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CHAPTER ONE

INTRODUCTION

Censoring with respect to lifetime data refers to samples where exact lifetimes of some items in
the sample are not fully measured. A censored lifetime x in the sample is right censored if all that is
known is x > T, for a time 7. A censored lifetime x in the sample is left censored if all that is known is
x< T. A sample is singly right censored if only the largest lifetimes are censored. A sample is singly lefi
censored if only the smallest lifetimes are censored. Truncated samples differ from censored samples in
that the population values are restricted prior to sampling. but the sample itself is fully measured. For
example. a singly left truncated sample occurs when all sample items are fully measured. but the
population from which the sample is taken consists of only items with lifetimes greater than a time 7. a
point of truncation.

A common feature in life testing experiments is the occurrence of singly right censored samples
due to termination of the experiment prior to failure of all items in the sample. For example. Nelson
(1982) describes a life test of a sample of twelve Type B7 electric cords. The twelve cords are flexed
using a machine to simulate actual use, though at an accelerated rate. The lifetimes for the first nine
electric cords to fail are recorded. The ninth failure occurs at 141.9 hours. Testing is then discontinued at
164.1 hours. Three of the twelve electric cords in the sample did not fail prior to the termination of the
test. These three censored lifetimes are known only to exceed 164.1 hours and are described as time
censored.

Singly right censored samples also occur when live items are withdrawn at a time corresponding
to the failure time of the last fully measured item in the sample. An example in Mann and Fertig (1973)
describes a life test where a sample of thirteen airplane components are put on test. The lifetimes of the

first ten airplane components to fail are recorded. The three remaining airplane components. though still



functioning, are removed from test at the time of the tenth failure. These three censored lifetimes are
known only to exceed the tenth failure time and are described as failure censored.

Formally in the statistical literature, the preceding two types of censoring are considered as Type |
and Type II censoring. A sample is classified as Type / (time censored) if observations are removed from
the life test at pre-specified times or Type /I (failure censored) if items are removed corresponding to
failure times of other fully measured items in the study. For Type I censoring, the time T is fixed in
advance, and the number of failed items m is a random variable; for Type II censoring. T is a random
variable, and m is fixed. Nelson (1982) comments. “Time censoring is more common in practice: failure
censoring is more common in the literature as it is mathematically more tractable.”

Censored data also occurs when live items, in addition to failed items, are removed at several
stages during the course of the life test. Nelson (1982) describes an example where nineteen items
consisting of insulating fluid are tested at 34 kilovolts until breakdown in an accelerated test. Of the
nineteen sampled, only eight are fully measured. The other eleven lifetimes in the sample are censored in
the following stages: three are removed at the third failure, three are removed at the fifth failure. and
five have not failed when the experiment ends at the eighth failure. Such an experiment is considered to
be multiply or progressively censored in that live items are eliminated at various stages of an
experiment from further observation, and the sample items remaining after each stage of censoring
continue until failure or until a subsequent stage of censoring,

Formally. a sample of size » is progressively censored if »;, -, ..., r, number of items in a
sample are removed from further observation at points 7, 7> = .. = T\, (m < n), and for the r, items
removed at time 7', . the lifetime of the censored items are known only to have lifetimes greater than 7, .
Consequently. the censoring “progresses” through “multiple” stages. Other names for progressively
censored samples include “hyper” or “multi-* censored (Cohen, 1991).

In life testing experiments where the experimenter wishes to reduce the experiment time in
which to observe m failure times, a censored sampling plan rather than a complete sampling plan may be
used. That is, the experimenter may shorten the expected experiment time by sampling n ( 7 > m ) items

and stopping after m failures are observed rather than sampling m items and completely measuring all m



lifetimes. The smallest expected experiment time is achieved by censoring the n-m largest lifetimes.
This is single right censoring and is also a special case of progressive censoring where »; = r- = ... = r,,
= (0 and r,=n-m. Any progressive censoring plan, though, will result in smaller expected experiment
times than complete sampling plans. Hence, progressive censoring plans may be considered as a
compromise between complete sampling and single right censored sampling to achieve a shortened life
test.

Epstein and Sobel (1953) contend that the only justification for a single right censoring
procedure over a complete sampling procedure is to save time. Thomas and Wilson (1972) comment that
progressive censoring not only saves time but also permits the experimenter the flexibility to examine live
items in addition to failed items and still allows some of the more extreme lifetimes to remain in the
sample. As discussed by Balasooriya and Saw (1998) . this multi-stage censoring allows the experimenter
to save expensive test specimens or resources and release them for other use. The progressive censoring
procedure is considered as attractive to the experimenter where life expectancies are high. rapid results are
required, testing is expensive, or live items removed at various stages in the experiment may be
informative, conserved, or redirected for other use.

One concern about using progressively censored life testing is that the parameter estimators
obtained may be less precise than those obtained when using single right censoring plans. It is, however,
the conjecture of Viveros and Balakrishnan (1994) that the loss in precision in many practical applications
is not greater than that which occurs with ordinary Type II single right censored experiments. Two other
concerns to the experimenter about progressive censoring plans which have been identified by Viveros
and Balakrishnan (1994) are: (1) a lack of design guidance in selecting Type II progressive censoring
schemes and (2) a belief that the statistical analysis is more complicated that traditional methods.

In the area of progressive censoring, much has been published about the derivation of parameter
estimates. A smaller area of research extends to estimating experiment times. In life testing

experiments, obtaining estimates of experiment time is useful when implementing a sampling plan.



Previously, Hsieh (1994) and Tse and Yuen (1998) are the only authors to offer numerical studies
which provide design guidance in selecting Type II progressive censoring schemes. with respect 1o
expected experiment time. Hsieh (1994) considered expected experiment time for Type I Weibull-
distributed singly right censored lifetimes (a special case of progressive censoring). and Tse and Yuen
(1998) considered expected experiment times for Type II Weibull-distributed progressively censored
samples where removals are random and occur according to a uniform discrete probability distribution.

This research contains two new numerical studies of expected experiment time for Tvpe I1
progressively censored samples. One is a numerical study for a special 50% fixed removal scheme. and
the other is a numerical study for a random removal scheme if all removal schemes are equally likely.
The numerical studies are generated by an alternative formula to the formula of Tse and Yuen (1998).
The formula is validated by repeating the study of Tse and Yuen (1998).

The expected experiment time formulas used in this research are derived by a conditional
procedure suggested by Thomas and Wilson (1972) for finding means, variances. and covariances of
Type I progressively censored order statistics. In this instance, the conditional procedure is applied to
only the largest Type II progressively censored order statistic . which is experiment time. This alternative
formula is then adapted to finding moments of experiment time. By finding moments of experiment
time. the standard deviations associated with the experiment times may also be investigated. There are
no previous studies of the standard deviations associated with expected experiment time values. In this
research. numerical studies of the standard deviations associated with experiment time accompany the
numerical studies of expected experiment time.

The conditional procedure described by Wilson and Thomas (1972). which lead to the formula
for finding moments of experiment time. further suggests a correlation-type test for goodness-of-fit 1es
for Type II progressively censored samples. A description of the test and illustrations as to how the test
may be used to investigate different distributional assumptions concerning progressively censored data is

included in this research.



CHAPTER TWO

TERMINOLOGY AND LITERATURE REVIEW

In this chapter. terminology and definitions relating to experiment time for censored samples arc
provided. Comparisons among complete samples are then made to Type II singly right censored samples

and progressively censored samples. A literature review is also included.

2.1 Terminology and Definitions

Let m be the number of failures observed before the termination of a life test of » items and
r; denote the number of items removed at the time of the ith failure (Type Il censoring). A Tvpe /I
progressively censored sample of size m consists of m observed ordered lifetimes (order statistics)
Xip € X3 £...£X,, , from a complete sample of size n where

m=1
rm=n=Y.(r; +)=1,
J=l

m—1
Osns<n-l.and 0 < < 3 (r;+D)-1 fori=23..m-1.
J=1
(Johnson. Kotz. and Balakrishnan, 1994)
If lifetimes. .. are continuously distributed with a cumulative distribution function (cdf ) F (x)

and probability density function (pdf') f (x). the joint pdf of a Type II progressively censored sample.

X1n+X2.pee X n - With corresponding censoring scheme 7.7, ...r,, is considered to be



m
f(xl.mxlmu'xm.n)=c H f(xi.n)l LF(x N 02Xy, < S X <00,
i=1

where ¢ is an ordering constant given by

m J-1
c=nJJn-3r-j+D
j=2 =l

m=1
=nn-n-n-n-rp-2)..n— Z(r, +1)).

i=1
(Cohen. 1991)

The joint pdf of a general Type I progressively censored sample. differs slightly. and is given by

m
f(xroi—l.nvxz,na---xm.n )=¢Co [F(xro+l]ro IT £Cx,) [ 1-F(x;,)1"

i=rg+l

n m Lt
where ¢, = (n=r,) TTn=%r,—j+D
Fo =2 =1

and r, is the number of removals withdrawn prior to the first observed failure time x, .

(Balakrishnan and Sandhu, 1996)
The Type II progressive censoring as first defined differs from general Type 11 progressive
censoring in that the general case allows for removals to occur prior to the first failure. Therefore. the
Type II progressive censoring considered in this paper can be viewed as a special case of gencral Type I1

progressive censoring in which r, = 0.

The joint pdf of a Type II progressively censored sample. f (x| ,.X3 ,,....%,, »). 1S a legitimate pdfl

asf(x) . X9 e X n) 20 forevery .0 <xy, <..<Xx,, <wand

oc oG
{ wsw J B0 X ) By $%5 = EinGe
—on -



oo

j j f(xl.n'x?..m---xm.n) drl.n“'dxm—l.n dxm.n
Qo (e o] o0 m
= I j I c H f(x:.n) [ 1-F (x:.n ) ] H drl.n-"drm——l.n dxm.n
0 xl‘n xm_l*n f=l
= ¢ I I ce I jf(xm.n - F(xm,n )]rm Xy
0 xpn Em—2.n | *m-Ln
m-1 -
% f(x,_,,_.)[ L-F(x;n) 17 dxy,.dxm1n
i=1
<] oo o0 [l—F(x : )]rmi} -]
h CI j I N rm-:l
0 xpp Xm—2n n Xm—ln
m=1

=

S ]._.[ f( Xin) [ 1=Flx,) Irj dxl.n---drm—l.n

_ b S % [l"F(xm—l.n)]rmH
= cf [ ... | —
0 x1p Xm-2.n m
m=1

x [T £(xig) [1-F(Xjp) 1T dxyy..dipyp
=1

Substituting

m=1
I =n- X (r; +D-1
J=1

and continuing integration with respect to x,,_ ,

x;. - the right hand side of the equation then
becomes

c
=1.
m=1 m-2
(n= X (r; +D)n— T(r; +D)...n=(ry +D)n
J=1 7=1

The joint pdf of the Type II progressively censored sample may also be expressed as



£ (X ns%2m0e X = CIT T %0) 3 [£ ]t—n‘f [Fite, 2
£;=0

=1 i
0<xyy Cuxy 4 <00

since

n

ri r £ £
[1-F(x,,)]" = z[f ](—D'lF(x,_,,)] # .
o\*i

£i=

The expected experiment time for a Type Il progressively censored sample is denoted

E[X,..|n.r...ry ] and is the expected time to observe m failures in a progressively censored sample of
size n with the censoring removals ry.r,...r,, . The expected experiment time for a Tyvpe Il singly right
censored sample is denoted E[ X ,,, , ] and is a special case of Type Il progressive censoring where
N =ry=..=r,1 =0 and r, =n—-m. The expected experiment time for a complete sample of size m.
is denoted E[ X', ,,, ]. or simply E[ X, ].

The ratio of expected experiment times (REET) is the ratio of expected experiment time under a
censoring plan to the expected experiment time under a complete sampling plan. For the Type II singly
right censoring plan,

.
repT = Pl

ElXpml
(Hsich. 1994)
For a Type II progressive censoring plan with removals r.r;...7,, .

E!Xm.n !rl-rZ ----- rml

ELX ]

REET =

The REET values provide information as to how much experiment time may be saved if a particular
censoring plan is employed compared to a complete sampling plan.

Let X, , be the mth order statistic in a sample of size n from a distribution with pdf

f(x). Then, the pdfof the largest order statistic X ), , is given by



-1 - n-m
g (xm.n)=n[:_l]lF(xm.n)lm III'F(xm.H)] f(xm.n)-

(Serfling. 1980)

The pdf of the largest order statistic .X,,, ,, is derived by taking the derivative of the cdf.

Let G be the cdf of the largest order statistic .Y, , . then

G (x,,,) = P(at least m of the X', are less than or equal to x,, )
nin
=2 ( ,J[F ) 1= F Ce 1™
=m
(David. 1981. 2.1.3)
and the pdf is
0G(xXmn) _ 2 (n). 4 "
8(Xp.n )= —e | HfFGm)) l[l_F(xm.n)]n " E )
axm.n =m I

n

= Z [ﬁ}("“‘;)ip(xm.n )I’[l _F(xm.n)]n-‘-] f(xm.n )

=m

= [;}MIF(I,”‘” )]m_l [l - F(xm,n )]ﬂ—m f( xm_n )

* i [’_I)f[F(xm.n)l*_lll—F(rm,n)]"_’ f(xXpn)

1=m+l

n—1 n
= Z (f ](n _E)IF(xm,n )]! [l = F(xm.n )}n-f—] f ( m.n )

=m

= {:}(n_”)[F(xm.n)ln[l_F(xm_n)]n‘n‘_l F %54

= [;Jmip(xm.n)]m_] “ = F(xm.r.' )In_m f(xm.n )

For any continuous distribution, the expected experiment time under Type Il single right

censoring is

ElX,q]= J-xm.n 8 (Xmn) dxXpyp

—aD



T -1 - n—-m
= T 1 PG 1= POt 5

= 3k
=n [H ]IF"l(u) ™! (1-w)"™ du . where u=F (%, ).
m-1 0 |

(David. 1981.3.1.1)
The expected experiment time under Type II singly right censoring may also be expressed as a function of

a largest order statistic E[X, ;], i=m....n.

n(i=1\n s
ElXpal = % (m g J[,_ J{—l)‘ E[X,],

(David. 1981.3.4.3)
or as a function of a smallest order statistic ElXy jen-ma1ls J=0,.m =1,

n=1\ym=1{m-1 1
E[ X = - —— _FIX )
I mn ] r{m _ l]_gg( j }( ) Gn-m+ ) [ 1 j+n—-m+l ]

For a continuous lifetime distribution with 7 (0) =0 and removals ry.r,.....r,, the expected

experiment time under Type Il progressive censoring is given by

w Xm.n 2.n
Bl-E lbsdad * Foaw | we | 36 NPT oy R A &
0 0 0
O<xpp, <..<xy, <w©,
X, X '
& m.n 2n n(r ; ,
= Jxpn T o0 T Il f(x) T|) =D Fee, 1"
0 0 0 =l =0\

dxl.n k --dxm—l.n d Xm.n s

which becomes

[r] } (rmj
- n mo , e ¢
ElX g 025 m]= ¢ Y X (_l)fl+.,,+£m 1 o

m=1
=0 Lm0 [1(8 +..+ £, +i)

i=1

10



w©
L+..+L -1
X Jxmn f (xm_n)lF(xm.n)] Pt /- S

0

The last integral is a multiple of the expected value of the largest order statistic for a sample of size

£y +..+£, +m: hence, the formula for the expected experiment time can be represented as

(r] J [rm J
m ¢, ¢

E[Xpnln.rze.tml
4120 Ly=0 [T +...+ €, +)

i=1

ElX gy 4 vt p+m, t14.4Lp+m]

x
4. 4L,+m

or. alternatively, as

[rlJ {rmJ

. ) e e

E| -Ym,nlrl-rZ _____ o e S f: (—l)fl+.,,+fm — 1 m
0=0  Lp=0 [T +..+ £, +10)

=1

£+ Al gy m=] (—l)k[fI oAl +m —l} ElX g ] |

x
Eﬂ k (k+1)

In life testing. if » items are placed under observation and #» failure times are observed. the lifc
test is referred to as a complete sample test (Lemon, 1975). A method to obtain means, variances. and
covariances of Type II progressively censored order statistics by using the complete sample rankings of

the progressively censored sample is described in an appendix of an article by Thomas and Wilson (1972).

Let x;, < x5, £...£X,,, be the m ordered observations in a censored sample of size n. and
.<z, , bethe n ordered observations in the same sample were all » obscrvations fully

measured. Let R;. i =12....m . denote the ranks in the complete sample of the ith ordered observations

Xim = ZR.n - The complete sample ranks of the Tvpe II progressively

in the censored sample, i.e..
R,,. Fora Type Il progressively

censored sample x|, < x; , <..<x,, , are these values R;.R,

11



censored sample. the complete sample rank of the first ordered observation x;,, isknownas x|, =z, .
that is, R;=1. But, the complete sample ranks of x,, <x3, <..<x, , are not necessarily known.
The different complete sample rankings R= (R,.R;.....R,,) of the progressively censored order
statistics can be described using the recursive equation
R, =R+, Riy+2....i+n+r+..+r
fori=2..m with R} =1.

(Thomas and Wilson. 1972. Al)

For fixed removals r7.r,.....r,, ., the probability function for complete sample ranks may be

found by letting
m
P =PRy.Ry..Ry,) = P(RDITP(R, | Ry...R, ;)
i=2
(Thomas and Wilson, 1972, A2)

where P(R) =1)=1 and P(R, |.Ry....R,_;) is the probability function

n—-R;

i-1
>(r, +D =R, +1
PR; |, Ry,..Ri) = ~= e ik
n-Rj_

=1
Y, +D)-R,_,
Jj=1

(Thomas and Wilson . 1972. A3)

_____ X mn) i the vector of the Type II progressively censored order statistics. Z =
(Zy p--nZyy)' is the vector of the corresponding complete sample order statistics. R = (R).R,.....R,, ) is

the vector complete sample rankings of the Type Il progressively censored ordered statistics. and D is a

matrix defined by

5 l.j:Ri j'=l,~--”* i=1....m.
Yl i =R,

then X = DZ.

12



The means of Type Il progressively censored order statistics may be written in the form

M
By =E[X|=E Ep,[D¢ Z|Dy |FE4ID;" pz]= [ZD:’PI}#Z
£=] J
where M denotes the number of different possible vectors of complete sample rankings. p,. p,.....py, are

the probabilities of the A/ possible complete sample ranking schemes. and D , is defined as

dt = Li=R
y 0, j#R;

fori=12...m, j=12,.n, and £=12,.M.

(Thomas and Wilson. 1972. A7)

The variances and covariances of Type Il progressively censored order statistics are obtained

similarly as
2, =E[XX]- pu pu,'
=E(Ep,[Dy ZZ D' |Dy] - pepy’

=E¢Ep,(IDy .+ ppu.")D;" |Dyg] - pyp,’
M
=2 Dy Co+ppuYDy'pg-pop,'

£=1

(Thomas and Wilson. 1972, A8)

Viveros and Balakrishnan (1994) describe existing methods of calculating means. variances. and

covariances of the progressively censored order statistics as “cumbersome”.
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2.2 Lifetime Distributions

A parametric approach to analyzing Type II progressively censored data is to consider lifetime
distributions for F(x). Possible parametric models for lifetime distributions are discussed below. Each
has the common property of known expectations of first order statistics. Additionally, inverses of their
distribution functions exist in simple closed forms making the distributions especially applicable for

simulation studies.

Weibull Distribution

A common model for lifetime distributions is the three parameter Weibull lifetime distribution.
The distribution was originally used to model fatigue data and is widely used when the “weakest link”™
model is most appropriate, i.e., when an item experiences failure when any of its component parts fail
(Nelson, 1982).

If X is a random variable with a three parameter Weibull lifetime distribution .\~ Weibull (y. 0.
{3) where vy is the threshold parameter, 0 is the scale parameter, sometimes referred to as the characteristic

life. and P is the shape parameter, then the cdf of X' is given by
xX—y B
F(x;v.0,B)=1-exp _[T} ., 0<y<x<w0, 0>0. B>0,

and the pdf of X" is given by

P
f(x:y.0,p)= e%(x—y}ﬁ_lexpl—[xeY:l } 0<y<x<o, 0>0. B>0.

.k
The kth moment of X is given by E[.X *)]=y+0* FLI +%] where

I'k)= j’uk 5 exp(—u)du, k >0 . is the gamma function (Meeker and Escobar, 1998).
0

For the three parameter Weibull, the pdf of the first order statistic X'y ,, is
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B
f(x):7.6.p)= i(x] —y)ﬁ'lexp{—[xl—‘q ] y< x<oo, B8*>0. >0
o*P 0

where 6* = ;

/B

(Balakrishnan and Cohen. 1991. 8.2.6)
Therefore, if X' ~ Weibull (v, 6, B) . then X, ~ Weibull (y, % . B).
!

The two parameter Weibull distribution is a special case of the three parameter Weibull
distribution in which the threshold parameter, v, is zero. The two parameter Weibull is denoted simply
X'~ Weibull (6, ). Other special cases of the two parameter Weibull are the exponential and Rayleigh
distributions. If § =1, the two parameter Weibull distribution is the exponential (6) distribution: if § =2.
the two parameter Weibull distribution is the Rayleigh distribution. For 3 < 3 <4. the Weibull resembles
the normal distribution in shape: for B> 10. the Weibull resembles the least extreme value distribution in

shape (Nelson, 1982).
For any univariate distribution function -, and 0 < p <, the quantity n, = F =l (p)
=inf{x: F(x) 2 p} is the 100pth percentile. Fora Weibull distribution, n , can be expressed as
n,=Fl(p)= 9[1 ~log(1- )] ].
where n, is the time by which 100p% of all items will have failed. The median is the value cqual to

nso . As100(1-e™')=63.2. the characteristic life parameter 6 may be approximated by 1 637 .

The hazard function (failure rate) associated with a random variable .\ is defined 1o be
h(x)=f(x)/[1-Fx)].
For surviving items in a sample, the hazard function indicates the propensity of an item to fail over a

small unit of time. For a Weibull-distributed random variable .Y, the hazard function is

-1
_?‘ x-—v
h(X)_B( 0 ]

15



which is a power function of x. Accordingly. the failure rate for the distribution is decreasing if < 1.

increasing if f > 1, and constant for f=1.

Type 1 Extreme Value Distribution

Frequently, when working with Weibull distributions, it is more convenient to consider Type |
extreme value distributions because the Type I extreme value distribution possess a location-scale
structure which the Weibull distribution does not. The Type I extreme value distribution is directly
related to the two parameter Weibull distribution in that if X is a Weibull random variable with shape
parameter 3 and scale parameter 6, then ¥ = log (X) is a Type I extreme value random variable with
location parameter p = log 6 and scale parameter o = 1/, and accordingly. the results which are
attributable to Type I extreme value distributions are directly transferable to Weibull distributions.
Because of this relationship to the Weibull, the Type I extreme value distribution is sometimes referred 1o
as the “Log-Weibull”.

If X is distributed as a Type I extreme value random variable, then the cdf is given by
X—p
F(x,u,0) = exp[—e:c;{——ﬂ, —0<x<w, —0<pPu<ow, >0,
o

and the pdf is given by

f (x: p..cr)=i exp[—-x—_-—EJ exp[—exp[—ﬂ)]_ —w <X <o, —w<ph<oo, g>().
o s o}

The “Type I” as it appears in the Type I least extreme value distribution name refers to onc of
three possible asymptotic types of distributions ( Type L. IL. or II) of the smallest order statistic and does

not refer to Type I (failure) censoring.
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Burr Type XII distribution

Another model of lifetime distributions is the Burr Type X1l distribution. The Burr Type XII
distribution is considered as a tentative model for lifetime distributions where distribution’s shape is L-
shaped or unimodal . Tadikamalla ( 1980) summarizes many of the relationships between the Burr Type
XII distribution and other distributions including the Weibull. the Lomax. Compound Weibull. the
Weibull-Exponential, the logistic. the log logistic, and the Kappa family of distributions.

If X is a random variable with a Burr Type XII (d. ¢) lifetime distribution. denoted by .\’ ~ Burr
Type XII (d, ). then the cdf of X is given by F(x) =1-(x +1 )_d .X>0.¢>0.d>0.

c-1

and the pdf of X'is given by f(x) = (xf'fw .X>0,e>0.d>0.
The pdf is unimodal at the point x = ﬁ if ¢ > 1 and L-shaped if ¢ <1. and the kth
moment of X"is expressed as
EX®)=4q B[£+l.d -iJ k< cd
c C
where B(a,b) is the beta function _][x“'l(l ~x)"Vdx fora >0, b>0and B(a,b) = %‘{‘2{% :
0

(Tadikamalla. 1980)

If X'~ Burr Type XII (d, ¢). then the pdf of the first order statistic Y| ,, is distributed Burr Type

XII (dn, ¢). hence.

ExX8 = dn B(Ll.dn-ﬁ] k< cdn .
: c c

The possible parametric models under progressive censoring schemes considered in this research
have distribution functions which exist in closed form and have known expectations of first order
statistics. The Weibull and Burr Type XII distributions are shown to have these properties. Other

distributions such as the Pareto distribution could have been considered.
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2.3 Expected Experiment Time

Early research concerning experiment times centered on finding expected experiment time for

the case of Type II singly right censored samples. Expected experiment times for exponentially

distributed lifetimes were first considered by Epstein and Sobel (1953) and Weibull-distributed lifetimes

were later considered by Hsieh (1994).
For exponentially distributed lifetimes, Epstein and Sobel (1953) give the expected experiment

time of Type II singly right samples as

n=1Y"=1{m-1 1
Xpnl=n =y —
A ] (m—l)gn[ J ) (j+n-m+1)?

This when simplified becomes

m 1
BN in) =0
m.n _El(" —F% 1)
(Mann. 1974. 6.27)

which implies

e 1
X —j(n—j+1
REET = ET m‘n] - j—I( J ) '
ElXpml & 1

£

Alternatively, Mann (1974) suggests that, for Type II singly right censored samples from an exponential

distribution, the ratio of median experiment times results in essentially the same values as the ratio of

expected experiment time and eliminates extensive calculations when m is large.

For two parameter Weibull distributed lifetimes. Hsich (1994) gives the expected experiment for

Type II singly right censored samples as

s 1
E"[']{m.n]:”[n ll]ejl—ln(l—x)lwﬁxm_l(l—x)”-mdr
o
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m=1{m —
= mﬁl"(””ﬁ)(n]z (mj l)(‘l)J : 1+1/p

mj,— (j+n—-m+1)

which implies the REET value is

EX. ] [;]w(j cm.n—ml/p)

REET = _
E[X ] w(j;m.0.1/B)

. m-1 m-..l . l
where w(j :m.x.b)=Y |  |(-1/ —rg
j=o\ J (J+x+D™

The REET value is then observed to depend on the shape parameter § and values of » and m but not the
scale parameter 6 for Type II singly right censored Weibull-distributed lifetimes.

Formulas of expected experiment time for Type II progressively censored samples are more
recent developments. Formulas for Weibull-distributed lifetimes are found in Tse and Yuen (1998) for
both random and fixed removals. Tse and Yuen (1998) provides a general formula for expected
experiment time where removals are fixed and the sample is Type II progressively censored (previously
the research of Hsieh (1994) considered only single right censoring ). The formula given by Tse and

Yuen (1998) may be written as

[?'IJ (rm]

n r s

Xyl #isrgot 1= € 5 . S(pfttntm S02 Lom)
£1=0 £,=0 nh(fl)

=1

[ o]
h({ 1
% ComadF e ) g,
0

where h(£ ) =4y +..+ L, +m.
This formula then becomes. for Weibull distributed lifetimes,
o HE)
EIX ] Wb b =0 % %(-1)fl+~-fm 24—6’“

£1=0 £,,=0 Hh(f,)

=1



HlmX 1 (h(L ) -1 1
x OT(1+1/PB) [ m )(ml)f _
JED (j+l}l+]'B

(The formula as originally published contained errors.)
Tse and Yuen (1998) also gives a formula for expected experiment time where removals are random and

the sample is Type II progressively censored. The formula is as follows:
E[Xm.ﬂ] =E, [E[Xm‘,, | LS R RERR "

g(ny glrm-1)
= Z ZP ( Halgelm ) E[Xm‘,,]rl.rz,....rm ]
n=0 ryu=0

where

gr)=n-m-n-.-r4. 0Srsn-m-(n+..+r) .i=12..m-1,

m-1
P(n.ry...ty) = P() [1P(r [
i=2

fori=12...m-1.

1 1
P :—.aﬂd P(r; sornal f=] )
) n—m+1 @ [#eit) n—=m-(n+..+r_)+l1

A formula of expected experiment time for Type II progressively censored samples for two
parameter exponentially distributed lifetimes, i.e., exponential lifetimes with a threshold parameter. is
offered in Balasooriya and Saw (1998). Using the notation in this chapter. if yis the threshold parameter
and @ is the scale parameter, the formula in Balasooriya and Saw (1998) of expected experiment time of a

two parameter exponential life test is

This formula applies to fixed removals only.
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Under the general case of Type II progressive censoring for two parameter exponential

distributed lifetimes, the formula becomes

. 1 m 1
E[}Km.rr]=7+ —+ Z s B

no=p,42 = -
=To n—FrZo:{ —i+1
(Balakrishnan and Sandhu. 1996)
where r, is the number of the first failure times which are not observed.

Investigations into experiment time often require simulating partial sets of order statistics.
Simulating Type II progressively censored samples is easily achievable using a four step algorithm of
Balakrishnan and Sandhu (1995) if the cdf for the lifetime distribution exists in simple closed form. This
is true with the Weibull. Type I extreme value, and Burr Type XII lifetime distributions. Other methods

to generate partial sets of order statistics may be found in the references of Balakrishan and Sandhu

(1995).
2.4 Parameter Estimation

While few articles consider experiment time of progressively censored samples. and then only
with respect to Weibull (or Exponential)-distributed data, methods of parameter estimation using
progressively censored samples have been described by many authors. In many instances, the parameter
estimation technique employed is maximum likelihood estimation.

Under Type II progressive censoring, the likelihood function is defined to be

m -1 m
L = LX)y Xg g Xgin il Py by ) =] {n— >y —i+l}f{x, )IT [ 1-F(x)]".
I=l j:] =]

(Cohen. 1963)
This likelihood function is then employed in an iterative procedure to obtain the maximum likelihood

estimates (MLES) of the parameters.
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In independent research, Wingo (1973). Cohen (1975) and Lemon(1975) are credited with first
obtaining MLEs for three parameter progressively censored Weibull-distributed lifetimes. Wingo (1993)
also describes the methodology for obtaining MLEs for progressively censored Burr Type XIlI-distributed
lifetimes. Various authors have investigated maximum likelihood estimation using progressively censored
data for other distributions including Cohen (1976), Cohen and Norgaard (1977). and Davis (1979).
Cohen (1991) summarizes many of the techniques obtain MLEs and other point estimators of parameters
for a wide range of censored distributions.

As an example, if the sample is obtained from a Type I least extreme value distribution. then

L= cﬁ L exp(— ﬂ) exp]:— exp(— x—_—}i]]ﬁ exp[— exp( = x———-&ﬂ 4 _
2 a G Jli=l e

Taking the 2108 and
op

dlog L

and equating both to zero implies

m m
e("HO) =y E{Zexp(xi /6)+ 3 r; exp(x, ls)]
J=1 1=1

and

m m m

S x;exp(x; o)+ rexp(x; /o) X x;
sze i=1 i=] cir i=1
- m m
3 exp(x; /o)+X r; exp(x, / o)

=1 =1

8]

A maximum likelihood estimator for o, &4 . is found by equating

m m m
S x; exp(x; /o)+ Y rexp(x, /o) Y x
f(o‘)=n—’='m il =1

m
Y exp(x; / o)+ r; exp(x; /©)

=1 i=1

-+ =)

and using the iterative method such as Newton’s method:

Gpy1 =0, —f (cn)ff' (0,).
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right-censored, and progressively censored data. An example using the procedure is described in Dodson
(1994).

Frequently, a graphical rather than a quantitative method is used to investigate goodness-of-fit.
Most of the literature relating to probability plotting or graphical tests of goodness-of-fit are concerned
with complete (uncensored ) data. A procedure for a graphical test for goodness-of-fit of progressively
censored data is contained in Johnson (1964) and O’Connor (1981). Johnson (1964) refers to the tests
not as “progressively censored” experiments but as “incomplete” tests with “suspended items™.

A visual inspection as to whether or not the data are linearly related usually serves as a
sufficient test of goodness-of-fit for graphical tests. A correlation-type test statistic. however. may provide
a more quantitative measure of the goodness-of-fit for progressively censored data. Correlation-type tests
for goodness-of-fit are developed by Ryan and Joiner (1974) and Filliben (1974) for complete samples
and adapted to apply to Type II single right censored data by Smith and Bain (1976). In this research the

correlation-type test of goodness-of-fit is adapted further to apply to progressively censored data.
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CHAPTER THREE

EXPERIMENT TIME

The purpose of this chapter is to examine kth moments of experiment time under Type [1
progressive censoring schemes with fixed and random removals. A formula is presented which expresses
moments of experiment time in terms of simpler moments of the smallest order statistic. The formula is
applicable for lifetime distributions where kth moments of the smallest order statistic are known. In this
chapter. the previous numerical studies of Tse and Yuen (1998) are extended to consider standard
deviations associated with expected experiment time for Weibull-distributed data. The experiment time

for the Burr Type XII-distributed lifetimes under Type II progressive censoring is also investigated.

3.1 Introduction

In life and fatigue studies. a complete sample test occurs if » items are placed under observation.
and » failure times are observed. If the life test experiment ends with only m (m < n ) failure times
observed. then the test is a censored life test. In a typical censored life test. censoring occurs after the
first m failures and the largest n - m lifetimes are censored. An experiment with this single stage of
censoring is referred to as a single right censored experiment.  For progressively censored experiments.

the removals may occur at multiple stages as the experiment progresses. That is, #.r5.....r,,, number of
sample items are removed from the life test at times 7,, i =1.2,..m .

Another distinction is made between Type I (time) censoring where the removals occur at pre-
specified times and Type I (failure) censoring where removals occur coinciding with failure times of

other uncensored items in the sample. In the case of Type I censoring. the times 7, are pre-specified: in
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the case of Type II censoring, the times 7; are the failure times of the uncensored sample items. The

progressively censored sample is considered to be the m observed (uncensored) lifetimes

X1 € Xp, <...£X,, ,from the complete sample of size 7.

A major consideration in any life testing experiment is the total duration of test time. An
attractive feature of a progressively censored experiment is the potential time and cost savings which the
progressively censored experiment allows (Balakrishnan and Sandhu, 1996).

Thomas and Wilson (1972), in an appendix to their article. describe a procedure to obtain the
means. variances, and covariances of the m progressively censored order statistics by conditioning on the
complete sample ranks of the Type II progressively censored sample. Since experiment time is the largest
order statistic , A", ,, . the procedure of Thomas and Wilson (1972) may be modified to consider only the
mean of .\, , . the expected value of experiment time. E[.X,, ,].

If Xy, <X,,<..£X,, arethe m order statistics of a progressively censored sample and
Zin<Zypn<..2Z,, arethe n order statistics of the complete sample had the sample not been
subjected to censoring, then X, , =7 R,,n forsome R;, i=12....,m . The complete sample ranks of the
Type 11 progressively censored sample x, < x5, <...<X,, , aredenoted by Ry, R,....R,,.

For a Type II progressively censored sample, the complete sample rank of the first ordered
observation x;, isknownas x;, =z;, .thatis, R;j=1. The complete sample ranks of

X3, X3, <...<X,,, are not necessarily known. The sample space for the rank vector R =

(Ry.Ry....R,;) can be described recursively using the equation

R, =R1+L R, +2 ....i+n+r+..+ry
fori=2...m with R} =1.
(Thomas and Wilson, 1972, Al)

For fixed removals r.r,.....r,,. the probability function for complete sample ranks is found by

letting
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m
p = P(Ry.Ry ...Ry) = PROTTP(R, | Ry...R,_y)
1=2

(Thomas and Wilson. 1972. A2)

where P(Ry =1)=1 and P(R; |.Ry ....R;_) is the probability function

n—R,
i=-1
T +D =R, +1

=]
P(R; |, Ry, ... Rip) = >

""R:—l

i-1
2(r; +D=-R; 4
J=1

(Thomas and Wilson. 1972. A3)

If X=(X,,...X,,) isthevector of the Type II progressively censored order statistics. Z =

the vector complete sample rankings of the Type II progressively censored ordered statistics. and D isa

matrix defined by

L=~
d}.}.:{ j_ ' j=l..n, i=L..m,
0,j#R,

then X = DZ.
Using this matrix notation, the means of Type I progressively censored order statistics may be

written in the form

M
Hx E[X]=E Ep,[Dy Z|D, FE(ID;" pz]= [ZDEP::J#’/;
£=1

where M denotes the number of different possible vectors of complete sample rankings. p;. p,.....py; arc

the probabilities of the A possible complete sample ranking schemes, and D ; is defined as

J {1, FaR
f =

0, j#R,
fori=12...m, j=12,..n, and £=12,.M.

(Thomas and Wilson, 1972, A7)
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The variances and covariances of Type Il progressively censored order statistics are obtained
similarly as
2:Jr =E[XX'] - Hx lx '

=E,;Ep,IDy ZZ Dy |D (] - ptopty’

=EEED£[D£ (z: +#:F:J)DE’ iDF] - .uxju,\'l

M
= Z Dy .+ pp2") Dy'py-Hepiy'
£=]

(Thomas and Wilson. 1972. A8)
Thomas and Wilson (1972) employ matrix notation to obtain means. variances. and covariances

of all order statistics X, , <X, , <..<X,, . Their matrix notation is adapted to summation notation in
this chapter to consider only expected experiment time. X', ,, . the largest order statistic of the Type Il

progressively censored sample, and further modified to consider moments of experiment time.

One previous numerical study by Tse and Yuen (1998) investigates the expected experiment time
for Type II progressively censored Weibull-distributed lifetimes with random removals. Their study does
not consider the variability associated with the experiment time estimate. The research in this chapter
seeks to examine the variability associated with expected experiment time for different fixed and random
Type II progressively censored removal schemes.

For Type II progressive censored data with predetermined removals r,.7;.....r,, . the formula by
Tse and Yuen (1998) for expected experiment time for the Weibull distribution under progressive
censoring is derived by conditioning on the number of removals r.r,.....r,, at each stage of censoring.
If x,, <x3, <..<Xxp,, are the m ordered observed (uncensored) lifetimes of a progressively censored

sample with removals r.r;.....r,, . then for X"a two parameter Weibull random variable with cdf

F(x:ﬁ.ﬂ)zl—exp[—(xfe)ﬁl x>0, 00,50,

the formula used by Tse and Yuen (1998) for expected experiment time may be written as
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n n 6 e
ElX | l2stm 1=€ X ... Z(‘l)m"'ﬂm H

£01=0 £,,=0 1A,

i=1

% .[xm f(x.n NF(Xpn )]h(tm)—] dx,,

= q < L4.tm
=¢ ¥ ..3CD —
£=0 £,=0 nh(fr)

h(£m)-1 h(t’m)le 1
er(+1/p) ( Sy ———
§ P E—o (Frf VP

where A (£,,) = £ +...+ £, +m, cisan ordering constant, and the removals r.r;.....r,, are fixed.
(Tse and Yuen. 1998, 8)

(The formula as originally published contained errors.)

For random removal schemes. their formula for expected experiment time becomes
E[Xm.n]=Er[E{Xm| R RO Fm 1]

g(myg(r) &lm-1)

Y . Y P(n.ry...rp) EIX paln.rae..rm |
n=0 =0 =0

where
gr)=n-m-n—-..-ry; 0Srsn-m-(n+..+r,) .i=12,...m.

(Tse and Yuen. 1998)

The numerical study of Tse and Yuen (1998) obtains first moments of experiment time by
conditioning experiment time on removal schemes. In this research. &th moments of experiment time are
obtained by conditioning on the complete sample rankings in a manner suggested by Thomas and Wilson
(1972). The earlier study of Tse and Yuen (1998) is then extended to consider standard deviations of

experiment time for Type Il progressively censored data.
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3.2 A Formula for Moments of Experiment Time

The kth moment of the experiment time is denoted as E].‘{m_n(k) ] and is derived below for fixed

and random removals for a Type II progressively censored sample.

Fixed Removals

Suppose under Type II progressive censoring the number of removals at each stage of censoring

n.ra....ry, are fixed and subject to the conditions that » +ry +...+r, =n—m . Thatis. the experiment
is progressively censored with fixed numbers of removals coinciding with each failure time. and the
experiment ends at the time of the mth failure. The Ath moment of experiment time E[.\ m(k’ ] may be
derived by conditioning on the complete sample ranking R,, of the mth order statistic in the

progressively censored sample. A formula for the kth moment of the experiment time for progressively

censored samples with fixed removals can be expressed as

BXpy®) = z ELX s ® | Ry PR,y ]
aksity,

- k
z EX m,n( ) lRm] EP[RI*R%"*Rm]
allRy, allRy. Ry ,..Rpy—1

]

I

m
Y AXp, IR, X PIR|ITIPIR, |Ry,Ry....R1].

allRyy, allRy.Ry....Rpm—1 =2
i=1
Z(rj +1)-R; +1
o m o\ =1 . . m
Substituting ] 4 in the equation for P[R|][TP[R, |Ry.Ry,...R,_;].
=2 n_Rr'—l =2
-1
S (r, +D =R,
=
(Thomas and Wilson. 1972)
m=1
m+ ¥n
-k, 4 g k
EX m.n( )] - z Elx Rm.n( }l
Ryy=m
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n-R;
-1
2(r, +D-R, +1

h(m-1) h(m-2) h(2) m =1

x sty
Rpm-1=m-1 Rpy—g=m-2  Rp=2i=2 n=R,_,
=1

Z(f‘;"‘l)—R':._]
J=1
Substituting n n-l R?fl R =1 (-1 -—]—E[X - (k)] in the equation for
u 8 e . (G +n-R,, +1) 1,j+n=Rpy+1
E[X g, 1,
(David. 1981. 3.4.3)
m-1
m+ Er, " q = i
i= n-1 i - 1 ) x
SR ) o ¥ P R
Pl ™1~ B Mg oi) 2| Gon=Ru#D W ms
n—-R,
D-R; +1
h(m-1) h(m-2) h(2) m Z(r e B
> Z . Y II¥ (1)
R Yot R gatils Rpedice n—=R;_,
jm
2(r;+D)=R,;
J=1

where h(k)= mn[(k+ Y ) (Rey —l)] k=23 ..m-1.

Therefore, by conditioning on complete sample rankings. an equation for the kth moments of
experiment time for a Type II progressively censored sample is expressed as a function of the Ath
moment of the smallest order statistic.

One fixed removal scheme for Type II progressively censored data to which equation (1) will
apply is the 50% fixed removal scheme where alternate sample items are ccnsored. This 1s done by letting

r; =1.forall i =12,..m. in equation (1). For this 50% fixed removal scheme. the formula for the Ath

moment of experiment time becomes
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m—1
m+ X

i=l (n-1 YR, -1 I -
EIX (k)= m e | [ SN, - ) . +“‘)
MR "[Rm—l]go( i S Gy ey ket

n—R;
h(m=-1) h(m=2) K2 m |2i-1-R,
x X X e X Iy
Rp—1=ti—1 Ryy_g=m-2 Rp=2i=2[ "M~ -]
(ZE—Z—R,_,J

(la)

Many other fixed removal schemes are possible.

Random Removals

Suppose under Type II progressive censoring the #.r;.....r;, removals are random and subject to
the condition that » +r; +...+r, =n—m . Thatis, the experiment is progressively censored with

random removals coinciding with each failure time, and the experiment ends at the time of the mth
failure. The formula for the kth moment of the experiment time with random removals may then be

expressed as

E[“.m.n(k)] = Z P(n"?w--rm)
allry.ry,...ny
m-1
m+ T i ]
i=1 n—=1\Ym-(R, —1 1
. n ) VS S ) R
Rf;m (Rm‘l] Eo( J J( ‘ (+n-R, +1) (X0 tny 1]
n—R,
-1
h(m=1)  h(m-2) h(2) m E;(rf*l)‘R:“
x X DI Y B ).
Ryp—1=m=1 Ryy_2=m=-2  Rp=2i=2 n-R,_,

The approach of Tse and Yuen (1998) assumes removals occur at random. coinciding with each
failure time. and that the number of each of the removals 7; follows a uniform discrete probability

distribution such that
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m-1
P(r,ryecry) = P(r) TP 1 R.aeriy)
i=2

1 1 .
h =——— and P(; | n.7200s =1)= 2 = &
whees) n-m+1 and Py 1nsryeetict) n—m+(r+..+r_)+1 I "

Therefore, making the appropriate substitution for P(n.7;.....r,) . equation (2) becomes

ALY (k}] g(zn) gt’f) &(rm-1) 1 m-1 1
R S W =0 M=m+1 i (n=m=( +...+r_)+1)
m-1
m+ T P :
=1 ((n-1\Rm- Rm—lJ 1 (k)
X n =Y ————E[X) j4n-r 41 ]
Rmz=m [Rm _l] J§0 [ J (J"'"n_Rm +l) Jrn=Bm+
n—-R,
i=1 R
r,+1)=-R, +1
h(m=1) h(m=2) h2) m El( D=8y
x X 2 2 I (2a)
Rm-1=m=l Rp-3=m=2  Ry=2:=2| n-R;_,
e
Z(rj +1)=-R,_;
J=1
where g(n)=n-m and g(r;))=n-m-n-rp—...=ri4,i=2...m-1,

A second approach is to assume the experimenter selects a removal scheme at random from all

possible removal schemes and that all removal schemes are equally likely. Letting

1
n-1
m—1

. . o (n=1
solutions for the equation 1y +ry +...+r, =n-m is [ J .
-

Pn.ry....ry)=

for all removals #.,r,.....r,,, since the number of nonnegative integer

(van Lint and Wilson. 1992, 13.21)
equation (2) becomes

- gn) g(2)  glm-1) |
EXpn 1= 2 2 o X
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m=1

m+ X B
i=1 n—-1 Ym~ Rm—l] : 1 - (k)
X n .| ———E X jypr, ]
R,,,Z=m [Rm‘l]gn[ J (+n=R,+1) W
n-R,
i-1 R +1
D-R, +
h(m=1)  h(m=2) h2) m J=,(r"+) !
> > .3 I | (2b)
Rm-1=m=1 Rpy_3=m=-2  Rp=2i=2 § n—=R;_,
g
2(r;+D =R,
J=1

Equations (2a) and (2b) are best used where sample sizes are small. » < 20, or where differences
between the number of items fully measured. m. and the sample size, #. is small. This is because of the
extensive computer time to consider all possible rankings to obtain the expected values. The same
limitation is noted for the formulas used by Tse and Yuen (1998). Tse and Yuen (1998) consider the
dominant factor, in terms of computing time, to be the value of n. Examples using the equations are
given in the following sections. All computations in the following sections are performed using SA4S

Svstem for Windows, Release 6.12 (1996).

3.2 Examples

Random Removals

The Weibull Example with Random Removals

A common model for lifetime data is the two parameter Weibull distribution. Where .\" is a

random variable that is Weibull (6, B ). the first order statistic from a sample of size n, .\'; ,, . is Weibull

(6/n"P_B) with

o Y ( &
E[Xf_?]:(n—]@—J F(HBJ' 3)

(Balakrishnan and Cohen, 1991, 8.2)
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Therefore, the first or second moments of experiment time for progressively censored Weibull-distributed

lifetimes can be determined by noting that

k
0 k
x® = r{n-)
E[ L)'+H—Rm+ll ((j+n_Rm +l)”B] ﬁ

For Weibull-distributed lifetimes defined by a shape parameter B, it is well known that values of

<1 imply a declining failure rate, =1 imply a constant failure rate, and p>1 imply an increasing failure
rate.

Tables 3.2.1 - 3.2.3 show first and second moments and standard deviations of experiment time
for different values of B and combinations of m and » using equation (2a). Without loss of generality. the
calculations for the tables for Weibull-distributed data in this section are performed with 6 =1 (see
equation (3)). The expected experiment times reported in Table 3.2.1 appear in close agreement to the
numerical values reported by Tse and Yuen (1998, Table 1). No differences were expected as equation
(2a), when used to find the first moment of experiment time for Weibull-distributed lifetimes. is
equivalent to the equation offered by Tse and Yuen (1998).

Any examination of experiment time estimates, however, should also consider the variability
associated with the estimator. Therefore, the second moments of experiment time in Table 3.2.2, in
conjunction with the first moments in Table 3.2.1, are used to obtain the standard deviations that are
reported in Table 3.2.3. The values in Table 3.2.3 suggest that standard deviations associated with
experiment time values are especially large in instances where <l1. Consequently, the expected
experiment times reported in Table 3.2.1 should be used cautiously for Weibull-distributed lifetimes with
decreasing failure rates. Furthermore, the standard deviations of experiment time in Table 3.2.3 suggest:

(1) for fixed values of m,

(a) if <1, the standard deviations of experiment time tend to decrease as n increases.
(b) if p>1. the standard deviations may increase or decrease as n increases.
but, overall, are of approximately the same magnitude, and

(2) for fixed values of m and n. as P increases. the standard deviations decrease.
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Table 3.2.4

E[X,,,]/0 Using Equation (2a) for Two Parameter Weibull Samples

p
m n_ 025 050 075 100 125 150 200 300 500
37737677963 47222 24296 18333 15761 14361  1.2904 11718 1.0936
4 441186 3.5069  1.9499 15417 13666 12724 11759 10999 10522
5 327637 28093  1.6479 13481 12228 11573 10931 10463  1.0204
6 261682 23552 14377 12080 1.1160 10703  1.0289 10037 09947
10 148535 14642 09832 08858 08601 08557 08646 08901 09238
I5 99016 10183 07272 06893 06955 07122 07489 08058  0.8687
5 5 1075326 66772  3.1816 22833 18958 16842 14620 12784 11545
6 928072  6.0341 29518 21521 18055 16157 14160 12508  1.1392
8 748683 51664 26246 19594 16702 15117 13450 12074 11147
10 640825 45921 23959 18202 15703 14338 12908 11735  1.0953
12 567300  4.1748 22229 17122 14916 13716 12468 11456  1.0791
I5 491011 37174 20261 15865 13984 12972 11934 L1111 10587
6 6 1262316 74939 34735 24500 20105 17711 15203 13134 11739
8 1063499  6.6583  3.1817 22857 18986 16869 14643 12801 11556
10 939611  6.0892 29734 21653 18150 16232 14213 12542 11411
12 852763  5.6653 28128 20704 17483 15719 13862 12327 11290
I5 760130 51884 26262 19580 16682 1509 13431 12059 11138
9 9 1786700 9.5428 41621 28290 22651 19508 16446 13863 12135
10 1731245 93454 4.0990 27953 22429 19445 16341 13802 12103
12 1643024  9.0221  3.9942 27388 22055 19169 16163 13699  1.2048
15 1545767 86518 38718 26721 21610 18840 15948 13575  1.1980
10 10 1951260 10.1286 4.3493 29290 23309 20092 16757 14042  1.2231
Il 1905550  9.9719 43002 29030 23140 19968 16678 1399 12207
12 1865931  9.8340 4.2566 28799 22988 29857 16607 13956 12185
13 183.1066 97109 42175 28591 22851 22851 16542 13919 12166
14 180.0002  9.5998 4.1819 28401 22726 22726 16483 13885 12147
15 1772036  9.4987 41494 238226 22611 19580 1.6428 13853  1.2130
15 15 2714854 125911 50988 33182 25827 21919 L7914 1469 12576
16 269.1996  12.5234 50791 33082 25764 2.1873 17886 14680  1.2568
17 267.1240 124616 50610 3.2990 2.5705 21831 17859 14665  1.2560
I8 2652260 124048 50443 3.2906 25651 21792 17835 14652 12533
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Table 3.2.1

E1X,, ,1/6 Using Equation (2a) for Two Parameter Weibull Samples

p
m n 025 0.50 0.75 1.00 1.25 1.50 2.00 3.00 5.00
3 3 67.7963  4.7222  2.4296 1.8333 1.5761 1.4361 1.2904  1.1718 1.0936
4 441186  3.5069 1.9499 1.5417 1.3666 1.2724 1.1759  1.0999 1.0522
5 32.7637  2.8093 1.6479 1.3481 1.2228 1.1573 1.0931  1.0463 1.0204
6 26.1682  2.3552 1.4377 1.2080 1.1160 1.0703 1.0289  1.0037  0.9947
10 14.8535 1.4642 09832 0.8858 0.8601 0.8557 0.8646  0.8901 0.9238
15 9.9016 1.0183  0.7272 0.6893 0.6955 0.7122  0.7489 0.8058  0.8687
5 5 107.5326  6.6772  3.1816 2.2833 1.8958 1.6842 1.4620  1.2784 1.1545
6 92.8072 6.0341 29518 2.1521 1.8055 1.6157 1.4160  1.2508 1.1392
8 74.8683 5.1664 26246 1.9594 1.6702 1.5117 1.3450  1.2074 11147
10 64.0825 4.5921 23959 1.8202 1.5703 1.4338 1.2908  1.1735 1.0953
12 56.7300 4.1748  2.2229 1.7122 1.4916 1.3716 1.2468  1.1456 1.0791
15 49.1011 3.7174  2.0261 1.5865 1.3984 1.2972 1.1934  1.1111 1.0587
6 6 126.2316  7.4939  3.4735 24500 2.0105 1.7711 1.5203  1.3134 1.1739
8 106.3499  6.6583 3.1817 2.2857 1.8986 1.6869 1.4643  1.2801 1.1556
10 93.9611 6.0892 29734 21653 1.8150 1.6232 1.4213  1.2542 1.1411
12 85.2763 56653 28128 2.0704 1.7483 1.5719 1.3862  1.2327 1.1290
15 76.0130 5.1884 26262 1.9580 1.6682 1.5096 1.3431 1.2059 1.1138
9 9 178.6700  9.5428  4.1621 2.8290 2.2651 1.9508 1.6446  1.3863 1.2135
10 173.1245 93454  4.0990 2.7953 2.2429 1.9445 1.6341  1.3802 1.2103
12 1643024  9.0221 3.9942 2.7388 2.2055 1.9169 1.6163  1.3699 1.2048
15 1545767 86518 3.8718 26721 2.1610 1.8840 1.5948  1.3575 1.1980
10 10 1951260 10.1286 4.3493 2.9290 23309  2.0092 1.6757  1.4042 1.2231
11 190.5550 9.9719 43002 29030 23140 1.9968 1.6678  1.3996 1.2207
12 186.5931 9.8340 4.2566 2.8799 22988  2.9857 1.6607  1.3956 1.2185
13 183.1066 9.7109 4.2175 2.8591 2.2851 2.2851 1.6542  1.3919 1.2166
14 180.0002 9.5998 4.1819 28401 22726 2.2726 1.6483  1.3885 1.2147
15 177.2036 9.4987 4.1494 28226 2.26l11 1.9580 1.6428  1.3853 1.2130
15 15 271.4854 125911 5.0988 3.3182 25827 2.1919 1.7914  1.4696 1.2576
16 269.1996  12.5234 50791 3.3082 2.5764  2.1873 1.7886  1.4680 1.2568
17 267.1240  12.4616 5.0610 3.2990 2.5705  2.1831 1.7859  1.4665 1.2560
18 2652260 12.4048 5.0443 3.2906 2.5651 2.1792 1.7835  1.4652 1.2553
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ElX ,(,,2),, ]/6% Using Equation (2a) for Two Parameter Weibull Samples

Table 3.2.2

p
m n_ 025 0.50 0.75 1.00 125 150 200  3.00 500
3737120493650 677963 103553 47222 3.1206 24296 18333 14361 12163
4 73984.104  44.1186 72519 35069 24220 19499 15417 12724 11280
5 53767.836 327637  5.5998 28093 19990 16479 13481 11573 10630
6 42515391 261682 45781 23552 17130 14377 12080 10703 10119
10 23836477  14.8535 27018 14642 11204 09832 08858 08557 08778
15 15831.932 99016  1.8288 10183 08039 0.7272 06893 07122  0.7803
5 5 200083480 107.5326 154427 66772 42282 3.1816 22833 16842 13477
6 168907700  92.8072 13.6775 6.0341 3.8786 29518 21521 16157 13132
8 133038210  74.8683 113961 5.1664 3.3921 26246 19594 15117 12593
10 112417.230  64.0825 99483 4.5921 3.0599 23959 18202 14338 12176
12 98708375 56.7300 89265 4.1748 28130 22229 17122 13716  1.1833
15 84748908  49.1011  7.8355 37174 25367 2.0261 15865 12972 11416
6 6 23967177 1262316 17.6842 7.4939 46722 34735 24500 17711 13914
8 19679308 1063499 153514 6.6583 4.2237 3.1817 22857 16869 13497
10 17137294 939611 138210 6.0892 3.9100 29734 21653 16232 13173
12 15406561 852763 127108 5.6653 3.6726 28128 20704 15719 12907
15 136020.15  76.0119 114919 5.1887 3.3988 26262 19579 15096 12577
9 9 35765991  178.6700 23.5822 9.5428 57477 4.1621 28290 19608 14834
10 34448943  173.1244 229911 93454 56470 4.0990 27953  1.9445 14758
12 32393128 1643024 220345 9.0221 54807 39942 27388 19169 14627
15 30179403  154.5767 209560 8.6518 52881 38718 26721 1.8840 14469
10 10 39674246 1951260 253362 10.1286 6.0465 43493 29290 20092  1.5062
11 385624.10  190.5551 24.8597 9.9719 59674 43002 29030 1.9968 15004
12 37608991  186.5931 244428 98340 58976 42566 28799 19857 14953
13 367776.73  183.1066 24.0729 9.7109 58349 42175 28591 19756 14903
14 36042878  180.0002 23.7408 9.5998 57782 4.1819 28401  1.9664 14862
I5 353860.09  177.2036  23.4400 9.4987 57265 4.1494 238226 19580 14822
I5 15 59044192 2714854 33.0123 12.5911 7.2675 5.0988 33182  2.1919  1.5900
16 58429133  269.1996 32.7940 125234 72348 50791 33082 2.1873  1.5880
17 57873095  267.1240 325959 124616 7.2048 50610 32990 21831 15861
I8 57366646 2652260 324124 124048 7.1773 50443 32906 2.1792 15843
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Std.Dev.| X, ,,]/ 0 Using Equation (2a) Using Two Parameter Weibull Samples

Table 3.2.3

B
m n 025 0.50 0.75 1.00 1.25 1.50 2.00 3.00 5.00
3 3 340.4369 6.7451 2.1101 1.1667 0.7978 0.6059 04102 0.2510 0.1424
4 2683983 56409 18574 1.0631 0.7446 0.5753 0.3987 0.2501 0.1449
5 229.5526 49871 1.6983 0.9959 0.7097 0.5554 0.3916 0.2503 0.1474
6 2045253 45410 1.5846 0.9466 0.6837 0.5405 0.3864 0.2508 0.1497
10 153.6745 3.5651 1.3172 0.8244 0.6169 0.5009 0.3719 0.2518 0.1560
15 1254348 29774 1.1402 0.7370 0.5659 0.4690 0.3584 0.2509 0.1601
5 5 434.1892  7.9339 23065 1.2098 0.7962 0.5875 0.3821 0.2234 0.1217
6 4003680 7.5098 2.2281 1.1843 0.7866 0.5842 0.3833 0.2262 0.1242
8 3569775 69409 2.1230 1.1521 0.7762 0.5825 03876 0.2323 0.1292
10 329.1059 6.5571 2.0513 1.1310 0.7707 0.5832 0.3925 0.2382 0.1339
12 309.0147 6.2691 1.9963 1.1149 0.7669 0.5844 03971 0.2435 0.1436
15 286.9460 59398 19315 1.0957 0.7623 0.5859 0.4029 0.2504 0.1590
6 6  473.0088 83710 23706 1.2212 0.7937 0.5801 03725 02147 0.1155
8 4306771 7.8751 2.2865 1.1974 0.7868 0.5798 03763 0.2194 0.1192
10 403.1678  7.5421 2.2315 1.1835 0.7847 0.5819 0.3810 0.2243 0.1228
12 383.1365 7.2925 2.1906 1.1741 0.7849 0.5848 0.3858 0.2289 0.1263
15 360.8908 7.0066 2.1436 1.1640 0.7848 0.5893 0.3924 0.2354 0.1310
9 9  570.7337 9.3597 25018 1.2409 0.7856 0.5634 03526 0.1976 0.1038
10 560.8185 9.2622 2.4878 1.2377 0.7851 0.5639 0.3536  0.1986 0.1045
12 5449184 9.1051 2.4660 1.2333 0.7851 0.5653 0.3557 0.2005 0.1058
15 527.1623 8.9288 2.4424 12294 0.7861 0.5678 0.3588 0.2032 0.1076
10 10 5988892 9.6196 2.5337 1.2449 0.7831 0.5590 0.3477 0.1936 0.1011
11 591.0270  9.5454  2.5235 1.2427 0.7829 0.5595 0.3485 0.1944 0.1016
12 584.1857 9.4808 2.5147 1.2410 0.7829 0.5601 03493 0.1951 0.1021
13 578.1425 94237 25071 1.2396 0.7830 0.5607 0.3501 0.1958 0.1026
14 5727379 93725 25004 1.2385 0.7833 0.5613 0.3509 0.1965 0.103]
15 567.8547 93262 24945 1.2375 0.7835 0.5619 0.3517 0.1971 0.1035
15 15 7188446 10.6278 2.6485 1.2572 0.7727 0.5426  0.3302 0.1796 0.0920
16 715.4180 10.6002 2.6452 1.2566 0.7728 0.5429 03305 0.1799 0.0922
17 7123031 10.5751 2.6422 1.2562 0.7729 0.5431 0.3309  0.1802 0.0923
18 709.4516 10.5521 2.6396 1.2558 0.7730 0.5434 0.3312 0.1804 0.0925
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Values of the coefficient of variation ( C}") of experiment time are reported in Table 3.2.4. The

coefficient of variation, also referred to as the standardized second central moment. is defined to be
CV=_8td.Dev.[X ,, o1/ EIX 0] .

The CVis applicable when the variable measured is on a ratio scale (i.e., has an absolute zero). The ('1"is
a simple method to compare two or more populations with respect to variability. This ratio of standard
deviation to expected value is a unitless measure of spread. The CV is used to compare the relative
amount of variability of expected experiment time for different values of 3 or m and n.

As one would expect. the CV for a complete sample (m = n ) is the smaller than the (' 7s for the
censored sample ( m<n ). Further. the CV's for experiment time in Table 3.2.4 suggest:

(1) for fixed values of m and P, the coefficient of variation increases as » increases. and

(2) for fixed values of m and n, the coefficient of variation decreases as 3 increases
(i.e.. for fixed values of m and n. more precise estimates of £[.\,, ,,] may be obtained

for large values of B).
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Coefficient of Variation of X', , Using Equation (2a) for Two Parameter Weibull Samples

Table 3.2.4

B
m n_ 025 0.50 0.75 100 125 1.50 200 300 500
377T3TTS0215 14284 0.8685 06364 0.5062 04219 03179 02142 0.1302
4 6083 16085 09525 06896 05449 04522 03391 02274  0.1377
5 70063 17752 1.0305 07387 0.5804 04799 03583 0.2393  0.1443
6  7.8158 19281 11022 07836 06127 0.5050 03755 02499  0.1505
10 103460 24349 13397 09307 07172 05854 04301 02828  0.1688
15 12.6681 29239 15681 10693 08138 06585 04786 03113  0.1843
5 5 40377 11882 07249 05298 04200 03488 02614 0.1747  0.1054
6 43140 12446 07548 05503 04357 03615 02707 0.1808  0.1090
8 47681 13435 08089  0.5880 0.4648 03854 02882 0.1924 01159
10 51357 14279 08562  0.6213 04908 04068 03041 02029  0.1223
12 54471 15017 08981 06512 05141 04260 03185 02125  0.1331
I5 58440 15978 09533  0.6906 0.5451 04517 03376 02254  0.1502
6 6 37472 11170  0.6825 04985 03947 03275 02451 0.1635  0.0984
§ 40496 11828 07286  0.5238 04144 03437 02570 0.1714  0.1032
10 42929 12386 07505 05466 04323 03585 02681 0.1788  0.1076
12 44929 12872 07788  0.5671 04489 03720 02783 0.I1857  0.1119
I5 47477 13504 08162 05945 04704 03903 02922 01952  0.1176
9 9 31943 09808 06011 04386 03468 02873 02144 01426  0.0855
10 32394 09911 06069 04428 03501 02900 02164 0.1439  0.0863
12 33166 10092 06174 04503 03560 02949 02201 0.1464  0.0878
15 34104 10320 06308 04601 03638 03014 02250 0.1967  0.0899
10 10 30692 09497 05825 04250 03359 02782 02075 0.1379  0.0827
11 31016 09572 0588 04281 03383 02802 02090 0.1389  0.0833
12 31308 09641 05908 04309 03406 02821 02104 0.1398  0.0838
13 31574 09704 05945 04336 03427 02838 02117 0.1407  0.0843
14 31819 09763 05979 04361 03446 02854 02129 0.1415  0.0849
15 32045 09818 06012 04384 03465 02870 02141 0.1423  0.0853
I5 15 26478 084407 05194 03789 02992 02475 0.1843 01222 00731
16 26576 08464 05208 03798 03000 02482 01848 01226  0.0733
17 26666 08486 0.5221 03808 03007 0.2488 0.1853 01229 00735
18 26749 08506 05233 03817 03014 02494 01857 0.1231  0.0737
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Different table values from those reported by Tse and Yuen (1998) are obtained by using equation
(2b) where the experimenter assumes that all removal schemes are equally likely. Another way to view
the resulting values using equation (2b) are as the averages of the moments of experiment time of all Type
II progressive censoring removal schemes.

Tables 3.2.5 - 3.2.8 display the values for the first and second moments, standard deviations. and
CVs of experiment time. respectively, using equation (2b). For both equation (2a) and equation (2b). the
expected experiment time does not decrease appreciably as » increases if f is large. Since shorter
experiment times are a major reason why progressive censoring schemes are used. this result should be
considered: for both probability assignments to random removals, Type II progressive censoring schemes
did not result in appreciably shortened experiments in the for Weibull-distributed lifetimes with
increasing failure rates. However, only two probability assignments for random removals are considered
in this research. Many other probability assignments for random removals are possible. For example. the
removals may occur according to any number of multinomial probability distributions.

For all values of p. the expected experiment time values in Table 3.2.5. using equation (2b). arc
smaller than the corresponding expected experiment time values in Table 3.2.1. using equation (2a). This
is because the probabilities assigned with equation (2a) give heavier weight to removal schemes with early
removals: consequently, the larger expected experiment time values follow.

The standard deviations reported in Table 3.2.7, using equation (2b). are still large if p<I and
are approximately of the same magnitude if =1. Therefore. for both probability assignments for random
removals. the expected experiment time values should be used cautiously in instances of Weibull-
distributed lifetimes with decreasing failure rates.

The CVs in Table 3.2.8, using equation (2b) suggest

(1) for fixed values of m and p. the coefficient of variation increases as »n increases and.

(2) for fixed values of m and n, the coefficient of variation decreases as f3 increases .

These are the same relationships suggested in Table 3.2.4, using equation (2a).
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Table 3.2.5

E1X,,,1/0 Using Equation (2b) for Two Parameter Weibull Samples

p

m n 025 0.50 0.75 1.00 1.25 1.50 2.00 3.00 5.00

3 3 67.7963  4.7222 24296 1.8333 1.5761 1.4361 1.2904 1.1718 1.0936
4 384811 3.2176 1.8357 1.4722 13167 1.2333 1.1486 1.0828 1.0423
5 257517 24064 1.4789 1.2417 1.1446 1.0952 1.0487 1.0178 1.0037
6 18.9450 1.9059 1.2402 1.0800 1.0202 0.9932 0.9730 0.9672  0.9730
10 8.7053 1.0096 0.7582 0.7287 0.7365 0.7526 0.7861 0.8363  0.8904
12 6.7530 0.8094 0.6362 0.6324 0.6547 0.6807 0.7276 0.7933  0.8622
15 5.0149 0.6200 0.5131 05131 0.5661 0.6013 0.6613 0.7432  0.8285

6 6 126.2316  7.4939 3.4735 2.4500 20105 1.7711 1.5203 1.3134 1.1739
8 71.5299 5.1355 26393 19770 1.6867 1.5266 1.357] 1.2160 1.1202
10 47.1520  3.8405 2.1312 1.6716 14698 13585 1.2413 1.1445 1.0796
12 34.0434  3.0340 1.7885 1.4560 13119 1.2338 1.1530 1.0885 1.0471
15 23.2475  2.2781 1.4419 12279 1.1401 1.0952 1.0524 1.0230 1.0082

9 9 178.6700 9.5428 41621 2.8290 2.2651 1.9608 1.6446 1.3863 12135
10 143.4000 8.2873 3.7608 2.6146 2.1239 1.8571 1.5778 1.3479 1.1930
12 989301  6.4957 3.1537 2.2796 1.8987 1.6892 1.4678 1.2834 1.1580
15 63.8395  4.8260 2.5395 1.9247 1.6530 1.5024 1.3421 1.2078 1.1160

15 15 2714855 125911 5.0988 3.3182 25827 21919 1.7914 1.4696 1.2576
16 2352294 11.5179  4.7857 3.1595 24817 2.1193 1.7461 1.4443 1.2445
17 205.8252 10.5933  4.5086 3.0170 2.3900 2.0532 1.7045 1.4210 1.2322
18 181.6622 9.7897 42616 28813 23065 1.9925 1.6660 1.3992 1.2207
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Table 3.2.6

E[x (2 1/6% Using Equation (2b) for Two Parameter Weibull Samples

p

m n 025 0.50 0.75 1.00 1.25 1.50 2.00 3.00 5.00

3 3 120493.65 67.7963 10.3553  4.7222 3.1206 24296 1.8333 14361 1.2163
4 62910404 38.4811 6.5131  3.2176 2.2557 1.8357 14722 1.2334 1.1070
5 40776.812 25.7517 46193 24064 1.7591 14789 1.2417 1.0952 1.0284
6 29572171 18.9450 3.5227  1.9059 1.4383 1.2402 1.0800 0.9932 0.9678
10 13401.926  8.7053 1.7189  1.0096 0.8234 0.7582 0.7287 0.7526 0.8140
12 10388.991  6.7530 1.3484  0.8094 0.6761 0.6362 0.6324 0.6807 0.7645
15 7717.1611  5.0149 1.0103  0.6200 0.5317 0.5131 0.5312 06013 0.7074

6 6  239671.77 126.2316 17.6842  7.4939 4.6722 3.4735 24500 1.7711 1.3914
8 123523.32  71.5299 11.1687 51355 3.3972 2.6393 19770 1.5266 1.2694
10 77671.749  47.1520  7.8864  3.8405 26539 2.1312 1.6716 13585 11810
12 54613.741  34.0434 59676 3.0339 2.1691 1.7885 14560 1.2338 1.1125
15 3649441 23.2475 42716  2.2781 1.6946 1.4419 12279 1.0952 1.0332

9 9 35765991 178.6700 23.5822  9.5428 5.7477 4.1621 2.8290 19608 14834
10 27389437 143.4000 19.8229 812873 5.1073 3.7608 26146 18571 1.4346
12 176822.89 989301 14.7182  6.4957 4.1618 3.1537 22796 1.6892 1.3532
15 107476.39 63.8395  10.2747 4.8260 3.2377 2.5395 19247 1.5024 1.2587

15 15 59044192 2714855 33.0123 125911 7.2675 5.0988 3.3182 21919 1.3900
16 492887.52 235.2294 29.5485 11.5179 6.7482 4.7857 3.1595 2.1193 1.5575
17 417500.76 205.8252 26.6334 10.5933 6.2937 4.5086 3.0170 2.0532 1.5274
18 358150.84 181.6622 24.1548 9.7897 58928 4.2616 2.8881 19925 14996
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Table 3.2.7

Std Dev.[X ,, ,,]/6 Using Equation (2b) for Two Parameter Weibull Samples

p
m n 025 0.50 0.75 1.00 1.25 1.50 2.00 3.00 5.00
3 3 340.4369  6.7451 2.1101 1.1667 0.7978 0.6058 0.4102 02510 0.1424
4 2478500 53036 1.7729 1.0248 0.7225 0.5608 0.3910 0.2468  0.1438
5 200.2840  4.4678 1.5595 09299 0.6702 0.5287 0.3767 0.2435  0.1447
6 170.9189  3.9131 1.4088  0.8599 0.6305 0.5037 0.3652 0.2405  0.1455
10 1154389 2.7724 1.0696  0.6919 0.5301 0.4380 0.3327 0.2196  0.1459
12 101.7025 24694 09715 06399 04975 04157 0.3209 0.2267  0.1456
15 87.7041 2.1519 0.8643  0.5812 0.4596 0.3893 0.3064 0.2214  0.1450
6 6  473.0088 8.3710  2.3704 1.2212  0.7937 0.5801 0.3725 0.2147  0.1155
8 3441031  6.7199  2.0501 1.1076  0.7432 0.5557 0.3677 0.2188  0.1209
10 2746788  5.6923 1.8288 1.0228 0.7028 0.5345 0.3618 0.2206  0.1244
12 231.2029  4.9839 1.6640  0.9560 0.6693 0.5160 0.3558 0.2212  0.1268
15 189.6153  4.2494 1.4807 0.8776 0.6282 0.4923 0.3469 0.2209  0.1292
9 9  570.7337 93597 25018 1.2409 0.7856 0.5634 0.3526 0.1976  0.1038
10 503.3198  8.6441 2.3831 1.2046 0.7721 0.5587 0.3537 0.2007  0.1065
12 408.6872  7.5323 2.1846 1.1398 0.7462 0.5480 0.3538 0.2049  0.1106
15 321.5601 6.36785 1.9559 1.0590 0.7109 0.5314 0.3513 0.2086  0.1150
15 15 660.1046  10.6278 2.6485 1.2572  0.7727 0.5426 0.3302 0.1796  0.0920
16 661.4791 10.1275  2.5779 1.2391 0.7679 0.5423 0.3325 0.1823  0.0939
17  612.4841 9.6751 2.5112 1.2212  0.7625 0.5414 0.3342 0.1846  0.0957
18 570.2190 9.2641 2.4482 1.2035 0.7568 0.5400 0.3355 0.1865  0.9725
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Table 3.2.8

Coefficient of Variation of X', ,, Using Equation (2b) for Two Parameter Weibull Samples

p

m n 025 0.50 0.75 1.00 1.25 1.50 2.00 3.00 5.00

3 3 5.0214 1.4284 0.8685 0.6364 05062 0.4219 03179 02142  0.1302
-1 6.4408 1.6483 09658 0.6961 0.5487 0.4547 0.3404 02279  0.1379
5 7.7775 1.8566 1.0545 0.7489 0.5855 0.4827 0.3592  0.2392  0.1442
6 9.0219 20532 1.1359 0.7962 0.6180 0.5071 03753  0.2487  0.1493
10 13.2608 2.7460 1.4106 0.9495 0.7198 0.5819 0.4232 0.2617  0.1638
12 15.0603 3.0507 1.5270 1.0119 0.7600 06107 0.4411 02858  0.1689
15 17.4886 3.4709 1.6845 1.0942 0.8119 0.6475 04634 02979  0.1750

6 6 3.7472  1.1170 0.6824 0.4985 0.3947 0.3275 0.2451  0.1635  0.0984
8 48107 1.3085 0.7767 0.5602 0.4406 0.3640 0.2710  0.1800  0.1079
10 58254 1.4822 0.8581 0.6119 04782 0.3935 02915 0.1928  0.1152
12 6.7914 1.6427 09304 0.6566 0.5102 0.4183 0.3085 0.2032  0.1211
15 8.1564 1.8654 1.0269 0.7147 0.5510 0.4495 0.3297 0.2159  0.1282

9 9 3.1943 09808 0.6011 0.4386 0.3468 0.2873 0.2144  0.1426  0.0855
10 3.5099 1.0431 0.6337 0.4607 0.3635 0.3008 0.2242  0.1489  0.0892
12 41289 11596 0.6927 0.5000 0.3930 0.324 0.2411  0.1597  0.0955
15 5.0370  1.3195 0.7702 0.5502 0.4300 0.3537 0.2618 0.1727  0.1030

15 15 24315 08441 05194 03789 02992 0.2475 0.1843  0.1222  0.0731
16 28121 08793 0.5387 03922 03094 0.2559 0.1904 0.1262  0.0755
17 29758 0.9133 0.5570 0.4048 0.3190 0.2637 0.1961  0.1299  0.0776
18 3.1389 0.9463 0.5745 04167 03281 0.2710 0.2014 0.1333  0.0797
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The Burr Type XII Example with Random Removals

The formulas may also be applied to other than Weibull-distributed lifetimes since the formula
developed for this research is applicable to any distribution where the moments of the smallest order
statistic are known. The Burr Type XII distribution is one possible model of lifetime distributed data if the
lifetime distribution is L-shaped or unimodal. Consider X', a random variable for a Burr Type X1l (d.¢)
lifetime distribution. with cdf given by

Fx)=1-(*+D"%, x>0,¢>0.d>0
and pdf given by

c-1
f(x):L, x>0,¢>0,d>0.

(xC +I)d+l

If X is distributed as Burr Type XII(d.c), then the pdf of the first order statistic. .\'} . is

distributed Burr Type XII (dn.c)and

. . F[£+l)l'(dn—£J
x®)= dnB[—+l,d ——J= 2 €/ k<ed.
BXn ] c c T(dn+1) ¢

Moments of experiment time may be obtained by substituting

El-rl.;+n—Rm+l]: d(j"'n_Rm +])B[l+ Ld(_,"‘l‘ﬂ _Rm +l)_l]
c c

l"[l+l}|'(d(j+n -R, +D)- l]
c ¢

[(d(j+n-R,, +1)+1)

=d(j+n-R, +1)

if 1 <ed . in the formulas in this section.
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As an example to illustrate this procedure, expected experiment times for Burr Type XII-
distributed data are reported in Table 3.2.9 for m = 6 and n = 6.8.10,12.

This example also illustrates some limitations to using the formulas for expected experiment time
with Burr Type XII-distributed data. Table 3.2.9 does not appear complete for all values of ¢ and . This
is because either

(a) the expectations E[X) ;,,_g, +1]do notexist when cd <1 (the upper left-hand corner of

the table) or

(b) the expectations E[X) ;- Ry +1] exist, but the gamma function calculations required are

too large to compute the beta function values necessary (the lower right-hand corner of the

table).
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Table 3.2.9

E|X ,,.»] Using Equation (2a ) Two Parameter Burr Type XII Samples

d
n ¢ 0.25 0.50 1.00 2.0 5.0 10.0 15.0
6 0.25 58976 0.0444  0.0055
8 3.0577 0.0240 0.0030
10 1.9291 0.0155
12 1.3590
6 0.50 0.7347 0.1125 0.0433
8 0.4587 0.0738 0.0289
10 0.3239  0.0537
12 0.2460
6 1.0 3.4329 0.6879 0.2877 0.1815
8 23639 0.5269 0.2266  0.1441
10 1.8065 0.4308 0.1886
12 1.4654 0.3664
6 2.0 42522 1.6288 0.7882 0.4551 04114
8 3.1363  1.3475 0.6854 0.4551 0.3642
10 2.5408 1.1741 06164 04129
12 2.1681 1.0541 0.5658
6 5.0 19.5097 3.0980 1.6436 1.1851 0.8984 0.7605 0.6950
8 11.9097 2.4908 14640 1.0982 0.8484 0.7221 0.6610
10 8.5375 2.1542 13512 1.0390 0.8123 0.6937
12 6.6883 19381 1.2719 0.9948 0.7842
6 10.0 3.1099 16831 1.2686 1.0844 09460 0.8707 0.8325
8 25109 1.5180 1.1983 1.0439 0.9191 0.8483 038117
10 2.1825 14176 1.1520 1.0153 0.8991 0.8313
12 1.9742 13487 1.1181 0.9934 0.8833
6 15.0 2.0450 1.4032 1.1693 1.0546 0.9632 09115 0.8847
8 1.7836  1.3115 1.1260 1.0282 09487 0.8957 0.8698
10 1.6314 1.2540 1.0969 1.0093 0.9311 0.8837
12 1.5308 1.2138 1.0754 0.9947 0.9201
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Fixed Removals

A Weibull (1.1) Example with m=3 and n=4

Table 3.2.10 illustrates the differences between the equations for fixed removals and random
removals. Consider Type II progressively censored data where m=3 and n=4 from a Weibull (1.1.)

distribution.
For fixed removals, using equation (1a), the expected experiment time . E[.\'y ,|. may be found
for each of three possible fixed removal schemes:
(1) if 1, =0,rp =0,r3 =1, then E[X; ,]= 1.0833,

(2) if =07y =173 =0 E[X, ,] = 1.5833, and

() if 1 =Lry=0.r3 =0 then E[X; ,]=1.7500.

1
1

For random removals, using equation (2a) . since P(r; =0.r, =0. 3 =1) =
1 1 . L
P(rp=0,rp,=Lr3=0)= i and P(rp =Lr,=0.r,=0)= 3 the expected experiment time in Table
3.2.1is

FX,,] = %1.0833 ¥ %1‘0833+ %1.0833 = 1.5417.

For random removals, using equation (2b). since P(r; =0,r, =0.r3 =1)= % .

P(n=0.rp=Lrn=0)= % .and P(n=Lr,=0.1,=0)= %— the expected experiment time value 1n
Table 2.4.5 is

ElX;54] = %1.0833 + %1.5833+ %1,7500 = 1.4722
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Table 3.2.10

ElX 3, 4] Using Equations (1a), (2a), and (2b) for Weibull (1.1) Samples

Fixed Removal Schemes Complete Sample X.  |RIxP(R v
Ranking Schemes E] 3.4 | R3]x P(R3) El. 3_4]
n=0,r=0r; =1 Ry=LRy=2,Ry=3 10833 x 1=10833
1.0833
ni=tita =L =0 fumbitg=dle=? 1.0833x%=0.54l6
R1=1.R2=2,R3=4 1 _
2.0833 x 5 = 1.0416 1.5833
=Ly =0, =0 Br=liftg=4Rs=3 1‘0833x%=0.3611
ByslRe=dfy=t i % = 0.6944
R1=LR2=3.R3=4 l__
2.0833 x —3— =0.6944 1.7500
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A Weibull Example with a 50% Fixed Removal Scheme

A 50% fixed removal scheme which is considered by Montanari. et al. (1998) for progressive
stress tests of electrical breakdown data of Weibull-distributed lifetimes is one example of a fixed removal
scheme. The sample is described as “FCFCFC...” (F=failed and C=censored) . i.e.. alternate items are
censored. The equation for experiment time for this fixed removal scheme is given previously as equation
(la).

First and second moments of expected experiment time for this progressive censoring scheme

may be obtained by noting, as before, that for Type II progressively censored Weibull-distributed data

k
. 8 k
x®) - l"[l+—)
ET ].j+ﬂ—Rm+1] [U"'"—Rm +l)l|"’ﬁ} B

and substituting this value in equation (1a).

Table 3.2.11 gives expected experiment time values using equation (1a) for progressively
censored Weibull-distributed lifetimes. Tables 3.2.12 and 3.2.13 provide second moments and standard
deviation values using equation (la). Table 3.2.14 gives coefficients of variation, using equation (la).

The expected experiment times, standard deviations , and CV s using the 50% censoring
approach are smaller in comparison to corresponding values where random progressive censoring
schemes are used. Although the standard deviations of experiment time are smaller with this 50%
removal scheme than with either of the other two random removal schemes. the standard deviations still

appear to be large when the value of the shape parameter 3 is small.
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Table 3

211

E[X,, ,1/6 Using Equation (la) for Two Parameter Weibull Samples

B
m n_ 025 0.50 0.75 1.00 1.25 1.50 2.00 3.00 500
3 6 42373 1.1806  0.9642 0.9167 0.9052 0.9047 0.9124 0.9301 09521
4 8 5.5057 14410  1.1273 1.0417 1.0084 09932 0.9818 0.9790 0.9830
5 10 6.7208  1.6693 1.2626  1.1417 1.0889 1.0610 1.0338 1.0147 1.0051
6 12 7.8895 1.8735 1.3785 1.2250 1.1548 1.1158 1.0750 1.0424 1.0220
7 14 90172 20587 1.4799 12964 1.2104 1.1616 1.1090 1.0651 1.0355
8 16 10.1085  2.2285 1.5702 1.3589 1.2586 1.2009 1.1379 1.0840 1.0468
9 18 11.1669  2.3857 1.6517 14145 13009 1.2352 1.1629 1.1003 1.0564
10 20 12.1954  2.5322 1.7260 14645 13388 1.2657 1.1849 1.1145 1.0648

Table 3.2.12
ElX ,(;,,22, 1762 Using Equation (1a) for Two Parameter Weibull Samples

B
m n_ 025 0.50 0.75 1.00 1.25 1.50 2.00 3.00 500
3 6 470.6783  4.2373 1.6309 1.1806 1.0294 0.9642 09167 09047 09218
4 8 626.4022 55057 2.0498 14410 12269 1.1273 1.0417 0.9932 09791
5 10 781.5761  6.7208 2.4321 1.6693 1.3948 1.2626 1.1417 1.0610 1.0214
6 12 936.2179  7.8895 2.7851 1.8735 1.5412 13785 1.2250 1.1158 1.0545
7 14 1090.3440 9.0172 3.1140 2.0587 1.6715 14799 1.2964 1.1616 10817
8 16 1243.9697 10.1085 3.4227 2.2285 1.7889 1.5702 1.3589  1.2009 1.1045
9 18 1397.1090 11.1669 3.7140 2.3857 1.8960 1.6517 1.4145 1.2352 1.1242
10 20 1549.7752 12.1954 3.9902 2.5322 19946 1.7260 14645 1.2657 14150

Table 3.2.13
Std .Dev.[X ,, ,]1/6 Using Equation (la) for Two Parameter Weibull Samples

p
m n_ 025 0.50 0.75 1.00 1.25 1.50 2.00 3.00 5.00
3 6 21.2773 1.6863  0.8374 0.5833 04582 0.3817 02901 0.1992 0.1239
4 8 244949 18518 0.8825 0.5966 0.4584 0.3755 0.2787 0.1864 0.1132
5 10 271368 19835 09153 0.6049 04573 03701 0.2191 0.1773 0.1059
6 12295631  2.0927  0.9407 0.6101 0.4558 03655 0.2634 0.1704 0.1006
7 14 317653  2.1861 09612 0.6148 04542 03615 0.2579 0.1650 0.0964
8 16 337904 22676 09783 0.6179 0.4527 0.3580 0.2533 0.1606 0.0931
9 18 356709 23399  0.9928 0.6204 04512 0.3549 0.2493 0.1569 0.0904
10 20 374306  2.4049 1.0055 0.6224 0.4498 0.3522 0.2459 0.1537 0.0749
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Table 3.

2.13

Coefficient of Variation of X', ,, Using Equation (1a) for Two Parameter Weibull Samples

p

m n 025 0.50 0.75 1.00 1.25 1.50 2.00 3.00 5.00
3 6  5.0215 1.4284 0.8686 0.6364 0.5062 0.4219 0.3179 0.2207 0.1302
4 8 44419 1.1981 0.7828 0.5727 04546 0.3781 0.2839 0.1904 0.1151
5 10 4.0377 1.1882  0.7249 0.5298 0.4200 0.3488 0.2614 0.1747 0.1054
6 12 3.7472 1.1170  0.6807 0.4985 0.3947 03275 0.2451 0.1635 0.0984
7 14 3.5227 1.0619  0.6495 0.4742 0.3753 03112 0.2326 0.1549 0.0931]
8 16 3.3428 1.0175  0.6230 0.4547 0.3597 0.2981 0.2226 0.1485 0.889

9 18 3.1943 0.9808 0.6011 0.4386 03468 0.2873 0.2144 0.1426 0.0855
10 20 3.0692 0.9497  0.5825 04250 0.3359 0.2782 0.2075 0.1379 0.0827
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3.3 Other Approaches

Percentiles of empirical distributions of experiment time .\',, , may also be informative

regarding total duration of test-time because of the large standard deviations associated with some
experiment time values.
As an example. simulated percentiles of Weibull-distributed progressively censored data when

f3 = 0.50 are reported in Table 3.3.1. The empirical distributions of experiment time suggest that these

distributions are unimodal and positively skewed. For this value of . the resulting estimates of the
median experiment time in Table 3.3.1 are smaller than the expected experiment time values in Table
3:2.1.

The percentiles reported in this example are based on 100,000 progressively censored sample
data sets which are generated using the method of Balakrishnan and Sandhu (1995) to simulate Type II

progressively censored samples.



Table 3.3.1

Percentiles of Experiment Time X ,, ,, with Random Removals as in Equation (2a)

for Two Parameter Weibull Samples*

Probability of a Smaller Value

m n B .05 10 25 .50 75 .90 95

3 4 .50 0.1288 0.2410 06310 1.6539  4.0482 8.4129 12.8641
5 0.0855 0.1616 04300 1.1709 3.0268  6.8700 10.8725
6 0.0629 0.1195 03197 0.9010  2.4471 5.8077 9.4738
10 0.0242 0.0458 0.1280 0.3929 1.2496  3.5483 6.3005
15 0.0110 0.0213 0.0606 0.1945 0.7101 2.3886 4.7427

6 8 .50 0.6812 1.0348 20193 4.1426  8.2671 14.8500  20.7956
10 0.5576 0.8614 1.7392 3.6926  7.5368 13.8782  19.7503
12 0.4562 0.7145 1.5055 3.2998  6.9064 13.0665 18.8642
15 0.3522 0.5747 12458 2.8805 6.2912 12.1491  17.7303

9 10 .50 1.5190 2.1321 3.6636 6.5948 11.7094 19.5408 26.4656
12 1.4123  1.9831 34432 6.2528 11.2372 18.8872  25.6530
15 1.2803 1.8166 3.2263  5.9558 10.8085 18.3753  25.0780

15 16 .50 28653 37656 5.8476 9.5378 15.6199 24,5775 323516
17 28773 3.7513 58128 9.5236 15.5799 243834 32.028Y
18 28177 3.6833 57647 9.4628 15.4950 24.2794 319031

*Simulated percentiles based on 100,000 Type II progressively censored sample data sets
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3.4 Conclusion

The formulas for moments of experiment time of Type II progressively censored data developed
in this chapter are shown as generalizable to any distribution whose moments of a first order statistic are
known. Tables generated using the formulas offer design guidance on selecting possible censoring
schemes and sample sizes which result in shortened experiment times. Tables developed using the
formula also demonstrate that expected experiment time information should be used cautiously as the
variability associated with this estimator of experiment time may be large. In such instanccs. the
experimenter may wish to consider other approaches such as examining the percentiles of an empirical

distribution of experiment time.
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CHAPTER FOUR

« RANKING PROGRESSIVELY CENSORED SAMPLES

TO TEST FOR GOODNESS-OF-FIT

Assumptions regarding the lifetime distribution of data are often explored using tests for
goodness-of-fit. This chapter considers correlation-type tests for goodness-of-fit of progressively censored
data. For small sample sizes, a conditional procedure is described which uses correlations between
progressively censored sample values and their expected values conditioned on rankings of the
progressively censored sample values in a complete sample. For all sample sizes. a second method is also
suggested which employs a function to approximate the rankings of progressively censored data in a
complete sample for a correlation-type test of goodness-of-fit. Examples are given to illustrate methods

and applications of these correlation-type goodness-of-fit tests for Type II progressively censored samples.

4.1 Introduction

In life-testing experiments, censoring occurs when items are removed from life-test before all
sample items have failed. Type I (time) censoring denotes censoring schemes where the removals occur at
pre-specified times. Type II (failure) censoring denotes censoring schemes where the removals coincide
with failure times of other measured items in the sample. In the instance of single right censoring. the
experiment ends with a single stage of censoring where only the largest lifetimes are censored. A
multiply or progressively censored sample occurs in life-testing when sample items are removed from life-
test at various stages of an experiment, and the sample items remaining continue until failure or until a

later stage of censoring.
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Suppose an experiment begins with a complete sample of » items and ends when m number of
failure times are observed. Suppose. also. that as the experiment progresses. », items are removed from
life-test at times 7;, i =12,....m. Consequently, n—m=r +ry +...+r, . The resulting m ordered
uncensored lifetimes, x , <X, , <...<Xp, ,, from a complete sample of size » are the progressively
censored sample. If the removal times, 7}, i = 1.2.....m , are pre-specified times. the sample is a Type |
progressively censored sample. If the removal times correspond to failure times of sample items x; .

i =1.2,....m . the sample is a Type II progressively censored sample.

Two correlation-type goodness-of-fit tests for Type II progressively censored data are introduced
in this chapter. The first test employs a conditional procedure to calculate a correlation test statistic. This
first test, however, is applicable only to smaller sample sizes because of the extensive computational time
required to consider all possible ranking schemes. The second test uses a rank function approximation to
obtain a correlation-type test statistic. The second test is applicable to all sample sizes.

Both tests are similar in structure to the correlation-type tests for goodness-of-fit introduced by
Filliben (1974) for complete samples and later adapted to apply to Type II single right censored data by
Smith and Bain (1976). In this chapter, correlation-type tests are adapted further to apply to Type Il
progressive censoring schemes.

Examples of the two methods to test for goodness-of-fit of Type II progressively censored data

are included to more fully illustrate these concepts introduced in this section.

4.2 A Conditional Method

Consider a Type II progressively censored sample, xy,,.X5 ,.....X,, ,, Where r.7,.....r,, are the

number of removals at each stage of censoring. Suppose it is desired to test H,: X ~F (x ), wherc Fis a
specified cumulative distribution function, based on the progressively censored sample.
In this section, to test for goodness-of-fit of progressively censored data, a test statistic is

developed which uses the correlation coefficients p(xy ,;..... X 2 k1 seresKmn | Ryoeon R,y ) Where
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Xpp+X2.ns-Xm,n are the ordered progressively censored sample values, the values ky ,.k3 ... 4, , arc
the corresponding expectations, and R;.R,.....R,, are the rankings in a complete sample of the ordered

progressively censored sample values x; ,, . X3 ;... X p -

The procedure of conditioning on complete sample rankings of an ordered Type Il progressively

censored sample is described by Thomas and Wilson (1972). If Z, <Z, <...<Z, are the n order
statistics of a complete sample of size n and X , <X, , <.. <X, , are them progressively censored
order statistics of the same complete sample of size 7. then Zp = X, forsome R,. i=12...m

Thomas and Wilson used this conditional approach to obtain means, variances, and covariances of
progressively censored order statistics.

If the complete sample rank R; of X, ,, is known, then the expected value of X', , is
kin=F “d (R, /(n+1)). The sample correlation test statistic 7" is then obtained by summing the sample
correlations, P(Xy .o XpnsKipseosKmn | R1.R2,...R,,) . weighted by the probability of the complete

sample ranks, P(Ry, R;.....R,,) . By conditioning on R;.R,.....R,, , all possible rankings are considered.

A formula for this goodness-of-fit test statistic of a Type II progressively censored sample

X1ns X2 g X n Where 1, ry.....r,, are the number of removals at each stage of censoring is given by

T = ¥ PURY Ro i R Y | Pys BB YUy s By g Ko Ky s K s i Ky | Rps Rl )
allRy.Ry.....Rpy

h(m)  h(m-1)  h(2) i
3 Y o PR Ry Ry Py P Py X o Xy gy Ky | Ry RS LR,
Rm=m Ry_1=m-1 Rp=2

where

n[(g+2m (RgH—I)J g=23,..m-1
h(g) = "
m+ er- .g=m

and P(Ry.R;.....R,,) is found using the identity
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where

m
P(R; =1)=1and P(R; | R.Ry....R,y) = T1 L i=23..m.

(Thomas & Wilson . 1972)

This test for goodness-of-fit requires a null hypothesis, H,: X ~F (X). with a specified
distribution and specified parameters. Several distributions. however. possess a location-scale structure.
i.e.. the cumulative probability distribution functions (cdfs) are of the form F(x) = G( (x -p) /o ). and the
probability density functions (pdfs) are of the form f ( x ) = (1/o )g ( (x-p )/o ). For members of a
location-scale family, the null hypothesis is a test of a composite form with location and scale parameters
unspecified. This is because correlation-type tests are invariant to changes in location and scale
parameters. The exponential, normal, and Type I extreme-value distributions are examples of
distributions having such location-scale structures.

The Weibull distribution is not strictly a member of a location-scale family. The parameters for
a two-parameter Weibull distribution are a shape and scale parameter and not a location and scale
parameter. So, for instances of two-parameter Weibull-distributed data. the null hypothesis of a
correlation-type test of goodness-of-fit is of a composite form with respect to the shape parameter only.

When analyzing Weibull-distributed data, however, it is often more convenient to work with
Type 1 extreme value distributions. The “Type I” in the name Type I extreme value distribution is in
reference to one of three possible types of the asymptotic distributions of the smallest order statistic and
not a reference to time censoring . The Weibull distribution is directly related to the Type I extreme value

distribution in that if X is a Weibull random variable with shape parameter [3 and scale parameter 0 .

then Y = log ( X ) is a Type I extreme value random variable with location parameter p = log 0 and
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scale parameter o = 1/ B. Therefore, if the assumed distribution is a two parameter Weibull distribution.
the experimenter has the option to test a null hypothesis of (1) the life-times are two-parameter Weibull-
distributed with a specified shape parameter and unspecified scale parameter or (2) the log-lifetimes are
extreme-value distributed with no parameters specified.

The test procedures in this chapter use special tables of percentiles of the test statistic 7 which
are obtained by Monte Carlo simulations. Different simulated table percentile values are necessary for
different combinations of removal schemes and values of m and n. The algorithm of Balakrishnan and
Sandhu (1995) is used to simulate 10,000 sets of progressively censored sample data. For each set. 7'is
calculated. and the percentiles of 7" are reported. For a censored sample, the test statistic 7" is compared to
percentile values of 7' for specified values of m, n, and the given removal scheme. The null hypothesis
is rejected for small values of 7. A program used to calculate the test statistic and the corresponding
percentile values appears in the Appendix

Some examples are illustrated here.

Examples

The Thomas and Wilson Example - An Illustration of the Necessary Computations

The following example illustrates the computations required in calculating the test statistic 7' for
a test of goodness-of-fit test using the data of Thomas and Wilson (1972). The sample data of Thomas
and Wilson (1972) consist of a simulated progressively censored sample of Weibull-distributed data. The
log-times of the data and the removal scheme are reported in Table 4.2.1. Since lifetimes are Weibull-
distributed, the log-times to failure are Type I extreme value-distributed. Therefore, the null hypothesis

considered is H,: X' ~ F(x)=1 —exp{—exp[(x— K ;"0’]} ,—w<x<w, o>0,and,

k;=ln{—ln(l— B J}
(n+1)

Table 4.2.2 shows possible complete sample rankings, R), R, Rs Ry Rs. their probabilities, P(

R;, Rz Rs Ry Rs). and corresponding correlations,
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P(x110.--+X510: K110+ K510 | R1. Ry Rs) .

T is calculated by summing the sample correlations weighted by the probabilities. In this example. 7 =
0.9744. For this removal scheme, the simulated percentile values of 7" are reported in Table 4.2.3. When

T =0.9744, Table 4.2.3 shows a significance level for the test between 0.75 and 0.90 as

0.9712 <0.9744 <0.9812
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Table 4.2.1

Log-Times of a Progressively Censored Sample by Thomas and Wilson

x; =0.35 X;=2.50 x3= 3.81 xs=4.19 xs = 4.86
n=>0 = ;=0 ;=0 <=2
Table 4.2.2

Conditional Probabilities and Correlations Used in Calculating the Test Statistic 7'

for the Progressively Censored Sample by Thomas and Wilson

R, R R; Ry R; P(R!-RJJRS-R-:-RS) f)(xl,..,,xS;k],,“.ks)
1 2 3 4 5 0.1785714 0.9912336
1 2 3 + 6 0.1071429 0.9764191
1 2 3 5 6 0.1071429 09711818
1 2 4 5 6 0.1071429 0.9903400
1 2 3 4 7 0.0535714 0.9555094
1 2 3 5 7 0.0535714 0.9602282
| 2 4 o) 7 0.0535714 0.9843209
1 2 3 6 7 0.0535714 0.9505764
1 2 -4 6 7 0.0535714 0.9831560
1 2 5 6 7 0.0535714 0.9320347
1 2 3 4 8 0.0178571 0.9439653
1 2 3 5 8 0.0178571 0.9712894
1 2 4 5 8 0.0178571 0.9420170
1 2 4 6 8 0.0178571 0.9724934
1 2 5 6 8 0.0178571 0.9812810
1 2 3 7 8 0.0178571 0.9316549
1 2 4 7 8 0.0178571 0.9642552
1 2 5 7 8 0.0178571 0.9763856
1 2 6 7 8 0.0178571 0.9744436
Table 4.2.3

Percentiles of the Test Statistic I* for Progressively Censored Extreme Value-Distributed Lifetimes
with Removals n =0.rp =3.73 =0,rg =0,r5 =2*

Approximate Probability of a Smaller Value

m n .01 .05 10 .25 .50 B s .90 95 99

5 10 08188 0.8703 0.8966 0.9300 0.9544 0.9712 09812 0.9854 0.9900

* Simulated percentiles based on 10,000 Type II progressively censored sample data sets
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The Nelson Example - An Illustration of a Test of Goodness-of-Fit of the Type I Extreme Valuc

Distribution

The following is a simulated Type II progressively censored sample of times to breakdown of
insulating fluid tests by 34 kilovolts, attributed to Nelson (1982), cited in Viveros and Balakrishnan
(1984). In the Nelson sample, eight sample items are fully measured from a complete sample of nineteen
subjected to Type II progressive censoring. Table 4.2.4 reports the log-times of the progressively censored
sample data and removal scheme of Nelson.

Suppose a test of goodness-of-fit test is considered where X is the log-time to failure and the null
hypothesis is

Hy: X ~F(x)=l—exp{—exp[(x—p)!c]}, —o<x<oo, o>0,
, _ -~ ; R, )
log-times to failure are Type I extreme value-distributed. Letting k; = ln{—ln(l mg l} . the test
n+l;

statistic 7° = 0.9839 for the Nelson data.

Simulated percentile values of 7" are shown in Table 4.2.5. The information in Table 4.2.5
indicates a significance level between 0.90 and 0.95 as 0.9830 < 0.9839 < 0.9860. A large significance
level was expected because the Nelson data is a simulated sample of Weibull-distributed lifetimes

subjected to Type II progressive censoring.
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Table 4.2.4
Log-Times to Breakdown of a Progressively Censored Sample of Insulating Fluid

Tested by 34 Kilovolts by Nelson

x;=-1.6608 X>=-2485 x3=-0409 x,=.2700 xs=1.0224 x,~=1.5789 x,=1.8718 xy=1.9947

n=>0 =0 ;=3 1y =0 Is=3 1s=0 r-=10 rg=>3

Table 4.2.5
Percentiles of the Test Statistic 7 for Progressively Censored Extreme Value-Distributed Lifetimes
with a Removals r =0,r, =0,r3 =3,r4 =0.r5 =3,rg =0.r9 =0,rg =5%

Approximate Probability of a Smaller Value

m n .01 .05 .10 25 .50 75 .90 .95 99
8 19 08432 0.8910 09114 09402 0.9615 0.9750 0.9830  0.9860 0.9902

* Simulated percentiles based on 10,000 Type II progressively censored sample data sets
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The Herd Example - An Illustration of a Test of Goodness-of-Fit of the Weibull Distribution

The next example of Type II progressively censored data is given by Herd (1956). In the hife-
testing experiment described by Herd, eleven gyroscopes are placed on life-test. Three are removed from
the life-test at the first failure time, two are removed at the second failure time. two are removed at the
third failure time, and the remaining gyroscope is allowed to continue on life-test until failure. The
progressively censored sample values of Herd (1956) and the removal scheme are given in Table 4.2.6.

For the data in Table 4.2.6, Herd (1956) considered the problem of estimating the mean lifetime
of gyroscopes assuming the lifetime to be exponentially distributed ( or Weibull with a shape parameter
=1). Consider. instead. the problem of testing the assumption that the lifetimes of the gyvroscopes are

Weibull-distributed with a specified shape parameter. The null hypothesis of the test is then

p
Ho X' ~F(x)= l—exp{— [%} ] . x>0,6>0,and B= B, . and the test statistic 7 is calculated using

; R
the progressively censored sample values x;, x5, x3 x4 and k; = Bl—ln[ ——’J i=1234.
b n+

Table 4.2.7 reports percentile values of 7 for specified values of B. Table 4.2.8 reports

calculated values of the test statistic T for the same specified values of  and their corresponding OSL
values. In the case where =1, Table 4.2.8 indicates a significance level between 0.75 and 0.90.

Therefore. an assumption of exponential lifetimes of gyroscopes would not seem unreasonable based on
the progressively censored sample values by Herd.
In modeling Weibull-distributed data, the failure rate of the random variable may also be

examined. Values of the shape parameter § < | indicate a declining failure rate. values of {3 >1 indicate
an increasing failure rate, and values of =1 indicate a constant failure rate. Examining the OSL values

in Table 4.2.8, the tests show a near constant or increasing failure rate for lifetimes of gyroscopes rather
than a declining one. This example illustrates how the goodness-of-fit tests may be emploved to examine

failure rate.
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Table 4.2.6

Lifetimes of a Progressively Censored Sample by Herd

x=34 x> =113 X; = 169 x4 =237
= 3 r’2=2 I, = 2 4= 0
Table 4.2.7

Percentiles of the Test Statistic 7 for Progressively Censored Weibull-Distributed Lifetimes
with Removals n =3,rp =2,r3 =2,r4 =0*

Approximate Probability of a Smaller Value

m n B 01 .05 10 .25 50 75 .90 95 99

4 11 025 07236 0.8599 0.9500 0.9808 0.9815 0.9860 0.9917 09933 0.993Y
0.50 0.8056 08751 0.9264 0.9317 0.9469 0.9689 09816 0.9840 0.980Y
0.75 0.8232  0.8859 0.8922 0.9096 0.9384 0.9659 09778 0.9820 0.986]
1.00 0.8310 0.8689 0.8798 0.9042 09387 0.9648 0.9773  0.9821 0.9866
1.25 0.8336  0.8587 0.8750 0.9050 0.9410 0.9643 0.9780  0.9827 0.9873
1.50  0.8271 0.8535 0.8728 0.9073 0.9420 0.9646 0.9785 0.9836 0.9878
2.00 0.816l 0.8494 08712 0.9107 09440 09662 0.9797  0.9849 0.9892
3.00 08095 0.8488 0.8747 0.9158 09474 0.9690 0.9821  0.9867 0.9900
500 08019 0.8492 0.8771 0.9203 0.9502 0.9716 0.9837 09877 09911

* Simulated percentiles based on 10,000 Type II progressively censored sample data sets

Table 4.2.8

Values of the Test Statistic 7 for the Progressively Censored Sample by Herd

m n Bo T Observed
Calculated Significance
Level
(OSL)
4 11 0.25 0.8415 0.01<OSL<0.05
0.50 0.9175 0.05<OSL<0.10
0.75 0.9517 0.50<0OSL<0.75
1.00 0.9680 0.75<0OSL<0.90
1.25 0.9765 0.75<0SL<0.90
1.50 0.9815 0.90<0SL<0.95
2.00 0.9865 0.95<0OSL<0.99
3.00 0.9901 0.99<0OSL
5.00 0.9917 0.99<0OSL
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The Montanari, et al. Example- A Comparison of Specified versus Unspecified Parameters

The next example employs the 50% removal scheme considered by Montanari. et al. (1998). In

this 50% removal scheme, a live item is removed from life-test at each failure time. i.e..
n=1Lr=1...,r, =1 and m = 50% n. The censoring scheme is described as “FCFCFC... (F=failed.

C=censored)”. Suppose a goodness-of-fit test for small Type II progressively censored samples is
considered where the number of items progressively censored in this manner.

Two approaches are outlined to test for goodness-of-fit. The first is a test that the data is
Weibull-distributed with the value of the shape parameter specified; the second is that the log-lifetimes of
the data is Type I Extreme Value-distributed with no parameters specified. Either of the following two

tests of goodness-of-fit may be considered:

p
(1) Ho X ~F(x)=1- exp{— (g} } , x>0,0>0, B=0,. lifetimes are Weibull-distributed

R &
with the shape parameter [3 specified. Using &, = ﬁLln[l T ‘ 1)} the test statistic 7'is
o n+

calculated for the sample values and the removal scheme n =1ry, =1....r,,, = 1.
2) Ho X ~F(x)=1- exp{—exp[(x— p.)!c]}. —w<Xx<ow, ¢>0,log-lifetimes are Type I

extreme value-distributed and parameters are unspecified. Using

R
k, = ln{— ln[l ~ " ;D]}. the test statistic 7 is calculated for sample values and the
n

removal scheme 7, = I_Jr2 = 1,___,;-,” =1.

The calculated value of the test statistic is compared to table percentile values of the test statistic.
The null hypothesis is rejected for small values of 7°. Table 4.2.9 provides percentiles of the test

statistic 7 for case (1). Table 4.2.10 provides percentiles values for case (2).
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Percentiles of the Test Statistic 7 for Progressively Censored Weibull-Distributed Lifetimes

with Removals r, =1,r, =1,....7,

Table 4.2.9

m

=]*

Approximate Probability of a Smaller Value

m n B 01 .05 .10 25 .50 75 .90 95 99

3 6 0.25 0.5973 0.7347 0.8560 0.9849 09953 0.9965 0.9978 0.9981 0.9982
0.50 0.6996 0.7760 0.8490 09662 09745 0.9862 0.9912 09921 09924
0.75 0.7554 0.8038 0.8606  0.9410 0.9627 0.9822 0.9887 0.9897  0.9900
1.00  0.7886 0.8280 0.8728 0.9281 0.9587 0.9809 0.9879 0.9890  0.9893
1.25 0.8090 0.8421 0.8799 0.9221 09566 0.9805 0.9878 0.9889 0.9892
1.50 0.8234 0.8519 0.8864 0.9180 0.9554 0.9805 0.9877 0.9888  (.9892
2.00 0.8404 0.8646 0.8836 0.9148 09553 0.9809 0.9881 0.9892  0.9895
3.00 0.8589 0.8697 0.8810 0.9139 0.9556 0.9810 0.9885 0.9896 0.989Y
5.00 0.8529 0.8704 0.8816 0.9135 09566 0.9820 0.9890 09901  0.9904

4 8 0.25 0.6809 0.7570 0.8412 0.9654 09862 0.9903 0.9933 0.9941 0.9944
0.50 0.7134 0.8064 0.8484 0.9379 0.9584 0.9751 0.9827 0.9843 0.9839
0.75 07382 0.8421 0.8710 0.9179 09500 0.9701 0.9779 09812 0.9838
1.00 0.7571 0.8580 0.8796 0.9119 09463 0.9672 0.9845 0.9809 0.9838
1.25 0.7766  0.8598 0.8827 0.9133 0.9457 0.9657 0.9770  0.9809  0.9841]
1.50 0.7870 0.8569 0.8818 0.9140 09455 0.9652 09771 09813 0.9846
2.00 0.808 0.8575 0.8824 09169 09458 0.9660 0.9784 0.9823  0.9855
3.00 0.8128 0.8577 0.8859 0.9220 09468 0.9670 0.9793 0.9831 0.9863
5.00 0.8138 0.8563 0.8844 0.9207 09474 0.9678 0.9804 0.9843 0.9873

5 10 0.25 0.6987 0.7800 0.8413 0.9528 09771 0.9842 0.9888 0.9898  0.9903
0.50 - 0.7369 0.8311 0.8598 0.9209 09486 0.9680 0.9763 0.9788 0.9812
0.75 0.7619 0.8531 0.8805 0.9104 09436 0.9629 0.9726 0.9761 0.9796
1.00 0.7911 0.8586 0.8828 09136 09430 0.9619 0.9722 09756 09798
1.25  0.8000 0.8559 0.8824 09176 09438 0.9624 0.9725 09761 0.9807
1.50 0.8173 0.8613 0.8867 09193 09442 09626 0.9723 09766 0.9814
2.00 0.8120 0.8664 0.8897 0.9217 09467 0.9637 09735 09778 09828
3.00 0.8116 0.8654 0.8909 0.9215 09472 0.9636 09744 0.9790 0.9839
5.00 0.8120 0.8683 0.8923 0.9238 0.9485 0.9651 0.9757 0.9802  0.9853

6 12 025 07162 0.7955 0.8433 0.9465 09697 0.9793 0.9846 0.9859  0.9860
0.50 0.7557 0.8434 0.8729 0.9143 09447 0.9645 09725 0.9755 09781
0.75 0.7928 0.8577 0.8826 0.9119 0.9422 09607 0.9700 09733 09772
1.00  0.8157 0.8644 0.8867 09178 09439 0.9609 0.9697 0.9733 09777
1.25 0.8180 0.8681 0.8906 0.9216 09447 09615 0.9705 09743 0.9789
1.50 0.8207 0.8715 0.8935 0.9234 09465 09618 09711 09748 09798
2,00 0.8260 0.8759 0.8980 0.9270 09487 09633 0.9721 0.9758 0.9807
3.00 0.8304 0.8789 0.8988 0.9281 09498 09644 09734 09774 0.9826
5.00 0.8261 0.8760 0.9006 0.9290 0.9510 09655 09747 0.9789  0.9840
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Table 4.2.9 Continued

Percentiles of the Test Statistic 7 for Progressively Censored Weibull-Distributed Lifetimes
with Removals 7, =17, =1..,r, =1*

Approximate Probability of a Smaller Value

mn B .01 05 .10 25 50 75 90 95 99

7 14 025 0.7282 0.8080 0.8553 0.9362 09626 09748 0.9810 0.9825 0.9833
0.50 0.7699 0.8397 0.8754 0.9086 0.9422 09618 0.9708 0.9731 0.9760
0.75 0.8100 0.8568 0.8826 09179 09418 0.9598 0.9687 09724 09760
1.00  0.8152 0.8706 0.8903 0.9188 09438 0.9609 0.9694 09720 0.97606
1.25 0.8357 0.8704 0.8938 0.9250 09463 0.9621 0.9708 09740 0.9782
1.50 0.8395 0.8826 0.9048 0.9291 09483 09614 09702 09737 0.9797
2.00 0.8474 0.8880 0.9105 0.9331 09528 0.9649 0.9726 0.9758 0.9802
3.00 0.8421 0.8825 0.9018 0.9316 0.9520 09656 0.9735 09773 0.9824
5.00 0.8395 0.8884 0.9060 0.9345 09540 0.9671 0.9750 09780 0.9824

8 16 0.25 0.7557 0.8290 0.8634 0.9410 09582 09722 09781 0.9793 0.9810
0.50 0.7876 0.8582 0.8833 0.9092 09399 09601 0.9681 09708 0.9746
0.75 08171 0.8649 0.8876 0.9178 0.9424 09589 0.9686 09712 0.9747
1.00  0.8367 0.8692 0.8925 0.9216 09443 0.9599 0.9685 09722 09738
1.25  0.8302 0.8849 0.9031 0.9286 09492 09634 0.9711 09739 09772
1.50 0.8402 0.8884 0.9079 0.9308 09503 09631 09715 09746 09786
2.00 0.8451 0.8911 09144 0.9374 09539 0.9660 09723 09754 0.9806
3.00 0.8521 0.8947 0.9157 0.9379 0.9556 0.9674 09755 09784 09828
5.00 0.8454 0.8962 0.9182 0.9401 09576 0.9690 0.9760 09789 0.9834

9 18 0.25 0.7291 0.8323 0.8644 0.9347 09551 09686 0.9753 0.9770 0.9787
0.50 0.7809 0.8598 0.8809 0.9081 09410 0.9581 0.9664 0.9695 0.9730
0.75 0.8337 0.8659 0.8876 0.9171 0.9416 0.9593 09678 0.9708 0.9742
1.00  0.8367 0.8722 0.8953 0.9261 0.9471 09611 0.9688 0.9721 0.9762
1.25  0.8297 0.8826 0.9041 0.9298 09499 0.9615 0.9692 09732 09777
1.50 0.8486 0.8922 0.9120 0.9346 09517 0.9652 0.9724 09749 0.9793
2.00 0.8628 0.8990 0.9184 0.9397 09572  0.9676 0.9741 0.9770  0.9805
3.00 0.8731 0.9010 0.9190 0.9415 09576 0.9697 0.9762 09792 09834

* Simulated percentiles based on 10,000 Type II progressively censored sample data sets
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Table 4.2.10
Percentiles of the Test Statistic 7" for Progressively Censored Type I Extreme Value-Distributed
Lifetimes with a Removals 7, = 1,7, =1,...,7, =1*

m

Approximate Probability of a Smaller Value

n .01 .05 .10 .25 .50 e .90 95 .99

6 08289 0.8574 0.8896  0.9264 0.9643 0.9887 0.9958 0.9969 0.9973
0.7988 0.8667 0.8913 0.9229 0.9550 09751 0.9871 0.9910 0.9943
10 0.8098 0.8675 0.8922  0.9276 09540 0.9723 09828 0.9869 0.991Y
12 0.8279 0.8759 0.8999  0.9323 0.9555 0.9719 0.9809 0.9849  0.9900
14 0.8290 0.8830 0.9057  0.9355 09572 09720 0.9806 0.9843  0.9890

HJO\u:.hmE
o0

* Simulated percentiles based on 10,000 Type II progressively censored sample data sets
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4.3 A Second Method

The examples in Section 4.2 demonstrate that a conditional method of correlation-type goodness-
of-fit tests may be employed for instances of small progressively censored samples. For larger sample
sizes. the conditional method is not practical because of the extensive computational time required in
considering all the possible ranking schemes. Therefore. a second correlation-type goodness-of-fit test is
suggested in which is applicable to all sample sizes.

An alternative to conditioning on all possible complete sample rankings is to approximate the
complete sample ranks R;. i =1.2,...,m . of the progressively censored sample using a mean rank
estimator /(i) . which is a function of the total number of failed and censored sample items at the time of
the ith failure. The resulting second correlation-type test statistic then consists of only a single correlation
between sample values x; and approximate expected values and not the many correlations and associated
probabilities required of the conditional test.

Johnson (1964) provides a detailed example of calculating the function /(i) which is referred to
in the article as the “mean order number” for an “incomplete test” which has “suspended items”.
O’Connor (1981) further describes graphical tests of goodness-of-fit with Q-Q probability plots which rely
on similar rank estimates of complete sample rankings. Mean rank and median rank functions are
suggested by O’Connor (1981). The rank function /(i) considered in this section is the mean rank
function defined by

n+1-1(i-1) ;

Ii-1D+ Jd=12...m

1G)= n+2-C,
0 =0

where C; is the total number of measured and censored lifetimes at the time of the ith failure of the

progressively censored sample.

To test for goodness-of-fit using the second method, then. let x,, <x;, <...<x,,, bea Type Il

progressively censored sample with r.r,.....r,, number of removals at each stage of censoring. Consider
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a null hypothesis H,: X ~F ( x ) based on the progressively censored sample and a test statistic 7"
such that

T' = p(XppsX2psesXmni €15€20 0l m)

where f) is the sample correlation between the progressively censored sample values, x).x>.....x,, and
i-1

0169k, £, =F7'U(@)/(n+1)), and where C; = _zlr,- +i.
1=

The Thomas and Wilson Example - An Illustration of the Necessarv Computations

Consider again the data in Table 1 of Thomas and Wilson (1972) and a test that the log-
lifetimes of the Type II progressively censored data are Type I extreme value-distributed . For the five

progressively censored lifetimes given in Table 4.3.1 with removal scheme 1 =0.r, =3.r; =0,
ry =0, rs =2, the approximations of their complete sample ranks /(i).i =1.2.....5 . using the rank

function /(i) are shown in Table 4.3.1.

Letting ¢, =In¢—In| 1- 10 , the statistic for the test is
(n+1)

T' = p(¥110. X210+ ¥5103 €110+ £ 2,10+ £ 5,00) = 0.9819.

Table 4.3.2 shows the significance level for the test is between 0.75 and 0.90 as 0.9785 < 0.9819 <

0.9887. This result is similar to the finding using the conditional method.
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Table 4.3.1
Rank Estimates for the Progressively Censored Sample by

Thomas and Wilson

m n i r; I(i-1) Ci n+l1-1(i-1) 1(”:1(1__”+n+1—!(.'.—1)
n+2-C, n+2-C,

5 10 1 0 0 1 1 1

2 3 1 2 1 2

3 0 2 6 1.5 3.5

4 0 3.5 7 1.5 5

5 2 5 8 1.5 6.5

Table 4.3.2

Percentiles of the Test Statistic 7' for Progressively Censored Extreme Value-Distributed Lifetimes
with the Removals ry =0,rp =3,r3 =3.r4 =0.r5 =2

Approximate Probability of a Smaller Value

m n .01 .05 .10 25 .50 .75 .90 .95 .99
5 10 0.8275 08758 0.9015 09368 0961 09785 09887 09927 0.9974

* Simulated percentiles based on 10,000 Type II progressively censored sample data sets
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The Cohen Example - An Illustration with Large Progressively Censored Samples

Cohen (1975) provides an example of a Type II progressively censored sample consisting of 68
items from a complete sample of 100 items. Ten items from the sample are removed at the sixth failure
time, fifteen items are removed are the fortieth failure time, and the experiment ends at the sixty-cighth
failure time at which time the seven remaining items were removed. Therefore, rs = 10. 1y = 15, 15 = 7.
and otherwiser; =0, i =12,....68. The lifetimes reported by Cohen are given in Table 4.3.3. These
lifetimes are from a simulated Type II progressively censored sample from a three-parameter Weibull
distribution with location parameter y = 100, shape parameter § = 2. and scale parameter 6 = 100.

To test that the data in Table 4.3.3 is Weibull-distributed with the value of the shape parameter

specified, the null hypothesis for the test is in the form

x—v P
Hoy: X~ F(x)=1-exp —(T) . x>0,0>0, y>x, B=p,.

lifetimes are Weibull-distributed with shape parameter p=f,. Using ¢, = Ll -

B, (n+1)

]. the test

statistic 7" is then calculated and compared to simulated table percentile values in Table 4.34. For the

Cohen data, if p=2.0, then 7' =0.9973 and 0.90 < OSL < 0.95.
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Table 4.3.3

Lifetimes of a Progressively Censored Sample by Cohen

X1 =109.12 | x;;=130.53 | x;;=144.09 | x3,=158.31 | xy=177.19 | x5,=198.11 Xe1 =222.11
X3 =113.37 X2 =131.98 X22 =148.83 X32 =158.92 X42 =180.57 Xs2 =199.23 X6z =224 .83
x;=117.73 | x;3=133.14 | x,3=150.23 [ x33=160.13 [ x43=181.99 | x53=203.27 Ne3 =227.27
X4 =119.56 | x;4=134.52 | x,=150.79 [ x3,=161.31 [ x4, =184.02 | x5,=206.55 Nos =230.88
Xs=119.82 | x;5=135.73 | x5 =151.88 | X35 =162.09 | x45 =185.43 [ Xs5 =208.76 Ngs =235.14
Xe=124.63 | x15=136.71 | X26=153.07 | X35=165.45 | x46=187.21 [ xs56=210.69 Nos =237.43
x-=125.21 X17 =]37.88 Xo7 =154.18 X37 =166.62 X47 =189.77 Xs7 =213.32 X6 =246.08
Xg =126.93 X8 =138.63 X2 =154.97 Xag =168.23 Xag =191.63 Xsg =215.08 Xsg =24935
xg=128.25 [ x;0=141.11 | X26=155.26 | X30=169.98 | x40 =194 88 | x50=218.43

X10=129.41 | x30=142.33 | x30=156.82 [ x40=174.22 [ x50=196.91 | x¢0=219.37

Table 4.3.4

Percentiles of the Test Statistic 7' for Progressively Censored Weibull-Distributed Lifetimes

with the Removal Scheme used by Cohen*

Approximate Probability of a Smaller Value

m n

B .01

.05 10

25

.50 75

.90

95

99

68 100 2.0

0.9812 0.9868 0.9893

0.924

0.9947 0.9962

0.9972

0.9977

* Simulated percentiles based on 10,000 Type II progressively censored sample data sets
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The Montanari Example - An Illustration of a Test of Goodness-of-Fit for a Fixed 50% Removal

Scheme

Estimating the rank R; with the mean rank function /(i) also allows tests of goodness-of-fit for

the larger values of n. An example of a large sample test is next considered for the 50% removal
scheme used by Montanari, et al. (1998). Percentiles of the test statistic 7" for a null hypothesis that the

data is Type I extreme-value distributed are provided in Table 4.3.5.
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Table 4.3.5

Percentiles of the Test Statistic 7' for Progressively Censored Extreme Value-Distributed

Lifetimes with Removals 7, = Lr, =1,....r,

Approximate Probability of a Smaller Value

? m

m__n___ .0l 05 .10 25 .50 75 90 95 99
3 6 08371 08656 0.8954 09281 09668 0.9916 0.9987 0.9997 0.9999
4 8 08046 0.8709 08956 0.9301 0.9606 0.9807 0.9921 0.9958 0.9992
5 10 08173 0.8705 0.8949 09317 09591 09774 0.9873  0.9920 0.9972
6 12 08265 08797 09037 09368 0.9617 09779 09869 0.9908 0.9962
7 14 08403 0.8873 09104 09400 0.9629 09777 09864 0991 09951
8 16  0.8445 0.8943 09155 09451 09660 0.9791 0.9869 0.9904 0.9948
9 18 08546 0.8987 09206 0.9472 0.9667 0.9796 09871 0.9900 0.994]
10 20 08530 0.9011 0.9245 0.9509 0.9692 09806 0.9875 0.9902 0.9941
20 40 0.8930 09310 0.9478  0.9665 0.9791 09863 0.9906 0.9924 0.9948
30 60 0.9089  0.9465 0.9595  0.9745 0.9840 0.9895  0.9927 0.9941 09958
40 80 09192 0.9525 09659  0.9790 0.9868 0.9912 0.9938 0.9949 0.9965
50 100 0.9291  0.9591 0.9699  0.9818 0.9885 09924 0.9946 0.9956 0.996Y
100 200  0.9529  0.9727 0.9806  0.9884 0.9929 0.9953  0.9967 09972  0.9804

* Simulated percentiles based on 10,000 Type II progressively censored sample data sets
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4.4 Power

In application, the power of a goodness-of-fit test should also have to be investigated. For
progressively censored data, these tests may exhibit different power depending on the different
combinations of removal schemes and values of m and .

For each combination of removal schemes and values of m and » test statistic selected. the power
of these tests of goodness-of-fit may be examined by generating random samples in the simulation
program from an alternative distribution instead of the hypothesized distribution. The power is then
estimated by the proportions of values from the alternative distribution which are less than percentile
values from the tables of the hypothesized distributions.

In practice, a researcher must performs power studies specific to the test statistic removal
scheme. and values of m and n. For a hypothesized distribution. many alternative distributions would also
have to be examined. A small illustration of how one such study might begin follows.

As an example of investigating power, consider the test statistic 7" and the 50% removal scheme
used by Montanari, et al. (1998). Table 4.4.1 reports the power of the test to detect a normal alternative

distribution if the assumed distribution is the Type I extreme value distribution.
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Table 4.4.1

Power of the Goodness-of-Fit of an Extreme Value Distribution against

a Normal Distribution for Progressively Censored Lifetimes

with Removals 7, =L, =1,...,7,, =1 Using T"*

Nominal Signiﬁcance Level of a Test

m n 01 .05 10
3 6 0.0121 0.0600 0.1280
+ 8 0.0164 0.0738 0.1254
5 10 0.0199 0.0667 0.1161
6 12 0.0206 0.0686 0.1209
7 14 0.0199 0.0699 0.1301
8 16 0.0209 0.0780 0.1345
9 18 0.0188 0.0721 0.1351
10 20 0.0138 0.0691 0.1430
20 40 0.0120 0.0804 0.1723
30 60 0.0097 0.1116 0.2286
40 80 0.0107 0.1257 0.2956
50 100 0.0101 0.1537 0.3288
100 200 0.0318 0.3182 0.5935

* Simulated proportions based on 10,000 Type II progressively censored sample data sets
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4.5 Conclusion

In instances of Type II progressive censoring, correlation-type tests of goodness-of-fit may be
adapted to explore distribution assumptions concerning the data. For the Weibull distribution. the tests in
this section may be used not only to determine if the data is Weibull-disributed. but also to examine the
failure rate by testing the distribution for different values of the shape parameter . This proposed test for
goodness-of-fit of Type Il progressively censored data is applicable to many different distributions. and
the test statistic is of simple computational form. Computational time becomes an important issue with
regard to Type II progressively censored data since tables of the test statistic must be generated specific to
each removal scheme and number of items censored and uncensored and assumed distribution. Further.
the examples in this section illustrate that the conditional correlation-type test approach is feasible if # is

small. A second approach. using rank approximation. is shown to be feasible for all values of ».
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CHAPTER FIVE

CONCLUSIONS

The purpose of this study was to investigate the variability associated with the expected value
estimates of experiment time for Type II progressively censored samples. For the first time. numerical
studies of experiment time have also included studies of the standard deviations and coefficients of
variation for different Type II progressive censoring plans.

Standard deviations of experiment time for Weibull-distributed lifetimes were quantified.
examined. and found to be large. especially in instances where the Weibull-distributed lifetime data
exhibited declining failure rates. Because of the high overall variability associated with expected value
estimators of experiment time, a recommendation was made that the experimenter should also simulate
empirical distributions of experiment time for a particular censoring scheme prior to conducting the
experiment.

Numerical studies of coefficients of variation of experiment time were included and
recommended as a method by which to compare the relative amount of variability associated with the
expected experiment time estimates for different censoring plans.

All of the numerical studies where obtained using a formula for experiment time which proved to
be generalizeable for moments of experiment time and shown to be applicable to distributions other than
the Weibull distribution if the moments of the first order statistic are known. A conditional procedure of
assigning complete sample rankings to the progressively censored order statistics which suggested the
formula for moments of experiment time also suggested a correlation-type test statistic for goodness-of-fit
of Type II progressively censored samples. The feasibility and suggested uses of this test were illustrated.
For Weibull-distributed lifetimes, the experimenter may wish to apply the tests to investigate the failure

rate of the distribution of the progressively censored sample.
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The experiment time and goodness-of-fit topics presented here considered a special 50% fixed
removal scheme for Type I progressive censoring. Future directions of this research include further
investigations into comparisons of this censoring scheme to other progressive censoring schemes. The
size and power of the goodness-of-fit test applied to samples subjected to 50% censoring can be further
explored. This can be achieved by assuming a variety of combinations of distributions in the null and
alternative hypotheses. Additionally, the experiment time formulas developed are applicable to
investigations of skewness and kurtosis of the distribution of experiment time for Type II progressive

censoring plans.
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APPENDIX

PROGRAM 1

ke 3 2k 3 3 ok s 3k e o ok sk ok ok 2 ok ok ok e 3 ok ke 3k e ok ok sk 3k e 3k o sk o ok sk ke ofe e o sk s ok ok 3k e s sk ok e ok ok e o e o ol ok o ok e ok ok e ke ke ok ok kol ke ok ke sk ok sk kR Rk Rk ok k
* Program 1 to perform Chapter 2 calculations

I'I'tI'tttttt*tt**tttti***itttttttttttttwttttttttttttttttl‘tttti‘tittttttttttvtxtt*lttwtttltt;
%macro censor(m,n,b);

proc iml; )

start;

m = &m;

n = &n;

b = &b;

I* ri r2 rm-1

removals r 1 2 --e--- m-1

count |

*13
n_icm_1 = gamma(n)/(gamma(m)*gamma(n-m+1));
r=j(n_tcm_1,m-1,0);
gr = j(m+1,1,0);
count = 0;
* Needs m-1 do loops. Change this part if m changes;
gri1] = n-m;
do r1=0 to gr[1]; gr(2] = gr[1] - ri;
do r2=0 to gr[2]; gr([3] = gr[2] - r2;
do r3=0 to gr[3]; gr[4] = gr[3] - r3;
do r4=0 to gr[4]; gr[5] = gr[4] - r4;
do r5=0 to gr[5]; gr[6] = gr[5] - r5;
do r6=0 to gr[6]; gr[7] = gr[6] - r6;
do r7=0 to gr[7]; gr[8] = gr[7] - r7;
do r8=0 to gr(8]; gr[9] = gr[8] - r8;
do r9=0 to gr(9];
count = count + 1;
rlcount,1] = r1;

rlcount,2] = r2;
r{count,3] = r3;
ricount,4]= r4;
r{count,5] = r5;
r{count,6] = ré;
r{count,7] = r7;
r{count,8]) = r8;
r{count,9] = r9;

end; end; end; end; end; end; end; end; end; *needs m-1 end statements;
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ll’
sum partial sums of rj , j =1 to m-1
1 2 v m-1
1

n_icm_1

"Ir;
sum = j( n_icm_1, m-1,0);
do i =1 to n_lcm_1;

sum[i,1] = r[i,1];
do j =2 to m-1;
sum({i,j] = sum[i,j-1] + r[i,]];
end;
end;

* [E1 = Expected value of the kth order statistic E[X 1,j+n-Rm+1] for WEIBULL data;
E1 = j(n-m+1,n,0);
do Rm = m to n;

1= Rm-m+1;

do j = 0 to n-1;

E1[i,j+1] = gamma( 1 + 1/b) / ( j +n - Rm + 1 ) **(1/b); * 1st moment;
*E1[i,j+1] = gamma( 1 + 2/b) / ( j +n - Rm + 1 ) **(2/b); * 2nd moment;
end;
end;
!I
E2 = (Rm - 1)! * (=1)y**[]) * 1 * E1
j! (Rm - 1 - j)! (j+n-Rm+1)
E3 = E[Xm|Rm] where Rm =m + 0 E3[1]
BRm = m + n-m E3[n-m+1]

*!;
E2 = j(n-m+1,n,0);
E3 = j(n-m+1,1,0);
cl = j(n-m+1,1,0);

constant = 0;
do Rm = m to n;
i = Rm-m+1;

do j = 0 to Rm-1;
E2[1,j+1] = (-1)**(j)* gamma(Rm)/(gamma(j+1)*gamma(Rm-])
*(j+n-Rm+1))* E1[1,j+1];
end;
do j = 0 to Rm-1;
E3[i) = E3[i] + E2[i,j+1];
end;

c1[i]= n*gamma(n)/(gamma(Rm)*gamma(n-Rm+1));
E3[1] = c1[i]*E3[i];
end;
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!l

rank - possible ranks of p.c. observations in complete sample

h(k) = min[ (k+ sum (k-1) , ( Rk+1 - 1) ]

'f;

h=j(m,1,1);

rank = j(m,1,1);

ex = 0;

do i =1 to n_icm_1;

cC=n-m+;
do j =2 to m-1;

c =c*(n-m-sum[i,j-1]+1);
end;

* ¢ =n_1em_1; *eq. (2b);
exnum=0 H

* Needs do loops for Rm thru R2. Change
do Rm =m to h{m]; rank[m]
do Rm_1 = m-1 to h[m-1]; rank[m-1]
do Rm_2 = m-2 to h[(m-2]; rank[m-2]
do Rm_8 = m-3 to h[(m-3]; rank[m-3]
do Rm_4 = m-4 to h[m-4]; rank[m-4]
do Rm_5 = m-5 to h[m-5]; rank[m-5]
do Rm_6 = m-6 to h[m-6]; rank[m-6]
do Rm_7 = m-7 to h[m-7]; rank[m-7]
do Rm_8 = m-8 to h[m-8]; rank[m-8]

p=1;
do j = 2 to m;

R1
Rm
h(2)
h{m-1)
h(m)
* eq. (2a)
* eq. (2a)
* eq. (2a)
* eq. (2a)
if m changes...;
h{m] =m+ sum[i,m-1];
= Rm; him-1] = min(m-1 + sum[i,m-2],
= RAm_1; h[m-2] = min(m-2 + sum[i,m-3],
= RAm_2; h[m-3] = min(m-3 + sum[i,m-4],
= Rm_3; h[m-4] = min(m-4 + sum[1,m-5],
= Rm_4; h[m-5] = min(m-5 + sum[1,m-6],
= Am_5; h[m-6] = min(m-6 + sum[1,m-7],
= RAm_6; h[m-7] = min(m-7 + sum[i,m-8],
= Rm_7; h[m-8] = min(m-8 + sum[i,m-9],
= Rm_8;

pnumi = n - rank[j];

pnum2 = sum[i,j-1] + ( j-1) - rank[j] + 1
- pnum2;

pnum3 = pnumi

pdenomi = n - rank[j-1];
pdenom2 = sum[1,j-1] + ( j-1) - rank[j-1];

pdenom3 = pdenomi

- pdenom2;

L

Rm  -1);
RM_1 -1);
Rm_2 -1});
Rm_3 -1);
Rm_4 -1);
Rm_5 -1);
Rm_6 -1);
Rm_7 -1);

pnum = gamma( pnumi + 1) / (gamma(pnum2 + 1)*gamma(pnum3+1));

pdenom = gamma(pdenomi+1)/(gamma(pdenom2+1)*gamma(pdenom3+1));
p = p*pnum/pdenom;

end;

exnum = exnum + p*E3[Rm-m+1];
end; end; end; end; end; end; end; end; end;

ex = ex + exnum/c;
end;
print m n b ex '1st moment eq.(2a)' ;
finish;
run;
%mend;
* to call the macro;

%censor(10,15, 5); * m = 10, n = 15, and beta =
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* needs m-1 end statements;



PROGRAM 2

2322222222222 2222222t i iii i il s ittt ittt i sttt Rl Tl

* Program 2 to perform Chapter 4 Calculations
tttttwﬂtItttttttt*ittttt!tt‘!!!tlI'I'tl’I'I'I'!!I'I'!!!!!Itl’!l‘l‘l’l‘l‘l’l’l‘l‘l‘l‘l‘ttttttttkk*tt*ttttt;
%macro censor(m,n,b, iter);
proc iml;
start;
m =&m;
n =&n;
b = &b;
iter = &iter; * number of iterations;
co = j(iter,1,0); * correlations;
do f =1 to iter;
w=j(m,1,0); Vv =w; s = w; Uu=w; X = Ww;
corrsum = 0;
* Part 1 of program 2 - Simulate Type II Progressively Censored Samples;
* generate x a progresssively censored sample for a specific fixed 50% removal scheme;
ro=gm1,1);

s[1] = r[m];
do 1 =2 to m;
s[i] = s[i-1] + r[m-i+1];

end;
* generate m indep uniform(0,1) observations;
doi=1 to m;
w[i] = uniform(-2);

end;
* set v = wWA*(1/(1 + rm+...+rm-i+1));
VI1]= wi1]**(1/(1 + s[1]) );
do i =1 to m;
VI1] = w[i] **( 1/(i + s[i]) );
end;
* set u = 1-vm vm-1 ... vm-i+1;
prod = 1;
do i=1 tom;
prod = prod*v[m-i+1];
ufi] = 1 - prod;
end;
*set x = F**(-1) (u) ;
do i=1 tom;
* X[1] = (-log(1- u[i]))**(1/b); * Weibull ( shape b);
x[i] = log( (-1)*log(1-u[i])); * Extreme Value;
* x[1] = log(log(1-log(1-u[i]))); * Exponential Power;
* x[1] = probit(u[i]) ; * normal ;
end;

* end of Part 1;
* Part 2 of Program 2;
*partial sums of rj , j =1 to m-1

1
n_icm_1;
sum = j( m,1,0);
do ] =2 to m;
sum[j] = sum[j-1] + r(j];
end;
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*

rank - possible ranks of p.c. observations in a complete sample
R1

do
do
do
do
do
do
do
do
do

s B o R v [+ [ o e o JRs o s o e +

h(k) = min|

h=j(m,1,1);

(k+ sum (k-1) ,

rank = j(m,1,1);

* Needs do loops for Rm thru R2.

him]
m=m to h[m]; rank[m] = Rm; him-1] = min{(
m_1 =m-1 to him-1]; rank[m-1] = Rm_1; h[{m-2] = min(
m_2 =m-2 to him-2]; rank[m-2] = Rm_2; h(m-3] = min(
m_3 =m-3 to him-3]; rank[m-3] = Rm_3; him-4] = min(
m_4 = m-4 to h[m-4]; rank[m-4] = Rm_4; him-5] = min(
m_5 = m-5 to h[m-5]; rank[m-5] = Rm_5; him-6] = min(
m_6 =m-6 to h[m-6]; rank[m-6] = Rm_6; him-7] = min{(
m_7 = m-7 to h[m-7]; rank[m-7] = Rm_7; h[m-8] = min(
m_8 =m-8 to h[m-8]; rank[m-8] = Rm_8;
p=1;
do ] =2 to m;
pnumi = n - rank[j];
pnum2 = sum[j-1] + ( j-1) - rank[]j] + 1
pnum3 = pnumi - pnum2;
pdenomi = n - rank[j-1];
pdenom2 = sum[j-1] + ( j-1) - rank[j-1];
pdenom3 = pdenomi - pdenom2;

Rm

( Rk+1 - 1) ] h(2)

h(m-1)
h(m)

Change if m changes...;

=m + sum[m-1];

m-1

+

+ + 4+ + 4+ + 4+

sum[m-2],
sum[m-3],
sum[m-4],
sum[m-5],
sum[m-6],
sum[m-7],
sum[m-8],
sum[m-9],

Rm
Rm
Rm
Rm
Rm
Bm
Rm
Rm

o
-2);
-3);
-4)
-9);
-6);
iy
-8);

pnum = gamma( pnumi + 1) / (gamma(pnum2 + 1)*gamma(pnum3+1));
pdenom = gamma(pdenomi+1)/(gamma(pdenom2+1)*gamma(pdenom3+1));
p = p*pnum/pdenom;

end;

K= j(m,1,1);

*set k = F**(-1)

dog =1 tom;
dummy =
*klg] =
klg] =

end;

sumx = X[+,];

sumk = K[+,];

meanx = sumx/m;
meank = sumk/m;
T(X)*X - sumx**(2.0)/m;
sk = t(k)*k - sumk**(2.0)/m;
sumc =

SX =

do a

0;
1 tom

( Ri/(n+1)) ;

rank[g]/(n+1);

(-log(1- dummy))**(1/b); * Weibull ( shape b);
log( (-1)*log(1 - dummy)); * Extreme Value;

c = (x[a] - meanx)*(k[a] - meank);
sumc = sumc + cj

end;
corr

sumc/ (sx*sk)**(.5);
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corrsum = corrsum + p*corr;
end; end; end; end; end; end; end; end; end; * Needs m-1 end statements;
co[f] = corrsum; * correlations;
end;
print m n b ;
varnames={co};
create datacorr from co[colname=varnames];
append from co;
close datacorr;
finish;
run;
/* Find percentiles;
PROC UNIVARIATE;
OUTPUT OUT=LOCATION MEAN=MEAN MODE=MODE MEDIAN=MEDIAN
Q1=Q1 Q@3=Q3 P5=P5 P10=P10 P90=P90 P95=P95 MAX=MAX;
PROC PRINT;
run;
i’}
/* Perform Power Analysis;
data power;
set datacorr;
iter = &iter;

count = 0;

counti0 = 0;
count05 = 0;
count01 = 0;

do j = 1 to iter;
if co ge .888804 then count = count + 1; *use 1° percentile value;
else if .859313 le co 1t .888804 then counti0 = counti10 +1;*use 5*"andist*"percentiles;
else if .831809 le co 1t .859313 then count05 = count05 + 1;*use 5'™Mand10*™ percentiles;
else if 0 le co 1t .831B09 then count01 = count01 + 1; *use 10" perentile;

end;

count = count/iter;

counti0 = counti0/iter;

count05 = count05/iter;

count01 = countO01/iter;

proc means;

run;

*)r;

Smend;

* call macro;

%censor(8,16, .25, 10000); * m = 8, n = 16, beta = .25 and no. of iterations = 10,000;
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