conceptually, a bimode for a particular gray level represents an average 

distance between pixels darker than that level and those lighter than it. This average 

is biased by the number of pixels in each of these two classes and their average 

deviation from the mean of each class. We have computed 256 bimodes for each 

original image as well as each enhanced image obtained using the conventional IDS 

model and the fuzzyfied IDS model. The plots of these bimodes for each of the 

eleven test images are shown in the Appendix V. 
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We observe the plot of the fuzzyfied IDS bimodal curve higher than the 

conventional IDS bimodal curve. Also, generally the distance between the fuzzyfied 

IDS bimodal curve and the original image bimodal curve is wider than that of the 

conventional IDS bimodal curve and the original image bimodal curve. 

Average Bimodality Analysis: 

The simple bimodality analysis presents a total of 256 values for each original 

image, conventionally enhanced image and the fuzzyfied enhanced image. This is a 

rather large set of quantities to measure the change in the quality of an image. To 

make the evaluation of the performance of two different methods more practical, we 

computed an average of all of these bimodes for each image as well as a grand 

average of all eleven images, shown in both numerical and graphical form in 

Appendix VI. 

We observe our fuzzyfied model's values to be higher than those for the 

conventional IDS model. We find the grand average as 5 .28 for the original images, 

enhanced to 5.40 using the conventional IDS method. This quantity reached an 

impressive 5 .92 when the fuzzyfied technique was used. 

ERMS analysis of Bimodes: 

This is our new evaluation method in which we use a quantity obtained by 

performing an ERMS on the bimodes computed for graytone levels in our test images. 

We find that this single quantity shows an average change in the quality of an image. 

39 



However, this quantity is not skewed by an uneven distribution of pixels over the 

graytone scale. Also, this quantity reflects the redistribution in the pixel neighborhood 

since corresponding differences in pixel bimode values are squared and then averaged 

over the entire scale. 

Examining these values in numerical and graphical form in the Appendix VII, 

we find our fuzzyfied method showing an average gain of 31.25% in enhancement 

quality improvement of 210 x 1 o-6 over the average value of 160 x 10-6 obtained 

using the conventional method. Our method also shows various levels of improvement 

over various images, ranging from 50 x 10-6 to 786 x 10-6 compared to conventional 

IDS enhancements ranging form 40 x 10-6 to 437 x 10-6; thus indicating a better 

redistribution of pixels in the image to improve contrast enhancement. 

Special Cases: 

In the previous cases, we have examined and enhanced images in their original 

form as they wer obtained. Repeating the same image enhancement procedures for 

images that were deteriorated prior to enhancement resulted in similar way. Appendix 

VIII shows an image that was obtained in 256 greytone levels. It was then reduced to 

16 greytone levels and then it was enhanced using the conventional IDS method as 

well as the fuzzy IDS enhancement. We observed that as a result of reducing the 

greytone levels, the pixels were clustered into J.6 groups. The enhancement attempts 

to improve the image by spreading the pixels. This de-clustering is obversed to be 

more effective, as seen in Appendix VIII. 
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In a similar way, an image was obtained in good shape and was then 

smoothed using a Gaussian filter. The result was clustemg all pixels towards the 

lighter greytone level, thus reducing the sharpness in the image. Then we enhanced 

the image using the conventional IDS method and the fuzzy IDS method. We 

observed that the enhancement process redistributes the pixels in an effort to pull the 

cluster towards the darker greytone level, thus attempts to produce a smoother 

histogram. We also observed that the fuzzy IDS enhancement method performed 

better than the conventional IDS method. 

Conclusion: 

In our research, we have extended a model of the human visual system based 

on conventional logic of black and white to a more powerful model of several gray 

levels (typically 256) using the concepts from fuzzy set theory. 

We have also presented a new method for analyzing and comparing contrast 

enhancement algorithms. 

Examining the evaluation evidence obtained from the presently known as well 

as our newly established enhancement quantification methods, we find the performance 

of our new image contrast enhancement method more satisfactory than the 

conventional method. 
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APPENDIX I~a 

FUZZY MEMBERSHIP FUNCTION S 

S x) 
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APPENDIX 1-b 

FUZZY MEMBERSHIP FUNCTION F 

F x) 

47 



APPENDIX II 

IMAGES 

~--··'"'···".'.~:-s "'.'!Jiib iCJL 
-:-· W. 

Fig I-1-a: AIRPLANE 
(original) 

Fig I - 1-b: AIRPLANE 
(IDS enhanced) 
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Fig I-1-c: AIRPLANE 
(Fuzzy enhanced) 



Fig I-2-a: ASTRONAT 
(original) 

Fig I-2-b: ASTRONAT 
( IDS enhanced) 
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Fig I-2-c: ASTRONAT 
(Fuzzy enhanced) 



Fig I-3-a : BABOON 
(original) 

Fig I - 3- b : BABOON 
( IDS enhanced) 
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Fig I-3-c : BABOON 
(Fuzzy enhanced) 



Fig I-4-a: BRIDGE 
(original) 

Fig I-4-b : BRIDGE 
( IDS enhanced ) 

51 

Fig I-4-c: BRIDGE 
(Fuzzy enhanced) 



Fig I-5-a: CAMERA 
(original) 

Fig I-5-b: CAMERA 
(IDS enhanced) 
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Fig I-5-c: CAMERA 
(Fuzzy enhanced) 



Fig I-6-a : COUPLE 
(original) 

Fig I-6-b: COUPLE 
(IDS enhanced) 
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I - 6-c: COUPLE 
(Fuzzy enhanced) 



' . ,.·;· . 

Fig I - 7-b: GIRL 
( IDS enhanced) 

Fig I-7-a: GIRL 
(original) 
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Fig I - 7- c : GIRL 
(Fuzzy enhanced) 



Fig I-8-a: GOLDNGAT 
(original) 

Fig I-8-b: GOLDNGAT 
(IDS enhanced) 
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Fig I-8-c: GOLDNGAT 
(Fuzzy enhanced) 



Fig I-9-a: JUPITER 
(original) 

Fig I-9-b: JUPITER 
( IDS enhanced) 
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Fig I-9-c: JUPITER 
(Fuzzy enhanced) 



Fig I-10-b: LENA 
( IDS enhanced) 

Fig I-10-a: LENA 
(original) 
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Fig I-10-c: LENA 
(Fuzzy enhanced ) 



Fig I-11-a: PEPPERS 
(original) 

Fig I-11-b: PEPPERS 
(IDS enhanced ) 
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Fig I-11-c: PEPPERS 
(Fuzzy enhanced) 



APPENDIX III 
HISTOGRAMS 

Fig II-1-a: AIRPLANE (original) 

Fig III-1-b: AIRPLANE (IDS enhanced) 

Fig III-1-c: AIRPLANE (Fuzzy enhanced) 
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Fig III-2-a: ASTRONAT (original) 

Fig III-2-b: ASTRONAT (IDS enhanced) 

ASTRONAT 
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Fig III-3-a: BABOON (original) 

Fig III-3-b: BABOON (IDS enhancement) 

Fig III-3 - c : BABOON (Fuzzy enhanced) 
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Fig III-4-a: BRIDGE (original ) 

Fig III-4-b: BRIDGE (IDS enhanced ) 

Fig III-4-c: BRIDGE (Fuzzy enhanced) 
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Fig III-5-a: CAMERA (original) 

Fig III-5-b: CAMERA (IDS enhanced ) 

Fig III-5-c: CAMERA (Fuzzy enhanced) 
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Fig III-6-a: COUPLE (original) 

Fig III-6-b: COUPLE (IDS enhanced) 

Fig III-6-c: COUPLE (Fuzzy enhanced) 
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Fig III-7-a: GIRL (original) 

Fig III-7 -b: GIRL (IDS enhanced ) 

Fig III-7-c: GIRL 
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Fig III-8-a: GOLDNGAT (original) 

Fig III-8-b: GOLDNGAT (IDS enhanced) 
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Fig III-8-c: GOLDNGAT (Fuzzy enhanced) 
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Fig III-9-a: JUPITER (original) 

_II.. .JI I - 1111 

Fig III-9-b: JUPITER (IDS enhanced) 

J!,i~~L .... .JII 

Fig III-9-c: JUPITER (Fuzzy enhanced) 
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Fig III-10-a: LENA (original) 

Fig III-10-b : LENA (IDS enhanced) 

Fig III-10-c: LENA (Fuzzy enhanced) 
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Fig III-11-a: PEPPERS (original) 

Fig III-11-b: PEPPERS (IDS enhanced) 

Fig III -11-c : PEPPERS (Fuzzy enhanced) 
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AIRPLANE 

ASTRONAT 

BABOON 

BRIDGE 

CAMERA 

COUPLE 

GIRL 

GOLDNGAT 

JUPITER 

LENA 

PEPPERS 

average 

APPENDIX IV-a 

ERROR ROOT MEAN SQUARE ANALYSIS 
(numerical form) 

Original Original 
vs vs 

Conventional IDS Fuzzy IDS 
---------~------------------ -------------

3.215503 3.218820 

3.890778 3.725004 

2.816534 2.839312 

3.081596 3.092245 

3.906126 4.072453 

2.110293 2.255526 

3.294765 3.080328 

4.027278 4.191188 

3.522972 3.497715 

3.467250 3.485799 

3.475171 3.442055 

3.346206 3.354586 
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APPENDIX IV-b 

ERROR ROOT MEAN SQUARE ANALYSIS 
(graphical form) 

AIRPLANE BABOON CAMERA GIRL JUPITER PEPPERS 
ASTRONAT BRIDGE COUPLE GOLDNGAT LENA average 

~ Orig vs Conv IDS b§§j Orig vs Fuzzy IDS 
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APPENDIX V 

BIMODALITY ANALYSIS 
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Fig V-1: AIRPLANE 
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Fig V-2: ASTRONAT 
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Fig V-3: BABOON 

74 



1 20 39 58 77 96 115 134 153 172 191 210 229 248 
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Fig V-4: BRIDGE 
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Fig V-5: CAMERA 
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Fig V-6: COUPLE 
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Fig V-7: GIRL 
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Fig V-9: JUPITER 
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Fig V-10: LENA 
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Fig V-11: PEPPERS 

82 



AIRPLANE 

ASTRONAT 

BABOON 

BRIDGE 

CAMERA 

COUPLE 

GIRL 

GOLDNGAT 

JUPITER 

LENA 

PEPPERS 

average 

APPENDIX VI-a 

AVERAGE BIMODALITY ANALYSIS 
(numerical form) 

Original 

4.148438 

2.503906 

6.527344 

10.066406 

5.687500 

3.750000 

4.769531 

2.847656 

0.785156 

8.476562 

8.582031 

5.285866 
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Conventional 
IDS 

4.101562 

2.898438 

6.410156 

9.906250 

5.593750 

3.472656 

6.464844 

3.089844 

0.781250 

8.261719 

8.484375 

5.405895 

Fuzzy 
IDS 

4.246094 

3.531250 

6.582031 

10.281250 

6.019531 

3.925781 

7.652344 

4.835938 

0.796875 

8.554688 

8.691406 

5.919744 
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APPENDIX VI-b 

AVERAGE BIMODALITY ANALYSIS 
(graphical form) 

BRIDGE LENA 

0 r i in a I Conv IDS Fuzz IDS 
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average 



AIRPLANE 

ASTRONAT 

BABOON 

BRIDGE 

CAMERA 

COUPLE 

GIRL 

GOLDNGAT 

JUPITER 

LENA 

PEPPERS 

average 

APPENDIX VII-a 

ERMS ANALYSIS OF BIMODALITY 
(numerical form) 

Original 
VS 

Conv IDS 

-------------

0.000040 

0.000114 

0.000124 

0.000245 

0.000116 

0.000140 

0.000437 

0.000138 

0.000025 

0.000221 

0.000157 

0.000160 
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Original 
vs 

Fuzzy IDS 

-------------

0.000050 

0.000245 

0.000027 

0.000065 

0.000215 

0.000184 

0.000786 

0.000479 

0.000043 

0.000164 

0.000050 

0.000210 



0. 0008 

0.0007 

0. 0006 

0.0005 
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0.0003 
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0 . 0 0 0 1 

APPENDIX VII-b 

ERMS ANALYSIS OF BIMODALITY 
(graphical form) 

GOLDNGAT 

Ori vs Conv IDS Ori vs Fuzz IDS 
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SPECIAL CASES . 

GREY-LEVEL REDUCTION 

& 

IMAGE SMOOTHING 
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APPEND IX VIII 

SPECIAL CASE -- REDUCED GREY LEVELS 

·/pf/' 
i f 

Fig VIII-a:original i mage 

Fig VI II - c : IDS enhanced 
for reduced grey levels 
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Fig-VIII-b : i mage with 
reduced grey level s 

Fig VI II - d : Fuzzy enhanced 
f or reduced grey l eve l s 
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Fig VIII-1: original image 
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IDS enhanced 
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APPENDIX IX 

SPECIAL CASE -- SMOOTHED IMAGE 

Fig IX-a: original image 

Fig IX-c: conventional 
enhanced smoothed image 
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Fig IX-b: Smoothed image 

Fig IX-d : Fuzzy enhanced 
smoothed image 



Fig IX-1: Original Image 

Fig IX-2: Smoothed Image 

Fig IX-3: IDS Enhanced Smoothed Image 

?ig IX-4: Fuzzy Enhanced Smoothed Image 
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