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Chapter 1 

Introduction 

Many of the most common inferential statistical techniques in use today fit 

under the umbrella designation of the Generalized Linear Model (GLM) (Agresti, 

1996). What do these techniques have in common? All assume that a set of 

dependent variables ( y;, Y2 , ••• , Yn) can be modeled by a set of linear equations in 

m independent variables, as follows: 

Y; = a1 +b11X11 +b21X21+ ... +bm1Xm1 +e1 

Y2 = az +b12X12 +b22X22+ ... +bm2Xm2 + Bz 

When the dependent variables are assumed to be continuous, the model 

is referred to as the General Linear Model. Techniques in this model include the 

independent samples t test, analysis of variance (ANOVA), analysis of 

covariance (ANCOVA), multiple regression, multivariate analysis of variance 

(MANOVA), and multivariate analysis of covariance (MANCOVA). Though some 

of these techniques (and their variations, such as repeated measures) require 

specialized assumptions, all contain the following three assumptions: 

1) Each Y; (i=1, ... ,n) is sampled from a normal population. 

2) The n population variances are equal. 
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3) Each observation y;j (i=1, ... ,n; j=1, ... ,N) is independent of all other 

observations. 

The Problem 

In the field of applied statistics, much research has been devoted to the 

topic of what researchers should do when, as often happens in the real world, 

experimental data does not completely conform to the assumptions required by 

the model. Glass, Peckham, and Sanders (1972) observe that little of what we 

know about what happens to inferential statistical procedures under non-ideal 

conditions is due to mathematical proofs. Instead, much useful information 

comes from Monte Carlo studies of various conditions which violate the 

assumptions of the statistical model. Modern computers have increased the use 

of this technique, and today, there is a substantial body of literature detailing the 

consequences of the violation of assumptions for many of the tests falling under 

the General Linear Model. 

In addition to examining what happens when the given assumptions are 

violated for a particular test, researchers have pursued the development of 

alternatives to statistical tests within the General Linear Model. In the 1950s and 

1960s, non-parametric alternatives to common tests were developed which did 

not require the assumption that the sampled populations be normally distributed 

(Conover, 1981 ). More recently, development has centered on parametric 

alternatives which do not require the assumption of homogeneity of variance. 

These alternatives may eventually replace the most common techniques taught 
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today. Before this can happen, researchers must build up a substantial body of 

knowledge comparing the different tests. 

Robustness and Power: Type I and Type II Error 

According to Keselman, Lix, and Keselman (1996), Box (1953) coined the 

term robustness to refer to insensitivity of a statistical test's rates of Type I error 

and power to violations of its derivational assumptions. In robustness studies, a 

"nominal" Type I error rate is set (e.g., at a =.05), and a large number of trials are 

run, sampling from the same specified population (for example, a skewed, rather 

than a normal, population). The estimated "actual" Type I error rate (the 

proportion of trials in which the test detects a false difference) is then compared 

to the nominal rate. ANOVA, for example, is said to be robust to violations of the 

assumption of normality, because a number of Monte Carlo studies have found 

that the actual Type I error rate does not vary a tremendous amount from the 

nominal Type I error rate. This is good news, for it means that researchers using 

data from non-normal populations can safely interpret significant results from 

ANOVA. 

Power, on the other hand, refers to the ability of the statistical test to 

detect a true difference (the avoidance of Type II error). For any given statistical 

test and a fixed sample size, Type I and Type II error rates are inversely related; 

that is, decreasing the Type I error rate (i.e., setting a very stringent alpha level) 

will decrease the probability of detecting a true difference (Type II error), and 

thus will decrease power. The researcher who has settled on a given technique 

must thus strike a balance between Type I and Type II error rates. 
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The developer of new statistical techniques, on the other hand, wants to 

find new tests which will be both robust and powerful when compared to existing 

tests. Certainly, a test which eliminates one assumption appears to have a good 

head start on the process. However, the group of non-parametric tests, which 

eliminate the assumption of normality, have lost popularity since Monte Carlo 

studies have shown that (1) they are largely unnecessary, since in most cas·es, 

parametric tests are robust to violations of normality; and (2) they have lower 

power than the non-parametric tests (Glass, Peckham, & Sanders, 1972). As we 

shall see, the parametric tests are more sensitive to violations of the assumption 

of homogeneity of variance, prompting the development of another group of 

alternative tests. 

Parametric Alternatives to Tests Within the General Linear Model 

The "Behrens-Fisher problem" is the name generally used to refer to 

heteroscedasticity in problems using the statistical tests contained in the general 

linear model. Heteroscedasticity refers to the condition in which different 

experimental groups are sampled from populations with unequal variances. The 

term "Behrens-Fisher'' comes from the work of Behrens (1929), who found a 

solution to the problem of heteroscedasticity; and Fisher (1935), who showed 

that Behrens's solution could be derived from Fisher's fiducial principle. Today 

there are a number of solutions to the Behrens-Fisher problem. In general, 

these alternative tests compare favorably with their counterparts in the General 

Linear Model. However, none are commonly used. Only a few (such as the 

Welch test) are available on the most widely used statistical software packages 
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such as SAS and SPSS, and they are often omitted in beginning statistical 

textbooks. It is not clear why this is the case, though perhaps it is believed that 

their advantages, though well-documented, are not large enough to warrant a 

wholesale change. In the case of parametric alternatives to MANOV A, there 

simply are not enough Monte Carlo studies of alternatives completed yet to have 

a clear picture of which alternative tests, if any, are superior. 

Purpose of the Study 

The purpose of this study is to compare the Type I error rates and powers 

of selected alternatives to MANOVA under a variety of conditions. The Pillai­

Bartlett (Bartlett, 1939; Pillai, 1955) test, the Johansen (1980) test, and four 

Coombs-Algina (1996) tests will be compared under conditions of non-normality, 

heteroscedasticity, and dependence of observations. The specific conditions 

have been chosen with two basic criteria in mind: (1) to mimic conditions which 

violate the stated assumptions of the General Linear Model, but which might 

reasonably be expected to occur with some frequency in educational research; 

and (2) to cover a range of conditions, such as the number of dependent 

variables, and the number of groups, that will either lend confidence that our 

conclusions are stable, or will point out that the choice of a "best" alternative test 

is dependent on the conditions themselves. 

Two questions have emerged to guide the research in this study. 

Research Question 1 . Do rejection rates differ as a function of the 

statistical test used, total sample size, the number of groups, the number of 
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dependent variables, the number of subjects per subgroup, the intraclass 

correlation, the population effect size, and the type of noncentrality? 

Research Question 2. Under what conditions does each test maintain 

adequate control of Type I error rate and have suitable power? 

Significance of the Study 

Educational researchers who choose quantitative methods, and who 

believe that their research will lead to improved teaching and learning, are 

dependent on both the robustness and the power of the statistical tests they 

choose. Since the researcher searching for an inferential test is only sampling 

from a larger population, (s)he usually does not know the true population 

parameters. A non-robust test, applied to samples from populations which 

violate the chosen test's assumptions, may lead the researcher to conclude that 

there is a difference between groups when none exists. A test with low power 

may fail to detect a difference when one does exist. In either case, a substantial 

amount of effort is wasted. 

Stevens (1992) notes that research designs using multiple dependent 

variables are common in education, because educational treatments often affect 

more than one variable at the same time, and also points out that in many 

situations, the use of a multivariate test is preferable to the use of separate 

univariate analyses when multiple dependent variables are being measured. 

Thus, there is a need for robust, powerful tests which will detect the presence of 

group differences on multiple dependent variables. As we shall see, MANOVA, 

like ANOVA, suffers from non-robustness under certain conditions, most notably 
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heterogeneity of variance. It is therefore important to know whether any of the 

several MA NOV A alternatives which have been developed will perform better 

than MANOV A under violations of assumptions that are likely to be encountered 

in research practice. This study will extend the knowledge of the performance of 

several of these tests under a variety of conditions. 
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Chapter 2 

Review of Literature 

Historically, development of statistical tests has followed a pattern 

beginning with examination of differences between two groups, then moving on 

to differences between several groups; and with examination of group differences 

using one dependent variable, then moving on to examination of group 

differences using several dependent variables. The recognition that each test is 

a special case of a more general pattern, in this case what we have referred to 

as the General Linear Model, came later still. The development of tests which 

are alternatives to the General Linear Model followed a similar pattern. This 

chapter traces the development of both the General Linear Model tests and their 

parametric alternatives in that same order. After all of the tests are presented, 

the literature which deals with their comparative effectiveness is examined. It will 

be seen that many of the original ideas for alternatives to the simple Jtest have 

been extended to accommodate several groups and to accommodate several 

dependent variables. Some generalizations may also be drawn about the 

relative robustness of each type of solution. 

Univariate Tests Comparing Two Means 

The independent samples Jtest is used to compare two means when 

independent random samples have been drawn from two normal populations 

with equal variances. The test statistic is 
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where the pooled variance is computed as 

Welch (1938) developed several alternatives to the independent samples t 

test which do not require the assumption of equal variances for both groups. The 

Welch y statistic, or tv, is calculated as 

t = V 

X 1 -X2 

2 2 s1 s2 -+­
n, n2 

The critical value must be determined by the use of either: a) approximate 

degrees of freedom (APDF) solutions orb) series solutions. The APDF solutions 

approximate the degrees of freedom which define the sampling distribution. 

Series solutions are derived by utilizing a series expansion to determine the 

critical value to be used. The degrees of freedom for the APDF solutions are 

given by 

(a~ + a; ]2 
n1 n2 

f=--------
0'4 (J' 4 

--'-+ 2 

n~(n, -1) nJ(n2 -1) 

In practice, a; is estimated by s;, the sample variance. The first three terms of 

critical values for the series solutions are shown in Table 1. The zero-order test 

is often called the asymptotic test. The first- and second-order tests are 

generally referred to as James's first-order and second-order test, since James 

(1951, 1954) generalized those terms of Welch's series solutions to both the G-

sample case (an alternative to ANOVA) and the multivariate case (an alternative 
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· Table 1. The First Three Terms of the Critical Value for tv 

Power of (n; -lr Term 

Zero z 

One 

z 
[ 2 2 ]2 I!L 

i=I n; 

Two 
2 [ 2 J2 L S; 

[ 
1 + z2 i=I n; (n; -1) 

z --2 [ 2 2]2 ~:i 
2 (::)' 2 

~ n;-1 

15 + 32z2 + 9z4 
----'=-----=-

32 [ 2 2 ]4 I!L 
i=I n; 
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to MANOVA). Aspin (1948) investigated the third- and fourth-order terms.· The 

APDF solution is commonly known simply as the Welch test. 

Yeun (1974) developed a variation of the Welch test based on trimmed 

means and Windsorized variances, to improve power when sampling from long-

tailed symmetric distributions. The j-times trimmed mean is defined by omitting 

the j highest and j lowest scores, and dividing by (n-2j), rather than n. The j-

times Windsorized mean is obtained by replacing the scores omitted from the 

trimmed mean with (j+ 1) times the lowest and highest scores remaining: 

The j-times Windsorized variance is defined in a similar manner: 

Yeun's test statistic is 
- -

• x(it - X(i2 
tv = ---;::==2 ====2 == 

8 wjl 8 wj2 ---+---
(n1 -2j1) (n2 -2j2) 

The critical value is a percentile of Student's t distribution with ft degrees of 

freedom, where 

Wilcox (1992) defined the H test based on the one-step m-estimator of 
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location: 

where xmi is the one-step m-estimator in the ith group and s!i is the estimated 

sampling variance of xmi. To define xm, let MAD be the median absolute 

deviation, and let s = MAD+.6475, let j 1 be the number of observations for which 

(x - M)/s < -1.28, and j 2 be the number of observations for which 

(x-M)/s > 1.28. Then the one-step m-estimator used by Wilcox is 

Let 'P(x) = max{-k,min(k,x)}. Then 

Wilcox employed a bootstrap procedure to calculate the critical value for H; the 

reader is referred to Wilcox (1992) for details. 

Univariate Tests Comparing G Means 

The ANOVA F test compares G means ( G ~ 2) when independent random 

samples have been drawn from normal populations with equal variances. The 

test statistic is 

where 

MSb 
F=--

MS ' w 

G 2 

I_nJxi -x.) 
MS = _i=_1 ----

b G-1 
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G 

L(n; - l)s/ 
MS = _i=_1 ---

w N-G 

and 

- 1 f-x. =- .L,.X;. 
G i=l 

The AN OVA test statistic has an F distribution with G-1 and N-G degrees of 

freedom, where N is the size of total sample. 

Welch (1951) generalized the Welch (1947) APDF solution for G groups 

as follows: 

where 

[ 
2 l-1 

W; = :i , i::1, ... ,G, 

G 

w= LW;, and 
i=l 

G -- LW;X; 
X - --- . 

i=l w 

Fv is approximately distributed as Fwith G-1 and f. degrees of freedom, where 

f. = / f-i- 1- W; [ 2]~ 
G - 1 ,=, n; - 1 ( w ) 

James (1951) generalized the Welch (1947) series solutions using 

G 

J = L w; (x; - .x)2 , where w;, x;, and x are defined as above in the Welch APDF 
i=l 

solution. For the zero-order or asymptotic test, the critical value is a percentile of 
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a chi-square distribution with G-1 degrees of freedom. This distribution will not 

accurately approximate the sampling distribution of the test statistic unless 

sample sizes are sufficiently large. The James first- and second-order tests 

adjust for this problem; the second-order test is computationally intensive and is 

not presented here. The reader is referred to James (1951) for details. Oshima 

& Algina (1992a) wrote a computer program which computes the second-order 

test. The first order test computes 

( 2) 2 [ 3x;_,-a +G+lf 1 ( w.)2] 
2h S; = Xc-l;a l+ (, 2 - ) Li-_- 1--' ; 

2 G 1 i=l n; 1 w 

if J ~ 2h( s~) then the null hypothesis is rejected. 

Brown and Forsythe (1974) extended the Welch (1947) APDF test to G 

groups somewhat differently than Welch (1951 ), and proposed the test statistic 

G 

ln;(x; -x.)2 
p* = _i=-=-' ----± (1- 5-)s~ ' 

i=l N 

approximately distributed as Fwith G-1 and g2 degrees of freedom, where 

For two groups, the Brown-Forsythe and the Welch (1951) APDF tests are both 

equivalent to the Welch (1947) APDF test. 
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Rubin (1982) extended the Brown-Forsythe test by replacing the first 

degree of freedom, G-1, with g1 =[f(1-!::L \;]2[[f !::Ls;2 ]
2 
+ f(1-2!::L \;]-1 

z=l N ) z=I N z=I N ) 

Wilcox has developed two alternatives to ANOVA which are 

generalizations of tests from the two-group case. The first (Wilcox, 1995) is a 

generalization of Yeun's test: 

where 

G 

w· = L w;, and 
i=l 

- 1 f ·-
xi = -. £.. W; xtji • 

W i=I 

The statistic Fv* is approximately distributed as F with G-1 and J/ degrees of 

freedom, where 

Wilcox (1993) also generalized his H test to G groups, using 

where 
G 

xm = LX;m /G. 
i=l 
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The critical value of Z is determined by bootstrap methods; the reader is referred 

to Wilcox (1993) for details. 

Alexander and Govern (1994) developed the test statistic 

G 

A= I_z;, 
i=l 

where 
c 3 + 3c 4c 7 + 33c5 + 240c3 + 855c 

z. = C + ----------
' b · 10b2 + 8bc4 + 1000b 

a= n; -1.5, 

b = 48a 2 , 

- + 
t. = Y; -y 

I 

G 

y+ = L W;.Y;' 
i=l 

1 

and 
I 

n; 2 2 

L(Yj -y;) 

The statistic A is approximately distributed as x2 with G-1degrees of freedom. 
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Multivariate Tests Comparing Two Means 

Hotelling's ( 1931) T 2 compares two mean vectors when independent 

random samples have been drawn from multivariate normal populations with 

equal variance-covariance matrices. The test statistic is 

where 

S= (n1 -l)S1 +(n2 -l)S2 , 

n1 +n2 -2 

xi is the sample mean vector for the Ah group, and Si is the sample covariance 

matrix for the ,th group. Then if p is the number of dependent variables, 

n1 + n2 - p - 1 yz 

(n1 +n2 -2)p 

has an F distribution with p and n1 + n2 - p- 1 degrees of freedom. 

There are several alternatives to T 2 which do not require the assumption 

of equal covariance matrices. The James (1954) first- and second-order tests, 

Johansen (1980) test, Nel and van der Merwe's (1986) test and Yao's (1965) test 

are all based on the following test statistic: 

They differ only in their critical values. James (1954) generalized the James first-

and second-order tests which are alternatives to the independent samples t test. 

The first-order test uses critical value x!;p ( B + x!;p c) where 
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and 

where tr is the trace operator, A; = S; In;, and V = A 1 + A 2 • James's second-

order test is computationally intense and is not presented here; the reader is 

referred to James (1954) for details. 

Johansen's (1980) test is a generalization of the Welch (1947) APDF test 

with test statistic T/ I c1 where 

and 

6A 
c1 = p+2A---

p+2 

The critical value is a percentile of the F distribution with p and p(p + 2) I 3A 

degrees of freedom. 

Another generalization of the Welch APDF test was developed by Yao 

(1965). The test statistic is 
F = f2 - p+l y2 

v Pf2 v ' 

where 

_1=:I 1 2 2 ( ]2 
!2 i=l (n; -1) T_,2 ' 

and 
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Nel and van der Merwe (1986) presented yet another generalization of the Welch 

APDF solution, using the test statistic 

where 

F = f3 - p+ 1 T2 
V pf3 V ' 

f _ trV 2 + tr 2V 
3 - 2 A2 2A L,tr ; +tr ; 

i=I n. -I 
I 

The critical value is a percentile of the F distribution with p and f 3 - p + I degrees 

of freedom. 

A different alternative to T 2 was presented by Kim (1992). The test 

statistic is 

where 

p p 

c2 = L, L~ IL, Lj , 
j=I j=I 
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dj is the fth eigenvalue of A1A;1 , and J2 is calculated as in Yao's procedure. 

· The critical value is a fractile of the F distribution with m and J2 - p + 1 degrees of 

freedom. 

Comparisons of Performance for the ANOVA FTest and Alternatives 

The ANOV A F test is not robust with respect to violations of the 

assumption of homogeneity of variance (Brown & Forsythe, 197 4; Clinch & 

Keselman, 1982; Harwell, Rubinstein, Hayes, & Olds, 1992; Kohr & Games, 

1974; Rogan & Keselman, 1977;Tomarken & Serlin, 1986; Wilcox, 1988; Wilcox, 

Charlin & Thompson, 1986). In other respects, however, its performance 

generally parallels that of the 1 test. It is known to be conservative under the 

positive condition, and liberal under the negative condition (Box, 1954a; Brown & 

Forsythe, 1974; Clinch & Keselman, 1982; Horsnell, 1953; Rogan & Keselman, 

1986; Wilcox, 1988; Wilcox, Charlin & Thompson, 1986). When comparing the 

Type I error rates of Fwith the alternative Brown-Forsythe test, the James first-

and second-order tests, the Rubin test, the Welch test, Alexander and Govern's 

test, and the Wilcox Z, when sampling from normal populations with 

heterogeneity of variance, the following observations can be made: 

(a) Each alternative is superior to F (Brown & Forsythe, 1974; Clinch & 

Keselman, 1982; Rubin, 1982; Wilcox, 1988; Wilcox, Charlin & Thompson, 

1986). 
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(b) The Welch test and the Brown-Forsythe test are generally competitive with 

one another, and both outperform the James first-order test (Brown & Forsythe, 

1974).' 

(c) Rubin's test is comparable to the Welch test and performs better than the 

Brown-Forsythe test (Rubin, 1982). 

(d) The James second-order test outperforms both the Brown-Forsythe and 

Welch tests under the greatest variety of conditions (Dijkstra & Werter, 1981; 

Wilcox, 1988). 

(e) The above suggests that the James second-order test will outperform 

Rubin's test. 

(f) The Alexander-Govern test is comparable to the James second-order test 

(Alexander & Govern, 1994). 

Wilcox (1988) suggests another advantage of the James second-order 

test: the Welch test can be liberal even when the assumption of homogeneity of 

variance is met; and the Brown-Forsythe and Welch tests can both be liberal 

when sample sizes are equal but variances are not equal. The James second­

order test did not exhibit these problems. 

When the condition of normality is violated, actual Type I error rates can 

be negatively affected for the Welch test, the Brown-Forsythe test, and the 

James first- and second-order tests (Oshima & Algina, 1992b). Skewed 

distributions have a particularly strong affect on the Welch test and the James 

second-order test. For symmetric distributions, we see results similar to those 

found for the t test and its alternatives: actual Type I error rates can be too high 
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for short-tailed distributions, and too low for long-tailed distributions. For the 

Brown-Forsythe test, the effect of distribution on actual Type I error rates is more 

variable. The Wilcox F; test, which is a generalization of Yuen's (1974) 

trimmed-meansJ, decreases Type I error rates relative to the Welch test, the 

Brown-Forsythe test, and the James first- and second-order tests under 

nonnormal conditions (Wilcox, 1993b). Wilcox's Ztest has actual Type I error 

rates close to nominal Type I error rates for nonnormal as well as normal 

distributions (Wilcox, 1993a). Alexander and Govern (1994) did not study 

conditions of nonnormality for their test. 

The ANOVA Ftest is uniformly the most powerful test when all 

assumptions are met; however, the Brown-Forsythe, Welch, James first-order 

and James second-order tests all have power close to that of F under those 

conditions (Brown & Forsythe, 1974; Dijkstra & Werter, 1981; Tomarken & Serlin, 

1986; Wilcox, Charlin & Thompson, 1986). For three or four groups, Tomarken & 

Serlin (1986) studied how the Brown-Forsythe and Welch tests compare with 

different groupings of population means and variances. They .found that the 

Brown-Forsythe test was more powerful when there was one extreme population 

mean paired with a large variance. The Welch test was more powerful when (a) 

the population means were equally spaced, (b) there was one large population 

mean, one small population mean, and two equal intermediate means, and (c) 

there was one extreme population mean paired with a small variance. Dijkstra & 

Werter (1981) found that the comparison of power between the James second-
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order test and the Brown-Forsythe test was similarly affected by the pairing of 

different population means and variances. 

Comparisons of Performance for Hotelling's T 2 Test and Alternatives 

Like the ANOVA Ftest, the performance of Hotelling's T 2 under 

conditions of heterogeneity of the covariance matrices depends on sample size 

and whether or not sample sizes are equal. If n1 = n2 and both are sufficiently 

large, and if populations are multivariate normal, then T 2 is relatively robust to 

violations of the homogeneity assumption (Holloway & Dunn, 1967; Hopkins & 

Clay, 1963; Ito & Schull, 1964). When sample sizes are not equal, 

heteroscedasticity can strongly affect the actual Type I error rate even when the 

degree of sample size inequality is small (Algina & Oshima, 1990). When the 

larger samples are selected from populations with greater dispersion (the positive 

condition), T 2 is conservative (Holloway & Dunn, 1967; Hopkins & Clay, 1963; 

Hakstian, Roed, & Lind, 1979) and power is lower than it would be under 

conditions of homoscedasticity (Ito & Schull, 1964). When larger samples are 

selected from populations with smaller dispersion (the negative condition), T 2 is 

liberal, and power is higher than it would be under conditions of 

homoscedasticity. 

The effect of heteroscedasticity depends on the relationship between the 

sample sizes ( n1 ,n2 ) and the eigenvalues ( e j, j=1, ... ,p) (Algina, Oshima & Tang, 

1991 ). When the eigenvalues are all equal, then the covariance matrices are 

related by the equation I:1 = d 2I: 2 , where d 2 = e-1 • Holloway and Dunn (1967) 

concluded that when eigenvalues are equal, covariance matrices are unequal 
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and sample sizes are unequal, T2 may either be very liberal, or may be 

conservative with very low power. Changing these conditions to include equal 

sample sizes helped to control the Type I error rate in the liberal case, but did not 

increase the power to a useful level in the conservative case. 

When all assumptions are met, T 2 is the uniformly most powerful test 

which is invariant to affine transformations (Anderson, 1958; Hakstian, Roed, & 

Lind, 1979; Hsu, 1938b; Olson, 1974). For a fixed total sample size, power is 

maximized when sample sizes are equal. Holloway and Dunn (1967) found that 

for fixed sample size, the power declined as the number of dependent variables 

increased. 

When comparing Hotelling's T 2 to its alternatives (the James first- and 

second-order tests, Johansen's test, Kim's test, and Yao's test) under conditions 

of multivariate normality and heteroscedasticity, the following can be said: 

(a) Yao's test outperforms Hotelling's T2 , particularly when sample sizes are 

unequal (Algina & Tang, 1988). 

(b) The James first- and second-order tests, Johansen's test, and Yao's test 

have similar actual Type I error rates (Algina, Oshima & Tang, 1991; 

Subrahmaniam & Subrahmaniam, 1973). This, together with (1 ), implies that the 

James's tests and Johansen's test outperform Hotelling's T 2 • 

(c) The James second-order test, Johansen's test, and Yao's test control actual 

Type I error better than the James first-order test (Algina, Oshima & Tang, 1991 ). 

(d) The ratio of the smaller sample size top, the number of dependent variables, 

affects actual Type I error rates for the James tests, Johansen's test, and Yao's 
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test (Algina & Tang, 1988; Lin, 1991 ), but not for Kim's test (Kim, 1992). When 

min(n1 , n2 ) Ip < 4, actual Type I error rates for the James, Johansen, and Yao 

tests are too high. 

(e) When min(ni,n2 ) Ip is small, Kim's test controls the actual Type I error rate 

better than Yao's test (Kim, 1992), and thus better than the James and Johansen 

tests. 

(f) When min(n1 , n2 ) I p > 4 , Johansen's test is adequate (Coombs & Algina, 

1996-b). 

Christensen and Rencher (1995) performed a limited simulation involving 

the above alternatives plus the Bennett test, the Hwang-Paulson test, and the 

Nel-van der Merwe test, using data sampled from multivariate normal 

populations, with unequal covariance matrices. They found that Bennett's test, 

Kim's test and Nel and van der Merwe's test were best at controlling Type I error. 

Power investigations for alternatives to Hotelling's T2 have been more 

limited. Subrahmaniam and Subrahmaniam (1973) looked at the Yao, Bennett, 

and James first-order tests under conditions of multivariate normality and 

unequal covariance matrices. They found that Bennett's test had low power. 

The James first-order test had the highest power, but the power of Yao's test was 

similar. The power of all three tests declined as the number of dependent 

variables (p) increased. Kim (1992) compared the Kim and Yao tests, again 

under conditions of multivariate normality and unequal covariance matrices, and 

found the tests to have similar power and control of Type I error. Yao's test had 

a slight power advantage in the positive condition, while Kim's test had a slight 
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power advantage in the negative condition. Christensen and Rencher (1995) 

compared power for Hotelling's T 2 with the Bennett, James first-order, Yao, 

Johansen, Nel-van der Merwe, Hwang-Paulson, and Kim tests. They found that 

Kim's test had both high power and a conservative Type I error rate. The Nel­

van der Merwe test performed almost as well as Kim's test and is 

computationally simpler. 

Performance of several alternatives to Hotelling's T 2 under conditions of 

non-normality was examined by Algina, Oshima and Tang (1991 ). They found 

that the James first-order, James second-order, Johansen and Yao tests have 

elevated Type I error rates for skewed distributions. The tests tended to be 

conservative for long-tailed symmetric distributions, and liberal for short-tailed 

symmetric distributions. The magnitude of the difference was dependent on the 

difference between sample sizes as well as the degree of heteroscedasticity and 

the degree of skewness. Everitt (1979) found that T 2 became more 

conservative as populations became more skewed, while Mardia (1975) found 

that that the effect of skewness was minimized with equal sample sizes. 

Comparisons of Performance for MANOVA and Alternatives 

Unlike the univariate two-group, univariate G-group, and multivariate two­

group cases, none of the four MANOVA criteria (Roy's largest root, Hotelling­

Lawley trace, Pillai-Bartlett trace, and Wilks's likelihood ratio) is uniformly the 

most powerful. When evaluating MANOVA and its alternatives, we therefore 

have the additional problem of deciding which of the four MANOVA criteria is 

best for a given situation. The literature suggests that when all MANOVA 
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assumptions are met, the following can be said about power for Roy's largest 

root (R), the Hotelling-Lawley trace (U), the Pillai-Bartlett trace (V), and Wilks's 

likelihood ratio (L): 

(a) If population differences are concentrated along a single dimension, or 

dependent variable (this is known as concentrated noncentrality), then power(R) 

> power(U) > power(L) > power(V) (Olson, 1974; Pillai & Jayachandran, 1967; 

Schatzoff, 1966). 

(b) If population differences are diffused over several dimensions, or dependent 

variables (this is known as diffuse noncentrality), then the order is reversed: 

power(V) > power(L) > power(U) > power(R) (Olson, 1974; Schatzoff, 1966). 

(c) U, Land Vare asymptotically equivalent (Olson, 1974). 

( d) U, L and V are superior to R, because the power of R declines appreciably 

under diffuse noncentrality (Olson, 1974; Schatzoff, 1966). The possibility of 

diffuse noncentrality (i.e., differences on more than one dependent variable) is 

what the researcher hopes to uncover by choosing a multivariate test, so a loss 

of power under this condition is serious. 

(e) All MANOVA criteria have power problems with small group sizes, even for 

moderate effect sizes (Stevens, 1980). Since small to medium effect sizes are 

common in social science research (Becker, 1987; Cohen, 1988; Stevens, 1996), 

this is also a serious concern. 

Under conditions of heteroscedasticity, the behavior of MANOVA is similar 

to that of the ANOV A F test, as has been documented by a number of studies 

(Ito & Schull, 1964; Karin, 1972; Olson, 1974; Pillai & Sudjana, 1975; Tang & 
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Algina, 1993). Even with equal sample sizes, actual Type I error rates can be 

inflated with unequal covariance matrices, and the MANOVA tests can be either 

liberal or conservative when sample sizes are unequal, depending on whether 

the larger samples come from populations with large or small variances. Olson 

(1974) and Elliot and Barcikowski (1994) both came to the conclusion that the 

Pillai-Bartlett ( V) test was the best of the four MANOV A criteria at controlling 

Type I error with unequal covariance matrices. 

The effect of assumption violations on power has not been as extensively 

studied. Olson (1974) studied the effects of both nonnormality and 

heteroscedasticity for MANOVA criteria under a variety of conditions. He used 

the term "contamination" to refer to localized assumption violations, such as a 

particular dependent variable and group with nonnormality. This is a particularly 

useful terminology for MANOVA since we have both multiple groups and multiple 

dependent variables. Olson found that contamination decreased power (and 

affected Type I error rates, as noted above), but if noncentrality occurred in a 

noncontaminated group or variable, power was maintained. He also found that 

kurtosis decreased power for all four MANOVA tests, and that unequal 

covariance matrices caused all power curves to be rather flat. 

Olson (1976; 1979) and Stevens (1979, 1996) have disagreed over which 

of the four MANOVA criteria is preferred for general use. Olson recommended V 

(Pillai-Bartlett) because (a) Vwas most robust under conditions of 

heteroscedasticity; (b) Vwas the least conservative when sampling from 

platykurtic populations (Ito, 1969; Ito & Schull, 1964; Kerin, 1972; Mardia, 1971; 
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Olson, 1974); and (c) the power of Vwas adequate, even though it was the least 

powerful of the four MANOVA criteria under heteroscedasticity. Stevens 

criticized Olson's conclusion, in part, because he considered only equal-sized 

samples, and because the heteroscedasticity conditions used were extreme and 

not likely to occur in practice. Stevens conceded the superiority of V under 

conditions of diffuse noncentrality, but pointed out that for concentrated 

noncentrality with unequal covariance matrices, the actual Type I error rates for 

U, V and L are similar. Since U and L have slightly greater power, he 

recommended their use over V. Olson's rejoinder was that since Vis clearly 

superior in one area (diffuse noncentrality), and U, Vand Lare all similar (with 

slight differences) in other areas, Vis still the best choice. 

The above discussion points out that there .is no easy answer to the 

question, 'Which MANOVA test is superior?" Add to this the observation by 

Coombs, Algina, and Oltman (1996) that for an experiment with three groups and 

four dependent variables, 20 independent assumptions are actually being made 

about the equality of pairs of covariance matrices. This suggests that in practice, 

the assumption of homogeneity of covariance matrices is untenable. Alternatives 

which do not require this assumption should then assume greater importance. It 

should also be noted that common statistical packages will automatically give the 

researcher all four MANOVA criteria. If some of these tests show significance · 

while others do not, the researcher is given a difficult decision. Are some tests 

not significant because of low power due to assumption violations, or are others 

significant because of conservative Type I error rates due to assumption 
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violations? Perhaps instead of picking a "best" alternative among the four, we 

should advise researchers that if some but not all of the MANOV A tests show 

significance, then proceed very cautiously. 

When sampling from multivariate normal populations with equal sample 

sizes and unequal covariance matrices, the following can be said in comparing 

the Pillai-Bartlett test with the Coombs-Algina tests, James first- and second­

order tests, and the Johansen test: 

(a) The James first-order and Johansen tests tend to be somewhat liberal, with 

the Johansen test giving better control of Type I error (Tang & Algina, 1993). 

(b) The James second-order test tends to be somewhat conservative (Tang & 

Algina, 1993). 

(c) The Pillai-Bartlett test can be liberal, with the degree of difference between 

the actual and nominal Type I error rate depending on the degree of difference 

between the population covariance matrices (Olson, 1974; Tang & Algina, 1993). 

(d) When sample sizes are sufficiently large, the Johansen test performs better 

than the Pillai-Bartlett test (Tang & Algina, 1993). 

(e) When sample sizes are too small, Johansen's test has a greatly inflated 

actual Type I error rate, but the James second-order test and the Coombs-

Algina u* appear to control Type I error fairly well under this condition (Coombs 

& Algina, 1996-b; Tang & Algina, 1993). 

(f) With sufficiently large sample sizes, Johansen's test controls Type I error rate 

better than the Coombs-Algina tests or the James second-order test (Coombs & 
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Algina, 1996-b; Tang & Algina, 1993), but since the James second-order test 

tends to be slightly conservative, some researchers may favor it. 

When sampling from populations with multivariate normality, with unequal 

covariance matrices and unequal sample sizes, the literature suggests the 

following: 

(a) The Pillai-Bartlett test is not recommended, because its actual Type I error 

rate can be substantially greater than or less than a (Tang & Algina, 1993). 

(b) The Johansen test performs better than the James first-order test (Tang & 

Algina, 1993). 

(c) When using the Johansen test, the researcher should have a ratio of at least 

3 1/3 for the minimum sample size to the number of independent variables with G 

= 3 groups, and a ratio of at least 4 2/3 with G = 6 groups, in order to achieve 

adequate control of Type I error rate. If the ratio of minimum sample size to 

number of independent variables is smaller than 4, then the Coombs-Algina u· 

and James' second-order test appear to be the best choices (Coombs & Algina, 

1996-b; Tang & Algina, 1993). 

The MANOV A tests and their alternatives were all developed under the 

assumption of multivariate normality. If this assumption is violated, the Coombs­

Algina tests appear to be the best at controlling Type I error rates. Oltman 

(1996) studied the performance of the Pillai-Bartlett test, Johansen's test, and the 

Coombs-Algina tests when sampling from populations with extreme skew (an 

exponential distribution). She found that the Coombs-Algina tests were able to 

control Type I error rates well under these conditions, but their power was too low 
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to be useful. Neither Johansen's test nor the Pillai-Bartlett test controlled Type I 

error rates well when sampling from exponential distributions. This suggests that 

for distributions which are skewed (but not as strongly skewed as the exponential 

distribution), the Coombs-Algina tests will probably control Type I error well, and 

at some threshold, may also offer adequate power. 

The Independence Assumption 

The assumption that each observation is independent of all other 

observations is rarely studied in Monte Carlo simulations. However, as Glass, 

Peckham, and Sanders (1972) observe in their review of ANOVA studies, "The 

violation of the independence assumption which we shall not discuss ... is far 

more serious than the violation of the assumptions which we will discuss" (p. 

242). In general, the advice given to researchers is that a good research design 

will avoid problems with the independence assumption. In many cases, there are 

formalized patterns of dependence that may be incorporated into the statistical 

analysis, such as repeated measures. In other cases, such as studies of 

teaching methods using intact classrooms, the unit of analysis may be changed 

from the student to the classroom (Pedhazur, 1982). However, these techniques 

do not cover all potential problems. 

The small body of literature dealing with dependence focuses on ANOVA 

designs. The formulas in this section, unless otherwise noted, are all applicable 

to ANOV A. Dependence due to groups is usually measured by the intraclass 

correlation. There are a number of different estimates of intraclass correlations 

(Lahey, Downey &Saal; 1983), but the most common is defined as follows: 
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MSb + MSw(n- l)' 

where MSb and MSw are as defined on page 13, and n is the sample size for 

each group. 

Shavelson (1988) notes that the intraclass correlation provides a measure 

of the extent to which within-group variability is small relative to between-group 

variability. It is at its maximum when scores within groups are identical and the 

group means differ among one another. 

Kenny and Judd (1986) discuss three characteristic patterns of 

dependence likely to occur in social science research: dependence due to 

groups; dependence due to sequence; and dependence due to space. 

Dependence due to sequence is caused when observations taken over time are 

not independent due to cyclical patterns. As an example, the number of calories 

consumed per day may be greater on the weekends when people are at home all 

day. This form of dependence may in many cases fit a repeated measures or 

time series design. Dependence due to space is most often found due to the 

"closest neighbor'' effect, where observations taken from the same block or 

neighborhood are related. This relationship diminishes with distance. 

This study will simulate conditions of dependence due to groups, which 

occurs when subgroups within treatment groups are related. They may be 

informal groups of friends, or the groups may actually be part of the design, as is 

the case when comparing the effects of group discussion and lecture formats in 

the classroom. In the latter case, the design itself needs to be changed. The 

remedies suggested include the quasi-Ftest (Myers, DiCecco & Lorch, 1981). 
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Pavur and Nath (1984) detail the application of a constant multiplier to correct for 

correlation within groups. This solution will work perfectly only when the within-

group correlation is uniform. 

One of the more curious properties of dependence of observations is that 

its effect on Type I error rate increases as sample sizes increase. (Recall that for 

violations of the assumption of normality, large sample sizes mitigate the 

distortions of Type I error.) Scariano and Davenport (1987) demonstrate that as 

the sample size of each group approaches infinity, the true Type I error rate for 

dependent samples approaches 1.0. Even for moderate correlations such as 

p =.3 and for 2 groups, the Type I error rate for n=30 is .5928; for n=100 it is 

.7662 (see Table 2). 

What kind of intraclass correlation might be expected in an educational 

setting, assuming that we have no formal groups? Though group relationships 

should be expected, their effects may be small and may work in different 

directions. Further, groups may exist across treatment boundaries as well as 

within them. Kenny and Judd (1986) demonstrate the influence of intraclass 

correlation and intergroup correlation on the sampling distributions of MSb and 

MSw. The means of the sampling distributions of MSb and MSw are, 

respectively: 

E(MSb) = a 2 [1+(n-l)pw -npb]+na~ 

E(MSW) = a 2 (1-pw) 

where Pw is the average dependence among pairs of observations in the same 

treatment group, pb is the average dependence among pairs of observations 
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Table 2. Actual Type I Error Rates for Different Intraclass Correlations (nominal 

Type I error rate = .05) 

Num. Grp. ICC= ICC= ICC= ICC= ICC= ICC= ICC= ICC= ICC= 

Grps Size .00 .01 .10 .30 .50 .99 .70 .90 .95 

2 3 .0500 .0522 .0740 .1402 .2374 .8800 .3819 .6275 .7339 

10 .0500 .0606 .1654 .3729 .5344 .9475 .6752 .8282 .8809 

30 .0500 .0848 .3402 .5928 .7205 .9708 .8131 .9036 .9335 

100 .0500 .1658 .5716 .7662 .8446 .9842 .8976 .9477 .9640 

3 3 .0500 .0529 .0837 .1866 .3430 .9829 .5585 .8367 .9163 

10 .0500 .0641 .2227 .5379 .7397 .9966 .8718 .9639 .9826 

30 .0500 .0985 .4917 .7999 .9049 .9990 .9573 .9886 .9946 

100 .0500 .2236 .7791 .9333 .9705 .9997 .9872 .9966 .9984 

5 3 .0500 .0540 .0997 .2684 .5149 .9997 .7808 .9704 .9923 

10 .0500 .0692 .3151 .7446 .9175 1.000 .9798 .9984 .9996 

0 

30 .0500 .1192 .6908 .9506 .9888 1.000 .9977 .9998 1.000 

0 0 

100 .0500 .3147 .9397 .9945 .9989 1.000 .9998 1.000 1.000 

0 0 0 

10 3 .0500 .0560 .1323 .4396 .7837 1.000 .9664 .9997 1.000 

0 0 

10 .0500 .0783 .4945 .9439 .9957 1.000 .9998 1.000 1.000 

0 0 0 
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30 

100 

.0500 .1594 .9119 .9986 1.000 1.000 1.000 1.000 

0 0 0 0 

.0500 .4892 .9978 1.000 1.000 1.000 1.000 1.000 

0 0 0 0 0 

1.000 

0 

1.000 

0 

which are not in the same treatment group, a 2 is the population variance for 

each treatment group, and a; is the variance of the treatment effect. 

Besides its effects on the expected value of mean squares, dependence 

can effect statistical results in two other ways. Box (1954a, 1954b) showed that 

dependence can increase the variability of mean square estimates. Kenny and 

Judd (1986) also point out that when observations are dependent, MSb and MSw 

may be correlated. Because of this correlation, the computed F ratio may not be 

distributed as F. 
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Chapter 3 

Method 

This study will examine the robustness and power of MANOVA and 

several MANOVA alternatives under a set of simulated conditions. It will build 

upon and add to conditions already studied in previous Monte Carlo simulations. 

Glass, Peckham, and Sanders (1972) provide a template for Monte Carlo studies 

of the robustness and power of statistical tests, which will be followed here: 

1) Given a value for a and values for necessary degrees of freedom, the critical 

values of the statistical tests in the simulation are found. This value of a is 

called the nominal a . 

2) Simulated data exhibiting the desired characteristics are randomly generated 

by computer program. The desired characteristics include the specified 

deviations from assumptions plus a given effect size (a fixed difference 

between group means). An effect size of zero (no difference between 

groups) will be included in the simulated characteristics, in order to get an 

estimate of Type I error under the specified deviations. 

3) Through an iterative loop, simulated data are repeatedly generated and 

evaluated using the chosen statistical tests. At the end of the simulation, an 

estimate of a is calculated for each test as the percentage of times the 

critical value of the test was exceeded by the simulated data. 

4) For an effect size of zero, the estimated a is compared to the nominal a . An 

actual value greater than the nominal value implies a liberal test (the test 
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found a difference more often than would be expected); an actual value less 

than the nominal value implies a conservative test. 

5) For effect sizes greater than zero, the estimated a values are compared 

among the different statistical tests used, to get an estimate of the relative 

power of those tests. 

Our ultimate goal is to identify the statistical test which, while holding the Type I 

error rate close to the nominal a level, maximizes power. 

Olson (197 4) notes that "One of the first problems in a study of MANO VA 

robustness arises from the apparently unlimited number of ways in which the 

assumptions of normality and covariance homogeneity can be violated" (p. 895). 

This is also true of violations of the assumption of independence. Another 

observation is that in Monte Carlo studies, it often makes more sense to vary 

operands which are directly related to the generation of data characteristics, 

rather than those which are related to output characteristics. For example, 

Olson's (1974) violations of the assumption of covariance homogeneity are 

based on a constant multiplier D, which is used to selectively multiply data from 

some groups but not others. His design factors are based on D, rather than on 

the variance of the different groups, because it is clear that increasing D will 

increase the heterogeneity of variance. 
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Design Factors 

Statistical Tests m: 
The statistical tests which will be compared in this study include the Pillai­

Bartlett V. the Johansen J, the Coombs-Algina u;, the Coombs-Algina u;, the 

Coombs-Algina L 0
, and the Coombs-Algina v· tests. 

Dependence of Observations: 

This study will examine violations of the assumption of independence of 

observations. Since even moderate violations of this assumption are known to 

cause severe distortions in Type I error rate and power for univariate procedures 

(Glass, Peckham & Sanders, 1972; Scariano & Davenport, 1987), only small and 

moderate violations will be examined here. The Type I error rate and power of 

the multivariate tests being considered in this study have not been previously 

investigated for performance under violations of the independence assumption. 

Because of this, it will be necessary to operationally define how to generate data 

with different levels of dependence. 

This study will simulate dependence due to groups. To be more precise, 

we will look at what happens when there is correlation in subgroups within 

treatment groups. Subgroups of varying sizes will be contained within treatment 

groups, and the dependence will come from correlated errors within these 

subgroups. Subgroup sizes of 2, 3, 4 and 6 will be simulated. These subgroup 

sizes were picked to represent the smallest, and thus most likely, informal groups 

that might be found in a classroom where close friends may study together. 
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In order to control the size of the treatment groups, we will then vary the 

number of subgroups per treatment group. The subgroup sizes of 2, 3,. 4 and 6 

will correspond to, respectively, 6, 4, 3 and 2 numbers of subgroups per 

treatment group, since all three combinations give us treatment groups of size 

12. We can then vary the numbers of subgroups from 12 to 8 to 6 to 4, 

corresponding to subgroup sizes of 2, 3, 4, and 6, respectively, to give treatment 

groups of size 24. 

We will also vary the degree of .correlation among the errors found within 

each subgroup. This corresponds to the degree to which we expect that working 

within the subgroup would affect performance on our dependent variables. A 

high degree of correlation between the errors within each subgroup results in 

lower variability within each subgroup, reducing the total variability within each 

treatment group. Recall that each person's score on the set of dependent 

variables can be thought of as the sum of the group mean plus error (individual 

variability). In a typical Monte Carlo study, without simulating dependence of 

observations, we would have 

Y;; =J.+ +E;; 

where i is the treatment group, and j is the observation within the treatment 

group. The error term is randomly generated for each observation. We will take 

this one step further and break down the error component into both fixed and 

random components within each subgroup. If subscript k represents the 

subgroup, we have 
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whereµ varies with each treatment group,~ varies with each subgroup, and E 

varies with each observation. Note that the treatment means will be determined 

by our effect size; whereas the other two components will be randomly 

generated. Now we wish to find a value Rho for which the following are true: 

a) increases in Rho will increase the dependence among observations within 

treatment groups; 

b) the correlation between any two error components within the same subgroup 

is equal to Rho; 

c) the correlation between any two error components in different subgroups is 

zero; 

d) the expected value of each error component is zero; and 

e) the standard deviation of each error component is one. 

Appendix A gives the details for generating observations based on values of Rho 

which satisfy the above conditions. 

The levels of dependence considered in this study will correspond to 

values of Rho = 0.0, 0.01, 0.2, 0.4, and 0.6. 

Number of Groups (g): 

A review of related studies suggests that researchers have varied the 

number of groups of the independent variables in Monte Carlo studies of 

MANOVA from two to ten, with three and six groups being the most common 

conditions. These studie$ include Karin (1992), Tang (1989), Coombs (1993), 

Brown & Forsythe (1974), Kohr & Games (1974), Clinch & Keselman (1982), 

Tomarken & Serlin (1986), Wilcox, Charlin & Thompson (1986), Wilcox (1988, 
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1989), Dijkstra & Werter (1981), and Olson (1974). This study will use two and 

three groups. 

Number of Dependent Variables (E): 

A review of related studies (Karin 1992; Tang 1989; Coombs 1993; Brown 

& Forsythe 1974; Kohr & Games 1974; Clinch & Keselman 1982; Tomarken & 

Serlin 1986; Wilcox, Charlin & Thompson 1986; Wilcox 1988, 1989; Dijkstra & 

Werter 1981; and Olson ;1974) suggests that the most common choices for the 

number of dependent variables are three and six. However, Oltman (1996) 

found that this factor was not important in explaining differences in rejection rates 

(under different conditions than those which will be studied here). This study will 

look at both two and three dependent variables. 

Effect Size 

The effect size is a measure of the degree of difference between groups. 

A simple formula for effect size in the univariate case with two groups is as 

follows: 
I.Li - µ,_ 

ll. = ' a 

where /Ji , µ2 are the population means of two different groups, and a is the 

population variance. 

In the multivariate two-group case, the extension of this formula is called 

the Mahalanobis distance, given by 

In practice, the population means and covariance matrices are estimated by their 

sample counterparts. 
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Stevens (1992) notes that for the G-group multivariate case, where G>2, 

most Monte Carlo studies have assessed effect size through measures which 

use eigenvalues, and hence make it difficult for the reader to determine the 

actual differences between means which were used in the study. 

In power studies, different effect sizes are examined to assess the relative 

power of different statistical tests. With an effect size of zero, we are testing only 

the Type I error rate. This study will examine effect sizes corresponding to no 

effect, a moderate effect and a large effect. The exact values will be determined 

through the noncentrality function, discussed below. 

Type of Noncentrality 

In order to determine the relative power of the statistical tests under 

consideration, we will look at both the noncentrality structure and the 

noncentrality function (Olson, 197 4). 

In a power analysis, we set the degree of difference, or effect size, 

between population groups on the different dependent variables, then look to see 

how well our tests can detect that difference. In G-group MANOVA, there are 

S=min(G,P) eigenvalues, with corresponding eigenvectors which define a linear 

combination of the dependent variables. These linear combinations are the 

discriminant functions. 

The noncentrality structure refers to the degree that differences present 

are "concentrated" on one of the discriminant functions, or "diffused" among 

several discriminant functions. Concentrated noncentrality may be simulated by 

fixing a difference on one group and on one dependent variable only (we will 
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arbitrarily pick the first one). Diffuse noncentrality may be simulated by fixing the 

same difference among all groups on all dependent variables. 

The exact amount of the difference may be set by the noncentrality 

function. Schatzoff (1966) defined the noncentrality function as the trace of 

matrix G, tr(G), 

where 
G = HV-1 , 

V is the population covariance matrix, and 

G 

H = ~n;(µ; - µxµ; -µ)', 

where µ; is the population mean vector for the 11:h group, µ is the grand mean 

vector, and ni is the sample size in the 11:h group. 

In practice, the noncentrality parameter tr(G) can be estimated by (N - G) 

times the Hotelling-Lawley trace. Olson (197 4) used four levels in his study: 0, 

10; 40; and 90. These correspond roughly to no effect, small effect, medium 

effect, and large effect. 

Having set the desired values of the noncentrality parameter, it remains 

only to fix the mean values which will give us the desired noncentrality parameter 

and structures. For concentrated noncentrality, we shall let the first group differ 

from the other (G-1) groups by setting the (1, 1) element of the mean vector of the 

first population to Ge, where c is determined by solving the following equation 

(Olson, 1974): 
tr(G) = nG(G -1)c 2 • 
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The other values of the mean vector are zero, as are all of the values of 

the mean vectors of the other ( G-1} groups. 

For diffuse noncentrality, we will set the Ith group of the Ith dependent 

variable to Ge, where c is determined by 

tr(G) = (p -1)nG2 c2 + nG( G - p)c2 

when G>p, and 

tr(G) =(G-1)nG2c2 

when G<=p. The other values of the mean vectors will be zero. 

The values of tr(G) will be set to 0, 40 and 90. 

Design Layout 

Each of the six statistical tests to be compared here will be performed on 5 

x 4 x 2 x 2 x 2 x 3 x 2 = 960 different condition combinations representing the 

levels of conditions specified above (Rho x Nspsub x Nsubpgr x G x P x Effect x 

NCP}. Each of these conditions will be repeated five times. 

Simulation Procedure 

The simulation will be conducted as 960 x 5 = 4,800 separate analyses, 

with 1,000 replications per condition. For each condition, the performance of the 

Pillai-Bartlett v; the Johansen J, the Coombs-Algina u; , the Coombs-Algina u;, 

the Coombs-Algina L 0
, and the Coombs-Algina v· tests will be evaluated using 

the generated data, following the template presented at the beginning of this 

chapter. The proportion of the 1,000 replications which yield significant results at 

a =.05 will be tabulated; these will serve as estimates of the rejection rates of the 

tests for the various condition combinations. 
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The computer program to perform the simulation will be written in the SAS 

language, using PROC IML (Interactive Matrix Language) to accommodate the 

tests (the Johansen and Coombs:.AJgina tests) which are not available as options 

in regular SAS procedures. Existing programs from previous studies on the 

same group of statistical tests will be modified to create the correct combination 

of conditions. 
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Chapter 4 

Results 

In this chapter the rejection rates from the simulation are presented and 

discussed for the combinations of conditions under study. 

Rejection rates were analyzed using a split-plot analysis of variance 

model.· One within factor (test criterion} and seven between factors (type of 

noncentrality, effect size, number of groups, number of dependent variables, 

size of treatment group, size of subgroups, and degree of dependence} were 

included in the model, along with all possible interactions. Each combination of 

conditions was replicated five times so that within cell variation could be 

assessed for the model. 

Not surprisingly, given the large sample sizes {1,000 repetitions per 

condition}, there were a number of statistically significant effects, including 

interactions of up to five dimensions. Interactions of more than three dimensions 

cannot be graphed using a single figure, and are difficult to interpret. The 

approach taken here will be to provide groups of graphs in order to examine 

dimensions which will not fit on one graph. Out of 56 five-way interaction terms, 

seven were statistically significant at alpha=.05. These. significant five-way 

interactions together involved all of the eight independent variables in the model. 

There were a number of other significant interaction terms of lower dimension, 

and all eight main effects were significant. 

One of the significant five-way interactions was Test x Rho x Nspsub x 

Nsubpgr x G, where Nspsub is the number of subjects per subgroup and 
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Nsubpgr is the number of subjects per treatment group. Recall that we are trying 

to discover how the estimated alpha levels found in our simulation compare to 

our nominal value of 0.05. The "rejection rate" refers to the proportion of times 

in our simulation that statistical significance was found for a given set of 

conditions. Figures 1 through 1 O graph the rejection rates for some of the 

combinations of these five variables. For these figures, the number of 

dependent variables was held constant at P=2, and Effect Size was held 

constant at zero. In the two-group case, all four of the Coombs-Algina tests are 

equivalent (as are all four of the MANOVA criteria), so only one line is shown .for 

the Coombs-Algina tests in Figures 1 through 8 (Coombs, 1993). We can see 

that (a) increases in Rho correspond to increases in rejection rate; (b) rejection 

rates increase more sharply (with increases in Rho) when the number of 

subjects per subgroup increases; (c) though the differences between the tests 

were statistically significant, their rejection rates were always within one 

percentage point; and (d) increasing the number of groups does increase the 

rate of increase in Rho (other factors held constant). 

48 



Figure 1 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 

With Subjects per Subgroup=2, Effect Size=O, Group Size=l2, Number of 
Groups=2, and Number of Dependent V ariables=2 
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Figure 3 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 

With Subjects per Subgroup=4, Effect Size=O, Group Size=12, Number of 
Groups=2, and Number of Dependent Variables=2 
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Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 
With Subjects per Subgroup=6, Effect Size=O, Group Size=l2, Number of 
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Figure 5 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 

With Subjects per Subgroup=2, Effect Size=O, Group Size=24, Number of 
Groups=2, and Number of Dependent V ariables=2 
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Figure 7 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 

With Subjects per Subgroup=4, Effect Size=O, Group Size=24, Number of 
Groups=2, and Number of Dependent V ariables=2 
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Figure 8 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 

With Subjects per Subgroup=6, Effect Size=O, Group Size=24, Number of 
Groups=2, and Number of Dependent Variables=2 
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Figure 9 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 

With Subjects per Subgroup=2, Effect Size=O, Group Size=12, Number of 
Groups=3, and Number of Dependent V ariables=2 
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Surprisingly, when the treatment group size goes from 12 to 24 and Rho 

increases, the rate of increase in rejection rate goes down. For example, at 

Rho=0.6 and number of subjects per subgroup=6, the rejection rate is 

approximately 58% with a treatment group size of 12, while with a treatment 

group size of 24 the rejection rate is approximately 52%. This at first seems 
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counter-intuitive, since an increase in the treatment group size will increase the 

total sample size. Table 2 in Chapter 3 shows us that for a constant value of the 

intraclass correlation, increasing the sample size will increase the rejection rate. 

However, this study has been organized so that we are not varying the intraclass 

correlation directly. Figure 11 shows that, holding other factors constant, as the 

treatment group size goes from 12 to 24, the intraclass correlation actually drops 

slightly. This may be explained by noting that increasing the treatment group 

size, while leaving the number of subjects per subgroup the same, may dilute the 

effects of the reduction in variance. 

Figure 11 
Comparison of Intraclass Correlation 

With Rho=0.6, Effect Size=O, Number of Groups=2, and Number of 
Dependent V ariables=2 
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Another significant five-way interaction was Test x G x P x Nsubpgr x Rho. 

Figures 12 through 19 show that (a) the differences in rejection rates between 

·· tests are minimal (under 1 %); (b) as the number of dependent variables 

increases, the rejection rate increases; (c) as the number of groups increases, 
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the rejection rate increases; (d) as the number of subjects per treatment group 

increases, the rejection rate decreases; and (e) as Rho increases, the rejection 

rate increases. In each of these figures, the number of subjects per subgroup 

was held constant at Nspsub=2, and the Effect Size was zero. 

Figure 12 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 
With Effect Size=O, Number of Groups=2, Number of Dependent 

Variables=2 and Number of Subjects per Treatment Group=12 
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Figure 13 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 
With Effect Size=O, Number of Groups=2, Number of Dependent 

Variables=2 and Number of Subjects per Treatment Group=24 
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Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 
With Effect Size=O, Number of Groups=2, Number of Dependent 

Variables=3 and Number of Subjects per Treatment Group=12 

0.25 

0.2 
~ .. 
i:=: 0.15 = 
~ ... 0.1 .. .... .. 
i:=: 

0.05 

0 

0 0.01 0.2 

Rho 

56 

0.4 0.6 

-+-Pillai-Bartlett 
.,-.. Coombs-Algimi 

--- Johansen 



2 
OS 
~ 

= 
~ 
" .. .... .. 
~ 

~ 
OS 
~ 

= 
~ ... .. .... .. 
~ 

Figure 15 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 
With Effect Size=O, Number of Groups=2, Number of Dependent 

V ariables=3 and Number of Subjects per Treatment Group=24 
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Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 
With Effect Size=O, Number of Groups=3, Number of Dependent 

Variables=2 and Number of Subjects per Treatment Group=12 
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Figure 17 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 
With Effect Size=O, Number of Groups=3, Number of Dependent 

Variables=2 and Number of Subjects per Treatment Group=24 
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Figure 19 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 
With Effect Size=O, Number of Groups=3, Number of Dependent 

Variables=3 and Number of Subjects per Treatment Group=24 
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A third significant five-way interaction was Test x G x P x Nspsub x Rho. 

Figures 20 through 27 show that (a) the differences in rejection rates between 

tests are minimal (under 1 %); (b) as the number of dependent variables 

increases, the rejection rate increases; (c) as the number of groups increases, 

the rejection rate increases; (d) as the number of subjects per subgroup 

increases, the rejection rate increases; and (e) as Rho increases, the rejection 

rate increases. In each of these figures the number of subjects per treatment 

group was held constant at Nsubpgr=12, and the Effect Size was zero. 
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Figure 20 
Comparison of Pillai-Bartlett, Coombs-}\lgina and Johansen Tests 
With Effect Size=:0, Number of Groups=2, Number of Dependent 

Variables=2 and Number of Subjects per Subgroup=2 
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Figure 21 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 
With Effect Size=O, Number of Groups=2, Number of Dependent 

Variables=2 and Number of Subjects per Subgroup=6 
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Figure 22 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 
With Effect Size=O, Number of Groups=2, Number of Dependent 

Variables=3 and Number of Subjects per Subgroup=2 
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Figure 24 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 
With Effect Size=O, Number of Groups=3, Number of Dependent 

Variables=2 and Number of Subjects per Subgroup=2 
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Figure 26 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 
With Effect Size=O, Number of Groups=3, Number of Dependent 

Variables=3 and Number of Subjects per Subgroup=2 
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A fourth significant five-way interaction was Test x Nsubpgr x Rho x Effect 

Size x G. Figures 28 through 34 show that (a) as Rho increases, so does the 

rejection rate; (b) as Effect Size increases, so does rejection rate; (c) for positive 
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Effect Sizes (i.e. a real difference between groups), as the number of groups 

increases, the rejection rate decreases; (d) the differences in rejection rates 

between tests are minimal. In each of these figures the number of subjects per 

subgroup was held constant at Nspsub=2, the number of dependent variables 

was fixed at P=2, and the noncentrality parameter was fixed to simulate 

concentrated noncentrality. 

Figure 28 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 
With Effect Size=O, Number of Groups=2, Number of Dependent 

Variables=2 and Number of Subjects per Treatment Group=12 
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Figure 29 
Comparison of Pillai-Bartlett; Coombs-Algina and Johansen Tests 
With Effect Size=O, Number of Groups=2, Number of Dependent 

Variables=2 and Number of Subjects per Treatment Group=24 
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Figure 30 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 
With Effect Size=40, Number of Groups=2, Number of Dependent 

Variables=2 and Number of Subjects per TreatmentGroup=12 
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Figure 31 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 
With Effect Size=40, Number of Groups=2, Number of Dependent 

V ariables=2 and Number of Subjects per Treatment Group=24 
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Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 
With Effect Size=90, Number of Groups=2, Number of Dependent 

Variables=2 and Number of Subjects per Treatment Group=12 
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Figure 33 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 
With Effect Size=90, Number of Groups=2, Number of Dependent 

Variables=2 and Number of Subjects per Treatment Group=24 
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Figure 34 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 
With Effect Size=40, Number of Groups=3, Number of Dependent 

Variables=2 and Number of Subjects per Treatment Group=12 
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A fifth significant five-way interaction was Test x G x NCP x Effect Size x 

Rho. Figures 35 through 38 show that (a) as Rho increases, so does the 

rejection rate; (b) the differences in rejection rates between tests are minimal; (c) 
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as Effect Size increases, so does the rejection rate; (d) for positive Effect Sizes, 

as the number of groups increases, the rejection rate decreases; (e) there is little 

difference between the concentrated and diffuse noncentrality conditions. In 

· each of these figures the number of dependent variables was held constant at 

P=2, the number of subjects per treatment group was fixed at Nsubpgr=12, and 

the number of subjects per subgroup was fixed at Nspsub=2. 

Figure 35 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 

With Effect Size=40, Concentrated Noncentrality, Number of Groups=2, 
and Number of Dependent V ariables=2 
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Figure 36 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 

With Effect Size=40, Diffuse Noncentrality, Number of Groups=2, and 
Number of Dependent Variables=2 
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Figure 37 
Comparison of Pillai-Bartlett, Coombs~Algina and Johansen Tests 

With Effect Size=40, Concentrated Noncentrality, Number of Groups=3, 
and Number of Dependent V ariables=2 
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Figure 38 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 

With Effect Size=40, Diffuse Noncentrality, Number of Groups=3, and 
Number of Dependent Variables=2 
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A sixth significant five-way interaction was Test x G x NCP x Nsubpgr x 

Effect Size. Figures 39 through 46 show that (a) as the number of groups 

increases, increasing the Effect Size has a diminishing effect on increasing the 

rejection rates; (b) under conditions of concentrated noncentrality, rejection rates 

were slightly less than those under diffuse noncentrality; (c) differences in 

rejection rates between tests were minimal; (d) as Effect Size increased, so did 

rejection rates; (e) as the size of the treatment groups increased, so did rejection 

rates, and this effect was more pronounced for two groups than for three groups. 

70 



Figure 39 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 

With Concentrated Noncentrality, Number of Groups=2, Number of 
Dependent Variables=2 and Number of Subjects per Treatment Group=12 
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Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 
With Concentrated Noncentrality, Number of Groups=2, Number of 

Dependent Variables=2 and Number of Subjects per Treatment Group=24 
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Figure 41 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 

With Diffuse Noncentrality, Number of Groups=2, Number of Dependent 
Variables=2 and Number of Subjects per Treatment Group=12 
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Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 
With Diffuse Noncentrality, Number of Groups=2, Number of Dependent 

Variables=2 and Number of Subjects per Treatment Group=24 
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Figure 43 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 

With Concentrated Noncentrality, Number of Groups=3, Number of 
Dependent Variables=2 and Number of Subjects per Treatment Group=12 
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Figure 45 
Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 

With Diffuse Noncentrality, Number of Groups=3, Number of Dependent 
Variables=2 and Number of Subjects per Treatment Group=12 
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Comparison of Pillai-Bartlett, Coombs-Algina and Johansen Tests 
With Diffuse Noncentrality, Number of Groups=3, Number of Dependent 

Variables=2 and Number of Subjects per Treatment Group=24 
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The seventh significant five-way interaction was G x P x Nsubpgr x 

Nspsub x Rho. Figures 47 through 54 show that (a) as the number of groups 

increased, so did the rejection rates; (b) as the number of dependent variables 
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increased, so did the rejection rates; (c) as Rho increased, so did rejection rates; 

(d) as the size of the subgroups increased, so did rejection rates; and (e) as the 

size of the treatment groups increased, rejection rates went down slightly. In 

each of these figures, the Effect Size was fixed at zero, and the rejection rates 

used were averaged over the results for the six statistical tests. 
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Figure 47 
Comparison of Rejection Rates for Values of N spsub and Rho 

With Number of Groups=2, Number of Dependent V ariables=2 and 
Number of Subjects per Treatment Group=12 
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Figure 48 
Comparison of Rejection Rates for Values ofNspsub and Rho 

With Number of Groups=2, Number of Dependent V ariables=2 and 
Number of Subjects per Treatment Group=24 
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Figure 50 
Comparison of Rejection Rates for Values ofNspsub and Rho 

With Number of Groups=2, Number of Dependent V ariables=3 and 
Number of Subjects per Treatment Group=24 
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Figure 52 
Comparison of Rejection Rates for Values ofNspsub and Rho 

With Number of Groups=3, Number of Dependent Variables=2 and 
Number of Subjects per Treatment Group=24 
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Figure 54 
Comparison of Rejection Rates for Values ofNspsub and Rho 

With Number of Groups=3, Number of Dependent V ariables=3 and 
Number of Subjects per Treatment Group=24 
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All of the remaining significant effects are subsumed under these seven 

significant five-way interactions (which together involve all eight independent 

variables in the model). Most of these interactions appear to be ordinal in 

nature, with the exception of data comparing the performance of each individual 

test. Rejection rates for different tests were often disordinal, but as noted in the 

discussions of each five-way interaction, the differences in rejection rates 

between the tests were usually quite small in practical terms (under 1 %). 

One of the more interesting results emerging from examination of the 

significant five-way interactions involves the relationship between Rho, the 

number of subjects per subgroup, the number of subjects per treatment group 

and the number of groups. Figure 11 showed that the intraclass correlation did 

not always increase with increases in each of these variables. In particular, for 

an Effect Size of zero, the intraclass correlation goes down slightly as the 
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number of subjects per treatment group goes from 12 to 24 and as the value of 

Rho increases. Table 3 examines this relationship in more detail. 

Table 3. Actual Intraclass Correlation for Different Values of Rho, 

Nspsub, G and Nsubpgr 

Rho Nspsub G=2 G=2 G=3 G=3 

Nsubpgr Nsubpgr Nsubpgr Nsubpgr 

=12 =24 =12 =24 

.01 2 -.0044 .0017 .0011 .0018 

3 -.0029 .0017 .0021 .0017 

4 -.0014 .0017 .0027 .0017 

6 .0001 .0017 .0032 .0017 

.2 2 .0433 .0403 .047 .043 

3 .0571 .0465 .0643 .0502 

4 .0709 .054 .08 .057 

6 .0965 .0699 .1116 .0733 

.4 2 .0897 .0799 .0972 .0843 

3 .117 .096 .1293 .0972 

4 .1472 .1108 .1607 .1164 

6 .1977 .1376 .2198 .146 

.6 2 .139 .1216 .1479 .1227 

3 .1811 .1444 .197 .1492 

4 .2201 .1653 .2419 .1723 

6 .2954 .2063 .3299 .2192 
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Table 3 shows that, indeed, for constant values of Rho, G and Nspsub 

(and with no differences between population means), the intraclass correlation 

does decrease as we move from treatment groups of size 12 to treatment groups 

of size 24. In all other respects, the intraclass correlation values increase with 

increases in Rho, G and Nspsub. Note that in Table 3, the intraclass correlation 

values are averaged over the dependent variables. 
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Chapter 5 

Discussion 

The results of this study offer some insights into the behavior of six 

multivariate tests under a variety of conditions primarily simulating violation of 

the assumption of independence of observations. Recall that the research 

questions posed in Chapter 1 asked (a) whether rejection rates differ as a 

function of the statistical test, the number of groups, the number of dependent 

variables, the group size, the subgroup size, the intraclass correlation (here we 

used a close proxy, the value we have termed Rho), the effect size, and the type 

of noncentrality; and (b) under what conditions each test maintains adequate 

control of Type I error rate and power. Several conclusions can be drawn from 

the results presented in Chapter 4. 

Conclusion 1. Though differences between the six statistical tests studied 

were statistically significant in our analysis of the results, the differences were 

slight in practical terms, resulting in rejection rates within a range of one 

percentage point in nearly all cases. Thus there would be no particular 

advantage in recommending the use of any one test over the others under the 

conditions studied here. 

Conclusion 2. As hypothesized, increases in the intraclass correlation 

dramatically increase rejection rates. Even relatively small values of the 

intraclass correlation (e.g. ICC=0.10) result in unacceptably high Type I error 

rates for conditions in which the population group means are equal. 
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Conclusion 3. By focusing on dependence of observations due to 

subgroups within treatment groups, and because dependence was 

operationalized in this study by varying the subgroup size, treatment group size, 

and degree of dependence within subgroups, we are able to see a more detailed 

pattern than would have been possible by simply looking at the behavior of the 

statistical tests under increases in the intraclass correlation. In particular, for 

equal population group means (i.e., no effect size), (a) increases in the size of 

the subgroups result in substantial increases in Type I error rates for fixed 

values of Rho; (b) increases in the degree of dependence within subgroups 

(Rho) result in substantial increases in Type I error rates; and (c) increases in 

the size of the treatment groups result in decreases in the Type I error rates for 

fixed values of Rho. The presence bf significant interactions involving these 

variables (and others) was primarily due to differences in rates of increase in 

these variables,. not due to disordinal interactions. 

Conclusion 4. When popuiation group means are equal, and all other 

variables are held constant, increases in the number of treatment groups and 

increases in the number of dependent variables increase the Type I error rate. 

Conclusion 5. When population group means are different (i.e. a positive 

effect size), we find that while increases in effect size (holding other variables 

constant} increase rejection rates, for fixed effect sizes the rejection rates 

decrease when the number of groups increases. This is true for both 

concentrated and diffuse noncentrality conditions. 
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Conclusion 6. When population group means are different, rejection rates 

are slightly higher under conditions of diffuse noncentrality than under conditions 

of concentrated noncentrality. Under the group of conditions studied here, the 

differences between these two conditions is slight. 

Limitations of this Study. 

One of the primary goals of this study has been to simulate conditions of 

dependence of observations as they might be found in educational settings. 

While formalized conditions of dependence (such as cooperative group learning) 

may be corrected for by changing the unit of analysis, many informal situations 

may exist in classrooms which cannot be corrected by design. We have 

hypothesized that for intact classrooms, informal study groups would be the 

primary source of such dependence. This study has attempted to contribute to 

knowledge of how such groups affect rejection rates for statistical tests. 

However, this study does not examine the degree to which dependence actually 

exists in classroom settings for different types of outcome measures. 

This study is also limited by the particular values chosen for Rho (0, 0.01, 

0.2, 0.4, and 0.6), Nsubpgr (12 and 24), Nspsub (2, 3, 4, and 6), G (2 and 3), P 

(2 and 3), effect size (0, 40 and 90), and type of noncentrality (concentrated and 

diffuse), as well as the types of statistical tests compared. In particular, the 

James tests were omitted from this study, primarily due to their computational 

intensity. 
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Finally, this study is limited by the particular types of violations simulated . 

. Heterogeneity of variance was not simulated here, nor were violations of 

normality. 

Suggestions for Further Research. 

The SAS computer program developed for this study (contained in 

Appendix B) was specifically designed to be versatile in accommodating many 

different levels of conditions without extensive coding changes. For example, 

any number of groups or dependent variables may be specified simply by 

changing a parameter. Therefore, from a technical standpoint, it would be a 

simple matter for other researchers to copy this program and alter the 

parameters to investigate a wide variety of conditions. This versatility comes at 

the cost of increased complexity in the computer code itself, so any researcher 

wishing to.adapt the program for his or her own use would have a fairly steep 

learning curve to face before beginning a simulation. 

One other technical problem encountered in this study was the length of 

time it takes for the program to run. Even with the limited number of conditions 

simulated here, the program took nearly three days to complete on the fastest 

personal computer available to the author. However, for a researcher willing to 

invest the time to understand the program, and able to spare large chunks of 

continuous time on a top-of-the-line personal computer, the approach developed 

here would be much more fruitful than previous designs which required 

extensive recoding for each new condition. 
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Besides extending the conditions studied here to more values of each 

variable (e.g. allowing the number of dependent variables to vary from 2 to 10), 

there remain a variety of conditions that have not yet been fully explored in 

Monte Carlo studies of the Coombs-Algina and Johansen tests. Given the 

promising results that have been obtained so far (Coombs, Algina & Oltman, 

1996), it is important that these conditions be examined. These alternative tests 

will never be widely used by researchers until they are available as options on 

standard software packages, and one of the prerequisites for their adoption by 

software packages will be a thorough examination of their performance under a 

wide variety of conditions. It is hoped that this study will contribute to knowledge 

of the performance of these statistical tests, and that the computer program 

developed here can be used as the basis for extensive further studies. 
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Appendix A: Derivation of Formulas Creating Dependence of Observations 

Let subscript i represent a particular treatment group, subscript j represent a 

particular subgroup, and subscript k represent a particular observation 

within the subgroup. We wish to find constants C1 and C2 such that the 

error term e1ik for our observation is given by 

where one F11 is randomly sampled for each subgroup, one Z1k is randomly 

sampled for each observation, both Fii and Zik are sampled from 

distributions with µ=0 and 80=1, and such that 

(2) Corr(e11k, e111)=p for k, I in the same subgroup 

(3) E(e11k)=0, and 

(4) Corr(e11k, E1m1)=0 for j, m different subgroups. 

To do this we let 

b2 

p= b +1 

b c----
1 .Jb2 + 1 
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Then, 

(1) Var(Eijk} = Var(C1*Fii + C2*Zik) 

= C12Var(Fii} + C22var(Zik} + 2C1C2Cov(Fii,Zik} 

=(~) 2 (1) +(fi)\1) +O 
b2 + 1 b2 + 1 

=1 

(2) Corr(Eijk, Eij1} = Cov(C1Fii+C2Zik,C1Fii+C2Zi1} I (SD(Eiik}*SD(Eij1}} 

=(C/Cov(Fii,Fii} + C1C2Cov(Zik,FiJ + C1C2Cov(Fii,Zi1} + C/Cov(Zik,Zi1}} I 

1 

= p*1 

=p 

= Cov(Eijk, Eiml} I (1*1} 
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=0+0+0+0=0 

Thus, if we fix a value for p to simulate a level of dependence, we can solve 

for the constant b, obtain C, and C2, and randomly sample Fil and Zik values 

as specified above to obtain the error term for each observation. 
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Appendix B: SAS Program Used for Monte Carlo Study 

*******************************************************************· I 

* Reichard & Coombs Monte Carlo Study 
* 

*· I 

*· I 

* This SAS program, contained mostly in 
* with the following conditions: 

PROC IML, simulates data *; 

* 1. dependence of observations {rho)= 0.01, 0.2, 0.4, and 0.6 
* 2. sample size per subgroup= 2, 3, and 4 {total group sample 
* size fixed at 24) 
* 3. number of groups= 2, 3 
* 4. number of dependent variables= 2, 3 
* 5. effect size {measured by noncentrality param) = O, 40, 90 
* 6. type of noncentrality = Concentrated {first dependent vble 
* only), Diffuse {all dependent variables) 

* 

*· I 

*· I 

*· I 

*· I 

*· I 

*· I 

*· I 

*· I 

*· I 

*· I 

* These conditions will be 
* tests: Pillai-Bartlett, 
* and L*. Results will be 
* performs. 

tested using the following statistical*; 
Johansen, Coombs-Algina Ul*, U2*, V*, 
compared to see how well each test 

*· I 

*· I 

*· I 

*******************************************************************· I 

I • 
I dm 'output; clear; log; clear; 

*******************************************************************· I 

* I N T R O D U C T I O N 

* 
* We call IML, and set up most of our program logic 
* The macro will then be repeatedly called for each 
* of conditions that we are testing. 
* Variables are initialized. 

as a macro. 
combination 

*· I 

*· I 

*· I 

*· I 

*· I 

*· I 

*******************************************************************· I 

proc iml symspace=lSO; 
show space; 

%macro design{rho,delta,nsubpgr,nspsub,ngrp,ndep,ncp); 
Fsig=O; PBsig=O; Ulsig=O; U2sig=O; 
Vsig=O; Lsig=O; Jsig=O; 
reps=lOOO; **<===change this! ; 
Intrasum = j(&ndep,1,0); 
*******************************************************************· 
* Begin the Loop 
* 
* All code inside this loop is replicated a fixed number of times 
*asset by variable "reps". 

I 

*· I 

*· I 

*· I 

*· I 

*******************************************************************; 
do loop=l to reps; 

rho=&rho; delta=&delta; ngrp=&ngrp; 
nsubpgr=&nsubpgr; nspsub=&nspsub; ndep=&ndep ncp=&ncp; 

Sl = min{ndep,ngrp); ** use this for ncp; 
subgpgr = nsubpgr I nspsub; * # subgps per group; 

*******************************************************************; 
* Create Error Vectors *; 
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* 
* This part is fairly complicated because of the dependence of 
*observations.Recall that each Y score (dependent variable 
* score} can be expressed as Y =mu+ error, where mu is the 
* group mean. So the error vectors contain all of the variance 
* within each group. In order to simulate varying degrees of 
* dependence, we use the number of subjects per correlated 

*· , 
*· , 
*· , 
*· , 
*· , 
*· , 
*· , 

* subgroup and the number of subgroups per group to convert *; 
* our value of rho into coefficients cl and c2 such that each *; 
* persons score is a combination of unique random error and *; 
* a second error component which is fixed for each subgroup but *; 
* varies between subgroups. This is done to simulate the effects*; 
* of small groups within classrooms who study/play together. 
* See dissertation text for an explanation of how rho relates to 
* cl and c2 and why these were chosen. Essentially we want to 
* make sure that the expected value of the errors is zero, and 
* their standard deviation is one. 

*· , 
*· , 
*· , 
*· , 
*· , 

*******************************************************************; 
b=sqrt(rho/(1-rho}}; 
cl=b/sqrt(b**2+1}; 
c2=1/sqrt(b**2+1}; 

* compute group size vector; 
Nvec = j(ngrp,1,0}; 
do i = 1 to ngrp; 

Nvec[i,l]=nsubpgr; 
end; 
N = Nvec[+,]; * total sample size 

* print Nvec; 

* compute vectors with cumulative group sizes 
* these will be used in later calculations; 
Rvecp = j(ngrp+l,1,0}; * this one has multiples of the# of dep 

vbles; 
Rveck = j(ngrp+l,1,0); * this one has multiples of the# of 

subj per.group; 
do i=l to ngrp; 

Rvecp[i+l,l] = ndep + Rvecp[i,l]; 
end; 
Rvecp = 1 + Rvecp 
do i=l to ngrp; 

Rveck[i+l,l] = Nvec[i,l] + Rveck[i,l] 
end; 
Rveck = 1 + Rveck 

* print Rvecp; 
* print Rveck; 

* . , 
Evec = j(N,ndep,O}; * generate a vector with all error terms; 

do m=l to ndep; * columns 
do k=l to ngrp; *rows; 

ff= j(Nvec[k,l],l,O}; 
do i=l to subgpgr; 

ransub=rannor(O}; * random component for each subgroup 
do j=l to nspsub; 

ff[(i-l}*nspsub+j,l]=ransub; 
end; 

end; 
uu = rannor(j(Nvec[k,l],l,O}}; * random comp for each subj; 
ee = cl*ff + c2*uu; 
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do i=l to Nvec[k,l]; 
sum=O; 
do j=l to (k-1); 

sum= sum+ Nvec[j,l]; 
end; 
row=i + sum; 
Evec(row,m] = ee[i,l]; 

end; 
end; 

end; 
free uu ee ff; 

*******************************************************************· I 

* Generate Mean Vector 
* The mean vector is determined by both the noncentrality 
* structure and the effect size, as measured by the noncentrality 

*· I 

*· I 

*· I 

*· I * parameter. For concentrated noncentrality, the ncp param 
* appears as the group mean of the 1st group, 1st vble only. 
* other means are zero. For diffuse noncentrality, the ith 

all*; 

* group and ith vble get a mean equal to the ncp param for i=l 
* through S=min(ngrp,ndep). Other means are.zero. 

*· I 

*· I 

*· I 

*******************************************************************· I 

Uvec = j(ngrp,ndep,O); * generate a vector with each group mean; 
if ncp='c' then do; 

ncparam = sqrt(delta/(N*ngrp*(ngrp-1))); 
Uvec[l,l]=ncparam; 

end; 
if ncp='d' then do; 

if ngrp>ndep then 
ncparam = sqrt(delta/((ndep-l)*N*(ngrp**2) + N*ngrp*(ngrp­

ndep))); 
else 

ncparam = sqrt(delta/((ngrp-l)*N*(ngrp**2))); 
do i=l to 51; 

Uvec[i,i]=ncparam; 
end; 

end; 

* generate Y scores by adding the means and the errors 
Yvec = j(N,ndep,O); 
do m=l to ndep; 

do k=l to ngrp; 
do j=l to Nvec[k,1]; 

sum=O; 
do i=l to (k-1); 

sum= sum+ Nvec[i,l]; 
end; 
row= j + sum; 
Yvec[row,m] = Evec[row,m] + Uvec[k,m]; 

end; 
end; 

end; 
* Print Yvec; 

free Evec Uvec 

****************************************************************; 
* now we need to use the Y score vector and various subvectors *; 
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* to compute the sums of squares, etc. necessary to calculate 
* the tests we need 

*· I 

*· I 

****************************************************************; 

Meanvec = j(ngrp,ndep,O); 
Grand= j(l,ndep,O); 
do k=l to ngrp; 

rowl = Rveck[k,l]; 
row2 = Rveck[k+l,l] - 1; 
Ybar = Yvec[rowl:row2,1:ndep]; 
do j=l to ndep; 

Meanvec[k,j] = Ybar[+,j] I Nvec[k,l] 
Grand[l,j] = Grand[l,j] + Ybar[+,j]; 

end; 
free Ybar; 

end; 
Grand= Grand IN; 
JmeanT = Meanvec' ; * save off clean mean transpose for johansen 

test; 
* print Meanvec Grand 

do m=l to ndep; 
do k=l to ngrp; 

do j=l to Nvec[k,l]; 
row= Rveck[k,l] + j - 1; 
Yvec[row,m] = Yvec[row,m] - Meanvec[k,m]; 

end; 
end; 

end; 
* print Yvec; 

* create a matrix of SSCP matrices - one pxp matrix for each group 
* (all nested in the large matrix SSCP) ; 

SSCP = j(ngrp*ndep,ndep,O); 
do k=l to ngrp; 

rowl = Rveck[k,l]; 
row2 = Rveck[k+l,l] - 1; 
Ysub = j(Nvec[k,l],ndep,O); 
Ysub[l:Nvec[k,l],l:ndep] = Yvec[rowl:row2,1:ndep]; 
Esub = Ysub'*Ysub; 
rowl = Rvecp[k,l]; 
row2 = Rvecp[k+l,l] - 1; 
SSCP[rowl:row2,1:ndep] = Esub; 
free Ysub Esub 

end; 
* print SSCP; 

* now we need to pool the SSCP matrices 
* this is the matrix E 

E = j(ndep,ndep,O); 
do m=l to ndep; 

do k=l to ndep; 
do j=l to ngrp; 

row= k + (j-l)*ndep; 
E[k,m] = E[k,m] + SSCP[row,m]; 

end; 
end; 

end; 

* now we need H; 
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* we subtract the grand mean from the group means; 
* then we multiply the result by its transpose; 
* to get the sums of squares and cross products (between) 

do m=l to ndep; 
do k=l to ngrp; 

Meanvec[k,m] = Meanvec[k,m] - Grand[l,m]; 
end; 

end; 

H = j(ndep,ndep,O); 
MeanvecT = Meanvec' 
do m=l to ndep; 

do k=l to ngrp; 
Meanvec[k,m] = Meanvec[k,m] # Nvec[k,l]; 

end; 
end; 
H = MeanvecT * Meanvec 
T = E + H ; 

* print H 

* Calculate the intraclass correlation for each variable; 
* This will be used to examine how differences in rho, nspsub 
* and nsubpgr affect the actual intraclass correlation; 

Intra= j(ndep,1,0); 
do i=l to ndep; 

Intra[i,l] = (H[i,i]/(ngrp-1) E[i,i]/(N-ngrp))/ 
(H[i,i]/(ngrp-1) + (nsubpgr-l)*E[i,i]/(N-ngrp)); 

end; 

* print HE Intra Nvec; 

* Coombs-Algina Calculations 
c = Nvec # (1/N); 
C = 1 - C; 
Sampvec = Nvec - 1; * used for sample std dev 
Svec= j(ngrp*ndep,ndep,O); 
do k=l to ngrp; 

rowl = Rvecp[k,l]; 
row2 = Rvecp[k+l,l] - 1; 
Svec[rowl:row2,l:ndep] = SSCP[rowl:row2,1:ndep] I 

Sampvec[k,1]; 
end; 
Mvec = j(ndep,ndep,O); 
do m=l to ndep; 

do k=l to ndep; 
do j=l to ngrp; 

row= k + (j-l)*ndep; 
Mvec[k,m] = Mvec[k,m] + Svec[row,m] # C[j,l]; 

end; 
end; 

end; 
* print Svec 

denom=O; 
do k=l to ngrp; 

rowl 
row2 
Ssub 
Msub 

= 
= 
= 

Rvecp[ k, 1]; 
Rvecp[k+l,l] - 1; 
Svec[rowl:row2,1:ndep]; 
Ssub # C[k,l]; 
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denom = denom + (1/Sampvec[k,l]) * (trace(Msub)*trace(Msub) + 
trace(Msub**2)); 

end; 
numer = trace(Mvec)*trace(Mvec) + trace (Mvec**2); 
G3 = numer I denom; 

* calculate Johansen vectors 
Xsum = j(ndep,1,0); 
Wvec = j(ngrp*ndep,ndep,O); 
do k=l to ngrp; 

rowl = Rvecp[k,l]; 
row2 = Rvecp[k+l,l] - 1; 
Wvec[rowl:row2,1:ndep] = 

inv(Svec[rowl:row2,l:ndep]/Nvec[k,1]); 
Xsum = Xsum + Wvec[rowl:row2,l:ndep]*JmeanT[l:ndep,k]; 

end; 
Wsum = j(ndep,ndep,O); 
do m=l to ndep; 

do k=l to ndep; 
do j=l to ngrp; 

row= k + (j-l)*ndep; 
Wsum[k,m] = Wsum[k,m] + Wvec[row,m]; 

end; 
end; 

end; 
Xbar = inv(Wsum)*Xsum; 

* print Xbar Sampvec; 
Wsub = j(ndep,ndep,O); 
A=O; J=O; 
do k=l to ngrp; 

rowl = Rvecp[k,l]; 
row2 = Rvecp[k+l,l] - l; 
Wsub = Wvec[rowl:row2,l:ndep]; 
J = J + (JmeanT[l:ndep,k] - Xbar)' * Wsub * (JmeanT[l:ndep,k] 

- Xbar) ; 
Asub = j(ndep,ndep,O); 
Asub = I(ndep) - (inv(Wsum) * Wsub) ; 
A= A+ (trace(Asub**2) + trace(Asub)*trace(Asub)) I 

(2*Sampvec[k,l]) ; ' 
end; 
Cl= ndep*(ngrp-1) + 2*A - (G*A)/(ndep*(ngrp-1) +2); 

free Xsum Wvec Wsum Wsub Xbar Asub SvecT JmeanT 

* calculate "parameters"*; 
* these are intermediate amounts used in the* ; 
* formulas for each of the tests, particularly* 
* for the degrees of freedom*; 

BFDFl = ngrp - 1; 
MM= .5 * (abs(ndep - BFDFl)-1) 
NN = .5 * (G3 - ndep - l); 
BB ((2*NN + BFDF1)*(2*NN + ndep))/(2*(NN-1)*(2*NN + l)); 
AA= 4 + (ndep*BFDFl + 2)/(BB-1) ; 
NNN = .5*(N - ngrp - ndep - l); 
BBB= ((2*NNN + BFDF1)*(2*NNN + ndep))/(2*(NNN-1)*(2*NNN + l)); 
AAA= 4 + (ndep*BFDFl + 2)/(BBB-1) ; 
G3M = G3 / (ngrp-1) ; 
s = min(ndep,ngrp-1); 
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* now were ready for the Pillai-Bartlett calculations; 
PB= trace(H*inv(T)); 
FPB = PB* (2*NNN + S + 1) / ((S - PB)*(2*MM + S + l)); 
DFlPB = S*(2*MM + S + l); 
DF2PB = S*(2*NNN + S + l); 
ProbPB = 1 - probf(FPB,DF1PB,DF2PB); 
if ProbPB <= 0.05 then PBsig = PBsig +l 

* compute C-A Ul & U2 ; 

* Temp= G3M*Mvec; 
U = trace(H*inv(G3M*Mvec)); * used for both Ul & U2 
DFlUl = S*(2*MM + S + l); 
DF2Ul = 2*(S*NN + l); 
FUl = ((2*(S*NN + l))*U)/((S*(2*MM + S + l))*S); 
ProbUl = 1 - probf(FU1,DF1Ul,DF2Ul); 
if ProbUl <= 0.05 then Ulsig = Ulsig + l; 

FU2 = ((2*NN)*AA*U)/((AA-2)*(ndep*BFDF1)); 
DF1U2 = ndep*BFDFl; 
DF2U2 =AA; 
ProbU2 = 1 - probf(FU2,DF1U2,DF2U2); 
if ProbU2 <= 0.05 then U2sig = U2sig +l 

* compute C-A V; 
V = trace(H*inv(H+(G3M*Mvec))); 
FV = (2*NN + S + l)*V / ((2*MM + S + l)*(S-V)); 
DFlV = S*(2*MM + S + l); 
DF2V = S*(2*NN + S + l); 
ProbV = 1 - probf(FV,DF1V,DF2V); 
if ProbV<= 0.05 then Vsig = Vsig + 1 

* compute C-A L; 
L = det(G3M*Mvec)/det(H+(G3M*Mvec)) 
Check= ndep**2 + BFDF1**2 - 5; 
if Check> 0 then 

TT= sqrt(((ndep**2)*(BFDF1**2) - 4)/check) 
else TT= 1; 
RR= G3 - (ndep - BFDFl + 1)/2; 
QQ = (ndep*BFDFl - 2)/4; 
FL= ((l-L##(l/TT))*(RR*TT-2*QQ))/((L##(l/TT))*(ndep*BFDF1)) 
DFlL = ndep*BFDFl; 
DF2L = RR*TT - 2*QQ; 
ProbL = 1 - probf(FL,DF1L,DF2L); 
if ProbL <= 0.05 then Lsig = Lsig + 1 

* compute Johansen; 
FJ =JI Cl; 
DFlJ = ndep*(ngrp-1); 
DF2J = ndep*(ngrp-l)*(ndep*(ngrp-1)+2)/(3*A); 

* print FJ A J Cl DFlJ DF2J; 
ProbJ = 1 - probf(FJ,DF1J,DF2J); 
if ProbJ <= 0.05 then Jsig = Jsig + l; 

Intrasum = Intrasum +Intra; 

free Nvec Rvecp Rveck Yvec Meanvec MeanvecT Grand SSCP HE Tc 
Sampvec Svec Mvec Msub Intra; 
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end; ** the end of the loop 

* compute actual alpha levels 
alphaPB = PBsig/reps 
alphaUl = Ulsig/reps 
alphaU2 = U2sig/reps 
alphaV = Vsig/reps 
alphaL = Lsig/reps 
alphaJ = Jsig/reps ; 
Intrasum = Intrasum I reps; 

* Print Intrasum alphaPB alphaUl FPB FUl DFlPB DF2PB 

* output results to file; 
filename out 'c:\temp\dissl.txt' mod; 
file out; 
put rho 5.2 delta 3. nsubpgr 3. nspsub 3. ngrp 3. ndep 3. ncp $1. 

alphaPB 7.4 alphaUl 7.4 alphaU2 7.4 alphaV 7.4 alphaL 7.4 
alphaJ 7.4; 

closefile out; 
run ; 

* output intraclass corr to another file 
filename out2 'c:\temp\diss2.txt' mod; 
file out2; 
put rho 5.2 delta 3. nsubpgr 3. nspsub 3. ngrp 3. ndep 3. ncp $1. @; 
do i=l to ndep; 

put (Intrasum[i,l]) 5.2 @; 
end; 
put; 
closefile out2 
run; 

%mend 

* set 
desl 
des2 
des3 
des4 
des5 
des6 
des7 

up matrices of design 
{O 0.01 0.2 0.4 0.6} 

= {O 40 90}; 
= {12 24}; 
= {2 3 4 6}; 
= {2 3}; 
= {2 3}; 
= {'c' 'd'}; 

do il=l to 5; 
do i2=1 to 3; 

do i3=1 to 2; 
do i4=1 to 4; 

do i5=1 to 2; 

in ANOVA; 

do i6=1 to 2; 
do i7=1 to 2; 

do i8=1 to 5 

values for looping; 
* rho values; 
* delta values; 
* group size; 
*#subj per subgp; 
*#groups; 
* # dep vbles; 
* ncp; 

* loop for desl 
* loop for des2 
* loop for des3 
* loop for des4 
* loop for des5 
* loop for des6 
* loop for des7; 
* loop 5 times for correct error term 

%design(desl[il],des2[i2],des3[i3],des4[i4],des5[i5],des6[i6],des7[i 
7]); 

end; 
end; 
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end; 
end; 

end; 
end; 

end; 
end; 

I* 
%design(0.6,0,12,4,2,2, 'c'); 
%design(0.6,0,24,4,2,2, 'c'); 

*I 
run; 

quit; * quits proc iml 

run; 
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