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PREFACE 

The investigation of radar scattering from the ocean surface at large angles of 

incidence ( small grazing angles) is of interest for scientific and military applications. Many 

approximate theories exist to describe scattering from the ocean surface, but their validity 

at small grazing angles is unknown. Traditional numerical techniques for surface scattering 

calculations cannot be directly applied under these conditions. In this work the moment 

method is extended to model rough surface scattering at very large angles. The modeled 

surface is treated as periodic, thereby eliminating nonphysical edge diffraction effects. A 

set of universal summations that are common to all moment method matrix elements are 

derived to efficiently evaluate the infinite summations that appear in integral equations 

describing scattering from periodic surfaces. Computational efforts to apply the technique 

to model reflection from an infinite flat plate and scattering from simple slightly rough 

surfaces confirm that the edge effects, includingthose at great incident angles, are reduced 

to acceptable levels. 

The extended moment method has been applied to evaluate the scattering from random 

rough surfaces whose power spectral densities are defined by both Gaussian and power 

law functions. The treatment of Gaussian surfaces confirms that the technique can be used 

to accurately calculate the scattering from random rough surfaces at incidence angles up 

to at least 89°. At horizontal polarization, comparison of the numerically calculated 

scattering with the predictions of existing approximate theories shows that these theories 

can be applied at large incidence angles under the same surface conditions for which they 

were already known to be valid at moderate incidence angles. At vertical polarization, the 

approximate theories fail at extremely large incidence angles. The threshold at which the 

theories fail depends strongly on the surface roughness characteristics. 
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CHAPTER I. 

INTRODUCTION 

The investigation of radar scattering from the ocean surface is of interest for both 

military and purely scientific applications. The military is interested because the scattering 

from the surface results in radar image clutter which can mask the echo from a desired 

target. Understanding and predicting the radar scattering from the ocean surface may 

eventually lead to better methods to suppress the clutter or to correctly extract the target 

from the clutter. A purely scientific application is the use of spacebome imaging radar as 

an oceanographic tool to investigate the features of the ocean surface such as current 

boundaries, temperature gradients, slicks, eddies, internal waves, surface waves and 

monitoring the pollution of the ocean, etc. The scattering characteristics must be 

understood to properly interpret the images. 

No closed-form solution of Maxwell's equations exist to describe radar scattering from 

a rough surface such as the ocean. Thus, several approximate theories have been 

developed to solve the scattering problems over the last 40 years. Some examples are the 

small-perturbation method (or Bragg scattering) (Rice, 1951; Nieto-Vesperinas and 

Garcia, 1981 ), the Kirchhoff approximation ( or physical optics) (Beckmann and 

Spizzichino, 1963), two-scale theories (Brown, 1978; McDaniel and Gorman, 1983; 

Rodriguez, 1989), phase perturbation approximation (Shen and Maradudin, 1980; 

Winebrenner and Ishimaru, 1985 alb and Broschat, 1993), and full wave theories (Bahar, 

1987). Each theory includes several approximations in their derivation that makes it 

applicable only to a limited class of surface roughness ( e.g. roughness is small or the 

correlation length is large compared to the radar wavelength,) or within a specific range of 

angle of incidence. The actual ocean surface does not fall neatly into a region where an 

analytical theory is known to be applicable. Some attempts have been made to modify the 

existing theories to fit the actual ocean surface, but the validity of these modified theories 
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is still unknown, specially when the angle of incidence of the radar onto the surface is very 

large (near grazing incidence). 

Numerical modeling has often been used to investigate the validity of approximate 

rough-surface scattering theories. Numerical methods used in this area include the moment 

method (Harrington, 1968 Lentz, 1974 and Axline 1978 ), the boundary element method 

(Kress, 1990 and Ingber, 1991), and the finite element method (Morgan, 1990 and Lou, 

1990). The finite element method is usually used to solve differential equations in closed 

boundary problems. The moment method and the boundary element method are 

convenient for solving integral equations in closed or open boundary problems. 

The most common numerical method used in rough-surface scattering problems is the 

moment method applied to integral equation formulations. The moment method 

calculations have often been referred to as the exact solution and used to investigate the 

validity of approximate theories ( Chan, 1978; Chen, 1988; Thorsos, 1988; Thorsos, 1989; 

Chen, 1989; Rodriguez, 1992 and Kim, 1992). However, they are not actually closed form 

solutions and can only be applied under limited surface and illumination conditions. Finite 

computer resources limit the sizes of scatterers that can be modeled, and force 

approximations in the modeled geometry and electromagnetic illumination. For example, 

much larger surface areas will be illuminated than can be modeled on existing computer 

systems. Thus, the modeled surface must be artificially truncated, leading to nonphysical 

edge diffi'action being predicted in the scattered field. The influence of this on the accuracy 

of the solution is strongly dependent on the incident angle and the size of the truncated 

section. 

A commonly used technique to reduce the edge effects in moment-method 

calculations is the application of a tapered windowing function · to the modeled 

electromagnetic field illuminating the surface. The windowing function falls off smoothly 

to negligible level at the ends of the truncated surface. Since the edges are not illuminated, 

the edge diffi'action effects are greatly reduced. However, there are several limitations in 

the use of windowing functions. When a windowing function is applied, the modeled 

incident field no longer exactly represents the actual incident field, (in extreme cases, the 

windowed field is not even a valid solution of Maxwell's equations (Thorsos, 1988)). This 
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leads to an inaccurate prediction of the scattered field. Previous work has shown that the 

use of windowing functions is applicable only at angles of incidence less than about 60° to 

80°, depending on the maximum computer resources available (Wetzel, 1977; Thorsos, 

1988; Broschat, 1993 and Chen and Fung, 1985). Thus, this technique cannot be used at 

the largest incident angles. 

Another method of avoiding edge effects in a moment method model of rough-surface 

scattering is to assume that the surface is periodic. Then only a single period of the surface 

must be numerically modeled, and the effects of the infinite surface appear as an infinite 

series in the integral equations describing the scattering (Twersky, 1956; Hessel and Oliver 

1965; Jordan, 1979; Truang, 1981; Zaki, 1971; Kalhor, 1989 and Boag, 1989). Because 

the modeled surface is infinite, no edge-diffraction effects appear in the scattered fields. 

Unfortunately, no closed form solution to the infinite summation exists. In actual 

numerical computations, this summation must be truncated. This is equivalent to limiting 

the number of periods in the modeled surface. Rodriguez (1992) showed that the number 

of terms that must be maintained in the infinite summation depends strongly on the angle 

of incidence, with extremely large numbers required at large incident angles. Direct 

evaluation of these summations is computationally prohibitive. 

In this work, the moment method is extended to allow the calculation of scattering 

from rough surfaces at small grazing angles using a periodic surface representation. The 

limitations of earlier periodic methods are overcome by deriving universal summations that 

are common to all elements in the moment method interaction matrix, thereby allowing the 

inclusion of a very large number of surface periods with little additional computational 

expense. An error analysis is performed to determine the optimal trade-off between 

accuracy and computational expense. The validity of the new technique is investigated by 

comparing its predicted scattering to the theoretically calculated scattering for the 

problems where a closed form solution exists. It is also compared with the predictions of 

the approximate scattering theories under conditions where they are known to be valid. 

The technique is then applied to random rough surfaces, and the validity of the 

approximate scattering theories is evaluated under various surfaces and illumination 

conditions. 
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This chapter gives a brief review of the moment method and of the integral equations 

typically used in the scattering problems. Scattering from perfectly conducting objects is 

usually described by the electrical field integral equation (EFIE) or the magnetic field 

integral equation (MFIE). The moment method is a numerical technique to solve general 

integro-differential equations. In this technique, the equation to be solved is approximated 

by a system of discrete linear equations that can be solved using standard techniques. The 

application of the technique· to basic electromagnetic problems is given by Harrington 

(1967, 1968). 

Electric Field Integral Equation (EFIE) 

Scattering problems are conveniently described by integral equations based on the 

scatterer boundary conditions. Two of the most popular integral equations used to 

represent the scattering of time-harmonic electromagnetic fields are the electric field 

integral equation (EFIE) and the magnetic field integral equation (MFIE). The EFIE 

insures that the sum of the (known) incident and (unknown) scattered electric field meet 

the applicable boundary conditions on the surface of the scatterer and the MFIE insures 

the magnetic field meets its boundary conditions. In general, these are vector integral 

equations for which closed-form solutions exist only for very simple geometries. Thus, 

several approximate solutions have been developed for various scatterer geometries. 
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Unfortunately, the validity of many of these approximate theories has been difficult to 

confirm under many illumination conditions. 

The electric field integral equation (EFIE) is based on the electric field boundary 

condition on the perfectly electric conducting surface of a scatterer; i.e. the total tangential 

electric field is zero. This boundary condition can be expressed as 

on the surface S (2-1) 

where n is the normal unit vector on the surface, the subscript t indicates tangential 

components and the superscripts i and s denote the incident and scattered electric fields, 

respectively. 

For the general scattering problem, the EFIE takes the form (Balanis, 1989; Rao, 

1982) 

j 1 it x [ k2 ff J ,(r')G(r, r')ds' - f J V 1 • J (r') V I G(r, r')ds1] = i, x E( on S (2-2) 

where Tl = J ~~ is the intrinsic impedance of free space, k = m Jeµ = 2~ is the wave 

number, ').., is the incident field wavelength, r is the observation point vector, r is the 

source point vector, S is the surface of scatterer and G(r, r') is the Green's function in 

three-dimensional form 

-jkR 
G(r r') = _e -

' 41tR 

where R is the distance between the observation point and the source point 

(2-3) 

(2-4) 

Equation (2-2) can be solved to find the surface current density on the scatterer, and the 

scattered field can then be directly calculated from the surface currents using 
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E5 (r) = -jµm Is ls(r')G(r,r')ds1 + -k,v fs V' · ls(r')G(r,r')ds1 (2-5) 

Note that equation (2-2) is a vector integro-differential equation for the surface current. 

Equation (2-5) can be greatly simplified for problems that depend only on two 

dimensions. For example, in the TM polarization problem in Figure 1, a uniform plane 

wave incidence on a two-dimensional conducting surface is described by 

(2-6) 

The scattering surface is defined by y=f(x). Since the incident electric field has only a 

z-component the magnetic field has only x and y components and the induced current on 

surface in Figure 1 will have only a z-component: J = az] z . Equation (2-2) then reduces 

to 

X 

Figure 1. Geometry for two-dimensional scattering problems, TM polarization case. 
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(2-7) 

where L is the surface profile in the x-y plane and H~2> (kR) is the zero-order Hankel 

function of the second kind. Equation (2-7) is referred to as the two dimensional electric 

field integral equation for TMz polarization. This equation is a scalar integral equation and 

can be directly solved by the moment method. 

Magnetic Field Integral Equation (MFIE) 

The magnetic field integral equation (MFIE) is based on the magnetic field boundary 

condition at the conducting surface; i.e. the magnitude of the total tangential magnetic 

field at the surface is equal to the magnitude of the surface current density induced on the 

surface. This boundary condition can be expressed as 

on the surface S (2-8) 

where n is the normal vector unit to the surface, the subscript s indicates the surface 

current density, the superscript i indicates the incident wave, and superscript s indicates 

the scattered wave. For the general scattering problem the MFIE takes the form (Balanis, 

1989; Mittra, 1973) 

Js~r) - n x JJ Js(r') xV'G(r,r') ds 1 = n xHi(r) 
5-~S 

(2-9) 

The integration region S-8S indicates the principle-value evaluation of the integral around 

the singularity at r = r1 . This equation is also a vector integro-differential equation for the 

surface current. Its form can be simplified in two-dimensional cases for both TM and TE 

polarizations. 

Again consider a TM uniform plane wave illuminating upon a two-dimensional surface 

as in Figure 1. The magnetic field can be expressed as 

(2-10) 
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Again, since the electric current density induced on the surface of the scatterer has only a z 

component, equation (2-9) can be reduced to a scalar integral equation: 

]z~) + ji t-L\l ]z(P1) COS'lf H?> (kR) dl = H~(p) (2-11) 

where Hi2> (kR) is the first-order Hankel function of the second kind, Hf is the tangential 

component of the incident magnetic field at the observation point on the surface of the 

scatterer and 'I' is the angle between the distance vector R and the normal vector at the 

observation point n, shown in Figure 1 : 

"' "' cos 'I' = a R · n (2-12) 

Equation (2-11) is a scalar integral equation and can be easily solved by the moment 

method. 

A two-dimensional MFIE for TE polarization can be derived for the case in Figure 2. 

The incident magnetic field has only a z-component and the induced current is along the 

surface profile (J t ). The simplified integral equation for this case is 

(2-13) 

where 'I'' is the angle between the distance vector and the normal vector at the 

observation point and shown in Figure 2. 

As mentioned before, the EFIE is most convenient for modeling TM polarization 

while the MFIE is commonly used with TE polarization. However, the moment matrix of 

the MFIE is diagonally dominant. This characteristic allows the MFIE matrix equations to 

be quickly solved by iterative methods, and is not shared by EFIE moment method 

implementations. Thus, the MFIE must be considered for solving very large scattering TM 

polarization scattering problems. 
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X 

Figure 2. Geometry for two-dimensional scattering problems, TE polarization case. 

Moment Method with Point Matching 

The moment method is used to find approximate solutions to general 

integro-differential equations of the form 

L[f(R)] = g(R) (2-14) 

where L is a linear operator, f is the unknown function to be determined and g is a known 

function. The method of the moments begins by approximating the unknown function by a 

linear combination of known basis functions N;(R) in the form 

N 

f(R) ,:: L a.; N;(R) (2-15) 
i=I 

where the a.; are coefficients to be determined. Substitution of (2-15) into (2-14) and use 

of the linearity of the operator L[ ] yields 
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N 

L O,j L[Ni(R)] "" g(R) (2-16) 
i=l 

The residual of the approximate solution is now defined as 

N 

Res(R) = L a,iL[N;{R)] - g(R) (2-17) 
i=l 

The values of the coefficients a,i must be chosen so the residual is minimized across 

domain of the problem. The moment method uses the method of weighted residuals. The 

weighted residuals are obtained by taking inner product of the residual function and N 

weighting functions Wj(R) 

{Wj(R), Res(R)) =JO Wj(R)Res(R)d.Q (2-18) 

Setting the weighted residuals equal to zero and using the linearity of the inner product 

yields the general moment equation: 

N 

L a; J Wj(R)L[Ni(R)] d.Q = J Wj(R)g(R) d.Q 
M n n 

(2-19) 

Equation (2-19) represents N linear equations and N unknowns that can be solved for the 

a,i unknown coefficients using standard linear algebra techniques. 

Basis Functions 

Ideally, the basis functions should be chosen so that they naturally approximate the 

unknown function and meet the required boundary conditions. Also, they should be 

chosen to minimize the computational effort [Ney, 1985; Sarkar, 1981]. There are an 

infinite number of sets of possible basis functions. These sets may be divided into two 

general groups, entire domain basis functions and subdomain basis functions. Entire 
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domain basis functions exist over the entire domain (an example of an entire domain 

basis-function set is a truncated Fourier series expansion). Individual subdomain basis 

functions only exist over a part of the domain, and the entire set of basis functions is 

required to describe the unknown function over the entire domain. In electromagnetic 

scattering problems, subdomain basis functions usually give a better approximation of the 

solution, and are much more computationally efficient. Thus, they are almost exclusively 

used (Andreasen, 1964; Harrington, 1968 and Axline, 1978). 

One of the simplest expansions is the use of pulse basis functions as shown in Figure 3. 

In this, the surface is divided into a number of very small segments (in two dimensional 

problems) and the current density on each segment is assumed to be a constant. The ith 

basis function is therefore equal to 1 on the ith segment and equal to O on the other 

sections 

Xi ~X ~Xi+1 

i= 1, 2, 3, ... ,N (2-20) 
otherwise 

where N is the number of segments and xi is the end-point of a segment. 

This basis function expansion yields a piecewice step approximation to the unknown 

function on the whole surface, as shown in Figure 3-b. The pulse function is the crudest 

subdomain basis function, often requiring more basis functions to adequately describe the 

unknown function than a more complicated basis function set would need. This increases 

the order of the linear system that must be solved in equation (2-19), requiring more 

computation. However this is compensated because, due to the simplicity of the function, 

numerical integration can often be avoided in the evaluation of the linear operator or the 

inner product. 

Many other basis functions have been used in moment method treatments of the 

scattering problem. These include piecewise-linear functions (Harrington, 1968; Chen, 

1991), sine functions [Herrmann, 1990], piecewise sinusoid functions and truncated cosine 

functions [Balanis, 1989]. All of these basis functions more closely approximate the shape 

of the unknown current, thereby reducing the number basis functions needed to adequately 
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model a region, but at the expense of much greater computational complexity. Previous 

works have shown that the benefits gained using more complicated basis functions in 

surface scattering problems are marginal, at best (Burke and Poggio, 1977) . 

. • j" 
Ni(X) 

1 ----------.... 

0 
I 

X· 1 

a. Pulse basis function 

f '" 
/ ._,. f 

i 

V 

AXi 

0 

b. Function representation. 

I I .. 
X 

---. f(x) 
........... 

' 

~ .. 
X 

Figure 3. A set of pulse basis functions used for representing an arbitrary 
function f{x). 
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Choice of Basis and Weighting Functions 

Ideally, the basis and weighting functions should be chosen so that the residual on the 

entire boundary and the computational complexity are minimized (Ney, 1985 and Sultan, 

1985). A commonly used approach is the point-matching method combined with the pulse 

basis function. In this, the weighting functions are defined as Dirac delta functions 

(2-21) 

This approach minimizes the computational complexity (the inner products are reduced to 

the evaluation the operand at discrete matching points), and forces the residuals to be zero 

at the matching points. 

This method can be applied to the integral equations derived in the previous sections. 

For the EFIE describing the two dimensional TM polarization case in Equation (2-7), the 

unknown function is the current density on the surface J z , the linear operator L( ) is 

L( ) = ~ JL H~2>(kR)dl, (2-22) 

and g is tangential component of the incident electric field on the surface. Substituting 

(2-22) into (2-19) and using pulse-basis point-matching equation (2-19) is reduced to 

7crt ~ J (2) k l i 4 ~ fn llln Ho ( R)d = Ez(Pm) (2-23) 

Scanning the observation point from segment 1 to N yields the moment matrix equation as 

[Zmn] Un] = [V m] (2-24) 

where V m = E~(Pm) is the illumination electric field tangential component at the center of 

the mth segment and Zmn is defined as 
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Z = krl J H<2> (kR) dl 
mn 4 tiln 0 

(2-25) 

There is no simple closed form expression for the integral (2-25) in the general case, but 

accurate approximations are obtained if the integration length Alm is small compared to 

the wavelength. If the observation point and the source point coincide (m=n), the Hankel 

function in (2-25) has an integrable singularity and that. can be approximately evaluated 

analytically [Balanis, 1989]: 

Z = krl Al ·H<2> (1 - ·11 ykAlm ) 
mm 4 ' o ln n 4e (2-26) 

The nondiagonal element of Z can be approximately evaluated as 

(2-27) 

Using the terms in equations (2-26) and (2-27), equation (2-24) can be solved for current 

coefficients J z giving the approximate current distribution on the surface. Implementation 

of the moment method using the MFIE with pulse basis functions and point matching is 

quite similar to the implementation of the EFIE, as outlined by Harrington (1968). 



CHAPTER III 

APPLICATION OF MOMENT METHOD TO 

PERIODIC SURF ACES 

Introduction 
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In this chapter, the periodic surface models describing the scattering from periodic 

surfaces for TM and TE polarization wave are derived. The moment method is extended 

to overcome the drawbacks of traditional application to periodic problems. A set of 

universal summations are derived based on a Taylor expansion series for Hankel functions 

to eliminate redundant computations involved in the infinite summation required to 

compute the elements of the moment method interaction matrix. These universal 

summations can greatly reduce the computational time involved in the construction of the 

moment matrix. A time analysis in the next chapter shows that, under many realistic 

conditions, application of the method to a periodic surface which includes a great number 

of periodic sections requires only slightly more computational time than the corresponding 

traditional moment method applied to a single surface section, while providing a dramatic 

reduction in the edge effects in the calculated surface current. 

Model of Integral Equations for Periodic Structure 

EFIE for TM Polarization 

Consider a periodic surface of arbitrary smooth cross section as shown in Figure 4. The 

surface is periodic in the x direction with a period L and uniform along the y coordinate. A 

uniform TMz polarized plane is incident on the periodic surface at an angle 0i. The 
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Figure 4. General problem of scattering from a periodic surface. 

incident field is described by (2-6). The EFIE for the periodic structure can be rewritten 

from (2-7): 

(3-1) 

where p denotes the pth periodic section, Lp is the surface over the pth period, p~ is the 

source vector at the pth period and the Rp is the distance between the observation point 

and the source point on the pth periodic section, shown in Figure 4. Because the incident 

field is uniform, the magnitudes of the induced current at the same point on the periodic 

sections are identical, and the phase of the current will be shifted by an angle determined 

by the period and angle of incidence [Green, 1970]. We refer to the center periodic 

section as the reference section. The subscript O is used to represent the reference section 

and the subscript p is used to represent the pth periodic section. The current on the 

different periodic sections can be expressed based on the reference section current as 



Jz(P') = Jo (p') on the reference section 

Jz(p~) = Jz(P' +pL) = Jo(p')eikpLsin9; on the pth section 

(3-2) 

{3-3) 
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where O ~ p' ~ L . Substituting (3-2) and (3-3) into (3-1), the EFIE for the periodic 

surface with TMz polarization is obtained as 

(3-4) 

where Lo is the surface of the reference section. Equation {3-4) includes an infinite 

summation that has no general closed-form evaluation. Thus, it must be evaluated 

numerically. Because of its slow convergence, it must be truncated at large values of M 

(equivalent to using a finite number of periodic sections). 

MFIE for TM Polarization 

Again referring to Figure 4, the MFIE for TMz polarization for the periodic surface is 

expressed as 

lzr) + j~ !Sip f (p~) COS\jlpH~2\kRp )di= H~(p) (3-5) 

where \jlp is the angle between the distance vector Rp and the normal vector at the 

observation point, and Rp is the distance between the observation point at the reference 

section and the source point at the pth periodic section, shown in Figure 4. Note that the 

principal value evaluation of the integral must be use at the singularity at p~ = p when the 

source and the reference surface section coincide {R=O). Substituting the periodic current 

(3-2) and (3-3) into (3-5), the MFIE for the periodic surface with TMz polarization 

becomes 

]or) + j~ fi
0 

/o(p1 ) ! eikpLsin9;COS\jlpH~2)(kRp) di = H!(p) {3-6) 
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(3-6) 

The subscript t indicates the tangential component of the incident wave. This equation 

also includes an infinite summation that has no general closed form evaluation. 

l\.1FIE fur TE Polariz3tion 

Consider an arbitrary smooth periodic surface which is the same as shown in Figure 4. 

A uniform TE z polarized plane wave 

(3-7) 

is incident on the periodic surface at an angle 0i. The l\.1FIE for the periodic structure can 

be rewritten based on (2-13) as 

]t~) + j! !IiP ft(P~)C0S'tf~H~2>(kRp)dl1 = -H~(p) (3-8) 

where p denotes the pth periodic section and \j/1 p is the angle between the distance 

vector Rp and the normal vector n~ at the source point on the pth section. Here the 

principle value evaluation of the integral has been used at the singularity at p' = p when 

the source and the reference surface section coincide (R=O). Again substituting the 

periodic current (3-2} and (3-3) into (3-8), the l\.1FIE for the periodic surface at TEz 

polarization can be rewritten as 

where J to is the tangential current on the reference section. 
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Moment Method with Periodic Surface 

The moment method using pulse basis functions and point matching is now applied to 

equations (3-4), {3-6) and (3-9) to develop the moment equations for a periodic surface at 

various polarizations. 

EFIE .e..s. Model for TM polarization 

In equation (3-4), the unknown function (current Jo(p')) is confined to the region 

0 ::;; p' ::;; L. The region is now divided into N segments and pulse basis functions are used 

on each segment. The matching points are at the center of the each segment. The moment 

method representation then becomes 

[Zmn][Jn] = [Em] (3-10) 

where Un] is the Nx 1 unknown current density vector, [E ml is the Nx 1 known source of 

the incident field vector on the reference section defined in (2-6) and [Zmn] is a NxN 

moment coefficient matrix. Using the approximate evaluation of integrals as in equations 

(2-26) and (2-27), the elements of the matrix Zmn are 

Zmn = ~ Aln i: eilcpLsin9;H~2> (kRp) m #:- n 
p=,-oo 

{3-11) 

Zmm =~Alm[ (1-j~ln ~m )+~. el'P'""';H~)(kR,)] m=li {3-12) 

Equation (3-11) gives the off-diagonal elements and (3-12) gives the diagonal elements of 

the matrix. The first term in (3-12) is due to the integrable singularity in the Hankel 

function when the distance is zero. Solving equations (3-10) gives the approximate 

solution of the current density on the reference section. The current density on the other 

sections can then be obtained using (3-3). 
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MFIE PS Model for TM polarization 

We now apply the moment method to the MFIE for a periodic surface at TM 

polarization. The reference section is again divided into N segments and pulse basis 

functions with point matching at the segment center are again used. The moment matrix 

equations now become 

[ZmnHf n] = [Hm] (3-13) 

where U nl is the Nx 1 unknown current density array, [Hm] is the Nx 1 known tangential 

component of the incident magnetic field (2-10) at the matching point, and [Zmnl is a Nx 

N moment coefficient matrix whose elements are given by 

Z .k A[ ~ jlcpLsin0- H(2) (kR ) mn = 74 L1 n kJ cos 'VP e I 1 p 
p=--oo 

(3-14) 

Z 1 .k A[ ~ jlcpLsin0- H(2) (kR ) mm = 2 + 74 L1 m kJ COS 'VP e ' 1 p 
p=--oo 

m=n (3-15) 

p;tO 

Solving (3-13) agam yields the approximate solution of the current density on the 

reference region. 

MFIE PS Model for TE polarization 

We now apply the moment method to the MFIE for a periodic surface at TE 

polarization. The reference section is again divided into N segments and pulse basis 

functions with point matching at the segment center are again used. The moment matrix 

equations now become 

[Zmn][ft] = [Hm] (3-16) 
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where Utl and [Hml are the Nxl unknown tangential current density array and known 

incident magnetic field (3-7) at the matching point respectively and [Zmnl is a NxN 

moment matrix whose elements are given by 

.k 00 

Zmn = 7-4 ~ln L COS 'lf1 p ejlcpLsinS; Hi2) (kRp) 
p=-oo 

(3-17) 

Zmm = i + j~ ~lm 1:: C0S'lf1 p eikpLsinS; Hi2) (kRp) m=n (3-18) 
p=-oo 
p#) 

Solving (3-16) yields the approximate solution of the tangential current component density 

on the reference section. 

Universal Summations 

The moment method analysis of the TMz scattering from a periodic rough surface 

has been implemented on an IBM RS6000 320 computer. As expected, it was found that 

the infinite summations converge very slowly, especially at extreme incident angles. Tests 

showed that converging the terms to an arbitrary tolerance wasted computational time on 

terms where the series evaluates to a very small number. Instead, truncating the series at 

arbitrary value p=M (i.e. the summation extends from -M to M, so 2M+ 1 periodic sections 

are included in the modeled surface) was found to give best the trade-off between 

accuracy and computational effort. The greater M , the farther the edge is physically 

removed from the reference section thereby reducing the edge effects. The number of 

sections needed depends strongly on angle of incidence. Rodriguez et al. (1992) used 

M=l, which proved adequate at angles of incidence of less than about 60°. However, at 

near-grazing angles, far more sections must be used. To demonstrate this, the scattering of 

a uniform plane wave incident on an infinite flat plane ( which is a special-case periodic 

surface) was modeled, as shown in Figure 5. The incident angle was 88° and the surface 

period was set at L= 1 Ol . Figure 6 shows the current distribution along the surface 

calculated by the moment method with M=O, 1, 10, 100 and 10000. The exact current 

distribution is also shown in the figure for comparison. The figure clearly shows the effects 

of the edges and the dependence on M. Unfortunately, a very large M (- 10,000) is 
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required to reduce the edge effects to an acceptable level in this problem. 

Directly summing 10,000 terms in the evaluation of each matrix element in (3-8), 

(3-9), (3-10) and (3-11) is cost prohibitive. Instead, a set of universal summations, similar 

to those used by Silvester (1969) for the application of the finite element method to 

potential problems, were determined. Combining the results of the universal summations 

with the much smaller portions of the original summations which are unique to each 

element leads to a much more efficient evaluation of the matrix elements. 

EFIE TM Polarization 

We first consider the evaluation of the summations in (3-11) and (3-12). When the 

source point is far from the reference section (lpLI>> IY - y'I), the distance between 

source and observation points can be approximated by 

Rp=lp-p~I = J[x-(x'+pL)]2+(y-y')2 
I 

= (x1 +pL) - X = pL(l + X °i_, X) 
p I 

= -(x1 +pL) + X =-pL(l + X p~ X) 

p>O 

p<O 

(3-19) 

For large arguments, the Hankel function in (3-11) and (3-12) can be replaced by its 

asymptotic form of 

(3-20) 

When p>O, using (3-19) and the Taylor expansion series 

(3-21) 

the Hankel function in (3-20) for large argument (p>O) can be approximated by 
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H~2\kRp+) = 2 e-jk(pL+tix ~> 
7tkpL(1 +llx/pL) 

(3-22) 

where p+ denotes the sections to the right of the reference section (p>O) and llx = x' - x. 

Letting p- represent the left side sections (p<O) and q= "'.p >O, the Hankel function for 

large argument can be rewritten as 

H(2l (kR - ) = J 2 e -Jl{-qL--A<-{l 
0 P 7tkqL(1-llx/qL) 

(3-23) 

= J 2 e-1(-M<-{)e/"'1L(l +!Ax +;1(flx)2 + 15(flx)3 +···) 
7tkqL 2 qL 8 qL 48 qL 

Po is defined as the threshold such that when IPI ;;;::: po, all approximations used in deriving 

(3-22) and (3-23) are valid. The infinite summation can now be divided into three parts: 

the left part with p <po, the center part with -po~ p ~ po and the right part with p > po . 

Combining the summation for the left and right part and using (3-22) and (3-23), the 

portion of the summation where IPI > po reduces to 

l: (e17q,Lsma;H~2>(kRp+) +e-ikpsina;H~2>(kRp-)) =(Sr+ S1) 
p=po 

where sr and S1 are 

(3-24) 

(3-25) 

(3-26) 

S~ and S~ v=O, 1,2 ... , are hereafter termed universal summations for the right and left 

sections respectively. They are given by 
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M 
5r = L e-jkpL(l--sin8;)_1_ 
v FPo Jfipv 

V = 0, 1,2, ... (3-27) 

M 
51 = L CjlcpL(l+sin8;)_1_ 

v FPo Jfipv 
V = 0, 1,2, ... (3-28) 

The universal summations (3-27) and (3-28) are independent of the geometry of the 

problem and can be used for all elements in the matrix. Thus, these summations must only 

be evaluated once. Note that the universal summations are only dependent on the incident 

angle and the order of the Taylor series used. Also note that care must be taken in 

selecting L and 0i so that the exponentials in (3-27) and (3-28) do not evaluate to 1. In 

this case the S~ and S~ summations do not converge. 

We now define sc to be the summation of the center terms where IPI::;; po 

Po 
5c = L eikLsin8; H~2) (kRp) (3-29) 

P:,-Po 

Note that this summation requires exact evaluation of the Hankel functions and can 

dominate the computational effort if p0 is large. Using (3-27) through (3-29), (3-11) and 

(3-12) can be reduced to the concise form 

(3-30) 

When m=n, equation (3-29) must be modified slightly to include the contribution of the 

singularity in the integral when the source and observation points are co-located ( compare 

with equation (3-12)). The universal summations greatly reduce the redundant 

computation, so the CPU time for the calculation of the matrix elements by (3-30) is 

much less than when evaluating (3-11) and (3-12) directly. 
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MFIE TM Polarization 

Universal summations can also be determined for the application the moment method 

to the MFIE for periodic surfaces in equation. (3-17) and (3-18). For large arguments, the 

first-order Hankel function can be replaced by its asymptotic form 

H<2>(x)"" J 2 e-jG-~) 
1, 1tX (3-31) 

Also, 

(3-32) 

For large Rp 

ax(x-x1 -pL)+ay(y-y') p 
aR = ""--ax 

P J<x-x' -pL)2 + (y-y')2 IPI 
lpLI >> ly-y'I (3-33) 

and 

(3-34) 

where the f5 (x) defines the surface profile. Thus, (3-32) can be approximated by 

P ~(x) 
cos 'lfp"" } S 

IPI J1 + [fs(x)] 2 
IPLI >> ly-y'I (3-35) 

Using (3-19) and the Taylor expansion series (3-21), the Hankel function (3-31) for large 

arguments can be approximated by 
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Hr\kR,) = j ,ipL e -,{ ""-'t) e-1'+-t ~ + ~(~ )' - ~ (~ r + ... ) (3-36) 

when p>O and 

HCZl(kR -)= j 2 e{""' ~)eib1'(1+lAx+~(Ax)2 + lS(Ax)3 + ... )(3-37) 
1 P nkqL 2 qL 8 qL 48 qL 

when p<O and q=-p. The summations of (3-14) and (3-15) are also divided into three 

parts, so the matrix elements are given by 

"k Z = dl Lcs1 +sc +Sr) mn n 4 (3-38) 

where sr, S1 represent the summations for the right and the left sections respectively, and 

are given by 

(3-39) 

and 

(3-40) 

where S~ and S~ , v = 0, 1, 2,3... are the universal summations given in (3-27) and 

(3-28). sc is the summation of the center sections, and must be evaluated directly: 

where 

(y-y1)-(x-x1 -pL)fs(x) 
cos 'If p = -;:::========-;::::::===­

J (x-x1 -pL)2 + (y-y') J1 + [t's(x)] 2 

When m=n, equation (3-15) is used for the center summation. 

(3-41) 

(3-42) 
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MFIE TE Polarization 

The universal summations derived for TMz polarization scattering can also be used in 

the MFIE moment method for TEz polarization. Since the development is very similar to 

that for the MFIE TM case, only the final result is given. Equations (3-17) and (3-18) are 

rewritten as 

(3-43) 

where S', S1 and sc represent the summations for the right, left and the center sections 
respectively and are given by 

S' = COS'lf1 p+ J 1tiL e-j(kAx-~ )(s~ -!s~Ax+~s;Ax2 - !~Ax3 + ... ) (3-44) 

s1 = -cos"'' p- J 1t~L j( kAx+~) ( s~ + !s~ Ax+ ~s;Ax2 + !~ Ax3 + ... ) (3-45) 

Po (2) 
5c = L ejkLsin9; H 1 (kRp )cos 'I'' P (3-46) 

p=-po 

where S~ and S~, v = 0, 1, 2, 3, ... , are the universal summations given in (3-27) and 

(3-28) and cos '1ft is 

cos 'If' P = n1 · aR = p t's(x') 
P IPI J1 + [t's(x')] 2 

IPI >po (4-47) 

(y-y1)-(x-x1 -pL)fs(x') 
cos"" p = -;::========::::::::::===-;===== J (x- x' -pL)2 + (y-y') J1 + f!'s(x')] 2 

IPI ~po (4-48) 

where f.'(x') is the first derivative of the surface slope. 
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In this chapter, the accuracy and computational efficiency of the periodic surface 

moment method models are analyzed. Appropriate choices for the various parameters in 

the models at different angles of incidence and surface conditions are determined. 

Error Analysis for EFIE Periodic Surface Model 

We again examine the reflection of a TMz polarized uniform, plane wave from an 

infinite, perfectly conducting planar surface, as shown in Figure 5. The incident magnetic 

field is 

· Eo " " · ~- a · a H 1(p) = Tlo (ax cos 0i - ay sm 0;) el"'<xcos ;+ysm ;) (4-1) 

where Eo is the magnitude of the incident electric field and Tl o is the intrinsic impedance 

of the medium. The current density on the surface is known to be 

" · " 2Eo Js=2nxH1 =-aznoCOS0; (4-2) 

where J s is the current distribution on the surface, n is the normal vector at the surface 

and 0; is the incident angle. 
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This example is used to test accuracy of the EFIE PS model by comparing the current 

computed by the model with the closed form solution ( 4-2). The error in the current 

density for the problem is parameterized using the RMS relative error cr of the current 

across the reference section 

CJ=-1- f ]i-]i 2 

[N i=l ]i 
(4-3) 

where N is the number of moment method segments on the reference section, J i 1s 

calculated value of the current at the ith segment, and Ji is the exact value of the current at 

the ith segment. This definition of the error has the advantage of including the errors at all 

points on the surface, but weighting the larger errors more strongly than smaller errors. 

This is well suited to scattering calculations, where the errors may only be significant at 

the edge points, but gives a very poor predicted value for the scattered field. 

Truncation Errors 

Errors are introduced by the truncation of the infinite series in equations (3-8), (3-9) 

and (3-11), (3-12). Figure 7 shows the RMS relative error of the current obtained using 

the EFIE periodic surface model versus the incident angle. The length of the reference 

surface (and therefore the surface period) L was 10A, the reference section was divided 

into 100 moment method segments, and M (the number of periodic sections used on each 

side of the reference section) was varied from Oto 100,000. We immediately see that the 

errors in the calculated currents decrease as M increases. We also see that the errors are 

strongly dependent on the incident angle and are largest at large angles of incidence (near 

grazing). The main reason for this is that at the largest incident angles the magnitude of 

the current is quite small so the edge currents dominate and the relative error increases. At 

small incident angles only a few periodic sections are needed to greatly reduce the edge 

effects. However, in this specific problem, approximately 10,000 sections on each side of 

the reference section are required to reduce the RMS relative error to less than a few 

percent at all angles of incidence up to 89°. 
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Another truncation error results from the truncated Taylor expansion series in equation 

(3-21). The expansion argument is 

6 x-x' x=--
pL 

(4-4) 

As will be shown, p must be greater than or equal to 2. Also, lx-x'I < L , so 6x<l/2. In 

this work, the Taylor expansion was truncated after 5 ·terms, so the error induced is of 

order 0(6x6) and the maximum error (when p=2) is 0(1/64). Errors of this magnitude 

have no significant effect on the scattering calculation. 
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Discretization Errors 

The pulse basis functions used in the moment method developed in the previous 

chapter were chosen to allow a simple evaluation of the interaction matrix elements. 

However, these are the crudest basis functions available, and lead to a greater 

discretization error than the more complicated basis functions. Thus, more basis functions 

are required to yield the same accuracy. Many works use 5-10 basis functions per radar 

wavelength along the surface, but this must be proven valid at high angles of incidence. 

Figure 8 shows the RMS relative error of the current on the infinite plane computed by 

EFIE PS model with various numbers of pulse basis functions per wavelength (N). M was 

fixed at 10,000 in all calculations. The figure shows that the error decreases as N increases 

at small incident angles (less than 70 degree) but almost no improvement is observed at 

large incidence. Even using the extended moment method, the major error at large 
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Nf=10 -·-·-. Nf=5 ..... ..... 
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Figure 8. Discretization errors of the calculated current on an infinite flat plane 
using EFIE PS model for various basis functions per wavelength vs. incident 
angle, TM polarization. 
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incidence is caused by the edge effects. The figure also shows that when 5 basis functions 

are used the RMS relative error is near 5% at most incidence angles, so this is the 

minimum acceptable number. 20 basis functions per wavelength yields an RMS relative 

error less than 1.5% at small incident angles, but, as mentioned, very little improvement at 

the large incidence angles. In this work 10 basis functions per wavelength are used. This 

choice gives a good balance between accuracy and computational time. 

Error lYi1h Period Length 

The error in the calculated current will· depend not only on the number of periodic 

sections used in the summation but also on the size L used to represent surface. Figure 9 

shows the RMS relative error in the calculated currents when the surface is modeled with 

section periods of 2, 10, and 2011.. A fixed number of periods (M=l0,000) and 10 moment 

segments per wavelength were used in all calculations. We see that the period affects the 

accuracy only at the largest incidence angles, and the model is more accurate with larger 
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Figure 9. RMS relative errors of the calculated current on an infinite flat plane, 
using EFIE PS model at various period lengths L, sampling rate 10/A., TM 
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periods. This results simply because the value of M was fixed, so decreasing the period 

moves the edge closer to the reference section and the edge effects increase. 

Error .Qf llfiln.g Approximate Hankel Functions 

Another error comes from the replacement of the Hankel function by its asymptotic 

form in equation (3-20): 

H<2>(kR ) ~ J 2 e-jkR, 
o P 1tkR . p 

(4-5) 

This expansion is valid when kRp;;;: 10. The minimum value of Rp is (p-l)L, so the first 

constraint on p is p> 1 + If . Equation ( 4-5) is actually evaluated using the approximation 

(from equation (3-19)). 

Rp = J [x- (x' +pL)]2 + (y-y')2 

=x-(x1+pL)=Rp, (4-6) 

The dominant error introduced by this approximation is in the phase kRp. The error can 

be kept to below a maximum acceptable level of : radians when the inequality 

everywhere (4-7) 

is met everywhere. The first error term in the expansion ofRp is 

(y-y')2 
(4-8) 

2[x- (x' + pL)] 

so (4-8) becomes 

(y-y')2 <!!: 
2[x-(x1 +pL)] -8 

(4-9) 
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The maximum value of (x-x') is L, so the limit is 

(y-y')2 "' -----<-
(p-1)L 4 

everywhere (4-10) 

Note that for the flat plate, this is always met since (y-y')=O everywhere. For a random 

surface, the deterministic term (y-y')2 is replaced by its expected value: 

(4-11) 

where CJy is height variance of surface, thereby defining a second constraint on p. 

Error Analysis for MFIE Periodic Surface Model 

For the special case of scattering from an infinite planar surface, the MFIE reduces to 

the exact solution. Thus, no error evaluation can be performed with this example. Instead, 

another special periodic scattering problem, a uniform plane wave incident on an infinite 

surface that has a small magnitude sinusoidal oscillation, is used to indirectly analyze the 

error of the MFIE PS model. The surface is given by 

y(x) = h sin(Kx) (4-12) 

where h is the magnitude of the sinusoidal surface and K is the wave number of the 

surface. Figure 10 show the calculated current distribution using the PS models at an 

incident angle of 88° . Figure IO(a) is the current using EFIE PS model with various 

values ofM, Figure lO(b) is the calculated current using the MFIE PS model with various 

values of M and Figure 10( c) is comparison of the currents calculated by the two models 

at the largest M. These figures show that the both models converge to the same current 

profile when Mis increased despite their differences when M = 0. The EFIE PS model 

converges faster than the MFIE PS model as M increases and therefore is more suitable 

for use when available computer resources allow direct solution of the moment matrix 
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equation. However, as mentioned before the MFIE implementation yields a 

well-conditioned matrix system that is more suitable for iterative solution. 

Figure 11 shows RMS relative error of the current computed using the MFIE PS 

model versus the incident angle. The reference "exact" current was calculated using the 

EFIE PS model. The length of the reference surface (and therefore the surface period) Lis 

1 OA., the magnitude h=O. lA., the wave number K of the sinusoidal surface is equal to the 

radar wave number, and 100 moment segments (N) were used on the reference section. M 

was varied from Oto 100,000. The dependence of the error on both angle of incidence and 

number of periodic sections is quite similar to that observed for the EFIE model. 

However, in this specific problem approximately 100,000 sections on each side of the 

reference section are required to reduce the RMS relative error to acceptable levels at 

large angels of incidence. Note that the reference is not exact, so the errors in the MFIE 

and EFIE PS models may reinforce each other. 
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Figure 11. Comparison of RMS relative errors of the calculated current using 
MFIE PS model for various periodic sections vs. incident angle, sinusoidal 
surface, K=k, h=O. lA., TM polarization case. 
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Computational-Time Analysis for PS Model 

The time that the periodic surface model requires to evaluate the matrix elements can 

be divided into two parts, the exact evaluation of the Hankel function in equation (3-29) 

and the computation of the universal summations in equation (3-27) and (3-28). Note that 

equation (3-29) is order O(N2 ) times, where N is the number of moment segments on the 

reference section. Figure 12 shows the CPU time used by the EFIE PS model using both 

exact and the universal summation evaluation of the matrix elements. The scattering 

problem is the same as that used in error analysis, reflection of a TMz wave from an 

infinite planar surface. The routine was implemented on an IBM RS6000 model 320 

workstation. When the number of sections M is 2 or less, the universal summations are not 

used (p is always less than or equal to M), so the two techniques are identical. When M>2, 

the CPU time increases linearly with the number of sections when exact evaluation is used. 

However, when the universal summations are used, the CPU time remains almost constant 

40 --e-- exact --•-- universal 

30 --d 

! 
CD 
E 20 i= 

10 -· 
Number of sections 

Figure 12. Comparison of computational time for the exact summation and the 
universal summation with various M. Nm =100 moment segments. 
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with M, indicating the majority of the time is spent performing the summations that are 

unique for the individual matrix elements (equation 3-29). (Note that all times include a 

fixed offset of about 1 second for the time required to solve the lOOxlOO matrix). This is 

true until M > 10,000, where the evaluation of the universal summations becomes 

significant and then dominates the time. When M<l0,000 the evaluation time using 

universal summations is only slightly greater than that for a standard moment method 

application to a single section. Even when M=l00,000, the evaluation is less than a factor 

of three greater. This result shows that the new moment method technique can be used to 

determine the scattering characteristics of certain types of periodic surfaces even at small 

grazing angles in a very reasonable calculation time. 
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In this chapter, the periodic-surface moment method is applied to some simple surfaces 

whose scattering characteristics are well known. The scattering characteristics from an 

infinite plane and several infinite sinusoidal modulated surfaces are calculated with the PS 

models at horizontal and vertical polarization at angles of incidence up to 89°. Their 

results are compared with the predictions of approximate scattering theories. The 

example surfaces and illumination conditions are chosen to be in regions where the 

approximate theories are known to be valid. The optimal number of surface periods that 

are included in the universal summations are evaluated m terms of computational 

efficiency and accuracy. 

Calculation of Scattering Coefficient 

TMz O:Iorizontal) Polarization 

the radar surface scattering coefficient is defined as the radar cross-section of a section 

of surface divided by its area (Ulaby et al., 1982). For surfaces that are rough in only one 

dimension this reduces to ( for horizontal polarization ) 

(5-1) 



41 

where Ls is the length of the scattering section, Es is the scattered electric field, Ei is the 

incident electric field, and R is the distance from the source point to the observation point. 

The total electric field backscattered from the periodic surface is determined from 

(Harrington, 1968) 

-j(kR-<>1tl4) M l L (d I )2 
E5 = 11ke L rp+ ) Jz(x')ejlcpLsin8; ejk[(x'+pL)sina.+y'cosa. l 1 + ~ dx' (5-2) 

J 81tlcR p=-M pL · dx' 

where L is length of the period, R is the distance from the source point on the section to 

the observation point(>> ML), 0s is the backscattering angle and Jz(x1) is the current on 

the reference surface period (here the relationship for the periodic currents given in (3-3) 

is used). For backscattering (monostatic scattering), the transmitter and receiver are at the 

same location, so 0i = 0s. Since the surface is periodic, (5-2) can be rewritten as 

-j(kR-31t/4) · M (d I )2 
E5 = 11ke f lz(x')eik[(x1sina.+y1cos8s] L ei2kpLsin8; 1 + .JL dx'' 

J 81tlcR Lo . p=-M dx1 
(5-3) 

where Lo indicates integration over the reference period only. The summation in (5-3) 

approaches zero as M is made large except when 

m21t = 2kLsin 0m m=O, 1, 2, ... (5-4a) 

or 

m'A = 2L sin 0m m=O, 1, 2, ... (5-4b) 

Thus, the backscattering coefficients can only be computed at the incident angle where 

(5-4b) is met. When this is true, the field scattered from any single surface period is 

independent of p and can be determined from the reference section current: 

-j(kR-<>1tl4) . (d I )2 
Es = 11ke f Jz(x')efk[x'sme.+y'cosa.1 1 + ~ dx' 

J 81tkR Lo dx' 
(5-5) 

The scattering coefficient (at angles where (5-4) is met) reduces to 
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(5-6) 

where L is the length of one period. 

An additional constraint on the product L sin0i is obtained by substituting {5-4a) into 
the universal summations in equation (3-27). For v=O, the summation reduces to 

(5-7) 

IfL is a multiple of the radar wavelength, (5-7) reduces to 

M 1 s~ = :I: c-1)P-
p=po IP 

m odd (5-8a) 

M 1 
=1:-

p=po IP 
m even (5-8b) 

The summation in (5-8b) diverges. Therefore, only odd values of m should be chosen in 

(5-4). The final criterion therefore is 

m'A=2Lsin0m m=l,3,5, .... (5-9) 

TEz (Vertical) Polarization 

The radar surface scattering coefficient for vertical polarization is defined as (Ulaby et 

al., 1982) 

(5-10) 

where H5 is the scattered magnetic field and Hi is the incident magnetic field. Using a 

procedure similar to that for horizontal polarization, it can be shown that the 
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backscattering coefficients can be calculated only when equation (5-9) is met, and the 

scattered field from any period is determined entirely from the current on the reference 

period (Harrington, 1968): 

-j(kR-31tl4) (d I )2 
HS = ke J JcCOS 'l'n eik[x'sin9s+y'cos9s] 1 + ~ dx' 

J 81tkR Lo dx1 
(5-11) 

where 
A A 

COS'lfn = n · R 

( dy' ) 1 = -sin0i+-, COS0i 
dx J1+(dy1 /dx1) 2 

(5-12) 

The backscattering coefficient for vertical polarization reduces to 

(5-13) 

Scattering from Simple Surfaces at Horizontal Polarization 

Scattering from an Infinite Plane 

We first examine the reflection of a TMz polarized uniform, plane wave from an 

infinite, perfectly . conducting planar surface as was shown in Figure 5. Other than the 

specularly reflected field when 0i=O, there is no backscattered field. Any predicted 

backscattered field at non-normal incidence angles is entirely due to edge effects, so this 

example is used to determine if the model reduces the edge effects to values that are well 

below the expected scattering coefficients for actual surfaces. Figure 13 shows the 

backscattering coefficient calculated by the EFIE PS model at the incident angles that 

satisfy the condition in (5-9). The magnitude of the specular reflection at ei = 0 is 

accurately predicted even when only the reference section was used in the model (M=O). 
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However, the predicted scattering at other angles is quite high (-17 dB). This is much 

greater than the actual scattering coefficients experimentally measured from actual sea 

surfaces at small grazing angles (Guinard and Daley, 1970). Thus, the edge effects using 

this implementation would overwhelm the actual scattered field. Increasing the number of 

sections lowers the off-normal scattering coefficients until, when M=l00,000, they are less 

than -80dB at all angles. This is sufficiently below the minimum backscattering coefficients 

of -50dB experimentally measured by Guinard and Daley at TMz polarization. 

Scattering from .a Simple Sinusoidal Surface 

Another special case where the backscattered field can be accurately predicted 

analytically is a uniform plane wave incident on an infinite surface that has a small 

magnitude sinusoidal oscillation. The surface displacement is given by 
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y(x) = h sin(Kx) (5-14) 

where h is amplitude of the sinusoidal surface in wavelengths and K is wave number of the 

sinusoidal wave surface. If h is much smaller than the radar wavelength, the backscatttered 

field can be accurately predicted by the small-perturbation (Bragg scattering) theory (Rice, 

1951). Other than the specular reflection, the peak backscattered field occurs at the angle 

of incidence where the "Bragg-resonant" condition is satisfied (Ulaby et al., 1982): 

IKI = 27c sin 0B (5-15) 

where k is the wave number of the radar signal and 0B is the Bragg-resonant angle of the 

incidence. 

Figure 14 shows the backscattering coefficient calculated using the EFIE PS model. 

The surface amplitude h was O. lA and K=l.1, giving a Bragg-resonance angle of 33.4 •. 
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The backscattering coefficient at the Bragg angle is accurately predicted independent of 

the number of sections used in the model. Again, using M=I00,000 reduces the predicted 

scattering values at. angles away from the Bragg angle and non-normal incidence to values 

well below that observed experimentally. 

Figure 15 shows the backscattering coefficient calculated using the MFIE PS model 

for the same sinusoidal surface. For.comparison, the scattering calculated using the EFIE 

with M=I00,000 is also plotted in the same figure. The performance of the MFIE model is 

similar to that of the EFIE model when 100,000 sections are used. However, the EFIE 

model shows somewhat lower scattering coefficients at angles away from the Bragg angle 

and when fewer sections are used. Because of its inherent higher accuracy, the EFIE 

moment-method implementation is used for TMz scattering for the remainder of this 

work. 
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Scattering from Simple Surfaces at Vertical Polarization 

The l\1FIE PS model for scattering at vertical (TEz) polarization was also applied to 

sinusoidal surfaces. Figure .16 shows the calculated scattering from a sinusoidal surface 

with an amplitude of h=O. l A and a surface wavelength of K = I. I k. As with horizontal 

polarization, the magnitudes of the specular reflection at 8i=0° and the Bragg-resonant 

scattering at 81=33.4° is accurately predicted independent of the number of periodic 

sections M used in the model. However, the edge effects at other incident angles 

(appearing as non-zero backscatter) depends strongly on M. When M=I00,000, the 

off-Bragg scattering coefficients are -40dB at near normal incidence, -50dB at near 

grazing, and better than -70dB at angles in between. This is sufficiently below the 

corresponding backscattering coefficients from -20dB at near normal incidence to -40dB 

at near grazing incidence experimentally measured by Guinard and Daley (1970) for the 

actual ocean surface. 
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CHAPTER VI. 

ROUGH-SURF ACE SCATTERING CALCULATIONS 

Introduction 

In this chapter, the periodic surface moment method (PS model) is applied to various 

statistically differing types of rough surfaces. The calculated scattering is compared to the 

predictions of theoretical scattering models (small-perturbation method and Kirchhoff 

approximation) as well as with the scattering predicted using the traditional moment 

method with a tapered illumination weighting function. The scattering from surfaces 

whose power spectral density is described by a Gaussian envelope is first examined. While 

this type of surface is not found in nature, it is a simple single-scale surface whose 

scattering characteristics at moderate incident angles are well understood, allowing the 

numerical method to be tested. The scattering from a much more realistic power-law 

spectrum surface is then examined, and the validity of the two-scale description of this 

type of surface is investigated. 

Traditional Scattering Models and Techniques 

The Kirchhoff Scattering Model 

The basic assumption of the Kirchhoff scattering (KS) model is that the current 

induced on the surface of the scatterer by the incident electromagnetic wave can be 

approximated by treating a local region of the surface as an inclined plane. The surface 

current is determined from the reflection of a plane wave from an infinite planar surface 

defined by the local slope of the actual surface. Here, the method of Chen and Fung 

(1988) is used to calculate the scattering predicted by the Kirchhoff approximation. The 

surface current is determined using the local tangent-plane approximation, and the 
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currents are then reradiated using equation (5-5) and (5-8). We first consider a uniform 

TMz plane wave given by (2-6) incident on a one-dimensional rough surface (horizontal 

polarization). At an arbitrary point, the unit vector normal to the surface is given by 

" 1 ( " dy " ) 
n = J1 + (dy/dx)2 -ax dx + ay 

(6-1) 

where :~ is the surface slope. The Kirchhoff current at an arbitrary point is 

J =2nx Hi 

= az 2Ho 1 (dy cos ei - sin ei) eiko(xsinO;+ycos8;) 

J1+(dy/dx)2 dx · 
(6-2) 

Substituting (6-2) into (5-5), the far-zone backscattered field from one periodic section is 

-j(kR-31t/4) (d ) 
Es = 2Eoke I ~ cosei -sin ei ei2k[x sin8s+y cos8s] dx 

JBnkR Lo dx 
(6-3) 

where Eo = Ho'T) is the magnitude of the incident electric field. We now consider a rnz 

(vertical polarization) wave described by (3-7). The surface current density is 

J = 2nxHi 

= 2Ho (ax+ ay dy )eiko(xsin8;+ycos8;) 

J1 + (dy/ dx)2 dx 
(6-4) 

Substituting (6-4) into (5-8) yields 

-j(kR-31t/4) (d ) 
HS= 2Hoke . I ..J!..cosei-Sinei ei2k[x sin8s+Y COS8sldx 

JBnkR Lo dx 
(6-5) 

Comparing (6-5) with (6-3), we see that the ratio of the scattered field to incident field at 

horizontal polarization (Hs /HO ) is identical to the scattered field to the incident field 



50 

ratio at vertical polarization ( P /Eo ). Thus, the Kirchhoff model predicts no dependence 

on polarization for backscattering from a perfectly conducting surface. The mathematical 

restrictions for the validity of this model has been stated as (Ulaby et al., 1982; Bechmann 

and Spizzichino, 1963) 

(6-6) 

and 

kl> 6 (6-7) 

where r is the surface radius-of-curvature at any point, 1 is the correla:tion length and 0i 

is the local angle of incidence. Because of the cos0 L dependence in ( 6-6), this method is 

typically only valid at small incidence angles. 

Small Perturbation Model 

The small perturbation model (SPM) is another widely used model in practical 

applications (Rice, 1951). For this model, the induced surface current and scattered field 

are solved for a smooth surface. The fields are then perturbed to account for the 

small-scale roughness. The primary scattering mechanism predicted by SPM is 

Bragg-resonant scattering. The backscattering coefficients of the small perturbation model 

for a one-dimensional random surface are given by (Chen and Fung, 1988) 

cr~h = 81tk3cos40W(2ksin0) 

O"~v = 81tk3 (1 + sin20)2 W(2ksin0) 

(6-8) 

(6-9) 

where k is radar wave number, 0 is the incident angle, W(K) is the surface power spectral 

density, and hh and vv represent horizontal (TMz) and vertical (TEz) polarization 

respectively. Note that K=2ksin 0 is the Bragg-resonant surface wave number. 

At moderate incident angles (20° <0;<70°) Chen and Fung (1988) showed this model 

accurately predicted the backscatter when 

kcr < 0.3 (6-10) 
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(6-11) 

where cr is the standard deviation of the surface roughness and 1 is the correlation length. 

These conditions require that both the surface height and the surface slope are small 

electromagnetically. Also SPM does not predict coherent (specular) reflection, so it is not 

valid at small incident angles. 

Moment Method lYith Illumination Weighting Function 

Many different illumination weighting functions have been used to reduce the edge 

effects in moment method calculations of scattering from rough surfaces. (Jordan and 

Lang, 1979, Fung and Chen, 1985; Thorsos, 1988). In this work, the weighting function 

given by Fung and Chen, (1985) was used: 

G( ) - [ (Xm -xo>2cos8i] Xm -exp 2 
K 

(6-12) 

where Xo is the center of a surface and g is a constant used to control the width of the 

tapered beam. The width factor g=L/5.6, where L is the total length of the surface 

modeled, was used. The effective illuminated width Leff of the surface using this 

weighting function is 

L =Joo ex ( 2x2cos28Jdx=g[i1i (6-13) 
eff -- p g2 cose 
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Scattering Calculations 

The power backscattered from a randomly-rough surface follows an exponential 

distribution (Ulaby et al., 1982). Therefore, the expected backscattering coefficient from a 

rough surface is obtained by calculating the scattering from a number of independent 

surfaces and averaging. The noncoherent backscattering coefficient estimated from these 

surfaces is (Fung and Chen, 1985) 

(6-14) 

where N 5 is the number of independent surfaces , R is the distance between the far zone 

observation point and the source point, and Aj is the normalized scattered field for the jth 

surface (Ej IE~ for horizontal polarization or Hj /H~ for vertical polarization). 

The relative standard deviation of the estimated scattering coefficient is given by (Ulaby 

et al., 1982) 

1 
S.D. = r;;;-

vNs 
(6-15) 

Here, N 5 = 120 was used when the scattering from a surface having a Gaussian power 

spectrum was calculated and N 5 =40 was used when power-law spectrum surfaces were 

examined, yielding RMS errors of 9.2% (±0.4dB) and 16% (±0.64dB), respectively. The 

exact length L of the surfaces in the moment method calculations was varied so that 

equation (5-9) was met in the periodic-surface calculations. L was chosen to be 

approximately 10 radar wavelengths for Gaussian surfaces and least one cycle length of 

the longest surface wave for power-law surface. Per the error analyses in Chapter IV, 10 

or more moment segments were used per radar wavelength along the surface in all but one 

case, thereby limiting the discretization errors in the calculated current to about 3%, In the 

other case, seven segments were used per wavelength so that the moment system would 
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not exceed the memory of the computer system used. In this case, the discretization error 

increased to approximately 5%. Similarly, the universal summations in equations {3-25) 

and (3-26) were carried out to 100,000 terms (M=l00,000), allowing the PS moment 

method to be applied at angles of incidence up to 89°. The number of periods over which 

the Hankel function in the infinite series must be evaluated exactly ( defined by p O in 

equation (3-29)) was determined automatically from equation (4-11). For all surfaces, p0 = 

2 was sufficient. 

Generation of Random Surfaces 

The sample random surfaces used in the scattering calculations were generated using 

the spectral technique summarized here. The autocorrelation of a random surface is 

(Sklar, 1988) 

R( t) = E[y(x)y(x - t)] (6-16) 

where y(x) is the profile of a sample surface and E[] is the expected value operator. The 

power spectral density W(K) of the surface is the Fourier transform of the autocorrelation 

function 

W(K) = _l_ J00 R(t)e-jK't dt 
21t -00 

= F[R(t)] 

= E{F[y(x)y(x-t)]} 

= E{ IY(K)l 2 } (6-17) 

where K is the surface wave number, F[] indicates the Fourier transform, and Y{K) is the 

Fourier transform of y(x). Y(K) is often referred to as the amplitude spectrum of a single 

sample surface, while W{K) is the power spectral density of the random process which 

defines the surface statistics. Equation ( 6-17) is satisfied when 
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Y(K) = N(K) J W(K) (6-18) 

where N(K) is the Fourier transform of a real, white noise process n(x). This is shown by 

substituting (6-18) into (6-17): 

W(K) ~ E{[ N(K)JW(K) J2} 
= E [N2(K)]E [W(K)] 

= W(K) (6-19) 

Thus, a random surface with an autocorrelation function R(t) and power spectrumW(K) 

is obtained by taking the inverse Fourier transform of the sample surface amplitude 

spectrum Y(K): 

(6-20) 

Note that when the inverse Fourier transform in equation (6-20) is evaluated numerically 

using a discrete (or fast) Fourier transform the resulting surface is naturally periodic, 

ideally suited for use with the periodic-surface scattering techniques. 

The correlation length of the surface is defined by ( Shanmugan and Breipohl, 1988) 

l = 1 J: R(t)dt 
Ji R(O) 

where R( t) is the autocorrelation function of a surface. 

Scattering from Gaussian Surface 

(6-21) 

In this section, the scattering from surfaces whose autocorrelations and power spectral 

densities are described by zero-mean Gaussian functions is examined. Although this does 

not produce surfaces that approximate those found in nature, they do provide 

well-understood surfaces under which the periodic-surface moment method can be tested 

(Fung and Chen, 1985). The autocorrelation function of this type of surface is 
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(6-22) 

where 1 is the surface correlation length defined by (6-21) and cr2 is the variance of the 

surface displacement. The power spectral density is also Gaussian: 

cr2z ( l2K2) W(K) = -exp --
2/n 4 

(6-23) 

Figure 17(a), shows a typical Gaussian surface with correlation length of 4 units and 

standard deviation of 1 unit, generated using the spectral technique. Figure 18(b) shows 

the autocorrelation estimated from 100 independently generated surfaces. Also shown is 

the theoretical autocorrelation plotted from equation (6-22). The calculated and 

theoretical autocorrelations show excellent agreement. 

The scattering from Gaussian surfaces with two different statistical descriptions 

was calculated at three radar wavelengths. The correlation length was 4 units for both 

surfaces, and roughness standard deviations of 1.432 and 0.716 were used. The surface 

statistics and radar wavelengths used are identical to those used by Fung and Chen (1985), 

but the angle of incidence is extended to 89° here. The surface lengths used in the moment 

method at the different radar wavelengths and angles of incidence meet the conditions in 

eqn. (5-9), and are shown in Table-I. 

Table 1. Surface lengths (unit) used in moment method computations for different incident 

radar wave lengths and various incident angles 

Angle of incidence (degrees) 

2.87 14.48 26.74 40.54 58.21 71.81 80 84 87 89 

Radar 36 360 360 360 360 360 360 347.2 343.8 342.4 342.05 

wavelength 9 90 90 90 90 90 90 86.82 85.97 85.62 85.51 

(units) 4.5 45 45 45 45 45 45 43.41 42.99 42.81 42.76 
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Results 

Figures 18(a)-(c) show the calculated backscattering coefficients at horizontal 

polarization from a Gaussian surface whose roughness standard deviation is 1.432 units at 

radar wavelengths of 36, 9, and 4.5 units. Shown are the predictions of the 

periodic-surface moment method (MMPS), the traditional moment method using a tapered 

illumination weighting function (MMTW), and the Kirchhoff approximation. At angles of 

incidence less than 60°, the results here are identical to those of Fung and Chen (1985). 

At small and moderate incident angles, the moment method calculations using both the 

periodic surface and the illumination weighting function are nearly identical for all surface 

roughnesses. However, MMTW gives much higher scattering values at angles greater than 

(a). >..=36 units. 
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70° at all radar wavelengths. 

Figure 18(a) shows the backscattering coefficients calculated when the radar 

wavelength was 36 units. The values predicted theoretically using SPM agree with the 

calculations of MMPS to within ldB at angles of incidence up to 89° ( the largest 

modeled). The Kirchhoff approximation shows good agreement with the PS moment 

method at small incident angles (0<25°), but shows very poor agreement at larger angles. 

Figure 18(b) shows the backscattering coefficients from the same surface as in Figure 

18(a), but with the radar wavelength reduced to 9 units (the radar frequency is increased). 

At this wavelength, SPM does not agree with MMPS at any incident angle. The Kirchhoff 

approximation agrees with MMPS calculations when 0i<40°. Figure 18(c) shows the 

backscattering coefficients from the same surface when the radar wavelength was further 

reduced to 4.5 units. In this case, the Kirchhoff approximation agrees quite well with the 

MMPS calculations at all angles of incidence, while SPM does not agree well at any angle. 

Figure 19 shows the scattering at vertical polarization from the same surface as in 

Figure 18. Again the periodic-surface and illumination-weighting-function moment 

calculations give nearly identical results at small and moderate incident angles, but the 

weighting function gives significantly higher values when 0i>80°. In part (a) of Figure 19, 

the radar wavelength was 36 units. At this wavelength, the MMPS numerical results agree 

with SPM predictions at angles of incidence up to 72°. However, at larger angles the 

MMPS coefficients drop rapidly with increasing angle while the SPM predictions continue 

to increase. At 0i=89°, SPM predicts backscatter that is 30dB higher than that calculated. 

The Kirchhoff approximation agrees with numerical predictions at angles less than about 

20°. 

The radar wavelength has been reduced to 9 units in part (b) of Figure 19. In this case, 

SPM does not agree with MMPS at any incident angle. The Kirchhoff approximation 

shows fairly good agreement with MMPS when 0i<60°, but rapidly diverges at larger 

angles. Again, the backscatter predicted by MMPS drops rapidly at large angles of 

incidence. 

In Figure 19( c) the radar wavelength has been further reduced to 4. 5 units. In this case, 

the Kirchhoff model agrees with the MMPS calculations out to 70 and rapidly drops at 

greater incidence. The SPM does not agree well at any angles. 
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{c). 1..=4.5 units. 

20 O·-. 

,.... a ID 
"C 

0 ....... 
C: 
.!!1 
~ 
ai -20 0 
(.) 
i:,, ·0 C: ·.:: 
Cl) -40 .... .... 
0 
u 
Ill 

.Y. --+-- MMPS u 
0 -60 ~ MMlW m . ·0··· SPM ~- KS 

0 
-80 

-100 
0 10 20 30 40 50 60 70 80 90 

Incident angle 

Figure 19(cont.). Backscattering coefficient of Gaussian surface, cr=l.432 units, 
vertical polarization. 

The scattering calculations were also applied to a surface whose roughness was reduced 

by a factor of 2 (roughness standard deviation of 0.7163), The results are shown in 

Figures 20 and 21, for horizontal and vertical polarization, respectively. The dependence 

of the backscattering coefficient on angle of incidence predicted by the various theoretical 

and numerical techniques are quite similar to that obtained with the rougher surface. The 

primary difference is that the Kirchhoff approximation does not agree with M:MPS 

numerical results as well at the smallest radar wavelength at large incidence angels for 

horizontal polarization. 
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Discussions 

The calculations confirm that the periodic-surface moment method implementation 

overcomes the limitations of the traditional moment method (with an illumination 

weighting function) when calculating the scattering from random rough surfaces at large 

incidence angles. This is primarily demonstrated by the excellent agreement between SPM 

and the numerical results in Figure 18{a) and 20(a) and between the Kirchhoff 

approximation and the numerical results in Figure 18(c) and 20(c). Although the 

agreement between the theoretical models and the numerical results is not as good at large 

incidence at vertical polarization as at horizontal polarization, this is- due to limitations in 

the scattering theories and not the numerical technique. 

SPM has been previously shown to accurately model the scattering from Gaussian 

surfaces at angles ofincidence less than 60° when the conditions of (6-10) and (6-11) are 
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(b). >..=9 units. 
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(c). X=4.5 units. 
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vertical polarization. 

met. This study shows that these conditions are also sufficient at horizontal polarization at 

incident angles up to 89° . At vertical polarization, SPM is valid under these conditions at 

incident angles up to 70° . At higher angles, the actual scattering drops rapidly while SPM 

predictions remain approximately constant. Possible reasons for this discrepancy are the 

excitation of surface waves and diffraction that SPM does not predict, and are not present 

at horizontal polarization. 

The Kirchhoff approximation has previously been shown to be valid when the locally 

projected radius of curvature is large comparable to or larger than the wavelength, 

( equation ( 6-6) and ( 6-7) ). These calculations show that these conditions are sufficient at 

angles of incidence up to 85° at horizontal polarization and up to 70° at vertical 

polarization. The discrepancies at higher incidence angles are due to the self-shadowing 

introduced by the very rough surface and (at vertical polarization) wave diffraction. 
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Scattering from Power-Law Surfaces 

Natural surfaces are much better described by power-spectral densities that follow an 

inverse power law (Kim, 1992). Here we examine scattering from surfaces whose 

power-spectral-density is given by 

W(K) ={ 
0 

a 
8IKl 3 

IKl<Ko 
(6-20) 

where a is a dimensionless constant equal to 8. lxlo-3 and Ko is an arbitrary wave 

number threshold that will be varied in the scattering calculations. This spectrum 

corresponds to the saturated region of the one-dimensional Pierson-Moskowitz ocean 

wind-wave spectrum (Thorsos, 1990). The variance of the surface height is 

er2 = dKW(K) = -Joo a 

- 4K~ 
(6-21) 

Figure 22(a) shows a typical surface whose roughness spectrum is given by (6-20). Note 

that this surface has significantly greater high-frequency energy than the Gaussian surface 

of Figure 17(a). Figure 22(b) shows the autocorrelation estimated from 100 sample 

surfaces generated using the spectral technique. Also shown is the theoretical 

autocorrelation, obtained by numerically integrating the inverse Fourier transform of 

equation (6-20). The calculated and theoretical autocorrelations show excellent 

agreement. Compared with Gaussian surface in the previous section we should note that 

power-law surface is multiscale surface and much rougher than Gaussian surface when 

both surfaces have the same correlation length. 

The statistics of the power-law surface are defined entirely by the standard deviation er. 

Given er, the wave number threshold Ko is determined from equation (6-21). Moreover, 

with a fixed a the K-3 dependence of the spectrum ensures that the radar scattering is a 
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function of the standard deviation normalized to the radar wavelength (er/').,) (Rodriquez 

et al., 1992). Therefore, the scattering from power-law surfaces with three different er/')., 

values was calculated. The surface parameters used are summarized in Table 2. 

Ao = 2rc/ Ko is the longest surface wavelength included in the surface spectrum. 

Table 2. Parameters used in power-law surface scattering calculations. 

Kolk er/'J.., Ao/A 

0.00716 1 140 

0.0716 0.1 14 

0.716 0.01 1.4 

The sample surface from which the scattering is calculated should contain at least one 

cycle of the lowest non-zero wave number in the spectrum. Thus, the surface length must 

meet 

L > 2rc 
Ko 

(6-22) 

Table 3 summanzes the numerically modeled surface lengths at the various surface 

roughnesses and angles of incidence. Note that when L=l39A the moment method 

sampling period was increased to ')., /7 to avoid excessive computational time. Thus, this 

case will produce slightly less accurate results than the other cases where A/10 was used. 

Table 3. Surface lengths used in PS model computations. 

(a). er/').,= 0.01, Ko /k=0.00716. 

0 (degree) 2.86 8.63 14.48 20.49 21 33.37 48.59 71.81 82 87 89 

L(l) 10 10 10 10 9.73 10 10 10 9.6 9.53 9.53 

(b). er/').,= 0.1, Ko/k=0.0716. 

0 (degree) 2 2.15 13.74 29.18 43.43 59.6 69.64 80.93 84 87 89 

L(A) 42.98 40 40 40 40 40 40 40 39.72 39.55 39.51 
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(c). cr!A.:;: 1, Ko/k=0.716 

0 (degree) 1.43 7.18 18.96 31.67 46.47 61.05 77.16 84.27 89 

L(A.) 139.63 139.63 139.63 139.63 139.63 139.63 139.63 139.63 139.62 

Results 

Figure 23 shows the scattering coefficients calculated for the power-law surfaces at 

horizontal polarization. Also shown are the theoretical scattering coefficients calculated 

using the small-perturbation model and the Kirchhoff approximation. The surface 

roughness in part (a) of the figure was cr/A.=0.01. There is a dramatic change in the 

backscatter at 0;=20°. At this angle, the Bragg resonance condition is met for the lowest 

(a). KO/k=0.716, a/>.=0.01. 
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wave number included in the surface spectrum: 

Ko =2ksin8i (6-23) 

At angles of incidence below 20°, there are no surface wave components that are first 

order Bragg-resonant, so SPM predicts no backscatter. The Kirchhoff approximation 

shows fair agreement with the numerical results in this region. At all incident angles above 

20°, SPM agrees with the numerical results to within ldB. 

Figure 23 (b) is the backscattering coefficients when the surface roughness was 

increased to ~ =0.1. Because the threshold Ko is smaller for this surface, the angle below 

which SPM predicts no backscatter is much smaller. At angles of incidence greater than 

20°, SPM and the numerical calculations show excellent agreement. At lower angles, the 

Kirchhoff approximation gives a better prediction of the calculated scattering (to within 

ldB). 

Figure 23(c) shows the backscattering coefficients calculated for a very rough surface 

(cr/'A. = 1 ). SPM predictions agree with the numerical calculations to within 3 dB at angles 

of incidence greater than 30°. At smaller angles, the Kirchhoff approximation gives a very 

accurate prediction of the numerical calculations, but again diverges rapidly at higher 

angles. 

Figure 24 repeats the calculations in Figure 23 at vertical polarization. The surface 

roughness was cr/'A.=0.01 in part (a). Again, the calculated scattering changed 

dramatically at the incident angle given by equation (6-23). Above this threshold. SPM 

shows excellent agreement with the numerical calculations at all but the largest incidence 

angles. When Si >88°, the numerical values drop rapidly while the SPM results remain 

about constant. The Kirchhoff approximation is accurate at about 8i=30°, but diverges at 

higher and lower angles. 

Figure 24(b) shows the results when the surface roughness was cr/'A. =O .1. SPM agrees 

with the numerical calculations at angles of incidence ranging from about 25° to 85°. At 

higher angles the numerical results drop rapidly while SPM remains approximately 

constant. Below 25°, the Kirchhoff approximation yields a very good prediction of the 

numerical scattering. 
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Figure 24( cont.). Backscattering coefficient of power-law surface (K."3) at vertical 
polarization. 
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Figure 24( c) shows the calculated backscattering coefficient from the very rough 

surface where c:r/11.=l.O. In this case, the range of validity of SPM has reduced to 30° <0; 

<80°. The Kirchhoff model again shows excellent agreement with the numerical 

calculations at smaller incidence angles. 

Discussions 

When c:r/11.=0.0l or c:r/11.=0. l, the conditions for the validity of SPM are met. 

Therefore, it is not surprising that the SPM theoretical results agree well with the 

numerical calculations at angles of incidence above 20° (the minimum where SPM is valid 

for any surface) for these surfaces except very large angles at vertical polarization ( where 

SPM was shown to be invalid in the study of Gaussian surface scattering). When c:r/1..=l.O 

(Figures 23(c) and 24(c)), the condition kc:r = 21tc:r/11.<0.3 is not met. However, SPM still 
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gives an accurate prediction of the scattering for this surface at moderate and large angles 

(again except for the largest angles at vertical polarization) while the Kirchhoff 

approximation gives good results at smaller angles. This can be understood using a 

two-scale description of the surface (Wright, 1968). In this, a threshold is artificially 

introduced into the surface spectrum. The surface displacement introduced by 

surface-wave energy above the threshold is small compared to the radar wavelength, and 

SPM is used to predict the backscattering from this small-scale roughness at moderate and 

large angles of incidence. The surface-wave energy at wave numbers below the scale 

transition gives displacements that are large compared to the radar wavelength .. This wave 

energy contributes to the backscatter in two ways. At small incidence angles, this 

large-scale roughness meets the criterion for the Kirchhoff approximation to be valid, and 

the electromagnetic energy is scattered through this mechanism. At moderate and large 

incidence angles, the large-scale roughness changes the local incidence angle and therefore 

the Bragg resonance condition. However, since the large-scale tilt is random, its effects 

are averaged out when · the scattering from large areas is calculated. The scattering 

characteristics exhibited in Figures 23(c) and 24(c) closely follow that expected for a 

two-scale surface, thereby showing that the two-scale model accurately predicts the 

scattering from the power-law surface at all angles of incidence and both polarization, 

except for vertical polarization at extremely large incidence angles. 

The results here further suggest that the reduction in backscatter at vertical 

polarization at extremely large angles of incidence is due to surface shadowing and 

diflraction effects. When a/A.=0.01, the surface roughness is quite small, and parts of the 

surface will be shadowed only when the incident angle is extremely large, corresponding 

to the reduction in scattering at only the largest incidence angles in Figure 24(a). As cr/A. 

increases, surface shadowing will occur at smaller angles, thereby giving the reductions at 

smaller angles exhibited by Figures 24(b) and 24(c). As was the case with Gaussian 

surfaces, scattering at horizontal polarization appears to be much less susceptible to this 

effect. 
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The moment method has been investigated as a technique to numerically predict the 

scattering of electromagnetic waves from a rough surface such as the ocean surface at 

large angles of incidence (small grazing angles). Use of an illumination weighting function 

had been shown to give incorrect results at this angular region. Instead, an approach that 

assumes the surface is periodic was adopted. Using this assumption introduces an infinite 

summation into the integral equations that describe the scattering. Numerically truncating 

the summation to a finite number of periods introduces an edge difrraction component into 

the calculated scattered field (edge effects). The edge effects are strongly dependent on 

the incident angle and physical size of surface included in the summation (the period of the 

surface multiplied by the number of periods). At very large incident angles (small grazing 

angles) many terms must be included in the summation, so direct evaluation of all moment 

matrix elements is cost prohibitive. 

A technique to efficiently evaluate the summations has been developed. It expands the 

summation into a series of universal summations that are identical for every matrix 

element, plus a much smaller direct summation that includes the dependence on the 

individual elements. Use of these universal summations requires only a slight increase in 

computation time over traditional methods that use only a single period, but yields much 

greater accuracy at large incident angles. The model has been developed for horizontal and 

vertical polarization scattering using both electric field and magnetic field integral equation 

moment method implementations. 

The accuracy of the model has been investigated through theoretical analysis and 

application to practical scattering problems. At small incident angles, discretization errors 

due to the moment method sampling of the surface dominate. At large incident angles 
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the errors introduced by edge diffraction ( edge effects) dominate. This error can be 

reduced by increasing the number of periods included in the surface or by increasing the 

period itself, thereby physically moving the edge farther from the reference section. By 

including enough sections, the model can be applied even at very small grazing angles. 

The models were applied to slightly-rough simple surfaces whose theoretical scattering 

characteristics are well known. Bragg resonant scattering was accurately predicted, and 

the edge effects at small grazing angles were reduced to well below the scattering 

coefficients expected for actual surfaces. Similar results were obtained using the EFIE or 

MFIE formulations for horizontal polarization and the MFIE formulation for vertical 

polarization, although the EFIE model achieved acceptable results with somewhat fewer 

periodic sections than the MFIE model at horizontal polarization. It was shown that 

100,000 surface periods must be included in the universal summations to reduce the 

edge-effect scattering to levels well below the expected rough-surface scattering at angles 

of incidence up to 89° . 

The models were also applied to random rough surfaces. The calculated scattering 

coefficients were compared to the predictions of the small perturbation method and 

Kirchhoff approximate scattering theories, and to the scattering calculated using the 

traditional moment method using an illumination weighting function. Analysis of the 

scattering from surfaces whose power spectral densities are described by Gaussian 

envelopes confirmed that the periodic surface moment method can be used at incident 

angles up to 89° at both horizontal and vertical polarization. SPM gives a very good 

prediction of the scattering from small-scale rough (with respect to radar wavelength) 

surfaces at all incident angles at horizontal polarization. At vertical polarization, SPM fails 

to predict the rapid drop in scattering at large incident angles that appears in the numerical 

results. The Kirchhoff approximation accurately models the scattering from large-scale 

rough surfaces at large incident angles at horizontal polarization, but significantly under 

predicts the scattering at vertical polarization. 

The scattering from a power-law spectrum surface was also examined. The relative 

roughness of the surface was varied by changing the threshold Ko of the minimum 

wavenumber that was included in the surface spectrum. When the surface roughness is 

small compared to the radar wavelength, SPM agrees well with numerical calculations at 
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horizontal polarization at all incident angles where a Bragg resonant surface wave is 

present, including near-grazing angles. At vertical polarization, SPM again fails to predict 

the rapid decrease in scattering at large incidence angles. The magnitude of this reduction 

depends on the surface roughness, indicating that it is at least partially due to surface 

shadowing. When the rms roughness of the power-law surface is large compared to the 

radar wavelength, the scattering characteristics are similar to that predicted by the 

two-scale surface scattering model at both polarizations, at low incident angles the 

Kirchhoff approximation is valid, while at large incident angles SPM applies. The primary 

discrepancy is that again the scattering drops rapidly at large incidence angles at vertical 

polarization, a characteristic that is not predicted by SPM. 
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