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CHAPTER 1: INTRODUCTION 

In 1974 W. Johnson and E. Odell examined subspaces of Lp not containing l2• 

They showed that if Y is a subspace of Lp(2 < p < oo) such that no subspace of 

Y is isomorphic to l2 , then Y is isomorphic to a subspace of lp. 

In the dissertation we will prove similar results for a wider class of spaces than 

the Lp spaces. We consider rearrangement invariant function spaces X on [O, 1) 

which satisfy the following four properties. 

(1) X has Boyd indices satisfying 2 < Px < qx < oo 

(2) X does not contain an isomorphic copy of Zi. 

(3) The Haar system is an unconditional basis of X. 

(4) X has an upper l2-estimate as a Banach lattice with respect to the ordering 

induced by the Haar system. 

It is known that the fourth hypothesis implies the second, but for convenience 

we list all four hypotheses. 

We show that if X is a rearrangement invariant space satisfying these require­

ments and Y is a subspace of X not containing l2 , then Y embeds in a space Z 

which is defined as a certain sum of finite dimensional subspaces. In the case that 

X = Lp, this result reduces to the theorem of Johnson and Odell. 
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First, in Chapter 2, we introduce many of the definitions that will he used 

in this paper and present many of the miscellaneous theorems we will use in our 

proof. Chapter 3 lists for reference some ofthe most important theorems proved 

in [KP] and [JO], for it is these theorems that we generalize in this paper. In 

Chapter 4, we prove some preliminary results, most of which are generalizations 

of Kadec and Pelczynski's work Chapter 5 is devoted to the construction of a 

Banach space which will perform the same role for us that lp did in Johnson and 

Odell's paper. Finally, in Chapter 6 we prove the main result of the paper and 

observe that this result is indeed a generalization of Johnson and Odell's theorem. 

We now define some essential concepts of Banach space theory. Let X be an 

infinite dimensional Banach space. A sequence { ei : i E N} is called a Schauder 

basis for X if for each element x of X, there is a unique sequence of scalars (ai)~1 

such that x = L~i aixi, with the right hand side converging in the norm of X. 

If { ei : i E N} is a basis and Pn(x) is defined by Pn(x) = L~=l aiei, then 

supn IIPnll is finite. This constant supn IIPnll is called the basis constant of the 

basis { ei : i E N}. 

Let X be a Banach space with a basis { ei : i E N}. Consider the set of all 

sequences (Ei)~1 where each Ei is either 1 or -1. For each sequence (Ei)~1, define 

P(t;) : X - X by P(t;)(L~i aiei) = L~i Eiaiei. Let K = sup IIP(t;)II, where the 

supremum is taken over all possible sequences ( Ei)~1. If K < oo then we say 

that the basis { ei : i E N} is unconditional and K is the unconditional basis 
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constant. 

There are several equivalent useful ways of defining an unconditional basis; we 

will describe another one of them. For any subset a- C N, we define 

00 

Po{L anen) = L anen· n=l nEu 

If supu IIPull < oo, then we say that {en: n EN} is an unconditional basis, and 

that supu IIPull is the suppression unconditional basis constant. A Schauder 

basis is unconditional if and only if its suppression unconditional basis constant 

is finite. 

A sequence of elements (xn) is called a basic sequence if it is a basis for its 

closed linear span. Two basic sequences (xn) and (Yn) are called equivalent if 

for every sequence of scalars (an), z::=l anXn converges if and only if z::=l anYn 

converges. 

There are two important systems of functions on [0, 1] which we will need in 

our study. The first, the Haar system, is extremely important to us because 

it forms an unconditional basis for the Banach space X. There are two styles 

of notation for describing the Haar functions, and we will use both styles in this 

paper. The first system is a double subscript system. Let h0(t) = 1 for all ton 

the interval. Then for each nonnegative integer i we define functions hi,j for each 

integer j in the range O :::; j :::; 2i - 1 as follows: 
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1, 2-i.j 5: t < 2-i. (j + !) 
hi,J(t) = -1, 2-i. (j + !) 5: t < 2-i · (j + 1) 

0, otherwise 

Note that each function hi,j has support of measure 2-i. Furthermore the 

supports of the functions hi,o,hi,l · .. , and hi,2i_1 are disjoint with union [O, l]. We 

call the functions {hi,o, hi,l ... , and hi,2L 1} a generation (or level) of the Haar 

system. 

We will use a single subscript style to index the Haar system through the 

majority of this paper. In this style we let ho(t) = h0(t) and let hk(t) = hi,it), 

where k = 2i + j. Thus we define hk for every nonnegative integer k. 

We will also be making use of the Rademacher system of functions. Since 

we have already defined the Haar functions by formulas, we can describe the 

Rademacher functions conveniently. Let ri(t) be the sum of the functions hi,J(t) 

for O 5: j 5: 2i - 1. Thus ri(t) takes the value 1 if hi,j(t) = 1 for some j, and -1 

if hi,j(t) = -1 for some j. Incidentally, we consider the Haar and Rademacher 

functions to be defined almost everywhere, and pay no attention to the values of 

these functions at dyadic points. 

The Banach space Lp[O, 1], also written as Lp, will play a central role. By 

definition, it is the space of all equivalence classes of functions (modulo equality 

almost everywhere) of functions x(t) which are defined on the interval [O, 1] and for 

which fl Ix IP< oo. The Lp norm of xis llxll = Ul lxJP)t. Similarly, Lp[O, oo) is the 
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set of all functions on [O, oo) for which J000 Ix IP < oo, with norm llxll = (J000 lxlP)p". 

Finally, lp is the spaces of all sequences (xn)~=I of scalars such that E:1 lxilP < oo, 

For further information on Banach space theory the reader may consult the 

books of Diestel [DJ, Guerre [G], Habala, Hajek, and Zizler [HHZ], and Linden-

strauss and Tzafriri [LT]. Diestel's book is not only well written and relatively 

easy to understand but very entertaining as well. Lindenstrauss and Tzafriri's 

book is the most comprehensive reference of these books, and includes a large 

amount of information on Banach lattices and rearrangement invariant spaces. 
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CHAPTER 2: BACKGROUND THEOREMS AND DEFINITIONS 

In this chapter we present the majority of the definitions and theorems that 

will be cited and used in the main body of the paper, Chapters 4-6. We first 

introduce some notation. 

If A is a set we let A-1 be its set theoretic complement. 

(n, ~' µ) will always be a measure space with u - algebra~ and measureµ. 

If Xis a Banach space of functions on [O, 1], we define Mx(E) = {x EX: µ(t: 

lx(t)I ~ Ellxllx) ~ E}, whereµ is Lebesgue measure. If x EX we denote the norm 

of x in X by llxllx, or in the case that X = Lp[O, 1], we write llxllp· 

Throughout this paper, we will assume that O < E ::; 1. 

Let LxJ be the greatest integer which is less than or equal to x. 

Paley [P] proved the following theorem, which will play a key role for us. 

Theorem 2.1 The Haar system is an unconditional basis of Lp[O, 1] for every p , 

1 <p < 00. 

We are also interested in another property of Lp, namely that under the point­

wise (almost everywhere) ordering, Lp has a lattice structure. More precisely it 

is a Banach lattice. The following definitions may be found in [LT]. 

Definition: A partially ordered Banach space X over the reals is called a 

Banach lattice provided 

(1) x ::; y implies x + z::; y + z for every x, y, z EX. 



(2) ax 2: 0, for every x 2: 0 and every nonnegative real a. 

(3) For all x, y EX there exists a least upper bound x Vy and a greatest lower 

bound x Ay. 

(4) llxll :s; IIYII whenever lxl < IYI, where the absolute value lxl of x EX is 

defined by lxl = x V (-x). 

7 

It is important to note that a Banach space can easily have more than one lattice 

structure, that is, more than one partial ordering which satisfies the axioms (per­

haps under an equivalent norm). In particular, the space X which with we will be 

dealing in this paper has two natural orderings. There is the pointwise ordering 

where f :s; g if f(x) :s; g(x) for all x E (0, 1] (except on a set of measure 0), and the 

Haar ordering where I::~1 aihi :s; I::~1 bihi if ai :s; bi for all i. Generally, X with 

the Haar ordering may fail property ( 4) of the definition of Banach lattice un­

der the rearrangement invariant norm but nonetheless we will employ the lattice 

language when referring to X in the Haar ordering; we will implicitly be using 

property ( 4) with a constant. To distinguish between the orderings we will always 

mean the pointwise ordering unless we explicitly specify the Haar ordering. 

We denote the dual of X by X*. Every measurable function g on n so that 

g f E L 1 (µ), for every f E X, defines an element x; in X* by 

x; (!) = /n f gdµ. 

The set of all functionals of this form is denoted X' and forms a linear subspace 
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of X*. 

Definition: A Banach lattice X is said to satisfy an upper lp estimate if 

there exists a constant M, M < oo, such that for every choice of pairwise disjoint 

elements {xi}i=l in X, we have 

n n 1 

II I:xill ~ M(L llxillP)ii. 
i=l i=l 

Definition: Let (n, I:,µ) be a complete u- finite measure space. 

A Banach space X consisting of equivalence classes, modulo equality almost 

everywhere, of locally integrable real valued functions on I: is called a Kothe 

function space if the following conditions hold. 

1. If lf(w)I ~ jg(w)I a.e. on n, with f measurable and g EX, then f EX and 

llfll ~ 11911-

2. For every u E I: with µ( u) < oo the characteristic function of u , Xu, belongs 

to X. 

Definition: Let (D,I:,µ) be one of the measure spaces {1,2, ... } , [O, 1] or 

[O, oo] (with the natural measure). 

A Kothe function space X on (n, I:,µ) is said to be a rearrangement invari-

ant space if the following hold: 

1. If T is an automorphism of the measure space n onto itself and f is a 

measurable function on n then f E X if and only if f(T- 1(w)) E X and if 

this is the case then llf(w)II = llf(T-1 (w))II-
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2. X' is a norming subspace of X*, (where "norming" means that llxll = 

sup{lx*(x)I : x* E X', llx*II = 1} for every x E X), and thus Xis order 

isometric to a subspace of X". As a subspace of X", X is either maximal 

(i.e. X = X") or minimal (i.e. X is the closed linear span of the simple 

integrable functions of X"). 

3. (a) If r2 = {1, 2, ... }, then as sets, 

li C X C loo 

and the inclusion maps are of norm one, i.e., if l E Z1 then lllllx :S 111111 

and if l EX then llllloo :S lllllx-

(b) If r2 = [O, 1] then, as sets, 

and the inclusion maps are of norm one, i.e., if l E L 00 then lllllx :S 

llllloo and if l EX then 111111 :S lllllx­

(c) If r2 = [O,oo) then, as sets, 

L00 [0, oo) n L1 [0, oo) C X C L00 [0, oo) + L1[0, oo). 

and the inclusion maps are of norm one with respect to the natural 

norms in these spaces. 

Some remarks on the above definition are in order. The first requirement of 

the definition is in some sense the most important. Its effect is that, for any 
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f EX, the norm off depends only on the distribution function di, which is given 

by 

d1(t) = µ({w E !1: f(w) > t}), -oo < t < oo. 

Specifically, if f EX and g is a measurable function with d9 (t) = d1(t), then also 

g E X and llfllx = llgllx- The second requirement is a technical one which, in 

particular, all separable spaces satisfy. Finally, the third part of the definition is 

actually a normalization condition. (3b) and (3c) each imply that llxro,iJ llx = 1. 

Rearrangement invariant spaces are natural interpolation spaces and we will 

have need of a set of interpolation indices, the Boyd indices. In order to define 

the Boyd indices of a rearrangement invariant space X, we first define for every 

s, 0 < s < oo, a linear operator D8 • If X is defined on the interval I = [O, oo) and 

f EX, then we let 

t 
(Dsf)(t) = J(-),0 < s < oo,O ~ t < oo. 

s 

If I= [O, 1], then we let 

(Dsf)(t) = { !(?), 
0, 

t ~ min(l, s) 

s < t ~ 1 (in cases < 1). 

Definition: Let X be a rearrangement invariant function space on an interval 

I which is either [O, 1] or [O, oo). The Boyd indices Px and qx are defined by 

Px = lim log(s) = sup log(s) 
s---->oo log IIDsll s>l log IJDsll 



11 

qx = lim log(s) = inf log(s) 
s--+O+ log jjDsll O<s<l log l!Dsll 

It is a routine matter to show that 1 :S Px :S qx :S oo for any rearrangement 

invariant space X. Also one can show that if X = Lp [O, 1], then Px = qx = p. With 

knowledge of the Boyd indices of X, we can use some interpolation theorems, and 

the following fundamental fact. 

Theorem 2.2 ([LTJ,p.132) Let X be a rearrangement invariant function space on 

an interval I which is either [O, 1] or [O, oo). Then for every p and q that satisfy 

1 :Sp< Px and qx < q :S oo, we have 

with the inclusion maps being continuous. 

We will also need some standard facts from basis theory. 

Theorem 2.3 ([BPJ,p.153) Let (xn) be a basic sequence in a Banach space X with 

biorthogonal functionals (x~). If the sequence (yn) in X satisfies the condition 

00 

L llxn - Ynll llx~II < 1, 
n=l 

then (Yn) is a basic sequence, and (xn) and (Yn) are equivalent. 

Bessaga and Pelczynski's theorem can be combined with a subsequence argu-

ment to yield the following corollary, which we will later use to prove Theorem 

4.8. 
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Corollary 2.4 ([Gj, p.13) Let (xn) be a basic sequence in X not converging to 0 

in norm. If the sequence (Yn) in X satisfies the condition 

00 

L llxn - Ynll < oo, 
n=l 

then there exists an infinite subset MC N such that the subsequences (xn)nEM and 

(Yn)nEM are equivalent. 

The following theorem was published by Bessaga and Pelczynski in 1958. 

Theorem 2.5 ([BP},p.156) Let X be a Banach space with an unconditional basis, 

and suppose the sequence (Yn) in X converges weakly to O but not in norm. Then 

there is a subsequence (Ynk) which is an unconditional basic sequence. 

This next lemma is a well known result, and a proof can be found in Rosen-

thal's paper [R]. 

Lemma 2.6 If (xi)~1 is a normalized unconditional basic sequence in Lp with 

unconditional basis constant >., and if 2 < p < oo, then 

(2.1) 
n=l n=l 

It will be convenient to use the space X(l2 ). 

Definition: Let X be a rearrangement invariant function space on [O, 1]. 

X(l2 ) is defined to be the completion of all sequences (x1 , x 2 , •• • ) of elements of x 

which are eventually zero, with respect to the norm 

00 

ll(x1,x2, · · ,)llx(12) = ll(L lxil2)!11x 
i=l 
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B. Mitjagin [Ml J showed that any separable rearrangement invariant space X 

on [O, 1] with 1 < Px :S qx < oo is isomorphic to X(l2 ), so in particular our space 

has this property. 
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In 1958 M. Kadec and A. Pelczynski published a paper on the LP spaces whose 

methods we draw upon very heavily here. They introduced the notation Mp(E) 

which in our notation is Mx(E), where X = Lp. Some of their results are listed 

below for comparison with our versions for X. 

Theorem 3.1 (KP) Let p 2: 1 and let (xn) be a sequence in Lp[O, 1] such that for 

every E > 0 there is an index nE such that xn. does not belong to Mp(E). Then there 

exists a subsequence of (xn) which, when normalized, is a basic sequence equivalent 

to the unit vector basis of lp. 

Theorem 3.2 (KP) Let p > 2 and let (xn) be an unconditional basic sequence 

in LP with O < infn llxnllp ::; supn llxnllp < oo. Then (xn) is equivalent to the unit 

vector basis in l2 iff there is an E > 0 such that Xn is in Mp(E) for n = 1, 2, .... 

Theorem 3.3 (KP) Let p > 2 and let (xn) be a sequence in Lp satisfying the 

following conditions: 

(1) (xn) converges weakly to 0 

(2) limsupn llxnllp > 0. 

Then there is a subsequence (xnk) which is equivalent either ( a) to the unit vector 

basis in lp or (b)to the unit vector basis in l2 • Moreover, {b) holds iff there is E > 0 

such that Xn is in Mp(E) for infinitely many n. 
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In 1974 Johnson and Odell examined subspaces of Lp not containing l2 . Their 

study of subspaces of Lp, 2 < p < oo, was the main source of inspiration for this 

paper. Some of the results of [JO] are included below. 

Lemma 3.4 (JO) If Y is a subspace of Lp(2 < p < oo) such that no subspace of 

Y is isomorphic to 12 , then for any 8 > 0, there exists n such that if y = I: aihi E Y 

and IIYIIP ~ 1, then 
00 

11 I:: aihill2 ~ o. 
i=n 

Theorem 3.5 (JO) If Y is a subspace of Lp(2 < p < oo) such that no subspace 

of Y is isomorphic to l2 , then Y is isomorphic to a subspace of lp. 
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CHAPTER 4: PRELIMINARY THEOREMS 

In Chapters 4,5, and 6, we assume that Xis a rearrangement invariant space on 

[0,1] satisfying the four hypotheses listed on page 1. In this chapter we build up to 

Theorem 4.10, where we prove an analog of Theorem 3.3. We first prove a general 

lemma showing that the norm in Xis absolutely continuous. Then we adapt the 

methods Kadec and Pelczynski used with Lp to prove similar theorems for X. Our 

eventual goal is to prove an analog of Kadec and Pelczynski's dichotomy result. 

Specifically, we will prove at the end of this chapter that if a sequence approaches 

0 weakly but not in norm, then either there is a subsequence equivalent to the 

unit vector basis of l2 , or there is a subsequence equivalent to some disjointly 

supported sequence in X. 

Lemma 4.1 Suppose E is a finite dimensional subspace of X of the form E = 

[hiJr=i· Then for every E > 0 , there exists some 8, 8 > 0, such that if µ(A) < 8 

then for all x E X, 

Jlx · 1Allx 
llxllx < E. 

Proof: Clearly this lemma works in the case that X = Lp(l < p < oo) 

and dim(E) = 1. We will first prove the lemma in the case that X = LP and 

dim(E) = m. 
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Let { e1, e2, ... , em} be a normalized basis for E , and endow Rm with the l1 

norm. Let T : E ---+ Rm be the natural isomorphism and let IITII = c. Fix E > 0. 

Let Eo = !, and choose 8 small enough that the theorem is satisfied for Eo and 

each of the one-dimensional subspaces [e1], ... , [em]. 

Suppose 

Then 

m 

x = Laiei. 
i=l 

m m m 
llx · lAIIP ~ L Jail· Jlei · lAIIP ~ L Jail· Eo · IJeillP ~ EoclJ Laieillp, 

i=l i=l i=l 

which is to say that 

(4.2) 

Therefore this lemma holds in the case X = Lq, where q = qx. Let f E XnLq. 

Suppose (by Theorem 2.2) that 

llfllx ~ a1 llfllq· (4.3) 

Let SE be the unit sphere of E with respect to the X ~orm, SE = { x E E : 

llxllx = 1 }. Let { e1, ... , em} be a normalized basis for E with basis constant v. 

Since the closure of L 00 n Bx contains SE, we can choose an f net {z1, ... , zk} 

in L 00 n Bx, i.e., for every y ESE there exists i such that llzi - Yllx ~ t 
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Let W = Span{ z1 , ... , Zk}. Since W is a finite dimensional subspace of X n Lq, 

there is some constant a 2 such that for f E W, 

(4.4) 

Because inequality 4.2 holds for p = q in the finite dimensional subspace W, 

there is some 8, 8 > 0, such that for all f E W, µ(A) < 8 then 

If µ(A) < 8, then, we have 

Finally, if x E SE, then there exists some z0 chosen from the set {z1, ... , zk} 

such that llzo - xllx :s; f So 

< llzo - xllx + llzo · lAllx 

< E. 

Remark: The lemma was actually proved for every finite a.imensional subspace 

of X. 

We now proceed to develop the theory required for Theorem 4.10, beginning 

with two facts which should be fairly clear from the definitions but which never-

theless are important. 
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Observation 4.3 LJ Mx(E) = X. 
E>O 

Theorem 4.4 If x (j:. Mx(E) then there is a set A (depending on x) such that 

µ(A) ::; E, 

and consequently, 

Proof: 

llx · lA- 1 llx ----<E 
llxllx -

llx · lAllx 
llxllx 2:: 1 - E. 

Let A= {t: Jx(t)I 2:: EJJxllx} Then µ(A) :s; E. Fort E A-1, Jx(t)I :s; EJJx!Jx. By 

the lattice properties, 

llx · lA-1 llx :s; II i!xllx · E · l[o,1i llx = EJJxlJx. 

Since 
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we have 

llx · lAJlx > 1 _ E 
IJxllx -

as well. 

Notation: In the next two theorems, we will use the need to refer frequently 

to the set {t: Jx(t)J ~ Ellxllx}, we call it S; that is, S = {t: Jx(t)I ~ Ellxllx}, 

Theorem 4.5 1lxl12 ~ E! llxllx for every x E Mx(E) 

Proof: 

Since x E Mx(E), we have that µ(S) ~ E. 

So 

1lxl12 fol 1 ( 0 Jx(t)l2dt)2 

> (h Jx(t)J 2dt)i 

> ( E2 II XII i µ( S)) ! 

3 

> E21lx1lx, 

Theorem 4.6 Let () = Pxt2. Suppose c and k satisfy 

llxlle ::S; k · llxllx 



and 

c · llxll2 ;?: llxllx-
-2(Px+2) 

Then x E Mx(E) , where E = (c(l + k)) Px-2 . 

Proof: 

Suppose that x (/. Mx(E), where E is the number above, so that µ(S) < E. 

21 

For any set E ~ [O, 1] , we can apply Holder's inequality to the functions 

f(x) = x2 and g(x) = lE to get 

Let p = Px in this proof to simplify notation. Then 

1 

( flx(t)l2dt+ r lx(t)l2dt) 2 

ls l[o,1]-s 
1 l 

< ( r Jx(t)l2dt) 2 + ( r Jx(t)J2dt) 2 
ls l[o,1J-s 

0-2 

< (µ(8)) 20 · llxllo + Ellxllx 
0-2 

< (E) 29 · kllxllx + Ellxllx 

(E + E2rp+22) . k)llxllx• 

Now since 
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JJxllx ~ cjjxJJ2 < c(E + E2rP+22) · k)JJxJJx ~ C • E2rP+22) (1 + k)JJxJJx, 

we see that 

E2rp+22) · c(l + k) > 1, 

and therefore 

-2(p+2) 
E > (c(l + k)) p-2 . 

Thus if we have 

-2(p+2) 
E~ (c(l+k))~, 

then x E Mx(E). 

Corollary 4. 7 If Y is a subset of X and there is a constant K such that 

for every y E Y, then Y is contained in Mx(E) for some fixed E. 

Proof: Apply Theorem 4.6 and Theorem 2.2. 

Theorem 4.8 Let (xn) be a sequence in X such that for every E ~ 0 there is an 

index nE such that Xn. does not belong to Mx(E). Then there is a subsequence (x~) 
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such that llx:llx is a basic sequence equivalent to some disjointly supported sequence 

inX. 

Proof: 

Given (xn), we will find a subsequence (x~) and a disjoint sequence of sets 

(A~), which we will use to define the disjointly supported sequence (zn), Then we 

can apply a standard perturbation theorem of Bessaga and Pelczynski to show 

these sequences are equivalent. 

First recall that if x E X, then the set function Tx(A) = llx · lAllx is absolutely 

continuous, by Lemma 4.1. 

Choose x~ so that x~ fj. Mx(4- 1). Then choose A1 with µ(A1) < E so that 

By Lemma 4.1 there exists E2 such that 

By Theorem 4.4, there exists a set A2 with µ(A2 ) < min(E2 , 4-2 ) and 

It follows automatically from the choice of E2 that 

llx~ · lA21ix < 4-2 

llxillx · 
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We can continue in this way choosing (x~) and An for each integer n such that 

llx~·lAnllx > 1 _ 4-(n+l) and ma . llx;·lAn+lllx < 4-(n+l) 
11:v:i llx - ' Xi::;n llx;llx · 

Notation: For each n E N we make the following definitions: 

Zn(t) 

i=n+l 
x~(t) 
llx~llx · lA:, 

x~(t) 
llx~llx 

Note that form -j. n, A~ n A~= 0. 

We now see that 

We also know that 

ll{wn - Zn)' 1(~,)ollx 

llwn · lc~,)0 llx 

< llwn · l(An-~1)llx + llwn · l(An)ollx 
00 

< II L Wn · lA; llx + 4-(n+l) 
i=n+l 
00 

< z: 4-(i+l) + 4-(n+l) 
i=n+l 

< 4-n 
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llznllx llwn · 1~,llx (4.5) 
00 

> llwn · lAn llx - I: llwn · lAJ llx (4.6) 
j=n+l 

00 

> 1 - 4-(n+l) - I: 4-(j+l) (4.7) 
j=n+l 

> 1 - 4-n. (4.8) 

This then shows that (zn) does not converge to O in X and we saw above that 

I:~=l llwn - znllx < oo. The disjointly supported sequence (zn) is clearly basic. 

Corollary 2.4 therefore tells us that a subsequence of (wn) is a basic sequence 

equivalent to a subsequence of (zn), which is just what we needed. 

Theorem 4.9 Suppose (xn) is an unconditional basic sequence in X with O < 

inf llxnll.:x :'.S sup llxnllx < oo, with the (xn) disjointly supported with respect to the 

Haar basis. Suppose there is some E such that all for all n, Xn E Mx(E). Then (xn) 

is equivalent to the unit vector basis of l2 • 

Proof: 

Assume without loss of generality that llxnllx = 1 for all n. The fact that 

there exists C1 with 

follows from the upper l2 estimate hypothesis. 
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Now by Theorem 4.5 we know that llxnll 2 ~ d for all n. Suppose fJ satisfies 

llxllx ~ fJllxlb for all x E [xn]. Let C2 be the unconditional basis constant of 

(xn). It isn't difficult to see that the functions {rn(t)anxn}~=l are orthogonal in 

L2(I XI), and the equation II L:=l fnll2 = (L~1 llfnll2)! for orthogonal functions 

will give us equation 4.10 below, so we get 

00 

(4.9) 

(4.10) 

We are now ready for our analog of Theorem 3.3. 

Theorem 4.10 Suppose (xn) is a sequence in X, disjoint with respect to the Haar 

system, which converges weakly to O but does not converge to O in norm. Then 

there is a subsequence (xnk) which is equivalent either to the unit vector basis of l2 

or to some sequence of disjointly supported functions in X. Specifically, if there is 

some E, E > 0, such that every for infinitely many n, we have Xn E Mx(E), then a 

subsequence is equivalent to the unit vector basis of l 2 . 
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Proof: Suppose first that for some E, infinitely many Xn are in Mx(E); since 

we are only trying to draw conclusions for a subsequence, we may assume that all 

Xn are in this Mx(E). Since the sequence converges weakly, it is bounded in norm. 

We then apply Theorem 2.5 to find an unconditional basic subsequence (Yn)- By 

Theorem 4.9 , then, (yn) is equivalent to the unit vector basis of l2 . 

Now suppose that there is no E such that infinitely many Xn are in Mx(E). We 

can then apply Theorem 4.8 to conclude that (xn) is equivalent to a disjointly 

supported sequence as desired. 
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CHAPTER 5: CONSTRUCTION OF A DISJOINT SUM BANACH SPACE 

Let X be a rearrangement invariant space on [O, oo] and let X be the restriction 

of X to [O, 1 ]. We assume that X satisfies the four hypotheses enumerated at the 

beginning of Chapter 1. Let Hi = [hi,j]J~c/. Let (Fn) be disjoint finite subsets of 

N with max(Fn) < min(Fn+1), where every positive integer is contained in one of 

these sets. We let Xk be the subspace spanned by {hi,j: i E Fk, 0 ~ j ~ 2i-1}, or 

equivalently, Xk = Span{Hi : i E Fk}. We now introduce spaces of the following 

form: 
00 

where we define the norm on Z as follows: 

00 

ll(xi)~1llz = II I:xi O Tillx, 
i=l 

where Ti : [i -1, i] - [O, 1] is defined by Ti(x) = x - (i-1). Let Z be the set of all 

sequences (xi) with Xi E Xi such that 11 (xi)~1 llz < oo 

We can think of Z as arising from a rearrangement invariant space X, together 

with an increasing sequence of integers (7ni)~1 , where mi = min(~). We will 

therefore denote the space by Z(X, (mi)) if we wish to be explicit. 

There is a close connection between the sequence (xi)~1 in Z and the func-

tion I:~1 Xi o Ti in X. We will sometimes identify the one with the other in the 

subsequent pages. 

Theorem 5 .1 Z is a Banach space. 
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Proof: A well known principle (cf. [F],p.144) says that it suffices to show 

that if (Ym) is a sequence of elements of Z, and I:::=i JIYmllz < oo then I:::=l Ym 

converges in Z . 

Fix an integer n. By definition 

00 

II LYn,i O Tillx = IIYnllz-
i=l 

Thus there is some constant B such that 

00 00 00 

L II LYn,i o Tillx = I: IIYnllz = B < 00. 
n=l i=l n=l 

Since X is a Banach space, we know by this principle that the function 

00 00 

w(x) = L LYn,i O Ti(x) 
n=l i=l 

is in X. 

Similarly, since X is a lattice, 

00 00 

w'(x) =LL IYn,i O Ti(x)I 
n=l i=l 

is in X. 

Note that for all n, we know that Yn,l is in the span of {Hi : j E _Fz} which is 

a finite dimensional subspace of X. Since 

00 00 

L IIYn,dlx :::; L IIYnllx < oo, 
n=l n=l 

we know by the principle that for every l, the sum w1(x) defined by 

00 

wz(x) = L Yn,z(x) 
n=l 
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converges in X to an element in {Hj : j E Fz}. Define win Z by w = (w1 , w2, w3 , .. . ), 

noting that llwllz = llwllx· 

Let VN,i = E:=l Ym,i and let eN,i = Wi - VN,i = E:=N+l Ym,i, and define VN 

and ()N in the obvious way by these sequences. 

Since 

for all x, we know that ()N E Z. 

Now 
00 

llw -vNllz = II ~ Ynllz, 
n=N+l 

and this quantity approaches Oas N---+ oo, so VN ---+ w in Z as desired. 

Remark: The proof can be viewed as showing that the natural image of Z in 

Xis closed. 

Theorem 5.2 For any two sequences (mi)~1 and (ni)~1 , Z(X, (mi)~i) is iso-

follows. First we show that Z2 embeds into Z1 as a complemented subspace, and 

by symmetry of course Z1 embeds into Z2 as a complemented subspace as well. 

We will use the double-subscript style of indexing the Haar system here, so 

that elements x E X, take the form 



Let 

For i = 1 or 2, we let 

where 

oo 2n-1 

x = a0h0 + L L ai,jhi,j· 
i=O j=O 

00 

zi = Le,xt 
k=l 

X2 [H]nk+1-1 
k = i i=nk , 
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and in the special case k = 1 we have Hf = Span{h0, [Hi]:2~;}. and Hf = 

Span{h0, [Hir;,~} }. We will define () : Z 1 ---+ Z2 by defining the function on each 

hi,j and extending linearly. 

We first choose a subsequence (m~) of (mk) such that m(k+l)-m~ ~ nk+1-nk. 

We then map the finite dimensional subspace xi = [Hir=1:~!-1 of Z2 into the 

m 1 -1 
finite dimensional subspace XI = [Hi]i=~Y) of Z1 as follows. 

We first show how to map Hnk into Hm~. 

Let 

m 1 -nk p=s·2 k 

We now map Hnk+t into Hm~+t for each t E {O, ... ,nk+l - nk}. 



32 

Let 

where the sum is taken over all p such that O ~ p ~ 2m~ -nk and p = s mod2t. 

One can see that because e preserves the joint distribution of the Haar func-

tions, we have x E Xl then IIB(x)llz1 = llxllz2 • Then the rearrangement invariant 

property of X makes it clear that for any x E Z2, we have IIB(x)llz1 = llxllz2 • 

Furthermore one can see that the image B(Z2 ) is complemented in Z1 . Indeed, 

let Bk be the J- algebra generated by {B(hnk+i-1,s): 0 ~ s ~ 2Cnk+i-l) - 1}, and 

expectation operator ( [LT] ,p.122). 

By the same arguments, of course, Z1 embeds as a complemented subspace of 

Z2. 

We now introduce a universal space U which has the property that any space 

Z(X, (Pi)~1 ) can embed as a complemented subspace of U by the above argument. 

First partition N into infinitely many infinite subsets Ni, 1 ~ i ~ oo. Then 

consider the J -algebra on the interval [ni,j, ni,j + 1] which is generated by the 2j 

sets each of measure 2-j, [ni,j, ni,j + 2-j], ... , [ni,j + 1 - 2-j, ni,j + 1]. Let A be 

the J -algebra generated by the union of all such sets on [O, oo). We let Ube the 

closure of the simple A- measurable functions on [O, oo) under the X norm. Note 

that U is complemented in X by the generalized conditional expectation operator 

E induced by A([LT],p.122). 
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For any spaces (Wi) whose norms are calculated based on the X norm, it is 

possible to define a sum L EB~ based on the X norm. To calculate the norm of 

(w1, W2, W3, .. . ) in L EBWi, we let w(x) be a function such that dw(t) = I:~1 dw; (t) 

and then let ll(w1 ,w2,w3, ... )l/w = llwllx· We define I:EB~ to be the set of all 

sequences (w1,w2,w3, ... ) with wi E Wi for all i such that ll(w1,w2,W3, ... )llw < 

oo. Observe that U is isomorphic to I:~1 EBU and that L EBb1 U is complemented 

in X. Because Uhas the same structure as Z(X, (mi)), the proof given above that 

8(Z2 ) is complemented in Z1 can be adapted to show that 8(Z1 ) is complemented 

in U, where e is defined analogously. Let T be the corresponding projection defined 

analogously to the projection P above. Let Q be the kernel of this projection, 

so that U = Q EB 8(Z1 ). Similarly, there is a map ¢ : U ---+ Z1 so that ¢(U) is 

complemented in Z1; let cp(U) =Wand let W1 be its complement in Z1, so that 

Z1 ,......, WEB W1 . 

We now use Pelczynski's decomposition argument to show that Z 1 is isomor­

phic to Z2. We will first show that Z1 is isomorphic to U, from which it will follow 

that Z2 is isomorphic to U, and so it will follow that Z1 is isomorphic to Z2 . We 

write A ,......, B to mean that A is isomorphic to B. 

Then 

U EB Z1 ,......, U EB (WEB W1 ) 

"" (U EB W) EB W1 

,......, (U EB U) EB W1 
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On the other hand we will show that U EB Z1 rv U as well. We will need 

to define an isomorphism ¢ : (U EB U EB ... ) EB Z1 ---+ ( Q EB Q EB · · ·) EB ( (} ( Z1) EB 

(}(Z1) EB · · ·) EB Z1. Proceeding formally, let ¢((!1, h, ... ),g) = ((I - T)fi, (I -

T)h, .. . ), (Tf1, Th, ... ),g), where T ; (U EB U EB···) ---t (e(Z1) EB (}(Z1) EB···) is 

defined by T(x1 ,x2 , .. • ) = (Tx1 ,Tx2 , •. • ). Extend this map to X by composing 

with the projection E. Now in the case that U = Lp[O, oo) for any p, we know that 

- - -
ToE is a bounded projection. By interpolation ToE is bounded on X, and hence 

Tis a bounded projection on I:~1 EBU. Thus the operator¢ is an isomorphism as 

required. 

Therefore we obtain that 

(U EB U EB ... ) EB Z1 

"' (Q EB Q EB···) EB ((}(Z1) EB (}(Z1) EB···) 

rv U, 

and this completes the proof. 

Remark: We assumed at the beginning of the chapter that there is a rear-
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rangement invariant space X on [0, oo] such that X = {f EX: supp(!) C [0, 1]}. 

We did not assume that the Boyd indices of X were the same as X, only that X 

is an interpolation space in the Lp scale. Thus there are many possible choices 

of X and corresponding Z(X, (ffii)). In the next chapter we assume that X has 

been fixed. 



36 

CHAPTER 6: MAIN THEOREM 

Lemma 6.1 is critical to our main theorem. 

Notation: Here we let (hi) be the normalized Haar basis in X, and for any 

x E X, we let ht( x) be the coefficient of hi in the expansion of x, so that 

00 

x = L h;(x)hi. 
i=O 

Lemma 6.1 IfY is a subspace of X containing no subspace isomorphic to l 2, then 

for any 15 2: 0, there exists n such that if y = I::1 aihi E Y, then 

II L:n aihill2 < l5 
IIYllx -

Let T: Y--+ L2[0, 1] be the identity map. First we will show that Tis compact. 

Suppose that T is not compact. Then there is a sequence (zn) in By such that 

(T(zn)) has no convergent subsequence. Now choose a subsequence (z~) of (zn) 

such that there exists a constant C such that IITz:n - Tz~ll2 2: C for all integers 

m and n. Since X contains no copy of li, Rosenthal's li theorem (cf. [D),p. 201) 

tells us that (<) has a weakly Cauchy subsequence (z~). For each natural number 

n, we define Yn = z~+l - z~. Then Yn --+ 0 weakly, and yet IITYnll2 2: C for all 

integers n. 

Since IIYnllx :'.S 2, we know that 
1
\~;~f2 is bounded. Then Corollary 4. 7 tells us 

that all the Yn are in some fixed Mx(E) space. Then by a standard perturbation 

argument and Theorem 4.10, we know that a subsequence of (Yn) is equivalent 
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to the unit vector basis of h. This contradicts our assumption that l2 is not 

contained in Y, and therefore we know that T must be compact. 

Suppose the lemma fails for some 8 = CTo, Then for every n there exists Yn E By 

such that 
00 

II L h;(Yn)hill2 > O"o, 

i=n 

Since Tis compact, we can find {x1 , ... ,xm}, a i -net in T(By). Choose 

{ x~ ... x~} and an integer N such that 

and h;(xD = 0 for all j > N and i, 1:::; i:::; m. 

(To accomplish that, we first choose for each i an integer Ni such that 11 Ef=N, h;(xi)hill2 < 

u1 and then let N be the maximum of these M. Let x~ = Ef=,1 h;(xi)hj.) 

Now since YN+l E By, there is some Xi chosen from the set {xi, ... ,xm} such 

that 

and so 

Yet YN+I was chosen such that 

00 

II L h;(YN+1)hil'2 > CTo, 
i=N+l 

meaning that 
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00 

IITYN+1 - x:112 ~ II L h;(YN+1)hill2 ~ O"o, 
i=N+l 

which is a contradiction. 

Theorem 6.2 Let X be a rearrangement invariant space on [O, oo) and let X be the 

restriction of X to [0, l]. If Y is a subspace of X such that no subspace ofY is iso­

morphic to l2 , then Y is isomorphic to a subspace of the space Z = Z(X, (m,,,)~1). 

Proof: 

Let c be the suppression unconditional basis constant of the Haar system in 

X. 

Inductively, we will choose sequences (pi), ( Ei), and ( ui) to satisfy the following 

four properties. 

(2) 

so that 

Loo En )-3 1 
--2 <-­(2n+1 O'n - 16c2 

n=l 
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(3) If y E Y and y = I:~1 aihi, then 

II L~Pn+l aihill2 < 
JJyJJx - <Yn. 

(4) I:~1 Ei :$ k, where k = ic 

We can accomplish these goals as follows: first choose p1 ~' and 

0 (fl.)2 1 < <Y1 < 4 2 • 64c4 • 

Let n 2: 2 and assume Pi, Ei, and <Yi have been chosen to the above specifications 

for 1 :$ i :$ n-1. We can then use Lemma 6.1 to choose Pn such that it is an integer 

power of 2 (in order that hPn might be the first Haar function in its generation) 

and large enough that if y = I:~1 aihi E Y, then 

00 

II L aihiJb :$ <Yn-1JJyJJx, 
i=Pn 

Then choose En small enough that En :$ 2-(n+l)k and (by Lemma 4.1) so that 

if x E (hi]t11 and µ(A) < En, then 

Finally choose <Yn such that 

Notation: 

If 
00 

y = Laihi, 
i=l 



then for each k E N we let 

and 

so that 

Define 

and 

Pk+l-l 

Yk = L aihi, 

i=pk 

X [h ]Pk+l-l 
k = i i=Pk , 

00 

I= {n: Yn E Mx(;:1 )} 

J = {n: Yn t/. Mx(;:1 )} 

Now let n E J. 

By Theorem 4.5 and property (3), 

IIYnllx < (;:1) 23 i1Ynll2 
00 

< ( E;:1) 23 II~ Yill2 
i=n 

En-I -3 

< ( Tn )2 · O"n-1IIYllx 

Therefore 

" ~ [(En-I -3 ] 1 II~ Ynllx ~ ~ Tn )2 · O"n-illYllx ~ 16 2 IIYllx-
Ml =1 C 

40 
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So letting YI = ~nEI Yn, we have shown that 

00 

For any y E Y, recall that y = ~ Yi, where Yi E Xi. Then define a map 
i=l 

Noting that ll'lf(Yn)llz = !IYnllx, one can use the same argument to show that 

as well. 

We will now show that 'lji is an isomorphism onto its image. Fix y E Y. 

By Theorem 4.4, for each i E J, we can choose a set Ai such that 

(A ) Ei-1 
µ i :s; 2i' 

and 

(6.11) 

(If i ff:. J, we let Ai be the empty set.) 

For the sake of convenience, we now introduce a plethora of notation. 

First define sets Ai as follows: 



00 

Ai =Ai\ LJ Ai+2i· 
j=l 

The set of all Ai with i odd (resp. even) is then pairwise disjoint. 
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We next define y:;, to agree with Yn on the small set An where the support of 

Yn is concentrated. 

y~ Yn · lAn 

y{: y-y~ 

00 

ye LY:;, 
n=l 

00 

YR LY:: 
n=l 

We now define YE, then define yCJ: and yJi in a natural way. 

Thus we have 

YE= L Y2n 
2nEJ 

C " C YE= L.t Y2n 
2nEJ 

R '°' R YE= L.t Y2n 
2nEJ 

C R 
YE= YE +YE 

We define functions y;( as follows: 

y{; = Yn · lAn 
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The functions y;/ are disjoint in the sense that all Yn with even (respectively 

odd) subscripts are pairwise disjointly supported. 

Naturally, we define y~ as 

YE= L Y2n · lA2n· 
2nEJ 

Now 

IIYllx - IIYRllx < IIY0 llx < IIYllx + IIYRllx 
IIYllx - IIYllx - IIYllx 

and 

IIY~llx II LY~llx (6.12) 
2nEJ 

< L IIY~llx (6.13) 
2nEJ 
00 E2n-l by (6.11) (6.14) < L 22n IIY2nllx 

n=l 
< k · sup IIY2nllx (6.15) 

nEJ 

< c · k · IIYEllx (6.16) 

Thus 

1 - ck < IIYf 11 < 1 + ck 
- IIYEII - ' (6.17) 

(That is, 
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Now let us define 

Then 

2nEJ 2nEJ 2nEJ 

Since 

we then have, by (1), that 

Then 

II L Y2n · ls2n llx < L IIY2n · ls2nllx 
2nEJ 2nEJ 

< L E2nllY2nllx 
2nEJ 

< C • k · II L Y2n llx 
2nEJ 

ckllYEllx 

Combining the above equations with equation ( 6.17), then, 

in other words, 



1 - 2ck < IIYi?llx < 1 + 2ck. 
- IIYEllx -
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At this time it will be necessary for technical reasons to define two new func-

tions <I>1 and <I>2 with the property that <1>2 o <I>1 = \[J on the subspace Y. These 

functions have the advantage that they will enable us to work more easily with 

restriction operators of the form f ~ f · lA. 

00 

<I>1(I::xi) = (xi,x2 ,x3 , •• • ). 

i=l 

It is well known that this map is continuous ([LT],p.172). We then define <I>2 : 

<I>1 (X) - Z by 

Formally we can identify Z with its image in X and extend <1>1 from X(l2 ) to 

X. 

Observe that if only one of the Xi in the expansion x = I::1 Xi is nonzero, 

then the situation is very simple. In particular, we have in this case that 

We now return to the main estimation argument. By the triangle inequality 

ll<I>2( L <I>1(Y2n) · lA2Jllx - ll<I>2( L <I>1(Y2n). lA;jllx::; ll<I>2(<I>1( L Y2n))llz 
~J ~J ~J 
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~ ll<I>2( L <I>1(Y2n) · lA2Jllx + ll<I>2( L <I>1(Y2n) • lA2;)llx (6.18) 
2nEJ 2nEJ 

We implicitly showed above in equations 6.13 to 6.16 that 

L ll<I>2(<I>1(Y2n) · lA2;)llz ~ 2ckllYEllx (6.19) 
2nEJ 

Of course, since the sets (A2n) are disjoint, 

2nEJ 2nEJ 

We showed that 

(1 - 2ck)IIYEllx ~ IIYi!llx ~ (1 + 2ck)IIYEl1x· (6.20) 

( 6.18) and (6.19) give us 

ll<I>2( L <I>1(Y2n) · lA2Jllx - 2ckllYEllx ~ ll1PYEllz 
2nEJ 

~ ll<I>2( L <I>1(Y2n). 1A2n)llx + 2ckllYEllx- (6.21) 
2nEJ 

Thus 

(1 - 4ck)IIYEllx ~ 111/i(YE)llz ~ (1 + 4ck)IIYEllx- (6.22) 

Let us define y0 analogously to the way we defined YE· Let 

Yo= L Y2n-l· 
2n-lEJ 
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The same arguments which led to equation 6.22, then, would give us that 

(1 - 4ck)IIYollx ~ 11'1/J(yo)llz ~ (1 + 4ck)IIYollx- (6.23) 

By the triangle inequality and the unconditionality of the Haar system 

IIYEllx: IIYollx ~ IIYE + Yollx ~ IIYEllx + IIYollx (6.24) 

Since the images of 'lj;(yE) and 'lj;(y0) are disjointly supported when considered 

as functions on [0, oo), 

11'1/J(YE)llz; 11'1/J(yo)llz ~ 11'1/J(YE + Yo)llz ~ 11'1/J(YE)llz + 11'1/J(yo)llz (6.25) 

From (6.22),(6.23) and (6.25) above, we get 

1-4ck · 
2 (IIYEllx + IIYollx) ~ 11'1/J(YE + Yo)llz ~ (1 + 4ck)(IIYEllx + IIYollx). (6.26) 

By (6.24) 

1-4ck 
4c (IIYE + Yollx) ~ 11'1/J(YE + Yo)llz ~ (1 + 4ck)(IIYE + Yollx). (6.27) 

We have already shown that 

1 
IIY1llx ~ l6c2 IIYllx- (6.28) 
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and also that 

(6.29) 

Noting that 

Y = Yo +YE +YI, 

we can easily get from equation (6.28) that 

(6.30) 

By equations (6.27) and (6.30), 

3(1 - 4ck) 5 
l6c JJyJJx ~ IIYE + Yollz ~ (1 + 4ck) 4JJyJJx (6.31) 

Of course 

ll1P(YE + Yo)llz - l11P(Yr)llz ~ JJ1P(Y)Jlz ~ ll1P(YE + Yo)llz + ll1P(Yr)IJz. (6.32) 

Combining equations (6.31), (6.32), and (6.29), we get 

[3(1 - 4ck) 1 l [5(1 + 4ck) 1 l 
16c - 16c2 (JJylJx) ~ i11P(Y)llz ~ 4 + 16c2 (JJyJJx), (6.33) 

Since k = l~c and c < c2 , this means 

1 15 
32c2 JJyJJx ~ JJ1P(Y)Jlz ~ 8 JJyJJx. (6.34) 
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Finally, we conclude this paper by demonstrating that Theorem 3.5 is a special 

case of Theorem 6.2. More precisely, if we let X = Lp[O, 00)(2 < p < oo) and 

X = Lp[O, 1], in Theorem 6.2 (the main theorem of this paper), we obtain Theorem 

3.5 (Johnson and Odell's main theorem) . This fact can be proven easily with the 

aid of the following well known lemma. 

Lemma 6.3 Suppose (Xn)~=l are finite dimensional subspaces of X and there are 

projections Pn : LP ~ Xn and a constant c such that IIPnll :=:;: c for all n. Then 

CE EBXn)ip is isomorphic to lp. 

Proof: 

We first choose, for each n, some dyadic CJ'- algebra 'D1cn such that 

where E(xl'Dkn) is the conditional expectation operator. For simplicity we write 

Let Xn = Pn(Lp). Let x E Xn, and let f = En(x). 

Now 

< IIPn(En(x)) - Pn(x)llp + IIPn(x) - En(x)IIP 

< IIPn(En(x)) - xllp + !Ix - En(x)IIP 

< (IIPnll + 1) · llx - En(x)llp 



< (c + l). llxllP 
2(c + 1) 

1 
2llxllP 
c+ 1 '· 

< 2c+ 1 llfllp 
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Let Rn be the restriction of Pn to Xn, Then we can see that Rn is an isomor-

phism from Xn onto Xn. 

R;;,1 o Pn, and observe that Qn is a 

projection. 

Now define 
00 00 

Q : (L ffiLp(Vkn))zP - (L ffiXn)lp 
n=l n=l 

by 

Now since (:E~=l ffiLp(Vkn)) 1P is isomorphic to lp, we know that (L~=l ffiXn)zP is 

a complemented subspace of lp. By a famous theorem of Pelczynski, (L~=l ffiXn)lp 

is isomorphic to lp, and hence so is (E~=l ffiXn)lp as well. 

Theorem 6.4 Suppose X = Lp[0,1](2 < p < oo). IfY is a subspace of X such 

that no subspace ofY is isomorphic to l2 , then Y is isomorphic to a subspace of lp. 

Proof: 

We apply Theorem 6.2. with X = Lp[O, 00)(2 < p < oo) and X = Lp[O, l]. 
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We first demonstrate that X = Lp satisfies the hypotheses. First, we know 

that 2 < Px = qx = p < oo. Theorem 2.1 says that the Haar system is an 

unconditional basis for Lp. It is well known that Lp has an upper l2 estimate ( cf. 

[LT],p.73). Since Lp[O, 1] is reflexive and li is not, it is clear that Lp[O, 1] cannot 

contain a copy of Zi. 

Now let us check that the conclusion of Johnson and Odell's theorem is sat­

isfied, that is, let us verify that Y embeds in lp. Theorem 6.2 tells us in general 

that Y embeds in I: EE!Xn. If X = Lp[O, oo), then this means that Y embeds in 

(I: EE!Xn)lp· If Pn : Lp ---. Xn are the basis projections, then IIPnll :S c, where c is 

the suppression unconditional basis constant of X. By Lemma 6.3,then, we have 

that (I: EE!Xn)lp is isomorphic to lp, which concludes the proof. 
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