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CHAPTER 1: INTRODUCTION

In 1974 W. Johnson and E. Odell examined subspaces of L, not containing .
They showed that if Y is a subspace of L,(2 < p < o0) such that no subspace of
Y is isomorphic to lg, then Y is isomorphic to a subspace of I,,.

In the dissertation we will prove similar results for a wider class of spaces than
the L, spaces. We consider rearrangement invariant function spaces X on [0, 1]

which satisfy the following four properties.

(1) X has Boyd indices satisfying 2 < px < gx < o©

(2) X does not contain an isomorphic copy of [;.

(3) The Haar system is an unconditional basis of X.

(4) X has an upper lo-estimate as a Banach lattice with respect to the ordering
induced by the Haar system.

It is known that the fourth hypothesis implies the second, but for convenience

we list all four hypotheses.

We show that if X is a rearrangement invariant space satisfying these require-
ments and Y is a subspace of X not containing /5, then ¥ embeds in a space Z
which is defined as a certain sum of finite dimensional subspaces. In the case that

X = L,, this result reduces to the theorem of Johnson and Odell.



First, in Chapter 2, we introduce many of the definitions that will be used
in this paper and present many of the miscellaneous theorems we will use in our
proof. Chapter 3 lists for reference some ofthe most important theorems proved
in [KP] and [JO], for it is these theorems that we generalize in this paper. In
Chapter 4, we prove some preliminary results, most of which are generalizations
of Kadec and Pelczynski’s work. Chapter 5 is devoted to the construction of a
Banach space which will perform the same role for us that /, did in Johnson and
Odell’s paper. Finally, in Chapter 6 we prove the main result of the paper and
observe that this result is indeed a generalization of Johnson and Odell’s theorem.

We now define some essential concepts of Banach space theory. Let X be an
infinite dimensional Banach space. A sequence {e; : 1 € N} is called a Schauder
basis for X if for each element z of X, there is a unique sequence of scalars (i),
such that x = Y2, a;z;, with the right hand side converging in the norm of X.

If {e; : i € N} is a basis and P,(z) is defined by P,(z) = > ; a:e;, then
sup,, || Pl is finite. This constant sup,, || Fy|| is called the basis constant of the
basis {e; : 1 € N}.

Let X be a Banach space with a basis {e; : 4 € N}. Consider the set of all
sequences (€;)i2; where each ¢; is either 1 or —1. For each sequence (g;)2;, define
Pey : X — X by P)(C2, aiei) = 252, €iase;. Let K = sup||P,||, where the
supremum is taken over all possible sequences (¢;)2;. If K < oo then we say

that the basis {e; : © € N} is unconditional and K is the unconditional basis



constant.
There are several equivalent useful ways of defining an unconditional basis; we

will describe another one of them. For any subset 0 C N, we define

P,,(i Un€n) = Z GnCn.
n=1

neo
If sup, || Ps]| < oo, then we say that {e, : n € N} is an unconditional basis, and
that sup, || P5|| is the suppression unconditional basis constant. A Schauder
basis is unconditional if and only if its suppression unconditional basis constant
is finite.

A sequence of elements (z,,) is called a basic sequence if it is a basis for its
" closed linear span. Two basic sequences (z,,) and (y,) are called equivalent if
for every sequence of scalars (a,), 3.o0; anZ, converges if and only if }°°° | a,y,
converges.

There are two important systems of functions on [0,1] which we will need in
our study. The first, the Haar system, is extremely important to us because
it forms an unconditional basis for the Banach space X. There are two styles
of notation for describing the Haar functions, and we will use both styles in this
paper. The first system is a double subscript system. Let hy(t) = 1 for all ¢t on
the interval. Then for each nonnegative integer ¢ we define functions h; ; for each

integer j in the range 0 < j < 2¢ — 1 as follows:



1, 2705 <t <270 (+3)
hig(t) = 1, 27 (4L <t <27 (j+1)
0, otherwise

Note that each function h;; has support of measure 27°. Furthermore the

supports of the functions h;g,h;1 ..., and h; 9i_; are disjoint with union [0, 1}. We
call the functions {h;p,h;1..., and h;ei_1} a generation (or level) of the Haar
system.

We will use a single subscript style to index the Haar system through the
majority of this paper. In this style we let ho(t) = hg(t) and let hy(t) = h;;(t),
where k = 2¢ 4 j. Thus we define h; for every nonnegative integer k.

We will also be making use of the Rademacher system of functions. Since
we have already defined the Haar functions by formulas, we can describe the
Rademacher functions conveniently. Let 7;(¢) be the sum of the functions h; ;(t)
for 0 < j < 2¢ — 1. Thus r;(t) takes the value 1 if h; ;(t) = 1 for some j, and -1
if h; j(t) = —1 for some j. Incidentally, we consider the Haar and Rademacher
functions to be defined almost everywhere, and pay no attention to the values of
these functions at dyadic points.

The Banach space L,[0,1], also written as L,, will play a central role. By
definition, it is the space of all equivalence classes of functions (modulo equality
almost everywhere) of functions z(t) which are defined on the interval [0, 1] and for

which f; |z|P < co. The L, norm of z is ||z]| = (fy lx]p)% Similarly, L,[0, 00) is the



set of all functions on [0, 00) for which [57|z|P < oo, with norm ||z] = (f3° |w|p)%
Finally, I, is the spaces of all sequences (z,,)%° ; of scalars such that 3272, |z;|? < oo,
with norm ||z = (5222, |z:[?)*.

For further information on Banach space theory the reader may consult the
books of Diestel [D], Guerre [G], Habala, Hajek, and Zizler [HHZ], and Linden-
strauss and Tzafriri [LT]. Diestel’s book is not only well written and relatively
easy to understand but very entertaining as well. Lindenstrauss and Tzafriri’s
book is the most comprehensive reference of these books, and includes a large

amount of information on Banach lattices and rearrangement invariant spaces.



CHAPTER 2: BACKGROUND THEOREMS AND DEFINITIONS

In this chapter we present the majority of the definitions and theorems that
will be cited and used in the main body of the paper, Chapters 4-6. We first
introduce some notation.

If Aisa set we let A™! be its set theoretic complement.

(9, %, p) will always be a measure space with o - algebra ¥ and measure p.

If X is a Banach space of functions on [0, 1], we define Mx(e) = {z € X : p(t:
lz(t)| > €||z]|x) > €}, where p is Lebesgue measure. If z € X we denote the norm
of z in X by ||z||x, or in the case that X = L,[0, 1], we write ||z|,.

Throughout this paper, we will assume that 0 <e < 1.

Let |x] be the greatest integer which is less than or equal to z.

Paley [P] proved the following theorem, which will play a key role for us.

Theorem 2.1 The Haar system is an unconditional basis of L,[0,1] for every p ,

1 <p<oo.

We are also interested in another property of L,, namely that under the point-
wise (almost everywhere) ordering, L, has a lattice structure. More precisely it
is a Banach lattice. The following definitions may be found in [LT].

Definition: A partially ordered Banach space X over the reals is called a

Banach lattice provided

(1) z <y implies z + z < y + z for every z,y,2z € X.



(2) ax > 0, for every z > 0 and every nonnegative real a.

(3) For all z,y € X there exists a least upper bound z Vy and a greatest lower
bound z A y.

(4) |z|| < |ly|l whenever |z| < |y|, where the absolute value |z]| of z € X is

defined by |z| = z V (—z).

It is important to note that a Banach space can easily have more than one lattice
structure, that is, more than one partial ordering which satisfies the axioms (per-
haps under an equivalent norm). In particular, the space X which with we will be
dealing in this paper has two natural orderings. There is the pointwise ordering
where f < gif f(z) < g(z) for all z € [0, 1] (except on a set of measure 0), and the
Haar ordering where > 2, a;h; < 3572, bk, if a; < b; for all . Generally, X with
the Haar ordering may fail property (4) of the definition of Banach lattice un-
der the rearrangement invariant norm but nonetheless we will employ the lattice
language when referring to X in the Haar ordering; we will implicitly be using
property (4) with a constant. To distinguish between the orderings we will always
mean the pointwise ordering unless we explicitly specify the Haar ordering.

We denote the dual of X by X™*. Every measurable function g on ) so that

gf € Li(p), for every f € X, defines an element x} in X* by

z3(f) = [ fodp.

The set of all functionals of this form is denoted X’ and forms a linear subspace



of X*.
Definition: A Banach lattice X is said to satisfy an upper [, estimate if
there exists a constant M, M < oo, such that for every choice of pairwise disjoint

elements {z;}1; in X, we have

n n
1
1D mill < MG llillP)7.
i=1 =1
Definition: Let (2, %, 1) be a complete o- finite measure space.
A Banach space X consisting of equivalence classes, modulo equality almost

everywhere, of locally integrable real valued functions on ¥ is called a Kothe

function space if the following conditions hold.

L If [f(w)] < |g(w)] a.e. on ), with f measurable and g € X, then f € X and

11 < lgll-

2. For every o € ¥ with u(0) < oo the characteristic function of o ,x,, belongs

to X.

Definition: Let ({,%, 1) be one of the measure spaces {1,2,...} , [0,1] or
[0, 00] (with the natural measure).
A Kothe function space X on (Q, %, 1) is said to be a rearrangement invari-

ant space if the following hold:

1. If 7 is an automorphism of the measure space () onto itself and f is a
measurable function on ) then f € X if and only if f(771(w)) € X and if

this is the case then ||f(w)| = || f(=7 (w))].



2. X' is a norming subspace of X* (where "norming” means that ||z| =
sup{|z*(z)| : z* € X',||z*|| = 1} for every z € X), and thus X is order
isometric to a subspace of X”. As a subspace of X”, X is either maximal
(i.e. X = X") or minimal (i.e. X is the closed linear span of the simple

integrable functions of X").
3. (a) fQ={1,2,...}, then as sets,
hCXCly

and the inclusion maps are of norm one, i.e., if f € l; then ||f||lx < ||fllh

and if f € X then ||fllo < ||fllx.
(b) If O = [0,1] then, as sets,
L,[0,1] c X c L,]0, 1]

and the inclusion maps are of norm one, i.e., if f € Ly, then ||fllx <

Iflloo and if f € X then |[flls < || f]|x-
(c) If Q = [0, 00) then, as sets,
L]0, 00) N L1[0,00) C X C Loo[0,00) + L1]0, 00).

and the inclusion maps are of norm one with respect to the natural

norms in these spaces.

Some remarks on the above definition are in order. The first requirement of

the definition is in some sense the most important. Its effect is that, for any
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f € X, the norm of f depends only on the distribution function d¢, which is given
by

de(t) = p{w e Q: flw) > t}),—c0 <t < 0.

Specifically, if f € X and g is a measurable function with d,(t) = d¢(t), then also
g € X and ||f|llx = ||9llx- The second requirement is a technical one which, in
particular, all separable spaces satisfy. Finally, the third part of the definition is
actually a normalization condition. (3b) and (3c) each imply that |[xpllx = 1.
Rearrangement invariant spaces are natural interpolation spaces and we will
have need of a set of interpolation indices, the Boyd indices. In order to define
the Boyd indices of a rearrangement invariant space X, we first define for every
3,0 < 8 < o0, a linear operator D;. If X is defined on the interval I = [0, 00) and

f € X, then we let
t
(DO =F(E)0<s <005t <oo.

If I =[0,1], then we let

f(ﬁ), t < min(1, s)
(DSf)(t) =
0, s<t<1 (in cases<1).

Definition: Let X be a rearrangement invariant function space on an interval

I which is either [0,1] or [0,00). The Boyd indices px and ¢x are defined by

i L0g(s) log(s)
= lim —*.1_ — sup ——%—
Px = e log | Ds]] ~ 355 log || D]
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. log(s) o log(s)
= l = _—
X = 6% log |[Ds]] — 0<s<t log || D]

It is a routine matter to show that 1 < px < gx < oo for any rearrangement
invariant space X. Also one can show that if X = L,[0, 1], then px = ¢x = p. With
knowledge of the Boyd indices of X, we can use some interpolation theorems, and

the following fundamental fact.

Theorem 2.2 ([LT],p.132) Let X be a rearrangement invariant function space on
an interval I which is either [0,1] or [0,00). Then for every p and q that satisfy

1<p<px and gx < q < oo, we have
Ly(I) N Ly(I) C X C Lp(I) + Lo (1),
with the inclusion maps being continuous.
We will also need some standard facts from basis theory.

Theorem 2.3 (/BP/,p.153) Let (x,,) be a basic sequence in a Banach space X with

biorthogonal functionals (). If the sequence (y,) in X satisfies the condition
oo
> llen = galllzall <1,
n=1

then (y,) is a basic sequence, and (z,) and (y,) are equivalent.

Bessaga and Pelczynski’s theorem can be combined with a subsequence argu-

ment to yield the following corollary, which we will later use to prove Theorem

4.8.
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Corollary 2.4 ([G], p.13) Let (z,) be a basic sequence in X not converging to 0

in norm. If the sequence (y,) in X satisfies the condition

> s = ynll < o0,

n=1
then there exists an infinite subset M C N such that the subsequences (z,)near and
(Yn)nenm are equivalent.

The following theorem was published by Bessaga and Pelczynski in 1958.

Theorem 2.5 ([BP|,p.156) Let X be a Banach space with an unconditional basis,
and suppose the sequence (y,) in X converges weakly to 0 but not in norm. Then

there is a subsequence (yn,) which is an unconditional basic sequence.

This next lemma is a well known result, and a proof can be found in Rosen-

thal’s paper [R].

Lemma 2.6 If (2;)2, is a normalized unconditional basic sequence in L, with

unconditional basis constant A\, and if 2 < p < oo, then

> laal?)7 < A > antnlly (2.1)

It will be convenient to use the space X ().
Definition: Let X be a rearrangement invariant function space on [0,1].
X(l2) is defined to be the completion of all sequences (z1, zo, . . .) of elements of z

which are eventually zero, with respect to the norm

(@1, 22, - )llxaa) = ll(i AR
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B. Mitjagin [M1] showed that any separable rearrangement invariant space X
on [0,1] with 1 < p, < gx < o0 is isomorphic to X(l3), so in particular our space

has this property.
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CHAPTER 3:WORK OF KADEC, PELCZYNSKI,

JOHNSON, AND ODELL

In 1958 M. Kadec and A. Pelczynski published a paper on the L, spaces whose
methods we draw upon very heavily here. They introduced the notation M,(e)
which in our notation is Mx(€), where X = L,. Some of their results are listed

below for comparison with our versions for X.

Theorem 3.1 (KP) Let p > 1 and let (x,) be a sequence in L,[0,1] such that for
every € > 0 there is an index n. such that z,_ does not belong to M,(¢). Then there
exists a subsequence of (z,) which, when normalized, is a basic sequence equivalent

to the unit vector basis of 1.

Theorem 3.2 (KP) Let p > 2 and let (z,) be an unconditional basic sequence
in L, with 0 < inf, ||z,]|, < sup, [|z.]l, < co. Then (z,) is equivalent to the unit

vector basis in ly iff there is an € > 0 such that ., is in My(e) forn=1,2,....

Theorem 3.3 (KP) Let p > 2 and let (z,) be a sequence in L, satisfying the
following conditions:

(1) (zn) converges weakly to 0

(2) lim sup,, 2], > 0.

Then there is a subsequence (x,,) which is equivalent either (a) to the unit vector
basis in I, or (b)to the unit vector basis in ly. Moreover, (b) holds iff there ise > 0

such that x,, is in My(e) for infinitely many n.
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In 1974 Johnson and Odell examined subspaces of L, not containing lo. Their
study of subspaces of L,,2 < p < 0o, was the main source of inspiration for this

paper. Some of the results of [JO] are included below.

Lemma 3.4 (JO) IfY is a subspace of L,(2 < p < 00) such that no subspace of
Y is isomorphic to ly, then for any 6 > 0, there exists n such that ify = > a;h; €Y

and lylly < 1, then

1> auhilla < 6.

Theorem 3.5 (JO) IfY is a subspace of L,(2 < p < oo) such that no subspace

of Y is isomorphic to Iy, then Y is isomorphic to a subspace of l,.
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CHAPTER 4 : PRELIMINARY THEOREMS

In Chapters 4,5, and 6, we assume that X is a rearrangement invariant space on
[0,1] satisfying the four hypotheses listed on page 1. In this chapter we build up to
Theorem 4.10, where we prove an analog of Theorem 3.3. We first prove a general
lemma showing that the norm in X is absolutely continuous. Then we adapt the
methods Kadec and Pelczynski used with L, to prove similar theorems for X. Our
eventual goal is to prove an analog of Kadec and Pelczynski’s dichotomy result.
Specifically, we will prove at the end of this chapter that if a sequence approaches
0 weakly but not in norm, then either there is a subsequence equivalent to the
unit vector basis of Iy, or there is a subsequence equivalent to some disjointly

supported sequence in X.

Lemma 4.1 Suppose E is a finite dimensional subspace of X of the form E =
[hi]y. Then for every e > 0 , there exists some §, 6 > 0, such that if u(A) < 6

then for all x € X,

lz - 1allx

<e
=]l x

Proof: Clearly this lemma works in the case that X = L,(1 < p < )
and dim(F) = 1. We will first prove the lemma in the case that X = L, and

dim(E) = m.
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Let {e1,€e,...,en} be a normalized basis for E , and endow R™ with the [J*
norm. Let T': E — R™ be the natural isomorphism and let ||T'|| = ¢. Fix ¢ > 0.
Let o = £, and choose ¢ small enough that the theorem is satisfied for ¢y and

each of the one-dimensional subspaces [e1], ..., [enm].

Suppose

m
xr = Z a;€;.
i=1

Then

o Lall 3l ally < 3 ol -0 ey < ol Y- el

which is to say that

e - 1all, < € fllp. (4.2)

Therefore this lemma holds in the case X = Ly, where ¢ = gx. Let f € X N L,.

Suppose (by Theorem 2.2) that

1flx < @]l fllg- (4.3)

Let Sg be the unit sphere of E with respect to the X norm, Sy = {z € E :
|z]lx = 1}. Let {e1,...,en} be a normalized basis for E' with basis constant v.
Since the closure of Lo, N Sx contains Sg, we can choose an g net {1,..., 2}

in Ly, N Sx, i.e., for every y € Sp there exists 4 such that ||z —y|lx < §.
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Let W = Span{z, ..., 2}. Since W is a finite dimensional subspace of X N L,

there is some constant as such that for f € W,

1£1lg < a2l fllx- (4.4)

Because inequality 4.2 holds for p = ¢ in the finite dimensional subspace W,
there is some 6,6 > 0, such that for all f € W, u(A) < é then

€

”f ) 1A||q < ||f||q

8&1 as

If u(A) < 6, then, we have

€ €
I/ - Lallx S allf - 1alle < o—Iflle < SIS Nlx
8(12 8

Finally, if z € Sg, then there exists some zy chosen from the set {z1,...,2;}

such that ||z — z||x < §. So

lz-1allx < (20 —2) - Lallx + |20 - 1allx

< lzo — zllx + |20 - 1allx
< € + €

- 8 8

< €

Remark: The lemma was actually proved for every finite dimensional subspace
of X.

We now proceed to develop the theory required for Theorem 4.10, beginning
with two facts which vshould be fairly clear from the definitions but which never-

theless are important.
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Observation 4.2 If ¢; < e, then Mx(e1) D Mx(e2).

Observation 4.3 | J Mx(¢) = X.

e>0

Theorem 4.4 If x ¢ Mx(e) then there is a set A (depending on z) such that

n(4) <,
o Lasllx _
llllx
and consequently,
llz-1allx Sl
]| x

Proof:
Let A= {t:|z(t)] > €||z|lx} Then u(A) <e Fort € A7 |z(t)| < €|lz]x- By

the lattice properties,

Iz - 1a-sllx < [llzllx - e 1o, = ellellx-

Since

- 1allx + [z - 1a-llx = [lllx,
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we have

as well.

Notation: In the next two theorems, we will use the need to refer frequently

to the set {t : [£(t)] > €||z||x}, we call it S; that is, S = {¢ : |z(t)] > €||z|/x}.

Theorem 4.5 ||z||» > €3 ||z]|x for every z € Mx(c)

Proof:

Since z € Mx(€), we have that u(S) >e.

So

el = ([ le(oPan?
> ([ la(t)Par)?
> (Elle]Fu(s)?

> e alx.

Theorem 4.6 Let 0 = pi;—z. Suppose ¢ and k satisfy

lzlle <k - lzllx
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and

c- [|l2lls = [l2]x.

~2(px+2)

Then x € Mx(e) , where e = (c(1+k)) »x-2 .

Proof:

Suppose that ¢ Mx(€), where € is the number above, so that u(S) < e.

For any set £ C [0,1] , we can apply Holder’s inequality to the functions

f(z) = 2% and g(z) = 15 to get

e

Let p = px in this proof to simplify notation. Then

tol»—\

uENT - ([ le@))?.

lall, = (/ eoPa+ [ |2dt)l
< ( /. |:v(t)|2dt)§ + ( /[0’1]_3 ]sv(t)(2dt>%

< (u(9)F - Jallo + ellllx
< (OF - kljz]x +ellzllx

— (e + e - )|[ax.

Now since
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l#llx < cllalls < cle + €53 - k) jallx < - e (1+ k)ljo]x,

we see that

€7 . c(l1+k)>1,

and therefore

e> (c(l +k) 75

Thus if we have

—2(p+2)

€< (c(1+k))72

then z € Mx(e).

Corollary 4.7 IfY s a subset of X and there is a constant K such that

llyllx

lole <%

for every y € Y, then Y is contained in Mx (e) for some fized €.

Proof: Apply Theorem 4.6 and Theorem 2.2.

Theorem 4.8 Let (z,) be a sequence in X such that for every ¢ > 0 there is an

indez n, such that z,, does not belong to Mx(€). Then there is a subsequence ()
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such that Wfﬁﬂ; 18 a basic sequence equivalent to some disjointly supported sequence

in X.

Proof:

Given (z,), we will find a subsequence (z],) and a disjoint sequence of sets
(Al), which we will use to define the disjointly supported sequence (z,). Then we
can apply a standard perturbation theorem of Bessaga and Pelczynski to show

these sequences are equivalent.

First recall that if x € X, then the set function 7,(A) = ||z 14||x is absolutely

continuous, by Lemma 4.1.

Choose z} so that 2} ¢ Mx(47!). Then choose A; with u(A;) < € so that

1 - Tasllx

e 21T

By Lemma 4.1 there exists €5 such that

llz7 - 1allx

<472,
Il | x

w(A) < eg =

Now choose x5, ¢ Mx(min(ez,472)), so that = & Mx(e2) and z} ¢ Mx(472).
By Theorem 4.4, there exists a set Ay with p(As) < min(ez,472) and

[[25 - Tao[lx

B = Y

It follows automatically from the choice of €3 that

21 - 1as]lx

<477
27 || x
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We can continue in this way choosing (x}) and A, for each integer n such that

lley-Lay flx _ 4-(n+1) o eila, g lix —(n+1)
feala = 1~ 47, and maxic, s < AT

Notation: For each n € N we make the following definitions:

A = AN\ U A

i=n+1
x (t
) = nm;:{n} L
x, (¢
wy(t) = m
Note that for m # n, A/, N A = 0.
We now see that
lwn — zullx = [[(wn —20) - 1(a,ellx

= lwg - Tea yollx

VAN

lwn, - 1(An—An/)”X + |lw, - 1(An)C’HX

I3 wn-Taflx + 470D
i=n+1

i 4—(i+1)+4—(n+1)
i=n+1

477

VAN

IA

VAN

We also know that
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leallx = - L, lix (15)
> nwn-1Annx—§1nwn-1,4jnx (46)
> 140D i 40+ (4.7)
s aoan (48)

This then shows that (2,,) does not converge to 0 in X and we saw above that
>0 1 lwn — 2n|lx < oo. The disjointly supported sequence (z,) is clearly basic.
Corollary 2.4 therefore tells us that a subsequence of (w,) is a basic sequence

equivalent to a subsequence of (2,), which is just what we needed.

Theorem 4.9 Suppose (z,) is an unconditional basic sequence in X with 0 <
inf ||z,||x < sup||z.|lx < o0, with the (x,) disjointly supported with respect to the
Haar basis. Suppose there is some € such that all for all n,x, € Mx(c). Then (z,)

s equivalent to the unit vector basis of L.

Proof:
Assume without loss of generality that ||z,||x = 1 for all n. The fact that

there exists C; with
1
oS ) oS b3
” Z ananX S Cl (Z ,an|2>

follows from the upper l; estimate hypothesis.
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Now by Theorem 4.5 we know that ||za]lo > €7 for all n. Suppose 3 satisfies
lzllx = Bllz|lz for all z € [z,]. Let Cy be the unconditional basis constant of
(zy). It isn’t difficult to see that the functions {r,(t)a,z,}2, are orthogonal in
Lo(I x I), and the equation || 3% fulls = (252, [|£al|2)2 for orthogonal functions

will give us equation 4.10 below, so we get

13 ewtallx 2 g sup |3 rult)onsalx (49)

tel0,1] np=1
B

> glern )anZnl|Loxr)

- £(3 |rnanxnnwf>)% (4.10)
- L2 lanscnnz)

> %Cﬁ i:: la,|?)2

We are now ready for our analog of Theorem 3.3.

Theorem 4.10 Suppose (z,,) is a sequence in X, disjoint with respect to the Haar
system, which converges weakly to 0 but does not converge to 0 in norm. Then
there is a subsequence (zn, ) which is equivalent either to the unit vector basis of Iy
or to some sequence of disjointly supported functions in X. Specifically, if there is
some €, € > 0, such that every for infinitely many n, we have z, € Mx(¢), then a

subsequence is equivalent to the unit vector basis of l,.
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Proof: Suppose first that for some ¢, infinitely many z, are in Mx(€); since
we are only trying to draw conclusions for a subsequence, we may assume that all
Z,, are in this Mx (€). Since the sequence converges weakly, it is bounded in norm.
We then apply Theorem 2.5 to find an unconditional basic subsequence (y,). By
Theorem 4.9 , then, (yn) is equivalent to the unit vector basis of Is.

Now suppose that there is no € such that infinitely many z, are in Mx(e). We
can then apply Theorem 4.8 to conclude that (z,) is equivalent to a disjointly

supported sequence as desired.
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CHAPTER 5: CONSTRUCTION OF A DISJOINT SUM BANACH SPACE

Let X bea rearrangement invariant space on [0, co] and let X be the restriction
of X to [0,1]. We assume that X satisfies the four hypotheses enumerated at the
beginning of Chapter 1. Let H; = [hi,j]?:ol. Let (F,) be disjoint finite subsets of
N with max(F,) < min(F,,;1), where every positive integer is contained in one of
these sets. We let X}, be the subspace spanned by {h;; :i € F},0 < j < 2'—1}, or
equivalently, X = Span{H; : i € Fy}. We now introduce spaces of the following

form:

oo

Z = ZEBX@

i=1

where we define the norm on Z as follows:

l@)Eallz = | ix o7illg,

where 7; : [i — 1,4] — [0, 1] is defined by 7;(z) = 2z — (¢ — 1). Let Z be the set of all
sequences (z;) with z; € X; such that [[(z;)2,]lz < 0o

We can think of Z as arising from a rearrangement invariant space X, together
with an increasing sequence of integers (m;)°,, where m; = min(F;). We will
therefore denote the space by Z(X, (m;)) if we wish to be explicit.

There is a close connection between the sequence (z;){°; in Z and the func-

tion 3%, ; o 7; in X. We will sometimes identify the one with the other in the

subsequent pages.

Theorem 5.1 Z is a Banach space.
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Proof: A well known principle (cf. [F],p.144) says that it suffices to show
that if (y,,,) is a sequence of elements of Z, and Y ov_; ||ym|lz < oo then Y00 | yy,
converges in Z .

Fix an integer n. By definition

[ ]
1> vnio il = llynllz-
i=1

Thus there is some constant B such that

Z [l Zyn,i °T¢||)z = Z ly-lz = B < oo.
=1 =1 n=1

Since X is a Banach space, we know by this principle that the function

w(z) = i iyn,i o 7;(z)

n=1i—1
isin X.

Similarly, since X is a lattice,

@'(z) =D Y [Yni o Til@)|
n=1i=1
isin X.
Note that for all n, we know that y,; is in the span of {H; : j € F;} which is

a finite dimensional subspace of X. Since

il lgmallx < i lomllx < oo,

we know by the principle that for every [, the sum w;(z) defined by

mw:§MM)
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converges in X to an element in {H; : j € F}}. Define w in Z by w = (wy, wa, ws, .. .),
noting that Jw||z = ||®]| 5.
Let ’UN,%' = 2%21 ym,i and let HN,i = w; — UN,i = E?r?ZN—H ym,iy and deﬁne UN

and fy in the obvious way by these sequences.

Since
2(91\7,@' 0)(#)| < 17 (@)
for all , we know that 5 € Z.
Now
fwo—vxllz =1 S wllz,
n=N+1

and this quantity approaches 0 as N — o0, so vy — w in Z as desired.

Remark: The proof can be viewed as showing that the natural image of Z in

X is closed.

Theorem 5.2 For any two sequences (m;)i2; and (m;)2,, Z(X, (m;)2,) is iso-

morphic to Z(X, (ns)2,)

Proof: Let 7, = Z(X,(m)2,) and let Z = Z(X, (n:)2,). We will proceed as
follows. First we show that Z; embeds into Z; as a complemented subspace, and

by symmetry of course Z; embeds into Z5 as a complemented subspace as well.

We will use the double-subscript style of indexing the Haar system here, so

that elements z € X, take the form



31

oo 2M"-1

T = aghy —I—Z Z am i

i=0 j=

Let
H; = [hi,j]?:)l-
For ¢ =1 or 2, we let
Z;y = i ®XE,
k=1

where

— [Hmeet

t=myp

X2 = [H P!

i=np

and in the special case k = 1 we have Hi = Span{hg, [H;]"2.1}. and H? =

i=mi

Span{hg, [H;]2,}. We will define § : Z; — Z, by defining the function on each

h; ; and extending linearly.
We first choose a subsequence (m;,) of (my) such that mi, ) —my, > nge1 —ng.

We then map the finite dimensional subspace X2 = [H;|7*:' ™" of Z, into the

=Ny

1 <k+1) =
finite dimensional subspace X; = [H;],_ of Z; as follows.

We first show how to map Hy, into H,, .

Let

((s+1):2™% ") -1
O bms)= S b

k’
[
p:s.ka "k

We now map Hp, 4t into Hyy 14 for each ¢ € {0, ..., mpq1 — N}
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Let
e(hnwtﬁ) = Z hm;c+t,2mk AN AR
P

where the sum is taken over all p such that 0 < p < 2™ ™ and p = smod2!.

One can see that because § preserves the joint distribution of the Haar func-
tions, we have z € X2 then [|#(z)||z, = ||z||z,- Then the rearrangement invariant
property of X makes it clear that for any z € Z,, we have [|0(z)||z, = |||z,
Furthermore one can see that the image 6(Z;) is complemented in Z;. Indeed,
let By, be the o— algebra generated by {f(hn,,,-1,5) : 0 < s < 2(+171) — 1} and
define P : Zy — 0(Z3) by P(zx)i2, = (E(xx|Br))52,, where E is the conditional
expectation operator ([LT],p.122).

By the same arguments, of course, Z; embeds as a complemented subspace of
Zs.

We now introduce a universal space U which has the property that any space
Z(X, (p:),) can embed as a complemented subspace of U by the above argument.
First partition NN into infinitely many infinite subsets N;, 1 < i < oo. Then
consider the o -algebra on the interval [n; j, n; ; + 1] which is generated by the 27
sets each of measure 277, [n;;,mi; +277],...,[ni; +1— 279 n;; + 1]. Let A be
the o -algebra generated by the union of all such sets on [0,00). We let U be the

closure of the simple A- measurable functions on [0, o) under the X norm. Note

that U is complemented in X by the generalized conditional expectation operator

E induced by A(|LT],p.122).
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For any spaces (W;) whose norms are calculated based on the X norm, it is
possible to define a sum ) @&W; based on the X norm. To calculate the norm of
(w1, ws, ws,...) in 3 &W;, we let w(z) be a function such that d,(t) = >°7°; dy,(¢)
and then let ||(wq,we,ws,...)|lw = ||w||g. We define 3~ ®W, to be the set of all
sequences (Wi, Ws,Ws, ...) with w; € W for all i such that ||(wy,ws,ws,...)|[|lw <
00. Observe that U is isomorphic to } 72, @U and that > &2, U is complemented
in X. Because U has the same structure as Z(X, (1)), the proof given above that
0(Zz) is complemented in Z; can be adapted to show that 6(Z;) is complemented
in U, where 6 is defined analogously. Let T be the corresponding projection defined
analogously to the projection P above. Let ) be the kernel of this projection,
so that U = Q @ 6(Z). Similarly, there is a map ¢ : U — Z; so that ¢(U) is
complemented in Z;; let ¢(U) = W and let Wy be its complement in Z;, so that
Zy ~W e W.

We now use Pelczynski’s decomposition argument to show that Z; is isomor-
phic to Zy. We will first show that Z; is isomorphic to U, from which it will follow
that Z, is isomorphic to U, and so it will follow that Z; is isomorphic to Z,. We
write A ~ B to mean that A is isomorphic to B.

Then

~ (UeU)eW
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~ U@Wl
~ W@Wl

~ 7

On the other hand we will show that U @ Z; ~ U as well. We will need
to define an isomorphism ¢ : (USUS...) 021 —» QS QP ---)® 0(Z41) &
0(Z1) @ ---) ® Z. Proceeding formally, let ¢((f1, f2,...),9) = (I — T)fi,(I —
T)for.. ), (TH,Tfa,...),9), where T : (U@ U@ ) = (0(Z) @ 0(Z) ® ) is
defined by T(z1,s,...) = (Tz1,Txs,...). Extend this map to X by composing
with the projection E. Now in the case that U = L,[0, o) for any p, we know that
ToF is a bounded projection. By interpolation ToE is bounded on X, and hence
T is a bounded projection on Y21 @U. Thus the operator ¢ is an isomorphism as
required.

Therefore we obtain that

UeZ ~ UseUsd..)8 %4
~ QeQe--)e (%) el(Z)e--)® 2%
~ QeQe-)el(n)edn)e--)
~ UsU®--)

~ U,

and this completes the proof.

Remark: We assumed at the beginning of the chapter that there is a rear-
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rangement invariant space X on [0,00] such that X = {f € X : supp(f) € [0,1]}.
We did not assume that the Boyd indices of X were the same as X, only that X
is an interpolation space in the L, scale. Thus there are many possible choices
of X and corresponding Z(X, (m;)). In the next chapter we assume that X has

been fixed.
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CHAPTER 6: MAIN THEOREM

Lemma 6.1 is critical to our main theorem.
Notation: Here we let (h;) be the normalized Haar basis in X, and for any
z € X, we let h}(z) be the coefficient of h; in the expansion of z, so that
x
=Y _hi(z)h
=0
Lemma 6.1 IfY is a subspace of X containing no subspace isomorphic to Iy, then

for any 6 > 0, there exists n such that if y = 372, a;h; €Y, then

l| 3232, cihil|2
lyllx

<é

Let T : Y — L5[0,1] be the identity map. First we will show that 7' is compact.
Suppose that T is not compact. Then there is a sequence (z,) in By such that
(T'(#,)) has no convergent subsequence. Now choose a subsequence () of (z,)
such that there exists a constant C such that ||Tz), — Tz ||2 > C for all integers
m and n. Since X contains no copy of l;, Rosenthal’s /; theorem (cf. [D],p. 201)
tells us that (z]) has a weakly Cauchy subsequence (/). For each natural number
n, we define y, = 2 ., — 2. Then y, — 0 weakly, and yet ||Ty,||2 > C for all
integers n.

Since ||y, |lx < 2, we know that d';f’;”ﬂ‘ is bounded. Then Corollary 4.7 tells us

that all the y, are in some fixed Mx(€) space. Then by a standard perturbation

argument and Theorem 4.10, we know that a subsequence of (y,) is equivalent
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to the unit vector basis of ly. This contradicts our assumption that I3 is not

contained in Y, and therefore we know that 7" must be compact.

Suppose the lemma fails for some § = 0. Then for every n there exists y, € By

such that
130 Kl > o0,
Since T is compact, we can find {z1,...,2n} , a @ -net in T(By). Choose

{z} ...z}, } and an integer N such that

lzi — zilla < )

and hj(z;) =0 forall j > N and ¢, 1 <i < m.

(To accomplish that, we first choose for each ¢ an integer N; such that || 3252 v b} (2)hyl|2 <

% and then let N be the maximum of these N;. Let ] = 31 1 h¥(z;)h;.)

Now since yn11 € By, there is some z; chosen from the set {z1,...,z,} such
that
lz; — Tyniafls < 2,
and so
ITyni1 — zi]l2 < 270

Yet yn 1 was chosen such that

I Z hi (yw+1)hill2 > oo,
i=N+1

meaning that



38

ITowi—alla 2 | S il > oo,

which is a contradiction.

Theorem 6.2 Let X be a rearrangement invariant space on [0,00) and let X be the
restriction of X to [0,1]. If Y is a subspace of X such that no subspace of Y is iso-

morphic to ly, then Y is isomorphic to a subspace of the space Z = Z(X, (my)2.,).

Proof:

Let ¢ be the suppression unconditional basis constant of the Haar system in

X.

Inductively, we will choose sequences (p;), (€&), and (0;) to satisfy the following

four properties.

(1) If z € [hsJfn 'and pu(A) < €, , then

2 - 1allx

< €p-
[zl x "

so that
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(3) Ify €Y and y = >3°, ahy, then

” Z?ipnﬂ aihi”2
vl x

= On.
(4) X2, < k, where k = &

We can accomplish these goals as follows: first choose p; = 1,¢; = %, and

.
64ct-

(e

0<o1< (%)

Let n > 2 and assume p;, €;, and o; have been chosen to the above specifications
for1 <7 < n—1. We can then use Lemma 6.1 to choose p, such that it is an integer
power of 2 (in order that A, might be the first Haar function in its generation)

and large enough that if y = 3>>°, o;h; € Y, then

1S ashills < onsllylx.

i=pp,
Then choose ¢, small enough that ¢, < 2~k and (by Lemma 4.1) so that
if z € [)?7" and u(A) < €, then

- 1allx

ex = o

Finally choose o, such that

< (2n+1) " on+52°

Notation:

If



then for each £ € N we let

Prt1—1
Ye = Z a;hi,
i=pyg
and
) -1
Xp = [hilish,
so that
Yy = Zyz
i=1
Define
€n-1
I:{n:ynEMX( on )}
and
€n—-1
T={n g ¢ Mx(S0)
Now let n € I.

By Theorem 4.5 and property (3),

lonllx < () Fllgmlle
< (EHFILuls
< (5D - onallyllx

Qn

Therefore

nel

ISl < 35 (9% - owlvle] < izl

40
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So letting yr = > pc1 Yn, We have shown that

1

@Hyﬂx-

lyrllx <

For any y € Y, recall that y = ioz Yi, where v; € X;. Then define a map
i=1

d} Y =7 by ¢(y) = (ylayZay3a° )

Noting that |[¥(yn)|lz = ||ynllx, one can use the same argument to show that
¥l < 1ol
Yz = 162 Ylix

as well.

We will now show that 9 is an isomorphism onto its image. Fix y € Y.

By Theorem 4.4, for each i € J, we can choose a set A; such that

€i-1
A) < —=.
plhi) < =
and
”yz . Ai”X €i—1
—_>1—-—. 6.11
ll9ill x 2 (6:11)

(If i ¢ J, we let A; be the empty set.)

For the sake of convenience, we now introduce a plethora of notation.

First define sets A; as follows:
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e o]

Ai = Ai\ U Ai+2j'

Jj=1

The set of all A; with ¢ odd (resp. even) is then pairwise disjoint.
We next define y¢ to agree with g, on the small set A, where the support of

Yn 18 concentrated.

yr? - yn'lAn
yE = y—yf
v o= > s
n=1
o0
y® o= S F
n=1

We now define yg, then define y$ and y& in a natural way.

Yp = Z Yon

2neJ
Y = > Yo

2neJ
R
Yh = Y Yo

2neJ

Thus we have

yr =Yg + yp

We define functions y2 as follows:

yr? =Yn- lAn
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The functions y2 are disjoint in the sense that all y, with even (respectively
odd) subscripts are pairwise disjointly supported.

Naturally, we define y2 as

yg = Z y2’n, ’ 1A2n'
2neJ

Now
lyllx = llv®llx _ llv°llx _ lyllx + lv®llx
Blx = lolx = ol
and
lvpllx = 1D wllx (6.12)
< 2Ejllyz’illx (6.13)
< SOty by (611 (614
< kf:é}} llyn |l x (6.15)
< ¢k lysllx (6.16)
Thus
_ o < W¥E .
1—ck< T <1+ck, (6.17)
(That is,
” > y2n°1A2n”
1—ck < 2 <1+ ck.)

” Z y2n“
2neJ



Now let us define
Sn = An\An — An ﬂ (An+2 U An+4 U .. )

Then

22 v Taaalle = 1 D0 ton - Lanullx | S W D0 tn - Lsnallx

2neJ 2neJ neJ

Since

/1'(5271,) S Z U(A2j) S E ;]2:1‘1 S €ont1,

we then have, by (1), that

l2n - 1snallx

S €on.
”yZn“X

Then

1D yon - Isnallx <D0 lyen - 1snnllx

2neJ 2ned

Z 62n“?/2nHX

2neJ

¢kl Y ymlx

2ned

= ckllysllx

IA

IA

Combining the above equations with equation (6.17), then,

“ E Yon - 1A2nHX

1— 2k < 2087 <14 2k,
| 2ZEJ Yan|x

in other words,

44
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D
1—9ck < Mguzm.
lyzllx

At this time it will be necessary for technical reasons to define two new func-
tions ®; and ®, with the property that ®5 o $; = ¥ on the subspace Y. These
functions have the advantage that they will enable us to work more easily with

restriction operators of the form f+—— f-14.

Let z € X with z = Y72, z;, where z; € X;. Define ®; : X — X(I3) by

@1(21’1) = ($1,$2,ZE3, . )
i=1

It is well known that this map is continuous ([L.T],p.172). We then define &, :

®1(X) — Z by
@2(113’1,33‘2,3’)3, .o ) = (111'1,1172,373, . )

Formally we can identify Z with its image in X and extend ®; from X (Iy) to

X.
Observe that if only one of the z; in the expansion & = } 72, x; is nonzero,

then the situation is very simple. In particular, we have in this case that

[[©2(@1(2)llz = [[®1(z) | xay) = llzll x-

We now return to the main estimation argument. By the triangle inequality

120D 1(ven) - Laz,)llz — 1@2( D0 1(yen) - Lozl < [ P2(P1( 3 van))llz

2neJ 2ned 2ned



< NP2 30 Palyen) - Lag )i + 1@2( D2 Palyan) - 1a1)lx

2neJ 2neJ
We implicitly showed above in equations 6.13 to 6.16 that
2 1@2(@1(y2n) - 1u-1)llz < 2¢kllymllx
2neJ
Of course, since the sets (Ag,) are disjoint,
[[@2( Z D1 (y2n) - Lo )llz =l Z Yo+ Lagnllx
2neJ 2neJ

We showed that

(1—2ck)lyellx < llypllx < (14 2ck)|lyzllx.

( 6.18) and (6.19) give us

llcbz(zzj D1(yan) - Lag,)llx — 2¢kllyellx < [[Wyzllz

SN2 Palyn) - Tas )5 + 26kllyslix.

2neJ

Thus

(1 —4ck)llysllx < lv(ye)llz < (1 + 4ck)|lyex-

Let us define yo analogously to the way we defined yp. Let

Yo = Z Yon-1-

2n—1ed

46

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)
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The same arguments which led to equation 6.22, then, would give us that

(1 —4ck)llyollx < [l¥(yo)llz < (1 + 4ck)llyollx- (6.23)

By the triangle inequality and the unconditionality of the Haar system

lyzllx + lyolix

9% <llye +wollx £ llusllx + lvollx (6.24)

Since the images of 1¥(yg) and ¥ (yo) are disjointly supported when considered

as functions on [0, o),

14 (yB)llz + [¥(yo)llz
2

< MUlye +yo)llz < [Y(ye)llz + 1Y (yo)ll 2 (6.25)

From (6.22),(6.23) and (6.25) above, we get

S sl + ollx) < s+ vo)lls < (1-+ 4ek)lysllx + gollx)- (6.26)
By (6.24)
1 —4ck

1o lys +yollx) < [¥(ye +yo)llz < (1 +4ck)(lye +yollx)-  (6:27)

We have already shown that

1
lyzllx < 155 lvllx- (6.28)



and also that

[9(slls < g lsllx.

Noting that

y=1Yot+Ye + Y1,

we can easily get from equation (6.28) that

2 lollx < v +vollx < vl

By equations (6.27) and (6.30),

3(1 — 4ck)

—lllx < llys +vollz < (1 + 4ck)2][y||x

Of course

1¥(ys +yolllz — W (wollz < 1YWz < 1¥(ye +vo)llz + ¥yl 2.

Combining equations (6.31), (6.32), and (6.29), we get

MAh) 2 i) < Il < | 520 4 L

L

16, and ¢ < 2, this means

Since k =

sz lvllx < W@l < Flyilx.

(lyllx)-
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(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)
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Finally, we conclude this paper by demonstrating that Theorem 3.5 is a special
case of Theorem 6.2. More precisely, if we let X = L,0,00)(2 < p < o0) and
X = L,[0,1], in Theorem 6.2 (the main theorem of this paper), we obtain Theorem
3.5 (Johnson and Odell’s main theorem) . This fact can be proven easily with the

aid of the following well known lemma.

Lemma 6.3 Suppose (X,)2, are finite dimensional subspaces of X and there are
projections P, : L, — X, and a constant c such that |F,|| < ¢ for all n. Then

(> ®Xn), is isomorphic to .

Proof:

We first choose, for each n, some dyadic o— algebra Dy, such that

1
| E(z|Dr,) — zllp < mllxﬂp,

where E(z|Dy, ) is the conditional expectation operator. For simplicity we write
E.(z) for E(z|Dy,).
Let X, = P,(L,). Let z € X,,, and let f = E,(z).

Now

1E(f) = flle = [1Ea(En(2)) = En()llp
S N Ba(En(@)) = Pa(@)llp + [ Pa(2) — En(2)ll
< [[Pu(BEn(2)) = 2llp + llz = En(2)],

< (Bl +1) - lle = Eq(o)lly
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< (e+1)- (Iﬂlpn
= —Hl‘Hp

c+1
< S,

Let R,, be the restriction of P, to Xn, Then we can see that R, is an isomor-
phism from X,, onto X,,.

Define Qn : Ly(Dy,) — Xn by Qn = R;'o P, and observe that Q, is a

n

projection.
Now define
fﬁ Ly(Dr,) (i ®Xn)s,
by

Q(z1, 72,23, ...) = (Q1(21), Q2(22), Qs(z3), . . .)-

Now since (322 ®Ly(Dr,)) ,, 18 isomorphic to I, we know that (X2, ®X,) I, 18
a complemented subspace of [,. By a famous theorem of Pelczynski, (3°0° , @Xn)lp

is isomorphic to p, and hence so is (3572, ®Xy,),, as well.

Theorem 6.4 Suppose X = L,[0,1](2 < p < o0) . IfY is a subspace of X such

that no subspace of Y is isomorphic to lp, then Y is isomorphic to a subspace of 1.

Proof:

We apply Theorem 6.2. with X = L,[0,00)(2 < p < 00) and X = L,[0, 1].
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We first demonstrate that X = L, satisfies the hypotheses. First, we know
that 2 < px = gx = p < 0. Theorem 2.1 says that the Haar system is an
unconditional basis for L. It is well known that L, has an upper I, estimate (cf.
[LT],p.73). Since Ly[0,1] is reflexive and [; is not, it is clear that L,[0,1] cannot
contain a copy of ;.

Now let us check that the conclusion of Johnson and Odell’s theorem is sat-
isfled, that is, let us verify that Y embeds in /,. Theorem 6.2 tells us in general
that ¥ embeds in ¥ @X,. If X = Ly[0,00), then this means that Y embeds in
> ®Xn),. If By L, — X, are the basis projections, then | F,|| < ¢, where ¢ is
the suppression unconditional basis constant of X. By Lemma 6.3,then, we have

that (3° @Xn),, is isomorphic to I, which concludes the proof.
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