THE INTERRELATIONSHIP OF MONETARY POLICY, FOREIGN INVESTMENT, AND CURRENT ACCOUNT

IN THE INDONESIAN ECONOMY

BY

CHARLES D. MARPAUNG

Bachelor of Art in Accounting University of Indonesia Jakarta, Indonesia 1977

Master of Art in Economics University of Indonesia Jakarta, Indonesia 1981

Master of Business Administration Pittsburg State University Pittsburg, Kansas 1986

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirement for the degree of DOCTOR OF PHILOSOPHY May 1994

THE INTERRELATIONSHIP OF MONETARY POLICY, FOREIGN INVESTMENT, AND CURRENT ACCOUNT IN THE INDONESIAN ECONOMY

Thesis Approved:

and reas for Sephla, Ja Thesis Adviser old

mothe

Dean of the Graduate College

ACKNOWLEDGMENTS

There are several people that have been of great help during this study. First, I would like to thank my advisor Dr. Andreas Savvides and the other three members of my committee Dr. Gerald Lage, Dr. Lee Adkins, and Dr. Timothy Krehbiel for the guidance and direction of the study.

Secondly, I would like to thank Mrs. Sondang Ponto from the Ministry of Commerce, Republic of Indonesia, Jakarta, Indonesia for providing quarterly data that are not available from the International Monetary Fund or the World Bank.

Special thanks to Dr. Iwan Jaya Aziz from the University of Indonesia & Cornell University for providing specific data that were so crucial to the study and were not available otherwise from any other sources.

My appreciation also goes Charles P.R. Joseph from the Central Bank of Indonesia & the University of Pittsburgh, from whom I received valuable advises and information on the continuous discussions during the completion stage of this study.

I also would like to thank Kevin Biller and Harapan Sinaga for helping me with the technical aspects of lay-out and style of the dissertation.

Finally, I would like to thank my wife Diana, and my two children Kevin and Michael Marpaung for allowing me to spend day and night without them, especially in the last stage of the completion of the dissertation. Without their understanding and support, this dissertation probably would never have been finished.

TABLE OF CONTENTS

Page

Chapter

I.	INTRODUCTION AND BACKGROUND	1
	Purpose of the study	1
	Organization of the Dissertation	3
	General Review on Indonesian Economy	3
	Recent Deregulations	5
	Domestic Credit and Deregulation in Banking Sector	6
	Deregulation in Fiscal Sector	13
	Deregulation in Import and Industrial Sector	15
	Devaluation	15
	Stock Exchange	17
	Deregulation in Specific Areas	18
	Performance Since the New Order Regimes	19
	Structural Transformation in Export Composition	22
	Foreign Investment Policy	23
	Current Problems	2.5
	Comparison with Several Other Economies	27
		2,
II.	LITERATURE REVIEW	28
	Monetary Policy	28
	Foreign Investment	31
	Saving and Investment	37
	Economic Growth	42

III.	A MODEL OF MONETARY POLICY, FOREIGN INVESTMENT, AND					
	CURRENT ACCOUNT	44				
	Monetary Policy Reaction Function	44				
	Capital Account Bloc (Foreign Investment)	47				
	Foreign Direct Investment	48				
	Portfolio Investment	50				
	Other Capital Flows	51				
,	Current Account	52				
	National Saving	52				
	National Investment	53				
	Economic Growth	55				
	The Complete Model	56				
IV.	EMPIRICAL RESULTS AND DISCUSSION	58				
	Estimation Procedure	58				
	Empirical Result of the Model and Discussion	59				
	Monetary Policy Reaction Function	59				
	Foreign Direct Investment Function	63				
	Portfolio Investment Function	66				
	Other Capital Flows Function	68				
	National Saving Function	69				
	National Investment Function	69				
	Economic Growth Function	71				
V.	SIMULATION AND DISCUSSION	75				
	Simulation Procedure	75				
	Simulation Results	76				
	Simulation Cases	83				
	Devaluation Delay	83				
	Increase in World Interest Rate	85				
	Inflation Control	87				
	Central Bank's Net Foreign Assets	88				
	Increase in Inflation Differential	90				
VI.	SUMMARY AND CONCLUSION	92				

.

v

REFERENCES	95
APPENDICES:	
Appendix A: Data Sources, Transformation and Data Definition	100
Appendix B: Data, Program and Detail Estimation of 2SLS and 3SLS Result	
using SAS System	108
Appendix C: Detail of Model Simulation	160
Appendix D: Nonstationarity (Unit Root) Test of the Series	191
Appendix E: Identification Procedure	193
Appendix F: Stability Test	200
Appendix G: Specification Test - RESET Test	203
Appendix H: List of endogenous and exogenous variables	206
Appendix I: Alternative Models	207
VITA	208

LIST OF TABLES

Table	age
1. Rate of Growth for Domestic Credit (in percent)	9
2. Time Deposit Interest Rate Prior to Deregulation of June 1, 1983	10
3. Performance of the New Order Regime	20
4. Composition of GDP by Sector (in percent)	21
5. Annual Average Rate of Growth (in percent)	22
6. Export Composition	23
7. Cumulative of Foreign Investment Approvals	24
8. Performance Comparison by Countries	27
9. The Complete Model	56
10. The Complete Estimation Result	72
11. Model Simulation Statistics of Fit	77
12. Simulation of Devaluation Delay	84
13. Simulation of Doubling World Interest Rate	86
14. Simulation of Controlling Domestic Inflation	87
15. Simulation of Central Bank's Net Foreign Assets Impact	89
16. Simulation of Doubling Inflation Difference	90

. .

LIST OF GRAPHS

Page

Graphs

Domestic Credit 9 1. 2. 3. 4. 5. 6. 7. 8. 10. Model Simulation Fit for Saving 81

CHAPTER I

INTRODUCTION AND BACKGROUND

Purpose of the Study

The rising prominence of the East and Southeast Asian economies in the last two decades has raised interest among economists regarding the economic policies followed by these countries. While Taiwan, S. Korea, Singapore, and Hongkong have received a majority of the attention, the other three countries in South East Asia (Indonesia, Malaysia, and Thailand) have recently been the subject of research and study. These three newly industrialized economies have been seen as countries that appear to follow the same path of economic development as the four "dragons." The economic policies studied range from monetary policy, fiscal policy, structural adjustment, saving and investment, to the terms of trade. Indonesia is one of these newly industrialized countries and is the subject of this research.

Two recent comprehensive studies on monetary policy in Asian countries, including Indonesia, are Fry (1989a), and Tseng and Corker (1991). These studies investigated the implementation of monetary policy in these countries. Specifically the targets and instruments of their monetary policy were examined, as well as the liberalization of interest rates and financial markets.

On structural adjustment, the International Monetary Fund (IMF) has published a number of studies^[1]. The focus is usually the elimination or reduction of a deficit in the balance of payments, although the resumption of higher rates of economic growth, and the achievement of structural changes that would prevent future payments and stabilization problems are also among the objectives of structural adjustment. In short, structural adjustment is intended to make the economy of these countries less vulnerable to future

[1]. See for example Streeten (1988), and Aziz (1990)

shocks. The current account position is one of the central issues of structural adjustment. Most of the studies cover several countries, and do not focus on the Indonesian economy.

Foreign investment, especially foreign direct investment, has also been one of the main factors fueling economic growth in Indonesia for the last two decades. During 1980-1989, foreign direct investment flows to East Asia and the Pacific comprised 29.81 percent of total foreign direct investment flows to developing countries. Of the amount directed to Asian economies, Indonesia received 8.18 percent. By comparison, S. Korea received 8.17 percent, Malaysia 24.64 percent, China 37.01 percent, Thailand 12.74 percent, and the Philippines 5.37 percent. [2] Despite increased amounts of foreign direct investment in Indonesia, studies of foreign investment have usually encompassed a wide group of developing countries.

Given the rising prominence of the Indonesian economy, a study is necessary encompassing monetary policy, foreign investment, and current account in a simultaneous model. Therefore the objective of this study will be an attempt to link monetary policy to foreign investment (capital account) and the current account in a simultaneous equation framework. Specifically, it will address several questions:

(1). How has monetary policy in Indonesia reacted to different macroeconomic variables? How does monetary policy affect foreign investment (foreign direct investment, portfolio investment, long-term capital, and short-term capital) and the current account? There are other macroeconomic variables that are associated with monetary policy such as the real exchange rates, net foreign assets, and foreign debt. Different monetary authorities will react differently to various macroeconomic variables depending on their priorities. This model, analyses the Indonesian monetary authority's reaction to assorted economic variables.

^{[2].} See Finance and Development, March 1992, pp. 50-51, a quarterly publication of the IMF and the World Bank.

(2). How does foreign investment or the capital account affect monetary policy? Since foreign investment has played a significant role in the Indonesian economy, we would like to investigate its effect on monetary policy and other macroeconomic variables. Specifically we would like to see what factors attract or deter inflows of foreign investment to Indonesia and how foreign investment affects national saving and investment. The study investigates foreign investment by dividing it into three categories; Foreign Direct Investment, Portfolio Investment, and Other Capital Inflows.

(3). How are national saving and investment affected by the presence of foreign investment and monetary policy? What are the factors that affect saving and investment in the Indonesian economy?

(4). How is the rate of growth of economy affected by, as well as impacts on, all these macroeconomic variables?

Organization of the Dissertation:

The dissertation is organized as follows. Chapter I is an introduction and a background of the study. This chapter elaborates the purpose of the study and provides a general view of the recent liberalization experience of Indonesia. Chapter II is a review of recent literature on this matter. Chapter III discusses the design and the description of the model. Chapter IV gives a discussion of the estimation procedures and their results. Chapter V details simulation procedures and their results. Finally, Chapter VI provides a conclusion and recommendations for future research.

General Review of Indonesian Economy

This study focuses on the period of 1978 - 1992. During this period there have been numerous policies implemented to spur economic growth and to open the economy to the more dynamic international trade, instead of relying only on oil revenues. This has been a period when Indonesia has gone through many economic policy changes. During this time Indonesia executed devaluation, tax reform, financial sector reforms, postponement of

major capital intensive projects, flexible exchange rate management, waves of deregulation of foreign trade and industry, rollback of non-tariff barriers, tariff reform, improvement in the climate for investment, relaxed investment restrictions, simplified industrial licensing, development and revitalization of a listless stock exchange, and an all-out effort to capture foreign markets for non-oil exports. There is a trend from inward looking (import substitution) policies into outward looking (export market) policies. High levels of economic growth fueled by the oil booms of the 1970s gave way to recession in 1982 when the price of oil began to fall. The oil price plummeted in 1986 and practically put an end to the inward looking policies that relied on oil revenue. Nevertheless, Indonesian economists have generally seen this end of the oil bonanza as a blessing in disguise. It weakened resistance from vested interest groups to restructuring the economy away from the state domination, and gave impetus to the private sector. The results have been impressive. Non-oil exports revenue jumped to surpass oil exports. Foreign investment reached a record level. Indonesia has become a favorite destination for foreign direct investors from the Four Little Dragons- Hongkong, Singapore, Taiwan, and South Koreawho were faced with rising wages and appreciating currencies at home. The inflow has been especially higher since the Four Little Dragon lost their generalized system of preference (GSP) to the US market, while Indonesia still enjoys the lower import tariff under the US GSP. The most popular investments destination so far has been in labor intensive, low- to medium-technology industries such as footwear, food canning, textiles, wood processing, metal working, chemicals, paper and pulp, electronics, and hotels. By 1989, Indonesia had become an area for one of the highest returns on investment in Asia. A ranking of return on investment by country in Asia is as follows [3j]: (1) Singapore 31.7 percent, (2) Indonesia 31.3 percent, (3) Malaysia 29.3 percent, (4) Hongkong 22.3 percent, (5) Thailand 21.9 percent, (6) Taiwan 20.4 percent, (7) Philippines 16.9 percent,

[3]. Source: US Department of Commerce

(8) Korea 16.1 percent, and (9) Japan 13.6 percent. Given the remarkable economic success, the Indonesian economy still has a long way to go to achieve the of standard of living enjoyed by those developed economies. The increased economic activity has overwhelmed the country's physical infrastructure. Roads, harbors, power plants, telecommunication and water treatment facilities are all straining under pressure. The government has pushed the private sector to undertake these high capital investment areas, something that was forbidden in the past.

In connection with our model, we turn our attention to the major policies implemented during the period under study in order to gain a more clear understanding of the empirical results of our model.

Recent Deregulations.

There were many deregulations by the Indonesian government to spur economic growth during the period under this study. It started by deregulation of the banking sector in June 1983, allowing the market to determine interest rates. Previously, interest rates were determined by the central bank, Bank Indonesia.

One of the main reason for Indonesia's deregulation was the decrease in world oil price. The economy could no longer rely on oil exports to maintain economic growth in progress. The government budget was no longer large enough to finance fiscal expenditures to maintain the momentum and progress of economic growth. It could no longer rely on oil revenue to make reliable economic plan. The expansive role of fiscal policy decreased. The economy, which once had an external surplus from the oil boom, had to face the possibility of an external deficit due to the decrease in the oil price at the end of the 1980s. The economy could lose its growth momentum, a condition that may not come again. With these deregulations plus a devaluation in 1986, policy makers expected the economy to provide a low cost of production relative to other competitors, which ultimately would boost non-oil export commodities. Private sector investment was

designed to take over the role of government investment.

Chronologies of the deregulation in the Indonesian economy during the 1980s can be summarized as follows:

Domestic Credit and Deregulation in Banking Sector

Major economic deregulation by the Indonesian government in the 1980s began in the banking industry. A decree was issued on June 1, 1983 that reduced the central bank authority to implement credit. Commercial banks, both government or privately owned, could have their own policy in implementing credit. Therefore, the interest rate of most assets are determined by the market. The Central bank no longer intervenes with interest rate ceilings. The Central bank no longer subsidizes interest rates, except for a very special case. The Central bank significantly reduced its role in credit rationing. Commercial banks are on their own. In this period, professional bankers and bank managers prospered in the true capitalistic market system. There was no more government hand.

Previously, the central bank determined different interest rates for different sectors of economy. These interest rates were reviewed periodically and different sectors of the economy were assessed with the possibility of a new interest rate. Private commercial banks and seven government commercial banks^[4] abide by the interest rate policies issued by the Indonesian central bank, Bank Indonesia. There were no foreign banks in operation in Indonesia until the 1983 deregulation. For lending purposes, sectors of the economy were divided into the following classifications: (1) medium term investment credit. This sector is divided into 9 sub-sectors. They include areas of general investment, plantation credit for small farm, replanting, rehabilitation and development of export commodity plants, private national plantations, construction of paddy fields, and credit to cooperative

^{[4].} These seven state banks are: Bank Bumi Daya, Bank Dagang Negara, Bank Exim, Bapindo, Bank Rakyat Indonesia, BNI 46, Bank Tabungan Negara.

enterprises, (2) small scale investment credit (KIK), (3) permanent working capital credits (KMKP), (4) short-term credits of state banks. This sector is divided into 21 sub-sectors. This covers areas of supply and distribution of rice, paddy and corn by BUUDs and KUDs (village cooperative enterprises), credit for the government salt company and its related subcontractors, wheat flour mills, fertilizers and insecticides, agricultural produce, animal husbandry, fishery, handicraft and poultry. This area also includes industrial and service sectors, such as cement, sugar, paper, textile, cooking oil, transportation, printing, domestic trading companies, imported goods, and government projects. (5) Other credit, divided into three sub-sectors, credit for house ownership, credit for Indonesian students, and credit for student dormitories.

There are 6 categories of interest rates charged by Bank Indonesia (central bank). Each of the sub-sectors mentioned above falls into one of these categories of interest rates. The cement industry for example, will have a different interest rate than the transportation industry, and the interest rate of credit for wheat flour mills is different from fertilizer industry.

Lending rates also changed periodically. For the period of May 31, 1972 to April 11, 1973, interest rates ranged from 12 percent up to 36 percent per annum. Sugar, imported goods, domestic trading activities, certain government projects, and tourist industries are at the highest rate category. For the period of April 12, 1973 to April 8, 1974, interest rates ranged from 9 percent to 24 percent per annum. Again, tourism, importation and its distribution activities, domestic trading activities, and certain government projects fall into the highest category. For the period of April 9, 1974 to December 27, 1974, interest rates ranged from 9 percent to 24 percent per annum. Tourism industry, imported goods and its distribution activities, and certain government projects fall into the highest category. For the period of April 9, 1974 to March 31, 1976, interest rates ranged from 9 percent to 24 percent per annum. Tourism industry, imported goods and its distribution activities, and certain government projects fall into the highest category. For the period of December 28, 1974 to March 31, 1976, interest rates ranged from 9 percent to 24 percent per annum. Tourism industry, imported goods and its distribution activities fall into the highest category. For the period of April 1, 1976 to December 27, 1974, to December 27, 1974, interest rates ranged from 9 percent to 24 percent per annum.

31,1977, interest rates ranged from 9 percent to 24 percent per annum. Tourism industry, and imported goods and its distribution activities fall to the highest category. For the period of January 1, 1978 to January 17, 1982, interest rates ranged from 9 percent to 21 percent per annum. Import and its distribution activities fall into the highest category. For the period of January 18, 1982 to May 30, 1983, interest rates ranged from 9 percent to 18% per annum. Import and its distribution activities fall into the highest category. Special credits on special cases were reviewed by the government with 21% per annum interest rate consideration. By June 1, 1983, interest rates were determined by individual commercial banks. But for credit extended to special priorities, or certain projects, deemed as an important priority by the government, the interest rate averaged 12 percent per annum, with the exception of the special priority in export sector, which is 9 percent per annum.

The nominal amount of domestic credit poured into the banking system during the 1980s rose significantly. The average growth rate of domestic credit in the period of 1978-1991 was 27.65 percent per year. The period of 1985-1990 recorded the highest average growth of 48.84 percent per year. As shown in the following graph, this was the period of the greatest expansion of domestic credit for the Indonesian economy. The sharply stepped-up economic activity in 1989-1990 created an excessive demand in the economy. The economy overheated by 1990. Inflation in calendar year 1990 reached 9.53 percent, up from 5.97 percent in 1989. By 1991, there was a significant decrease in domestic credit. This is attributed to an effort by monetary authorities to contain the overheating economy.

The amount of domestic credit can be divided into domestic credit into government sector and domestic credit to private sector. For the purpose of our analysis, this division of domestic credit will be used in our study.

8

Graph 1: Domestic Credit

The rate of growth for domestic credit is detailed in the following table:

	e		•	0
1978: 4.55	1982: 46.45	1986: 37.37	1990: 58	3.34
1979: 8.55	1983: 31.24	1987: 39.60	1991: 18	3.88
1980: 10.93	1984: 8.21	1988: 43.89		
1981: 7.26	1985: 23.55	1989: 48.31		

Table 1: Rate of growth for domestic credit in percentage

Data: Recalculated from IFS.

Prior to deregulation in June 1983, the central bank also set the policy for interest rates on time deposits at government commercial banks. All government commercial banks abided by this policy. The following table shows different interest rates for selected dates set by the central bank for various terms to maturity on time deposits.

	(Monthly rates in percentage) M O N T H S					
	Less than 3	3	6	12	18	24
Effective from:						
Oct. 1, 1968	1.5	4	5	6	na	na
March 17, 1969	1.5	3	4	5	na	na
May 1, 1969	1	2	3	4	na	na
July 10, 1969	1	1.5	2.5	3	na	na
Sept. 15, 1969	1	1.5	2	2.5	na	na
Jan.1, 1970	1	1.5	1.75	2	na	na
May 31, 1972	.75	1	1.25	1.5	na	na
April 12, 1973	.50	.75	1	1.25	na	na
April 9, 1974	.50	.75	1	1.50	2	2.5
Dec. 28, 1975	.50	.75	1	1.25	1.75	2
Jan. 13, 1977	.25	.50	.75	1.00	ab	2
Jan. 1, 1978	dib	dib	.50	.75	ab	1.25
May 1, 1983	dib	dib	dib	.75	ab	1.25
June 1, 1983	dib	dib	dib	dib	dib	dib

Table 2: Time Deposit Interest Rate Prior to Deregulation of June 1, 1983^[5].

Note:

na = This time deposit is not available.

- *ab* = *This deposit has been abolished or is no longer offered by government commercial banks.*
- dib = The rate for this deposit is determined by individual bank and no longer subject to restriction from the central bank.

[5]. Taken from Indonesian Financial Statistics-Bank Indonesia, monthly publication, various issues.

Since October 1968, the central bank has guaranteed time deposits and paid a subsidy in the amount of 1/3 of the interest which the government commercial banks pay for 6 and 12 month time deposits. Starting on March 17, 1969, the subsidy for 12 month time deposits was reduced to 1 percent. By May 1, 1969, all subsidies were abolished. This was a period when most investors put their time deposits in Singapore and Hongkong commercial banks or other more stable countries. These steps to guarantee and subsidize the time deposits were taken by the government to bring the money back into the country. In fact, early in Indonesia's first five year economic plan, there was a successful step by step effort by monetary authorities to gain credibility and trust from depositors.

Starting on April 9, 1974, the central bank paid a subsidy of 8 percent and 15 percent per annum on time deposits with maturities of 18 and 24 months respectively. By December 28, 1974, the subsidies on 18 and 24 month time deposits had decreased to 6 percent and 9 percent per annum respectively. By January 13, 1977, the 18 month time deposits scheme was abolished, and the subsidy on 24 month time deposits had been reduced to 6 percent per annum.

By January 1, 1978, the subsidy on 24 month time deposits was reduced to 4.5 percent per annum on amounts up to 2.5 million rupiahs and 1.5 percent on any excess over 2.5 million rupiahs. This subsidy was again reduced by May 1, 1983 to 1.5 percent per annum on amounts up to 2.5 million rupiahs and 1 percent per annum on any excess over 2.5 million rupiahs.

On June 1, 1983, the deregulation decree freed all these restrictions, and each bank was free to set their own interest rates for different types of time deposits. Since then, the kinds of time deposits offered in the banking system have been more complex. Most of these deposits are offered by banks with incentives, such as a lottery drawing for a large amount of money, gifts or overseas travel.

Another decree was issued on October 27, 1988 to liberalize the financial sector. Indonesia has consistently adopted a policy of no restrictions on foreign currency transfers

11

since 1971. However, financial and banking activities usually were closed to foreign players. This deregulation decree allowed foreign banks to become players in the Indonesian economy through mergers with local private banks. Anyone can open a new bank with initial capital of Rp 10 billion (about US\$ 5.9 million, converted at that time)^[6]. The presence of foreign banks in the domestic market facilitates the need for capital of multinational companies and joint venture companies. This changed the way monetary policy was conducted by the monetary authority.

This decree also freed the government owned companies to choose their bank. Previously, government owned companies were required to bank with a government bank. After this decree they could choose to put 50 percent of their funds in privately owned banks. The competition among commercial banks to attract customers became very tight. By the end of 1990, only about 2 years after the October 1988 decree, 63 new private banks had opened for business, bringing the total to 174 private banks. Furthermore, the number of bank branches country-wide had more than doubled to 4500. There were 8 foreign joint venture banks licensed, and hundreds of smaller community credit banks in rural areas were established.

For consumers, the entry of so many new banks expanded the number of credit and saving products offered, and in general nudged consumer service to a higher level. Competition among commercial banks is fierce compared to the time prior to the October 1988 decree. Newspapers are filled everyday with competitive bank's advertising to attract customers. Many of these banks are now open seven days a week. Hijacking of each other professional managers in the banking industry was unavoidable.

Another decree issued in March 1989 was to require commercial banks to keep 25 percent of their funds in the form of foreign exchange. This is to create a liquid moneymarket to support stock market exchange. This increase in net foreign assets may

^{[6].} The activities were limited to only 6 big cities. Foreign banks are not allowed to open branch in a less developed area. Hence, these foreign banks concentrated in Jakarta, the capital and biggest city.

or may not have an effect on monetary policy and other macroeconomic variables. In January 1990, a decree was issued to require commercial banks to allocate at least 20 percent of their total credit into small business enterprises.^[7]

Deregulation in Fiscal Sector

In January 1, 1984, a new income tax (PPd) law was enacted to replace the old Dutch tax system. In April 1, 1985, a new sales tax (PPN) law was enacted. In 1986, a new property tax (PBB) law was enacted. These new taxations system were designed to support the step by step liberalization of the economy.

With this new income tax law, tax payers have the responsibility to calculate their own tax liability or tax refund. With the old tax system, the tax man would calculate and decide how much each business and each individual had to pay. Responsibility is shifted to the tax payer under the new income tax law, thus reducing a lot of red tape and inefficiency. This may have a positive effect on foreign investment inflows.

The government budget has relied primarily on oil revenue to finance economic growth since the 1970s. The world recession in the early 1980s and the collapse of world oil prices in 1986 pushed the government to take action to shift its emphasis to non-oil export commodities. A plot of oil and non-oil export commodities from Indonesia is shown in graph 2. During the oil boom of the 1970s, oil revenue was the main contributor to Indonesian growth. The primary effort to increase non-oil export commodity was to maintain a competitive real exchange rate. After the 1986 devaluation, the competitive real exchange rate was maintained by containing inflation and rupiah depreciation.

Revenues from income, sales, and property taxes were ignored in the 1970s. In 1983, when the new taxation laws were enacted, the revenue from these taxes was only about nine percent of total government revenue. By 1989, the revenue from these taxes

^{[7].} There are still a lot problem in this area. Many banks could not meet this requirement due to the incapability's of the small businesses to absorb the credit.

accounted for 29.5 percent of total government revenue.

PERCENT

During the gulf war, there was a significant increase of government revenue from oil sales. This improved the deficit in Indonesia's current account. It was decided not to put this windfall money into the overheated economy.

In 1985, a decree (Inpres No. 4, 1985) was issued to temporarily privatize the customs agency. SGS Holding SA, a Switzerland company won the bid to do almost all activities which were formerly executed by the customs agency. This policy was designed to reduce or eliminate red tape and to reduce the cost of production in general^[8]. This, in turn, would make manufacturers more competitive in export markets. The effect of this policy was clearly to reduce the cost of production, which in turn increased investment.

^{[8].} In 1992, the responsibility of customs was handed back to Customs Agency. At this time, it is still difficult to tell whether the old habit of red tape will return or not.

Deregulation in Import and Industrial Sector

The import sector of the Indonesian economy was heavily regulated. One reason the government always cited to defend this policy was that the country needed to control the limited foreign exchange reserves. To import certain goods, businesses were required to go through a company that was licensed by the government to import that good.

These rent seeking practices produced a high cost economy that made it difficult for non-oil commodities to compete in the export market. Two main decrees were issued to tackle this problem. On May 6, 1986, a decree was issued that exporters can import their input needs without going through the licensee. Another decree in October 25, 1986 was made to change non tariff barriers (quota) on many different kinds of imported goods into tariff barriers.

On the specific industries, there were some deregulations that followed. In May 1990, companies in the electronic and drug industries, whether they are for export or not, could import their needs without going through the licensee. The agricultural industry was also deregulated by changing the protection status of several key commodities from non-tariff barriers into tariff barriers.

Previously, all domestic needs for steel were supplied by Krakatau Steel, a government owned company. Beginning July 1992, companies in the steel industry can choose to import steel or to buy it domestically from Krakatau Steel.

All these policies affect the cost of production, by cutting rent seeking activities. Lower cost will in turn affect exports and attract foreign direct investment.

Devaluation

To be able to compete internationally, the policy maker realized that goods had to be cheap in the international market. Besides reducing the red tape that made the cost of production so high, the devaluation of rupiah currency was also a reasonable policy choice. The devaluation of the rupiah was executed on September 12, 1986. There was about a 40 percent devaluation against US dollar^[9]. Since September 12, 1986, there has been no further devaluation, but rupiah currency is handled by a managed floating system that allows the rupiah to undergo a continuous depreciation against major foreign currencies. A continuing depreciation of the rupiah against the US dollar and Japanese Yen will deteriorate the balance of payments because most Indonesian foreign debts are denominated in US dollars or Yen. The model discussed later will attempt to explain the effect of this depreciation on other macroeconomic variables. The following figure, graph 3, shows the real exchange rate trend from 1978-1991. It is a downward trend, as

Graph 3: Real Exchange Rate Behavior

Real Exchange Rate

Quarterly

Data: Recalculated from IFS.

discussed above, directed to maintain a low real exchange rate for export market target.

[9]. There had been two other devaluations prior to this time; in 1971 and in 1978

Stock exchange

On December 20, 1988, the stock exchange was deregulated. Foreign players are now allowed to take part and purchase up to 49 percent of the shares of a company listed in the stock exchange. Prior to this, on December 24, 1987, government decided to discard the requirement that the stock market had to maintain a maximum 4 percent swing in the price of a share traded in the stock market.

There are two stock market exchanges in Indonesia. The Jakarta Stock Exchange (JSE) is managed by P.T. Bursa Efek Jakarta (BEJ) in Jakarta, and Surabaya Stock Exchange (SSE) is managed by P.T. Bursa Efek Surabaya (BES) in Surabaya. Now, they are both privately run. The Jakarta stock exchange (BJE) was founded (resuscitated) in 1976 when the government established a regulatory agency and a national investment company to promote the development of a securities market. The Surabaya stock exchange was founded in 1989. There were 147 companies listed on the JSE by July 1992, with capitalization of shares at US\$ 12 billion. Foreign investors held 22.7 percent of the shares on the JSE by August 1992. This policy affected the portfolio investment inflows. But since this policy was just implemented in December 1988 (practically the first quarter of 1989) and our observation data ends at the fourth quarter of 1991, this effect may not influence the result in our model.

Recent developments include the privatization of the Jakarta Stock Exchange. Besides this, there is a need to consolidate the market by merger among small brokers. BAPEPAM will be acting as a regulator in a capacity similar to the Security & Exchange Commission in the United States. Most of the activities in the capital market involved fund raising through stock selling. Bond activities are not a popular means of fund raising so far.

Deregulation in Specific Areas

In domestic shipping transportation, rent seeking activities were abolished by the November 21, 1988 decree. Previously, the routes on domestic sea cargo and shipping transportation were monopolized by several companies. At the same time there was also deregulation to reduce the non-tariff barriers on plastic raw materials.

In June 1989, it was decided that all government owned companies (BUMIN) should go through periodic evaluation. Based on liquidity, rentability and solvability, these government owned companies should be categorized into the condition of: very healthy, healthy, less healthy, and unhealthy. This creates a competitive climate for these government owned companies to become more efficient. Most of them usually carried losses and gave the argument that they are agents of development instead of profit making institutions.

A decree, Inpres No. 5, 1984, was issued to simplify the number of permits needed to conduct business activities. This created the certainty required for new business or business expansion. For example what permits and how many permits are needed to build a hotel, an office center, or a factory ?.

The last deregulation was on June 1993. This series of economic deregulation can be summarized as follows: (1) In foreign investment policy, the number of sectors of industry closed to foreign companies was reduced from 51 to 34. (2) In trade policy, tariff rates on 297 items are to be reduced to within 5 to 20 percent. The ban on automotive imports of completely built up (CBU) form was removed, replaced by a tariff. Car industry protection in the last 20 years was seen as a failure that only created inefficiency and high car prices in the domestic market.^[10] In the heavily protected soy bean industry, the tariff was reduced from 30 percent to 0 percent but only for imports from the

^{[10].} For comparable car, the price of car in Indonesia is about 2.5 to 3 times more expensive than the price of car in United States.

United States. However, since this is a very recent deregulation, observed data for this study is not likely to show the effects of this policy. Data for this study ends with the fourth quarter of 1991 for most variables. In any case, data more recent than the first quarter of 1992 are not available.

Performance since the New Order Regime

Indonesia gained its independence from Netherlands on August 17, 1945. Struggling to find its identity and trying to keep the country united, practically no attention was paid to the economy from the independence day until the military take-over in 1965 by Mr. Suharto.^{(11]} This new regime, called the New Order Regime, wasted no time, focusing more attention on the country's economic problems. A group of Ph.D. economist who had graduated from American universities^[12] was given the responsibility of organizing the crippled economy. These economists started their job with inflation rates of 650 percent per year in 1966 and with almost no market economy structure available^[13].

By 1969, Indonesia started its first five year economic plan, which is popularly called "Pelita". Since 1968 until the time of this study, there had been 5 Pelita as follows:

The 1st Pelita, 1969-1973, the 2nd Pelita, 1974-1978, the 3rd Pelita, 1979-1983, the 4th Pelita, 1984-1988, and the 5th Pelita, 1989-1993. This study and model examined the period of the third Pelita through the fifth Pelita.

For comparison of how the Indonesian economy has grown since the New Order Regime, several statistics from International Financial Statistics (IFS) were calculated and presented it in the following table.

[13]. See The Economist magazine, April 17, 1993: A Survey of Indonesia "Wealth in its grasp."

^{[11].} Mr. Suharto is still the president of the country at the time of this study. Mr. Suharto won the election for the sixth time in March 1993.

^{[12].} Press and media referred to this group as the "Berkeley mafia" after the Californian campus, UC Berkeley. Although not all of them graduated from UC Berkeley, several the most senior among them were from UC Berkeley.

	GNP US\$ Mil	GNP/Cap US\$	Inflation % per annum	Ratio of Foreign Debt to GNP	Ratio of Export plus import to GNP
1967	5,602.9	50.65	109.52	N/A	.26
1970	9,068.4	75.90	12.93	insignificant	.29
1975	29,125.3	214.68	19.03	.22	.47
1980	69,274.3	469.69	18.01	.19	.55
1985	83,788.9	508.95	4.71	.33	.44
1991	110,958.8	590.96	9.24	.37	.57

Table 3: Performance of the New Order Regime

Compared to the early era of the New Order regime, the per capita income has increased by 11.67 times. Inflation has been kept under control. The economy is more open as is shown by the increasing ratio of exports plus imports to gross national product. The increased ratio of foreign debt to gross national product probably indicates an alarming sign that something needs to be fixed. The increase of foreign debt will reduce the creditworthiness of the country.

The economy has also shifted from heavy reliance on agricultural products to the manufacturing and services sectors. The shift can be seen in the composition of sectors of industry during these 5 Pelita in table 4 on the following page. The secondary sector increased from 12 percent in the 1st Pelita into 26.2 percent in the 5th Pelita., while the primary sector decreased from 54.1 percent in the 1st Pelita into 33.6 percent in the 5th Pelita. The service sector also increased from 33.9 percent into 40.2 percent over the same period.

Another way to view these changes is by looking at the growth rate of each sector over the same period. Table 5 shows the yearly average growth of each sector. The secondary sector increased at a much higher rate than the primary sector over all these 5 Pelitas. The

......

same thing is also true for the services sector.

The primary sector experienced the slowest rate during the entire Pelita. The principle effort focuses on the secondary and services sectors.

	PELITA					
	1st (1969-73)	2nd (1974-78)	3rd (1979-83)	4th (1984-88)	5th (1989-93)	
Primary sector (Agricultural & Mining)	54.1	47.1	39.2	39.9	33.6	
Secondary Sector (Industry, Construction)	12.0	16.5	21.0	21.6	26.2	
Tertiary/Service Sector (Commerce, banking, transportation, govt, etc)	33.9	36.5	39.9	38.5	40.2	
Total	100	100	100	100	100	

Table 4: Composition of GDP by Sector (in percentage) [14]

[14]. Sources: Central Bureau of Statistics, and Center for Policy Studies (CPS), Jakarta.

	1st	PEI 2nd	LITA 3rd	4th	5th
Primary Sector (Agricultural and Mining)	6.6	3.4	2.8	1.8	3.2
Secondary Sector (Industry and Construction)	15.9	14.2	9.3	10.1	11.1
Services Sector (Commerce, banking, transportation, etc)	9.4	9.5	7.9	6.2	7.3
Total GDP	8.6	7.2	6.1	5.2	6.8

Table 5: Annual Average Rate of Growth (in percentage)^[15]

Structural Transformation on the Export Composition

Due to the decreasing of the oil price of the 1980s, Indonesia tried to push the export of non oil commodities. These structural changes are reflected in the increased share of the non-oil economy in GDP. The manufacturing sector became the most important source of economic growth. With over 12% growth a year, manufacturing accounted for about one quarter of GDP growth during the period of 1983-1990.^[16]

A comparison of exports of oil & gas vs non oil commodities is made in table 6. The export of oil & gas decreased from 74.77 percent of total export in 1975 into only 37.39 percent in 1991, while the non-oil commodity export increased from 25.23 percent in 1975 into 62.61 percent in 1991. This demonstrates the increase in competitiveness of

^{[15].} Idem.

^{[16].} See: Trends in Developing Economies 1991, published by the World Bank, Washington D.C., 1991, page 280.

Indonesian non-oil commodities in the international market. This is one factor that would attract foreign investment inflows into the country.

Table 6: Export Composition^[17]

	Oil & gas export	Non Oil & gas commodity export
1975	74.77%	25.23%
1980	74.24%	25.76%
1985	68.42%	31.58%
1991	37.39%	62.61%

Foreign Investment Policy

The Investment Coordinating Board is an agency established in 1967 to help the economy to recover and to set policy for inviting foreign investment into the country. This board coordinates the incentives to attract investment from domestic (domestic investment) and foreign sources (foreign investment). Periodically, this agency will evaluate and issue a policy about which sector of industry or which part of the country (geographically) is still open or closed to new foreign or domestic investments.

For foreign investment, Japanese companies have always been on the top of the list in investing in Indonesia. In fact, Indonesia has been the 4th largest recipient of Japanese foreign direct investment after the US, UK, and Australia.

Table 7 shows cumulative foreign investment approval from 1967 up to December 31, 1992.

[17]. Central Bureau of Statistics, and Center for Policy Studies (CPS), Jakarta, Indonesia.

Industry sector	Number of projects	Value in million of US\$	% from total
1. Chemical Industry	317	12,524.5	19.9
2. Hotel	101	6,587.7	11.1
3. Mining	122	5,975.0	9.5
4. Metal Goods Industry	432	5,524.8	8.8
5. Housing	42	5,379.5	8.5
6. Paper Industry	38	4,523.2	7.2
7. Basic Metal Industry	44	4,395.9	7.0
8. Textile Industry	361	4,334.3	6.9
9. Non Metallic Mining Industry	59	3,076.9	4.9
10. Food Industry	110	1,794.1	2.8
11. Office Industry	28	1,633.3	2.6
12. Transportation Industry	32	1,535.5	2.4
13. Other Services	239	1,203.7	1.9
14. Wood Industry	122	835.0	1.3
15. Plantation	43	705.6	1.1

Table 7: Cumulative of Foreign Investment Approvals^[18]

The Top 15 Sector

(Ranking of Investment Value by Industry Sector) 1967 - Dec. 31, 1992

Among the top fifteen (15) investor countries, cumulative foreign investment approval increases from 1967 to 1992 are as follows: Japan (20.7 percent), Hongkong (8.3 percent), Taiwan (6.2 percent), South Korea (4.7 percent), United States (4.3 percent), United Kingdom (3.9 percent), Netherlands (3.6 percent), Singapore (3.3 percent),

^{[18].} From Investment Statistic of Indonesia, December 1992. Published by The Investment Coordinating Board, Indonesian Government, Jakarta, Indonesia. These numbers exclude oil & gas, banking, non bank financial institution, insurance, and leasing.

Germany (3 percent), Australia (2 percent), Luxembourg(1.7 percent), Switzerland (.9 percent), Panama (.8 percent), France (.4 percent), Belgium (.4 percent) [19].

Current Problems

Given the performance of Indonesian economy, there are several problems that might reduce the ability to maintain this progress. They are:

1. Rent seeking activities:

Although the wave of deregulation is clearly gaining ground, there continuous to be a lot of pressure from several groups that were closed to the power to monopolize certain industry. ^[20]

2. The increase of debt burden:

The foreign debt has increased dramatically. Foreign debt has increased at an average rate of 35.5 percent over the period of 1984-1990. Mismanagement of this debt mirrors the debt problem of Latin American countries. Secondly, it will ultimately reduce the expansive ability of fiscal instruments. A recent development in this foreign debt occurred when the government put a restriction on overseas borrowing. Overseas borrowing of over US\$5 million has to be approved by a new government agency established to tackle the rising Indonesian foreign debts. There has been discussion of releasing the windfall revenue of oil from the gulf crisis to pay off some of these debts. At the end of 1988, Indonesia's total foreign debt, including undisbursed amounts, reached US\$ 58 billion. The sharp increase in foreign debt of the mid of 1980s was also due to the appreciation of the US dollars and the Yen. Graph 4 below shows the trend of foreign debt during the period of 1978-1989.

^{[19].} Idem. These numbers exclude oil & gas, banking, non bank financial institution, insurance, and leasing.

^{[20].} See: The Economist magazine, April 17, 1993: A Survey of Indonesia "Wealth in its grasp".

Graph 4: Foreign Debt Trend

Data: IFS

Year

3. The post Suharto stability:

Mr. Suharto has openly talked about his desire to retire. Due to the inexperience of the country with peaceful transfers of power, the stability which is basic for economic growth may be in jeopardy. There have been only 2 presidents in the history of the Republic of Indonesia since 1945.

4. The rise of Mainland China and Eastern Europe, and Vietnam:

The opening of Mainland China and Eastern Europe for investor, and their competitiveness in terms of low labor cost, facilities, tax holiday, etc, create alternatives for foreign direct investment. This also makes it more difficult to arrange a soft long-term loan. Vietnam has been another attractive newcomer in Southeast Asia for foreign direct investment destination.

5. The world recession and protectionism :

The world recession is clearly making Indonesian economic growth slower. In addition

to this, the tendency for protectionism in industrial countries will possibly be a future problem for Indonesian economic growth. There is already pressure in the United States to lift Indonesian textile exports from the US generalized preference system.

Comparison with Several Other Economies in South East Asia

As impressive as it is, compared to the other three new industrialized economies of South East Asian, Indonesia still maintains the lowest rank in term of per capita income, although it has the largest economy. In terms of controlling inflation, Indonesia is still behind Malaysia and Thailand. In terms of infrastructure, they all probably have the same problem.

Taken all together, the climate of openness in the economy, and the steady growth of the other Southeast Asian economies should finally benefit the Indonesian economy.

Table 8 compares the performance of these 4 developing economies of Southeast Asia.

	GNP US\$ Mill	GNP per capita US\$	Inflation Rate(%)	Ratio of Export plus Import to GNP
Indonesia	102,514.1	571.75	9.24	.53
Malaysia	40,542.3	2282.79	2.63	1.63
Thailand	79,347.3	1414.89	5.95	.81
Philippines	44,292.7	720.44	14.18	.61

Table 8: Performance Comparison by Countries^[21]

[21]. Numbers are recalculated from IFS, published by IMF.

CHAPTER II

LITERATURE REVIEW

Monetary Policy

There has been a long debate in monetary theory concerning the proper intermediate target or indicator of monetary policy. The traditional indicators used have been the interest rate and the money supply. Other alternatives to these traditional indicators are the monetary base, $[^{22}]$ liquid asset measures (de Kock and Radecky: 1990), commodity prices (Hilton: 1990), and credit measures. The use of credit measures was brought to the attention of economists because of its potential usefulness in formulating and communicating central bank policy. Among the proponents of credit measures are Benjamin Friedman, Joseph Stiglitz, and Alan S. Blinder. $[^{23}]$

In formulating the model for this study, one must examine the way monetary policy is conducted in Indonesia. A monetary policy reaction function is estimated to discover how the monetary authorities conduct policy over the period of 1978.1 to 1992.1. Credit measures in the form of domestic credit are used as the dependent variable that responds to several economic variables.

In basic monetary theory, it is commonly understand that monetary policy is used to combat inflation. It is also closely associated with the prevailing interest rate. Inflation has been the primary target of monetary policy. Most of the time, monetary policy, will be sensitive to changes in the inflation rate of a country. Inflation rates are crucial to monetary policy. In addition, there are other variables that also concern monetary authority. In this situation, an attempt is made to estimate a monetary reaction function that includes all variables that are possibly a concern of the monetary authority

^{[22].} Many studies have done in this area, especially studies that relate to the St. Louis model.

^{[23].} For example, see Blinder and Stiglitz (1983); Bernanke and Blinder (1988); Benjamin Friedman (1983).
in conducting its monetary policy.

Although monetary policy should be conducted to provide stable long-term economic growth, different countries have different priorities about which macroeconomic variables are to be its greatest concern. It is very possible for a certain macroeconomic variable to be the main priority to the monetary authority of one country but the lowest priority to another.

Monetary policy reaction functions have been used by several studies to determine if there is a systematic monetary policy pursued by a country's monetary authority. Generally, this monetary policy reaction function shows the reaction of the monetary authority in executing its policy toward several different macroeconomic variables.

Three previous studies have estimated monetary policy reaction functions. A study on developing economies by Fry (1989a) used the change in domestic credit (DDCR) as the dependent variable in its monetary policy reaction function.^[24] Explanatory variables include the change in net foreign assets divided by gross national product (DNFAR), the difference between domestic and United States inflation (INFGAP), the change in net domestic credit to the government sector divided by gross national product (DDCGR), the rate of change in the world market dollar price of oil (DOILP), the ratio of government and government-guaranteed foreign debt to gross national product (DETY), and finally the square of the debt over gross national product ratio (DEYS). This monetary policy reaction function is specified to discover whether or not the developing countries sterilize inflows of net foreign assets to achieve some money target. This reaction function is also specified to indicate whether or not monetary authorities react to any other economic events. For example, developing countries central bank might squeeze credit when domestic inflation exceeds U.S. inflation or when oil prices rise. Central banks might also squeeze domestic credit to the private sector when credit requirements of the

[24]. See Fry (1989a), p.211.

government increase; in such cases, the coefficient of DDCGR would be significantly less than one. The complete sterilization implies a value of -1 for the coefficient of DNFAR.

Another study on developing economies by Fry (1991a) also used the change in domestic credit scaled by GNP (DDCY) as the dependent variable in its monetary reaction function. This monetary reaction function is designed to discover whether or not monetary authorities in the sample of developing countries have pursued a systematic monetary policy. He used the following explanatory variables in his monetary policy reaction function: the lag of foreign liabilities defined as the lag of end-of-year stock of the country's net cumulated foreign liabilities converted into domestic currency and divided by gross national product (FLY_{t-1}); the lag of the ratio of foreign debt to gross national product (DETY_{t-1}); the change in net foreign assets of the banking system scaled by gross national product (DNFAY), and its lag (DNAY $_{t-1}$); the widening gap between domestic inflation and inflation in the united States (INFGAP), and its lag (INFGAP_{t-1}); oil price inflation (DOILPL) and its lag (DOILPL_{t-1}); the lag of real exchange rates expressed in natural logarithms as proxy for the price of nontradable goods in relation to import prices $(REXL_{t-1})$; the change in net domestic credit to the government scaled by gross national product (DNDCGY), and its lag (DNDCGY_{t-1}).

Monetary authorities might tighten monetary policy when the lags of foreign indebtedness $DETY_{t-1}$ and FLY_{t-1} were high, so the signs of these variables are expected to be negative. DNFAY is expected to have a negative coefficient since it is designed to detect any systematic "sterilization" of the effects of such assets' acquisition on the money supply. The sign of the INFGAP coefficient is expected to be negative since monetary authorities might squeeze domestic credit in response to a widening gap between domestic and United States inflation. The sign of DOILPL would be negative if the monetary authority squeezes domestic credit in response to high oil price inflation, and will have a positive sign if the monetary authority accommodates higher oil prices by increasing domestic credit. The REXL_{t-1} variable would have a negative coefficient if a restrictive monetary policy pursued after devaluation. A positive coefficient would suggest that the monetary authority accommodated price increases caused specifically by the devaluation. The sign of DNDCGY is be expected to be positive as the monetary authorities might squeeze domestic credit to the private sector when the credit requirements of the government increase. A zero coefficient on DNDCGY would imply a complete neutralization of the public sector's credit requirements. A partial offset would produce a coefficient between zero and one.

A comparison study of developed country on the monetary policy reaction function was done by Abrams (1980) for the U.S. economy. This study used the Federal Funds Rate as the dependent variable. The explanatory variables were: deviation of the unemployment rate from a desired level, the rate of inflation, the surplus in the balance of payment, the percentage effective devaluation in the foreign price of the dollar, and, finally, the deviation of money growth from target growth rate.

Foreign Investment

Foreign investment represents foreign capital inflows to a country. Capital inflows into a country consist of three different flows; foreign direct investment, portfolio investment, other flows that do not belong in the foreign direct investment or portfolio investment. Foreign aid is major part of the last category. Foreign investment is also referred to as the capital account in this study.

Many studies of foreign capital inflows have been conducted. Some of the studies take all foreign inflows (in the sense of all foreign investment) into their investigation or take only the foreign direct investment part of the capital inflows. In this study, an attempt is made to separate these three capital inflows to see a more detailed effect of them individually. It should be noted at this point that no study is known to have investigated portfolio investment separately.

On foreign direct investment (FDI) studies, Fry (1992), showed that foreign direct

investment (FDI) affected the national investment, national saving, growth, and the balance of payments on current account. There were several findings in this study. In the eleven developing countries used as a control group, FDI reduced domestic investment, which means FDI is a close substitute for other capital inflows; but for the five Pacific Basin developing economies, FDI increased capital formation and is not a substitute for other capital inflows. Another finding was that FDI had a significant negative impact on national saving. However, the negative effect of FDI on national saving in the five Pacific Basin developing economies implies that FDI could have a negative effect on the current account in excess of its negative effect through increased domestic investment. On growth, foreign direct investment has a positive effect on sixteen of the sample countries, but for eleven of the sample countries foreign direct investment negatively affected growth. In addition, for the five pacific basin developing economies, the effect of foreign direct investment is negative for growth, but not significant. This insignificant coefficient of foreign direct investment indicates that foreign direct investment does not exert a significantly different effect from domestically financed investment on the rate of growth. The effect of foreign direct investment on the current account is significant and negative in the entire sample of countries. The main conclusion of this study is that the effect of FDI differs from one group of countries to another. In some, its effects are immiserizing, while in others its effects are similar to domestically financed investment.

Edwards (1990) elaborated on the economic determinants of foreign direct investment (FDI) in less developed countries as follows: (a) Per capita income was included as a proxy for the inverse of the return on capital, so its sign is expected to be negative. (b) He adds the ratio of foreign trade to gross domestic product (GDP). The coefficient of this variable is expected to be positive. (c) Real GDP is included as a measure of the size of the economy and the potential extent of the scale of economies. Its coefficient is expected to be positive. (d) Domestic investment ratio. Edwards assumes that domestic and foreign investments are complements. So the coefficient of the domestic investment ratio is

expected to be positive. (e) The share of government consumption in GDP as an indicator of the size of the government is included. He expects this coefficient to be negative. (f) He evaluates international competitiveness represented by the real exchange rate. The study uses the Summers and Heston measure of the real exchange rate, and given the way this real exchange rate defined, its coefficient is expected to be positive.

Edwards estimated his model using 60 developing countries, including Indonesia, and used data from 1971 to 1981. He used 6 different definitions and manipulations of the foreign direct investment as a dependent variable. With little deviation, he obtained the results for the coefficient of each variable.

Lucas (1993) is used a simple model of derived demand for foreign capital by a multiple product monopolist to explore the sensitivity of direct foreign investment to production cost in seven Asian countries, including Indonesia. The study uses annual He found governments in these countries concerned with restraining wage data. escalation and limiting the role of organized labor, partially in order to attract foreign investment. He found foreign direct investment inflows to be less elastic with respect to the cost of capital (including taxes) than to wages, and to be more elastic with respect to the aggregate demand in export markets than to domestic demand. The results as to whether domestic capitals complement foreign capitals are mixed, though in the majority of cases a positive association prevails. Most prior empirical studies of foreign direct investment reviewed by Lucas (1993) consistently find the size of the domestic market to be important. But this study found only a weak positive association between the size of domestic consumption spending and foreign direct investment. This is contrary to conventional wisdom. The study also found a weak positive association between foreign direct investment and higher foreign exchange reserve coverage (and hence diminished prospects of currency depreciation). The study also found that foreign direct investment is somewhat responsive to incomes in major export markets.

Kindleberger (1972) cited the sales of the product of foreign direct investment, labor

costs, capital costs, technology and management, government expenditure, taxes, external economies and diseconomies, amortization, nationalism, and the discount rate. Kindleberger did not estimate this model. These are all hypothetical variables that should be included in the determination of foreign direct investment.

In a discussion about foreign direct investment in heavily indebted developing countries, a study by de Vries (1990) comes to the conclusion that foreign direct investment inflow cannot be expected to grow when a country has a mounting debt. However, his study does not estimate the variable empirically. His result, which uses the statistical history of foreign direct investment and foreign debt in those sample countries, suggests the use of a debt variable in the foreign investment model for the purpose of empirical estimation.

In a study about new trends and policy problems of foreign investment in the commonwealth developing economies, Cable and Persaud(1987) listed the following as determinants of foreign direct investment: (a) The general business climate and investor confidence in the domestic market, or the strength of demand of the domestic market and or regional market. This can be captured with a per capita income or consumption variable.^[25] (b) Tax incentives. Indonesia, and all other Asian countries, offer such incentives. The question, however, is not whether it is offered but how much is offered. The difficulty is to obtain data for this variable. Furthermore, the complicated nature of the investment incentive tax structure suggests the exclusion of the tax variable from so many studies that try to relate comparative tax incentive to foreign direct investment.^[26] (c) Trade policy and special zones. Many developing countries are seeking to attract export-oriented investment in a context where there is a high level of protection which

^{[25].} According to Cable and Persaud (1987). a survey of foreign direct investment in Malaysia showed the largest numbers of foreign direct investment were motivated by the lure of the Malaysian market and only 10% were motivated by labor-cost consideration.

^{[26].} For detailed discussion, see Jun (1989), Giovannini and Hines (1990).

raises domestic costs. This makes it difficult to export and to attract foreign direct investment intoexport activities. Where comprehensive liberalization is not feasible, a second best solution is a free trade zone. Such zones can also serve as a focus for infrastructure development considered necessary for export-oriented activities. The operation of these special zones has produced mixed results. For the purpose of this study this factor will be excluded from the model.^[27]

Krause (1973) stressed that foreign direct investment will depend on long-term profits that can be acquired through: (a) Cost reduction. This suggests the inclusion of a labor cost variable in an empirical estimation, (b) The market being large enough to allow the investing firm to capture plant economies of scale. This suggests the inclusion of a consumption or income per capita variable in an empirical estimation. (c) tax incentives or relative tax.

Political risk is always cited as a factor that deters foreign direct investment. In discussing United States policy toward foreign investment in less developing countries, Ellis (1990) mentioned the impact of political risk on United States foreign investment in less developing countries. Possibilities of expropriation, nationalization, civil unrest, and restrictions on currency transfer, are factors to be considered in making foreign direct investment. To overcome this obstacle, many actions have been taken to insure foreign investment in less developing countries.

The Overseas Private Investment Corporation (OPIC) is a U.S. government corporation whose main purpose is to provide political risk insurance for U.S. investment in over 100 less developed countries (LDCs). Another organization of this kind is the International Finance Corporation (IFC), an affiliate of the World Bank. The IFC has a

. .

^{[27].} In the Indonesia case, the Sabang special zone in the 1970's failed, but the Batam special zone, however, in the 1980's succeeded. Beside the large pool of cheap semi-skilled labor, the lure of Batam especially because foreign investors do not need an Indonesian partner. Indonesian government provides guarantees against nationalization, offers accelerated depreciation for fixed assets, and allows exemption from luxury-sales and corporate taxes for companies that have not broken even. Foreign investment to Batam in 1991 alone is US\$934 million. By December 1991, foreign firms have invested a total of US\$ 3.2 billion in Batam. Batam is located about 20 km to the south of Singapore.

program called the Guaranteed Recovery of Investment Principal (GRIP). Under this program, an investor deposits funds with the IFC in exchange for a long-term-IFC note. The IFC then makes an investment in the LDCs in its own name and assumes full risk of loss of principal for any reason. In return the IFC receives a negotiated front-end fee and a share of the profits ^[28] The Multilateral Investment Guarantee Agency (MIGA), the latest member of the World Bank group, was launched in 1988. Its primary function is to insure foreign investors in developing countries against losses resulting from noncommercial risks such as expropriation, civil unrest, and restrictions on currency transfer. It should be noted that for the purpose of this study, a political risk variable will not be included in the foreign direct investment equation for three reasons: (1) It is difficult to find data for this variable. (2) Due to insurance provided by OPIC, IFC, and MIGA, the risk of international investment is reduced although it may still be significant. (3) In the case of Indonesia, one could venture to say that, during the decade of the 1980s, political risk has not entered into foreign investor's decision making. Stability in Indonesia has been imposed from the top for the past 25 years. Indonesian liberals hope that the passing of the Suharto era will lead to a more open political system. The promise of stability is most likely to be made by the armed forces (ABRI), since the Indonesian constitution gives ABRI a dual social and military function which will make a reassertion of military power relatively easy in the post-Suharto era.

Studies on portfolio investment are rare. One thing that will affect portfolio investment is the domestic real interest rate or the world real interest rate. Secondly the inflation rate should be another factor affecting portfolio investment. The size of the financial system of a country and the relative importance of the financial system could be other factors that will attract portfolio investment into a country.

In their study of financial indicators and growth in a cross section of countries, King

[28]. For further details, see Ellis (1990).

and Levine (1992) proposed four variables as measures of the size of the financial system of a country. They are the ratio of money M1 definition to GDP (M1Y), the ratio of liquid liabilities of the financial system to GDP (LLY), the ratio of quasi-liquid liabilities of the financial system to GDP (QLLY), and the ratio of claims on the private sector by the central bank and deposit money banks to GDP (DCPY). King and Levine also proposed three variables as measures of institutional importance. They are the ratio of central bank domestic assets to GDP (CBY), the ratio of deposit money banks domestic assets to GDP (BY), and the ratio of deposit money banks domestic assets to deposit money bank plus central bank domestic assets (BTOT).

Saving and Investment

For national saving and investment, several studies can be cited. Based on a life-cycle model, Fry (1989b) used the saving to gross national product ratio as the dependent variable. He found that national saving in 28 less developed countries were affected by the rate of growth in gross national product, rate of growth in aggregate income attributable to terms of trade improvements, world real interest rate, net domestic credit to government, government and government guaranteed debt and the lag of national saving itself. Fry found that the rate of growth in gross national product, as well as the rate of growth in aggregate income attributable to terms of trade of growth in gross national product, as well as the rate of growth in aggregate income attributable to terms of trade improvements, are positively associated with saving. He expects the sign of the world real interest rate to be ambiguous. If the substitution effect outweighs the income effect, then the saving ratio increases. He found world real interest rate and net domestic credit to the government to be negatively associated with saving. Fry also expect the sign of government and government and government guaranteed debt to be ambiguous. He found the empirical estimate for this variable is positively associated with saving, but the lag of the variable is negatively associated with saving. The lag of national saving is positively associated with saving.

A study to analyze national saving and domestic investment responses to terms of trade

in 14 Asian developing economies by Fry (1986) found that variables for economic growth, terms of trade, real deposit rate of interest, and the lag of saving are positively associated with saving. A population dependency variable was negatively associated with saving.

In a study about debts and deficits in 26 developing countries, Fry (1991b) postulates the national saving equation as a function of the rate of growth of gross national product (YG), permanent improvement in the terms of trade in natural logarithms (TTL), the change in domestic credit over nominal gross national product (DDCY), the world interest rate (RW), the lagged value of net foreign liabilities over gross national product (FLY_{t-1}), the lagged value of government and government guaranteed debt (DETY_{t-1}), and the lag of the

 $DETY_{t-1}^2$. The expected sign for growth and terms of trade are positive. The expected sign of DDCY is negative, because an increase in credit availability will raise consumption and lower saving (hence worsen the current account). The sign of interest rates is ambiguous. The expected sign of FLY_{t-1} is negative. As net foreign liabilities increase and net wealth declines, an increase of cumulated net foreign liabilities might produce a wealth effect that would reduce consumption and increase national saving. The sign of $DETY_{t-1}$ can be positive or negative. Saver could perceive that a high and rising foreign debt ratio may goad the government into stimulating exports, which would involve a devaluation. The gross real return on assets held abroad could be higher than that of domestic assets. Hence, the increase in DETY could reduce national saving. On the other hand, since DETY also determines the domestic real shadow interest rate, a higher debt ratio produces a higher domestic interest rate and hence increases saving.

Several studies can be cited for national investment. Based on the flexible accelerator model, Fry (1989b) used a ratio of investment to gross national product as dependent variable. He found that national investment is affected by the rate of growth in gross national product (YG), the world real interest rate (RW), the lag value of terms of trade

 (TT_{t-1}) , real exchange rates (REX), government and government guaranteed debt (DETY), net domestic credit to government (DCGR), the change on real domestic credit to the private sector (DCPY), and the lag of national investment itself. Expected signs for YG and TT_{t-1} are positive, while the expected sign for RW is negative. By appreciating the real exchange rate, capital inflows may stimulate investment. Thus, the coefficient of REX is expected to be positive. The coefficient of DETY could be positive or negative. It would be negative if foreign indebtedness deters domestic investment since it raises the probability of higher taxes on domestic assets in the future. The sign could also be positive since it is possible that, in its early stages, debt buildup could actually stimulate investment. The expected sign of DCGR is negative because it deters domestic investment for the same reason that it deters saving. Finally, the expected sign for DCPY is positive. Empirical results for this equation show that YG, TT_{t-1} , REX, DETY, DCPY, and the lag of investment itself are positively associated with investment, while RW, DETY², DCGR are negatively associated with investment.

Fry (1986) shows that investment is positively related to economic growth, the lag of the terms of trade, the private sector domestic credit ratio, and the lag of investment itself, and negatively related to contemporaneous terms of trade, and world real rate of interest.

Fry (1991b) postulates investment as a function of the growth rate (YG), world interest rate (RW), terms of trade (TTL), the lag of real exchange rate (REXLG), the change in domestic credit (DDCY), the lag of debt (DETYLG), the lag of debt squared (DETYLG²), and the lag of investment itself (IYLG). Expected coefficients are positive for YG, REXLG, DDCY, and IYLG. The expected coefficient is negative for RW. Expected coefficients are ambiguous for TTL, DETY, and DETY².

In a study of private investment in developing countries, Greene (1991) shows that the rate of private investment is positively related to real GDP growth, the level of per capita GDP, and the rate of public sector investment, and negatively related to real interest rates, domestic inflation, the debt-service ratio, and the ratio of debt to GDP.

Fry (1992) also shows that the coefficient of the foreign direct investment variable is significantly positive for five pacific basin developing economies. This suggests that foreign direct investment does not crowd out or substitute for domestically financed investment.

Using major industrial countries, Feldstein (1980) measures the extent to which a higher domestic saving rate in a country is associated with a higher rate of domestic investment. With perfect world capital mobility, there should be no relation between domestic saving and domestic investment. Saving in each country responds to the worldwide opportunities for investment while investment in that country is financed by the worldwide pool of capital. The specification he uses is:

$$I/Y = a + b^{*}(SH/Y) + c^{*}(SC/Y) + d^{*}(SG/Y)$$

where I/Y is investment scaled to national income, SH/Y is household saving scaled to national income, SC/Y is corporate saving scaled to national income, and SG/Y is government saving scaled to national income.

In an attempt to explain the behavior of saving in eight Asian countries, Lahiri (1989) found that growth unambiguously leads to increased private saving. Inflation and movement in the terms of trade are found to be two additional determinants of private saving. Inflation, both anticipated and unanticipated, is found to have an adverse effect on saving.

Feldstein found that with perfect world capital mobility, there is little or no relation between the domestic investment in a country and the amount of saving generated in that country. In contrast, if portfolio preferences and institutional rigidities impede the flow of long-term capital among countries, an increase in domestic saving will be reflected primarily as additional domestic investment.

Papanek (1973) uses regression analysis to 34 countries for the 1950s and 51 countries for the 1960s. It should be noted that this data is old and was generated under a different climate of economic conditions and relative openness of international transactions. Papanek drew the following conclusion when foreign aid, foreign investment, other inflows and domestic saving are treated as separate independent variables. (1) Savings and foreign inflows explain over one third of economic growth. (2) Foreign aid has a substantially greater effect than the other variables (3) The correlation between foreign aid and foreign private investment is not significant (4) Only for Asia do the four variables explain much (5) Growth is not correlated with exports, education, per capita income, or country size. Saving is highly correlated with export and per capita income, but not with country size.

In attempt to find the importance of foreign capital inflows in economic development, Gupta (1975) made a distinction between the "direct" and "total" effects of foreign capital inflows on saving. The former being the coefficient of foreign capital inflows in the structural saving equation and the latter the coefficient of foreign capital inflows in the reduced form of the saving function in a simultaneous equation framework. Gupta constructed a seven equation system, using data for 40 developing countries for 1960s. He estimated the structural system by 2SLS, computed the reduced form coefficient for foreign capital inflows in the saving equation and concluded that

" ...the negative impact of foreign capital inflows is much less pronounced than that indicated by the structural equation. The single equation models have greatly exaggerated the negative impact of such flows, and that the role of foreign capital inflows is quite small in regard to saving."

Ram (1981) studies the structural and reduced form saving equation with the same model and procedure as Gupta (1975) for the same 40 country sample, but with different data of 1971-1975. He found the same negative association. But this recent data indicates a slightly smaller adverse effect of saving. In his result, the reduced form coefficient suggests that a dollar of foreign capital inflow reduced, on the whole, domestic saving by 87 to 91 cents.

In a comparison of policy, foreign investment, and economic growth in Latin America and East Asia, Hein (1992) shows that the inflow of foreign capital is affected by many factors, including regional effects, economic policy, and political instability. Several variables he admits affect foreign capital, but were not tested in his study are the quality of the labor force, labor costs, union organizations, the size of the domestic market, and consumer purchasing power. The most important finding in his study is that the official economic policies within Asia and Latin America were shown to be highly relevant factors in the explanation of foreign investment and economic growth.

Bowles (1987) uses time series data to investigate the causal relationship between foreign aid and the domestic saving rate. According to his study, given that the negative correlation between foreign aid and domestic saving rates in less developed countries is an accepted fact in the existing literature, the direction of causality is not universal. The evidence shows four different directions of causality (1) saving affects aid, (2) aid affects saving, (3) saving and aid affect each other, and (4) no causality at all.

Economic Growth

Balasa (1978) investigates the relationship between exports and economic growth in a group of eleven developing countries that have already established an industrial base. His study found a relationship between exports and economic growth. He tested the hypothesis that export-oriented policies lead to better growth performance than policy favoring import substitution. This is because the export-oriented policies provide similar incentives to sales in domestic and foreign markets and lead to resource allocation according to comparative advantage, allowing for greater capacity utilization. This permits the exploitation of economies of scale, generates technological improvements in response to competition abroad, and in labor surplus countries, contributes to increased employment.

Balasa (1985), using 43 developing countries in the 1973-1978 period, has shown that intercountry differences in the rate of economic growth are affected by differences in investment rates, the rate of growth of labor force, the initial trade policy stance, the

adjustment policies applied, the level of economic development and the product composition of exports. His findings show that the policies adopted have importantly influenced the rate of economic growth in developing countries. An outward oriented policy stance and reliance on export promotion appear to have favorably affected growth performance.

In analyzing the sources of growth in the period 1964-1973 for a group of semi industrialized less developed countries, Feder (1982), used cross-country regression. He found that investment scaled to gross domestic product, growth of population as proxy for labor growth, and the growth of export multiplied by export share in gross domestic product are all positively associated with growth in gross domestic product.

Sung-Shen (1990) found that a link between export promotion and economic development is neither straightforward nor universal. It operates through a variety of channels, which are generally intermixed. It also depends on the special feature of the economy and the development strategy follows by policy makers.

There are some other studies that examine foreign investment, exports, growth, and saving that are mostly partial equilibrium analysis or single equation models, and focus on a specific, narrow topic. Stoneman (1975), concentrated on foreign investment and economic growth. Dollar (1992), Chow (1987), Jung and Marshall (1985) concentrated on the causality between exports and economic growth. Atri and Jhun (1990) focused on the effect of foreign investment inflows on savings and Lomas (1982) on the relationship of exports to savings.

A study by Parikh (1990) on money supply and prices in Indonesia for the period of 1969-1980 found that the rate of inflation which is generally considered to be an important element in the money demand function does not turn out to be a significant factor in the Indonesian experience.

CHAPTER III

A MODEL OF MONETARY POLICY, FOREIGN INVESTMENT, AND CURRENT ACCOUNT:

The modeling section of this study is divided into four blocs: (1) a monetary policy reaction function (2) the capital account bloc, which incorporates foreign direct investment, portfolio investment, other capital (long- and short-term capital), (3) the current account bloc, incorporating national saving and investment equations and (4) economic growth equation, to capture the interrelated impact of the other three blocs of equations.

Monetary policy reaction function

The monetary policy reaction function is designed to capture the impact of inflation, the effect of foreign debt, the effect of the change in the net foreign asset of the central bank, and the effect of foreign investments on domestic credit policy. Specifically we would like to see how the monetary authority reacts to these key variables during the period of 1978.1-1992.1.

For our purposes, the monetary policy reaction function of Fry (1991) is used as the basis of the reaction function for Indonesia. The dependent variable in our monetary policy reaction function is the change in domestic credit scaled to gross domestic product (DDCY).

The first explanatory variable in the monetary reaction function is the inflation differential between Indonesia and United States (INFD). The monetary authorities in Indonesia might react to a widening gap between domestic inflation and foreign inflation captured by the United States inflation rate. The crucial variable for the monetary authority is domestic inflation, but in an open economy, the inflation rate differential is a more appropriate variable to react to than domestic inflation alone. If inflation is one of the concerns of the monetary authority, then a widening gap between domestic inflation

44

and inflation in United States may result in the monetary authority contracting domestic credit. In this case, the sign of INFD is expected to be negative.

The second variable in the reaction function is foreign debt. This variable is included to capture the monetary authority reactions to the accumulation of foreign debt. Since quarterly data of foreign debt is not available, following Fry (1991a), an alternative measure of indebtedness is used which cumulates the balance of payments definition of the current account deficit. This includes unrequited transfers from the deficit. The foreign debt variable is scaled to gross domestic product (FDY). Following Fry (1991a), only the lag of the foreign debt variable (FDYLG) is included. As foreign debt grows it is expected that monetary authority will respond by reducing domestic credit. The expected sign of this foreign indebtedness variable (FDYLG) is negative.

The third variable in the monetary policy reaction function is the change in net foreign assets of the central bank divided by gross domestic product (DNFACBY). This is included to determine how much the monetary authority will reduce domestic credit following an increase of net foreign assets of the central bank. In other words, the change in net foreign assets of the central bank is included to detect any systematic sterilization due to the effects of such an acquisition on domestic credit. The sign for this variable should be negative if the Indonesian monetary authorities pursue a systematic sterilization policy.

We also include a real exchange rate index in the equation. An increase in this index signifies an appreciation, while a decrease signifies depreciation. A depreciation in the real exchange rate raises debt service costs in relation to other domestic currency expenditures and income. We use the lag of the real exchange rate index (REXLG) to see the reaction of the monetary policy to the real exchange rate. If the monetary authority pursued a restrictive monetary stance after a devaluation or depreciation, the sign of the REXLG coefficient would be positive. On the other hand, a negative coefficient sign would suggest that the monetary authority accommodated price increases caused by devaluation

or depreciation.

An increase in capital inflows into the country would presumably increase the banking system's net foreign assets. A separate effect is estimated for foreign direct investment scaled to gross domestic product (FDIY), and other investment flow scaled to gross domestic product (OCY) variable to see whether the monetary authority reacts differently to the increase of inflow of these two different kinds of capital. A negative coefficient for these variables would suggest that the monetary authority reduces domestic credit. A positive coefficient on the FDIY would suggest that multinational companies may increase their domestic borrowing to accompany their initial capital inflow. A positive coefficient for oCY suggests the monetary authority expands credit when foreign aid and other form of inflows increase. This is especially true because many foreign aid funds should be matched by a certain level of domestic currency.

The last variable in the monetary policy reaction function is the change in domestic credit to government scaled to gross domestic product (DDCTGY). Domestic credit to government can take the form of credit to central government or credit to official entities. Total domestic credit consists of domestic credit to government and to private sector. This variable is included to see how monetary authority reacts to the increase in the demand for credit by the government sector. The monetary authority might squeeze domestic credit to private sector when the credit requirements of the government increase. A coefficient of zero for this variable would imply a complete neutralization of the public sector's credit requirements. A partial offset would result in a coefficient greater than zero but less than one. A coefficient of one would imply that monetary authority would not squeeze any credit from the private sector to meet the increase demand of the public's sector credit requirements. For example, a coefficient of 0.75 for DDCTGY means that monetary authority reduces credit to private sector by 25% of the increased public sector borrowing requirement.

So, the monetary policy reaction function to be estimated is as follows:

Capital Account Bloc (Foreign Investment)

Foreign investment can be classified into three different categories:

(a). Foreign Direct Investment: defined as the foreign ownership and control of real property or commercial facilities in a country. This could be in the form of the provision of equity capital, reinvested earnings, and net lending by the parent to the affiliate.

(b). Portfolio Investment: includes the foreign ownership of financial assets (i.e., those that do not convey ownership or control of a business firm). These include federal, state, and local government securities, corporate bonds and stocks, municipal bonds, and bank deposits. These international securities transactions usually have an original term to maturity greater than one year.

(c). Other Capital Inflows: all other net flow of capital that does not fall into the category of Foreign Direct Investment or Portfolio Investment. Major items in this category are drawings on long-term loans received and foreign aid. All flows in the capital account are only in the form of Foreign Direct Investment, Portfolio Investment and Other Capital Flows.

Foreign investment (foreign direct investment, portfolio investment, and other capital flows) represents both inflows and outflows. In this study, we use foreign investment as net of inflows and outflows. In the case of Indonesian economy, inflows are significantly higher than outflows. The outflows are very small and very insignificant. The foreign investment data used in this study can be seen as representing primarily inflows into the Indonesian economy.

Most studies of foreign investment concentrate only on foreign direct investment, while portfolio investment and other capital has so far been neglected. In this model, an attempt is made to bring together all foreign investment. Each of these three capital flows have characteristics that may or may not be the same. Therefore, an equation for the determination of each will be estimated separately. There are three equations in the Capital Account bloc, one for Foreign Direct Investment, one for Portfolio Investment, and the last one for Other Capital Outflows.

Foreign Direct Investment

The equation for foreign direct investment is built along the line of Edwards (1990), Kindleberger (1972), Cable and Persaud (1987), de Vries (1990), Krause (1973), Fry (1992) and Lucas (1993). The dependent variable is foreign direct investment scaled to gross domestic product (FDIY). The first explanatory variable is the real gross domestic product per capita (RGDPCAP). The inclusion of per capita income is made to capture investor confidence in the domestic market and the strength of demand of the domestic market. Greater investor confidence and strength of demand in the domestic market will increase foreign direct investment inflows. The coefficient sign for RGDPCAP is expected to be positive.

The second variable in the foreign direct investment equation is government expenditure scaled by gross domestic product (GOVEXY). GOVEXY is added to investigate whether the size of government has an impact on foreign direct investment. This will also serve as a proxy for infrastructure and other provisions of business facilities. Better infrastructure and facilities will encourage foreign direct investment. Hence the coefficient of GOVEXY is expected to be positive.

Foreign direct investment is affected by the export of a country, as had been shown by Edwards (1990) and Lucas (1993). The export variable (XY) in this case is scaled to gross domestic product. A higher export is an incentive for more inflows of foreign direct investment into the country. The sign of this variable is expected to be positive.

Labor cost $(LC)^{[29]}$ is included as suggested by Kindleberger (1972), Krause (1973), and Lucas (1993). A low cost of labor will keep production cost low. In turn it will make a multinational company or a company with foreign direct investment more competitive. So, we expect the coefficient of LC to be negative. This would suggest that an increase in the labor cost will deter foreign direct investment.

We include foreign indebtedness (FDY) in the equation to see how it may affect foreign direct investment. A higher debt will increase the investment risk for the country. Higher risk will deter foreign direct investment. As suggested by de Vries (1990), the foreign direct investment inflow cannot be expected to grow when a country has a mounting debt. Hence, the expected sign of this variable is negative.

We also investigate the effect of the real exchange rate on foreign direct investment^[30]. The real rate of appreciation/depreciation (RRD) is the variable used in the equation^[31]. An increase in RRD is an appreciation. A depreciation of domestic currency makes the price of the export commodity relatively cheaper in the world market and makes domestic production more competitive in the world market. This will attract more foreign direct investment into the country. The coefficient is expected to be negative.

The world interest rate (WINT) is included in the foreign direct investment equation. LIBOR is used as a proxy for the world interest rate. An increase in the world interest rate will presumably make world capital more expensive. A more expensive world capital will reduce the expected return on the foreign direct investment, and therefore will

[31]. RRD is calculated as rate of change in real exchange rate.

^{[29].} This LC is an index constructed from wholesale price index (including petroleum), as a proxy for labor cost. See Appendix A for more detail explanation.

^{[30].} In the nominal exchange rate, during 1978.1-1992.1, the value of Indonesian rupiah has been constantly decreasing against US\$. There are three formal devaluations by government decrees. Even after the managed floating system was chosen, the value of rupiah currency has never been increased. It is all one way decreasing during this period.

discourage foreign direct investment. The sign of WINT should be negative.

We also assume that the size of the financial system of a country (M1Y) will have an effect on foreign investment. We follow King and Levine (1992) definition of the size of financial system of a country as the ratio of M1 to GDP. The greater size of the financial system should encourage more foreign direct investment into the country because it would give investor greater confidence. Therefore the coefficient of M1Y is expected to be positive.

So, the equation for Foreign Direct Investment would be as follows:

FDIY = f(RGDPCAP, GOVEXY, XY, LC, FDY, RRD, WINT, M1Y)(2) where f1>0, f2>0, f3>0, f4<0, f5<0, f6<0, f7<0, f8>0.

Portfolio Investment

The dependent variable in this equation is portfolio investment scaled by gross domestic product (PIY). The first explanatory variable is the world interest rate (WINT), which is the London Inter Bank Official Rate. As we saw previously, portfolio investment is mostly securities transaction. An increase in the world interest rate will make alternative for portfolio investment inflows more attractive. The domestic return will become relatively lower as world interest rate increases. Hence, an increase in the world interest rate will discourage portfolio investment inflows into the country. The coefficient sign of WINT is expected to be negative.

The second variable in the equation is M1Y to see whether the size of financial system of a country affects portfolio investment. It is assumed that an increase in the financial system size will attract portfolio investment because the larger financial system size will give investor a greater confidence. Therefore, the sign for M1Y is expected to be positive.

We include also the central bank domestic asset (CBDARAT) as a variable to see whether the relative importance central bank domestic assets has an effect on portfolio investment. The larger proportion of central bank domestic asset will give confidence for investor. The sign of this variable is expected to be positive.

The last variable in this equation is the inflation differential (INFD). Inflation differential is defined as domestic rate of inflation minus United States rate of inflation. An increase in the gap will reduce the expected return of the portfolio investment. An increase in the domestic inflation or a decrease in the inflation overseas will produce other alternatives to portfolio investment inflows. Hence, the increase in INFD will reduce portfolio investment. The sign of INDF should be expected to be negative. The equation for portfolio investment would be as follows:

PIY = f(WINT, M1Y, CBDARAT, INFD)(3) where $f_{1<0}$, $f_{2>0}$, $f_{3>0}$, $f_{4<0}$.

Other Capital Flows

Equation (4) is the equation for other capital flows (other than foreign direct investment and portfolio investment). The dependent variable is other capital flows scaled by gross domestic product.(OCY). The first explanatory variable in this equation is real per capita gross domestic product (RGDPCAP). An increase of per capita income would reduce the associated risk of other capital flows into a country. Also it will capture the strength of economy in general. A stronger economy will attract capital flows. The sign for this variable is expected to be positive.

The second variable in this equation is imports scaled by gross domestic product (MY). This is to see how the openness of a country affects capital flows. Theoretically, the openness of the economy to foreign trade should be accompanied by capital flows. So, we expect that the sign of MY is positive.

The inclusion of M1Y variable in the equation is to see the effect of the size of financial system of a country on the other capital flows. As in the case of equation (3), the size of financial system should have a positive effect on the capital flows into the country.

The last variable in this equation is the central bank domestic asset scaled by total bank

domestic asset (CBDARAT). This is to see how much capital flows into Indonesian economy are affected by the relative importance of the central bank domestic assets. An increase in CBDARAT should have a positive effect on the other capital flows.

We can summarize the equation for the other capital flows as follows:

OCY = f(RGDPCAP, MY, M1Y, CBDARAT)(4)

where $f_{1>0}$, $f_{2>0}$, $f_{3>0}$, $f_{4>0}$.

Current Account

In a close economy, Saving (S) is equal to Investment (I). In open economies, S and I can differ. From the Gross National Product identity Y=C+I+G+X-M, (where Y is national income, C is consumption, I is investment, G is government expenditure, X is export, and M is import), we can rearrange terms into (Y-C-G)=I+(X+M), where (Y-C-G) is national saving S, (X-M) is current account (CA). Thus S=I-CA or:

CA=S-I(identity equation)

In order to determine the current account, we can either estimate current account equation or estimate the two equations, national saving and national investment equation. In our study we decide to estimate national saving and national investment equations.

National Saving

The dependent variable of national saving equation is national saving scaled by gross domestic product (SY). The first explanatory variable in the national saving equation is the rate of growth of real gross domestic product (RGRGDP). An increase in growth of real gross domestic product will increase national saving. In an open economy, the rate of growth in income differs from the rate of growth in output due to terms of trade changes. In order to capture the effect of the real output, we include the effect of the terms of trade variable (RGTOT) in addition to RGRGDP. A rise in the terms of trade therefore has the same impact as growth of income, that is to increase the national saving. The expected sign for RGRGDP and RGTOT are expected to be positive. The third variable is foreign debt. In this equation we use the lag of foreign debt (FDYLG). The effect of foreign debt on national saving could be negative or positive. The Ricardian equivalence view holds that if households expect the foreign debt will require a higher future government expenditure and hence a higher future tax, people will be ready and prepared for it by increasing their saving. Therefore, private saving would rise in the Ricardian equivalence view if the foreign debt increases. In this case the coefficient of FDYLG would be positive. The increase of foreign debt may have a different impact for households. As households notice foreign debt rising, they may well anticipate higher future tax burdens to repay and service the debt. They will therefore have an increasing incentive to transfer their assets overseas. This will decrease national saving. In this case we have a negative coefficient of FDYLG.

Finally, as Fry (1989b) suggests, we include the lag of saving variable (SYLG) to capture any partial adjustment effects. We expect the coefficient to be positive. The national saving equation specified for empirical estimation will take the following form:

SY = f(RGRGDP, RGTOT, FDYLG, SYLG)(5) Where f1>0, f2>0, f3<0, f4>0

National Investment

The dependent variable is the national investment scaled by gross domestic product (IY). The first explanatory variable is the growth rate of real gross domestic product (RGRGDP). The increase in this variable will have a positive effect on national investment according to the accelerator model.

As in equation (5), we include the terms of trade variable to accompany RGRGDP. A study by Persson and Svensson (1985) shows that a permanent improvement in the terms of trade increases national investment. However, a temporary improvement in the terms of trade can reduce investment because stocks of inventories are run down to benefit from

the temporary improvement in the relative price of these exports.^[32] If terms of trade changes are perceived to be permanent, then the coefficient of RGTOT is expected to be positive. On the other hand, if the terms of trade changes is perceived as temporary, then the coefficient of RGTOT is expected to be negative.

The third variable in this equation is the real exchange rate. Following Fry (1991) we used the lag (REXLG) rather than contemporaneous variable. A higher value of REXLG implies a lower relative price of imports, therefore appreciation of the real exchange rate increases investment, while depreciation will discourage it. On the other hand, appreciation increases the price of domestic goods in world market and making domestic investment less attractive. Hence, the expected sign of this variable is ambiguous.

We include all three types of foreign investment (FDIY, PIY, OCY) in the equation to see the impact of each of these on national investment. Specifically, we would like to know whether each of these behaves as substitute or as complement for national investment. A positive coefficient means that the said foreign investment is a complement to the national investment. On the other hand, a negative coefficient means that the said foreign investment is a substitute for the national investment.

The inclusion of foreign debt (FDYLG) in the equation is to determine the effect of the foreign debt on national investment. An increase of foreign debt is assumed to have a negative effect on the national investment because it raises the probability of higher taxes on domestic assets in the future.

Domestic credit to the private sector variable (DDCPSY) is included in the model to explain the effect of credit expansion in the private sector on investment. An increase will reduce the interest rate, and the lower interest rate will induce investment. So, the effect of domestic credit on national investment is expected to be positive. Finally, as in equation (5), we include the lag of national investment (IYLG) in the model to capture any partial adjustment effect.

The national investment equation specified for the empirical estimation will take the following form:

IY = f(RGRGDP, RGTOT, REXLG, FDIY, PIY, OCY, FDYLG, DDCPSY, IYLG)....(6)Where $f_1>0$, f_2 ?, $f_3>0$, f_4 ?, f_5 ?, f_6 ?, f_7 ?, $f_8>0$, $f_9>0$.

Economic Growth

The economic growth equation uses the rate of growth of real gross domestic product (RGRGDP) as dependent variable. The first explanatory variable in this equation is investment (IY). The growth accounting methodology tells us that an increase in investment increases the economic growth. The second variable is the rate of growth of population (RGPOP) to proxy for the growth of labor force. An increase in the growth of population will contribute positively to economic growth.

Variable export (RGRXY) is included to see how the economic growth is affected by the international trade, especially the export part. As we discussed in the literature review part, there are many studies that reveal that export is the engine of economic growth, especially in the East and Southeast Asian developing economies. The effect of the export on the economic growth is positive. The variable of export used here is following Feder (1983).^[33]

The economic growth equation specified for empirical estimation will take the following form:

RGRGDP = f(IY, RGPOP, RGRXY)(7) where $f_{1}>0$, $f_{2}>0$, $f_{3}>0$.

^{[33].} Feder used the export variable as "the rate of growth of real export" multiplied by "the export scaled by gross domestic product."

The Complete Model

The model as a whole consists of seven equations described above. These seven equations are accompanied by several identities to close the model. The following table 9 shows the complete model.

Table 9: The Complete Model

Monetary Policy Reaction Function:

DDCY = f(INFD, FDYLG, DNFACBY, REXLG, FDIY, OCY, DDCTGY).....(1) $f_{1<0}$, $f_{2<0}$, $-1<f_{3<0}$, f_{4} ?, $f_{5>0}$, $f_{6>0}$, $0<f_{7<1}$

Foreign Investment/Capital Account Functions:

Foreign Direct Investment Function:

FDIY = f(RGDPCAP, GOVEXY, XY, LC, FDY, RRD, WINT, M1Y).....(2)

f1>0, f2>0, f3>0, f4<0, f5<0, f6<0, f7<0, f8>0.

Portfolio Investment Function:

PIY = f(WINT, M1Y, CBDARAT, INFD).(3)

f1<0, f2>0, f3>0, f4<0.

Other Capital Flows Function:

OCY = f(RGDPCAP, MY, M1Y, CBDARAT)....(4)

f1>0, f2>0, f3>0, f4>0.

Current Account:

National Saving Function:

SY= f(RGRGDP, RGTOT, FDYLG, SYLG).....(5)

f1>0, f2>0 f3<0, f4>0.

National Investment Function:

IY = f(RGRGDP, RGTOT, REXLG, FDIY, PIY, OCY, FDYLG, DDCPSY, IYLG)....(6) f1>0, f2?, f3>0, f4?, f5?, f6?, f7?, f8>0, f9>0.

Economic Growth Function:

RGRGDP = f(IY, RGPOP, RGRXYF)(7)

f1>0, f2>0, f3>0,

Identities:

CA = S - I	(8)
CAY + FDIY + PIY + OCY +RSVY + EOBY=O	(9)
DCY = MSY + NFAY	(10)
NFAY = NFACBY + NFAPBY	(11)
DDCY = DDCTGY + DDCPSY	(12)
DDCY = DCY - DCYLG	(13)

CHAPTER IV

EMPIRICAL RESULT AND DISCUSSION

Estimation Procedures

The study uses a simultaneous equation approach. The simultaneous system estimation has advantage in that it will take into account the residuals of various equations in a system that are correlated with each other. Secondly, we may want to constrain the coefficient of one equation to be the same as, or related to, the coefficient of one or more of the other equations in the system.

The model is estimated with the three stage least square (3SLS) method. To be certain the model generates unique estimates for the structural parameters, the equations are checked for proper identification. The counting rule or necessary condition for an equation within a system of X equations to be just identified is that there should be exactly X-1 variables not appearing in the equation in order to differentiate the equation from the remaining X-1 equations. The rank condition requires that the excluded variables of the *k*th equation appear in the remaining X-1 equations in such a way that no other equation or linear combination of equations can obey the restriction. Identification of equations is done before running the 3SLS regression. All series used in the model are tested for their stationarity. All equations in the model are tested for cointegration. The RESET test is also used to test the general misspecification. MTSP Version 7.0 is used for the stationarity test, cointegration test, and RESET test. The Proc Syslin procedure of SAS system is used to run the regression. The 3SLS model system is also tested for its stability, using MATLAB Version S3.5. The Proc Simlin of SAS System procedures are used for the simulation.

Empirical Results of the Model and Discussion

Monetary Policy Reaction Function

The estimation results for the Monetary Policy Reaction Function, with t-statistics in bracket, are as follows:

$$DDCY = 0.0045 - 0.0140 \text{ INFD} - 0.5338 \text{ FDYLG} - 0.7277 \text{ DNFACBY} \\ (0.091) \quad (-2.421) \quad (-1.510) \quad (-3.476) \\ - 0.0165 \text{ REXLG} + 5.144 \text{ FDIY} + 1.19 \text{ OCY} + 0.9799 \text{ DDCTGY} \\ (-0.380) \quad (2.337) \quad (2.175) \quad (5.037) \\ \end{array}$$

The result shows that monetary authority reacts to the inflation differential between domestic and US inflation significantly. The difference could be the result of either an increase in domestic inflation or the disinflation in the United States economy. The monetary authority squeezes domestic credit when there is an increase in the inflation differential. This is simply a reflection of the monetary policy designed to negate the

Graph 5: Domestic Credit and Inflation Differential

Data: Recalculated from IFS.

increase of inflation. The Indonesian monetary authority has a good record of controlling domestic inflation since the New Order Regime started the economic rebuilding plan (Repelita) 20 years ago (see the following graph 5).

The coefficient for FDYLG shows a negative correlation to monetary policy reactions as expected. The monetary authority reacts to the increase in foreign debt by reducing domestic credit. As shown in table 2, there is an increasing trend in the ratio of foreign debt to GNP. In the future, as foreign debt increases, the monetary authority is expected to reduce domestic credit.

The change in net domestic assets of the central bank (DNFACBY) is negatively associated with the change in domestic credit. This result indicates that the Indonesian monetary authority systematically sterilizes the effect of foreign asset acquisition on domestic credit. The Indonesian monetary authority sterilizes about 73 percent the effect of net foreign asset acquisition to achieve its money supply target. A hyphotesis test shows that DNFACBY coefficient is not significantly different from one^[34]. This means that the monetary authority tends to negate all the effects of an increase in the net foreign assets of the central bank. This finding is similar to result obtained by Fry (1989a) and Fry (1991a), that Asian developing economies systematically sterilize the effect of the acquisition of foreign assets.

The real exchange rate (REXLG) is negatively associated with the change in domestic credit. Its coefficient is not significant. An appreciation (depreciation) of rupiah currency decreases (increases) domestic credit. The insignificance of this coefficient might indicate a low priority of monetary policy to decrease (increase) domestic credit in reaction to an

^{[34].} The hyphotesis test for DNFACBY coefficient shows the following:

Null hyphotesis $H_0: b=1.$

Alternative hypothesis H_1 : b is not equal to 1.

Computed t-statistic is t = (0.73-1)/(0.209) = -1.29.

Critical t-value for a two-tailed test at the 5% level is plus minus 1.96. So, the null hypothesis H_0 : b=1 is not rejected, which means the coefficient of DNFACBY is not significantly different from one.

appreciation (depreciation) of rupiah currency. The Indonesian currency (rupiah) has never been revalued or appreciated (in nominal terms) against major currencies such as the US dollar since the beginning of the effort to rebuild the economy by the New Order regime in 1967. The real exchange rate has been steadily showing a down trend against the US dollar (see graph 3). There have been three devaluations of the rupiah currency. Since the adoption of a managed floating currency, the rupiah has gone through a depreciation for most of the time. According to the model, the sign of REXLG could be either positive or negative. A positive coefficient for REXLG implies that a restrictive monetary policy is pursued after devaluation or depreciation. A negative coefficient for REXLG, as shown by the model estimate, suggests that the Indonesian monetary authority accommodated the price increases caused by devaluation/depreciation.

FDIY has a positive relationship to changes in domestic credit. As we discussed in Chapter I, there have been a significant increase in foreign direct investment in Indonesia. In the early period of the economic rebuilding plan (Repelita), the modus of foreign direct investment was generally in the form of foreign multinational corporation, a complete 100 percent control by foreign companies. Later, joint-venture companies became increasingly popular as a means of foreign direct investment in Indonesia. Multinational companies borrow additional needs of capital domestically after the initial capital inflows. Foreign partners of joint-venture companies bring an inflow of capital, while the domestic partners, in general, use domestic credit as initial or additional capital. The increase of domestic credit due to an increase in foreign direct investment is a reflection of additional credit to accompany the initial inflows of foreign direct investment.

The empirical estimates show the same result for other capital inflows (OCY). It is positively associated with the change in domestic credit. There has been a significant increase of OCY to the Indonesian economy from the initial year of the economic rebuilding effort in 1967. The Indonesian government relied heavily on OCY during the early Repelita. Our model suggests that the monetary authority reacts to an increase in

OCY by expanding domestic credit. The monetary authority has the same reaction to both FDIY and OCY. While the increase in foreign direct investment increases DDCY about 5.14 times, OCY increases DDCY only 1.19 times. This does not imply that DDCY coefficient is more important than OCY coefficient. All we can say is that the monetary authority accepts a relatively higher level of borrowing in domestic credit to accompany foreign direct investment (FDIY) than to accompany other capital flows (OCY).

The sign of the coefficient for DDCTGY is positive as expected. It is expected that the monetary authority squeezes domestic credit to the private sector when the credit requirements of government increase. The result is different from expectation. Although the coefficient sign is positive, the coefficient is not significantly different from one. A hypothesis test of the DDCTGY coefficient shows that it is not significantly different from one^[35]. This means that the Indonesian monetary authority does not reduce domestic credit to private sector when the credit requirement of government increases. This result differs from results obtained by Fry (1991a) in which the coefficient is significantly differently different from one. This can be explained by information in graph 6:

[35]. The hypothesis test for DDCTGY coefficient shows the following: Null hyphotesis H_0 : b=1. Alternative hypothesis H_1 : b is not equal to 1. Computed t-statistic is t=(0.98-1)/0.195=-0.103. Critical value for a two-tailed test at 5% level is plus minus 1.96. So, the null hypothesis H_0 : b=1 is not rejected, which means the coefficient of DDCTGY is not significantly different from 1.

Billion Rupiah

Graph 6: Total Domestic Credit and Domestic Credit to Private Sector

Domestic credit to the private sector(DCPS) closely follows the pattern of total domestic credit (DC). Any increase in the government requirement for credit is just fulfilled by the Indonesian monetary authority without reducing any domestic credit to private sector. This is partially explained by the need for credit by multinational corporations and foreign joint-ventures to accompany the initial inflows of foreign direct investment, and the need of domestic currency to accompany or match projects funded by foreign aid.

Foreign Direct Investment Function

The empirical estimation results for the Foreign Direct Investment function, with t-statistics between the bracket, is as follows:

 $FDIY= -0.025 + 24x10^{-6} RGDPCAP + 0.01 GOVEXY + 0.042 XY - 0.00049 LC$ (-3.900) (2.776) (1.292) (1.981) (-3.054)

-0.021 FDY - 0.00022 RRD - 0.00042 WINT + 0.0224 M1Y (-0.788) (-2.457) (-1.936) (1.786)

Real GDP per capita is positively related to foreign direct investment as expected. RGDPCAP is indicator of consumer purchasing power and the strength of the domestic market. The positive and significant coefficient for RGDPCAP shows that Indonesia's real per capita income is an important factor in attracting foreign direct investment into the country. But this coefficient is very small. This small coefficient might be an indicator that real income per capita is not on the top of the priority list for foreign investors in making their decisions about direct investment in Indonesia.

Government expenditure (GOVEXY) as proxy for improvement in infrastructure and business facilities has a positive but weak relation with foreign direct investment. An improvement of infrastructure and business facilities in Indonesia is not a significant factor in attracting foreign direct investment. A very close neighbor, Singapore, is well known for its business infrastructures and facilities. Singapore's close proximity to Indonesia, makes GOVEXY a weak factor to attract foreign direct investment.

The export variable is positively related to foreign direct investment. Since the fall of oil prices in the early 1980s, The Indonesian government has tried to push the export of non-oil commodities. Non-oil commodity exports have been targeted to take the lead in exporting. As was discussed in Chapter I, Indonesia made an effort to shift the export dependency from oil to non-oil commodities in the beginning of 1980s. This policy started to show a promising result by the late 1980s. This successful effort to shift to the non-oil export commodities has encouraged foreign direct investment. The model shows that an increase in Indonesian exports is a significant factor in attracting foreign direct investment.

The model estimate shows that labor cost (LC) has a significant negative relation to foreign direct investment. An increase in Indonesian labor cost will deter foreign direct investment inflows. Countries around Indonesia's neighborhood such as Malaysia, Thailand, the Philippines, Mainland China and Vietnam are also offering the advantage of

64
a low labor cost. So, any increase in Indonesian labor cost, will create an incentive for foreign direct investment to flow to other nearby countries. It is not too surprising to see labor cost as a significant factor to foreign direct investment in Indonesia, because a lot of this is direct investment in what are called "foot loose" industries. They are low-tech to medium tech industries such as textiles, shoes, electronic components and others that moved away from Japan, Korea, Taiwan, Hongkong, the United States and other countries as labor costs in these countries increase. Sooner or later, these industries will move away to find another lower labor cost country. In view of this, Indonesia created the Industries Strategy Board, a government agency, which concentrates its efforts on domestic investments in high tech industries such as petrochemical, aircraft, shipbuilding, and others.

Foreign debt (FDY) has a negative relationship with foreign direct investment, but it is not significant. Theoretically, higher foreign debt will increase country specific risk, hence discouraging foreign direct investment. The mid 1980s was characterized by many countries defaulting on their foreign debt. The 17 countries categorized by World Bank as highly indebted developing countries are Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Cote d'Ivoire, Equador, Jamaica, Marocco, Nigeria, Peru, Philippines, Uruguay, Venezuela, and Yugoslavia. These 17 countries are not only highly indebted, but they are in debt crisis. Indonesia was one country that had a large foreign debt, but was not included in this category of countries. Indonesia is not in a debt crisis. Instead of default, Indonesia rescheduled all of its mega projects domestically, and honored the debt and service on the debt in an orderly and timely way. The ability to manage its debt enhanced Indonesia's credibility in the international credit market. Several official statements from the World Bank (issued annually) have favored the Indonesian economy during the 1980s despite the large foreign debt. This had a positive effect on the confidence of foreign investors. In turn, foreign debt does not seem to hamper foreign investors in their decision to put direct investment into Indonesia. Currently, the

government applies a temporary restriction on offshore loans, due to the increasing trend of Indonesian foreign debt. The monetary authority has tried to suppress domestic interest rates. A low or competitive domestic interest rate will put an end to offshore borrowing which, in the end, may reduce the pressure on foreign debt.

The rate of appreciation/depreciation (RRD) is significant and negatively related to foreign direct investment. The rupiah depreciation increases foreign direct investment. The rupiahs depreciation makes price of export commodities relatively cheaper in the world market. This encourages foreign direct investment.

The World interest rate (WINT) is negatively associated with foreign direct investment. An increase in the world interest rate would create a return alternative for the capital. Secondly, if the foreign investor has to bring initial capital and borrow it from the international market, then an increase in WINT increases the cost of the capital. In other words, the possible return from foreign direct investment decreases. So, an increase in the world interest rate has a negative effect on foreign direct investment inflows to Indonesia.

The size of financial system in Indonesia (M1Y) is shown to have a positive effect on the flow of foreign direct investment into Indonesia. The large size of the financial system of the Indonesian economy does attract foreign direct investment. As was discussed in Chapter I, although Indonesian per capita income is the lowest among developing countries in Southeast Asia (Indonesia, Malaysia, Thailand, Singapore, Philippine, and Brunei), it is the largest economy among these countries. Deregulation in the banking sector, which was started in 1983, contributed to the positive association of M1Y and foreign direct investment.

Portfolio Investment Function

The empirical results for the portfolio investment function are as follows:

 $PIY = -0.012 - 65x10^{-6} WINT + 0.0197 M1Y + 0.0156 CBDARAT - 0.00014 INFD$ (-2.284) (-0.422) (2.012) (2.240) (-0.555)

۰.

The world interest rate (WINT) is negatively associated to portfolio investment. The sign of the coefficient is negative as expected. That is, the domestic return of portfolio investment in Indonesia will be relatively lower as world real interest rates increase. The increase in WINT will create alternative returns for portfolio investment in the international market. Nevertheless, the coefficient of WINT is not significant. The ideal independent variables for portfolio investment would be the real return from capital in the form of a stock market index, or in the form of a bond index, adjusted to the exchange rate. But these two variables were not available for this study. The meaningful Jakarta stock index started in 1988. Bond index is not available. Hence, there are not enough observations on these variables.

The size of financial system (M1Y) of the Indonesian economy shows a significant positive association with portfolio investment. The size of financial system reflects the size of the economy. The size of the Indonesian financial system is one of the factors foreign portfolio investors considers to put their capital in Indonesia. Although the Jakarta Stock Exchange was just deregulated in 1988, it was resuscitated in 1976 as part of a national effort to promote the development of a securities market in Indonesia. The Surabaya Stock Exchanges entered the securities market in 1989. The banking sector was also deregulated in 1983. All these conditions contribute to the positive significance of the M1Y variable on portfolio investment. This result is similar to the relationship between foreign direct investment and M1Y.

The relative importance of the financial system (CBDARAT) is a significant and positively related to portfolio investment. In this case, the relative importance of the central bank domestic asset is a factor for the foreign portfolio investor's decision making. A large proportion of central bank domestic assets create confidence for portfolio investors.

The inflation differential (INFD) shows a negative and insignificant relationship with portfolio investment. Theoretically, an increase in domestic inflation or a disinflation

67

overseas will make domestic returns from portfolio investment in Indonesia relatively low. This discourages portfolio investment inflows. Even though the sign of the INFD coefficient shows a correct direction, it is not a significant factor in the decision making of foreign portfolio investor considering investing in the Indonesian securities market.

Other Capital Flow Function

The estimation result for the Other Capital Flows (OCY) function is as follows:

OCY = -0.278 + 0.00017 RGDPCAP + 0.24 MY + 0.195 M1Y + 0.232 CBDARAT(-3.132) (2.271) (1.948) (2.483) (3.043)

Income per capita (RGDPCAP) shows a significant positive relation to OCY. It should be noted here that its coefficient is very small as is the case in the foreign direct investment (FDIY) function. Income per capita is a significant factor, but a very small value might be an indication that it is not of primary importance to the decision of foreign capital investor.

MY, a variable which measures the openness of the country's economy, shows a positive relationship with OCY. As discussed in Chapter I, the Indonesian economy has shown a gradual and significant trend to an open economy. Indonesia has also placed no restrictions at all on currency transfers. These conditions lead to a positive relationship of MY and OCY.

The size of financial system of the Indonesian economy (M1Y) has also shown a positive significant relationship to OCY. This result is similar to the relationship between portfolio investment and financial system size. M1Y is a factor for OCY as well as for portfolio investment.

The relative importance of central bank domestic asset (CBDARAT) is shown to be a significant and positive factor for OCY. This result is similar to the relationship between this variable and portfolio investment.

National Saving Function

The empirical result of the model estimation for the national saving function is as follows:

SY= 0.167 + 0.00263 RGRGDP + 0.000144 RGTOT - 0.5139 FDYLG + 0.512 SYLG(4.388) (2.987) (1.583) (-2.889) (4.796)

Income growth (RGRGDP) has a positive and significant effect on saving in this equation. Theoretically, saving will grow as income growth increases. This result is very much expected to be significant and positive. As was reviewed in Chapter II, all studies on the relationship between income growth and saving show a positive association.

In an open economy such as the Indonesian economy, income growth differs from the growth in output due to the changes in terms of trade. The terms of trade variable (RGTOT) captured this difference. RGTOT has a positive relation to saving. A rise in the terms of trade has the same impact as income growth.

The effect of foreign debt on national saving in the Indonesian economy is significant and negative. The Ricardian equivalence view does not hold for the Indonesian economy. There has been a significant increase in foreign debt in the 1980s. During the period of 1984-1990, foreign debt increased at an average rate of 35.5 percent per year. This increase is interpreted by households as a higher future tax burden. Therefore, the incentive increases for them to transfer their assets or saving overseas. Hence, the increase of Indonesia's foreign debt reduced national saving.

The lag of saving (SYLG) shows a significant and positive effect on saving. This result is similar to those obtained by Fry (1992), (1989b), (1986).

National Investment Function

The results of empirical estimates for the investment function (IY) are as follows: IY = 0.181 + 0.00279 RGRGDP + 0.00008 RGTOT + 0.00178 REXLG(3.837) (2.483) (0.708) (0.117) + 0.043 FDIY + 1.356 PIY + 0.615 OCY - 0.435 FDYLG + 0.038 DDCPSY (0.070) (1.120) (4.009) (-2.067) (0.885) + 3.420 IYLG (3.411)

The results show that income growth and investment is positively related and significant as expected. Most similar studies of the relationship of investment and income growth have the same positive result. The result above shows that economic growth contributes significantly to national investment.

As in the case of the saving equation, RGTOT captured the effect of the change in the terms of trade in the investment equation. The sign of RGTOT is positive, which suggests that the change in terms of trade is permanent, but unfortunately, the parameter estimate is insignificant.

The real exchange rate (REXLG) has a positive sign, nevertheless it is not a significant factor in affecting investment in the Indonesian economy. It's coefficient is not statistically significant.

We include foreign direct investment (FDIY), portfolio investment (PIY), and other capital inflow investment (OCY) in the equation to see how these three different inflows of foreign investment affect national investment. Foreign investment could be a substitute or complement for national investment of a country as was discussed in the literature review (Chapter II). The empirical results of the model for Indonesia show that these three different kinds of foreign investment inflows are complements to Indonesian investment. All three factors show a positive relation with national investment. FDIY has a very weak relationship. The strongest complementary relation is between OCY and investment.

Foreign debt does matter for investment in Indonesia. The result shows that an increase in foreign debt in Indonesia significantly reduced national investment. Foreign debt affects both national saving and national investment significantly in approximately the

same magnitude. The increasing trend in foreign debt might contribute to the significance of FDYLG variable

An increase in domestic credit to the private sector decreased the interest rate, which in turn increased investment. The change in domestic credit to the private sector (DDCPSY) shows a positive but weak relationship to investment. Theoretically, the expected sign for DDCPSY is positive. Although the sign is positive, it is not significant. Investment in Indonesia is not significantly affected by a change in domestic credit to the private sector.

Lagged investment (IYLG) positively related to national saving. This result is similar to Fry(1992), (1989b), (1986).

Economic Growth Function

The empirical estimate results for the economic growth function are as follows: RGRGDP = -10.06 + 31.07 IY + 0.51 RGPOP + 0.0022 RGRXYF $(-1.970) \quad (2.207) \qquad (0.767) \qquad (1.006)$

Investment (IY) is significant and positively associated with economic growth. The strong relationship between investment and economic growth has been seen in many studies as discussed in the literature review. This result shows that economic growth of the Indonesian economy is due to strong investment (IY).

RGPOP has a positive relationship with RGRGDP, but it is a weak relationship.

Exports (RGRXYF) and economic growth (RGRGDP) have a positive but weak association. Several deregulation decrees discussed earlier were implemented by Indonesia in the middle of 1980s in order to shift the export composition from oil export commodities to non-oil export commodities. Previously, exports relied heavily on oil products. The implementation of the decrees and the related policies will take time. The weak association of exports to economic growth is a reflection of this policy. It will take some time before the implementation of these decrees significantly shift exports to non-oil commodities. Although non-oil commodities have started to take a lead by the end of 1980s, it is still a very small lead. A longer period of data that includes post 1991.4 might increase the significance of RGRXYF variable.

For the purpose of better clarity, the complete estimation results are summarized in the following table.

Table 10 : The Complete Estimation of the Model

(standard error in upper bracket) (t-statistics in lower bracket)

MONETARY POLICY:

Monetary Policy Reaction Function:

(0.006)(0.354)(0.209)DDCY = 0.0045 - 0.0140 INFD - 0.5338 FDYLG - 0.7277 DNFACBY (0.091)(-2.421)(-1.510)(-3.476)(2.201)(0.547)(0.045)(0.195)- 0.0165 REXLG + 5.144 FDIY + 1.19 OCY + 0.9799 DDCTGY (-0.380)(2.337)(2.175)(5.037)

FOREIGN INVESTMENT:

(1). Foreign Direct Investment Function:

(0.000)(0.007)(0.021)(0.0001) $FDIY = -0.025 + 24x10^{-6} RGDPCAP + 0.01 GOVEXY + 0.042 XY - 0.00049 LC$ (-3.900)(2.776)(1.292)(1.981)(-3.054)(0.026)(0.000)(0.0002)(0.013)-0.021 FDY - 0.00022 RRD - 0.00042 WINT + 0.0224 M1Y (-0.788)(-2.457)(-1.936)(1.786)

(2). Portfolio Investment Function:

 $PIY = -0.012 - 65 \times 10^{-6} WINT + 0.0197 M1Y + 0.0156 CBDARAT - 0.00014 INFD$ (-2.284) (-0.422) (2.012) (2.240) (-0.555)

(3). Other Capital Flows Function:

 $\begin{array}{cccc} (0.000) & (0.123) & (0.078) & (0.081) \\ 0CY = -0.278 + 0.00017 \ RGDPCAP + 0.24 \ MY \ + 0.195 \ M1Y + 0.232 \ CBDARAT \\ (-3.132) & (2.271) & (1.948) & (2.483) & (3.043) \end{array}$

CURRENT ACCOUNT

(1). National Saving Function:

 $\begin{array}{cccc} (0.0009) & (0.000) & (0.178) & (0.017) \\ \text{SY=} \ 0.167 + 0.00263 \ \text{RGRGDP} + 0.000144 \ \text{RGTOT} - 0.5139 \ \text{FDYLG} + 0.512 \ \text{SYLG} \\ (4.388) & (2.987) & (1.583) & (-2.889) & (4.796) \end{array}$

(2). Investment Function:

 $\begin{array}{ccc} (0.001) & (0.0001) & (0.015) \\ \text{IY} = 0.181 + 0.00279 \text{ RGRGDP} + 0.00008 \text{ RGTOT} + 0.00178 \text{ REXLG} \\ (3.837) & (2.483) & (0.708) & (0.117) \end{array}$

(0.616)	(1.210)	(0.153)	(0.210)	(0.043)	
+ 0.043 FDIY	(+ 1.356 PIY	(+ 0.615 OC	Y - 0.435 FDYI	LG + 0.038 DDC	PSY
(0.070)	(1.120)	(4.009)	(-2.067)	(0.885)	

(0.127) + 3.420 IYLG (3.411)

ECONOMIC GROWTH

Growth Function:

 $(14.08) \quad (0.664) \quad (0.002)$ RGRGDP = -10.06 + 31.07 IY + 0.51 RGPOP + 0.0022 RGRXYF (-1.970) (2.207) (0.767) (1.006)

CHAPTER V

SIMULATION AND DISCUSSION

Simulation Procedures

Simulation refers to the determination of the dependent or endogenous variables as a function of the input values of the other variables, even when actual data for some of the solution variables are available in the input data set. Simulation is used to verify the fit of the model parameters to find out how well the model predicts the actual values over historical period. Secondly, model simulation can be used to investigate the sensitivity of the solution to changes in the input values or parameters. Third, model simulation can be performed to examine the dynamic characteristic of the model. Fourth, model simulation can be used to estimate the statistical distribution of the predicted values of the nonlinear model using Monte Carlo methods. By combining different input data sets with the various solution modes, model simulation can answer many different questions about the model.

There are many solution modes in the model simulation. The most commonly used are (1) Dynamic simultaneous simulation. This is often called ex-post simulation, historical simulation, or ex-post forecasting. In model simulation, solved values or actual values from the initial data set can be used to supply lagged values of an endogenous variable. If a solution is obtained by using only solved values for the lagged values, we called it a dynamic solution. (2). Static simultaneous simulation. This refers to a solution obtained by using the actual values when available for the lagged endogenous values. Static simulation is used to simulate the behavior of the model without the complication of previous period error. (3) N-period ahead dynamic simultaneous simulation. This used to see how well the n-period-ahead forecasting would have performed over the historical period.

Consider a kxl vector of endogenous variables Y_t , an lxl vector of lagged endogenous

variables LY_t , and an mx1 vector of exogenous variables X_t , including an intercept. The k structural equations in the simultaneous system can be written as follows

$$AY_t = BLY_t + CX_t$$

where A is a matrix of coefficients of current-period endogenous variables, B is the matrix of coefficients of lagged endogenous variables, and C is the matrix of coefficients of exogenous variables. A is assumed to be nonsingular.

Premultiplying by A⁻¹, we have $Y_t = A^{-1}BLY_t + A^{-1}CX_t$. This can be written as follows:

$$Y_t = \Pi_1 L Y_t + \Pi_2 X_t$$

where $\Pi_1 = A^{-1}B$ and $\Pi_2 = A^{-1}C$ are the reduced form coefficient matrices.

For a model with only first-order lags, the equation of the reduced form of the system can be rewritten as follows:

$$Y_t = QY_{t-1} + \Pi_2 X_t$$

where Q is a matrix formed from the columns of Π_1 plus some column of zero, arranged in the order in which variables meet the lags. Π_2 is called an impact multiplier, it shows the immediate impact of changes in each exogenous variable on the values of the endogenous variables.

The equation can be expanded into $Y_t = Q^2 Y_{t-2} + Q\Pi_2 X_{t-1} + \Pi_2 X_t$, where $D\Pi_2$ is the interim multiplier, that is the effect of exogenous variables one lag back. Expansion of the series becomes $Y_t = Q^{\infty} Y_{t-\infty} + \sum_{t=0}^{\infty} Q^t \Pi_2 X_{t-t}$ and the cumulative effect will be $\{\sum_{t=0}^{\infty} Q^t\} \Pi_2 X = (I-Q)^{-1}\Pi_2 X$ where $(I-Q)^{-1}\Pi_2$ is the total multiplier, that is the matrix that show the cumulative effect

of changes in exogenous variables.

Simulation Result

Model simulation procedures discussed above are applied to the model of Chapter III. Using dynamic simulation modes, the results of interim and total multiplier, statistic of fit, and reduced form for exogenous variables are generated. Since the purpose of this part is not to describe the technicality of the simulation, results of interim multiplier, total multiplier, and reduced form for exogenous variables are presented in appendix C for further consultation. Statistics of fit are shown in table 11. In general, all the equations perform relatively well.

Variable	Ν	Mean Error	Mean % Error	Mean Abs Error	Mean Abs % Error	RMS Error	RMS % Error
DCY	56	.082	9.951	.103	13.61	.136	18.52
RGRGDP	56	.322	83.38	4.74	248.89	5.89	678.6
FDIY	56	.00008	48.84	.0025	134.1	.003	462.5
PIY	56	-2.5E-6	. 36)	.0017	. 36)	.003	. 36)
OCY	57	.00079	-40.2	.015	129.7	.018	241
SY	56	.0051	-0.23	.037	10.57	.050	14.95
IY	56	.0065	198	.043	12.06	.059	17.04

Table 11: Model Simulation Statistics of Fit

To see the fit more clearly, the predicted values of some endogenous variables are compared to the actual historical values in a series of graphs. This shows how close the model fits the historical data. Graph 7 shows how close the predicted model simulation of Domestic Credit (DCY) is to its actual historical value. Graphs 8, 9, 10, and 11, show the same procedure for Foreign Direct Investment (FDIY), Other Capital Flow (OCY), Saving (SY), and Investment (IY), respectively.

^{36).} Percent error statistics were set to missing values because an actual value was too close to zero to compute the percent error at one or more observation

.

Graph 7: Model Simulation Fit for Domestic Credit (DCY)

Quarterly

DCY = Domestic Credit scaled by GDP

DCYP = *The predicted value of DCY from model simulation*

78

Graph 8: Model Simulation Fit for Foreign Direct Investment (FDIY)

Scale fdi/gdp

Scale oc/gdp

Quarterly

OCY = Other Capital Inflow scaled by GDP

OCYP = The predicted value from model simulation

Scale s/gdp

Quarterly

SY = Saving scaled by GDP

SYP = The predicted value of SY from the model simulation

Graph 11: Model Simulation Fit for Investment (IY)

Quarterly

IY = Investment scaled by GDP

IYP = *The predicted value of IY from the model simulation*

Simulation Cases

Simulations on several cases are also done. First, we choose a hypothetical case where policy makers did not execute rupiah devaluation in the 4th quarter of 1986. Instead it is delayed for another 2 year till the 4th quarter of 1988. The second case is a simulation of the effect of the doubling of world interest rate. The third case is a simulation of the effect of domestic inflation control. The fourth case is a simulation of a condition where the monetary authority does not have the ability to neutralize the effect of an increase in the central bank's net foreign assets. The last case is a simulation of the effect on the monetary authority action of a doubling of the inflation rate differential.

Devaluation Delay

Indonesia went through a devaluation on Sept. 12, 1986. Rupiah currency was devalued by about 41 percent against the US dollars in nominal terms. In real terms or real exchange, the devaluation was about 21%. There was a lot of pressure at that time, for Indonesia to undergo devaluation in order to maintain a sound economic condition. If devaluation was not executed, what would be the impact for the economy? The ideal way to simulate this condition is through the nominal exchange rate. Unfortunately, the nominal exchange rate is not in our model. It must be assumed that there would be no significant changes in relative prices (domestic price over foreign price). With this assumption, the simulation is done through the real exchange rate. The real exchange rate behavior presented earlier in graph 3. The devaluation, which was done in third quarter 1986, was in the simulation, not executed until the 4th quarter of 1988. This a delay of the devaluation for two years. The impact of this hypothetical delay can be seen in the following table.

Year	DCY	FDIY	IY
1986.4	-3.89	-73.4	-0.50
1987.1	-3.10	42.5	-0.36
1987.2	-2.94	4.02	-0.13
1987.3	-3.15	4.63	0.07
1987.4	-3.05	5.79	0.14
1988.1	-3.21	4.93	0.33
1988.2	-2.95	-2.58	0.28
1988.3	-3.08	-2.79	0.48
1988.4	-1.08	71.04	0.75

Table 12: Simulation of Devaluation Delay

(Percentage change)

The table shows the percentage increases (positive) or decreases (negative) in each of the endogenous variables due to the delay in devaluation. The condition is simulated by holding the values of real exchange rates for the delay periods the same as previous periods. It ignores the decrease of 21 percent in the real exchange rate.

Domestic credit (DCY) will decrease at the rate of about 3 percent per quarter, except for 1988.4, which decreased only 1.08 percent. Apparently, the monetary authority will take a restrictive monetary policy in this simulation case. The restrictive monetary policy is needed to counter the pressure of devaluation.

Foreign direct investment (FDIY) does not seem to experience a systematic effect from the delay of the devaluation simulation. Initially, it fell quite significantly, but recovered again in the next quarter, then maintained a steady increase at about 4 to 5 percent until 1988.1. It decreases again, before rising significantly when the devaluation would be executed at the 4th quarter of 1988. The initial delay at 1986.4 will decrease foreign direct investment by 73.4 percent, and the execution of devaluation two years later at 1988.4 increased foreign direct investment by 71.04%. The devaluation delay did not seem to affect foreign direct investor decision making systematically.

The effect of the delay of devaluation on national investment is very small. All changes are less than one percent. There are decreases in investment initially in the first 3 quarters, but then increases all the way through 1988.4. National investment did not seem to suffer from the delay of devaluation.

Increase in World Interest Rate

The second case is the simulation of the effect of doubling the world interest rate in 1990 and 1991. Since the increase of the world interest rate would provide another return alternative for foreign investment inflows, we specifically would like to see the impact of this on foreign direct investment inflows, especially for the 2 years when foreign direct investment in Indonesia reached its peak. Table 13 shows the result of the simulation.

The table shows the percentage increase (positive) or decrease (negative) in the endogenous variables due to the doubling of the world interest rate. The effect of doubling the world interest rate is quite a significant decrease in foreign direct investment inflows for the first 3 quarters of 1990, but later foreign direct investment recovers. It shows an increase from 1990.4 to 1991.4. The effect of doubling the interest rate to portfolio investment is very significant. For all periods, portfolio investment shows a significant decrease, with extremely high double digit numbers, with the exception of 1991.1. The alternative return created by increasing of the world interest rate significantly reduced portfolio investment inflows, and induce portfolio investment outflows. Compared to the effect to foreign direct investment, the effect of the simulated increase in the world interest rate on portfolio investment can be considered devastating.

		0 0		
Year	DCY	FDIY	PIY	IY
1990.1	0.00	-6.67	-34.59	-0.51
1990.2	-0.36	-9.91	-37.37	-0.44
1990.3	-0.45	-4.21	-152.01	-0.56
1990.4	-0.40	0.29	-132.39	-0.54
1991.1	-0.45	4.14	-8.98	-0.07
1991.2	-0.50	2.22	-65.51	0.17
1991.3	-0.44	5.40	-43.71	0.31
1991.4	-0.38	5.37	-44.15	0.34

Table 13: Simulation of Doubling World Interest Rate

(Percentage Change)

The effect of an increase in the world interest rate on domestic credit (DCY) is the steady decrease of domestic credit. It decreases at a rate of less than 0.5 percent for the rest of the period, except the first quarter of 1990, which shows no change. The doubling of the world interest rate will induce a capital outflow. The monetary authority seems to counter the effect of increasing in the world interest rate. The monetary authority was taking a restrictive monetary action to increase domestic interest rates. A higher domestic interest rate would neutralize the effect of a world interest rate increase.

Although not affected as much as portfolio investment, IY is also negatively affected by the simulated increase in the world interest rate. It fell initially, and then increase in the first year. For all quarters, the changes were very small, about 0.5 percent or less.

Inflation Control

The third simulation is performed to see whether suppressing domestic inflation has a significant impact on the Indonesian economy. Domestic inflation is simulated to grow at a rate of 1 percent per quarter during 1990-1991.

Some neighboring countries doing very well in this area. In most cases the inflation rate of neighboring countries is at about 4-6 percent per year, except for the Philippines. It would be interesting to see how much of a benefit Indonesia would have from being able to suppress inflation rate like some of its neighbors. The ideal way to do this simulation is through inflation rate. Unfortunately, the model does not have the domestic inflation rate in it. It has an inflation differential (INFD) variable. So, simulation is done using the inflation differential (INFD). Table 14 shows the increase (positive) or decrease (negative) of each endogenous variable from the simulated change in the inflation differential.

Table 14: Simulation of Controlling Domestic Inflation

Year	DCY	IY	PIY
1990.1	-1.67	-0.34	-11.23
1990.2	-1.31	-0.15	4.33
1990.3	1.78	0.37	22.55
1990.4	3.16	0.81	20.43
1991.1	3.41	0.96	11.32
1991.2	4.86	1.16	21.01
1991.3	7.33	2.40	25.77
1991.4	9.01	3.07	7.65

(Percentage Change)

The effect of inflation control is clear for domestic credit. The monetary authority can pump more credit into the economy. Initially, the monetary authority reduced domestic credit for the first and second quarter of 1990. For later quarters, domestic credit increases significantly. The ability to keep inflation low creates room for monetary authority to increase credit into the economy. This can be particularly useful to intervene in the persistence of high domestic interest rates. If the monetary authority can increase credit domestically, interest rates can be expected to decrease. This is the period in which the consumer lending rate skyrocketed up to 30% per annum. The simulation shows that controlling domestic inflation will give the monetary authority a chance to increase domestic credit, which in turn will decrease domestic interest rates.

Portfolio investment shows an increase with this inflation control. The lower inflation will increase the net return on portfolio investment. With the exception of the initial quarter of 1990, it is no surprise to see that the effect will be mostly positive for the portfolio investment. Portfolio investment increases due to inflation control.

With the exception of 1990.1, the remaining quarters show a significant increase in national investment (IY) due to the ability of monetary authority to contain domestic inflation.

Central Bank's Net Foreign Assets

In the literature, as well as in our model, it is expected that the monetary authority will neutralize to a certain degree the effect of an increase in the central bank's net foreign assets. The estimation result for our model shows that monetary authority completely neutralizes the effect of an increase in the central bank's net foreign assets.

The condition where the monetary authority does not neutralize the effect of an increase in central bank's net foreign assets is simulated.

The following table displays the result of the simulation.

Percentage Change				
Year	DCY	FDY	IY	
1980.1	44.0	-0.22	0.13	
1980.2	40.2	-5.87	0.22	
1980.3	36.7	-0.78	0.31	
1980.4	32.5	0.03	0.26	
1985.1	7.8	0.16	0.47	
1985.2	8.7	-0.89	0.04	
1985.3	10.9	-1.60	0.00	
1985.4	15.3	-2.09	0.14	
1990.1	-4.1	2.17	0.85	
1990.2	-5.7	-0.20	0.86	
1990.3	-4.9	1.36	0.75	
1990.4	-1.5	0.99	0. 51	

Table 15: Simulation of Central Bank's Net Foreign Assets

The effect of the simulation is that domestic credit increased between 32.5 percent to 44 percent during the 1980s, then increased between 7.8 percent to 15.3 percent in 1985, but decreased between 1.5 percent to 5.7 percent in the 1990. It shows a downward trend.

The simulation does not seem to have any systematic effect on foreign direct investment. While for national investment, the effect is to increase investment but by a relatively small percentage, between 0 percent and 0.47 percent for 1980 and 1985, and between 51 percent to 86 percent in 1990.

Increase in Inflation Differential

This simulation is done to study the impact of an increase of the inflation differential on the actions of the monetary authority. An increase in the inflation differential would be expected to affect portfolio investment as well. The simulation is done by doubling the inflation differential variable (INFD). The impact can be seen in table 16.

	(Percentage Change)	
Year	DCY	PIY
1980.1	9.20	3.78
1980.2	8.65	-14.17
1980.3	2.59	-39.60
1980.4	46	-9.27
1985.1	1.89	0.00
1985.2	-1.27	-40.38
1985.3	-1.84	29.33
1985.4	-2.54	.53
1990.1	.59	1.28
1990.2	0.00	-7.98
1990.3	-1.18	-58.74
1990.4	-1.32	1.37

Table 16: Simulation of doubling inflation differential

The increase in the inflation differential will induce monetary authority to contract domestic credit. The table shows that in 1980, the contraction took, in this case, 3 lag quarters, before contracting domestic credit. In 1985, it took only one quarter lag before contracting domestic credit. In 1990, the contraction starts at the third quarter.

The increase in the inflation differential (INFD) should decrease portfolio investment.

But it should be noted that the coefficient for INFD in portfolio investment is not significant. For 1980, it took one lag, before portfolio investment decreased. In 1985 and in 1990, portfolio investment decreased after one lag, but increased again. This is reflected by the insignificance of the estimated coefficient of INFD in the portfolio equation.

CHAPTER VI: SUMMARY AND CONCLUSION

The study is directed primarily for the Indonesian economy. Its purpose is to find the relationship between macroeconomic variables that have been cited as important variables in many studies that cover East and Southeast Asian developing economies. Indonesia is one of the developing economies in the area mentioned above. The study of these macroeconomic variables in a simultaneous system of equations for a single country, in this case Indonesia, is rare. This is the specific purpose of this study.

The economic growth of Asian developing economies encouraged a more detailed study of the Indonesian economy. During the period of 1978.1 -1992.1, there were many significant economic policies implemented in order to liberalize the Indonesian economy. It is important to study how macroeconomic variables are affected by liberalization efforts in the Indonesian economy.

The study revealed the relationships among monetary policy, foreign investment, and the current account in the Indonesian economy in more detail. Some variables preassumed to be significant factors turn out to be insignificant, or the other way around. A cross-country study or pooling may not reveal the condition of a single country in detail.

The wave of deregulations as means of liberalization in the Indonesian economy still continue. Some of the effect of previous deregulation efforts are still in progress. Some of these efforts are captured by the model. Some just begin to show up, and are not captured by the model because the observation data stops at 1992.1.

In the future, the model used in this study can be extended in a number of ways. First, a longer period of study will provide more data to capture the results of policy implementation still in progress. This may result in significant coefficients on variables that are theoretically expected to be significant in this study.

Second, the competition to attract foreign investment among Asian developing economies is quite fierce. One country cuts taxes or gives a longer tax holiday, while

92

another provides a one stop shopping permit, tax holiday facilities, and/or tax free trade zones. The inclusion of tax factors in the model is quite complicated because of the complicated nature of the tax incentives offered by different countries. It is not whether a tax holiday is offered, but how much of a tax holiday each country offers. Future research should be directed toward this effort, to see how tax incentives make a difference for foreign investors to go to Indonesia rather than Thailand, Malaysia or other new stars such as Vietnam, Mainland China, and other neighboring countries.

There is an additional question that needs to be answered. Do free trade zones make a difference in attracting foreign investors. There is a tendency to build completely unrestricted industrial free trade zones. If this factor were incorporated into the model, better estimates may be produced and some important questions about these free trade zones could be answered.

Other future research could include other equations into the system, such as an interest rate equation in the monetary policy block to produce better result for estimates of the model.

The inclusion of a political risk variable into the model is another possible way of expanding this model. Civil unrest, expropriation, and currency transfer restrictions are still viewed by many industrial countries as a specific country risk which may impede foreign investment inflows into the Indonesian economy.

The model could be expanded by adding macroeconomic variables, equations, additional data. It could be modified in such a way as to incorporate complicated but crucial factors such as tax incentives, free trade zones, political risk, and others. This will enhance our understanding of the factors underlying the dynamics of the Indonesian economy.

As all these factors are considered and included in the model, the model is enhanced, so that it can be used as a valuable tool in simulating different conditions of the economy.

Finally, the purpose of the study was achieved. The interrelationship among monetary

policy, foreign investment, national saving and investment was investigated in a model of a single country, in this case, Indonesia.

REFERENCES

Abrams, R.K., et al(1980), "Monetary Policy Reaction Function, Consistent Expectation and the Burns Era", Journal of Money Credit and Banking, February, 1980, 12:30-42.

Atri, Said and U Jin Jhun(1990)," Foreign Capital Inflow and Domestic Savings: A Model with Latent Variable", Journal of Economic Development, Vol.15 No.2, December 1990.

Aziz, Ungku A.(1990), "Strategies for Structural Adjustment - The experience of Southeast Asia", <u>IMF and Bank Negara Malaysia</u>, Washington D.C., 1990.

Balasa, B(1978), "Export and Economic Growth", Journal of Development Economics 5, pp. 181-89, 1978.

Balasa, B(1985), "Export, Policy Choices and Economic Growth in Developing Countries after the 1973 Oil Shock", Journal of Development Economics, 18, pp.25-35, 1985.

Barro, Robert J (1974). "Are Government Bonds Net Wealth." Journal of Political Economy 81: 1095-1117.

Bernanke, Ben S. and Alan S. Blinder(1988), "Credit, Money and Aggregate Demand", <u>American Economic Review</u>, pp.435-39, March 1988.

Blejer, Mario I. and Mohsin S. Khan(1984), "Government Policy and Private Investment in Developing Countries", <u>IMF Staff Paper</u>, vol.31, pp.379-403, June 1984.

Blinder, Alan S. and Joseph E. Stiglitz(1983), "Money, Credit Constraints, and Economic Activity", <u>American Economic Review</u>, (Papers and Proceedings) pp. 297-302, May 1983.

Braunstein, Andrew. W(1980), "Shifts in Savings Function Parameters in the US", <u>Atlantic Economic Journal</u>, vol.8, No.1, March 1980.

Bowles, P(1987), "Foreign Aid and Domestic Savings in Less-Developed Countries: Some Test for Causality", <u>World Development 15</u>, pp. 789-96, 1987.

Cable, Vincent, and Bishnodat Persaud(1987), "New Trends and Policy Problems in Foreign Investment" in <u>Developing with Foreign Investment</u> ed. by Vincent Cable and Bishnodat Persaud, Croom Helm Ltd, Australia, 1987.

Chow, Peter C.Y.(1987), "Causality between Export Growth and Industrial Development -Empirical Evidence from NICs", <u>Journal of Development Economics 26</u>, pp. 55-63, North- Holland, 1987.

Committee for Economic Development (CED)(1988), "Japanese Capital Exports: Trends

and Implications for the LDCs.", <u>Office of Trade and Investment Analysis</u>, <u>International</u> <u>Trade Administration</u>, U.S. Department of Commerce, Washington D.C.

de Kock, Gabriel S.P. and Lawrence J. Radecky(1990), "Liquid Asset Measures as Intermediate Targets and Indicators for Monetary Policy", in <u>Intermediate Targets and</u> <u>Indicators for Monetary Policy</u>, edited by Federal Reserve Bank of New York, July 1990.

de Vries, Rimmer(1990), "Foreign Direct Investment in Heavily Indebted Developing Countries: A View from the Financial Community" in <u>Foreign Direct Investment in the</u> <u>1990's: A new</u> <u>climate in the Third World</u> ed. by Cynthia Day Wallace, Martinus Nijhoff Publishers, Dordrecht, Netherlands, 1990.

Dollar, David(1992), "Outward-Oriented Developing Economies Really Do Grow More Rapidly: Evidence from 95 LDCs, 1976-1985", <u>Economic Development and Cultural Change</u>, Vol.40 No.3, April 1992, The University of Chicago Press.

Edwards, Sebastian (1990), "Capital Flows, Foreign Direct Investment, and Debt-Equity Swaps in Developing Countries", <u>Working Paper Series No. 3497</u>, National Bureau of Economic Research, Inc.

Ellis, Clarke N.(1990), "Foreign Direct Investment and International Capital Flows to Third World Nations", in Foreign Direct Investment in the 1990's: A new climate in the Third World ed. by Cynthia Day Wallace and Contributors, Martinus Nijhoff Publishers, Dordrecht, Netherlands, 1990.

Engel, R.F. and C.W.J. Granger(1987), "Cointegration and the Error Correction: Representation, Estimation, and Testing", <u>Econometrica</u> 55: 251-76, March 1987.

Feder, Gershon(1982), "On export and Economic Gowth', Journal of Development Economics 12(1982), pp. 59-73.

Feldstein M, and Charles Horioka(1980), "Domestic Saving and International Capital Flows", <u>Economic Journal</u>, vol.90, pp.314-29, June 1980.

Felstein M.(1983), "Domestic Saving and International Capital Movements in the Longrun and short-run", <u>European Economic Review</u>, vol.21, pp.129-51, Amsterdam.

Frenkel, Jacob A., Morris Goldstein, Paul R. Masson(1989), "International Dimensions of Monetary Policy", in <u>Monetary Policy Issues</u>, A Symposium sponsored by The Federal Reserve Bank of Kansas City.

Friedman, Benjamin(1983), "The Role of Money and Credit in Macroeconomic Analysis", in James Tobin, ed., <u>Macroeconomics, Prices, and Quantities: Essays in Honor of Arthur</u> <u>M. Okun</u> (Washington, D.C.: Brooking Institution, 1983), pp.161-69

Friedman, Milton(1968), "The Role of Monetary Policy", <u>American Economic Review</u>, No.1, vol.LVIII, March 1968.

Friedman, Milton(1982), "Monetary Policy: Theory and Practice", Journal of Money, Credit, and Banking, February 1982.

Fry, Maxwell J.(1986), "Terms-of-Trade Dynamics in Asia: an Analysis of National Saving and Domestic Investment Responses to Terms-of-Trade Changes in 14 Asian LDCs.", Journal of International Manay and Eingnee No.5, pp.57-72

International Money and Finance, No.5, pp.57-73.

(1989a), Money, Interest, and Banking in Economic Development, The John Hopkins University Press.

(1989b), "Foreign Debt Instability: An Analysis of National Saving and Domestic Investment Responses to Foreign Debt Accumulation in 28 Developing Countries.", Journal of International Money and Finance, No.8, pp.345-57.

(1991a), "Mobilizing External Resources in Developing Asia: Structural Adjustment and Policy Reforms", paper presented on <u>The Ninth Asian Development Bank</u> <u>Development Round Table</u>, Manila, 26-29 August 1991.

(1991b), "Debts and Deficits in 26 Developing Countries: Financial and Fiscal Effects of Foreign Debt Accumulation on Current Account Deficits", <u>International Finance Group, University of Birmingham</u>, Britain, 6 June, 1991.

(1992), "Foreign Direct Investment in a Macroeconomic Framework: Finance, Efficiency, Incentives and Distortions", <u>International Finance Group Working</u> Paper, IFGWP-92-17, November 1992.

Giovannini, Alberto and James R. Hines, Jr(1990), "Capital Flight and Tax Competition: Are there viable solutions to both problems?", <u>National Bureau of Economic Research</u>, <u>Working Paper Series No. 3333</u>, April 1990.

Granger, C.W.J.(1990), "Spurious Regression" in <u>The New Palgrave: Econometrics</u>, ed. by John Eatwell, et al, W.W. Norton & Company, 1990.

Greene, Joshua and Delano Villanueva(1991), "Private Investment in Developing Countries - An empirical analysis.", <u>IMF Staff Paper</u>, vol.38, No.1, March 1991.

Gupta, Kanhaya L.(1975), "Foreign Capital Inflows, Dependency Burden, and Saving Rates in Developing Countries: A Simultaneous Equation Model", <u>Kyklos, 1975</u>, pp.358-74.

Gupta, K.L.(1985), "Foreign Capital, Income Equality, Demographic Pressures, Savings

and Growth in Developing Countries: A Cross Country Analysis", Journal of Economic Development, 10, 1, July 1985, pp. 63-88.

Hein Simeon(1992),"Trade Strategy and the Dependency Hypothesis: A Comparison of Policy, Foreign Investment, and Economic Growth in Latin America and East Asia", <u>Economic Development and Cultural Change</u>, Vol.40 No.3, April 1992, The University of Chicago Press.

Hilton, Spence(1990), <u>Commodity Prices as intermediate targets and Information</u> <u>Variables</u>, in <u>Intermediate Targets and Indicators for Monetary Policy</u>, edited by Federal Reserve Bank of New York, July 1990.

Hoelscher, Gregory(1986), "New Evidence on Deficits and Interest Rates", Journal of Money, Credit and Banking, vol XVII, Number 1, February 1986.

IMF and World Bank(1992), Financial & Development, vol. 29, No.1, March 1992.

Jun, Joosung(1989), "Tax Policy and International Direct Investment", <u>National Bureau of</u> Economic Research, Working Paper Series No. 3048, July 1989.

Jung, W.S. and P.J. Marshall(1985),"Export Growth and Causality in Developing Countries", Journal of Development Economics, 18, 1985.

Kindleberger, Charles P.(1972), "Direct Foreign Investment and Economic Development" in <u>Direct Foreign Investment in Asia and the Pacific</u> ed by Peter Drysdale, University of Toronto Press.

King, Robert G., Ross Levine (1992), "Financial Indicator and Growth in a Cross Section of Countries", <u>Working Papers WPS 819</u>, Country Economics Department, The World Bank, January 1992.

Krause, Lawrence B.(1973), "Evolution of Foreign Direct Investment : The United States and Japan", <u>The Brooking Institution</u>, Washington D.C.

Krugman, Paul(1987), "Adjustment in the world economy", <u>Occasional Paper No.24</u>, Group of Thirty, New York, October 1987.

Lahiri, Ashok K.(1989), "Dynamics of Asian Savings", <u>IMF Staff Paper</u>, vol.36, No.1, March 1989.

Lomas, P.S.(1982), "Export and the Propensity to Save", <u>Economic Development and</u> <u>Cultural Change</u>", Sept. 1982, pp. 831-841.

Lucas, Robert E. B. (1993), "On the Determinants of Direct Foreign Investment: Evidence from East and Southeast Asia", <u>World Development</u>, vol.21, March 1993.

Papanek, G(1972), "Aid Foreign Private Investment, Savings and Growth in Less Developed Countries," Journal of Political Economy, Vol. 81 (1973), pp. 120-30.

Parikh, Ashok (1990), "Money Supply and Prices in Indonesia 1969-1980: an econometric investigation," <u>Applied Economics</u>, v22n11, p. 1479-1494, Nov, 1990

Persson, Torsten and Lars E. O. Svensson (1985), "Current Account Dynamics and the Terms of Trade: Harberger-Laursen-Metzler Two Generation Later," Journal of Political Economy, 93(1), February 1985, pp. 43-65.

Ram, Rati(1981),"Direct and Total Effects of Foreign Capital Inflows on Savings", <u>Atlantic Economic Journal, 9, 2</u>, July 1981.

Snyder, Donald(1990), "Foreign Aid and Domestic Savings: A Spurious Correlation ?", <u>Economic Development and Cultural Change</u>, Vol.39 No.1, October 1990.

Stoneman, C(1975), "Foreign Capital and Economic Growth", <u>World Development</u>, Jan. 1975, pp. 11-26.

Streeten, Paul(1988), "Beyond Adjustment - The Asian Experience", <u>IMF</u>, Washington D.C., February 1988.

Sung-Shen, Biswas, and Tribedy (1990), "Causality between Exports and Economic Growth", Journal of Economic Development, Vol.15, No.1, June 1990.

Tseng, Wanda and Robert Corker(1991), "Financial Liberalization, Money Demand, and Monetary Policy in Asian Countries", <u>IMF Occasional Paper No. 84</u>, Washington D.C., July 1991.

World Bank (1991), "Trends in Developing Economies", World Bank, Washington D.C., 1991.

APPENDIX A:

Data Sources, Transformation and Data Definition.

The sources of data are as follows:

- Source 1: International Financial Statistics (IFS) International Monetary Fund, various issue. Including IFS CD-ROM data.
- Source 2: Balance of Payment Statistics Yearbook International Monetary Fund, various issue.
- Source 3: Government Finance Statistics Yearbook International Monetary Fund, various issue.
- Source 4: For quarterly data of Gross Domestic Product and National Saving, data are provided by Dr. Iwan Jaya Aziz from the Indonesian Computable General Equilibrium model, Cornell University and University of Indonesia.
- Source 5: Indonesian Financial Statistic-monthly publication of Indonesian Central Bank, Bank Indonesia. Various issue.
- Source 6: Annual Report of Indonesian Central Bank, published by Bank Indonesia. Various issue.
- Source 7: Monthly Publication of Central Bureau of Statistic of Indonesia (Biro Pusat Statistic Indonesia). Various issue.
- Source 8: Investment Statistic of Indonesia, published by Indonesia Investment Coordinating Board (Badan Koordinasi Penanaman Modal). Various Issue.

The unit of variables used in the study is billion rupiahs. Variables initially specified in U.S dollars or SDRs (Special Drawing Right) are converted into billion rupiah, except gross domestic product per capita which is thousand of rupiahs. The base year for any index use throughout the study is 1985=100. Rates of growth of variables are presented as percentage.
BDAY = Total all Bank Domestic Assets scaled to GDP.

CA = Current Account. Billion of Rupiah. Number is in million of US\$ transformed into Billion of Rupiah. Source 1, 2.

CAY = Current Account scaled to Gross Domestic Product (GDP). CAY=CA/GDP.

CBDAY = Central Bank Domestic Asset scaled to GDP.

CBDARAT = Central Bank Domestic Asset ratio to Total Bank Domestic Asset.

CPII = Indonesian Consumer Price Index. Base year 1985=100. Source 1.

CPIILG= Lag one period of CPII. Base year 1985=100.

CPIUS = United States Consumer Price Index. Base year 1985=100. Source 1.

CPUSLG = Lag one period of CPIUS. Base year 1985=100.

DC = Domestic Credit. Billion Rupiahs. Source 1.

DCY = Domestic Credit Scaled to GDP. DCY=DC/GDP.

DCYLG = Lag one period of DCY.

DDCY = The change in DCY.

DDCCGY = The Change in Domestic Credit to Central Government scaled to GDP.

DDCOEY = The Change in Domestic Credit to Official Entities scaled to GDP.

DDCPS = The Change in Domestic Credit to Private Sector. Source 1.

DDCPSY = The Change in Domestic Credit to Private Sector scaled to GDP.

DDCTG = The Change in Total Domestic Credit to Government.

DDCTGY = DDCCGY + DDCOEY.

DGDP = The change in GDP. DGDP=GDP-GDPLG.

DM= The change in import. DM=M-MLAG.

DMBDAY = Deposit Money Bank Domestic Asset scaled to GDP.

DMBDARAT = The ratio of deposit money bank (private sector banks) domestic asset to the total bank domestic assets.

DMS = The change in Money Supply. DMS=MS-MSLG.

DNFAY = The change in NFAY. DNFAY=NFAY-NFAYLG.

DNFAYLG = Lag one period of DNFAY.

DX = The change in export. DX=X-XLAG.

EOBP = Error of Balance of Payment, Billion of Rupiahs. Number is in million of US\$, transformed into Billion of Rupiah. Source 1,2.

EOBY = Error of Balance of Payment scaled to GDP. EOBY=EOBP/GDP

FD = Foreign indebtedness. This is the foreign debt variable defined as the end-of year stock of government plus government-guaranteed foreign debt. The alternative measure for this net foreign indebtedness is by cumulating the balance of payment definition of the current account deficit, which subtract unrequited transfers from the deficit. (Fry, 1991). FD = (-CA) - UT. FT is in Billion Rupiah. Source 1.

FDII = Foreign Direct Investment, in Billion of Rupiah. This is the net flows, but the outflow is very insignificant. Number is in million US\$, transformed into Billion of Rupiahs. Source 1,2.

Foreign Direct Investment is the establishment or purchase by resident of one country of a substantial ownership and management share of a business enterprise or real property in another country, or an increase in the amount of an existing investment. A substantial ownership means at least 10% of the voting stock or equivalent interests. These include provision of equity capital, reinvested earnings, and lending by the parent to the affiliate.

FDIY = FDII scaled to GDP. FDIY=FDII/GDP.

FDY = Net foreign indebtedness scaled to GDP. FDY=FD/GDP.

FDYLG = Lag one period of FDY.

FL = Total Foreign Liabilities of Monetary Authorities and Deposit Money Banks. In billion rupiah. FL=FLMA+FLDMB. Source 1.

FLDMB = Foreign Liabilities Deposit Money Bank. Billion Rupiah. Source 1

FLMA = Foreign Liabilities Monetary Authorities. Billion Rupiah.

FLY = FL scaled to GDP. FLY=FL/GDP.

FLYLG = Lag one period of FLY.

GDP = Gross Domestic Product, Nominal. Billion of Rupiah. Quarterly data is provided by Dr. Iwan Jaya Aziz, the Indonesia Computable General Equilibrium Model, University of Indonesia and Cornell University. Source 4.

GDPLG = Lag one period of GDP.

GDPY = Annual rate of GDP. GDPY is GDP quarterly times 4. GDPY=GDP*4. Billion of Rupiah.

GOVDEF = Government Deficit, in Billion Rupiah. Quarterly data for 1988.3 - 1989.1 and 1989.3 - 1989.4 were constructed from the actual yearly data using Box-Jenkins (ARIMA) procedures. Then they were adjusted such that sum of the quarter number will equal the yearly actual data. Quarterly data 1990.1 - 1992.1 were not available. We construct them by Box-Jenkins (ARIMA) procedures. Source 1,3.

GOVDEY = Government deficit scaled to GDP. GOVDEY = GOVDEF/GDP.

GOVDLG = Lag one period of GOVDEF.

GOVEX = Government Expenditure, Billion of Rupiah. Quarterly data for 1988.3 - 1989.1 and 1989.3 - 1992.1 were constructed from the actual yearly data using Box-Jenkins (ARIMA) procedures. The result number then adjusted to the actual observed data, such that quarter 1+2+3+4 will equal to the actual yearly data. Source 1,3.

GOVXLG = Lag one period of GOVEX. Billion of Rupiah.

GOVEXY = GOVEX/GDP.

ICINF = Industrial country's inflation rate. In percentage. Source 1.

INFD = Inflation Rate Differential. In percentage. The difference between Indonesian inflation rate and US inflation rate. Inflation rates are constructed from CPI of each country.

INFDLG = Lag one period of INFD. In percentage.

INFI = Indonesian Inflation Rate Using CPII. INFI=((CPII-CPIILG)/CPIILG)*100. INFI is in percentage.

INFUS = US Inflation Rate, using CPIUS. INFUS=((CPIUS-CPUSLG)/CPUSLG)*100. INFUS is in percentage. INT = Interest rate, percentage per annum. Call Money Market Rate (interbank). This is a market determined interest rate. Data from IFS-CD ROM. Source 1.

INV = National Investment, Billion Rupiah. Constructed using CA = SAV - INV

IR = International reserve. Source 1,2.

IRM = The ratio of international reserve over import. IRM = IR/M

IY = Investment scaled to GDP. IY=INV/GDP.

IYLG = Lag one period of IY.

KA = Capital Account. KA = FDII + PII + OC. Billion of Rupiah.

LC = Labor Cost. The number is constructed from wholesale price index (including petroleum). This is a proxy for labor cost. Most industries in Indonesia are still labor intensive during the 1980's. The labor intensive industry is assumed to be reflected in the wholesale price.

M = Import, Billion Rupiah. This is the Merchandise Import, including Oil Import. Number in Million US \$ is transformed into Billion Rupiah. Source 1.

MLAG = Lag one period of M.

MS = Money Supply, in Billion of Rupiah. Source 1.

 $MSY = Real Money Supply scaled to GDP. MSY = {(100/CPII)*MS}/GDP$

MSLG = Lag one period of MS.

MY = Import scaled to GDP. MY=M/GDP

M1Y = Money definition of M1 scaled to GDP.

NER = Nominal Exchange Rate of US \$ to Rupiah. Source 2.

NERLG = Lag one period of NER.

NFA= Net Foreign Asset. Billion Rupiah. Source 1

NFACB = Net Foreign Asset of Central Bank, Billion rupiah. Source 1.

NFACBY = NFACB/GDP.

NFAPB = Net Foreign Asset Private Bank. Billion Rupiah. Source 1.

NFAPBY=NFAPB/GDP.

NFAY = Net foreign asset scaled to GDP. NFAY=NFA/GDP.

NFAYLG = Lag one period of NFAY.

OC = Other Capital, in Billion Rupiah. This is a net flows, but outflow is also insignificant. Number is in million of US\$ is transform into Billion of Rupiah. Other Capital consists of long-term and short-term items that does not fall into the direct investment and portfolio investment categories. Source 1,2.

Other Capital long-term flow is drawings on or repayments of loans extended or any longterm transaction that does not fall into the portfolio or direct investment categories. Other Capital short-term items are international transactions in securities with an original term to maturity of less than one year, and international shifts in the control of liquid funds, such as short-term deposits, mutual funds, money market, overnight loan, etc.

OCY = OC scaled to GDP. OCY=OC/GDP

POP = Population. Numbers are in million. Source 1.

PII = Portfolio Investment, in Billion Rupiah. Source 1, 2. This is the net flows, but the outflow is very insignificant. Number is in million of US\$, transformed into Billion of Rupiah. Portfolio Investment is an international transaction in securities with an original term to maturity greater than one year. These include federal, state, and local government securities, corporate bonds and stocks, municipal bonds, and bank deposits. For the most part, assets purchased for portfolio investment are easily sold, moved, or cashed.

PIY = PII scaled to GDP. PIY=PII/GDP

RDEV = Rate of Growth of Rupiah devaluation against US\$. In percentage. $RDEV = {(NER - NERLG)/NER(-1)}*100.$

RDEVLG = Lag one period of RDEV.

REX = Real Exchange rate index. Following Fry (1991) it is calculated as REX= ((CPII/WPIUS)*1000)/NER. Due to unavailability of quarterly GDP deflator, CPII is used as proxy for GDP deflator.

REXLG = Lag one period of REX.

RGD = Real Government Deficit, in Billion Rupiah. It is a deflated GOVDEF, using CPII instead of GDP deflator.

RGEX = Real Government Expenditure, in Billion Rupiah. It is a deflated GOVEX using CPII, instead of GDP deflator.

RGOVEX = Rate of Growth of Government Expenditure. In percentage. RGOVEX = ((GOVEX-GOVXLG)/GOVXLG)*100.

RGOVDE = Rate of Growth of Government Deficit. In percentage. RGOVDE = ((GOVDEF-GOVDLG)/GOVDLG)*100.

RGTOT = ((TOT-TOTLG)/TOTLG)*100.

RGDPCAP = Real GDP per capita. RGDPCAP = RGDP/POP.

RGPOP = Rate of growth of Population.

RGRX = Rate of Growth of Export.

RGRXYF = Rate of Growth of Real Export multiplied by Export scaled to GDP. See Feder (1982) for further discussion in the formulation of this variable.

RGRXY = RGRX * XY.

RGTOTLG = Lag of RGTOT.

RGXY = Rate of Growth of share of export in GDP.

RINT = Real Interest Rate. In percentage. RINT = INT - INFI.

RM = Rate of growth of Import. RM={(M-MLAG)/MLAG}*100. In percentage.

RMS = Rate of growth of Money Supply. In percentage. RMS={(MS-MSLG)/MSLG}*100

RRD = Real rate of depreciation. RRD = (log REX - log REXLG)*100.

RRDLG = Lag of RRD.

RSV = Total Change in Reserve. Billion of Rupiah. Source 1.

RSVY = Total change in reserve scaled to GDP. RSVY=RSV/GDP.

RX= Rate of growth of export. RX={(X-XLAG)/XLAG}*100. In percentage.

 $RY = Rate of growth of real GDP. RY = {(GDP-GDPLG)/GDPLG}*100.$ In percentage.

RWINT = World real interest rate. RWINT=WINT-INFUS.

SAV = National Saving. Billion Rupiah. Source 4.

SY = Saving scaled to GDP. ---->SY=SAV/GDP.

SYLG = Lag one period of SY.

TOT = Terms of Trade. Calculated as Unit Value of Export Price over Unit Value of Import Price. Unit value of import price is calculated from import value and import quantity data of monthly publication. Source 5,7.

TOTLG = Lag one period of TOT.

UT = Total Unrequited Transfers, in billion Rupiah. $UT = \{(UTD*NER)/1000\}$. Source 1.

UTD = Total Unrequited Transfers, in million of US\$. UTD=UTPD+UTOD.

UTPD = Private Unrequited Transfers, number in million of US\$. Source 1.

UTOD = Official Unrequited Transfers, number in million of US\$. Source 1.

X = Export, Billion Rupiah. This is the merchandise export, including Oil Export. Number in Million US\$ is transformed into Billion Rupiah. Source 1, 2.

XLAG = Lag one period of X.

XY = Export scaled by GDP. XY = X/GDP.

XMY = Export plus import, scaled to GDP

YC = Real Gross Domestic Product Per Capita. Thousand Rupiah.

WINT = World interest rate. Three month yield, LIBOR. Source 1.

WPIUS = Wholesale Price Index of United States. 1985=100. Source 1.

APPENDIX B: Data, Program, and Detail Estimation of 2SLS AND 3SLS Result using SAS System.

		he SAS System 12:18 Sund	ay, November 7, 1993
NDTE: Copyr NDTE: SAS (r Licen	ight(c) 1989 by SAS Institute Inc., Cary. NC USA r) Proprietary Software Release 6.08 TS404 sed to DKLAHOMA STATE UNIVERSITY, Site 0001354001		
NDTE: Runnti	ng on IBM Model 3090 Serial Number 274587, IBM Model 3090 Serial Number 274587.		
WARNING: CO	ald not open NEWS file SAS.VG08.NEWS(NEWS).		
IOTE: The SA IOTE: All dr prever	ASUSER library was not specified. SASUSER library ata sets and catalogs in the SASUSER library will it their deletion.	will now be the same as the WORK library. be deleted at the end of the session. Use the NGWD	RKTERM option to
NOTE: SAS BY SORT=4	ystem options specified are: 1		
OTE: The I	nitialization phase used 0.17 CPU seconds and 183	5K. 00050000	
	AND YEAR DC NER CPII CPIUS M X FDII; ARDS;	00060015 00061014	· ·
IDTE: The de IOTE: The DJ	sta set WDRK.TABLE1 has 58 observations and 8 var NTA statement used 0.06 CPU seconds and 2467K.	lables.	
2		00061014	
13 P	ROC PRINT;	00193299	
IDTE: The PR	COCEDURE PRINT printed pages 1-2. COCEDURE PRINT used 0.05 CPU seconds and 2615K,	Construction of the second second	
i4 D i5 I i6 (AATA TABLE2; NPUT PII OC LC M1 EDBP CA RGDPCT INT; ARDS;	00194016 00195099 00196016	·
IOTE: The da IOTE: The DA	ita set WORK.TABLE2 has 58 observations and 8 van ITA statement used 0.03 CPU seconds and 2615K.	iables.	
6 25		00196016	
26 P	ROC PRINT:	00204799	
IOTE: The PR IOTE: The PR	COCEDURE PRINT printed pages 3-4. COCEDURE PRINT used 0.03 CPU seconds and 2615K.		
27 D 28 J 29 C	ATA TABLES; NPUT GOVEX RSV SAV GOVDEF POP UTPD UTOD WINT; ARDS;	00204817 00204999 00205020	
IOTE: The da IOTE: The DA	ta set WORK.TABLE3 has 58 observations and 8 var TA statement used 0.03 CPU seconds and 2615K.	lables.	
29		00205020	1
89 P	ROC PRINT;	00211099	
OTE: The PR	OCEDURE PRINT printed pages 5-6.		

2 NOTE: Th	The SAS Syst e PROCEDURE PRINT used 0.03 CPU seconds and 2615K.	am 12:18 Sunday, November 7, 1993
190 191 192	DATA TABLE4; Input flma flomb nfa wpius gdp ir icinf winf; Cards;	00211131 00211299 00211332
NOTE: TH NOTE: TH	e data set WDRK,TABLE4 has 58 observations and 8 variables. e DATA statement used 0.03 CPU seconds and 2615K.	
192 281 252	I PROC PRINT:	00211332 00217633 00217799
NOTE: TH NOTE: Th	e PROCEDURE PRINT printed pages 7-8. e PROCEDURE PRINT used 0.03 CPU seconds and 2615K.	
253 254 255	DATA TABLES; Input fama fadmb qm RDM dim uvxp uvmp; Cards;	00217899 00217999 00218099
NOTE: TH NOTE: Th	e data set WORK.TABLE5 has 58 observations and 7 variables. e DATA statement used 0.03 CPU seconds and 2615K.	
255 314 315	I PROC PRINT;	00218098 00223999 00224099
NOTE: TH NOTE: Th	e PROCEDURE PRINT printed pages 9-10. s PROCEDURE PRINT used 0.02 CPU seconds and 2615K.	
316 317 318	DATA TABLEG; INPUT DCCG DCDE DCPS; CARDS;	00224199 00224299 00224399
NOTE: TH	e data set WDRK.TABLE6 has 58 observations and 3 variables. e DATA statement used 0.02 CPU seconds and 2615K.	
318 377 378	; PROC PRINT;	00224399 00230299 00230399
NOTE: TH NOTE: Th	e PROCEDURE PRINT printed pages 11-12. e PROCEDURE PRINT used 0.02 CPU seconds and 2615K.	
379 380 381	DATA TABLE7; INPUT MACCG MACDE MACPS MACDMB MACOFI DMBCCG DMBCDE DMBCPS D CARDS;	MBCDFI; 00230499 00230599 00230699
NOTE: TH	e data set WDRK.TABLE7 has 58 observations and 9 variables, e DATA statement used 0.03 CPU seconds and 2615K.	
381 440 441	PROC PRINT;	00230699 00236599 00236699
NOTE: The NOTE: The	e PROCEDURE PRINT printed pages 13-14. e PROCEDURE PRINT used 0.02 CPU seconds and 2615K.	•
and the second	N (N	(7)

	The SAS System		12:18 Sunday, November 7, 1993
10	DATA DIESEDT.	00236717	
13	MERGE TABLE1 TABLE2 TABLE3 TABLE4 TABLE5 TABLE6 TABLE7:	00236899	
4	CPIILG=LAG(CPII):	00236926	
5	CPIUSLG=LAG(CPIUS):	00237099	
6	INF1+(LDG(CPII)-LOG(CPIILG))+100;	00237199	
1	INFILG+LAG(INFI);	00237299	
8	INFUS+(LOG(CPIUS)-LOG(CPIUSLG))+100;	00237399	
9	INFD=INFI-INFUS;	00237425	
0	INFDA=INFI-ICINF;	00237599	
1	INFDLG=LAG(INFD);	00237635	
5		00237899	
	NFDLG+LAG(NFD),	00237999	
5	CDEPR=((NER-NERLG)/NERLG)*100:	00238099	
6	BINT-INFI:	00238199	
7	RWINT=WINT-ICINF:	00238299	
8	RINTD*RINT*RWINT;	00238399	
9	REX+((CP11/WP1US)*1000)/NER:	00238435	
0	REXLG=LAG(REX);	00238535	
1	GOVEXLG=LAG(GOVEX);	00238699	
2	RGGOVEX=(LOG(GOVEX)-LOG(GOVEXLG))*100;	00238799	
3	RGOVEX=(GDVEX/CPII)*100;	00238899	
4	GOVEXY+GOVEX/GDP:	00238999	
5	GDVDEY=GOVDEF/GDP;	00239099	
6	GUVDEYLG=LAG(GUVDEY); BCCOVDEYLG(COVDEYLC)/COVDEXLC)+100;	00239189	
é		00239399	
9		00239499	
ő	PRD=(LdG(PEX)=LDG(PEXLG))= 100:	00239599	
Ĩ.	RRDLG=LAG(RRD) 1	00239699	
2	KA=FDII+PII+DC:	00239725	
3	DCY=DC/GDP;	00239899	
4	DCYLG=LAG(DCY);	00239999	
5	DDCY=DCY-DCYLG;	00240099	
6	DCPSRAT=DCPS/DC;	00240199	
7	DCPS0TG+DCPS/(DCCG+DCDE);	00240299	
8	DCPSY=DCPS/GDP1	00240499	
9		00240499	
i i		00240599	
;		00240799	
â		00240899	
4	DCCGYLG=LAG(DCCGY):	00240999	
5	DDCCGY=DCCGY-DCCGYLG;	00241099	
6	DCOEY=DCOE/GDP;	00241199	
7	DCOEYLG=LAG(DCOEY);	00241299	
8	DDCDEY*DCDEY-DCOEYLG;	00241399	
9	DCTG=DCCG+DCOE ;	00241499	
0	DCTGLG=LAG(DCTG) (00241599	
1	DDCIG=DCIG-DCIGLG;	00241699	
2	DCTGRAT=DCTG/DC;	00241799	
3	DCTGT=DCTG/GDP;	00241899	
-		00242099	
ä	DOCTOVI CHI AC(DOCTOV)	00242199	
7	EDIV=EDIT/GDP+	00242225	
8	FDIVLG=LAG(FDIV):	00242399	
9	PIY=PII/GDP:	00242425	
Conservation and	The second s		

×. z

111

 ${\mathfrak t}_{\frac{1}{2}}$

.

•		The SAS System	12:18 Sunday, November 7, 1993
500	PIYLG+LAG(PIY):	00242589	
501	OCY=OC/GDP:	00242625	
502	OCYLG=LAG(OCY);	00242799	55
503	CFY=FDIY+PIY+OCY;	00242899	
104	MS=M1+QM+RDM+OIM;	00242999	
105	MIY=M1/GDP:	00243098	
06	LLY=(M1+QM)/GDP;	00243199	
07	QLLY=(QM-M1)/GDP;	00243299	
08	DCPSY=DCPS/GDP;	00243399	
609	DCG=DCCG+DCOE;	00243499	
10	DCGY=DCG/GDP;	00243599	
211	MSY=MS/GUP;	00243699	
12	MSYLG=LAG(MSY);	00243799	
513	MSLG=LAG(MS);	00243899	
514	RGMS=(LUG(MS)-LUG(MSLG))+100;	00243955	
10	PCDP=(100/CPTT)*000;	, 00244055	
	RGDPLG=LAG(RGDP)	00244299	
1A	RGRGDP#(LOG(RGDP)+LOG(RGDPLG))*100:	00244399	
19	RGDPCAP=RGDP/(POP/4):	00244599	
520	XY = X/GDP:	00244625	
521	XYLG=LAG(XY):	00244799	
522	RGXY=((XY-XYLG)/XYLG)=100:	00244899	
523	RX=(X/CPII)+100:	00244999	
524	RXLG=LAG(RX);	00245099	
525	RGRX=((RX-RXLG)/RXLG)*100;	00245199	
526	RGRXYF=(RGRX)*(XY*100);	00245299	
527	RXY=RX/GDP;	. 00245399	
28	RXYLG=LAG(RXY):	00245499	
529	RGRXY+(LOG(RXY)+LOG(RXYLG))*100;	00245599	
530	MY=M/GDP;	00245769	
531	INV=SAV-CA;	00245899	
532	SY=SAV/GDP;	00245925	
33		00246025	
105		00246146	
130	ED=(-0)).UT	00240247	
537	EDV=ED/CDP	00246437	
538	EDVICELAC(EDV)	00246537	
39	NEACB = EAMA - EL MA	00246699	
40	NFAPR+FADMR+FLDMR+	00246789	
341	NEACRY INFACE/GDP	00246899	
42	NFACBYLG=LAG(NFACBY)	00246999	
43	NFAPRY=NFAPR/GDP:	00247099	
544	NFAY=NFA/GDP:	00247199	
45	RSVY=RSV/GDP:	00247225	
46	IRRP = (IR * NER) / 1000:	00247399	
547	1RM=1RRP/M:	00247499	
48	IRMLG+LAG(IRM);	00247599	
549	RGIRM=(LDG(IRM)-LOG(IRMLG))*100;	00247699	
550	RGIRMLG=LAG(RGIRM);	00247799	
51	CAY=CA/GDP;	00247827	
552	EOBY #EOBP/GDP;	00247925	
53	SYLG+LAG(SY);	00248025	
84	IYLG=LAG(IY);	00246125	
55	ZERO1=CAY+FDIY+PIY+OCY+RSVY+EOBY;	00248299	
56	ZERU11=CA+FDII+PII+OC+RSV+EOBP;	00248399	19
107	ZERUZ MSY-DCY-NFAY;	00248499	
		·	
			1
	N		
	15 va 2.4	\cup	

	The SAS System	12:18 Sunday, November 7, 1993
68	ZER022+MS-DC-NFA : 000	249089
59	ZERO3=MS-M1-QM-RDM-DIM:	250099
60	XM=X+(-M); 000	251099
61	XMLG=LAG(XM); 000	252099
62	RGXM=((XM-XMLG)/XMLG)*100; 00:	253099
63	RGXMLG=LAG(RGXM); DO	254099
64	XMY=(X+(-M))/GDP; 000	255099
65	XMYLG=LAG(XMY); OO:	256099
66	RGXMY=((XMY-XMYLG)/XMYLG)*100; 000	257099
20	VILLO-LAG(RGAMT);	208099
69		200100
70		259099
71	TOTLG=LAG(TOT): 000	259199
72	RGT0T=((T0T-T0TLG)/T0TLG)*100: 000	260099
73	CBDA=MACCG+MACDE+MACPS+MACDMB+MACDFI: 000	261099
174	CEDAY=CBDA/GDP; 000	262099
175	DMBDA=DMBCCG+DMBCDE+DMBCDF1; 000	263099
76	DMEDAY=DMEDA/GDP; 000	264099
177	DMBDARAT=DMBDA/(DMBDA+CBDA); 000	265099
78	CBDARAT=CBDA/(DMBDA+CBDA); 000	265199
179	BDAY=CBDAY+DMBDAY; OO:	266099
180	PDPLG-LAG(PDP): 000	266199
181	RGPOP=(LOG(POP)+LOG(POPLG))*100; 00	267099
IOTE :	: Missing values were generated as a result of performing an operation on missing	values.
	tat 446.10 tat 446.10 tat 446.21 tat 446.20 tat 440.20 tat 440.21 tat 440.2	24 1 at 449.12 1 at 450.12 1 at 455.14
10000000		22 1 at 462:26 1 at 464:16 1 at 465:16
	2 at 467:20 2 at 467:30 2 at 467:40 2 at 469:20 2 at 469:30 3 at 469:	40 1 at 470:18 1 at 470:17 1 at 470:28
	1 at 472:10 1 at 472:14 1 at 473:9 2 at 475:11 1 at 478:13 2 at 480:	15 1 at 482:13 1 at 483:13 2 at 485:15
	1 at 486:13 2 at 488:15 1 at 491:13 1 at 493:13 2 at 495:15 1 at 497:	12 1 at 499:10 1 at 501:9 1 at 503:11
	1 at 503:15 1 at 505:9 1 at 506:14 1 at 507:15 1 at 508:13 1 at 510:	11 1 at 511:9 1 at 514:16 1 at 514:17
	1 at 514:27 1 at 516:18 1 at 518:11 2 at 518:20 1 at 518:21 2 at 518:	33 1 at 519:15 1 at 519:20 1 at 520:7
	2 at 522:12 2 at 522:18 2 at 522:24 1 at 523:8 1 at 523:14 2 at 525:	12 2 at 525:18 2 at 525:24 2 at 526:16
	1 at 526:20 1 at 527:9 1 at 529:9 2 at 529:17 1 at 529:18 2 at 529:	29 1 at 530:7 1 at 531:10 1 at 532:9
	1 at 533:9 1 at 534:11 1 at 535:10 1 at 535:18 1 at 536:8 1 at 536:	11 1 at 537:9 1 at 541:15 1 at 543:15
	1 at 544:11 1 at 545:11 1 at 547:11 1 at 549:10 2 at 549:18 1 at 549:	19 2 at 549:30 1 at 551:9 1 at 552:12
	1 at 555:12 1 at 555:17 1 at 555:21 1 at 555:25 1 at 555:30 1 at 556:	12 1 at 556:17 1 at 556:21 1 at 556:24
	1 at 556:28 1 at 557:12 1 at 557:16 1 at 560:7 1 at 560:10 2 at 562:	12 2 at 562:18 2 at 562:24 1 at 564:9
	1 at 564:12 1 at 564:15 2 at 566:14 2 at 566:21 2 at 566:28 1 at 568:1	9 1 at 569:11 1 at 872:14 1 at 572:21
INTE	1 at 572:28 1 at 574:13 1 at 576:15 1 at 579:13 1 at 581:9 2 at 581:	17 1 At 561:18 2 At 681:29
NUTES	I INE GATA SET WURK DISSERI HAS DE ODSERVATIONS AND 188 VARIABLES.	

 $\Delta_{r-n} x$

NOTE:	The	DATA	statement	used	0.49	CPU	seconds	and	3114K.	
221.919		12.482	1969-10-0162							

<u>e</u>

582 583	PROC PRINT: TITLE 'MODEL WITH 35L5';	00268099 00270099
NOTE :	The PROCEDURE PRINT printed pages 15-29.	
NOTE:	The PROCEDURE PRINT used 0.45 CPU seconds and 3162K.	
584	PROC SYSLIN 3SLS DATA=DISSERT;	01640099
585	ENDOGENOUS DCY RGRGDP FDIY PIY OCY SY IY:	01650098
587	GOVEXY XY LC FOY RRD WINT RWINT MIY CBDARAT RGDPCAP MY RRDLG	01660099
588	RGTOT SYLG TOTLG IYLG CAY RSVY EOBY MSY NFAY NFAPBY DDCY CBDAY	01680099
589	DMBDAY DDCDEY RGXY RGPOP INFDLG DDCTG DDCPS BDAY	01681099
590	DDCTGY RGRXYF RGRX REX:	01682099

£.,

6	The SAS System		12:18 Sunday, November 7, 1993
591	MODEL DOVELNED FOYIG NEACRY NEACRY IG DEXIG FOLY DOV DOCTOY DOVIG:	01690099	
592	RESTRICT NFACBY=-NFACBYLG:	01700099	
593	RESTRICT DCYLG=1:	01710099	
594	MODEL RGRGDP = RGPOP RGRXYF IY:	01720099	
595	MODEL FDIY * RGDPCAP GOVEXY XY LC FDY RRD WINT MIY;	01730099	and the second
596	MODEL PIY+WINT M1Y CODARAT INFD;	01740099	
697	MODEL DCY=RGDPCAP MY MIY CBDARAT:	01770099	
598	MODEL SY = RGRGDP RGTOT FDYLG SYLG;	01780099	
599	MODEL IY = RGRGDP RGTOT REXLG FDIY PIY DCY FDYLG DDCPSY IYLG;	01810099	
600	IDENTITY CAY=SY-IY;	01830099	
601	IDENTITY CAY+FDIY+PIY+OCY+RSVY+EOBY+O;	01840099	
602	IDENTITY DCY+MSY+NFAY:	01850099	
603	IDENTITY NFAY=NFACBY+NFAPBY:	01870099	
604	IDENTITY DDCY=DDCCGY+DDC0EY+DDCPSY;	01871099	
605	IDENTITY DDCY=DCY-DCYLG;	01871199	
606		01880099	
NUTE	be observations were read. 3 observations have missing values. 55 observations were used in the computations.		
NOTE :	The PROCEDURE SYSLIN printed pages 30-45.		
NOTE :	The PROCEDURE SYSLIN used 0.34 CPU seconds and 3369K.		
NOTE :	The SAS session used 1.92 CPU seconds and 3369K. SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27813-2414		

 \cup

.

1

x 8 5.

.

- - 1 . . .

N, 2			1		1.,	af.	类			×.,.
					The SAS	System		12:18	Sunday, Novem	oer 7, 1
	OBS	YEAR	DC	NER	CPII	CPIUS	M	x	FDII	
	1	19781	3919.9	415.00	42.605	58.479	849.92	1060.33	36.52	
111000000000000000000000000000000000000	2	19782	3990.7	415.00	43.210	60.029	864.03 825 44	1195.43	33.62	
	4	19784	4991.7	523.18	44.662	62.631	1186.05	1626.04	34.01	
	5	19791	5392.3	614.32	47.688	64.232	1325.09	1810.40	49.15	
	6	19792	5462.0	625.38	51.925	66.433	1343.94	2135.05	29.39	
	8	19793	5302.9	626.94	57,129	70.635	1572.37	2860.73	46.39	
	9	19801	8001.0	628.36	58.877	73.371	1768.83	3471.06	46.50	
	10	19802	4679.0	627.20	61.644	76.052	2007.67	3442.70	23.83	
	11	19803	4998.0	625.74	64.286	77.430	2183.21	3282,63	23.15	
	13	19811	5369.0	628.34	68.815	81.566	2158.98	3465.92	19.48	
-	14	19812	5386.0	629.73	70.073	83.481	2626.60	3629.76	32.75	
	15	19813	6067.0	633.08	71.331	85.855	2828.60	3778.85	19.63	
	10	19814	7987 0	647.30	76.049	87.846	3110.28	3341.36	25.89	
Contraction of the second second	18	19822	8857.0	653.60	76.426'	89.148	2718.98	3268.65	24.18	
	19	19823	10002.0	662.90	77.496	90.833	2896.21	3135.52	44.41	
	20	19824	10281.0	681.90	79.194	91.063	3082.19	3309.94 2853 84	87.97	
	22	19832	11183.0	969.70	85.862	82.135	3881.71	4453.83	116.36	
	23	19833	11556.0	981.30	87.874	93.207	4172.49	8008.55	19.63	
	24	19834	12208.0	987.90	88.692	94,050	3975.31	4845.65	25.69	
7	25	19841	11907.0	1006 50	93.284	96.118	3728.08	5513.61	-16.10	
	27	19843	11659.0	1038.40	96.303	97.190	3922.04	B458.87	84.11	
	28	19844	11978.0	1064.30	96.555	87.879	3768.69	5113.06	138.36	
No. 2017 Contraction	29	19851	12246.0	1088.60	97.436	98.492	3706.68	4747.38	114 56	
	31	19852	14463.0	1118.70	100.895	100.407	3170.40	5166.16	72.72	
	32	19854	14799.0	1122.90	101.147	101.326	3694.34	5531.40	102.18	
	33	19861	16687.0	1127.00	103.100	101.600	3665.00	8010.64	46.21	
	34	19862	17686.0	1126.70	104.100	101.300	3761.29	4028.72	57.92	
	36	19864	20329.0	1644.10	110.400	102.600	4619.92	5705.03	72.34	500.000.000.000.000.000.000
	37	19871	21225.0	1639.20	112.200	103.800	4532.39	6142.08	57.37	
	38	19872	23855.0	1642.90	114.100	105.100	5369.00	6775.32	-4.93	
	40	19874	28739.0	1649.40	120,100	107.200	5436.42	8027.63	555.85	
	41	19881	29886.0	1659.80	121.900	107.900	8286.46	8106.46	322.00	
	42	19882	33122.0	1671.50	124.000	109.200	5736.59	7866.08	140.41	
	43	19883	40835.0	1715.10	126.400	111.800	6143.49	8350.82	301.86	
MARKEN STREET	45	19891	41700.0	1743.10	129.700	113.100	6368.46	9062.38	353.85	
	46	19892	43174.0	1764.30	132.900	114.900	6921.35	9947.12	139.38	
	47	19893	60564 0	1792 50	135.500	117,000	8066 25	11174.45	440.96	
	49	19901	69677.0	1811.70	137.600	119.000	8567.53	10969.84	440.24	
Augustum (1999)	50	19902	82526.0	1832.80	140.100	120.200	8564.68	10256.35	417.88	
	51	19903	91099.0	1854.10	145.600	122.300	10623.99	12337.18	420.88	
	53	19911	98590.0	1916.20	149.900	125.300	12075.89	14162.63	1101.82	
	54	19912	103020.0	1942.80	153.300	126.000	11450.86	13407.26	487.64	
	55	19913	104951.0	1961.40	158.800	127.000	11933.16	14669.31	294.21	
	56	19914	114002.0	1980.90	162.400	128.000	12570.79	101/1.71	1002.34	

	*****		10.10 \$100	Noun	
Ine SAS	System	99. S.	TZTIO AGIN	ay, nove	•

-

Active country and the second s			***************************************	2-20-20-20-20-20-20-20-20-20-20-20-20-20		······	A	VICTOR CONTRACTOR OF STREET, ST		And the second
	OBS	PII	00	LO	M 1	EOBP	CA	RODPCT	INT	
	1	0.000	112.47	2	2113	-42.33	-192.98	16059.87	5.96	
	2	0.000	107.07	-1.4019	2241	-12.04	-173.89	16088.61	6.56	
(2011) () () () () () () () () ()	3	21.165	144.42	-3.0806	2371	26.15	-114.96	16010.00	7.21	
	4	27.205	239.62	0.1630	2488	-34.01	-132.36	16744.47	9.42	
PROFILE SALES AND AND AND A	6	0.000	258.63	-0.6509	2799	-22.73	-118.56	17005.17	12.79	
	6	22.514	46.28	-0.2457	3021	-111.94	158.85	17043.52	13.21	
	7	0.000	-30.03	0.8210	3180	7163.28	242.73	17404.55	12.97	
	8	15.674	83.38	-2.11/3	3316	48.90	332.20	12503.14	13.30	
	10	0.000	204 10	E 4025	A173	. 37 63	555 07	19005 12	13 67	
	1ĭ	0.000	352 29	2.6131	4697	-100.74	67.58	19374.05	10.52	
	12	28.827	62.04	1.8609	5013	-638.59	479.41	18893.63	12.55	
	13	0.000	103.68	5.1923	5252	-66.60	304.12	19499.91	15.95	
	14	29.597	375.95	1.0055	5601	-444.59	-134.76	20491.70	16.56	
	18	0.000	255.76	0.9955	5992	-192.46	-270.96	20920.11	18.02	
and the second second	16	0.000	334.47	1.0753	6476	-473.73	-259.44	20875.17	14.49	
	17	0.000	1197.01	4.1667	6/84	-1345 76	-9/4.19	20417 91	17 99	
	10	130.720	821 22	1 2680	7594	-151 14	-979.10	20788.91	17.49	
	20	51 143	733 04	1 5860	7125	189.57	-1025.58	21178.20	16.35	
2000 CONTRACTOR OF STATE	21	0 000	1287 48	0.2465	7389	+83.78	-2172.80	21474.78	17.86	
	22	364849	1221.82	17.9508	7517	496.49	-1127.76	21630.54	10.86	
	23	78.504	1170.69	2.2933	7739	156.03	-1028.40	22206.69	10.67	
	24	246.975	1083.73	1.6304	7584	-86.94	-1002.72	21816.00	13.57	
	25	0.000	1342.71	3.7433	8055	-255.61	-816.57	23409.84	18.01	
	26	-6.039	688.45	1.4820	8319	-317.05	-256.66	22826.24	16.00	
	27	-4.154	647.96	1.1429	7907	- 16.61	-533.74	23237.58	28.70	
	28	0.000	624.74	1.4438	8581	-65.99	+557.68	22912.36	11.80	
	29	0.000	509.46	-0.1856	8989	619.26	-893.74	24004.20	11.00	
	30	0.000	304.74	1.1//9	9494	249.13	-150 86	24203.80	8 48	
	31	-4.4/5	31.32	0.8578	9393	-271 74	-525 52	24635 91	10 51	
	32	338 100	720 17	0 5405	10478	-476 77	-698.74	25337.76	10.33	
	34	-7 8A7	908 12	-1 9589	10355	207 31	+1301.34	24193.55	10.01	
	35	-30.810	2069.20	-1.9980	11192	-687.68	-1657.58	25565.75	12.49	
	36	0.000	853.29	10.4995	11631	-725.05	-1300.48	27598.97	13.04	
	37	0.000	1980.15	8.2103	11500	-988.44	-1011.39	25571.43	15.02	
	38	-37.787	938.10	2.2165	12167	-251.36	-1332.39	27420.84	17.41	
	39	-23.015	1375.94	1.6681	11972	805.51	-907.43	27191.85	13,76	
	40	-84.119	834.60	2.5431	12705	-801.61	- 194 . 63	27569.89	11.87	
	41	*43.165	1100.45	1.8400	12628	-902.93	-99.09	200/3.24	14 66	
	42	-43.459	547 04	1.3354	13051	-629 36	-371 51	27296 30	14.98	
	43	39 447	1171 41	0.8410	14392	-267 56	-1065.08	27886.75	16.92	anno en la companya da com
	38	0.000	1497 32	1 9712	14409	-1480 28	+820.84	28828.05	13.82	
	46	-208.187	488.71	3, 1970	16494	-326.40	-486.95	29972.45	12.06	
	47	-97,922	297.33	1.0086	17164	-370.32	-632.34	31261.32	12.29	
	48	0.000	1982.51	1.2126	20559	-161.33	-317.27	32431.19	12.10	
	49	0.000	244.58	2.8189	22155	-12.68	-1224.71	30227.41	10.37	
	50	-9.164	2190.20	-0.9596	23205	- 1999 . 59	-1495.57	30221.88	12.90	
	51	-88.997	1768.81	4.9135	22982	1659.42	-2239.75	34211.42	16.86	
	52	-74.908	2267.84	11.5435	23819	1773.45	-539.34	36569.30	17.63	
	63	0.000	3669.88	-5.4406	23571	-479.05	-2305.19	30097.03	41.04	4
	54	-9.714	1297.79	-1.9387	24609	907.29	-2144.85	33949.66	10.73	
	55	-13.730	490.35	2.0010	25804	-1576 80	-1850 16	34035.41	12.20	
an and the state of the state o	50	0.000	3714.18	2.0/41	20033	10/0.40	1030.10	30000.41	12.00	

Чс., н					х <u>с</u>					÷. *
				The S	AS System			12:18	Sunday, Nov	amber 7, 1993
	OBS	GOVEX	RSV	SAV	GOYDEF	POP	UTPD	UTOD	WINT	
	1	1228.10	86.32	2232.15	-124.80	139.80	0	2	7.28	
	ź	891.40	+110.39	3914.38	34.00	139.80	ĕ	ő	8.71	
	4	1021.80	- 134 . 48	2751.20	18.80	139.80	o	6	11.08	
	6	1832.60	-166.48	2881.29	-432.90	143.04	o	6	10.87	
	7	1525.30	-65.06	4462.67	4.90	143.04	ŏ	7	11.66	
	8	1643.00	-526.63	3527.87	- 150.20	143.04	0	4	14.70	
	9	3127.30	-142.64	3166.99	-324.00	146.36	<u>s</u>	16	17.11	
	11	2990.80	-342.28	4870.42	-332.80	146.36	8	-	12.08	
	12	2561.00	47.00	4324.86	260.40	146.36	õ	17	17.10	
	13	3931.20	-360.67	3997.02	-1050.10	149.70	0	61	17.07	8
energy water and the state of the	14	3042.70	141.06	5//9.85	-161.50	149.70	ŏ	80	18 18	
	16	3043.70	386.62	4847.77	-131.60	149.70	ŏ	37	13.86	
	17	5561.20	-157.29	4654.76	-819.70	153.04	0	46	15.21	
	18	3044.80	1138.57	5498.08	-229.40	153.04	0	28	14.98	
	20	3405.20	-3.41	2958.87	516.50	153.04	õ	17	9.22	
	21	5101.80	881.13	4978.65	-793.80	156.45	0	20	9.13	
	22	3206.10	-743.76	5462.68	4.50	156.45	0 0	28	9.19	
	23	4453.10	*396.45	5452.32	-901.70	156,45	0	30	9.72	
	25	5759.30	-297.39	7379.61	-593.60	159.89	ŏ	32	10.09	
	26	2953.70	-92.60	7354.81	994.80	159.89	Ō	10	11.07	
	27	4599.40	-177.57	6764.73	-652.70	159.89	Q	31	11.67	
	28	4016.20	-190.51	7722 48	-1119 40	164 63	15	18	8 68	
	30	5083.10	-121.23	7626.20	470.00	164.63	12	2	8.09	
	31	4256.40	-108.51	7298.07	-558.70	164.63	20	7	8.01	
	32	4188.60	-97.69	7988.52	538.00	164.63	14	101	8.14	
	34	4038.00	51.83	9662.50	309.60	168.35	15	19	7.16	
	35	5220.30	248.94	6998.07	-670.60	168.35	20	26	6.34	
	36	5128.20	1099.90	8466.95	-58.10	168.35	18	42	6.31	
	38	5120.10	688.38	12216.19	275.10	172.01	18	28	6.96	20
	39	6923.10	-1377.59	10561.00	-949.90	172.01	24	32	7.04	
	40	6251.40	-310.09	10092.64	1142.30	172.01	22	55	7.89	
	41	11223.90	-376.77	12662.72	-2423.10	175.59	26	51	6.86 7 32	
	43	9865.22	363.03	12345.98	-1753.00	175.59	27	37	8.18	
	44	7064.98	-180.09	13885.37	-1557.80	175.59	25	67	8.86	
	48	13659.20	219.63	15790.60	-2591.41	170.14	30	62	9.62	
	46	10614 60	393.44	16010.01	1675.00	179.14	41	39	9.62	
	48	7643.20	-1944.86	15463.01	-109.77	179.14	48	70	8.71	
	49	15368.70	552.57	12436.28	-1659.80	179.30	51	61	8.35	
	50	6834.58	896.23	12659.91	687.44	179.30	48	66	8.36	
	52	8504.65	-4166.76	16204.51	436.64	179.30	30	41	8.28	
	53	18669.09	-1887.46	15730.74	- 1933.05	182.30	24	35	6.79	
	54	6904.38	-538.16	15561.40	323.94	182.30	24	36	5.95	
	55	9264 08	753.18	16540.27	-3154.64	182.30	41	59	5.79	
A Sector States and the sector of the sector	50	3204.00	1203.57	11403.03	1040.04	102.30		00	5.07	Contraction of the second

 \tilde{r}

					The SAS Sy	stem			12:18 Sunday.	November 7, 1993 7
	085	FLMA	FLDMB	NF A	WPIUS	GDP	1R	ICINF	WINE	
	1	520	234	601	65.404	6746.56	2302	6.7	9.8	20
	2	519	251	557	67.388	7652.83	2163	6.5	9.5	
	3	560	291	660	68.465	7891.66	2375	6.9	9.6	
	1	892	444	1061	69.995	7304.56	2626	1.1	9.8	
	6	752	420	1673	75.096	9632.36	3195	8.5	11.2	
	7	589	463	2099	77.476	10661.93	3290	9.5	12.5	
	8	567	431	2943	80.197	9896.64	4062	10.6	13.9	
	9	543	444	3973	83.881	10597.20	4283	12.1	15.6	
	10	556	428	5095	85.638	12536.45	5408	12.5	16.2	
And the state of the second states and the	11	540	418	6795	88.415	12857.35	5627	11.7	15.4	
	12	539	388	6031	90.285	12621.68	5392	11.4	15.4	
	14	471	3/8	6344	92.893	15153 68	5835	9.7	13.6	
President and the Real Property of the President Street Stre	15	468	415	6271	95.940	15188.45	5560	10.1	13.9	
	16	468	432	6370	95.853	14781.18	8014	9.6	19.3	
	17	459	477	6392	96.637	15640.97	5235	8.5	12.9	
	18	459	517	5665	96.811	16585.96	3713	7.9	12.5	
	19	375	500	5469	97.333	16165.55	3279	7.2	12.7	
	20	347	663	5266	97.333	15426.08	3144	6.3	13.0	
	21	542	1315	6446	97.333	17323.96	1831	5.6	12.1	
	22	605	858	6916	97.594	20298.97	2703	2.1	12.0	
the second s	23	773	890	8089	99.004	10580 56	3718	4.9	13.4	
	25	453	971	9844	100.119	22871.99	4066	5.2	13.8	
	26	445	925	10705	100.815	23309.87	4301	4.9	14.1	
	27	446	811	10842	100.554	23955.49	4750	4.6	14.2	
	28	444	762	11942	100.293	21610.76	4733	4.4	14.4	2
	29	335	710	12743	100.119	23991.39	5049	4.3	14.0	
	30	236	612	13107	100.206	25178.22	4935	4.5	14.5	*
	31	138	576	13331	99.510	25440.02	5094	4.1	13.9	- 2
	32	52	588	14106	100.120	23833.96	4974	4.0	13.1	
	33	64	418	12007	96.639	26027.80	4861	3.4	9.9	
	35	83	575	19741	86 288	28711.17	4640	2.0	7.9	
	36	84	541	15919	96.637	28441.01	4051	1.8	7.8	
	37	89	623	16443	97.800	29780.43	4005	2.1	7.9	
	38	1063	683	15750	99.400	32164.33	4147	3.0	10.2	
	39	1068	741	17885	100.500	92769.90	4975	3.2	11.8	
	40	1182	752	18332	101.600	31790.66	6592	3.3	13.5	
	41	1163	887	19005	101.600	33424.54	5410	3.2	12.5	
	42	1117	1414	18029	103.200	36/45.1/	5304	3.1	12.1	
	43	1079	1150	17892	104.700	37498.21	4956	3.3	14 6	
	48	1051	739	18608	107.500	39008.05	4851	4.1	15.0	
	46	1023	1716	16601	109.400	41698.43	4377	4.7	15.9	
	47	1056	1933	17355	109.400	42505.36	4380	4.5	17.8	
	48	1093	3193	18279	109.400	42009.02	5454	4.5	19.5	
	49	6544	4173	12405	111.800	41592.91	5239	4.9	22.7	
	50	6529	6334	8726	110.800	42340.85	4693	4.5	23.1	
	51	6650	10087	6425	112.800	49811.82	7450	B.0	20.9	
	52	8221	11472	14672	113 800	52611 10	8069	5.0	1.1	
	54	5715	11712	16677	112.700	52044.82	8673	4.6	12.4	
	55	5965	9899	17853	112.500	55318.63	8479	4.1	11.7	
	56	7013	11935	17283	112.700	58474.40	9258	3.5	11.2	

	2	ŝ.		Ċ,	!				
				The SA	5 System			12:18	Sunday, November
	OBS	FAMA	FADMB	QM	RDM	OIM	UVXP	UVMP	
	1	959	395	1370	218	821	63.3	36.4	
	2	898	429	1369	163	775	63.9	25.7	
	ā	1010	501	1397	167	825	68.8	29.7	
	Å	1672	685	1441	262	1862	68.3	40.7	
	5	1885	695	1661	232	2032	69.4	28.9	
and the second second second	6	2041	817	1730	234	2150	85.0	47.4	
	7	2111	1040	1887	304	2207	95.0	45.4	
	8	2625	1316	2074	333	2523	121.7	39.1	
	9	3079	1881	2430	301	2521	124.6	76.3	
	10	3932	2147	2749	339	2513	135.6	65.2	
	11	4295	2458	3083	321	2691	140.9	97.5	
	12	4217	2741	3056	468	2548	141.3	37.2	
	13	4696	2549	3404	409	2649	141.0	58.2	
	14	4560	2554	3399	348	2289	134.9	72.0	
	15	4317	2837	3783	318	2245	133.8	96.3	
	16	4037	3233	3671	418	2657	133.4	49.7	
	17	4111	3216	4173	385	3036	132.8	67.3	
	18	3259	3381	4207	341	2795	131.4	53.2	
	19	3220	3124	4548	330	3000	131.4	81.0	
	20	3685	2591	5117	330	2975	134.5	46.0	
	21	3978	4326	5634	432	4308	130.0	49.0	
	22	3911	4416	6068	368	4140	112.7	18.1	
	23	4606	4525	6494	368	4301	110.1	/6.D	
	24	5309	4520	7212	311	5192	110.0	90.5	
	25	0093	4575	0004	330	5655	115.0	66.0	
	20	7045	4423	6701	310	5304	449.4	A2 A	
a second second	20	1234	# 107	0766	281	8733	117 8	60.0	
	20	9145	6633	10489	083	5256	108 4	82 0	
	20	0105	5760	10969	269	4508	00 1	126 4	
	30	8124	5920	12200	321	5879	99 4	103 3	
	32	8507	6239	13054	291	5436	95.3	88.3	
	22	7466	8047	12692	303	4882	B4.2	72.0	
	34	7727	5645	13995	335	5900	78.4	101.1	
	35	11796	8604	16188	485	8999	43.7	108.8	
	CONDUCT/000000000000000000000000000000000000			CONTRACTOR OF THE OWNER	CONTRACTOR OF MANY	1/ CONTRACTOR (1997)	the strate of the second second	10000000000000000000000000000000000000	CHOOLE CONTRACT OF THE PROPERTY OF THE PROPERT

21200

31106 38247

60811

449 531

792 688

14709

20852 31045

58.9

61.8

67.0

66.6 66.1

67.0

64.5

50.9 64.4 70.8 65.2 63.7 71.1

61.0

73.2 111.5 76.1 65.3

68.7

72.1

98.0

74.2

142.2

127.1 96.2 73.1

129.1

207.7

159.8

51.1 90.1 154.0

121.3

142.5

244.3

147.6 154.8 186.9

182.7

189.2

124.1

the second s

11926 12458

17950 21397

25155

8. a.

7. 1993 8

	The S	AS System		12:18 Sunday, November 7, 1993 11
OBS	DCCG	DCDE	DCPS	
1	-247.9	171.1	3996.7	
2	-431.9	219.6	4203.1	
	-631.4	261.1	4369.6	the second se
5	-366.2	203.0	5555.5	
6	-638.6	203.7	5897.0	
7	-1020.9	259.1	6239.6	
	-1571.0	191.0	6381.0	
10	-2318.0	327.0	6670.0	
	-2679.0	459.0	7117.0	
12	-3024.0	424.0	7969.0	
14	-3618.0	524.0	8479.0	
. 15	-3738.0	651.0	9154.0	and the second
16	-3624.0	835.0	9641.0	
18	-3393.0	1025.0	11225.0	
19	-3139.0	1259.0	11881.0	
20	-3280.0	1071.0	12491.0	
21	-3009.0	899.0	13427.0	
15	-3643.0	1212.0	13988.0	
24	-3847.0	1182.0	14873.0	
25	-5123.0	4667.0	11941.0	
26	-6400.0	4441.0	13002.0	
28	-8031.0	4717.0	14737.0	
29	-8308.0	4569.0	15383.0	
30	-9579.0	4564.0	16491.0	
31	-8266.0	4765.0	17264.0	
33	-7699.0	4520.0	19058.0	the second se
34	-7662.0	4617.0	19827.0	
35	-0187.0	4974.0	20432.0	
36	-8541.0	5031 0	22864.0	
38	-8945.0	4761.0	27001.0	
39	-6731.0	2638.0	27940.0	
40	-6682.0	4818.0	29710.0	
42	-7923.0	5071.0	34792.0	
43	-7269.0	5366.0	39036.0	
44	-7167.0	6350.0	40532.0	
45	-7823 0	6764 0	44125.0	
47	-7762.0	8093.0	51942.0	
48	-8941.0	8560.0	59711.0	
49	-10955.0	8516.0	70861.0	
50	-11160.0	8395.0	92582.0	
82	12026.0	7709.0	98877.0	
53	-12133.0	6520.0	102819.0	
54	-13/80.0	9395.0	107005.0	
55	-12711.0	9706.0	115406.0	

.

· . . 1

,

DBS HACCO HACCDE HACCDE HACCDE DHECCE DHECCE						The	SAS System	•		12:18	Sunday, November 7.	1993 13
1 243.2 243.2 243.2 243.2 0 0 0 244.7 0 3 473.8 233.4 1143.8 731.1 0 0 0 2318.8 0 4 611.9 234.4 1143.8 781.1 0 0 0 2318.8 0 4 611.9 234.4 1143.8 781.1 0 0 0 244.7 0 4 611.9 234.4 1143.8 781.1 0 0 0 244.7 0 7 671.4 233.7 1132.4 0 0 0 2445.5 0 10 830.5 247.9 1329.6 1122.3 0 0 0 2458.0 0 11 831.0 1328.0 1228.0 0 0 0 2588.0 0 12 630.0 134.0 1349.0 1349.0 0 0 0 7788.0 0 0		OBS	MACCO	MACOE	MACPS	MACOMB	MACOFI	DMBCCG	DMBCDE	DMBCPS	DMBCOFT	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	349.2	263.6	1052.1	630.5	0	0	0	2944.7	0	
1 479.8 285.4 1148.8 781.1 0 0 0 3840.7 0 4 663.1 234.4 1807.7 866.0 0 0 0 3840.7 0 7 667.4 6 1397.7 1886.0 0 0 0 4436.7 0 7 667.4 6 1397.0 1397.0 0 0 0 4436.3 0 7 667.4 6 1397.0 1397.0 0 0 0 4436.3 0 8 630.5 247.9 1897.0 1897.0 0 0 0 4436.3 0 12 650.0 277.0 1727.0 0 0 0 6550.0 0 13 543.0 576.0 1897.0 0 0 0 6563.0 0 14 709.0 481.0 2021.0 3937.0 0 0 0 9838.0 0 14 761.0 1897.0 1897.0 1897.0 1897.0 1897.0 1997.0		2	430.5	201.9	1105.6	737.2	0	0	0	3097.5	0	
4 631.8 238.4 1731.4 846.4 0 0 0 3340.7 0 5 486.7 201.2 1807.7 856.0 0 0 0 344.8 0 7 856.5 247.9 138.6 1128.3 0 0 0 4350.5 0 8 650.5 247.9 138.7 0 0 0 4359.5 0 11 183.0 217.0 1837.0 0 0 0 2286.0 0 12 630.0 507.0 197.0 1722.0 0 0 0 6621.0 0 13 543.0 402.0 1848.0 0 0 0 0 6621.0 0 14 703.0 468.0 1828.0 2120.0 0 0 0 6621.0 0 <t< td=""><td></td><td>3</td><td>479.8</td><td>253.4</td><td>1149.8</td><td>781.1</td><td>0</td><td>0</td><td>0</td><td>3219.8</td><td>0</td><td></td></t<>		3	479.8	253.4	1149.8	781.1	0	0	0	3219.8	0	
9 466.4 201.1 1807.7 856.0 0 0 277.8 0 9 586.7 122.2 1832.1 1850.0 0 0 456.5 0 9 580.6 247.8 1899.6 1129.3 0 0 0 458.3 0 10 586.0 247.6 1872.0 1872.0 0 0 0 458.3 0 11 586.0 247.6 1872.0 1872.0 0 0 0 458.0 0 12 583.0 247.6 1872.0 1872.0 0 0 0 650.0 0 13 543.0 462.0 1878.0 2144.0 0 0 0 7265.0 0 14 799.0 483.0 2446.0 0 0 0 788.0 0 127.0 19 997.0 0 246.0 204.0 247.0 0 0 0 147.7 0 20 1060.0 984.0 2042.0 207.0 0 0		4	631.9	238.4	1731.4	846.4	0	0	0	3540.7	0	
6 586 7 192 2 1852 1 950.0 0 0 0 4044.9 0 7 6 650.6 277.8 1887.0 1187.0 0 0 0 4534.0 0 10 5586.0 274.0 1872.0 1287.0 0 0 0 4534.0 0 11 534.0 474.0 1872.0 1287.0 0 0 0 4534.0 0 12 650.0 507.0 1771.0 1282.0 0 0 0 6550.0 0 14 709.0 465.0 1284.0 0 0 0 0 7756.0 0 14 709.0 465.0 1824.0 0 0 0 0 0 0 1824.0 0 16 941.0 867.0 1633.0 2042.0 2050.0 0 0 0 1644.0 0 0 0 1644.0 0 0 1644.0 0 0 1644.0 0 0 0 1644.		9	486.4	201.1	1807.7	856.0	. p	Q	Q	3747.8	0	
7 674.8 233.9 1888.0 1034.1 0 0 0 4300.5 0 9 6500.5 274.0 1872.0 1826.0 0 0 0 4300.5 0 11 858.0 174.0 1826.0 102.0 0 0 0 4788.0 0 12 653.0 977.0 1722.0 0 0 0 6613.0 0 13 553.0 4420.0 1977.0 1722.0 0 0 0 6613.0 0 14 553.0 4420.0 1977.0 1722.0 0 0 0 6613.0 0 0 1883.0 0 0 0 0 6614.0 0 0 0 0 0 0 1883.0 0 0 0 0 0 1883.0 0 0 0 0 0 1844.0 0 0 0 1844.0 0 0 0 1844.0 0 0 1844.0 0 0 1844.0 0 0 1844.0 <		6	588.7	192.2	1852.1	950.0	0	0	0	4044.9	0	
8 840.0 244.0 129-3 0 0 129-3 0 0 129-3 0 0 129-3 0 0 129-3 0 0 129-3 0 0 129-3 0 0 0 0 129-3 0 0 0 0 129-3 0 0 0 0 129-3 0 0 0 0 0 129-3 0 0 0 0 0 129-3 0 129-3 0 129-3 0<		7	674.6	233.9	1889.0	1034.1	0	0	0	4350.5	0	
10 100 101 102	STATE AND A DESCRIPTION OF A DESCRIPTION	, and the second	630.5	247.9	1939.6	1129.3	Ň	Ň		4309.3	Ň	
11 634.0 117.0 1828.0 1628.0 0 0 0 928.0 0 12 630.0 507.0 1977.0 1722.0 0 0 0 6513.0 0 14 709.0 448.0 1878.0 0 0 0 6621.0 0 14 709.0 448.0 1878.0 2014.0 0 0 0 6620.0 0 14 890.0 578.0 1888.0 2014.0 0 0 0 7288.0 0 15 997.0 1038.0 2042.0 3870.0 0 0 0 9884.0 0 0 20 1080.0 2981.0 2082.0 5050.0 0 0 0 1998.0 0 0 1998.0 0 0 1998.0 0 0 1998.0 0 0 0 1998.0 0 0 0 1998.0 0 0 0 1998.0 0 0 0 1998.0 0 0 0 1998.0 0 0		10	589 0	274 0	1872 0	1826 0	č		ă	4798.0	ŏ	
12 630.0 507.0 1977.0 1722.0 0 0 0 5631.0 0 13 553.0 445.0 1629.0 2120.0 0 0 0 6650.0 0 14 709.0 485.0 1629.0 2140.0 0 0 0 6650.0 0 15 880.0 873.0 1684.0 2344.0 0 0 0 7785.0 0 16 941.0 803.0 1684.0 2344.0 0 0 0 7785.0 0 19 997.0 1038.0 2042.0 4373.0 0 0 0 11644.0 0 221 1831.0 621.0 1892.0 5569.0 0 0 0 11874.0 0 221 1924.0 827.0 1620.0 8464.0 0 0 0 113310.0 0 221 1934.0 1940.0 743.0 844.0 4104 12457.0 20 221 1940.0 194.0 743.0 844.0 466		iĭ	834.0	417.0	1828.0	1628.0	ŏ	ŏ	ŏ	8298.0	ō	
13 543.0 402.0 1848.0 1878.0 0 0 0 6650.0 0 14 709.0 445.0 1829.0 214.0 0 0 0 6650.0 0 15 890.0 186.0 2244.0 0 0 0 7786.0 0 16 7766.0 893.0 2042.0 2001.0 0 0 894.0 0 17 770.0 813.0 2042.0 850.0 0 0 0 1040.0 0 20 1060.0 994.0 2042.0 850.0 0 0 0 1187.0 0 21 1840.0 851.0 1672.0 5275.0 0 0 0 1187.0 0 22 1264.0 837.0 1640.0 5866.0 0 0 0 13310.0 0 22 1271.0 813.0 844.0 464 3244.460.0 324 344 4104 12447.0 30 22 2367.0 377.0 545.0 775.0 4		12	630.0	507.0	1977.0	1722.0	ò	Ó	Ö	5613.0	0	
14 709.0 485.0 1829.0 2120.0 0 0 0 0 7265.0 0 15 841.0 809.0 1849.0 2444.0 0 0 0 7265.0 0 16 941.0 809.0 1849.0 2044.0 0 0 0 7265.0 0 17 770.0 813.0 2042.0 307.0 0 0 0 8384.0 0 20 1080.0 994.0 2042.0 5569.0 0 0 0 11847.0 0 21 857.0 857.0 1662.0 0 0 11877.0 0 0 11877.0 0 22 1264.0 897.0 1662.0 5404.0 0 0 0 11877.0 0 0 11877.0 0 0 11877.0 0 0 1294.0 1444.0 4264.0 1444.0 20 20 20 121 121.0 121.0 121.0 121.0 121.0 121.0 121.0 121.0 121.0 121.0 12		13	543.0	402.0	1948.0	1879.0	0	0	0	6021.0	0	
15 891.0 578.0 1889.0 2314.0 0 0 0 7786.0 0 16 941.0 803.0 1913.0 2081.0 0 0 0 7786.0 0 17 770.0 813.0 1913.0 2081.0 0 0 0 8864.0 0 18 786.0 853.0 2022.0 460.0 0 0 0 1864.0 0 21 1851.0 2022.0 8275.0 0 0 0 11844.0 0 22 124.0 951.0 1672.0 8275.0 0 0 0 11844.0 0 23 1322.0 955.0 1670.0 5864.0 0 0 0 12385.0 0 24 1081.0 1116.0 1564.0 5866.0 0 0 0 13310.0 0 27 2189.0 237.0 545.0 7763.0 431 341 4104 12457.0 30 27 2189.0 237.0 561.0 9805.0 <td< td=""><td></td><td>14</td><td>709.0</td><td>485.0</td><td>1829.0</td><td>2120.0</td><td>0</td><td>0</td><td>0</td><td>6650.0</td><td>0</td><td></td></td<>		14	709.0	485.0	1829.0	2120.0	0	0	0	6650.0	0	
16 941.0 809.0 183.0 2848.0 0 0 0 0 838.0 0 17 770.0 813.0 2042.0 3870.0 0 0 0 9384.0 0 18 786.0 833.0 2042.0 3870.0 0 0 0 9383.0 0 20 1089.0 981.0 2082.0 5050.0 0 0 0 1164.0 0 21 124.0 955.0 1672.0 5275.0 0 0 0 11377.0 0 22 1322.0 955.0 1630.0 5404.0 0 0 0 13310.0 0 23 132.1 171.0 154.0 5866.0 0 0 0 1324.0 24 24 1081.0 154.0 586.0 0 0 0 1324.0 24 25 1731.0 171.0 523.0 6316.0 366 3224.0 436 13224.0 45 24 495.0 1451.0 641.0 6464.0<		15	890.0	578.0	1889.0	2314.0	0	Q	o o	7265.0	0	
17 770.0 6 13.0 1913.0 3091.0 0 0 0 8382.0 0 19 397.0 1038.0 2042.0 4373.0 0 0 0 9838.0 0 20 1080.0 984.0 2042.0 4373.0 0 0 0 1046.0 0 21 886.0 611.0 1883.0 568.0 0 0 0 11547.0 0 23 1332.0 958.0 0 0 0 11547.0 0 24 1081.0 1100.0 1564.0 586.0 0 0 0 13310.0 0 25 1731.0 1781.0 253.0 6318.0 388 299 2866 1418.0 144 26 2367.0 371.0 641.0 6844.0 481 341 4104 12457.0 30 30 385.0 37.0 601.0 9809.0 657 437 4560.0 411 44 30 385.0 37.0 601.0 9809 4557		16	941.0	809.0	1883.0	2548.0	0	0	Q	7758.0	0	
18 78<		17	770.0	813.0	1913.0	3091.0	0	ġ	o	8382.0	0	
19 997.0 1080.0 2082.0 9352.0 0 0 1080.0 0 21 989.0 837.0 1892.0 5050.0 0 0 0 11847.0 0 21 989.0 837.0 1892.0 556.0 0 0 0 11847.0 0 23 1392.0 985.0 1830.0 0 0 0 13310.0 0 24 1081.0 1161.0 1564.0 586.0 0 0 0 13310.0 0 25 1731.0 1761.0 1584.0 763.0 431 341 4104 12457.0 30 26 2367.0 337.0 545.0 763.0 431 341 4104 12457.0 30 30 385.0 37.0 601.0 980.0 652 537 4729 1646.0 48 31 1840.0 20.0 872.0 872 15590.0 49 31 1847.0 28.0 872.0 1729 1646.0 40 3		18	786.0	853.0	2042.0	3870.0	0	0	0	9184.0	0	
20 080.0 981.0 1002.0 998.0 0 0 0 0 0 0 0 21 1932.0 983.0 193.0 983.0 0 0 0 1335.0 0 24 1932.0 983.0 193.0 536.0 0 0 0 1331.0 0 24 1932.0 983.0 193.0 536.0 0 0 0 1331.0 0 25 1731.0 1161.0 156.0 6386.0 0 0 0 1335.0 0 26 2667.0 230.0 641.0 6894.0 458 364 414.0 12457.0 30 28 498.0 144.0 743.0 9418.0 562 466 4375 14640.0 41 30 385.0 37.0 801.0 962.0 677 493 4527 16580.0 49 31 540.0 384.0 024.0 729 503.499 1237.0 1255.0 1077.6 10776.0 872 4454 19477.0 <td></td> <td>19</td> <td>997.0</td> <td>1038.0</td> <td>2042.0</td> <td>43/3.0</td> <td>0</td> <td>0</td> <td>0</td> <td>9839.0</td> <td>0</td> <td></td>		19	997.0	1038.0	2042.0	43/3.0	0	0	0	9839.0	0	
12 133		21	853 0	821 0	1882.0	5050.0	ň	ň	ň	11544 0	ň	
23 132.0 955.0 1630.0 0 0 0 1234.0 0 24 1061.0 1110.0 1564.0 566.0 0 0 0 1331.0 0 25 1731.0 1761.0 1533.0 6318.0 388 299 2866 11418.0 24 26 2367.0 347.0 641.0 6894.0 448 344 4104 12457.0 30 28 1670.0 203.0 652.0 9521.0 518.4 446 4375 14640.0 41 30 385.0 37.0 801.0 960.0 607 499 4527 15690.0 49 31 540.0 36.0 800.0 10076.0 652 537 4729 16641.0 41 33 1164.0 20.0 872.0 10283.0 768 852 4500 1816.0 40 34 1164.0 216.0 1397.0 833 5060 21731.0 25 37 2275.0 32.0 439.0 13937.0 833		22	1264.0	837.0	1672 0	8275 0	ă	ŏ	ŏ	11877.0	ŏ	
24 1081.0 1110.0 1954.0 5966.0 0 0 0 1310.0 0 25 1731.0 512.0 545.0 7763.0 431 341 4104 12457.0 30 26 2367.0 237.0 644.0 648.0 466 466.0 1224.0 3 28 1670.0 203.0 652.0 9821.0 518.6 440.6 4815 14068.0 37 29 498.0 164.0 743.0 9418.0 52.4 66.4 4375 1664.0 44 30 385.0 37.0 801.0 9808.0 607 498 4227 1646.0 44 31 164.0 20.0 10041.0 728 530 4681 17281.0 44 31 164.0 981.0 10348.0 864 642 4985 1894.0 40 32 1237.0 32.0 823.0 1373.0 853 1086.0 400 400 34 1797.0 180.0 9877.0 872 641 <td></td> <td>23</td> <td>1332.0</td> <td>955.0</td> <td>1630.0</td> <td>5404.0</td> <td>ŏ</td> <td>ŏ</td> <td>ŏ</td> <td>12358.0</td> <td>ŏ</td> <td></td>		23	1332.0	955.0	1630.0	5404.0	ŏ	ŏ	ŏ	12358.0	ŏ	
25 1731.0 1781.0 523.0 6318.0 398 299 2886 11418.0 24 26 2367.0 337.0 545.0 7763.0 431 344 4104 1247.0 30 27 2180.0 227.0 644.0 6894.0 468 386 460 13224.0 45 28 457.0 200.0 652.0 9521.0 518 440.0 4815 4640.0 41 30 385.0 194.0 743.0 9418.0 552 466 4375 4640.0 41 30 385.0 194.0 714.0 10076.0 652 537 4781 1728 16464.0 46 31 164.0 20.0 874.0 10243.0 769 532 4500 1917.0 41 34 1797.0 13.0 881.0 10345.0 874 4984 19475.0 32 35 2136.0 160.0 4139.0 1371.0 833 706 4999 2030.0 45 37 227		24	1081.0	1110.0	1564.0	5866.0	Ō	Ó	Õ	13310.0	õ	
26 2367.0 337.0 545.0 7763.0 431 341 4104 1247.0 30 27 2185.0 227.0 641.0 684.0 463 386 4360 1327.0 641.0 28 1670.0 203.0 652.0 9521.0 518 440 4515 1408.0 37 29 495.0 164.0 743.0 9418.0 552 466 4775 1464.0 41 30 385.0 37.0 801.0 9809.0 607 499 4527 15590.0 41 31 540.0 36.0 800.0 10076.0 652 537 4729 16464.0 46 32 1237.0 32.0 823.0 100243.0 785 562 4500 1818.0 0 434 34 1197.0 19.0 814.0 0034.0 844 642 4598 18046.0 400 35 2136.0 24.0 1133.0 1255.0 877 683 5060 21731.0 255 37 22756		25	1731.0	1781.0	523.0	6318.0	398	299	2886	11418.0	24	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		26	2367.0	337.0	545.0	7763.0	431	341	4104	12457.0	30	
28 1670.0 203.0 652.0 9521.0 516 440 4515 14086.0 37 29 495.0 194.0 743.0 9415.0 562 466 4375 14640.0 48 30 385.0 37.0 801.0 9809.0 607 499 4527 15690.0 49 31 540.0 36.0 800.0 10076.0 652 537 4729 1644.0 41 32 1164.0 20.0 812.0 10263.0 769 552 4500 18166.0 40 34 1707.0 19.0 681.0 10345.0 864 642 4508 18946.0 40 35 2136.0 19.0 997.0 10778.0 872 641 4964 19475.0 32 36 3106.0 24.0 113.0 12552.0 87 63 5080 21731.0 25 37 2275.0 32.0 439.0 1597.0 839 902 4721 25761.0 105 39 2570.0		27	2189.0	227.0	641.0	8894.0	468	386	4360	13224.0	45	
29 495.0 164.0 743.0 9415.0 552 466 4975 14640.0 41 30 355.0 37.0 800.0 10076.0 652 537 4729 16644.0 48 32 1237.0 32.0 823.0 10041.0 729 530 4981 17281.0 41 33 1164.0 20.0 872.0 10243.0 769 552 4500 18166.0 40 34 1797.0 19.0 881.0 10245.0 864 642 4592 18946.0 40 35 2136.0 19.0 957.0 10778.0 872 641 4954 19470.0 32 36 3106.0 24.0 1133.0 12552.0 877 683 5080 21731.0 25 37 2275.0 32.0 439.0 13937.0 893 706 4999 23030.0 45 38 3053.0 40.0 1249.0 14876.0 933 902 4721 25761.0 105 398 <		28	1670.0	203.0	652.0	9521.0	518	440	4815	14086.0	37	
30 385.0 37.0 801.0 9809.0 607 499 4527 15690.0 49 31 540.0 36.0 800.0 10076.0 652 537 4729 1644.0 48 32 1184.0 20.0 872.0 10243.0 769 852 4500 18166.0 40 34 1797.0 15.0 811.0 10245.0 844 642 4598 1894.0 40 35 2136.0 19.0 957.0 10778.0 877 633 5080 21731.0 25 36 3106.0 24.0 1133.0 12552.0 877 633 5080 21731.0 25 37 2275.0 32.0 439.0 13937.0 893 706 4999 23030.0 45 38 3053.0 40.0 1475.0 333 2260.0 114 115 40 3518.0 98.0 1676.0 1502 1068 1665 30626.0 129 42 3196.0 51.0 1578.0		29	495.0	194.0	749.0	9415.0	562	466	4375	14640.0	41	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		30	385.0	37.0	801.0	9809.0	607	499	4527	15690.0	49	*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		31	540.0	36.0	800.0	10076.0	652	. 537	4/29	16464.0	48	
33 1167.0 120.0 884.0 164 642 4598 1894.0 40 95 2136.0 18.0 957.0 00746.0 872 641 4954 19475.0 32 36 3106.0 24.0 1133.0 12552.0 877 683 5080 21731.0 25 37 2275.0 32.0 439.0 13937.0 893 706 4999 23030.0 45 38 3053.0 40.0 1449.0 14175.0 933 902 4721 2761.0 105 39 2570.0 38.0 15462.0 978 1093 4762 28034.0 114 40 3518.0 36.0 1676.0 1452.0 1070.0 1578.0 1069 5020 3298.0 159 41 1862.0 51.0 1578.0 17670.0 1040 1070 5315 37458.0 175 43 3988.0 51.0 1578.0 16761.0 1622 1106 5020 3298.0 170 45 33960.	Cardia constructores de la construcción de la construcción de la construcción de la construcción de la constru	32	1237.0	32.0	823.0	10041.0	729	530	4901	17201.0	40	
35 2134.0 19.0 197.0 10778.0 872 641 4954 19475.0 32 36 3106.0 24.0 1133.0 12552.0 877 683 5080 21731.0 25 37 2275.0 32.0 439.0 13937.0 893 706 4999 23030.0 45 38 3053.0 40.0 1240.0 14875.0 933 902 4721 25761.0 105 39 2870.0 38.0 1439.0 1516.0 958 846 2599 28502.0 114 40 3518.0 36.0 1676.0 14562.0 978 1093 472 28024.0 115 41 1862.0 51.0 1578.0 17670.0 1002 1066 5020.3 337458.0 175 43 3988.0 51.0 1578.0 17670.0 1040 1070 5315 37458.0 170 44 427.0 58.0 1724.0 20375.0 950 1069 6292 38609.0 170 <t< td=""><td></td><td>24</td><td>1707 0</td><td>10.0</td><td>891 0</td><td>10245 0</td><td>864</td><td>642</td><td>4500</td><td>0 94081</td><td>40</td><td></td></t<>		24	1707 0	10.0	891 0	10245 0	864	642	4500	0 94081	40	
36 3106.0 24.0 1133.0 12552.0 877 683 5080 21731.0 25 37 2275.0 32.0 439.0 13937.0 893 706 4999 23030.0 45 38 3053.0 40.0 144075.0 933 902 4721 25761.0 105 39 2570.0 38.0 1499.0 15165.0 978 1093 4782 26034.0 115 40 3518.0 36.0 1676.0 14562.0 978 1093 4782 26034.0 115 41 1362.0 1496.0 16764.0 1002 1106 5020 3296.0 159 42 3196.0 51.0 1496.0 16764.0 1002 1069 6292 38909.0 170 43 3988.0 58.0 1724.0 20375.0 950 1069 6292 38909.0 170 45 3396.0 53.0 1483.0 17480.0 1061 845 8040 50488.0 171 47 5280.0		35	2136.0	19 0	957.0	10778.0	872	641	4954	19475.0	32	
37 2275.0 32.0 439.0 13937.0 893 706 4999 23030.0 45 38 3053.0 40.0 1240.0 14875.0 933 902 4721 25761.0 105 39 2570.0 38.0 1439.0 15168.0 938 846 2599 2602.0 114 40 3518.0 36.0 1676.0 14562.0 978 1063 4782 24034.0 115 41 1882.0 43.0 1070.0 1578.0 1008 1044 4605 30826.0 159 42 3196.0 51.0 1578.0 17670.0 1040 1070 5315 37458.0 175 43 3988.0 51.0 1578.0 950 1069 6292 38899.0 170 44 427.0 58.0 17670.0 1040 1070 5315 37458.0 175 45 3396.0 54.0 1790.0 18529.0 950 1069 6292 3889.0 171 45 3396.0 5		36	3106.0	24.0	1133.0	12552.0	877	683	5080	21731.0	25	
38 3053.0 40.0 1240.0 14875.0 933 902 4721 25761.0 105 39 2570.0 39.0 1439.0 15165.0 958 846 2599 26502.0 114 40 3518.0 36.0 1676.0 14552.0 978 1093 4782 26034.0 115 41 1862.0 43.0 1070.0 15736.0 1008 1094 4605 30626.0 123 42 3196.0 51.0 1496.0 16764.0 1022 1106 5020 33296.0 159 43 3988.0 51.0 1724.0 20375.0 950 1069 6292 38609.0 175 44 4427.0 58.0 1790.0 18529.0 956 1019 5704 41166.0 167 45 3396.0 53.0 1485.0 947 873 5700.0 26489.0 171 47 5280.0 53.0 1485.0 1740.0 900 1845 8040 50489.0 171 47		37	2275.0	32.0	439.0	13937.0	893	706	4999	23030.0	45	
39 2570.0 38.0 1439.0 15165.0 958 846 2598 26502.0 11 40 3518.0 36.0 1676.0 14562.0 978 1093 4752 26034.0 115 41 1862.0 43.0 1070.0 15736.0 1008 1094 4606 30826.0 123 42 3196.0 51.0 1496.0 16764.0 1022 1106 5020 33296.0 175 43 3988.0 51.0 1758.0 17670.0 1040 1070 5315 37458.0 175 44 4427.0 58.0 1724.0 20375.0 950 1069 6292 38909.0 170 45 3396.0 54.0 1790.0 18529.0 956 1013 5704 41166.0 180 46 589.0 53.0 1483.0 17480.0 1001 845 8040 50489.0 179 48 4589.0 830.0 1307.0 15240.0 983 1124 7703 58404.0 246		38	3053.0	40.0	1240.0	14875.0	933	902	4721	25761.0	105	
40 3518.0 36.0 1676.0 14562.0 978 (093 4782 28034.0 115 41 1582.0 43.0 (170.0 1578.0 1008 1094 4605 3086.0 159 42 3196.0 51.0 1496.0 16764.0 1022 1106 5020 33296.0 159 43 3988.0 51.0 1578.0 17670.0 1040 1070 5315 37458.0 175 44 4427.0 58.0 1724.0 20375.0 950 1069 6292 3869.0 170 45 3396.0 58.0 1790.0 18529.0 956 1013 5704 41166.0 160 46 5891.0 53.0 1483.0 17480.0 1001 845 8040 50488.0 179 47 5280.0 53.0 1483.0 17480.0 1001 845 8040 50488.0 179 48 4589.0 813.0 1342.0 18487.0 983 1124 7703 58404.0 246		39	2870.0	39.0	1439.0	15165.0	958	846	2599	26502.0	114	
41 1862.0 43.0 1070.0 19786.0 1008 1094 4605 30626.0 129 42 3196.0 51.0 1578.0 17670.0 1022 1106 5020 3296.0 159 43 3988.0 51.0 1578.0 17670.0 1040 1070 5315 37458.0 175 44 4427.0 58.0 1724.0 20375.0 950 1069 6292 38809.0 170 45 3396.0 58.0 1724.0 956.0 16945.0 947 673 5700 43168.0 171 47 5280.0 53.0 1483.0 17480.0 1001 845 8040 50489.0 179 48 459.0 830.0 1307.0 15240.0 988 960 7730 58404.0 246 49 3733.0 813.0 1342.0 18487.0 983 1124 7703 69518.0 273 50 4007.0 736.0 1590.0 19446.0 0101 1147 7670 50943.0 273<		40	3518.0	36.0	1676.0	14562.0	978	1093	4782	28034.0	115	
42 3196.0 51.0 1396.0 16764.0 1022 1106 5020 33296.0 159 43 3988.0 51.0 1787.0 1767.0 1040 1070 5315 3745.0 170 44 4427.0 58.0 1724.0 20375.0 950 1069 6292 38809.0 170 45 3396.0 58.0 1790.0 18529.0 956 1019 5704 41166.0 180 46 5801.0 53.0 16945.0 947 673 5700 43168.0 171 47 5280.0 53.0 1483.0 17480.0 1001 845 8040 50489.0 179 48 4599.0 830.0 1307.0 15240.0 988 960 7730 58404.0 273 49 3733.0 813.0 1342.0 18487.0 993 1124 700 58404.0 273 50 4007.0 736.0 1590.0 19527.0 990 1138 7714 81599.0 182 51		41	1862.0	43.0	1070.0	15736.0	1008	1094	4605	30626.0	123	
43 3586.0 31.0 1016.0 1010.0 1040 1010 3113 31436.0 117 44 4427.0 58.0 1790.0 18529.0 956 1013 5704 41166.0 160 45 3396.0 58.0 1790.0 18529.0 956 1013 5704 41166.0 160 46 5891.0 53.0 1453.0 17480.0 1001 845 8040 50488.0 171 47 5280.0 53.0 1453.0 17480.0 1001 845 8040 50488.0 179 48 4599.0 830.0 1307.0 15240.0 983 960 7730 58404.0 246 49 3733.0 813.0 1342.0 18487.0 983 1124 7103 69518.0 273 50 4007.0 736.0 1590.0 19527.0 990 1138 7714 81599.0 182 51 4517.0 725.0 1639.0 29466.0 1010 1147 7670 80943.0 273 <		42	3196.0	51.0	1496.0	16/64.0	1022	1106	5020	33296.0	159	
45 3396.0 50.0 1744.0 1853.0 956 1005 0252 3606.0 180 46 5891.0 54.0 956.0 16945.0 947 673 5700 43168.0 171 47 5280.0 53.0 1453.0 956.0 1001 845 8040 50489.0 171 47 5280.0 53.0 1453.0 17480.0 1001 845 8040 50489.0 179 48 459.0 130.0 130.0 1524.0.0 988 960 7730 58404.0 246 49 3733.0 813.0 1342.0 18487.0 983 1124 7703 69518.0 273 50 4007.0 736.0 1590.0 19527.0 990 1138 7714 81599.0 273 51 4517.0 726.0 1639.0 19446.0 1010 1147 7670 50843.0 273 52 5221.0 759.0 1732.0 20890.0 892 933 6950 87145.0 345		43	4427 0	58.0	1724 0	20375 0	950	1069	6292	37458.0	170	
48 5891.0 54.0 956.0 16945.0 947 873 5700 43168.0 171 47 5280.0 53.0 1483.0 17480.0 1001 845 8040 50488.0 179 48 4599.0 830.0 1307.0 15240.0 988 960 7730 58404.0 246 49 3733.0 813.0 1342.0 18487.0 983 1124 7703 69518.0 273 50 4007.0 736.0 1590.0 19527.0 990 1138 7714 81599.0 182 51 4517.0 726.0 1639.0 19446.0 1010 1147 7670 9043.0 273 52 5221.0 759.0 1732.0 20990.0 992 933 6950 97145.0 345 53 5147.0 40.0 1526.0 21503.0 994 1065 6480 101293.0 389 54 5369.0 40.0 1127.0 16079.0 997 753 7556 105988.0 716 <tr< td=""><td></td><td>45</td><td>3396 0</td><td>58.0</td><td>1790.0</td><td>18529 0</td><td>956</td><td>1013</td><td>6704</td><td>41166.0</td><td>180</td><td></td></tr<>		45	3396 0	58.0	1790.0	18529 0	956	1013	6704	41166.0	180	
47 5280.0 53.0 1483.0 17480.0 1001 845 8040 50488.0 179 48 4589.0 830.0 1307.0 15240.0 988 960 7730 58404.0 246 49 3733.0 813.0 1342.0 18487.0 983 1124 7703 69518.0 273 50 4007.0 736.0 1590.0 19527.0 990 1138 7714 81599.0 162 51 4517.0 725.0 1639.0 19446.0 1010 1147 7670 80943.0 273 52 5221.0 759.0 1732.0 20990.0 992 933 6950 97145.0 345 53 5147.0 40.0 1526.0 21503.0 994 1065 6480 101293.0 389 54 5369.0 40.0 1525.0 997 753 756 105988.0 716 55 6225.0 36.0 1017.0 15525.0 1009 966 9359 105988.0 716 56		46	5891.0	54.0	956.0	16945.0	947	873	6700	43168.0	171	
48 4599.0 830.0 1307.0 15240.0 988 960 7730 58404.0 246 49 3733.0 813.0 1342.0 18487.0 983 1124 7703 69518.0 273 50 4007.0 726.0 1590.0 19527.0 990 1138 7714 8159.0 182 51 4517.0 725.0 1639.0 19446.0 1010 1147 7670 9043.0 273 52 5221.0 759.0 1732.0 20890.0 982 933 6950 87145.0 345 53 5147.0 40.0 1526.0 21503.0 994 1065 6480 101293.0 369 54 5369.0 40.0 1527.0 16079.0 997 753 7596 106671.0 371 55 6225.0 36.0 1017.0 15525.0 1009 966 9359 105988.0 716 56 6258.0 35.0 953.0 14867.0 1012 1027 9671 114453.0 590 </td <td></td> <td>47</td> <td>5280.0</td> <td>53.0</td> <td>1453.0</td> <td>17480.0</td> <td>1001</td> <td>845</td> <td>8040</td> <td>50489.0</td> <td>179</td> <td></td>		47	5280.0	53.0	1453.0	17480.0	1001	845	8040	50489.0	179	
49 3733.0 813.0 1342.0 18487.0 983 1124 7703 69518.0 273 50 4007.0 736.0 1590.0 19527.0 990 1138 7714 81599.0 182 51 4517.0 725.0 1639.0 19446.0 1010 1147 7670 9043.0 273 52 5221.0 759.0 1732.0 20890.0 892 933 6950 87145.0 345 53 5147.0 40.0 1526.0 21503.0 994 1065 6480 101293.0 389 54 5369.0 40.0 1127.0 16079.0 997 753 7556 105988.0 716 55 6225.0 36.0 1017.0 15525.0 1009 966 9359 105988.0 716 56 6258.0 35.0 953.0 14867.0 1012 1027 9671 114453.0 590		48	4589.0	830.0	1307.0	15240.0	988	960	7730	58404.0	246	
50 4007.0 736.0 1590.0 990 1138 7714 81599.0 182 51 4517.0 725.0 1639.0 19446.0 1010 1147 7670 50843.0 273 52 5221.0 759.0 1732.0 20990.0 992 933 6950 97145.0 345 53 5147.0 40.0 1526.0 21503.0 994 1065 6480 101293.0 389 54 5369.0 40.0 1127.0 16079.0 997 753 7556 105988.0 716 55 6225.0 36.0 1017.0 15525.0 1009 966 9359 105988.0 716 56 6258.0 35.0 953.0 14867.0 1012 1027 9671 114453.0 590		49	3733.0	813.0	1342.0	18487.0	983	1124	7703	69518.0	273 .	
b1 4017.0 725.0 1639.0 19446.0 1010 1147 7670 9043.0 273 52 5221.0 759.0 1732.0 20990.0 992 933 6950 97145.0 345 53 5147.0 40.0 1526.0 21503.0 994 1065 6480 101293.0 389 54 5369.0 40.0 1127.0 16079.0 997 753 7596 106671.0 371 55 6225.0 36.0 1017.0 15525.0 1009 966 9359 105988.0 716 56 6258.0 35.0 953.0 14867.0 1012 1027 9671 114453.0 590		50	4007.0	736.0	1590.0	19527.0	990	1138	7714	81599.0	182	
52 52 52 52 53 54 50 87145.0 348 53 5147.0 40.0 1526.0 21503.0 994 1065 6480 101293.0 389 54 5369.0 40.0 1127.0 16079.0 997 753 7596 106671.0 371 55 6225.0 36.0 1017.0 15525.0 1009 966 9359 105988.0 716 56 6258.0 35.0 953.0 14867.0 1012 1027 9671 114453.0 590		51	4517.0	725.0	1639.0	19446.0	1010	1147	7670	90943.0	273	
54 5369.0 40.0 1526.0 21503.0 994 1065 6480 101293.0 389 54 5369.0 40.0 1127.0 16079.0 997 753 7596 106671.0 371 55 6225.0 36.0 1017.0 15525.0 1009 966 9359 105988.0 716 56 6258.0 35.0 953.0 14867.0 1012 1027 9671 114453.0 590		02	8221.0	169.0	1732.0	20990.0	992	933	6950	9/145.0	345	
55 6225.0 36.0 1017.0 15525.0 1009 966 9359 105988.0 716 56 6258.0 35.0 953.0 14867.0 1012 1027 9671 114453.0 590		54	5369 0	40.0	1127 0	21803.0	994	1085	6480	101293.0	309	
56 6258.0 35.0 953.0 14867.0 1012 1027 9671 114453.0 590		54	6225 0	36.0	1017 0	15525 0	1009	153	0350	105988 0	716	
		56	6258.0	35.0	953 0	14867.0	1012	1027	9671	114453 0	590	

,

5

 $\mathbf{\hat{x}}$

							MOD	LL WITH 35	SLS	0.0		12:18	Sunday, H	www.	7. 1993 18
DBS	VEAR	DC	NER	CPII	CPIUS	M	x	FDII	PII	oc	LC	M1	EDBP	CA	RGDPCT
1	19781	3919.9	415.00	42.605	58.479	849.92	1060.33	36.52	0.000	112.47		2113	-42.33	- 192 . 98	16059.87
2	19782	3990.7	415.00	43.210	60.029	864.03	1096.43	18.67	0.000	107.07	-1.4019	2241	- 12.04	-173.89	16088.61
9	19783	4099.3	415.00	43.664	61.430	825.44	1133.97	33.62	21.165	144.42	-9.0806	2371	26.15	-114.96	16040.00
4	19784	4991.7	523.18	44.662	62.631	1186.05	1626.04	34.01	27.205	239.62	0.1630	2488	-34.01	-132.36	16744.47
5	19791	6392.3	614.32	47.688	64.232	1325.09	1810.40	49.15	0.000	258,63	-0.6509	2799	-22.73	-118.56	17005.17
6	19792	5462.0	625.38	51.925	66.433	1343.94	2135.05	29.39	22.514	46.28	-0.2457	3021	-111.94	158.85	17043.52
7	19793	5477.9	625.59	55.556	68.634	1521.44	2646.87	15.64	0.000	-30.03	0.8210	3180	-163.28	242.73	17404.55
8	19794	5302.9	626.94	57.129	70.635	1572.37	2860.73	46.39	15.674	83.38	-2.1173	3316	48.90	332.28	17508.14
.9	19801	5001.0	628.36	58.877	73.371	1768.83	3471.06	46.50	0.000	+91.42	-0.6655	3721	-567.41	694.97	18503.17
10	19802	4679.0	627.20	61.644	76.052	2007.67	3442.70	23.83	0.000	304.19	5.4025	4173	37:03	000.07	10074 08
11	19803	4998.0	625.74	64.286	11.430	2183.21	3282.63	23.18	0.000	352.29	2.0131	409/	- 100.74	470 44	18802 62
12	19804	5054.0	626.68	66.802	79.498	1954.62	3469.30	21.31	28.827	62.04	1.8609	5013	-638.59	479.41	10093.03
14	19011	5369.0	628.34	08.815	81.566	2158.98	3465.92	19.48	0.000	103.68	1.0055	5252	-444 59	-134 76	20491 70
1040	10012	5366.0	629.73	74.073	03.401	2020.00	3029.70	32.75	29.097	375.85	0.0055	8007	-100 40	-170 04	20020 11
ia.	10914	6087.0	635.00	70 010	67 000	2020.00	3778.60	10.00	0.000	224 47	1 0753	EA76	-473 73	-289 44	20875 17
17	10014	7987 0	647 30	78 049	87 846	2110 28	3344.16	14.00	0.000	1107 61	4 1667	6784	-91 92	-974 19	21237.00
18	19822	8857 0	653 60	76 426	89 148	2718 98	3268 65	24 18	130 720	600.00	0.6808	7178	-1345 76	-547.72	20417.91
19	19823	10002.0	662.90	77 496	90.833	2896.21	3135.52	44.41	26.516	821.33	1.2680	7594	-151.14	-979.10	20788.91
20	19824	10281.0	681.90	79.194	91.063	3082.19	3309.94	55.23	51,143	733.04	1.5860	7125	189.57	-1025.58	21178.20
21	19831	11317.0	698.20	83.157	90,966	3803.10	2653.54	87.97	0.000	1267.48	0.2465	7389	-83.78	-2172.80	21474.78
22	19832	11183.0	969.70	85.862	92,135	3881.71	4453.83	116.36	36.849	1221.82	17.9508	7517	496.49	-1127.78	21630.84
23	19833	11556.0	981.30	87.874	93.207	4172.49	5008.55	19.63	78.504	1170.69	2.2933	7739	156.03	-1028.40	22206.69
24	19834	12208.0	987.90	88.692	94.050	3975.31	4845.65	25.69	246.975	1083.73	1.6304	7584	-86.94	-1002.72	21816.00
25	19841	11907.0	994.60	93.284	95.045	4003.27	5185.84	26.85	0.000	1342.71	3.7433	8055	-255.61	-816.57	23409.84
26	19842	11505.0	1006.50	95.045	96.118	3728.08	5513.61	-16.10	-6.039	688.45	1.4820	8319	-317.05	-256.66	22826.24
27	19843	11659.0	1038.40	96.303	97.190	3922.04	8458.87	84.11	-4.184	647,96	1.1429	7907	-16.61	-533.74	23237.58
28	19844	11978.0	1064.30	96.555	97.879	3768.69	5113.96	138.36	0.000	624.74	1.4438	8581	-65.99	-557.69	22912.36
29	19851	12246.0	1088.60	97.438	98.492	3706.68	4747.38	55.52	0.000	509.46	-0.1856	6989	519.26	-893.74	24664.25
30	19852	12132.0	1112.20	100.392	99.717	3532.35	5140.59	114.56	0.000	304.74	1.1779	9494	249.13	-547.20	24263.96
31	19853	14463.0	1118.70	100.895	100.407	3170.40	5166.16	72.72	-4.475	31.32	0.8578	9393	167.81	-158.86	23432.89
32	19854	14799.0	1122.90	101.147	101.326	3694.34	5531.40	102.18	-34.810	827.58	1.1544	10124	-271.74	-525.52	24635.91
33	19861	16687.0	1127.00	103.100	101.600	3665.00	8010.64	46.21	338.100	729.17	0.5405	10475	-476.72	-698.74	25337.76
34	19862	17686.0	1126.70	104.100	101.300	3181.80	3617.83	141.96	-7.887	908.12	-1.9589	10355	207.31	-1301.34	24193.55
35	19863	17123.0	1232.40	105.600	102.100	3761.29	4028.72	67.92	+ -30.810	2069.20	-1.9980	11192	-687.68	+ 1657.58	25565.75
36	19864	20329.0	1644.10	110.400	102.600	4619.92	5705.03	72.34	0.000	853.29	10.4995	11631	-725.05	-1300.48	27598.97
37	19871	21225.0	1639.20	112.200	103.800	4532.39	6142.08	57.37	0.000	1980.15	8.2103	11500	-988.44	-1011.39	25571.43
38	19872	23855.0	1642.90	114.100	105.100	5369.00	6775.32	-4.93	-37.787	938.10	2.2165	12167	-251.36	-1332.39	2/420.84
39	198/3	24919.0	1643.90	116.200	108.300	0260.41	7344.94	128.58	-23.018	1375.94	1.6681	11872	808.81	-907.43	2/191.80
40	10074	20739.0	1649.40	120.100	107.200	5436.42 Bace AC	8027.63	000.00	-84.118	834.60	2.0431	12/00	-001.01	- 194.03	27002.03
41	10882	22000.0	1671 50	121.000	109.200	5736 50	7966 09	140 41	-43.100	117 01	1.0400	12020	220 67	-830 74	27025 73
43	10883	38348 0	1696 40	126 400	110 700	5964 46	9351 39	206 96	-117 051	547 94	1 2054	13145	-620.36	-371 51	27296 30
40	10884	40835 0	1715 10	120.400	111 800	6142 40	8351.30	200.90	20 447	1171 41	0.8410	14303	-267 56	-1065 08	27296.30
	10804	41700 0	1749 10	129 700	112 100	6769 46	0063 38	301.80	0.000	1407 33	1 0710	14302	-1480 26	-620 54	28828 05
10	10001	43174 0	1764 30	122 000	113.000	6024 95	0047 40	100.00		400 74	2 1070	14404	-926 40	ARE OR	20072 45
47	19892	53453 0	1780 40	133 800	118 000	7616 04	10509 70	274 40	-97 922	207 22	1 0044	17104	- 370 32	-533 94	31281 32
48	10804	60564 0	1792 50	125 500	117 000	8066 25	11174 45	440.00	0.000	1082 64	1 2126	20550	-161 32	-317 37	32431 19
40	19904	69677 0	1811 70	137 600	119.000	8567 53	10969 84	440.34	0.000	244 59	2 8100	20155	-12 69	-1224 74	30227 41
50	19902	82526 0	1832 80	140 100	120 200	8564 69	10256 25	417 89	-9 164	2190 20	-0 9596	23205	-1999 50	-1495 57	30221 88
51	19903	81099 0	1854.10	145.600	122 300	10623.99	12337 18	420.89	*88.997	1768 81	4 8125	22982	1659.42	-2238 75	34211.42
52	19904	95896.0	1872 70	148 200	124.300	11841.08	15921.70	739.74	-74 908	2267.84	11.5435	23819	1773.45	-539.34	36569.30
63	19911	98590 0	1916.20	149,900	125.300	12075.89	14162 63	1101.82	0.000	3569.88	-5.4406	23571	-479.05	-2305.19	35097.53
54	19912	103020 0	1942.80	153.300	126.000	11450.86	13407.26	487.64	-9.714	1297.79	-1.9387	24609	907.29	-2144.85	33949.66
55	19913	104951 0	1961.40	158.800	127.000	11933.16	14669.31	294.21	-13,730	490.35	2.5510	25804	121.61	-1645.62	34835.41
56	19914	114002.0	1980.90	162.400	128.000	12570.79	15171.71	1002.34	0.000	3714.19	2.6741	26693	-1576.80	-1850.16	36006.41
10000	1.1.6.1 (1999)														

										MODEL	WITH	35LS				12:18	Sund	lay. No	ovembe!	r 7. 19
08\$	INT	GOVE	(RSV	SA	٧	GOVDEF	POP	UTPL	OOTU C	WINT	FLMA	FLOMB	NFA	WPIUS	GDP	IR	ICIN	WINF	FAMA
1	5.96	1228.1	0 8	36.32	2232	. 15	-124.80	139.80	0 0	2	7.28	520	234	601	65.404	6746.56	2302	6.1	9.8	959
2	6.56	715.5	50 0	50.18	3393	.79	258.60	139.80	o o	5	7.84	519	251	557	67.388	7652.83	2163	6.1	5 9.5	898
3	7.21	891.4	10 -1	10.39	3914	.38	34.00	139.80	0 0	0	8.71	560	291	660	68.465	7591.66	2375	6.1	9 8.6	1010
4	9.42	1021.8	-1:	34.48	2751	. 20	18.50	139.80	2 0	ş	11.08	852	444	1061	89.995	7304.56	2626	÷.	10 4	1865
	12.79	1832.0	- 10	56.48	2681	20	-432.90	143.04		13	10.67	752	420	1673	75 096	9632.36	3195	8.	5 11.2	2041
7	12 97	1525 3		5.06	4462	67	4.90	143.04	iŏ	7	11.66	589	463	2099	77.476	10661.93	3290	9.1	5 12.5	2111
8	13.96	1643.0	0 -5	26.63	3527	.87	-150.20	143.04	1 0	4	14.70	567	431	2943	80.197	9896.64	4062	10.0	5 13.9	2625
9	14.73	3127.3	10 -14	12.64	3166	.99	-324.00	146.36	5 0	16	17.11	543	444	3973	83.881	10597.20	4283	12.	1 15.6	3079
10	13.67	2021.1	0 -9:	20.73	5059	. 13	23.70	146.36	3 0	21	11.15	886	428	6095	85.638	12536.45	5408	12.	5 16.2	3932
11	10.52	2990.8	10 -34	12.28	4870	.42	-332.80	146.36	6 0	.1	12.08	540	418	6795	88.415	12857.35	5621		10.4	4290
12	12.55	2561.0	0 4	17.00	4324	.86	260.40	146.36	5 0	17	17.10	539	388	6031	90.285	12021.00	6145	10	5 14 2	4696
13	15.95	3931.2	-30	11.06	3997	.02	-1050.10	149.70		72	17 69	471	393	6251	95.157	15153.68	5835	9.	13.6	4560
mii ii	18 02	3313 6	10 11	18.02	4642	43	320.10	149.70	í ő	80	18.18	468	415	6271	85.940	15188.45	5560	10.	1 13.9	4317
16	14.49	3043.7	0 38	6.62	4847	.77	- 131.60	149.70	5 6	37	13.86	468	432	6370	95.853	14781.18	5014	9.4	5 13.3	4037
17	17.13	5561.2	0 -1	57.29	4654	.76	-819.70	153.04	1 0	46	15.21	459	477	6392	86.637	15640.97	523	8.1	3 12.9	4111
18	17.99	3044.8	10 113	38.57	5498	.08	-229.40	153.04	1 0	28	14.98	459	517	5665	96.811	16585.96	3713	7.1	12.5	3259
19	17.49	2847.6	50 23	37.98	4732	. 55	127.30	153.04	4 0	43	11.90	375	500	5469	97.333	16165.55	3279	7.	2 12.7	3220
20	16.35	3405.2	0	-3.41	2958	.87	516.50	153.04	4 0	17	9.22	347	663	0266	97.333	10426.08	3144		1 10 1	3978
21	17.06	b101.8	0 57	51.13	4978	.65	-193.80	100.40		20	6 40	583	858	6915	97.594	20288 97	2703	В.	12.5	3911
23	10.67	4453	0 -39	6.45	5452	32	-801.70	156.45	s ŏ	30	9.72	895	890	7346	98.552	20461.77	3506	4.1	12.6	4606
24	13.57	3192.7	0 -20	56.73	6616	.29	449.10	156.45	5 0	26	9.64	773	968	8089	99.074	19589.56	3718	4.1	3 13.4	5309
25	18.01	5759.3	-29	97.39	7379	.61	-593.60	159.85	9 0	32	10.09	453	971	9844	100.119	22871.99	4066	5.:	2 13.8	6693
26	16.00	2953.7	-9	92.60	7354	.81	994.80	159.85	9 0	10	11.07	445	925	10705	100.815	23309.87	4301	4.1	9 14.1	7645
27	28.70	4599.4	10 -11	77.67	6764	.73	-652.70	159.86	9 0	31	11.67	446	B11	10842	100.554	23955.49	4750	4.1	19.3	7234
28	11.80	4516.2	0 -1	39.42	7057	. 22	280.50	159.85		41	9.71	444	762	11942	100.293	21610.76	8045		14 0	8155
29	10 60	5083 1	0 -1	0.01	7626	20	470.00	164 63	1 12	2	8.09	236	612	13107	100.206	25178.22	4935	4.	5 14.5	8185
31	8.48	4256.4	0 -10	08.51	7298	.07	-558.70	164.63	3 20	7	8.01	138	576	13331	99.510	25440.02	5094	4.	1 13.9	8124
32	10.51	4188.6		97.69	7988	. 52	538.00	164.63	3 14	0	8.14	52	588	14106	100.120	23833.96	4974	4.0	0 13.1	8507
33	10.33	7693.8	0	51.98	8953	. 19	-731.30	168.35	5 18	101	7.93	64	792	12667	98.639	26027.80	486	9.	2 11.2	7466
34	10.01	4038.0	ю <u></u> н	51.83	9662	. 50	309.60	168.35	5 15	18	7.16	56	418	12899	96.724	27139.49	4801	2.	2 0.8	11706
35	12.49	5220.3	0 24	18.94	8988	.07	-670.60	168.30	20	20	6.34	83	541	15010	96 637	28441 01	405	1.1	3 7.8	8352
30	15.04	8967 0		39.90	11234	.95	-2224 20	172 01	1 22	56	6.36	89	623	16443	97.800	29780.43	4005	2.	1 7.9	9345
38	17.41	5120.1	0 68	38.38	12216	. 19	275.10	172.01	1 18	28	6.96	1063	683	15750	99.400	32164.33	4147	3.0	0 10.2	10191
39	13.76	6923.1	0 -131	77.59	10561	.00	-949.90	172.01	1 24	32	7.04	1066	741	17885	100.500	32769.90	4975	9.1	2 11.9	11926
40	11.87	5251.4	0 -3	10.09	10092	.64	1142.30	172.01	1 22	55	7.89	1182	752	18332	101.600	31790.66	5592	3.	3 13.5	12458
41	11.43	11223.8	-31	6.77	12662	.72	-2423.10	178.56	26	61	6.86	1163	887	19005	101.600	33424.64	6410	3.	12.0	13/90
42	14.66	4835.9	36 01	36.12	14015	.74	1345.90	175.55	21	27	1.32	1117	1414	18029	103.200	30/45.1/	4956	3.	13 6	11458
43	14.98	7064 0	2 30	0 00	12345	37	-1557 80	175 50	2 25	67	8.86	1078	1159	17892	105.200	38098.45	5048	3.0	6 14.6	11732
24	13 83	13669 2	0 2	19 63	15790	60	-2591 41	178 14	1 30	62	9.62	1051	739	18608	107.500	39008.05	485	4.	1 15.0	11047
46	12.06	6268.0	0 39	3.44	15010	.01	1675.00	179.14	4 41	1	9.62	1023	1716	16601	109.400	41698.43	4377	4.1	7 15.9	10233
47	12.29	10614.6	0 43	80.95	14967	.32	-2335.82	179.14	1 48	39	9.02	1056	1933	17355	109.400	42505.36	4380) 4.1	3 17.8	10255
48	12.10	7643.2	0 -194	4.86	15463	.01	-109.77	179.14	48	70	8.71	1093	3193	18279	109.400	42009.02	5454	4.	5 19.5	11835
49	10.37	15368.7	0 55	52.57	12436	.28	-1659.80	179.30	51	61	8.35	6544	4173	12405	111.800	41592.91	6239	4.1	22.7	11884
50	12.90	6834.5	8 89	96.23	12659	.91	687.44	179.30) 48	66	8.36	6529	6334	8726	110.800	42340.85	4093	4.	23.1	12744
51	18.66	12165.0	-15	0.36	14893	.13	-3480.33	179.30	1 30	44	8 20	6327	12645	10859	116 200	54195 70	7455		19.2	17950
62	21.84	18669 0	9 +180	17 44	15730	74	- 1933.05	182 30	24	35	6.79	6221	11472	14673	113.800	52611.19	8065	5.0	3 14.7	21397
54	13.73	6904.3	8 -53	8.16	15561	.40	323.94	182.30	24	36	5.95	5715	11712	16677	112.700	52044.82	8673	4.	5 12.4	22228
55	12.26	14612.4	5 75	3.18	16540	.27	-3154.64	182.30	0 41	2	5.79	5965	9899	17853	112.500	55318.63	8479	4.	1 11.7	23211
56	12.66	9264.0	8 -128	39.57	17483	.85	1046.04	182.30) 41	59	5.07	7013	11935	17283	112.700	58474.40	9258	3.1	5 11.2	25155
		•														•				
	1										Q									

									MODEL	WITH 351	.S			12	:18 Sun	day, Nov	vember 7.	1993 17
DBS	FADMB	QM	RDM	MIO	UVXP	UVMP	DCCG	DCDE	DCPS	MACCO	MACDE	MACPS	MACOMB	MÁCOFI	DMBCCO	DMBCOE	DMBCPS	
1	395	1370	218	821	63.3	36.4	-247.9	171.1	3996.7	349.2	263.6	1052.1	630.5	0	0	0	2944.7	
2	429	1369	163	775	63.9	25.7	-431.9	219.6	4203.1	430.5	201.9	1105.6	737.2	<u>o</u>	e e	e e e e e e e e e e e e e e e e e e e	3097.5	
3	501	1397	167	825	68.9	29.7	-531.4	261.1	4369.6	479.8	203.4	1149.8	846 4	×	ě	ö	3540.7	
3	695	1661	232	2032	69.4	28.8	-366.2	203.0	8558.9	486.4	201.1	1807.7	856.0	ö	õ	ò.	3747.8)
6	817	1730	234	2150	85.0	47.4	-638.6	203.7	5897.0	588.7	192.2	1852.1	950.0	0	0	0	4044.9	9
7	1040	1887	304	2207	95.0	45.4	-1020.9	259.1	6239.6	674.6	233.9	1889.0	1034.1	0	0	0	4350.5	5
8	1316	2074	333	2523	121.7	39.1	-1265.3	259.2	6308.9	630.5	247.9	1939.6	1129.3	0	0	0	4369.3	
10	1881	2430	301	2521	124.6	76.3	-1571.0	191.0	6381.0	500.0	178.0	1807.0	1526 0	× ×	Ň	ö	4798.0	5
li	2458	3083	321	2691	140.9	37.5	-2579.0	459.0	7117.0	534.0	417.0	1828.0	1626.0	ŏ	ŏ	õ	6298.0	,
12	2741	3056	468	2548	141.3	37.2	-3058.0	523.0	7590.0	630.0	507.0	1977.0	1722.0	0	0	0	5613.0)
13	2549	3404	409	2649	141.0	58.2	-3024.0	424.0	7969.0	543.0	402.0	1948.0	1879.0	0	0	0	6021.0	2
14	2554	3399	348	2289	134.9	72.0	-3618.0	524.0	8479.0	709.0	485.0	1829.0	2120.0	0	0	Ň	7765 0	<u> </u>
14	3233	3671	418	2240	133 4	49.7	-3624 0	835 0	9641.0	941.0	809 0	1883.0	2548.0	ŏ	ŏ	ö	7758.0	5
17	3216	4173	385	3036	132.9	67.3	-3138.0	830.0	10294.0	770.0	813.0	1913.0	3091.0	õ	Ó	Ò	8382.0	,
18	3381	4207	341	2795	131.4	53.2	-3393.0	1025.0	11225.0	786.0	853.0	2042.0	3870.0	0	0	0	9184.0	
19	3124	4548	330	3000	131.4	81.0	-3139.0	1259.0	11881.0	997.0	1038.0	2042.0	4373.0	0	0	0	9839.0	2
20	2591	5117	330	2975	134.5	46.0	-3280.0	1071.0	12491.0	953.0	994.0	1893 0	5050.0	ŏ	ŏ	ň	11844.0	5
. 22	4416	6068	368	4145	114.9	79.7	-3421.0	955.0	13649.0	1264.0	837.0	1672.0	8275.0	ŏ	`õ	õ	11977.0	,
23	4525	6494	368	4301	110.1	76.5	-3643.0	1212.0	13988.0	1332.0	955.0	1630.0	5404.0	0	0	Ø	12358.0)
24	4520	7212	311	5192	115.5	90.5	-3847.0	1182.0	14873.0	1081.0	1110.0	1564.0	5866.0	0	0	0	13310.0	2
25	4575	7704	338	5655	118.6	88.9	-5123.0	4667.0	11941.0	1731.0	1781.0	523.0	6318.0	398	299	2886	11418.0	
20	4429	8267	319	5304	110.3	80.2 83 8	-7305 0	4441.0	13665 0	2189 0	227.0	641 0	8894.0	468	386	4360	13224.0	Ś
28	5107	9356	251	6732	117.8	69.4	-8031.0	4717.0	14737.0	1670.0	203.0	652.0	9521.0	518	440	4515	14086.0	5
29	5633	10459	283	5258	106.4	82.0	+8308.Q	4569.0	15383.0	495.0	194.0	743.0	9415.0	562	• 466	4375	14640.0)
30	5769	10969	268	4508	99.1	126.4	-9579.0	4564.0	16491.0	385.0	37.0	801.0	9809.0	607	499	4527	15690.0	
31	5920	12200	321	5879	99.4	103.3	-8266.0	4765.0	17264.0	1227 0	36.0	800.0	100/6.0	729	530	4729	17281.0	Ś
32	6047	13693	303	4882	84 2	72 0	-7689.0	4620.0	19058 0	1164.0	20.0	872.0	10263.0	769	552	4500	18186.0	Ś
34	5645	13998	335	5900	79.4	101.1	-7662.0	4617.0	19827.0	1797.0	19.0	881.0	10345.0	864	642	4598	18946.0	,
35	8604	16188	485	8999	43.7	108.8	-9187.0	4974.0	20432.0	2136.0	19.0	957.0	10778.0	872	641	4954	19475.0	2
36	8193	15984	426	8207	58.9	98.0	-8541.0	5104.0	22864.0	3106.0	24.0	1133.0	12552.0	877	683	5080	21731.0	
37	7810	17466	422	8/56	61.8	14.2	-8212.0	4761 0	23469.0	3053 0	40.0	1240.0	14875.0	933	902	4721	25761.0	Ś
39	7766	19673	489	10670	66 6	127 1	-6731 0	2638.0	27940 0	2570 0	39.0	1439.0	15165.0	958	846	2599	26502.0	5
40	7807	21200	449	12718	66.0	96.2	-6882.0	4818.0	29710.0	3518.0	36.0	1676.0	14562.0	978	1093	4782	28034.0	>
41	7264	23034	531	12700	66.1	73.1	-7589.0	4648.0	31969.0	1862.0	43.0	1070.0	15736.0	1008	1094	4605	30626.0	2
42	7983	24850	618	12631	67.0	129.1	-7923.0	5071.0	34792.0	3196.0	51.0	1496.0	16764.0	1022	1106	5020	33296.0	
43	8336	26925	700	14814	50.0	150 0	-7269.0	6350 0	40532 0	4427 0	58.0	1724 0	20375 0	950	1069	6292	38809 0	<u>,</u>
45	9351	33154	787	11953	64 4	51.1	-8153 0	8761.0	42956 0	3396.0	58.0	1790.0	18529.0	956	1013	6704	41166.0	5
46	8107	31106	792	11382	70.8	90.1	-7823.0	5784.0	44125.0	5891.0	54.0	956.0	16945.0	947	873	5700	49168.0)
47	10090	38247	688	14709	65.2	154.0	-7762.0	8093.0	B1942.0	5280.Q	53.0	1453.0	17480.0	1001	845	8040	50489.0	2
48	10731	37967	658	19659	63.7	121.3	-8941.0	8560.0	59711.0	4589.0	830.0	1307.0	15240.0	988	960	7730	58404.0	
49	11238	42212	881	16835	71.1	142.5	-10955.0	8450 0	70861.0	4007 0	736 0	1590 0	19527 0	983	1138	7714	81599 0	
51	10402	53925	1073	19544	73.2	147.6	+11160.0	8395.0	92582.0	4517.0	725.0	1639.0	19446.0	1010	1147	7670	90943.0	5
52	11681	60811	1074	20852	111.5	154.8	- 12026.0	7709.0	98877.0	5221.0	759.0	1732.0	20990.0	992	933	6950	97145.0)
53	10967	57554	1092	31045	76.1	186.9	-12133.0	6520.0	102819.0	5147.0	40'.0	1526.0	21503.0	994	1065	6480	101293.0	
54	11877	63147	1111	30830	65.3	182.7	-13780.0	7635.0	107798.0	5369.0	40.0	1127.0	16079.0	1009	753	0350	105988 0	,
56	11076	72717	990	30885	72.1	124.1	-12711.0	9706.0	115406 0	6258.0	35.0	953.0	14867.0	1012	1027	9671	114453.0	5
		1000																

. .

131

 $N_{\rm ev}$

è

MAR.		(1999) 1999) 1999)					MODE	L WITH 35	LS			12118	Sunday,	Novembe	r 7, 1993	1 18
DBS	DMBCD	T CPIILG	CPIUSLG	INFI	INFILG	INFUS	INFD	INFDA	INFOLG	INTO	INTOLG	NERLG	CDEPR	RINT	RWINT	
	01112001									_4 .00					0 58	
2	0	42 605	58.479	1.41046		2.61729	-1.20683	-5.08954		-1.28	-1.32	415.00	0.0000	5.1495	1.34	
3	ŏ	43.210	60.029	1.04493	1.41046	2.30653	-1.26160	-5.85507	-1.20683	-1.50	-1.28	415.00	0.0000	6.1651	1.61	
4	0	43.664	61.430	2.26115	1.04493	1.93555	0.32560	-4.83885	-1.26160	-1.66	-1.60	415.00	26.0675	7.1089	3.98	
5	0	44.662	62.631	6.55544	2.26119	2.62378	4.03165	-1,94456	4 03165	2.59	1.92	614.32	1.8004	4.6994	2.12	
7	ŏ	51.925	66.433	6.75934	8.51059	3.25955	3.49979	-2.74066	5.14120	1.31	2.59	625.38	0.0336	6.2107	2.16	
8	ō	55.556	68.634	2.79288	6.75934	2.87377	-0.08090	-7.80712	3.49979	-0.74	1.31	625.59	0.2158	11.1671	4.10	
9	0	57.129	70.635	3.01289	2.79288	3.80093	-0.78804	-9.08711	-0.08090	-2.38	-0.74	626.94	0.2265	0.0763	5.01	
10	8	58.877	73.371	4.59369	3.01289	3,58826	1.00041	-7.90631	1 00541	-1.56	2 52	627 20	-0.2328	6.3236	0.38	
12	ŏ	64.286	77.430	3.83924	4. 19643	2.63558	1.20366	-7.56076	2.39997	-4.55	-1.56	625.74	0.1502	8.7108	5.70	
13	0	66.802	79.498	2.96868	3.83924	2.56790	0.40077	-7.53132	1.20366	-1.12	-4.55	626.68	0.2649	12.9813	6.57	
14	°.	68.815	81.566	1.81164	2.96868	2.32030	-0.50866	-7.88836	0.40077	-1.13	-1.12	628.34	0.2212	14.7484	7.99	
16	ö	71.331	85.855	1.22701	1.77941	1.41720	-0.19019	-8.37299	-1.02493	0.63	-0.16	633.08	0.4423	13.2630	4.26	
17	ó	72.212	87.080	8.17723	1.22701	0.87566	4.30157	-3.32277	-0.19019	1.92	0.63	635.88	1.7959	11.9528	6.71	
18	0	76.049	87.846	0.49505	5.17723	1.47125	-0.97620	-7.40495	4.30157	3:01	1.92	647.30	0.9733	17.4950	7.08	
19	0	76.426	89.148	1.38948	0.49505	1.87240	-0.48292	-5.81052	-0.97620	7 13	5.59	662.90	2 8662	14.1821	2.92	
21	ŏ	79.194	91.063	4.88281	2.16789	-0.10613	4.98893	-0.71719	1.91526	8.43	7.13	681.90	2.3904	12.6772	3.53	
22	Ó	83.157	90.966	3.20086	4.88281	1.27671	1.92415	-1.89914	4.98893	1.67	8.43	698.20	38.8857	7.6591	4.09	
23	0	85.862	92.135	2.31726	3.20086	1.15704	1.16022	-2.48274	1.92415	0.95	1.67	969.70	1.1962	8.3527	4.92	
24	24	87.874	93.207	5 04773	0 92626	1 05307	3.99467	-0.15227	0.02647	7.92	3.93	987.90	0.6782	12.9623	4.89	
26	30	93.284	95.045	1.87047	5.04773	1.12181	0.74866	-3.02953	3.99467	4.93	7.92	994.60	1.1965	14.1295	6.17	
27	45	95.045	96.118	1.31494	1.87047	1.10936	0.20558	-3.28506	0.74866	17.03	4.83	1006.50	3.1694	27.3851	7.07	
28	37	96.303	97.190	0.26093	1.31494	0.70672	-0.44579	-4.13907	0.20558	2.09	17.03	1038.40	2.4942	11.0391	4 98	
30	41	97.436	98.492	2.98910	0.90793	1.23649	1.75261	-1.51090	0.28389	2.60	2.98	1088.60	2.1679	7.7009	3.59	00000000000
31	48	100.392	99.717	0.49998	2.98910	0.68887	-0.18888	-3.60002	1.75261	0.47	2.60	1112.20	0.5844	7.9800	3.91	
32	41	100.895	100.407	0.24906	0.49998	0.91112	-0.66206	-3.75094	-0.18888	2.37	0.47	1118.70	0.3754	10.2609	4.14	
33	40	101.147	101.326	1.91265	0.24906	0.27044	1.64220	-1.28735	-0.66206	2.40	2.37	1122.80	0.3651	8.41/4	4.73	
35	32	104.100	101.300	1.43064	0.96526	0.78663	0.64401	-0.56936	1.26097	6.15	2.85	1126.70	9.3814	11.0594	4.94	
36	25	105.600	102.100	4.44518	1.43064	0.48852	3.95666	2.64518	0.64401	6.73	6.15	1232.40	33.4064	8.5948	4.51	
37	45	110.400	102.600	1.61729	4.44518	1.16280	0.45448	-0.48271	3.95666	8.66	6.73	1644.10	-0.2980	13.4027	4.26	
39	114	114.100	105.100	1 82376	1 67923	1.13530	0.68846	-1.37624	0.43460	6.72	10.45	1642.80	0.0609	11.9362	3.84	
40	115	116.200	106.300	3.30119	1.82376	0.84310	2.45809	0.00119	0.68846	4.28	6.72	1643.90	0.3346	8.5688	4.29	
41	123	120.100	107.200	1.48763	3.30119	0.68086	0.83677	-1.71237	2.45809	4.67	4.28	1649.40	0.6305	9.9424	3.66	
42	159	121.900	107.900	1.70805	1.48763	1.19762	0.51043	-1.39195	0.83677	6.80	4.57	1671.50	1.4897	13.0630	4.22	
44	170	126.400	110.700	0.86649	1.91699	0.98877	-0.12228	-2.73351	0.55271	8.06	6.80	1696.40	1.1023	16.0535	5.26	
45	180	127.800	111.800	1.71077	0.86649	1.15608	0.85469	-2.36923	-0.12228	4.20	8.06	1715.10	1.6326	12.1092	5.62	
46	171	129.700	113.100	2.43729	1.71077	1.57898	0.85831	-2.26271	0.85469	2.44	4.20	1743.10	1.2162	9.6227	4.92	
47	246	133.800	115,900	1.26255	0.67492	0.94462	0.31793	-3.23745	-0.19164	3.39	3.27	1780.40	0.6796	10.8375	4.21	0000100000
49	273	135.500	117.000	1.53793	1.26255	1.69496	-0.15703	-3.36207	0.31793	2.02	3.39	1792.50	1.0711	8.8321	3.45	
50	182	137.600	119.000	1.80055	1.53793	1.00335	0.79720	-2.69945	-0.15703	4.54	2.02	1811.70	1.1647	11.0994	3.86	
51	273	140.100	120.200	3.85067	1.80055	1.73200	2.11867	-1.14933	0.19720	8.60	8.60	1854 10	1.1622	18.7600	3.16	
53	389	148.200	124.300	1.14057	1.76996	0.80129	0.33928	-3.85943	0.14786	15.05	9.25	1872.70	2.8228	20.6994	1.79	
54	371	149.900	125.300	2.24284	1.14057	0.55710	1.68573	-2.35716	0.33928	7.78	15.05	1916.20	1.3882	11.4872	1.35	
55	716	153.300	126.000	3.52488	2.24284	0.79052	2.73436	-0.57512	1.68573	6.47	7.78	1942.80	0.9574	8.7351	1.69	
00	590	108.800	127.000	2.24169	3.02488	0.78432	1.45/3/	-1.20031	2.13430	1.39	0.4/	1301.40	0.0042	10.4103	1.07	
								M							ana an	
	100 140															
	()							()							$\langle \rangle$	
	-	x *						-							-	

	19197.3						MODEL	WITH 35LS			12:11	Sunday.	November '	7. 1993 19
OBS	RINTO	REX	REXLO	GOVEXLG	RGGOVEX	ROOVEX	GOVEXY	GOVDEY	GOVDEYLG	RGGDVDEY	GOVDEFLG	ROGOVDEF	RRD	RRDLG
1		1.56966		4		2882.54	0.18203	-0.018498					012523	
2	3.8095	1.54509	1.56966	1228.10	-54.0242	1655.87	0.09349	0.033791	-0.018498	-282.67	-124.80	-307.21	-1.5774	
3	4.3551	1.53676	1.54509	715.50	21.9812	2041.81	0.11742	0.004479	0.033791	-86.75	258.60	-86.85	-0.5404	-1.8774
4	3.1789	1.21962	1.83676	891.40	13.6528	2287.83	0.13989	0.002533	0.004478	-43.45	34.00	-45.59	-23.1140	-0.6404
5	3.2646	1.07006	1.21962	1021.80	58.4170	3842.87	0.23891	-0.056435	0.002533	-2328.30	18.50	-2440.00	-13.0828	-13.0825
6	2.5794	1.10564	1.07006	1832.60	-73.3910	1694.19	0.09133	0.032162	-0.056435	-156.99	-432.90	-1/1.56	3.2/10	2 2710
7	4.0507	1.14623	1.10564	879.70	55.0365	2745.54	0.14306	0.000460	0.032162	-98.57	309.80	-98.42	3.6051	3.2710
8	7.0671	1.13625	1.14623	1525.30	7.4333	2875.94	0.16602	-0.015177	0.000460	-3402.34	4.90	-3165.31	-0.8738	-0 8738
	6.7071	1.11705	1.13625	1643.00	64.3646	0311.03	0.29011	-0.030674	-0.019177	101.40	-100.20	-107 94	7 7058	-1 7046
19	10.4263	1.14/68	1.11706	3127.30	-43.6028	3278.60	0.16122	0.001890	-0.030874	-1460 17	- 32 70	- 1804 22	1.2381	2 7055
12	3 0108	1 18067	1 16108	2021.10	-15 5142	3033 74	0.20201	0.020631	-0.025884	-179 71	-332 80	-178.25	1.5958	1.2381
12	6 4113	1.10007	1 18067	2550.60	42 8547	5712 70	0.20250	-0.078150	0.020631	-478 80	260 40	-503.26	-0.1436	1.5958
14	6 7584	1 16939	1 17898	3931 20	-25 6199	4342 18	0 20079	-0.010657	-0.078150	-86.36	-1050.10	-84.62	-0.8169	-0.1436
144	8 1606	1 17441	1 16030	3042 70	8 5380	4645 80	0 21819	0.021075	-0.010657	-287 75	-161 50	+298.20	0.4288	-0.8169
16	8.0030	1.18475	1.17441	3313.90	-8.5052	4214.96	0.20592	+0.008903	0.021075	-142.24	320.10	-141.11	0.8765	0.4288
17	5.2428	1 21575	1 18475	3043 70	60.2740	7312 67	0.35555	-0.052407	-0.008903	488.63	-131.60	522.87	2.5830	0.8765
18	10.4150	1.20783	1.21575	5561.20	-60.2379	3983.97	0.18358	-0.013831	-0.052407	-73.61	-819.70	-72.01	-0.6535	2.5830
19	11.4005	1.20107	1.20783	3044.80	-6.6959	3674.53	0.17615	0.007875	-0.013831	-156.94	-229.40	-155.49	-0.5615	-0.6535
20	11.2621	1.19319	1.20107	2847.60	17.8827	4299.82	0.22074	0.033482	0.007875	325.18	127.30	305.73	-0.6580	-0.5615
21	9.1472	1.22365	1.19319	3405.20	40.4290	6135.16	0.29449	-0.045821	0.033482	-236.85	516.50	-253.89	2.5206	-0.6580
22	3.5691	0.90727	1.22365	5101.80	-46.4538	3734.03	0.15794	0.000222	+0.046821	-100.48	-793.80	-100.57	-29.9152	2.5206
23	3.4327	0.90865	0.90727	3206.10	32.8545	5067.87	0.21763	-0.044068	0.000222	-19978.35	4.50	-20137.78	0.1516	-29.9152
24	7.8037	0.90617	0.90865	4453.10	-33.2734	3599.75	0.16298	0.022925	-0.044068	-152.02	-901.70	-149.81	-0.2727	0.1516
25	8.0723	0.93679	0.90617	3192.70	58.9949	6173.94	0.25181	-0.025953	0.022925	-213.21	449.10	-232.18	3.3229	-0.2727
26	7.9595	0.93668	0.93679	5759.30	-66.7757	3107.68	0.12671	0.042677	-0.025953	-264.44	-593.60	-267.59	-0.0121	3.3229
27	20.3151	0.92231	0.93668	2953.70	44.2867	4775.95	0.19200	-0.027246	0.042677	-163.84	994.80	- 165 . 6 1	-1.6459	-0.0121
28	6.2291	0.90456	0.92231	4599.40	-1.8255	4677.34	0.20898	0.012980	-0.027246	-147.64	-652.70	-142.98	+1.9426	-1.6459
29	6.3721	0.89399	0.90456	4516.20	26.3682	6033.82	0.24504	-0.046658	0.012980	-459.47	280.50	-499.07	-1.1758	+1.9426
30	4.1109	0.90079	0.89399	5878.80	-14.5431	5063.25	0.20188	0.018667	-0.046658	-140.01	-1119.40	-141.99	0.7575	-1.1758
31	4.0700	0.90634	0.90079	5083.10	-17.7498	4218.63	0.16731	-0.021961	0.018667	-217.65	470.00	-218.87	0.6147	0.7575
32	6.1209	0.89969	0.90634	4256.40	-1.6057	4141.11	0.17574	0.022573	-0.021961	-202.78	-558.70	-196.29	-0.7370	0.6147
33	3.6874	0.92744	0.89969	4188.60	60.8048	7462.46	0.29560	-0.028097	0.022573	-224.47	538.00	-235.93	9.0383	-0.7970
34	4.0847	0.95523	0.92744	7693.80	-64.4665	3878.96	0.14879	0.011408	+0.028097	-140.60	-731.30	-142.34	2.9627	3.0383
35	6.7194	0.88989	0.95523	4038.00	25.6805	4943.47	0.18182	-0.023357	0.011408	-304.75	309.60	-316.60	-04 70853	-7 09527
36	4.0848	0.69486	0.88989	5220.30	-1.7800	4645.11	0.18031	-0.002043	-0.023357	-91.25	-670.60	-91.34	-24.7300	-1.0000
37	9.1427	0.69988	0.69486	5128.20	55.8796	7991.98	0.30110	-0.074687	-0.002043	3556.05	-2224 20	-112 27	-0 1690	0 7191
38	8 0965	0.698/0	0.69988	8100 10	-50.03/7	4487.38	0.10919	-0.008553	0.004687	-438 04	078 40	+445 20	0.6623	-0.1680
40	4 3799	0.71669	0.70324	6923 10	-27 6369	4373 80	0 16810	0.026687	-0 028987	+223 04	-949 90	+220.25	1.8786	0.6623
	6 2924	0 72386	0 71444	8251 40	75 0654	9207 47	0.33580	+0 072495	0.035933	-301 76	1142 30	-312.12	0,8591	1.8786
42	8 7319	0 71885	0 72286	11223 90	-84 1978	3899.92	0.13161	0.036628	-0.072495	- 150, 53	-2423, 10	-155.54	-0.5569	0.8591
43	8, 1830	0.71166	0.71885	4835.90	71.2948	7804.76	0.26308	-0.046749	0.036628	-227.63	1345.90	-230.25	-1.0047	-0.5569
44	10.7935	0.70665	0.71166	9865.22	-33.3864	5541.16	0.18544	-0.040889	-0.046749	-12.54	-1753.00	-11.14	-0.7062	-1.0047
45	6.5892	0.69216	0.70665	7064.98	65.9262	10531.38	0.35016	-0.066433	-0.040889	62.47	-1557.80	66.35	-2.0714	-0.7062
46	4.7027	0.68855	0.69216	13659.20	-77.8956	4716.33	0.15032	0.040169	-0.066433	-160.47	-2591.41	-164.64	-0.5236	-2.0714
47	7.0951	0.68694	0.68855	6268.00	52.6773	7933.18	0.24972	-0.054954	0.040169	-236.80	1675.00	-239.45	-0.2335	-0.5236
48	6.6275	0.69098	0.68694	10614.60	-32.8414	5640.74	0.18194	-0.002613	-0.054954	-95.25	-2335.82	-95.30	0.5852	-0.2335
49	5.3821	0.67934	0.69098	7643.20	69.8517	11169.11	0.36950	-0.039906	-0.002613	1427.20	-109.77	1412.07	-1.6976	0.5852
50	7.2394	0.68990	0.67934	15368.70	-81.0338	4878.36	0.16142	0.016236	-0.039906	-140.69	-1659.80	-141.42	1.5411	-1.6976
51	9.6493	0.69618	0.68990	6834.58	57.6574	8355.13	0.24422	-0.069870	0.016236	-530.34	687.44	-606.27	0.9063	1.5411
52	12.9800	0.68104	0.69618	12165.07	+35.7956	5738.63	0.15692	0.008057	-0.069870	-111.53	-3480.33	-112.55	-2.1979	0.9063
53	18.9094	0.68741	0.68104	8504.65	78.6256	12454.36	0.35485	-0.036742	0.008057	-556.05	436.64	-542.71	0.9313	-2.1979
54	10.1372	0.70015	0.68741	18669.09	-99.4713	4503.84	0.13266	0.006224	-0.036742	-116.94	-1933.05	-116.76	1.8355	0.9313
55	7.0451	0.71967	0.70015	6904.38	74.9718	9201.79	0.26415	-0.057027	0.006224	-1016.21	323.94	-1073.84	2.7497	1.8355
		0 70744	0 71007	14040 45	-45 5720	E704 40	A 15043	0 017000	-0 057007	-121 27	-7154 64	-122 16	1 0748	3 7497

 $|\Psi_{n,v}||^{2}$

k, i k, k

							MODEL	WITH 35	.5			12:18 Sun	day, Nove	mber /. 19	544
DBS	KA	DCY	DCYLO	DDCY	DCPSRAT	DCPSOTO	DCPSY	DCPSYLG	DDCPSY.	DCPSLG	DOCPS	DCCGY	DCCGYLG	DDCCGY	
र्म्स के प्र		1							·····	•					
1	148.99	0.58102			1.01959	-52.040	0.59241				000'4	-0.03674	-0.03674	-0.01060	
2	125.75	0.52147	0.58102	-0.05955	1.05322	- 19.798	0.54922	0.59241	-0.04318	3996.7	206.4	-0.05644	-0.03674	-0.01969	
	300 83	0.63997	0.02147	0.01851	1.06584	-18 809	0.72175	0.04022	0.02636	4203.1	902 5	-0.07194	+0.07000	-0.00194	
5	307.77	0.70297	0.68337	0.01960	1.03027	-34.041	0.72428	0.72175	0.00249	5272.1	283.4	-0.04774	-0.07194	0.02420	1
6	98.18	0.56705	0.70297	-0.13592	1.07964	-13.559	0.61221	0.72425	-0.11204	5555.5	341.5	-0.06630	-0.04774	-0.01855	1
7	-14.39	0.51378	0.56705	-0.05327	1.13905	-8.191	0.58522	0.61221	-0.02699	5897.0	342.6	-0.09575	-0.06630	-0.02945	5
8	145.45	0.53583	0.51378	0.02205	1.18971	-6.271	0.63748	0.58522	0.05226	6239.6	69.3	-0.12785	-0.09575	-0.03210	, ,
10	18.08	0.47192	0.03583	-0.06391	1.27584	-4.624	0.60214	0.63748	-0.03534	6308.8	12.1	-0.14820	-0.12785	+0.020385	2
11	378 dA	0.37523	0 97929	0.01550	42002	-3.350	0 86364	0 63206	0 02149	6670 0	447.0	-0 20089	-0 18490	-0.01568	i
12	112.18	0.40042	0.38873	0.01170	1.50178	-2.994	0.60135	0.55354	0.04781	7117.0	473.0	-0.24228	-0.20059	-0.041690	8
13	123.15	0.39957	0.40042	-0.00085	1.48426	-3.065	0.59307	0.60135	-0.00828	7590.0	379.0	-0.22505	-0.24228	0.01723	1
14	438.29	0.35543	0.39957	-0.04414	1.57427	-2.740	0.55953	0.59307	-0.03353	7969.0	510.0	-0.23875	-0.22505	-0.01370	3
15	276.39	0.39945	0.35543	0.04402	1.50882	-2.965	0.60269	0.65983	0.04316	8479.0	675.0	-0.24611	-0.23875	-0.00735	•
10	346.00	0.46356	0.39945	0.06411	1.40703	-3.457	0.65225	0.60268	0.04955	9154.0	487.0	-0.24518	-0.24611	0.00093	1.000
18	754 91	0 53401	0 51065	0.02336	1 26736	-4 740	0 67678	0 65814	0.01863	10294 0	931.0	-0 20457	-0.20063	-0.00394	1
19	892.26	0.61872	0.53401	0.08472	1.18786	-6.320	0.73496	0.67678	0.05818	11225.0	656.0	-0.19418	-0.20457	0.01039	ż
20	839.42	0.66647	0.61872	0.04775	1.21496	-5.655	0.80973	0.73496	0.07477	11881.0	610.0	-0.21263	-0.19418	-0.018449	
21	1375.45	0.65326	0.66647	-0.01321	1.18645	-6.364	0.77505	0.80973	-0.03468	12491.0	936.0	-0.17369	+0.21263	Q.03893	1
22	1375.03	0.55091	0.65326	-0.10234	1.22051	-5.535	0.67240	0.77505	-0.10266	13427.0	222.0	-0.16853	-0.17369	0.005155	3
23	1268.82	0.56476	0.55091	0.01985	1.21048	-8.754	0.68362	0.67240	0.01122	13649.0	339.0	-0.17804	-0.16853	-0.009506	•
24	1356.39	0.62319	0.56476	0.05843	1.21830	-5.581	0.75923	0.68362	0.07561	13988.0	885.0	-0.19638	-0.17804	-0.01834	1
25	1369.56	0.52059	0.62319	-0.10260	1.00286	-26.186	0.52208	0.75923	-0.23715	14873.0	-2932.0	-0.22399	-0.19638	-0.02760	5
20	707 00	0.49357	0.52059	-0.02703	1.13012	-0.037	0.55779	0.52208	0.03571	11941.0	969.0	-0.27456	-0.22395	-0.030376	
28	763 10	0 65426	0 48669	0.06767	1 23034	+4 447	0.68193	0.53778	0.10318	13865 0	872 0	-0 37162	-0 30494	-0.06668	5
29	564.98	0.51043	0.55426	-0.04383	1.25617	-4.114	0.64119	0.66193	-0.04074	14737.0	646.0	-0.34629	-0.37162	0.025330	5
30	419.30	0.48185	0.51043	-0.02859	1.35930	-3.288	0.65497	0.64119	0.01378	15383.0	1108.0	-0.38045	-0.34629	-0.03415	1
31	99.56	0.56851	0.48185	0.08667	1.19367	-4.931	0.67862	0.65497	0.02364	16491.0	773.0	-0.32492	-0.38045	0.05552	7
32	894.95	0.62092	0.56851	0.05241	1.22333	-4.444	0.75959	0.67862	0.08097	17264.0	840.0	-0.38126	-0.32492	-0.056342	2
33	1113.48	0.64112	0.62092	0.02020	1.14209	-5.995	0.73222	0.75959	-0.02737	18104.0	954.0	-0.29580	-0.38126	0.085464	
34	1042.20	0.6516/	0.64112	0.01085	1.12106	-6.011	0.73056	0.73222	-0.00166	19058.0	769.0	-0.28232	-0.29580	0.01346	
36	925.63	0.71478	0.59639	0.11839	1. 12470	-6.652	0.80391	0.71164	0.09227	20432.0	2432.0	-0.30031	-0.31998	0.019674	4
37	2037.53	0.71272	0.71478	-0.00206	1.10572	-7.378	0.78807	0.80391	-0.01584	22864.0	605.0	-0.27575	-0.30031	0.024554	4
38	895.38	0.74166	0.71272	0.02894	1.13188	-6.453	0.83947	0,78807	0.05140	23469.0	3532.0	-0.27810	-0.27575	-0.002353	2
39	1479.51	0.76042	0.74166	0.01876	1.12123	-6.826	0.85261	0.83947	0.01314	27001.0	939.0	-0.20540	+0.27810	0.07270	1
40	1306.32	0.90401	0.76042	0.14358	1.03379	-14.394	0.83455	0.85261	0.08194	27940.0	1770.0	-0.21648	-0.20540	-0.01107	!
41	1379.29	0.89413	0.90401	-0.00987	1.06970	+10.870	0.95648	0.93455	0.02190	29710.0	2259.0	-0.22708	+0.21648	-0.010570	2
42	213.95	0.90140	0.89413	0.00726	1.05042	-12.199	0.94685	0.95645	-0.00961	31969.0	2823.0	-0.21562	-0.22705	0.01142	
44	1512 72	1 07183	1 02266	0.04917	0 99258	-49 611	1.06388	1 04101	0.03410	39036 0	1496 0	-0 18812	-0 19385	0.00573	
45	1851.17	1.06901	1.07183	-0.00282	1.03012	-17.958	1.10121	1.06388	0.03733	40532.0	2424.0	-0.20901	-0.18812	-0.020890	5
46	419.90	1.03539	1.06901	-0.03362	1.02203	-21.327	1.05819	1.10121	-0.04302	42956.0	1169.0	-0.18761	-0.20901	0.02139	9
47	473.59	1.25756	1.03539	0.22217	0.97173	156.924	1.22201	1.05819	0.16382	44125.0	7817.0	-0.18261	-0.18761	0.00498	1
48	2423.46	1.44169	1.25756	0.18413	0.98592	-156.722	1.42139	1.22201	0.19937	51942.0	7769.0	-0.21284	-0.18261	-0.03022	3
49	684.82	1.67521	1.44169	0.23352	1.01699	-29.053	1.70368	1.42139	0.28229	59711.0	11150.0	-0.26339	-0.21284	-0.05055	1
50	2598.91	1.94909	1.6/521	0.27387	1.00803	-45.335	1.96475	1.70368	0.26107	/0861.0	12328.0	-0.24291	-0.26339	0.02047	
52	2932 65	1.76944	1 80884	-0.05942	1 03109	-22 904	1.82444	1.85864	-0.03419	92542 0	6295 0	-0.22104	-0.22404	0.00214	1
53	4671.70	1.87394	1.76944	0.10450	1.04289	-18.318	1.95432	1.82444	0.12987	96877.0	3942.0	-0.23062	-0.22190	-0.00871	1
54	1775.72	1.97945	1.87394	0.10551	1.04638	-17.542	2.07125	1.95432	0.11694	102819.0	4979.0	-0.26477	-0.23062	-0.03415	5
55	770.83	1.89721	1.97945	-0.08224	1.01957	-28.316	1.93434	2.07125	-0.13691	107798.0	-793.0	-0.23815	-0.26477	0.02662	4
56	4716.52	1.94961	1.89721	0.05240	1.01232	-38.405	1.97362	1.93434	0.03928	107005.0	8401.0	-0.21738	-0.23815	0.020770	0
	1 N							1							1
	5							())
	· ·	,						-)	

 $\mathcal{N}_{i_1,\ldots,i_r}$

	MODEL WITH SSLS	12:18 Sunday, November 7, 1993 21
DES DEDEY DEGEYLG ODEDEY DETG DETGLG	DOCTO DETORAT DETGY DETGYLO DECTGY DECT	GYLG FDIY FDIYLG PIY
1 0 02526 -76 8	-0 01959 -0 01138	0.005413 . 0.000000
2 0 02870 0 02536 0 00333 -212 3 -76 8	-135 5 -0.05320 -0.02774 -0.01138 -0.01636	0.002440 0.005413 0.000000
3 0 03439 0 02870 0 00570 +270.3 +212 3	-58.0 -0.06594 -0.03560 -0.02774 -0.00786 -0.0	1636 0.004428 0.002440 0.002788
4 0.03357 0.03438 -0.00082 -280.3 -270.3	-10.0 -0.05615 -0.03837 -0.03560 -0.00277 -0.0	0786 0.004656 0.004428 0.003724
5 0.02646 0.03357 -0.00710 -163.2 -280.3	117.1 -0.03027 -0.02128 -0.03837 0.01710 -0.0	0277 0.006407 0.004656 0.000000
6 0.02115 0.02646 -0.00532 -434.9 -163.2	-271.7 -0.07962 -0.04515 -0.02128 -0.02387 0.0	01710 0.003051 0.006407 0.002337
7 0.02430 0.02115 0.00315 -761.8 -434.9	-326.9 -0.13907 -0.07145 -0.04515 -0.02630 -0.0	2387 0.001467 0.003051 0.000000
8 0.02619 0.02430 0.00189 -1006.1 -761.8	-244.3 -0.18973 -0.10166 -0.07145 -0.03021 -0.0	2630 0.004688 0.001467 0.001584
9 0.01802 0.02619 -0.00817 -1380.0 -1006.1	-373.9 -0.27594 -0.13022 -0.10166 -0.02856 -0.0	3021 0.004388 0.004688 0.000000
10 0.02608 0.01602 0.00806 -1991.0 -1360.0	-611.0 -0.42852 -0.15882 -0.13022 -0.02859 -0.0	2856 0.001901 0.004388 0.000000
11 0.03570 0.02608 0.00962 -2120.0 -1991.0	-129.0 -0.42417 -0.16489 -0.15882 -0.00607 -0.0	2859 0.001801 0.001901 0.000000
12 0.04144 0.03570 0.00574 -2535.0 -2120.0	-415.0 -0.50158 -0.20084 -0.16489 -0.03596 -0.0	0607 0.001688 0.001801 0.002284
13 0.03155 0.04144 -0.00988 -2600.0 -2535.0	-65.0 -0.48426 -0.19350 -0.20084 0.00735 -0.0	3596 0.001450 0.001688 0.000000
14 0.03458 0.03155 0.00302 -3094.0 -2600.0	-494.0 -0.57445 -0.20417 -0.19350 -0.01068 0.0	0735 0.002161 0.001450 0.001953
15 0.04286 0.03458 0.00828 -3087.0 -3094.0	7.0 -0.50882 -0.20325 -0.20417 0.00093 -0.0	1068 0.001292 0.002161 0.000000
16 0.05649 0.04286 0.01363 +2788.0 +3087.0	298.0 -0.40703 -0.18868 -0.20325 0.01456 0.0	0093 0.000817 0.001292 0.000000
17 0.05307 0.05649 -0.00342 -2308.0 -2789.0	481.0 -0.28897 -0.14766 -0.18869 0.04112 0.0	1466 0.001665 0.000817 0.00000
18 0.06180 0.05307 0.00873 -2368.0 -2308.0		04112 0.001458 0.001655 0.001661
19 0.07788 0.06180 0.01608 -1880.0 -2368.0		04/9 0.002/4/ 0.001458 0.001840
	-329.0 -0.21486 -0.14320 -0.11630 -0.02690 0.0	2647 0.003581 0.002747 0.003515
21 0.05169 0.06943 -0.01753 -2110.0 -2209.0	-266 0 -0 10064 -0 12100 -0.14320 0.02140 -0.1	140 0 005733 0 005078 0 001815
22 0.04705 0.05185 -0.00485 -2466.0 -2110.0	35 0 -0 21027 -0 11981 -0 12148 0 00268 0 1	0031 0 000859 0 005733 0.003837
23 0.05923 0.04705 0.01218 -2451.0 -2466.0	-224 0 -0 21820 -0 12604 -0 11881 -0 01723 0 0	0268 0 001311 0 000959 0 012607
25 0 20405 0 06034 0 14371 -456 0 -2665 0	2209 0 -0 03830 -0 01994 -0 13604 0 11610 -0.0	1723 0.001174 0.001311 0.000000
26 0 19052 0 20405 -0 01353 -1959 0 -456 0	-1503 0 -0 17027 -0 08404 -0 01994 -0 06410 0	1610 -0.000691 0.001174 -0.000259
27 0 19144 0 19052 0 00092 -2719 0 -1959 0	-760 0 -0.23321 -0.11350 -0.08404 -0.02946 -0.0	6410 0.003511 -0.000691 -0.000173
28 0 21827 0 19144 0 02683 -3314 0 -2719 0	-595 0 -0 27667 -0 15335 -0 11350 -0 03985 -0 0	2946 0.006402 0.003511 0.000000
29 0 19044 0 21827 -0.02783 -3739 0 -3314.0	-425.0 -0.30532 -0.15585 -0.15335 -0.00250 -0.0	3985 0.002314 0.006402 0.000000
30 0.18127 0.19044 -0.00918 -5015.0 -3739.0	-1276.0 -0.41337 -0.19918 -0.15585 -0.04333 -0.0	0250 0.004550 0.002314 0.000000
31 0.18730 0.18127 0.00604 -3501.0 -5015.0	1514.0 -0.24207 -0.13762 -0.19918 0.06156 -0.0	4333 0.002858 0.004550 -0.000176
32 0.21033 0.18730 0.02303 -4074.0 -3501.0	-573.0 -0.27529 -0.17093 -0.13762 -0.03331 0.0	06156 0.004287 0.002858 -0.001461
33 0. 17366 0.21033 -0.03667 -3179.0 -4074.0	895.0 -0.19051 -0.12214 -0.17093 0.04878 -0.0	03331 0.001775 0.004287 0.012990
34 0.17012 0.17366 -0.00354 -3045.0 -3179.0	134.0 -0.17217 -0.11220 -0.12214 0.00994 0.0	4879 0.005231 0.001775 -0.000291
35 0.17324 0.17012 0.00312 -4213.0 -3045.0	-1168.0 -0.24604 -0.14674 -0.11220 -0.03454 0.0	0994 0.002017 0.005231 -0.001073
36 0.17946 0.17324 0.00622 -3437.0 -4213.0	776.0 -0.16907 -0.12085 -0.14674 0.02589 -0.0	3454 0.002544 0.002017 0.000000
37 0.16894 0.17946 -0.01052 -3181.0 -3437.0	256.0 -0.14987 -0.10682 -0.12085 0.01403 0.0	2589 0.001927 0.002544 0.000000
38 0.14802 0.16894 -0.02092 -4184.0 -3181.0	-1003.0 -0.17539 -0.13008 -0.10682 -0.02327 0.0	1403 -0.000153 0.001927 -0.001175
39 0.08050 0.14802 -0.06752 -4093.0 -4184.0	91.0 -0.16425 -0.12490 -0.13008 0.00518 -0.0	
40 0.15165 0.08050 0.07106 -2064.0 -4093.0	2029.0 -0.07162 -0.06492 -0.12490 0.05996 0.0	
41 0.13906 0.13105 -0.01249 -2941.0 -2064.0		2206 0 003821 0 009634 -0 001183
42 0 14310 0 13900 0 00510 -1903 0 -2852 0	949 0 -0 04962 -0 05075 -0 07762 0 02687 0 0	1037 0 005519 0 003821 -0.003122
44 0 16667 0 14310 0 02357 -817 0 -1903 0	1086 0 -0 02001 -0 02144 -0 05075 0 02930 0 0	2687 0.007923 0.005519 0.001035
45 0 14769 0 16667 -0 01699 -2392 0 -817 0	-1575 0 -0 05736 -0 06132 -0 02144 -0 03988 0 0	2930 0.009071 0.007923 0.000000
46 0 13799 0 14769 -0 00970 -2069 0 -2392 0	323 0 -0 04792 -0 04962 -0 06132 0 01170 -0 0	3988 0.003343 0.009071 -0.004993
47 0, 19040 0, 13799 0, 05241 331 0 -2069 0	2400.0 0.00619 0.00779 -0.04962 0.05741 0.0	1170 0.006451 0.003343 -0.002304
48 0.20377 0.19040 0.01337 -381.0 331.0	-712.0 -0.00629 -0.00907 0.00779 -0.01686 0.0	5741 0.010497 0.006451 0.000000
49 0.20475 0.20377 0.00098 -2439.0 -381.0	-2058.0 -0.03500 -0.05864 -0.00907 -0.04957 -0.0	1686 0.010585 0.010497 0.000000
50 0.19957 0.20475 -0.00518 -1835.0 -2439.0	604.0 -0.02224 -0.04334 -0.05864 0.01530 -0.0	04957 0.009869 0.010585 -0.000216
51 0.16853 0.19957 -0.03104 -2765.0 -1835.0	-930.0 -0.03035 -0.05551 -0.04334 -0.01217 0.0	1530 0.008449 0.009869 -0.001787
52 0.14224 0.16853 -0.02629 -4317.0 -2765.0	-1552.0 -0.04502 -0.07966 -0.05551 -0.02415 -0.0	01217 0.013649 0.008449 -0.001382
53 0.12393 0.14224 -0.01832 -5613.0 -4317.0	-1296.0 -0.05693 -0.10669 -0.07966 -0.02703 -0.1	2415 0.020943 0.013649 0.000000
54 0.14670 0.12393 0.02277 -6145.0 -5613.0	-532.0 -0.05965 -0.11807 -0.10669 -0.01138 -0.0	02703 0.009370 0.020943 -0.000187
55 0.16983 0.14670 0.02313 -3779.0 -6145.0	2366.0 -0.03601 -0.06831 -0.11807 0.04976 -0.0	1138 0.005318 0.009370 -0.000248
56 0.16599 0.16983 -0.00385 -3005.0 -3779.0	774.0 -0.02636 -0.05139 -0.06831 0.01692 0.0	04976 0.017141 0.005318 0.000000

,

(1899)						H	HOEL WITH	H 3SLS			121	18 Sunday	, Novem	ber 7, 199	93 22
DBS	PIVLG	OCY	OCYLO	CFY	MS	MIY	LLY	QLLY	DCG	DCGY	MSY	MSYLG	MSLG	RGMS	
MD 4	C.F.A.I.MM														
1		0.016670		0.022083	4522	0.31320	0.51626	-0.11013	-76.8	-0.01138	0.67027	0 67027	4522	0.5733	
2	0.000000	0.013991	0.016670	0.016431	4548	0.29283	0.4/1/2	+0.12830	-270.3	-0.03560	0.62700	0.59428	4548	4.5560	
2	0.002788	0.032804	0.019024	0.041184	6053	0.34061	0.53788	-0.14334	-280.3	-0.03837	0.82866	0.62700	4760	24.0306	
5	0.003724	0.033716	0.032804	0.040123	6724	0.36489	0.58143	-0.14836	- 163.2	-0.02128	0.87658	0.82866	6053	10.5129	
6	0.000000	0.004804	0.033716	0.010193	7135	0.31363	0.49323	-0.13403	-434.8	-0.04515	0.74073	0.87658	6724	5.9329	
7	0.002337	-0.002816	0.004804	-0.001350	7578	0.29826	0.47524	-0.12127	-761.8	-0.07145	0.71075	0.74073	7578	8.4479	
8	0.000000	0.008425	-0.002816	0.014697	8246	0.33506	0.54463	+0 12182	+ 1380 (-0 13022	0.84673	0.83321	8246	8.4492	
10	0.000000	0.024265	-0.002965	0.026166	9774	0.33287	0.55215	-0.11359	- 1991.0	-0.15882	0.77965	0.84673	8973	8.5506	
11	0.000000	0.027400	0.024265	0.029201	10792	0.36532	0.60510	-0.12559	-2120.0	0 -0.16489	0.83936	0.77965	8774	9.9079	
12	0.000000	0.004915	0.027400	0.008888	11085	0.39717	0.63930	-0.15505	-2535.0	0 -0.20084	0.87825	0.83936	10792	2.6788	
13	0.002284	0.007716	0.004915	0.009165	11714	0.39086	0.64419	-0.13753	-2600.0	0 -0.19350	0.87177	0.87825	11085	5.5192	
14	0.000000	0.024809	0.007716	0.028923	11637	0.36961	0.59392	-0.14531	-3094.0	-0.20417	0.10193	0 74793	11637	5.8494	
14	0.001953	0.010839	0.024809	0.018132	13222	0 43812	0 68648	-0.18977	-2789.0	-0 18869	0.89452	0.81233	12338	6.9198	
17	0.000000	0.076562	0.022628	0.078217	14378	0.43373	0.70053	-0. 16693	-2308.0	-0.14756	0.01925	0.89452	13222	8.3817	
18	0.000000	0.036175	0.076562	0.045515	14521	0.43278	0.68642	-0.17913	-2368.0	0 -0.14277	0.87550	0.91925	14378	0.9897	
19	0.007881	0.050808	0.036175	0.055195	15472	0.46976	0.75110	-0.18843	-1880.0	0 -0.11630	0.95710	0.87550	14521	6.3436	
20	0.001640	0.047520	0.050808	0.054416	15547	0.46188	0.79359	-0.13017	-2209.0	-0.14320	1.00784	0.95710	154/2	10 3360	
21	0.003315	0.074318	0.047520	0.079396	17763	0.42652	0.75173	-0.10130	-2110.0	-0.12180	0 89187	1.00764	17763	1 8684	
22	0.000000	0.060191	0.074318	0.067739	18000	0.37031	0 69569	+0.06085	-2431 (-0 11881	0 92377	0.89157	18098	4.3466	
24	0.003837	0.055322	0.057214	0.069240	20299	0.38714	0.75530	-0.01899	-2665.0	-0.13604	1.03622	0.92377	18902	7.1304	
25	0.012607	0.058705	0.055322	0.059880	21752	0.35218	0.68901	-0.01535	-456.0	0 -0.01994	0.95103	1.03622	20299	6.9134	
26	0.000000	0.029535	0.058705	0.028585	22209	0.35689	0.71154	-0.00223	-1959.0	0 -0.08404	0.95277	0.95103	21752	2.0792	
27 -	0.000259	0.027049	0.029535	0.030386	22501	0.33007	0.69663	0.03648	-2719.0	0.11350	0.93928	0.85277	22209	1.3062	
28 -	0.000173	0.028909	0.027049	0.035311	23920	0.39707	0.83000	0.03586	-3314.0) -0.15335 - 0.15586	1.10686	1 10686	22501	4 3791	
30	0.000000	0.021235	0.028909	0.023643	25239	0 37707	0 81273	0.05858	-5015.0	0.19918	1.00241	1.04158	24989	0.9955	000000000000000000000000000000000000000
31	0.000000	0.001231	0.012103	0.003914	27793	0.36922	0.84878	0.11034	-3501.0	-0.13762	1.09249	1.00241	25239	9.6394	90 - S
32 -	0.000176	0.034723	0.001231	0.037549	28905	0.42477	0.97248	0.12293	-4074.0	0 -0.17093	1.21277	1.09249	27793	3.9230	
33 -	0.001461	0.028015	0.034723	0.042780	29363	0.40245	0.92855	0.12364	-3179.0	0 -0. 12214	1.12776	1.21277	28905	1.5380	
34	0.012990	0.033461	0.028015	0.038402	30585	0.38155	0.89722	0.13412	-3045.0	-0.11220	1.12696	1.12776	29353	4,1110	
35 -	0.000291	0.072070	0.033461	0.073014	36864	0.38981	0.95364	0.17401	-2427 (-0.14674	1.28396	1 2030	30003	-1 6851	1000-00000000
36 -	0.001073	0.030002	0.072070	0.032546	37669	0.40895	0.97096	0.18438	-3181.0	-0.10682	1.26489	1.27450	36248	3.8453	
38	0.000000	0.029166	0.066492	0.027838	39606	0.37828	0.92130	0.16475	-4184.0	-0.13008	1.23136	1.26489	37669	5.0143	
39 -	0.001175	0.041988	0.029166	0.045148	42804	0.36534	0.96567	0.23500	-4093.0	0 -0.12490	1.30620	1.23136	39606	7.7651	
40 -	0.000702	0.026253	0.041988	0.041091	47072	0.39965	1.06651	0.26722	-2064.0	-0.06492	1.48069	1.30620	42804	9.5047	
41 -	0.002646	0.032923	0.026253	0.041266	48891	0.37775	1.06688	0.31139	-2941.0	0.08798	1.46273	1.48069	47072	4. 5169	
42 -	0.001291	0.003184	0.032923	0.005823	51150	0.35518	1.03146	0.32110	-1002 (-0.07762	1 48127	1 39202	51150	8 2431	
43 -	0.001183	0.014612	0.003184	0.039705	58728	0.33035	1.10432	0.34881	-817.0	-0.02144	1.54148	1.48127	55545	5.5723	
45	0.001035	0.038385	0.030747	0.047456	60307	0.36939	1.21941	0.48064	-2392.0	0.06132	1.54601	1.54148	58728	2.6832	
46	0.000000	0.011720	0.038385	0.010070	59774	0.39555	1.14153	0.35042	-2069.0	0.04962	1.43348	1.54601	60307	-0.8877	
47 -	0.004993	0.006995	0.011720	0.011142	70808	0.40381	1.30362	0.49601	331.0	0.00779	1.66586	1.43348	59774	16.9401	
48 -	0.002304	0.047192	0.006995	0.057689	78843	0.48939	1.39318	0.41439	-381.0	-0.00907	1.87681	1.66586	70808	10.7487	
49	0.000000	0.005880	0.047192	0.016465	82083	0.53266	1.54755	0.48222	-1935 (-0.05864	1.9/349	1.87681	82083	10 5894	
50 51	0.000000	0.035510	0.003880	0.001301	97524	0.46138	1 64396	0 62120	+2765 (-0.05551	1.95785	2.15518	91252	6.6474	
52 -	0.001787	0.041845	0.035510	0.054112	106556	0.43950	1.56156	0.68256	-4317.0	-0.07966	1.96613	1.95785	97524	8.6572	
53 -	0.001382	0.067854	0.041845	0.088797	113262	0.44802	1.54197	0.64593	-5613.0	0.10669	2.15281	1.96613	106556	6.1033	
54	0.000000	0.024936	0.067854	0.034119	119697	0.47284	1.68616	0.74048	-6145.0	0 -0.11807	2.29988	2.15281	113262	5.5260	
55 -	0.000187	0.008864	0.024936	0.013934	122804	0.46646	1.68708	0.75416	-3779.0	-0.06831	2.21994	2.29988	119697	2.6626	
56 -	0.000248	0.063518	0.008864	0.080660	131285	0.45649	1.70006	0.78708	-3005.0	5 -0.05139	2.24017	2.21994	122804	0.0/01	
	9.200														
1	N		28.00229.00499.00000000				(
(9.						C	/							
131310							MODEL	WITH SSLS			12:	18 Sunday	Novemb	er 7. 1993 23	
----------	----------	------------------	----------	----------	---------	---------	---------	-----------	---------	----------	----------	-----------	------------	-------------------	
085	RMS	RODP	RODPLO	RGRODP	RODPCAP	XY	XYLG	RGXY	RX	RXLG	RGRX	RGRXYF	RXY	RXYLG	
	10012 84				453 083	0 15717			2488 75			. (. 36889	• · · · · · · · ·	
	10613.84	13035.24	15035 34	11 1020	403.003	0 14327	0 15717	-8 8404	2537.45	2488.75	1,9568	28.04 0	.33157	0.36889	
	10925.30	17200 41	17710 00	-1 0474	AGT A71	0 14979	0 14327	4 2016	2595 66	2537 45	2.2942	34.25 0	34191	0.33157	
2	13552 80	16355 07	17386 61	-6 1163	467 956	0 22261	0.14929	49,1093	3640.75	2595.66	40.2627	896.27 (. 49842	0.34191	
	14099 91	16085 14	16365.07	-1 6642	449 808	0 23601	0.22261	6.0231	3796.32	3640.75	4.2732	100.85 (.49491	O.49842	
6	13741 10	18550 69	16085 14	14 2611	518.755	0.22165	0.23601	-6.0847	4111.83	3796.32	8.3108	184.21 (.42688	0.49491	
7	13640.39	19191.46	18550.69	3.3958	536.674	0.24825	0.22165	12.0011	4764.36	4111.83	15.8698	393.97 (.44686	0.42688	
8	14433.98	17323.30	19191.46	-10.2413	484.432	0.28906	0.24825	16.4371	5007.48	4764.36	5.1028	147.50 (0.50598	0.44686	
9	15240.37	17999.03	17323.30	3.8265	491.911	0.32785	0.28906	13.3137	5895.49	5007.48	17.7338	580.86 0	.66633	0.80598	
10	15855.51	20336.79	17999.03	12.2114	555.802	0.27462	0.32758	-16.1595	6584.79	5895.49	-5.2701	+144.73 (.44548	0.65633	
11	16787.45	20000.20	20336.79	-1.6689	846.603	0.25531	0.27462	-7.0293	5106.29	5584.79	-8.5680	-218.75	39715	0.44548	
12	16593.77	18894.11	20000.20	-5.6892	516.374	0.27487	0.25531	7.6599	5193.39	5106.29	1.7059	46.89 0	0.41147	0.39715	
13	17022.44	19526.21	18894.11	3.2907	521.742	0.25794	0.27487	-6.1589	5036.58	5193.39	-3.0195	-11.69	34183	0 37483	
14	16606.94	21625.53	19526.21	10.2117	5//.83/	0.23953	0.25794	9 8691	6107 62	5030.58	2.0409	56 51 (34879	0.34183	
10	19310 03	21282.87	21023.00	-1.0002	546 630	0.24000	0.24880	3 0970	8095 79	8297 62	-0.0346	-0.90	35828	0.34879	
17	18906 28	20567 01	20469 21	0 4767	545.555	0 21363	0.25872	+17.4284	4393.71	5295.79	-17.0339	-363.89 (. 28091	0.35828	
18	19000.02	21701 92	20567 01	5 3712	567.222	0.19707	0.21363	-7.7496	4276.87	4393.71	-2.6591	-52.40 (. 25786	0.28091	
19	19965.01	20859.97	21701.92	-3.9569	545.216	0.19396	0.19707	-1.5784	4046.06	4276.87	-5.3968	-104.68 0	.25029	0.25786	
20	19631.56	19478.87	20859.97	-6.8502	509.118	0.21457	0.19396	10.6232	4179.54	4046.06	3.2991	70.79 0	.27094	0.25029	
21	21360.86	20832.89	19478.87	6.7203	532.640	0.16472	0.21457	-23.2334	3431.52	4179.64	-17.8972	-294.80 (19808	0.27094	
22	21078.11	23641.51	20832.89	12.6471	604.449	0.21941	0.16472	33.2056	5187.22	3431.52	51.1640	1122.60 (.25554	0.19808	
23	21510.24	23285.24	23641.51	-1.5185	595.340	0.24478	0.21941	11.5602	5699.67	5187.22	9.8790	241.82 0	27855	0.25554	
24	22887.03	22087.14	23285.24	-5.2824	564.708	0.24736	0.24478	1.0551	5463.45	5699.67	-4.1446	-102.52 (27890	0.27855	
25	23318.03	24518.66	22087.14	10.4439	613.388	0.22673	0.24736	-8.3382	5559.20	5463.45	1.7526	39.74 (24306	0.2/890	
26	23366.75	24525.01	24518.66	0.0259	613.547	0.23654	0.22673	4.3231	5801.03	5559.20	4.3501	102.90 (1 24007	0.24300	
21	23364.71	24875.04	24525.01	1.41/1	822.304	0.22766	0.23004	-3.0011	5000.41	8669 A1	-2.2001	-166 20 /	24508	0 23682	
28	24//3.46	22381.83	24875.04	0 6404	800 360	0.23664	0.22700	-16 3707	4970 33	5000 .41	-8 0072	+158 45 0	20309	0 24500	
30	25140 45	25079 91	24622 82	1 8393	609 364	0 20417	0 19788	3 1784	5120.52	4872.33	5.0938	104.00 (. 20337	0.20309	
31	27546 40	25214 30	25079 91	0 5344	612 630	0 20307	0 20417	-0.5368	5120.32	5120.52	-0.0038	-0.08	.20127	0.20337	
32	28577.28	23563.73	25214.30	-6.7703	572.526	0.23208	0.20307	14.2850	5468.69	5120.32	6.8037	157.90 (.22945	0.20127	
33	28470.42	25245.20	23563.73	6.8927	899.827	0.19251	0.23208	-17.0499	4859.98	5468.69	-11.1308	-214.28 (18672	0.22945	
34	29380.40	26070.60	25245.20	3.2172	619.438	0.13331	0.19251	-30.7546	3475.34	4859.98	-28.4906	-379.79 (12805	0.18672	
35	34909.09	27188.61	26070.60	4.1990	646.002	0.14032	0.13331	5.2613	3815.07	3475.34	9.7764	137.17 (). 13288	0.12805	
36	32833.33	25761.78	27188.61	-5.3906	612.101	0.20059	0.14032	42.9542	5167.60	3815.07	35.4521	711.14 (0.18170	0.13288	
37	33573.08	26542.27	25761.78	2.9846	617.226	0.20625	0.20059	2.8187	5474.23	5167.60	5.9337	122.38 (). 18382	0.18170	
38	34711.66	28189.60	26542.27	6.0214	655.534	0.21065	0.20625	2.1341	5938.05	5474.23	8.4729	178.48	18462	0.18382	
39	36836.49	28201.29	28189.60	0.0415	655.806	0.22414	0.21065	6.4041	6320.85	0938.00	B. 4402	44.03	19209	0 10000	
40	39194.00	26470.16	28201.29	-6.3350	615.549	0.25252	0.22414	12.6512	6684.12	6320.90	D.7400	-10 95 /	10896	0.21025	
41	40107.47	27419.64	264/0.10	7 7626	675 054	0.24283	0 24252	-11 7343	6343 61	6650 09	-4 6087	-98.66 (17264	0. 19896	
42	41250.00	29655.20	29633 20	0 1116	675 809	0 22271	0 21407	4 0374	6607 10	6343.61	4.1536	92.51 (17620	0.17264	
44	46061.18	29881.14	29666.31	0.7216	680.702	0.21919	0.22271	-1.5820	6549.66	6607.10	-0.8693	-19.06 (0. 17 19 1	0.17620	
45	46497.30	30075.60	29881.14	0.6487	671.865	0.23232	0.21919	5.9903	6987.18	6549.66	6.6800	155.19 (). 17912	0.17191	
46	44976.67	31375.79	30075.60	4.2323	700.587	0.23855	0.23232	2.6810	7484.67	6987.18	7.1200	169.85 (. 17950	0.17812	
47	52920.78	31767.83	31375.79	1.2418	709.341	0.24726	0.23855	3.6499	7854.78	7484.67	4.9450	122.27 (18480	0.17950	
48	58186.72	31002.97	31767.83	-2.4371	692.262	0.26600	0.24726	7.5813	8246.83	7854.78	4.9911	132.76	0.19631	0.18480	
49	59653.34	30227.41	31002.97	-2.5334	674.343	0.26374	0.26600	-0.8489	7972.27	8246.83	-3.3293	-87.81 (19167	0.19631	
50	65133.48	30221.88	30227.41	-0.0183	674.219	0.24223	0.26374	-8.1557	7320.74	7972.27	-8.1725	-197.96 (1/290	0.1916/	
51	66980.77	34211.41	30221.88	12.3993	763.222	0.24768	0.24223	2.2469	8473.34	1320.74	10.7444	787 06	10822	0 17011	
02	71900.13	36569.30	34211.41	6.0650	810.824	0.293/8	0.24768	10.0104	9448.39	10743 30	-12 0570	-324 57	17958	0 19823	
50	78080 22	33041.63	35097 53	-3 3363	744 919	0 25764	0 26010	-4 3033	8745 77	9448 05	-7.4331	-191 48	16804	0.17958	
54	77332 49	34835 41	33949.65	2.5756	764.353	0.26518	0.25761	2.9380	9237.60	8745.77	5.6237	149.13	. 16699	0.16804	
56	80840.52	36006.40	34835.41	3.3062	790.047	0.25946	0.26518	-2.1568	9342.19	9237.60	1.1322	29.38	0.15977	0.16699	
19635773		ergilik hir hold													

1.

DBS NGMY NY LY LY UT PD PDV PVLG NFLG NFLGT NFLGT </th <th>. 1999 24</th>	. 1999 24
1 0. 1258 2428.13 0.3006 0.3894 2 0.830 192.15 0.0238 439 151 0.0238 0.0238 2 0.5763 0.1237 355.77 0.4437 0.4437 0.4437 0.4437 0.4437 0.4437 0.0238 0.0354 0.0354 0.0354 0.0354 0.0354 0.0354 0.0354 0.0354 0.0354 0.0354 0.0354 0.0354 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.0355 0.03256 0.	1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0	86
3 3 0776 0 0176 0 010 0116 010 010 0126	26 .
a) 3 c) 6823 c) 61737 2883 c) 6766 c) 6764 c) 6074 244 c) 6765 c) 6764 250 244 c) 6765 c) 6775 266 c) 6775	56
9 -0.7668 0.17268 0.1768 0.01392 0.13892 0.01392 0.13892 0.13892 0.13892 0.13892 0.13892 0.13892 0.13892 0.13892 0.13892 0.13892 0.13892 0.13892 0.13892 0.13892 0.13892 0.13892 0.13892 0.13892 0.14875 0.03892 0.03892 0.0389 0.0389 0.0389 0.0389 0.0389 0.0389 0.0389 0.0389 0.0389 0.0389 0.0389 0.01738 0.04892 0.14875 0.03891 0.14875 0.03891 0.01711 0.0484 0.0186 0.0181 0.0389 0.01738 0.01892 0.14875 0.01892 0.14875 0.01892 0.14875 0.01892 0.14875 0.01892 0.14875 0.01892 0.01711 0.1171 0.1181 0.0181 0.0181 0.0181 0.0181 0.0181 0.0181 0.0181 0.0181 0.0181 0.0181 0.0181 0.0181 0.0181 0.0181 0.0181 0.01811 0.01811 0.01811	18
6 - 14, 7885 0, 1985 397, 45 0, 41004 0, 4024 13 2, 133 - 147, 1 - 0, 0134 0, 01375 1627 8, 1227 6, 1327 0, 01382 0, 0041 2 9 6, 4861 0, 1662 2472,02, 04685 0, 03230 2, 16 10, 004 - 705,02 - 0, 0668 - 0, 0338 2, 056 147 0, 2393 1, 0, 2078 0, 1427 0, 0, 0395 0, 1427 0, 1485 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	87
1 2:253 0:1568 3155 5:3567 0:32250 4 2:568 -324:78 -0:03216 2058 1855 0:14275 0:04276 0:04275 0:03216 2058 1855 0:3331 0:03216 0:0432 0:04553 3376 1715 0:2391 0:03216 0:0455 3376 1715 0:2391 0:0316 0:0455 3376 1715 0:2391 0:0166 0:1271 1<11	12
9 10 171 10 171 10 171 10 171 10 171 171 10 171 171 10 171 1	42
0 - 23, 2192 0. (6016 460, 460, 460, 4768 0. 8026 2] 18, 11 - 568, 24 - 0.0433 0.04853 3468 1.20 0.48854 0.2140 0.48854 0.18643 3 - 3, 2235 0. (607 362, 20, 0.23746 0.27483 61 38.329 - 342, 45 - 0.02549 - 0.02549 4.0.28843 0.2564 0.23140 0.16157 4 - 9, 2162 0.1733 591, 461 0.3814 0.2056 0.32349 40 50 644 220, 31 0.01451 0.00550 3845 2422 0.25344 0.26944 0.14261 5 2.0167 0.1823 4813, 39 0.3056 0.32349 40 50 644 220, 31 0.01451 0.00550 3845 2422 0.25344 0.26944 0.14950 7 -24, 3277 0.18865 166.29 76 0.3767 0.3485 21 220 51 0.01451 0.00550 3845 2422 0.25344 0.24146 0.14261 - 5.516 0.1633 607, 21 0.3277 0.3465 21 22 0.25 10 0.01564 0.01564 366 2200 0.2446 0.44146 0.1756 - 5.516 0.1633 607, 21 0.3277 0.3465 21 22 0.50 6.44 220, 31 0.01451 0.00550 3346 2422 0.25344 0.24146 0.1759 - 5.516 0.1633 607, 70 0.3316 0.41261 21 2.205 61.00 1.2462 0.05573 3445 242 0.2143 0.21446 0.1756 - 5.516 0.1633 607, 70 0.3164 0.3457 2.0 2243 12 0.205 60.00580 0.01564 3662 3278 0.21459 0.17596 0.12432 - 7.9221 0.1990 394, 44 0.19161 0.22829 17 11.552 1013.99 0.05573 0.05860 3338 1928 0.21639 0.17599 0.12438 - 6.2232 0.2392 640, 72 0.2664 0.31672 0.2447 28 27.152 1100 61 0.05422 0.1442 3348 3016 0.1862 0.1862 0.11233 - 6.2232 0.2392 7616, 01 0.33775 0.3883 24 25 0.2 438 995.86 0.06482 4364 3550 0.21452 3058 0.18146 0.1844 0.17785 - 1.233 0.2032 7616, 01 0.33775 0.3883 24 25 0.5 857 0.00586 0.03127 11 3235 0.18148 0.18148 0.18745 - 1.233 0.2032 7616, 01 0.33775 0.3883 24 25 0.5 857 3.0 0.6573 0.0482 4350 3550 0.31815 0.18148 0.18745 - 1.233 0.2032 7616, 01 0.33775 0.3883 24 25 0.5 857 0.20376 0.00482 4360 3550 0.31614 0.1844 0.17785 - 1.5447 0.14327 7246 48 0.38670 0.23217 13 32.180 8014 83 457.62 0.03476 0.20376 0.0482 4360 3250 0.30485 0.18745 - 1.232 0.2032 766, 01 0.33775 0.3883 3.0 8.57 4.153 1.50 0.00585 0.03431 10.23716 0.23696 0.20484 0.17785 - 1.6347 0.14327 7246 48 0.38647 0.23217 13 32.180 8014 83 48 57.82 0.03476 0.20377 80.04882 0.3348 0.23560 0.34646 0.16723 - 1.238 0.1426 81.40 0.32647 0.33775 0.3883 3.0 185	50
1 1 1 1 0	88
3 9 2295 0 1292 0 22945 0 0.03883 414 2111 0.31064 0.23140 0.16845 4 2.0167 0 14833 380 0.30560 0.02344 0.031064 0.23144 0.03104 0.14251 7 2.6334 0.18935 0.23449 0.23449 0.23444 0.23444 0.23444 0.23444 0.23444 0.23444 0.18935 7 2.4327 0.18835 0.648 2.2351 0.01946 0.01945 0.01945 0.01945 0.17335 0.23446 0.23444 0.18935 9 -9805 0.17335 0.17345 0.23477 0.33444 0.33444 0.13457 0.13445 0.18232 0.17345 0.18935 0.17345 0.18445 0.18421 0.68133 0.17345 0.18445 0.04818 0.05803 338 1926 0.11833 0.11834 0.11734 14444 0.18442 0.18442 0.18442 0.18443 0.11844 0.117844 <	43
4 -9.2162 0.1733 5914.61 0.38044 0.38044 0.1421 2.0167 0.14823 481.38 0.38056 0.32344 0.506.64 220.31 0.01481 0.02856 3424 0.24342 0.23422	57
1 0.167 0.1682 4013 38 0.32348 60 90.446 220.31 0.01540 3882 2444 0.4244 0.4444 0	51
9	50
a -8 5614 0.1533 6045.78 0.33449 0.33449 0.17268 b -2.9605 0.17916 5.22276 0.3322 42 2.5055 955.66 0.05880 0.03192 2.4633 333 1928 0.21633 0.17599 0.16822 0.17599 0.16822 0.17599 0.16232 0.17599 0.16232 0.17599 0.16232 0.17599 0.16239 0.17599 0.12439 0.17599 0.16232 0.17599 0.16232 0.12439 0.11244 0.06873 3.438 0.110 1.7854 0.17568 8.6220 0.12439 0.66423 0.11365 0.16432 0.14422 0.16423 1.13655 0.16442 0.14422 0.04422 0.14423 0.66423 3.113 0.6543 3.113 0.6544 0.11726 0.16433 0.17726 0.16434 0.17268 0.16434 0.17268 0.16433 0.17268 0.16433 0.17268 0.16434 0.17268 0.16434 0.17268 0.16434 0.17268 0.16434 0.1	12
9 -2.9805 0.17916 5711.65 0.29276 0.3532 43 28.605 950.60 0.05880 0.05807 0.3681 10282 0.21533 7151.45 0.217395 0.17295 0.2049 0.04215 0.02049 0.1926 0.17285 0.17295 0.15265 0.02049 0.10105 0.15767	88
7 7	98
1 1	81
8 6.222 0.2032 6.480 7.2 0.2648 0.1375 0.33775 0.33775 0.33775 0.33775 0.34989 2.6 6.5 977.03 0.04986 0.4028 4.565 0.15155 0.15135 0.15157 0.2515 0.25165 0.24167 141	28
4 0.1233 0.20293 7619.01 0.33775 0.38895 22 25.685 977.03 0.04882 436 3852 0.23185 0.18135 0.18135 0.18135 0.18135 0.18135 0.18135 0.18135 0.18135 0.15757 5 2.3618 0.15994 7611.46 0.32255 0.32653 10 10.065 246.59 0.01058 0.0348 6045 0.23836 0.30888 0.2722 0.1503 7 5.0470 0.1837 7614.34 91048 8616.22 0.032189 0.32462 14 4536 514.06 0.02278 75078 7503 6423 0.32455 0.20421 1<0.382	35
3 -13, 1542 0, 17903 8199, 18 0.32653 0.32653 0.10, 055 0.01058 0.00431 7200 0.5088 0.27282 0.15023 7 -5, 0447 0.16372 7284, 46 0.22653 0.32653 0.01058 0.02094 0.01045 6738 4054 0.23936 0.20688 0.127282 0.02094 7531 4335 0.32164 0.32853 0.32653 0.02094 0.0377 7820 4933 0.23516 0.23516 0.23516 0.23516 0.23516 0.20820 0 13393 0.2462 14 15, 571 531 63 0.0506 0.0576 794 6137 0.31571 0.23515 0.20482 1 -1.0382 0.12462 7456.93 0.23517 0.33517 0.33517 0.33517 0.33517 0.33517 0.33517 0.33517 0.22155 0.24657 0.02189 0.0506 8.561 0.31514 0.33517 0.32246 0.24654 0.22189 0.02189 0.02189 0.02189<	57
-5.0447 0.16372 7298 46 0.3285 0.3285 0.3285 0.3285 0.3285 0.3285 0.3285 0.3285 0.3285 0.3285 0.3285 0.3285 0.3285 0.3285 0.3285 0.3285 0.3285 0.3285 0.2278 7820 4933 0.3285 0.3285 0.22620 0.1398 0.14029 8173 40 0.3285 0.2282 14 15.571 531.63 0.02111 0.03857 7849 8157 0.31571 0.32555 0.2402 1-0.0320 0.14262 8173.40 0.33439 0.32857 0.2372 14 15.721 509.80 0.02139 0.00506 8455 5651 0.3475 0.31391 0.23710 -20.6056 0.14061 8651.80 0.34396 0.34984 34.8306 1264.63 0.02139 70.113 8.226 0.4471 1.8251 0.31391 0.23710 -36370 0.16244 9767.44 0.37113 46 6.666 1201.84 0.02139 7113 8.226 0.4875 6.268 7157 0.3165 0.28455	32
3 3 5130 0.17439 7614 91 90.2024 7997 4345 0.28154 0.28366 0.2020 0 0.1398 0.14029 8173 40 0.3295 0.29164 710 0.2127 720 4923 0.32595 0.20142 1 0.382 0.14029 8173 40 0.33517 0.23212 730.205 128.65 0.00506 0.02139 7412 5256 0.2411 7986 5344 0.31571 0.31571 0.2105 1<0.340	23
9 - 16.7963 0.18450 8616.22 0.32189 0.32914 33 35.924 951.62 0.02116 0.03265 14202 15.03165 0.32452 1.4 15.511 531.63 0.02111 0.03576 7949 5157 0.31571 0.31571 0.2105 1 - 1.0382 0.12462 7456.93 0.26687 0.02556 0.02139 0.00556 651 0.35475 0.31571 0.2106 3 - 20.6058 0.14061 9651 83 0.34996 0.37083 119 134.113 864.63 0.02139 7611 5227 0.22656 0.28477 0.35475 0.20169 3 - 377.166 0.1724 10963.84 0.35603 0.44654 0.02157 60.4654 11713 8028 0.40796 0.28268 0.2865 0.24770 0.2426 0.3577 0.4266 0.26771 0.40796 0.28379 0.31081 0.20571 0.2426 0.3577 0.4262 0.26576 8268 7652 0.28071 0.2477 0.2477 0.31747	26
0 0.1398 0.14023 813.40 0.0208 0.23462 14 13.034 0.16021 7456.93 0.23191 0.21006 1 1.034 0.15500 8514.04 0.33517 0.23572 14 15.721 509.80 0.02139 0.00506 8455 5651 0.3475 0.31391 0.23710 1 2.06058 0.41041 9651.83 0.34562 0.37081 18 14.113 564.63 0.02169 7412 5255 0.24247 0.34475 0.20190 3 .9970 0.13100 10665.65 0.31340 0.37113 46 56.690 600.89 0.05576 0.4654 11713 8028 0.40796 0.22635 0.27865 3 1.2902 0.15214 9767.44 0.37710 0.34146 6098.646 1201.84 0.04226 0.05576 8268 7187 0.3161 0.22071 0.40796 0.22805 0.27865 0.27876 0.34140 0.23071 0.2416 0.04226 9256 7187 0.52246 0.03971 0.4026 0.35161 0.20161 1.241436 <td>82</td>	82
2 13 1034 0, 15500 8514 04 0, 33517 0, 35722 14 15,721 509.80 0,02139 0,00506 8455 5651 0,35475 0,31391 0,22710 -20.6058 0,14081 9551 83 0,34399 0,37083 119 134.113 564.63 0,02169 0,02185 7412 5255 0,28477 0,158475 0,20180 -37.7186 0,11724 10963.84 0,35603 0,40394 34 38.308 1263.03 0,04654 0,02165 7611 5227 0,28285 0,28477 0,19260 3 1,2902 0,15244 9767.44 0,29770 0,34343 60 98.646 1201.84 0,04226 0,05576 8268 7652 0,29071 0,40796 0,28905 7 1,1524 0,15219 12245.46 0,37723 0,41119 78 127.858 883.53 0,02967 0,04256 9128 7412 86623 0,28379 0,31081 0,20971 0,24133 0,4224 0,15692 13548.58 0,37981 0,42123 46 75.573 1256.82 0,03907 0,02456 9128 6623 0,28379 0,31081 0,20971 0,24133 0,4224 0,15692 13548.58 0,37981 0,42123 46 75.573 1256.82 0,03907 10860 7025 0,33140 0,28979 0,21437 4,8360 18068 11486 43 0,32228 0,24997 56 82.058 815.37 0,02486 0,03907 10860 7025 0,33140 0,28979 0,21437 3 6,6203 0,17101 10287 27 0,31747 0,32389 77 127.004 67 63 0,00213 0,02488 11276 7055 0,39470 0,33140 0,22192 1 -5,5222 0,15616 12762.31 0,37685 0,38143 0,40404 21 35.102 795.63 0,0213 0,02486 1027 6377 0,3778 0,18670 0,23140 0,22192 1 -5,522 0,15616 12762.31 0,37685 0,38143 0,40404 21 35.102 795.63 0,0213 0,02485 0,6757 0,27839 0,31185 0,37778 0,1877 2,24612 0,1512 14946.48 0,38143 0,40404 21 35.102 795.63 0,02165 0,00281 1459 6569 0,31185 0,37778 0,1877 2,24612 0,16125 14950.45 0,36446 0,39242 92 157.789 907.29 0,02381 0,00701 0,0245 9368 9612 0,25692 0,27849 0,27839 4,1059 0,18377 16411 14 0,40480 0,42071 82 160.365 460.18 0,01180 0,02381 9998 8612 0,25692 0,2784 0,22087 2,24612 0,16135 14390.45 0,36446 8,3714 42 74.101 412.85 0,00990 0,01180 9210 7381 0,21642 0,22087 0,18998 4,1059 0,1768 15499 66 0,35910 3,7164 154 460 3774 40 0,04265 0,02361 9998 8612 0,256571 0,28625 0,17725 2,29099 0,1768 15495 080 0,37645 115 2162 0,365 400.180 0,02457 4188 4577 0,02452 0,2784 0,22087 0,18998 4,1059 0,1259 15480 66 0,35910 0,33454 112 20,2160 0,02457 0,00252 5,040 7,055 0,12839 0,25571 0,16986 0,010301 0,20228 14155 48 0,29900 0,	06
3 - 20.6058 0.14061 9661.83 0.34369 0.37083 119 134.113 564.63 0.02169 7.02169 7412 5256 0.28477 0.38476 0.2617 0.19260 4 -37.7166 0.11724 10963.84 0.35603 0.40388 34 38.308 1263.03 0.04654 0.02169 761 5227 0.28265 0.28477 0.19260 5 3.6970 0.13100 10685.66 0.31340 0.37113 46 56.690 1600.89 0.05576 0.04654 11713 8028 0.40796 0.28265 0.2477 0.19260 5 3.12902 0.16244 9767.44 0.29770 0.34343 60 98.646 1201.84 0.04226 0.05576 8268 7652 0.29071 0.40796 0.26905 7 1.1624 0.15219 12245.46 0.37723 0.41119 78 127.858 88353 0.02967 0.04226 9256 7187 0.31081 0.29071 0.24133 6 4324 0.16682 13548.58 0.37981 0.42123 46 75.573 1256.82 0.03907 0.02967 9128 6623 0.28379 0.31081 0.22051 7 4.3836 0.16668 11468.43 0.32228 0.34987 56 92.058 815.37 0.02486 0.3907 10650 70325 0.33140 0.28379 0.211437 7 5.5222 0.15816 12762.31 0.37885 0.38182 77 127.004 67.63 0.00213 0.02488 11276 7055 0.35470 0.33140 0.22192 1 -5.5222 0.15816 12762.31 0.37885 0.38182 77 127.004 67.63 0.00213 0.02488 11276 7055 0.35470 0.33140 0.22192 1 -5.5222 0.15816 12762.31 0.327845 0.38182 77 127.805 -28.22 -0.00084 0.00213 12627 6377 0.37778 0.37840 0.18070 2 -14.1899 0.15612 14866.48 0.38182 77 127.805 -28.22 -0.00084 0.00213 12627 6377 0.37778 0.37847 0.228470 0.19071 2 -24612 0.16125 14986.48 0.38182 77 127.805 -28.22 -0.00084 0.00213 12627 6377 0.37778 0.37840 0.27839 0.31185 0.37778 0.17877 2 -2411 0.15639 12717.49 0.32924 0.3915 64 108.570 225.94 0.00701 10.6254 728 0.27839 0.31185 0.27964 0.22077 2 -24612 0.16125 14985.66 0.3597 0.37164 42 74.101 412.85 0.00990 0.01180 0.20381 9998 8157 0.2268	10
4 -37,7166 0.11724 10963,84 0.30603 0.40395 34 36.303 0.05576 0.05576 1013 1113 8022 0.40796 0.22828 0.27965 5 3.6970 0.13100 10557 0.05576 0.04654 11713 8022 0.40796 0.22828 0.27965 7 1.1624 0.15219 12245.46 0.37783 0.4119 78 127.858 885.53 0.0267 0.04267 9128 6623 0.28379 0.31081 0.20591 9 4.3836 0.16682 11468.43 0.32228 0.34997 56 82.038 815.37 0.02486 0.03907 10807 0.265 0.3140 0.28379 0.21437 0 4.3836 0.16682 11468.43 0.37885 0.3140 0.22192 0.00213 0.02486 10276 0.3140 0.22192 0.21437 0.23776 0.3778 0.1787 0.1787 0.1787 0.1787 0.1787 0.1787 0.1787 0.1787 0.17877 0.1787 0.1787 0.1787 0.1778 0.17877 0.17877 </td <td>50 60</td>	50 60
31.2902 0.16244 9767.44 0.29770 0.34343 60 98.646 1201.84 0.04226 0.05576 8268 7652 0.29071 0.40796 0.26905 1.1624 0.15219 12245.46 0.37723 0.41119 78 127.858 883.53 0.02967 0.04226 9256 7187 0.31081 0.22071 0.40796 0.24993 4.3836 0.16068 11468 43 0.32228 0.34997 56 82.058 815.37 0.02467 0.03907 10860 7025 0.33140 0.28379 0.21437 5.6222 0.16161 1468 43 0.32228 0.34987 75 82.058 815.37 0.02468 0.03907 10860 7025 0.33140 0.28379 0.21437 5.6222 0.16161 1762.31 0.37788 0.38182 77 127.004 67.83 0.00213 0.02165 10439 6757 0.27849 0.3140 0.21437 2.0411 0.15639 12717.49 0.32924 0.33915 64 108.57 0.22861 90.996 6559<	85
1.1624 0.15219 12245.46 0.37723 0.41119 78 127 858 883.53 0.02867 0.04226 9256 7187 0.31081 0.29071 0.24137 3 0.4324 0.16692 13548.58 0.37981 0.42123 46 75.573 1256.82 0.03907 0.02967 9128 6623 0.28379 0.31081 0.20591 4.3836 0.18066 14484 30 3.2228 0.34997 56 82.058 815.37 0.02486 0.03907 10860 7025 0.33140 0.22479 0.21437 5.8203 0.17101 10287.27 0.31747 0.32489 77 127.004 67.63 0.00213 0.02488 11277 7056 0.33140 0.28479 0.31477 <td>05</td>	05
a) 0.4324 0.16692 13548 58 0.37981 0.42123 46 75.573 1256.82 0.03907 0.02967 9128 6623 0.28799 0.31081 0.20597 0.28799 0.21437 b) 8.6203 0.11701 10287.27 0.31747 0.32389 77 127.004 67.63 0.00213 0.02488 11277 0.35140 0.28797 0.21437 c) 14.1890 0.15612 1484.648 0.38143 0.40404 21 35.102 795.65 0.02165 10439 6569 0.31185 0.37778 0.36470 0.19079 c) 14.1890 0.15612 1446.48 0.38143 0.40404 21 35.102 795.65 0.02165 10439 6757 0.27894 0.17877 c) 1.0612 14950.455 0.36446 0.39212 92 157.789 907.29 0.02381 906 8612 0.26625 0.27964 0.27964 0.22077 c) 2.084 0.16599 15466 96 0.3597 0.37164 42 74.101 412.85	33
3 4.3856 0.16068 11468.43 0.32228 0.34997 56 92.058 315.37 0.00218 0.02456 0.0307 10800 1026 0.35470 0.35470 0.22192 4.3856 0.16068 11468.43 0.32228 0.34997 56 92.058 315.37 0.00213 0.02486 0.00213 12627 6377 0.37778 0.35470 0.19079 5.5222 0.15816 12762.31 0.37885 0.38182 77 127.004 6763 0.00213 12627 6377 0.37778 0.35470 0.19079 2.14.1899 0.15612 14846.48 0.38143 0.40404 21 35.102 795.63 0.02165 -0.00084 11459 6569 0.31185 0.37778 0.18070 3 2.0411 0.1563 127174 0.32924 0.33915 64 108.570 262.94 0.00701 0.02165 10439 6757 0.27869 0.31185 0.18020 4.1065 0.16377 16411.14 0.40480 0.42071 92 157.789 907.29 0.02381 0.00701 10654 7238 0.27864 0.27839 0.18998 5 4.1069 0.16377 16411.14 0.40480 0.42071 92 160.365 460.18 0.01180 0.02381 9996 8612 0.25625 0.27964 0.22077 7 2.9099 0.17684 15499 66 0.35213 0.36466 87 154.895 377.44 0.00888 0.00990 13198 8157 0.21642 0.22087 0.22687 0.1725 7 2.9099 0.17684 15499.66 0.35213 0.38465 87 154.895 377.44 0.00486 0.00252 5340 7065 0.12839 0.25571 0.16986 6.0452 0.19201 15780.28 0.36809 0.37564 118 211.515 105.76 0.00252 5040 7065 0.12839 0.25571 0.16986 6.0301 0.20228 14155.48 0.29900 0.32485 112 202.910 1021.80 0.02457 0.00252 5340 7065 0.12839 0.25571 0.16986 9.10 3081 0.20228 17133.48 0.29900 0.33432 114 208.939 1286.63 0.00750 0.02457 4148 4577 0.09797 0.12839 0.00810 1-1.6286 0.21328 17133.48 0.29900 0.33432 114 208.939 1286.63 0.00750 0.0446 11623 -964 0.21446 0.12228 -0.01779 2.9.8090 0.22953 18035.83 0.29900 0.33432 114 208.939 1286	31
5 8.8203 0.19101 0227.21 0.19101 0227.21 0.19101 0227.21 0.19101 0227.21 0.19101 0227.21 0.19111 0.19079 1 -5.5222 0.15612 14446.48 0.38143 0.4044 21 35.102 795.63 0.02165 -0.00084 11459 6569 0.31185 0.37778 0.17877 2 -411 0.15612 14846.48 0.39244 0.39242 92 157.789 907.29 0.02381 0.00701 10654 7238 0.27839 0.18979 3 2.0411 0.16125 14950.45 0.36446 0.39242 92 157.789 907.29 0.02381 0.00701 10654 7238 0.27899 0.18998 4 1069 0.16377 16411 14 0.40480 0.42071 92 160.365 460.18 0.01180 0.02381 9998 8612 0.26625 0.27964 0.22087 0.28625 0.1725 2 9099 0.17684 15499 66 0.35213 0.36465 87 154.895 377.44	92
2 -14.1899 0.15612 14846.48 0.38143 0.4040 21 35.102 795.63 0.02165 -0.00084 11459 6569 0.31185 0.37778 0.17877 3 2.0411 0.15639 12717.49 0.32924 0.33915 64 108.570 262.94 0.00701 0.02165 10439 6757 0.27839 0.31185 0.18020 4 1069 0.16377 16411 14 0.40480 0.42071 82 160.365 460.18 0.02161 10654 7238 0.27964 0.27839 0.18998 4 1069 0.16599 18496.96 0.35997 0.37164 42 74.101 412.85 0.00900 0.01180 8210 7381 0.22087 0.25825 0.27964 0.22077 2 2.094 0.16599 18496.96 0.35997 0.37164 42 74.101 412.85 0.00900 0.01180 8210 7381 0.22087 0.25825 0.17725 8 6.0452 0.19201 15780.28 0.36809 0.37564 118 211.515 105.76 0.02525 0.00888 10742 7538 0.25571 0.21642 0.22087 0.19191 8 6.0452 0.19201 15780.28 0.36809 0.37564 118 211.515 105.76 0.02525 0.00888 10742 7538 0.25571 0.21642 0.25571 0.16986 9 -2.3905 0.20599 13660.99 0.29900 0.33432 114 208.939 1286.63 0.03039 0.02457 4148 4577 0.09797 0.12839 0.10816 0 -10.3081 0.20228 14155.48 0.29900 0.33432 114 208.939 1286.63 0.03039 0.02457 4148 4577 0.09797 0.12839 0.10816 1 -1.6286 0.21328 17133.48 0.29900 0.33432 114 208.939 1286.63 0.03039 0.02457 4148 4577 0.09797 0.12839 0.10816 1 -1.6286 0.21328 1713.48 0.29900 0.33432 114 208.939 1286.63 0.03039 0.02457 4148 4577 0.09797 0.12839 0.10810 1 -1.6286 0.21328 1713.48 0.29900 0.33432 114 208.939 1286.63 0.03039 0.02457 4148 4577 0.09797 0.12839 0.10816 1 -1.6286 0.21328 1713.48 0.29900 0.33432 114 208.939 1286.63 0.00750 1.04046 11623 -864 0.21446 0.21228 -0.01779 3 -9.8809 0.22953 18035.93 0.29900 0.34282 59 113.056 2182.13 0.04167 0.00750 15176 -964 0.21446 0.21228 -0.01779 3 -9.8809 0.22953 18035.93 0.29900 0.33422 59 113.056 2182.13 0.04167 0.00451 16513 165 0.31728 0.28846 0.00317 5 -0.6292 0.21572 18185 .89 0.29900 0.33064 100 198.090 1652.07 0.02825 0.02822 18142 -859 0.31026 0.31176 -0.01469 5 -0.4221 0.21498 19334.01 0.29900 0.33064 100 198.090 1652.07 0.02825 0.02822 18142 -859 0.31026 0.31176 -0.01469	79
3 2.0411 0.15639 12717.49 0.32924 0.33915 64 108.570 262.94 0.00701 0.02165 10439 6757 0.27839 0.37185 0.18998 4 -2.4612 0.16125 14950.45 0.36446 0.39242 92 157.789 907.29 0.02381 0.00701 10654 7238 0.27964 0.27839 0.18998 4 1059 0.16377 16411.14 0.40480 0.42071 92 160.365 460.18 0.01180 0.02381 9996 8612 0.25625 0.27964 0.22077 5 0.2084 0.16599 15496 96 0.35997 0.37164 42 74.101 412.85 0.00990 0.01180 9210 7391 0.22087 0.25625 0.17725 7 2.9090 0.17684 15499 66 0.35213 0.36465 87 154.895 377.44 0.00888 0.09990 9199 8157 0.21642 0.22087 0.22627 0.19191 6 0.452 0.19201 15780.28 0.36809 0.37564 118 211.515 105.76 0.00252 0.00888 10742 7538 0.25571 0.21642 0.17944 9 -2.3905 0.20599 13660.99 0.29900 0.3245 112 202.910 1021.80 0.02457 0.00252 5340 7655 0.12839 0.25571 0.16986 1 -1.6286 0.21328 17133.48 0.29900 0.3432 114 208.939 1286.53 0.03039 0.02457 4148 4577 0.09797 0.12839 0.10810 1 -1.6286 0.21328 17133.48 0.29900 0.34282 59 113.056 2192.13 0.04167 0.00468 0.03039 6091 315 0.12228 0.00797 0.00532 1 5.017 0.21849 1674.385 0.29900 0.34282 59 113.056 2192.13 0.04167 0.00750 15176 *565 0.28846 0.21446 *0.00379 1 5.02002 17706.25 0.29900 0.34282 59 113.056 2192.13 0.04167 0.00750 15176 *565 0.28846 0.00177 2 15.3017 0.21489 1674.385 0.29900 0.34282 59 113.056 2192.13 0.04167 0.00750 15176 *565 0.28846 0.21446 *0.00317 -6.6415 0.22002 17706.25 0.29900 0.33064 100 198.090 1652.07 0.02825 0.02822	17
4 -2.4612 0.16125 14950.45 0.36446 0.39242 92 157.789 907.29 0.0281 0.00701 10644 7238 0.27864 0.27864 0.22977 5 0.2084 0.16599 15496.96 0.35997 0.37164 42 74.101 412.85 0.00990 0.01180 9210 7381 0.22087 0.25825 0.12725 7 2.9099 0.17684 15499.66 0.35213 0.36465 87 154.895 377.44 0.00888 0.00990 5199 8157 0.21642 0.22087 0.19191 8 6.0452 0.19201 15780.28 0.36809 0.37564 118 211.515 105.76 0.00252 0.00888 10742 7538 0.25571 0.21642 0.22087 0.19191 9 -2.3905 0.20599 13660.99 0.29900 0.32845 112 202.910 1021.80 0.02457 0.00252 5340 7065 0.12839 0.25571 0.16986 0 -10.3081 0.20228 17133 48 0.29900 0.33432 114 208.939 1286.63 0.03309 0.02457 4148 4577 0.09797 0.12839 0.26571 - 1.6286 0.21328 17133 48 0.29900 0.30895 71 132.962 406.38 0.00750 0.04048 11623 -964 0.21446 0.12228 +0.01778 3 -9.8809 0.22953 18035.93 0.29900 0.34282 59 113.056 2192.13 0.04167 0.00750 15176 -505 0.28446 0.21446 -0.00940 4 -6.6415 0.22002 1776.25 0.29900 0.34287 43 84.340 1561.27 0.02822 0.03897 1724 607 0.31176 0.31728 0.00940 5 -0.6292 0.21572 18185.89 0.29900 0.32875 43 84.340 1561.27 0.02822 0.03897 1724 607 0.31176 0.31728 0.00197 5 -4.4221 0.21498 19334.01 0.29900 0.33064 100 198.090 1652.07 0.02825 0.02822 18142 -859 0.31026 0.31176 -0.01469	20
1.1035 0.1037 1.111 0.10480 0.10480 0.10480 0.10180 9210 7391 0.22087 0.25625 0.17725 2.9098 0.17684 15499.66 0.35213 0.36465 87 154.895 377.44 0.00990 9199 8157 0.21642 0.22087 0.17625 0.17925 3 6.0452 0.19201 15780.28 0.36809 0.37564 118 211.515 105.76 0.00252 0.00980 10742 7538 0.25571 0.1642 0.17644 4 -2.3905 0.20599 13660.99 0.29900 0.32845 112 202.910 1021.80 0.02457 0.00252 5340 7065 0.12839 0.25571 0.16986 0 -1.03081 0.20228 14155.48 0.29900 0.33432 114 208.939 1286.63 0.03039 0.02457 4148 4577 0.09797 0.20639 0.06919 0.06919 0.06919 0.00496 0.1228 0.09790 0.30895 71 132.962 406.38 0.00750 0.04046 11623 -964	17
2.9099 0.17684 15499.66 0.35213 0.36465 87 154.895 377.44 0.00886 0.00990 9199 8157 0.21642 0.22087 0.1911 3 6.0452 0.19201 15780.28 0.36809 0.37564 118 211.515 105.76 0.00252 0.00888 10742 7538 0.2571 0.21642 0.17944 3 6.0452 0.19201 15780.28 0.32845 112 202.910 1021.80 0.02457 0.00252 5340 7065 0.12399 0.25571 0.16986 0 10.3081 0.20228 14155.48 0.29900 0.33432 114 208.993 1286.63 0.03039 0.02457 4148 4577 0.09797 0.12289 0.00780 1 -1.6266 0.21328 1713.48 0.29900 0.34956 113.2962 406.38 0.00750 0.04046 1623 -564 0.12446 0.1228 0.00797 0.12480 0.1228 0.00797 12480 0.1228 0.00797 1576 10.00750 15176 4504 0.21446	25
a 6.0452 0.19201 15780.28 0.36809 0.37564 118 211.515 105.76 0.00252 0.00888 10742 7538 0.25571 0.21642 0.17944 b -2.3905 0.20599 13660.99 0.29900 0.32435 112 202.910 1021.80 0.02457 0.00255 5340 7065 0.12939 0.25571 0.16986 b -10.3081 0.20228 14155.48 0.29900 0.33432 114 208.939 1286.63 0.03039 0.02457 4148 4577 0.09797 0.12839 0.16986 c -16.286 0.21328 17133.48 0.29900 0.34396 121 224.346 2015.41 0.04466 0.03039 0.02457 4148 4577 0.09797 0.1228 0.00797 0.00632 15150 112 0.04167 0.00750 15176 -964.0 121466 0.1228 + 0.01779 0.00632 12900 0.34282 59 13.056 2192.13 0.04167 0.00750 15176 +964.0 0.21446 0.21446 -0.00960 14.66.145 0.22	91
3 -2.3905 0.20595 14660.99 0.29500 0.32845 112 20.510 1021.80 0.00252 5340 1055 0.1257 0.12530 0.2957 0.12539 0.12537 0.12539 0.2957 0.12539 0.2957 0.12639 0.12539 0.12537 0.12539 0.12639 0.12639 0.2957 112 0.0150 0.03039 0.02137 1418 4577 0.09797 0.12839 0.10810 1 -1.6286 0.21328 17133.48 0.29900 0.34396 121 224.346 2015.41 0.04046 0.03039 6091 315 0.12288 0.06797 0.00632 1 -1.6286 0.21328 17133.48 0.29900 0.34957 112.266.63 0.00750 0.04046 14623 +564 0.21446 0.1228 -0.01779 2 15.3017 0.21893 18035.83 0.29900 0.34282 59 13.056 2128.10 0.04167 0.00750 15176 #505 0.28446 0.00317 3 -6.6415 0.22020 17766.25 0.29900 0.34287	86
-1.6286 0.21328 17133.48 0.22900 0.34396 121224.346 2015.41 0.04046 0.03039 6091 315 0.12228 0.09797 0.00632 1 -1.6286 0.21328 16743.85 0.29900 0.34396 121224.346 2015.41 0.04046 0.03039 6091 315 0.12228 0.09797 0.00632 2 15.3017 0.21849 16743.85 0.29900 0.30895 71 132.965 2182.13 0.04167 0.00750 15176 ~505 0.28846 0.21446 0.00960 3 -9.8809 0.22953 18035.83 0.29900 0.34282 59 113.056 2102.13 0.04167 0.00750 15176 ~505 0.28846 0.00960 4 -6.6415 0.22002 17706.25 0.29900 0.34216 116.568 2028.28 0.03897 0.04167 16513 165 0.22846 0.00317 5 -0.6292 0.21572 18185.89 0.29900 0.32875 43 84.340 1561.27 0.02822 0.03897 17246 607	10
2 15.3017 0.21849 16743.85 0.29900 0.30895 71 132.962 406.38 0.00750 0.04046 11623 +964 0.21446 0.12228 +0.01779 3 -9.8809 0.22953 18035.93 0.29900 0.34282 59 113.056 2192.13 0.04167 0.00750 15176 +505 0.28846 0.21446 +0.00960 4 -6.6415 0.22002 17706.25 0.29900 0.34021 60 116.568 2028.28 0.03897 0.04167 16513 165 0.31728 0.28846 0.00317 5 -0.6292 0.21572 18185.89 0.29900 0.32875 43 84.340 1561.27 0.02822 0.03897 17246 607 0.31176 0.31728 0.01097 5 -4.4221 0.21498 19334.01 0.29900 0.33064 100 198.090 1652.07 0.02825 0.02822 18142 -859 0.31026 0.31176 -0.01469	32
a -9.8809 0.22953 18035.93 0.29900 0.34282 59 113.056 2192.13 0.04167 0.00750 15176 -606 0.2846 0.2146 -0.00360 4 -6.6415 0.22002 17706.25 0.29900 0.34021 60 116.568 2028.28 0.03897 0.04167 16513 165 0.31728 0.28846 0.00317 5 -0.6292 0.21572 18185.89 0.29900 0.32875 43 84.340 1561.27 0.02822 0.03897 17246 607 0.31176 0.31728 0.01097 5 -4.4221 0.21498 19334.01 0.29900 0.33064 100 198.090 1652.07 0.02825 0.02822 18142 -859 0.31026 0.31176 -0.01469	19
4 -6.6415 0.22002 17/06.25 0.29900 0.34021 60 116.56 2026.26 0.03857 0.04821 165 165 0.01097 5 -0.6292 0.21572 18185.89 0.29900 0.32875 43 84.340 1561.27 0.02822 0.03897 17246 607 0.31176 0.31728 0.01097 5 -4.4221 0.21498 19334.01 0.29900 0.33064 100 198.090 1652.07 0.02825 0.02822 18142 -859 0.31026 0.31176 -0.01469	17
6 -4.4221 0.21498 19334.01 0.29900 0.33064 100 198.090 1652.07 0.02825 0.02822 18142 -859 0.31026 0.31176 -0.01469	97
	69
	\mathcal{O}

2000.00.000							MODEL WI	TH 35LS				12	18 Sunday, N	ovember 7,	1993 25
085	NFAY	RSVY	IRRP	IRM	IRMLG	RGIRM	RGIRMLG	CAY		EOBY	SYLG	İYLG	ZERD	ZEROII	
1.0	00000	0.012705	055 22	1 12402				-0 02860	-0	006274		12	0.000000015	0.000010	10 A
2 0	07278	0.012/95	807 65	1 02890	1 12402	-7 8747	5	-0.02272	-0.	001573	0.33086	0.35946	0000000000	-0.000000	
2 0	09204	-0 014941	084 63	1 19407	1 03890	13 0198	-7 8747	-0.01514	0.	003444	0.44347	0.46619	0000000000	0.000000	
10	14525	-0 018410	1373 87	1 18836	1 19407	-3 0361	13 9198	-0.01812	-0.	004656	0.51562	0.83076	0000027435	-0.020040	
	17380	-0 021703	1806 10	1 36300	1 15836	18 2687	-3 0361	-0.01546	-0	002963	0.37664	0.39476	0000000052	-0.000040	
6 0	17369	-0.015063	1998 09	1 48674	1 36300	8 6893	16.2687	0.01649	-0.	011622	0.37562	0.39108	0000000042	-0.000040	
7 0	19687	-0.006102	2058.19	1.35280	1.48674	-9.4411	8.6893	0.02277	-0.	015314	0.41904	0.40254	0000000019	-0.000020	
8 0.	29737	-0.053213	2546.63	1.61962	1.35280	18.0017	-9.4411	0.03357	0.	004941	0.41856	0.39579	0.000000010	0.000010	
9 0.	37491	-0.013460	2691.27	1.82149	1.61962	-6.2499	18.0017	0.06558	-0.	053543	0.35647	0.32290	000000057	-0.000060	
10 0.	40641	+0.073444	3391.90	1.68947	1.52149	10.4725	-6.2499	0.04428	0.	003002	0.29885	0.23327	0000000000	+0.000000	
11 0.	45071	-0.026621	3521.04	1.61278	1.68947	-4.6485	10.4725	0.00526	-0.	007836	0.40355	0.35926	0.000000008	0.000010	
12 0.	47783	0.003724	3379.06	1.72876	1.61278	6.9443	-4.6455	0.03798	-0.	050594	0.37880	0.37355	0.000000024	0.000030	
13 0.	47213	-0.026841	3861.15	1.78842	1.72876	3.3927	6.9443	0.02263	-0.	004957	0.34265	0.30467	0000000000	-0.000000	
14 0.	41251	0.009309	3674.47	1.39895	1.78842	-24.5612	3.3927	-0.00889	-0.	029339	0.29746	0.27483	0000000020	-0.000030	
15 0.	41288	0.012379	3519.92	1.24440	1.39895	+11.7061	-24.8612	-0.01784	-0.	012671	0.38142	0.39031		-0.000020	
16 0.	43095	0.026156	3188.30	1.13567	1.24440	-9.1431	-11,7061	-0.01785	-0.	032050	0.30566	0.32349	- 0000000014	0.000020	
17 0.	40867	-0.010057	3388.62	1.08949	1.13567	-4.1517	-9.1431	-0.06228	-0.	000877	0.32797	0.35089	0.0000000181	0.000300	
18 0.	34155	0.068647	2426.82	0.89255	1.08949	-19.9385	-4.151/	-0.03302	-0.	000350	0.23149	0.35355	- 000000000	0.000000	
19 0.	33831	0.014/21	21/3.65	0.75052	0.89255	-7 6021	-17 3335	-0.06648	0.	012289	0 29276	0.35332	- 0000000229	-0.000354	
20 0.	34137	0.000221	1978 40	0.09558	0.75052	-72 7487	-7 8021	-0 12542	-0	004836	0 19181	0 25829	- 0000000167	-0.000290	
22 0	34066	-0 036640	0601 10	A 67894	0 33615	69 7924	-72 7187	+0 05856	ŏ.	024459	0.28739	0.41281	0000000000	0.000000	
22 0	35001	-0 019376	3440 44	0 82466	0 87524	19.9768	69.7521	-0.05026	ŏ.	007625	0.26911	0.32467	0.0000000195	0.000400	
24 0	41292	-0 013616	3673 01	0 92396	0 82455	11.3823	19.9768	-0.05119	-0.	004438	0.26646	0.31672	0000000408	-0.000800	
25 0	43040	-0 013002	4044.04	1.01019	0.92396	8,9225	11.3823	-0.03570	-0.	011176	0.33775	0.38893	0.000000000	0.000000	
26 0	45925	-0.003972	4328.96	1.16118	1.01019	13,9299	8.9225	-0.01101	-0.	013601	0.32265	0.35835	0.000000004	0.000010	
27 0	45259	-0.007412	4932.40	1.25761	1.16118	7.9780	13.9299	-0.02228	+0.	000694	0.31552	0.32653	0.0000000000	0.000000	
28 0.	55260	-0.006452	5037.33	1.33663	1.25761	6.0935	7.9780	-0.02581	-0.	003053	0.28239	0.30467	0000000000	+0.000000	
29 0.	53115	-0.007941	5496.34	1.48282	1.33663	10.3795	6.0935	-0.03725	0.	021644	0.32656	0.35237	0000000000	0.000000	
30 0.	52057	-0.004815	5488.71	1.55384	1.48282	4.6785	10.3795	-0.02173	0.	009895	0.32189	0.35914	0.000000000	0.000000	
31 0.	52402	-0.004265	5698.66	1.79746	1.55384	14.5644	4.6785	-0.00624	ο.	006596	0.30289	0.32462	0.000000000	0.000000	
32 0.	59184	-0.004099	5585.30	1.51185	1.79746	-17.3037	14.5644	-0.02205	-0.	011401	0.28687	0.29312	000000008	-0.000020	
33 0.	48667	0.002381	5478.35	1.49477	1.51185	-1.1363	-17.3037	-0.02685	-0.	018316	0.33517	0.35722	0000000031	-0.000080	· · · · · · · · · · · · · · · · · · ·
34 Q.	47529	0.001910	5474.64	1.72061	1.49477	14.0704	-1.1363	-0.04795	0.	007639	0.34388	0.37083	0000000181	+0.000490	
35 0.	68757	0.008671	5718.34	1.52031	1.72061	+12.3761	14.0704	-0.05773	*0.	023952	0.35603	0.40398	0.000000104	0.000300	
36 0.	55972	0.038673	6660.25	1.44164	1.52031	-5.3138	-12.3/61	-0.04573	-0.	025493	0.31340	0.3/113	- 0000000105	-0.000300	
37 0.	55214	-0.001266	6565.00	1.44846	1.44164	0.4/24	-5.3138	-0.03396	-0.	007846	0.29770	0.34343	- 000000027	-0.000000	
38 0.	48967	0.021402	6813.11	1.26897	1.44846	-13.2296	-10.0000	-0.04142	-v.	007815	0.37041	0 40100	+ 000000001t	-0.000100	
39 0.	87008	-0.042038	81/8.40	1.00020	1.2000/	20.2131	-13.2230	-0.02108	-0.	024001	0 32228	0 34997	+ 0000000031	-0.000100	
40 0.	86880	-0.009784	9223.44	1.09000	1 60640	0.1100	8 8290	-0.00208		027014	0 31747	0 32359	- 0000000120	-0.000400	
41 0.	40008	0.010508	0005 64	1 54545	1 60850	-9 4479	0 1169	-0.02261	õ.	006277	0 37885	0.38182	0.0000000000	0.000000	
43 0	45858	0.009681	8407.36	1.43361	1.54545	-7.5121	-9.4479	-0.00991	-0.	016784	0.38143	0.40404	0.0000000187	0.000700	
44 0	46963	-0.004727	8657.82	1.40927	1.43361	-1.7126	-7.5121	-0.02796	-0.	007023	0.32924	0.33915	0000000026	-0.000100	
45 0	47703	0.008630	8455.78	1.32360	1.40827	-6.2714	-1.7126	-0.01591	-0.	037178	0.36446	0.39242	0.000000077	0.000300	
46 0	39812	0.009435	7722.34	1.11573	1.32360	-17.0850	-6.2714	-0.01168	-0.	007828	0.40480	0.42071	0.000000096	0.000400	
47 0.	40830	0.010095	7798.15	1.03742	1.11573	-7.2767	-17.0850	-0.01252	-0.	008712	0.35997	0.37164	0000000000	0.000000	
48 0.	43512	-0.046296	9776.30	1.21200	1.03742	15.5532	-7.2767	-0.00755	-0.	003840	0.35213	0.36465	0.000000119	0.000500	
49 0.	29825	0.013285	9491.50	1.10785	1.21200	-8.9855	15.5532	-0.02945	-0.	000305	0.36809	0.37564	0.000000024	0.000100	
50 0.	20609	0.021167	8601.33	1.00428	1.10785	-9.8146	-8.9855	-0.03532	-0.	047226	0.29900	0.32845	0000002433	-0.010300	
51 0.	12899	-0.030522	10056.64	0.94660	1.00428	-5.9152	-9.8146	-0.04496	0.	033314	0.29900	0.33432	000000020	+0.000100	
52 0.	19668	-0.076884	13968.47	1.17966	0.94660	22.0109	-5.9152	-0.00995	0.	032723	0.29900	0.34396	0000000018	-0.000100	
53 O.	27890	-0.035876	15461.82	1.28039	1.17966	8.1935	22.0109	-0.04382	-0.	009105	0.29900	0.30895	0.000000190	0.001000	
54 0.	32044	-0.010340	16849.90	1.47150	1.28039	13.9117	8.1935	-0.04121	0.	017433	0.29900	0.34282	000000019	-0.000100	
55 0.	32273	0.013615	16630.71	1.39366	1.47150	-5.4350	13.9117	-0.02975	0.	002198	0.29900	0.34021	000000072	-0.000400	
56 0.	29557	-0.022054	10339.17	1,40887	1.39366	4.0/34	-0.4350	-0.03164	-0.	010300	0.23500	0.02010		5.00000	

						MODEL W	ITH 35LS	• •		12.	18 Sunday	. Novemb	oor 7. 1993	26
OBS ZERO2	ZER022	ZEROS	XM	XMLG	RGXM	RGXMLG	XMY	XMYLG	RGXMY	RGXMYLG	XLM	XLMY	TOT	
1 0.00016305	1.1	0	210.41		•	¥.	0.03119				1910.25	0.28314	1.73901	15
2 0.00003920	0.3	0	232.40	210.41	10.454		0.03037	0.03119	-2.627		1960.46	0.25617	2.48638	
9 0.00009221	0.7	0	307.93	232.40	32.500	10.454	0.04056	0.03037	33.568	-2.627	1958.80	0.25802	2.31967	
4 0.00004107	0.3	0	439.99	307.93	42.868	32.500	0.06024	0.04056	48.504	33,868	2812.09	0.38498	1.6/813	
5 0.00009126	0.7	0	485.31	439.99	10.300	42.888	0.06327	0.06024	8.035	48.004	3130.48	0.408/8	4 70374	,0000000000
6 0.00000000	0.0	0	/91.11	485.31	63.009	10.300	0.08213	0.08327	29.812	29 812	4168 31	0.39095	2.09251	
7 0.00010317	1.1	8	1125.44	1125 44	42.201	42 261	0.13018	0.10556	23 329	28 524	4433 .09	0.44794	3.11253	
8 0.00001010	9.1		1200.30	1120.44	30 400	42.201	0.13018	0.10000	23.323	09 300	6230 89	0 49446	1 63303	
10 0 0000000		ž	1435 03	1709.99	+18 897	32 123	0.11447	0 16063	-28 738	23 389	5450.37	0.43476	2.45652	
11 - 00007778	-1.0	ŏ	1099 43	1435 03	-23 387	-15.697	0.08551	0.11447	-25.299	-28.738	5465.84	0.42511	3.75733	
12 0.00000000	0.0	Ő	1514.69	1099.43	37.771	-23.387	0.12001	0.08551	40.343	-25.299	5423.92	0.42973	3.79839	
13 0.00007442	1.0	õ	1306.95	1514.69	-13.715	37.771	0.09727	0.12001	-18.950	40.343	5624.90	0.41861	2.42268	
14 0.00000000	0.0	0	1003.16	1306.95	-23.244	-13.715	0.06620	0.09727	-31.940	-18.950	6256.37	0.41286	1.87361	
15 0.0000000	0.0	0	950.25	1003.16	-5.274	-23.244	0.06256	0.06620	-5.491	+31.940	6607.46	0.43503	1.38941	
16 0.0000000	0.0	0	1016.77	950.25	7.000	-8.274	0.06879	0.06286	8.948	-8,491	6631.59	0.44865	2.68410	
1700006393	-1.0	Q	231.08	1016.77	-77.273	7.000	0.01477	0.06879	-78.522	9.948	6451.64	0.41248	1.97474	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1800006029	-1.0	0	549.68	231.09	137.867	-77.273	0.03314	0.01477	124.315	-78.522	5987.63	0.36101	1 60000	
19 0.00006186	1.0	0	239.31	549.68	-56.464	137.867	0.01480	0.03314	-00.332	124.315	6031.73	0.3/312	2 02201	
2000000000	0.0	0	227.76	239.31	-4.02/	-30.404	0.01476	0.01480	-0.205	-00.332	0392.13	0.98494	2 68306	******
22 0 0000000	0.0	Ň	670 10	+949 66	+160 262	-516 918	0.02818	-0 05481	-151 421	-471 244	8335.54	0 41064	1.44166	
23 0 00000000	0.0	õ	836 07	672 12	46 134	-160.252	0 04086	0.02818	44 872	-151.421	9181.04	0.44869	1.43922	
24 0.00010210	2.0	Õ	870.34	836 07	4 099	46.134	0.04443	0.04086	8.734	44.972	8820.96	0.45029	1.27624	
25 0.00004372	1.0	õ	1182.58	870.34	35.876	4.099	0.05170	0.04443	16.376	8.734	9189.11	0.40176	1.33408	
2600004290	-1.0	õ	1785.53	1182.58	50.986	35.876	0.07660	0.05170	48.150	16.376	9241.68	0.39647	1.74169	
27 0.00000000	0.0	0	1536.83	1785.53	-13.829	50.986	0.06415	0.07660	-16.248	48.150	9380.91	0.39160	1.34964	
28 00000000	0.0	0	1345.27	1536.83	-12.464	-13.929	0.06228	0.06415	-2.967	-16.248	8882.65	0.41103	1.69741	
2900000000	0.0	0	1040.70	1345.27	-22.640	-12.464	0.04338	0.06225	-30.317	-2.967	8454.07	0.35238	1,29756	
3000000000	0.0	0	1608.24	1040.70	54.534	-22.640	0.06387	0.04338	47.250	-30.317	8672.94	0.34446	0.78402	
3100003931	-1.0	0	1995.76	1608.24	24.096	54.534	0.07845	0.06387	22.819	47.250	8336.55	0.32769	0.96225	
3200000000	0.0	0	1837.06	1995.76	-7.952	24.096	0.07708	0.07845	-1.749	22.819	9225.75	0.38708	1.07928	
3300003842	-1.0	0	1345.64	1837.06	-26.751	-7.952	0.05170	0.07708	-32.825	-1.749	8678.65	0.333332	1.16944	
3400000000	0.0	0 0	436.03	1345.64	-67.897	-26.751	0.01607	0.08170	-68.924	-32.925	6799.63	0.25054	0,78536	
3500000000	0.0	0	267.43	436.03	-38.667	-67.897	0.00931	0.0160/	42.025	-68.924	10004.00	0 26202	0.40160	,00000000000
3600000000	0.0	0	1085.11	207.43	305.752	-38.007	0.03815	0.00931	41 672	200 606	10674 47	0.35844	0.83288	
37 0.0003358	1.0	0	1406 32	1609 69	-12 624	49 344	0.03403	0.05405	-19 109	41 672	12144 32	0 37757	0 47117	
38 - 0000000		Ň	2070 62	1406 32	47 970	-12 634	0 06346	0 04972	45 138	+ 19 109	12610 36	0.38482	0.52400	
40 0.00003146	1.0	ŏ	2891.21	2079 53	24 805	47 870	0.08151	0.06346	28 443	45.138	13464.05	0.42352	0.68607	
41 - 00000000	0.0	ŏ	2820.00	2591.21	8.830	24.605	0.08437	0.08151	3.510	28.443	13392.93	0.40069	0.90424	
4200002721	-1.0	ō	2129.49	2820.00	-24.486	8.830	0.05795	0.08437	-31.310	3.510	13602.67	0.37019	0.51898	11111111111
43 0.00002667	1.0	0	2486.92	2129.49	16.785	-24.486	0.06632	0.05795	14.439	-31.310	14215.84	0.37911	0.31054	
44 0.00002625	1.0	0	2207.33	2486.92	-11.242	16.785	0.05794	0.06632	-12.641	14.439	14494.31	0.38044	0.31852	
4500002564	-1.0	0	2673.92	2207.33	21.138	-11.242	0.06855	0.05784	18.313	-12.641	15450.84	0.39609	1.26027	
46 +.00002398	-1.0	0	3025.78	2673.92	13.159	21.138	0.07256	0.06859	5.858	18.313	16868.47	0.40453	0.78579	
47 0.00000000	0.0	0	2992.85	3025.78	-1.088	13.159	0.07041	0.07256	-2.966	5.858	18026.55	0.42410	0.42338	A000000
4800000000	0.0	0	3108.20	2992.85	3.854	-1.088	0.07399	0.07041	5.081	-2.966	19240.70	0.45801	0.52514	
49 0.00002404	1.0	0	2402.31	3108.20	-22.711	3.854	0.05776	0.07399	-21.937	5.081	19537.37	0.46973	0.49895	
50 0.00000000	0.0	0	1691.68	2402.31	-29.581	-22.711	0.03995	0.05776	-30.825	-21.937	18821.03	0.44451	0.24969	
B1 * 00000000	0.0	0	17.13.19	1691.68	129 100	-29.001	0.03439	0.03995	118 004	-30.825	22961.17	0.61036	0.49093	
52 0.00001846		2	4080.62	4080 63	138.168	128 100	0.07829	0.03439	-47 990	118 024	26038 60	0 49973	0 40717	
54 0 00001901	0.0	0	1956 40	2086 74	-6 246	-48 962	0.03750	0.03966	-5 226	-47 323	24858 12	0 47762	0.35742	2012-010/00
55 - 0000000	0.0	0	2736 15	1956 40	39 854	-6 246	0.04946	0.03759	31 580	-5 226	26602 47	0.48090	0.36311	
56 0.00000000	0.0	õ	2600.92	2736.15	-4.942	39.856	0.04448	0.04946	-10.072	31.580	27742.50	0.47444	0.58098	
50 010000000	0.0	Ŭ		2.00.10										
										,				
$\begin{pmatrix} i \\ i \end{pmatrix}$						1)						()	
\smile .							<u> </u>						\sim	

1.4
10
J.

Bath

.

(* C		· .								
				×	DEL WITH 35	ils		12:18 5	unday, Nov	ember 7, 1993 27
DBS TOTLO	RGTOT	CEDA	CBDAY	DMBDA	DMBDAY	DHEDARAT	CBDARAT	BDÁY	POPLG	RGPOP
1.		2295.4	0.34023	2944.7	0.43647	0.56195	0.43805	0.77671		·• · •• ••
2 1.73901	42.977	2475.2	0.32344	3097.5	0.40475	0.55583	0.44417	0.72819	139.80	0.00000
3 2.48638	-6.697	2664.1	0.35092	3219.8	0.42412	0.54722	0.45278	0.77805	139.80	0.00000
4 2.31987	-27.662	3448.1	0.47205	3540.7	0.48472	0.00662	0.49338	0.00547	139 80	2 20115
5 1.67813	43.095	3351.2	0.43688	3/41.8	0.48656	0.52/33	0.47207	0.79190	143.04	0.00000 ·
7 1 79325	16 688	3931 6	0 35937	4350 5	0 40804	0.53171	0.46829	0.76741	143.04	0.00000
8 2.09251	48.746	3947.3	0.39885	4369.3	0.44149	0.52537	0.47463	0.84035	143.04	0.00000
9 3.11283	-47.834	3922.0	0.37010	4824.0	0.42691	0.83564	0.46436	0.79700	143.04	2.29450
10 1.63303	50.427	4261.0	0.93989	4798.0	0.38272	0.52964	0.47036	0.72261	146.36	0.00000
11 2.45652	52.953	4405.0	0.34261	6298.0	0.41206	0.54602	0.45398	0.75467	146.36	0.00000
12 3.75733	1.093	4836.0	0.38315	5613.0	0.44471	0.53718	0.46282	0.82786	146.36	0.00000
13 3.79839	-36.218	4772.0	0.35514	6021.0	0.44809	0.55786	0.44214	0.80323	146.36	2.25640
14 2.42268	-22.664	5143.0	0.33939	6650.0	0.43884	0.56389	0.43611	0.77823	149.70	0.0000
19 1.87361	-25.843	6671.0	0.37338	7265.0	0.47832	0.00101	0.43839	0.05170	49.70	0.00000
10 1.30941	93.183	6181.0	0.41817	1708.0	0.02480	0.55607	0.44004	0 95704	149 70	2 20680
18 1 97474	-20.420	7551 0	0.42114	9184 0	0.55372	0 54879	0 45121	1.00899	153.04	0.00000
19 2 46992	-34 321	8450 0	0 52272	9839 0	0 60864	0.53797	0.46203	1.13136	153.04	0.00000
20 1.62222	80.241	9206.0	0.59678	10408.0	0.67470	0.53064	0.46936	1.27148	153.04	0.00000
21 2 92391	-9.263	9126.0	0.52678	11544.0	0.66636	0.55849	0.44151	1.19315	153.04	2.20371
22 2.65306	-45.661	9048.0	0.44574	11977.0	0.59003	0.56966	0.43034	1.03577	156.45	0.00000
23 1.44166	-0.169	9321.0	0.45553	12358.0	0.60396	0.57004	0.42996	1.05949	156.45	0.00000
24 1.43922	-11.324	9621.0	0.49113	13310.0	0.67944	0.58044	0.41956	1.17057	156.45	0.00000
25 1.27624	4.532	10751.0	0.47005	14627.0	0.63952	0.57637	0.42363	1.10957	156.45	2.17496
26 1.33408	30.553	11443.0	0.49091	16932.0	0.72639	0.59672	0.40328	1.21730	159.89	0.00000
27 1.74169	-22.510	12419.0	0.51842	18015.0	0.75202	0.59194	0.40806	1.27044	159.89	0.00000
28 1.34964	25.767	12564.0	0.58138	19078.0	0.88280	0.60293	0.39707	1.46418	159.89	0.00000
29 1.69741	-23.856	11409.0	Q.47555	19522.0	0.81371	0.63115	0.36885	1.28925	159.89	2,92145
30 1.29756	-39.577	11639.0	0.46226	20765.0	0.82472	0.64082	0.35918	1.28699	164.63	0.00000
31 0.78402	22.732	12104.0	0.47579	21778.0	0.85605	0.64276	0.35724	1.33184	164.63	0.00000
32 0.96225	12.162	. 12862.0	0.53965	22833.0	0.95800	0.63967	0.36033	1.49/65	164.63	2 22446
33 1.0/928	8.355	13088.0	0.50285	23278.0	0.89430	0.64010	0.30990	1.03720	164.03	0.00000
34 1.10944	-32.843	13906.0	0.51239	24220.0	0.09200	0.63032	0 97031	1 38845	168 35	0.00000
35 0 40165	40.007	17692.0	0.62206	27519 0	0.96758	0.60868	0 39132	1.58964	168.35	0.00000
37 0 60102	38.578	17576.0	0.59019	28780.0	0.96641	0.62085	0.37915	1.55659	168.35	2.15075
38 0.83288	-43.429	20141.0	0.62619	31489.0	0.97900	0.60990	0.39010	1.60519	172.01	0.00000
39 0.47117	11.212	20171.0	0.61553	30061.0	0.91734	0.59844	0.40156	1.83287	172.01	0.00000
40 0.52400	30.930	20770.0	0.65334	34024.0	1.07025	0.62094	0.37906	1.72359	172.01	0.00000
41 0.68607	31.800	19719.0	0.58996	36448.0	1.09046	0.64892	0.35108	1.68041	172.01	2.05991
42 0.90424	-42.606	22529.0	0.61311	39581.0	1.07718	0.63727	0.36273	1.69029	175.59	0.00000
43 0.51898	-40.162	24327.0	0.64875	44018.0	1.17387	0.64406	0.35594	1.82262	175.59	0.00000
44 0.31054	2.569	27534.0	0.72271	46340.0	1.21632	0.62728	0.37272	1.93903	175.59	0.00000
45 0.31852	295.662	24729.0	0.63395	48063.0	1.23213	0.66028	0.33972	1.00000	170.00	0.00000
46 1.26027	-31.649	24/93.0	0.09408	49912.0	1.19690	0.00812	0.33188	1 00551	170 14	0.00000
48 0 42229	24 027	22954 0	0.54641	67340.0	1 60299	0.74579	0.25421	2.14940	179.14	0.00000
49 0.52514	-4.989	25358.0	0.60967	78618.0	1.89018	0.75612	0.24388	2.49985	179.14	0.08928
50 0.49895	-49,956	26850.0	0.63414	90633.0	2.14056	0.77146	0.22854	2.77470	179.30	0.00000
51 0.24969	98.618	27337.0	0.54881	100033.0	2.00822	0.78537	0.21463	2.55702	179.30	0.00000
52 0.49593	45.238	29694.0	0.54790	105373.0	1.94431	0.78015	0.21985	2.49221	179.30	0.00000
53 0.72028	-43.471	29210.0	0.55521	109227.0	2.07612	0.78900	0.21100	2.63132	179.30	1.65933
54 0.40717	-12.219	23612.0	0.45369	115391.0	2.21715	0.83013	0.16987	2.67083	182.30	0.00000
55 0.35742	1.592	23812.0	0.43045	117029.0	2.11554	0.83093	0.16907	2.54600	182.30	0.00000
56 0.36311	60.003	23125.0	0.39547	125741.0	2.15036	0.84466	0.15534	2.54583	182.30	0.00000

0.00000

.

and and

MODEL WITH 35LS 12:18 SUNDRY, NOVEMORY /, 1999 40 DES YEAR DO NER OPILOPIUS M X FOIL PIL DO LO MA EDEP CA REDPOT INT GOVEX 57 19921 99683 2006.6 164.5 128.9 12715.82 14563.9 1498.93 0 622.046 0.54512 27336 1948.41 -2556.41 38166.8 12.94 19366.88 0.84337 26881 12.25 5911.11 58 19922 119718 2024.7 167.4 129.9 SAV GOVDEF POP UTPD UTOD WINT FLMA FLOMB NEA WPIUS GOP IR ICINE WINE FAMA FADMB OM RDM DIM RSV OBS 57 - 1512.98 18772.53 - 2781.55 182.3 44 113 4.23 6171 13092 18148 112.4 62784.38 9620 3.2 11.3 27381 10028 73567 1624 15304 58 . OBS UVXP UVMP DCCG DCOE DCPS MACCG MACDE MACDE MACOFI DMBCCG DMBCOE DMBCOFI CPIILG CPIUSLG INFI INFILG 57 65.5 162.9 -31536 10407 119205 5564 35 974 13403 1023 1434 10372 118234 562 162.4 128.0 1.28481 2.24169 58 64.1 167.7 -15677 9335 124338 5523 34 938 13163 1027 1416 9300 123400 695 164.5 128.9 1.74756 1.28481 OBS INFUS INFD INFDLG INTD INTDLG NERLG CDEPR RINT RWINT RINTD REX REXLG GOVEXLG RGGOVEX RGOVEX 57 0.70066 0.58415 -1.91519 1.45737 8.71 7.59 1980.9 1.29739 11.6552 1.03 10.6252 0.72935 0.72744 9264.08 73.742 11773.18 58 0.77280 0.97476 -1.55244 0.58415 8.25 8.71 2006.6 0.90202 10.5024 0.70 9.8024 0.72781 0.72935 19366.88 -118.673 3531.13 OBS GOVEXY GOVDEY GOVDEYLG RGGOVDEF GOVDEFLG RGGOVDEF RRD RRDLG KA DCY DCYLG DDCY DCPSRAT DCPSOTG 87 0.30847 -0.044303 0.017889 -347.657 1046.04 -365.811 0.26232 1.07479 2120.98 1.58770 1.94961 -0.36190 1.19587 -5.6419 58 -0.044303 -2781.55 -0.21238 0.26232 1.158770 1.58770 1.04961 -0.36190 1.09859 -19.6055 DBS DCPSY DCPSYLG DDCPSY DCPSLG DDCPS DCCGY DCCGYLG DDCCGY DCOEY DCOEYLG DDCOEY DCTGLG DDCTG DCTGRAT 57 1.89869 1.97362 -0.074927 115406 3802 -0.50229 -0.21738 -0.28491 0.16576 0.16599 -.00022938 -21129 -3005 -18124 -0.21196 58 . 1.89869 . 119208 5130 . -0.50229 . . 0.16576 . -6342 -21129 14787 -0.05297 DBS DCTGY DCTGYLG DDCTGYLG FDIY FDIYLG PIY PIYLG DCY DCYLG CFY MS MIY LLY QLLY 57 -0.33653 -0.05139 -0.28514 0.01692 0.023874 0.017141 0 0 .0099077 0.063518 0.033782 117831 0.43539 1.60714 0.73635 58 -0.33653 -0.28514 0.023874 0 0 0.023874 0 0 .009908 141236 . -0.33653 . -0.28514 . 0.023874 . OBS DCG DCGY MSY MSYLG MSLG RGMS DNS PCDP RGDPLG RGRGDP RGDPCAP XY XYLG RGXY RX 57 -21129 -0.33653 1.87676 2.24517 131285 -10.8119 71629.79 38166.80 36006.40 5.82691 837.450 0.23197 0.25946 -10.5959 8853.43 58 -6342 . . 1.87676 117831 18.1181 84370.37 . 38166.80 . . . 0.23197 . OBS RXLG RGRX RGRXYF RXY RXYLG RGRXY MY INV SY IY UTD UT FD FDY FDYLG

 57
 9342.19
 -5.23166
 -121.357
 0.14101
 0.18977
 -12.4852
 0.20253
 21328.94
 0.28900
 0.33972
 157
 315.036
 2241.37
 0.035700
 0.028253

 58
 8853.43
 .
 .
 0.14101
 .
 .
 0.035700

N . . Z MODEL WITH 35LS 12:18 Sunday, November 7, 1993 25 . . . OBS NEACE NEACEY NEACEYLG NEAPBY NEAY RSVY IRRP IRM IRMLG RGIRM RGIRMLG CAY EOBY SYLG 57 21210 -3063 0.33782 0.31026 -0.048786 0.28905 -0.024098 19303.49 1.51807 1.45887 3.97757 4.57335 -0.040717 0.031033 0.29900 58 25594 -3577 . 0.33782 . 21692.64 . 1.51807 . 3.97757 . 0.29900 58 25594 -3577 1.51807 . 3.97757 . . 0.29900 · · ROXMLO XMY XMYLG ROXMY ROXMYLG XLM OBS IYLG ZERO1 ZERO11 ZERO2 ZERO22 ZERO3 XM XMLG RGXM 0 0 0 1848.08 2600.92 -28.9451 -4.9423 0.029435 0.044480 -33.8229 -10.0725 27279.72 1 0 . 1848.08 . -28.9451 . 0.029435 . -33.8229 . 57 0.33064 .000000015928 .001 58 0.33972 . • DBS XLMY TOT TOTLG RGTOT CBDA DMBDA DMBDAY DMBDARAT CEDARAT BDAY POPLO RGPOP CBDAY 0.33478 130622 2.08049 0.86139 0.13861 2.41527 182.9 0 87 0.43450 0.40208 0.58098 -30.7919 21019 58 . 0.38223 0.40209 -4.9385 20685 134811 0.86697 0.13303 182.3 . . .

1.00

	Two-Sta	MGDEL WITH 351 SYSLIN Proceed ge Least Square	S Estimation	12:18 Su	nday, November 7, 1993 30
Model: DCY Dependent variable: DCY		Analysis of Var	ance		
Source	DF	Sum of Squares	Mean Square F V	alue Prob>F	
Model Error C Total	7 47 54	12.86387 0.31734 13.17874	.83770 272 0.00675	,171 0.0001	
	Root MSE Dep Mean C.V.	0.08217 R- 0.84875 Ac 9.68140	Square 0. IJ R-SQ 0.	9759 9723	
	, I	Parameter Estima	ites		
Variable	DF Estima	er Standard te Error	T for HO: Parameter=0	Prob > 1	
INTERCEP INFO	1 0.0055	89 0.064849 78 0.007669	0.086	0.8317	
FDYLG NFACBY	1 -0.4700 1 -0.52220	55 0.450192 04 0.276725	-1.044 -1.887	0.3018 0.0653	
REXLG FDIY	0.0031	0.057290 0.057290 14 2.941523	0.055	0.0653	
DCY DDCTGY	1 0.8304 1 1.1782	52 0.703358 32 0.261655	1.181 4.503	0.2437 0.0001	
RESTRICT	-1 -0.0523 -1 -0.1288	72 0.039065 11 0.155005	-1.340 -0.831	0.1865 0.4102	
•					
	(a)				

1 1

)

144

Û...

1

.

L				2			×
			MODEL WI	TH 35LS		12:18 Sunday,	November 7, 1993 (
		Two-	SYSLIN P Stage Least S	roc edure quares Estima	ition		
lodel: RGRGDP Dependent variable: RGRGD	p						
			Analysis o	f Variance			
	Source	DF	Sum of Squares	Mean Square	F Value	Prob>F	
	Model Error C Total	3 51 54	192.33538 1664.44963 1851.28734	64.11179 32.63627	1.964	0.1910	
		Root MSE Dep Mean C.V.	5.71282 1.39598 409.23280	R-Square Adj R-SQ	0.1036 0.0509		
			Parameter	Estimates			
	Variable	DF Est	neter St Imate	andard T f Error Pare	or HO: mater=0 Pri	ז < מנ	
	INTERCEP RGPOP RGRXYF	1 -8.41 1 1.55 1 0.00	1635 6. 96703 0. 93685 0.	651950 857333 002744	-1.277 1.862 1.343	0.2075 0.0683 0.1853	
	14	1 24.8	2760 18.	445193	1.346	0.1843	
			4				
						-	

			MODEL WITH	35LS		12:18 Sunday	, November 7, 1993 3:	
		Two-S	SYSLIN Proc tage Least Squa	edure res Estimatio	on			
Model: FDIY Dependent variable: FDIY								
			Analysis of V	ariance				
	Source	DF	Sum of Squares	Mean Square	F Value	Prob>F		
	Model Error C Total	8 46 54	0.00085 0.00058 0.00144	0.00011 0.00001	8.401	0.0001		
		Root MSE Dep Mean C.V.	0.00356 0.00540 65.94879	R-Square Adj R-SQ	0.5937 0.5230			
			Parameter Est	imates				0000
	Variable	DF Estin	ater Stand mate Er	ard T for ror Parame	HO: ter#O Prol	b > T		
	INTERCEP RGDPCAP	1 -0.02	0.006 0.000008	488	3.280 2.682	0.0020		
	GOVEXY XY LC	1 0.01	1850 0.007 0604 0.021 0445 0.000	625 980 164 ~:	1.554 1.847 2.718	0.1270		
	FDY	1 -0.01	0.027 0205 0.000093	002	0.480	0.6332 0.0331		
	WINT M1Y	1 -0.000 1 0.014	0.000 0.012	224 -: 913	2.114 1.130	0.0400 0.2644		
						•		
							-	
						<i>,</i>		
(5								

MODEL WITH JSLS SYSLIN Procedure Two-Stage Least Squares Estimation

.

Model: PIY Dependent variable: PIY

.

		Analysis of	Variance			
 Source	DF	Sum of Squares	Mean Square	F Value	Prob>F	
Model Error	4 50	0.00008	0.00001	1.656	0.1750	
C Total	54	0.00050	1			
	Root MSE	0.00297	R-Square	0.1170		

-		_	_	-			_	_							_		-	_		-	_	_	_							•		-	 _	_	_	_		_							-	-					_	
24			381	δM	62										22	ø		16		ē2	12		ŵ.	14	84				68	22	22	62		2			62	14						22	63/		144	65	23	10	242	
		к.	- 60	63				-	623						e	ч.		r	10	2			-	1.0	ю						-	-	24		13	23	c		22						-			12		-	- 2	
ч.			-	238		-		80							х.		2	x.	л	0			-	-	82				æ			-				-	-		83					8.	22	-	80		-		- 2	
5 .			- 201												88				20				- 20									-						0.5	60						- 20		0.00					
200	60	0 A	-										×	-	-	80		-	20	-0	- 22	20	æ	- 24	63																				82							
æ	•0	0.3	.									-		-	- 22	80			•		-		æ	-																												
	6 C (203	223	200								с.	•	0	5	20	2	s	,	4	œ		40																													
0.77			53/1	7 .99									20	.	0.7		72	57	56	- 27	<u>. – –</u>		100	- 22																												

Parameter Estimates

			Parameter	Standard	T for HO:		
Var	tab1e	DF	Estimate	Error	Parameter=0	Prob > T	
INT	ERCEP	1	-0.009749	0.005616	-1.736	0.0887	
WIN	r	1	-0.000095380	0.000167	-0.572	0.5700	
M1Y		1	0.013937	0.010307	1.352	0.1824	
CBD	ARAT	1	0.016140	0.007332	2.201	0.0324	
INF	0	1	-0.000220	0.000273	-0.805	0.4249	

12:18 Sunday, November 7, 1993 33

and the second

		T	No-Stage	MODEL W	ITH 35LS Procedur	e Fatimat	tion		12:18 Sund	ay, Novambe;	7, 1993 34
odel: DCY ependent variable: DCY			An	alysis	of Varia	nce					
	Source		DF	Sum of Squares	M	ean guare	F Va	lue	Prob>F		
	Model Error C Total		4 60 54	0.00583 0.01833 0.02416	0. 0.	00146 00037	а.	975	0.0071		
		Root M Dep Mer C.V.	SE an G	0.01915 0.03121 1.35121	R-S Adj	quare R-SQ	0.2	413 806			
		_	Pa	rameter	Estimat	es L .					
	Variable	DF I	arameter Estimate	S	Error	T fo Param	nster=0	Prob	> T		
	INTERCEP RGDPCAP	1 -(0.225822	0.00	094416		-2.392		0.0206 0.0937 0.0702		
•	M1Y CBDARAT	1	0. 147632 0. 194915	0	082563		1.788	0	0.0798 0.0277		
								_	•		
									N.C.		
Ú				(Ú		•				\bigcirc

MODEL WITH 35LS SYSLIN Procedure Two-Stage Least Squares Estimation

Model: SY Dependent variable: SY

		Analysis of	Variance			
 Source	DF	Sum of Squares	Mean Square	F Value	Prob>F	
Model Error	4 50	0.05937	0.01484	9,898	0.0001	
C Total	54	0.13478				
	Root MSE	0.03872	R-Square	0.4419		

NOOC MOL		014110
New Mese	A AAAAA	0 0010
vep mean	U.33281 A0] N*54	0.3813
n ir 1	1 00000	
G.V.	1.030/0	

12:18 Sunday, November 7, 1993 35

Parameter Estimates

1	Variable D	P IF	arameter Estimate	Standard Error	T for HO: Paramater=0 Prot	> 1	
	INTERCEP	+	0.168730	0.039852	4.234	0.0001	
	RGRGDP	1	0.002141	0.000924	2.317	0.0246	
	FDYLG	i -	0.375693	0.187385	-2.005	0.0504	
	SYLG	1	0.499321	0.112090	4.455	0.0001	

14

4

M S	MODEL WITH 35LS 12:18 Sunday, Nover	mber 7, 1993 36
Two-Stage	Least Squares Estimation	

lodel: IY lependent variable: IY

.

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Prob>F	
Model Error	9	0.02882	0.00320	1.657	0.1281	
C Total	54	0.11642				
	111 2222		1000	1. 2002		

K00	T MSE	υ.	04396	K-SQL	Jare	0.2489
Dep	Mean	0.	35529	Adj A	1-50	0.0987
C.V		2.	37284			

Parameter Estimates

		Parameter	Standard	T for HO:		
Variable	DF	Estimate	Error	Paramater=0	Prob > 1	
INTERCEP	1	0.182976	0.057341	3, 191	0.0026	
RGRGDP	1	0.002524	0.001497	1.687	0.0986	
RGTOT	1	0.000106	0.000113	0.937	0.3540	
REXLG	1	-0.003893	0.035064	-0.111	0.9121	
FDIY	1	-0.245335	1.416899	-0.173	Q.8633	
PIY	1	2.322997	2.837884	Q.819	0.4173	
DCY	1	0.679240	0.357749	1.899	0.0640	
FDYLG	1	-0.391012	0.264691	-1.477	0.1466	
DDCPSY	1	0.054657	0.099699	0.548	0.5863	
IYLG	1	0.438759	0.141338	3,104	0.0033	

,

tere and a second s

3

151

			MODEL	WITH SELS		12:18 Sunday, Nov	amber 7, 1993 37
			SYSLI	N Procedure			
			Three-Stage Lea	st Squares Estima	tion		•
			Cross Mo	del Covariance			
igma	DCY	RGRGDP	FDIY	PIY	OCY	SY	19
CY	0.0067519875	-0.299554647	-0.000044121	-0.000021347	-0.000084442	-0.000016426	-0.00006052
GRGDP	-0.299554647	32.63626717	-0.000711141	0.0007222784	-0.010259715	-0.02619569	-0.025774614
DIY	-0.000044121	-0.000711141	0.0000127053	-3.700031E-7	9.7186487E-6	0.0000176688	0.0000180137
17	-0.000021347	0.0007222784	-3.700031E-7	8.82050256+6	8.19840912-6	0.0000199004	-2.8418902-6
;'	-0.000016426	-0.010259715	0.0000176688	0.0000199004	0.0002036317	0.0014996128	0.0015069565
Ŷ	-0.00006052	-0.025774614	0.0000180137	-2.841895E-6	0.0001485458	0.0015069565	0.0019324787
			Cross Mod	el Correlation			
	Day	BOBODD	FRIV	D.L.V.	002	F V	17
orr	DCY	RGRGDP	FULY	PIY	UCY	51	
CY	1	-0.638131239	-0.150638303	-0.08747492	-0.053673801	-0.005161948	-0.016754154
GRGDP	-0.638131239	1	-0.034923199	0.0425703981	-0.093799986	-0.118410453	-0.102632423
YIC	-0.150638303	-0.034923199	1	-0.034951598	0.1424071895	0.1280045211	0.1149617364
IY	-0.08747492	0.0425703981	+0.034951898		0.1441794281	0,1730315758	-0.021767272
CY	-0.053673801	-0.093799986	0.1424071895	0.1441794281	1.000	0.274646225	0.1764902182
Y	-0.005161948	-0.118410453	0.1280045211	0.1730315758	0.274646225	1	0.8852252616
Ŷ	-0.016754154	-0.102632423	0.1149617364	-0.021767272	0.1764902182	0.8852252616	1
			Cross Model I	nverse Correlatio	n		
Inv Corr	DCY	RGRGDP	FDIY	PIY	OCY	SY	IY
DOV	1.0002001010	1 100 100000	A AAAAAAAAAAAAA	A 1010010000		-0 10000104	0.0414804800
BCBCDD	1 1001010004	1,1891030204	0.2929651664	0.1313310733	0.1010304220	0.105397101	0.2414501550
FDIY	0 2929651664	0 198840601	1 0819729301	0.0966258418	-0 102059752	-0 148988006	0.0529341649
PIY	0.1313310739	0.0022428767	0.0966258418	1 2316099135	-0.061516513	-1.078206076	0.9834433644
DCY	0.1516964228	0.17045235	-0.102059752	-0.061516513	1.1420352393	-0.543005419	0.3095534683
SY	-0.165397161	0.0568696442	-0.148988006	-1.078206078	-0.543005419	5.9096394637	-5.13883389
14	0.2414561596	0.1015685708	0.0529341649	0.9834433644	0.3095534683	-5.13883389	5.5241835131
			Cross Model	Inverse Covariance			
				John South Faile			

Inv Sigma	DCY	RGRGDP	FDIY	PIY	acy	57	tγ.
DCY	270.408697	2.5332354716	1000.2497956	538.15207036	96.422248116	-51.97837174	66.844413312
RGRGDP	2.5332354716	0.0551166655	9.7647949723	0.132193014	1.5583696545	0.2557076043	0.4044378052
FDIY	1000.2497956	9.7647949723	85159.479595	9127.5648792	-1495.479757	-1079.369262	337.82128606
PIY	538, 15207036	0.132193014	9127,5648792	139630.35696	-1081.839357	-9374.876324	7532.6074221
DCY	96.422248116	1.5583696545	-1495.479757	-1081.839357	3115.4082387	-732.3730078	367.78672291
SY	-51,97837174	0.2557076043	-1079.369262	-9374.876324	-732.3730078	3940.7769875	-3018.684043
IY	66.844413312	0.4044378052	337.82128606	7532.6074221	367.78672291	-3018.684043	2858.5999649

4.50

1

 $\mathbf{v}_{i} \geq 1$

out the States		12:18 Sunday, November 7, 1993 39					
			Para Parameter	meter Estimato Standard	es I for HO:		
	Variable INTERCEP INFD FDYLG NFACBY NFACBYLG REXLG FDIY	0F	Estimate 0.004535 -0.013972 -0.533815 -0.727700 0.727700 -0.016531 5.143664	Error 0.049720 0.005772 0.353520 0.209354 0.209354 0.043545 2.201217	Paramater=0 0.091 -2.421 -1.510 -3.476 3.476 -0.380 2.337	Prob > T 0.9277 0.0196 0.1380 0.0011 0.0011 0.7060 0.0240	
	DCY DDCTGY DCYLO RESTRICT RESTRICT	-1	1.190553 0.879974 1.000000 -14.212885 -4.203477	0.547432 0.194846 0 7.571798 30.598745	2.175 5.037 -1.577 -0.137	0.0349 0.0001 0.0670 0.8913	
lodel: RGRGDP lependent variable: RGRGDP							
					and the second		
with a serie of a							a contractor a contractor de la contractor

MODEL WITH 35	ILS 12:10	Sunday, November 7, 1993 40
SYSLIN Proced	june	

Three-Stage Least Squares Estimation

		Parar	neter Estimate	8		
Variable	DF	Parameter Estimate	Standard Error	T for HO: Paramater=0	Prob > T	
INTERCEP	1	-10.064105	5.109683 0.664191	-1.970	0.0543	
RGRXYF IY	1	0.002170 31.069790	0:002156 14.075754	1.006 2.207	0.3190 0.0318	

lode1: FDIY

ependent variable: FDIY	

.

2

MODEL WITH 35LS SYSLIN Procedure Three-Stage Least Squares Estimation

Variable	OF	Paramater Estimate	Standard	T for HO: Parameter#O	Prob > 1	
INTERCEP	1	-0.024665	0.006324	-3.900	0.0003	
GDVEXY	1	0.009541 0.042232	0.007387	1.292	0.2030	
FDY RRD	1	-0.020694	0.026267	-0.788	0.4349 0.0178	
WINT M1Y	1	-0.000420	0.000217 0.012545	-1.936 1.786	0.0591 0.0806	

.

Model: PIY Dependent variable: PIY

N and

201

12:18 Sunday, November 7, 1993 41

MUUEL WITH JOLD 12.10 Junuay, notamber 1, 1000 SYSLIN Procedure Three-Stage Least Squares Estimation Parameter Estimates Standard T for HO: Error Parameter=0 Parameter Estimate Prob > |T| Variable DF -0.012188 -0.000065222 0.019668 0.015558 -0.000139 0.005337 0.000155 0.008776 0.008944 0.000251 -2.284 -0.422 2.012 2.240 -0.555 0.0267 0.6752 0.0496 0.0295 0.5814 INTERCEP WINT M1Y CBDARAT INFD Model: OCY Dependent variable: OCY ÷ \cup . .

x)

12:18 Sunday, November 7, 1993 43

MODEL WITH SSLS SYSLIN Procedure Three-Stage Least Squares Estimation

Parameter Estimates

			Fai	ameret corimari	13		
2 Note that the second s			Paramoter	Standard	T for HO		
				o tunidar a		1-1	· · · · · · · · · · · · · · · · · · ·
	Variable	OF	Estimate	Error	Paramater#O	Prob > T	1
	and a second sec	1. 1. H. H. Marries		and a second second second second second	and share and an an an an an and	and the second s	
	INTERCER	4	-0 279725	0 089310	-3 132	0 0029	
	THEREF		0.210120	0.000010	0.104	0.0020	
	RGDPCAP	1	0.000172	0.000075605	2.271	0.0275	
Statistics films to be to set to set to a statistical dealer data and a statistical	. 23					ana ana ang ang ang ang ang ang ang ang	000000000000000000000000000000000000000
	MY		0.240253	0,123335	1.948	0.0570	
			0 101100	0 078940	0 400	0 0164	
			0.184492	0.0/0340	2.403	U.V.04	
set a set of the set of	CHRADAT		A 022104	0 001184	5 660	0 0061	
The second se	COUARAI		0.202124	0.001102	4.000	V.0002	C

Model: SY Dependent variable: SY

Three-Stage Least Squares Estimation Parameter Estimates Variable DF Parameter Standard T for H0: Variable DF Parameter Estimates INTERCEP 1 0.166676 0.037988 4.388 0.0001 RGROP 1 0.0002630 1.883 0.0001 RGROP 1 0.0001000000000 1.883 0.0001 RGROP 1 0.0001000000000 1.883 0.0001 RGROP 1 0.00010000000000 1.883 0.0001 RGROP 1 0.00010000000000 1.883 0.0001 RGROP 1 0.000100000000000 1.883 0.0001 RGROP 1 0.000100000000000 1.77906 -2.889 0.0001 Iodel: IY 1.19 1.196 1.196 1.196 Rependent variable: IV 1.196 1.196 1.196 1.196
Parameter Standard T for H0: INTERCEP 0.166676 0.037988 4.388 0.0001 RQRGDP 0.002630 0.00880 2.987 0.0004 RQRDDP 1 0.002630 1.583 0.1196 ROT 1 0.002630 1.583 0.1196 ROT 1 0.05144 0.00030983 1.583 0.1196 SYLG 1 0.513232 0.106805 4.786 0.0001 Iodel: IY spendent variable: IY spendent variable: IY
INTERCEP 1 0.166676 0.037988 4.388 0.0001 RGRODP 1 0.0002630 0.000800 2.987 0.0004 RGTOT 1 0.000144 0.000090993 1.583 0.1196 PD/LG 1 -0.81898 0.177906 -2.885 0.0007 SYLG 1 0.812232 0.106809 4.786 0.0001 Ddel: IY spendent variable: IY
odel: IY ependent variable: IY
00

159

12:18 Sunday, November 7, 1993 45

11

SYSLIN Procedure Three-Stage Least Squares Estimation

		Param	eter Estimate	95		
Variable	DF	Parameter Estimate	Standard Error	T for HO: Paramater=D	Prob > T	
INTERCEP	1	0.181037	0.047186	3.837	0.0004	
RGTOT		0.000076062 0.001787 0.043138	0.000107 0.015223 0.815977	0.708	0.4827 0.9071	
PIY OCY	1	1.355559 0.614988	1.210682 0.153393	1.120 4.009	0.2688	
DDCPSY	1	0.038270 0.435349	0.043219 0.127280	0.885 3.420	0.3806	

APPENDIX C: Detail of Model Simulation using SAS Simlin Procedure

	<i>a</i>	
1	The SAS Sy	stam 12:20 Sunday, November 7, 1
NOTE: COP NOTE: SAS	byright(d) 1989 by SAS Institute Ind., Cary, NC USA. 5 (r) Proprietary Software Release 6.08 TS404 censed to OKLAHOMA STATE UNIVERSITY, Site 0001354001.	
NDTE: Rur	nning on IBM Model 3090 Serial Number 274587, IBM Model 3090 Serial Number 274587.	
WARNING:	Could not open NEWS file SAS.V608.NEWS(NEWS).	
NDTE: The NOTE: All pre	SASUSER library was not specified. SASUSER library will now data sets and catalogs in the SASUSER library will be delet went their deletion.	ed at the end of the session. Use the NOWORKTERM option to
NOTE: SAS	system options specified are: IT=4	
NOTE: The	Initialization phase used 0.18 CPU seconds and 1935K.	00080000
2 3	INPUT YEAR DC NER CPII CPIUS M X FDII; CARDS;	00060015 00061014
NOTE: The	data set WDRK.TABLE1 has 58 observations and 8 variables. DATA statement used 0.06 CPU seconds and 2467K.	
3 62		00061014 00193122
63 64	DATA TABLE2; INPUT PII DC LC MI EOBP CA RGDPCT INT;	00194016 00195099
NOTE: The NOTE: The	o data set WORK.TABLE2 has 58 observations and 8 variables. DATA statement used 0.03 CPU seconds and 2467K.	UN POUNS
6B 124		00196016
125	DATA TABLES: INPUT GOVEX RSV SAV GOVDEF POP UTPD UTOD WINT;	00204817 00204999
127	CARDS;	· 00205020
NOTE: The	DATA set WORK TABLES has 58 observations and 8 variables. DATA statement used 0.03 CPU seconds and 2467K.	
127 186	· · · ·	00205020 00210917
187 188	DATA TABLE4: Input flma flomb nfa wpius gdp ir icinf winfi	00211131 00211299
189 NOTE: The	CARDS;	00211332
NOTE: The	DATA statement used 0.03 CPU seconds and 2467K.	
189 248	1	00211332 00217633
249 250	DATA TABLEB: INPUT FAMA FADMB QM RDM OIM UVXP UVMP;	00217899 00217999
251	CARDS:	00218099

÷

2	The SAS System	12:20 Sunday, November 7, 199
NOTE:	The data set WORK, TABLES has 58 observations and 7 variables.	
OTE :	The DATA statement used 0.03 CPU seconds and 2467K.	
251		002 18099
10		00223999
12	INDIT DECE DECE.	00224098
13	CARDS;	00224299
IOTE :	The data set WORK.TABLE6 has 58 observations and 3 variables.	
OTE:	The DATA statement used 0.02 CPU seconds and 2467K.	
13		00224299
72		00230199
13	DATA TABLE7;	00230299
75	CARDS:	00230399
DTE:	The data set WORK TABLET has 58 observations and 9 variables	
DTE:	The DATA statement used 0.03 CPU seconds and 2467K.	
75		00230499
34		00236399
35	DATA DISSERT:	00236517
36	MERGE TABLE1 TABLE2 TABLE3 TABLE4 TABLE5 TABLE6 TABLE7;	00236699
37	CPIILG=LAG(CPII);	00236726
38		00236899
19	The file (Log (CPTT) - Log (CPTTLG)) = 100;	00236999
		00237099
12	INFD=INFIS:	00237228
13	INFDA=INFI-ICINF:	00237399
14	INFDLG=LAG(INFD):	00237435
15	INTD=INT-WINT:	00237599
16	INTDLG=LAG(INTD);	00237699
17	NERLG=LAG(NER);	00237799
18	CDEPR+((NER-NERLG)/NERLG)+100:	00237899
19	RINT=INT-INFI;	00237999
50	RWINT-WINT-ICINF;	00238099
1	RINTD-RINT-RWINT;	00238199
22	REX=((CP11/WPIUS)=1000)/NER;	00238235
33	HEXLG=LAG(REX);	00238335
24		00238499
55	RGDVEX=(LDG(GUVEX)-LDG(GUVEXLG))+100;	00238599
57	COVEX-(GOVEX/CP11)*100;	00238699
ia la		00238759
19	GDVDEYL G=LAG(GDVDEY):	00238999
30	RGGDVDEY=((GDVDEY-GDVDEYLG)/GDVDEYLG)*100:	00239099
51	GOVDEFLG-LAG(GOVDEF):	00239199
52	RGGOVDEF=((GOVDEF-GOVDEFLG)/GOVDEFLG)*100;	00239299
53	RRD=(LOG(REX)-LOG(REXLG))+100;	00239399
54	RRDLG+LAG(RRD);	00239499
55	KA=FDII+PII+OC;	00239525
56	DCY=DC/GDPi	00239699
57	DCYLG=LAG(DCY);	00239799
58	DDCY=DCY-DCYLG:	00239899
69	DCPSRAT=DCPS/DC:	00239999

1		The SAS System	12:20 Sunday, November 7, 1993
170	DCPSDTG=DCPS/(DCCG+DCDE);	00240099	
171	DCPSY=DCPS/GDP;	00240199	8.1
172	DCPSYLG=LAG(DCPSY);	00240299	
173	DDCPSY=DCPSY-DCPSYLG;	00240399	
174	DCPSLG+LAG(DCPS);	00240499	
175	DDCPS=DCPS-DCPSLG;	00240598	
178		00240699	
179	DCCGYLG=LAG(DCCGY);	00240899	
179	DCOEV=DCOE/CDP+	00240999	
iao	DCOEVI GELAG(DCOEV)	00241099	
181	DDCDEY=DCDEY=DCDEYLG:	00241199	
182	DCTG=DCCG+DCDE:	00241299	
183	DCTGLG=LAG(DCTG);	00241399	
184	DDCTG=DCTG-DCTGLG;	00241499	
185	DCTGRAT=DCTG/DC;	00241599	
186	DCTGY+DCTG/GDP;	00241699	
187	DCTGYLG=LAG(DCTGY);	00241799	
188	DDCTGY=DCTGY=DCTGYLG;	00241099	
189	EDIX-EDIX (ODD:	. 00242025	
490	EDIVICALAC(EDIV)	00242199	
492	PIY=PII/GOP:	00242325	
493	PIYLG=LAG(PIY):	00242499	
494	DCY=DC/GDP;	00242525	
495	OCYLG=LAG(OCY);	00242699	
496	CFY=FDIY+PIY+OCY;	00242799	
497	MS=M1+QM+RDM+OIM;	00242899	
498	M1Y=M1/GDP;	00242999	
499	LLY=(M1+QM)/GDP;	00243199	
500		00243299	
507	DCG=DCCG+DCOE ·	00243399	
503	DCGY=DCG/GDP:	00243499 *	
504	MSY=MS/GDP:	00243599	
805	MSYLG=LAG(MSY);	00243699	
506	MSLG+LAG(MS);	. 00243799	
507	RGMS=(LOG(MS)-LOG(MSLG))*100;	00243899	
508	RMS=(MS/CPII)*100;	00243999	
509	RGDP=(100/CPII)*GDP;	00244099	
510	RGDPLG#LAG(RGDP);	00244199	
511	PODPCAD=PODD/(DOD/A);	00244489	
512	YV=Y/CDD.	00244525	
514	XYI G=LAG(XY) ·	00244699	
515	RGXY=((XY-XYLG)/XYLG)*100:	00244799	
516	RX=(X/CPII)*100:	00244899	
617	RXLG=LAG(RX);	00244999	
518	RGRX*((RX-RXLG)/RXLG)*100;	00245099	
519	RGRXYF = (RGRX) * (XY * 100);	00245199	
520	RXY=RX/GDP;	00245299	
521	RXYLG=LAG(RXY);	00245399	
502	NY=N/CDD+	00245499	
524	INVESAV-CA:	00245799	
525	SY=SAV/GDP:	00245825	
526	IY=INV/GDP:	00245925	
527	UTD=UTPD+UTOD;	00246046	

ς.

'

163

a

-	4	The SAS System I	2:20 Sunday, Novamber 7, 1993
9	528 UT+(UTD*NER)/1000;	00246147	
	529 FD=(-CA)-UT;	00246246	
	530 FDY=FD/GDP;	00246337	
	531 FDYLG=LAG(FDY); 530 NEACH+EAMA+ELMA	00246437	
	533 NFAPB=FADMB+FLDMB:	00246699	
	534 NFACBY=NFACB/GDP;	00246799	
	535 NFACBYLG=LAG(NFACBY);	00246899	•
	536 NFAPBY=NFAPB/GDP;	00246999	
	537 NFAT-NFA/GDF; 538 RSVY+RSV/GOP;	00247055	
	539 IRRP#(IR*NER)/1000;	00247299	
	540 IRM=IRRP/M;	00247399	
	541 IRMLG=LAG(IRM);	00247499	
	542 RGIRM®(LUG(IRM)~LUG(IRMLG))*100; 543 DGIPM(G=LAG(DGIPM).	00247599	
	544 CAY=CA/GDP:	00247727	
	545 EOBY=EOBP/GOP;	00247825	
	546 SYLG+LAG(SY);	00247928	
	547 IYLG=LAG(IY); 549 ZEPO1=CAV(EDIV(DOV)DOV)DOV(COV)	00248025	
	548 ZERUI=CAY+FDIY+PIY+UCY+RSVY+EUBY; 549 ZERUI=CA+EDII+DII+OC+DSV+EORD;	00248199	
	550 ZER02+MSY-DCY-NFAY	00248399	
	B51 ZER022=MS=DC=NFA;	00249099	
	552 ZERO3+MS-M1+QM-RDM+DIM1	00250099	
	553 XM=X+(-M);	00251099	
	555 DGXM=((XM-XM)G)/XMIG)+100	00252099	
	556 RGXMLG+LAG(RGXM);	00254099	
	557 XMY+(X+(-M))/GDP;	00255099	· · · · · · · · · · · · · · · · · · ·
	558 XMYLG+LAG(XMY):	00256099	
	559 RGXMY=((XMY-XMYLG)/XMYLG)*100; 560 DGYMYLG=LAC(DGYMY);	00257099	
	561 XLM=(X+M):	00258199	
	562 XLMY=XLM/GDP:	00256299	
	BG3 TDT+UVXP/UVMP	00259099	
	564 TOTLG+LAG(TOT):	00259199	
	566 CBDA=MACCG+MACDF+MACDS+MACDFI	• 00260099	
	567 CBDAY=CBDA/GDP;	00262099	
	568 DMBDA+DMBCCG+DMBCOE+DMBCPS+DMBCDFI;	00263099	
	569 DMBDAY+DMBDA/GDP;	00264099	
	571 CRDARAT=CRDA/(DMBDA+CRDA):	00265099	
	572 BDAY=CBDAY+DMBDAY;	00266099	
	573 POPLG=LAG(POP);	00266199	
	574 RGPOP+(LDG(POP)-LDG(POPLG))+100;	00267099	
	DID TITLE SIMULATE DISSERT USING SIMLIN ;	00270038	
	NOTE: Missing values were generated as a result of p	arforming an operation on missing values.	
	1 at 439:17 1 at 439:18 1 at 439:30 1 at	441:19 1 at 441:20 1 at 441:33 1 at 442:12	1 at 443:13 1 at 448:14
	1 at 448:21 1 at 448:28 1 at 449:11 1 at	451:13 1 at 455:21 1 at 455:22 1 at 455:35	1 at 457:15 1 at 458:16
	2 at 460:20 2 at 460:30 2 at 460:40 2 at	462:20 2 at 462:30 2 at 462:40 1 at 463:15	at 463:16 1 at 463:27
	1 at 465:10 1 at 465:14 1 at 466:9 2 at	486:13 2 at 488:15 1 at 490:12 1 at 492:10	1 at 494.9 1 at 496.11
	1 at 496:15 1 at 498:9 1 at 499:14 1 at	500:15 1 at 501:13 1 at 503:11 1 at 504:9	1 at 507:15 1 at 507:16
	1 at 507:26 1 at 509:18 1 at 511:10 2 at	511:19 1 at 511:20 2 at 511:32 1 at 512:15	1 at 512:20 1 at 513:7
			1
		1	
	$\chi \equiv 2$		

,

.

5	The SAS System	12:20 Sunday, November 7, 1993
	2 at 515:12 2 at 515:18 2 at 515:24 1 at 516:8 1 at 516:14 2 at 1 at 519:20 1 at 520:9 1 at 522:9 2 at 522:17 1 at 522:18 2 at 1 at 519:00 1 at 520:9 1 at 522:9 2 at 522:17 1 at 522:18 2 at	518:12 2 at 518:18 2 at 518:24 2 at 519:16 522:29 1 at 523:7 1 at 524:10 1 at 525:9 520:41 1 at 520:0 1 at 526:15
******	1 at 537:11 1 at 538:11 1 at 540:11 1 at 542:9 2 at 542:17 1 at	542:18 2 at 542:29 1 at 544:9 1 at 545:12
	1 at 549:20 1 at 550:12 1 at 550:16 1 at 553:7 1 at 553:10 2 at	555:12 2 at 555:18 2 at 555:24 1 at 557:0
Sec. Sec. al	1 at 557:12 1 at 557:15 2 at 559:14 2 at 559:21 2 at 559:28 1 at 1 at 565:28 1 at 567:13 1 at 569:15 1 at 572:13 1 at 574:9 2 at	574:17 1 at 574:18 2 at 574:29
NOTE:	The data set WORK.DISSERT has 58 observations and 188 variables. The DATA statement used 0.50 CPU seconds and 3030K.	
876	PROC SYSLIN 35LS DATA+DISSERT DUTEST+A:	01640098
577 578	INSTRUMENTS INFO FOYLG NFACBY NFACBYLG REXLG DCYLG DDCCGY DMBDARAT GOVEXY XY LC FDY RRD WINT RWINT MIY CBDARAT RGDPCAP MY RRDLG	01660099 01670099
579	RGTOT SYLG TOTLG IYLG CAY RSVY EOBY MSY NFAY NFAPBY DDCY CBDAY	01680099
580	DMBDAY DDCOEY RGXY RGPOP INFDLG DDCTG DDCPS BDAY DDCTGY RGRXYF RGRX RFX+	01682099
582	ENDOGENOUS DCY RORODP FDIY PIY DCY SY IY;	01683099
583	MODEL DCY*INFD FDYLG NFACBY NFACBYLG REXLG FDIY OCY DDCTGY DCYLG;	01690099
585	RESTRICT DCYLG=1;	01710099
586	MODEL RGRGDP = RGPOP RGRXYF IY;	01720099
588	MODEL PIY=WINT MIY CODARAT INFD:	01740099
589	MODEL DCY=RGDPCAP MY MIY CHDARAT:	01770099
590 591	MODEL SY = RGRGDP RGTOT FDYLG SYLG; MODEL IY = RGRGDP RGTOT REXLG FDIY PIY OCY FDYLG DDCPSY IYLG:	01780099
NOTE: NOTE: NOTE:	3 observations have missing values. 55 observations were used in the computations. The data set WORK.A has 21 observations and 57 variables. The PROCEDURE SYSLIN printed pages 1-16. The PROCEDURE SYSLIN used 0.35 CPU seconds and 3315K.	
692	PROC SIMLIN EST#A DATA#DISSERT TYPE#35LS ESTPRINT TOTAL INTERIM#2	01671399
593	OUTEST *8;	01871499
594	ENDUGENOUS DCY RGRGDP FDIY PIY DCY SY IY; EXOGENOUS INFD FDYLG NFACBY NFACBYLG REXLG DDCCGY DMBDARAT	01871599
596	GOVEXY XY LC FDY RRD WINT RWINT MIY CBDARAT RGDPCAP MY RRDLG	01872199
597 598	RGTOT TOTLG CAY RSVY EOBY MSY NFAY NFAPBY DDCY CBDAY DMBDAY DDCDEY RGXY RGPOP INFOLG DDCTG DDCPS RDAY	01872299
599	DDCTGY RGRXYF RGRX REX:	01872499
600	LAGGED DCYLG DCY 1 SYLG SY 1 IYLG IY 1;	01872599
602	OUTPUT OUT=C P=DCYP RGRGDPP FDIYP PIYP OCYP SYP IYP	01872799
603	R+DCYR RGRGDPR FDIYR PIYR OCYR SYR IYR;	01873099
WARNIN NOTE: NOTE: NOTE: NOTE: NOTE:	VG: Missing data for the legged endogenous variable DCYLG. Endogenous actual Percent error statistics for 1 variables were set to missing values because the percent error at one or more observations. The data set WORK.B has 35 observations and 56 variables. The data set WORK.C has 86 observations and 66 variables. The PROCEDURE SIMLIN printed pages 17-24. The PROCEDURE SIMLIN used 0.13 CPU seconds and 3451K.	l yalue will be used. a an actual value was too close to zero to compute
604	PROC PRINT:	01873199
605	RUN;	01873299

605 606 PROC PLOT: 607 PLOT DCY*VEAR DCYP*VEAR*'*'/OVERLAY HPDS=60 VPDS=22 608 PLOT RGRGDP*VEAR RGRGDPP*VEAR*'*'/OVERLAY HPDS=60 VPDS= 609 PLOT FDIY*VEAR FDIYP*VEAR*'*'/OVERLAY HPDS=60 VPDS=22 611 PLOT DCY*VEAR DCYP*VEAR*'*'/OVERLAY HPDS=60 VPDS=22 612 PLOT SY*VEAR SYP*VEAR*'*'/OVERLAY HPDS=60 VPDS=22 613 PLOT SY*VEAR SYP*VEAR*'*'/OVERLAY HPDS=60 VPDS=22; 614 RUN; 614 NOTE: The PROCEDURE PLOT printed pages 33-39. NOTE: The PROCEDURE PLOT printed pages 33-39.	01873299 01874099 01875089 005=22: 01876099 22: 01876099 01878099 01879099 01879099 01879299 01879399 01879399	
NOTE: The SAS session used 1.76 CPU seconds and 3638K. NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-1	2414	

			SIMULATE DIS	SERT USING SIMLIN		12:20 Sunday, Nov	amber 7, 1999 8
			SYSLI Three-Stage Lea	N Procedure st Squares Estimat	tion		
4.9.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			Cross Mo	del Covariance			
31gma	DCY	RGRGDP	FDIY	PIY	GCY	5Y	17
DCY RGRGDP TDIY SIY JCY SY	0.0067519875 -0.299554647 -0.000044121 -0.000021347 +0.000021347 +0.000016426 -0.000016426	-0.299554647 32.63626717 -0.000711141 0.0007222784 -0.010259716 -0.02619569 -0.025774614	-0.000044121 -0.000711141 0.0000127053 -3.700031E-7 9.7186487E-6 0.0000176688 0.0000176688	-0.000021347 0.0007222784 -3.700031E-7 8.8205025E+6 8.1984591E-6 0.0000199004 -2.841895E-6	-0.00084442 -0.010259715 9.7186487E-6 8.1984591E-6 0.0003665764 0.0002036317 0.0001485458	-0.00016426 -0.02619569 0.000176688 0.0000178686 0.000198004 0.0002036317 0.0014996128 0.0015069565	-0.00006052 -0.025774614 0.0000180137 -2.841895E-6 0.0001485458 0.0015068565 0.0015068565 0.0019324787
			Cross Mod	el Correlation			
Corr	DCY	RGRGDP	FDIY	PIY	OCY	SY	IY
CY CRGDP DIY YY CY CY CY	1 -0.638131239 -0.160638303 -0.08747482 -0.053673801 -0.005161948 -0.016754154	-0.638131239 1 -0.034923199 0.0425703981 -0.093799986 -0.118410453 -0.102632423	-0.150638303 -0.034923199 1 -0.034951598 0.1424071895 0.1280045211 0.1149617364	-0.08747492 0.0425703981 +0.034951598 1 0.1441794281 0.1730315758 -0.021767272	-0.053673801 -0.093799886 0.1424071886 0.1441794281 1 0.274646225 0.1764902182	-0.005161948 -0.118410453 0.1280045211 0.1730315758 0.274645225 1 0.8852252616	-0.016754154 +0.102832423 0.1149617364 +0.021767272 0.1764902182 0.8852252616 1
			Cross Model I	nverse Correlation	1		
Inv Corr	DCY	RGRGDP	FDIY	PIY	OCY	SY	IY
DCY RGRGDP FDIY PIY OCY \$Y IY	1.6257961543 1.1891636264 0.2929651664 0.1313310739 0.1516964228 -0.165397161 0.2414561596	1 1891636264 1.7988022214 0.198840601 0.0022428767 0.17045235 0.0565656442 0.1015685708	0.2929651664 0.198540601 1.0819729301 0.0966258418 -0.102059752 -0.148988006 0.0528341649	0.1313310739 0.0022428767 0.0966258418 1.2316099135 -0.061516513 41.078206076 0.9834433644	0.1516964228 0.17045235 -0.102059752 -0.061516513 1.1420352393 -0.543005419 0.3095534663	-0.165397161 0.0565996442 -0.148988006 -1.078206076 -0.543005419 5.9096394637 -5.13883389	0.2414561596 0.1018685708 0.0529341649 0.983443644 0.3095534683 -5.13883389 5.5241835131

- Where Mini Sciences again in Sciences and			Cross Model In	nverse Covariance		-	
Inv Sigma	DCY	RGRGDP	FDTY	PIY	OCY	SY	IX ,
DCY	270.408697	2.5332354716	1000.2497956	538.15207036	96.422248116	-51.97837174	66.844413312
RGRGDP	2.5332354716	0.0551166655	9.7647949723	0.132193014	1.5583696545	0.2557076043	0.4044378052
PIY	538.15207036	0.132193014	9127.5648792	139630,35696	-1081.839357	-9374.876324	7532.6074221
SY	-51.97837174	0.2567076043	-1079.369262	-1081.839357 -9374.876324	-732.3730078	3940.7769875	-3018.684043
IY	66.844413312	0.4044378052	337.82128606	7532.6074221	367.78672291	-3018.684043	2858.5999649

SIMULATE UISSERT USING SIMULIN SYSLIN Procedure Three-Stage Least Squares Estimation

	a. z		Paran	eter Estimate	5		
	Variable	DF	Parameter Estimate	Standard Error	T for HO: Paramater=0	Prob > T	
	INTERCEP	1	0.004535	0.049720	0.091	0.9277	•
	FDYLG NFACBY NFACBYLG		-0.533815 -0.727700 0.727700	0.353520 0.209354 0.209354	-1.510 -9.476	0.1380 0.0011	
200000000 0000000000000000000000000000	REXLG FDIY	1	-0.016531 5.143664	0.043545 2.201217	-0.380 2.337	0.7060 0.0240	
	DDCTGY DCYLQ		1.190553 0.979974 1.000000	0.547432 0.194546 0	2.175 5.037	0.0349	
	RESTRICT	-1	-14.212885 -4.203477	7.571798 30.598745	-1.677 -0.137	0.0670 0.8913	

Model: RGRGDP Dependent variable: RGRGDP

SIMULATE DISSERT USING SIMLIN SYSLIN Procedure Three-Stage Least Squares Estimation

.

٠...

12:20 Sunday, November 7, 1993 11

	Deservator Patington		
	Parameter Estimates		
	1 A 1		
Parama	ter Standard	I TOP MU:	
			1-1
Variania nr rutin	ata Encon	Sheamptaball Dhon 5	

1. 1

INTERCEP	1	- 10.064105	5.109683	-1.970	0.0543
RGPOP	1	0.509562	0.664191	0.767	0.4465
RGRXYF I Y	1	0.002170 31.069790	0.002156 14.075754	1.006	0.3190 0.0318

odel: FDIY ependent variable: FDIY

pendent variabre, rorr			
		10.13	
	-		

	Variable DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > [1]	
•	INTERCEP RGDPCAP JC LC FDY RRD WINT MIY	-0.024665 0.00023627 0.009541 0.042232 -0.000485 -0.020694 -0.000222 -0.000420 0.022412	0.006324 0.00008511 0.007387 0.021321 0.000189 0.026267 0.00090549 0.000217 0.012545	-3.900 2.776 1.292 1.981 -3.054 -0.788 -2.457 -1.936 1.786	0.0003 0.0079 0.2030 0.0536 0.0037 0.4349 0.0178 0.0591 0.0591 0.0806	
Model: PIY Dependent variable: PIY						
		•				
			1			

SIMULATE DISSERT USING SIMULN SYSLIN Procedure Three-Stage Least Squares Estimation

5 5.0

1 X

÷.

12:20 Sunday, November 7, 1993 13

		Param	eter Estimate	18		
Variable	OF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > [1]	
INTERCEP WINT	1	-0.012188	0.005337	-2.284 -0.422	0.0267	
M1Y CEDARAT INFD		0.019668 0.015558 -0.000139	0.009776 0.006944 0.000251	2.012 2.240 -0.555	0.0496 0.0295 0.5814	

Model: OCY Dependent variable: OCY
		SIMULATE SY Three-Stage	DISSERT USING SLIN Procedur Least Squares	SIMLIN e Estimation	12120 Sund	lay, Novamber 7, 1993 14
	Variable DF INTERCEP 1 RGDPCAP 1 MY 1 MY 1 GBDARAT 1	Para Paramater Estimate -0.279725 0.240253 0.194492 0.232124	Standard Error 0.089310 0.000075605 0.123335 0.078340 0.081152	es T for HO: Parameter=0 -3.132 2.271 1.948 2.483 2.860	Prob > [T] 0.0029 0.0275 0.0570 0.0164 0.0062	
Model: SY Dependent variable: SY						
			÷			
(,			()		1	
\bigcirc			\cup			\bigcirc

SIMULATE DISSERT USING SIMLIN

,

12:20 Sunday, November 7, 1993 15

SYSLIN Procedure Three-Stage Least Squares Estimation

			Para	ameter Estimat	65		
	Variable	DF	Parameter Estimate	Standard Error	T for HO: Paramater#O	Prob > [T]	
	INTERCEP	1	0.166676	0.037988	4.388	0.0001	
· · ·	RGTOT FDYLG SYLG		0.000144	0.000090993 0.177906 0.106809	1.583 -2.889 4.796	0.1196 0.0057 0.0001	

100

8

Model: IY Dependent variable: IY

SIMULATE DISSERT USING SIMLIN

SYSLIN Procedure Three-Stage Least Squares Estimation

Inree-Stage Least Squares Estimation

12:20 Sunday, November 7, 1993 16

6

		Fara	marai. Eptimate			
Variable	DF	Parameter Estimate	Standard Error	T for HO: Parameter=0	Prob > T	
INTERCEP RGRGDP	1	0.181037	0.047186	3.837	0.0004	
RGTOT REXLG FDIY		0.00076062 0.001787 0.043135	0.000107 0.015223 0.615977	0.708 0.117 0.070	0.4827 0.9071 0.9445	
PIY OCY FDYLG	-	1.355559 0.614988 -0.434974	1.210682 0.153393 0.210438	1.120 4.009 -2.067	0.2688 0.0002 0.0445	
DDCPSY IYLG	1	0.038270 0.435349	0.043219 0.127280	0.885 3.420	0.3806	

1

175

(-)

s. ...

(a) (a) (b)

N.

SIMULATE DISSERT USING SIMLIN 12:20 Sunday, November 7, 1993 17 SIMLIN Procedure Structural Coefficients for Endogenous Variables DCY RGRGDP FDIY PIY SY 1 Y OCY -5.1437 DCY 1.0000 -1.1906 8 ST . -31.0698 RGRGDP 1.0000 . 1.0000 FDIY PIY OCY SY IY 1.0000 1.0000 -0.002630 -0.002794 1.0000 -0.0431 -0.6150 1.0000 -1.3556 . Structural Coefficients for Lagged Endogenous Variables DCYLG SYLG IYLG DCY RGRGDP 1.0000 . FDIY PIY : DCY SY 0.5122 0.4353 Structural Coefficients for Exogenous Variables INFD FDYLG NFACBY NFACBYLG REXLG DDCCGY DMBDARAT GOVEXY XY LC FDY DCY RGRGDP FDIY PIY OCY SY IY -0.0140 -0.5338 -0.7277 0.7277 -0.0165 . • 0.0422 0.009541 -0.000485 -0.0207 -0.000139 12 . . . -0.5139 -0.4350 0.001787 RRD WINT RWINT MIY CBDARAT RGDPCAP RRDLG RGTDT TOTLO CAY MY DCY RGRGDP -0.000420 0.0224 0.0197 0.1945 FDIY PIY -0.000222 0.0000236 . э. 0.0156 -0.000065 0.000172 0.2403 OCY 0.000144 0.0000761 SY

	RSVY	EDBY	St	ructural C	NFAPRY	for Exogen	CEDAY	DMBDAY	DDCDEY	ROXY	RGPDP
DCY RGRGDP FDIY PIY											0.5096
SY IY			:	÷	:	:	÷	:	÷		÷
•	DCY RGRGDP FDIY PIY	INFDLG	DDCTG	DDCPS	BDAY	DDCTGY 0.9800	RGRXYF 0.002170	RGRX	REX	INTERCEP 0.004535 -10.0641 -0.0247 -0.0122	
	DCY SY IY				÷		÷			-0.2797 0.1667 0.1810	
		Charles									
							·				
		·									
					•						

10		
۰.		
	~	

1

etuki are precept lictus etu tu	19 19
SIMULATE DISSERT USING SIMLIN IZIKO GUNDAY, NOVEMBELTI, TE	
SIM IN Propedure	

.

1.1

		Inverse	Coefficient Ma	trix for Endogeno	us Variables			
	DCY	RGRGDP	FDIY	PIY	OCY	5Y	İY	
 DCY RGRGDP FDIY	1.0000	0 1.0951 0	5.1437 1.4676 1.0000	0 46.1211 0	1.1906 20.9242 0	0000	0 34.0237 0	-
P1Y DCY SY IY	0000	0.002880 0.003060	0 0.003860 0.0472	1.0000 0 0.1213 1.4844	1.0000 0.0550 0.6735	1.0000	0 0.0895 1.0951	

Reduced	Form for Lagg	ed Endogenous \	Variables	
	DCYLG	SYLG	TYLG	
DCY	1.0000	0	0	
RGRGDP	0	0	14.8122	
FDIY	Q	Q	0	
PIY	0	0	0	
SY	õ	0.5122	0.0390	
IY	0	0	0.4767	

	INFD	FDYLG	NFACBY	NFACBYLG	REXLG	DDCCGY	DMBDARAT	GOVEXY	XY	LC	FDY
CY	-0.0140	-0.5338	-0.7277	0.7277	-0.0165	0	0	0.0491	0.2172	-0.002493	-0.1064
GRGDP	-0.006423	-14.7994	Q	0	0.0608	0	0	0.0140	0.0620	-0.000711	-0.0304
DIY	0	0	0	Ö	0	0	0	0.009541	0.0422	-0.000485	-0.0207
IY	-0.000139	0	Q	0	Ø	0	Q	0	0	. 0	, c
CY	0	0	0	0	0	0	0	0	0	0	C
Y	-0.000017	-0.5528	0	0	0.000160	0	0	0.0000368	0.000163	-1.871E-6	-0.00008
Y	-0.000207	-0.4763	0	0	0.001957	0	0	0.000451	0.001995	-0.000023	-0.00097
				S							
	RRD	WINT	RWINT	MIY	CBDARAT	RGDPCAP	MY	RRDLG	RGTDT	TOTLO	CA
CY	-0.001144	-0.002160	0	0.3468	0.2764	0.000326	0.2860	0	0	0	
GRGDP	-0.000327	-0.003625	0	5.0096	5.5746	0.003627	5.0271	0	0.002588	0	
DIY	+0.000222	+0.000420	0	0.0224	O	0.0000236	Ó	0	0	0	
IY	Ø	-0.000065	0	0.0197	0.0156	0	0	Ø	0	Q	
CY	0	0	0	0.1945	0.2321	0.000172	0.2403	0	Ø	0	
Y	-8.588E-7	-9.533E-6	Ô	0.0132	0.0147	9.5386E-6	0.0132	0	0.000151	0	
Y	-0.000011	-0.000117	0	0.1612	0.1794	0.000117	0.1618	0	0.0000833	0	

3

SIMULATE DISSERT USING SIMLIN Procedur	12:20	Sunday, November 7, 1993 20

· Reduced Form for Exogenous Variables

RSV	Y EOB	Y MS	Y NFA	NFAPB	Y DDC	CEDAY	DMBDAY	DDCOEY	RGXY	RGPDP
DCY RGRGDP	0	0	0 0	2	0 . 0		000	0	000	0.5580
PIY	0	0	0 0	3			000	0	000	ŝ
SY IY	0	0						0	0	0.001468

IN	FDLG DD	CTG DDCP	S BDA'	Y DDCTGY	RGRXYF	RGRX	REX	INTERCEP	
DCY	0	0	0 0	0.9800) 0	Q	0	-0.4554	
 RGRGDP	0	0	0 0	0 0	0.002376	0	0	-11.3127	
 FDIY	0	0	0 0	o. c	0 0	0	0	-0.0247	
 PIY	0	0	0 (0 0) 0	0	0	-0.0122	
DCY	0	0	0	9 9	0	0	<u>0</u>	-0.2797	· · · · · · · · · · · · · · · · · · ·
ST TV	0	0			6 6395E+6	0	g	-0 0402	

Interim	Multipl	lers for	Interim 1	

DCY	- 0139717	-0 533815	- 7277001	0 7277001	- 0165314	0	0	0 0490759	0 2172295	- 0024927	- 1064411
RGRGDP	0030623	-7.055467	0.0000000	0.0000000	0.0289807	õ	ŏ	0.0066756	0.0295490	0003391	0144788
FDIY	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	õ	ŏ	0.0000000	0.0000000	0.0000000	0.0000000
PIY	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	Ō	0	0.0000000	0.0000000	0.0000000	0.0000000
DCY	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	0	0	0.0000000	0.0000000	0.0000000	0.0000000
5Y	0000167	-0.301730	0.0000000	0.0000000	0.0001581	0	0	0.0000364	0.0001612	0000019	0000790
IY	0000986	-0.227084	0.0000000	0.0000000	0.0009328	0	0	0.0002149	0.0009511	0000109	0004660

		KKU	WINI	RWINI	MIY	CBUARAI	HGDPCAP	MT	RKULG	RGIOI	IUILU	CAT
	DCY	0011443	0021608	0	0.346833	0.276356	0.0003259	0.286034	Q	0.0000000	0	0
	RGRGDP	0001557	0017280	0	2.388252	2.657613	0.0017290	2.396614	0	0.0012338	0	0
	FDIY	0.0000000	0.0000000	0	0.000000	0.000000	0.0000000	0.000000	0	0.0000000	0	0
- 3	PIY	0.0000000	0.0000000	0	0.000000	0.000000	0.0000000	0.000000	0	0.0000000	0	0
3330	DCY	0.0000000	0.0000000	Ó	0.000000	0.000000	0.0000000	0.000000	Ö	0.0000000 *	0	0
1000	SY	0000008	+.0000094	Ö	0.013031	0.014500	0.0000094	0.013076	Ó	0.0000805	Ó	0
3000	IY	0000050	+.0000556	ò	0.076867	0.085537	0.0000556	0.077136	Ö	0.0000397	Ó	0

 \bigcirc

2

4

(2)

 $V_{i,j} \in$

SIMULATE DISSERT USING SIMLIN 12:20 Sunday, November 7, 1993 21 SIMLIN Procedure

1.00

ų_____

1

4

				Inter	im Multipl	iers for In	terim 1				•
	RSVY	EOBY	MSY	NFAY	NFAPBY	DDCY	CBDAY	DMBDAY	DDCOEY	ROXY	RGPOP
DCY	0	0	0	0	0	0	0	0	0	0	0.0000000
RGRGDP	0	0	0	0	0	0	0	0	0	0	0.0230960
FDIY	0	0	0	0	0	. 0	0	0	0	0	0.0000000
PIY	0	0	0	Ø	0	0	0	Ö	0	0	0.0000000
DCY	ø	0	0	Ø	o	Q	O O	0	0	Q	0.0000000
ŞY	0	0	0	0	0	0	0	0	0	0	0.0008125
IY	0	0	0	0	0	0	• •	0	0	0	0.0007434
		INFOLG	DDCTG	DDCPS	BDAY	DDCTGY	RGRXYF	RGRX	REX	INTERCEP	
	DCY	o	0	o	ø	0.9799736	0.0000000	0	0	4553627	
	RGRGDP	0	0	0	0	0.0000000	0.0000983	0	0	5952624	
	FDIY	0	0	0	0	0.0000000	0.0000000	0	0	0.0000000	
and the second	PIY	0	0	0	0	0.0000000	0.0000000	0	0	0.0000000	
	OCY	0	O	Q	0	0.0000000	0.0000000	0	0	0.0000000	
	ŞY	0	0	0	0	0.0000000	0.000035	0	o	0.0685701	
	IY	0	0	Q	0	0.0000000	0.0000032	0	0	+.0191589	

	Interim	Multi	pliers	for	Interim	2
Contraction of the second second second second second second second second second second second second second s		contribution of the second	2610000000000000	00003050000	1000-1000-00000000000000	1000.00

	INFD	FDYLG	NFACBY	NFACBYLG	REXLG	DDCCGY	DMBDARAT	GOVEXY	XY	LC	FDY
DCY	0139717	-0.533815	7277001	0.7277001	0165314	0	0	0.0490759	0.2172295	0024927	1064411
RGRGDP	0014599	-3.363616	0.0000000	0.0000000	0.0138162	0	0	0.0031825	0.0140872	0001617	0069026
FDIY	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	0	0	0.0000000	0.0000000	0.0000000	0.0000000
PIY	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	Ō	Ŏ	0.0000000	0.0000000	0.0000000	0.0000000
DCY	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	Ø	0	0.0000000	0.0000000	0.0000000	0.0000000
SY	0000124	-0.163403	0.0000000	0.0000000	0.0001173	Ö	Ó	0.0000270	0.0001196	0000014	0000586
IY	0000470	-0.108260	0.0000000	0.0000000	0.0004447	0	0	0.0001024	0.0004534	0000052	0002222

	RRD	WINT	RWINT	MIY	CBDARAT	RGDPCAP	MY	RRDLG	RGTDT	TOTLG	CAY
DCY	0011443	0021605	0	0.346833	0.276356	0.0003259	0.286034	ø	0.0000000	0	0
RGRGDP	0000742	0008238	0	1.138573	1.266988	0.0008243	1.142559	0	0.0005882	0	0
FDIY	0.0000000	0.0000000	0	0.000000	0.000000	0.0000000	0.000000	0	0.0000000	0	0
PIY	0.0000000	0.0000000	0	0.000000	0.000000	0.0000000	0.000000	0	0.0000000	0	0
OCY	0.0000000	0.0000000	Ö	0.000000	0.000000	0.0000000	0.000000	Ø	0.0000000	Ö	Ö
\$Y	0000006	0000070	Ö	0.009669	0.010760	0.0000070	0.009703	Ó	0.0000428	ò	Ö
14	0000024	0000265	õ	0.036646	0.040779	0.0000265	0.036774	ō	0.0000189	Ó	õ

ande Multiplicas des Interie d

.

.

IN MARKED AND AND AND AND AND AND AND AND AND AN	A CONTRACTOR OF A DESCRIPTION OF A DESCRIPT	
PTANU ATH DIPCE		Friday Marianhan 7 1000 00
SIMULAIE UISSE	RI USING SIMLIN	
	-	
	Deadaduad	

Interim Multipliers for Interim 2

	RSVY	EOBY	MSY	NFAY	NFAPBY	DDCY	CEDAY	DMBDAY	DDCOEY	RGXY	RGPOP
DCY	0	0	0	0	0	0	0	0	0	0	0.0000000
RGRGDP	0	0	0	0	0	0	0	0	0	0	0.0110108
FDIY	0	0	0	0	0	0	0	0	0	0	0.0000000
PIY	0	0	0	0	0	0	0	0	0	0	0.0000000
DCY	0	0	0	0	0	. Q	O,	0	0	0	0.0000000
\$Y	0	o	0	0	0	0	0	0	0	0	0.0004452
IY	0	0	0	. 0	0	0	0	0	0	0	0.0003544
A-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		INFDLG	DDCTG	DDCPS	BDAY	DDCTGY	RGRXYF	RGRX	REX	INTERCEP	
	DCY	. 0	0	0	0	0.9799736	0.0000000	0	0	4553627	
	RGRGDP	0	0	0	0	0.0000000	0.0000469	0	0	2837849	
	FDIY	0	0	0	0	0.0000000	0.0000000	0	0	0.0000000	
	PIY	0	0	0	0	0.0000000	0.0000000	0	0	0.0000000	
	DCY	0	0	0	0	0.0000000	0.0000000	Q	Ø	0.0000000	
	SY	0	0	0	0	0.0000000	0.0000019	0	0	0.0343774	
et al a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a s	IY	0	Ó	0	0	0.0000000	0.0000015	0	0	0091338	

	an chairmer chara				Total M	ultipliers						
	INFD	FDYLG	NFACBY	NFACBYLG	REXLG	ODCCGY	DMBDARAT	GOVEXY	XY	LC	FDY	
DCY RGRGDP FDIY	-1.379E13 -0.012276 0	-5.269E14 -28.28308	-7.183E14 0	7.1831E14 0	-1.632E13 0.1161741	000	000	4.8442E13 0.0267604 0.009541	2.1443E14 0.1184524 0.0422324	-2.461E12 -0.001359 -0.000485	-1.051E14 -0.058041 -0.020694	100000000
PIY OCY SY	-0.000139 0 -0.000066	0 -1.206078	000	000	0.0006264	000	000	0.0001443	0.0006387	0 0 -7.329E-6	-0.000313	
IY	-0.000395	-0.910308	0	Ó	0.0037391	• 0	Ő	0.0008613	0.0038125	-0.000044	-0.001868	

	RRO	WINT	RWINT	MIY	CBDARAT	RGDPCAP	MA	RRDLG	RGTOT	TOTLG	CAY
DCY	-1.13E12	-2.133E12	0	3.4236E14	2.7279E14	3.217611	2.8234814	0	0.0000000	0	0
RGRGDP	-0.000624	-0.006927	0	9.5737299	10.653508	0.0069308	9.6072489	0	0.0049457	0	0
FDIY	-0.000222	-0.00042	0	0.0224121	0	0.0000236	· 0	0	0.0000000	0	0
PIY	0	-0.000065	0	0.0196676	0.0155584	0	0	0	0.0000000	0	0
OCY	0	0	0	0.1944915	0.2321237	0.0001717	0.2402532	0	0.0000000	0	0
\$Y	-3.365E-6	-0.000037	0	0.0516237	0.0574461	0.0000374	0.0518044	O	0.0003221	Ø	0
IY	-0.00002	-0.000223	0	0.3081363	0.3428896	0.0002231	0.3092151	0	0.0001592	0	0

ē.

.

	RSVY	EOBY	MSY	NFAY	NFAPBY	DDCY	CEDAY	DMBDAY	DDCOEY	RGXY	RGPOP
CY GRGDP DIY IY CY Y Y	0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0 0	. 0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0.0000000 0.6021468 0.000000 0.0000000 0.0000000 0.0032468 0.0029799
	DCY RGRGDP FDIY PIY OCY \$Y IY	INFDLG O O O O O O O O O O	0 0 0 0 0 0 0 0 0 0	DDCPS 0 0 0 0 0 0 0 0	BDAY 0 0 0 0 0 0	DDCTGY 9.6732E14 0 0 0 0 0 0 0 0 0 0 0 0	RGRXYF 0.0000000 0.0025640 0.0000000 0.0000000 0.0000000 0.000000	RGRX 0 0 0 0 0 0 0	REX 0 0 0 0 0 0 0	INTERCEP -4,495E14 -12,45032 -0.024665 -0.012188 -0.279725 0.2745769 -0.076802	
						,					

1.00

8

 $\vec{\mathbf{x}}_{i}$

182

.

i.

APPENDIX D: Nonstationarity (Unit Root) Test of the Series (Using Software MTSP Version 7.0)

The series in the model are tested for nonstationarity by using the Augmented Dickey-Fuller (ADF) unit root test. The ADF test consist of running a regression of the first difference of the series against the series lagged once, lagged difference terms, and optionally, a constant and a time trend. The number of lagged difference terms used in the test is either one or two, although more than 2 sometimes was also used. To illustrate the ADF test consider an AR(1) process:

$$\mathbf{Y} = \mathbf{a} + \mathbf{p}\mathbf{Y}_{-1} + \mathbf{e}$$

where a and p are parameters and e's are assumed to be independently and identically distributed with zero mean and constant variance. If $-1 \le p \le 1$, then AR(1) process is stationary. If p=1 the equation defines a random walk with drift and Y is then nonstationary. If p>1, the series is explosive. Hence, the crucial null hypothesis for testing nonstationarity is that the absolute value of p should equal one. The appropriate null hypothesis is :

Ho: p=1, the series is nonstationary or a unit root exists. To test the null hyphotesis, let us respecify the AR(1) equation as:

$$D(Y) = a + qY_{-1} + e$$

where q = p-1, and D(Y) is the first difference of Y series, so the unit root hyphothesis is now:

Ho: q=0, the series is nonstationary or a unit root exist.

Dickey-Fuller table is the appropriate critical values for the test. MacKinnon table is an expansion version of Dickey-Fuller Table. In our work, the critical values were taken from MacKinnon table.

The following table presented the result of the nonstationary test for each series used in the model. The null hypothesis Ho is unit root exist or the series is nonstationary.

Rejection of the Null Hypothesis means that the series is not nonstationair or the series is stationair, it has a white noise residual.

Series Name	Number of lagged difference terms	With C=Constant or T=Constant and Trend	Reject/Accept Ho: Unit Root	% level	
			#0# ~0 #0 #0 #0 #0 #0 #0 #0 #0	ها هر بن نب ی نادی کاری، کاری	
1. DDCY	2	Т	Reject	1%	
2. INFD	2	Т	Reject	1%	
3. FDYLG	4	Т	Reject	10%	
4. DNFACBY	2	Т	Reject	1%	
5. REXLG	2	Т	Reject	1%	
6. FDIY	1	Т	Reject	1%	
7. PIY	2	Т	Reject	1%	
8. OCY	1	С	Reject	5%	
9. DDCTGY	2	Т	Reject	1%	
10. IY	2	Т	Reject	1%	

11. RGRGDP	2	Т	Reject	1%
12. RGPOP	2	Т	Reject	1%
13. RGRXYF	2	Т	Reject	1%
14. RGDPCAP	2	Т	Reject	1%
15. GOVEXY	2	Т	Reject	1%
16. LC	2	Т	Reject	1%
17. RRD	2	Т	Reject	1%
18. XY	1	Τ	Reject	5%
19. M1Y	4	Т	Reject	10%
20. WINT	. 1	Т	Reject	10%
21. CBDARAT	1	No C or T	Reject	10%
22. RGTOT	2	Т	Reject	1%
23. DDCPSY	2	Τ	Reject	5%
24. SY	2	Т	Reject	10%
25. SYLG	2	Τ	Reject	10%
26. IYLG	2	Т	Reject	1%

Cointegration test is also performed for all the 7 equation in the model. They all passed the test. Since all series are stationair or there are no unit root exist, there is no need to report the result of the cointegration test here.

į,

į.

APPENDEX E: Identification Procedures

Parameters in each structural equation are checked for identification procedures before they are estimated. The identification procedures used follow chapter 14, section 14.6, and 14.7, <u>"Introduction to the Theory and Practice of Econometrics, second edition</u>, by: George G. Jugde at al. (1988).

Each of the 7 equations in the model are overidentified, as shown in the following 6 pages work.

·			_	-	-				
•	er l	E.	15		1. 	4	5		
	-7	5	ko .	^r z	Fary	Real	12		
		·~· ~·~·			~ ~ ~		3	12	
	42	t,		· · · · · · · · · · · · · · · · · · ·	·····	-		周	
·						<u>₹</u>		8	
	ন্দ 						3	R R	
	96	,		hu				N 1	
	4C		-8				th	8	
· · ·		2						<u>k</u>	
					•••	<u>_</u>	<u>.</u>		
	<u>-</u> Z		· · · ·					K.	
	æ		e	<u>_</u>		ē.	<u>a</u>	0	
				5			91	B	
	ы С	f3					93	Tage 1	TA I
							æ		13-
						· · · · · · · · · · · · · · · · · · ·		100 100	tin-
	44						ŝ	116	Ż
						4		Ę	
						5		RAN N	
		·	Ģ		2	····		E SAN	3
					- 				12
					······································				<u> x</u>
	•				Ð			×	l
					જ			¥	
					\$			E	
								6	
				17	8 0			NN1	
			¢	43	S			Ð	
			Ŗ	\$				6	
1. 			, M						
				·····			········		
							4 60	擾	
	20	f2						<u>a</u>	
		f¥		·				SALG	
	29							200	····
	9.0							K Y	
- 	110	· •						4	
							्य		

							• • • •		
. Prad	B matrix	, <u>\</u>	In the second	gua	tion				-
·····		1	2	3	4	5	6	7	
	DCY	ſ.	0	0	D	0	0	0	
	RGRCDP	0	1/22	0	0	0	<u> </u> 62	[1 2	
	FDIY	[]_3	0	Γ ₃₃	0	0	0	[23	
<u>-1</u> p	Pry	0	0	0	Γ44	٥	0	174	
	OCY	<u> </u>	0	0	0	[55	0	F75	
1	SY	O	0	0	D	0	ľ66	0	
<u> </u>	lly	0		0	0	0	0	[a7	
	k	Bu	Bzi	B31	By	BSI	B61	B ₂₁	
	INFD	B12	0	0	Byz	0	0	0	
	Faylib	B ₁₃	0	0	0	0	B63	B73	
	NFACBY	BIY	0	0	0	٥	0	0	
	REXLG	Bis	<u> </u>	0	0	0	0	B75	
	rgpop	0	B26	0	0	0	٥	0	
	PGRXYF	0	B27	0	0	0	0	0	
	REDCAP	0	0	b38	0	B58	D	0	
1p/	GOVERY	0	0	B39	0	0	0	0	
$\mathbb{D}^{=}$	XY	0	0	B310	D	0	0	0	
·	LC	0	0	B3#	0	0	٥	0	
	FDY	0	0	B312	0 .	0	0	0	
	RRD	0	0	B313	0	0	0	0	
	MINT	0	0	BZAY	Buly	0	0	0	
	PROV -	0	0	B315	Byrs	B515	0	0、	
-	CEMBAT	b	0	0	B416	B516	0	0	
		\2 0 -	0	D	0	B517	0	0	•
	DUCTGY	вня	0	D	0	0	<u>0</u>	0	
	READT	0	0	0	0	0	Bbig	Bq1q	
	See	0	0	0	0	0	6620	0	
	DDCBSY	0	Ð	. D	. 0	0	0	B421 **	1
	AILTIK	A	Δ	0	D	ک	ñ	Bart	

5

į

ŝ

				~						1111 -	
				```					<u> </u>		F
					,			<u> </u>	001	8	Re l
							C	<u>, 0 0</u>	6 -	Ka ka ka ka ka ka ka ka ka ka ka ka ka ka	10
	<u></u>		- <u></u> , <u></u>	·						12 12	Ž V
	. í		••••••					000	00	Ý P	1
							C	000	- 0	7 0	18
				<u> </u>			. 0	00	· O O	2	F 1
<u> </u>		[0	0 -	CC	ř.	
· · ·	<u>.</u>		` 		<u> </u>		0	- 0	00	Z.	<u></u>
					}		• •	00	00	240	
		$\overline{\langle}$					С	C C	CO	i.	
<u>,</u>	225 31 "			i			c	00	00	FOUL	<u> </u>
	# " 9						c	00	00	MAN	<u> </u>
	as the					C	00	0 C	00	NREX L	
	12 1 1 1 	÷ · · · · ·	·			C	0-0	00	00	; P.GAR	<u>-</u>
<u></u>		······································				C	<u>, - 0</u>	00	00	Pone	
		·		······································	0	0 -	0 0		- <u>-</u>	(ERGO	
·· ···································					0	-0	00			NH LOU	
						$\overline{0}$				182 122	<u> </u>
								··			
				<u> </u>	-	<u> </u>					
			0 -	- 0	U		· <u>·</u> ·····	<u></u>	·	R I	
,	·····	0	<u> </u>	0				<u>-</u>		e.	
	· · · · · · · · · · · · · · · · · · ·	0 -	0 0)						INT	
·	<u> </u>	- <u>o</u>	<u>C</u>							MY	
	0 - 0	00					·····	\sum			
	- 0 0	3								ЧY	
	0 00			C				\mathcal{I}		90C16)	
	0-0									MAD	
0	0-00								·	Syria	
	-000						····	·····		1 2 2 3	<u> </u>
1-	0000									LT Å	
L		·····								2	

ŧ

Equation 1: DCY is overidentified, 0 Fr2 0 0 0 162 132 0 0 0 144 0 0 174 000001660 0 127 0 0 0 0 122 0 B26 0 0 0 0 0 0 327 0 0 0 0 0 00 338 0 33 00 00 390 000 00 3000000 00 B21 0 0 0 0 $R_1 \Delta =$ 00 B312 00 00 00 3130000 00 B314 Bay 0 00 00 Bus Byis BS15 00 00 0 B416 B516 00 0000 BSA 00 00000 Blig Brig 00000 Blood 0000000 B724 000000B712 RID rank 15 = 6.] necessary condition fulfilled. M-1 = 6 Rank of R, =20 - Rauk of R1 7 M=1 or 2076 Equation 1: DCY is overidentified.

•	Equation 2	· RGRG	DP is	overid	ntifie	<u>d</u> .	· · · · -		
•	Rank of Ry	: 24			Rau	ik of	r, > m-	1⇒	
<u>.</u>	Rab is ag	follows	:>	6.		— E Ę	- <u>2</u> -'s	overide	utified
······································		Γp	0	0	0	0	0	0	·
		Γ ₁₃	0	\int_{33}^{1}	0	0	0	13	
		0	ð	ථ	Tay.	0	O	174	
		<i>Г</i> .4	0	Ο	0	L ₃₅	0	[7=	
		0	0	0	0	Ó	166	Ó	
		Biz	- BF	<u> </u>	Big	<u></u>	0	Ò,	
		B13	0	0	0	Ö	B63	B73	
		BIY	0	0	0	0	0	0	
<u> </u>		B15	0.	<u> </u>	0	0	<u> </u>	B75	ļ
		0	0	B38	$\frac{\circ}{\circ}$	<u> </u>	0	- 9	· · ·
			<u> </u>	B59		$-\frac{O}{T}$			·
<u> </u>				B310				/	
R ₂₋₁	A =		0	<u> </u>	-{				
			0	<u> 16312</u>					· · ·
<u>_ t_,</u>				5313		-+			
			<u> </u>	17	-				
			0	<u>(7315</u>	<u> </u>	 			_ <u></u>
······		$\frac{1}{h}$	<u> </u>		()	<u>17576</u> Bru			<u>.</u>
		Rup				$\frac{\sqrt{5}}{()}$	7	$-\lambda$	
		0	0			<u> </u>	Blig	Barc	
			Ũ		1	\neg	Bhin	\bigcirc	
			G				0	B721	
		0	υ	Ö	$\left(\right)$	0	\vec{O}	B722	
		L							
Rank	$p \neq R_Z \Delta =$	6.	<u>M-1</u>	= 6		ecessary	Coup	is filt	lled .

ŝ

Following the same procedure for equi) DCY and equi) RERETT, we can identify the other 5 equation as follows: (leve I'B matrix) Eq. (3): FDIX: -> OVERIDENTIFIED R3 rauk is: 19 Bank of R3 7 Pauk of R3 A = or 1976 · So Equation (3) FDIY is overidentified. Eg (4): PIY . -> OVERIDENTIFIED Ry rank is: 23 M-1=6 } Rank of R4&= M-1 -> Necessary Condition R4A Pauk = 6 } is fulfilled. Rank of R47 Rank of R4D -> 2376 · So Equation (4) Ply is overidentified. Eq (5): OGY: -> OVERIDENTIFIED R5 rauk is: 23; M-1=6; R5X=6 Rank of R57 Rank of R50 -> 2376 ... So, Equation (5) OCY is overidentified Eq (6): SY: -> OVERIDENTIFIED. R6 rauk is: 23 ; M-1=6; R60=6 Raule of R6 7 Rauk 9 R68 -7 237 6 - raveridentified Eq.(7): 19: -> OVE RIDENTIFIED. R7rank is : 18 ; M1-6=6; R7 A=6 Rauk of R7 7 Rank of R7 D -> 1876 -> overidentified

199

APPENDIX F: Stability Test

The model as a simultaneous system is checked to see whether it is a stable simultaneous equation system. Consider the following structural form of the dynamic simultaneous equation model:

 $y_t P + x_t A 1 + y_{t-1} A 2 + e_t = 0$

where,

yt : 1 x G vector of observations on the joint dependent variables at time t,

xt : 1 x k vector of observations on the k purely exogenous variables at time t,

P : G x G matrix of structural coefficients associated with the joint dependent variables

A1 : k x G matrix of structural coefficient associated with the purely exogenous variables

 y_{t-1} : 1 x G vector of observation on one period lagged dependent variables

- A2 : G x G matrix of structural coefficients associated with the lagged dependent variables. Some rows of A2 may contain all zeros denoting that specific lagged dependent variables are absent from the model.
- et : 1 x G vector of structural disturbances with the classical error properties.

The necessary and sufficient condition for the dynamic simultaneous equations model to be stable is that the characteristic rooots of the reduced form coefficient matrix $Q = -A2P^{-1}$ be less than one in absolute value.

The Eigenvalues for matrix Q is as follows: 0.0000

0		
		0.5122
		0.4767
		0.0000
		0.0000
		0.0000
		0.0000

Hence, the model of our study is stable.

The following pages are the details of the stability test using the characteristic roots test on matrix Q.

Matlab (software) version S3.5 is used to have the eigenvalues of matrix Q=-A2*inv(P)

ŝ

ŝ

APPENDIX G: Specification Test - RESET Test (Using Software MTSP 7.0)

Ramsey RESET test is used to check the specification of each equation. The Ramsey RESET test is a general test of specification error. The postulated model is y=Xb+u with disturbance vector is presumed to have multivariate normal distribution N(0,a²I). Here, we are concerned with specification errors which include some or all of the following:

- a. Ommitted Variables
- b. Incorrect functional form (some or all of the variables in y and X should be transformed to logs, powers, reciprocal, etc.)
- c. Correlation between X and *u*, which may be caused by such things as measurement error in X, combination of lagged Y values and serially correlated disturbances.

Ramsey (1969), "Test for Specification Errors in Classical Linear Least Squares Regression Analysis", Journal of the Royal Statitical Society, Series B,31,350-371, showed that these specification errors produce a non zero mean vector for u. Hence, the null and alternative hypotheses are:

Ho:
$$u - N(0,a^2I)$$

H1: $u - N(0,a^2I)$ u is not 0

The test of the null hyphotheses is based on an augmented regression, with the following augmented model:

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{Z}\mathbf{n} + \mathbf{u}$$

The test of specification error is then n = 0. The crucial question is what variables should enter the Z matrix.

Ramsey's suggestion is that the Z matrix should be: $Z = [y^{2} y^{3}]$ or $Z = [y^{2} y^{3} y^{4}]$

where

$$y^{A} = Xb$$

is the vector of predicted Y values from the least square refression of y on X. The superscripts indicate the powers to which these predictions are raised. The first power is not included since it is perfectly collinear with the X matrix.

The F-test or Likelihood ratio test can be used to test the specification error. In our case, the test to be used is following the F statistic test. Let say we have the following equation:

$$y = pX1 + qX2 + rX3 + e.$$

This is the default equation or the unrestricted equation. The test regression will be:

 $y = pX1 + qX2 + rX3 + nIy^{2} + n2y^{3}$

This is the restricted equation. Output from these unrestricted and restricted equation is used to calculate the computed F statistic. The computed F statistic is then checked to F table which is the ratio of two chi-square variables, each divided by its respective degrees of freedom.

So, the Hyphoteses will be as follows:

Ho: n1 = n2 = 0H1: either n1 is not 0 or n2 is not 0

The computed F statistic would be as follows:

$$(RSSur - RSSr)/(K-L)$$
Computed F = ------
ESSur / [g - (K + 1)]

where:

RSSur = Sum of Squares due to the regression in the Unrestricted Equation

RSSr = Sum of Squares due to the regression in the Restricted Equation

K = The number of total independent variables included in the equation

L = The number of independent variables before restriction included in the equation

g = The number of observation.

ESS = The Error Sum of Squares of the unrestricted equation

The computed F statistic is compared to the tabled F statistic with K-L degrees of freedom in the numerator and g - (K+1) degrees of freedom in the denominator. If the computed F is less than the critical F, do not reject Ho. If the computed F is larger than the critical F, reject Ho. Besides the F test, the the associated probability numbers (P value) normally come up with it. This P value indicates the probability of obtaining a test statistic whose absolute value is greater than or equal to that of the sample statistic if the null hypotesis is true. Hence, the low P values lead to the rejection of the null hypothesis.

In the study, there are seven equations. They all are tested for the specification test using this Ramsey RESET test. The Z matrix we used is $Z = [y^{2} y^{3}]$. The tabled F statistic has K-L degrees of freedom in the numerator and has g-(K+1) degrees of freedom in the denumerator.

The result of the RESET test is as follows:

Equation (1): DDCY = f(INFD, FDYLG, DNFACBY, REXLG, FDIY, OCY, DDCTGY) Computed F Stat. = 2.19571 Tabled F Stat. at the upper 5% points = 3.23Tabled F Stat. at the upper 1% points = 5.18Hence, the decision is not to reject the null hypothesis Ho: n1=n2=0. So equation (1) passes the RESET test at both 1% and 5% level.

Equation (2): RGRGDP = f(RGPOP, RGRXYF, IY) Computed F Stat. = 0.80993 Tabled F Stat. at the upper 5% points = 3.23 Tabled F Stat. at the upper 1% points = 5.18 Decision: Do Not Reject Ho: n1n2=0 So, Equation (2) passes the RESET test at both 1% and 5% level. ġ

Equation (3): FDIY = f(RGDPCAP, GOVEXY, XY, LC, FDY, RRD, WINT, M1Y) Computed F Stat. = 3.56074 Tabled F Stat. at the upper 5% points = 3.23 Tabled F Stat. at the upper 1% points = 5.18 Decision: Do Not Reject Ho at 1% level. So, Equation (3) passes the RESET test at 1% level, but not at 5% level.

Equation (4): PIY = f(WINT, M1Y, CBDARAT, INFD) Computed F Stat. = 1.1194 Tabled F Stat. at the upper 5% points = 3.23 Tabled F Stat. at the upper 1 % points = 5.18 Decision: Do Not Reject Ho at both 1% and 5% level. So, Equation (4) passes the RESET test at botn 1% and 5% level.

Equation (5): OCY = f(RGDPCAP, MY, M1Y, CBDARAT) Computed F Stat. = 3.18453 Tabled F Stat. at the upper 5% points = 3.23 Tabled F Stat. at the upper 1% points = 5.18 Decision: Do Not Reject Ho at both 1% and 5% level. Equation (5) passes the RESET Test.

Equation (6): SY = f(RGRGDP, RGTOT, FDYLG, SYLG) Computed F Stat. = 0.98929Tabled F Stat. at the upper 5% points = 3.23Tabled F Stat. at the upper 1% points = 5.18Decision: Do Not Reject Ho at both 1% and 5% level. Equation (6) passes the RESET Test.

Equation (7): IY = f(RGRGDP, RGTOT, REXLG, FDIY, PIY, OCY, FDYLG, DDCPSY, IYLG) Computed F Stat. = 0.11313 Tabled F Stat. at the upper 5% points = 3.23 Tabled F Stat. at the upper 1% points = 5.18 Decision: Do Not Reject Ho at both 1% and 5% level. Equation (7) passes the RESET Test.

÷

Appendix H:

List of Endogenous and Exogenous Variables:

Endogenous Variables:

DCY, RGRGDP, FDIY, PIY, OCY, SY, IY

Exogenous Variables:

INFD, FDYLG, NFACBY, REXLG, DDCTGY, RGPOP, RGRXYF, RGDPCAP, GOVEXY, XY, LC, FDY, RRD, WINT, M1Y, CBDARAT, MY, RGTOT, SYLG, DDCPSY, IYLG

.

APPENDIX I: Alternative Models

The model has been built based on a theretical development background. Without these theoretical backgrounds, the model would be meaningless. Based on the theoretical background, different model can be built.

First alternative model would be the initial model minus equation 7 (see table 9 for the complete model). This model clearly has an adequate theoretical backgroud as discussed in chapter 2 and chapter3. The second alternative would a model where only equations 1, 2, 5 and 6 are included. This later model probably has the strongest theoretical background. Several studies along this line has been done for different developing countries by different author. Equation 3 and 4 are just recently recognized in the literature. There is not much work done in these area. Our work here on portfolio investment and other capital flow can be categorized as pioner work.

Other models beyond these two alternatives will not be having strong theoretical backgrounds, therefore will not be suitable with original purpose of the study.

vita 2

i.

Charles D. Marpaung

Candidate for the Degree of Doctor of Philosophy

Thesis: THE INTERRELATIONSHIP OF MONETARY POLICY, FOREIGN INVESTMENT, AND CURRENT ACCOUNT IN THE INDONESIAN ECONOMY

Major Field: Economics

Biographical:

Personal Data: Born in Medan, Indonesia, On December 30, 1954, the son of Hennery and Hanna Marpaung.

Education: Received Bachelor of Art in Accounting and Master of Art in Economics from University of Indonesia, in December 1977 and November 1981, respectively. Received a Master of Business Administration from Pittsburg State University in May 1988. Completed the requirement for the Doctoral of Philosophy degree with a major in Economics at Oklahoma State University in May 1994.

Experience: Employed by Oklahoma State University, Department of Economics as a Graduate Teaching Associate, 1990-1992. Employed by Oklahoma State University, Department of Economics as a Graduate Research Assistant, 1989. Working for the National Science Foundation-Summer Academy in Economics for Gifted High School Students, at Oklahoma State University, Summer 1991. Teaching at Merdeka University, Madiun, Indonesia, 1983. Teaching at University of Tarumanagara, Jakarta, Indonesia and at The Institute for Economics and Banking Perbanas, Jakarta, Indonesia, 1984-1985. Working as Account Executive with Matari Advertising, Jakarta, Indonesia, 1978. Working as Auditor at Arthur Young International, Jakarta, Indonesia, 1979-1982. Managing Partner Auditor at Nilam Consulting & Co, Jakarta, Indonesia, 1982-1983. Special Auditor, Ministry of Finance, Indonesian Government, 1983-1985. Special Advisor, Indoam International, Inc.,
Tulsa, Oklahoma, 1993.

Professional Membership: American Economic Association, Southern Economic Association, Missouri Valley Economic Association.

ŝ

į

ŝ

į

į