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In this study, the 

transfer equation (CTE) 

correlation function for 

PREFACE 

derivation 

governing 

multiple 

of the correlation 

the temporal field 

scattering of light 

through suspensions of diffusing particles is presented. It 

was shown here that there exists a formal similarity between 

the CTE and the radiative transfer equation (RTE). Several 

radiative transfer solution techniques (approximate and 

exact) were applied to obtain solutions for the field 

correlation function in isotropic and anisotropic one­

dimensional media subjected to either natural or polarized 

radiation. 
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I. INTRODUCTION 

The motion of particles in fluid/particle suspensions 

give rise to temporal fluctuations in the intensity of 

multiply scattered light. The measurements of the temporal 

autocorrelation functions of these fluctuations contain very 

useful information about the dynamics of the scatterers in 

the medium. From the measured correlation functions, one 

can in principle, determine fluid/particle properties such 

as particle diameter, fluid viscosity and diffusion 

constants. These properties are very important in various 

fields that include engineering, physics, and bio-chemistry. 

The problem however has always been the lack of a 

comprehensive theory that would be able to interpret and 

predict data obtained by various photon correlation 

measurements, usually ref erred to as Dynamic Light 

Scattering (DLS) techniques. The few existing theories 

today, namely, the single scattering and the diffusion 

approximations, treat only the extreme ends of the 

scattering orders that may exist in any fluid/particle 

suspension subjected to a source of radiation. On the lower 

end of scattering, the single scattering approximation 

requires the suspensions to be very dilute (optically thin) 

which is usually not possible for most industrial in-situ 

applications. on the upper (or higher) end of scattering, 

1 
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the diffusion approximation is only valid for very dense 

(optically thick) suspensions. Thus, results for arbitrary 

orders of scattering could not be predicted and modeled by 

either of the two theories mentioned above. 

In this work, a new correlation equation for the 

electric field temporal correlation function, termed the 

Correlation Transfer Equation (CTE), is developed from the 

multiple scattering theory for wave propagation. The 

derivation assumes ballistic transfer of light, in 

accordance with radiation transfer, and thus, results in an 

integral equation similar to the Radiative Transfer Equation 

(RTE) but with a delay-time dependent phase function. 

Because of the general nature of the CTE, arbitrary 

orders of multiple scattering and polarization effects can 

be theoretically treated. Also, because of the similarities 

that exist between both the CTE and the RTE, radiative 

transfer solution methods, that are widely available, can be 

used to obtain results for the temporal field correlation 

function of light multiply-scattered from fluid/particle 

suspensions of arbitrary concentrations (optical thickness). 

The particles are assumed to be monodisperse, non­

interacting and diffusing in accordance with Brownian 

motion. 

All solution methods presented here are for plane 

parallel media with azimuthal symmetry subject to collimated 

incident radiation at one boundary. An explicit closed form 

solution is . presented using the exponential kernel 
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approximation technique applied to a preaveraged CTE with 

isotropic scattering. Also the diffusion approximation is 

employed to derive a closed form solution to the CTE for 

optically thick media. And to investigate polarization 

effects for Rayleigh scattering particles, the P1 

approximation is used to obtain a closed form solution for 

the two-component field correlation vector field in media 

with axial symmetry. 

Exact numerical solution techniques based on a Legendre 

series expansion of the delay-time dependent phase function 

are also presented for both isotropic and anisotropic media. 

And Chandarasekhar's x- and Y-functions are employed to 

obtain exact solutions for the preaveraged isotropic CTE. 

Effects of optical thickness, off-angle scattering, 

index of refraction, anisotropy, and polarization are 

investigated. Solutions that demonstrate these various 

effects on the transmitted and back-scattered field 

correlation functions are presented in graphical form. 

Comparisons of the different solution methods described here 

are also presented. In addition, CT is successfully 

compared to Diffusive Wave Spectroscopy in the thick limit, 

and to the single scattering field correlation function in 

the very thin limit. And finally, a particular application 

of CT to gel suspensions is presented to demonstrate that CT 

can, in principle, be extended to more general 

fluid/particle suspensions (other than diffusing particles). 

A general review of the literature related to radiative 



transfer, 

scattering 
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dynamic light scattering (DLS), and multiple 

(MS) theory is presented in Chapter II. The 

fundamental theories of single and multiple scattering as 

they relate to this work are reviewed in Chapter III. These 

theories are used in Chapter IV to derive the correlation 

transfer equation for freely diffusing particles. Several 

solution methods for CTE are presented in Chapter V for the 

scalar CTE and in Chapter VI for the vector {polarized) CTE. 

Finally, Chapter VII contains results and discussion. 



CHAPTER II 

LITERATURE REVIEW 

II.1. General Introduction 

The theory of light scattering and its application 

extend over an enormous number of scientific and engineering 

fields. Any comprehensive review of the related literature 

requires a significant amount of time and energy and would 

constitute a separate area of research by itself. In this 

section, much attention will be given to review theoretical 

work concerning light scattering and the interaction of 

electromagnetic (EM) radiation with matter. Applications 

and techniques of light scattering measurements will be 

briefly reviewed as they do not constitute the main focus of 

this study. 

In general, there are two classes of problems in the 

theory of wave-matter interactions; the direct problem and 

the inverse problem [Bohren and Huffman, 1983]. The direct 

problem consists of finding the characteristics of the waves 

propagating in the medium given that the incident wave and 

size, shape, and composition of the scatterers in the medium 

are known. In this case, radiative transport (RT) theory 

and the more rigorous multiple scattering (MS) theory 

provide the solution to the intensity of radiation or 

5 
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electric wave fields after interacting with the medium. 

Among the numerous works on the general theory of 

radiative transfer, I found the following books most useful: 

the treatise of Chandrasekhar (1960) dealing with RT in 

plane-parallel media, the book by Siegel and Howell (1981) 

on thermal radiation and heat transfer, the work of 

Pomraning (1973) on radiation hydrodynamics, and the 

radiative transfer book by Ozisik (1973). Other books that 

were devoted entirely to the treatment of scattering 

characteristics of particles of known sizes and shapes 

include those of Bohren and Huffman (1983.), van de Hulst 

(1980a and 1980b), and Kerker (1969). 

In general, the characteristics of the medium and the 

particles within it are not known a priori, and the focus of 

the investigator must then shift towards the inverse 

problem. Here, one tries to describe the characteristics 

(optical and physical) of the medium and the scattering 

centers in it from analyzing the scattered light. 

Optical properties, such as scattering efficiency and 

phase function, are usually determined through radiative 

transfer scattering techniques. In this context, RT is 

concerned with the measurement of the static or mean 

intensity, from which, the optical thickness, absorbing and 

scattering coefficients, phase function, and/or index of 

refraction for a certain situation can be determined 

[Charalampopoulos and Chang, 1988, Lazaro and Lasheras, 

1992, Fante, 1974, Ishimaru and Kuga, 1983]. 
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on the other hand, physical transport properties, such 

as diffusion coefficient and viscosity, require dynamic 

light scattering (DLS) techniques, where the correlation 

functions, spectra, and other statistical moments of the 

scattered electric fields are measured [Berne and Pecora, 

1976]. Combined techniques, DLS and RT extinction methods, 

are often used for in situ measurements of fluid particle 

suspensions [Charalampopoulos and Chang, 1988]. 

The relation between the direct approach and the 

inverse approach has been established for a few first 

moments of the electric field such as the mean bilinear 

field quantities and the intensity of radiation 

[Barabanenkov et al., 1971, Ishimaru, 1978b]. This 

relationship will be exploited in this study to combine RT 

and MS formalism and methods of solution with DLS 

requirements to derive the CTE which will allow the 

interpretation of data from samples of arbitrary multiple 

scattering orders. 

Next, I will review the RT methods of solution that 

will be used in this study to obtain results for the CTE 

followed by a brief review of theoretical and experimental 

work being done in DLS. Literature dealing with MS will be 

reviewed last. 

II.2. Radiative Transfer Solution Methods 

Most of the RT solution methods available deal 

primarily with the direct problem. Correlation transfer 
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theory, however, makes it relatively simple to use more 

elaborate RT solution methods to interpret experimental 

data. Some of the methods that will be used here to solve 

the CTE include the closed form exponential kernel 

approximation for semi-infinite [Armaly and Lam, 1974] and 

finite [Armaly and Lam, 1977] plane-parallel media. The 

diffusion approximation is also widely used in the radiative 

transfer and dynamic light scattering fields. The method 

has been reported by several authors including Pomraning 

(1973), Ishimaru (1978a), and Ozisik (1973). 

Exact one-dimensional solutions for preaveraged 

isotropic scattering will be based on the H-function and the 

x- and Y-functions for the semi-infinite and the finite 

cases, respectively [Chandrasekhar, 1960]. Index of 

refraction effects for isotropic media will be handled based 

on Jiang's work for one dimensional media [Jiang, 1990], and 

on Reguigui's work for multi-layered media [Reguigui, 1990, 

Reguigui and Dougherty, 1992]. 

For anisotropic scattering, the solution to the RTE 

becomes much more complicated and far more elusive. In 

certain situations however, the anisotropic problem can be 

transformed into an isotropic problem by assuming a phase 

function that is peaked in the forward direction and 

superimposed on an otherwise, isotropic phase function. 

This is the basis for the forward scattering approximation 

[van de Hulst, 1980b]. In general however, this 

approximation fails to describe the true nature of 
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scattering, and an expansion of the phase function in a 

series of Legendre polynomials becomes the most attractive 

alternative [Chandrasekhar, 1960, Chu et al., 1963, Jendoubi 

et al., 1992, Sekera, 1963, Crosbie and Dougherty, 1980, 

1983, and 1985]. 

When polarization effects 

vector solution to the CTE 

can not be 

needs to 

neglected, a 

be obtained. 

Chandrasekhar (1960) gave the exact solution for the 

parallel and perpendicular components of polarized radiation 

emerging from an axisymmetric plane medium. A more 

extensive list of polarization related literature will be 

included in the chapter dealing with polarization. 

II.3. Dynamic Light Scattering 

Much of the theoretical work that has been done to 

interpret the results from DLS experiments has been limited 

to single scattering (the Born approximation) [Pussey and 

Tough, 1985, Weiner, 1984, Berne and Pecora, 1976, and Chu, 

1974], and the full potential of DLS has not been fully 

explored due to analytical complexities. A few more 

elaborate routines such as the CONTIN Laplace inversion 

routine, MARLIN (a discrete exponential fitting program) and 

EXSAMP (a rapid, smoothed algorithm for Laplace inversion of 

the first order autocorrelation function) have been used to 

analyze correlation functions for complex particle size 

distributions [O'Hern et al., 1993, Russo et al., 1988, 

Provder, 1987]. Thus, optically thick samples had to be 
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diluted for testing which can be costly or difficult to do 

in some situations, or it may even change the character of 

the suspension. 

Recently, the study of the time-dependence of intensity 

fluctuations in the highly multiple scattering limit, termed 

diffusive wave spectroscopy (DWS), has been examined both 

theoretically [Zhu et al., 1991, Pine et al., 1990, Wolf and 

Maret, 1990, MacKintosh and John, 1989, Stephen, 1988] and 

experimentally [Pine et al., 1990, 1988, Maret and Wolf, 

1987] with success. Assuming that the propagation of light 

in the medium is diffusive, Stephen (1988) studied the 

effect of time-dependent fluctuations of the medium on the 

spectral intensity and the intensity fluctuations of light 

scattered from it. The spectral intensity in coherent back-

scattering was also discussed. He observed that the 

relaxation time depends on the multiple-scattering paths. 

Thus, the scattered intensity exhibits a broad range of 

relaxation times, and it will not depend in an important way 

on the scattering angle due to multiple scattering. 

From the requirements of DWS theory, it appears that 

DWS may not be interpreted in the intermediate scattering 

regime, and it remains applicable only to optically thick 

media (optical thickness> 10) [Yoo et al., 1990]. Also, in 

the case of highly anisotropic scatterers, the diffusion 

model does not suffice to describe a photon's ballistic path 

[Middleton and Fisher, 1991], although it does attempt to 

. . . 
correct for this by using the transport mean free path 1 
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[Pine et al., 1990]. 

consideration the 

In addition, DWS does not take into 

wave number renormalization due to 

multiple scattering as discussed by early researchers 

(reviewed in the following section). 

II.4. Multiple Scattering 

Although a variety of solution techniques for the RT 

equation exists in the literature [Chandrasekhar, 1960, 

Ishimaru, 1978a], the RT approach using intensity fails to 

fully describe the problem of wave propagation in continuous 

media and media containing particles [Furustu, 1975, Wolf, 

1976]. A more rigorous approach, that has been termed 

multiple scattering (MS) theory or analytical theory for the 

electric field, has been used to fully describe the wave 

propagation problem [Foldy, 1945, Lax, 1951, Twersky, 1964, 

1962, Barabanenkov et al., 1971, Furustu, 1975, Ishimaru, 

1978b] where, in principle, all multiple scattering, 

diffraction, and interference effects can be included. 

However, an explicit solution still requires neglecting some 

of these effects [Barabanenkov, 1969]. For example, 

Barabanenkov et al. (1971) list the method of small 

perturbations, the method of smooth perturbations, and the 

parabolic equation method as examples of such 

approximations. 

The analytical theory is based on fundamental 

differential equations governing field quantities and some 

statistical considerations. One of the earliest papers on 
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the subject of MS of waves was that of Foldy (1945) who 

solved a problem for point isotropic scatterers distributed 

in an uncorrelated way. However, Foldy' s simplifications 

concerning conditional and unconditional averages still 

remained questionable (Barabanenkov, 1969, Twersky, 1964]. 

Twersky (1964) gave a more systematic description of the 

physical processes involved in MS, and derived integral 

equations for the coherent field and the mutual coherence 

function that are similar to those given by Foldy (1945). 

Subsequent papers have concentrated on deriving a 

generalized transport equation for the spectral density of 

the wave field, of which, RTE is a special case, from more 

rigorous arguments using the MS theory (Barabanenkov, 1969, 

Barabanenkov et al., 1971, Furustu, 1975, Ishimaru, 1978b]. 

Most of the work on field correlations that is fundamental 

to the MS theory dealt mainly with the diffusion 

approximation (Stephen, 1988] 

experimentally [Pine et al., 1990, 

1987]. 

or was carried on 

1988, Maret and Wolf, 

Work on the concept of spectral density of random wave 

fields, was pioneered by Barabanenkov (1969) who derived 

equations for the spectral field densities that satisfy a 

generalized transport equation. Equations for the spectral 

densities within and outside a plane scattering medium in 

the approximation of weak non-locality were also presented. 

Conditions were investigated under which the spectral 

densities as functions of the wave vector modulus lead to 
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the equations that could be reduced to the phenomenological 

transport equation (RTE). It was shown that the transport 

equation describes only a part of the spectrum of a random 

field, which had been termed the Fraunhofer part. 

In the Fraunhof er limit, the effects of the spatial 

dispersion of the waves, spatial variation in the spectral 

density over an effective length scale characteristic of the 

spatial inhomogeneity of the medium, and diffraction effects 

are neglected [Barabanenkov, 1969]. 

II.5. Applications 

The methods of DLS and RT extinction measurements find 

a wide range of applications that encompass physics, 

chemistry, biology [Berne and Pecora, 1976], and of course, 

engineering [O'Hern et al., 1993, Lazaro and Lasheras, 1992, 

Charalampopoulos and Chang, 1988, Russo, 1988, Flower, 1983, 

Fisher and Krause, 1967]. 

From the important applications of light attenuation 

methods and DLS in engineering, characterization of soot 

particles in combustion systems take the front seat. Flower 

(1983) used light extinction measurements to study soot 

formation in premixed flames. Charalampopoulos and Chang 

(1988) used combined DLS and classical scattering extinction 

measurements to determine several optical properties of soot 

particles in propane/oxygen flames. 

Light attenuation methods have also been used to study 

the mixing of two fluids [Becker et al., 1983] and a 
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turbulent mixing region containing a fine suspension of 

particles [Fisher and Krause, 1967, Lazaro and Lasheras, 

1992]. In addition, photon correlation spectroscopy (PCS) 

was used to study the thermal stability of aviation fuels 

and the formation and growth of particles formed during the 

thermal degradation of the fuel [O'Hern et al., 1993]. 

An overview of the rigorous derivation of the CTE is 

the main subject of this work. Previously, a heuristic 

derivation of the CTE was presented by Ackerson et al. 

(1992) through appropriate modifications of the RTE. The 

rigorous derivation that will be presented here follows 

similar arguments used by Twersky (1964) in deriving his 

spatial field correlation equation for stationary particles, 

and by Ishimaru (1978b) in deriving the mutual coherence 

function (MCF) for particles moving with a constant 

velocity. It will be shown that the field correlation 

equation derived here is related to the intensity 

correlation function that is usually obtained in laboratory 

measurements. 

In addition, several radiative transfer solution 

techniques (approximate and exact) are applied to CTE and 

then solved to obtain solutions for the field correlation 

function in isotropic and anisotropic one-dimensional media. 

These techniques are compared to each other. Also, a 

comparison of the CTE behavior in both the single scattering 

regime and the diffusion limit to the available theories in 

both of these limits is presented. The effects of the 
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optical thickness, scattering angle, and index of refraction 

on the correlation function have been investigated and will 

be briefly discussed in this work. 

Finally, a 

radiation and 

preliminary investigation of 

a method of solution is 

polarized 

presented. 

Explicitly, the P1 approximation to the two-component 

correlation vector in plane symmetry is presented in closed 

form solution. Numerical solutions are presented in 

graphical form. 



CHAPTER III. 

FROM SINGLE TO MULTIPLE SCATTERING 

III.1. Single Scattering Photon Correlation Theory 

Among the most popular DLS techniques available for 

measurement of sub-micron diameter particles suspended in a 

liquid is photon correlation spectroscopy (PCS). The 

capability of PCS for accurate sizing of small particles is 

particularly important in the single scattering regime 

(dilute samples) since the theory for data interpretation is 

well developed. In this section, a brief review of the 

single scattering theory for an optically dilute suspension 

of independent, non-interacting, diffusing particles is 

presented. 

The fluid/particle suspension is usually illuminated by 

a light beam consisting of plane EM waves having a wave 

vector ko~' where k0=2rrn/ Ao is the wave number and ~' is a 

unit vector in the incident direction of the beam as shown 

in Fig. 1. All the figures in this work are grouped 

together in a section that follows Chapter VII. n is the 

index of refraction of the solvent and Ao is the wavelength 

of the incident beam outside the medium. The intensity is 

usually detected at a large distance from the scattering 

volume ( in the far field) so that the scattered wave is 

16 
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approximated by a plane wave with the same wave number k0 

and travelling in a direction given by the unit vector n 

[Berne and Pecora, 1976]. Here it is assumed that the 

scattering is quasi-elastic so that frequency does not 

change upon scattering. The momentum transfer resulting 

from this scattering event is proportional to k=ko cn-n,) 

where the magnitude of the scattering vector k is given by 

k 4n , c®> = = -nsin -A0 2 (1) 

where e is the scattering angle given by cos(®)= non,. 

In static measurements, the average scattered intensity 

in a given direction n at a location r, <I(r,n,t)>, is 

obtained by performing an ensemble average of the 

instantaneous intensity I(r,n,t). The scattered intensity is 

fluctuating in time (t) due the particles' movement in the 

sample. The ensemble average may be replaced by a time 

average for ergodic (stationary) processes [Berne and 

Pecora, 1976]. This average intensity is proportional to 

the product of the scattered electric field and its complex 

conjugate: 

<I(r,n,t)> • = IC<E(r,k,t)E (r,k,t)> (2) 

where k is the wave vector representing the momentum 

transfer after a scattering event. The proportionality 

constant ,c depends on the detection area and other physical 
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characteristics of the detection system. 

For time-independent illumination, the time dependence 

of the intensity (fluctuations) is due to the movement of 

the particles in the medium. A field correlation function 

(Gm) is used to correlate the time history of the electric 

field to the time history of the same field shifted by a 

delay time L• Thus, 

• - <E(r,k,t)E (r,k,t+L)> (3) 

The superscript m (in Eq. (3)) is used to indicate multiple 

scattering. For uniform illumination and for single 

scattering, the correlation function becomes independent of 

location, and Gm will be designated by G1 • The normalized 

G1 with respect to its initial value at L=O will be 

designated by g1 • Note that for stationary systems, Gm does 

not depend on time t, rather, it is a function only of the 

delay time Land the spatial (r) and angular (k) variable. 

For monodisperse, diffusing, and independent particles, 

the exact single scattering field correlation function is 

given by [Wiener, 1984] 

(4a) 

= exp(-t(l-µs)) ( 4b) 

where Eq. (1) has been used, Lo is a characteristic time 
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scale defined by 'to = 1/D0k~, D0 is the single particle 

diffusion coefficient and µ 9 =cos®. Note that g 1 depends 

't explicitly on t=2~. This notation will be used throughout 
'to 

the remainder of this work. 

For spherical particles, D0 is given by the following 

Stokes-Einstein relation [Berne and Pecora, 1976] 

D0 = k 8T / ( Jrr11d) (5) 

with k8 being the Boltzmann constant, T and 11 are the 

temperature and the viscosity of the solvent, respectively, 

and dis the particle's diameter. 

Usually, the intensity correlation function, 

c°1(r,k,t,'t) - <I(r,n,t)I(r,n,t+'t)>, is the quantity that is 

obtained in actual laboratory setups, rather than Gm. These 

two quantities are related by the Siegert relation [Weiner, 

1984] 

(6) 

For single scattering (m=l) , it is assumed that the wave 

encounters only one single particle, and thus, c is not a 

function of position. Note that the t- dependence (real 

time) is also dropped from Eg. (6) when assuming stationary 

systems. It is apparent from Egs. (1)-(6) how one or more 

parameters (i.e., D0 , d, and 11) can be determined from the 

measurement of g1 in dilute samples. 
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Unfortunately, in many practical applications, the 

suspensions are too concentrated for the single scattering 

approximation to remain valid. When multiple scattering is 

present, the scattered field at the detector is a sum of 

electric fields, each representing one of the possible 

multiple scattering paths through the scattering volume. A 

careful handling of these multiple scattering events becomes 

necessary. The physical interpretation of the multiple 

scattering of waves will be discussed in the following 

section followed by the derivation of the correlation 

transfer equation. 

III.2. Multiple Scattering Theory 

In this section, the fundamental equations and 

formulations for the multiple scattering theory will be 

presented. Only concepts that will be directly used in 

Chapter IV to derive the CTE are covered here. 

The RTE was derived from an energy conservation point 

of view. This approach results in equations that govern the 

intensity of radiation and the flux that give results 

accurate to the degree desired in most engineering 

situations where the intensity of radiation and/or the flux 

are the primary quantities of interest. However, when wave 

propagation is the problem of interest, this approach cannot 

account for the effects that take place, namely, wave 

interference, diffraction and dispersion. A more rigorous 

approach, termed multiple scattering or analytical theory, 
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has been used to fully describe the wave propagation 

problem. 

In multiple scattering theory, researchers start with 

fundamental differential equations governing field 

quantities and then introduce statistical considerations to 

characterize the moments of the wave field. In the 

following section, a brief review of the derivation 

contained in Twersky's theory leading to the average field 

and the field spatial correlation will be presented. Then, 

it will be shown that the RTE can be derived from the 

multiple scattering results. This later exercise will in 

effect serve as a springboard later on to derive the CTE 

equation based on analogous arguments. 

III.2.a. Foldy-Twersky Integral 

Average Field: Consider a random 

particles located at r 1 , r 2 , ••• , rN in 

V, and consider a scalar field E Cra), 

Equation for the 

distribution of N 

a scattering volume 

(=Ea) , that may be a 

rectangular component of the electric or magnetic field, at 

the location ra, a point in space between the scatterers. 

For the remainder of this work, it will be assumed that the 

medium is isothermal, homogeneous, and in equilibrium. At 

this first stage, it will be also assumed that the field is 

independent of time and that it satisfies the usual wave 

equation [Ishimaru, 1978b] 

(7) 
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where k is the wave number of the medium excluding the 

particles. 

Theoretically, the instantaneous scattered electric 

field observed at r a may be represented as a summation of 

the singly scattered fields from each of the particles in 

the scattering volume plus the incident wave at ra 

(E (ra)) in the absence of any particles 
inc 

(8) 

u:IE(r 6 ) is the wave at ra scattered from the scatterer 's' 

located at r 6 where u: = u(ra-rs) is an operator (operating 

on IE(rs)) that represents the scattering characteristics of 

the particle located at rs when the field IE(t6 ) is incident 

upon it as observed at r a. It should be noted however, 

according to Ishimaru (1978b) and Twersky (1962), that it is 

impossible to obtain the explicit exact representation of 

this operator, and it will be necessary to resort to 

approximate representations. IE(r6 ) is the effective field 

incident upon the scatterer 's' , and it consists of the 

incident wave E (r 6 ) and the waves scattered from all of 
inc 

the other particles except the one at rs. Thus, IE(rs) can 

be represented by a summation similar to Eq. (8) 

N 

= E (rs) + \' u:IE (rt> 
inc L 

t=l 
t:;l!:s 

(9) 
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where u:ECrt) is the wave scattered from all particles 

except the one at r 8 • Substituting Eg. (9) into Eg. (8) to 

eliminate E(r8 ) and repeating the process to eliminate E(rt) 

and so on, we find, 

E(ra) = Elnc(ra) + st
1
u:(E1nc(r8 ) + tt

1
u:E(rt>) = Elnc(ra) 

N N 

+ l l 
s=l t=l 

t:;!:s 

t*s 

+ ••• (10) 

Note that the first term on the right hand side of Eg. 

(10) is the incident wave at ra, the second term represents 

all of the single scattering, the third term represents all 

of the double scattering and so on. These different 

multiple scattering chains consist mainly of two groups: 

one group that represents all of the multiple scattering 

chains that go through a particular particle no more than 

once, and a second group that represents the remaining 

chains of multiple scattering: namely,. those chains that 

contains paths that go through a scatterer more than once. 

In Twersky's theory, the second group of chains, that result 

mainly from back scattering, was neglected. With this 



approximation in mind, Eq. (10) becomes 

N N N 

= E (ra) + \ u:E (rs) + \ \ u:u:E (rt> 
inc L inc L L inc 

s=l s=l t=l 

N N 

+ l l 
s=l t=l 

t:i!=s 

t:i!=s 

+ •.• 
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(11) 

where the scatterer 's' is now removed from the third 

summation, and so on. Ishimaru (1978b) has shown that the 

relative difference between the exact equation, Eq. (10), 

and its approximation, Eq. (11), varies as a function of 

(3N-5) / (N-1) 2. Therefore, as N becomes large, it becomes 

obvious that the Twersky process approaches the exact 

process. 

The expanded representation of the field, given by Eq. 

( 11) , is useful in understanding the nature of the 

scattering process, but it is not easy to solve. Foldy 

(1945) and Twersky (1964) developed the following integral 

equation for the average field, also called the coherent 

field 

(12) 

where p (rs) is the number density of point scatterers and 

drs represents a differential volume. The incident wave at 

ra has not suffered any scattering and therefore is 
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invariant under ensemble averaging. One can arrive at Eq. 

(12) by first noting the ensemble average definitions for 

non-interacting (independent) particles, all represented by 

the same statistical characteristics: 

<E(r;r11 ••• ,r9 )> = J ... JE(r;r11 ••• ,r9 )w(r8 ) ••• w(r9 )dr1" .. dr9 

= J < E ( r ; r 1 , ••• , r 9 ) > s w (rs) dr s ( 13 ) 

where Eis a random function of the scattering locations r 1 

••• r 9 , measured at location rand the integration is done 

with respect to the variables to the right of the semicolon. 

The dependence of Eon the scattering locations will not be 

shown explicitly and <E(r)> will denote <E(r;r1 

The brackets with the subscript s (< >8 ) indicate an 

ensemble average with respect to all locations of scatterers 

except the one at location r 8 , and w(r8 )dr8 , represents the 

probability of finding the scatterer 's' within the 

differential volume dr8 , where w(r8 ) is the probability 

density function. If E depends on the location of only one 

scatterer, then Eq. (13) can be rewritten as 

(14a) 

and if E depends on the location of two scatterers, then Eg. 

(13) can be written as 

(14a) 
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and so on. Applying this ensemble averaging to Eq. (11), we 

get, in the limit N -> m, an iterated version of Eq. (12) 

[Ishimaru, 1978b], i.e., 

(15) 

where, for suspended particles, the number density of a 

point scatterer is given by 

(16) 

and where the average field acting on the scatterer's' has 

been approximated by the average field that would exist at 

the scatterer's location if the scatterer did not exist 

[Foldy, 1945], i.e., <E(r )> e; <E(r )>. 
s s s 

III.2.b. Integral Eguation for the Field Spatial 

Correlation Function: Using a similar development as in the 

previous section, Twersky (1964) derived an integral 

equation for the spatial correlation function, (sometimes 

.referred to as the Mutual Coherence Function, MCF), that has 

the following form: 

(17) 
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where v: represents the multiple scattering processes from 

's' to 'a' and satisfies the following integral equation 

(18) 

The first term on the right side of Eq. (17) represents the 

product of the coherent field at 'a' and the complex 

conjugate of the coherent field at 'b'. Equation (17) can 

be iterated to arrive at a form for the spatial correlation 

function similar to Eq. (15), which shows that the Twersky 

integral equation can be generated by the average of the 

• • product of E(ra) and E (rb) as given by the basic chains of 

scattering processes in Eq. (11). The integral equations 

(12) and (17) are consistent with the first order smoothing 

approximation to the more rigorous Dyson and Bethe-Salpeter 

equations, respectively [Barabanenkov et al., 1971, Twersky, 

1964, Frish, 1968]& 

It is often more convenient to use the "center of 

gravity" of the observation points r = (ra+rb) /2 and the 

difference between the coordinates of the observation points 

rd = (ra-rb) as new coordinates [Stephen, 1988]. 

MCF becomes 

The MCF, r(r,rd), can be decomposed into its Fourier 

components as [Stephen, 1988] 

Then the 

(19) 
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( 20) 

where q is a wave vector that represents the momentum 

transfer, i=v'=I, and f(r,q) is the spectral density of the 

field [Stephen, 1988]. Equation {20) is analogous to the 

electric field Fourier decomposition [Wolf, 1976] given by 

E(r) = JE(q)exp(iqor)d3q (21) 

Note that for monochromatic waves traveling in a medium with 

a wave number k, only those Fourier components for which q2 

= k 2 contribute to E(r) in Eq. (21). Therefore, E(r) can be 

represented by an angular spectrum of plane waves [Wolf 

1976], all of the same wave number lqi=k, propagating in a 

distribution of directions, each specified by~-

The spectral density function for time-invariant 

particles (not moving in the suspension), f(r,q), has also 

been shown [Barabanenkov, 1969 J to be concentrated on the 

energy surface with a wave number equal to that of the free 

d . 2 k2 me 1um, q = . Therefore, f(r,q) is related to the time-

independent intensity I(r,~) by 

f(r,q) ~ o(q-k)I(r,~)/k2 {22) 

where q {= !qi) is the modulus of the wave vector q and~ is 

the direction of propagation of the intensity. Equation 

(22) is valid when the medium is nearly homogeneous so that 
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rcra,rb) is weakly dependent on the vector difference (rd) 

between ra and rb and r is a slowly varying function of r. 

f(r,q) has the meaning of the energy density of the 

scattered field at r with a wave vector q. Therefore, the 

total scattered energy density, U(r), is proportional to the 

sum over all q at r, i.e., to r(r,rd=O), and from Eq. (20) 

we find 

(23a) 

where the proportionality constant is the inverse of the 

speed of light (c). It is also known that the total energy 

density is related to the specific intensity by the 

following equation 

U(r) = Jr(r,n)dQ (23b) 

Comparing Eq. (23a) with Eq. (23b) and noting that 

(24) 

where q = qn and dQ is a differential solid angle around the 

direction of unit vector n, we see that f(r,q) must be given 

by Eq. (22). f(r,q) is the quantity that is usually 

obtained in the laboratory rather than r(r,rd). 

Substituting Eq. (22) into Eq. (20), we get 
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( 25) 

Equation (25) represents the fundamental link between the 

multiple scattering theory and transport theory. It is 

important to note the major assumptions employed in order to 

arrive at Eq. (25) [Barabanenkov, 1969, Barabanenkov et al. 

1971], mainly that of neglecting the spatial variation of 

the spectral field density over a typical length scale of 

the medium. It can be shown [Ishimaru, 1978b] that by 

substituting Eq. (25) into Eq. (17) and by using the far 

field approximation for v:, one can derive the Radiative 

Transport (RT) equation from Eq. (17). A similar derivation 

will be shown later explicitly for the temporal field 

correlation. The resulting integral form of the RT equation 

is given by [Ishimaru, 1978b] 

I ( r , fl) = I 1 nc ( r , fl) 

+ !rrJJI(r 1 ,fl 1 )P(fl,fl 1 )exp(-utlr-r' l)dQ'dr' ( 26) 

where ut is the extinction coefficient, and Pis the phase 

function which is normalized according to 

4
1J P(fl,fl 1 )dQ 
rr 4rr - w (27) 

where w is the albedo for single scattering, and cs and Ct 

are the scattering and extinction cross sections, 

respectively, and us and ut are the scattering and total (or 
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extinction) coefficients, respectively. 

Note that f(r,q) depends both on the direction and on 

the modulus of the wave vector q, whereas the specific 

intensity (I(r,n)) depends only on a fixed modulus jqj that 

is equal to k and on an arbitrary ray direction fl= k/k. 

In the preceding sections, it was assumed that the 

particles are not moving (stationary), and as a consequence, 

the wave field was independent of time. However, in most 

fluid/particle suspensions, the particles are in continuous 

motion due mainly to thermal fluctuations. When this is the 

case, the scattered wave field will be a fluctuating 

function of time due to the continuous phase (and/or 

magnitude) change resulting from the particle movements. 

These fluctuations can be analyzed by studying the temporal 

field correlations. The derivation of such functions are 

similar, in principle, to the derivation presented here for 

stationary particles, with the redefinition of the averaging 

process and the probability density of the moving particles. 

This topic will be the subject of the next chapter, 

where the temporal field correlation transfer equation, CTE, 

for diffusing particles will be derived. 



CHAPTER IV. 

DEVELOPMENT OF THE FIELD CORRELATION TRANSFER EQUATION 

In Chapter III, several theories and governing 

equations for wave propagation in continuous media were 

presented. Although the arguments leading to the final 

equations and/or the form of these equations may be 

different depending on the methods and the assumptions used, 

and on the quantities of interest, all of them deal with the 

same underlying fundamental problem. It was indicated in 

section III.2 that the RTE can be derived from the multiple 

scattering theory. Similar and explicit derivations will be 

presented next that will lead to the temporal field 

correlation function (Gm) characterizing the light that is 

being multiply-scattered from a medium with moving particles 

imbedded in it. In particular, Gm will be derived 

explicitly for the case of freely diffusing non-interacting 

particles. Other constraints on the particles in the 

medium, such as dependent scattering and gelling of the 

suspensions, will be dealt with briefly at the end of this 

chapter. Also, it will be assumed throughout the next 

section that the fields are scalars and polarization will be 

neglected. The polarization effects on the waves and on the 

field correlation function will be considered in Chapter VI. 

32 
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IV.1. The Mutual Coherence Function For Diffusing Particles 

The Mutual Coherence Function (MCF) for stationary 

particles is given by Eq. (17). When the particles are 

moving, this equation becomes correlated in time, and 

therefore, it needs to be modified accordingly. 

Consider a single moving particle 's' with a certain 

velocity V, and which is located at rs" at time ts" and at 

rs' at a later time ts' (see Fig. 2). The scattering volume 

is assumed to be stationary, · isothermal, and homogeneous. 

The scattered field from this (and other scatterers) will 

now be dependent on time. Let E(ra,ta) be the wave field at 

a location ra and time ta within the scattering volume V 

between the scatterers, and let E(rb,~) be the field at 

another location rb between scatterers at a time~- Let's 

assume at this stage that there is no correlation between 

moving particles in the scattering volume, and that 

averaging is done for a single identified particle, then Eq. 

(17) for the MCF can be generalized as 

(28) 

where 

(29) 
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with p(rs•,ts•lrs",ts .. ) being the single particle density, 

and w now represents a conditional probability (as compared 

to Eq. (16)), i.e., given one particle at location rs" and 

at time ts", w is the probability of finding it at rs' at 

the later time ts' . 

Ishimaru (1978b) presented an integral equation for the 

time dependent MCF similar to Eq. (28) when the particles 

were not correlated, but were allowed to move independently 

with a constant velocity V during the time "t:=ts•-ts"• 

Therefore, the average number density of a single particle 

at both times and locations as the particle moves has been 

represented by a delta function, and Eq. (29) becomes 

( 30) 

where p (r51 ts) represents a single particle number density 

associated with the field at the location rs=Crs,+rs") /2 and 

time Instead of the term 

• <E(rs•,ts,)E (rs",ts .. )>, appearing under the integral in Eq. 

(28), Ishimaru (1978b) used the average square field at the 

average location and time, <IE(r51 ts) 12 >, and he showed that 

the resulting equation has an approximation of the same form 

as the radiative equation of transfer. It will be shown in 

this section that the CTE can be obtained by modifying Eq. 

(28) using similar approximations given by Ishimaru for 

moving particles. 

Assuming that the particles are undergoing Brownian 
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motion with no correlation among them, we can represent the 

average number density for a single particle using the 

probability density for Brownian motion (Kac, 1957] as 

follows 

Nw(rs, ,ts' I rs",ts .. ) ( 31) 

where D0 is the diffusion coefficient of the particles in 

Substituting 

Eg. (31) for w into Eg. (29) and then substituting the 

result back into Eg. (28), we get the following equation for 

the MCF for diffusing particles 

(32) 

where the relative coordinates rand rd were used instead of 

instead of rs, 

and rs"• 
• 1 

E (rs-2rsd,ts 11 )>, 

td is the time difference at the observation locations, 

~' and t is the average time at the 

observation locations, i.e., t=(ta+~) /2. Equation (32) is 

a general integral equation for the space and time field 

coherence function for diffusing particles and v:, given by 

Eq. (18), is yet to be defined. 
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IV.2 The Correlation Transfer Equation For Diffusing 
Particles 

In the remainder of this chapter, it will be assumed 

that the field fluctuations are statistically stationary 

which is a good assumption in most practical situations 

[Ishimaru, 1978b]. 

not depend on t. 

Therefore, the MCF, f (r, q,t,td) , does 

By analogy to Eq. (20), we can define a spectral 

density function, f(r,q,td), by a Fourier decomposition of 

the MCF [Stephen, 1988] 

(33) 

A similar equation can also be written for the product of 

the average field [Barabanenkov, 1969] 

(34) 

where f inc is the spectral field density corresponding to 

the average of the incident field. It can be shown that 

f(r,q,td) is related to the field correlation function Gm 

defined by 

(35) 

through an equation similar to Eq. (22), i.e., 
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(36) 

where nq is the direction of propagation of the intensity 

and Gm is also independent oft. Using Eq. (36) in Eq. (33) 

and introducing spherical polar coordinates in q space, 

i.e. I q=qnq and d3q = q2dqdQq, We Can Write 

(37) 

where the integration extends over the whole solid angle 

(4n). Similar equations can be written for r(rs,rsd,'t') and 

f 0 (r ,rd,td). 

At this point, we need to turn our attention to the 

explicit form of the operators u: and v:. In Eq • ( 8 ) , the 

wave field at ra was symbolically represented by u:IE:(rs), 

where u: is a general operator that represents the single 

scattering characteristics of a particle located at rs as 

observed at ra. The scattered wave (in the far field) in a 

direction n from a particle that is subjected to a plane 

wave with a unit amplitude and that is incident in the 

direction specified by the unit vector n, is given by 

[Ishimaru, 1978a, Twersky, 1962] 

(38) 

where f is the scattering function, n, is the incident 

direction to rs, and ras is the distance between the 
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observation point r a and the scatterer location rs 

(=lra-rsl>• It should be noted here, that Eq. (38) is only 

valid when the distance between rs and ra is large enough so 

that the scattered wave at rs becomes a plane wave by the 

time it reaches ra (i.e., ras » d2 /''A., where d is a typical 

dimension of the particle, such as its diameter for a 

sphere, and A is the wavelength in the medium). In general, 

however, E(rs) is constructed of a spectrum of plane waves 

as given by Eq. (21), where each component is a result of 

Eq. (38). Therefore, combining Eq. (38) with Eq. (21), we 

see that u:E(rs) must be given by 

(39) 

In the far field limit, v: can also be represented by a 

similar expression to that of given by Eqs . ( 3 8) and 

( 39) • Assuming pis constant, the multiply scattered wave 

from rs is given by [Twersky, 1962, 1964, Ishimaru, 1978b] 

( 40) 

where n, is the incident direction to rs, and ras is the 

distance between the observation point ra and the scatterer 

It should be noted here that in 

Eq. (40), the wave originating at rs arrives at ra after 

being multiply scattered from other particles in the medium. 

This multiple scattering process is apparent in the 
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effective wave number (K) appearing in Eq. (40) as opposed 

to the medium's wave number k, appearing in Eq. (38). In 

general, K is a complex number and can be approximated by 

[Foldy, 1945] 

( 41) 

for p independent of position. K represents an effective 

wave number, since v: represents the wave propagation from 

's' to 'a' through multiple scattering, whereas, 

represents the single-scattered wave from 's' to 'a' 

propagating through the free medium. An effective wave 

traveling in a multiple scattering medium will satisfy the 

same wave equation, Eq. (7), that describes wave propagation 

in free (from scattering) media with an effective wave 

number given by Eq. (41) [Foldy, 1945]. Similar to the 

method for obtaining Eq. (39), and using Eqs. (40) and (20), 

a b* we can write an equation for the operator vs.vs" appearing 

in Eq. (32) as follows 

a b* 
Vs,Vsur(rs,rsd,'C) = 

J \\I (r as'na, n,) \\/ (rbs"nb, n,) r (r 8' qn' ''C) exp (iqn' ors> d 3q ( 42) 

where it was assumed that n ~ cna+nb)/2. This approximation 

is possible because the particles are moving with a velocity 

negligible as compared to the speed of propagation of the 

wave. This also results in the approximation that~ is on 
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the order of the correlation time~. 

Using Eq. (40), we can write an equation for the 

d t "'a b* ' ' ( ) f 11 pro uc Ills• "s" appearing 1n Eq. 42 as o ows 

(43) 

Equation (43) can further be simplified by noting that 

na ~ n and ob = n, and similarly, o, ~ o, and o, II ~ n, 
s' s 

where o, = (0 1 ,+0 1 ..)/2, based on the previous s s 

approximations. These approximations are valid as long as 

the ratio of the particle velocity to that of the speed of 

propagation of the wave is negligible, and ras » d2 /A, which 

is valid in most non-relativistic applications. Using these 

approximations, and noting that 

it can be shown that [Ishimaru, 1978b] 

(44a) 

(44b) 

and 
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( 45) 

When the approximations given by Eqs. (44) and (45) are put 

back into Eq. (43), we get 

C 
4~P (~,~')exp (iKr~ 0 r d) exp (-iKr~ 0 r sd) exp (-O\R) /R2 ( 46) 

where the phase function P(~ 1 ~') is related to f via 

(Ishimaru, 1978a] 

= CtP(~ ~') 
4rr ' 

( 4 7) 

-1 • 
and where crt=pC = i (K-K ) is the extinction coefficient 

t 

(the second equality is the optical theorem), with the 

assumption that p is constant, • Kr= (K+K ) /2, and R= Ir-rs I. 

We need to point out here that Eq. (42) is an operator and 

a b* that vs,vs .. r(rs,rsdi"C) under the integral in Eq. (32) is not 

a product of but a b* 
vs.vs" should 

represent the scattered field in the direction~ as given by 

Eq. ( 4 2) when a spectrum of power r (rs,~' , "C) is pointed in 

the direction ~' . a b* Thus, vs, vs .. r (rs, r sd, "C) should represent 

the contribution from all incident directions ft 1 ; i.e., each 

component Gm(r,K~~,"C) in Eq. (37) should produce scattering 

according to Eq. ( 4 6) . Therefore, substituting Eq. (46) 

into Eq. (42) and making use of Eq. (36), where ~q =~'we 
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find 

(48) 

Substituting Eqs. (37) and (48) into Eq. (32) we obtain 

JGm(r,Kfl,i;)exp(iKflord)dQ = 

JG:0 c(r,Kfl,i;)exp(iKfl 0 rd)dQ + ~~JJJP(fl,fl 1 )G(r8 ,K' ,"C) 

It should be clear that in Eq. (37) fl is equal to fl for the 
q 

scattered ray and to n, for the incident ray. Finally, 

replacing dr s by I r-r s I 2dRdQ in Eq. ( 4 9) and then removing 

the integrals over the solid angle fl from both sides of the 

equation, we obtain our Correlation Transfer Equation 

+ ~~Jr J P(fl,fl 1 )Gm(R,Krfl' ,i;)g1 [Kr(fl-fl 1 ) ,i;]exp(-o\R)dRdQ' (50) 
r 0 47l 

where r 0 is a coordinate on the boundary, and where g1 (q,i;) 

is the single scattering field correlation function defined 

as 
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(51) 

Equation (51) could have a more general form if a more 

general distribution function were used in Eq. (31). 

Equation (50) is an integral equation for the field 

correlation function that is of the same form as the 

intensity of the radiation transfer equation, Eq. (26). The 

phase function is now modified by the single scattering 

correlation function 1 
(g ) • Note that Gm as given by Eq. 

(50), reduces to the specific intensity, I(r,~) for zero 

delay time, given by Eq. (26), as expected. 

Because of the formal similarity between CTE (Eq. (50)) 

and RTE (Eq. (26)), radiative transfer methods of solution 

will be used to find approximate solutions to Eq. (50). 

This will be the subject of the following chapter. 



CHAPTER V. 

APPROXIMATE SOLUTION METHODS 

Because of the complex nature of the governing 

equations derived in the preceding chapter, it will be 

necessary to employ various approximations to obtain 

numerical results. Most of these solution methods have 

roots in the field of radiative transfer. In what follows, 

I will systematically cover some useful techniques that 

apply to different situations. These techniques will result 

in approximate closed form solutions, such as in the case of 

the exponential kernel and the diffusion approximation for 

the scalar CTE and the P1 approximation for the vector CTE 

(for polarization); or, as it is the case most of the time, 

other techniques will result in relatively simpler equations 

but still require numerical solutions. 

V.1. Isotropic Scattering From Plane Parallel Media 

For isotropic scattering = w) and no 

absorption (w=l), the CT equation is given by 

2 

where g1 was defined in Eq. (51) by e-Doq,; and where 

q=Kr (n-n,) is the effective wave vector difference between 

44 
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the wave vector of the scattered wave (2rrn/A) and the wave 

vector of the incident wave (2rrn'/A0 ) (see Fig. (1)). 

Usually, the wavelength does not change in a single 

scattering event (quasi-elastic scattering) [Bern and 

Pecora, 1976], and we will assume that this is still true 

for the effective wave vector q [Barabanenkov et al., 1971] 

(53) 

Therefore, the expression for g1 becomes 

(54a) 

= exp(-t(l-µ 5 )) (54b) 

where is a characteristic time constant for 

monodisperse independent diffusing particles and µs = non,. 

Equation (54b) is the same form as Eq. (4b). It is apparent 

here that g1 depends explicitly on t=2!_. Therefore, for 
'Co 

the remainder of this chapter, the delay-time variable t 

will be used instead of -r. 

Equation (52) is similar to the anisotropic RTE, where, 

because of its angular dependence, g1 behaves as a phase 

function. From Eq. (27), we note that phase function 

should satisfy the following normalization criteria 

(55) 
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Substituting Eq. (54b) into Eq. (55), we find 

(56) 

Therefore, we (t) behaves as a delay-time-dependent albedo 

and is given by [Reguigui et al., 1993] 

-1 • we (t) = (t) exp (-t) sinh (t) (57) 

Note that when t=O, we ( o) reduces to one as expected for 

this case where we assumed perfect scattering. However, 

when t > O, the effective albedo is different than one, 

which means that the total loss of correlation from the 

incident totally correlated pencil of radiation is less than 

the total correlation that is scattered out from the 

direction ~ (the scattering is not conservative). 

Therefore, due to the movement of the particles and the 

finite time scale on which energy is probed, an effective 

absorption is introduced into the system. 

absorption is given by 

where Ua is the absorption coefficient. 

(55), (56), and (58) we find 

By definition, 

(58) 

Combining Eqs . 
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(J'a (t) 
1-we (t) = (1'----

s we(t) 
(59) 

In deriving the cross section for a moving particle, 

Ishimaru (1978a) redefined the scattering cross section 

coefficient (u8 ) as a delay time correlated coefficient. 

This is in perfect agreement with Eq. (59) as far as single 

particles are concerned. However, for multiple scattering, 

it is advantageous to introduce a correlated absorption 

whose effect is taken care of in the delay-time-dependent 

albedo. Otherwise, Eq. (52) will not be correct because the 

scattering coefficient appears on both sides of the 

equation, i. ,e., the single scattering event on the left, 

and the multiple scattering integral on the right. 

An exact solution to Eq. ( 52) does not exist in the 

literature. There exist however, several approximate 

methods where Eq. (52) can be written in a form for which a 

solution is found elsewhere in the literature 

[Chandrasekhar, 1960, ozisik, 1973], or can be deduced from 

previous work [Reguigui, 1990]. In this section, I will 

present several of these methods, by which Eq. ( 52) can 

either be approximated by an isotropic-like equation, or by 

an anisotropic-like equation. For the isotropic case, the 

solution is widely available [Chandrasekhar, 1960, ozisik, 

1973]. For the anisotropic case, the solution is also 

available for few limited cases, namely, expanding g 1 in a 

finite series of Legendre functions [Crosbie and Dougherty, 
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1985, Liu, 1993], or using the forward scattering 

approximation [van de Hulst, 1980a, 1980b] 

V.1.a. Preaveraging: In a paper dealing with 

correlation transfer theory, the first in a series of papers 

presenting the theory, Ackerson et al. (1992) have employed 

a procedure similar to that used in the DWS approach where 

the averaging over angle of the single scattering 

correlation function is disconnected from the 

propagation/diffusion of the light. That is, averaging of 

the singly scattered correlation function (g1 ) over all 

angles will be performed before averaging Gm over all paths. 

This technique, termed "preaveraging", is valid for very 

small delay times and for large optical thicknesses, 

assumptions for which DWS is valid. In order to arrive at 

the preaveraged form of the CTE, Eq. (52) is first written 

as 

rlov'Gm(r,rl,t) + 0'6 Gm(r,rl,t) = :;JGm(r,fl' ,t)dO' 

+ :;J(g1 (rlorl' ,t) - 1)Gm(r,rl' ,t)dO' (60) 

where the integral representing scattering into the (l 

direction has been written as two integrals, in preparation 

for the "preaveraging". Following similar arguments used in 

deriving DWS theory [Pine et al., 1988], averaging of the 

singly scattered correlation function (g1 ) over all angles 

will be perf armed before averaging Gm over all angles ( or 
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paths). Therefore, the last integral of Eq. (60) becomes 

:;J (gl(flo(l, ,t) - 1)Gm(r,fl 1 ,t)dQ' 

~ :;Gm(r,fl,t) J(g1 (flo(l, ,t) - 1)dQ' (61) 

Putting Eq. (56) into Eq. (61) and then substituting the 

resulting equation into Eq. (60), we find 

= u 5 JGm(r fl, t)dQ' 
4rr ' ' 

(62) 

or, using a transformation of coordinates to write Eq. (62) 

in optical coordinates, we find 

where 

(64) 

is an effective t-dependent optical coordinate along the 

direction r due to the preaveraging approximation, and wP is 

the t-dependent effective albedo resulting from the 

preaveraging approximation. It is given by 

(65) 
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where the subscript pis to indicate that this an effective 

albedo due to the preaveraging approximation. O\ is an 

effective extinction coefficient. Note that, for very short 

delay time, 

wp(t) ~ 1/(1 + t), fort« 1.0 (66) 

This is the result for wP first reported by Ackerson et al. 

(1992), where, when performing the second integral over 

solid angle in Eq. (61), the following approximation for g1 

was used 

gl(non',t) = exp(-t(1-non 1 )) 

~ 1 - t(l-flofl'), fort« 1.0 (67) 

Equation (63) is an equation similar to that for 

intensity 

medium for 

in an 

which 

absorbing and 

the effective 

isotropically 

albedo and 

scattering 

the optical 

distance are now t-dependent. Thus, due to this 

"preaveraging" approximation procedure, the CT problem, for 

isotropically scattering particles in a medium of a physical 

thickness Lit and albedo of scattering 1, is transformed into 

a RT problem for absorbing and isotropically scattering 

particles in a medium of optical thickness L=Lit/wp and 

effective albedo wP that are dependent on the delay time t 
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Note that when the albedo of single scattering 

(w) is different than one, then the new effective albedo 

becomes wwP. 

After writing the CTE in its preaveraged form, Eg. 

(63), exact and approximate solutions will be developed in 

the following sub-sections for the case of one-dimensional 

plane parallel media with azimuthal symmetry. But before 

doing that, the formal integral equations for the solution 

in the case of a finite, absorbing, and isotropically 

scattering medium with a refractive index equal to unity 

need to be presented. In this case, Eg. (63) reduces to 

where z is the optical distance in the zk direction 

(z=utzk), zk is the physical coordinate, andµ is the cosine 

of the polar angle e (measured from the positive direction). 

If the incident radiation at z=O (totally correlated) 

is assumed to be collimated and independent of the azimuthal 

angle, i.e., 

(69) 

where µ 0 is the inclination with respect to the normal ( zk 

axis) of the incident radiation, µout is the cosine the 

polar angle outside the medium, and I 0 is the magnitude of 

the incident radiation, then the field correlation 
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distribution within the medium is governed by [Reguigui and 

Dougherty, 1992] 

m+ G (z,µ,t) = 

lJZ I 0~(µ-µ 0 )exp(-z/µ) + µ 0 S(z' ,t)exp[-(z-z')]dz' (70) 

and 

lJL Gm-(z,µ,t) = µ S(z',t)exp[-(z'-z)]dz' 
z 

(71) 

where Gm+(z,µ,t) and Gm-(z,µ,t) denote the field correlation 

functions in the forward (:no~>O) and the backward (:no~<O) 

directions, respectively, Lis the optical thickness of the 

medium (L=o\Lic) , µ=case, and S ( z, t) is the source function 

governed by the following integral equation 

1 1 JL S(z,t) = ~PI0exp(-z/µ0 ) + ~P S(z' ,t)E1 (jz-z' j)dz' (72) 
0 

The function E1 (z) is the exponential integral defined by 

n=l,2, ..• 

Equation (72) is a linear integral equation. 

write 

S(z,t) 

(73) 

Thus we can 

(74) 



53 

where B(z,µ 0 ) is usually referred to as the fundamental 

source function and is given by 

1 JL B ( z , µ 0 , t) = exp ( - z / µ0 ) + ~P B ( z ' , µ0 , t) E1 ( I z-z ' I ) dz ' (75) 
0 

Equation (75) represents the fundamental equation that needs 

to be solved. Once a suitable solution for Bis found, the 

correlation field can be computed from Eqs. (74), (70) and 

(71) . In the next section, exact closed form solution 

methods for B will be presented. 

v.1.a.i. Exact Numerical Solution: Most of the exact 

solutions to Eq. (75) (or Eq. (72)) and to Eqs. (70) and 

(71) are based on a successive approximation procedure. The 

method consists basically of finding a convergent solution 

for the source function (Eq. (72)) and then using it to find 

Gm in either direction (Eqs. (70) and (71)). The optical 

thickness field (z') is discretized into a finite number of 

Gaussian quadrature points ( z 1 ') • Then, an initial guess 

for the values of S(zi,t) is obtained by performing the 

integration in Eq. (72) numerically. Usually the quadrature 

points z 1 are chosen different from z 1 ' to avoid numerical 

problems. The newly obtained values of S(z1 ,t) are compared 

to the previous values and the process is repeated until 

convergence to a certain tolerance limit is achieved. An 

interpolating procedure may be used here to find the values 

of s at the quadrature points z 1 ' from the values of s at 
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the quadrature points z 1 • Once the solution to the source 

function is obtained, the values of Gm can be computed from 

Eqs. (70) and (71) by a straightforward numerical 

integration. Index of refraction effects and multi-layer 

effects can be easily incorporated in this scheme. This was 

presented in detail by Reguigui (1990) and Reguigui and 

Dougherty (1992). 

A second widely used solution method is based on 

Chandrasekhar's X- and Y-functions. By discretiz ing the 

radiation angular field and then taking some analytical 

limits, Chandrasekhar (1960) was able to write the exact 

solution to Eqs. (70) and (71) at the boundaries of the slab 

(z=O and z=L) in terms of general functions referred to as 

the x- and Y-functions (H-function for the case of semi-

infinite media). 

variables µ and L. 

These functions depend only on the 

In terms of the X- and Y-functions 

(which are delay-time dependent), the solution to Eqs. (70) 

and (71) is given by 

and 

m+ G (L,µ,t) 

Note that 

1 llo 
= 2IoWPµ+µo (X(µ,t)X(llo,t) - Y(µ,t)Y(llo,t)) 

1 llo = -2 I 0wp~,,-(Y(µ,t)X(µ 0 ,t) - X(µ,t)Y(µ 0 ,t)) µ-,....o 

X(µ,t) = B(O,µ,t) 

(76) 

(77) 

(78a) 
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and 

Y(µ,t) = B(L,µ,t) (78b) 

When the slab is infinitely thick (L --) m) the back­

scattered correlation is given by 

Gm- (0 ,µ, t) (79) 

where H(µ,t) = X(µ,t) when L -> m. 

V. 1. a. ii. Exponential Kernel Approximation: In the 

exponential kernel approximation, the exponential integral 

given by Eq. (73) is replaced by an approximate exponential 

term. After this substitution, each integral equation 

becomes a separable kernel type, which can be transformed 

into a linear, ordinary, differential equation with constant 

coefficients. The constants that appear in the solution are 

evaluated by back substituting the solution into the 

original integral equation and equating terms of equal 

powers. The exponential approximation to the exponential 

integral of the first order is usually given by 

(80) 

where a and b are two fitting constants. Usually there 

exist two choices for a and b. The first uses a=b=2 and the 

second uses a=b=v'J [Armaly and Lam, 1974, 1977]. The second 

choice, when used, reduces the radiative transfer equations 
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to the Eddington approximation [Ozisik, 1973]. 

When the approximation given by Eq. (80) is substituted 

into the fundamental source function equation, Eq. (75), we 

obtain 

L 

B(z,µ0 ,t) = exp(-z/µ0 ) + .;wPJ B(z,µ0 ,t)exp(-bl z'-z I )dz' (81) 
0 

Taking the second derivative of Eq. (81) with respect 

z, yields an ordinary differential equation for B 

Equation (82) has two types of solutions depending on 

whether (wpa - b) is equal to zero or not. 

For the special case of wP equal to the ratio of b to 

a, Eq. (82) admits the following solution 

(83) 

where C1 and C2 are two constants to be determined from the 

boundary conditions. Let's consider an infinite medium 

first. When z ~ oo, B has to be finite, and therefore, C1 

must be equal to zero. To determine C2 , we need to 

substitute the form of B given by Eq. (83) in both sides of 
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Eq. (81) and evaluate the result at z=O. Solving for C2 , we 

get 

Therefore, the approximate form of B for a semi-infinite 

medium with wP=b/a is 

(85) 

Note that when L ~ oo, B ( 0 , µ 0 , t) = H ( µ 0 , t) , where B ( O , µ 0 , t) 

is the fundamental source function at the top of a semi­

infinite medium as defined in the previous section. 

Therefore, from Eq. (85), we can write an approximate 

solution for H 

(86) 

Since the exact numerical solution for the H-function is 

known [Chandrasekhar, 1960], Eq. (86) can be used to find a 

numerical fitting value for b (and a) for this special case. 

Next, we consider the finite case, where C1 and C2 are 

both different from zero. To determine these constants, we 

need to substitute the form of B given by Eq. (83) in both 

sides of Eq. (81) and evaluate the result first at z=O and 
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then at z=L, which gives, respectively, 

t((l+bL)e-bL - l)C1 + (1 + e-b~C2 

= bµ0 ( ( 1 + bµ0 ) - ( 1-bµ0 ) exp ( - ( 1 + bµ0 ) L / µ0) ) (87a) 

and 

1c -b~ c -b~ b 1 + bL - e J C1 + 1 + e J C2 

(87b) 

Solving Eqs. (87a) and (87b) simultaneously for C1 and C2 , 

we find 

(88a) 

and 

(88b) 

Finally, by substituting Eqs. (88a) and (88b) into Eq. (83), 

the approximate form of B for a finite medium with wP=b/a is 



found to be given by 

2 2 -z/µ B ( z , µ 0 , t) = ( 1-µ0b ) e 0 

59 

Notice that B(z=0,µ0 ,t) and B(z=L,µ0 ,t), as given by Eq. 

(89), are the approximate form for the X(µ0 ,t) and Y(µ0 ,t), 

respectively, when awP=b. Since X and Y functions are 

widely available, [Chandrasekhar, 1960] this property may be 

used to find a nice fitting value for b (and a). 

CASE II. wpa < b: 

In the more general case of wP not equal to the ratio 

of b to a, Eq. (82) admits the following solution 

(90) 

where C1 and C2 are two constants to be determined from the 

boundary conditions of the problem, and 

1-µ~b 2 

1/J = 1-bµg(b-awp) (91) 

and 

(92) 
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wP must be~ b/a for v to be real. 

Let's consider an infinite medium first. When z ~ oo, 

B has to be finite, and therefore, C2 must be equal to zero. 

To determine C1 , we need to substitute the form of B given 

by Eq. (90) in both sides of Eq. (81) and evaluate the 

result at z=O. Solving for C1 , we get 

b 
WP < al L=m (93) 

b Next, we consider the finite case for wP < a, where C1 

and C2 are both different from zero. To determine these 

constants, we need to substitute the form of B given by Eq. 

(90) in both sides of Eq. (81) and evaluate the result first 

at z=O and then at z=L, which give, respectively, 

(1 + awP ( -(b+v)L )) · ( awP ( -(b-v)L 
2(b+v) e - 1 C1 + 1 + 2(b-v) e -

= 1 _ ,,, _ awpl/Jllo ( -(bµ0 +1)L/µ0 _ l) 
"' 2 (bµ 0 +1) e (94a) 

and 
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Solving Eqs. (94a) and (94b) simultaneously for C1 and C2 , 

we find 

where C1 2 means either C1 or C2 , and for which the upper • 

sign or lower sign in the notations (±and+) must be chosen 

for C1 or C2 , respectively. The constant A is given by 

A= 
(1-µ~v 2 ) 
b 2 (2bvcosh (vL) + (b2+v2 ) sinh (vL)) 

µ 0 awP 
(96) 

Notice that B ( z=O, µ0 , t) and B(z=L,µ ,t), as given by Eq. 
0 

(90), are the approximate forms for the X(µ 0 ,t) and Y(µ 0 ,t), 

respectively. Since X and Y functions are widely available, 

[Chandrasekhar, 1960], this property may be used to find 

nice fitting values for a and b. By setting z=O in Eq. 

(90), the approximate form of X(µ0 ,t) is found 

X(µ 0 ,t)= 1/1 + 

(97a) 

And by setting z=L in Eq. (90), the approximate form of 

Y(µ0 ,t) is found 
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(97b) 

Note that the solution to Eq. (68) for plane-parallel 

media subjected to collimated incident correlation is given 

by Eqs. (76) and (77) in terms of the X- and Y- functions 

[Chandrasekhar, 1960). Subs ti tu ting the approximate farms 

for X and Y, Eqs. (97a) and (97b), respectively, we find an 

approximate closed form solution for the multiple scattering 

correlation function in one-dimensional media with spherical 

symmetry, viz., 

m± + GP (z-,µ.=1,t) ei 

( 
bwP hi+ h;sinh(vL) + hicosh(vL)J 

X h±1 + ( ) µ. =1 (1-v2) (2-wp)sinh(vL) + 2vcosh(vL) ' 0 
(98) 

where m± + GP (z-,µ.=1,t) stands for the 

transmitted correlation function at the lower boundary of 

the medium, or G;- ( z-=o, µ.=1, t) , the back-scattered 

correlation function at the top of the medium. Both 

transmitted and back-scattered correlation results are given 

for the normal direction (µ.=1) and for collimated intensity 

(correlation) of magnitude I 0 incident normal (µ.0=1) to the 

upper surface of the medium with effective thickness Land 
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The incident correlation is actually totally 

correlated, and it is equal to the incident intensity since 

it is assumed that the are no particles outside the medium. 

The remaining constants in Eq. (98) are given by 

V = v'b(b-awp), Wp*-b/ a (99) 

hi = (1-b2 ) (1-exp(-2L))/2 (100) 

h2 = 2v(b2-l)exp(-L)/b (101) 

h-3 = (l+b) (1-v2b-1 ) + ( 1-b) ( l+v2b-1 ) exp (-2L) (102) 

h4 = v(l-b2 ) (l+exp(-2L))/b (103) 

h+ 
1 = L ( 1-b2 ) exp (-L) (104) 

h2 = vb-1 (1+b) 2 + vb-1 (1-b) 2exp(-2L) (105) 

h; = -2 (v2+1) exp (-L) (106) 

h+ 
4 = -2v(b2+1)exp(-L)/b (107) 

The more general form of the solution for µ0 different 

than unity can be found by evaluating C1 and C2 from Eq. 

(95) and then using Eq. (90) to compute B(z,µ0 ,t). Then 

Eqs. (70) and (71) can be used to find Gm+ and Gm-. 

V.1.b. Legendre Expansion of 1 The preaveraging g : 

approximation is only good for very short delay times 

(t«l. 0) • At larger t, a better approximating method is 
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needed. In this section, the single scattering correlation 

term will be treated as an anisotropic phase function. 

Since gl depends on the cosine of the scattering angle 

(~o~') rather than on~ and~' separately (see Eq. (4)), it 

can be expanded in a series of Legendre polynomials in a 

fashion similar to the radiative transfer phase function 

expansion [Chandrasekhar, 1960], viz., 

(108) 

where w0 (t) is the first term in the Legendre expansion, and 

w1 (t) are the expansion coefficients. Note that w0 and w1 

all depend on the non-dimensional delay time t "C" (=2-). 
"C"o 

Substituting Eq. (108) into Eq. (52) and using optical 

coordinates (o-5 r) for conservative scattering, i.e., o-t=o-5 , 

Gm is found to satisfy the following integral equation 

~ov'Gm(o-5 r,~,t) + Gm(0-5 r,~,t) = 

Wo!!) JH(~o~',t)Gm(o-5 r,~' ,t)dQ' (109) 

where H(~o~',t) is given by 

(110) 

Thus, it appears that, for this case of perfect scattering, 

the CT problem (Eq. (52)) of perfect isotropic scattering is 



65 

transformed into the corresponding absorbing and anisotropic 

scattering RT problem (Eq. (109)) with w0 (t) being treated 

as an effective albedo. The solution to Eq. (109) is 

available in the literature for a second order approximation 

in the series expansion given by Eq. (110) [Crosbie and 

Dougherty, 1978, 1983, 1985], and by a finite number of 

Legendre terms [Liu, 1993 J. 

expansion coefficients, w1 's. 

It remains now to find the 

Using the following formula [Abramowitz and Stegun, 

1972] 

(111) 

Eq. (4b) can be written as 

(112) 

where µ 5 = ~o~', I is the modified Bessel function of 
i+~ 

order i+~ and P1 is the Legendre polynomial of order i. The 
2 

first seven half order modified Bessel functions 

i=l,2 ... 7) are given explicitly in Appendix A. 

( i+~ 
2' 

Substituting Eqs. (A22)-(A24) into Eq. (112) and 

comparing the resulting equation to Eq. (108) we find that 

w0 (t) = t-1exp (-t) sinh (t) (113) 
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and 

w1 (t) = (2i+l) J (~t) I 1+; (t) /w0 (t) (114) 

The next two w1 's are given by 

wi(t) = ~ (-t-1 + coth (t)) (115a) 

w2 (t) = 5 (1 + 3t-2 - 3t-tcoth (t)) (115b) 

and the remaining terms can be found from Eq. (112) and the 

definitions of the modified Bessel functions given in 

Appendix A. 

Note that Eq. (113) for w0 (t) is the same as Eq. (57) 

as expected. This can be seen by integrating Eq. (112) with 

respect to lls, where only the zeroth order term of the 

Legendre polynomials contributes to the angular average of 

gl. 

Solutions to Eq. (109) with the anisotropic function 

given by Eq. (110) truncated to the second order (three 

terms) and with albedo s 1 was solved before for one- and 

two-dimensions [Crosbie and Dougherty, 1980]. Recently, Liu 

(1993) has developed the one-dimensional solution to Eq. 

(109) for any number of Legendre terms. 

V.2. Anisotropic Scattering 

For anisotropic scattering (and no absorption), the CTE 
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is given by Eq. (50). Let's define w by 

(116) 

where P is the phase function and g1 is the single 

scattering field correlation function. Using radiative 

transfer solution methods, an exact solution to the CTE can 

be obtained by expanding win terms of a Legendre series; or 

by expanding Gm and w in terms of spherical harmonics 

functions and then obtaining an approximate solution by 

truncating both series to a finite number of terms [Ozisik, 

1973]. More development on the spherical harmonics solution 

method is presented in Appendix F. An approximate form of 

the equation can also be obtained by assuming a peaked phase 

function in one direction superimposed on an otherwise 

isotropic phase function [Reguigui et al., 1993] (see 

Appendix F for more on this method. ) Only the Legendre 

expansion will be discussed herein. 

V.2.a. Legendre Expansion: In order to expand win a 

series of Legendre polynomials, an analytical form of P 

needs to be given. A numerical integration of the product 

of Mie coefficients of the phase function and g1 is also 

possible. This will not be discussed here. 

The time-correlated phase function (Eq. (116)) can be 

written as 

(117) 
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or 

(X) 

= L X (t} P1 (~o~ 1 } 
i =O i 

(118) 

where the expansion coefficients, x 1 , are found from the 

following relation 

where µ 6 = 

X1 = }f1 t (µ 6 , t) Pi(µ 6 ) dµs 
-1 

(cos ®) and P1 

polynomials of order i. 

(119) 

are the Legendre 

For polystyrene spheres of submicron size, used in much 

experimental work, the phase function can be approximated by 

the Rayleigh-Debye form factor [Bohren and Huffman, 1983] as 

(120) 

with I(®) = k0dsin(;). Numerical integration needs be 

performed in order to obtain the expansion coefficients x 1 • 

For particles whose diameters are small compared to the 

wavelength of the incident radiation, a Rayleigh phase 

function is usually used. This is given by 

P(cos®) = Ic1 - cos®2 ) 
4 

(121a) 

( 121b) 
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Substituting Eq. (4) and Eq. (121) into the expression 

for~ (Eq. (116)) gives 

(122) 

Substituting Eq. (122) into Eq. (119) and performing the 

integration analytically for i=O, 1, and· 2, respectively, 

results in the following expansion coefficients for the 

Rayleigh phase function 

3 -t -1 ( -2 , -1 ) Xo (t) = 2e t ( 1 + t ) sinh (t) - t cash (t) (123a) 

t :S 0.5 (123b) 

3 -t -1 
X2(t) = 2e t 

t :S 0.4 (124b) 

(125a) 
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(!_ + ~t2 + _!!_t4 + 1 t6) 
15 210 2520 8179. 67 

t ::5: 0.5 (125b) 

Note that for small values oft (as indicated above), the 

approximate values of the expansion coefficients must be 

used for numerical convergence. The effective albedo 

resulting from expanding g1 combined with a Rayleigh phase 

function is equal to 

X (t) 
0 

(126) 

where the subscript R indicates the Rayleigh phase function, 

and from Eq. (117), we find 

W1 (t) = 3X1 (t) /Xo (t) (127a) 

(127b) 

v.2.b. Diffusion Approximation: Several authors 

[Ozisik, 1973, Pomraning, 1973, and Ishimaru, 1978a] have 

worked out the solution to the radiative transfer problem in 

the diffusion limit. For large optical thicknesses (greater 

than 10 [Yoo et al., 1990]), the diffuse intensity is 

scattered many times which makes the angular dependence of 

the scattering very weak. Thus, the intensity of light can 
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be represented by the first two terms in a spherical 

harmonics expansion. 

In what follows, I will extend the diffusion derivation 

to the field correlation transfer equation. The integro­

differential form of the CTE is given by 

floVGm(r,fl,t) + UtGm(r,fl,t) = 

:;J~(flofl 1 ,t)Gm(r,fl 1 ,t)dQ' + Qc(r,fl,t) (128) 

where Qc is a source term and ~ (flofl', t) is the correlated 

phase function which is defined as 

(129) 

Here P is normalized to unity and g1 is the single 

scattering correlation function given by Eq. (4). 

For collimated incident radiation (correlation) at the 

top of the medium in a direction fl0 , 

(130) 

the correlation function can be written as a sum of a 

reduced collimated term (G~) and a diffuse term (G:) as 

follows 

(131) 
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Substituting Eq. (131) into the integro-differential 

equation (Eq. (128)) results in an integral equation for the 

diffuse correlation similar to Eq. (128) with Gm being 

replaced by G: and Qc being given by 

(132) 

The diffusion approximation states that the diffuse 

correlation is given by [Ishimaru, 1978a] 

G:(r,fl,t) ~ U(r,t) + 4!F(r,t)oft (133) 

where U represents the average correlation (energy density 

and presumably the dominant term) given by 

(134) 

and F is a first order anisotropy correction and has the 

physical interpretation of a flux 

(135) 

To proceed with the solution, let's form the first two 

angular moments of the integro-differential equation for G: 

(similar to Eq. (128).) First, if we integrate Eq. (128) 

over all solid angle and use definitions Eqs. (134) and 

(135), we find 
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(136) 

where 

(137) 

and 

(138) 

In Eq. (138), the a-integral is invariant with respect to 
\ 

'2'. So, to do the integral, one can choose n, as the z-axis 

and find that 

(139) 

where µ 8 = non,. Note that for t=O, wd=l, since t reduces 

to P and P is normalized to 1. Next, substituting Eq. (133) 

into Eq. (128) gives 

4nnoVU(r,t) + 3noV[F(r,t)on] = 

4 nu ( r , t) [ O" swd ( t) - O" tJ + 3 F On [ O" sPiC t) - O" t] + QC ( r , n, t) (140) 

where 

(141) 
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Note that at t=O, p 1 (0) = f (the cosine average of the phase 

function), where f given as such is usually called the 

asymmetry factor [van de Hulst, 1980a). For isotropic 

scattering and t=O, f equals o. 

To find the first moment, Eq. (140) is multiplied by ft 

and then the integral over all solid angle is taken. This 

results in the following equation 

(142) 

Taking the divergence of Eq. (142) and then 

subs ti tu ting the result into Eq. ( 13 6) gives the second 

order differential equation that needs to be solved for the 

energy density U, i.e., 

2 
'iJ U ( r , t) - 3 [ O\ -o-5 Wd ( t) ] [ o-t -o-5 p1 ( t) ] U ( r , t) 

= 30-5 wct(t) [o-5 p 1 (t) - O'tJUc(r,t) + 3VofQc(r,ft,t)ftdQ/4rr (143) 

subject to a boundary condition of G:(r=O,ft) = o with ft 

pointing inward. However, because the approximation given 

by Eq. (133) has a simple angular dependence and the 

solution of Eq. ( 14 3) is scalar, this boundary condition 

cannot be satisfied exactly. Most researchers assume that 

no flux of diffusing photons enters the medium from the 

boundaries. This is slightly different from DWS theory 

where Pine et al. (1990) assumed a source of diffusing 

intensity to be deposited a distance • z=z0 /1 from the 
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boundary where z0 is on the order of a transport mean free 

* path ( 1 ) • This deposition depth ( z0 ) does not have any 

effect on the transmitted intensity as shown by Pine et al. 

(1990) and Ackerson et al. (1992). So instead of 

introducing this free parameter into the equations, the no 

flux boundary condition at the boundaries will be used. 

Setting the total diffuse flux directed inward ( along the 

normal direction n) equal to zero gives 

I G:(r,fl,t) (flon)dQ = o, flon > O 
2Tr 

(144) 

Using Eq. (133) in Eq. (144) results in the following 

boundary condition 

U(r,t) + noF(r,t)/2rr = O, at r=r6 (145) 

where rs is a coordinate on the boundary. 

Substituting the equation for F (Eq. (142)), along with 

the definition of Qc (Eq. (132)), into Eq. (145) gives 

( 146) 

I 

where l'(t) is a correlated mean free path defined as 

I 

1/ 1 · (t) = O\ - o-sp1 (t) (147) 

and where Q1 represents the effect of anisotropic scattering 
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and is defined here as 

Q1 (r, t) (148) 

Note that for isotropic scattering and at t=O, Q1 = o. 

Equation (143) along with the boundary condition given 

by Eq. (146) represents the system that needs to be solved 

to find the diffusive correlation function of Eq. (133). 

For simplicity, this solution will be derived next for a 

plane wave incident normal to a slab. 

V.2.b.i. Plane Wave Incident Normal To A Slab 

Containing Isotropic Pure Scatterers: Let's assume that the 

incident direction ~o in Eq. (130) is the zk-direction (~z), 

directed downward normal to the slab. Accordingly, the 

reduced correlation decays according to Beer's law, i.e., 

(149) 

Substituting Eq. (149) into Eq. (137) gives 

(150) 

Next, if we substitute Eq. (149) into Eq. (132) and 

integrate over ~dQ then take the divergence of the resulting 

equation, we find that 
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(151) 

and when this is inserted back into Eq. (143), we find 

8 2 2 az7U ( zk, t) - D (t) U ( zk, t) = -Q0 (t) exp (-erkzk) (152) 
k 

where 

0 2 (t) 
I 

= 3 [ er t - er swd ( t) ] / 1 · ( t) (153) 

and 

Q0 (t) = 3er8 I 0 ( wd (t) / 1 ! (t) + ertp1 (t)) / 4rr (154) 

The boundary conditions, given by Eq. (146) reduce to 

(155a) 

and 

(155b) 

where Lk is the physical thickness of the medium and where 

:no~z is positive at zk=O and negative at zk=L. Q1 in Eqs. 

(155a) and (155b) is the component of Q1 along the 
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zk-direction and it can be found by substituting Eq. (149) 

for Ge into Eq. (148) which gives 

(156) 

The solution to Eq. (152) will be explicitly given for 

the case of conservative scattering where ut = 0-5 • In other 

words, it is assumed that absorption in the medium is 

negligible, which is a good assumption for the polystyrene 

particles used in DLS experiments. In this case, Eqs. 

(147), (153), (154) and (156), respectively reduce to 

1 / 1 ' ( t) = us ( 1 - pi( t) ) (157) 

(158) 

(159) 

(160) 

Note that at t = o, p1 (0) = f, and hence, if we define the 

mean free path 1 as 1/o-5 , then 

I 

1/ 1" ( 0) = 1 - f (161) 

• which is the same definition for 1, the transport mean free 

path, used by Pine at al. (1990) in deriving the DWS 

results. However, because for t > o, the anisotropy 
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introduced into the medium is not only due to the phase 

function, but also it is due to the anisotropic g 1 , it is 
I 

better to define a correlated 1· (Eq. (147)) rather than the 

• uncorrelated 1 (Eq. (161)). This definition relaxes the 

* I DWS short time assumption, for which 1 ~ 1 · . 

When the scattering in the medium is independent of 

direction (P(flofl') = 1), ~(µ 6 ,t) reduces to g 1 • Therefore, 

and pi(t) 

integration to be 

and 

can be found by a straightforward 

(162) 

(163) 

Note that wd(t) for this case is equal to the first term in 

the Legendre expansion for g 1 for the isotropic case (Eq. 

(113)), and p 1 is equal to the second term (Eq. (115a)) in 

the same expansion. 

Before solving Eq. ( 152) , we need to distinguish two 

cases: t = o and t > o. 

CASE A. t= O: For this case, we can easily verify 

2 
= O , D = O , wd ( O) = 1, 

I r co) = 

l/C1'6 , and 

Q0 = 3CT~I0 (164) 

Solving Eq. (152) for the case when D(O) = o gives 
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(165) 

Applying the boundary condition, Eq. (155), at zk = o gives 

and at zk = Lk gives 

( 166b) 

Solving Eqs. (166a) and (166b) simultaneously, yields the 

expressions for C1 and C2 , i.e., 

(167a) 

and 

(167b) 

Finally, substituting Eqs. (167a) and (167b) into Eq. (165), 

we find the general expression for the energy density at 

t=O. Using the optical coordinates, we find 

U(z,t) = (z + i) (e-L - 5)/(L + 4/3) + 5 - 3e-z (168) 

where I 0 is assumed to be 1. 
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CASE B. t > O: In this case, D(t) is different than 

zero and the solution to Eq. (152) is sum of a homogeneous 

part and a particular part. This is found to be 

(169) 

where C1 and C2 are constants to be determined from the 

boundary conditions and C0 is given by 

(170) 

Let 

(171) 

and substituting using Eqs. (171) and (169) in Eq. (155a) at 

zk=O results in the following: 

and at zk = ~ gives 

C1(1+hD)e0Lk + C2(l-hD)e-0~ = 

-C0 (1-U8 h)e-usLk + Q1 (0,t)e-u8 ~/2rr 

(172a) 

(172b) 

Solving Eqs. (172a) and (172b) simultaneously yields the 

expressions for C1 and C2 , i.e., 
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(173) 

and C2 is given by 

C2 = !J. C0e s k(l-<T5 h) (1-hD) - C0 (1+hD) (l+<T5 D)e -1 ( -<T L -DLkJ 

- Qi( 0, t) !J.-1 ( ( 1-hD) e -DLk - ( l+hD) e -<TsLkJ (174) 

where 

(175) 

Finally, substituting Eqs. (170)-(171) and (173-175) into 

Eq. (169), we find the general expression for the energy 

density, which can be used along with Eq. (142) for the flux 

in Eq. (133) to find the diffuse component of the 

correlation function. 

For optical thicknesses less than 10, the diffusion 

approximation fails to exactly predict the correlation [Yoo 

et al., 1990]. For these low optical thicknesses, the 

ballistic nature of light propagation and polarization 

effects become important. The following chapter is devoted 

to studying the polarization effects on correlation. 



CHAPTER VI 

POLARIZED LIGHT AND THE EQUATION OF 

CORRELATION TRANSFER 

The angular behavior of the polarized radiation field 

in fluid/particle suspensions contains information on the 

type of particles in such suspensions e.g., the size 

distribution, index of refraction and the shape of the 

particles [Look and Chen, 1993, Belsley et al., 1986, Pal 

and Carswell, 1985, Leader and Dalton, 1975, Hansen, 1971]. 

Thus, in any exact treatment of scattering problems, and in 

particular, in dynamic light scattering experiments, 

polarization effects must be included. 

A systematic treatment of the state of polarization was 

given by Chandrasekhar (1960) for plane parallel media and 

Rayleigh scattering. Most of the work that followed dealt 

either with the same types of problems, or extended 

Chandrasekhar's work to allow for a general scattering 

matrix [Hovenier, 1987, Hovenier and van de Mee, 1983, 

Bohren and Huffman, 1983, van de Hulst, 1982a, 1982b, 

Sekera, 1966, Sekera, 1956, McMaster, 1954). 

In this section, I will restate some of the fundamental 

equations representing polarized light as they relate to CTE 

and then develop explicit expressions for the basic 

83 
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coefficients in the analytical representation of the phase 

matrix corresponding to CTE with a general scattering 

matrix. At the end of this chapter, the P1 approximation 

will be used to present the explicit closed form solution to 

an axisymmetric problem considering polarized radiation and 

Rayleigh scattering. 

VI.1. Fundamentals of Polarized Light 

In general, light gets polarized after a scattering 

event. At each spatial location and for a given frequency 

and direction of propagation, it can be shown that a general 

mixture of light can be regarded as a mixture of an 

elliptically polarized stream and an independent stream of 

natural (unpolarized) light [Chandrasekhar, 1960]. Four 

parameters [J, Q, U, V], known as the Stokes parameters, are 

required to specify the state of polarization of a partially 

polarized light beam. The intensity of the beam is given by 

J (= I 1 + Ir), and the second parameter Q is equal to (I 1 -

Ir), where I 1 and Ir are the intensities in the direction 1 

and in the direction r that is perpendicular to 1, 

respectively. The direction 1 is parallel to the plane of 

scattering and lies in the plane transverse to the direction 

of propagation (see Fig. 3) [Chandrasekhar, 1960]. Q and U 

are usually defined through the plane of polarization given 

by the angle x. xis the angle that the principal axis of 

the ellipse (traced by the end points of the electric 

vector) makes with the direction 1. The angle xis given by 
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tan 2:t' = U/Q (176) 

V is defined by the angle ((3) whose tangent is the 

ratio of the axes of the ellipse traced by the end points of 

the electric vector. (3 is defined by 

sin 2(3 = V/J (177) 

Therefore, the character of arbitrary polarized light 

is completely determined by the intensity J, Q, and the two 

parameters 'U. and V, defined in Eqs. (176) and (177), 

respectively. For natural light, the parameters Q, U, and V 

are all zero. 

By a straightforward extension of the scalar CTE (Eq. 

(52)) to include polarization (similar to RTE, 

[Chandrasekhar, 1960 J) , the correlation transfer equation 

for polarized light in plane-parallel atmospheres can be 

written as 

a m m µFz6 (z,µ,~ 1 t) + G (z,µ,~ 1 t) = 

J1J2rr 
4~ P(µ,µ',~,~',t)Gm(z,µ',~,t)d~'dµ' 

-1 0 
(178) 

where z is the optical variable, µ is the direction cosine 

of the propagation radiation, w is the single scattering 

albedo, and t=2-c/-r:0 • The vector Gm consists of the four 

correlated Stokes parameters Gm ( z, µ, ~, t) = [ J, Q, U, V] where 
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J, Q, U, and V are now a function of delay-time. Pis the 

correlated phase matrix given by 

(179) 

where M(rr-~2 ) and M(-~1 ) are the linear transformation 

matrices given by [Chandrasekhar, 1960] 

M(~) 
= r 

cos2~ 

sin2~ 

-sin2 ~ 

0 

sin2 ~ 

cos2~ 

sin2~ 

0 

0.5 
-0.5 

sin2~ 
sin2~ 
COS2~ 
0 

(180) 

M(~) is required to rotate meridian planes before and after 

scattering into the local scattering plane. ~1 denotes the 

angle between the meridian plane OT1 Z through T1 (=(e',~')) 

and the plane of scattering OT1T2 , where T2 = (e,~). ~2 

denotes the angle between the planes OT2 Z and OT1T2 • o 

refers to the origin and® is the scattering angle (angle 

between light rays before and after scattering) 

[Chandrasekhar, 1960] (see Fig. 4). R is the scattering 

matrix that can be expressed in general as [Siewert, 1982] 

= r (181) 

where µ 8 = cos® and R(µ 8 ) is normalized such that 



r a1 ( µs) dµs = 2 
-1 
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(182a) 

Note that for unpolarized light, P (µ 5 ), normalized in Eq. 

(27), is equal to the product of the albedo (w) and a 1(µ 5 ). 

Therefore, Eqs. (27) and (182a) are equivalent. For t>O, 

the normalization condition ((Eq. (27) or Eq. (182a)) 

becomes 

J1a1(µ 5 )g1(µ 5 ,t)dµ5 = 2we(t) 
-1 

where we(t) is the effective albedo. 

(182b) 

The six functions appearing in Eq. (181) are real 

valued for µ 5 e [-1, 1] and can be expanded in a series of 

generalized spherical functions (see Appendix B, Eqs. (Bl)­

(B6)) for a Fourier expansion of the phase matrix [de Rooij 

and van der Stap, 1984]. Note that b1(±1) = b2 (±1) = o and 

a 2 (±1) = a 3 (±1) [Siewert, 1982, van de Hulst, 1957]. 

Some of the theoretical methods that are available to 

solve for the polarized intensity field include the x- and 

Y- matrices and the border approximation [Chandrasekhar, 

1960, Chandrasekhar and Elbert, 1954, Coulson, 1959a, 1959b, 

Wauben and Hovenier, 1992a, Wauben et al., 1993a, 1993b], 

the Gauss-Seidel iterative method [Dave, 1970], the Monte 

Carlo technique [Collins et al., 1972], the doubling and 

adding method [Hansen, 1971, Domke and Yanovitskij, 1981, 

1986, Evans and Stephens, 1991, Leader, 1975], the fast 



88 

invariant imbedding method which is related to the doubling 

method [Mishchenko, 1990, Mishchenko, 1991], and the 

discrete-ordinate method [Weng, 1992a, Cheung and Ishimaru, 

1982]. Other methods include the Galerkin method [El-Wakil 

et al., 1991], the Q-form method [Domke, 1990], the 

eigenfunction expansion method [Domke, 1983] and the FN 

method [Garcia and Siewert, 1989]. · And finally, the most 

widely used method of solution is the Fourier decomposition 

and the generalized spherical harmonics expansion [Domke, 

1974, Siewert, 1981, de Rooij and van der Stap, 1984, Garcia 

and Siewert, 1986, 1987, Siewert and McCormick, 1993]. The 

following sections will be devoted to reviewing and later 

presenting a simple solution using the spherical harmonics 

expansion. 

VI.2. Spherical Harmonics Expansion 

In the fallowing, I will consider a type of problem 

similar to that considered by Siewert and co-workers 

[Siewert, 1982, Siewert et al. 1984] and review the 

generalized spherical harmonics solution to the problem at 

hand. That is, let's consider a finite layer, z e [O, L], 

illuminated on the surface z=O by a parallel beam and 

bounded by a reflecting surface at z=L. We seek a solution 

of Eq. (178) subject to the boundary conditions, for 

µ EL[O, 1] and~ e [O, 2n], 

(183a) 
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and 

Gm (L, -µ, </>, t) (183b) 

where PL is the Lambert coefficient for reflection, 

[)1 = diag{l,O,O,O} and the flux vector F has entries F11 F0 , 

Fu and Fv that are presumed given. Note that the sign on 

the direction angle represented byµ is now shown explicitly 

instead of using the convention of Gm+ and Gm-. Therefore, 

Gm+(µ) is equivalent to Gm(µ) and Gm-(µ) is equivalent to 

Gm(-µ) whereµ is positive. 

Following a similar procedure to the one used by 

Siewert (1981), Siewert and Pinheiro (1981), and de Rooij 

and van der Stap (1984), the correlated phase matrix can be 

expanded in a Fourier series as [Benassi et al., 1985] 

P(ll,ll',<l>,<l>',t) = ic0 (µ,µ',t) 

+ mt
1

(cm(µ,µ',t)cosm(q,-q,') + Sm(µ,µ',t)sinm(q,-q,')] (184) 

where 

(185a) 

(185b) 

m f (i-m)'~ ~ 
/A (µ,µ',t) = L... (1.+m)!ui(µ)IBi(t)ui(µ'), 

i=m 
(186) 



D2 = diag{l, 1, -1, -1} 

0 
R~(µ) 

-TT(µ) 
0 

0 
-T':1 (µ) 

Rf(µ) 
0 

The law of scattering is given by 
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(187) 

(188) 

(189) 

in terms of the basic delay-time-dependent "Greek Constants" 

{o:t(t) , f:3dt) , 'ldt) , cSt(t) , ct(t) , Cdt)}, defined later in Eqs. 

(194a)-(194f). As usual, Pi(µ) and P~(µ) are used to denote 

the Legendre polynomial function and the associated Legendre 

function, respectively. R~(µ) and T~(µ) are related to the 

generalized spherical functions ( see Appendix C for 

definitions and useful relations). Appendix D contains some 

useful recursive relations for computing the matrices II':(µ) 

and other related matrices relevant to the Fourier expansion 

solution. 

VI. 2. a. Diffuse Intensity Vector: For the boundary 

conditions given by Eqs. (183a) and (183b), we can separate 

the correlation vector into unscattered and diffuse 

components by writing [Benassi et al., 1985] 

(190) 
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Thus if we substitute Eq. (190) into Eq. (178), we see that 

the diffuse field is defined by 

+ IF(z,µ,4>,t) ( 191) 

where 

(192) 

is the singly-scattered and attenuated flux vector. The 

boundary conditions (from Eqs. (183)), forµ e [0,1] and</> e 

[0,2rr], are 

(193a) 

and 

G: ( L' -µ' <I> It) = 

pLµ0 e-L/µ0 [[)1F + p~[[)1 J:rrJ: G: (L, µ',<I>', t) µ' dµ' d</>' (193b) 

Before we proceed with the solution, the elements of the 

basic scattering matrix (the Greek constants. Eq. ( 189) ) , 

need to be determined. The method for determining them will 

be demonstrated in the following section. 

VI. 2. b. The Basic Scattering Constants: To use the 

analytical representation of the phase matrix P(µ,µ',<l>,<l>',t) 



we need to find the basic 

from 
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constants 

the given 

correlated scattering matrix g 1 (µ5 ,t)R(µ5 ) in the context of 

the scattering law being used. With regard to the special 

case of Mie scattering (for radiative transfer, i.e., 

g1 = 1) (van de Hulst, 1957], we note that Herman (1965) and 

Domke (1975) have reported explicit representations for 

these constants (with t=O) in terms of the complex 

coefficients basic to the Mie series, and Herman et al. 

(1980) has used orthogonality relations to deduce these 

constants. Siewert (1982) has extended Herman's method of 

using the orthogonality relations to write the expressions 

for the basic constants for a more general scattering model. 

Since the Legendre polynomials and the associated 

Legendre functions satisfy orthogonality relations (given in 

Appendix C by Eqs. (C2) and (C3)), the following integral 

expressions for the basic constants can be deduced from 

Eqs. (Bl)-(B6): 

(194a) 

(194b) 

( 194c) 
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(194d) 

( 2 i + 1) ( ( i-2) ! ) l/2 

2 (1+2) ! 

(194e) 

and 

= ( 2 i + 1) ( ( i-2 ) ! ) l/2 
ai(t) 2 (i+2) ! 

(194f) 

Note that for the Fourier expansion (Eq. (184)), and the 

subsequent definitions, Eqs. (185) - (189) and Eqs. (194a) -

(194f), one should have ~o = 1 and <X0 = a 1 = ~o = ~1 = c 0 = 

c 1 =Co= C1 = O [Benassi et al., 1984a, 1984b]. 

In the following section, the solution method will be 

limited to media with azimuthal symmetry. This will 

simplify the solution considerably while still being able to 

model some realistic situations [Chandrasekhar, 1960, 

Pomraning, 1973]. 

VI. 2. c. Azimuthally Symmetric Radiation: If we are 

interested only in the azimuthally symmetric component of 

the diffuse correlation, 
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(195) 

then by using Eqs. (185a) and (186) in Eq. (184), it can be 

shown that for m=O (Benassi et al., 1984a, 1984b], 

J 

P(µ.,µ',t) = Irr1 (µ)1B 1 (t)II1 (µ') (196) 
i=O 

The series in Eq. (196) becomes exact for an infinite number 

of terms (J=oo). Using Eq. (196) and integrating Eqs. (191), 

(192), and (193) over ~ from O to 2rr results in the 

following equation of transfer [Benassi et al., 1984a, 

1984b, Siewert and Pinheiro 1982, Benassi et al. 1985] 

+ IF(z,u,t) (197) 

where 

J 

IF(z,µ,t) = ~ l Ili(µ)IBi(t)Ili(µ 0 )e-Z/µ.°F (198) 
1=0 

and the boundary conditions, forµ e [0,1], 

(199a) 

and 
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(199b) 

In this case, the matrix Ili solution requires only the 

Legendre polynomials and the associated Legendre function 

Pf(µ) (see Eqs. (203) and (C17)) as compared to the more 

general case given by Eq. (188). 

Al though G: ( z , µ, t) is a four-component vector, it is 

apparent from Eqs. (189), (Dl), and (197)-(199) that Eq. 

(197) decouples into two two-component vector problems 

[Siewert and, Pinheiro 1982, Benassi et al. 1984, 1985]. 

Therefore, we can write 

+ IF(z,µ,t) (200) 

where G: is a two-component vector, and IF is now given by 

(as compared to Eq. (198)) 

J 

IF(z,µ,t) = ~ L 1Pdµ)IBdt)IPdµ 0 )e-Z/l,loF (201) 
i=O 

and, forµ e [0,1], 

G:(o,µ,t) = 0 (202a) 

and 
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(202b) 

Here 

IP 1 (µ) = diag {P1 (µ) , R1 (µ)}, (203) 

and the two decoupled equations are given by the following 

two cases: 

A: The J-Q Problem: 

and 

= (J(z,µ,t)J 
Q(z,µ,t) with 

(1)3 = diag {l,O} 

and 

B: The v-u Problem: 

and 

= (V(z,µ,t)J 
U(z,µ,t) with 

181 (t) (204) 

(205) 

VI.2.d The E.1 Approximation With Rayleigh Scattering: 

When the particles in the medium scatter according to 

Rayleigh's law, the coefficients in the scattering matrix 



97 

(Eq. (181)) are then given by [Chandrasekhar, 1960] 

a1 (µs) 
2 ( 206a) = µs 

a2 (µs) = 1 (206b) 

a3 (µs) = a4 (µs) = µs (206c) 

and 

b1 (µs) = b2 (µs) = 0 (206d) 

Accordingly, the Greek constants (Eq. (194)) can be 

evaluated analytically. The generalized spherical harmonics 

solution of Eq. (200) subject to the boundary conditions 

given by Eqs. (202a) and (202b) is discussed in more detail 

by Benassi et al. (1984a, 1984b) as it relates to the 

solution of the radiative transfer equation. 

Although the problem so far has been reduced to solving 

two separate systems of equations, i.e. , the 9--Q case and 

the V-ti case, there are situations when these four equations 

reduce to two (the 9--Q case only). In particular, in a 

plane-parallel medium with no incident radiation (or 

unpolarized incident light), the axial symmetry of the 

radiation field requires that the plane of polarization be 

along the meridian plane (or, at right angles to it). 

Consequently, only two components, 9- and Q or equivalently, 

G~(z,µ,t) = (9-+Q)/2 and G;(z,µ,t) = (9--Q)/2, are required to 
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characterize the correlation field. The other two remaining 

correlated parameters, U and V, are zero under these 

circumstances. Therefore, only the 5-Q problem needs to be 

solved, i.e., Eqs. (200) and Eq. (202) with 8 being given by 

Eq. (204). This is easily verified by returning to Eqs. 

(176) and (177). In a planar or spherical system, the plane 

of polarization, described by the angle x, must either be 

along the meridian plane (x=O) or perpendicular to it 

(x=±rr/2) in order to maintain the symmetry. Therefore, Eq. 

(176) gives U=O. Furthermore, for complete symmetry, 

polarization has to be random. Any sense of polarization 

(clockwise or counterclockwise) constitutes an asymmetry. 

Thus, ~=O, i.e., the ratio of the axes of the polarization 

ellipse is zero. Therefore, Eq. (177) gives V=O. Thus, for 

systems with plane symmetry ( and with boundary conditions 

that do not destroy the symmetry), one needs to deal only 

with two coupled equations of transfer for G~ and G:, or 

equivalently, for 5 and Q. 

In what follows and for simplicity, G1 will denote the 

parallel component of the correlation function along the 

meridian plane (G~) and Gr will denote the perpendicular 

component (G:). For this special case, it is easier to 

present the solution using a Legendre series expansion which 

is different but related to the generalized spherical 

harmonics approach. 

Using the analytical expression for Rayleigh scattering 

[Chandrasekhar, 1960], and the expression for g1 (Eq. (4)), 



the phase matrix in Eq. (179) is given by 

= 3 -t [ 2 (1-µ2) (1-µ'2) +µ2µt2 P(µ,µ' ,t) 4e 11 ,2 
µ2] tµµ' 
1 e 
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(207a) 

where it is understood that Gm is the vector [GI, Gr] T. 

Note that if one wishes to use the Stokes parameters J = GI 

r I r + G and Q = G - G , then Eq. (207a) should be restated as 

P(µ,µ' ,t) = !e-tetµµ' 

[ 1 + P 2 (µ)P 2 (µ')/2 
X P2(µ)P2(µ)-P2(µ') 

where P2(µ) = (3µ2-1)/2. 

(207b) 

If polarization is neglected, then Q=O or GI = Gr = 

Gm/2. Note that for the Rayleigh phase function components 

given by Eq. (207a), the normalization condition, Eq. 

(182b), results in the following definition of the effective 

albedo 

(208) 

To proceed with the P1 approximation, Pis written as a 

series of Legendre polynomials 

J 

P(µ,µ' ,t) = l (2i+l)Pi(µ)7li(t)Pi(µ') (209a) 
i=O 
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where 

4 J1J1 , p ( 11, 11 I f t) pi ( 11) pi ( 11 I ) d11d11 I 

( 2 i +4 ) -1 -1 (209b) 

• 'l 1 1 t m I r T b • • • Simi ar y, e G = [G ,G ] e a series expansion in terms 

of Legendre polynomials, i.e., 

(210) 

where G1 (z,t) is a 2 by 1 column vector of eigenvectors that 

need to be determined. Substituting Eq. (209a) and Eq. 

(210) into Eq. (178), gives 

where the orthogonality of the Legendre polynomials, Eq. 

(C2) was used. Substituting the recurrence relation for the 

Legendre polynomials of Eq. (C4) into Eq. (211), and 

rearranging the resulting series gives 

{212) 

Equation (212) is similar to the scalar form of the 

spherical harmonics solution to the radiative transfer 

problem [Ozisik, 1973]. The prime on G represents a first 

derivative with respect to z, and A1 is a 2 by 2 matrix 
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given by 

(213) 

where 1 is the identity matrix. 

The P1 approximation consists of using J=l and 

neglecting higher order terms (Gi's) in the expansion given 

by Eq. (210) and their derivatives. As a consequence, Eq. 

(212) results in the following system of first order 

differential equations 

(214a) 

and 

(214b) 

Solving Eqs. ( 214a) and (214b) simultaneously 

(differentiating each equation once in the process and using 

matrix algebra) gives the following two uncoupled second 

order systems of differential equations for 60 (z,t) and 

(215a) 

and 

(215b) 

The above system of equations can be transformed into an 
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eigenvalue problem and solved numerically. This path to the 

solution becomes imperative when the order of the 

approximation is higher than one. 

At this time the analytical solution to Eqs. (215) will 

be presented. 01 Let's start by solving Eq. (215b) and let a 1J 

be the elements of the matrix A0A1 • Also, let [G!, G~J be 

the corresponding elements of the vector G1 • Then, the two 

coupled equations of Eq. {215b) can be given by 

G l" _ 3 OlGl _ 3 OlGr = O 
1 au 1 a12 1 {216a) 

and 

G r., _ 3 OlGl _ 3 OlGr = O 
1 a21 1 a22 1 (216b) 

where all the arguments were dropped for simplicity. 

Solvi'ng for G~ from Eq. {216a) gives 

(217) 

Differentiating Eq. (217) twice with respect to z and 

subs ti tu ting the result, along with Eq. (217) into Eq. 

{216b) results in a fourth order ordinary differential 

equation for G! 

G1 (4) - ~Gl <2> - VG11 = 0 
1 1 (218) 

where the superscript (i) means the ith derivative with 

respect to z, and where 
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(219} 

and 

(220} 

Equation (218) admits the following solution 

(221} 

where 

(222} 

and 
1 

d2 = [~c~ + c~2 + 4¥};) )"2" (223} 

The constant coefficients in Eq. (221} are to be determined 

after applying the boundary conditions. 

Differentiating Eq. (221} twice with respect to z and 

substituting the result into Eq. 

find 

G~ ( z, t} = 

r 
(217} to solve for G1, we 

("1 ( c1 ed1 z + c2e-d1 z) + A ( c3ed2z + C4e-d2z}) / 3a~~ (224} 

where "1 and A are given by 

d 2 _ 01 , = i 3a11 (225} 
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and 

(226) 

respectively. Solving for G0 from Eq. (214a) gives 

G0 (z,t) -1 ' = - A0 G1 ( z, t) (227) 

Substituting the solution for G1 (z,t) (Eqs. (221) and (224)) 

back into Eq. (227), and solving the resulting system of 

equations gives 

(228) 

where the superscript l,r means either 1 or r, and where 

H~'r and F~,r are given by 

( 229a) 

and 

( 229b) 

where j=l for the 1-component, and j=2 for r-component. 

are the elements of the matrix A~1 . 

setting J=l in Eq. (210), the P1 solution for the 

correlation function is given by 
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( 230) 

The last remaining step in the solution is to solve for the 

four unknown constants ( c 1 , i=l 1 2, 3 and 4) . This is 

achieved by applying Marshak's method [Ozisik, 1973) at the 

boundaries of the medium. At z=O, this gives 

J1 m 

0
G (O,µ,t)µdµ µ0F, µ>O ( 231a) 

and at z=L, we have 

(231b) 

Substituting Eq. (230) into Eqs. (231a) and (231b) results 

in a system of four linear equations and four unknowns 

WC= 1H (232) 

where W is the coefficient matrix with the elements W1J 

given by 

W1J = 6a~2 + (-1) JHb, j=l,2 (233a) 

W1J = 6a~2 + (-l)JFb, j=3,4 (233b) 

2 (d~ -
11 (-1) JH~, j=l,2 (233c) W2J = 3a0 i) + 

W2J 2 (d~ -
11 (-1) JF~, j=3,4 (233d) = 3a0 i) + 
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W3J = -(6a~2 + (-l)JHb)exp[-(-l)Jd1L], j=l,2 (233e) 

W3J = - ( 6a~2 + ( -1) J F b) exp [ - ( -1) J d2L] , j=3,4 (233f) 

W4J = 2 exp [ - ( -1) J d1 L] ( ( 3 a~! - df) + (-1) JH~) , j=l,2 ( 2 3 3g) 

W4J = 2exp [- (-1) Jd2L] ( ( 3a~! - d~) + (-1) JF~), j=3,4 (233h) 

C is the unknown vector with coefficients C1 (i=l,2,3,4) and 

~ is the constant vector 

(234) 

where 

F1 
1 + Fo) = 2(F1 

and 

Fr 
1 

- Fo) = 2(F1 

Then the four unknown coefficients are given by 

(235) 

Several simple numerical procedures can be used to solve 

either Eg. (232) or Eg. (235). Once the four unknowns are 

found, the field correlation function can be computed from 

Egs. (230), (228), (224) and (221) for the two polarization 

components. 

In the next chapter, numerical results of the various 
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solution methods that were given in the previous chapters 

will be presented and discussed. 



CHAPTER VII 

RESULTS AND DISCUSSION 

Representative results of the various solution methods 

that were discussed in earlier chapters will be presented 

here. Some of these results have already been published 

while this work was in progress (Dougherty et al., 1991, 

Ackerson et al. , 1992, Reguigui et al., 1993, Dorri­

Nowkoorani et al., 1993, Dougherty et al., 1994). 

Explicitly, back-scattering from semi-infinite media, 

and transmission and back-scattering results from finite 

plane parallel media (unit index of refraction) subjected to 

a collimated normally incident radiation are presented 

using: preaveraged CTE, CTE with 1-, 2-, 3-, and a-term 

Legendre expansions of g1 , the exponential kernel 

approximation to CTE, and the diffusion approximation to 

CTE. Effects of optical thickness and off-angle detection 

are presented. Comparison with Diffusive Wave Spectroscopy 

[Pine et al., 1990) results and some experimental data 

[Dorri-Nowkoorani, 1992, Dorri-Nowkoorani et al., 1993) are 

also presented. Some results with index of refraction 

different than one are presented in conjunction with the 

preaveraged theory and then compared to experimental data. 

Transmission and back-scattering results for the P1 

108 
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approximation are also presented for the parallel and 

perpendicular (to the plane of scattering) components of the 

field correlation function when polarization effects are not 

neglected. Finally, the special case of applying CTE to gel 

suspensions in semi-infinite media is presented. 

Some of the source codes used to generate some of the 

results presented here are modifications of previously 

existing programs and can in general handle a wide range of 

parameters and situations. Numerical results for the 

correlation function with a three-term Legendre expansion of 

g1 were obtained by modifying and running existing FORTRAN 

codes (Dougherty, 1992) that were developed and discussed by 

Crosbie and Dougherty (1978, 1983), for semi-infinite media 

with unit index of refraction, and by Crosbie and Dougherty 

(1980, 1982, 1985) for finite cylindrical media with unit 

index of refraction, of which, the one-dimensional results 

are a special case. When expanding g1 in a series of more 

than three terms, a FORTRAN computer code that was developed 

and discussed by Liu (1993) was modified and used. For 

results that include index of refraction effects, FORTRAN 

source codes that were developed by Reguigui (1990), 

Reguigui and Dougherty (1992), and by Jiang (1990) were 

used. Jiang's work was modified to include delay-time 

dependence by Dorri-Nowkoorani (1993). 

For most of the results, the normalized field 

correlation functions (gm+ and gm-) are presented on semi-

logarithmic plots, unless mentioned otherwise. Because it 
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has been observed, and was reported by Pine et al. (1990) 

and by Dorri-Nowkoorani et al. (1993), that the correlation 

function for a semi-infinite medium exhibits a square root 

decay rate dependence, the various curves presented here are 

shown as a function of the square root of the delay time. 

All transmission and back-scattering results are shown for 

the normal emerging direction (µ=1) except for the off-angle 

results. The particles are assumed to be isotropic and 

independent scatterers in free diffusion unless specifically 

mentioned otherwise. The medium is assumed to be a plane 

parallel slab with azimuthal symmetry and with no index of 

refraction change at the boundary unless specifically 

mentioned otherwise. The incident radiation for all of the 

test cases that are presented here is assumed to be 

collimated normal to the top boundary and with azimuthal 

symmetry. No radiation is incident at the bottom of the 

medium. All the graphs are placed at the end of this 

chapter. 

VII.1. Comparison with Diffusive Wave Spectroscopy 

The very thick limit can be adequately represented by 

the diffusion approximation in what has become known as 

Diffusive Wave Spectroscopy (DWS) [Pine et al., 1990]. CTE 

can also predict this limit properly, and the only 

constraint on the accuracy of the solution is the accuracy 

of the approximating method used to solve the CT governing 

equations. 
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Solutions to the isotropic CTE are presented in a limit 

similar to DWS, namely, very short delay time and thick 

media. A preliminary investigation was reported in a paper 

by Ackerson et al. (1992). Transmission and back-scattering 

results for finite media of thicknesses 10 and 25, and back­

scattering results from a semi-infinite medium were 

presented. The preaveraged equation, Eq. (63), with wP 

given by Eq. (66) was solved using the X- and Y- functions 

and the exponential kernel approximation (EKA) for the case 

of a finite medium, and using the H-function and the reduced 

EKA for the case of an infinite medium. 

These results were compared with the DWS theory [Pine 

et al., 1990] and showed slight disagreement except at very 

short delay time which was very good. The predictions 

(using the EKA solution to the preaveraged CTE) agreed very 

well with DWS at very short delay times, (1:ft:"0 ) 0 · 5 ::s 0.1, 

for various high optical thicknesses, ranging from 10 to 30, 

in transmission (see Fig. 5). • A value of z0 / 1 = 1. 29 

corresponds to the best agreement between EKA and DWS. As 

delay time increases ( (-c /-c0 ) 0 • 5 > o. 2) , EKA results tended 

to show a slight upward curvature with increasing delay time 

which does not fit DWS and the experimental observations 

( see Fig. 5) . This upward curvature was attributed to the 

severe preaveraging approximation which averages over all 

anisotropy in the problem and results in the elimination of 

some of the longer scattering paths, thus resulting in a 

slower decay of the correlation function. 
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The single scattering function (g1 ) in particular, Eq. 

(4), becomes more anisotropic with increasing time (see Fig. 

6), and a more careful handling of g1 in the scattering 

integral (Eq. (52)), was recommended to improve the results. 

This next task was done and published in a following paper 

by Reguigui et al. (1993), where Legendre expansion (up to 

3-terms) of the g1 term in Eq. (52) was used in the case of 

back-scattering from a semi-infinite medium. This is shown 

in Figs. 7 and 8 for the back-scattering from infinite 

media, and in Figs. 9 and 10 for back-scattering and 

transmission, respectively, from finite media. This 

procedure produced much better agreement with DWS as 

compared to the preaveraging results (Fig. 7) for back-

scattering from semi-infinite media. In Fig. 7, the 

preaveraged results, using the X- and Y-solution to Eq. 

(63), and the results for 1-, 2-, and 3-term Legendre (3TL) 

expansions of g1 (Eq. 108)) are compared with DWS (for 

• Zo/ 1 =l. 3 3) • It appears that CTE results get closer and 

closer to DWS results as the number of terms in the Legendre 

. f 1 • expansion o g increases. 

The DWS theory is parameterized by deposition length 

z0 , with z0 being a free parameter that depends on the 

distance 1• that the light takes to travel into the medium 

before it starts diffusing. The CTE theory does not require 

any fitting parameters, and when compared to DWS, it appears 

that a value of 1. 2 9 for z0 / 1 • makes the DWS results agree 

very well with the CTE results for finite optical 
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thicknesses higher than 5 (Figs. 9 and 1 o) and up to the 

semi-infinite case (Fig. 8), especially for very short delay 

times. This short time agreement is expected, since DWS is 

only valid for very short delay times. 

Note that the DWS and 3TL results shown in Figs. 7 and 

8 are compared up to a delay time of 0.25 [ ('C/1:"0 ) 0 ' 5 = 0.5). 

This is typically beyond the range of the validity of DWS 

[Pine at al., 1990). However, 3TL and DWS still agree well 

throughout this range. 

For transmission, the agreement between DWS and CTE is 

only good for optical thicknesses higher than 20 and for 

very short delay times as shown in Fig. 10. This is also 

expected because of the very fast decay rate of gm+ for 

transmission due to the long scattering paths' contribution 

to this decay. 

Figures 11 and 12 present a comparison between 

transmission results from DWS and the CTE solutions in the 

diffusion approximation (section 

thicknesses of 25 and 5 respectively. 

V.2.b) for optical 

It is apparent from 

Fig. 11, that the diffusion approximation to CTE agrees very 

well with DWS at very short delay time ( ('C/1:"0 ) 0 ' 5 :s 0.1) but 

starts to disagree as delay time increases. This is 

expected since DWS and the diffusion approximation to CTE 

employ the same approximations concerning the diffusion of 

light. However, DWS includes the additional assumption of 

very short delay-time. When the short time limit of the 

diffusion solution to CTE is compared to DWS, the agreement 
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is even better since now both solution techniques employ 

similar assumptions. The same conclusions can be reached 

when comparing DWS and CTE in the diffusion limit for an 

optical thickness of 5 (Fig. 12). These numerical results 

agree with the conclusions presented by Ackerson et al. 

(1992) who demonstrated analytically that both CTE and DWS 

are equivalent when all assumptions are kept the same. 

In the following section, results obtained by expanding 

g 1 in Legendre polynomials will be presented for the finite 

and semi-infinite cases. These results will be compared to 

the preaveraging approximation with wP given by Eq. (66), 

the exponential kernel approximation (EKA), and for various 

orders of approximation in the Legendre expansion. 

VII.2. Results with the Legendre Expansion of g 1 

In section (V.1.b), g1 was approximated by a series of 

Legendre polynomials (Eqs. (108)-(115)). Numerical 

comparison between the exact form of g1 (Eq. (4)) and its 

Legendre expansion approximation shows that the seventh 

order (8-term) approximation for g 1 results in an accuracy 

-6 on the order of 10 percent relative error for all angles 

and up .!:_ :s O. 4, which is the practical range of time in 
't"o 

most experimental situations of interest (or even shorter 

for high optical thicknesses). This high limit on the 

accuracy is required to reduce any accumulated numerical 

errors while doing numerical integration in double precision 

arithmetic. Note that for delay times less than 1, a higher 
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order approximation does not necessarily give better results 

due to numerical errors that may occur while dividing by 

small numbers. A series expansion for the coefficients of 

the Legendre expansion (as given in Appendix A) needs to be 

used in this case. 

Test runs showed that different orders of approximation 

should be used for different time ranges to produce accuracy 

on the order of 10-6 (percentage relative error) at all 

angles when comparing the analytic g 1 to its Legendre series 

expansion according to the following: 

1st-order approximation for o.o < 
l:" 

:S 2.0E-4 "Co 

2nd-order approximation for 2.0E-4 < l:" 
:S 3.0E-3 "Co 

3rd-order approximation for 3.0E-3 < 
l:" 

:S 0.02 "Co 

4th-order approximation for 0.02 < 
l:" 

:S 0.06 "Co 

5th-order approximation for 0.06 < 
l:" 
"Co :S 0.15 

6th-order approximation for 0.15 < l:" 
:S 0.2 "Co 

7th-order approximation for 0.2 < 
l:" 

:S 0.4 "Co 

The first three terms in the Legendre series expansion 

are given by Eqs. (112)-(115). The remaining terms are 

given in Appendix A. 

For the three-term expansion, Fig. 13 shows that the 
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percent error between the exact g1 and its approximation 

grows beyond 0.05% 'C for ~ > 0.15. 
0 

This range is extended 

considerably ( i"o > O. 5) when an eight-term ( order seven) 

Legendre approximation is used (see Fig. 14). 

In a previous paper, Ackerson et al. (1992) presented 

two solution methods for the preaveraged CTE, namely, the 

exact X and Y- functions and the EKA for finite media, and 

the H-function for the semi-infinite media. These solution 

methods will be compared to the Legendre polynomial 

approximation of g1 (up to a second order approximation), 

which does not require preaveraging. 

First, the back-scattering results from a semi-infinite 

medium are compared in Fig. 15. Note that the preaveraged 

solution, using the exact H-function, represents the least 

accurate method as compared to the one-, two-, and three-

term Legendre expansion. The benefits gained by including 

more Legendre terms in the expansion are the ability to 

compute the MS correlation function to longer delay times. 

However, for very short times, (!..__) 0 • 5 < o. 15, the different 
'Co 

approximations give similar results as Fig. 15 shows. The 

time intervals for which a certain Legendre approximation 

order is most desirable were presented on the previous page. 

Similar conclusions about the different approximations 

can be drawn for the case of finite media, as shown in Figs. 

16-20. The EKA is compared to the 3TL expansion of g 1 for 

back-scattering in Fig. 16 and for transmission in Figs. 17 

and 18 for various optical thicknesses. The results show 
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that the EKA agreement with the 3TL improves as the optical 

thickness increases and for short delay times. This is also 

expected, since the EKA employs most of the DWS 

approximations, and therefore, the trends are similar to 

DWS. 

Figures 19 and 20 present a comparison between the 3TL 

and preaveraging in back-scattering and transmission, 

respectively, for an optical thickness of 2 5. The same 

conclusion reached earlier can be drawn here: the accuracy 

of the results increases as approximation improves from the 

preaveraging to higher order Legendre expansions. 

The eight-term Legendre expansion of g 1 results ( 8TL) 

are shown for Figs. 21 and 22 for transmission and back­

scattering, respectively, for optical thicknesses of 5 and 

20. For transmission, the 8TL solution does not differ much 

from the 3TL solution. Comparison is shown for delay-times 

up to 1.5 (Fig. 21a). Although the transmitted correlation 

decays several orders of magnitude in that time range, the 

deviation between 3TL and 8TL is not big as seen in Fig. 21b 

which shows nearly two orders of magnitude in the decay of 

the correlation function. 

For back-scattering, the 8TL solution starts to deviate 

from the 3TL solution for (1:ft"0 ) 0 · 5 > 0.5 when the 3TL 

approximation starts to fail. The difference between the 

3TL and the 8TL is more apparent for back-scattering because 

of the contribution of short scattering paths to back-

scattering. These short paths exhibit stronger angular 
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dependence and thus, more Legendre terms are needed when 

computing the correlation function in the back-scattering 

direction. For transmission, all scattering paths are at 

least of length L, and thus, the transmitted correlation is 

due mainly to these long paths which result in a fast decay. 

VII.2.a. Effect of Optical Thickness: The decay rate 

of the correlation function depends on the path the light 

has to travel to reach the detector. The 3-D plots of Figs. 

23 and 24 show the effects of increasing optical thickness 

from the single scattering limit to the thick limit on the 

field correlation function for transmission and back­

scattering, respectively, in the normal direction. The 

logarithm of the normalized Gm is plotted versus the square 

root of the non-dimensional delay time and versus different 

optical thicknesses (from low to high) of the plane parallel 

medium. High optical thicknesses (long scattering paths) 

are the result of many scattering events and low optical 

thicknesses (short paths) are the result of few scattering 

events. For low optical thicknesses, a particle has to move 

considerably, and thus takes more time, for the total path 

length to change by a wavelength (the typical length scale). 

This results in a slow decay. Inversely, for large number 

of scattering events (high optical thicknesses), and each 

particle in the path moves a short distance, the total 

length of the path changes considerably. This results in a 

fast decay rate as shown in Figs. 23 and 24. 

The linear dependence of gm (=Gm(z,µ,L)/Gm(z,µ,L=O)) on 
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(~) 0 · 5 has been observed experimentally by Pine et al. 
't"o 

(1988) and by Dorri-Nowkoorani et al. (1993) for high 

optical thicknesses. However, for small optical 

thicknesses, the behavior of gm deviates from this trend as 

a result of the reduction of the long multiple scattering 

paths. This feature is emphasized in Figs. 25a and 25b for 

back-scattering and in Fig. 26a for transmission. 

The back-scattered MS correlation function (gm-) is 

plotted logarithmically versus (~) in Fig. 25a and versus 
't"o 

(~) 0 • 5 in Fig. 25b. The dependence on delay time clearly 
't"o 

shifts from linear dependence for low optical thicknesses 

(Fig. 25a) to square root dependence for high optical 

thicknesses (Fig. 25b). The same behavior is shown in Figs. 

(26a) and (26b) for low and high optical thicknesses, 

respectively, for transmission. However, when delay-time 

increases (> O. 25), the transmitted correlation function 

shows an upward curvature (see Fig. 26b). As explained 

earlier, this may be attributed to the approximations 

employed here which are accurate for (~) 0 · 5 < o. 2 5. 
't"o 

VII.2.b. Comparison of the CTE to the Very Thin Limit 

Results: The semi-logarithmic plots of gm show that the 

multiple scattering (MS) correlation function is not a 

single exponential as it is the case for single scattering. 

The single scattering limit, however, is matched exactly by 

the CTE solution. This is shown in Fig. 27, where the 

three-term Legendre solution is compared to the analytical 

form of g1 , the single scattering (SS) correlation function, 
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for optical thicknesses ranging from o. 001 to O. 3 in the 

back-scattering direction. It is clear that when the 

optical thickness exceeds 0.2, the behavior of gm starts to 

deviate from the ss limit, indicating the presence of 

multiple scattering in the medium. The small deviation of 

the gm curve for the o. 001 optical thickness (solid line) 

from the exact g 1 curve (symbols) at delay times larger than 

0.2 appears to be due solely to the limited accuracy of the 

three-term Legendre approximation used, as explained at the 

beginning of this section. This agreement extends to larger 

delay times when the 8TL is used as shown in Figs. 28 and 29 

for transmission and back-scattering, respectively, and for 

different angles of scattering. For the 3TL, agreement 

between the analytic g 1 and CTE improves when scattering is 

10° off from normal (see Fig. 30). 

VII.3. Preaveraging and Off-angle Detection 

The effect of off-angle (from normal, µ*l) transmission 

and back-scattering was also investigated by Reguigui et al. 

(1993), and it was shown that the decay rate dependence on 

the detection angle decreases as the optical thickness 

(order of scattering) increases. Figure (31) represents the 

effect of off-angle detection for an optical thickness of 

10. The results were obtained by solving the preaveraged 

CTE using the X- and Y-functions. The correlation decays 

slower when detected at larger angles from the normal back­

scattering direction. 
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VII.4. Comparison With Experimental Data; Index of 

Refraction and Anisotropy Effects 

In the paper by Reguigui et al. (1993), the preaveraged 

CTE and the the forward scattering approximation (discussed 

in Appendix E) was used to handle anisotropic scattering 

from large particles (comparing diameter to the wavelength). 

Results were presented for transmission and back-scattering 

from finite media of various optical thicknesses (5, 10, and 

25) and with index of refraction different than one. 

These effects resulted in a close agreement with 

experimental data (at short delay-time) as compared to 

results obtained by using the preaveraging approximation and 

an index of refraction different than 1. The experimental 

results were discussed in detail by Dorri-Nowkoorani et al. 

(1993), but there were no experimental error analysis. 

However, it was reported that the results are repeatable and 

therefore can be trusted. Figures 32 and 33 present two 

representative cases of these results for back-scattering 

from finite media of various optical thicknesses (5, 10, and 

25). In Fig. 32, the preaveraged results with index of 

refraction of one are compared unsuccessfully to 

experimental data. In Fig. 33, the forward scattering 

approximation was employed with f=O. 727 (for o. 3 microns 

polystyrene particles) along with an index of refraction of 

1.33 (for water) and the prediction improved considerably. 

Figures 34 and 35 present the same comparison for 

transmission. Here also the agreement between the 
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preaveraged solution with index of reflection and anisotropy 

agrees well with experiment except for intermediate optical 

thicknesses (L=5). 

Figure 36 presents results for 3TL CTE, DWS and data in 

semi-infinite media. The agreement shown here is excellent 

between 3TL and experimental data. The DWS results vary as 

a function of z0 /l*. Good agreement between DWS and 3TL is 

observed when z0 /1*=1.21 (see Fig. 8). Figure 37 presents a 

comparison of experimental data with anisotropic preaveraged 

theory using the forward scattering approximation (f=0.727) 

and an index of refraction equal to 1.33 for L=lO. 

Agreement between experiment and CTE is excellent. Also 

Fig. 37 shows that transmitted correlation is not sensitive 

to the angle of detection for this high optical thickness. 

VII.5. Polarization Effects 

Polarization effects are known to affect the scattered 

correlation especially within an intermediate range of 

optical thicknesses (roughly between 1 and 10). To my 

knowledge, there exist only a few theoretical studies on the 

effects of polarization on field and intensity correlation 

functions [Stephen, 1988, 1986]. However, no one has 

reported numerical results. Pine et al. [1990] have 

recently published some experimental 

intensity temporal correlation function 

results for the 

(it is related to 

the field correlation function through Eq. (6)) scattered 

out from a medium that is subjected to a linearly polarized 
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incident radiation. Their preliminary investigation showed 

that the decay rate of both components (the parallel and the 

perpendicular) of the correlation function depend strongly 

on the detected polarization, especially for isotropic 

scatterers. Their measurements indicate that the 

correlation function for the perpendicular component of 

polarization decays more rapidly than the parallel 

component. This observation is predicted by the P1 

approximation results shown in Figs. 38-43. The results 

presented in Figs. 38-39 are for a scattering geometry with 

axisymmetric symmetry and with unpolarized incident 

radiation, i.e., F1=1 and F0=0 in Eq. (206) (equivalently, 

The scattering laws are modeled according to 

Rayleigh scattering, which is a good approximation for the 

scattering characteristics of small particles compared to 

the incident wavelength. 

Figures 38 and 39 show the back-scattered and 

transmitted correlation, respectively, for an optical 

thickness of 20. For comparison, the 3TL, the classical P1 

and the P9 solution to the scalar CTE are also shown on 

Figs. 38 and 39. The PN results are taken from Dorri-

Nowkoorani et al. ( 1994) for isotropic scatterers. Both 

components of polarization 1 r (g and g ) decay at the same 

rate. This result is expected since for large optical 

thicknesses, there exists a very large number of scattering 

events, which results in a diminishing of the short paths 

contributions to the decay of the correlation function. 
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Upon scattering several times, polarization is randomized 

and as a consequence, its effect is minimized and both 

components of the correlation function approach the average 

scalar result as indicated by the 3TL or the Pg curves on 

Figs. 38 and 39. 

When the optical thickness corresponds to the 

intermediate range of multiple scattering, polarization 

effects become more apparent. These effects are shown in 

Figs. 40 and 41 for back-scattering and transmission, 

respectively, from a medium with an optical thickness of 

L=5. Also on these figures, both components of polarization 

are compared 

solutions to 

correlation, 

to the 3TL, the P1 

CTE. 

and the Pg approximate 

back-scattered 

components of 

the 

Fig. 

scalar 

40a shows 

For 

that 

the 

both 

polarization decay at the same rate. This is also expected, 

since the short scattering paths contribute to the back­

scattered correlation. And in this case, because of the 

unpolarized boundary condition, the back-scattered 

correlation remains almost unpolarized. Notice that the 

result matches the P1 approximation results at very short 

delay time (Fig. 40b). However, for the transmitted 

correlation for this optical thickness, L=5, the 

perpendicular and the parallel components of polarization 

decay at different rates (Figs. 41a and 41b) . Low order 

scattering paths which have slow decay rates retain a high 

degree of their polarization and contribute to the parallel 

component. Thus, the parallel component ( g 1 ) decays more 
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slowly than the perpendicular component (gr) as indicated in 

Fig. (41a} and also has been reported by Pine et al. (1990} 

based on their experimental observations. The 3TL, the P1 

approximation for isotropic scatterers, and the P1 

approximation for Rayleigh scattering particles are also 

included on Figs. (41a) and (41b) for comparison. The P1 

approximate solution for Rayleigh scattering is given in 

Appendix F. It is observed in Figs. (41a) and (41b) that 

the correlation function for both components retains the 

same exponential dependence on the square root of time for 

both components at this optical thicknesses (L=5} . This 

observation has been also reported by Pine et al. (1990). 

Finally, results for the back-scattered and the 

transmitted correlation with polarization effects are shown 

in Figs. 42 and 43, respectively, for optical thicknesses of 

1. The results here are not conclusive because of the 

divergence of the parallel component in the case of 

transmission (Fig. 43) and of both components of 

polarization in the case of back-scattering (Fig. 42). This 

behavior may be attributed to the normally incident 

collimated boundary condition which is poorly modeled by a 

P1 approximation, especially for low orders of scattering 

and normal direction, which is definitely the case for L=l. 

More terms in the approximation need to be included in the 

case. 

The behavior of the PN-approximation method as it 

relates to CTE was investigated by Dorri-Nowkoorani et al. 
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(1994). The 1st-order approximation (P1 ) did not result in 

any improvement of the results as compared to experiments. 

Dorri-Nowkoorani et al. (1994) showed that using higher 

orders of approximation improves the results, and Tian and 

Dorri-Nowkoorani (1992) used an improved P1 approximation 

that resulted in much better results than the simple P1 

approximation. The improved P1 solution can easily be 

obtained by using the solution for Gm, obtained by the P1 

approximation, in the source function equation and 

performing the integration analytically to obtain an 

improved solution. 

VII.6 Extensions 

Finally, it is worth noting at this point that the CTE 

can be extended to fluid/particle suspensions different than 

the case studied here (freely diffusing particles). This 

can be done by using a different form of the single 

scattering correlation function than the one used in Eg. 

(4), or by using a different probability distribution than 

the one used in Eg. (31). 

As an example, the case of gel suspension has been 

studied. In this type of suspension, there exists a short 

range interparticle correlation due the constraints imposed 

by the gelling on the particle movement. Thus, Eg. (4) for 

g 1 has to be modified accordingly. For the specific case 

where the particles are diffusing in constrained regions of 

the medium due to gelling, a stiffness coefficient (L) needs 
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to be introduced into g1 according to the following 

transformation of the correlation time 

-:rt t' = (1 - e )/:r 

This imposed constraint, quantified by the stiffness 

parameter, indicates how strong the gel is. When the 

particles are freely diffusing c:r=o), the correlation delay­

time is not changed i.e., g1 as defined by Eq. (4) is used. 

The stiffness increases as the gelling progresses. 

Some representative results are plotted in Fig. 44 for 

the case of semi-infinite gel suspensions where Figure 44 

shows that the baseline of the correlation function is 

shifted upward as a function of increased gelling. The 

method of solution used to produce Fig. 44 was the 3TL 

expansion of the modified g1 , to account for gelling 

effects. 
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CHAPTER VIII. 

CONCLUSIONS AND RECOMMENDATIONS 

VIII.1. Conclusions 

Fluctuations of the scattered light intensity from a 

fluid/particle suspension, that is due to the movement of 

the particles in the suspension, contain useful information 

about the medium and particles in it. In dynamic light 

scattering experiments, these fluctuations are measured in 

terms of intensity temporal correlation functions. In this 

work, an integro-differential equation governing the field 

temporal correlation function (Gm), which is related to the 

intensity temporal correlation function, is derived from 

basic multiple scattering theory. The governing equation, 

which has been termed correlation transfer equation (CTE) , 

is specifically derived for multiple scattering of light 

through suspensions of monodisperse and independent 

diffusing particles. It is shown here that CTE has a close 

connection with the radiative transfer equation (RTE), and 

in fact, has the same type of governing equation. 

Several radiative transfer (RT) solution techniques are 

applied to obtain solutions for the field correlation 

function in isotropic and anisotropic one-dimensional media, 

in both the forward and backward directions for a finite 
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one-dimensional medium and for back-scattering in the case 

of an infinite medium. 

A preaveraging technique has been employed to reduce 

the anisotropic equation of CTE to an approximate isotropic 

equation. The exponential kernel approximation and the 

diffusion approximation have been used to derive closed form 

solutions to the preaveraged CTE and the anisotropic CTE, 

respectively, in one-dimensional axisymmetric media 

subjected to collimated incident radiation. 

Chandrasekhar's X- and Y-functions and a Legendre 

1 series expansion of g have been used to obtain approximate 

numerical solutions for the preaveraged isotropic CTE and 

the anisotropic CTE, respectively. The anisotropy in the 

isotropic CTE is due solely to g 1 , where it is assumed that 

the particles scatter isotropically and absorption is 

negligible. Three-term Legendre expansion of a correlatjed 

Rayleigh phase function and the forward scattering 

approximation have been used to obtain approximate numerical 

solutions for CTE with anisotropic scattering. 

Finally, the P1 approximation is used to derive closed 

form solutions to the polarized CTE with Rayleigh's law of 

scattering in plane parallel media having spherical symmetry 

and subjected to a collimated beam. The incident beam can 

be either unpolarized or linearly polarized. 

Solutions to CTE with isotropic scattering are 

presented in a limit similar to diffusive wave spectroscopy 

(DWS), namely, very short delay time and thick media. The 
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predictions agree very well with DWS at very short delay 

times, ("t"/"t:0 ) 0 "5 ::s 0.1, for the various solution methods. 

The three-term Legendre expansion of g1 (3TL) procedure 

produced much better agreement with DWS as compared to the 

preaveraging results in both transmission and back-

scattering. It appears that for high optical thicknesses (L 
< 

> 5 for back scattering, and L > 10 for transmission) CTE 

results get closer to DWS results as the number of terms in 

the Legendre expansion of g1 increases. It is shown that if 

the diffusion approximation and short delay-time 

approximation are introduced into the CTE, the results agree 

identically with DWS. However, while DWS fails in non-

diffusive media (L ::s 10), CTE has been shown to be 

successful in the thin limit (L « 1), as compared to the 

analytical g1 for single scattering. Furthermore, CTE 

theory does not require any fitting parameters as is the 

case for DWS. For example, when compared to DWS, it appears 

that a value of 1.29 for z0 /l* makes the DWS results agree 

very well with the CTE results for finite optical 

thicknesses higher than 5 and up to the semi-infinite case, 

especially for very short delay times. 

Comparing the different solution methods presented in 

the previous chapters to DWS or to experimental data shows 

that using the preaveraged CTE, represents the least 

accurate method as compared to the one-, two-, three-, and 

eight-term Legendre expansions. The benefits gained by 

including more Legendre terms in the expansion are the 
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ability to accurately compute the correlation function to 

longer delay times. However, for very short times, 

< O. 15, the different approximations give similar results 

especially with increasing optical thicknesses. It is shown 

that the difference between the 3TL and the 8TL is more 

apparent in back-scattering than in transmission because of 

the contribution of short scattering paths to back-

scattering. These short paths exhibit stronger angular 

dependence and thus, more Legendre terms are needed when 

computing the correlation function in the back-scattering 

direction. For transmission, all scattering paths are at 

least of length L, and thus, the transmitted correlation is 

due mainly to these long paths which randomize the angular 

dependence of scattering events. 

When comparing results using the preaveraged CTE and 

the the forward scattering approximation with experimental 

data, it was shown that by including the effects of 

anisotropy and index of refraction, closer agreement with 

experimental data (at short delay-time) is obtained as 

compared to results obtained by using the isotropic 

preaveraging approximation and an index of refraction equal 

to 1. Because anisotropy and boundary effects are minimized 

for semi-infinite media, it has been shown that agreement 

between CTE and experiments is excellent even when using 

isotropic 3TL and index of refraction of 1 in semi-infinite 

media. 

For polarization effects, it has been shown that the 
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decay rate of both components (the parallel and the 

differ 

optical 

of perpendicular) 

substantially for 

the correlation function 

low (L s 1) and intermediate 

thicknesses 

thicknesses 

correlation 

(1 s L s 

(L 2:: 20) • 

function for 

5), but not for high optical 

The results indicate that the 

the perpendicular component of 

polarization decays more rapidly than the parallel component 

as predicted by the P1 approximation. The correlation 

function for both components retains similar exponential 

dependence on the square root of time for both components. 

The results for the back-scattered and the transmitted 

correlation with polarization effects for optical thickness 

of 1 are poor. This result may be attributed to the 

normally incident collimated boundary condition which is 

poorly modeled by a P1 approximation, especially for low 

orders of scattering and normal direction. More terms in 

the approximation need to be included in this case. 

Finally, it is shown that CTE can be extended to 

fluid/particle suspensions different than the case studied 

here (freely diffusing particles). As an example, the case 

of gel suspension has been studied and it is shown that the 

baseline of the correlation function is shifted upward as a 

function of increased gelling which has been observed 

experimentally. 

It is shown here that CTE agrees and extends beyond the 

widely used single scattering theory and the more recent DWS 

in connection with photon correlation and dynamic light 
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scattering. The success of CTE also stems from its ability 

to model all orders of scattering along with the ability to 

include polarization effects and general types of boundary 

conditions and scattering characteristic. Much work is 

still needed to be done to extend the current work even 

further. The recommendations will be presented in the 

following section followed by a brief summary table listing 

and comparing all the methods of solutions used in this 

work. 

VIII.2 Recommendations 

More complex radiative solution methods such as higher 

order Legendre expansions (no more than 15 for most 

practical cases) and the spherical harmonics solution method 

(which was briefly discussed here), along with a more 

general phase function are the natural choices for an 

immediate extension of this work. Also, the use of a 

different single scattering correlation function that 

corresponds to non-diffusing particles can be easily 

investigated in future work. This can be done by using a 

different form of the single scattering correlation function 

than the one used in Eq. ( 4) , or by using a different 

probability distribution than the one used in Eq. (31). The 

use of a different g1 will allow the study of the effects of 

inter-particle correlation, 

hydrodynamic effects. 

polydispersity, and other 

Two-dimensional and polarization effects, which are 
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important for low and intermediate optical thicknesses (L ~ 

= 10), need also special attention. 

Two-dimensional solutions to CTE can be easily obtained 

from existing computer codes. Some (that were cited in the 

discussion section) have already been modified and used to 

obtain some of the one-dimensional results that were 

presented here (which are a special case of the more general 

two-dimensional case). However, because of the tremendous 

CPU time and storage required to run some of these codes, a 

new numerical approach that incorporates both advances in 

numerical methods and computer technology is worth looking 

into. Some of the numerical methods that take advantage of 

vector and parallel processing are of primary importance. 

For polarization, the methods of solution presented 

here, can be used with some effort, to obtain high order 

approximate numerical solutions to the four-component 

correlation vector. Advances in the solution can be made by 

including the effects of index of refraction changes across 

the boundaries . For the case of polarized radiation, this 

is not a straightforward procedure as it is the case for 

unpolarized radiation, because the reflection coefficient 

depends on the polarization of the incident light ( in the 

general case) [Siegel and Howell, 1981]. 

Inclusion of both the two-dimensional effects and the 

polarization effects into the CTE solution, with the 

possibility of handling index of refraction changes, should 

give researchers a powerful probing tool. Dynamic light 
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scattering data can be interpreted more accurately and 

valuable information on the shape and orientation of non­

spherical particles, which is not possible with the current 

theory, can be obtained. Future applications include the 

study of fibers and ceramics which usually contain non­

spherical scattering centers that depend strongly on 

polarization. Other obtained quantities, such as the 

correlated degree of polarization may contain some important 

information concerning the dynamics of the particles and the 

interaction of the light with the particle/fluid suspension. 

SUMMARY AND RECOMMENDATIONS FOR METHODS TO BE USED 

Short time (~/~0 s 0.1) and thick limit (L ~ 10) 

- 3TL, 2TL, lTL, Preaveraged CTE, (numerical solution) 
- DCT, DWS, EKA (closed form solution) 

Anisotropic or isotropic scattering thin limit (Ls 0.1) 

1 - g , 8TL, 3TL 

Isotropic scattering thick limit (L ~ 10) 

- DCT, DWS 

Isotropic scattering (0.1 s Ls 10) 

- 8TL, 3TL, 2TL, lTL 

Anisotropic scattering (0.1 s Ls 10) 

- Polarized CTE, 8TL, 3TL, Forward Approximation 

Anisotropic scattering thick limit (L ~ 10) 

- 8TL, 3TL (numerical solution) 
- DCT, DWS (closed form solution) 

Index of refraction different than one 

- 8TL, 3TL, Preaveraged CTE, DWS 
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APPENDIX A 

MODIFIED BESSEL FUNCTIONS 

In this appendix, definitions and derivations related 

to the modified Bessel function as it is used in conjunction 

with the Legendre expansion of g 1 ( see section V. 1. b} are 

presented. 

The modified Bessel functions are given by the 

following generating relation [Ambramowitz and Stegun, 1972] 

J (t} sinh (t} + J (t} cosh (t} 
n -~1 

where 

and 

= (2n+l} t-1; (t}, 
n 

n=O, ±1, ±2, ••• 

FromEq. (A4}, thefirst16J(t} (n=-3, -2, .• , 2} are 
n 

Jo (t} = t-1 

Jl (t} = -t-2 
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(A2} 

(A3} 

(A4} 

(AS} 

(A6} 



J_l (t) = 0 

12 (t) = t-1 ( 1 + Jt-2 ) 

1-2 (t) = t-1 

13 (t) = -t-2 c 6 + 1st-2) 

1_3 (t) = -Jt-2 

14 Ct) = t-1 c 1 + 4st-2 + 1ost-4) 

J_4 (t) = t-1 c 1 + 1st-2) 

1s(t) 

1-s (t) 
16 (t) 

J_6 (t) 
17 (t) 
1_7 (t) 

1-a (t) 

= -t-2 ( 1s + 42ot-2 + 94st-4) 

= -t-2 c 10 + 1ost-2) 

= t-1 c 1 + 21ot-2 + 412st-4 + 10J9st-6) 

= t-1 ( 1 + 1ost-2 + 94st-4) 

= -t-2c2s + J1sot-2 + 62J7ot-4 + 1Js1Jst-6) 

= -t-2 (21 + 126ot-2 + 10J9st-4) 

= t-1 c 1 + J1st-2 + 11J2st-4 + 1Js1Jst-6) 
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(A7) 

(AS) 

(A9) 

(AlO) 

(A11) 

(A12) 

(AlJ) 

(Al4) 

(A15) 

(A16) 

(A17) 

(A18) 

(A19) 

(A20) 

From Eq. (Al) and Eqs. (A5)-(A20), the first half order 

modified Bessel function is: 

(A21) 

and where 

x 0 (t) = t-1sinh (t) (A22) 

and the next seven half order modified Bessel functions are: 

J C~t) I~ (t) = Xo (t) (-t-1 + coth (t)) (A23) 
2 



199 

J (~t) I~ (t) = X0 (t) (1 + Jt-2 - 3t-1coth (t)) (A24) 
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2 
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j C~t) I 6+1 (t) = x0 (t) (1+21ot-2 + 4 725t-4 + 10395t-6 
2 

- (21t-1 + 126ot-3 + 1039st-5 ) coth (t)) 

j C~t) I 7+1 (t) = x0 (t) (-2at-1 - 315ot-3-6237ot-5 - 13513st-7 
2 

+ ( 1+37at-2 + 17325t-4 + 135135t-6) coth (t)) 

(A28) 

(A29) 

For t « 1, the analytic equations for the modified Bessel 

functions (Eqs. (A21)-(A29)) give rise to some numerical 

problems because of the division by the small value t. In 

this case, it is better to use the series expansion for the 

modified Bessel function given by 

!t2 c!t2>2 
tn {l + + + } 

lo3ooo(2n+l) 1!(2n+3) 2!(2n+3)(2n+5) ... (A30) 



APPENDIX B 

EXPANSION OF THE PHASE MATRIX ELEMENTS 

For polarized light the elements of the scattering 

matrix (Eq. (181)), obtained from Mie theory, can be 

expanded in a series of generalized spherical functions [de 

Rooij and van der Stap, 1984) so that the coefficients of a 

Fourier expansion of the phase matrix can be easily 

obtained. 

explicitly. 

These expansion. formulas are given here 

It can be shown [Siewert, 1981, Siewert and Pinheiro, 

1981, Siewert, 1982, and de Rooij and van der stap, 1984) 

that the elements of the scattering matrix can be expanded 

as 

00 

al (µs) = l f31P1 (µs) , f3o=l, (Bl) 
i=O 

(B2) 

(B3) 

00 

a4 (µs) = l 01P1 (µs) (B4) 
i=O 

200 
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(B5) 

and 

(B6) 

where as usual, P1 (µ) and P~(µ) are used to denote the 

Legendre function and the associated Legendre function, 

respectively (see Appendix C), and R~(µ) and T~(µ) are 

related to the generalized spherical functions (see Appendix 

C) • 



APPENDIX C 

SPHERICAL AND GENERALIZED SPHERICAL HARMONIC FUNCTIONS 

C.I. Legendre and Associated Legendre Functions 

As usual, P1 (µ) and P~(µ) are used to denote the 

Legendre function and the associated Legendre function, 

respectively, given by [Ambramowitz and Stegun, 1972] 

(Cl) 

The Legendre polynomials and the associated Legendre 

functions satisfy the orthogonality relations 

f P1 (µ)pm(µ) dµ = 
-1 

2 
~(~-~) Cl1 m 21+1 • 

and for i ~ m 

Jl m m 
P1 (µ) pn (µ) dµ 

-1 

= 2 (<i+m)!)c, 
( 21 + 1) ( 1-m) ! 1 , n 

We can use the recursion formulas 

( il) P 1+1 (µ) = (2i+l) µP 1 (µ) - iP1_1 (µ), i~ 0, 

202 

(C2) 

(C3) 

(C4) 
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and for a general m ~ i, 

(C5) 

with 

Po(µ) = 1 (CG) 

(C7) 

and 

(C8) 

C.II. Generalized Spherical Functions 

The generalized spherical functions are discussed in 

detail by Hovenier (1987), Siewert (1982), and de Rooij and 

van der Stap (1984). For i ~ sup(1m1,1n1), the generalized 

spherical functions are defined by 

1 Pm,n (µ) = 

where sup ( r m r , r n r ) means the larger between r m r and r n r . 

P!,n(µ) = 0 if i < sup( rmr, rnr), P!,n(µ) = P~,m(µ), and 

1 = (-1) i-m(i)n-m((i-m) ! (i+n) !) 1/ 2 

~.n 2 1 (1-m)! (1+m)!(1-n)! (ClO) 

The generalized spherical functions obey the following 
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orthogonality relation for i ~ sup(1m1, 1n1): 

m-nJ1 i J 2 ( -1 ) p mn ( µ) p mn ( µ) dµ = -:c-=-2--ri-+-,-l~) 
-1 

(Cll) 

and the following recurrence relation for i ~ sup(1m1, 1n1): 

i pi+l 
~.n m,n (µ) 

i 1 1-1 . (mn(2i+l)) 1 = (2i+l)µPm,n(µ) - fm,nPm,n(µ) - l.{l.+l) Pm,n(µ) 

with 

e!,n = (1!1] ((i+m+l) (i-m+l) (i+n+l) (i-n+l)) 1/ 2 

and 

f!,n = f((i+m) (i-m) (i+n) (i-n)) l/2 

(C12) 

(C13) 

(C14) 

For the expansion of the scattering matrix elements in 

a serie~, of generalized spherical functions, the following 
\ 
\ 

relations arise [de Rooij and Stap, 1984, Siewert and 

Pinheiro, 1984] 

m = _ _! ( . ) m ( ( i +m) ! J 1/
2 (Pi ( ) + pi ( ) ) R1 (µ) 2 l. (i-m) ! m,2 µ m,-2 µ (C15a) 

and 
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m 1 , m ( ( i +m) ! J l/2 1 1 
Ti(µ) = - 2(1) (1-m) ! (Pm,2(µ) - Pm,-2(µ)) (C15b) 

Siewert and Pinheiro (1984) have reported that the above 

analytical representation is a good method for computing the 

components in a Fourier decomposition of the phase matrix 

P(µ,µ' ,<f,,<f,' ,t). 

[Siewert, 1982] 

Note that with the relations, for i ~ m, 

(C16a) 

(C16b) 

and 

(C16c) 

From Eqs. (14) (in the text) and the definition of 

P!,n, it can be shown that R~ (µ) = R1 (µ) = O for i=O and 1, 

and for i ~ 2 

( ( i-2) I) l/2 2 
R1 (µ) = (i+2) ! P1 (µ) 

Ro( ) R ( ) = v'G(l-µ2) 2 µ = 2 µ 4 

v'G(l 2) 1/2 µ- -µ 
2 

and v'6 ( 1-µ2) 1/2 
2 

(C17) 

(C18) 

(C19) 

(C20) 
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and using the recursion relation for P!,n, Eq. {Cl2), we can 

find recursive relations for R2 and T2 [Siewert, 1982] which 
i i 

are needed in Eqs. {194) 

( i - lJ ( { i + 3 ) { i-1) ) 1/2R2 { µ) = { 2 i + 1) µR2 { µ) 1+1 i+l 1 

_ (i+2) ({i+2 ) {i-2 ))112R2 { ) _ (4{2i+l))T2{ ) 
1 1-1 µ 1 { 1+1) 1 µ {C21) 

and 

(!~i) ( { i+J) { i-1)) 112T:+1 {µ) = {2i+l) µT: {µ) 

- (i:2) ({i+2) (i-2))u2T:_1 (µ) - (1~~!1f>)R:(µ) (C22) 



APPENDIX D 

RECURSIVE RELATIONS FOR THE MATRICES rt:(µ) AND P1 (µ) 

Some useful recursion relations for matrices It:(µ) and 

P1 (µ) that were encountered in developing a solution for the 

polarized equation of radiation are given explicitly in this 

appendix. 

The basic matrices It:(µ) defined by Eq. (188) can in 

principle be computed from the definitions given by Eqs. 

and the definitions for (given in (C15a)-(C15b) 

Appendix c) • However, Siewert (1982) has developed some 

recursion relations for the matrices It:(µ) that are better 

suited for numerical computations. 

II1 (µ) and that 

II0 (µ) = diag{l,0,0,1} 

Il1 (µ) = diag{µ,O,O,µ} 

and for i ~ 2 

207 

0 For m = O, let II1 (µ) = 

(Dl) 

(D2) 

(D3) 
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(04) 

where 

X1 = diag{i+l, [ (i+3) (i-1) ] 1/ 2 , [ (i+3) (i-1) ] 1/ 2 ,i+l} (05) 

and 

'tf'i = diag{i, (i2-4) 1/ 2 , (i2 -4) 1/ 2 ,i} 

For m = 1, 

and 

and for i ~ 2, 

where in general, 

0 0 
R~ (µ) -T~ (µ) 

-T1 (µ) R1{µ) 
0 0 

x~ = diag{i+l-m, (i~!~1) [ (i+3) (i-1) ] 1/ 2 , 

(i~!~1) [ (i+3) (i-1) ] 1/ 2 ,i+l-m} 

(06) 

(07) 

(08) 

(010) 



and 

YI~ = 

and 

n.m = 2m(2i+l) r~ 
\Wi 1(1+1) 0 

0 

Finally, for the general case m ~ 2 

0 0 

rr::: = ( 1-µ2) 1/2 ~ r
(2m-1)!! 

l<ui<T (µ) -KuiK (µ) 
-l<uiK (µ) l<ui<T (µ) 

0 0 0 

with (2m-1) !! = lo3o5 .•• (2m-1) 

and 

and for i ~ m 

Kui = ( 2!) ! ( (m-2) ! (m+2) ! )-1/2 
2 

K (µ) = 2µ/ ( 1-µ2) 

209 

(D12) 

(D13) 

(D14) 

(D15) 

(D16) 
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(D17} 

D.II. The P1(µ} Matrices 

Some useful recursive relations can also be derived for 

the matrices P1(µ), given by Eq. (203). 

definitions of Eqs. (203) and (C17) and 

Using the 

and the 

orthogonality relation Eq. ( C2} , we can deduce an 

orthogonality relation for the matrices Pi(µ}, i.e. 

f P1(µ)Pm(µ)dµ = (2f+l)diag{l, (1-cS 0 ,d (1-cS 1 ,dcSi,m} 
-1 

(D18) 

We can also use the recursive relation Eq. (C4} to deduce 

for i ~ 1, that 

(D19} 

where 

IK1 = diag{i+l, ((i-1} (i+3) 1/ 2)} (D20) 

and 

(D21) 

Since IK 1 is singular, it is apparent that 

P0 (µ) = D3 = diag{l,O} (D22) 
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(D23) 

and 

(D24) 

are required before Eg. (D19) can be used to generate the 

remaining P matrices. 



APPENDIX E 

FORWARD SCATTERING APPROXIMATION 

When the scattering direction fl approaches the incident 

direction fl, (forward scattering), it is usually preferred 

to write P as an isotropic phase function combined with a 

forward peak (good for large particles). 

this can be written as [van de Hulst, 1980] 

Mathematically, 

(El) 

where~ is the Dirac delta function and f is the asymmetry 

parameter defined as the ensemble average of the cosine of 

the scattering angle 

f - <cos®>= }J1 P(cos®)cos®d(cos®) 
-1 

(E2) 

and f can be determined from Mie theory in general [Look, 

1975]. Combining Eq. (El) for the phase function with the 

explicit form of g 1 from Eq. (4) and substituting the result 

into CTE (Eq. (109)), results in an equation similar to Eq. 

(63) with the optical length redefined as 

(E3) 

212 
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where the subscript f is to indicate that this is an 

effective quantity that is due to the forward approximation. 

With this modification in mind, any method of solution 

among those mentioned in section V. 1 for isotropic 

scattering can be used to obtain results for the correlation 

when the scattering is peaked in the forward direction. (Eq. 

(El) ) . 

Note that the albedo remains equal to one. If the 

particles are absorbing and anisotropically scattering 

according to Eq. (27), then the original albedo, w 

(=u5 /(u5 +ua), will be changed to a new effective value given 

by 

Wr = w(l-f)/(1-wf) (E4) 

and the optical length will be changed according to 

(E5) 

where ua is actual absorption coefficient of the particles. 



APPENDIX F 

SPHERICAL HARMONIC SOLUTIONS TO CTE 

F.I. Non-Polarized Radiation 

The perfect scattering 

transfer (CT) equation is given by 

the correlation 

(Fl) 

where Sis a source term and w is defined as 

(F2) 

where P is the phase function and g1 is the single 

scattering field correlation function. 

Cartesian coordinate system, ~oU is given by 

·e ,,.a . . ,,.a a = sin coso/ax + sinesino/ay + cose8 z 

In a general 

(F3) 

where e is the polar angle with respect to the z-axis and~ 

is the azimuthal angle in the xy-plane. From the definition 

of spherical harmonics (Yn1 ) given in Appendix G, the 

214 



215 

direction cosines in Eq. (F3) can be written as 

cose (F4a) 

sinesincp = i (2rr) 1n[Y (n) + Y (n)] 
3 11 . 1-1 

(F4b) 

and 

sinecoscp (F4c) 

The correlation function Gm can be expanded in terms of 

spherical harmonics as [Gray and Gubbins, 1984] 

(F5) 

where 

(F6) 

Similarly, the function !I? in Eq. (Fl) can be expanded in 

terms of spherical harmonics function as 

= \ !I? (i;) Y en) y• en,) 
L.. pq pq pq 

(F7) 
p,q 

The summation in Eqs. (F5) and (F7) is defined as 
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00 p 

l = l l (FS) 
P, q p=O q=-p 

Substituting Egs. (FJ), (F4), and (F7) into Eg. (Fl) we get 

1 

( 2 rr3 ) 7 ((Y (n)-Y (n)) 8
8 + i(Y (n)+Y cn>) 8

8 + v2Y10 (n) 8
8z) 

1-1 11 X 11 1-1 y 

X Gm (r, n, -r) + U 8 Gm (r, n, -r) 

= 0'4SJ '\" I (-r)Y cn)Y. cn 1 )Gm(r,n 1 ,-r)dQ' + S 
1l L. pq pq pq 

p,q 

(F9) 

Multiply both sides of Eg. (F9) by Y:J(n) and integrate over 

n, making use of Egs. (F5) and (F6), and the orthogonal 

relations of the spherical harmonics (Appendix G) along the 

way, then we get 

2rr 1 ( a . a u r -r + 2rr - -z - + .1- a m 
sg1/ , > c 3> 1l Cax ay) J,n-1 111, cn-1>-1n 

,n 

a a · a J - Cax - i-)a m + v'2-a m g (r -r) 8y J,n+l 111, (n+l)ln 8z J,n 111,nOn ln ' 

(FlO) 

where the values of them-coefficients are given explicitly 

in Appendix G for the values needed here. Equation (F10) is 

the general system of equations for the spherical harmonic 

components that needs to be solved. However, this is a very 

formidable system to solve, and therefore, some truncated 

solutions will be investigated next. 

F. I. a. Two-Moment Expansion of Gm .i. For highly 



217 

multiple scattering systems, Gm should be nearly isotropic 

and hence should not depend much on direction. Thus the 

higher order spherical harmonics in the expansion of Eq. 

(F5) can be neglected and only terms with 1 s 1 should be 

retained. Therefore, Eq. (F5) can be approximated by 

1 

Gm(r,~,i;) = gooyoo(~) + l gln(r,i;)Yln(~) 
n=-1 

Keeping only the terms with lsl reduces Eq. (FlO) to 

o-sgoo<r,i;) ( 1 - 4!woo(i;)) - soo 

- vi(<a! - iai>g1-1<r,i;) 

for i=O and j=O, and to 

and 

- s 
10 

1 a 
= - v3 a""z'100 

= _ 1 ( a + i a) g 
v76 ax ay oo 

(Fll) 

(F12) 

(F13) 

(F14) 

(F15) 

for i=l, and for j=0,-1, and 1, respectively. Next, if we 

neglect the source terms, and then substitute for g g 
10 1 11 1 

and g 1_1 from Eq. (F13), Eq. (F14) and Eq. (F15), 
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respectively, into Eq. (F12), we find 

(v2 - Jex (i:-)ex (i:-))g (r,i:-) = o 
0 1 00 

(F16) 

where 

(F17) 

and where it was assumed that 

ex (i:-) = ex (i:-) 
i j i 

(F18) 

This assumption would be clear when we assume a Gaussian­

form for the phase function, see Eqs. (F21) and (F22). 

Equation (F16) is a second order linear differential 

equation, and once the solution g00 is found, g10 , g11 , and 

g can be determined from Eqs. (F13), (F14) and (F15), 
1-1 

respectively, with the appropriate boundary conditions. 

F.I.b. Gaussian Phase Function: If we assume that the 

function P (in Eq. (F2)) can be approximated by a Gaussian 

distribution, given by 

(F19) 

where w is the normalization coefficient for P ( like an 

2 albedo), ; ~ k and k is the wave number. Then, using the 
0 0 

explicit form for g1 from Eq. (4), w can be written as 
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W (floft,, 't") = wexp (-1' (floft,) 2) exp (-D0k~'t" (floft,) 2) 

= wexp (-2 ( 1'+'t" / 't"0 )) exp (2 ( 1'+'t" /'t"0 ) fl 0 {:i ') (F20) 

where D0 is the single particle diffusion constant, 't" is the 

delay time and 't"0 = Then, using the Rayleigh 

expansion formula we can write for w, 

= wexp(-/3)4rr'(-i)Pj (i/3)Y (fl)Y* ({:i') L P pq pq 
(F21) 

p,q 

Comparing Eg. (F21) to Eg. (F7), we 

see that w in Eg. (F7) are given by 
pq 

w ('t") = 4rrwexp(-/3) (-i)Pj (i/3) 
pq p 

(F22) 

Note that w ('t") = w ('t") and therefore, Eg. 
pq p 

(F18) is 

justified for this special case. 

F.II. Polarized Radiation With Rayleigh Scattering 

For Rayleigh or dipole scattering, the scattered 

radiation is plane-polarized in directions perpendicular and 

parallel to the plane of scattering. Thus, the intensity of 

radiation is characterized by two intensities, Ir(r,fl) with 

perpendicular polarization, and Ii(r,fl) with parallel 

polarization. If the scattering particles are randomly 

distributed, then there would be no permanent correlation in 

the phase of light scattered by the different particles 

[Chandrasekhar, 1960). Therefore, for dipole scattering, 
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' 
the multiple scattering field correlation function can also 

be represented by two components, G~(r,~,L) that correlates 

the electric field with the perpendicular polarization, and 

G~(r,~) that correlates the electric field with the 

parallel polarization. For this case, Eq. (Fl) can be 

rewritten in vector form as 

(F23) 

where 

m ,.. 

= ( G (r,Q,L) ) 

G7 (r, 0, L) 
(F24) 

and where i(~o~',L) is the phase matrix and it is defined as 

(F25) 

and where the source term (S) was neglected. ~ in Eq. (F25) 

is the same scalar modulation given by Eq. (F2), and Risa 

transformation matrix. For Rayleigh scattering, R is given 

by [Chandrasekhar, 1960] 

= (cos 2 (</>-</>') µ' 2 sin2 (</>-</>') ) 
µ 2 sin2 (</>-</>') [sinesine'+µµ'cos(q,-q,')] 2 

(F26) 

Equation (F26) can be rewritten in a different way that is 
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suitable for the spherical harmonics integrals. It can be 

shown that (see Appendix G) 

2 

R(Cloel 1 ) = ~ l ~(8 1 8 1 ) (ein(q,-q,') + e-in(q,-q,')) (F27) 
n=O 

where ~(8,8') are given explicitly in Appendix G. 

Substituting Egs. (F3), (F4), and (F25) (using Eg. (F7) for 

the I expansion) into Eg. (F23) we get 

1 

( 2;) 7 ( (Y1_1 (Cl) -Y11 (Cl>) a! + i (Y11 (Cl) +Y1_1 (Cl)) ai + V2Y10 (Cl) a=] 
X Gm(r ,n, "t') + usGm(r ,n, "t') 

= u4SJ' I ("t')Y (Cl)Y. (Cl 1 )R(Cloel 1 )Gm(r,n 1 ,"t')dQ' 
rrLpq pq pq 

p,q 
(F28) 

Each of the components of Gm can be written as in Egs. (F5) 

and (F6), 

.l 
\' y (Cl) ( gln(r,"t')) 
L 1n // 

l,n g (r,"t') 
ln 

(F29) 

m A 

( 
G.l(r,'2,"t') ) 

where m A 

G//(r,'2,"t') 

m A 

( G~(r,Q~"t') ] is used now to designate ~ 
G1 (r,'2,"t') 

to avoid confusion with the index counters. Substituting 

Egs. (F27) and (F29) into Eg. (F28) and then multiplying 

both sides of the resulting equation by Y;/Cl) and 
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integrating over {l, we get 

.L 

( g 1 J ( r, "C")) + 2n 112 , ( ( a + . a) 0 
us 11( ) (3) L ax 1 ay J,n-1m111,cn-1>-1n 

g r,"C" I,n 
i j 

( a . a) s, _ r.:. a ] [ - - - l.- o ID + V 2-o ID ax ay J,n+1 111, (n+1)1n az j,n 111,nOn 
.L 

gln(r,"C")) 
II 

gin(r,"C") 

(F30) 

where 

.L 
1 ' 'I ("C")J y* ({l)Y ({l)Y (Q) [g1n(r,"C")Jdn an L L pq n 1J pq pq,1n 11( ) p,q l,n g r,"C" 

ln 

(F31) 

and 

= 
2 'f R (e,e')Y• ({l')Y ({l') (eir(</>-<l>'>+e-ir(</>-<l>'))dO' rf-o Q' r_ pq In 

(F32) 

Substituting Eq. (AS) into Eq. (F32) we get 

Ipq, In (Q) = 2nC C (1 + o "'l(ei(n-q)</>) 
pq In n-q,oJ 

In_ 
x R I I ( e , e ' ) f ( e ' ) f ( e , ) sine , de , o n-q pq In (F33) 

for jn-ql = o, 1, or 2. 
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Using Eq. (F33) into Eq. (F31) and making use of Eq. (AS) we 

get 

= rr2c \' c2 (1 + cS "'It (-r) Jrr sinef (e) f (e) 
lj l.. pq J-q,o.l pq o lj pq 

p,q 

x ( I c Jrr R I I ( e , e ' ) f c e , ) f c e , > s ina , de , J 
l=O lj O J-q pq lj 

.l 

de (g ~ / r ' -r) ) 
g1/r,-r) 

(F34) 

F.II.a. Two-Moment Expansion: For the two-moment 

expansion, 1::s1, M are derived explicitly at the end of 
lj 

this section. Using these values into Eq. (F30) we get 

.l 

+ 1 ~(g10 (r,-r)] 
v73 az //( ) g10 r,-r 

1( a + V6 Cax 
.l 

- i~) (gi_f r' -r)) -
ay //f > g r,-r 

1-

.l 

( a + i~) (g11 (r,-r))) ax ay // 
g11(r,-r) 

.l 

= O" s w ( -r) (1 1 / 3) (g 00 ( r , -r) ] 
Brr oo 1/3 1 //( ) 

goo r' -r 
(F35) 

for i=O and j=O, and 

(F36) 



.L 

+ 1 (~+i~) (goo(r,"C)J = 
v'6 ax ay //( ) g r,"C 

00 
.L 

<Ts I ( "C ) (3 / 2 1 / 1 OJ (g 1 _ f r , "C ) J 
arr 1 1/10 3/2 //f ) g r,"C 

1-

and 

.L .L 

<T (g11 (r,"C)J _ 1 (~-i~) [goo(r,"C)J = 
s //(r "C) v'6 ax ay //(r "C) 

g11 ' · goo ' 
.L 

<Ts I ( "C ) (3 / 2 1 / 1 OJ (g 11 ( r , "C ) J 
arr 1 1/10 3/2 //( ) g r,"C 11 

Solving Eqs. (F36)-(F37) in terms of g gives 
00 

where 

D = ( ( 1 - !i_) 2 - (~) 2) 
1 arr 40rr 

and 
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(F37) 

(F3a) 

(F39b) 

(F39c) 

(F40a) 
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D = ((1 _ ~) 2 _ (__!_i_) 2) 
2 16n son (F40b) 

Substituting Eq. (F39) into Eq. (F35) we get 

(F40c) 

At this stage, this equation does not seem to reduce to 

an equation similar to the scalar solution (Eq. (F16)). 

Further work is needed to investigate the reasons for this 

difficulty. 



APPENDIX G. 

SPHERICAL HARMONICS 

G.I. Definitions 

In this appendix, a brief review of the spherical 

harmonics functions, and their properties in relation to 

their use here, is presented. The notation convention used 

here is slightly different from other references and from 

the main body of this work. some different variables may 

have similar symbols. Therefore, this appendix must be used 

with great care so as not to confuse the nomenclature used 

here with that used in the main text. However, it is simple 

and appropriate for this work. The complex spherical 

" harmonics y (Q) = y (8,c/>) 
lm lm 

are defined by 

Gubbins, 1984] 

Y (n) = (-l)mB P (cose) e.1mcf> 
lm lm lm 

and 

for l=O, 1, 2, 

" * " 
Y (Q) = (-l)mY (Q), 

1-m lm 

. 
• • • I m=O, 1, 2, .... , 1, and where 

= (21+1] 112 ((1-m) 1] 112 
Blm 47l ( 1 +m) ! 
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[Gray and 

(Gl) 

(G2) 

(G3) 
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• A 

Y is the complex conjugate of Y, i=V-1, and Q is unit 

vector defined by the polar angle e and the azimuthal angle 

q,. e and q, are defined with respect to the standard 

Cartesian coordinate system (xyz) by 

x = r sinecosq, (G4) 

y = r sinesinq, (G5) 

and 

z = r cose (G6) 

P (cose) is the associated Legendre function (Gray and 
lm 

Gubbins). For a definite 1 there are 2i+l independent 

functions. The lower order harmonics (1 ~ 1) are given by 

(G7a) 

3 ~ = (4n) cose, (G7b) 

( 3) ~ (1) ~ , ~ iq, Y11 (8,q,) = - 41l 2 sinoe (G7c) 

In general, we will write the Y's of Eq. (G7) as 

Y ( e, q,) = c f ( e) eimq, 
lm lm lm 

{GS) 

where c represents the constant factors in Eq. (G7) and 
lm 
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f represents only the a-dependence. 
lm 

Note that f = f 
1-m lm 

and c = ( -1) me for m ?:: o • 
1-m lm 

The spherical harmonics satisfy the following 

orthogonality relation 

Jy. ( 0) y ' ' ( 0) dQ = a a 
lm 1 m 11' mm' 

(G9) 

where a11 , is the Kronecker delta and 

2n 1 

= J d<; J d(cose) 
0 -1 

2n n 
= J d<; J sinede = 

0 0 · 

4n (GlO) 

In the spherical harmonics expansion analysis, one 

usually encounters integrals of products of three spherical 

harmonics. Using the definition of Eq. (GS) along with Eq. 

(GlO), we can immediately see that 

J y* (0) Y (0) Y (0) dQ = 2na m 
.,.. il jm kn l,m+n ijk, (m+nlmn 
Q 

(Gll) 

where 

m 
ijk, lmn 

n 
= c 1c c J f 1 c e) f c e) f c e) s inede 

1 jm kn 1 Jm kn 
0 

(G12) 

Note that m = m • 
ljk,lmn lkj,lnm 

In the two-moment spherical 

harmonics expansion of the CT equation, the following needed 

terms are determined from Eq. (G12) 
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m = 0 (G13) 
010,000 

1 1 ; 
(Gl4) m = 2rr (4rr) 011,000 

1 1 ; 
(G15) m = - 2rr (4rr) 011,01-1 

1 1 ; 
(G16) m = 2rr (4rr) 110,000 

1 1 ; 
(G17) m 

110, ±1±10 = 2rr (4rr) 

and m = 0 
111, lmn 

G.II. Spherical Harmonics and The Transformation Matrix 

Consider the matrix R give by Eq. (F27) 

_ A A 

R(r2-r2') (Gl8) 

Eq. (G18) can be rewritten in a different way that is 

suitable for the spherical harmonics integrals. 

2 

R(0-0') = ~ l Rr(0,0') (eir(q,-q,') + e-ir(q,-q,')) 
r=O 

where Rr(0,0') are given by 

R (0,0 1 ) 
0 

R (0,0 1 ) 
1 

1- 1- 2 = 2A(0) + 2B(0)cos 0' 

= Esin0cos0sin0'cos0' 

(G19) 

(G20) 

(G21) 
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1- 1- 2 = 2c(8) + 2D(8)cos 8' (G22) 

where 

A(8) = (~ cos 28 J 
2sin28 

B(8)= (~ 1-3sin2~J 

c(0) = (~ -cos2~) (G23) 

0(8)= (-~ cos2~} and 

E = (g ~) 

For the two-moment expansion, 1~1, Eq. (F31) becomes 

1 p 

M1J = ;c l l c 2 (1 + a J H (-r) Jn sin8f (8) f (8) 
lJp=O q=-p pq J-q, pq O lJ pq 

.L 

x (c JnRI I (8,8')f (8')sin8'd8' (goo<r,-r)]a + 
00 O q pq I I ( ) JO 

goo r' 't" 
.L 

c JnRI I (8,8')f (8')f (8')sin8'd8' [g1/r,-r))Jde 
lJ O J-q pq lJ g~;cr,'t") 

(G24) 

Using Eq. (G7) and expanding the above equation, we get 

M1J = °!!.2c ic2 (1 + a "'H {-r) Jn sin8f {8) 
lJ'( 00 J,oJ 00 o lj 

.L 

x (c JTIR (8,B')sine'd8' [goo<r,-r)]a 
00 O O I I ( ) JO 

· goo r ''t" 



( In_ (g.1 (r ,"C')] 
x c R ( e , e ' ) cose ' sine ' de ' oo cS 

00 o O g/ / ( r 1 "C') jO 
00 

.L 

+ c Jn R I I ( e , e ' ) f ( e ' ) sine ' cose , de , (9 1 / r ' "C') J J de lj o j lj //( ) . 
91 J r, "C' 

2 Jn 2 + C (1 + cS °lH ("t') sin (B)f (8) 11 j-1,o-' 11 0 ij 
.L 

x (c JnR (e,e')sin2 (8')de' (9oo<r,"t')]cS 
00 O 1 // ( ) jO 

goo r ,"C' 
.L 

+ c JnRI I (e,e')f (8')sin2 (8')d8' (91/r,"t')J·Jde lj o j-1 lj // ( ) 
g1J r,"C' 

+ C2 (1 + cS °lH ("t')Jnsin2 (8)f (8) 1-1 j+l,o-' 1-1 o ij 
.L 

x (c JnR (8,8')sin2 (8')d8' (9oo(r,"t')]cS 
00 o 1 // ( ) jO 

goo r' "C' 
.L 

+ c JnRI I (e,e')f (8')sin2 (e')d8' (91J(r,"t')])del 
lj o j+l lj //( ) J 

9 1 J r, "C' 

Using the following trigonometric properties 

( sinnecos"ede = [ 

o, 
n{8 

4/. 5: 
ni16 

16/ 05: 
4/35, 

and doing the integrals we get 

JTC-
R (e,e 1 )sine 1 de 1 = 

0 0 

'r/ n, m=l, 
n=2, m=2 
n=3, m=2 
n=4, m=2 
n=5, m=2 
n=3, m=4 

3 
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(G25) 

(G26) 



Jrr_ 
RI I ( e, e' ) f ( e' ) sine' de' = o 

0 j 1j 

Jrr_ 
R (e,e 1 )cose 1 sine 1 de 1 = o 

0 0 

Jrr_ 
RI I ( e, e' ) f ( e') sine' cose, de, 

0 J 1J 

= OJoClXce) + ~B(e)) + OIJJ,1 ~5Esinecose 

JrrR (8,8')sin2 (8')d8' = O 
0 1 

JrrRI I (e,e')f (8')sin2 (8')d8' 
0 J±1 1J 

8 - . = o Jo 15Es1necose 

2-+ o lH (3A(8) 

2-+ o J±1 ( 3c (e) 
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(G27) 

Substituting the integral values back into Eq. (G25)), we 

get 

M1J = !!.2c thc3 (1 + o "'H (i;) o iJ'( 00 JCY 00 JO 
J. 

x Jrrsinef (e) (A(e) + j-B(e))de[goo(r,i;)) 
o 1 J g/ / ( r , i; ) 

00 

+ c2 (1 + o "\ H (i;) c Jrr sinecosef (8) 
10 Jo-' 10 1J O iJ 

J. 
1 - 1 - 8 - (g (r,i;)) x (-3 o A(e) + -5 o B(e) + o I I 15Esinecose)de 1J 

JO JO j , 1 / / ( ) 
g1J r,i; 

+ C2 c (1 + o "'H (i;) (o 8
15EJrr sin3 (e) f (8) cosede 

11 lj J-1,CY 11 JO o ij 

Jrr 2 2- 2-
+ oJ1 0sin (8)f 1/8) (3A(8)+15B(e)) de 

J. 

+ ~ i-t J: sin2 ceJ f" ceJ (~C ceJ + 1;oceJ) de) [:~J :: : ::) 
lJ 

2 ( a -Jrr 3 + c c (1 + o °'H (,;) o 15E sin (e) f (e) cosede 
lJ 1-1 J+1,oJ 1-1 JO O iJ 
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(G28) 

Writing Eq. (G28) explicitly for i and j we get 

.1 . 

M00 = !!.2c thc3 2H (-r)Jrrsine(A(e) +.!..B(e)) [goo<r,-r)J.de 
oo'( oo oo O 3 //( ) 

goo r ',; 

+ c 10 (c:02H10 (-r) J:sinecose(lA(e) +~B(e))de 

8 -Jrr 3 2 + 15E 
O 
sin (e) cosede (c11H11 (-r) 

.1 
+ c 2 H (-r))) [g1o<r,-r))l 

1-1 1-1 // J 
glO (r 1 ,;) 

(G29) 

n ,( 3 Jrr - 1 - (g.1 ( r , -r) ) 
M10 = 2c 10'(C002H00 (-r) 0 sinecos (e) (A(e) ~B (e)) ~~ ( ) de 

goo r',; 

+c (c2 2H (-r>Jrrsinecos2e(!3A(e) +-51B(e))de + 8
15E 10 10 10 o 

.1 
xJrr sin3 (e) cos2ede (c2 H (-r) +c2 H (-r))) [g10 (r' -r) J l 

o 11 11 1-1 1-1 // ( ) J 
glO r,i; 

(G30) 

(G31) 

rr 2 t 2 8 -Jrr 3 2 M = -2c c H (-r) 15E sin ecos ede 1-1 1-1 10 10 0 

2 Jrr 3 2- 2-+ C11H11 (-r) 0 sin (e) (3c (e) +15o (e)) de 



.L 

+ 2c2 H (-c)Jrrsin3 (e) (~3.A(e) +1
2
5i3(e))del(g1_fr,-c)] 

1-1 1-1 o J //f ) g r ,-c 
1-

234 

(G32) 

The integrals in Eqs. (G30)-(G32) are given explicitly below 

Jrr -
0 sineA(e)de = 

(~/3 

Jrr - (o 
0 sineB(e)de = 0 

J:sinecos(e)A(e)de 

J1l -
0 sinecos(e)B(8)de 

Jrr 2 -

0
sinecos (e)A(B)de 

8/~J 

-~) 

= 0 

= 0 

= (2/3 
2/5 

Jrr 2 - (o 
0
sinecos (e)B(B)de = 0 

Jrr 3 -

0 
sin (e) A (e) de = (4/3 

4/15 

8/1~] 

2/3 ) 
-2/15 

Jrr 3 -

0
sin (e)B(e)de = (~ 4/3) 

-28/15 

Jrr 3 -

0 
sin (e) c (e) de 

Jrr 3 -

0 
sin (e) D (e) de 

= ( 4/3 
-4/15 

-4/3) 
4/15 

(G33) 

(G34) 

(G35) 

(G36) 

(G37) 

(G38) 

(G39) 

(G40) 

(G41) 

(G42) 
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Therefore Eqs. (G30)-{G32) become 

.l 

Moo= .!_H (-r) (1 1/3] (goo(r,-r)) 
arr oo 1/3 1 11( > 

goo r ',:-
{G43) 

{G44) 

1i co a) cl 1, s ) 
M11 = 8rr'(H10 (-r) 0 4/25 + H11 (-r) 1/5 33/25 

.l 

1 C 1 -1/5 )1(g11 (r,-r)] 
+2H1-1 (-r) -1/5 1/25 J 11( ) 

g11 r,-r 
{G4S) 

1i co a) cl 11s ) 
M1-1 = 8rr'(H10 (-r) 0 4/25 + H1-1 (-r) 1/5 33/25 

.l 

1 C 1 -1/5 )1(g1_fr,-r)) 
+ 2H11 (-r) -1/5 1/25 J 11f ) 

g1- r,-r 
(G46) 

Using the assumption of Eq. (F18), Eqs. (G44)-(G46) become 

.l 

M 1 ( 1 3 { s) (g; ~ ( r , ,: ) ) (G47) = 8rrH1 (-r) 3 / 5 10 
g1o<r,-r) 

.l 

M = _!H (,:) (3/2 1/10) L" (r, i:)) (G4S) 11 arr 1 1/10 3/2 11( > 
g11 r ',:-

.l 

M = _!H (i:) (3 /2 l/ 10) (g1 _f r, ,:) ] (G49) 1-1 arr 1 1/10 3/2 11f ) g r ,-r 1-
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