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PREFACE 

Most public outdoor recreational goods (provided through lakes, rivers, parks, etc) 

are not priced in the market place. This makes measurement of value a difficult task. They 

are frequently assigned an implicit value based on political or institutional considerations. 

However, the absence of market prices does not mean that these goods have no values. 

Economic values which are relevant to allocation decisions and directly comparable to the 

values imputed to other uses of resources are indeed produced. It is such measures of value 

which best express the intensity of desire for these services and amenities. The problem lies 

not in an absence of value but in the absence of a direct measure of value (Clawson and 

Knetsch, 1966). However, methods of valuation ofnonmarket goods have been developed 

by researchers (for a review see Choi, 1993). 

This dissertation consists of three separate but related essays. The first essay is titled 

"Discrete Choice Analysis of Oklahoma Fishing and Fishing and Hunting License Holders". 

It analyzes the factors that influence decisions to make fishing trips to different water bodies 

of Oklahoma. 

Recent trends indicate increased use of discrete choice models based on McFadden's 

(1974) random utility framework to incorporate specific features of recreation decision-
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making as alternatives to the travel cost demand models. The random utility approach has 

been applied in three different situations: (a) share models designed to describe how a given 

level ofrecreation trips in a season is allocated among a specified set of sites (Morey ( 1981, 

1984); (b) probability models describing the same decisions as choice probabilities for a given 

recreation trip linked with an independent framework for determining the number of trips in 

a season (Smith, 1996); and (c) single trip site selection models which model the decision as 

a product of the probability of taking a trip and the conditional probability of selecting a 

particular site, given a trip is to be taken (Smith, 1996). ln this study the approach is closely 

related to the approach described in (c), i.e., the study focuses on estimating the parameters 

of probabilistic models for determining how likely a given license holder with certain social 

and geographical characteristics is to making a fishing trip to a given type of water body in 

Oklahoma. 

The study is based on a 1992 sample survey of Oklahoma fishing and combination 

fishing and hunting licence holders conducted by the Department of Agricultural Economics, 

Oklahoma State University. The information obtained from the survey is analyzed using the 

logistic regression model to determine the socio-demographic factors influencing choice of 

water bodies in making fishing trips in Oklahoma. 

The second essay is titled " Fishing Trip Demands to Small Streams in Eastern 

Oklahoma". There is little information on the economic importance of small natural stream 

fisheries in eastern Oklahoma. The study focuses on estimating a recreational fishing trip 

demand model for these fisheries. Recent literature indicates that the conventional travel cost 

method has theoretical drawbacks when used with fishing trip data. Recreational trip data are 
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in integer form and assume nonnegative values. Modeling trip data using the travel cost or 

contingent valuation technique without considering the discrete and nonnegative nature of trip 

data results in biased estimates of model parameters (Hillerestein and Mendelsohn, 1993). 

More recent advances in this area provide alternative modeling techniques for discrete data 

such as fishing trips. These modeling techniques are generally known as count data models. 

In this study, the Poisson regression model is first used to estimate the parameters of the 

model, then a test on the appropriateness of the model is conducted. The test result indicates 

that the Poisson model is inappropriate for the fishing trip data because of over-dispersion 

in the data set. Other alternative models to the Poisson regression are considered. These 

include the negative binomial and the hurdle models. The negative binomial model is found 

appropriate for the fishing trip data. The data for this study is obtained from a follow up 

survey of Oklahoma annual fishing license holders who made fishing trips to eastern 

Oklahoma small streams in 1992. The results are used to estimate economic benefits of 

recreation fishing at these water bodies and to provide a basis for management and planning 

decisions. 

The third essay titled" Fishing Trip Demands for Oklahoma Fresh Water Bodies" 

estimates a demand model for Oklahoma fresh water bodies in general. The essay is based 

on the 1996 national survey of fishing, hunting and wildlife-associated recreation data . In 

this essay no distinction is made between the types of water bodies visited by the license 

holder and no consideration is made about the type of license held by individuals in the 

survey. 
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DISCRETE CHOICE ANALYSIS OF OKLAHOMA FISHING LICENSE 
HOLDERS 

Abstract 

2 

A disaggregated logistic regression procedure for analysis of qualitative fishing trip 

data to different types of water bodies in Oklahoma and for different license type holders. 

The procedure uses the maximum likelihood method to estimate the parameters of the 

discrete choice model. Results of the study are useful in determining the degree of 

importance of the different water bodies for fishing by different license type holders. It is also 

useful in predicting what proportion of new license buyers will make fishing trips to the 

various water bodies. 



DISCRETE CHOICE ANALYSIS OF OKLAHOMA FISHING LICENSE 

HOLDERS 

1. Introduction 

3 

Previous studies on the value of recreation at the different types of water bodies in 

Oklahoma date back to the 1960s and earlier. These studies included impact analyses, 

demographic changes around water bodies, and analysis of expenditures associated with 

outdoor recreation (McNeely, 1969; Badger, Schreiner, and Presely,1977). Water and 

related land-based recreation benefits of the McClellan-Kerr Arkansas River Navigation 

System were estimated by Schreiner, et al (1985). Methods for planning optimum recreational 

facility development at a multiple purpose water resource project is shown by Schreiner, 

Chantaworn and Badger(l987). 

Cannock and Choi estimated demand for recreational trips to water bodies in 

Oklahoma using discrete choice and travel cost methods, respectively (Cannock, 1988; Choi, 

1993). Cannock's analysis gives information about the total visitor days by time period and 

their associated benefits and costs, information on the effects of changing entrance fee, 

substitution effect of optimum timing and level of recreational facility development and 

analysis of budget allocations across two competing lakes. Choi' s research provides 

information about factors that explain anglers' expenditure behavior at the Mountain Fork 
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River trout fishery and estimates trip demands for the trout fishery. 

The objective of this study is to extend probabilistic approaches to modeling the 

decision by Oklahoma fishing license holders to fish at different types of Oklahoma water 

bodies using survey data. Because individuals' decisions on whether or not to fish at a 

particular water body is a qualitative observation, the analysis is based on discrete choice 

methods. 

The contribution of this study is to provide information on what types of license 

holders use the different water bodies in Oklahoma for fishing purposes. The results should 

be useful to wildlife policy makers in determining characteristic information about who utilizes 

the different water bodies in Okl.ahoma and how policy may be directed to influence this use. 

2. Discrete Choice Model 

Discrete choice problems are ofinterest to researchers in a variety of disciplines. Even 

though the origin of probabilistic choice models were in mathematical psychology (Ben-Akiva 

and Lerman, 1985), there has been a remarkable increase in the application of limited 

dependent and qualitative variable models in economics. 

The economic analysis of the behavior of individual decision makers often leads to 

models that are of a limited dependent or qualitative variable nature. In recent years 

econometrics has embraced the use of limited dependent and qualitative variable models in 

applied work. This is largely due to the greater availability of survey data and an increasing 

awareness of aggregation bias in time-series regional and economy-wide modeling (Fry et 
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al 1993). 

Limited dependent variable models arise when data on the variable of interest is 

censored (when certain values of a dependent variable in a certain range assume a single 

value) or truncated (when dealing with the characteristics of a population from a sample 

drawn from a restricted part of the population; Green, 1993). Qualitative variable models 

should be used whenever the data of interest is discrete (the dependent variable we seek to 

model is a discrete outcome such as yes or no decision rather than continuous). Discrete 

variables may be either nominal (i.e. data classified into groups), ordinal (i.e. data classified 

into groups which have some ordering) or count (i.e. can only be a non-negative integer, Fry 

et al, 1993). 

Many behavioral decisions involve choice among discrete alternatives. Examples are 

decisions on labor force participation, occupation, education, marriage, family size, residence, 

work location, travel mode, and brands of commodity purchases (McFadden, 1982; Green, 

1993). A summary of economic decision making which is qualitative in nature is found in 

Hildenbrand, 1982. 

Manski and McFadden (1981) and Domencich and McFadden (1975) argue that 

contemporary economic analysis of consumer behavior has focused on the objective market 

environment of economic decisions and has excluded whim and perceptions from any formal 

role in the utility maximization process. Assume consumers are rational in that they make 

choices that maximize their perceived utility subject to a set of constraints. If the utilities are 

fixed, then the choice among two or more mutually exclusive alternatives will be the one with 

the greatest utility. However, there are many errors in this maximization. This is due to an 
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imperfect perception and optimization process by the economic agent, yielding stochastic 

choice behavior, and because of inability of the analyst to measure exactly all relevant 

variables (McFadden, 1982; Madala, 1983). From the standpoint of the observer, 

unmeasured psychological factors introduce a random element in economic decisions. 

Following Anderson, de Palma, and Thisse, 1992 (p. 33) the four different sources of 

uncertainty are: 

1. Nonobservable characteristics. The vectors of characteristics affecting choice of the 

individual is only partially known by the modeler. Choices may also be affected by 

factors of which the consumer is not fully aware. 

2. Nonobservable variations in individual utilities. Any population of consumers will 

have an associated variance in preferences and the random term will therefore have 

a variance that increases with increasing preference heterogeneity. 

3. Measurement errors. The amount of the observable characteristics is not perfectly 

known. 

4. Functional misspecification. The utility function is not known with certainty. The 

modeler must assume a particular functional relationship, and this may be a potential 

source of error. 

Consequently, the errors will add a random component to the preferences. Then the choice 

behavior must be characterized in probabilistic terms, i.e. the result is a probabilistic theory 

of choice which has features in common with psychological models of judgement (Manski and 

McFadden, 1981). 

Recent developments m the empirical analysis of recreation demand involves 
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discrete/continuous choice models that explicitly incorporate both the relevant substitution 

and site quality effects that influence recreationists' choices regarding where and how often 

to recreate (Hellerstein and Mendelsohn, 1993; Rosenthal, 1987; Creel and Loomis, 1990; 

Kling, 1988; Morey, Rowe and Watson, 1993; Dobbs, 1993; Parsons and Kealy, 1995). 

The derivation of probabilistic choice models is based on the concept of random 

utility. The approach is to impose assumptions about how recreation choices are made; in 

return, readily estimable models ofrecreation demands for several sites can be derived which 

are consistent with utility maximization behavior (Rosenthal, 1985). 

Let the preferences of household i for nonmarket good j be represented through a 

utility function of the form: 

ui ucx,~,e1i) j j . 
(1) 

where U' (.) is the utility function for the individual or household; \ is a vector of n= I, .. , N 

attributes for thejth site; and W; is a vector of m= l, ... ,M socioeconomic characteristics of 

the ith individual or household. The term Eij represents the random part of utility and varies 

from household to household. The random part of utility is an unknown function of the M 

socioeconomic and N site attributes as well as other unobserved attributes of the site and the 

individual or household. Thus uJ denotes the total utility household i derives from recreation 

at site j (Anas, 1982). 

The assumption that the random and systematic parts of utility are separable allows 

equation (1) to be expressed as: 



ui = 
J 

( 2) 
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For i=O, 1 the utilities U0 and U 1 are random, and the ith individual or household will 

* choose alternative one only ifU0 > U1 or if the unobservable, or latent, random variable Y . 
I 

= U0 - U1 ) O; (where Yi is a binary response variable, in our case a decision to make a trip to 

a recreation site or not to make a trip). Consequently, the values of the observable random 

variable Y; are determined as: 

y = [ 

Rewriting as 

1 

0 

if y/ > 0 

if y/ ~ 0 
(3) 

(4) 

I * 
where Xi, P, and e i are, respectively, explanatory variables, unknown location parameters, 

* and random errors in the linear statistical model for Y i. It is clear that to make the model 

complete, a particular probability distribution for e\ must be chosen. The exact specification 

of the distributional form for the error term reflects different assumptions about behavior. 

A variety of approaches have been employed by assuming different distributional 

forms for the error term. The most widely used approaches include the ordinary least squares 
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(OLS), the linear probability model, and the logistic or probit functions. 

The OLS approach, though convenient in form, has a number of statistical problems. 

The first is that, while the dependent variable can only assume values of 1 and 0, the 

predictions generated from OLS model are unbounded. Second, the random terms are 

heteroskedastic since their value depends on the value of the explanatory variables. 

The linear probability is conventionally modeled by assuming that all observations lie 

in the range where the probabilities are between zero and one, and then by employing OLS 

procedure. The problem with this model is that even when the specification is correct it is 

possible that a given sample of observations obtained from the true model will result in OLS 

parameter estimates which produce a fitted linear probability function. This will give rise to 

predicted values which lie outside the 0-1 interval for values of the explanatory variables at 

extremes of the observed range. This problem may be corrected by setting extreme 

predictions to 1 if the actual predicted value is greater than I and O if the actual prediction is 

negative. However, this may be unsatisfactory because, for some values of the explanatory 

variables, the predicted result may give a probability of 1 when, in fact, the observed value 

may be zero (or vice versa for a probability of zero, Wrigley, 1985). 

The above limitations of OLS and the linear probability model suggest a more suitable 

model specification such as the logistic and normal probability functions. Recreation behavior 

is frequently couched in terms of discrete choices. The choices include recreation activity 

and recreation site. The logit model, including both binomial and multinomial versions, is 

used to model discrete choices (Stynes and Peterson, 1984 ). 

Theoretically the logit model in its transformed mode relates a monotonic relationship 
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between the dependent binomial (multinomial) outcome and the probability of its occurrence 

using an index which is a function of explanatory variables. Under these assumptions the 

"true" probability function has the characteristic shape of a cumulative distribution function 

(CDF). The two widely used CDF's are the normal and the logistic. The associated analysis 

is called probit and logit analysis, respectively (Judge et al, 1980). 

One argument for using the normal CDF is that each individual makes choices 

between alternatives based on a certain value of a ranking index which reflects individual 

tastes. If there are many independent factors determining the critical level for each individual, 

the central limit theorem may be used to assume that the value of the ranking index is 

normally distributed random variable (Judge et al 1980). 

Let F(E) denote the cumulative distribution function of E in (4). Then the choice 

probabilities can be computed as 

P.i 
J (5) 

(where Eij represents the random part of utility of non-market good j for household i) by 

integrating over the derivative of F with respect to its j arguments. This derivative is a 

distribution function such that 

(6) 

where Ff] denotes a vector with its U) components shown in the brackets. The integration 



11 

of ( 6) yields 

Pi = ~[ U(~),all j] (7) 

where Fj (.) is the choice probability function for alternative j. This condition states that the 

choice probability for alternative j is a function of the differences of the utility of that 

alternative and the utility of all other alternatives. This result stems from the assumption of 

additive random terms (Anas, 1982). 

In principle, any proper, continuous probability distribution defined over the real line 

will suffice. The normal distribution has been used in several analyses, giving the probit 

model, 

pix 

Prob(Y=l) = f cp(t)dt. 
(8) 

= cp(plx) 

where cp(.) is a standard normal distribution (Green, 1993). However, the assumption that the 

error terms are normally distributed results in exceedingly complex calculations for the 

probability of selecting one alternative from three or more possibilities (Anas, 1982; 

Rosenthal, 1985; Amemiya, 1985; Green, 1993). There are two problems that have prevented 

wide use of the probit model (Pudney, 1989). The first is purely practical in that the 

evaluation of the mutivariate normal CDF in (6) requires an enormous amount of computer 

time when the choice set contains more than three possibilities. 

The second problem concerns the use of the model for forecasting purposes. If a new 

alternative is added to the opportunity set, the matrix L (variance-covariance matrix) has an 
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added row and column requiring added parameters in the model. Predicting the response to 

an expansion of the opportunity set requires estimation of the values of these added 

parameters, but, because the sample data may not have been collected before the new 

alternative is introduced, the sample data may not contain the relevant information. 

Numerical calculations become much simpler if the error terms in (1) are assumed to 

have a type 1 extreme value distribution, usually referred to as a Weibull distribution (Johnson 

and Kotz, 1970, p. 272). 

If individual i faces j choices, the probability that the first alternative is chosen is 

Pi1 = Prob[Uj 1 > ui 2 and ui 1 > Ui 3 ••• and u,! > u.,l 
= prob [ e i 2 < ui i - ui 2 + e; , 

and eiJ < ui1 - uiJ +e11 

and e . . < U 1 - U . + e . , J 
1.] 1. ! 1 1, 

Following Judge et al (1980), it is convenient to look at (9) in differenced form as 

u l 

(9) 

(10) 

This transformation reduces the number of integrals that must be evaluated to determine the 

Pu's. It also explains why distributions that are closed under subtraction are good candidates 

for the joint density of the eij . 

Thus, if Weibull distributions are assumed in the errors, the choice process should be 

modeled with a logit model. The difference of two Weibull distributions has a logistic 

distribution (Domencich and MacFadden, 1975; Judge et al 1980). 

The logit model has been used to capture important relationships in recreation 

forecasts. The logistic function is given analytically by the following: 
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p(y) = 
1 

1 + e -(a + Px) 1 + e (a -i- PX) 
(11) 

where, x is a set of independent variables and y is the dependent (binomial or multinomial) 

variable. This function is bounded and doubly asymptotic, approaching y=O and y= 1 as x 

approaches negative and positive infinity, respectively. 

Two properties of the logistic function make it particularly well-suited to the modeling 

ofrecreational choices. First, the fact that its values are bounded by (0, 1) interval permits it 

to be used as a probability function. Second, by means of the logit transformation the function 

may be easily converted to a convenient linear form. 

3. Data 

The data for the study were obtained from a survey conducted by Oklahoma State 

University, Department of Agricultural Economics, 1992. Data were gathered through 

telephone surveys of Oklahoma licensed anglers to assess their attitudes and opinions on, and 

effort and success at fishing in all water bodies in Oklahoma. 

The procedure was to first complete a survey to identify the extent Oklahoma anglers 

fished the different water bodies from samples of the 1992 populations of fishing and 

combination fishing/hunting license holders ( total population of all license holders was 

627,000). The 1992 population oflicense holders was stratified by license type and a random 

sample was independently drawn from each. The original sample of 3,009 license holders was 

augmented by 600 randomly-selected eastern Oklahoma resident annual fishing license holders 
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to increase the representation of eastern Oklahoma anglers (Appendix Table 1 )1. The sample 

oflifetime license holders was :from the population of those who were known to actively fish 

(i.e. not physically incapacitated or deceased). 

An overview of the survey process is illustrated in the flow diagram in Figure 1. The 

right branch of the flow diagram describes the path for incomplete surveys, which occurred 

for 2,465 license holders. An incomplete survey occurred for many reasons. The three 

primary reasons were: wrong phone number, inability to contact person after five attempts, 

and outright refusal to answer questions. The left branch of the flow diagram shows the 

completed survey steps. Surveys were completed for 32% of the 3,609 license holders in the 

combined original and supplementary samples. Interviewers completed fewer surveys of 

license holders in the smaller supplementary sample, which contained only residents of eastern 

Oklahoma in 1992, than for the larger original sample, which contained license holders from 

Oklahoma and from outside the state (Figure 1 ). 

Completed surveys from respondents who purchased a license in 1992 but did not fish 

in Oklahoma are designated by the encircled numeral I (Figure I). Reasons for not fishing 

were because of purchasing a license too late in the season, illness, etc. The encircled numeral 

2 (Figure 1) represents completed surveys from non-Oklahoma residents who purchased 

Oklahoma fishing licenses in 1992. There were 86 completed surveys from non-Oklahoma 

residents. 

1 A follow-up survey of eastern Oklahoma natural stream anglers was administered in 
1993. The additional sample of 600 eastern Oklahoma anglers was for purposes of 
increasing the number of participants in small stream fishing in the region. 
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4. Estimation 

As with other choice models, logistic functions are estimated using econometric 

procedure. Estimation of the logit model is carried out using the maximum likelihood method 

(Madala, 1983)2. 

Logic of the maximum likelihood procedure is as follows. First, an expression for the 

likelihood of observing the pattern of response category choices in the data set are derived. 

Then, estimates of those values which maximize the likelihood of the observed pattern of 

responses are taken. Consider the likelihood of any sample of n observations. Because they 

are by assumption drawn at random from the whole population, and with a success probability 

ofF(P'X), the likelihood of the entire sample is the product of the likelihoods of the individual 

observations. The likelihood of a particular sample of response category choices in a data set 

lS 

prob(Y1 =y1' Y2=Y2, ... , Yn=Yn) 

= II [1-F(P 1XJII F(p!X) 
Y,. cf 

(12) 

where F(P'X) is the logistic cumulative density function. The above likelihood equation for 

a sample of n observations can be conveniently written as 

(13) 

2 

See the work of McFadden (1973) for proofs of the desirable properties of the maximum 
likelihood estimation in large samples. 
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Maximizing the likelihood function proceeds by transforming it to log form and then taking 

partial derivatives with respect to the parameters to be estimated. Log transformation is 

convenient for taking partial derivatives of the products in the likelihood function (Wrigley, 

1985). The method of maximum likelihood argues that the calculated probability of observing 

the given sample should be the highest when the unknown p is near the true value, and hence 

a satisfactory estimate of the parameters is the maximand of the log likelihood function, or, 

I\ 

in other words, a value p which maximizes L (Domencich and McFadden, 1975). The log 

likelihood in this case is 

(14) 

which is a simple sum of the logs of the arguments and is easily differentiable The parametric 

values that maximize the log likelihood function are obtained through the usual procedure of 

taking partial derivatives of the log likelihood function with respect to the parameters and 

setting equal to zero; 

a1nL 
ap 

"{yJ; + (I- ) -J; }x o 7 F; Y; ( 1 -F) ; 
(15) 

where!;= 2F/ap. Equation (15) is non-linear and is solved by iterative procedures (Agresti, 

1990; Green, 1993 ). The iterative procedure operates until convergence and yields the 

following results: 

(1) maximum likelihood estimator or the parameter vector. McFadden( 197 4) has 

shown that, under quite general conditions, maximum likelihood estimation of the 
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conditional logit model provides estimators that are asymptotically efficient and 

normally distributed. These results are used to construct approximate large-sample 

confidence bounds and tests of hypotheses for the parameters. 

(2) corresponding estimates of functions of parameters such as derivatives and quasi-

elasticities are also a maximum likelihood estimate of the function ( Cramer, 1991). 

(3) the (asymptotic) standard errors of the parameter estimates derived from the 

estimate of their (asymptotic) covariance matrix. We know that the maximum 

likelihood estimators are consistent, asymptotically efficient, and asymptotically 

normally distributed. Thus, a consistent estimate of the asymptotic covariance matrix 

that can be used as a basis for hypothesis tests or confidence intervals is 

-[a2 lnL i-i 
a paw 

(16) 

evaluated at the final set of parameter estimates P (Judge et al, 1980),i.e the 

asymptotic covariance matrix for the maximum likelihood estimator is estimated using 

the inverse of the Hessian evaluated at the maximum likelihood estimates. 

(4) the maximum value of the log likelihood function. 

The value of the log likelihood function for particular sets of parameter estimates is 

useful when considering and testing simplifying assumptions ( such as zero coefficients, or the 

absence of certain variables from the model), or restrictions on the parameter vector. 

Provided the restricted model is nested as a special case within a general or unrestricted 

model, this can be tested by the log likelihood ratio or LR test. The test statistic is 
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LR 2(logL(8) logL(El)) (17) 

with u and r denoting unrestricted and restricted models respectively. Under the null 

hypothesis that the restriction holds, this statistic is asymptotically distributed as chi square 

with r degrees of freedom, equal to the number of (independent) restrictions on the parameter 

vector. 

A critical step in assessing the appropriateness of the model is to examine its fit, how 

well the model describes the observed data (Hosmer, Taber and Lemeshow; 1991 ). Assessing 

goodness of fit usually involves two stages: (1) computing a statistic that provides a summary 

measure of the errors, and (2) examining the individual error components that are large under 

the assumption of a good-fitting model. 

In the conventional multiple regression context, the overall fit of a model is measured 

by the R2 ( coefficient of determination) statistic. There have been several attempts to derive 

goodness of fit measures for the qualitative response models. One measure of fit is the 

maximized value of the log likelihood function In L. 

The log likelihood function has a convenient statistical distribution in large samples 

and can be given an intuitive interpretation using information theory (Domencich and 

McFadden, 1975). Because the hypothesis that all of the slopes in the model are zero is the 

most frequent test, the log likelihood computed with only a constant term, ln L0, should also 

be reported. Similar to the R2 in a conventional regression model, the likelihood ratio index 

is expressed as: 



LR!= 1- lnl 
lnl0 

One feature of this measure is that it is bounded by zero and one (Green, 1993). 

I\ I\ 
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(18) 

The log L(8 ), where 8 is maximum likelihood estimator, is a natural measure of fit, 

and it can be used intuitively for comparisons between different models fitted to the same data 

set, even if they are not nested, and also for comparisons between the same model fitted to 

different data sets (Cramer, 1991). 

5. Variables 

Separate discrete choice models were used to explain the probability of Oklahoma 

(resident) license holders fishing in six different water body types (Table I). The six water 

body types are reservoirs, small impoundments, farm ponds, large rivers, small rivers not in 

eastern Oklahoma and small rivers in eastern Oklahoma3 . 

The explanatory variables included in the model are gender, age, education, ethnicity, 

license type, location, and total number of fishing trips. Gender distinctions among the 

probabilities of trips to different water body types would imply that males would prefer one 

type of fishing experience and females a different type. For example males may have a higher 

probability of fishing more rugged or more inaccessible water types such as rivers and streams 

compared to females. Similarly, age may be a factor in explaining the probability of fishing 

the different water body types. For example, older license holders may prefer easier access 

or less strenuous fishing conditions compared to younger license holders. Education may be 

3 Further description of the water body types is given as a footnote in Table I. 
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correlated with income and hence the less expensive types of fishing may have higher 

probabilities among lower educated license holders. Similarly, ethnicity may be correlated 

with education and income and hence one type of water body fishing is preferred to another. 

License type, whether it is for fishing only or combination hunting and fishing, may influence 

the probability of fishing the different water body types. Those that hunt as well as fish may 

have higher probabilities of fishing the less accessible water body types compared to the 

license holders that only fish. 

The screening survey did not collect information on the cost per trip for fishing the 

various water body types. Furthermore, the different water body types are not evenly 

distributed geographically across the state. Hence, variables on the geographic location of 

the license holder are included (Figure 2). Reservoirs, rivers, and streams are more prevalent 

in the eastern part of the state. Hence, license holders located in northwest (NW), southwest 

(SW), north central (NC) and south central (SC) are expected to have lower probabilities of 

fishing reservoirs, rivers, and streams as compared to license holders located in northeast 

(NE) and southeast (SE) Oklahoma. All geographic regions have small impoundments and 

farm ponds and hence license holders may have more equal probabilities in fishing these water 

body types. 

Total trips is a measure of avidness in fishing. The more trips made in total, the 

greater the probability of fishing each water body type. Descriptive statistics of these 

variables are presented in Table 2. 

Another important variable is income. Even though there was an effort to obtain 

information about income, the response rate was very low. Because of this, income as an 
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explanatory variable would significantly reduce the sample size and was thus excluded from 

the set of regressors. 

6. Results and Discussion 

This section reports the results of maximum likelihood estimation for the discrete 

choice models for fishing the different water bodies in Oklahoma (Tables 3 to 8). The 

empirical results are presented in terms of parameter estimates, measure of the statistical 

reliability of the parameter estimates (i.e., t-statistics), likelihood values of the full model (the 

model with the set of explanatory variables), and the reduced model (intercept only) . 

The likelihood ratio (LR) statistic is a test of the hypothesis that all slope parameters 

are zero. This hypothesis was rejected at one percent significance level for all six types of 

water bodies (Tables 3-8) which implies that the logistic function fits the data well. The 

likelihood ratio test statistic which indicates the presence of significance between the 

restricted log likelihood estimation and the unrestricted is the highest for small streams in 

eastern Oklahoma and the lowest for reservoirs. The number of significant parameters varies 

by water body type. Twelve parameter estimates are significant for small streams in eastern 

Oklahoma while reservoirs has only four significant parameters. 

Individual tests for each explanatory variable indicates that not all have the same sign, 

magnitude and significance across all types of water bodies. Gender is significant only for 

small streams both within and outside of eastern Oklahoma. Both cases have the expected 

negative sign implying that females have a lower probability of fishing small streams as 



22 

compared to males. 

The variables on age groupings vary in sign and statistical significance from water 

body to water body. The reference group is 35 to 44 years of age. All age groups have 

comparable probabilities for fishing reservoirs. The oldest age group has a statistically 

significant lower probability of fishing small impoundments compared to the reference group. 

For farm ponds, younger age groups have higher probabilities and older age groups have 

lower probabilities compared to . the reference group. Older age groups have lower 

probabilities of fishing large rivers compared to the reference group and younger age groups. 

Small streams, not in eastern Oklahoma, have limited number of observations (65) across all 

age groups and have few observations in the extreme young and old age groups. The 

reference group has the highest probability with the next youngest (25 - 34 years) and next 

oldest ( 45 - 54 years) both having statistically lower probabilities of fishing. Small streams 

in eastern Oklahoma have the highest probability of fishing for the reference group and all 

older groups have statistically significant lower probabilities. 

Ethnic background is not significant for any of the water bodies except large rivers. 

Non-white license holders have a higher probability of fishing large rivers compared to the 

reference group of white license holders. Education level is significant for reservoirs and 

small rivers and streams located outside eastern Oklahoma. For reservoirs the likelihood of 

making a trip declines for license holders with high school or lower education levels as 

compared to those beyond a high school graduate. For small streams not in eastern 

Oklahoma the result is reverse. The probability of making a fishing trip increases for high 

school and lower education levels as compared to the reference group which is vocational and 
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above including some college. 

The type of license holder (fishing only and combination hunting and fishing) is a 

significant parameter for reservoirs, small impoundments, farm ponds, and large rivers. 

Except for reservoirs, the probability increases for small impoundments, farm ponds, and large 

rivers if the license type is combination hunting and fishing. Because reservoirs were the 

predominate water body fished, there is a higher probability that the avid fisherman who only 

will fish in reservoirs than will the combination license holder. 

Geographical location of the license holder's residence gives important information 

about accessibility, distance, and cost of a trip to specific water bodies. The reference 

location is southeast (SE) Oklahoma. This region has an abundance of small streams and 

residents are close to a number of reservoirs. Reservoirs were the predominate water body 

fished by all license holders. Results of the discrete choice model indicates that there are no 

statistically significant differences in the probabilities of residents in the different locations 

fishing at reservoirs. Whereas for small streams in eastern Oklahoma, all of the geographical 

variables are significant with the expected negative sign. The probability of fishing small 

impoundments decreases if the residence of the license holder is in northeast or northwest 

Oklahoma compared to southeast Oklahoma residents. License holders whose residence is 

in southwest and southcentral have higher probability of fishing farm ponds than do southeast 

Oklahoma residents. This is probably associated with higher availability of farm ponds 

relative to other water body types. As expected, out-of-state license holders find farm ponds 

less attractive for fishing and thus have a lower probability. In the case of large rivers, license 

holders living in northwest, southwest, and southcentral have lower probability of fishing 
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large rivers compared to the southeast residents. Again, out-of-state license holders are less 

likely to fish large rivers. The probability of fishing small streams not in eastern Oklahoma 

increases if the license holder is located in northwest or southwest Oklahoma and declines if 

they are located in northeast Oklahoma than are southeast resident license holders. All 

location variables are significant and have the expected negative sign for small streams in 

eastern Oklahoma. This indicates that license holders located elsewhere other than southeast 

Oklahoma are less likely to fish small streams in eastern Oklahoma as compared to southeast 

Oklahoma resident license holders. This is expected because of the predominate location of 

small streams in eastern Oklahoma. This implicitly implies the lower cost of trips to eastern 

Oklahoma natural streams for southeastern Oklahoma residents. 

Total trips made per season (1992) represent how avid license holders are at fishing. 

The more trips license holders make, the higher the probability of fishing each water body 

type. The coefficient on total trips is positive and significant for each water body type. 

Only three of the explanatory variables were statistically significant for reservoirs 

education, license type, and total trips). This is because a large number of all license holders 

fish reservoirs and hence the discrete choice model with the set of explanatory variables is not 

able to differentiate nonparticipants from participants. 

In terms of overall fit of the model, expected sign of coefficients and number of 

significant parameters, the model is relatively better able to differentiate participants from 

nonparticipants for small rivers in eastern Oklahoma. A total of eleven variables are 

significant at the five or ten percent probability level (gender, age 45-54, age 55-64, age 65 

and over, NW, SW, NC, SC, NE, Out-of-state, and total trips). 
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8. Conclusion 

An empirical approach was used to determine which types of water bodies were most 

frequently fished by license holders. The estimation is relatively simple. A discrete choice 

model reveals the decision to make a fishing trip or not to make a fishing trip to different 

water bodies of Oklahoma. 

Statistical results of the empirical analysis indicate a certain amount of differentiation 

with the set of explanatory variables. The identified set of explanatory variables discriminated 

better for small tivers in eastern Oklahoma than for reservoirs. Relatively good probabilistic 

models were obtained and these results identify directions for improvement of the models. 

The results of this research could be improved and made more useful to policy makers by 

acquiring more complete geographical data, site characteristics, trip costs and income. 

Results will also be improved if more socioeconomic characteristics of the license holders are 

available. 
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Table 1. Description of Variables 

Description 

Dependent variables 
Reservoirs 
Small impoundments 
Farm ponds 
Large rivers 
Small rivers not in eastern Ok. 
Small rivers in eastern OK. 

Independent variables 
Gender 
Agel 
Age2 
Age (reference) 
Age3 
Age4 
Ages 
Education level 
Ethnic back ground 

Ethnic I 
License type 
Location 

NW 
SW 
NC 
SC 
SE (reference) 
NE 
Out-of-state 

Total trips 

Value 

1 = if made a trip to reservoirs; 0 otherwise 
1 = if made a trip to small impoundments; 0 · otherwise 
1 = if made a trip to farm ponds; 0 otherwise 
1 = if made a trip to large rivers; 0 otherwise 
1 = if made a trip to small rivers not in eastern Oklahoma, 0 = otherwise 
I = if made a trip to small rivers in eastern Oklahoma, 0 = otherwise 

0 = male; 1 = female. 
I if age between 16 and 24 yrs.; 0 otherwise 
I if age between 25 and 34 yrs.; 0 otherwise 
between 35 and 44 yrs 
I if age between 45 and 54 yrs; 0 otherwise 
I if age between 55 and 64 yrs. 0 otherwise 
1 if age 65 and above; 0 otherwise 
1 =up to and including high school graduate, 0 = more than high school graduate 

1 = if nonwhite 
O=license is fishing only; I =combination hunting and fishing 

I = residence is in northwest Oklahoma; 0 otherwise 
I = residence is in southwest Oklahoma: 0 othe,wise 
I = residence is in northcentral Oklahoma;O othe,wise 
I = residence is in southcentral Oklahoma:O otherwise 
resident is southeast Oklahoma 
I = residence is in n01theast Oklahoma; 0 otherwise 
I= out of state resident; 0 otherwise 
total trips made to all water bodies 

Reservoirs = over 400 acres; small impoundments(lakes) = 2 to 400 acres; farm ponds = privately owned; large rivers, eg. Arkansas, Red, 
Canadian, Cimarron; small rivers, creeks, and streams, eg. Baron Fork, Mountain Fork, Illinois, and Washita. ~ 



Table 2. Descriptive Statistics of Variables 

Variable Name N Mean Standard Minimum Maximum 
Deviation 

Reservoir 1043 0.62033 0.48554 0 1 
Small impoundments 1043 0.34899 0.47688 0 1 
Farm ponds 1043 0.41035 0.49213 0 1 
Large rivers 1043 0.18984 0.39236 0 1 
Small rivers not in eastern Ok. 1043 0.06232 0.24185 0 1 
Small rivers in eastern OK. 1043 0.16012 0.36689 0 1 
Gender 1043 0.20326 0.40262 0 
Agel 1043 0.08245 0.27519 0 
Age2 1043 0 18600 0.38929 0 
Age (reference) 1043 0.27133 0.4449 0 
Age3 1043 0.21189 0.40884 0 1 
Age4 1043 0.16683 0.37300 0 
Age5 1043 0.07478 0.26317 0 1 
Education 1043 0.7325 0.44287 0 1 
Ethnic back ground 

Ethnicl 1043 0.11314 0.31691 0 
License type 1043 0.37872 0.48530 0 
Location 

NW 1043 0.09875 0.29847 0 
SW 1043 0.09300 0.29057 0 
NC 1043 0 16203 0.36866 0 
SC 1043 0.10574 0.30730 0 
SE (reference) 1043 0.15532 0.06238 0 
NE 1043 0.30681 0.46139 0 
Out-of-state 1043 0.06232 0.24185 0 

Total trips 1043 34.834 63.464 0 930 
w 
N 



Table 3. Maximum Likelihood Results for Oklahoma License Holders Fishing at 
Reservoirs, 1992. 

Variable name Coefficient Standard error t-Ratio 

_Constant 0.52245 0.24123 2.1658* 
Gender -0.001 0.17432 -0.0056 
Age 

Agel (16-24 years) -0.1659 0.26088 -0.636 
Age2 (25-34 years) -0.0878 0.19612 -0.4475 
Age3 (45-54 years) 0.2306 0.19150 1.2041 
Age4 (55-64 years) -0.0403 0.20191 -0.1995 
Age5 ( 65 years and above) 0.1699 0.27348 0.6213 

Ethnic 1 ( Non whites) -0.2678 0.20771 -1.2892 

33 

Educnl (high school and under) -0.2744 0.15232 -1.8015** 
Geographical residence 

NW ( north west OK) 
SW ( south west OK) 
NC ( north central OK) 
SC ( south central OK) 
NE ( northeast OK) 
Out-of-state ( out of OK state) 

License types 
Total trips (No.) 
Log L (0)3 = -692.45 
Log Lb = -668.68 
LR test value = 47.5538 

* significant at =0.1 
** significant at =0.05 

-0.0868 
-0.4037 

0.14657 
0.37914 
0.21917 
0.50964 

-0.33966 
0.0064 

a The log oflikelihood value for intercept term only. 

0.25911 
0.2629 
0.22849 
0.26262 
0.19769 
0.32231 
0.14991 
0.0016 

b The log of likelihood value for the model with set of regressors. 

-0.3351 
-1.5356 
0.64145 
1.4436 
1.1086 
1.5812 

-2.2658* 
4.0425* 



Table 4.Maximum Likelihood Results for Oklahoma License Holders Fishing at Small 
Impoundments, 1992. 

Variable name Coefficient Standard error t-Ratio 

Constant -0.5640 0.23908 -2.3592* 
Gender 0.04825 0.17967 0.26855 
Age 

Agel (16-24 years) -0.0836 0.26446 -0.31612 
Age2 (25-34 years) -0.0423 0.19747 -0.21441 
Age3 (45-54 years) -0.1515 0.19184 -0.78956 
Age4 ( 5 5-64 years) -0.2983 0.20973 -1.4224 
Age5 (65 years and above) -0.6010 0.29416 -2.0432* 

Ethnic I (Nonwhites) 0.33351 0.20731 1.6088 
Educnl (highschool and below) -0.1054 0.15129 -0.6967 
Geographical residence 

NW (northwest OK) -0.6922 0.28168 -2.4573* 
SW (southwest OK) -0.0588 0.26578 -0.22136 
NC (northcentral OK) 0.02782 0.22655 0.1228 
SC (southcentral OK) -0.3007 0.26017 -1.558 

34 

NE (northeast OK) -0.3368 0.19854 -1.6965** 
Out-of-state 

License type 
Total trips (No.) 
Log L (O)a = -674.63 
Log Lb = -650.32 
LR test value = 48.6243 

* significant at =0.1 
** significant at =0.05 

-0.4912 
0.54875 
0.00319 

a The log of likelihood value for intercept term only. 

0.34128 
0.15206 
0.00113 

b The log of likelihood value for the model with set of regressors. 

-1.4394 
3.6087* 
2.8191 * 



Table 5. Maximum Likelihood Results for Oklahoma License Holders Fishing at Farm 
Ponds, 1992. 

Variable name 

Constant 
Gender 
Age 

Agel (16-24 years) 
Age2 (25-34 years) 
Age3 (45-54 years) 
Age4 (55-64 years) 
Age5 ( 65 years and above) 

Ethnic 1 ( Non whites) 
Educnl (high school and under) 
Geographical residence 
NW ( residence is north west OK) 
SW ( residence is south west OK) 
NC ( residence is north central OK) 
SC ( residence is south central OK) 
NE ( residence is north east OK) 
Out-of-state 

License type 
Total trips (No.) 
Log L (0)3 = -706.10 
Log Lb = -609.59 
LR test value :;=: 193.024 

* significant at =0.1 
** significant at =0.05 

Coefficient 

-082948 
-0.01963 

0.20783 
0.44654 
-0.2196 
-0.8875 
-1.0401 
0.13554 
-0.0252 

0.43582 
0.925 
0.38239 
0.84476 
-0.2558 
-2.1842 
0.539 
0.0079 

a The log of likelihood value for intercept term only. 

Standard error 

0.2511 
0.1887 

0.2689 
0.2031 
0.1946 
0.2264 
0.3143 
0.2183 
0.1579 

0.2688 
0.2767 
0.235 
0.2632 
0.2080 
0.6025 
0.1551 
0.0015 

b The log of likelihood value for the model with set of regressors. 

t-Ratio 

-3.3034* 
-0.1051 

0.77293 
2.1988* 
-1.1282 
-3 .6207* 
-3.3921* 
0.62099 
-0.1051 

1. 6211 
3.3432* 
1.6273 
3.21 * 
-1.2298 
-3.625* 
3.4756* 
5.3831 * 
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Table 6. Maximum Likelihood Results for Oklahoma License Holders Fishing at Large 
Rivers, 1992. 

Variable name 

Constant -
Gender 
Age 

Agel (16-24 years) 
Age2 (25-34 years) 
Age3 (45-54 years) 
Age4 ( 5 5-64 years) 
Ages (65 years and above) 

Ethnicl (Nonwhites) 
Educnl (high school and under) 
Geographic residence 
NW ( northwest OK) 
SW ( southwest OK) 
NC ( northcentral OK) 
SC ( southcentral OK) 
NE ( northeast OK) 
Out-of-state 

License type 
Total trips (No.) 
Log L (O)" -506.88 
Log Lb = -444.76 
LR test value = 124.251 

* significant at =O .1 
** significant at =0.05 

Coefficient 

-1.5102 
-0.1606 

0.0515 
0.0683 
-0.3099 
-1.1842 
-1.1464 
0.4051 
0.3042 

-1.6337 
-2.0352 
-0.0912 
-0.5408 
-0.0414 
-1.0538 
0.3858 
0.007 

a The log oflikelihood value for intercept term only. 

Standard error 

0.2953 
0.2324 

0.3068 
0.2341 
0.2387 
0.3106 
0.4304 
0.2402 
0.2010 

0.4646 
0.5056 
0.2682 
0.3217 
0.2286 
0.5114 
0.189 
0.0013 

b The log of likelihood value for the model with set of regressors. 

t-Ratio 

-5.1149* 
-0.691 

0.1679 
0.2918 
-1.2980 
-3.8122* 
-2.6637* 
1.6867** 
1.5133 

-3.5163* 
-4.0256* 
-0.34 
-1.681 ** 
-0.1811 
-2.0607* 
2.042* 
5.2296* 



Table 7. Maximum Likelihood Results for Oklahoma License Holders Fishing at Small 
Rivers not in Eastern Oklahoma, 1992. 

Variable name Coefficient Standard error t-Ratio 

Constant -3.438 0.5409 -6.3565* 
Gender -0.9997 0.4976 -2.009* 
Age 

Agel (16-24 years) -0.3857 0.4916 -0.7846 
Age2 (25-34 years) -1.2101 0.4862 -2.4888* 
Age3 (45-54 years) -1.1705 0.4765 -2.4565* 
Age4 (55-64 years) 0.1382 0.3580 0.386 
Age5 ( 65 years and above) -0.0298 0.5063 -0.0588 

Ethnicl (Nonwhites) 0.20346 0.4131 0.4926 
Educnl (high school and under) 0.7367 0.3562 2.0681 * 
Geographical residence 
NW ( northwest OK) 1.4252 0.4736 3 0095* 
SW ( southwest OK) 1.1612 0.5021 2.3125* 
NC (northcentral OK) 0.4639 0.4876 0.9513 
SC ( southcentral OK) 0.7168 0.4999 1.434 

37 

NE ( northeast OK) -0.9661 0.5482 -1.7624** 
Out-of-state 

License type 
Total trips (No.) 
Log L (O)a = -243.34 
Log Lb -208.92 
LR test value 68.836 

* significant at =0.1 
** significant at =0.05 

-0.2119 
0.0964 

0.0049 

a The log of likelihood value for intercept term only. 

0.8236 
0.2924 
0.0017 

b The log of likelihood value for the model with set of regressors. 

-0.2573 
0.3296 
2.8879* 
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Table 8. Maximum Likelihood Results for Oklahoma License Holders Fishing at Small 
Rivers in Eastern Oklahoma, 1992. 

Variable name 

_Constant 
Gender 
Age 

Agel (16-24 years) 
Age2 (25-34 years) 
Age3 (45-54 years) 
Age4 (55-64 years) 
Age5 ( 65 years and above) 

Ethnicl (Nonwhites) 
Educnl (high school and under) 
Geographical residence 
NW ( northwest OK) 
SW ( southwest OK) 
NC ( northcentral OK) 
SC ( southcentral OK) 
NE (northeast OK) 
Out-of-state 

License type 
Total trips (No.) 
Log L (0)3 -458.77 
Log Lb -355.32 
LR test value 206.916 

* significant at =0.1 
** significant at =0.05 

Coefficient 

-0.6485 
-0.9434 

-0.1631 
-0.0564 
-0.4721 
-0.795 
-1.6708 
-0.1300 
-0.2441 

-6.2747 
-4.1953 
-1.4364 
-1.1386 
-0.4023 
-2.326 
0.3183 
0.0100 

a The log oflikelihood value for intercept term only. 

Standard error 

0.3027 
0.2941 

0.3628 
0.2652 
0.2707 
0.3127 
0.5559 
0.2943 
0.2143 

2.4976 
1.0463 
0.3203 
0.3423 
0.229 
0.75 
0.2061 
0.0015 

b The log of likelihood value for the model with set of regressors. 

t-Ratio 

-2.1424* 
-3.2076* 

-0.4495 
-0.2126 
-1.7438** 
-2.5421 * 
-3.0057* 
-0.4419 
-1.1392 

-2.5123* 
-4.0098* 
-4.484* 
-3.3263* 
-1.7568** 
-3.1013* 

1.5447 
6.6441 * 



Figure I. Flow Diagram of Screening Survey Process 
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Figure 2 . Geographical Subdivision of Oklahoma License Holders Residence 
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Appendix Table 1. Oklahoma license holders (1992) by type of license, sample size and number of telephone surveys administered 

Survey administered 

License type License holders Sample size Completed Non-response 
(FY 1992) interviews 

Resident, 
annual combination hunting-fishing 78,000 501 142 (10) 359 

Resident, annual fishing 350,000 1,609 511(15) 1,098 

Non-resident, annual fishing 37,000 123 44(0) 79 

Non-resident, 10-day fishing 8,000 50 20(0) 30 

Non-resident, 3-day fishing 62,000 126 22(0) 104 

Lifetime2 51,000 900 291(25) 609 

Senior, resident2 41,000 300 114(30) 186 

-
Total 627,000 3,609 1, 144(80) 2,465 

1 Number in parentheses is the number of completed interviews in which the license holder indicated they did not fish in Oklahoma during 
1992. These are included as completed surveys. 
2 It includes fishing only and combination hunting and fishing license types. Data from the files of Active license holders. 
Source: Fisher, W., D. Schreiner, C Martin, Y Negash, and E. Kessler. 1987. Evaluation ofthe Smallmouth bass recreational fishery in 
eastern Oklahoma streams. Oklahoma Department of Wildlife Conservation, Federal aid in Sportfish Restoration. F-41-R-l 8, Final Report, 
Oklahoma City. ~ 



Appendix Table 2. Gender distribution of Oklahoma resident anglers by license type with comparison to state population, 1992 (percent). 

License type 
Gender group State population 

16 years and older Annual Annual 
1991 fishing Combination 

Male 47.0 71.2 96.4 

Female 53.0 28.8 3.6 

Total 100.0 100.0 100.0 

Number in sample NA 511 140 

Not reported NA 0 2 

Sample size 
(all) NA 511 142 

Population 2,411,100 350,000 78,000 

Lifetime Senior 

94.4 81.0 

5.6 19.0 

100.0 100.0 

290 113 

1 1 

291 114 

51,000 41,000 

Weighted 
total 

78.0 

22.0 

100.0 

NA 

NA 

NA 

520,000 

.;:.. 
w 



Appendix 3. Age distribution of Oklahoma resident anglers by license type with comparison to state Population (1992, percent) 
Age group 

State Population Annual Annual Lifetime Annual Weighted 
16 years old and fishing Combination Senior Total 
older, 1991 

16-17 ---------

years old 4.0 0.9 0.7 I. I NA 0.8 

18-24 years old 12.0 8.2 7.1 10.3 NA 7.6 

25-34 years old 21.0 17.6 24.2 20.9 NA 17.5 

3 5-44 years old 20.0 28.2 22.7 30.8 NA 25.4 

45-54 years old 16.0 24.6 22.3 24.1 NA 22.2 

55-64 years old 10.0 18.8 22.3 11.4 3.6 17.4 

65 years old and older 17.0 1.7 0.7 1.4 96.4 9.1 

Total l 00.0 100.0 100.0 100.0 100.0 100.0 
Number in Sample NA 508 140 282 110 NA 
Not reported NA 3 2 9 4 NA 

Sample size NA 511 142 291 114 NA 
( all, whether fished 
or not) 
Population 2,411,100 350,000 78,000 51,000 41,000 520,000 

..i:,.. 

..i:,.. 



Appendix 4. Education distribution of Oklahoma resident anglers by license type with comparison to state population, 1992 (percent). 

State Population Annual Annual Lifetime Annual Weighted 
Education group 16 years old and fishing Combination Senior Total 

older, 1991 

11 years or less 19.0 10.5 7.9 10.8 28.3 11. 5 

12 years 42.0 61.5 58.6 58.4 48.7 59.8 

Votech, Some 21.0 7.0 7.9 4.6 1.8 6.5 
College 

4 years of college 17.0 21.0 25.6 26.2 21.2 22.2 
or more 

Total 100.0 100.0 100.0 100.0 100.0 100.0 

Number in Sample NA 510 140 286 113 NA 

Not reported NA 1 2 5 1 NA 

Sample size NA 511 142 291 114 NA 
( all, whether fished 
or not) 
Population 2,411,100 350,000 78,000 51,000 41,000 520,000 

.l::,. 
V1 



Appendix 5. Race distribution of Oklahoma resident anglers by license type with comparison to state population, 1992 (percent). 

State Population Annual Annual Lifetime Annual Weighted 
Race group 16 years old and fishing Combination Senior Total 

older, 1991 

White 87.0 86.6 90.6 89.6 90.2 87.8 

Black 5.0 2.3 2.2 0.0 2.7 2.1 

All others 8.0 11.1 7.2 10.4 7.1 10.1 

-
Total 100.0 100.0 100.0 100.0 100.0 100.0 

Number in Sample NA 510 139 289 110 NA 

Not reported NA 1 3 2 4 NA 

Sample size NA 511 142 291 114 NA 
(all, whether fished 
or not) 

Population 2,411,100 350,000 78,000 51,000 41,000 520,000 

.j::.. 
0\ 



Appendix 6. Types of waters fished by samples of Oklahoma resident anglers by license holder type, 1992. 

Types of Waters Fished (Percent of Sample) 

License Holder Sample Size Did Not Reservoir Small Farm Large small rivers small rivers 
(Number) Fish in 1992 Impound- ponds rivers and creeks and Creeks 

ment Streams outside Streams in 

Eastern Oklahoma Eastern Oklahoma 

Original Sample1 

Annual 511 2.3 67.7 22.9 36.6 12.8 6.4 12.5 

Combination 142 7.0 54.2 28.8 40.0 16.9 9.8 14.0 

Lifetime 291 8.6 50.2 39.9 53.2 20.6 12.0 20.9 

Senior 114 26.3 46.5 22.8 18.4 11.4 6.1 8.7 

Supplementary 
Sample2 

Annual 167 4.2 49.1 37.7 30.5 26.9 3.5 22.2 

Details do not add to I 00% because of multiple responses. 
1 An independent random sample on the stratified (by license type) population of 1992 Oklahoma fishing license holders. 
2 A second sample of resident, annual fishing license holders residing in a stratum of Oklahoma's most eastern counties. 

.i::,.. 
--.J 
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ESSAY II 

Fishing Trip Demand Model For Eastern Oklahoma Natural Streams 
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Fishing Trip Demand l\1odel For Eastern Oklahoma Natural Streams 

Abstract 

One of the methodological problems with recreation trip data is that the sample 

responses are nonnegative integer counts drawn from a heterogeneous population. 

Disaggregate count data models are presented and estimated for fishing trips to small natural 

streams in eastern Oklahoma. The Poisson regression model is presented first. However, the 

test for overdispersion indicates the Poisson model to be inappropriate. Alternatives to the 

Poisson model are considered, namely, the negative binomial and the hurdle count data 

models. The negative binomial model was found more appropriate for the fishing trip data. 

The estimated trip demand model was used to compute economic benefits per trip to small 

streams in eastern Oklahoma. 
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Fishing Trip Demand I\fodel For Eastern Oklahoma Natural Streams Fishing 

l. Introduction and Problem Statement 

Recreation demand modeling has been used by economists since the early 1960s. 

Economists use travel costs to reveal recreationist' s preferences and to estimate demand for 

trips for purposes of measuring the nonmarket value of recreation sites (Smith, 1996). 

There is little information available on the economic value of eastern Oklahoma small 

natural streams for use as fisheries. In addition, it is known that Oklahomans make fishing 

trips to other fisheries in Oklahoma as well as to fisheries outside of the state. However, it 

is not knO\vn if there exists a substitution relationship between fishing trips to natural streams 

and to other fisheries within Oklahoma and out-of-state. Furthermore, exploration in the use 

of state policy in managing eastern Oklahoma's small natural streams and the effects of 

substitution of fishing trips between different fisheries is limited without information on the 

values of these nonmarket goods. It is the purpose of this research to estimate trip demands 

for eastern Oklahoma small natural streams and to assess the presence of substitution effects 

with other fisheries. 
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2. Approaches to the Valuation of Non market Recreation Goods 

There are two basic approaches to valuing nonmarket recreation goods: the indirect 

(extended revealed preference) approach and the direct (structured conversation) approach 

(Smith, 1996; Turner, Pearce and Bateman, 1993). 

The indirect approach is the travel cost method and examines individuals' purchases 

of market priced goods which are necessary to enjoy associated nonmarket goods such as 

fishing trips. This indirectly seeks to recover estimates of individuals' willingness-to-pay for 

nonmarket goods by observing their behavior in related markets. 

The direct approach is the contingent valuation method and measures demand by 

examining individuals' stated preferences for nonmarket goods, i.e. direct solicitation of 

individuals' preferences for nonmarket goods. 

2.1 Travel Cost Method 

The travel cost recreation demand model is an indirect method, initially propos.ed by 

Harold Hotelling in 1947 and occupies a major place in the applied research programs of 

resource and environmental economics. It is indirect in the sense that it uses data on 

marketed inputs needed for the provision of a final flow of service. 

Early application of travel cost demand models was motivated by the need to value 

recreation benefits provided by public investment projects. For example, constructing a dam 

for a hydroelectric generating plant, flood control, or both, creates a lake and opportunities 
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for water based recreational activities. Estimating these benefits requires an aggregate demand 

function for a site considered to be a perfect substitute for the one created by the project 

being evaluated. More recent applications include evaluating regulatory or management 

options that change the features of existing recreation sites (Smith, 1989). 

The travel cost method, with its different variants, estimates the relationship between 

trips to a site, recreation price, and other explanatory variables and then simulates the effect 

of an increase in the price of the recreational opportunity by an increase in trip costs. 

The model recognizes that individuals making trips to a recreation site pay an implicit 

price which is out-of-pocket travel cost. By observing the number of trips to the site and the 

costs for individuals at different distances from the site (including fees and related charges), 

information is obtained comparable to that provided by market transactions. The presence 

of spatial variation allows different prices for different individuals and thus the model may 

be estimated using cross-section data ( Fletcher et al, 1990). 

In this method, each person is assumed to have choices, reflected by preference or 

utility (U), over the number of trips to a set of recreation sites as well as over the 

consumption of nonrecreation market goods. The utility function representing person i's 

preferences is given by equation ( 1) and restrictions on the choices that are feasible by the 

constraints are equations (2) to (4): 

( 1) 



w 
PXi + CFi~Y;(T; ) 

money budget constraint 

~-w + T/ + T(V;) = T 

time budget constraint, 

W QW L L X X T; E ; ,T; E u>;;T; E W; 

other time restrictions 
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( 2) 

( 3) 

( 4) 

where X, V, and q are vectors, respectively, of quantity of market goods, number of trips to 

recreation sites, and qualities of recreation sites for individual i. P and C; are prices of market 

goods, Xi, and the round-trip travel cost, respectively. Li is the time spent by person i in 

leisure activities other than those represented in V. T represents the length of the time 

horizon: superscripts w, x, and Lon T represent, respectively, vectors of time spent working 

at various wage jobs, time necessary to consume market goods, and time spent in various 

leisure activities not captured in V. The time spent recreating during trips is given by T(V;) 

and is determined by the number of trips of specific duration to all sites. Y represents income 

over the appropriate time period from all wage sources and depends on the time spent 

working. The Qs are sets of (possibly individual-specific) constraints on the work, leisure, and 

goods consumption time vectors. 

It is assumed that choices are generated by maximization of (1) subject to (2), (3), and 
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( 4). This results in vectors of demand functions for market goods and for recreation trips: 

(5) 

Despite its wide use there are criticisms of the model. The assumptions on how time 

(6) 

is allocated or on the price available for added working time influences the opportunity cost 

of time and therefore the nature of the "implicit price" ( Smith, Desvousges, and McGiveny, 

1983). Sensitivity of the travel cost model relates to the basic unit of consumption. Most 

early studies treated trips to the site as the basic unit of consumption, implicitly assuming a 

fixed time on-site during each trip. When on-site time per trip is a choice variable, marginal 

rates of substitution (between number of trips during a season and the time on site during 

each trip) responds differently to different sets of relative prices (McConnell, 1990). 

Evaluations of the travel cost method have been positive (Bockstael, McConnell, and 

Strand 1991; Ward and Loomis, 1986). 
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2.2. Contingent Valuation Method 

Contingent valuation relies on responses to hypothetical situations (Riddick, 

DeSchriver, and Weissinger, 1984). It is an income compensation approach. Estimation 

involves construction of experimental situations to obtain information about individuals' 

indifference curves. Hypothetical markets and institutions are created and surveys are 

administered to assist consumers in revealing their preferences for nonmarket goods (Durden 

and Shogren, 1988). The critical assumption is that properly designed surveys can elicit 

responses comparable to those arising under actual situations. 

Recreationists are confronted with different scenarios, such as recreation quality 

levels and level of service, and then asked how much they would be willing-to-pay to obtain 

the higher quality or service level rather than the current quality and level. 

There are various methods for obtaining willingness-to-pay values. The most common 

technique is the "iterative bidding game" approach. It is conducted either through face-to

face interview or by telephone solicitation. In this method the respondent is asked if he or she 

would be willing to pay a specified dollar amount to obtain a given environmental 

improvement (or prevent a given environmental decline). lfthe response is "Yes", then the 

interviewer increases the bid by a specified increment and repeats the question. The process 

continues until a "No" response is obtained. The bid is then decreased by a specified amount 

until a "Yes" response is again obtained and this bid is recorded as the maximum willingness

to-pay (Foster, 1989). 

Alternatives to the bidding game format are the direct question and payment card 
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methods. These approaches use either an "open-ended" format in which the respondent is 

simply asked to reveal his maximum willingness-to-pay (dollar value) or a "closed-ended" 

format in which the respondent is asked if they would be prepared to pay a specified amount 

and respond YES or NO. For the latter model the amount is varied but each respondent has 

only a binary choice - YES or NO. Both formats may be used in mail surveys as well as by 

direct person-to-person interview ( discussion about the different contingent valuation 

methods and their criticisms is presented by Hanley, Shogren and White, 1997). 

The main problem with the CVM is biases. If individuals believe that they will have 

to pay their stated willingness-to-pay amounts, then they have an incentive to understate their 

true preferences. On the other hand, if they believe that they will not have to pay their stated 

willingness-to-pay, they may have an incentive to overstate their preferences in order to 

ensure that the proposed project is undertaken. The second major concern is the hypothetical 

nature of the CVM in that individuals will not behave the same in the hypothetical market as 

they would in an actual situation. 

2.3. Household Production Function Model 

Another class of indirect valuation methods is the household production function 

(HPF) model. The HPF framework argues that marketed (and nonmarketed) goods and 

services are demanded as intermediaries in a household's consumption process. They are 

inputs that, together with the time of household members, are used to produce service flows. 

It uses averting behavior or HPF models try to infer an individual's value for some aspect of 
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environmental quality when private actions can influence how it is experienced (Smith, 1996). 

The HPF has been applied to valuing recreation services (Dayek and Smith, 1978; Cichetti, 

Fisher and Smith, 1976; Bocksteal and McConnell, 1981; McConnell, 1979; Desvousges, 

Smith, and McGivney, 1983). In Becker's (1965) formulation, households combine marketed 

goods with time inputs to produce unobservable final commodities. These unobservable 

commodities are the source of utility. In the HPF, households are both producers and 

consumers, i.e. the important premise of household production theory is that an "output" of 

a recreational experience is not solely determined by site operators, guides or other providers. 

Recreational experiences also involve the participants themselves as they invest their time, 

money, equipment, skills, and enthusiasm in creating satisfying trips. Thus recreationists are 

both the ones who demand recreational opportunities, as well as the ones who supply these 

goods using available sites, facilities, and services as inputs (Berstrom and Richard, 1991) 

In this dual role households accomplish two tasks. First, they find the least cost strategy to 

produce a final set of commodities. Second, they choose the final commodity bundle which 

maximizes utility. An advantage of using the HPF is that it provides a theoretical basis to 

include substitution effects among sites and the effect of changes in site characteristics on 

benefit estimates (Rosenthal, 1985). This feature is useful for considering the linkages 

between investment which changes site characteristics and the demand for outdoor recreation. 

Detailed discussion and different applications are found in Smith (1996 ). 

The major criticism of the HPF is that without a priori assumptions about constant 

returns to scale in production and no joint production, it is impossible to estimate marginal 

willingness-to-pay for environmental products (Maer, 1985; Pollack and Wachter, 1975). 
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These conditions are not met in HPF. Bocksteal and McConnell (1983) point out that it is 

necessary to assume either quality per trip is exogenous or, instead, to use factor demands. 

On the other hand, Smith, Desvousges and Fisher (1986) acknowledge the HPF does help 

understand the important assumptions that underlie the function which yields valuable 

qualitative insights. 

3. Count Data Models 

Recent literature identifies several theoretical problems associated with the travel cost 

method (Hellerstein and Mendelsohn, 1993; Dobbs, 1993). These problems deal with the 

nature of trip data and technique used to model. Trip demands are inherently discrete and 

take on only positive integer values. Thus modeling trip demands using the travel cost 

method may give a biased result. Recent developments in the literature deal with alternative 

specifications to accommodate discreteness and nonnegativity. These alternative 

specifications are broadly known as count data models and have been used in valuation of 

recreational resources as well as resources used in other fields of study (Cameron and Trivedi, 

1986; Caudill and Mixon, 1995; Chapell, Ikmenyi and Mayer, 1990; Gilbert, 1979; Hausman, 

Hall and Griliches, 1984; King, 1989b; Lambert, 1992; Gurmu and Trivedi, 1992). These 

alternative specifications include the Poisson, negative binomial, and hurdle models. 

Count (alternatively called event-count) data is the number of events occurring within 

a specific observation period. These data take the form of nonnegative integers. Examples 

include type and frequency of recreation trips to a site, number of labor strikes in a given time 
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period, labor mobility, and number of visits to a medical practitioner in a specified time period 

(Fry, et al., 1993). 

The most widely used regression model is the normal linear regression model (NLM) 

with systematic component E(N/X)= xp, where N is a number of measurements on individual 

counts and X is associated individual characteristics. An estimate for p may be obtained by 

the method of maximum likelihood which reduces to ordinary least squares for the case of 

uncorrelated and homoskedastic errors. The distributional assumption for the random 

component has to account for the nonnegativeity of the data, and their integer nature 

(Winkelmann, 1997). Count data estimators fit recreation trip data better than a continuous 

distribution-based estimators. Count data estimators restrict positive probability assignment 

of possible events, while continuous distribution estimators give positive probability to 

fractional and possibly negative values of the independent variable (Creel and Loomis, l 990). 

Theoretical and practical applications of the count data models are discussed below. 

Two features of fishing trip demand functions complicate the estimation process: 

nonnegativity and integer values. Nonnegative trip demand results in a censored data set. lf 

estimation processes do not account for the censored nature of data and integer values, then 

results may be biased (Hellerstein and Mendelsohn, 1993). 

Survey instruments are generally used to record individual trips to recreation sites. 

When the data include the total number of trips taken in a given period, and especially when 

these data are only available for one recreation site, then count data models are appropriate 

(Shonkwiler and Shaw, 1996). 

Two frequently used count data models are the Poisson and the negative binomial 
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regression models. The Poisson model has been used as a bench mark model for basic count 

data outcomes (Winkelmann, 1997). It arises for events occurring "randomly and 

independently" in time (Johnson and Kotz; 1992) 

The univariate Poisson distribution is derived as the following (Parzen, 1960). Let the 

random variable Y=O, 1, 2, ... denote the number of events of interest (in our case the number 

of fishing trips to eastern Oklahoma small streams) in a given time interval and y(t, t + dt) 

denote the number of events actually observed in the short time interval (t, t + dt). The 

number of events in an interval of given length is Poisson distributed with probability density 

function: 

pr(Y=y) = j(y).) e -.l.[),/], y=0,1,2, ... , ). E IR' 
y! 

It is a one-parameter probability distribution with expected value or mean: 

E[Y] Ji., 

and variance: 

Var[Y] ). 

( 7) 

( 8) 

( 9) 

From (8) and (9) it shows that the Poisson distribution has identical mean and variance and 

is equal to A. The parameter may be interpreted as the mean rate at which events occur per 

unit of time; consequently, it is referred to as the mean rate of occurrence of events (Parzen, 

1960; Land, McCall, and Nagin, 1996). Parzen (1960) generalizes the Poisson process as 
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follows: if X is the number of events occurring in a time interval of length t, then X obeys 

Poisson probability law with the mean /o.t. Consequently, ). is the mean rate of occurrence of 

events per unit of time in the sense that the number of events occurring in a time interval of 

length 1 follows a Poisson probability law with mean A. The proof of this generalization is 

found in Parzen (1960; pp. 253). 

The Poisson model is conveniently expressed in a regression framework by defining 

the most common specification for the conditional mean function, 

P'x e , , (10) 

where, Xj denotes a (1 xk) vector ofregressor (alternatively called a covariate vector) variables 

foryi(observations ofa discrete response variable, i.e. the dependent count variable), and P 

is a vector of unknown parameters of certain dimension depending on the number of 

covariates. 4 Equation (10) also preserves the nonnegativity of A. 

Thus equation (7) can be written as, i.e. the density function for Yi, 

f(yJX) = ( 11) 

and thus the density implies the moment restriction: 

(12) 

The explanatory variables influence the dependent variable (the number of event 

4 See Cameron and Trivedi ( 1986), Gurmu and Trivedi (1996), Madala ( 1983 ). 



62 

occurrences in a specified time interval) not directly, but through the mean occurrence rate 

of the process (Winkelmann, 1997). 

The advantages of this stochastic specification include ( 1) discrete and nonnegative 

nature of observations, (2) non-negligible probability for zero outcomes, and (3) inferences 

that can be drawn on the probability of event occurrences (Green, 1994; Gurmu and Trivedi, 

1996; and Winkelmann, 1997). 

A 9ommon practical problem when analyzing sets of data thought to be Poissonian 

1s a breakdown in the variance-mean relationship because of overdispersion (rarely 

underdispersion: Johnson and Kotz; 1992). In other words, the equality of mean and variance 

assumption inherent to the Poisson distribution is restrictive for certain data generating 

processes. The effects of overdispersion are twofold: first, the summary statistics have larger 

variances than expected; and second, there may be a loss of efficiency if an inadequate model 

is adopted. This restriction and other limitations have led researchers to employ a variety of 

alternative specifications. Following Greene, modifications of the Poisson model have been 

suggested to accommodate the following: 

(i) over- and underdispersion, which is a violation of the Poisson restriction that 

the variance of the observed random variable equals its mean, 

(ii) unobserved individual heterogeneity, for example, in panel data which 

mandates the introduction of a disturbance term into the Poisson specification 

much like that which appears in conventional regression models, and which 

induces overdispersion, and 

(iii) "non-Poissonness," (Johnson and Kotz (1969)) which ts reflected m an 
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overabundance or underabundance of certain specific values, usually zero 

value (Green, 1993). 

Several approaches to detect the restrictive nature of the mean-variance equality of 

the Poisson model and to accommodate a more flexible model have been developed (e.g. 

Cameron and Trivedi, 1990; Hausman, Hall and Griliches, 1984; King 1989b, 1989c). With 

overdispersion, one way to remove the restriction of the Poisson model is to pick a less 

restrictive probability density function. This can be done by an additional overdispersion 

parameter with the interpretation that overdispersion results from the unobserved 

heterogeneity in the phenomenon being modeled, and justifies treating the Poisson parameter 

as a random variable (Gurmu and Trivedi, 1996). 

Following Gurmu and Trivedi ( 1996) and King ( 1989b ), a random disturbance term 

can be added to the intercept Po, which is equivalent to introducing a multiplicative 

disturbance in the conditional mean function. Replace ( 12 ) by 

e (x;P •c;J e (x;Pl_ V ( 13) 
I 

or alternatively, 

(14) 

where the unobserved heterogeneity term v; = / c;) reflects a specification error such as 

unobserved or omitted exogenous variables. Let g( E;) denote the probability density function 

for E;. Then the marginal density of Y; can be obtained by integrating with respect to E; 
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(Cameron and Trivedi, 1986; Land., McCall, and Nagin, 1996): 

(15) 

We assume that the v/s are identically and independently distributed (iid) and that they are 

independent of the x's. 

Further assume that E(v)=l, var(v) = ~ , and E(ydXj,vi)= var(ydxi,v;)= exp(<P)v;. 

Then the moments of Y; conditional on covariates, can be derived as (Gurmu and Trivedi, 

1996) 

(16) 

and 

(17) 

The above formulation has the advantage of relaxing the mean-variance equality restriction 

of the Poisson model. 

Expression (15) defines a compound Poisson distribution whose precise form depends 

upon the specific choice of g( E;). For certain parametric forms, such as the gamma, a closed 

form expression for (15) can be obtained; but for other choices, such as the standard normal 

density, the resultant Poisson might not have a closed form and hence be computationally 

cumbersome (Cameron and Trivedi, 1986). 
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An alternative to the Poisson specification is the negative binomial regression model 

(Green, 1994). This is a more flexible alternative to the Poisson distribution, especially when 

it is doubtful that the strict requirements, particularly independence, for a Poisson distribution 

are satisfied (Johnson and Kotz; 1992). The analytical form is given as follows (Green, 

1994): 

(18) 

where 

(19) 

This has 

E(y) \ ( 2 0) 

and 

Var[yJ = )..JI + (1/tjr)\] = Ail + a)..) , a= 1/tjr ( 21) 

Equation (21) has the property of the negative binomial distribution, namely, that its variance 

is greater than its mean. The negative binomial model has been formulated with 

overdispersion as an end in itself or it may be derived as a consequence of incorporating 

unobserved individual heterogeneity (Hausman, Hall, and Griliches, 1984). 
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Because it does not force equality of its mean and variance, the negative binomial has 

greater flexibility than the Poisson. However, Johnson and Kotz; (1992) point out that if the 

negative binomial is found empirically to give a good fit for a particular type of data, then the 

experimenter may still have to decide how to interpret the fit in terms of the many possible 

modes of genesis of the distribution. There are of course situations where a good fit is not 

obtainable with the negative binomial distribution, and in such cases it is usual to consider the 

possibility of a mixture of distributions (Johnson and Kotz, 1992). 

One possible genesis of the negative binomial model is a mixture where the Poisson 

parameter Ai is assumed to vary randomly according to a probability law. If g(EJ in (15) is 

assumed to be a gamma distribution, then the integration of ( 15) leads to negative binomial 

(Cameron and Trivedi, 1986; Johnson and Kotz, 1992; Winkelmann, 1997). 

Winkelmann (1997) shows its derivation as follows. Let a random variable x be 

gamma distributed rca.,P) if the density takes the form 

X > 0, Cl > 0, P > 0. (22) 

The mean and variance of x are E(x)= cx/p and Var(x) = cx/p2, respectively (Mendenhall, 

Wackerly and Scheaffer; 1990). Let Ei in (15) be gamma distributed with r(cx,cx). Then E(E) 

= 1 and Var( E) = O~ = 1/CX. Recalling A*= AE, thus 
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(23) 

It should be noted that the mean is parameterized. Therefore, from equation (23) A* is gamma 

distributed rca,a/A) with mean A and variance (1/a)A.2. The integration of (23) then leads 

to the negative binomial distribution for y (Cameron and Trivedi, 1986; Green, 1994; 

Winkelmann, 1997): 

j(yla,A) = 

E[J1a,A] = )., 

re a+ y) ( a ) IX( ). ) y 
r(a)r(y+ 1) ).+a ).+a 

Var(J1a,A) = ). + _!_).2 = ). + a~).2 

a 

(24) 

( 25) 

with (1/Cl) usually called the precision parameter (Lawless, 1987). The regression model is 

complete setting Ai such that 

( 2 6) 

Since Ai > 0 and ~ > 0 it is clear that the variance exceeds the mean. It is because of the 

additional parameter that makes negative binomial distribution more flexible than the Poisson 

distribution. Moreover, deriving the negative binomial distribution as a compound Poisson 
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distribution allows the introduction of a stochastic error term, capturing unobserved 

heterogeneity and measurement errors similar to the error term in the linear regression model 

(Pohlmeier and Ulrich, 1994). 

Another limitation of standard count models is that the zeros and nonzeros (positives) 

are assumed to come from the same data generation process. Mullahy ( 1986) suggestes that 

these two processes are not constrained to be the same. 5 His emphasis was to address whether 

the statistical model governing the binary outcome of the count being either zero or positive 

might differ from that determining the magnitude of the positive counts. 

The basic idea is that a binomial probability governs the binary outcome of whether 

a count variate has a zero or a positive realization. If the realization is positive, the hurdle is 

crossed, and the conditional distribution is governed by a truncated-at-zero count data model. 

This is achieved by combining a dichotomous model for the count being zero or positive and 

a truncated-at-zero model for strictly positive outcomes. 

4. Empirical Model and Estimation of Count Data Models 

4.1. The Model 

Each individual license holder is assumed to maximize utility subject to an income 

constraint. An additional constraint is that the choice for trips, Xi, must be a nonnegative 

integer. It is also assumed that at the beginning of the season each individual chooses X1 and 

5 Craig (1971) developed the basic idea of the hurdle model as a modification of the 
Tobit Model. 
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the quantity of other goods, X2. 

Following Hellerstein and Mendelsohn (1993), utility maximization is expressed as a 

function ofX1 and X2, i.e. 

max [Y(XpX2,E;PIP*X=p1x1 +p2x2 =Y] 
X1Ef,X2 

(27) 

Where P (the vector of prices) is divided into P 1 (the price of the indivisible good) and P2 (a 

vector of prices of other goods). E are unobservable factors specific to an individual, and Y 

is income. Because X1 is restricted to 0, 1,2, ... , equation(27) can be rewritten as 

max( maxU[(Xi,X2,E;P)IP2X2 =Y-P1X1]) 
x 1EI x 2 

The dual of (28) is the expenditure function and is expressed as; 

E[PpP2,E;U0 ]=Min(P1X/ +[min(PiX2)] 

s.t. U(X/,X2,E;P)=U0 ,X/ =X1) 

where U0 is a reference level of utility. 

(28) 

(29) 

The compensated demand for X1 , H(P1 , P2, E ,U0 ) = oE/oP, , will be constant over 

discrete ranges of the expenditure function, with discrete jumps at prices that define the end 

points of these ranges (Hellerstein and Mendelson, 1993). 

Price variation is observed across individuals, where each individual in the sample 

possesses a unique set of unobservable ( E ) factors. At any price these factors determine the 

quantity each individual consumes. 

Estimation of demand for this type of data proceeds by determining the probabilities 
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of observing a level of demand , given prices, income and other observable variables. One 

approach to specifying these probabilities is through a probability density function. In this 

way, estimation of the demand curve is by computing the parameters of a probability density 

function. These parameters will vary as prices vary; and thus the probability of observing a 

particular level of demand. 

4.2. Estimation 

This section specifies the Poisson regression model, estimates parameters of the 

model, discusses properties of the estimator and proceeds to alternative estimators when 

certain of the assumptions of the Poisson process are violated. 

The parameters of the Poisson regression model are estimated using the maximum 

likelihood procedure. Given an independent sample, the conditional Uoint) probability 

distribution of the sample is given by the product of the individual (conditional) probabilities. 

Assuming that the random variable (Yf)C;) is independently and equally distributed and that 

the conditional model of Y;, i=l,2, ... ,n given Xi, i=l ,2, ... ,n is written in the form of a joint 

density, 

n n 

L = IlN;lx;;Po) = Ilfo(y;lx) (30) 
;.-.] ,• I 

where f(yJx)is given by (11), i.e. 



_ (x;P) (x.p)Y e e e I I 

pr(Y; = Y;lx) = ---
y! 
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(31) 

Equation (30) is the likelihood function. Maximization is simplified if equation (30) is 

transformed to logarithmic form. The maximizing parameter values of the log likelihood 

function also maximizes (30). Then, the log likelihood function for the Poisson regression 

model takes the form 

N N 

log L(PJJ,X) = L logf{y) = L [-).1 + y,log\ - log(y1')] 

hi i=I 

N 

= L [-e (x;Pl + Yl,P - ln(y,!)] 
i -= I 

(32) 

/\ 

The maximizing value of P, denoted as P , has to fulfill the necessary first order conditions 

and the Hessian matrix (matrix of second order conditions ) is given by 

H(P;x,y) = a2L(P;x,y) 
a pap· 

(33) 

(34) 

The Hessian is always negative definite, the log likelihood is globally concave and the second 

/\ 

order conditions for maximum at pare fulfilled (Green, 1994; Gurmu and Trivedi, 1996; 



72 

Winkelmann, 1997). Equation (33) is non-linear in p, therefore it should be solved through 

an iterative algorithm. But, given log-concavity of the likelihood function, the solution by 

standard methods such as Newton's method is straight forward and is a convenient way to 

compute the maximum likelihood estimator (MLE) of p. Winkelmann ( 1997) has shown that 

I\ 

the MLE of P, i.e. P , is a consistent and asymptotically efficient estimator. 

However, the estimates from the Poisson model will not have the desired properties 

if the data display over or underdispersion. An alternative model should be used to handle 

these problems. As discussed in previous sections, the negative binomial and the hurdle 

models are alternatives to the Poisson model. 

In its simplest form, the negative binomial model, as represented in (24 ), is specified 

with Ct =lla2 and A1 = /~P) (Gurmu and Trivedi, 1996; Winkelmann, 1997). The outcome 

of this specification for the first two conditional moments, i.e. mean and variance, is shown 

in (17). 

From (21) we see that the specification leads to a quadratic mean-variance relation. 

Cameron and Trivedi, (1986) show that different negative binomial regression models can be 

generated by linking the parameters Ai and Cti of the underlying process to the explanatory 

longer constant across individuals but is a function of the explanatory variables. eti=( I /8)A~ 

, where 8 > 0 is a dispersion parameter and k is an arbitrary constant. The negative binomial 

model has E(yJx.) = A- and var(ydx.) = A- + 8 i-k. The most common models are Negbin I 
I I I 

obtained by setting k=l and Negbin II obtained by letting k=O. Negbin I implies a linear-in-\ 
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variance function, and Negbin II implies quadratic variance function (Gurmu and Trivedi, 

1996). 

The two parameterizations imply different assumptions about the variance function 

and will, in general, lead to different estimates of the parameter P. 

Estimation of the negative binomial model is through the maximum likelihood 

procedure. The log-likelihood and the gradient function of the negative binomial model is 

given by :6 

6 

alog L 

aw 

log L = t. { ( l(y,>0~£, log(tJ!+j)) - logy,! 

+ tJilogu ,Y ,tog( I -u,) } 

alog L 

ap 
N 

= L u;e,x1 

i = I 

= t { ( l(y?o{f= -1 .) + logu; + (1-u,)( 1 - Y, l } 
i=I j,1 J¥+j \ 

( 3 5) 

(36) 

(37) 

This log likelihood is due to Green ( 1994 ). Green derives this form after manipulating the 
function to eliminate the gamma integrals. It is beyond the scope of this study to demonstrate 
the derivation of the likelihood and thus the reader is referred to Green(l991) pp. 560 for 
rigorous derivation. 
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where 1 is indicator function, l(condition) = 1 if the condition is true and O if not, at various 

points (Green, 1994). Lawless (1987) provides detailed analysis of maximum likelihood 

estimation of the negative binomial regression model. 

Another class of count data models treat zeros and nonzero (positive) counts as 

originating from different data generating processes. This assumption is not present in 

standard count data models discussed so far. Mullahy· ( 1986) suggested modified count 

models in which these two processes are not constrained to be the same. This modified count 

data model is termed a hurdle model and the idea underlying its formulation is that a binomial 

probability model governs the binary outcome of whether a count variate has a zero or a 

positive realization. If the realization is positive, the 'hurdle' is crossed, and the conditional 

distribution of the positives is governed by a truncated-at-zero count data model. This implies 

for an appropriate specification of a count data model (fishing trips to eastern Oklahoma 

natural streams in our case) the decision to make a trip and the frequency of trips need to be 

treated as different stochastic processes (Pohlmer and Ulrich, 1994 ). 

The hurdle specification rests on the basic assumption that the process is driven by 

two sets of parameters and allows for a systematic difference in the statistical process 

governing individuals with zero counts and those with one or more counts. 

I I I I 

Let 81 =(P1 ,o 1) and 82 = (P2 ,o2) denote the parameter vectors of the two stage 

process. Then, the likelihood function for the hurdle specification is given by: 
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(38) 

The first product governs the hurdle part and indicates the probability of a zero count - in our 

model it indicates that there is no decision to make a trip to eastern Oklahoma natural 

streams. This outcome is a binomial probability model with parameter vector 8 1• The second 

product represents the process that the hurdle has been passed and it is given by a truncated-

at-zero model with parameter vector 82 . The first term in the second product is the 

probability of deciding to make a fishing trip, while the fraction represents the probability of 

a positive count conditional on the decision to make a fishing trip. The sets 0 0 and 0 1 

represent the subsamples of individuals who made no trip and those who made at least one 

trip to eastern Oklahoma natural streams. 

Following Pohlmeier and Ulrich (1994), let the binary variable di take on the value of 

one if trip has taken place and zero otherwise, then the likelihood function can be expressed 

as the product of two parametrically independent likelihood functions: 

(39) 
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where the first product is the likelihood for the binary process (trip versus no-trip ) defined 

over the total sample Q, and the second product is the likelihood of a truncated-at-zero count 

model (defined over the sample of individuals with positive counts ). Taking the log of 

equation (39) we have: 

log L = log{ [ [I pr{y,=Olx).,a'.) l -d'(l -pr{y,=Olx;P, ,a;) t] 
x IT pr{yilx)2,a;} 1 } 

id2 1 pr{y/ 1 lxiP2,a;} 

( 4 0) 

( 41) 

AP1 can be regarded as a log likelihood function for the binary (zero/positive) outcome and 

AP2 as a log likelihood function for a truncated-at-zero model. Thus, the maximum likelihood 

estimates of Pi, p2 can be obtained by separate maximization of the two log likelihoods. 

5. Data 

The data for this study was obtained from a follow-up of a screening survey of 

Oklahoma license holders conducted by the Department of Agricultural Economics, 

Oklahoma State University ( Oklahoma Department of Wildlife Conservation, 1994). The 
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screemng survey identified license holders who fished in eastern Oklahoma small rivers and 

streams in 1992. Completed surveys for 163 license holders making a trip in 1992 to eastern 

Oklahoma small rivers and stream became the sample for a second follow-up survey in 1993. 

The second survey obtained information on socio-demographic attributes, number of 

fishing trips to all fisheries, travel distances, and trip-related expenditures to all Oklahoma 

fisheries (ODWC, 1994).The data set was reduced to 100 because of the presence of the 

following: 

(i) seven senior citizen license holders were excluded from the study. This is because 

this license type is based on the age of the angler and poses a problem when using the 

age factor as a variable in the model. 

(ii) nine observations had poor response and missing information. 

(iii) 45 license holders have no response regarding purchasing of a license and making 

trips to different fisheries in 1993. 

(iv) six anglers did not buy a license nor fished in Oklahoma in 1993. 

(v) one out-of-state resident. 

6. Empirical Results 

The count data model was used to estimate fishing trip demand for eastern Oklahoma 

small natural streams. The dependent variable is the number of trips made by the sample of 

license holders in 1993. Independent variables include travel cost to eastern Oklahoma small 
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natural streams, number of trips to other fisheries, and socio-demographic data for the sample 

oflicense holders. Description of the variables is in Table ( 1 ). Frequency distribution of the 

number of trips to eastern Oklahoma small streams is presented in Table (2 ). Descriptive 

statistics of the variables are in Table (3). The variables include gender, age, education level, 

ethnic background, trips to alternative fisheries, trip cost and number of fishing trips to small 

natural streams in eastern Oklahoma. The figures in Table (3) are based on 80 observations. 

Twenty observations reported no trip to small streams in eastern Oklahoma. One observation 

is excluded from estimation since the value for trip cost is comparatively very high and 

perceived as an outlier. Therefore, cost per trip is zero. Because implicitly the trip cost is 

assumed to measure price of a trip it seems implausible to consider zero price. There might 

be different reasons in the perception of the license holder to make no trips. For this reason 

the analysis is based on the truncated at zero data set. 

Gender is represented as a dummy variable and is equal to 1 if gender is female, zero 

otherwise. Males on the average make more fishing trips than females and females choose 

more accessible fishing sites ( Negash and Schreiner, 1999). Consequently, it is expected that 

females make fewer trips to natural streams as compared to males. Age and age square are 

used to test a nonlinear response among license holders. The expected result is that older 

license holders make fewer trips because natural streams fishing is more strenuous (Negash 

and Schreiner, 1999). Education level is subdivided into three groups ( Table 1 ). The 

reference group is high school graduate with perhaps some post graduate training but less 

than a college degree. About 73 percent of the sample is classified in the reference group. 

Ethnic background enters the model as a dummy variable. The two groups are whites and 
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nonwhites. Race will be equal to one if the license holder is nonwhite, zero otherwise. 

Because income data is not available for all license holders, the education and ethnic variables 

may act as a surrogate for income. Thus, less educated and nonwhite license holders may 

make fewer trips if trips are positively correlated with income. 

Maximum likelihood estimates of parameters for the constrained and unconstrained 

Poisson model are presented in Table 4. The coefficients for the ten explanatory variables 

except AGE, AGESQ and RACE have t-ratios that exceed conventional criteria of statistical 

significance, i.e. all have a p-value of practically zero. The overall fit of the Poisson model, 

as indicated by the chi-square statistic, shows that improvement in goodness of fit is achieved 

by the addition of the ten regressors and is highly significant as compared to the model with 

intercept term only. 

The Poisson model through its inherent moment restriction is likely to over- but rarely 

underestimate the variance (Winkelmann, 1997): Three of the most widely referenced tests 

for the presence of overdispersion are those of Cameron and Trivedi ( J 986, 1990) and Dean 

and Lawless (1989) tests. 

Cameron and Trivedi' s ( 1986) test for overdispersion utilizes the fact that a Poisson 

random variable has the first two moments equal. Based on this, the test analyzes the 

relationship: 

(42) 

where µi is the mean and g(µi) is some function of µi. The test on a is, therefore, a means 

of testing for Poisson variation. This procedure is used to test the appropriateness of the 
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Poisson mode for the fishing trip data. 

Following Cameron and Trivedi ( 1990), the test on the mean specification indicates 

the presence of overdispersion in the data set. The result, with heteroskedastic t-ratio shown 

in parenthesis, is as follows: 

2 E [(y. - µ-) - µ-] = 515.95x g(µ-) where g(µ-)= µ. 
1 I 1 I ' I I 

= (~:~::)x g(µi), where g(µi) = µ/ 
(.9735) 

The above test indicates evidence of overdispersion in the data. The first equation implies 

a linear-in-µi variance function and the second eq~ation implies quadratic-in-variance 

relationship. One consequence of using the Poisson specification in the presence of 

overdispersion is that the standard errors of the coefficients are underestimated and as a 

result the t-ratios of the Poisson model are biased upward. 

Because there is overdispersion in the data, the model was estimated using negative 

binomial specification. The results are presented in Table 5. 

The parameter estimates of the negative binomial model, as opposed to the Poisson 

model, have standard errors of higher magnitude. In fact, this result corresponds to the 

expectation that there is overdispersion in the data. A significant dispersion parameter ( a. ) 

also confirms the presence of overdispersion. Results in Table 5 show only the intercept, trips 

to reservoirs, trips to small lakes, trip cost to eastern Oklahoma natural streams. and the 

dispersion parameter ( a. ) to be significant at the 10 % p-value. The sign for the trip cost has 

expected direction. The estimated parameters for trips to reservoirs and small lakes are 

positive indicating a competetive relationship to small stream fishing in eastern Oklahoma. 

The frequency distribution of the number of fishing trips to eastern Oklahoma natural 
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streams (Table 2) shows the presence of a high proportion of zero trips (19.8 %). This 

produces overdispersion even in the absence of heterogeneity. As noted previously, although 

the count nature of the dependent variable implies the use of a poisson or negative binomial 

model, theory suggests that the count data should have been generated by a two stage process 

such as that of the hurdle model (Mullahy, 1986). 

Therefore, to accommodate the presence of a relatively high proportion of zeros, the 

hurdle model was used to estimate the count data model. These results are presented in Table 

6. 

In the first stage the decision to make a trip to eastern Oklahoma natural streams is 

modeled using the logit model. It is found that none of the explanatory variables are 

significant. 

In the second stage, we first used the truncated-at-zero Poisson model. All the 

explanatory variables with the exception of AGE, AGESQ and RACE are significant. The 

fact that no parameter in the first stage is significant implies that the assumption that the zeros 

and the positive counts may be the results of two different data generating processes is 

inappropriate. The second stage estimates are equivalent to the previous estimates of the 

Poisson and negative binomial models. This, in fact, should be the case because both models 

deal with the same truncated data. For this reason no overdispersion test is made to 

determine the appropriateness of the Poisson model in the second stage. 
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7. Benefit per Trip Estimate 

Benefit per trip is often measured by computing consumer surplus and calculated by 

integrating the area under a demand curve and above the price line. With count data models, 

the estimated demand function is a probability distribution of number of trips. Taking the 

expected value of this distribution yields the expected number of trips at each price (trip cost). 

By integrating underneath this expected response, a measure of the expected value of 

consumer surplus is obtained (Hellerstein and Mendelsohn, 1993). 

For a given price (trip cost) change from P1 to P2 , the expected value of the consumer 

surplus (E[CS]) is 

E[C._')1 = ff [/(E)Q(X,E;P)]dEdp (43) 

P1E 

where Q(X,E;P ) is an individual's demand curve for the trips which will be a step function 

with the exact shape dependent on E. f{E) is the probability density function and captures the 

influence of unobservable factors on trip demand. Equation (60) can be rewritten as 

Pz 

f1.(X;p)dp = E[CS] (44) 

pl 

where 1.(X;P) is the expected value of a trip (the mean) and is given by 

A(X;P) = f [/(E)Q(X,E;P)]dE ( 45) 
E 
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Trip demand is assumed, ceterus paribus, negative binomial distributed, with mean equal to 

A(X;P) = exp ( 4 6) 

Integrating equation ( 46) over the relevant range of trip cost yields the expected value of 

consumer surplus per trip. The benefit estimate for each license type is calculated by 

evaluating ( 45) at the mean values of each explanatory variable and then integrating the 

expected trip from the average to the maximum trip cost for each license type. The estimated 

benefit per trip by license type is presented in Table 7. The benefit per trip ranges from $ 1.38 

for life time 'fishing license holders to $ 30.30 for annual combination fishing and hunting 

license holders. The benefit per trip for annual fishing license holders is $ 8.31. Annual 

benefits (benefit per trip by mean number of trip) ranges from $ 1.38 for life time fishing 

license holders to $ 1116.88 for life time combination fishing and hunting license holders. 

8. Conclusion 

The purpose of this study was to estimate the demand for eastern Oklahoma natural 

stream fishing trips. Because of the nature of trip data, the traditional travel cost method was 

replaced by the count data model approach. Discussion on the different nonmarket valuation 

approaches was presented. Basic count data models and their empirical issues as applied in 

recreation demand analysis was also discussed. 

Using sample telephone follow-up survey data, the demand for fishing trips to small 

natural streams in eastern Oklahoma was estimated. The Poisson model is the most widely 
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used approach for count data. However, because of its mean-variance equality restriction, 

application is limited when data manifest overdispersion. Overdispersion was observed in the 

current survey data and thus the model was reestimated using the less restrictive negative 

binomial model. Except for the Poisson model, all the demographic variables in the negative 

binomial model are insignificant. The sign for trip cost is as expected (negative) and it is 

highly significant. Reservoir and small lakes trips are significant at the I% and I 0% 

significance level, respectively, and indicate a competetive relationship with trips to small 

streams in eastern Oklahoma. The fishing data displays a higher proportion of zero trips to 

small natural streams in eastern Oklahoma. This could be a source for overdispersion. 

However, the result indicates that there is no evidence for the presence of two data generating 

processes for zero and the positive observations. Therefore, the negative binomial model fits 

best as compared to the Poisson and hurdle model. 

A limitation of this study is that the sample is based on the response of a screening 

survey which identified those license holders who fished in small natural streams in eastern 

Oklahoma in 1992. However, it is possible that license holders made fishing trips to these 

fisheries even though they did not make a trip in 1993. Small sample size is also another 

limitation. 
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Table 1 . Description of Variables 

Dependent 

Eoktrp 

Independent 

Gender 

Age 

Age sq 

EducationO 

Education I 

Education2 

Race 

Tri pres 

Tripslak 

Triplriv 

Trip cost 

number of trips made in 1993 to eastern Oklahoma small streams 

0 = male; 1 = female. 

age m years 

age square 

reference group; high school graduate and/or votech or some college 

dummy variable for education level; 1 =if less than high school, 
0 otherwise 

dummy variable for education level; 1 =if college graduate and above, 
0 otherwise 

0 = white; I= nonwhite 

number of trips to reservoirs 

number of trips to small lakes 

number of trips to large rivers 

cost per trip to eastern Oklahoma small streams($) 



94 

Table 2. Sample Frequency Distribution of Dependent Variable 

No. ofTrips Frequency Percent Cumulative Percent 
Frequency 

0 20 20.0 20 20.0 
1 4 4.0 24 24.0 
2 3 3.0 27 27.0 
3 4 4.0 31 31.0 
4 3 3.0 34 34.0 
5 9 9.0 43 43.0 
6 4 4.0 47 47.0 
7 3 3.0 50 50.0 
8 4 4.0 54 54.0 
9 3 3.0 57 57.0 

10 7 6.9 64 64.0 
14 1 1.0 65 65.0 
15 5 5.0 70 70.0 
16 2 2.0 72 72.0 
17 1 1.0 73 73.0 
19 1 1.0 74 74.0 
20 4 4.0 78 78.0 
22 1 1.0 79 79.0 
25 1.0 80 80.0 
26 1.0 81 81.0 
30 2 2.0 83 83.0 
32 1 1.0 84 84.0 
33 1.0 85 85.0 
36 1.0 86 86.0 
40 2 2.0 88 88.0 
43 1.0 89 89.0 
50 2 2.0 90 90.0 
52 1.0 91 91.0 
60 1.0 92 92.0 
63 1.0 93 93.0 
70 1.0 94 94.0 
75 1.0 95 95.0 
85 2 2.0 97 97.0 

100 2 2.0 99 99.0 
235 1 1.0 100 100.0 
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Table 3. Descriptive statistics for the truncated data with 80 observations. 

Variable Mean Std Dev Minimum Maximum 

Eoktrp 23.11 33.640 1.0 235 
GENDER 0.11 0.318 0 
AGE 39.9 12.110 18 64 
AGE SQ 1756.42 988.600 324 4096 
EDUCNO 0.725 0.449 0 
EDUCNl 0.086 0.284 0 
EDUCN2 0.185 0.393 0 1 
RACE 0.123 0.333 0 
TRIP RES 16.36 30.220 0 200 
TRIPSLAK 4.440 11.640 0 90 
TRIPLRIV 4.15 8.985 0 50 
TRIPCOST 6.49 11.160 0 80 
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Table 4. Maximum Likelihood Estimates of Parameters for the Poisson Count Model 

Variable Coefficient Standard Error t-value P-value 

Constant 2.84 0.273 10.48 0.0000 

GENDER 0.3395 0.0646 4.949 0.0000 

AGE 0.011 0.0138 0.716 0.4337 

AGE SQ -0.00002 0.0002 0.011 0 9911 

EDUCNl -0.484 0.115 -4.219 0.0000 

EDUCN2 0.691 0.0637 10.848 0.0000 

RACE -0.009 -0.0827 -0.112 0.9105 

TRIPRES 0.0067 0.0005 12.909 0.0000 

TRIPSLAK 0.0163 0.0018 9.014 0.0000 

TRIPLRIV -0.009 0.0033 -2.884 0.0039 

TRIPCOST -0.150 0.0082 -17.999 0.0000 

Log likelihood function -757.393 

Restricted log likelihood -1364.604 

Chi-squared 1214.422 

Degrees of freedom 10 

Significance level 0.0000 



97 

Table 5. Maximum LikelihOod Estimates of Parameters for the Negative Binomial Model 

Variable Coefficient Standard Error t-value P-value 

Constant 3.006 1.159 2.600 0.0093 

GENDER 0.199 0.3811 0.521 0.6024 

AGE -0.0191 0.0600 -0.32 0.7493 

AGE SQ 0.0004 0.0007 0.529 0.5969 

EDUCNl -0.541 0.9217 -0.587 0.5574 

EDUCN2 0.084 0.3448 0.244 0.8076 

RACE 0.077 0.3158 0.242 0.8086 

TRIPRES 0.0086 0.0051 1.695 0.0902 

TRIPSLAK 0.0446 0.0122 3.668 0.0002 

TRIPLRIV -0.0068 0.0122 -0.645 0.5186 

TRIPCOST -0.0545 0.0069 -7.857 0.0000 

alpha (a) 0.6943 0.1588 4.373 0.0000 

Log likelihood function -309.97 

Restricted log likelihood -757.39 

Chi-squared 894.85 

Significance level 0.0000 
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Table 6. Maximum Likelihood Estimates of Parameters for the Poisson Hurdle Model 

Stage 1 (Logit) Stage 2 (Poisson) 

Variable Coefficient t-value Coefficient t-value 

Constant 3.5839 1.161 2.84 10.345 

GENDER -0.2195 -0.298 0.339 5.209 

AGE -0.1015 -0.655 0.0011 0.783 

AGE SQ 0.00104 0.559 - 0.000002 -0.011 

EDUCNl 0.0170 0.019 -0.4841 -4.219 

EDUCN2 0.7785 0.954 0.6906 10.848 

RACE 0.1283 0.154 0.0093 0.112 

TRIPRES 0.0069 12.909 

TRIPSLAK 0.0163 9.014 

TRIPLRIV -0.0096 -2.884 

TRIPCOST -0.15 -17.999 

Log likelihood function -49.26 -757.393 

Restricted log likelihood -50.262 -1364.604 

Chi-squared 2.0005 1214.666 

Degrees of freedom 6 10 

Significance level 0.919 0 



Table 7. Estimated Benefit Per Trip and Total Benefit for Small Streams in Eastern Oklahoma by License Type. 

License Type Mean Cost Max. Cost Benefit Mean Tripa Estimated a Estimated 
(No) ($) ($) per Trip($) Total Trips Total benefit 

($ 1000) 

Annual, combination 

fishing and hunting 12.10 80.0 30.30 22.3 245500 7423.50 

Annual, fishing 4.08 20.0 8.31 26.9 1177400 9784.19 

Lifetime, fishing 4.97 16.0 1.38 20.7 58000 80.04 

Lifetime, fishing and hunting 7.96 33.3 42.95 12.9 157900 6781.81 

a The ODWC survey, 1992. 

~ 
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ESSAY III 

FRESHWATER FISHING TRIP DEMAND IN OKLAHOMA 
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FRESHWATER FISHING TRIP DEMAND IN OKLAHOMA 

1. Introduction 

The different types of freshwater fisheries available in Oklahoma provide diverse 

recreational fishing experiences for both state and out-of-state anglers. Individuals devote 

considerable resources (monetary and time) to freshwater fishing in Oklahoma. Results of 

the 1992 and 1996 National Survey of Fishing, Hunting, and Wildlife Associated Recreation, 

show an increased economic impact of sport fishing in the state of Oklahoma over the 1992 -

1996 period (Table 1). 

Freshwater sport fishing is an important recreation activity for Oklahoma residents and 

non-residents and generates employment opportunities and tax income. Therefore, it plays 

an important role in the welfare of individuals and society as a whole. However, the data of 

Table 1 does not convey the importance of sport fishing to the anglers. Willingness -to-pay 

for the fishing experience is the basis for determining its importance to anglers. 

In the first essay the factors that influence the decision and choice of Oklahoma license 

holders to make fishing trips were analyzed. Distinctions between types of fisheries, types 

oflicense holders and residential location oflicense holders were made. ln the second essay, 

a trip demand model for small streams in eastern Oklahoma was estimated and benefits per 
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trip calculated. Other explanatory variables, including trips to water bodies other than small 

streams in eastern Oklahoma, were considered. 

The main focus of this study is to estimate a demand model for sport fishing trips to 

all types of fisheries in Oklahoma using the 1996 National Survey of Fishing, Hunting, and 

Wildlife Associated Recreation. Economic value of fishing trips to all fisheries by all anglers 

in the state are estimated. 

Because the national survey does not distinguish the different types of freshwater 

bodies (lakes, streams, reservoirs, etc) the model estimated is more general than the model 

estimated in the second paper. 

2. Theory of Recreation Demand and Benefit Analysis 

One common nonmarket valuation technique is the travel cost method (ICM). It is 

extensively used to estimate economic benefits received by participants in outdoor recreation 

(Carson et al., 1996). The TCM is a revealed preference model; it uses actual trip 

expenditures by the respondents to derive a demand curve from which to estimate recreation 

benefits. It can be applied to recreation sites in which visitors vary in their trip distance, cost 

and time. The basic premise of the TCM is that the number of trips to the recreation site will 

decrease with increases in distance traveled. The TCM estimates the demand curve for a 

recreation site by recognizing that the price of consuming recreation at the site in question 

varies directly with the distance the consumer is from the site. With careful surveying of the 

out-of-pocket costs, time costs and trips taken during the past year, a demand curve can be 
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estimated and consequently used to calculate consumer surplus ( Fix and Loomis, 1998). In 

this study, because the data are actual freshwater fishing experiences of anglers, the TCM 

approach is used. 

An alternative method of nonmarket valuation is the contingent valuation method 

(CVM). As opposed to TCM, the CVM is a stated preference model, where revealed 

preferences (surveys of willingness-to-pay) are used to estimate demand functions and 

economic benefits for nonmarket goods. 

An important feature of fishing trip data sets is the joint integer and nonnegative 

nature of the dependent variable, i.e. the number of trips to a fishing site The travel cost 

method which does not consider the integer and nonnegative nature of data, yields biased 

estimates (Hellerestein and Mendelsohn, 1993). 

A recent innovation in travel cost modeling of recreation site demand is the use of 

discrete count distributions (Creel and Loomis, 1991; Grogger and Carson, 1991; Haab and 

McConnell, 1996; Hellerstein and Mendelsohn, 1993; and Terza and Wilson, 1990). The 

attractiveness of count distributions is that they focus on nonnegative integer values which 

match directly with the data that characterizes individual recreation demand. 

3. Methodological Approach 

Count data models have two different uses. In some cases, the interest is modeling the 

conditional mean function and in making inferences about the statistical significance of key 

parameters - for example, the price sensitivity of the average number of trips. ln other cases, 
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the entire frequency distribution of events (trips) may be of interest (Gurmu and Trivedi, 

1996). In this study we emphasize the use of count data models for modeling the conditional 

mean of fishing trips to freshwater fisheries in Oklahoma and then make inferences about the 

relevant explanatory variables. 

The Poisson count data model is the basis for several empirical studies dealing with 

discrete and/or count data. It arises in situations as the probability distribution for the 

discrete, nonnegative count of the frequency of an event. Areas of application include the 

number of individuals arriving at a service station, the number of homicides per year (Grogger 

and Carson, 1991 ), and the number of patents applied for and received (Hausman and 

Griliches, 1984; Green, 1994). 

Trip data are assumed to be generated by the following Poisson distribution: 

e (1;>,.)(t? .. /'' 
Prob[Y=y;lti] = --

yi! 
,Yi = 0,1, ... ( 1) 

where). is the first moment of the Poisson distribution, and thus is the expected value of the 

number of fishing trips to freshwater fisheries in Oklahoma. Explanatory variables, X;, enter 

the model by specifying the Poisson parameter, A, as a function of X; and an unknown 

parameter vector, p, to be estimated. Consequently, the Poisson model is analogous to the 

familiar regression specification in that the expected value of the number of fishing trips is 

E(Yi I XJ = g(X;,PJ, where g(X;,PJ = A. Following Hausman and Griliches ( 1984) the mean 

rate of occurrence per unit of time is specified as: 
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, x.p 
/1,i = e I ( 2) 

In several empirical studies the Poisson count data model is found to be limiting which has 

led to alternative count data models. The most frequent problem encountered is the 

assumption of equal mean and variance of the data. The Poisson model is also restrictive 

when unobserved individual heterogeneity is present in the data set ( Hausman and Griliches, 

1984). The latter contributes to overdispersion ( conditional variance of the dependent 

variable exceeds its conditional mean). Overdispersion is thus a form of heteroskedasticity 

(Creel and Loomis, 1990). Therefore, in the presence of overdispersion, the Poisson model 

is not appropriate. 

In the presence of overdispersion the negative binomial model is more suitable than 

the Poisson model. The negative binomial model has its conditional variance greater than its 

conditional mean. The negative binomial probability also arises by assuming the mean value 

or A varies among the sample observations according to the gamma distribution. lt can be 

specified as (Gurmu and Trivedi, 1996): 

, y=0,1, ... ( 3) 

where the parameter A; is the mean and 1/tjJ; is the precision parameter. In the context of 

regress10n, 



A. = 
I 

x'.p 
e ' 

\JI = (_!_)A: 
I a 

where a>O . 

\JI is a dispersion parameter and k is an arbitrary constant. The negative binomial has 

E(yAx) = A, and 
2-k 

var(yilx) = A, +a).., .. 
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(4) 

(5) 

Commonly, k=l and gives a linear-in A variance function. The negative binomial model is an 

alternative to the basic Poisson model in accommodating overdispersed data. 

4. Data 

The data were obtained from the National Survey of Fishing, Hunting, and Wildlife-

Associated Recreation. The survey reports results from interviews with residents about their 

fishing, hunting, and other fish- and wildlife-related recreation. 

The l 996 freshwater survey was designed to provide state level estimates of the 

number of people who participated in recreational hunting and fishing, and other forms of 

wildlife-related activities (e.g. wildlife observation). The survey was conducted in two stages: 

an initial screening of households to identify likely sportsmen and wildlife watching 

participants, and a series of follow-up interviews of selected persons to collect detailed data 

about their wildlife-related recreation during 1996. Information was collected on the number 
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of people engaged in the activities, where and how often they pursued the activities, and 

money spent pursuing these activities (U.S. Department of Interior, Fish and Wildlife 

Services, 1996). 

Three types of fishing are reported: (1) freshwater, excluding the Great Lakes, (2) 

Great Lakes, and (3) salt water fishing. The survey includes not only licensed anglers but also 

those who have no license. 

The total sample for the state of Oklahoma consists of 348 individuals. Of this 

number, 184 observations were considered for the estimation of the freshwater trip demand 

model. The reduced number of observations accounted for missing information, incomplete 

data, or they did not make fishing trips in 1996. 

The national survey provides additional information on gender, age, education, ethnic 

background, occupation, number of trips to different freshwater fisheries, trip related and 

unrelated expenditures. Tables 2 and 3 display the dependent and independent variables of 

the model and descriptive statistics of the data, respectively. 

5. Estimation 

Estimation of both the Poisson and negative binomial regression models proceeds 

using maximum likelihood. The likelihood for the Poisson model is given by: 
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N 

L = ITflY;IX;;Po) 
i=n 

(7) 

Taking the log of equation (7) we form the log likelihood function, i.e. 

N N 

log L(P;y,x) = L logf{y;) = L (-).; + Y;log\ - log(y))) 
jccJ I I 

N 

= L (-e<x,P) + Yl;P - ln(v,')) 
,,.) 

(8) 

Maximization of equation (8) yields the value of p which satisfies the first and second order 

conditions given by: 

and 

aL(P;x,y) 
ap 

H(P;x,y) = a2L(P;x,y) 

a pap· 

( 9) 

.i\' 

L (x.rJ) ' 
= - e ' xx 

I I 
(10) 

I I 

Equation (9) is nonlinear in p, so a solution for the system is obtained iteratively. Newton's 

method is most frequently used in this setting (Green, 1993). 

The Poisson model may not be appropriate in the presence of overdispersion. This 

is due to the restriction that the mean and variance of the data are assumed equal. Under this 
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condition the estimates of the Poisson regression model do not have the desired properties. 

Various testing procedures have been developed to check the assumption of equal mean and 

variance of a given data set (Cameron and Trivedi, 1986, 1990a; Dean and Lawless, 1989) 

The negative binomial is a more flexible alternative to the Poisson model in the 

presence of overdispersion. The negative binomial model also results by assuming the 

Poisson parameter.\ to vary randomly according to gamma distribution. Winkelmann ( 1997) 

has shown the derivation of the negative binomial model through this assumption. The 

negative binomial density function is given by: 

with 

and 

.f(y[cx }..) = r(cx+y) ( _!:_) rx( _}.. ) Y 

' r(cx)r(y+l) A+CX A+CX 

E[Y]cx,A] = A, 
I Var(Y]cx,}..) = }.. + -A 2 

ex 

since .\ > 0 and cxi > 0 and the variance is greater than the mean. 

(11) 

(12) 

(13) 

Estimation of the negative binomial model is also by maximum likelihood. The log 

likelihood function is given by: 
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log L t. { [ l(y?o(f, log(lJr+J)) - logi) 

+ lJrlogu,Y,log(l -u;) } 

(14) 

where 1 is indicator function, l(condition)=l if the condition is true and O if not, at various 

points (Green, 1994). 

alog-L 

ap 

.\' 

= L U/,Xi 
i I 

alog-L 

ae = t { [ l(y?O)f - 1 .] + logui + ( I -u)( I -Y, l } 
i=l j=I tjT+j \ 

(15) 

(16) 

The hurdle model assumes that a large proportion of zero trips in the sample might 

have been the result of different data generating processes as compared to a positive number 

of trips. However, the proportion of zero trips in our data set is only 2.2 % (Table 4). 

Therefore, the hurdle model was not considered in this study. 

6. Empirical Results 

The results of the maximum likelihood estimates of the parameters of the Poisson and 

the negative binomial regression models are presented in Tables 5 and 6, respectively. The 
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dependent variable is the number of fishing trips made to freshwater fisheries in Oklahoma 

during 1996. Independent variables include gender, age, ethnic background, academic level, 

and trip cost. 

Gender enters the model as a dummy variable and takes the value one if the person 

1s female and zero otherwise. On average, we expect males to make more fishing trips as 

compared to females. Age is a continuous variable and the quadratic form is used to test for 

the presence of nonlinearity in the relationship between number of fishing trips and age. We 

expect the probability of making fishing trips to freshwater bodies to increase as age 

increases from younger to older but then to decrease as age increases beyond a certain age 

level. Ethnic background and academic levels also enter the model as dummy variables. 

Maximum likelihood estimates of the parameters for the Poisson regression model are 

presented in Table 5. The t statistics for all coefficients except education l (kindergarten or 

never attended school) are significant. This may be the result of overdispersion in the data 

set. Overdispersion affects the significance of parameter estimates by inflating the t-statistic 

from the Poisson model (Gurmu and Trivedi, 1996). 

Testing for overdispersion using Cameron and Trivedi's procedure indicates the 

presence of overdispersion. This procedure makes use of the fact that Poisson variates have 

identical first and second moments: i.e. the mean and variance of Poisson distributed data are 

equal. The test for the equality of mean and variance is completed by regressing the squared 

residuals from the Poisson regression on the predicted values for that same regression: 

var(Y) = µ; + ag(µ) (17) 
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Under the condition of mean-variance equality, we expect the estimated coefficient, a, to be 

equal to one. The test for a=O is therefore a test for overdispersion ( Cameron and Trivedi, 

1990). The results for the data of this study indicate overdispersion, i.e. the coefficient, a= 

6.591 with very small p-value. 

Consequently, the model is reestimated using the negative binomial regression. The 

results of this estimation are presented in Table 6. The results are significantly different from 

that of the Poisson estimates in terms of significance. Six variables are found significant at 

the 10 percent probability level as opposed to eight for the Poisson. 

7. Benefit Estimates 

Benefit estimates per trip are calculated by integrating the expected number of trips 

from the mean trip cost to the maximum value, other factors held at their mean values, i.e. 

P2 

E[CS] = jA(X;P)dp = E[CS] (18) 
pl 

where A(x;P) is the expected value of a trip and is given by 

A(X;P) = f [/{E)Q(X,E;P)]dEdp (19) 
E 

and 

( 2 0) 
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Substituting parameter estimates (Table 6) in the above equation and evaluating equation 

(18) gives us the benefit estimate for the mean number of fishing trips to freshwater bodies 

in Oklahoma. The value of the estimated total benefit is$ 457.59 and the per trip benefit is 

$ 30.51. Comparatively, the estimated benefit per trip for this study and that of trips to small 

streams in eastern Oklahoma are very close. 

8. Conclusion 

This study presented the Poisson regression model along with its alternative, the 

negative binomial model, to estimate parameters of the demands for fishing trips to freshwater 

bodies of Oklahoma. It is also shown that, in the presence of overdispersion, the Poisson 

regression model inflates the t-statistic, thus allowing more parameters to be significant. The 

alternative negative binomial model, which does not restrict the mean-variance equality, 

resulted in fewer significant parameters. 

In both models gender is found to be significant and has the expected negative sign, 

which implies that keeping other factors constant males are likely to make more fishing trips 

to freshwater bodies as compared to females. The age factor for both the Poisson and the 

negative binomial models are significant and of the expected sign. Age squared is also 

significant. The negative sign of the estimated coefficient of age square implies that as age 

increases, keeping other factors constant, individuals are likely to make more fishing trips but 

after a certain age level it declines. Ethnic background is significant and has a positive sign. 

None of the education variables are significant for the negative binomial model. Cost of trip 

is significant in both models and has the expected negative sign. 



114 

References 

Cameron, A.C. and P.K. Trivedi. 1986. " Econometric Models Based on Count Data: 

Comparisons and Applications of Some Estimators and Tests," Journal of Applied 

Econometrics, 1 :29-53. 

Cameron, A.C. and P.K. Trivedi. 1990a. "Regression Based Tests.for Overdi!}persion in the 

Poisson Model". Journal of Econometrics, 46, 347-364. 

Carson, RT., Flores, N.E., Martin, K.M. and Wright, J.L. 1996. "Contingent Valuation and 

Revealed Preference Methodologies: Comparing the Estimates for Quasi-Public 

Goods." Land Economics. 72 (I): 80-99. 

Creel, M.D., and J.B. Loomis. 1990. "Theoretical and Empirical Advantages of Truncated 

Count Data Estimators for Analysis of Deer Hunting in California." American 

Journal of Agricultural Economics. 72: 434-441. 

Dean, C., J.F. Lawless. 1989. "Tests for Detecting Overdispersion in Poisson Regression 

Models." Journal of the American Statistical Association. 84:467-472. 

Fix, Peter and John Loomis. 1998. " Comparing the Economic Value of Mountain Biking 

Estimated Using Revealed and Stated Preference." .Journal qf },nvironmental 

Planning and Management. 41 (2) : 227-236. 

Green, H. William. 1993 .Econometric Analysis., second edition, Englewood Cliffs, New 



115 

Jersey, Prentice-Hall International. 

Green, H. William. 1994. "Accounting fro Excess Zeros and Sample Selection in Poisson 

and Negative Binomial Regression Models." Working Paper Number EC-94-10. 

Department ofEconomics, New York University 

Grogger, J.T., and RT. Carson. 1991. "Models for Truncated Counts." Journal~! Applied 

Econometrics. 6: 225-238. 

Gurmu, S., and P.K. Trivedi. 1996. "Excess Zeros in Count Models for Recreational Trips." 

Journal of Business and Economic Statistics. 14 (4): 469-477. 

Haab, T.C., and KE. McConnell. 1996. "Count Data Models and the Problem ~/Zeros in 

Recreation Demand Analysis." American Journal of Agricultural Economics. 78: 89-

102. 

Hausman, J.A., B.H. Hall and Z. Griliches. 1984. "Econometric Models for Count Data with 

Application to the Patent-R&D Relationship." Econometrica, 52:909-938. 

Hellerstein, D.M. 1991. "Using Count Data Models in Travel Cost Analysis with Aggregate 

Data." American Journal of Agricultural Economics. 73: 860-866. 

Hillerstein, D., and R. Mendelsohn. 1993. "A Theoretical Foundation for Count Data 

Models." American Journal of Agricultural Economics. 75: 604-611. 

Terza, J.V., and P.W. Wilson. 1990. "Analyzing Frequencies of Several Types of Events: 

A Mixed Multinomial Poisson Approach." Review c4'Economics and Statistics. 84: 

129-154. 

U.S. Department of Interior, Fish and Wildlife Services. 1996. 1996 National Survey of 

Fishing, Hunting and Wildlife-Associated Recreation. 



116 

Winkelmann, R. 1997. Econometric Analysis of Count Data. Second, Revised and Enlarged 

Edition. Springer, Heidelberg, Germany. 



Table 1. The Economic Impact of Sport Fishing in Oklahoma, 1992 and l 996. 

Item 1992 1996 

Angler Expenditure ($) 387,326,000 490,767,292 

Economic Output ($) 793,506,000 1,012,537,832 

Earnings ($) 208,209,000 258,906,659 

State Sales Tax ($) 17,403,000 22,084,528 

State Income Tax ($) 5,946,000 5,472,069 

Federal Income Tax($) 21,541,000 24,252,897 

Jobs (number) 11,610 14,797 

Source: The 1996 National Survey of Fishing, Hunting and Wildlife Associated 

Recreation. 
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Table 2 . Description of Variables 

Dependent variable 

TRIPS (no.) 

Independent variables 

AGE 

AGE SQ 

GENDER 

EDUCATION! 

EDUCATION2 

EDUCATION3 

EDUCATION4 

NONWHITE 

TRIPCOST ($) 

number of trips made in 1996 to fresh waters in Oklahoma 

age in years 

age square 

0 = male; I = female. 

1 =never attended school or kindergarten; 0 otherwise 

1 =elementary school graduate; 0 otherwise 

1 =highschool graduate ; 0 otherwise 

I= college graduate; 0 otherwise 

I= ethnic background is nonwhite; 0 otherwise 

average trip cost per trip to freshwater bodies in Oklahoma 
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Table 3. Descriptive Statistics of the Variables for the 1996 Data Set for Oklahoma 

Variable N Mean Std Dev Minimum Maximum 

Dependent variable 

TRIPS (No.) 184 14.64 20.268 0 130 

Independent variables 

AGE 184 42 15.12 16 79 

AGE SQ 184 11764 1353.8 256 6241 

GENDER 184 0.326 0.475 0 

EDUCNl 184 0.011 0.104 0 

EDUCN2 184 0.027 0.163 0 

EDUCN3 184 0.500 0.501 0 

EDUCN4 184 0.462 0.499 0 

NONWHITE 184 0.147 0.355 0 

TRIPCOST ($) 184 51.27 154.08 0 1457 
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Table 4. Frequency Distribution of Number of Fishing Trips to Oklahoma Freshwater 

Fisheries, 1996. 

No. oftrips Frequency Percent Cumulative Percent 
Frequency 

0 4 2.2 4 2.2 
1 29 15.8 33 18.0 

2 18 9.8 51 27.8 
3 18 9.8 69 37.6 
4 15 8.2 84 45.8 
5 6 3.3 90 49 I 
6 9 4.9 99 54.0 
7 0.5 100 54.5 
8 5 2.7 105 57 2 
9 5 2.7 110 59.9 

10 10 5.4 120 65.3 
11 2 l. I 122 66.4 
12 1 0.5 123 66.9 
13 2 1.1 125 68.0 
14 2 I. I 127 69.1 
15 5 2.7 132 71.8 
16 3 l.6 135 73.4 
17 3 1.6 138 75.0 
19 0.5 139 75.5 
20 5 2.7 144 78.2 
21 I 0.5 145 78.7 
22 1 0.5 146 79.2 
23 1 0.5 147 79.7 
25 2 1.1 149 80.8 
26 1 0.5 150 81.3 
30 3 1.6 153 82.9 
32 2 I. I 155 84.0 
33 1 1 . 1 156 85.1 
35 3 1.6 159 86.7 
36 1 0.5 160 87.2 
37 1 0.5 161 87.7 
38 1 0.5 162 88.2 
39 1 0.5 163 88.7 
40 2 1.1 165 89.8 
43 0.5 166 90.3 
44 0.5 167 90.8 
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Continued ... 
Table 4. Frequency Distribution ofNumber of Fishing Trips to Oklahoma Freshwater bodies, 
1996. 

No. oftrips Frequency Percent Cumulative Percent 
Frequency 

45 1 0.5 168 91.3 
so 6 3.3 174 94.6 
52 1 0.5 175 95.1 
55 1 0.5 176 95.6 
60 2 1.1 178 96.7 
65 1 0.5 179 97.2 
75 0.5 . 180 97.7 
85 1 0.5 181 98.2 
90 2 1.1 183 99.3 

130 0.5 184 100 
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Table 5. Maximum Likelihood Estimates of Parameters for the Poisson Count Model 

Variable Coefficient Standard Error t-value P-value 

Constant 1.816 0.141 12.877 0.000 
GENDER -0.452 0.045 -9.992 0.000 
AGE 5.231 0.659 7.935 0.000 
AGE SQ -4.641 0.714 -6.52 0:000 
EDUCNl -0.142 0.142 -1.002 0.3165 
EDUCN2 -0.988 0.182 -5.442 0.000 
EDUCN4 -0; 172 0.042 -4.128 0.000 
RACE 0.419 0.053 7.858 0.000 
TRIPCOST -0.009 0.0006 -13.389 0.000 
Log likelihood function -1863.439 
Restricted log likelihood -2139.142 
Chi-squared 531.4064 
Degrees of freedom 8 
Significance level 0 
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Table 6. Maximum Likelihood Estimates of Parameters for the Negative Binomial Model 

Variable Coefficient Standard Error t-value P-value 

Constant 1.772 0.554 3.319 0.0014 
GENDER -0.481 0.198 -2.428 0.0152 
AGE 5.269 2.624 2.201 0.0447 
AGE SQ -4.687 2.698 -1. 73 7 0.0823 
EDUCNl -0.121 0.905 -0.133 0.8940 
EDUCN2 -0.831 0.872 -0.953 0.3404 
EDUCN4 -0.225 0.171 -1.313 0.1892 
RACE 0.404 0.232 1.741 0.0816 
TRIPCOST -0.006 0.0012 -4. 705 0.0000 
alpha (o:) 1.129 0.1712 6.591 0.0000 
Log likelihood function -648.731 
Restricted log likelihood -1863.439 
Chi-squared 2429.414 
Significance level 0.0000 
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Summary 

This dissertation is composed of three separate but related essays dealing with the 

economic analysis of recreational fishing in Oklahoma. The first estimates a probabilistic 

model to determine factors affecting decision to make a fishing trip and which types of water 

bodies in Oklahoma are visited. The discrete choice model is used to estimate the parameters 

of the probabilistic model. Seven separate choice models were estimated for different types 

of water bodies found in Oklahoma. These are reservoirs, small impoundments, small lakes, 

farm ponds, large rivers, small rivers located in noneastern parts of Oklahoma and small rivers 

in eastern Oklahoma. 

The maximum likelihood results for the different water bodies indicate that the number 

of significant parameters and the sign and magnitude of the parameters are not the same for 

each water body type. Reservoirs have the fewest number of significant parameters. On the 

other hand, small natural streams in eastern Oklahoma has comparatively more significant 

parameter estimates. Geographical location of license holders, and the frequency of trip to 

a given water body type are found to be important variables in the model. This is a plausible 

result because comparatively higher frequency of trip by a license holder to a given site 

indicates his strength of preference to that specific water body and also the farthest the 

residence of a license holder is from a given water body the higher is the cost associated with 

making fishing trip and vice versa. Other explanatory variables such as gender, age, ethnic 
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background, and type oflicense holders have different statistical results depending on the type 

of water body. 

The second essay focuses on estimation of a demand model for fishing trips to small 

natural streams in eastern Oklahoma. These streams provide recreational fishing 

opportunities for both Oklahoma residents and out-of-state anglers. Previous to this study, 

there was no estimate of the economic benefit of these water bodies for fishing. The Poisson, 

negative binomial and hurdle models were used to estimate the parameters of the fishing trips 

demand model. 

The Poisson model resulted in statistically significant parameter estimates. However, 

because of its inherent equal mean-variance restriction it is likely to underestimate the 

variance. The regression based test for equal mean-variance of the fishing trips data indicates 

the presence of overdispersion. The negative binomial regression is used to accommodate 

overdispersion and is more appropriate for the data set. The hurdle model determines 

whether the zero observations and the positive trips come from different data generation 

processes. It was also found to be inappropriate for the fishing trip data. All of the parameter 

estimates for the binary logit model were statistically insignificant implying that there is no 

evidence that the zero and positive trip data came from two different data generating 

processes. The benefit estimate is based on the negative binomial result. 

Limitations of this essay include small sample size and the fact that license holders 

who responded in 1992 may not have fished the small natural streams in Oklahoma in 1993, 

the year of the follow-up-survey. The latter problem implies that other license holders who 

did not make fishing trips in 1992 may have visited the streams in 1993. 
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The third essay is methodologically similar to the second essay and estimates a 

demand model for fresh water fishing in Oklahoma in general. The data used in this study 

was obtained from the 1996 National Survey ofFishing, Hunting, and Wildlife Associated 

Recreation. The survey does not identify anglers by type of water body fished or by type of 

license. Oklahoma residents who made fishing trips in Oklahoma were used in the analysis. 

The negative binomial regression was found to be a better fit than the Poisson model, again 

because of the presence of overdispersion. Average benefit per trip to all fresh water bodies 

in Oklahoma was estimated at$ 30.51. 
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