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CHAPTER ONE 

INTRODUCTION 

Censoring with respect to lifetime data refers to samples where exact lifetimes of some items in 

the sample are not fully measured. A censored lifetime x in the sample is right censored if all that is 

known is x 2 T, for a time T. A censored lifetime x in the sample is left censored if all that is known is 

x:S: T. A sample is singly right censored if only the largest lifetimes are censored. A sample is sing~v left 

censored if only the smallest lifetimes are censored. Truncated samples differ from censored samples in 

that the population values are restricted prior to sampling. but the sample itself is fully measured. For 

example, a singly left truncated sample occurs when all sample items are fully measured. but the 

population from which the sample is taken consists of only items with lifetimes greater than a time T. a 

point of truncation. 

A common feature in life testing experiments is the occurrence of singly right censored samples 

due to termination of the exl)eriment prior to failure of all items in the sample. For example. Nelson 

( 1982) describes a life test of a sample of twelve Type B7 electric cords. The twelve cords are flexed 

using a machine to simulate actual use, though at an accelerated rate. The lifetimes for the first nine 

electric cords to fail are recorded. The ninth failure occurs at 141. 9 hours. Testing is then discontinued at 

164. l hours. Three of the twelve electric cords in the sample did not fail prior to the termination of the 

test. These three censored lifetimes are known only to exceed 164.1 hours and are described as time 

censored. 

Singly right censored samples also occur when live items are withdrawn at a time corresponding 

to the failure time of the last fully measured item in the sample. An example in Mann and Fertig ( 1973) 

describes a life test where a sample of thirteen airplane components are put on test. The lifetimes of the 

first ten airplane components to fail are recorded. The three remaining airplane components. though still 



functioning, are removed from test at the time of the tenth failure . These three censored lifetimes arc 

known only to exceed the tenth failure time and are described as failure censored. 

Formally in the statistical literature, the preceding two types of censoring are considered as Type I 

and Type II censoring. A sample is classified as Type I (time censored) if observations are removed from 

the life test at pre-specified times or Type II (failure censored) if items are removed corresponding to 

failure times of other fully measured items in the study. For Type I censoring. the time Tis fixed in 

advance, and the number of failed items m is a random variable; for Type II censoring. T is a random 

variable. and m is fixed. Nelson (1982) comments, "Time censoring is more common in practice: failure 

censoring is more common in the literature as it is mathematically more tractable." 

Censored data also occurs when live items, in addition to failed items. are removed at several 

stages during the course of the life test. Nelson (1982) describes an example where nineteen items 

consisting of insulating fluid are tested at 34 kilovolts until breakdown in an accelerated test. Of the 

nineteen sampled, only eight are fully measured. The other eleven lifetimes in the sample are censored in 

the following stages: three are removed at the third failure, three are removed at the fifth failure. and 

five have not failed when the experiment ends at the eighth failure. Such an experiment is considered to 

be multiply or progressively censored in that live items are eliminated at various stages of an 

experiment from further observation, and the sample items remaining after each stage of censoring 

continue until failure or until a subsequent stage of censoring. 

Formally, a sample of size n is progressively censored if r 1 , r 2 , ... , rm number of items in a 

sample are removed from further observation at points T1 < T2 < ... < Tm (m < n ), and for the r 1 items 

removed at time T1 • the lifetime of the censored items are known only to have lifetimes greater than T, . 

Consequently, the censoring "progresses" through "multiple" stages. Otl1er names for progressively 

censored samples include "hyper" or "multi-·' censored (Cohen. 1991 ). 

In life testing experiments where the experimenter wishes to reduce the experiment time in 

which to observe m failure times, a censored sampling plan rather than a complete sampling plan may be 

used. That is, the experimenter may shorten the expected experiment time by sampling 11 ( n > m ) items 

and stopping after m failures are observed rather than sampling m items and completely measuring all m 

2 



lifetimes. The smallest expected experiment time is achieved by censoring the n-m largest lifetimes 

This is single right censoring and is also a special case of progressive censoring where r 1 = r : = . . . = r ,,,_1 

= 0 and rm= n-m. Any progressive censoring plan, though, will result in smaller expected experiment 

times than complete sampling plans. Hence, progressive censoring plans may be considered as a 

compromise between complete sampling and single right censored sampling to achieve a shortened life 

test. 

Epstein and Sobel (1953) contend that the only justification for a single right censoring 

procedure over a complete sampling procedure is to save time. Thomas and Wilson (1972) comment that 

progressive censoring not only saves time but also permits the experimenter the flexibility to exan1ine live 

items in addition to failed items and still allows some of the more extreme lifetimes to remain in the 

sample. As discussed by Balasooriya and Saw (1998), this multi-stage censoring allows the experimenter 

to save expensive test specimens or resources and release them for other use. The progressive censoring 

procedure is considered as attractive to the experimenter where life expectancies are high. rapid results arc 

required, testing is expensive, or live items removed at various stages in the experiment may be 

informative, conserved, or redirected for other use. 

One concern about using progressively censored life testing is that the parameter estimators 

obtained may be less precise than those obtained when using single right censoring plans. It is. however. 

the conjecture of Viveros and Balakrishnan (1994) that the loss in precision in many practical applications 

is not greater than that which occurs with ordinary Type II single right censored experiments. Two other 

concerns to the experimenter about progressive censoring plans which have been identified by Viveros 

and Balakrishnan (1994) are: (1) a lack of design guidance in selecting Type II progressive censoring 

schemes and (2) a belief that the statistical analysis is more complicated that traditional methods. 

In the area of progressive censoring, much has been published about the derivation of parameter 

estimates. A smaller area of research extends to estimating experiment times. In life testing 

experiments, obtaining estimates of experiment time is useful when implementing a sampling plan. 

3 



Previously, Hsieh (1994) and Tse and Yuen (1998) are the only authors to offer numerical studies 

which provide design guidance in selecting Type II progressive censoring schemes. with respect to 

expected experiment time. Hsieh (1994) considered e,q,ected experiment time for Type II Weibull

distributed singly right censored lifetimes (a special case of progressive censoring). and Tse and Yuen 

(1998) considered expected experiment times for Type II Weibull-distributed progressively censored 

samples where removals are random and occur according to a uniform discrete probability distribution. 

This research contains two new numerical studies of exi>ected ex1>eriment time for Type II 

progressively censored samples. One is a numerical study for a special 50% fixed removal scheme. and 

the other is a numerical study for a random removal scheme if all removal schemes are equally likely. 

The numerical studies are generated by an alternative formula to the fonnula of Tse and Yuen ( 1998) 

The formula is validated by repeating the study of Tse and Yuen (1998). 

The expected experiment time formulas used in this research are derived by a conditional 

procedure suggested by Thomas and Wilson (1972) for finding means, variances. and covariances of 

Type II progressively censored order statistics. In this instance, the conditional procedure is applied to 

only the largest Type II progressively censored order statistic , which is experiment time. This alternative 

formula is then adapted to finding moments of experiment time. By finding moments of experiment 

time, the standard deviations associated with the experiment times may also be investigated. There are 

no previous studies of the standard deviations associated with ex1>ected experiment time values. In this 

research. numerical studies of the standard deviations associated with experiment time accompany the 

numerical studies of ex1>ected ex1>eriment time. 

The conditional procedure described by Wilson and Thomas ( 1972), which lead to the formula 

for finding moments of experiment time. further suggests a correlation-type test for goodness-of-fit test 

for Type II progressively censored samples. A description of the test and illustrations as to how the test 

may be used to investigate different distributional assumptions concerning progressively censored data is 

included in this research. 
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CHAPTER TWO 

TERMINOLOGY AND LITERATURE REVIEW 

In this chapter. tenninology and definitions relating to ex'Periment time for censored samples arc 

provided. Comparisons among complete samples are then made to Type II singly right censored samples 

and progressively censored samples. A literature review is also included. 

2.1 Tenninology and Definitions 

Let m be the number of failures observed before the tennination of a life test of n items and 

ri denote the number of items removed at the time of the ith failure (Type II censoring). A Type II 

progressively censored sample of size m consists of m observed ordered lifetimes (order statistics) 

x1,n S: x2,n S: .. . S: xm,n from a complete sample of size n where 

m-1 
rm =n- L(rl +l)-1 , 

/=l 

m-1 
0 S: r1 S: n - 1 . and O S: ri S: L (rl + 1) - 1 for i = 2.3 ... .. m - 1 . 

J=I 

(Johnson. Kotz. and Balakrishnan. 1994) 

If lifetimes, X. are continuously distributed with a cumulative distribution function ( cdf) F (x) 

and probability density function (pdf) f (x), the joint pdf of a Type II progressively censored sample. 

x1,n , x2.n , .. . , xm,n , with corresponding censoring scheme r1, r2 , .. r m is considered to be 
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m 
f ( x 1,n ,X2. n ,··.Xm,n) = C IT f ( x,.n) [ 1 -F( x,.n)] 'i , 0 < X1.n < ... < Xm.n < oo . 

i=l 

where c is an ordering constant given by 

m j-1 

c = n IT (n - ~>, - j + 1) 
j =2 l=I 

m-1 
= n(n -r1 - l)(n - r1 - r2 - 2) ... (n - L (r1 + 1)) . 

1=1 

(Cohen. 1991) 

The joint pdf of a general Type II progressively censored sample. differs slightly. and is given by 

f ( x,o+l,n , X2,n , .. .Xm,n) = Co [F(x,o+l ]ro TI f ( x,,n) [ 1 -F( x,.n )) ,, 
l=r0 +1 

( n) m j -1 
where co = (n-r0 ) IT(n- Lr, -j+l) 

ro j =2 1=! 

and r0 is tl1e number of removals withdrawn prior to the first observed failure time x,o+I . 

(Balakrishnan and Sandhu. 1996) 

The Type II progressive censoring as first defined differs from general Type II progressive 

censoring in that the general case allows for removals to occur prior to the first failure. Therefore. the 

Type II progressive censoring considered in this paper can be viewed as a special case of general Type II 

progressive censoring in which r0 = 0. 

The joint pdf of a Type II progressively censored sample. f ( x 1,n.x2.n ... .x111 .n ). is a legitimate pdf 

as f ( x 1,n .x2.n, -· .xm.n) ~ 0 for every. 0 < x 1,n < ... < Xm.n < oo and 

00 00 

f J f ( X1.n, X2 .n,·· .x111.n) dxl.n ·· ·dxm-1,n d Xm, n = I since 
-00 -00 
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00 00 

f f f(x1 ,n,X2.n ,·· .Xm,n) dxl,n ·· .dxm-1.n dxm,n 
- 00 -00 

00 00 

f f 
0 Xl,n 

00 00 

cf f 
0 x1,n 

00 00 

Cf f 
0 x1,n 

00 00 

Cf f 
0 x1.n 

00 

f 
Xm-l,n 

m 
C TI 

i=l 
f ( xi,n) [ l - F ( xi,n) ] r; dx1.n ... dxm-1.n d Xm.n 

j [ j J(xm,nHl- F(xm,n ))'m dxm.n] 
Xm-2,n Xm-1,n 

m-1 
x TI f(x ; n)[l-F(xi,n)Jri dx1.n ·· dx111_1.n 

i=l 

m-1 
x TI f ( X;,n )[ I - F ( xi.n) ] r; dx1,n .. .dxm-1.n 

1=1 

00 

f 
Xm-2,n 

m- 1 

[l - F(xm-1 n)J'm +I 

rm +l 

x TI f(x;,n)[l-F(Xj,n)Jri dxl,n ···dxm- 1,n . 
i=l 

Substituting 

m-1 
rm = n - L (rj + I) -1 

j=I 

and continuing integration with respect to xm - 1.n ,· ···xl.n. the right hand side of the equation then 

becomes 

~~~~~~~~c~~~~~~~-= l. 
m-1 m-2 

(n - I (r.i + l))(n - I (rj + l)) .. . (n - (r1 + l))n 
j= I J= l 

The joint pdf of the Type II progressively censored sample may also be ex1)ressed as 
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0 < Xl.n < ... < X 111 _n < 00 . 

since 

The expected experiment time for a Type II progressively censored sample is denoted 

E[ X m.n I r1, r2 , .. rm ) and is the expected time to observe m failures in a progressively censored sample of 

size n with the censoring removals r1, r2 , .. rm. The expected experiment time for a Type II sing~v right 

censored sample is denoted E[ X m,n ) and is a special case of Type II progressive censoring where 

r1 = r2 = ... = r m-l = 0 and r 111 = n - m . The expected experiment time for a complete sample of size m. 

is denoted E[ X m,m ], or simply E[ X 111 ]. 

The ratio of expected experiment times (REET) is the ratio of e>..l)ected experiment time under a 

censoring plan to the expected experiment time under a complete sampling plan. For the Type II singly 

right censoring plan, 

REET = E[X m.nl . 

E[Xm,ml 

For a Type II progressive censoring plan with removals r1 .r2 ... r 111 • 

REET = E[X m,n I r1 ,r2 , .... rm I 
E(Xm.m) 

(Hsieh. I 99~) 

The REET values provide information as to how much experiment time may be saved if a particular 

censoring plan is employed compared to a complete sampling plan. 

Let X m.n be the mth order statistic in a sample of size n from a distribution with pdf 

f ( x ). Then, the pdf of the largest order statistic X m,n is given by 
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(n-1) m-1 n-m 
g (xm.n)=n m-l [F(xm,n)] (1-F(xm.n)] f(xm.n) · 

(Serfling. 1980) 

The pdf of the largest order statistic X m,n is derived by taking the derivative of the cdf. 

Let G be the cdf of the largest order statistic X m,n , then 

G ( xm.n) = P( at least m of the Xi are less than or equal to xm.n) 

n (n) ; n-i 
i~ i [F(xm.n)] [1-F(xm.n)] · 

(David. 1981. 2.U) 

and the pdf is 

- £ (n)(n-i)[F(xm.n)]'[l-F(xm,n)]n-1- I f(xm.n) 
1=m I 

(n) m-1 n-m = m m[F(xm,n)] [1-F(xm,n)] f(x,n ,n) 

- L . (n - i)[F(x,n,n) fll-F(x,n ,n)]n-i-l f(x,,,,n) n-1 (n) 
1=m I 

For any continuous distribution, the expected exp eriment time under Type If sing le rig ht 

censoring is 

00 

E[ X m,n J = J Xm, n g (xm.n) dxm,n 
-oo 
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00J (n-lJ m-1 n-m Xm,n n m-l [F(xm,n)J [1-F(xm.n)] dF(xm.n) 
-oo 

= n JF-1(u) um-I (1-u)n-m du , where u = F(xm.n ). (n-lJl 
m-1 0 

(David. 1981. 3 II ) 

The expected experiment time under Type II singly right censoring may also be ex11ressed as a function of 

a largest order statistic E[X;,; J, i = m, .. . ,n , 

E[ Xm,n J n ( i -1 J(nJ L - . <-v-m E[X;,;] , 
z=m m 1 I 

(David. 198 1. 3 .4.3) 

or as a function of a smallest order statistic E[X 1,J+n-m+J l , j = O, ... m - I , 

(n-IJm-l(m-lJ . 1 E[ X m,nJ=n L . (- 1)1 . E[X 1;+n- m+d · 
m - 1 .i=O J (j + n - m + 1) ' 

For a continuous lifetime distribution with F (0) = 0 and removals r1, r2 , ... ,rm the expected 

experiment time under Type II progressive censoring is given by 

which becomes 

00 

J xm.n 
0 

oo Xm,n 

J Xm,n J 
0 0 

Xm ,n 

J 
0 

x2 n 

f f(x 1,n,· ··,xm,n) dx1,n-··dx111_1.n d xm.n· 
0 

0 < XJ,n < ... < Xm.n < oo • 

'l 
E[Xm,n lr;, r2 , ... ,rm J= C L 

rm e + +e (;11J ... (;:J I: < - 1) i . . . m - - --'-----'-----'--

£1=0 
m-1 

TI (£ I + ... + f\ + i ) l m=O 

i= I 
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00 

f f ( )[F( )l l1+. .. +l m+m-ld 
X Xm,n Xm,n Xm,n Xm.n · 

0 

The last integral is a multiple of the expected value of the largest order statistic for a sample of size 

e 1 + ... + e m + m ; hence, the formula for the expected experiment time can be represented as 

... ! Hl'1••' • .J:}k] 
l m=O TI(" n ·) ~1+, .. + ~;+ I 

i=I 

or. alternatively, as 

... ! (-J)'J++lm mJ1Jkl 
l m=O TI(" e ') ~I+ .. . + I +I 

i=l 

x L (-1/ I m . + . 
l1+ ... +em+m-1 ·(f. + ... + f +m-I)E[X1k il 

k=O k (k + 1) 

In life testing, if n items are placed under observation and n failure times are observed. the life 

test is referred to as a complete sample test (Lemon, 1975). A method to obtain means, variances. and 

covariances of Type II progressively censored order statistics by using the complete sample rankings of 

the progressively censored sample is described in an appendix of an article by Thomas and Wilson ( 1972) 

Let X1.n ::::: x2,n $ .. . $ x111.n be them ordered observations in a censored sample of size n. and 

z1.n $ z2,n ::::: .. . $ zn.n be then ordered observations in the same sample were all n observations fully 

measured. Let R;, i = 1,2 .... ,m. denote the ranks in the complete sample of the ith ordered observations 

in the censored sample. i.e.. X; ,n = zR; ,n . The complete sample ranks of the Type II progressive~v 

censored sample X1.n $ x2,n $ .. . $ xm,n are these values R1, R2 , ... ,Rm . For a Type II progressively 
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censored sample. the complete sample rank of the first ordered observation x 1,n is known as x1,n = =1.n . 

that is, Ri =l. But, the complete sample ranks of x 2,n :;; x 3,n:;; ... :;; xm.n are not necessarily known. 

The different complete sample rankings R = ( R 1 , R 2 , ... , Rm ) of the progressively censored order 

statistics can be described using the recursive equation 

for i = 2, ... ,m with R1 = 1. 

(Thomas and Wilson. 1972. A I) 

For fixed removals r1, r2 , ... ,rm, the probability function for complete sample ranks may be 

found by letting 

m 

p = P(R1 ,R2, ... ,Rm)=P(R1)flP(Ri JR1, -· Ri-1) 
i~2 

(Thomas and Wilson. 1972. A2) 

where P(R1 = 1) = I and P(Ri J, R1, ... ,Ri-l) is the probability function 

(Thomas and Wilson . 1972. A3) 

If X = (X In ,. . ., X m .n )' is the vector of the Type II progressively censored order statistics. Z = 

(Z 1.n .. .. . Z n.n )' is the vector of the corresponding complete sample order statistics. R = ( R1• R2 .. . .. R m ) is 

the vector complete sample rankings of the Type II progressively censored ordered statistics. and /J is a 

matrix defined by 

{
l j =R 

dij = , . I j = ), ... , 11. j = l , ... ,m , 
O, J-:t=Ri 

thenX = DZ. 
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The means of Type JI progressively censored order statistics may be written in the fonn 

µ x =E[ X] = E £ Eo t [D £ Z I D £ )= E £ [D e ' µ z J = ( l: De p e J µ z 
le=1 

where M denotes the number of different possible vectors of complete sample rankings. p 1, p 2 ..... p M are 

the probabilities of the M possible complete sample ranking schemes, and D £ is defined as 

for i = 1,2, .. . ,m , j = 1,2, ... n, and f = 1,2, ... M . 

(Thomas and Wilson. 1972. A 7) 

The variances and covariances of Type II progressively censored order statistics are obtained 

similarly as 

L X = E[ X X'J - µ X µ X I 

= E e E o e [D £ ZZ D £ ' I D e J - µ x µ x ' 

= Ee E o e [[D £ (L 2 + µ z µ z ' ) D £ ' I D e ] - µ x µ x ' 

M 
L D £ (L z + µ z µ z ') D £ I p £ - µ X µ X '. 

l =l 

(Thomas and Wilson. 1972. A8) 

Viveros and Balakrishnan ( 1994) describe existing methods of calculating means. variances. and 

covariances of the progressively censored order statistics as "cumbersome". 
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2.2 Lifetime Distributions 

A parametric approach to analyzing Type II progressively censored data is to consider lifetime 

distributions for F(x). Possible parametric models for lifetime distributions are discussed below. Each 

has the common property of known expectations of first order statistics. Additionally, inverses of their 

distribution functions exist in simple closed forms making the distributions especially applicable for 

simulation studies. 

Weibull Distribution 

A common model for lifetime distributions is the three parameter Weibull lifetime distribution. 

The distribution was originally used to model fatigue data and is widely used when the "weakest link" 

model is most appropriate, i.e., when an item experiences failure when any of its component parts fail 

(Nelson, 1982). 

If X is a random variable with a three parameter Weibull lifetime distribution X - Weibull (y. 8. 

P) where y is the threshold parameter, 8 is the scale parameter, sometimes referred to as the characteristic 

life, and p is the shape parameter, then the cdf of X is given by 

F(x;y,0,~)-1-exp{-[x;yr} . O<ysx<oo, 0>0 , ~ >O, 

and the pdf of X is given by 

The kth moment of Xis given by E[X(k)) = y +ekr( 1 +i J where 

00 

[(k) = f uk-I exp(-u)du , k > 0 , is the gamma function (Meeker and Escobar. 1998). 
0 

For the three parameter Weibull, the pdf of the first order statistic X I,n is 
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. _ ~ P-1 X1 - y { [ ]pl f(X1 , y, 8, ~)- 8 *p (x1 -y) exp - e* , y ~ XJ < 00, 8 * > 0 . f1 > 0 

h 8* __ 8_ 
w ere - IIP . 

n 

(Balakrishnan and Cohen. 1991. 8.2.6 ) 

Therefore, if X - Weibull (y, 8, ~) , then X 1,n - Weibull (y, ~p , ~). 
n 

The two parameter Weibull distribution is a special case of the three parameter Weibull 

distribution in which the threshold parameter, y , is zero. The two parameter Weibull is denoted simply 

X - Weibull (8, ~) . Other special cases of the two parameter Weibull are the exponential and Rayleigh 

distributions. If~ = 1 , the two parameter Weibull distribution is the exponential (8) distribution: if~ =2 . 

the two parameter Weibull distribution is the Rayleigh distribution. For 3 ~ p ~4. the Weibull resembles 

the nonnal distribution in shape; for P~ 10, the Weibull resembles the least extreme value distribution in 

shape (Nelson, 1982). 

For any univariate distribution function F, and O < p < l , the quantity T\p = F-I (p) 

= inf{x : F(x) ~ p} is the lOOpth percentile. For a Weibull distribution, T\p can be expressed as 

where rt P is the time by which 100p% of all items will have failed. The median is the value equal to 

rt .so . As 100 (l-e-1) = 63 .2 , the characteristic life parameter 8 may be approximated by ri 632 . 

The hazard function (failure rate) associated with a random variable Xis defined to be 

h(x) = f(x) I [ I - F(x) ]. 

For surviving items in a sample, the hazard function indicates the propensity of an item to fail over a 

small unit of time. For a Weibull-distributed random variableX, the hazard function is 

( )
p-1 

h(x) = f x;y 
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which is a power function of x. Accordingly, the failure rate for the distribution is decreasing if 0 < I . 

increasing if 0 > I , and constant for 0 = I . 

Type I Ex1:reme Value Distribution 

Frequently, when working with Weibull distributions, it is more convenient to consider Type I 

extreme value distributions because the Type I extreme value distribution possess a location-scale 

structure which the Weibull distribution does not. The Type I extreme value distribution is directly 

related to the two parameter Weibull distribution in that if Xis a Weibull random variable with shape 

parameter 0 and scale parameter e , then Y = log (X) is a Type I extreme value random variable with 

location parameterµ= loge and scale parameter CJ= 110, and accordingly, the results which are 

attributable to Type I ex'treme value distributions are directly transferable to Weibull distributions. 

Because oftl1is relationship to the Weibull, the Type I extreme value distribution is sometimes referred to 

as the "Log-Weibull". 

If Xis distributed as a Type I extreme value random variable, then the cdf is given by 

F(x;µ, CJ) = exp[-exp(- x:µ )] , -oo < x <oo, -oo < µ <oo, CJ > 0. 

and the pdf is given by 

1 ( X - µ) [ ( X - µ )] f (x; µ, CJ)= CJ exp -----;-- exp - exp -----;-- , -oo < x < oo, -oo < µ < oo. CJ > O. 

The "Type I" as it appears in the Type I least extreme value distribution name refers to one of 

three possible asymptotic types of distributions ( Type I, II. or II) of tile smallest order statistic and does 

not refer to Type I (failure) censoring. 

16 



Burr Type XII distribution 

Another model of lifetime distributions is the Burr Type XII distribution . The Burr Type XII 

distribution is considered as a tentative model for lifetime distributions where distribution ' s shape is L-

shaped or unimodal . Tadikamalla ( 1980) summarizes many of the relationships between the Burr Type 

XII distribution and other distributions including the Weibull, the Lomax, Compound Weibull. the 

Weibull-Exponential, the logistic, the log logistic, and the Kappa family of distributions. 

If Xis a random variable with a Burr Type XII (d, c) lifetime distribution. denoted by _\" - Burr 

Type XII (d, c). then the cdf of X is given by F(x) = 1-(xc + I )-d , x > 0. c > 0. d > 0. 

dxc-1 
andthepdfofXisgivenby f(x)= c d 1 , x>O,c>O.d>O. 

(xc +l) + 

The pdf is unimodal at the point x = (c - l~; if c > 1 and L-shaped if c::; I. and the !ah 
(dc+l) C 

moment of Xis expressed as 

where B(a,b) is the beta function J x 0 - 1(1-x)b-ldx for a> 0, b > O and B(a,b) = f(a)r(b) 
o f(a +b) 

(Tadikamalla. 1980) 

If X - Burr Type XII ( d, c ), then the pdf of the first order statistic X l.n is distributed Burr Type 

XII (dn , c): hence. 

E[X}~J=dn B(!<:..+l,dn-!<:..) , k < cdn . 
. C C 

The possible parametric models under progressive censoring schemes considered in this research 

have distribution functions which exist in closed form and have known expectations of first order 

statistics. The Weibull and Burr Type XII distributions are shown to have these properties. Other 

distributions such as the Pareto distribution could have been considered. 
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2.3 Expected Experiment Time 

Early research concerning experiment times centered on finding expected exl)eriment time for 

the case of Type II singly right censored samples. Expected experiment times for exponentially 

distributed lifetimes were first considered by Epstein and Sobel (1953) and Weibull-distributed lifetimes 

were later considered by Hsieh (1994). 

For exponentially distributed lifetimes, Epstein and Sobel (1953) give the exl)ected e:q,eriment 

time of Type II singly right samples as 

E[X m,nl = n(n -1J1:l(m ~ lJ(-1)) __ l __ m-1 J=O J (j+n-m+l)2 

This when simplified becomes 

which implies 

E[X J-8; l 
m,n - £.- ( . l) 

REET = E[X m,nl 
E[Xm,ml 

J=I n- j + 

m 1 

1~ 1 (n- J +l) 

m 1 

1; 1 (m- j +l) 

(Mann. 1974, 6.27) 

Alternatively, Mann (1974) suggests that, for Type II singly right censored samples from an exponential 

distribution, the ratio of median experiment times results in essentially the same values as t11e ratio of 

expected experiment time and eliminates extensive calculations when m is large. 

For two parameter Weibull distributed lifetimes. Hsieh (1994) gives the expected experiment for 

Type II singly right censored samples as 

(n-lJ I E[X m,n] = n m-1 8[[-ln{l-x)]l!P xm-1(1-x)n-m dx 
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(n)m-l(m-1) l 
= m8r(l+l/~) L . (-1)1 . l+IIP 

m 1=o J (J+n-m+l) 

which implies the REET value is 

( n)l.jl(j : m, n - m,l/ ~) 
E[X ] m 

REET = m,n = --------
E[X m,m] l.jl(j; m,O,l I~) 

m-l(m -1) . l 
where ,v(J : m,x ,b) = L . (-1)1 . l+b . 

j=O } (J +x+l) 

The REET value is then observed to depend on the shape parameter~ and values of n and m but not the 

scale parameter 8 for Type II singly right censored Weibull-distributed lifetimes. 

Formulas of expected experiment time for Type II progressively censored samples are more 

recent developments. Formulas for Weibull-distributed lifetimes are found in Tse and Yuen ( 1998) for 

both random and fixed removals. Tse and Yuen (1998) provides a general formula for expected 

experiment time where removals are fixed and the sample is Type II progressively censored (previously 

the research of Hsieh (1994) considered only single right censoring). The formula given by Tse and 

Yuen ( 1998) may be written as 

J = c i ... ic-11'1+ J }{;:) 
l 1=0 l m=O f]h(J!; ) 

i=l 

00 

x f Xm (xm,n )[F(xm,n )]h(l m)-1 dxm.n 
0 

This formula then becomes, for Weibull distributed lifetimes. 
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h(l mH(h(£ )-lJ . 
x er(l+l/P) I m. (-1) 1 p 

j =O } (j+l)l+I I 

(The formula as originally published contained errors .) 

Tse and Yuen (1998) also gives a formula for expected experiment time where removals are random and 

the sample is Type II progressively censored. The formula is as follows : 

E[X m,nl =Er[E[Xm,nl r1 , rz, ... ,rm ]] 

g (TJ) g(rm-1) 
I .. . IP ( r1 , rz , ... ,rm) E[Xm,nlr1 , r2 ,···, rm] 

'1 =0 rm =0 

where 

g(r;) = n-m-r1 - ... -ri_1 ; Os ri S n-m-(r1 + ... +ri_1) , i=l,2, ... ,m-1. 

m-1 
P( r1 ,r2 , .. . ,rm) = P(r1) TI P(ri I r1 , ... ,r,_1) ; 

i=2 

l 1 
P(r1) = , and P(ri I r1, .. . ,ri_1) = for i = 1.2, ... ,m - I. 

n-m+l n-m-(r1 + ... +ri_1)+1 

A fonnula of expected experiment time for Type II progressively censored samples for two 

parameter e>..l)onentially distributed lifetimes, i.e., exponential lifetimes with a threshold parameter. is 

offered in Balasooriya and Saw (1998). Using the notation in this chapter, if yis the threshold parameter 

and () is the scale parameter, the formula in Balasooriya and Saw ( 1998) of expected experiment time of a 

two parameter e>..l)onential life test is 

E[X m,nJ = Y + 

This formula applies to fixed removals only. 

1 m 
-+I---- 8. n _ ,-1 

,_2n- Ir1 - i+l 
; =I 
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Under the general case of Type II progressive censoring for two parameter ex1Jonential 

distributed lifetimes, the formula becomes 

E[X m,nl = Y + 
1 m 1 
-+ L -----e n . i -1 

1=r0 +2 ~ . l n- L..JJ -1+ 
J=r0 +1 

(Balakrislman and Sandhu. 1996) 

where r O is the number of the first failure times which are not observed. 

Investigations into experiment time often require simulating partial sets of order statistics. 

Simulating Type II progressively censored samples is easily achievable using a four step algorithm of 

Balakrishnan and Sandhu (1995) if the cdffor the lifetime distribution exists in simple closed fonn. This 

is true with the Weibull. Type I extreme value. and Burr Type XII lifetime distributions. Other methods 

to generate partial sets of order statistics may be found in the references ofBalakrishan and Sandhu 

(1995). 

2.4 Parameter Estimation 

While few articles consider experiment time of progressively censored samples. and then only 

with respect to Weibull (or E>..l)onential)-distributed data, methods of parameter estimation using 

progressively censored samples have been described by many authors. In many instances. the parameter 

estimation technique employed is maximum likelihood estimation. 

Under Type II progressive censoring, the likelihood function is defined to be 

m 
L = L(x1,n ,X2,n , .. .. xm,n :r1.r2 , .. ,,rm) =e n 

i=I 
l 1-l l m 

n - Lr; -i+I f( xi )n 11-F( x, )] r' . 
J=I 1=! 

(Cohen. 1963) 

This likelihood function is then employed in an iterative procedure to obtain the maximum likelihood 

estimates (MLEs) of the parameters. 
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In independent research, Wingo (1973), Cohen (1975) and Lemon(l975) are credited with first 

obtaining ML.Es for three parameter progressively censored Weibull-distributed lifetimes. Wingo ( 199:,) 

also describes the methodology for obtaining MLEs for progressively censored Burr Type XII-distributed 

lifetimes. Various authors have investigated maximum likelihood estimation using progressively censored 

data for other distributions including Cohen ( 1976), Cohen and Norgaard ( 1977). and Davis ( 1979) 

Cohen ( 1991) summarizes many of the techniques obtain MLEs and other point estimators of parameters 

for a wide range of censored distributions. 

As an example, if the sample is obtained from a Type I least extreme value distribution. then 

m 1 x-µ x-µ m x- µ ( ) [ ( )] [ ( )] 
r, 

L = c!] ~exp-~ exp -exp-~ !] exp - exp -~ . 

. th 8logL 81ogL . b th . 1. Taking e --- and --- and equatmg o to zero imp 1es 
8µ 8cr 

[ 
m m l e(- µ i cr) = ml Iexp(x1 /CT)+ Iri exp(xi / CT) 

; =I 1=1 

and 

m m 
L xi exp(xi I CT)+ L ri exp(xi /cr) 

CT = i=l i=l 
m m 
L exp(xi I CT)+ L ri exp(x, I CT) 
i=l i=l 

A maximum likelihood estimator for CT , & MLE, is found by equating 

m m m 
L x1 exp(x, I CT)+ L r1 exp(x, I CT) L x1 

f(CT)=CT-i=I 1=1 +!..=.!...._=0 
m m m 
L exp(x, I CT)+ L r1 exp(x, I CT) 
i=I 1=! 

and using the iterative method such as Newton' s method: 
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right-censored, and progressively censored data. An example using the procedure is described in Dodson 

(1994). 

Frequently, a graphical rather than a quantitative method is used to investigate goodness-of-fit . 

Most of the literature relating to probability plotting or graphical tests of goodness-of-fit are concerned 

with complete (uncensored ) data. A procedure for a graphical test for goodness-of-fit of progressively 

censored data is contained in Johnson (1964) and O'Connor (1981). Johnson (1964) refers to the tests 

not as "progressively censored" experiments but as "incomplete" tests with "suspended items'· . 

A visual inspection as to whether or not the data are linearly related usually serves as a 

sufficient test of goodness-of-fit for graphical tests. A correlation-type test statistic. however. may pro\'idc 

a more quantitative measure of the goodness-of-fit for progressively censored data. Correlation-type tests 

for goodness-of-fit are developed by Ryan and Joiner (1974) and Filliben (l 974) for complete samples 

and adapted to apply to Type II single right censored data by Smith and Bain ( 1976). In tl1is research the 

correlation-type test of goodness-of-fit is adapted further to apply to progressively censored data. 
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CHAPTER THREE 

EXPERIMENT TIME 

The purpose of this chapter is to examine kth moments of experiment time under Type II 

progressive censoring schemes with fixed and random removals. A fonnula is presented which expresses 

moments of experiment time in tenns of simpler moments of the smallest order statistic. The formula is 

applicable for lifetime distributions where kth moments of the smallest order statistic are known. In this 

chapter, the previous numerical studies of Tse and Yuen (1998) are extended to consider standard 

deviations associated with expected experiment time for Weibull-distributed data . The experiment time 

for the Burr Type XII-distributed lifetimes under Type II progressive censoring is also investigated. 

3 .1 Introduction 

In life and fatigue studies, a complete sample test occurs if n items are placed under observation. 

and n failure times are observed. If the life test experiment ends with only m (m < n ) failure times 

observed, then the test is a censored life test. In a typical censored life test. censoring occurs after the 

first m failures and the largest n - m lifetimes are censored. An experiment with this single stage of 

censoring is referred to as a single right censored experiment. For progressively censored experiments. 

the removals may occur at multiple stages as the experiment progresses. That is. r1• r2 •... .rm number of 

sample items are removed from the life test at times T;. i = 1,2, ... ,m . 

Another distinction is made between Type I (time) censoring where the removals occur at pre

specified times and Type II (failure) censoring where removals occur coinciding with failure times of 

other uncensored items in the sample. In the case of Type I censoring. the times T; are pre-specified: 111 
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the case of Type II censoring, the times Ti are the failure times of the uncensored sample items. The 

progressively censored sample is considered to be them observed (uncensored) lifetimes 

xi,n $ x 2,n $ .. . $ x m,n from the complete sample of size n. 

A major consideration in any life testing experiment is the total duration of test time An 

attractive feature of a progressively censored experiment is the potential time and cost savings which the 

progressively censored experiment allows (Balakrishnan and Sandhu, 1996). 

Thomas and Wilson (1972), in an appendix to their article. describe a procedure to obtain the 

means. variances. and covariances of them progressively censored order statistics by conditioning on the 

complete sample ranks of the Type II progressively censored sample. Since experiment time is the largest 

order statistic , X m,n , the procedure of Thomas and Wilson (1972) may be modified to consider only the 

mean of X m,n , the ex1)ected value of experiment time, E[ X m.n] . 

If X l,n ::; X 2,n ::; . .. ::; X m,n are them order statistics of a progressively censored sample and 

Z l. n ::; Z 2,n ::; ... ::; Z n,n are the n order statistics of the complete sample had the sample not been 

subjected to censoring, then X; n =ZR n for some R; , i = 1,2, ... ,m . The complete sample ranks of the ' ,, 

Type II progressively censored sample x 1,n $ x 2,n $ ... $ xm,n are denoted by R1 , R 2 , .. .. Rm . 

For a Type II progressively censored sample, the complete sample rank of the first ordered 

observation xi,n is known as x 1,n = z 1,n , that is, R 1 =l. The complete sample ranks of 

x2.n ::; x3.n ::; ... $ x m,n are not necessarily known. The sample space for the rank vector R = 

( R 1 . R 2 . .. .. Rm ) can be described recursively using the equation 

for i = 2, .. .. m with R1 = l. 

(Thomas and Wilson. 1972. A I) 

For fixed removals r1, r2 , .. . ,rm , the probability function for complete sample ranks is found by 

letting 
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m 
p = P(R1,R2,···,Rm)=P(R1)IJP(R; IR1, .. R;-1) 

1=2 

(Thomas and Wilson. 1972. A2) 

where P(R1 = 1) =l and P(R; l,R1, . .. ,R;_1) is the probability function 

i.\r1 +l)~R; +l [ 
n-R l 

[

;=. I ] ' i = 2 .. ... m . n-R;_1 
i-1 

I(r1 +1)-R;-J 
;=I 

(Thomas and Wilson. 1972. A3) 

If X = (X J.n , ... , X m ,n )' is the vector of the Type II progressively censored order statistics. Z = 

(Z 1.n .... ,Z n,n )' is the vector of the corresponding complete sample order statistics. R = ( R 1• R2 ... .. Rm) is 

the vector complete sample rankings of the Type II progressively censored ordered statistics. and D is a 

matrix defined by 

{
l j =R 

dij = o',j :t:~ j=l, ... , n , i=l, ... ,m , 

thenX= DZ. 

Using this matrix notation, the means of Type II progressively censored order statistics may be 

written in the form 

µ x =E[ X) =Ee Eo f (D f Z I D e )=E l (D e ' µ z ) = ( f D f p £) µ z 
f=I 

where M denotes the number of different possible vectors of complete sample rankings. p 1 • p 2 •...• p A I are 

the probabilities of the M possible complete sample ranking schemes, and D e is defined as 

t {I, j=R; 
d= 

IJ 0. j=t=R; 

for i = 1.2, ... ,m . J = 1,2, ... n, and f = 1,2, .. . M . 
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The variances and covariances of Type II progressively censored order statistics are obtained 

similarly as 

L X = E[ X X'J - µ X µ X I 

= Et E o t [D t ZZ D e ' I D e J - µ x µ x ' 

= El ED l [D l (L z + µ z µ z I ) D f. I I D f. I - µ X µ X • 

M 
L D t (:E z + µ z µ z ') D e 'P R. - µ x µ x •. 
l =I 

(Thomas and Wilson. 1972. A8) 

Thomas and Wilson (1972) employ matrix notation to obtain means. variances. and covariances 

of all order statistics X l,n s X z,n s ... s X m,n . Their matrix notation is adapted to summation notation in 

this chapter to consider only expected experiment time. X m,n , the largest order statistic of the Type II 

progressively censored sample, and further modified to consider moments of experiment time. 

One previous numerical study by Tse and Yuen (1998) investigates the expected experiment time 

for Type II progressively censored Weibull-distributed lifetimes with random removals. Their study does 

not consider the variability associated with the experiment time estimate. The research in this chapter 

seeks to examine the variability associated with expected experiment time for different fixed and random 

Type II progressively censored removal schemes. 

For Type II progressive censored data with predetermined removals r1• r2 •.. .. rm . the formula by 

Tse and Yuen ( 1998) for expected experiment time for the Weibull distribution under progressive 

censoring is derived by conditioning on the number of removals r1, r2 , .. ..rm at each stage of censoring. 

If x 1,n < x 2,n < ... < xm,n are them ordered observed (uncensored) lifetimes of a progressively censored 

sample with removals r1 ,rz, .. . ,r m . then for X a two parameter Weibull random variable with cdf 

F(x;~, 8) = l-exp[-(x/8)13] . x > 0, 8 > 0 . ~ > 0. 

the fonnula used by Tse and Yuen (1998) for expected experiment time may be written as 
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]=c i ... ~(-1)11+ +I m (~}tl 
l 1=0 lm=O TI h(l\ ) 

i=l 

=c i ... ~(-1)11+ Im (JG:l 
t 1 =o em =o TI h(f i) 

i=l 

h(lmH(h(R. ) -1) . I 
X er(l+l/~) L m. (-1)1 . l+I I P 

j=O J (J + 1) 

where h ( l' m) = l' 1 + ... + l' m + m, c is an ordering constant and the removals r1 , r2 ... ..rm are fixed. 

(Tse and Yuen. 1998. 8) 

(The formula as originally published contained errors.) 

For random removal schemes, their formula for expected exl)eriment time becomes 

g('l) g(72) g(rm-1) 

L L ··· L P(r1 , r2,···.rm) EfXm,nlr1.r2,·· ·,rm J 
11=0 72=0 rm=O 

where 

(Tse and Yuen. 1998) 

The numerical study of Tse and Yuen (1998) obtains first moments of experiment time by 

conditioning exl)eriment time on removal schemes. In this research. kth moments of experiment time are 

obtained by conditioning on the complete sample rankings in a manner suggested by Thomas and Wilson 

(1972). The earlier study of Tse and Yuen (1998) is then extended to consider standard deviations of 

experiment time for Type II progressively censored data. 
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3.2 A Formula for Moments of Experiment Time 

The kth moment of the experiment time is denoted as E[ .X m.n (k)] and is derived below for fixed 

and random removals for a Type II progressively censored sample. 

Fixed Removals 

Suppose under Type II progressive censoring the number of removals at each stage of censoring 

r1, r2, ... ,rm are fixed and subject to the conditions that ') + r2 + ... +rm = n - m . That is. the experimelll 

is progressively censored with fixed numbers of removals coinciding with each failure time. and the 

experiment ends at the time of the mth failure. The kth moment of experiment time EP."m (k) ) may be 

derived by conditioning on the complete sample ranking Rm of the mth order statistic in the 

progressively censored sample. A formula for the kth moment of the experiment time for progressive Iv 

censored samples with fixed removals can be expressed as 

E[X m,n (k)] I E[Xm)k) IRmJP[Rml 
al/Rm 

L E[Xm,n(k) IRml IP[R1,R2, -·., Rml 
al/Rm allR1 ,R2, ... ,Rm-l 

m 

[ 
n-R l ii:(r1 +l)~Ri +l 

m j =I 

Substituting E1 [ ·. n _ Ri-1 l in the equation for P[Ri]f1 P[Ri I R1 ,R2 ..... Ri-d . 

E[X (k) ] = m.n 

1-I 

L (r1 + 1) - Ri-1 
; =I 

m-1 
m+ Lri 

i -1 I- E[X (k)] 
Rm ,n 

R111 =m 

i=2 

(Thomas and Wilson. 1972) 
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['ic,, n+~~~R, +1] 
h(m-1) h(m-2) h(2) m ; =I 

x 1: 1: ... L TI-[ ---...,,.-
1 Rm-1=m-IRm-2=m-2 R2=2i=2 . n-R;-I 

,-1 
I;(r1 +l)-R;_1 

;=I 

E[X (k)] R,n ,n , 

(David. 1981. J ... U ) 

m-1 
m+ Lr; 

(k) i=I (n-lJRm-1(Rm-lJ 1 1 (k) 
E[Xm.n ] = L n R -l L . (-1) ( . -R l)E[X1,;+n-R,,,+I ] 

Rm =m m ;=0 J J + n m + 

[ ;i:(r n+~:~R; +l] 
h(m-1) h(m-2) h(2) m j=I 1 

x 1: L ... L TI-[ --] Rm-1=m-lRm-2=m-2 R2=2i=2 . n-Ri-1 
,-1 
I;(r1 +1)-R;-J 
j=I 

{ 
k-1 l where h(k) = mi (k + Lr;), (Rk+I -1) , k = 2,3, ... ,m -1. 
1=1 

(1) 

Therefore, by conditioning on complete sample rankings, an equation for the kth moments of 

exl)eriment time for a Type II progressively censored sample is expressed as a function of the h111 

moment of the smallest order statistic. 

One fixed removal scheme for Type II progressively censored data to which equation ( l) will 

apply is the 50% fixed removal scheme where alternate sample items are censored. This is done by letting 

r; = 1. for all i = 1,2, .. ,m. in equation (1). For this 50% fixed removal scheme. the fonnula for the 1'1h 

moment of experiment time becomes 
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m-1 
m+ I;r; 

(k) i=I ( n -1 ]Rm -l(R -lJ . l (k) EX = n m -1 l EX · [ m.n l L R -l L . ( ) (" -R l) r l. ;+n-Rm+I I 
Rm =m m ;=O 1 J + n m + 

( n-R J 
h(m-1) h(m-2) h(2) m 2i-l-1

R 

x L L ... L n( ' J. 
Rm-1=m-l Rm-2=m-2 R2=2 i=2 n-R;-J 

2i -2-R;-J 

(la) 

Many other fixed removal schemes are possible. 

Random Removals 

Suppose under Type II progressive censoring the r1, r2 , ... ,rm removals are random and subject to 

the condition that r1 + r2 + ... +rm = n - m . That is, the experiment is progressively censored with 

random removals coinciding with each failure time, and the experiment ends at the time of the mth 

failure . The formula for the kth moment of the experiment time with random removals may then be 

expressed as 

E[Xm.n(k)J = L P(11,r2 , ... ,rm) 

all ri ,'"2 , .. . ,rm 

m-1 

m+ ~Ir; ( l JR -l(R lJ ,_ n - m m - . 1 (k) 

x L n R -1 L . (-1); ( . -R 1) E[X1.j+n-Rm +I ] 
R,n=m m ;=0 J J+n m+ 

[i\r n+~:~R; +I] 
h(m-1) h(m-2) h(2) m j =I 1 

x L L ... L TI-[ --] Rm-I =m-1 Rm-2 =m-2 R2 =2 i=2 .. n-R,-1 
1-) 

L(r1 +1)-R,_1 
; =I 

(2). 

The approach of Tse and Yuen (1998) assumes removals occur at random, coinciding with each 

failure time, and that the number of each of the removals ri follows a uniform discrete probability 

distribution such that 
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m-1 
P(r1,r2, ... ,rm) = P(r1) TIP(r; I r1,r2 ..... r,_1) 

1=2 

1 1 . 
where P(r1) = and P(r; I r1, r2 , .. . ,r;_1) = .1 = 2 ..... m -1 . 

n-m+l n-m+(r1 + ... +r;_1)+1 

Therefore, making the appropriate substitution for P(ri ,r2, .... rm), equation (2) becomes 

, (k) - g(11) g(72) 
£[): m.n ] - L L 

11=0 72=0 

g(rm-1) m-1 1 L n~~~~~ 
rm- i=O n-m+l t=2(n-m-(r1 + ... +r;_1)+1) 

m-1 
m+ ~r; 

i=I ( n-1 )Rm-1(Rm -1) · l (k) 
x L n R -1 L . (-1); ( . -R 1) E[X1,J+n-Rm+I ] 

Rm =m m ;=0 J J + n m + 

[ ;I(r :~:~Rt +l] 
h(m-1) h(m-2) h(2) m ; =I 1 

x L I ... L TI-,--[ -~] 
Rm-I =m-1 Rm-2=m-2 R2 =2 i=2 . n -Rt-I 

,-! 
L(r1 +l)-R;_1 
j=I 

where g(r1) = n - m and g(r;) = n - m - 'l - r2 - ... - r;-1 , i = 2, ... ,m -1 . 

(2a) 

A second approach is to assume the experimenter selects a removal scheme at random from all 

possible removal schemes and that all removal schemes are equally likely. Letting 

P(r, ,r2 , .. . ,rm)= -( 1 ) for all removals r1 ,r2 , ... ,rm, since the number of nonnegative integer n-1 
111 - l 

(n-1) solutions for the equation r1 + r2 + ... +rm = n - m is , 
m-l 

equation (2) becomes 

,· (k) - g (11) g (72) 
E[): m.n ] - L L 

11=0 12 =0 

g(rm- 1) 1 
L 

rm-1=0 (n-1) 
m - 1 
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m-1 
m+ Ll) 

i=I ( n-1 JRm-l(R -lJ · l (k) 
x L n R -1 L m. (-1)1 ( . -R 1) E[Xl,;+n-Rm ) 

R111 =m m ;=O J J + n m + 

[ ;i:(r :~:~R; +l] 
h(m-1) h(m-2) h(2) m j=I 1 

x L L .. . L TI-',--[ ----,-] 
Rm-I =m-1 Rm-2 =m-2 R2 =2 i=2 . n -R;-1 

1-l 
L(r1 +l)-R;_1 
;=I 

(2b) 

Equations (2a) and (2b) are best used where sample sizes are small, n < 20, or where differences 

between the number of items fully measured, m, and the sample size, n. is small. This is because oftJ1e 

extensive computer time to consider all possible rankings to obtain the expected values. The same 

limitation is noted for the formulas used by Tse and Yuen (1998). Tse and Yuen (1998) consider the 

dominant factor, in terms of computing time, to be the value of n. Examples using the equations are 

given in the following sections. All computations in the following sections are performed using SAS 

System for Windows, Release 6.12 (1996). 

3.2 Examples 

Random Removals 

The Weibull Example with Random Removals 

A common model for lifetime data is the two parameter Weibull distribution. Where.\" is a 

random variable that is Weibull ( 8, p) , the first order statistic from a sample of size n, ;r 1.n . is Weibull 

(8/n11P, p) with 

Ck) _ e k 
( ) k ( J E[X1.n )- nll P f l+p . (3) 

(Balakrishnan and Cohen, 1991 . 8.2 ) 
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Therefore, the first or second moments of experiment time for progressively censored Weibull-distributed 

lifetimes can be determined by noting that 

E[X(k) ] = 8 r l +~ . [ lk 

l,j+n-Rm+l (j+n-Rm +1)1 /P ( PJ 

For Weibull-distributed lifetimes defined by a shape parameter p, it is well known that values of 

P< l imply a declining failure rate, P= 1 imply a constant failure rate, and P> 1 imply an increasing failure 

rate. 

Tables 3.2.1 - 3.2.3 show first and second moments and standard deviations of exl)eriment time 

for different values of p and combinations of m and n using equation (2a). Without loss of generality. the 

calculations for the tables for Weibull-distributed data in this section are performed with 8 = 1 (see 

equation (3)). The expected experiment times reported in Table 3.2.1 appear in close agreement to the 

numerical values reported by Tse and Yuen (1998, Table 1). No differences were exl)ected as equation 

(2a), when used to find the first moment of experiment time for Weibull-distributed lifetimes, is 

equivalent to the equation offered by Tse and Yuen (1998). 

Any examination of experiment time estimates, however, should also consider the variability 

associated with the estimator. Therefore, the second moments of experiment time in Table 3 .2.2, in 

conjunction with the first moments in Table 3 .2.1, are used to obtain the standard deviations that are 

reported in Table 3.2.3 . The values in Table 3.2.3 suggest that standard deviations associated with 

experiment time values are especially large in instances where P<l. Consequently, the exl)ected 

experiment times reported in Table 3.2.1 should be used cautiously for Weibull-distributed lifetimes with 

decreasing failure rates. Furthermore, the standard deviations of experiment time in Table 3.2.3 suggest: 

( 1) for fixed values of m, 

(a) if ps;l, the standard deviations of experiment time tend to decrease as n increases. 

(b) if P> 1, the standard deviations may increase or decrease as n increases. 

but, overall, are of approximately the same magnitude, and 

(2) for fixed values of m and n. as p increases, the standard deviations decrease. 

35 



Table 3.2.4 

E[X m,n] I 8 Using Equation (2a) for Two Parameter Weibull Samples 

________________ _.... ___________________________ , . 
... m ........ n ........ 0.25 .................. 0.5o .............. 9.:??. .......... } ... Q.Q ........... L?.?. ............. }.::?.Q ............... ?.:.Q9. ............ }:9.0 ............... 5..-.C)_C) ..... .. 

3 

5 

3 
4 
5 
6 
10 
15 

5 
6 
8 
10 
12 
15 

67.7963 
44.1186 
32.7637 
26.1682 
14.8535 
9.9016 

107.5326 
92.8072 
74.8683 
64.0825 
56.7300 
49.1011 

6 6 126.2316 
8 106.3499 
10 93.9611 
12 85.2763 
15 76.0130 

9 9 178.6700 
10 173.1245 
12 164.3024 
15 154.5767 

10 10 195.1260 
11 190.5550 
12 186.5931 
13 183.1066 
14 180.0002 
15 177.2036 

15 15 271.4854 
16 269.1996 
17 267.1240 
18 265.2260 

4.7222 
3.5069 
2.8093 
2.3552 
1.4642 
1.0183 

6.6772 
6.0341 
5.1664 
4.5921 
4.1748 
3.7174 

2.4296 1.8333 
1.9499 1.5417 
1.6479 1.3481 
1.4377 1.2080 
0.9832 0.8858 
0.7272 0.6893 

3.1816 2.2833 
2.9518 2.1521 
2.6246 1. 9594 
2.3959 1.8202 
2.2229 1.7122 
2.0261 1.5865 

1.5761 
1.3666 
1.2228 
1.1160 
0.8601 
0.6955 

1.8958 
1.8055 
1.6702 
1.5703 
1.4916 
1.3984 

7.4939 3.4735 2.4500 2.0105 
6.6583 3.1817 2.2857 1.8986 
6.0892 2.9734 2.1653 1.8150 
5.6653 2.8128 2.0704 1.7483 
5.1884 2.6262 1.9580 1.6682 

9.5428 4.1621 2.8290 2.2651 
9.3454 4.0990 2.7953 2.2429 
9.0221. 3.9942 2.7388 2.2055 
8.6518 3.8718 2.6721 2.1610 

10.1286 4.3493 2.9290 2.3309 
9.9719 4.3002 2.9030 2.3140 
9.8340 4.2566 2.8799 2.2988 
9.7109 4.2175 2.8591 2.2851 
9.5998 4.1819 2.8401 2.2726 
9.4987 4.1494 2.8226 2.2611 

12.5911 5.0988 3.3182 2.5827 
12.5234 5.0791 3.3082 2.5764 
12.4616 5.0610 3.2990 2.5705 
12.4048 5.0443 3.2906 2.5651 

36 

1.4361 
1.2724 
1.1573 
1.0703 
0.8557 
0.7122 

1.6842 
1.6157 
1.5117 
1.4338 
1.3716 
1.2972 

1.7711 
1.6869 
1.6232 
1.5719 
1.5096 

1.9508 
1.9445 
1.9169 
1.8840 

2.0092 
1.9968 
2.9857 
2.2851 
2.2726 
1.9580 

2.1919 
2.1873 
2.1831 
2.1792 

1.2904 
1.1759 
1.0931 
1.0289 
0.8646 
0.7489 

1.4620 
1.4160 
1.3450 
1.2908 
1.2468 
1.1934 

1.5203 
1.4643 
1.4213 
1.3862 
1.3431 

1.6446 
1.6341 
1.6163 
1.5948 

1.6757 
1.6678 
1.6607 
1.6542 
1.6483 
1.6428 

l.1718 
1.0999 
l.0463 
1.0037 
0.8901 
0.8058 

1.2784 
1.2508 
l.2074 
1.1735 
l.1456 
1.1111 

1.3134 
1.280 I 
1.2542 
1.2327 
1.2059 

1.3863 
1.3802 
1.3699 
1.3575 

1.4042 
1.3996 
1.3956 
1.3919 
1.3885 
1.3853 

1.7914 1.4696 
1.7886 l.4680 
1.7859 1.4665 
I. 7835 l.4652 

1.0936 
10522 
1.0204 
0 9947 
0. 9238 
0.8687 

l.1545 
1.1 392 
1.114 7 
1.0953 
1.0791 
1.0587 

1.1 739 
l.1556 
1.1411 
1.1290 
1.11 38 

1.21 35 
1.2103 
1.2048 
l.1980 

1.2231 
1.2207 
1.2185 
1.2166 
1.2147 
1.2130 

1.2576 
1.2568 
1.2560 
1.2553 



Table 3.2.1 

E[X m,n] I e Using Equation (2a) for Two Parameter Weibull Samples 

m n 0.25 0.50 0.75 1.00 1.25 1.50 2.00 3.00 5.00 ............................................................................................................................................................................................................................................ 
3 3 67.7963 4.7222 2.4296 1.8333 1.5761 1.4361 1.2904 1.1718 1.0936 

4 44.1186 3.5069 1.9499 1.5417 1.3666 1.2724 1.1759 1.0999 1.0522 
5 32. 7637 2.8093 1.6479 1.3481 1.2228 l.1573 1.0931 1.0463 1.0204 
6 26.1682 2.3552 1.4377 1.2080 1.1160 1.0703 1.0289 1.0037 0.9947 
10 14.8535 1.4642 0.9832 0.8858 0.8601 0.8557 0.8646 0.8901 0.9238 
15 9.9016 1.0183 0.7272 0.6893 0.6955 0.7122 0.7489 0.8058 0.8687 

5 5 
6 
8 
IO 
12 
15 

107.5326 
92.8072 
74.8683 
64.0825 
56.7300 
49.1011 

6.6772 
6.0341 
5.1664 
4.5921 
4.1748 
3.7174 

3.1816 2.2833 
2.9518 2.1521 
2.6246 1.9594 
2.3959 1.8202 
2.2229 1.7122 
2.0261 1.5865 

1.8958 
1.8055 
1.6702 
1.5703 
1.4916 
1.3984 

1.6842 
1.6157 
1.5117 
1.4338 
1.3716 
1.2972 

1.4620 
1.4160 
1.3450 
1.2908 
1.2468 
l.1934 

1.2784 
1.2508 
1.2074 
l.1735 
l.1456 
l.l l ll 

l.1545 
1.1392 
1.1147 
1.0953 
1.0791 
1.0587 

6 6 126.2316 7.4939 3.4735 2.4500 2.0105 l.77ll 1.5203 1.3134 1.1739 
8 
IO 
12 
15 

106.3499 
93 .9611 
85.2763 
76.0130 

6.6583 
6.0892 
5.6653 
5.1884 

3.1817 2.2857 
2.9734 2.1653 
2.8128 2.0704 
2.6262 1.9580 

1.8986 
1.8150 
1.7483 
1.6682 

1.6869 
1.6232 
1.5719 
1.5096 

9 9 178.6700 9.5428 4.1621 2.8290 2.2651 
4.0990 2.7953 2.2429 
3.9942 2.7388 2.2055 
3.8718 2.6721 2.1610 

1.9508 
1.9445 
1.9169 
1.8840 

IO 173.1245 9.3454 
12 164.3024 9.0221 
15 154.5767 8.6518 

IO IO 195.1260 
11 190.5550 
12 186.5931 
13 183.1066 
14 180.0002 
15 177.2036 

15 15 271.4854 
16 269.1996 
17 267.1240 
18 265 .2260 

10.1286 4.3493 2.9290 2.3309 2.0092 
9.9719 4.3002 2.9030 2.3140 1.9968 
9.8340 4.2566 2.8799 2.2988 2.9857 
9.7109 4.2175 2.8591 2.2851 2.2851 
9.5998 4.1819 2.8401 2.2726 2.2726 
9.4987 4.1494 2.8226 2.26ll 1.9580 

12.5911 5.0988 3.3 182 2.5827 
12.5234 5.0791 3.3082 2.5764 
12.4616 5.0610 3.2990 2.5705 
12.4048 5.0443 3.2906 2.5651 

36 

2.1919 
2.1873 
2.1831 
2.1792 

1.4643 
1.4213 
1.3862 
1.3431 

1.280 l 
1.2542 
1.2327 
1.2059 

1.6446 1.3863 
1.6341 1.3802 
1.6163 1.3699 
1.5948 1.3575 

1.6757 1.4042 
1.6678 1.3996 
1.6607 1.3956 
1.6542 1.3919 
1.6483 1.3885 
1.6428 1.3853 

1.7914 1.4696 
I. 7886 I . 4680 
1. 785 9 1. 4665 
l. 7835 1.4652 

l.1556 
1.1411 
1.1290 
l.l 138 

1.2135 
1.2103 
1.2048 
l.1980 

1.2231 
1.2207 
1.2185 
1.2166 
1.2147 
1.2130 

1.2576 
1.2568 
1.2560 
1.2553 



Table 3.2.2 

E[X~n]/82 Using Equation (2a) for Two Parameter Weibull Samples 

,.. ............................................................. 

m n 0.25 0.50 0.75 1.00 1.25 1.50 2.00 3.00 5.00 ............................................................................................................................................................................................................................................. 
3 3 120493.650 67.7963 10.3553 4.7222 3.1206 2.4296 1.8333 l.-U61 1.21 (>3 

4 73984.104 44.1186 7.2519 3.5069 2.4220 1.9499 1.5417 1.2724 1.1280 
5 53767.836 32.7637 5.5998 2.8093 1.9990 1.6479 l.3481 l.1573 I. 0630 
6 42515.391 26.1682 4.5781 2.3552 1.7130 1.4377 1.2080 l.0703 l.O 119 
10 23836.477 14.8535 2.7018 1.4642 1.1204 0.9832 0.8858 0.855 7 0.8778 
15 15831.932 9.9016 1.8288 1.0183 0.8039 0.7272 0.6893 0.7122 0 7803 

5 5 200083 .480 107.5326 15.4427 6.6772 4.2282 3.1816 2.2833 l.6842 U477 
6 168907.700 92.8072 13.6775 6.0341 3.8786 2.9518 2.1521 1.6157 1.3132 
8 133038.210 74.8683 l l.396 l 5.1664 3.3921 2.6246 l.9594 l.511 7 1.2593 
10 112417.230 64.0825 9.9483 4.5921 3.0599 2.3959 l.8202 1.4338 1.21 76 
12 98708.375 56.7300 8.9265 4.1748 2.8130 2.2229 1.7122 1.37 16 1.1835 
15 84748.908 49.1011 7.8355 3.7174 2.5367 2.0261 1.5865 l .2972 1.1416 

6 6 239671.77 126.2316 17.6842 7.4939 4.6722 3.4735 2.4500 1.7711 1.3914 
8 196793 .08 106.3499 15.3514 6.6583 4.2237 3.1817 2.2857 l.6869 U497 
10 171372.94 93.9611 13.8210 6.0892 3.9100 2.9734 2.1653 1.6232 1.317:1 
12 154065.61 85.2763 12.7108 5.6653 3.6726 2.8128 2.0704 1.5719 1.2907 
15 136020.15 76 .0119 11.4919 5.1887 3.3988 2.6262 1.9579 1.5096 1.2577 

9 9 357659.91 178.6700 23 .5822 9.5428 5.7477 4.1621 2.8290 1. 9608 1.4834 
10 344489.43 173 .1244 22.9911 9.3454 5.6470 4.0990 2.7953 1.9445 1.4758 
12 323931.28 164.3024 22.0345 9.0221 5.4807 3.9942 2.7388 1.9169 1.4627 
15 301794.03 154.5767 20.9560 8.6518 5.2881 3.8718 2.6721 1.8840 1.4469 

10 10 396742.46 195.1260 25.3362 10.1286 6.0465 4.3493 2.9290 2.0092 1.5062 
11 385624.10 190.5551 24.8597 9.9719 5.9674 4.3002 2.9030 1.9968 l . 5004 
12 376089.91 186.5931 24.4428 9.8340 5.8976 4.2566 2.8799 1.9857 1.4953 
13 367776.73 183 .1066 24.0729 9.7109 5.8349 4.2175 2.8591 1.9756 1.4905 
14 360428.78 180.0002 23.7408 9.5998 5.7782 4.1819 2.8401 1.9664 1.4862 
15 353860.09 177.2036 23.4400 9.4987 5.7265 4.1494 2.8226 1.9580 1.4822 

15 15 590441.92 271.4854 33.0123 12.5911 7.2675 5.0988 3.3182 2.1919 I. 5 ')()() 
16 58429 l.33 269.1996 32.7940 12.5234 7.2348 5.0791 3.3082 2.1873 I 5880 
17 578730.95 267.1240 32.5959 12.4616 7.2048 5.0610 3.2990 2.1831 1.58(>1 
18 573666.46 265.2260 32.4124 12.4048 7.1773 5.0443 3.2906 2.1792 1.5843 
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Table 3.2.3 

Std.Dev.[X m.n J/8 Using Equation (2a) Using Two Parameter Weibull Samples 

m n 0.25 0.50 0.75 1.00 1.25 1.50 2.00 3.00 5.00 
········ ··············-· ·········································· ························································································································ ······ ····························· 

3 3 340.4369 6.7451 2.1101 1.1667 0.7978 0.6059 0.4102 0.251 0 0.1424 
4 268.3983 5.6409 1.8574 1.0631 0.7446 0.5753 0.3987 0.2501 0.1-+4') 
5 229.5526 4.9871 1.6983 0.9959 0.7097 0.5554 0.3916 0.2503 0.1-+74 
6 204.5253 4.5410 1.5846 0.9466 0.6837 0.5405 0.3864 0.2508 0.1497 
10 153.6745 3.5651 1.3172 0.8244 0.6169 0.5009 0.3719 0.251 8 0.1560 
15 125.4348 2.9774 1.1402 0.7370 0.5659 0.4690 0.3584 0.2509 0.160 1 

5 5 434.1892 7.9339 2.3065 1.2098 0.7962 0.5875 0.3821 0.2234 0.121 7 
6 400.3680 7.5098 2.2281 1.1843 0.7866 0.5842 0.3833 0.2262 0.1242 
8 356.9775 6.9409 2.1230 1.1521 0.7762 0.5825 0.3876 0.2323 0.1292 
10 329.1059 6.5571 2.0513 1.1310 0.7707 0.5832 0.3925 0.2382 0.1 33 ') 
12 309.0147 6.2691 1.9963 1.1149 0.7669 0.5844 0.3971 0.2435 0.1436 
15 286.9460 5.9398 1.9315 1.0957 0.7623 0.5859 0.4029 0.2504 0.1590 

6 6 473.0088 8.3710 2.3706 1.2212 0.7937 0.5801 0.3725 0.2147 0.1155 
8 430.6771 7.8751 2.2865 1.1974 0.7868 0.5798 0.3763 0.21 94 0.11 92 
10 403 .1678 7.5421 2.2315 1.1835 0.7847 0.5819 0.3810 0.2243 0.1228 
12 383 .1365 7.2925 2.1906 1.1741 0.7849 0.5848 0.3858 0.2289 0.1263 
15 360.8908 7.0066 2.1436 1.1640 0.7848 0.5893 0.3924 0.2354 0.1310 

9 9 570.7337 9.3597 2.5018 1.2409 0.7856 0.5634 0.3526 0.1976 0. 1038 
10 560.8185 9.2622 2.4878 1.2377 0.7851 0.5639 0.3536 0.1986 0.1045 
12 544.9184 9.1051 2.4660 1.2333 0.7851 0.5653 0.3557 0.2005 0.1058 
15 527.1623 8.9288 2.4424 1.2294 0.7861 0.5678 0.3588 0.2032 0.1076 

10 10 598.8892 9.6196 2.5337 1.2449 0.7831 0.5590 0.3477 0.1936 0.1011 
11 591.0270 9.5454 2.5235 1.2427 0.7829 0.5595 0.3485 0.1944 0.101 6 
12 584.1857 9.4808 2.5147 1.2410 0.7829 0.5601 0.3493 0.1951 0.1021 
13 578.1425 9.4237 2.5071 1.2396 0.7830 0.5607 0.3501 0.1958 0.1026 
14 572.7379 9.3725 2.5004 1.2385 0.7833 0.5613 0.3509 0.1965 0.1031 
15 567.8547 9.3262 2.4945 1.2375 0.7835 0.5619 0.3517 0.1971 0.1035 

15 15 718.8446 10.6278 2.6485 1.2572 0.7727 0.5426 0.3302 0.1796 0.0920 
16 715.4180 10.6002 2.6452 1.2566 0.7728 0.5429 0.3305 0.1799 0.0922 
17 712.3031 10.5751 2.6422 1.2562 0.7729 0.5431 0.3309 0.1802 0.0923 
18 709.4516 10.5521 2.6396 1.2558 0.7730 0.5434 0.3312 0.1804 0.0925 

.................................................................................... 
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Values of the coefficient of variation ( CV ) of experiment time are reported in Table 3.2. -+ . The 

coefficient of variation, also referred to as the standardized second central moment. is defined to be 

CV = Std.Dev. [X m,n] I E[X m,n ] . 

The CV is applicable when the variable measured is on a ratio scale (i .e., has an absolute zero). The Cl · is 

a simple method to compare two or more populations with respect to variability. This ratio of standard 

deviation to expected value is a unitless measure of spread. The CV is used to compare the relatiYe 

amount of variability of expected experiment time for different values of p or m and n. 

As one would expect, the CV for a complete sample (m = n ) is the smaller than the CI - s fo r the 

censored sample ( m<n ). Further, the CVs for experiment time in Table 3.2.4 suggest: 

(1) for fixed values of m and p, the coefficient of variation increases as n increases. and 

(2) for fixed values of m and n, the coefficient of variation decreases as p increases 

( i.e., for fixed values of m and n, more precise estimates of E[X m.n] may be obtained 

for large values of P). 
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Table 3.2.4 

Coefficient of Variation of X m,n Using Equation (2a) for Two Parameter Weibull Samples 

m n 0.25 0.50 0.75 1.00 l.25 l.50 2.00 3.00 5.00 
·································································································································································································································· 

3 3 5.0215 1.4284 0.8685 0.6364 0.5062 0.4219 0.3179 0.2 l-l2 0.1302 

5 

6 

9 

10 

15 

4 6.0836 l.6085 0.9525 0.6896 0.5449 0.4522 0.3391 0.227-l O U77 
5 7.0063 1.7752 1.0305 0.7387 0.5804 0.4799 0.3583 0.2393 O. l.i.45 
6 7.8158 1.9281 1.1022 0.7836 0.6127 0.5050 0.3755 0.2499 0.1505 
10 10.3460 2.4349 1.3397 0.9307 0.7172 0.5854 0.4301 0.2828 0.1688 
15 12.6681 2.9239 1.5681 1.0693 0.8138 0.6585 0.4786 0.3113 0.18-t3 

5 
6 
8 
10 
12 
15 

6 
8 
10 
12 
15 

9 

10 
12 
15 

10 
11 

12 
13 
14 
15 

15 
16 
17 
18 

4.0377 
4.3140 
4.7681 
5.1357 
5.4471 
5.8440 

3.7472 
4.0496 
4.2929 
4.4929 
4.7477 

3.1943 
3.2394 
3.3166 
3.4104 

3.0692 
3.1016 
3.1308 
3.1574 
3.1819 
3.2045 

2.6478 
2.6576 
2.6666 
2.6749 

1.1882 
1.2446 
1.3435 
1.4279 
1.5017 
1.5978 

l.1170 
l.1828 
1.2386 
1.2872 
1.3504 

0.9808 
0.9911 
1.0092 
1.0320 

0.9497 
0.9572 
0.9641 
0.9704 
0.9763 
0.9818 

0.7249 
0.7548 
0.8089 
0.8562 
0.8981 
0.9533 

0.6825 
0.7286 
0.7505 
0.7788 
0.8162 

0.6011 
0.6069 
0.6174 
0.6308 

0.5825 
0.5868 
0.5908 
0.5945 
0.5979 
0.6012 

0.84407 0.5194 
0.8464 0.5208 
0.8486 0.5221 
0.8506 0.5233 

0.5298 
0.5503 
0.5880 
0.6213 
0.6512 
0.6906 

0.4985 
0.5238 
0.5466 
0.5671 
0.5945 

0.4386 
0.4428 
0.4503 
0.4601 

0.4250 
0.4281 
0.4309 
0.4336 
0.4361 
0.4384 

0.3789 
0.3798 
0.3808 
0.3817 
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0.4200 
0.4357 
0.4648 
0.4908 
0.5141 
0.5451 

0.3947 
0.4144 
0.4323 
0.4489 
0.4704 

0.3468 
0.3501 
0.3560 
0.3638 

0.3359 
0.3383 
0.3406 
0.3427 
0.3446 
0.3465 

0.2992 
0.3000 
0.3007 
0.3014 

0.3488 
0.3615 
0.3854 
0.4068 
0.4260 
0.4517 

0.3275 
0.3437 
0.3585 
0.3720 
0.3903 

0.2873 
0.2900 
0.2949 
0.3014 

0.2782 
0.2802 
0.2821 
0.2838 
0.2854 
0.2870 

0.2475 
0.2482 
0.2488 
0.2494 

0.2614 
0.2707 
0.2882 
0.3041 
0.3 185 
0.3376 

0.2451 
0.2570 
0.2681 
0.2783 
0.2922 

0.2144 
0.2164 
0.2201 
0.2250 

0.2075 
0.2090 
0.2104 
0.2117 
0.2129 
0.2141 

0.1843 
0.1848 
0.1853 
0.1857 

0.1747 
0.1808 
0.192-t 
0.2029 
0.2125 
0.2254 

0.1635 
0.1714 
0.1788 
0.1857 
0.1952 

O.l-l26 
0.1439 
0.1464 
0.1967 

0.1379 
0.1389 
0.1398 
0.1407 
0.1415 
0.1423 

0.1222 
0.1226 
0.1229 
0.1231 

0 105-t 
0.1090 
0.1159 
0.1223 
0.1331 
0.1502 

0.098-t 
0 1032 
0.107(1 
0. 1119 
0.1176 

0.0855 
0.0863 
0.0878 
0.0899 

0.0827 
0.0833 
0.0838 
0.08-t3 
0.08-t9 
0.0853 

0.073 I 
0.0733 
0.0735 
0.0737 



Different table values from those reported by Tse and Yuen (1998) are obtained by using equation 

(2b) where the experimenter assumes that all removal schemes are equally likely. Another way to view 

the resulting values using equation (2b) are as the averages of the moments of experiment time of all Type 

II progressive censoring removal schemes. 

Tables 3.2.5 - 3.2.8 display the values for the first and second moments, standard deviations. and 

CVs of experiment time, respectively, using equation (2b). For both equation (2a) and equation (2b). the 

expected experiment time does not decrease appreciably as n increases if ~ is large. Since shorter 

e>..l)eriment times are a major reason why progressive censoring schemes are used, this result should be 

considered: for both probability assigrtments to random removals, Type II progressive censoring schemes 

did not result in appreciably shortened experiments in the for Weibull-distributed lifetimes with 

increasing failure rates. However, only two probability assignments for random removals are considered 

in this research. Many other probability assignments for random removals are possible. For example. the 

removals may occur according to any number of multinomial probability distributions. 

For all values of ~, the expected e>..l)eriment time values in Table 3.2.5. using equation (2b). are 

smaller than the corresponding expected experiment time values in Table 3.2.1, using equation (2a). This 

is because the probabilities assigned with equation (2a) give heavier weight to removal schemes with early 

removals; consequently, the larger expected experiment time values follow. 

The standard deviations reported in Table 3 .2. 7, using equation (2b ). are still large if~< I and 

are approximately of the same magnitude if ~:2:1. Therefore. for both probability assignments for random 

removals. the expected experiment time values should be used cautiously in instances of Weibull

distributed lifetimes with decreasing failure rates. 

The CVs in Table 3.2.8. using equation (2b) suggest 

(I) for fixed values of m and ~- the coefficient of variation increases as n increases and. 

(2) for fixed values of m and n, the coefficient of variation decreases as ~ increases . 

These are tl1e same relationships suggested in Table 3.2 .4, using equation (2a). 
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Table 3.2.5 

E[X m,nJ/8 Using Equation (2b) for Two Parameter Weibull Samples 

m n 0.25 0.50 0.75 1.00 1.25 1.50 2.00 3.00 5.00 
··································································································································································································································· 

3 3 67.7963 4.7222 2.4296 1.8333 1.5761 1.436 l 1.2904 l.1 718 1.0936 
4 38.4811 3.2176 1.8357 1.4722 1.3167 1.2333 1.1486 1.0828 1.0423 
5 25.7517 2.4064 1.4789 1.2417 1.1446 1.0952 1.0487 1.0178 1.0037 
6 18.9450 1.9059 1.2402 1.0800 1.0202 0.9932 0.9730 0.9672 0. 9730 
10 8.7053 1.0096 0.7582 0.7287 0.7365 0.7526 0.7861 0.8363 0.8904 
12 6.7530 0.8094 0.6362 0.6324 0.6547 0.6807 0.7276 0.7933 0.8622 
15 5.0149 0.6200 0.5131 0.5131 0.5661 0.6013 0.6613 0.7432 0.8285 

6 6 126.2316 7.4939 3.4735 2.4500 2.0105 1.7711 1.5203 1.31 34 11739 
8 71.5299 5.1355 2.6393 1.9770 1.6867 1.5266 1.3571 1.2160 1.1202 
10 47.1520 3.8405 2.1312 1.6716 1.4698 1.3585 1.2413 1.1445 1.0796 
12 34.0434 3.0340 1.7885 1.4560 1.3119 1.2338 1.1530 1.0885 1.04 71 
15 23 .2475 2.2781 1.4419 1.2279 1.1401 1.0952 1.0524 1.0230 1.0082 

9 9 178.6700 9.5428 4.1621 2.8290 2.2651 1.9608 1.6446 1.3863 1.2135 
10 143.4000 8.2873 3.7608 2.6146 2.1239 1.8571 1.5778 1.3479 1.1930 
12 98.9301 6.4957 3.1537 2.2796 1.8987 1.6892 1.4678 1.2834 1.1580 
15 63 .8395 4.8260 2.5395 1.9247 1.6530 1.5024 1.3421 1.2078 1.1160 

15 15 271.4855 12.5911 5.0988 3.3182 2.5827 2.1919 1.7914 1.4696 1.2576 
16 235.2294 11.5179 4.7857 3.1595 2.4817 2.1193 1. 7461 1.4443 1.2445 
17 205.8252 10.5933 4.5086 3.0170 2.3900 2.0532 1.7045 1.4210 1.23 22 
18 181.6622 9.7897 4.2616 2.8813 2.3065 1.9925 1.6660 1.3992 1.2207 -------
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Table 3.2.6 

E[X~~~] I 8 2 Using Equation (2b) for Two Parameter Weibull Samples 

___ ........................................... 
m n 0.25 0.50 0.75 1.00 1.25 1.50 2.00 3.00 5.00 ....................................................................................................................................................................................................................................... 
3 3 120493.65 67.7963 10.3553 4.7222 3.1206 2.4296 1.8333 1.436 1 1.216> 

4 62910.404 38.4811 6.5131 3.2176 2.2557 1.8357 1.4722 1.2334 1.1070 
5 40776.812 25.7517 4.6193 2.4064 1.7591 1.4789 1.2417 1.0952 1.0284 
6 29572.171 18.9450 3.5227 1.9059 1.4383 1.2402 1.0800 0.9932 0.9678 
10 13401.926 8.7053 1.7189 1.0096 0.8234 0.7582 0.7287 0.7526 0.8 140 
12 10388.991 6.7530 l.3484 0.8094 0.6761 0.6362 0.6324 0.6807 0.7645 
15 7717.1611 5.0149 1.0103 0.6200 0.5317 0.5131 0.5312 0.6013 0.7074 

6 6 239671.77 126.2316 17.6842 7.4939 4.6722 3.4735 2.4500 1.7711 1.3914 
8 123523.32 71.5299 11.1687 5.1355 3.3972 2.6393 1.9770 1.5266 1.2694 
10 77671.749 47.1520 7.8864 3.8405 2.6539 2.1312 l.6716 1.3585 1.1810 
12 54613.741 34.0434 5.9676 3.0339 2.1691 1.7885 l.4560 1.2338 1.11 25 
15 36494.41 23.2475 4.2716 2.2781 1.6946 l.4419 1.2279 l.0952 1.0332 

9 9 357659.91 178.6700 23.5822 9.5428 5.7477 4.1621 2.8290 1.9608 1.4834 
10 273894.37 143.4000 19.8229 8.2873 5.1073 3.7608 2.6 146 1.8571 1.4346 
12 176822.89 98.9301 14.7182 6.4957 4.1618 3.1537 2.2796 1.6892 1.3532 
15 107476.39 63 .8395 10.2747 4.8260 3.2377 2.5395 l.9247 1.5024 1.2587 

15 15 590441.92 271.4855 33.0123 12.5911 7.2675 5.0988 3.3182 2.1919 1.5900 
16 492887.52 235.2294 29.5485 11.5179 6.7482 4.7857 3.1595 2.1193 1.5575 
17 417500.76 205.8252 26.6334 10.5933 6.2937 4.5086 3.0170 2.0532 1.5274 
18 358150.84 181.6622 24.1548 9.7897 5.8928 4.2616 2.8881 l.9925 1.4996 
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Table 3.2.7 

Std.Dev.[X m,nJ/8 Using Equation (2b) for Two Parameter Weibull Samples 

m n 0.25 0.50 0.75 1.00 1.25 1.50 2.00 3.00 5.00 ........................................................................................................................................................................................................ ............................ 
3 3 340.4369 6.7451 2.1101 1.1667 0.7978 0.6058 0.4102 0.2510 0 1424 

4 247.8500 5.3036 1.7729 1.0248 0.7225 0.5608 0.3910 0.2468 0.1438 
5 200.2840 4.4678 1.5595 0.9299 0.6702 0.5287 0.3767 0.2435 0. 1447 
6 170.9189 3.9131 1.4088 0.8599 0.6305 0.5037 0.3652 0.2405 0.1453 
IO 115.4389 2.7724 1.0696 0.6919 0.5301 0.4380 0.3327 0.2196 0.1459 
12 101.7025 2.4694 0.9715 0.6399 0.4975 0.4157 0.3209 0.2267 01456 
15 87.7041 2.1519 0.8643 0.5812 0.4596 0.3893 0.3064 0.2214 0.1450 

6 6 473 .0088 8.3710 2.3704 1.2212 0.7937 0.5801 0.3725 0.2147 0.1155 
8 344.1031 6.7199 2.0501 1.1076 0.7432 0.5557 0.3677 0.2188 0.1209 
IO 274.6788 5.6923 1.8288 1.0228 0.7028 0.5345 0.3618 0.2206 0.1244 
12 231.2029 4.9839 1.6640 0.9560 0.6693 0.5160 0.3558 0.2212 0.1268 
15 189.6153 4.2494 1.4807 0.8776 0.6282 0.4923 0.3469 0.2209 0.1292 

9 9 570.7337 9.3597 2.5018 1.2409 0.7856 0.5634 0.3526 0.1976 0.1038 
IO 503.3198 8.6441 2.3831 1.2046 0.7721 0.5587 0.3537 0.2007 0.1065 
12 408.6872 7.5323 2.1846 1.1398 0.7462 0.5480 0.3538 0.2049 0.1106 
15 321.5601 6.36785 1.9559 1.0590 0.7109 0.5314 0.3513 0.2086 0.1150 

15 15 660.1046 10.6278 2.6485 1.2572 0.7727 0.5426 0.3302 0.1796 0.0920 
16 661.4791 10.1275 2.5779 1.2391 0.7679 0.5423 0.3325 0.1823 0.0939 
17 612.4841 9.6751 2.5112 1.2212 0.7625 0.5414 0.3342 0.1846 0.0957 
18 570.2190 9.2641 2.4482 1.2035 0.7568 0.5400 0.3355 0.1865 0.9725 
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Table 3.2.8 

Coefficient of Variation of X m,n Using Equation (2b) for Two Parameter Weibull Samples 

---............................................ ~ 

01 n 0.25 0.50 0.75 1.00 1.25 1.50 2.00 3.00 5.00 ............ ............................................................................................................................................................................................................. ......... 
3 3 5.0214 1.4284 0.8685 0.6364 0.5062 0.4219 0.3179 0.2142 0. 1302 

4 6.4408 1.6483 0.9658 0.6961 0.5487 0.4547 0.3404 0.2279 0.1379 
5 7.7775 1.8566 1.0545 0.7489 0.5855 0.4827 0.3592 0.2392 0. 1442 
6 9.0219 2.0532 1.1359 0.7962 0.6180 0.5071 0.3753 0.2487 0 1493 
10 13.2608 2.7460 1.4106 0.9495 0.7198 0.5819 0.4232 0. 2617 0. 1638 
12 15.0603 3.0507 1.5270 1.0119 0.7600 0.6107 0.4411 0.2858 0. 1689 
15 17.4886 3.4709 1.6845 1.0942 0.8119 0.6475 0.4634 0.2979 0.1 750 

6 6 3.7472 1.1170 0.6824 0.4985 0.3947 0.3275 0.2451 0.163 5 0.0984 
8 4.8107 1.3085 0.7767 0.5602 0.4406 0.3640 0.2710 0. 1800 0. 1079 
10 5.8254 1.4822 0.8581 0.6119 0.4782 0.3935 0.2915 0.1928 0. 1152 
12 6.7914 1.6427 0.9304 0.6566 0.5102 0.4183 0.3085 0.2032 0. 1211 
15 8.1564 1.8654 1.0269 0.7147 0.5510 0.4495 0.3297 0.2159 0. 1282 

9 9 3.1943 0.9808 0.6011 0.4386 0.3468 0.2873 0.2144 0.1426 0.0855 
10 3.5099 1.0431 0.6337 0.4607 0.3635 0.3008 0.2242 0.1489 0.0892 
12 4.1289 1.1596 0.6927 0.5000 0.3930 0.324 0.2411 0.1597 0. 0955 
15 5.0370 1.3195 0.7702 0.5502 0.4300 0.3537 0.2618 0. 1727 0. 1030 

15 15 2.4315 0.8441 0.5194 0.3789 0.2992 0.2475 0.1843 0.1222 0.073 1 
16 2.8121 0.8793 0.5387 0.3922 0.3094 0.2559 0.1904 0.1262 0. 0755 
17 2.9758 0.9133 0.5570 0.4048 0.3190 0.2637 0.1961 0.1299 0.0776 
18 3.1389 0.9463 0.5745 0.4167 0.3281 0.2710 0.2014 0.1333 0.0797 
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The Burr Type XII Example with Random Removals 

The fonnulas may also be applied to other than Weibull-distributed lifetimes since the formula 

developed for this research is applicable to any distribution where the moments of the smallest order 

statistic are known. The Burr Type XII distribution is one possible model of lifetime distributed data if the 

lifetime distribution is L-shaped or unimodal. Consider X, a random variable for a Burr Type XII (cl. c) 

lifetime distribution. with cdf given by 

F(x)=l-(xc +1)-d, x>O, c>O.d>O 

and pdf given by 

cdxc-1 
f(x) = , X > 0, C > 0, d > 0 . 

(xc +1/+1 

If X is distributed as Burr Type XII ( d, c) , then the pdf of the first order statistic. . \" 1. n . is 

distributed Burr Type XII (dn,c) and 

(k ) ( k) r - +l r dn- -

E[X(k))= dnB(~+l,dn-~) = c c , k<cd. 
l,n C C f(dn+l) 

Moments of experiment time may be obtained by substituting 

E[X 1,J+n-Rm+I] = d(j + n - Rm + l)B(~ + l.,d(j + n - Rm + 1) - ~) 

if I < cd . in the fonnulas in this section. 
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As an example to illustrate this procedure, expected ex1>eriment times for Burr Type XII-

distributed data are reported in Table 3.2.9 form= 6 and n = 6,8.10,12 . 

This example also illustrates some limitations to using the formulas for expected experiment time 

with Burr Type XII-distributed data. Table 3.2.9 does not appear complete for all values of c and d. This 

is because either 

(a) the expectations E[X1 ;+n-R +I] do not exist when cd ~ 1 (the upper left-hand comer of 
' m 

the table) or 

(b) the expectations E[X1.J+n-Rm+t1 exist, but the gamma function calculations required are 

too large to compute the beta function values necessary (the lower right-hand comer oftl1e 

table) . 
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Table 3.2.9 

E{X m,n] Using Equation (2a) Two Parameter Burr Type XII Samples 

d 

m n C 0.25 0.50 1.00 2.0 5.0 10.0 15.0 ......................................................................................................................................................................................................... 
6 6 0.25 5.8976 0.0444 0.0055 

8 3.0577 0.0240 0.0030 
10 1.9291 0.0155 
12 l.3590 

6 6 0.50 0.7347 0.1125 0.0433 
8 0.4587 0.0738 0.0289 
10 0.3239 0.0537 
12 0.2460 

6 6 1.0 3.4329 0.6879 0.2877 0.1815 
8 2.3639 0.5269 0.2266 0.1441 
IO l.8065 0.4308 0.1886 
12 1.4654 0.3664 

6 6 2.0 4.2522 1.6288 0.7882 0.4551 0.4114 
8 3.1363 l.3475 0.6854 0.4551 0.3642 
10 2.5408 l.1741 0.6164 0.4129 
12 2.1681 1.0541 0.5658 

6 6 5.0 19.5097 3.0980 1.6436 l.1851 0.8984 0.7605 0.6950 
8 11.9097 2.4908 1.4640 1.0982 0.8484 0.7221 0.6610 
10 8.5375 2.1542 l.3512 1.0390 0.8123 0.6937 
12 6.6883 1. 9381 1.2719 0.9948 0.7842 

6 6 10.0 3.1099 1.6831 1.2686 1.0844 0.9460 0.8707 0.8325 
8 2.5109 1.5180 l.1983 1.0439 0.9191 0.8483 0.8117 
10 2.1825 l.4176 l.1520 1.0153 0.8991 0.8313 
12 1.9742 l.3487 l.l 181 0.9934 0.8833 

6 6 15.0 2.0450 1.4032 l.1693 1.0546 0.9632 0.9115 0.8847 
8 1.7836 l.3115 l.1260 1.0282 0.9487 0.8957 0.8698 
10 1.6314 1.2540 1.0969 l.0093 0.9311 0.8837 
12 1.5308 1.2138 1.0754 0.9947 0.9201 
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Fixed Removals 

A Weibull (1,1) Example with m=3 and n=4 

Table 3 .2.10 illustrates the differences between the equations for fixed removals and random 

removals. Consider Type II progressively censored data where m=3 and n=4 from a Weibull (I.I.) 

distribution. 

For fixed removals, using equation ( la), the expected exi>eriment time . E[ X 3_4 J . may be found 

for each of three possible fixed removal schemes: 

(1) if r1 =0.r2 =0,r3 =l , then E[X34 ]= 1.0833, 

(2) if r1 = 0. r2 = 1, r3 = 0 E[X 3 4 ] = 1.5833, and 

(3) if r1 = 1, r2 = 0. r3 = 0. then E[X3_4 ] = 1.7500. 

al . . . 1 
For random remov s, usmg equat10n (2a) , smce P(r1 = 0. r2 = 0. r3 =I)= - . 

4 

P(r1 = 0, r2 = 1, r3 = 0) = .!. , and P(r1 = 1, r2 = 0, r3 = 0) = .!. , the expected experiment time in Table 
4 2 

3.2. lis 

E[X 3 4 ] = .!.1.0833 + }_ 1.0833 + .!.1.0833 = 1.5417. 
4 4 4 

For random removals, using equation (2b ), since P(r1 = 0, r2 = 0. r3 = I) = .!.. . 
3 

1 I . . 
P(r1 = 0. r2 = 1. r3 = 0) = - , and P(r1 = l r2 = 0. r3 = 0) = - . the expected experiment tune value in 

3 3 

Table 2.4.5 is 

I 1 I 
E[X 3 4 ] = -1.0833 + -1.5833 + -1.7500 = 1.4722 

3 3 3 
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Table 3.2.10 

E[X 3 4 ) Using Equations (la), (2a), and (2b) for Weibull (l , l) Samples 

Fixed Removal Schemes Complete Sample E[X IR Ix P(R ) E[X J 
Rankin11 Schemes 3,4 3 3 3,4 

............... ....................... ...................................... P. ... ............................. . .................................... . . .............................................. ................ .. . ... . . .......... . 

r1 = 0, r2 = 0, r3 = 1 R1 = 1, R2 = 2, R3 = 3 1.0833 x 1 = 1.0833 

50 

1.0833 X ..!. = 0.5416 
2 

1 
2.0833 X - = 1.0416 

2 
1 

1.0833 X - = 0.3611 
3 

1 
2.0833 X - = 0.6944 

3 

1 
2.0833 X - = 0.6944 

3 

1.0833 

1.5833 

1.7500 



A Weibull Example with a 50% Fixed Removal Scheme 

A 50% fixed removal scheme which is considered by Montanari. et al. ( 1998) for progressi\ c 

stress tests of electrical breakdown data of Weibull-distributed lifetimes is one example of a fixed remornl 

scheme. The sample is described as "FCFCFC ... " (F=failed and C=censored) , i.e .. alternate items arc 

censored. The equation for experiment time for this fixed removal scheme is given previously as equation 

(la) . 

First and second moments of expected experiment time for this progressive censoring scheme 

may be obtained by noting, as before, that for Type II progressively censored Weibull-distributed data 

E[x<k) I= 8 r l+~ [ lk 

l,j+n-Rm+I (j+n-Rm +1) 1113 ( B) 

and substituting this value in equation (la) . 

Table 3 .2.11 gives expected experiment time values using equation ( la) for progressively 

censored Weibull-distributed lifetimes. Tables 3 .2.12 and 3 .2.13 provide second moments and standard 

deviation values using equation (la). Table 3.2.14 gives coefficients of variation, using equation (la). 

The expected experiment times, standard deviations , and CV s using the 50% censoring 

approach are smaller in comparison to corresponding values where random progressive censoring 

schemes are used. Although the standard deviations of experiment time are smaller with this 50% 

removal scheme than with either of the other two random removal schemes. the standard deviations still 

appear to be large when the value of the shape parameter B is small. 
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Table 3.2.11 

E[X m,nJ/8 Using Equation (la) for Two Parameter Weibull Samples 

... ~ ........ n ......... 0.25 ................. Q:.?..Q .............. .Q:.?.:?. ............ LQQ ........... L?.?. .......... ) :.?..Q .......... .:?::9.9 ........... }:9.9 ............ ?.:Y.l! .. .. .... . 
3 
4 
5 
6 
7 
8 
9 
10 

6 
8 
10 
12 
14 
16 
18 
20 

4.2373 
5.5057 
6 .7208 
7.8895 
9.0172 

10.1085 
11.1669 
12.1954 

1.1806 
1.4410 
1.6693 
1.8735 
2.0587 
2.2285 
2.3857 
2.5322 

0.9642 
1.1273 
1.2626 
1.3785 
1.4799 
1.5702 
1.6517 
1.7260 

0.9167 
1.0417 
1.1417 
1.2250 
1.2964 
1.3589 
1.4145 
1.4645 

0.9052 0.9047 0.9124 0.9301 
1.0084 0 .9932 0.9818 0.9790 
1.0889 1.0610 1.0338 1.0147 
1.1548 1.1158 1.0750 1.0424 
1.2104 1.1616 1.1090 1.0651 
1.2586 1.2009 1.1379 1.0840 
1.3009 1.2352 1.1629 1.1003 
1.3388 l.2657 1.1849 1.1145 

Table 3 .2.12 

E[X~~~] I 8 2 Using Equation (la) for Two Parameter Weibull Samples 

09521 
0.9830 
1.0051 
1.0220 
1.0355 
1.0468 
1.0564 
1.0648 

m n 0.25 0.50 0.75 l.00 l.25 1.50 2.00 3.00 5.00 ........................................................................................................................................................................................................................ ....... 
3 6 470.6783 4.2373 1.6309 1.1806 1.0294 0.9642 0 .9167 0.9047 0.9218 
4 8 626.4022 5.5057 2.0498 1.4410 1.2269 1.1273 1.0417 0.9932 0.9791 
5 10 781.5761 6.7208 2.4321 1.6693 1.3948 1.2626 1.1417 1.0610 1.0214 
6 12 936.2179 7.8895 2. 7851 1.8735 1.5412 1.3785 1.2250 1.1158 1.0545 
7 14 1090.3440 9.0172 3.1140 2.0587 1.6715 1.4799 1.2964 1.1616 1.0817 
8 16 1243.9697 10.1085 3.4227 2.2285 1.7889 1.5702 1.3589 1.2009 1.1045 
9 18 1397.1090 11.1669 3.7140 2.3857 1.8960 1.6517 1.4145 1.2352 1.1242 
10 20 1549.7752 12.1954 3.9902 2.5322 1.9946 1.7260 1.4645 1.2657 1.4150 

Table 3.2.13 

Std.Dev.[X m,n )/8 Using Equation (la) for Two Parameter Weibull Samples 

~ .......,.....,.,.,.,.,,...,,,,.,.,,.,nu·,.,,..,, 

m n 0.25 0.50 0.75 1.00 1.25 1.50 2.00 3.00 5.00 
3 6 21.2773 1.6863 0.8374 0 .5833 0.4582 0.3817 0 .2901 0.1992 0.1239 
4 8 24.4949 1.8518 0.8825 0.5966 0.4584 0.3755 0 .2787 0.1864 0.1132 
5 10 27.1368 1.9835 0.9153 0.6049 0.4573 0.3701 0.2191 0.1773 0.1059 
6 12 29.5631 2.0927 0.9407 0.6101 0.4558 0.3655 0.2634 0.1704 0.1006 
7 14 31.7653 2.1861 0.9612 0 .6148 0 .4542 0 .3615 0.2579 0.1650 0.0964 
8 16 33 .7904 2.2676 0.9783 0.6179 0.4527 0.3580 0.2533 0.1606 0.0931 
9 18 35 .6709 2.3399 0.9928 0.6204 0.4512 0 .3549 0 .2493 0 .1569 0.0904 
10 20 37.4306 2.4049 l.0055 0.6224 0.4498 0.3522 0.2459 0.1537 0.0749 
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Table 3.2.13 

Coefficient of Variation of X m.n Using Equation (la) for Two Parameter Weibull Samples 

________________ ......_ ____________________ _ 
m n 0.25 0.50 0.75 1.00 1.25 1.50 2.00 3.00 5.00 ........................................................................................................................................................................................................................... 
3 6 5.0215 1.4284 0.8686 0.6364 0.5062 0.4219 0.3179 0.2207 0.1302 
4 8 4.4419 1.1981 0.7828 0.5727 0.4546 0.3781 0.2839 0.1904 0.1151 
5 10 4.0377 1.1882 0.7249 0.5298 0.4200 0.3488 0.2614 0.1747 0.1054 
6 12 3.7472 1.1170 0.6807 0.4985 0.3947 0.3275 0.2451 0.1635 0.0984 
7 14 3.5227 1.0619 0.6495 0.4742 0.3753 0.3112 0.2326 0.1549 0.0931 
8 16 3.3428 1.0175 0.6230 0.4547 0.3597 0.2981 0.2226 0.1485 0.889 
9 18 3.1943 0.9808 0.6011 0.4386 0.3468 0.2873 0.2144 0.1426 0.0855 
10 20 3.0692 0.9497 0.5825 0.4250 0.3359 0.2782 0.2075 0.1379 0.0827 
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3.3 Other Approaches 

Percentiles of empirical distributions of experiment time X m.n may also be informati\·e 

regarding total duration oftest-time because of the large standard deviations associated with some 

experiment time values. 

As an example. simulated percentiles of Weibull-distributed progressively censored data when 

B = 0. 50 are reported in Table 3. 3 .1. The empirical distributions of experiment time suggest that these 

distributions are unimodal and positively skewed. For this value of~- the resulting estimates of the 

median experiment time in Table 3.3 .1 are smaller than the expected experiment time values in Table 

3.2.1. 

The percentiles reported in this example are based on 100,000 progressively censored sample 

data sets which are generated using the method ofBalakrishnan and Sandhu (1995) to simulate Type II 

progressively censored samples. 
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Table 3.3.1 

Percentiles of Experiment Time X m,n with Random Removals as in Equation (2a) 

for Two Parameter Weibull Samples* 

Probabili!}'. of a Smaller Value 
......................................... "' 

... m ........ n ........ .l3 .................... o5 ............... }0 ................ 25 ................ . 50 .................. 75 .................. 90 ................... 95 ............. 
3 4 .50 0.1288 0.2410 0.6310 1.6539 4.0482 8.4129 12.8641 

5 0.0855 0.1616 0.4300 1.1709 3.0268 6.8700 I0.8725 
6 0.0629 0.1195 0.3197 0.9010 2.4471 5.8077 9.4738 
10 0.0242 0.0458 0.1280 0.3929 1.2496 3.5483 6.3005 
15 0.0110 0.0213 0.0606 0.1945 0.7101 2.3886 4.7427 

6 8 .50 0.6812 1.0348 2.0193 4.1426 8.2671 14.8500 20.7956 
10 0.5576 0.8614 1.7392 3.6926 7.5368 13 .8782 19.7503 
12 0.4562 0.7145 1.5055 3.2998 6.9064 13 .0665 18.8642 
15 0.3522 0.5747 1.2458 2.8805 6.2912 12.1491 17.7303 

9 10 .50 1.5190 2.1321 3.6636 6.5948 11.7094 19.5408 26.4656 
12 1.4123 1.9831 3.4432 6.2528 11.2372 18.8872 25 .6530 
15 1.2803 1.8166 3.2263 5.9558 10.8085 18.3753 25 .0780 

15 16 .50 2.8653 3.7656 5.8476 9.5378 15.6199 24.5775 32.3516 
17 2.8773 3.7513 5.8128 9.5236 15.5799 24.3834 32.0289 
18 2.8177 3.6833 5.7647 9.4628 15.4950 24.2794 31.9031 

*Simulated percentiles based on 100,000 Type II progressively censored sample data sets 
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3 .4 Conclusion 

The formulas for moments of experiment time of Type II progressively censored data developed 

in this chapter are shown as generalizable to any distribution whose moments of a first order statistic are 

known. Tables generated using the formulas offer design guidance on selecting possible censoring 

schemes and sample sizes which result in shortened experiment times. Tables developed using the 

formula also demonstrate that expected experiment time information should be used cautiously as the 

variability associated with this estimator of experiment time may be large. In such instances. the 

e>.l)erimenter may wish to consider other approaches such as examining the percentiles of an empirical 

distribution of e>.l)eriment time. 
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CHAPTER FOUR 

• RANKING PROGRESSIVELY CENSORED SAMPLES 

TO TEST FOR GOODNESS-OF-FIT 

Assumptions regarding the lifetime distribution of data are often explored using tests for 

goodness-of-fit. This chapter considers correlation-type tests for goodness-of-fit of progressively censored 

data. For small sample sizes, a conditional procedure is described which uses correlations between 

progressively censored sample values and their expected values conditioned on rankings of the 

progressively censored sample values in a complete sample. For all sample sizes, a second method is also 

suggested which employs a function to approximate the rankings of progressively censored data in a 

complete sample for a correlation-type test of goodness-of-fit. Examples are given to illustrate methods 

and applications of these correlation-type goodness-of-fit tests for Type II progressively censored samples. 

4.1 Introduction 

In life-testing experiments, censoring occurs when items are removed from life-test before all 

sample items have failed. Type I (time) censoring denotes censoring schemes where the removals occur at 

pre-specified times. Type II (failure) censoring denotes censoring schemes where the removals coincide 

with failure times of other measured items in the sample. In the instance of single right censoring. the 

experiment ends with a single stage of censoring where only the largest lifetimes are censored. A 

multiply or progressively censored sample occurs in life-testing when sample items are removed from life

test at various stages of an experiment, and the sample items remaining continue until failure or until a 

later stage of censoring. 
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Suppose an experiment begins with a complete sample of n items and ends when m number of 

failure times are observed. Suppose, also, that as the experiment progresses. ri items are removed from 

life-test at times Ti, i = 1,2, ... ,m. Consequently, n -m = r1 + r2 + ... +rm . The resulting m ordered 

uncensored lifetimes, x1,n < x2,n < ... < x m,n, from a complete sample of size n are the progressively 

censored sample. If the removal times, Ti , i = 1,2, ... ,m, are pre-specified times. the sample is a Type I 

progressively censored sample. If the removal times correspond to failure times of sample items x;. 

i = 1.2, .. . ,m , the sample is a Type II progressively censored sample. 

Two correlation-type goodness-of-fit tests for Type II progressively censored data are introduced 

in this chapter. The first test employs a conditional procedure to calculate a correlation test statistic. This 

first test, however, is applicable only to smaller sample sizes because of the ex1ensive computational time 

required to consider all possible ranking schemes. The second test uses a rank function approximation to 

obtain a correlation-type test statistic. The second test is applicable to all sample sizes. 

Both tests are similar in structure to the correlation-type tests for goodness-of-fit introduced by 

Filliben (1974) for complete samples and later adapted to apply to Type II single right censored data by 

Smith and Bain (1976). In this chapter, correlation-type tests are adapted further to apply to Type II 

progressive censoring schemes. 

Examples of the two methods to test for goodness-of-fit of Type II progressively censored data 

are included to more fully illustrate these concepts introduced in this section. 

4.2 A Conditional Method 

Consider a Type II progressively censored sample, X1.n. x 2,n , ... , xm.n, where r1 ,r2 , . .. ,r m are the 

number of removals at each stage of censoring. Suppose it is desired to test Ho: X - F ( x ). where F is a 

specified cumulative distribution function, based on the progressively censored sample. 

In this section, to test for goodness-of-fit of progressively censored data, a test statistic is 

developed which uses the correlation coefficients p(x 1,n , . . . , xm,n ; k1,n , ... ,k m.n I R1 , . . . ,R,,,) where 

58 



xLn , x 2,n , .. . , xm,n are the ordered progressively censored sample values. the values k1.n . k 2.n ... .km.n are 

the corresponding expectations, and R1, R 2, ... ,Rm are the rankings in a complete sample of the ordered 

progressively censored sample values x1,n , x2,n , ... , x m.n . 

The procedure of conditioning on complete sample rankings of an ordered Type II progressi\·el:, 

censored sample is described by Thomas and Wilson ( 1972). If Z 1 < Z 2 < ... <Zn are the n order 

statistics of a complete sample of size n and X l,n < X 2,n < ... < X m,n are them progressively censored 

order statistics of the same complete sample of size n, then ZR; = Xi ,n for some R i. i = l.2 ..... m . 

Thomas and Wilson used this conditional approach to obtain means, variances, and covariances of 

progressively censored order statistics. 

If the complete sample rank Ri of Xi ,n is known, then the expected value ofX, .n is 

k; n = F-1 (Ri l(n + 1) ). The sample correlation test statistic Tis then obtained by summing the sample 

correlations, p(x1,n , ... , xm,n ; k 1,n , ... ,km,n I R1, R 2 , .. Rm) , weighted by the probability of the complete 

sample ranks, P(R1 , R2 , .. -, Rm). By conditioning on R1 , R 2, ... ,Rm , all possible rankings are considered. 

A formula for this goodness-of-fit test statistic of a Type II progressively censored sample 

x1,n , x2,n , ... , x m,n where r1 ,r2 , .. . ,rm are the number of removals at each stage of censoring is given by 

T L P(R1,R2 , .. ,Rm) I ri, r2 , ... ,rm )p(xi, X2 , ... , Xm ;kl , k2 , ... , km I R1 , R2 , ... ,R m) 
allR1 ,R2 , ... ,Rm 

h(m ) h(m-1) h(2) 

L L ··· LP(R1 , R2 ,- .. ,fim lr1.r2 ,···, rm)P(X1 , X2 ,···, Xm;kl , k2 ,, ,.,km IR1 . R 2, .... Rm ) 
Rm =mRm-1=m-l R2=2 

where 

(
rniJ (g + gi\ ), (Rg+I - l)J, g = 2,3, ... ,m- l 

h(g) = '\ 1=! 
m- 1 

m+ Lr, , g=m 
1=! 

and P(R1, R 2 , ... ,Rm) isfoundusingtheidentity 

59 



where 

m 
P(R1,R2 , ... ,Rm) = P(R1)CTP(R; I R1.R2 , ... ,R;-1) 

i=2 

i-1 [ 
n-R; l 

m 
1
~ 1(r1 +1)-R;+l . 

P(R1 = 1) = 1 and P(R; I R1,R2 ,···,Rm) = CT [ _ i · 1 = 2.3 .... . m · 
,=2 n R;-1 

i-1 
I (r1 +l)-R;_1 

J=I 

(Thomas & Wilson . 1972) 

This test for goodness-of-fit requires a null hypothesis, H,,: X - F (X), with a specified 

distribution and specified parameters. Several distributions, however. possess a location-scale structure. 

i.e., the cumulative probability distribution functions (cdfs) are of the form F(x) = G( (x -µ) /cr ). and the 

probability density functions (pdfs) are of the form f ( x ) = ( 1/cr )g ( (x-µ )/cr ). For members of a 

location-scale family, the null hypothesis is a test of a composite form with location and scale parameters 

unspecified. This is because correlation-type tests are invariant to changes in location and scale 

parameters. The exponential, normal, and Type I extreme-value distributions are examples of 

distributions having such location-scale structures. 

The Weibull distribution is not strictly a member of a location-scale family. The parameters for 

a two-parameter Weibull distribution are a shape and scale parameter and not a location and scale 

parameter. So, for instances of two-parameter Weibull-distributed data. the null hypotl1esis of a 

correlation-type test of goodness-of-fit is of a composite form with respect to the shape parameter only. 

When analyzing Weibull-distributed data, however. it is often more convenient to work with 

Type I extreme value distributions. The "Type I" in the name Type I extreme value distribution is in 

reference to one of three possible types of the asymptotic distributions of the smallest order statistic and 

not a reference to time censoring. The Weibull distribution is directly related to tl1e Type I extreme value 

distribution in that if X is a Weibull random variable with shape parameter ~ and scale parameter 8 . 

tl1en Y = log ( X ) is a Type I extreme value random variable with location parameter µ = log 8 and 
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scale parameter cr = l I 13. Therefore, if the assumed distribution is a two parameter Weibull distribution. 

the e>..l)erimenter has the option to test a null hypothesis of (1) the life-times are two-parameter Weibull

distributed with a specified shape parameter and unspecified scale parameter or (2) the log-lifetimes are 

extreme-value distributed with no parameters specified. 

The test procedures in this chapter use special tables of percentiles of the test statistic T which 

are obtained by Monte Carlo simulations. Different simulated table percentile values are necessary for 

different combinations of removal schemes and values of m and n. The algorithm ofBalakrishnan and 

Sandhu (1995) is used to simulate 10,000 sets of progressively censored sample data. For each set. T is 

calculated. and the percentiles of Tare reported. For a censored sample, the test statistic T is compared to 

percentile values of T for specified values of m, n, and the given removal scheme. The null hypothesis 

is rejected for small values of T . A program used to calculate the test statistic and the corresponding 

percentile values appears in the Appendix 

Some examples are illustrated here. 

Examples 

The Thomas and Wilson Example - An Illustration of the Necessary Computations 

The following example illustrates the computations required in calculating the test statistic T for 

a test of goodness-of-fit test using the data of Thomas and Wilson ( 1972). The sample data of Thomas 

and Wilson (1972) consist of a simulated progressively censored sample of Weibull-distributed data. The 

log-times of the data and the removal scheme are reported in Table 4.2.l. Since lifetimes are Weibull

distributed, the log-times to failure are Type I extreme value-distributed. Therefore, the null hypothesis 

considered is Ho : X - F(x) = l-e>..1>{-e>..1>[(x- µ) I ab , - oo < x < oo. cr > 0 . and, 

Table 4.2.2 shows possible complete sample rankings, R1, R2, R3, R4, R5 , their probabilities. P( 

R1, R2, R3, R4, R5 ). and corresponding correlations, 
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p(x1,10, .. . ,x5,10;k1,10 ,··· , ks,10 I R1 ,R2 , .. R5) . 

T is calculated by summing the sample correlations weighted by the probabilities. In this example. T = 

0.9744. For this removal scheme, the simulated percentile values of T are reported in Table 4.2.3. When 

T = 0.9744, Table 4.2.3 shows a significance level for the test between 0.75 and 0.90 as 

0.9712 < 0.9744 < 0.9812 

62 



Table 4.2.1 

Log-Times ofa Progressively Censored Sample by Thomas and Wilson 

XJ = 0.35 x2 = 2.50 X3 = 3.81 x.i=4.19 X5 = 4.86 --------------
r1 = 0 r2 = 3 r3 = 0 r4 = 0 r5 = 2 ...................... """"" ................................. "' ................................ 

Table 4.2.2 

Conditional Probabilities and Correlations Used in Calculating the Test Statistic T 

for the Progressively Censored Sample by Thomas and Wilson 

....................................................... 

R1 R2 R3 R4 Rs P( R1, R2, R3, R4, R5) p(Xi, .. . , X5; kl , ... , k5) 
---~-------------------------

2 3 4 5 0.1785714 0.9912336 
2 3 4 6 0.1071429 0.9764191 
2 3 5 6 0.1071429 0.9711818 
2 4 5 6 0.1071429 0.9903400 
2 3 4 7 0.0535714 0.9555094 
2 3 5 7 0.0535714 0.9602282 
2 4 5 7 0.0535714 0.9843209 
2 3 6 7 0.0535714 0.9505764 
2 4 6 7 0.0535714 0.9831560 
2 5 6 7 0.0535714 0.9320347 
2 3 4 8 0.0178571 0.9439653 
2 3 5 8 0.0178571 0.9712894 
2 4 5 8 0.0178571 0.9420170 
2 4 6 8 0.0178571 0.9724934 
2 5 6 8 0.0178571 0.9812810 
2 3 7 8 0.0178571 0.9316549 
2 4 7 8 0.0178571 0.9642552 
2 5 7 8 0.0178571 0.9763856 
2 6 7 8 0.0178571 0.9744436 

Table 4.2.3 

Percentiles of the Test Statistic T for Progressively Censored Extreme Value-Distributed Lifetimes 

with Removals 'i = O,r2 = 3, r3 = O,r4 = O,r5 = 2 * 

Approximate Probabilitx of a Smaller Value 

... .'P. ................. n .................. :.9..~ ................ 05 ............... .10 ............. .-25 ............. .-50 ............. : 75 ................ 90 ............. : 95 .............. : 99 ........... . 
5 IO 0.8188 0.8703 0.8966 0.9300 0.9544 0.9712 0.9812 0.9854 0.9900 

* Simulated percentiles based on 10,000 Type II progressively censored sample data sets 
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The Nelson Example - An Illustration of a Test of Goodness-of-Fit of the Type I Extreme Value 

Distribution 

The following is a simulated Type II progressively censored sample of times to breakdown of 

insulating fluid tests by 34 kilovolts, attributed to Nelson ( 1982), cited in Viveros and Balakrishnan 

( 1984 ). In the Nelson sample, eight sample items are fully measured from a complete sample of nineteen 

subjected to Type II progressive censoring. Table 4.2.4 reports the log-times of the progressively censored 

sample data and removal scheme of Nelson. 

Suppose a test of goodness-of-fit test is considered where X is the log-time to failure and the null 

hypothesis is 

Ho: X - F(x) = 1-exp{-exp[(x- µ) I ab, -oo < x < oo, cr > 0. 

log-times to failure are Type I extreme value-distributed. Letting ki = 1n{-1n( 1- nR: 1)} . the test 

statistic T = 0.9839 for the Nelson data. 

Simulated percentile values of Tare shown in Table 4.2.5. The information in Table 4.2.5 

indicates a significance level between 0.90 and 0.95 as 0.9830 < 0.9839 < 0.9860. A large significance 

level was expected because the Nelson data is a simulated sample of Weibull-distributed lifetimes 

subjected to Type II progressive censoring. 
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Table 4.2.4 

Log-Times to Breakdown of a Progressively Censored Sample of Insulating Fluid 

Tested by 34 Kilovolts by Nelson 

... x1=-l .6608 ......... x2=-.2485 ....... x3.= .-.0409 ....... "4 = .. 2700 ...... x5=1.0224 ..... Xo=l.5789 ..... x1= l.8718 ...... x8=_1.9947_ 
r1 = 0 r3 = 3 rs= 3 

Table 4.2.5 

Percentiles of the Test Statistic T for Progressively Censored Extreme Value-Distributed Lifetimes 

with a Removals r1 = O,r2 = O,r3 = 3,r4 = O.r5 = 3,r6 = O,r7 = O, r8 = 5 * 

Aeproximate Probabili~ of a Smaller Value 

m n .01 .05 .10 .25 .50 .75 .90 .95 .99 
8 19 0.8432 0.8910 0.9114 0.9402 0.9615 0.9750 0.9830 0.9860 0.9902 

* Simulated percentiles based on 10,000 Type II progressively censored sample data sets 
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The Herd Example - An Illustration of a Test of Goodness-of-Fit of the Weibull Distribution 

The ne>..'1 example of Type II progressively censored data is given by Herd (1956) . In the life-

testing experiment described by Herd, eleven gyroscopes are placed on life-test. Three are removed from 

the life-test at the first failure time, two are removed at the second failure time. two are removed at the 

third failure time, and the remaining gyroscope is allowed to continue on life-test until failure . The 

progressively censored sample values of Herd (1956) and the removal scheme are given in Table 4.2.6. 

For the data in Table 4.2.6, Herd (1956) considered the problem of estimating the mean lifetime 

of gyroscopes assuming the lifetime to be exponentially distributed ( or Weibull with a shape parameter 

p= l ). Consider, instead, the problem of testing the assumption that the lifetimes of the gyroscopes are 

Weibull-distributed with a specified shape parameter. The null hypothesis of the test is then 

Ho X - F( x) = I - exp{-( i r } , x > 0, 9 > 0, and ~ = ~ 0 , and the test statistic T is calculated using 

the progressively censored sample values x1, x2 , x3 x 4 and k1 = -1 1- - 1- • i = l.2.3.4 . . l { R ] 
' Po n + l 

Table 4.2.7 reports percentile values of Tfor specified values of p. Table 4.2.8 reports 

calculated values of the test statistic T for the same specified values of P and their corresponding OSL 

values. In the case where p =I , Table 4.2.8 indicates a significance level between 0.75 and 0.90. 

Therefore, an assumption of exponential lifetimes of gyroscopes would not seem unreasonable based on 

the progressively censored sample values by Herd. 

In modeling Weibull-distributed data. the failure rate of the random variable may also be 

examined. Values of the shape parameter p < 1 indicate a declining failure rate. values of ~ > 1 indicate 

an increasing failure rate, and values of p = l indicate a constant failure rate. Examining the OSL values 

in Table 4.2.8, the tests show a near constant or increasing failure rate for lifetimes of gyroscopes rat11er 

than a declining one. This example illustrates how the goodness-of-fit tests may be employed to examine 

failure rate. 

66 



Table4.2.6 

Lifetimes of a Progressively Censored Sample by Herd 

.... x1=34 ............................................. x2.= .. l 13 ........................................ x3 =}69 ........................................ x.i. =23.7. .................................... . 
r1 = 3 r2=2 

Table 4.2.7 

Percentiles of the Test Statistic T for Progressively Censored Weibull-Distributed Lifetimes 

with Removals r1 = 3,r2 = 2,r3 = 2,r4 = 0 * 

Approximate Probability of a Smaller Value 

m n Q .01 .05 .10 .25 .50 .75 .90 .95 .99 
4 11 0.25 0.7236 0.8599 0.9500 0.9808 0.9815 0.9860 0.9917 0.9933 0.9939 

0.50 0.8056 0.8751 0.9264 0.9317 0.9469 0.9689 0.9816 0.9840 0.9869 
0.75 0.8232 0.8859 0.8922 0.9096 0.9384 0.9659 0.9778 0.9820 0.986 1 
1.00 0.8310 0.8689 0.8798 0.9042 0.9387 0.9648 0.9773 0. 9821 0.9866 
1.25 0.8336 0.8587 0.8750 0.9050 0.9410 0.9643 0.9780 0.9827 0.9875 
1.50 0.8271 0.8535 0.8728 0.9073 0.9420 0.9646 0.9785 0.9836 0.9878 
2.00 0.8161 0.8494 0.8712 0.9107 0.9440 0.9662 0.9797 0.9849 0.9892 
3.00 0.8095 0.8488 0.8747 0.9158 0.9474 0.9690 0.9821 0.9867 0. 9900 
5.00 0.8019 0.8492 0.8771 0.9203 0.9502 0.9716 0.9837 0.9877 0.9911 

* Simulated percentiles based on 10,000 Type II progressively censored sample data sets 

Table 4.2.8 

Values of the Test Statistic Tfor the Progressively Censored Sample by Herd 

m n Pa T Observed 
Calculated Significance 

Level 
(OSL) 

4 11 0.25 0.8415 O.Ol <OSL<0.05 
0.50 0.9175 0.05<0SL<O. l 0 
0.75 0.9517 0. 50<0SL <O. 7 5 
1.00 0.9680 0.75<0SL<0.90 
1.25 0.9765 0.75<0SL<0.90 
1.50 0.9815 0.90<0SL<0.95 
2.00 0.9865 0.95<0SL<0.99 
3.00 0.9901 0.99<0SL 
5.00 0.9917 0.99<0SL 
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The Montanari, et al. Example- A Comparison of Specified versus Unspecified Parameters 

The next example employs the 50% removal scheme considered by Montanari. et al. ( 1998). In 

this 50% removal scheme, a live item is removed from life-test at each failure time, i.e., 

r1 = l,r2 = l, ... ,rm = 1 and m = 50% n. The censoring scheme is described as "FCFCFC ... (F=failed. 

C=censored)". Suppose a goodness-of-fit test for small Type II progressively censored samples is 

considered where the number of items progressively censored in this manner. 

Two approaches are outlined to test for goodness-of-fit. The first is a test that the data is 

Weibull-distributed with the value of the shape parameter specified; the second is that the log-lifetimes of 

the data is Type I Extreme Value-distributed with no parameters specified. Either of the following two 

tests of goodness-of-fit may be considered: 

(I) H.,c X - F(x) = I - exp{-(* r} , x > 0, 0 > 0, ~ = ~ 0 , Hfetimes are Weibull-distributed 

with the shape parameter J3 specified. Using k; = - 1-lJl- ~ ]. the test statistic Tis 
~o 'l (n + 1) 

calculated for the sample values and the removal scheme r1 = l, r2 = l, ... ,rm = I . 

(2) Ho: X - F(x) = 1- exp{-exp[(x - µ)lo} , - oo < x < oo, cr > 0, log-lifetimes are Type I 

extreme value-distributed and parameters are unspecified. Using 

k · = 1n{-1n(1 - ~)} the test statistic T is calculated for sample values and the 
I (n + 1) , 

removal scheme 1j = 1, r2 = 1, .. . ,rm = 1. 

The calculated value of the test statistic is compared to table percentile values of the test statistic. 

The null hypothesis is rejected for small values of T . Table 4.2.9 provides percentiles oftl1e test 

statistic T for case (1). Table 4.2.10 provides percentiles values for case (2). 
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Table 4.2.9 

Percentiles of the Test Statistic T for Progressively Censored Weibull-Distributed Lifetimes 

with Removals r, = l,r2 = I, ... ,rm = 1 * 

Approximate Probabiliry of a Smaller Value 

m n ~ .01 .05 .10 .25 .50 .75 .90 .95 99 
---·-···--···· 

3 6 0.25 0.5973 0.7347 0.8560 0.9849 0.9953 0.9965 0.9978 0.9981 0.9982 
0.50 0.6996 0.7760 0.8490 0.9662 0.9745 0.9862 0.9912 0.9921 0.9924 
0.75 0.7554 0.8038 0.8606 0.9410 0.9627 0.9822 0.9887 0.9897 0. 9900 
1.00 0.7886 0.8280 0.8728 0.9281 0.9587 0.9809 0.9879 0.9890 0.9893 
1.25 0.8090 0.8421 0.8799 0.9221 0.9566 0.9805 0.9878 0.9889 0.9892 
1.50 0.8234 0.8519 0.8864 0.9180 0.9554 0.9805 0.9877 0.9888 0.9892 
2.00 0.8404 0.8646 0.8836 0.9148 0.9553 0.9809 0.9881 0.9892 0.9895 
3.00 0.8589 0.8697 0.8810 0.9139 0.9556 0.9810 0.9885 0.9896 0. 9899 
5.00 0.8529 0.8704 0.8816 0.9135 0.9566 0.9820 0.9890 0.9901 0.9904 

4 8 0.25 0.6809 0.7570 0.8412 0.9654 0.9862 0.9903 0.9933 0.9941 0.9944 
0.50 0.7134 0.8064 0.8484 0.9379 0.9584 0.9751 0.9827 0.9843 0.9859 
0.75 0.7382 0.8421 0.8710 0.9179 0.9500 0.9701 0.9779 0.9812 0.9838 
1.00 0.7571 0.8580 0.8796 0.9119 0.9463 0.9672 0.9845 0.9809 0.9838 
1.25 0.7766 0.8598 0.8827 0.9133 0.9457 0.9657 0.9770 0.9809 0.9841 
1.50 0.7870 0.8569 0.8818 0.9140 0.9455 0.9652 0.9771 0.9813 0.9846 
2.00 0.8086 0.8575 0.8824 0.9169 0.9458 0.9660 0.9784 0.9823 0. 9855 
3.00 0.8128 0.8577 0.8859 0.9220 0.9468 0.9670 0.9793 0.9831 0.9863 
5.00 0.8138 0.8563 0.8844 0.9207 0.9474 0.9678 0.9804 0.9843 0.9873 

5 10 0.25 0.6987 0.7800 0.8413 0.9528 0.9771 0.9842 0.9888 0.9898 0.9903 
0.50 · 0.7369 0.8311 0.8598 0.9209 0.9486 0.9680 0.9763 0.9788 0.9812 
0.75 0.7619 0.8531 0.8805 0.9104 0.9436 0.9629 0.9726 0.9761 0.9796 
1.00 0.7911 0.8586 0.8828 0.9136 0.9430 0.9619 0.9722 0.9756 0. 9798 
1.25 0.8000 0.8559 0.8824 0.9176 0.9438 0.9624 0.9725 0.9761 0.9807 
1.50 0.8173 0.8613 0.8867 0.9193 0.9442 0.9626 0.9723 0.9766 0.9814 
2.00 0.8120 0.8664 0.8897 0.9217 0.9467 0.9637 0.9735 0.9778 0.9828 
3.00 0.8116 0.8654 0.8909 0.9215 0.9472 0.9636 0.9744 0.9790 0.9839 
5.00 0.8120 0.8683 0.8923 0.9238 0.9485 0.9651 0.9757 0.9802 0 9853 

6 12 0.25 0.7162 0.7955 0.8433 0.9465 0.9697 0.9793 0.9846 0.9859 0.9866 
0.50 0.7557 0.8434 0.8729 0.9143 0.9447 0.9645 0.9725 0.9755 0.9781 
0.75 0.7928 0.8577 0.8826 0. 9119 0.9422 0.9607 0.9700 0.9733 0.9772 
1.00 0.8157 0.8644 0.8867 0.9178 0.9439 0.9609 0.9697 0.9733 0.9777 
1.25 0.8180 0.8681 0.8906 0.9216 0.9447 0.9615 0.9705 0.9743 0.9789 
1.50 0.8207 0.8715 0.8935 0.9234 0.9465 0.9618 0.9711 0.9748 0. 9798 
2.00 0.8260 0.8759 0.8980 0.9270 0.9487 0.9633 0.9721 0.9758 0. 9807 
3.00 0.8304 0.8789 0.8988 0.9281 0.9498 0.9644 0.9734 0.9774 0.9826 
5.00 0.8261 0.8760 0.9006 0.9290 0.9510 0.9655 0.9747 0.9789 0. 9840 
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Table 4.2.9 Continued 

Percentiles of the Test Statistic T for Progressively Censored Weibull-Distributed Lifetimes 

with Removals r1 = 1, r2 = l, ... ,rm = 1 * 

Approximate Probabili!J of a Smaller Value 
"''"''""""' ..................................................... 

m n p .01 .05 .10 .25 .50 .75 . 90 .95 .99 ---------------··-----········ 
7 14 0.25 0.7282 0.8080 0.8553 0.9362 0.9626 0.9748 0.9810 0.9825 0.9835 

0.50 0.7699 0.8397 0.8754 0.9086 0.9422 0.9618 0.9708 0.9731 0.9760 
0.75 0.8100 0.8568 0.8826 0.9179 0.9418 0.9598 0.9687 0.9724 0. 976() 
1.00 0.8152 0.8706 0.8903 0.9188 0.9438 0.9609 0.9694 0.9720 0.9766 
1.25 0.8357 0.8704 0.8938 0.9250 0.9463 0.9621 0.9708 0.9740 0. 9782 
1.50 0.8395 0.8826 0.9048 0.9291 0.9483 0.9614 0.9702 0.9737 0.9797 
2.00 0.8474 0.8880 0.9105 0.9331 0.9528 0.9649 0.9726 0.9758 0.9802 
3.00 0.8421 0.8825 0.9018 0.9316 0.9520 0.9656 0.9735 0.9773 0.9824 
5.00 0.8395 0.8884 0.9060 0.9345 0.9540 0.9671 0.9750 0.9780 0.9824 

8 16 0.25 0.7557 0.8290 0.8634 0.9410 0.9582 0.9722 0.9781 0.9793 0.9810 
0.50 0.7876 0.8582 0.8833 0.9092 0.9399 0.9601 0.9681 0.9708 0.9746 
0.75 0.8171 0.8649 0.8876 0.9178 0.9424 0.9589 0.9686 0.9712 0.9747 
1.00 0.8367 0.8692 0.8925 0.9216 0.9443 0.9599 0.9685 0.9722 0.9758 
1.25 0.8302 0.8849 0.9031 0.9286 0.9492 0.9634 0.9711 0.9739 0.9772 
1.50 0.8402 0.8884 0.9079 0.9308 0.9503 0.9631 0.9715 0.9746 0.9786 
2.00 0.8451 0.8911 0.9144 0.9374 0.9539 0.9660 0.9723 0.9754 0.9806 
3.00 0.8521 0.8947 0.9157 0.9379 0.9556 0.9674 0.9755 0.9784 0. 9828 
5.00 0.8454 0.8962 0.9182 0.9401 0.9576 0.9690 0.9760 0.9789 0. 9834 

9 18 0.25 0.7291 0.8323 0.8644 0.9347 0.9551 0.9686 0.9753 0.9770 0.9787 
0.50 0.7809 0.8598 0.8809 0.9081 0.9410 0.9581 0.9664 0.9695 0.9730 
0.75 0.8337 0.8659 0.8876 0.9171 0.9416 0.9593 0.9678 0.9708 0.9742 
1.00 0.8367 0.8722 0.8953 0.9261 0.9471 0.9611 0.9688 0.9721 0.9762 
1.25 0.8297 0.8826 0.9041 0.9298 0.9499 0.9615 0.9692 0.9732 0.9777 
1.50 0.8486 0.8922 0.9120 0.9346 0.9517 0.9652 0.9724 0.9749 0.9793 
2.00 0.8628 0.8990 0.9184 0.9397 0.9572 0.9676 0.9741 0.9770 0.9805 
3.00 0.8731 0.9010 0.9190 0.9415 0.9576 0.9697 0.9762 0.9792 0. 9834 

* Simulated percentiles based on 10,000 Type II progressively censored sample data sets 
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Table 4.2.10 

Percentiles of the Test Statistic T for Progressively Censored Type I Extreme Value-Distributed 

Lifetimes with a Removals r1 = 1, r 2 = 1, ... , rm = 1 * 

Ap_eroximate Probabili12'. of a Smaller Value 

m n .01 .05 .10 .25 .50 .75 .90 .95 .99 ........................................................................................................................................................................................................................ 
3 6 0.8289 0.8574 0.8896 0.9264 0.9643 0.9887 0.9958 0.9969 0.9973 
4 8 0.7988 0.8667 0.8913 0.9229 0.9550 0.9751 0.9871 0.9910 0.9943 
5 10 0.8098 0.8675 0.8922 0.9276 0.9540 0.9723 0.9828 0.9869 0.9919 
6 12 0.8279 0.8759 0.8999 0.9323 0.9555 0.9719 0.9809 0.9849 0.9900 
7 14 0.8290 0.8830 0.9057 0.9355 0.9572 0.9720 0.9806 0.9843 0.9890 

* Simulated percentiles based on 10,000 Type II progressively censored sample data sets 
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4. 3 A Second Method 

The examples in Section 4.2 demonstrate that a conditional method of correlation-type goodness-

of-fit tests may be employed for instances of small progressively censored samples. For larger sample 

sizes, the conditional method is not practical because of the extensive computational time required in 

considering all the possible ranking schemes. Therefore, a second correlation-type goodness-of-fit test is 

suggested in which is applicable to all sample sizes. 

An alternative to conditioning on all possible complete sample rankings is to approximate the 

complete sample ranks R; , i = 1,2, ... , m , of the progressively censored sample using a mean rank 

estimator l(i) , which is a function of the total number of failed and censored sample items at the time of 

the ith failure. The resulting second correlation-type test statistic then consists of only a single correlation 

between sample values x; and approximate expected values and not the many correlations and associated 

probabilities required of the conditional test. 

Johnson (1964) provides a detailed example of calculating the function l(i) which is referred to 

in the article as the "mean order number" for an "incomplete test" which has "suspended items" . 

O'Connor (1981) further describes graphical tests of goodness-of-fit with Q-Q probability plots which rely 

on similar rank estimates of complete sample rankings. Mean rank and median rank functions are 

suggested by O'Connor (1981). The rank function l(i) considered in this section is the mean rank 

function defined by 

l . n+l-J(i-1) . 
]( .)- ](1-l)+ , I= 1,2,. . ., m 

1 - n+2- C; 
0 , i =0 

where C; is the total number of measured and censored lifetimes at the time of the ith failure of the 

progressively censored sample. 

To test for goodness-of-fit using the second method, then. let X1.n < x 2.n < .. . < x 111.n be a Type II 

progressively censored sample with r1• r2 •...• rm number of removals at each stage of censoring. Consider 
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a null hypothesis Ho : X - F ( x ) based on the progressively censored sample and a test statistic T' 

such that 

where p is the sample correlation between the progressively censored sample values. x1• x 2 • ... xm and 

i-1 
£ 1,£ 2 , ... , f m , fi =F-1(J(i)/(n+l)), and where C; = L,r; +i . 

i = 1 

The Thomas and Wilson Example - An Illustration of the Necessary Computations 

Consider again the data in Table 1 of Thomas and Wilson ( 1972) and a test that the log-

lifetimes of the Type II progressively censored data are Type I extreme value-distributed . For the five 

progressively censored lifetimes given in Table 4.3.1 with removal scheme r1 = 0. r2 = 3, r3 = 0. 

r4 = 0, r5 = 2 , the approximations of their complete sample ranks J(i) , i = 1.2, ... ,5 . using the rank 

function I (i ) are shown in Table 4. 3 .1. 

Letting £; = 1n{-1n(1-~)} , the statistic for the test is 
(n+l) 

T' = p(xuo , x2,10 , ... , xs,10 ; £ 1.10 , £ 2.10 , ... ,£ s,10) = 0.9819. 

Table 4.3 .2 shows the significance level for the test is between 0.75 and 0.90 as 0 .9785 < 0. 98 19 < 

0.9887. This result is similar to the finding using the conditional method. 
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m n r· I 

Table 4.3 . l 

Rank Estimates for the Progressively Censored Sample by 

I (i -1) 

Thomas and Wilson 

n+l-J(i-1) n+l-l(i-1) 
J(i)=l(i-l) +----

n+2-Ci n+2- C1 ....................................................................................................................................................................................................................................... 
5 10 0 0 1 

2 3 1 2 1 2 
3 0 2 6 1.5 3.5 
4 0 3.5 7 1.5 5 
5 2 5 8 1.5 6.5 

Table 4.3.2 

Percentiles of the Test Statistic T' for Progressively Censored Extreme Value-Distributed Lifetimes 

with the Removals r1 = 0, r2 = 3, r3 = 3, r4 = 0, r5 = 2 

Approximate Probabili!): of a Smaller Value 

m n .01 .05 .10 .25 .50 .75 .90 .95 .99 
5 10 0.8275 0.8758 0.9015 0.9368 0.961 0.9785 0.9887 0.9927 0.9974 

* Simulated percentiles based on 10,000 Type II progressively censored sample data sets 
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The Cohen Example - An Illustration with Large Progressively Censored Samples 

Cohen ( 1975) provides an example of a Type II progressively censored sample consisting of 68 

items from a complete sample of 100 items. Ten items from the sample are removed at the sixth failure 

time, fifteen items are removed are the fortieth failure time, and the experiment ends at the sixty-eight11 

failure time at which time the seven remaining items were removed. Therefore, r6 = 10. r40 = 15. r6~ = 7. 

and otherwise ri = 0, i = 1,2, ... ,68 . The lifetimes reported by Cohen are given in Table 4.3.3 . These 

lifetimes are from a simulated Type II progressively censored sample from a three-parameter Weibull 

distribution with location parameter y = 100, shape parameter B = 2. and scale parameter 8 = 100. 

To test that the data in Table 4.3.3 is Weibull-distributed with the value of the shape parameter 

specified, the null hypothesis for the test is in the form 

lifetimes are Weibull-distributed with shape parameter B =Bo. Using £; = -1-1{1-~i- tl1e test 
Bo (n+l) 

statistic T' is then calculated and compared to simulated table percentile values in Table 4.34. For the 

Cohen data, if B = 2 .0, then T' = 0.9973 and 0.90 < OSL < 0.95 . 
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Table 4.3.3 

Lifetimes of a Progressively Censored Sample by Cohen 

X1 =109.12 X11 = 130.53 X21 = 144.09 X31 =158.31 x.i1 =177.19 X51 =198.11 ~ I =222 . 11 
x2=113 .37 X12=131.98 X22 =148.83 X32 =158.92 x.i2 =180.57 X52 =199.23 X6: =22-l .83 
X3 =117.73 X13 =133 .14 X23 =150.23 X33 =160.13 >..t3 =181.99 X53 =203 .27 X6, =227 .27 
x.i =119.56 X14 =134.52 X24 =150.79 X34=161.31 X44 =184.02 X54 =206.55 X64 =230.88 
X5=119.82 X15 =135.73 Xz5 =151.88 X35 =162.09 x.i5 = 185.43 X55 =208.76 X6s =235. l-l 
x6 =124.63 X1 6 =136.71 X26 =153 .07 X36 =165.45 x.i6 =187.21 X56 =210.69 X66 =237.43 
X7=125 .21 X17 =137.88 X27 =154.18 X37 =166.62 x.i1 =189.77 X 51 =213 .32 X6, =246 .08 
Xs =126 .93 Xis =138.63 X2s =154.97 X3s =168.23 >..is = 191.63 X5s =215 .08 X68 =24935 
X9=128.25 X19 =141.11 X29 =155.26 X39 =169.98 >..t9 =194.88 X59 =218.43 
X1 0=129.41 Xzo =142.33 X30 =156.82 x.io =174.22 X50 =196.91 X6o =219.37 

Table 4.3.4 

Percentiles of the Test Statistic T' for Progressively Censored Weibull-Distributed Lifetimes 

with the Removal Scheme used by Cohen* 

Approximate Probabili!J of a Smaller Value 

m n B .01 .05 .10 .25 .50 .75 .90 .95 .99 
68 100 2.0 0.9812 0.9868 0.9893 0.924 0.9947 0.9962 0.9972 0.9977 0.9983 

* Simulated percentiles based on 10,000 Type II progressively censored sample data sets 
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The Montanari Example - An Illustration of a Test of Goodness-of-Fit for a Fixed 50% RemoYal 

Scheme 

Estimating the rank Ri with the mean rank function I (i) also allows tests of goodness-of-fit for 

the larger values of n . An example of a large sample test is next considered for the 50% removal 

scheme used by Montanari, et al . (1998). Percentiles of the test statistic T' for a null hypothesis that the 

data is Type I extreme-value distributed are provided in Table 4.3.5. 
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Table 4.3.5 

Percentiles of the Test Statistic T' for Progressively Censored Extreme Value-Distributed 

Lifetimes with Removals r1 = 1, r2 = 1, ... , rm = 1 * 

Approximate Probabili!Y of a Smaller Value ............... ......_ ...................................................................... 

m n .01 .05 .10 .25 .50 . 75 .90 .95 .99 ___________ .... _________ ._ __ .__.__ .. ._ ______ ._ .................. _ ............................................................... 
3 6 0.8371 0.8656 0.8954 0.9281 0.9668 0.9916 0.9987 0.9997 0. 9999 
4 8 0.8046 0.8709 0.8956 0.9301 0.9606 0.9807 0.9921 0.9958 0.9992 
5 10 0.8173 0.8705 0.8949 0.9317 0.9591 0.9774 0.9873 0.9920 0.9972 
6 12 0.8265 0.8797 0.9037 0.9368 0.9617 0.9779 0.9869 0.9908 0.9962 
7 14 0.8403 0.8873 0.9104 0.9400 0.9629 0.9777 0.9864 0.990 1 0.9951 -
8 16 0.8445 0.8943 0.9155 0.9451 0.9660 0.9791 0.9869 0.9904 0.9948 
9 18 0.8546 0.8987 0.9206 0.9472 0.9667 0.9796 0.9871 0.9900 0.9941 
IO 20 0.8530 0.9011 0.9245 0.9509 0.9692 0.9806 0.9875 0.9902 0.9941 
20 40 0.8930 0.9310 0.9478 0.9665 0.9791 0.9863 0.9906 0.9924 0 9948 
30 60 0.9089 0.9465 0.9595 0.9745 0.9840 0.9895 0.9927 0.9941 09958 
40 80 0.9192 0.9525 0.9659 0.9790 0.9868 0.9912 0.9938 0.9949 0.9965 
50 100 0.9291 0.9591 0.9699 0.9818 0.9885 0.9924 0.9946 0.9956 0.9969 
100 200 0.9529 0.9727 0.9806 0.9884 0.9929 0.9953 0.9967 0.9972 0.9804 

.............................................................. """'' ' ....... ' ' ' 

* Simulated percentiles based on 10,000 Type II progressively censored sample data sets 
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4.4 Power 

In application, the power of a goodness-of-fit test should also have to be investigated. For 

progressively censored data, these tests may exhibit different power depending on the different 

combinations of removal schemes and values of m and n. 

For each combination of removal schemes and values of m and n test statistic selected. the power 

of these tests of goodness-of-fit may be examined by generating random samples in the simulation 

program from an alternative distribution instead of the hypothesized distribution. The power is then 

estimated by the proportions of values from the alternative distribution which are less than percentile 

values from the tables of the hypothesized distributions. 

In practice, a researcher must performs power studies specific to the test statistic removal 

scheme. and values of m and n. For a hypothesized distribution, many alternative distributions would also 

have to be examined. A small illustration of how one such study might begin follows. 

As an example of investigating power, consider the test statistic T' and the 50% removal scheme 

used by Montanari, et al. (1998). Table 4.4.1 reports the power of the test to detect a nonnal alternative 

distribution if the assumed distribution is the Type I extreme value distribution. 
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Table 4.4.l 

Power of the Goodness-of-Fit of an Extreme Value Distribution against 

a Normal Distribution for Progressively Censored Lifetimes 

with Removals r1 = 1,r2 = I, ... ,rm = 1 Using T'* 

Nominal Si~cance Level of a Test 
m n .01 .05 .10 ............................................................................................................................................................................................... .. .. .................................... 

3 6 0.0121 0.0600 0.1280 
4 8 0.0164 0.0738 0.1254 
5 10 0.0199 0.0667 0.1161 
6 12 0.0206 0.0686 0.1209 
7 14 0.0199 0.0699 0.1301 
8 16 0.0209 0.0780 0.1345 
9 18 0.0188 0.0721 0.1351 

10 20 0.0138 0.0691 0.1430 
20 40 0.0120 0.0804 0.1723 
30 60 0.0097 0.1116 0.2286 
40 80 0.0107 0.1257 0.2956 
50 100 0.0101 0.1537 0.3288 

100 200 0.0318 0.3182 0.5935 

* Simulated proportions based on 10,000 Type II progressively censored sample data sets 
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4.5 Conclusion 

In instances of Type II progressive censoring, correlation-type tests of goodness-of-fit may be 

adapted to explore distribution assumptions concerning the data. For the Weibull distribution. the tests in 

this section may be used not only to determine if the data is Weibull-disributed. but also to examine the 

failure rate by testing the distribution for different values of the shape parameter ~- This proposed test for 

goodness-of-fit of Type II progressively censored data is applicable to many different distributions. and 

the test statistic is of simple computational form. Computational time becomes an important issue with 

regard to Type II progressively censored data since tables of the test statistic must be generated specific to 

each removal scheme and number of items censored and uncensored and assumed distribution. Further. 

the examples in this section illustrate that the conditional correlation-type test approach is feasible if n is 

small. A second approach. using rank approximation, is shown to be feasible for all values of n . 
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CHAPTER FIVE 

CONCLUSIONS 

The purpose of this study was to investigate the variability associated with the exepected value 

estimates of experiment time for Type II progressively censored samples. For the first time. numerical 

studies of experiment time have also included studies of the standard deviations and coefficients of 

variation for different Type II progressive censoring plans. 

Standard deviations of experiment time for Weibull-distributed lifetimes were quantified. 

examined, and found to be large, especially in instances where the Weibull-distributed lifetime data 

exhibited declining failure rates. Because of the high overall variability associated with expected value 

estimators of experiment time, a recommendation was made that the experimenter should also simulate 

empirical distributions of experiment time for a particular censoring scheme prior to conducting the 

experiment. 

Numerical studies of coefficients of variation of experiment time were included and 

recommended as a method by which to compare the relative amount of variability associated with the 

exepected experiment time estimates for different censoring plans. 

All of the numerical studies where obtained using a formula for experiment time which proved to 

be generalizeable for moments of experiment time and shown to be applicable to distributions other than 

the Weibull distribution if the moments of the first order statistic are known. A conditional procedure of 

assigning complete sample rankings to the progressively censored order statistics which suggested the 

formula for moments of experiment time also suggested a correlation-type test statistic for goodness-of-fit 

of Type II progressively censored samples. The feasibility and suggested uses of this test were illustrated. 

For Weibull-distributed lifetimes, the experimenter may wish to apply the tests to investigate the failure 

rate of the distribution of the progressively censored sample. 
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The experiment time and goodness-of-fit topics presented here considered a special 50% fixed 

removal scheme for Type II progressive censoring. Future directions of this research include further 

investigations into comparisons of this censoring scheme to other progressive censoring schemes. The 

size and power of the goodness-of-fit test applied to samples subjected to 50% censoring can be further 

explored. This can be achieved by assuming a variety of combinations of distributions in the null and 

alternative hypotheses. Additionally, the experiment time formulas developed are applicable to 

investigations of skewness and kurtosis of the distribution of experiment time for Type II progressive 

censoring plans. 
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APPENDIX 

PROGRAM 1 

************************************************************************************ 
* Program 1 to perform Chapter 2 calculations 
****************************************************************************************· , 
%macro censor(m,n,b); 
proc iml; 
start; 
m = &m; 
n = &n; 
b = &b; 
/* 

removals r 

*I; 

count 

r1 r2 
1 2 

n_1cm_ 

n_1cm_1 = gamma(n)/(gamma(m)*gamma(n-m+1)); 
r = j(n_1cm_1,m-1 ,O); 
gr= j(m+1,1,0); 
count= o; 
* Needs m-1 do loops. 

do r1=0 
do r2=0 
do r3=0 
do r4=0 
do r5=0 
do r6=0 
do r7=0 
do r8=0 
do r9=0 

Change this part if m changes; 

to 
to 
to 
to 
to 
to 
to 
to 
to 

gr[ 1) = n-m; 
gr[ 1]; gr[2) = gr[ 1] 
gr[2); gr[3) = gr[2) 
gr(3); gr[4) = gr[3) 
gr[4); gr[5] gr(4) 
gr[5); gr(6) gr(5] 
gr[6); gr[?] gr(6) 
gr[7); gr[BJ = gr[7) 
gr[B]; gr[9) gr(8) 
gr(9); 
count= count+ 1; 
r[count,1] r1; 
r[count,2) = r2; 
r(count,3) = r3; 
r[count,4)= r4; 
r(count,5] r5; 
r[count,6] r6; 
r[count,7] r7; 
r[count,8) r8; 
r(count,9) r9; 

r1; 
r2; 
r3; 
r4; 
r5; 
r6; 
r7; 
r8; 

rm-1 
------ m-1 

end; end; end; end; end; end; end; end; end; *needs m-1 end statements; 
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/* 
sum 

*I; 
sum j ( n_1cm_1, m-1 ,O); 

do i = 1 to n_1cm_1; 
sum[i,1) = r[i,1]; 
do j 2 to m-1 ; 

partial sums 
1 

n_1cm_1 

of rj 
2 

sum[i,j J = sum[i,j-1 J + r[i,j]; 
end; 
end; 

to m-1 
m -1 

* E1 = Expected value of the kth order statistic E[X 1,j+n-Rm+1) for WEIBULL data ; 
E1 = j (n-m+1,n,O); 
do Rm= m ton; 

end ; 

/* 
E2 

i = Rm-m+1; 
do j =Oto n-1; 

E1[i,j+1) 
*E1[i,j+1) 

end; 

(Rm - 1) ! 

gamma( + 1 /b) 
= gamma( 1 + 2/b) 

* 

+ n 
+ n 

Rm+ 
Rm+ 

* E1 
j ! (Rm - 1 - j) ! 

( -1)**(j) * 
(j+n-Rm+1) 

E3 E[XmlRm] 

* I ; 
E2 j ( n -m+1 , n, O) ; 
E3 = j(n-m+1,1,0); 
c1 = j(n-m+1,1,0); 
constant= o; 
do Rm= m ton; 

i = Rm-m+1; 

where Rm= m + O E3[ 1 J 

Rm= m + n-m E3[n-m+1) 

**(1 / b); 
** (2/b); 

do j =Oto Rm-1; 
E2[i,j+1) (-1)**(j)* gamma(Rm)/(gamma(j+1)*gamma(Rm-j) 

*(j+n -Rm+1))* E1[i,j+1J; 

end; 

end; 
do j Oto Rm - 1; 

E3[i) = E3[i) + E2[i,j+1]; 
end; 
c1[ i ]= n*gamma (n)/(gamma (Rm)*gamma(n-Rm+1)) ; 
E3[i] = c1 [i]*E3[i); 
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/* 
rank - possible ranks of p.c. observations in complete sample 

R1 

h(k) min[ (k+ sum (k-1) , ( Rk+1 - 1 ) I 

*I; 
h = j(m,1,1); 
rank= j(m,1,1); 
ex 
do i 

o; 
1 to n_1cm_1; 
c = n - m +1; 
do j 2 to m-1; 

c = c*(n -m-sum[i,j-1 ]+1); 
end; 

* c = n_1cm_1; *eq. (2b); 
exnum=O; 

* Needs do loops for Rm thru R2. Change 

do Rm m to h[m]; rank[m] 
do Rm - m-1 to h I m-1 J; rank[m-1) 
do Rm_2 m-2 to h[m-2]; rank[m-2] 
do Rm_3 m-3 to h[m-3]; rank[m-3] 
do Rm 4 m-4 to h[m-4]; rank[m-4] 
do Rm_5 m-5 to h[m-5); rank[m -5) 
do Rm_6 m-6 to h[m-6]; rank[m-6] 
do Rm_? m-7 to h[m-7]; rank[m-7] 
do Rm_a m-8 to h[m-8); rank[m-8) 

p = 1; 
do j = 2 tom; 

if 

= 

= 

* eq. (2a) 
* eq. (2a) 
* eq. (2a) 
* eq. (2a) 

m changes ... ; 
h[m] 

Rm; h [m-1] 
Rm 1 · _, h[m-2] 
Rm 2· -' h[m-3] 
Rm 3· -' h[m-4] 
Rm 4· -' h[m-5] 
Rm 5· _, h[m-6) 
Rm 6· _, h[m-7) 
Rm 7· _, h[m-8) 
Rm a· - ' 

pnum1 n - rank[j]; 

= 

Rm 

h(2) 

h (m-1) 
h(m) 

= m + 
min(m-1 
min(m-2 
min(m-3 
min(m -4 
min(m-5 

sum[i,m-1]; 
+ sum[i,m-2], 
+ sum[i,m-3), 
+ sum[i,m-4], 
+ sum[i,m-5], 
+ sum[i,m-6], 

min(m-6 + sum[i,m-7), 
min(m-7 + sum[i,m-8), 
min(m-8 + sum[i,m-9], 

pnum2 = sum [ i, j -1 ] + ( j -1 ) - rank ( j J + 1 
pnum3 = 
pdenom1 
pdenom2 
pdenom3 

pnum1 - pnum2; 
n - rank ( j -1 ] ; 

= sum [ i , j -1 ] + ( j -1 ) - rank [ j -1 I ; 
pdenom1 - pdenom2; 

Rm -1); 
Rm 1 - 1) ; -
Rm 2 -1 ); -
Rm 3 -1); -
Rm 4 -1) ; -
Rm 5 -1); -
Rm 6 -1); -
Rm 7 -1 ) ; -

pnum = gamma( pnum1 + 1) / (gamma(pnum2 + 1)*gamma(pnum3+1)); 

pdenom = gamma(pdenom1+1)/(gamma(pdenom2+1)*gamma(pdenom3+1)); 
p = p*pnum/pdenom; 

end; 
exnum exnum + p*E3[Rm-m+1]; 

end; end; end; end; end; end; end; end; end; 
ex= ex+ exnum/c; 

end; 
print m n b ex '1st moment eq. (2a)' 
finish; 
run; 
%mend; 
* to call the macro; 
%censor(10,15, 5); * m 1 o, n 15, and beta 
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PROGRAM2 

************************************************************************************ 
* Program 2 to perform Chapter 4 Calculations 
************************************************************************************· 

' %macro censor(m,n,b, iter); 
proc iml; 
start; 
m =&m; 
n =&n; 
b = &b; 
iter = &iter; * number of iterations; 
co j(iter,1 ,O); * correlations; 
do f = 1 to iter; 

w= j ( m , 1 , O) ; v = w ; s = w ; u = w ; x = w ; 
corrsum = o; 

* Part 1 of program 2 - Simulate Type II Progressively Censored Samples; 
* generate x a progresssively censored sample for a specific fixed 50% removal scheme ; 

r=j(m,1,1); 

s [ 1 J r[ m]; 
do i 2 tom; 

s[i) = s[i-1 J + r[m-i+1); 
end; 

* generate m indep uniform(0,1) observations; 

* set v 

* set u 

*set x 

* end of 
* Part 2 
*partial 

do i 1 tom; 
w[i) = uniform(-2); 

end; 
w* * ( 1 / ( i + rm+ ... +rm - i +1 ) ) ; 

1 -vm 

v[1]= w[1]**(1/(i + s[1]) ); 
do i 

end; 
vm-1 ... 

prod 
do i 

end; 

1 tom; 
v[i) = w[i) **( 1/(i + s[il) ); 

vm-i+1; 
1; 
1 tom; 

prod prod*v[m-i+1); 
u[i) 1 - prod; 

F** ( -1) (U) 

do i 
* 

* 
* 

end; 
Part 1 . 

' of Program 2 ; 

tom; 
x[i) 
x[i] 
x[i] = 
x[i) 

( - log ( 1 - u [ i I ) ) * * ( 1 I b) ; * 
log( (·1)*log(1-u[i))); * 
log(log(1-log(1-u[i)))); 
probit(u[i)) ; 

sums of rj 
' 

1 to m-1 

sum= j( m,1,0); 
do j = 2 tom; 

sum [ j J 
end; 

2 

n_1cm_1; 

sum[j-1] + r[j]; 
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Extreme Value; 
* Exponential Powe r ; 

* normal ; 

m-1 



* rank - possible ranks of p.c. observations in a complete sample 
R1 

do 
do 
do 
do 
do 
do 
do 
do 
do 

h(k) min[ (k+ sum (k-1) , ( Rk+1 - 1 ) I 

Rm 

h(2) 

h (m-1) 
h(m) 

h=j(m,1,1); 
rank = j ( m, 1 , 1 ) ; 

Rm= 
Rm 1 -
Rm_2 
Rm 3 
Rm_4 
Rm_5 
Rm_6 
Rm_7 
Rm_8 

* Needs do loops for Rm thru R2. Change if m changes .. . ; 

m to 
m-1 
m-2 
m-3 
m-4 
m-5 
m-6 
m-7 
m-8 

h[m] =m+sum[m-1); 
h[m]; rank[m] = Rm; 

rank[m-1) = Rm_1; 
rank[m-2) Rm_2; 
rank[m-3) = Rm_3; 
rank[m-4) = Rm_4; 
rank[m-5) Rm_5; 
rank[m-6) Rm_6; 
rank[m-7) Rm_7; 
rank(m-8) = Rm_8; 

h [ m-1) min( m-1 + sum[m-2], Rm -1 ) ; 
to 
to 
to 
to 
to 
to 
to 
to 

h [ m-1]; h[m-2) = min( 
h[m-2); h[m-3) min( 
h[m-3); h[m-4) min( 
h[m-4]; h[m-5) min( 
h[m-5); h[m-6) min( 
h[m-6); h[m-7) min( 
h[m-7]; h[m-8) min( 
h[m-8); 

p = 1 . 
' do j = 2 tom; 

pnum1 n - rank [ j I; 
pnum2 sum [ j -1 ] + ( j -1 ) - rank [ j ] + 1 
pnum3 pnum1 - pnum2; 
pdenom1 = n - rank[j-1); 
pdenom2 = sum [ j -1 ] + ( j -1 ) - rank [ j -1 ) ; 
pdenom3 = pdenom1 - pdenom2; 

m-2 + sum[m-3], Rm -2); 
m-3 + sum[m-4] , Rm -3 ); 
m-4 + sum[m-5], Rm -4); 
m-5 + sum[m-6], Rm -5); 
m-6 + sum[m-7), Rm -6 ) ; 
m-7 + sum[m-8], Rm -7 ) ; 

m-8 + sum[m-9], Rm -8 ) ; 

pnum = gamma( pnum1 + 1) / (gamma(pnum2 + 1)*gamma(pnum3+1)); 
pdenom = gamma(pdenom1+1)/(gamma(pdenom2+1)*gamma(pdenom3+1) ); 
p = p*pnum/pdenom; 

end; 

k = j(m,1,1); 
*set k = F**(-1) ( Ri/(n+1)) ; 
dog= 1 tom; 

end; 

dummy 
*k(g] 

k[g] 

sumx = x(+,); 
s umk k[+,); 
meanx = sumx/m; 
meank = sumk/m; 

rank[ g] / (n+1); 
(-log(1- dummy))**(1/b); * Weibull ( shape b); 
log ( ( -1) * log ( 1 - dummy)) ; * Extreme Value; 

sx = t(x)*x sumx**(2.0)/m; 
sk = t(k)*k - sumk**(2.0)/m; 
sumc = o; 
do a= 1 tom; 

c = (x[a) - meanx)*(k[a) - meank); 
sumc = s umc + c; 

end; 
corr= s umc/( sx*sk )**( .5); 
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corrsum = corrsum + p*corr; 
end; end; end; end; end; end; end; end; end; * Needs m-1 end statements; 

co[f] = corrsum; * correlations; 
end; 
print m n b ; 
varnames={co}; 
create datacorr from co[colname=varnames); 
append from co; 
close datacorr; 
finish; 
run; 
/* Find percentiles; 

PROC UNIVARIATE; 

* I 

OUTPUT OUT=LOCATION MEAN=MEAN MODE=MODE MEDIAN=MEDIAN 
01=01 03=03 P5=P5 P10=P10 P90=P90 P95=P95 MAX=MAX; 

PROC PRINT; 
run; 

/* Perform Power Analysis; 
data power; 
set datacorr; 
iter = &iter; 
count= o; 
count10 o; 
count05 = O; 
count01 = o; 
do j = 1 to iter; 

if co ge .888804 then count= count+ 1; *use 1•t percentile value; 
else if .859313 le colt .888804 then count10 = count10 +1 ;*use 5t"and1stt"percentiles; 
else if .831809 le colt .859313 then count05 = count05 + 1;*use 5t"and1ot" percentiles ; 
else if o le colt .831809 then count01 = count01 + 1; *use 10th perentile; 

end; 
count= count/iter; 
count10 count10/iter; 
count05 = count05/iter; 
count01 = count01/iter; 
proc means; 
run; 
* I ; 
%mend; 
* call macro; 
%censor(8,16, .25, 10000); * m 8, n 16, beta= .25 and no . of iterations 10,000 ; 
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