CORRELATION OF CRYSTALLOGRAPHIC SYMMETRY

AND EMISSION IN SOLID STATE COPPER(I)

HALIDE PHOSPHINE COMPLEXES

By

ZAKI S. SEDDIGI

Bachelor of Science King Fahd University of Petroleum & Minerals Dhahran, KSA 1991

Master of Science King Fahd University of Petroleum & Minerals Dhahran, KSA 1994

> Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 1999

CORRELATION OF CRYSTALLOGRAPHIC SYMMETRY AND EMISSION IN SOLID STATE COPPER(I) HALIDE PHOSPHINE COMPLEXES

Thesis Approved: Thesis Advisor le

rell

Dean of the Graduate College

Dedication

It is my honor to dedicate this thesis to my parents, who never doubted my ability to achieve the goals that I set for myself. Your love, patience and sacrifice made this work possible. Through you, I learned extremely valuable lessons that will remain always in my mind and in my heart.

ACKNOWLEDGMENTS

I am deeply indebted to my research advisor, Dr. Elizabeth M. Holt, for her constructive guidance, intelligent supervision and continuous encouragement throughout the course of my graduate studies. Although my time under her tutelage has come to an end, I will be always grateful that I had the opportunity to be her student.

My appreciation extends to my advisory committee members Dr. Allen Apblett, Dr. Isabelle Lagadic, Dr. Joel J. Martin and Dr. Neil Purdie for their invaluable suggestions and support.

I greatly and sincerely acknowledge the financial support that was provided to me by King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.

I would like to thank Salahddin Al-Sudani, Sherief Quraish, Dr. Abdulrahman Al-Arfaj, Khalid Al-Dukhyel, Dr. Shakeel Ahmad, Dr. Sami Barri, Dr. Mohammad Mekkawi, Dr. Mamdouh Salama, Dr. Horcio Mottola, Dr. Khalid Gasem, Dr. Abdulbari Malik, Ali Badi, Munzer Al-Harake, Muataz Al-Sabbagh, Raja'a Al-Buqmi and within the department Alyia, Arif, Asif, Dattatri, Gregg, Lino, Randell and Tong for their moral support and friendship.

My utterly thanks go to my wife who has always been there for me. I will never forget her understanding of the stressful graduate life.

My lovely children (Shaima and Yousef): You are the best thing that happened to me in my life. I have seen everything more beautiful through you. My deep appreciation also goes to my grandmother, sisters. This work would not be possible without their understanding, love and encouragement.

TABLE OF CONTENTS

Charter		Page
Chapter		
I.	INTRODUCTION AND BACKGROUND	1
П.	X-RAY CRYSTALLOGRAPHY	19
Ш.	LUMINESCENCE	31
IV.	EXPERIMENTAL	38
V.	RESULTS AND DISCUSSION	45
BIBLIOGRA	лрну	

LIST OF TABLES

Table	Page
1.	Known Copper(I) Halide Phosphine Complexes
2.	The Seven Crystal Systems and the Related Essential Symmetry20
3.	Structural and Emission Data for the Copper Halide Phosphine Complexes
4.	Major Contributing Atomic Orbitals into HOMO and LUMO Molecular Orbitals of Motifs in the CuX Phosphine Complexes
5.	Crystal Data of the [CuXL ₂] Allotropes
6.	Structural Data in the [CuXL ₂] Allotropes
7.	Crystal Data and Structure Refinement for $Cu_6I_6(P(C_7H_7)_3)_4(CH_3CN)_2$
8.	Atomic Coordinates and Equivalent Isotropic Displacement Parameters for Cu ₆ I ₆ (P(C ₇ H ₇) ₃) ₄ (CH ₃ CN) ₂
9.	Bond Lengths and Angles for $Cu_6I_6(P(C_7H_7)_3)_4(CH_3CN)_2$
10.	Anisotropic Displacement Parameters for Cu ₆ I ₆ (P(C ₇ H ₇) ₃) ₄ (CH ₃ CN) ₂
11.	Crystal Data and Structure Refinement for $Cu_4I_4(P(C_6H_5)_2CH_3)_485$
12.	Atomic Coordinates and Equivalent Isotropic Displacement Parameters for Cu ₄ I ₄ (P(C ₆ H ₅) ₂ CH ₃) ₄
13.	Bond Lengths and Angles for $Cu_4L_4(P(C_6H_5)_2CH_3)_4$

14.	Anisotropic Displacement Parameters for $Cu_4I_4(P(C_6H_5)_2CH_3)_4$	91
15.	Crystal Data and Structure Refinement for Cu ₄ L ₄ (PC ₆ H ₅ (CH ₃) ₂) ₄	94
16.	Atomic Coordinates and Equivalent Isotropic Displacement Parameters for Cu ₄ I ₄ (PC ₆ H ₅ (CH ₃) ₂) ₄	95
17.	Bond Lengths and Angles for Cu ₄ I ₄ (PC ₆ H ₅ (CH ₃) ₂) ₄	97
18.	Anisotropic Displacement Parameters for Cu ₄ I ₄ (PC ₆ H ₅ (CH ₃) ₂) ₄	100
19.	Crystal Data and Structure Refinement for Cu ₄ L ₄ (P(<i>m</i> -C ₇ H ₇) ₃) ₄	103
20.	Atomic Coordinates and Equivalent Isotropic Displacement Parameters for Cu ₄ L ₄ (P(<i>m</i> -C ₇ H ₇) ₃) ₄	104
21.	Bond Lengths and Angles for Cu ₄ I ₄ (P(<i>m</i> -C ₇ H ₇) ₃) ₄	109
22.	Anisotropic Displacement Parameters for Cu ₄ L ₄ (P(<i>m</i> -C ₇ H ₇) ₃) ₄	116
23.	Crystal Data and Structure Refinement for Cu ₂ I ₂ (P(C ₆ H ₅) ₂ CH ₃) ₄ .C ₄ H ₈ O	121
24.	Atomic Coordinates and Equivalent Isotropic Displacement Parameters for Cu ₂ I ₂ (P(C ₆ H ₅) ₂ CH ₃) ₄ .C ₄ H ₈ O	122
25.	Bond Lengths and Angles for Cu ₂ I ₂ (P(C ₆ H ₅) ₂ CH ₃) ₄ .C ₄ H ₈ O	124
26.	Anisotropic Displacement Parameters for Cu ₂ I ₂ (P(C ₆ H ₅) ₂ CH ₃) ₄ .C ₄ H ₈ O	127
27.	Crystal Data and Structure Refinement for $Cu_2I_2(P(m-C_7H_7)_3)_3$	130
28.	Atomic Coordinates and Equivalent Isotropic Displacement Parameters for $Cu_2I_2(P(m-C_7H_7)_3)_3$	131
29.	Bond Lengths and Angles for $Cu_2I_2(P(m-C_7H_7)_3)_3$	135

30.	Anisotropic Displacement Parameters for $Cu_2I_2(P(m-C_7H_7)_3)_3140$
31.	Crystal Data and Structure Refinement for $Cu_2I_2(P(p-C_7H_7)_3)_3$
32.	Atomic Coordinates and Equivalent Isotropic Displacement Parameters for $Cu_2I_2(P(p-C_7H_7)_3)_3$ 145
33.	Bond Lengths and Angles for $Cu_2I_2(P(p-C_7H_7)_3)_3$
34.	Anisotropic Displacement Parameters for $Cu_2I_2(P(p-C_7H_7)_3)_3$
35.	Crystal Data and Structure Refinement for $Cu_2I_2(P(p-C_7H_7)_3)_3$
36.	Atomic Coordinates and Equivalent Isotropic Displacement Parameters for $Cu_2I_2(P(p-C_7H_7)_3)_3$
37.	Bond Lengths and Angles for $Cu_2I_2(P(p-C_7H_7)_3)_3$
38.	Anisotropic Displacement Parameters for $Cu_2I_2(P(p-C_7H_7)_3)_3$
39.	Crystal Data and Structure Refinement for $Cu_2I_2(P(C_6H_5)_3)_3$
40.	Atomic Coordinates and Equivalent Isotropic Displacement Parameters for $Cu_2I_2(P(C_6H_5)_3)_3$ 173
41.	Bond Lengths and Angles for $Cu_2I_2(P(C_6H_5)_3)_3$ 176
42.	Anisotropic Displacement Parameters for Cu ₂ I ₂ (P(C ₆ H ₅) ₃) ₃ 180
43.	Crystal Data and Structure Refinement for Cu ₂ I ₂ (P(C ₆ H ₅) ₃) ₃ 184
44.	Atomic Coordinates and Equivalent Isotropic Displacement Parameters for $Cu_2I_2(P(C_6H_5)_3)_3$ 185

45.	Bond Lengths and Angles for $Cu_2I_2(P(C_6H_5)_3)_3$
46.	Anisotropic Displacement Parameters for $Cu_2I_2(P(C_6H_5)_3)_3$
47.	Crystal Data and Structure Refinement for $Cu_2I_2(P(o-C_7H_7)_3)_2$
48.	Atomic Coordinates and Equivalent Isotropic Displacement Parameters for Cu ₂ I ₂ (P(<i>o</i> -C ₇ H ₇) ₃) ₂ 197
49.	Bond Lengths and Angles for $Cu_2I_2(P(o-C_7H_7)_3)_2$
50.	Anisotropic Displacement Parameters for $Cu_2I_2(P(o-C_7H_7)_3)_2$
51.	Crystal Data and Structure Refinement for $Cu_2I_2(P(C_6H_{11})_3)_2$
52.	Atomic Coordinates and Equivalent Isotropic Displacement Parameters for $Cu_2I_2(P(C_6H_{11})_3)_2$
53.	Bond Lengths and Angles for $Cu_2I_2(P(C_6H_{11})_3)_2$
54.	Anisotropic Displacement Parameters for $Cu_2I_2(P(C_6H_{11})_3)_2$
55.	Crystal Data and Structure Refinement for $CuI(P(C_6H_5)_2CH_3)_3212$
56.	Atomic Coordinates and Equivalent Isotropic Displacement Parameters for CuI(P(C ₆ H ₅) ₂ CH ₃) ₃ 213
57.	Bond Lengths and Angles for CuI(P(C ₆ H ₅) ₂ CH ₃) ₃
58.	Anisotropic Displacement Parameters for CuI(P(C ₆ H ₅) ₂ CH ₃) ₃
59.	Crystal Data and Structure Refinement for $CuI(P(C_6H_{11})_3)_2.C_6H_6$
60.	Atomic Coordinates and Equivalent Isotropic Displacement Parameters for CuI(P(C ₆ H ₁₁) ₃) ₂ .C ₆ H ₆ 223

61.	Bond Lengths and Angles for $CuI(P(C_6H_{11})_3)_2.C_6H_6$	226
62.	Anisotropic Displacement Parameters for CuI(P(C ₆ H ₁₁) ₃) ₂ .C ₆ H ₆	229
63.	Crystal Data and Structure Refinement for $CuI(P(C_6H_{11})_3)_2.C_7H_8$	233
64.	Atomic Coordinates and Equivalent Isotropic Displacement Parameters for $CuI(P(C_6H_{11})_3)_2.C_7H_8$	234
65.	Bond Lengths and Angles for $CuI(P(C_6H_{11})_3)_2.C_7H_8$	237
66.	Anisotropic Displacement Parameters for $CuI(P(C_6H_{11})_3)_2.C_7H_8$	241
67.	Crystal Data and Structure Refinement for $CuI(P(C_6H_{11})_3)_2(hex)$.	245
68.	Atomic Coordinates and Equivalent Isotropic Displacement Parameters for $CuI(P(C_6H_{11})_3)_2(hex)$	246
69.	Bond Lengths and Angles for $CuI(P(C_6H_{11})_3)_2(hex)$	248
70.	Anisotropic Displacement Parameters for $CuI(P(C_6H_{11})_3)_2(hex)$	250
71.	Crystal Data and Structure Refinement for Cu ₄ I ₆ [di-1,10-phenanthrolino copper(II) iodide] ₂	253
72.	Atomic Coordinates and Equivalent Isotropic Displacement Parameters for Cu ₄ I ₆ [di-1,10-phenanthrolino copper(II) iodide] ₂	254
73.	Bond Lengths and Angles for Cu ₄ I ₆ [di-1,10-phenanthrolino copper(II) iodide] ₂	256
74.	Anisotropic Displacement Parameters for Cu ₄ I ₆ [di-1,10-phenanthrolino copper(II) iodide] ₂	259

LIST OF FIGURES

Figure	Page
1.	Common Motifs of Copper(I) Halide Phosphine Complexes
2.	The 14 Three-Dimensional Bravais Lattices
3.	Flow Chart For Solving a Crystal Structure
4.	Jablonski Energy-Level Diagram Depicting Absorption and Emission 33
5.	Block Diagram of a Typical Fluorimeter
6.	Projection View of $Cu_6I_6(P(C_7H_7)_3)_4(CH_3CN)_2$
7.	Emission Spectrum of $Cu_6I_6(P(C_7H_7)_3)_4(CH_3CN)_2$
8.	Projection View of $Cu_4I_4(P(C_6H_5)_2CH_3)_4$
9.	Emission Spectrum of $Cu_4I_4(P(C_6H_5)_2CH_3)_4$
10.	Projection View of $Cu_4I_4(PC_6H_5(CH_3)_2)_4$
11.	Emission Spectrum of Cu ₄ L ₄ (PC ₆ H ₅ (CH ₃) ₂) ₄ 93
12.	Projection View of $Cu_4I_4(P(m-C_7H_7)_3)_4$
13.	Emission Spectrum of $Cu_4I_4(P(m-C_7H_7)_3)_4$
14.	Projection View of $Cu_2I_2(P(C_6H_5)_2CH_3)_4.C_4H_8O119$
15.	Emission Spectrum of $Cu_2I_2(P(C_6H_5)_2CH_3)_4.C_4H_8O$
16.	Projection View of $Cu_2I_2(P(m-C_7H_7)_3)_3$
17.	Emission Spectrum of $Cu_2I_2(P(m-C_7H_7)_3)_3$
18.	Projection View of $Cu_2I_2(P(p-C_7H_7)_3)_3$

19.	Emission Spectrum of $Cu_2I_2(P(p-C_7H_7)_3)_3$
20.	Projection View of $Cu_2I_2(P(p-C_7H_7)_3)_3$
21.	Emission Spectrum of $Cu_2I_2(P(p-C_7H_7)_3)_3$
22.	Projection View of $Cu_2I_2(P(C_6H_5)_3)_3$
23.	Emission Spectrum of $Cu_2I_2(P(C_6H_5)_3)_3$
24.	Projection View of $Cu_2I_2(P(C_6H_5)_3)_3$
25.	Emission Spectrum of $Cu_2I_2(P(C_6H_5)_3)_3$
26.	Projection View of $Cu_2I_2(P(o-C_7H_7)_3)_2$
27.	Emission Spectrum of $Cu_2I_2(P(o-C_7H_7)_3)_2$
28.	Projection View of $Cu_2I_2(P(C_6H_{11})_3)_2$ 20
29.	Emission Spectrum of $Cu_2I_2(P(C_6H_{11})_3)_2$
30.	Projection View of $CuI(P(C_6H_5)_2CH_3)_3$
31.	Emission Spectrum of CuI(P(C ₆ H ₅) ₂ CH ₃) ₃ 21
32.	Projection View of $CuI(P(C_6H_{11})_3)_2.C_6H_6$
33.	Emission Spectrum of $CuI(P(C_6H_{11})_3)_2.C_6H_622$
34.	Projection View of CuI($P(C_6H_{11})_3$) ₂ .C ₇ H ₈
35.	Emission Spectrum of $CuI(P(C_6H_{11})_3)_2.C_7H_8232$
36.	Projection View of $CuI(P(C_6H_{11})_3)_2(hex)$ 242
37.	Emission Spectrum of $CuI(P(C_6H_{11})_3)_2(hex)$
38.	Emission Spectrum of $CuI(P(C_6H_{11})_3)_2(mix)252$
39.	Projection View of Cu ₄ I ₆ [di-1,10-phenanthrolino copper(II) iodide] ₂ 252

CHAPTER I

INTRODUCTION AND BACKGROUND

Copper(I) forms complexes of a wide variety of structural forms and stoichiometry with halides ($Cu_xX_y^{x-y}$, X=I, Br and Cl). These complexes are normally anionic (x<y) and highly stable. Counter ions of various types are possible. A further group of complexes are neutral, ($Cu_xX_yL_z$, x = y, L = ligand) involve electron pair donor organic ligands (N, P, S) and are of lesser stability. In these complexes Cu(I) may display two, three or four fold coordination. Some common motifs for copper(I) complexes are given in Figure 1.

The stability of copper halides increases in the following order: F < Cl < Br < I. This trend can be explained by the hard and soft acid base theory, which states that greatest stability is observed for hard acid-hard base and soft acid-soft base pairs. Iodide is the softest base in the halide series and copper is a soft acid. If one also considers that phosphine ligands (which are the ligands that will be used throughout this study) are soft, complexes of the form Cu_xX_y (phosphorus-based ligand)_z should also be extremely stable.

The coordination chemistry of Cu(I) is both interesting and important due to its extensive structural and stoichiometric variation. Furthermore, Cu(I) chemistry has catalytic applications and, moreover, is involved in certain biochemical reactions. The presence of copper in copper-containing proteins establishes the need for modeling of its coordination sites¹.

L = Phosphine ligandX = I, Br, Cl

Figure 1. Common Motifs of Copper(I) Halide Phosphine Complexes

The interest in the emission properties of these compounds arises from reports in 1938 by J. T. Randall² of their different colors of visible solid state emission when excited in the ultraviolet. It was not until the 70's that these complexes were investigated again by H. D. Hardt et al.³ In this work, the ligands were simple hetero-aromatic and non-aromatic rings such as pyridine, quinoline and pyrroline. Whereas the earlier work concentrated on the color of the observed emission for the different complexes without structural investigation, the latter studies involved structural characterization. It was also reported that the color of emission and the emission maxima were temperaturedependant, a phenomenon termed "fluorescent thermochromism".

This temperature-dependency was investigated by Weber and Hardt.⁴ A comparison was made of the powder diffraction patterns of the formate, actetate, propionate and butyrate salts of copper(I). The similarity of these powder patterns for the carboxylate structures suggested that the thermochromicity must be due to a subtle difference in packing. They have concluded that tight packing leads thermochromic emission and the loose packing leads to non-thermochromic emission.

When the fluorescent properties of hexamethylenetetraamine (HMTA) complexes of Cu(I) were studied by Hardt and Gechnizdjani⁵, it was found that the complexes exhibited different fluorescent behavior and color, depending on the method of preparation and solvent used. When the solvent used was methanol or ethanol, the complexes showed fluorescent thermochromism, with the yellow room temperature emission changing from to red and violet, respectively at 77 K. When the structure is made more condensed by the inclusion of additional HMTA or by the presence of a second nitrogen base in the solid state, thermochromism was not observed. Thus, these studies suggested that a solid state Cu(I) complex in which the Cu atom has at least 1.33 nitrogen ligands available (i.e., a tight structure) will not show thermochromism due to limited mobility in the lattice.

Schramm et al.⁶ proposed that the thermochromicity is related to the crystallographic symmetry. In their work, the Cu_4I_4 (piperdine)₄ complex did not exhibit thermochromism. The X-ray structure of this complex revealed that it has a fourfold inversion axis (S₄) within the cubic cluster. A comparison was made between the thermochromism observed for tetrameric clusters, Cu_4I_4 (morpholine)₄ (twofold axis) and Cu_4I_4 (pyridine)₄ (no symmetry element). Schramm et al. suggested that a tetrameric complex ($Cu_4I_4L_4$, L = a nitrogen base) between copper iodide and a nitrogen base should not exhibit a thermochromism if the point symmetry of its cluster molecule is at least of fourfold order, i.e. if the Cu-N bond lengths are all equal by symmetry.

A similar conclusion was reached by Hardt and Pierre⁷ for cubic clusters (Cu₄I₄L₄). When the emission properties of a group of copper iodide complexes were investigated, a red shift was observed on cooling. The shift was 15 nm for Cu₄I₄(piperdine)₄, 35 nm for Cu₄I₄(morpholine)₄ and 50 nm for Cu₄I₄(pyridine)₄. The Cu...Cu distances for all the three solid state complexes were very similar. However, the symmetry elements within these clusters were: a fourfold axis for Cu₄I₄(piperdine)₄, a twofold axis for Cu₄I₄(morpholine)₄ and a onefold axis for Cu₄I₄(pyridine)₄. Thus, they suggested that the extent of the red shift with temperature depends more on the symmetry of the cluster than the Cu...Cu distance. So, the higher the symmetry element, the lesser the red shift on cooling.

In an effort to investigate the effect of the existence of S_4 symmetry on thermochromicity, Rath et al.⁸ studied $Cu_{4}I_{4}$ (para-toluidine)₂(acetonitrile)₂ {p-tolu} and Cu_2I_2 (para-chloroaniline)₂(acetonitrile)₂ {p-caa} complexes. The existence of a S_4 internal symmetry element in the Cu₄I₄ cluster for both of the complexes is excluded, since the cluster exists with mixed ligands. Both complexes emitted yellow nonthermochromically and displayed no shift in emission maxima. However, the wavelength of the emission maxima for p-tolu complex was 586 nm and for p-caa complex was 630 nm. P-tolu complex had no internal symmetry whereas p-caa complex had two-fold symmetry. The p-tolu complex should emit thermochromically according to the previous suggestions stating that the absence of crystallographically related Cu-I bonds leads to thermochromism. Since the p-caa complex exhibited emission pattern that is similar to that of p-tolu, the existence or the absence of a symmetry element in the cubic structure of $Cu_4I_4L_4$ is not a determining factor in the thermochromicity of the systems. Due to the observation that the average Cu...Cu distance in these two complexes are 2.699(3) and 2.682(7)Å, respectively, the two emission maxima are most likely due to metal centered interactions.

The effect of symmetry element on the emission properties of a compound was further studied by Tompkins et al.⁹ Three compounds, with the same cubic motif were synthesized. However, the symmetry elements were different in these compounds, thus, the thesis stating that symmetry can not be generally correlated with thermochromicity can be examined. Cu_4I_4 (isopropylnicotinate)₄ had a S₄ symmetry element at the center of the tetrameter, Cu_4I_4 (phenylnicotinate)₄ had a twofold axis relating one-half of the cube to

the other and Cu_4I_4 (benzylnicotinamide)₄ had no symmetry element. While the first and the third complexes exhibited thermochromicity, the second one did not.

Bao et al.¹⁰ suggested that the crystallographic symmetry may influence the emission maxima rather than affecting the thermochromicity. The emission of copper(I) complexes due to non-ligand based mechanisms (i.e. aliphatic amine complexes) was investigated. It was noticed that in these systems, without ligand centered excited state, emission could only originate from metal centered electron transitions. Four rhombohedral systems with the $Cu_2I_2L_4$ structure were investigated: $Cu_2I_2(1$ methylpiperazine)₄ (I), $Cu_2I_2(4$ -methylpiperidine)₄ (II), $Cu_2I_2(3,3-dimethylpiperidine)_4$ (III) and $Cu_2I_2(3-azaspiro[5.5]undecane)_4$ (IV). Complexes (III) and (IV) both crystallize with a crystallographic center of symmetry and emit at 650 nm when excited at 330 nm. Structures (I) and (II) have no symmetry element and emit at 495–500 nm under identical conditions. AB initio calculations suggest that the emission is derived from a copper based LUMO to halide based HOMO transition in complexes (I) and (II) which is forbidden by selection rules for complexes (III) and (IV) respectively. These complexes must then display emission by transitions between copper dominated orbitals that are higher in energy then the LUMO. Bao et al. also synthesized some cubic clusters namely: $Cu_4I_4(acetonitrile)_2(morpholine)_2$ (V) and $Cu_4I_4(morpholine)_4$ (VI). The former has no symmetry element and emits at 575 nm. The latter, having a twofold rotation axis, emits at 640-680 nm. So, in (VI), the HOMO level was raised by the twofold axis, reducing the energy difference between the HOMO and LUMO levels. Therefore, emission maxima would appear at a longer wavelength.

The conclusions obtained from the above study can be given as follows: i) the study proved that the excitation and emission transition may be forced to involve different orbitals when crystallographic symmetry made the HOMO to LUMO transition forbidden. ii) The HOMO level is halide dominated and the LUMO level was copper dominated and thus excitation involved electron donation from the halide to copper. The imposition of forbiddance upon the orbital system caused excitation from the HOMO to a higher but copper dominated orbital followed by radiative decay to a lower, but also copper dominated orbitals. Thus, while the excitation wavelength is seen to depend upon the identity of the halide atom, emission in centrosymmetric cases may take place between copper dominated orbitals and thus be independent of the identity of the halide. Also, the emission is of lower energy and thus occurs at a higher maxima.

Durand et al.¹¹ synthesized some copper halide complexes with phosphine ligands with a variety of structural motifs. An effort to correlate the emission properties with the presence of symmetry elements was attempted but no conclusive results were reached partially because of the lack of application of a suitable computational method (such as *Ab Initio* calculations) to probe the nature of transitions leading to emission.

The complexes previously studied with nitrogen donor ligands displayed instability under atmospheric conditions. Thus, in the interest of working with complexes of greater stability and thus greater commercial applicability, interest turned to phosphorous electron donor ligands. The known copper halide phosphine complexes are given in Table 1.

7

	Ref.			15			16			17			18			19			19			20	
	Space	Group		C2lc			$I\overline{4}3m$			Pbcn			C2/c			$I\overline{4}3m$			$I\overline{4}3m$			C2/c	
s complexes	Unit Cell Angles	/deg	α=90.0	$\beta = 112.59(1)$	γ=90.0	cc=90.0	β=90.0	γ=90.0	α=90.0	β=90.0	γ=90.0	cc=90.0	$\beta = 110.75(2)$	γ=90.0	cc=90.0	β=90.0	γ=90.0	cc=90.0	β=90.0	γ=90.0	α=90.0	β=110.70(1)	γ=90.0
Copper manue Phosphille	Unit Cell Dimensions	/ Å	a=28.461(9)	b=15.983(4)	c=18.044(5)	a=13.024(1)	b=13.024(1)	c=13.024(1)	a=17.468(2)	b=20.519(3)	c=18.215(2)	a=25.8447(61)	b=16.1371(38)	c=18.2638(46)	a=12.592(18)	b=12.592(18)	c=12.592(18)	a=12.7495(14)	b=12.7495(14)	c=12.7495(14)	a=25.704(6)	b=11.971(2)	c=19.631(4)
I able 1. Nilowi	Motif Type		$Cu_4X_4L_4$			$Cu_4X_4L_4$			$\operatorname{Cu}_4\mathrm{X}_4\mathrm{L}_4$			$Cu_4X_4L_4$			$\mathrm{Cu}_4\mathrm{X}_4\mathrm{L}_4$			$\mathrm{Cu}_4\mathrm{X}_4\mathrm{L}_4$			$Cu_{a}X_{a}L_{a}$		
	Compound		Cu ₄ Br ₄ (PPh ₃) ₄ .2CHCl ₃			$Cu_4I_4(PEt_3)_4$			Cu ₄ Cl ₄ (PPh ₃) ₄			$Cu_4I_4(PPh_3)_4$			Cu ₄ Cl ₄ (PEt ₃) ₄			$Cu_4Br_4(PEt_3)_4$			Cu ₄ I ₄ (PPh ₂ Me) ₄		

on of our of o ocupine Co or Unlide Dh Tahle 1 Knu

.

21	22	23	24	25	26	27	28
$P\overline{3}$	Pbcn	C2/c	P2,/n	C2/c	Pbca	P2,/c	Ρī
α=90.0 β=90.0 γ=90.0	α=90.0 β=90.0 γ=90.0	α=90.0 β=110.92(3) γ=90.0	α=90.0 β=98.98(4) γ=90.0	α=90.0 β=111.50(2) γ=90.0	α=90.0 β=90.0 γ=90.0	α=90.0 β=101.08(1) γ=90.0	α=116.30(3) β=68.44(3) γ=124.89(2)
a=14.008(3) b=14.008(3) c=19.416(3)	a=17.662(5) b=20.748(7) c=18.351(6)	a=25.687(10) b=16.084(7) c=17.815(9)	a=19.47(1) b=26.94(1) c=13.528(5)	a=21.058(4) b=12.059(2) c=23.425(7)	a=17.808(3) b=16.943(2) c=16.369(4)	a=16.061(2) b=24.435(5) c=24.719(5)	a=20.02(2) b=12.062(6) c=14.898(7)
Cu ₄ X ₄ L ₄	Cu ₄ X ₄ L ₄	Cu ₄ X ₄ L ₄	Cu ₄ X ₄ L ₄	Cu _z X _z L ₄			
$Cu_4Br_4(P-t-Bu_3)_4$ Bu= butyl	$Cu_4Br_4(PPh_3)_4$	$Cu_4Br_4(PPh_3)_4$	Cu ₄ I ₄ (PPh ₃) ₄	$Cu_4I_4(DMPP)]_4$ DMPP= 1-phenyl-3,4-dimethylphosphine	$Cu_4Br_4(dppm)_2$ dppm= bis(diphenylphosphine)methane	Cu ₄ I ₄ (Hdpf) ₄ Hdpf= 1 ⁻ : (diphenylphosphino)ferrocene- carboxylic acid	Cu ₂ I ₂ (PPh ₂ Me) ₄ .SO ₂

29	28	30	31	23	32	33	33
Ρī	P2	$P2_{i}/c$	$P2_{i}/c$	$P2_1/c$	Γl	Pbca	P2 ₁ /C
$\alpha = 106.11(9)$ $\beta = 86.54(11)$ $\gamma = 93.48(9)$	α=90.0 β=105.66(2) γ=90.0	α=90.0 β=112.5(8) γ=90.0	α=90.0 β=128.99(1) γ=90.0	α=90.0 β=112.33(3) γ=90.0	$\alpha = 117.769(4)$ $\beta = 104.966(4)$ $\gamma = 107.536(3)$	α=90.0 β=90.0 γ=90.0	α=90.0 β=136.10(5) γ=90.0
a=12.985(34) b=15.642(41) c=21.375(58)	a=11.763(4) b=20.682(4) c=10.527(3)	a=19.27(2) b=9.81(1) c=27.02(3)	a=14.122(3) b=19.573(4) c=25.985(7)	a= 19.390(8) b=9.912(5) c=26.979(9)	a=17.729(1) b=13.682(2) c=24.635(3)	a=17.128(9) b=18.306(9) c=16.508(8)	a=23.707(10) b=17.805(9) c=16.991(8)
Cu ₂ X ₂ L ₄	Cu ₂ X ₂ L ₃	Cu ₂ X ₂ L,	Cu _z X _z L ₃	Cu _z X _z L ₃	Cu ₂ X ₂ L ₃	Cu ₂ X ₂ L ₂	Cu ₂ X ₂ L ₂
Cu ₂ I ₂ (P(CCPh) ₃) ₄	Cu ₂ I ₂ (PPh ₃) ₃	Cu ₂ Cl ₂ (PPh ₃),	$Cu_2Br_2(PPh_3)_3.1.5C_6H_6$	Cu ₂ Br ₂ (PPh ₃) ₃	$Cu_2I_2{P(m-tolyl)_3}_3$	Cu ₂ I ₂ DPM DPM= bis(diphenylphosphino)methane	Cu ₂ Br ₂ DPM DPM= bis(diphenylphosphino)methane

34	35	36	36	36	36	36	36
μ	ΡĪ	P2,/n	$P2_{i}/n$	R3	μ	C2Ic	P2 ₁ nb
$\alpha = 100.82(1)$ $\beta = 89.73(1)$ $\gamma = 113.66(1)$	α=77.268(2) β=94.409(2) γ=68.102(2)	α=90.0 β=114.63(4) γ=90.0	α=90.0 β=115.36(3) γ=90.0	∞=90.0 β=90.0 γ=90.0	$\alpha = 72.43(3)$ $\beta = 76.37(3)$ $\gamma = 74.03(3)$	α=90.0 β=98.00(7) γ=90.0	α=90.0 β=90.0 γ=90.0
a=8.4977(12) b=9.2667(11) c=13.2797(18)	a=9.988(6) b=10.825(5) c=13.535(8)	a=9.961(3) b=18.687(6) c=11.009(7)	a=9.939(2) b=18.832(6) c=11.238(6)	a=36.877(8) b=36.877(8) c=9.047(5)	a=15.783(7) b=9.570(4) c=8.914(4)	a=9.694(6) b=30.15(2) c=20.66(2)	a=11.694(8) b=14.77(1) c=29.76(3)
Cu _z X _z L _z	Cu ₂ X ₂ L ₂	Cu ₂ X ₂ L ₂	Cu ₂ X ₂ L ₂	Cu ₂ X ₂ L2	Cu ₂ X ₂ L ₂	Cu ₂ X ₂ L ₂	Cu ₂ X ₂ L ₂
Cu ₂ Cl ₂ (P(C ₆ H ₁₁) ₃) ₂	$Cu_2I_2(SNC_5H_5)_2(PC_{21}H_{21})_2$	Cu ₂ Cl ₂ (PPh ₂ Mes) ₂ Mes= 2,4,6-trimethylphenyl	Cu ₂ Br ₂ (PPh ₂ Mes) ₂ Mes= 2,4,6-trimethylphenyl	Cu ₂ I ₂ (PPh ₂ Mes) ₂ .0.75C ₆ H ₆ Mes= 2.4.6-trimethylphenyl	Cu ₂ Cl ₂ (PPh ₂ Mes ₂) ₂ .2MeCN Mes= 2.4.6-trimethylphenyl	$Cu_{2}Br_{2}(PPh_{2}Mes_{2})_{2}$. $3C_{6}H_{6}$ Mes= 2,4,6-trimethylphenyl	Cu ₂ I ₂ (PPh ₂ Mes ₂) ₂ . 2MeCN Mes= 2.4.6-trimethylphenyl

37	37	26	26	38	38	39	40
P2,/a	$P2_{ }/n$	$P2_{i}/n$	Ρī	$P2_1/c$	$P2_{\rm l}/c$	Ρī	C2Ic
α=90.0 β=102.76(3) γ=90.0	α=90.0 β=99.77(3) γ=90.0	α=90.0 β=99.24(1) γ=90.0	$\alpha = 101.5(1)$ $\beta = 100.68(1)$ $\gamma = 99.19(1)$	α=90.0 β=93.413(9) γ=90.0	α=90.0 β=97.480(8) γ=90.0	α=83.81(5) β=73.62(6) γ=63.12(6)	α=90.0 β=94.51(2) γ=90.0
a=12.636(8) b=15.325(6) c=13.696(8)	a=15.085(1) b=9.820(3) c=17.263(1)	a=9.162(1) b=10.470(2) c=20.459(3)	a=9.199(2) b=10.203(2) c=11.257(3)	a=9.975(1) b=19.917(3) c=11.153(2)	a=9.936(1) b=20.476(4) c=11.368(1)	a=9.796(8) b=10.351(9) c=14.754(9)	a=26.188(7) b=14.222(3) c=11.259(4)
Cu ₂ X ₂ L ₂	Cu ₂ X ₂ L ₂	$Cu_2 X_2 L_2$	Cu _z X _z L _z	Cu ₂ X ₂ L ₂	Cu ₂ X ₂ L ₂	Cu ₂ X ₂ L ₂ L '2	Cu ₂ X ₂ L ₂
Cu ₂ Cl ₂ (tmtp) ₂ (bzimtH) ₂ Tmtp= tri-m-tolylphosphine bzimtH= benz-1.3-imidazoline-2-thione	$Cu_2Br_2(tmtp)_2(tzdtH)_2$ Tmtp= tri-m-tolylphosphine tzdtH = 1,3-thiazolidine-2-thione	Cu ₂ Cl ₂ (P(C ₆ H₄Me-o) ₃) ₂	$Cu_2Br_2(P(C_6H_4Me-o)_3)_2$	$Cu_2Cl_2(NPM)_2$ NPM= diphenylaminodiphenylphosphinomethane	$Cu_2I_2(NPM)_2$ NPM= diphenylaminodiphenylphosphinomethane	Cu ₂ I ₂ (C ₅ H ₅ NS) ₂ (P- <i>p</i> -PhMe) ₂	Cu ₂ Br ₂ (C ₅ H ₅ N) ₂ PPh ₃

41	41	42	42	42	42	43	38
P3	Pn2 ₁ a	P3	P3	Ρī	Ρī	$P4_{_3}$	C2/c
α=90.0 β=90.0 γ=90.0	α=90.0 β=90.0 γ=90.0	α=90.0 β=90.0 γ=90.0	α=90.0 β=90.0 γ=90.0	$\alpha = 92.3(1)$ $\beta = 105.4(1)$ $\gamma = 106.5(1)$	α=87.82(2) β=83.82(2) γ=71.80(2)	α=90.0 β=90.0 γ=90.0	α=90.0 β=99.80(1) γ=90.0
a=19.2775(14) b=19.2775(14) c=10.4720(9)	a=20.229(14) b=17.180(10) c=10.309(5)	a=19.225(8) b=19.225(8) c=10.610(3)	a=19.025(6) b=19.025(6) c=10.915(6)	a=20.24(4) b=13.06(2) c=10.88(2)	a=14.565(3) b=14.412(4) c=13.262(4)	a= 15.292(7) b=15.292(7) c=12.748(5)	a=12.417(5) b=16.609(6) c=21.321(8)
CuXL ₃	CuXL ₃	CuXL ₃	CuXL ₃	CuXL ₃	CuXL ₃	CuXL ₃	CuXL ₂
CuCl(PPh,) ₃	CuCl(PPh ₂ Me) ₃	CuBr(Ph ₃) ₃	Cul(P ₃) ₃	CuCl(P ₃) ₃ .2Me ₂ CO	CuBr(P ₃) ₃ .2Me ₂ CO	Cul(TMPP) TMPP= tris(2,4.6 trimethoxyphenyl)- Phosphine	CuI(NPM) ₂ NPM=diphenylaminodiphenylphos- phinomethane

44	44	45	45	45	46	46	47
Ρī	C2/c	C2/c	C2/c	C2Ic	$P2_1/c$	P2 ₁ 3	P2,/c
$\alpha = 104.51(4)$ $\beta = 102.20(3)$ $\gamma = 74.80(4)$	α=90.0 β=116.74(4) γ=90.0	α=90.0 β=107.04(4) γ=90.0	α=90.0 β=108.73(2) γ=90.0	α=90.0 β=115.29(2) γ=90.0	α=90.0 β=103.76(4) γ=90.0	0.00 β=90.0 γ=90.0	α=90 β=96.07(3) γ=90
a=12.848(5) b=10.136(5) c=13.468(5)	a=24.90(1) b=9.094(2) c=15.493(6)	a=22.413(15) b=16.034(4) c=19.092(2)	a=22.348(7) b=16.033(8) c=19.526(5)	a=18.665(5) b=10.006(2) c=19.764(5)	a=12.138(5) b=14.776(6) c=28.197(14)	a=17.744(10) b=17.744(10) c=17.744(10)	a=17.891(8) b=9.365(4) c=15.881(7)
CuXL ₂	CuXL ₂	CuXL ₂	CuXL ₂	CuXL ₂	[PR ₃ R][CuX ₂ L ₂]	[PR ₃ R][Cu ₂ X ₃ L ₂]	[NR4][CuX2L]
CuCl(PPh ₃) ₂ .0.5C ₆ H ₆	Cul(PPh ₃) ₂	CuCl(PPh ₂ -o-tol) ₂	CuBr(PPh ₂ -o-tol) ₂	Cul(PPh ₂ -0-tol) ₂	[PPh ₃ Me][CuI ₂ (PPh ₃) ₂]	[PPh ₃ Me][Cu ₂ I ₃ (PPh ₃) ₂]	[NEt_][CuCl ₂ PPh ₃] Et= ethyl

47			47			47			47	
C2/c			$P2_{1}ab$			C2/c			$P2_1/c$	
α=90.0 β=110.62(4)	γ=90.0	o:06≕o	β=90.0	γ=90.0	o:06=∞	$\beta = 111.76(6)$	γ=90.0	o:06=∞	$\beta = 115.09(6)$	γ=90.0
a=38.94(2) b=9.188(4)	c=19.203(11)	a=19.483(11)	b=17.231(12)	c=10.744(8)	a=40.29(3)	b=9.426(10)	c=18.93(2)	a=10.499(4)	b=13.609(5)	c=21.480((2)
[NR4][CuX2L]		[NR4][CuX ₂ L]			[NR4][CuX2L]			$[NR_4][Cu_2X_4L_2]$		
[NPr ₄][CuBr ₂ PPh ₃] Pr= propyl		[NBu ₄][CuBr ₂ PPh ₃]	Bu= butyl		[NPr4][Cul2PPh3]	Pr= propyl		$[\operatorname{NEt}_{4}]_{2}[\operatorname{Cu}_{2}I_{4}(\operatorname{PPh}_{3})_{2}]$	Et= ethyl	

.

Some mechanisms have been suggested to explain the emission behavior of metal-organic solids. Excitation of a copper(I) halide Lewis base complex may arise from one of the following five mechanisms¹²⁻¹⁴:

- 1) Metal to Ligand Charge Transfer (MLCT).
- 2) Ligand-Ligand Interaction (LLI).
- 3) Metal-Metal Interaction (MMI).
- 4) Single Metal Excitation (SME).
- 5) Donor Acceptor Pair (DAP).

In MLCT, an electron from the $3d^{10}$ orbital of copper(I) is excited to a π *orbital of the aromatic ligand giving $3d^{9}\pi$ * as the excited state configuration. This transition may occur in many copper(I) halide complexes with nitrogen donor ligands in which the nitrogen atom is part of an unsaturated system.

In LLI, the ligand emission arises from electronic excited states derived from the ligand system. Such interaction is described as $\pi - \pi^*$ transition between pi systems. This transition is observed when the pi systems of unsaturated ligands are packed in parallel fashion and close to each other (3.2 Å) so that the $\pi - \pi^*$ interaction is possible.

In MMI, the transition is represented as $3d^{10}3d^{10} \rightarrow 3d^{9}3d^{10}4s^{1}$ excitation. Such d-d emission occurs from an excited state essentially localized on one of two close metal ions. This type of interaction was suggested for solid copper(I) halide complexes, when the distance between two copper atoms is less than 2.6Å.

When the distance between two copper atoms is greater than 2.8 Å, excitation may arise from SME (Single Metal Excitation). So, when the interaction between two

metals is unlikely because of their wide separation, excitation might be represented as $3d^{10} \rightarrow 3d^94s^1$.

When the ligand donates an electron to the metal atom, the excitation mechanism is termed as DAP (Donor acceptor pair). For example, an electron may be promoted from the iodine to the copper. It is the opposite of MLCT.

Most of phosphine complexes in the solid state emit in the visible when excited in the ultraviolet. The emission spectrum shows peaks of 30 nm in width highly Stokes shifted from the broad envelope of the excitation spectrum. The stability of many copper(I) complexes combined with the variety of emission maxima observed make them candidates for use as sensitizers for conducting materials. The main objective of this thesis is to understand the relationship between structure and emission maximum as inferred by solid state symmetry.

While the solid state site symmetry of a single emitting atom has been recognized as a factor in the emission color of that atom, the extension of this influence to the solid state symmetry of a cluster has not been previously realized. As mentioned before, previous work in this research group have shown that some symmetry elements (centers of symmetry, three fold rotation axes, 4 bar rotation axes but not mirrors or two fold axes) when imposed crystallographically upon a solid state cluster, change the wavelength of emission observed from that solid.

The principle has been established from observation of families of complexes which differ only in internal symmetry element but which emit at different maximum of wavelength. Indeed allotropes of the same compound that differ only in crystallographic symmetry have been identified and shown to emit at different wavelengths.

17

To understand this phenomena, the use of ab initio calculations based on the crystallographic information of the solid will help in showing whether the effective symmetry elements impose forbiddance upon the obvious HOMO-LUMO transition and therefore emission occurs between orbitals separated by lesser energy. Comparison of calculations made on centrosymmetric clusters with those on noncentric clusters makes this point clear.

The nonemission of certain solid state clusters is now understood in terms of the quenching effect of counter ions of the form phenyl-B (B= As, or N) which serve as quenchers, apparently absorbing light emitted by the copper center and reemitting in a radiationless manner. Inclusion of copper(II) or of oxygen coordinated to copper(I) also quenches emission.

Our understanding needs to be extended by using different ligands such as those containing phosphorous. Sixteen new complexes with phosphine ligands were synthesized and their exact structures obtained by X-ray crystallography.

A literature review reveals a lack of recognition of a correlation between solid state emission and crystallographic symmetry in copper halide phosphine systems. The present work addresses this area and uses *ab initio* method to probe the nature of the transitions leading to emission.

18

CHAPTER II

X-RAY CRYSTALLOGRAPHY

Much of the present knowledge of molecular structure has been derived from studies of X-ray diffraction of crystals. The method involves directing an X-ray beam at a crystalline sample followed by recording the intensities of the diffracted beam. Then the structure of the crystal can be worked out from the position and intensities of the diffraction spots. The core electrons in the molecules diffract the X-rays and the electron density distribution in the solid can be determined.

A crystal is, by definition, a solid that has a regularly repeating internal structure (arrangement of atoms). This internal periodicity was surmised in the seventeenth century from the regularities of the shapes of crystals, and was proved in 1912 when it was shown that a crystal could act as a three-dimensional diffraction grating for X-rays, since X-rays have wavelengths comparable to the distances between atoms in crystals.

The basic "building-block" in a crystal is called the unit cell. The crystal lattice is a regular three-dimensional array of points upon which the contents of the unit cell ("the motif") may be considered to lie, arranged in infinite repetition to build up the crystal structure. The concept of the lattice is important when diffraction by a crystal is considered. There are seven crystal systems possible (Table 2). The essential symmetry elements are included in this table.⁴⁸

System	Unit Cell	Essential Symmetry	Space Lattices
Triclinic	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	1. 1	P
	$a \neq b \neq c$	-, -	
Monoclinic	$\alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$	2, <i>m</i> , 2/ <i>m</i>	P, C
	$a \neq b \neq c$		
Orthorhombic	$\alpha = \beta = \gamma = 90^{\circ}$	222, <i>mm</i> 2, <i>mmm</i>	P, F, I, A(B or C)
	$a \neq b \neq c$		
Trigonal	$\alpha = \beta = \gamma \neq 90^{\circ}$	$3, \overline{3}, 32, 3m, \overline{3}m$	P
	a = b = c		
Hexagonal	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	$6, \overline{6}, 6/m, 622, 6mm,$	Р
	$\mathbf{a} = \mathbf{b} = \mathbf{c}$	$\overline{6} m \overline{2}$, 6/mmm	
Tetragonal	$\alpha = \beta = \gamma = 90^{\circ}$	$4, \overline{4}, 4/m, 422, 4mm,$	P, I
	$a = b \neq c$	$\overline{4}$ 2m, 4/mmm	
Cubic	$\alpha = \beta = \gamma = 90^{\circ}$	23, <i>m</i> 3, 432	P, F, I
	a = b = c	$\overline{4}3m$, m $3m$	

Table 2 The Seven Crystal Systems and the Related Essential Symmetry

If the cell contains lattice points only at the corners it is primitive (P), whereas a cell containing additional lattice points is centered. There are several types of centered lattice. The face centered lattice (F) contains additional lattice points in the center of each face. A side-centered lattice contains extra lattice points on only one pair of opposite faces. A body-centered lattice (I) has an extra lattice point at the body center. The combination of crystal system and lattice type gives the Bravais lattices.

When these four types of lattice are combined with the seven crystal systems, fourteen Bravais lattices (Figure 2) are obtained. The arrangement of structures on these lattices must be consistent with one of the 230 different combinations of symmetry elements (the 230 space groups) that are possible for arranging objects in a regularly repeating manner in three dimensions.

The easiest way to understand the optical problem of X-ray diffraction is to consider the X-ray waves as being reflected by planes in the crystal. When a beam of monochromatic X-rays strikes a crystal, the waves scattered by the atoms on each plane combine to from a reflected wave. If the path difference for waves reflected by successive planes is a whole number of wavelengths, the wave trains will combine to produce a strong reflected beam. In more formal geometric terms, if the spacing between the reflecting planes is *d* and the glancing angle of the incident X-ray beam is θ , the path difference for waves reflected by successive planes is $2d \sin \theta$. Hence the condition for diffraction is $n\lambda = 2d \sin \theta$, where *n* is an integer and λ is the wavelength.

When X-rays are diffracted by a crystal, the intensity of scattering at any allowed angle is the result of the combination of the waves scattered from different atoms to give various degrees of constructive and destructive interference. A structure determination

Figure 2 The 14 Three-Dimensional Bravais Lattices

.

involves a matching of the observed intensity pattern to that calculated from a postulated model, and it is thus imperative to understand how this intensity pattern can be calculated for any desired model.

Since effects such as 1) background, 2) Lorentz, 3) polarization 4) crystal decomposition and 5) absorption alter the final results, the raw intensity data (I_{meas}) must be corrected.^{49,50} The way these effects are handled is given below:

1) Background Factor: The following formula is used to correct for background:

$$I_{int} = (I_{meas} - L_{bg} - R_{bg}) \qquad x \quad scan \text{ speed}$$
(1)

$$\sigma I_{int} = (I_{meas} + L_{bg} - R_{bg})^{1/2} x \text{ scan speed}$$
(2)

where I_{int} is the integrated intensity, I_{meas} is the measured intensity, L_{bg} is the left background (measured before peak scanned), R_{bg} is the right background (measured after peak scanned) and σI_{int} is the standard deviation of I_{int} . When $I_{int} \ge 2\sigma$ (I_{int}) the reflection is considered to be present, i.e. observed. The term 2σ (I_{int}) is the standard deviation of I_{int} .

2) Lorentz Correction (L): This factor takes into account the time that it takes for a given reflection to pass through the surface of the sphere of reflection. The value depends on the scattering angle and on the geometry of the measurement of the reflection. When the crystal is rotated at a constant speed, reflections with low 20 spend more time in optimum diffraction geometry than those reflections with high 20. This factor is defined as to take care of this effect.

$$\mathbf{L} = (\sin 2\theta)^{-1} \tag{3}$$

3) Polarization factor (P): It takes into account the fact that the reflection efficiency of components of the X-ray beam varies with the scattering angle. The
unpolarized X-ray beam consists of a perpendicular component (I_{perp}) and a parallel one (c). These components are diffracted with different efficiencies, which depend on the diffraction angle θ . At lower 2 θ values, I_{perp} is diffracted with higher efficiency according to:

$$I_{perp} = K I_0 \cos^2 2\theta \tag{4}$$

$$I_{para} = K I_0$$
⁽⁵⁾

where K is a reflection factor for the crystal planes and I_0 is the intensity of the incident X-ray beam. The scattered intensity of the incident X-ray beam can be expressed as an average of the two components:

$$I = (I_{para} + I_{perp}) / 2 = K I_0 / (1 + \cos^2 2\theta) / 2$$
(6)

where the term $(1 + \cos^2 2\theta) / 2$ is the polarization factor, P. Since P is a function of 20 only, it is independent of the geometry of data collection.

4) Absorption factor (A): When an X-ray beam passes through a crystal, its intensity is reduced by scattering and by absorption. The extent of reduction by absorption depends on the pathlength of the beam through the crystal, the wavelength of the incident X-ray beam and the nature of atoms in the crystal. This factor is defined as:

$$A = (1 / V) \int e^{-\mu L} dv$$
 (7)

Where V is the volume of the crystal, μ is the linear absorption coefficient, and L the pathlength through the crystal of the beam diffracted by the volume dv.⁵¹

5) Decomposition Factor (D): As the data collection proceeds, there will be a decrease in intensity due to the decomposition of the crystal by the incident X-ray beam. Since the decomposition is assumed to be linearly proportional with time, this correction factor is given by:

$$D = I_{orig} / I_{avg}$$
(8)

where I_{orig} is the initial intensity of a standard reflection and I_{avg} is the average new intensity of the standard reflection in between any two observations. These "standard" reflections are remeasured after every 97 data points and the decrease in their intensities is used as a measure of how to correct the data measured for decomposition.

A general expression for the corrected integrated intensity (I_{corr}) for all the above mentioned factors is given by:

$$I_{corr} = I_{int} \times D / L P A$$
(9)

where I_{int} is the initial intensity.

Extinction is another systematic source for weakening the incident beam as it passes through the crystal. Part of this beam in a single perfect block may be multiply reflected so that it returns to its original direction but is out of phase with the main beam, thus reducing the intensity of the latter. Thus, the observed structural factors will be systematically smaller than the calculated structural factors.

The structure factor F_{hkl} represents the diffracted intensity in units of electron density, and its determination is the final aim of all experimental methods. This quantity expresses both the amplitude and the phase of the reflection *hkl*. It plays a central role in the solution and refinement of crystal structures because it represents the quantity related to the intensity of the reflection which depends on the structure giving rise to that reflection and is independent of the method and conditions of observation of the reflection. The set of structure factors for all the reflections *hkl*, diffracting below $2\theta=60^{\circ}$, are the primary quantities necessary for the derivation of the three-dimensional distribution of electron density, which is the image of the crystal structure, calculated by Fourier methods. This image is the crystallographic analogue of the image formed in a microscope by recombination of the rays scattered by the object. In a microscope this recombination is done physically by the lenses of the microscope but in crystallography the corresponding recombination of diffracted beams must be done by mathematical calculation.

X-rays are scattered by electrons and the extent of the scattering depends on the atomic number of the atom and the angle of scattering, 2 θ , and is represented by an atomic scattering factor F_j . By identifying the Miller indices (*hkl*) of the crystal plane giving rise to each diffracted beam, the direction of the beam is specified. From the measured intensity of the beam its amplitude may readily be deduced. For a group of atoms, the amplitude (relative to the scattering by a single electron) and the phase of the X-rays scattered, by one unit cell are represented by the structure factor $F_{hkl} = A_{hkl} + iB_{hkl}$ for each reflection.⁴⁸ For a known structure with atoms *j* at positions x_j , y_j , z_j this may be calculated from

$$A_{hkl} = \sum_{j} f_j \cos 2\pi (hx_j + ky_j + lz_j)$$
(10)

$$B_{hkl} = \sum_{j} f_j \sin 2 \pi (hx_j + ky_j + iz_j)$$
(11)

where the summation is over all atoms in the unit cell. The phase angle α is tan⁻¹ (B/A) and the structure factor amplitude $|F_{hkl}|$ is $(A^2 + B^2)^{1/2}$.

The electron density at a point x, y, z in a unit cell of volume V, is

$$p(xyz) = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} |F_{hkl}| \cos \left[2\pi \left(hx + ky + lz\right) - \alpha_{hkl}\right]$$
(12)

Therefore, if we knew $|F_{hkl}|$ and α (for each *h,k,l*) we could compute *p* for all values of *x*, *y*, and *z* and plot the values obtained to give a three-dimensional electron density map. Then, assuming atomic nuclei to be at the centers of areas of electron densities, we would know the entire structure. However, we can obtain only the structure factor amplitudes $|F_{hkl}|$ and not the phase angles, α , directly from experimental measurements. This is what is known in crystallography as "the phase problem".^{48,52} We must usually derive values of α , either from values of A and B computed from suitable "trial" structures or by the use of purely analytical methods. Approximations to electron density maps can be calculated with experimentally observed values of $|F_{hkl}|$ and calculated values of α . If the trial structure is not too grossly in error, the map will be a reasonable representation of the correct electron density map, and the structure can be improved by refinement to give a better fit of observed and calculated $|F_{hkl}|$ values.

Since the phases cannot be compared with any observable quantities, the validity of the proposed structure must be tested by comparison of the calculated values of the amplitudes of the structure factor Fc with the observed amplitudes $|F_{hkl}|$.⁴⁹ This is done by calculating a discrepancy (or reliability) index defined by

$$R = \frac{\sum ||Fo| - |Fc||}{\sum |Fo|}$$
(14)

where the summation is usually taken over all the reflections giving significant intensities. R is one of the most frequently used measures for the correctness of a structure determination. It is a measure of the precision of the fit of the model used to the experimental data obtained.

Because of random errors in the observed structure factor amplitudes $|F_0|$, and approximations made in the model on which the calculated structure factors are based, it is never possible to obtain a set of $|F_c|$ which exactly reproduce the $|F_0|$, so structure refinement never reduces R to zero. For good quality diffractometer data, values of R in the region of 0.05 are quite common for fully refined structures. For initial approximate structures arising from the structure solution process R should not normally be greater than about 0.3 to be capable of satisfactory refinement.

The solution of a crystal structure therefore consists of applying some technique for obtaining the approximate phases of at least some of the X-ray reflections, and the process of structure refinement is one in which the knowledge of phases is extended to all reflections and is made as accurate as possible for all reflections.

There are two main methods for solving crystal structures. The first is known as the Direct method and the second is called the Patterson method. The former is used when there are no heavy atoms in the cell, i.e. all the atoms in the molecule have similar scattering power. Direct methods use the facts that the electron density in a structure can not take any value but must always be positive, and that the structure consists of discrete spherically symmetric atoms, to calculate mathematical probabilities for the phase values and thus to calculate an electron density map of the unit cell.⁴⁸ Theoreticians have worked on the mathematics of these methods and have developed many computer programs that employ them such as SHELXL.

The Patterson method relies on the presence of at least one heavy atom in the unit cell. This method was named after its pioneer A. L. Patterson, who pointed out that a Fourier synthesis using the structural factor $|F_{hkl}|$ values as coefficients produces a three

dimensional electron density map (Equation 13), but that a similar Fourier synthesis using $|F_{hkl}|^2$ as the coefficients has peaks corresponding to all the interatomic vectors⁵²:

$$P(uvw) = \frac{1}{V} \sum_{k} \sum_{k} \sum_{l} |F_{hkl}|^2 \cos \left[2\pi (hu + kv + lw)\right]$$
(13)

Thus, in this method a synthesis is performed on the data set, from which a threedimensional map of the unit cell is calculated from the values of P(uvw), not directly of the electron density in the unit cell but such that the values of P(uvw) correspond to the vectors between all pairs of atoms in the cell.

To judge on the correctness of a structure, all the following criteria should be applied:^{48,49}

- 1. The agreement of individual structure factor amplitudes with those calculated for refined model should be consistent with the estimated precision of the experimental measurements of the observations.
- 2. A difference map, phased with final parameters for the refined structure, should reveal no fluctuations in electron density greater than those expected on the basis of the estimated precision of the electron density.
- 3. Any anomalies in molecular geometry or packing should be scrutinized with great care and regarded with some skepticism.
- 4. The structure should be reasonable chemically with bond angles and distances consistent with those seen in the literature for similar atoms.

Figure 3 shows a flow chart for solving a crystal structure from data measured on a diffractometer.⁵³

Figure 3 Flow Chart For Solving a Crystal Structure.

CHAPTER III

LUMINESCENCE

Luminescence is the light emitted by a substance in a high energy state as a result of some excitation process. The emission thus may take place at low temperatures, and is often called "cold light."

Under normal conditions, all of the electrons in a sample of matter will assume the distribution or state of lowest energy open to them. However, if energy in some form is supplied to the matter, an electron can be excited, that is, raised to a state of higher energy. Luminescence will then be produced if the electron emits light as it returns to the lower energy state. The color of the light, as determined by the frequency of the light waves, is related to the difference in energy of the two states; the Planck-Einstein equation (E = hv) states that the frequency v is equal to the difference in energy E divided by Planck's constant h.

There are many types of luminescence, according to the manner in which the emitter was excited, such as: photoluminescence (excitation by electromagnetic radiation), chemiluminescence (excitation by chemical reaction), bioluminescence (excitation by biological process), sonoluminescence (excitation by ultrasonic waves) and radioluminescence (excitation by high-energy particles).^{54,55} In this work, we are mainly concerned by the first type (photoluminescence).

A useful quantity known as the molecular multiplicity, M, is defined as M = 2S + 1, where S is the spin quantum number of the molecule, and is the sum of the net spin of the electrons in the molecule. If S equals to zero, the multiplicity will be one and it is referred to as a singlet state. The ground singlet state is designated as S₀, and the first and second excited singlet states are denoted S₁ and S₂. If the molecule exists in the excited state and the overall molecule have two unpaired electrons, the total S will be one (S = $+\frac{1}{2} +\frac{1}{2} = 1$) and thus M will equal to three; the multiplicity is referred to as a triplet state (T). The first triplet is denoted as T₁.

The best way to describe the excitation and deexcitation processes is by using a Jablonski energy-level diagram (Figure. 4). Here, the molecule is depicted as possessing three major contributions to its overall energy: electronic, vibrational and rotational (not shown in the figure). The time of electronic absorption of the electromagnetic radiation is about 10^{-15} sec. During this period, if the molecule absorbs a photon, it is excited to a higher singlet state (e.g., S₂). Now, there are several possibilities for the molecule to eliminate this excess energy. In condensed-phase systems, the molecule can rapidly dissipate its excess vibrational energy as heat with solvent molecules. Such a process is called vibrational relaxation (VR). Another possibility here is that the molecule can pass from a low vibrational level of S₂ to an equally energetic vibrational level of the first exited singlet, S₁. Such process is termed as internal conversions (IC). Both VR and IC processes are very rapid (~ 10^{-2} sec). Another non-radiative process is called intersystem crossing (ISC), which happens when the transition occur between states of different multiplicity (e.g., S \rightarrow T).

Photoluminescence can be characterized by its lifetime after removal of the excitation. When energy is absorbed by a substance, some of its electrons are

Figure. 4 Jablonski Energy-Level Diagram Depicting Absorption and Emission.

temporarily excited to a higher energy state than their normal state. As the electrons return to their normal energy state, they lose energy, which is emitted by the substance in the form of radiation at a characteristic wavelength. Fluorescence and phosphorescence, which are forms of luminescence, are distinguished by how long the emitted radiation lasts. Fluorescence ceases in about one hundred millionth of a second (10⁻⁸ second) after the exciting source is removed, whereas phosphorescence continues for seconds or even hours. The duration of the visible emitted energy depends on the rapidity with which the electrons return to their normal energy state.

Fluorescent radiation generally is of a longer wavelength than the absorbed radiation that causes it; that is, the emitted photons are less energetic than the absorbed ones. This rule, known as Stokes' law, normally holds because some of the absorbed energy usually is lost to other processes; however, there are some exceptions to this law.

In many cases information about the energy levels of a system can be obtained only by luminescence studies. This type of study pointed the way for the development of the modern theories of the structure of atoms, molecules, and solids. Studies of electronic distributions, energies, and transitions between states by luminescence measurements continue to provide insights in the fields of chemistry, physics, and biology.

Temperature affects both the shape and the intensity of emission peaks in measured spectra. These effects arise by the changes in populations of the available rotational and vibrational levels with increase in temperature. At low temperature, peaks are sharper and more intense. The transitions that occur are primarily electronic and not vibrational or rotational in nature. Electronic transitions require much larger amounts of energy in discrete quanta than rotational or vibrational transitions. They show up as a

single wavelength emission or absorption, and not as a near continuous spectrum as for rotational and vibrational transitions.

Ultraviolet (UV) light is frequently used to excite luminescence. Many minerals give characteristic emissions when illuminated with such light. Many organic molecules in solution at low temperatures show both fluorescence and phosphorescence when excited with ultraviolet light. The phosphorescence in this case has been shown to occur when the excited electron reverses its spin to give what is called a triplet state. The electron must then reverse its spin again to return to the lowest state. This process takes place only slowly.

The luminescence of a material can be studied using a fluorometer, which measures the light emitted at right angles to the path of the incident or excitation beam. A typical fluorometer consists of four basic parts: a radiation source, a monochromator, a sample cell and a detector.⁵⁶ A block diagram of such fluorimeters is given in Figure. 5

The most common source employed in these fluorometers is a low-pressure xenon or mercury arc lamp, which are the most powerful and brightest sources of UV radiation. The first one has the advantage of a relatively broad continuum, extending into the UV region. The second one is preferred for greater excitation energy at selected wavelengths. However, for the mercury arc lamp, the excitation spectra are often distorted, because the mercury arc consists of sharp mercury lines superimposed on a continuum.

A wave selection device (usually a monochromator) is used both before and after the sample chamber. Such devices are used to maximize the florescence signal and to minimize the background signal. The beam of light is separated into a band of narrow wavelengths by the monochromators using gratings or prisms.

Figure. 5 Block Diagram of a Typical Fluorimeter.

The sample cell is placed in a sample chamber and the luminescence is viewed at 90° with respect to the excitation beam. The material used for making the cell windows must not fluoresce and must be transparent to the wavelength of interest. Although normal glass can be used, high quality fused synthetic silica is the best construction material.

The final component of the fluorimeter is the detector, which is placed at the exit slit of the emission-wavelength selection system. Since the radiant power in luminescence is low, a photomultiplier tube (PMT) is usually used as a detector, which has the advantage of a high gain and relatively broad spectral sensitivity to low radiation levels.

The output (current) from the PMT is first converted to voltage with an operational amplifier. After further voltage amplification, the readout voltage signal is digitized and stored in memory for later manipulation and display on computer screen.

CHAPTER IV

EXPERIMENTAL

SYNTHESIS

Cu₄I₆[di-1,10-phenanthrolino copper(II) iodide]₂

Copper iodide (0.25 g, 1.31×10^{-3} mol) and 1, 10-phenanthroline (0.2366 g, 1.31×10^{-3} mol) were added to 30 ml of acetonitrile. The mixture was refluxed for 24 hours. After filtering the solution, the filtrate was left to stand. After 4 days, Black rhombic crystals formed. A crystal of appropriate dimensions was glued onto a glass fiber for use in X-ray diffraction studies.

$Cu_6I_6(P(m-C_7H_7)_3)_4(CH_3CN)_2$

CuI (0.25 g, 1.31 x 10^{-3} mol) and tri-*m*-tolylphosphine (0.1994 g, 6.55 x 10^{-4} mol) were added to 30 ml of acetonitrile. The mixture was refluxed for 24 hours. Then, the solution was filtered. White rhombic crystals formed in the filtrate after 5 days. A crystal was mounted on a glass fiber for X-ray structural analysis.

$Cu_2I_2(P(C_6H_5)_3)_3$

Triphenylphosphine (0.7171 g, 6.55×10^{-4} mol) and copper iodide (0.25 g, 1.31×10^{-3} mol) were dissolved in 30 ml of acetone. After refluxing the mixture for 1 day, the

hot solution was filtered. Colorless irregular crystals were observed to form on the filtrate after one day. Thus, a re-crystallization process was performed after which a colorless nice cubic crystals started to form. Then, a crystal was mounted on a glass fiber for molecular structural determination by X-ray diffraction.

$CuI(P(C_6H_{11})_3)_2$

Copper iodide (0.25 g, 1.31×10^{-3} mol) and tricyclohexylphosphine (0.1837 g, 6.55 x 10^{-4} mol) were mixed in 30 ml of hexane. After refluxing for 24 hours, the solution was filtered. Colorless needle-like crystals formed after 4 days. A crystal was selected and mounted on a glass fiber for X-ray structure determination.

$Cu_4I_4(P(C_6H_5)_2CH_3)_4$

CuI (0.25 g, 1.31 x 10^{-3} mol) and methyldiphenylphosphine (0.131 g, 6.55 x 10^{-4} mol) were dissolved in 30 ml of acetone. The mixture was heated under reflux for 24 hours and then filtered. White rhombic crystals formed after severeal days. A crystal with appropriate dimensions was chosen and mounted on a glass fiber for X-ray diffraction work.

$Cu_2I_2(P(m-C_7H_7)_3)_3$

CuI (0.25 g, 1.31×10^{-3} mol) and tri-*m*-tolylphosphine (0.1994 g, 6.55×10^{-4} mol) were added to hexane (30 ml). The resulting mixture was refluxed for 24 hrs. After filtering, the solution was left standing for 2 days whereupon crystal formation was observed. A colorless crystal was mounted on a glass fiber for X- ray diffraction study.

$Cu_2I_2(P(o-C_7H_7)_3)_2$

Copper iodide (0.25 g, 1.31×10^{-3} mol) and tri-*o*-tolylphosphine (0.1994 g, 6.55 x 10^{-4} mol) were added to 30 ml of hexane. The mixture was refluxed for 24 hours. After filtering the solution, it was left to stand at ambient temperature. After 9 days, white rhombic crystals formed. A crystal was mounted on a glass fiber for X-ray structure determination.

$Cu_2I_2(P(p-C_7H_7)_3)_3$

Tri-*p*-tolylphosphine (0.1994 g, 6.55×10^{-4} mol) and copper iodide (0.25 g, 1.31 x 10^{-3} mol) were mixed in 30 ml of ethanol. After refluxing the mixture for 1 day, the solution was filtered. Colorless rhombic crystals were observed after a few days. A crystal was mounted on a glass fiber for molecular structural determination by the X-ray diffraction method.

$CuI(P(C_6H_5)_2CH_3)_3$

CuI (0.25 g, 1.31 x 10^{-3} mol) and methyldiphenylphosphine (0.131 g, 6.55 x 10^{-4} mol) were dissolved in 30 ml of ethanol. After refluxing the solution for 24 hours, the solution was filtered. White cubic crystals formed in the filtrate after several days. A crystal was selected and mounted on a glass fiber for X-ray structure determination.

$Cu_4I_4(PC_6H_5(CH_3)_2)_4$

Copper iodide (0.25 g, 1.31 x 10^{-3} mol) and dimethylpheylphosphine (0.0905 g, 6.55 x 10^{-4} mol) were added to 30 ml of acetonitrile. The mixture was refluxed for 24

hours. Then, the solution was filtered. White rhombic crystals formed after a couple of days. A crystal with appropriate dimensions was chosen and then mounted on a glass fiber for X-ray diffraction work.

$Cu_2I_2(P(C_6H_{11})_3)_2$

CuI (0.25 g, 1.31×10^{-3} mol) and tricyclohexylphosphine (0.0905 g, 1.965×10^{-3} mol) were added to 30 ml of benzene. Then, the mixture was refluxed for 24 hours. After filtering the solution, it was left standing for 5 days, whereupon colorless cubic crytstals were observed. A crystal was mounted on a glass fiber for structural determination by the X-ray diffraction technique.

$CuI(P(C_6H_{11})_3)_2.C_6H_6$

Tricyclohexylphosphine (1.022 g, 3.93×10^{-3} mol) and copper iodide (0.25 g, 1.31 x 10^{-3} mol) were dissolved in 30 ml of benzene. The mixture was refluxed for 1 day. Then, the solution was filtered. After 7 days, white rhombic crystals were observed. A crystal was mounted on a glass fiber for molecular structural determination by the X-ray diffraction method.

$Cu_2I_2(P(p-C_7H_7)_3)_3$

Copper iodide (0.25 g, 1.31×10^{-3} mol) and tri-*p*-tolylphosphine (0.1994 g, 6.55 x 10^{-4} mol) were added to 30 ml of acetone. The mixture was refluxed for 24 hours. After filtering the solution, it was left standing on the bench. After 4 days, black rhombic

crystals formed. A crystal with appropriate dimensions was glued onto a glass fiber for use in X-ray diffraction studies.

$Cu_4I_4(P(m-C_7H_7)_3)_4$

CuI (0.25 g, 1.31 x 10^{-3} mol) and tri-*m*-tolylphosphine (0.1994 g, 6.55 x 10^{-4} mol) were added to 30 ml of acetone. The mixture was refluxed for 24 hours. Then, the solution was filtered. White rhombic crystals formed after 5 days. A crystal was mounted on a glass fiber for X-ray structural analysis.

$Cu_2I_2(P(C_6H_5)_2CH_3)_4.C_4H_8O$

Copper iodide (0.25 g, 1.31×10^{-3} mol) and methyldiphenylphosphine (0.524 g, 2.62 x 10^{-3} mol) were dissolved in 30 ml of a mixture of tetrahydrofuran and pentane (50%/50%). After refluxing the solution for 24 hours, the solution was filtered. Colorless needles-like crystals formed after 4 days. A suitable crystal was selected and mounted on a glass fiber for X-ray structure determination.

$Cu_2I_2(P(C_6H_5)_3)_3$

CuI (0.25 g, 1.31 x 10^{-3} mol) and triphenylphosphine (0.6868 g, 2.62 x 10^{-3} mol) were dissolved in 30 ml of toluene. The mixture was refluxed for 24 hours and then the solution was filtered. White rhombic crystals formed after several days. A crystal with appropriate dimensions was chosen and mounted on a glass fiber for X-ray diffraction work.

CuI(P(C₆H₁₁)₃)₂.C₇H₈

Copper iodide (0.25 g, 1.31×10^{-3} mol) and tricyclohexylphosphine (0.7348 g, 2.62×10^{-3} mol) were added to 30 ml of toluene. Then, the mixture was refluxed for 24 hours. After filtering the solution, it was left standing for 2 days whereupon the formation of colorless cubic crystals were observed. A crystal was mounted on a glass fiber for X-ray structure diffraction study.

CRYSTALLOGRAPHY

Crystals with appropriate dimensions (<0.2 mm in all dimensions) of each compound were chosen for X-ray diffraction. A single crystal of good quality was mounted on a glass fiber held in a brass support. Then, the brass pin was placed in a goniometer head and mounted on a Siemens P4 automated four-circle diffractometer equipped with a PC-486DX computer. The crystals were irradiated with monochromated molybdenum radiation at a wavelength of 0.71073 A (a weighted average of $k_{\alpha l}$ and $k_{\alpha 2}$). Unit cell dimensions were determined using the centered angles from 25 - 50 independent strong reflections which were refined by least-squares methods using the automated procedure in XSCANS⁵⁷. Intensity data were collected at room temperature using a variable scan rate, a θ -2 θ scan mode and a scan range of 0.60 below $k_{\alpha l}$ and 0.60 above $k_{\alpha 2}$ to a maximum 20 value (normally 60.00°). Backgrounds were measured at the ends of the scan range for a combined time equal to the total scan time. The intensities of three standard reflections were remeasured after every 97 reflections to monitor crystal decomposition. The raw intensity data collected were corrected for Lorentz, polarization, absorption, decomposition, centering and background effects, after which redundant and

space group forbidden data were removed. The profile fitting technique for data reduction was employed. Observed reflections (F>4.0 F(l)) were used to arrive at the non-hydrogen atom positions by direct methods⁵⁸⁻⁶⁰. Refinement of the scale factor, positional and anisotropic thermal parameters for all atoms was carried out using either XLS (refinement on F)⁵⁰ or SHELXL⁶¹ (refinement on F²) to convergence. Scattering factors were taken from the International Tables for Crystallography⁶². Hydrogen atom positions were calculated using idealized geometry. A weighting scheme (w = ($\sigma^2(F)$ + $abs(g)(F^2)^{-1}$) and extinction correction were applied at the last stages of refinement. Final refinement led to the agreement factor, R (R = $\sum (|F_o| - |F_c|) / \sum |F_o|$).

FLUORESCENCE

Emission spectra of all the synthesized complexes were measured using a Fluorolog-3 spectrofluorometer (ISA, inc.). Finely divided samples of these complexes were spread on double-sided tape attached to a 0.5 inch x 1.5 inch piece of non-emitting black cardboard. The light source was a xenon lamp. Measurements were made, from 340-700 nm at 0.5 nm intervals with integration time of 0.1 s, at room temperature. Both the excitation and emission slits were 1 mm in width. A blank sample showed no signal in the area of interest.

The emission spectrum was obtained by irradiating the sample at the wavelength of maximum absorption (300 nm) and observing the emitted fluorescence to give a plot of intensity versus wavelength in relative units.

CHAPTER V

RESULTS AND DISCUSSION

In this work, 19 copper halide complexes were synthesized and their crystal structures were determined by single crystal X-ray diffraction, followed by measurement of their luminescent spectra. Of these nineteen complexes, sixteen were not known before. Then, a correlation between the wavelength of maximum emission and the crystallographic symmetry was sought. *Ab initio* calculations were employed to support the correlation. The structures prepared can be grouped into four classes: i) hexaiodohexacopper(I) ($Cu_6I_6L_4L'_2$ (L= trisubstituted phosphine and L'= acetonitrile)), ii) cubanes ($Cu_4X_4L_4$), iii) rhombs ($Cu_2X_2L_4$, $Cu_2X_2L_3$ and $Cu_2X_2L_2$) and iv) monomers ($CuXL_3$ and $CuXL_2$). Tables 7-74 present the crystallographic data and the derived results for the different complexes. Projection views and emission spectra of the complexes are shown in Figures 6-39.

The reason for the structural variety observed is believed to be due to steric factors imposed by the size of ligands. Instead of the cubane structure in which Cu is tetrahedrally coordinated to three iodide atoms and additional fourth ligand, one can get step, rhomb and monomer motifs. A suggested scheme for such transformation is given in scheme I below. Each step reduces steric stress at copper.

Scheme I

It is important to respect the role of solvents in the syntheses. Carrying out the same type of synthesis (same reactants and same stoichiometry) in different solvents may lead to different products. For instance, reacting CuI with tri-*m*-tolylphosphine in hexane gives $Cu_2I_2(P(m-tolyl)_3)_3$, which has a rhombic motif. On the other hand, carrying out the same reaction in acetone will result in $Cu_4I_4(P(m-tolyl)_3)_4$, which exhibits a cubic form. Repeating the same thing in acetonitrile results in $Cu_6I_6(P(m-tolyl)_3)_4$ (acetonitrile)₂. If the solvent is not included in the unit cell, it does not affect the luminescent behavior directly. Its effect on luminescence is indirect, i. e., by leading to different structures, materials of different luminescent behavior are prepared. However, it should be noted that this is not always the case. Many times, the same product can be obtained from different solvents, especially if the solvents are similar. This phenomenon was observed repeatedly during this study.

Internal symmetry elements, Cu-X distances, Cu-Cu distances, Cu-I-Cu angles and wavelengths of maximum emission (λ_{max}) for the complexes are given in Table 3.

To understand the emission behavior of the CuX phosphine complexes and to find a correlation of emission with crystallographic symmetry, *Ab initio* calculations were performed. The calculations were carried out using the Gaussian 94 software package⁶³. To obtain a description of frontier molecular orbitals for the different solids, a Hartree-Fock method of calculation was employed⁶⁴. The chosen basis set was LANL1DZ, representing core orbitals (non-valent) for heavy atoms (I, Cu and P) in the form of primitive Gaussian type orbitals. The Z-matrix for each structure was constructed on the basis of the crystallographic coordinates; i.e. using bond lengths, bond angles and torsional (dihedral) angles derived from the crystallographic results. Owing to

Table 3	3 Structural and	d Emission	Data for the Cop	per Halide Phos	phine Complexes	
Motif	Space group	Symmetry	Cu-X (Å)	Cu-Cu (Å)	Cu-I-Cu angle (°)	λ_{max}, nm
Cu ₆ I ₆ Cu ₆ I ₆ (P(m-C ₇ H ₇) ₃) ₄ (CH ₃ CN) ₂	Fd-3	1	2.6188-2.7278	2.985	67.83-111.50	585
Cubanes [Cu ₄ I ₄ I ₄]						
Cu4I4(P(C6H5)2CH3)4	C2/c	7	2.635-2.794	2.871-3.043	63.4-67.2	570
Cu4I4(PC6H5(CH3)2)4	C2/c	7	2.653-2.810	2.848-2.941	61.75-65.88	592
$Cu_4I_4(P(m-C_7H_7)_3)_4$	<i>I</i> -42d	-	2.729-2.802	3.348-3.667	74.85-83.30	385
Rhombs [Cu ₂ I ₂ L ₄]						
Cu ₂ I ₂ (P(C ₆ H ₅) ₂ CH ₃) ₄ .C ₄ H ₈ O	C2/c	I	2.698-2.795	3.170	70.45	547
Rhombs [Cu ₂ I ₂ L ₃]						
$Cu_2I_2(P(m-C_7H_7)_3)_3$	Рī		2.583-2.819	3.059	68.8-68.9	479
$Cu_2I_2(P(p-C_7H_7)_3)_3$	Ρī	1	2.579-2.817	2.947	65.59-66.44	478
$Cu_2I_2(P(p-C_7H_7)_3)_3$	$P2_1/a$		2.563-2.786	2.927	65.91-66.19	473
Cu ₂ I ₂ (P(C ₆ H ₅) ₃) ₃	$P2_1$	Η	2.537-2.854	3.077	69.3-70.3	472
Cu ₂ I ₂ (P(C ₆ H ₅) ₃) ₃	P21/c		2.569-2.779	3.137	71.7-72.1	472
Rhombs [Cu ₂ I ₂ L ₂]						
$Cu_2I_2(P(o-C_7H_7)_3)_2$	Ρī	}	2.581-2.604	3.135	74.4	426
Cu ₂ I ₂ (P(C ₆ H ₁₁) ₃) ₂	Ρī	,	2.604-2.618	3.062	71.8	450
Monomer [CulL ₃]						
$CuI(P(C_6H_5)_2CH_3)_3$	$Pna2_1$	1	2.881			403
Monomer [CulL ₂]						
CuI(P(C ₆ H ₁₁) ₃) ₂ .C ₆ H ₆	Ρī		2.626	1		377
Cul(P(C ₆ H ₁₁) ₃) ₂ .C ₇ H ₈	Ы	1	2.637	-		450
$CuI(P(C_6H_{11})_3)_2$ (hex)	C2/c	6	2.587	-		364
$Cul(P(C_6H_{11})_3)_2 (mix)^{\#}$	Ρī	1	2.591			350
* This compound was crystallized from	n hexane					

This compound was crystallized from a mixture of n-pentane and terahydrofuran.

the size of the molecules under investigation (104 electrons for Cu, I and P in cubic cases) as well as to facilitate the comparative nature of the study, the calculations were performed with the alkyl and aryl phosphine ligands replaced by a PH₃ group. The major contributing atomic orbitals to HOMO and LUMO molecular orbitals of motifs observed for copper halide phosphine complexes are shown in Table 4.

Copper iodide has a perfect tetrahedral structure. The center of the tetrahedron is iodide, the other four attached atoms will be copper (or vise versa). The bond angles are all about 109.5° and the Cu-I distance is 2.663Å⁶⁵. However, the coordination geometry, Cu-I distances and bond angles change upon complexation with the different ligand as can be observed from Table 3 and from the discussion below.

Hexaiodohexacopper(I)

We have prepared a unique Cu_6I_6 cluster of a motif not previously observed in the literature with any ligand. The compound, $Cu_6I_6(P(m-tolyl)_3)_4(acetonitrile)_2$, crystallizes with disorder about a 3-fold axis. This motif is of unusually high nuclearity as copper iodide ligand complexes are normally tetracuprous or smaller.

Normally, Cu_4I_4 clusters are at the upper limit of nuclearity observed in the structure for both neutral and anionic complexes⁶⁶⁻⁶⁹. However, there are several known clusters of higher nuclearity. For example, $(Cu_8I_{13})^{-5}$, $(Cu_{19}I_{27})^{-8}$, and $(Cu_{36}I_{56})^{-20}$ are reported but these are unusual. Polymeric clusters of both neutral and anionic types have been also identified⁷³⁻⁷⁴.

Table 4 Major Contributing Atomic Orbitals to HOMO and LUMO Molecular Orbitals of Motifs

			in CuX I	Phosphine Co	omplexe	6		-	
Motif	Atom	NOH	10			LUMO & L	UMO+n		
Monomer [CuXL ₂]		OMOH	<u>17</u>	TUMO 1	∞	LUMO 1	6	LUMO 2	
Case #1:	Cu	0.16194	5D-2	1.08286	4Pz	1.15411	4P _x	1.34104	$4P_x$
* X=I								-0.35193	$3P_y$
* Symmetry: No	I	0.52828	4P _y	-0.29483	4Pz	-0.33698	$4P_x$	-0.27257	$4P_y$
Examples:		0.50273	$3P_y$			0.14415	2S		•
Cul(P(C ₆ H ₁₁) ₃) ₂ (mix)	Ρ1					-0.53701	2S	0.38883	2S
Cul(P(C ₆ H ₁₁) ₃) ₂ .C ₆ H ₆						-0.14634	1S	-0.23601	$4P_{y}$
Cut(r (C6111)3)2.C7118								0.14851	$4P_x$
								0.11440	IS
	P2					-0.53674	2S	-0.38919	2S
						-0.14626	IS	-0.23597	$4P_y$
								-0.14848	4P _x
								-0.1149	1S
		OMOH	17 B	LUMO 1	8 8	LUMO	9 A	LUMO 20) B
Case #7.	Cu	-0.16200	5D-1	1.08265	4P _x	1.15431	$4P_z$	1.34071	$4P_y$
Case + 2.						-0.74011	2S	-0.35157	$3P_y$
* Summetru: Vec	Ι	0.52825	4P _y	-0.29480	4P _x	-0.33716	4Pz	-0.27254	$4P_{y}$
10 fold cummetry aviel		0.50273	$3P_y$			-0.14419	2S		
Evample:	PI					0.53750	2S	-0.38893	2S
CultP(C,H.,)., (hex)						0.14643	IS	-0.23563	4P _y
								0.14859	$4P_z$
								-0.11439	1S
	P2					0.53750	2S	0.38893	2S
						0.14643	IS	-0.23563	$4P_y$
								-0.14859	$4P_z$
								0.11439	1S

Case #3:		OMOH	17	LUMO	18	LUMO 19		LUMO 20	
* X=Br	Cn	0.20876	5D-2	0.99068	$4P_z$	1.11895	$4P_x$	1.33665	$4P_{y}$
* Symmetry: No						0.77454	2S	-0.38523	$3P_y$
Example:						-0.15045	$3P_x$		•
CuBr(P(C ₆ H ₁₁) ₃) ₂ (benzene)						0.10033	1S		
	Br	0.53257	4P _y	-0.23389	$4P_z$	-0.29000	$4P_x$	-0.20150	4P _y
		0.49530	$3P_y$						
	PI	-0.10414	2S	0.16955	$4P_z$	-0.51868	2S	-0.33937	2S
						-0.14210	1S	-0.26199	$4P_{y}$
						0.12080	$4P_x$	-0.12944	4P _x
	P2	0.10441	2S	0.16538	$4P_z$	-0.49183	2S	0.37943	2S
						-0.13431	IS	-0.24895	$4P_{y}$
						0.12645	$4P_x$	-0.12840	4P _x
Case #4:		OMOH	17 B	LUMO	18 B	LUMO 19	A	LUMO 20	B
* X=Br	Cu	-0.20797	5D-1	1.03108	$4P_x$	1.12414	$4P_z$	1.33525	$4P_y$
* Symmetry: Yes						-0.74798	2S	-0.39449	$3P_y$
{2-fold symmetry axis}						-0.16802	$3P_z$		
Example:	Br	0.53270	4P _y	-0.23744	$4P_x$	-0.29123	$4P_z$	-0.20089	4P _y
		0.49517	$3P_y$						
	PI	-0.10775	2S	0.11280	4P _x	0.50841	2S	-0.35615	2S
						0.13911	IS	-0.24552	$4P_{y}$
						0.12240	$4P_z$	0.10481	IS
	P2	0.10775	2S	0.11280	4P _x	0.50841	2S	0.35615	2S
						0.13911	1S	-0.24552	$4P_{y}$
						0.12240	$4P_z$	0.10481	IS
Monomer [CuXL ₃] * X=I									

* Symmetry: No		OMOH	21	LUMO 22		LUMO 23		LUMO	24
Example:	Cu	0.11462	5D-2	1.08349	$4P_z$	1.16702	4P _y	1.15622	
Cul(P(C ₆ H ₅) ₂ CH ₃) ₃				-0.66838	$4P_y$	0.74361	$4P_z$	-0.83530	2S
				0.44748	4P _x	-0.24691	$3P_y$	-0.40263	$4P_z$
				-0.32272	2S	-0.17157	$3P_z$	0.32050	$4P_v$
								0.15417	3P,
	Ι	0.42925	4P _y	-0.22378	$4P_z$	-0.24307	4Py	0.28740	4P _x
		0.40167	$3P_y$	0.13584	$4P_v$	-0.15145	4Pz	-0.15386	2S
		0.31432 0.29494	$4P_z$ $3P_z$	-0.1077	4P _x				
	Pl	0.11521	2S	0.22028	2S	0.37697	2S	0.38168	2S
						-0.21315	4Py		
						-0.18108	4Pz		
						0.10494	IS		
	P2			0.42854	2S			0.26753	2S
								0.18472	$4P_y$
2	P3			-0.27317	$4P_z$			0.52523	2S
Khombs [Cu ₂ X ₂ L ₂]								0.13405	1S
Case #1:		OMOH	26	LUMO 27		LUMO 28		LUMO	29
* X=I	Cul			1.05111	4P _x	0.57110	2S	0.52128	$4P_z$
* Symmetry: No				0.45082	2S	0.54861	$4P_z$	0.49919	4P _x
Example:				-0.38140	$4P_z$	-0.30766	$4P_x$	0.30319	2S
Cu ₂ I ₂ (P(C ₆ H ₁₁) ₃) ₂						0.15458	IS	-0.17339	$3P_x$
								-0.12399	$3P_z$
	Cu2			-0.42771	2S	0.58475	2S	0.57924	$4P_z$
				-0.41241	$4P_z$	-0.52377	4Pz	0.55098	$4P_x$
						0.25944	4P _x	-0.29220	2S
						0.15274	1S	-0.18630	$3P_x$
					<u>.</u>			-0.12830	$3P_z$
	П	0.57414	4Py					-0.16283	$4P_z$
		0.41420	JLY						

	12	0.26043 0.57420 0.41444 -0.26023	2S 3P _y 2S					-0.16278	4P _z
	Ρl			0.24231	2S	-0.22293	2S	-0.19573	$4P_x$
						-0.17032	$4P_x$	0.19023	2S
								-0.12166	$4P_z$
	P2			-0.24903	2S	-0.21016	2S	-0.21314	2S
Case #2:						0.17804	4Px	-0.19413	$4P_x$
* X=I								-0.14364	$4P_z$
* Symmetry: Yes		OMOH	26 A _u	LUMO	27 A _u	LUMO 2	8 A _g	LUMO	30 Ag
{center of symmetry}	Cul	0.16929	$4P_z$	1.10230	$4P_{x}$	1.13075	$4P_y$	0.85958	4P _x
Examples:				1.05026	2S	0.35557	$4P_x$	0.78718	2S
$Cu_{2}I_{2}(P(o-C_{7}H_{7})_{3})_{2}$				0.82594	$4P_z$	0.33437	2S	0.66702	$4P_z$
Cu ₂ I ₂ (P(C ₆ H ₁₁) ₃) ₂				-0.12877	$3P_x$	-0.26647	$4P_z$	0.53815	$4P_{y}$
								-0.11771	3P _x
	Cu2	-0.16929	$4P_z$	1.10230	4P _x	-1.13075	$4P_y$	-0.85958	$4P_x$
				-1.05026	2S	0.35557	4P _x	-0.78718	2S
				0.82594	$4P_z$	0.33437	2S	-0.66702	$4P_z$
				-0.12877	$3P_x$	0.26647	$4P_z$	-0.53815	4P _y
								0.11771	3P,
	II	0.28567	$3P_z$					-0.17073	$4P_z$
		0.27734	$4P_z$					0.12534	4P _x
		-0.23491	$3P_x$						
		-0.22996	$4P_x$						
	12	0.28567	$3P_z$					0.17073	$4P_z$
		0.27734	$4P_z$					-0.12534	4P _x
		-0.23491	$3P_x$						
		-0.22996	4P _x						
Rhombs [Cu,X,I,A]	P1			0.10778	2S			0.25432	2S
	F2			-0.10//8	7 2			0.25432	2S

* X=I									
* Symmetry: No		OMOH	30	LUMO 3	-	LUMO	32	LUMO	33
Examples:	Cu1	0.12175	$4P_z$	0.93560	3P_	1.14357	4P _x	-0.53173	4P _x
$Cu_2I_2(P(m-C_7H_7)_3)_3$		-0.10540	$3P_z$	0.62217	2S	-0.47725	4P _y	0.38815	2S
$Cu_2I_2(P(p-C_7H_7)_3)_3$				-0.10819	4P _v	-0.17168	$3P_x$	0.23017	$4P_{y}$
$Cu_2 I_2 (P(D-C_7H_7)_3)_3$ $Cu_1 I_2 (P(C,H_2)_5)_3$						-0.12128	2S	0.10159	$3P_x$
Cu ₃ I ₃ (P(C ₆ H ₅))	Cu2	0.11670	$4P_z$	1.20446	4P _x	-0.93647	2S	0.93436	4P _y
				-0.29657	4P _y	0.58396	$4P_{y}$	0.60337	$4P_x$
				0.16365	2S	0.36896	4P _x	0.37850	2S
				-0.11788	$3P_y$	-0.15232	IS	-0.19018	$3P_x$
								-0.10283	$3P_{y}$
	II	0.61493	$4P_z$					-0.17505	$4P_{y}$
		0.41351	$3P_z$						
		0.31132	2S						
	12	0.61448	$4P_z$					-0.17189	$4P_v$
		0.41345	$3P_z$					0.10454	$4P_z$
	Ż	-0.31120	\$7		č		Č		Č
	1			0.13499 0.10195	5 4 7	08/07/0	S 2	-0.15469	S 2
	P2				:	0.41483	2S	0.26066	2S
						0.11803	1S		
	P3			-0.32562	2S	-0.28448	4P _x	-0.49381	2S
				-0.10856	IS	-0.13545	4P _y	-0.13504	IS
Rhombs [Cu ₂ X ₂ L ₄]								-0.12009	4P _y
I=X *									
* Symmetry: Yes		UMUH	34 A u	LUMU 3	N Au	LUMU	0 Ag	LUMU	<u> 38 A</u> g
{center of symmetry}	Cul	-0.16674	5D+1	1.13961	2S	0.91359	4P _x	1.74075	4P _y
Examples:		0.12060	5D+2	1.13539	4P _x	0.75138	$4P_z$	-0.19812	$3P_y$
$Cu_{2}I_{2}(\dot{P}(C_{6}H_{5})_{2}CH_{3})_{4}.C_{4}H_{8}O$				0.78517	$4P_z$	-0.73310	2S	-0.13404	$4P_z$
						0.15879	4P _y	0.12041	2S
						-0.12000	3P _x		

	Cu2	0.16674	5D+1	1.13961	2S	-0.91359	4P _x	-1.74075	4P _y
		-0.12060	5D+2	1.13539	4P _x	-0.75138	$4P_z$	0.19812	$3P_y$
				0.78517	$4P_z$	-0.73310	2S	0.13404	$4P_z$
						-0.15879	$4P_v$	0.12041	2S
						0.12000	3P,		
	II	0.34445	4P _x			-0.11566	$4P_z$		
		0.33193	3P _x						
	12	0.34445	4P _x			0.11566	$4P_z$		
		0.33193	3P _x						
	ΡI	0.11199	$4P_{y}$			0.14271	2S		
	P2	0.11199	4P _v			0.14271	2S		
	P3		•			0.13028	2S	-0.11467	2S
	P4					0.13028	2S	-0.11467	2S
		OMOH	52	LUMO 53		LUMO 54		LUMO 5	IO
v. No	Cul			-0.70645	2S	0.55614	4P _x	1.20240	- 4P _x
0.1.0				0.53555	$4P_z$	0.50880	$4P_z$	-1.00473	2S
H-),),				0.28264	$3P_x$	-0.35158	2S	0.89819	$4P_z$
				0.22276	$3P_z$	0.21777	$4P_v$		
	Cu2			0.84194	4P _v	1.27291	4P,	0.18458	$4P_{x}$
				-0.61235	2S	1.08010	2S	-0.11229	$4P_{v}$
				-0.29997	$3P_y$	0.87311	$4P_z$	-0.10584	2S
				-0.21698	$3P_z$				
	Cu3			-0.78470	2S	0.20847	$4P_z$	0.75429	4P _x
				0.64626	4P _x	0.18867	$4P_v$	0.41101	2S
				-0.40423	$4P_z$	-0.14460	4P _x	-0.25405	$4P_z$
				-0.29745	$3P_x$				I
				0.18656	$3P_z$				
	Cu4			-0.77686	2S	0.84175	4P _y	-0.78216	$4P_{y}$
				-0.62564	$4P_{y}$	-0.43422	2S	0.58788	$4P_z$

			0.45347 4	4P ₂	-0.34470	4P,	0.53817	2S
			0.29225 3	3P,		1	0.18943	$4P_x$
			-0.19649 3	, Pz				:
	11	0.14520 4P _x						
		0.12935 3P _x						
	12	0.47250 4P _x						
		0.39405 3P _x						
		0.25387 4P _z						
		0.20946 3P _z						
		-0.19103 2S						
	13	0.15312 4P _x						
		0.13624 3P _x						
		-0.11147 4P _z						
-	I4	0.31525 4P _x						
		92, 25/25/01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
	Pl		0.27960 2	2S	-0.20019	2S	-0.38341	2S
			0.10072 4	ų,	-0.10456	4P _x	-0.21077	$4P_x$
							-0.16267	4P _z
	Ę					č	-0.11295	IS
	77		0.31880 2	<u>s</u>	0.39339	2S		
			-0.12473 4	ď,	-0.22329	4P _y		
			0.10317 1	s	-0.15963	$4P_z$		
					0.11555	1S		
	P3		0.24760 2	S			0.20174	2S
	·			i			-0.11661	4P _x
	P4		0.24986 2	Ś	-0.23410	SS	0.25490	SS
					-0.12960	4Fy	0.14202	4ry
Cubane								
* X=I								

* Symmetry: Yes		OMOH	52 B	LUMO 53	A	LUMO 54	B	LUMO 55	B
{2-fold symmetry axis}	Cul	-0.16169	5D+2	0.92792	$4P_y$	0.12486	2S	1.32620	2S
Example:		0.11725	5D-1	0.75385	2S	-0.11993	$4P_{v}$	-1.29435	$4P_v$
Cu4I4(PC6H5(CH3)2)4				0.53461	$4P_z$		•	-0.48457	$4P_z$
$Cu_{4}I_{4}(P(m-C_{7}H_{7})_{3})_{4}$				-0.10966	$3P_y$			0.11215	$3P_v$
	Cu2	0.16169	5D+2	-0.92792	4P,	-0.12486	2S	-1.32620	2S
		0.11725	5D-1	0.75385	2S	-0.11993	$4P_v$	-1.29435	$4P_v$
				0.53461	$4P_z$		•	0.48457	$4P_z$
				0.10966	$3P_y$			0.11215	$3P_{y}$
	Cu3			-0.90748	4P _x	1.30578	$4P_x$	-0.16390	4P _x
				0.72993	2S	1.25559	2S	-0.12634	2S
				-0.55553	$4P_z$	0.47646	$4P_z$	-0.10167	$4P_v$
				0.11834	$3P_{x}$	-0.12675	$3P_x$		•
				0.10714	$4P_{v}$.,
	Cu4			0.90748	4P _x	1.30578	4P _x	-0.16390	4P _x
				0.72993	2S	-1.25559	2S	0.12634	2S
				-0.55553	$4P_z$	-0.47646	$4P_z$	-0.10167	4P _y
				-0.11834	$3P_x$	-0.12675	$3P_x$		
				-0.10714	4P _y				
	II	0.24160	4P _y		•	-0.11985	$4P_{x}$		
		0.23510	3Py						
	12	0.24160	4P _y			-0.11985	4P _x		
		0.23510	3P						
		0.19375	4P _y						
	13	0.19263	3Py					0.12440	$4P_{y}$
		-0.12461	$4P_z$						
		-0.11864	$3P_z$						
	14	0.19375	4P _y					0.12440	4P _y
		0.19263	$3P_y$						
		0.12461	$4P_z$						
		0.11864	$3P_z$						

$4P_v$	•	4P _y					E	4P _x	$4P_v$	•	$4P_x$	2S	$4P_{v}$	$4P_z$		2S	$4P_x$	$4P_v$	$4P_z$	$3P_x$	$4P_v$	2S	4P _x	$4P_z$	
0.12907		0.12907					LUMO 55	0.21211	0.10277		-0.84215	-0.80363	-0.26203	0.25005		1.40965	-1.31082	0.75390	-0.43636	0.13126	0.65182	-0.60602	-0.19667	0.18630	
				4P _x	4P _x		A	$4P_z$	2S	$3P_z$	$4P_x$	$4P_z$	2S	$4P_v$		$4P_x$	2S	$4P_z$	4P _v	,	$4P_v$	2S	$4P_z$		
				-0.12947	-0.12947		LUMO 54	1.62556	1.49076	-0.16426	-0.44851	0.40514	-0.43672	-0.25137		0.44195	-0.43673	0.40514	-0.26274		0.51410	-0.43672	0.40514		
2S		2S		2S	2S		A	$4P_z$	2S	$3P_z$	4P _x	2S	$4P_y$	$4P_z$	$3P_x$	$4P_x$	2S	$4P_v$	$4P_z$	$3P_x$	$4P_{v}$	2S	$4P_z$	$3P_y$	
-0.12606		-0.12606		-0.12725	-0.12725		LUMO 53	1.09902	0.65633	-0.17431	0.80932	-0.78464	0.46000	-0.30335	-0.12020	-0.80303	-0.78464	0.47089	-0.30335	0.11941	-0.93089	-0.78464	-0.30335	0.13834	
$4P_{y}$	3P _y 2S	4P _y	3Py 2S			1	52 E	5D+2			5D+1					5D+1					5D-1	5D+2			$4P_y$ $3P_v$
0.17017	0.15660 -0.10282	0.17017	0.15660 0.10282				S OMOH	0.13625			0.11783					-0.12248					0.12927	-0.12713			0.24276 0.23788
PI		P2		P3	P4			Cul			Cu2					Cu3					Cu4				11
						Cubane * X=I		* Symmetry: Yes	{3-fold symmetry axis}	Example:	Cu414(F(D-C717)3)4														

		4P _x	2S						
		0.14615	0.11299						
				2S	•				
				0.10895					
		2S 2S	2S	2S					
		0.13068 0.13068	0.13068	0.13335					
4Py 3Py 3Py	$4P_y$		4P _y 3D	γ IC					
0.23664 0.23404 0.25315 0.24673	0.25071 0.24501		0.17586	10000110		 			
12 13	I4	P1 P2	P3	P4					
Tri-*m*-tolylphosphine has previously³² been observed to form two complexes with copper iodide, $Cu_2I_2L_3$ is prepared by warming a 1:1 CuI/P ligand mixture in acetonitrile or toluene. The tetramer, $[CuIP(m-tolyl)_3]_4$ is prepared by briefly boiling a 4:10 CuI/P ligand mixture until dissolution in acetone or acetone/toluene¹¹. We have prepared a third form, $Cu_6I_6(P(m-tolyl)_3)_4$ (acetonitrile)₂ by refluxing a 2:1 mixture of CuI/ tri-*m*-tolylphosphine for 24 hrs in acetonitrile.

Copper iodide complexes often exhibit structural disorders. It is common to see Cu_4I_6 complexes (which may be visualized as a tetrahedron of copper(I) atoms bridged on all edges by iodine atoms), with a disorder about a center of symmetry and, thus, appearing as a cube of copper atoms with face bridging iodide atoms. Distances between adjacent copper atoms are too short - 2.0Å and each of the eight copper sites refines to half occupancy indicating 2 half occupancy $Cu_4I_6^2$ motif with superimposed tetrahedra of Cu atoms, edge bridged by iodide atoms⁶⁶.

In $Cu_6I_6(P(m-tolyl)_3)_4(acetonitrile)_2$, a cube of eight copper atoms appears with symmetry versions of Cu(3) at one set of four alternating corners of the cube and Cu(2) atoms at the other four corners. Cu(3) is a full occupancy position. Cu(2) refines to half occupancy. All Cu(2)-Cu(3) separations are noninteractive distances (2.986Å). Cu(3) and its three symmetrical equivalents are present in all molecules in the solid but only two of the Cu(2) atoms are present at any one time (Figure 6). There are thus a total of six Cu atoms in the cluster. Six iodide atoms balance the charge of four Cu(3)(I) atoms plus two Cu(2)(I) atoms. Copper atoms are three coordinate to iodide and also bound to $P(m-tolyl)_3(Cu(3))$ or to CH₃CN(Cu(2)). In the disordered cube, a 3-fold axes pass through P, Cu(2), Cu(3), C/N and C at opposite corners and a two fold axis passes through the iodine atoms on opposite faces of the cube. Only a single twofold axis describes the ordered cluster.

The base of the ordered cluster may be described as four Cu_2I_2 rhombs which share a single iodine vertice and which also share two contiguous sides with each of two adjacent rhombs. Two additional copper atoms [C(3) atoms] are found 2.986Å above two basal copper atoms at opposite corners of the basal unit. Each is bound to two iodide atoms of the nearest sides. These two copper(I) atoms are bridged by the sixth atom. Cu(3) and Cu(2) are bound to three iodide atoms [Cu(2)-I, 2.7280Å, Cu(3)-I, 2.619Å] and to a Lewis base ligand.

The acetonitrile molecules are disordered about their central carbon atom. At first sight, they appear to bridge neighboring Cu_6I_6 clusters, however, the N atom of the acetonitrile molecule is bonded to one cluster and the neighboring cluster is missing the Cu atoms which appear to be bonded to the methyl end of that acetonitrile molecule.

Cubanes

Four previously unknown compounds of this category; $Cu_4I_4(P(diphenylmethyl))_4$, $Cu_4I_4(P(phenyldimethyl))_4$, $Cu_4I_4(P(m-tolyl)_3)_4$ and $Cu_4I_4(P(triphenyl))_4$ were synthesized, crystallized and identified in the solid state by single crystal X-ray diffraction.

The cuprous halide cluster consists of discrete tetrameric molecular units of stoichiometry $[CuIL]_4$. The coordination number of copper is four. As Table 3 reveals, the Cu-I-Cu angles (61.75°-83.30°) in these complexes are smaller than the usual tetrahedral angle (109.5°). This has to do with the van der Waals repulsion between the I

atoms. To keep reasonable X-X separation, the angles at copper open, causing angles at halide to become smaller.

Since some comparison data for analogous Cu bromide complexes exists¹¹, it is useful to compare data for cuprous iodide and cuprous bromide complexes. Comparison between the Cu-I-Cu and Cu-Br-Cu angles reveals that the compression in the latter is lesser. The Cu-Br-Cu angle is normally compressed only to values like 72.4°, whereas the Cu-I-Cu angle is compressed to values like 61.75°. This can be related to the smaller van der Waals radius in Br. This may also help explain the increased irregularity of the cubane structure as the halide changes from bromide to iodide.

The Cu-Cu distances (2.871Å - 3.667Å) in these complexes are large enough to suggest that there is no significant direct metal-metal interaction.

It was generally perceived that working with large ligands (triphenylphosphine) and large halides (iodide) would favor formation of smaller motifs (such as step or rhombs structures). This work confirms the conclusion reached by Barron et. al^{22} that this is not the case. $Cu_4I_4(P(triphenyl))_4$ was isolated with sterically crowded motif. It seems solvent plays a significant role here that can not be ignored. This complex was synthesized and reported by Durand¹¹, and was identified a second time in this study.

The *Ab Initio* calculations for $Cu_4I_4(P(m-tolyl)_3)_4$ show that the HOMO orbital is dominated by p orbitals on the iodide whereas the LUMO level has major contribution from p and s orbitals on copper. LUMO level also has appreciable contribution from the p and s orbitals on phosphorus. *Ab initio* results for $Cu_4I_4(P(diphenylmethyl))_4$ and $Cu_4I_4(P(phenyldimethyl))_4$ are similar to the above case except that the phosphorus contribution is smaller but also present in the HOMO orbital. As can be seen from Table 3, λ_{max} for Cu₄I₄(P(*m*-tolyl)₃)₄, which exhibits no symmetry element, is 385 nm. However, the wavelength maxima for Cu₄I₄(P(diphenylmethyl))₄ (2-fold axis), Cu₄I₄(P(phenyldimethyl))₄ (2-fold axis) and Cu₄I₄(P(*p*-tolyl)₃)₄¹¹ (3-fold axis) are 570, 592 and 520 nm, respectively. The λ_{max} for these compounds are longer than that observed for the solid state cluster without symmetry elements. The imposition of a symmetry elements (2- or 3-fold axis) results in a shift of emission to lower energy. This correlates with a forbiddance of the transition between normal HOMO and LUMO levels resulting in transition from HOMO to LUMO+n followed by emission to an intermediate LUMO level and radiationless decay to the ground state. *Ab initio* results here were used to identify the major atomic contribution to the molecular orbitals and the characters of the frontier orbitals.

The following points show that there are cases when forbidden transition do take place in reality although classic theory can not explain them.

* For noncenterosymmetric complexes, selection rules do not impose forbiddances in most cases. But this does not mean that all the forbidden transitions are mandated by the selection rules. The presence of 2-fold symmetry axis in the cubes and in monomers (discussed in separate section) should not inhibit transitions between HOMO and LUMO levels but it does so.

* These selection rules were derived based on assuming zero electron-electron repulsions. However, in reality and especially in more complicated molecular systems as in our case, such repulsions do exist. Such repulsions could also change both the HOMO and the LUMO arrangement in unexpected ways.

63

* Sometimes, a forbidden transition may take place with an appreciable intensity since it can borrows intensity from another allowed transition due to vibronic mixing⁷⁵. In some other cases, forbidden transitions occur as a result of the perturbation effects brought about by certain types of ligands¹⁴.

The difference between $Cu_4I_4(P(diphenylmethyl))_4$ ($\lambda_{max=}$ 570 nm), $Cu_4I_4(P(phenyldimethyl))_4$ ($\lambda_{max=}$ 592 nm) can be rationalized on the basis of the latter being more basic than the former. This increased ability for electron donation will let the HOMO-LUMO energy separation smaller in the latter, thus it emits at longer wavelength.

It is interesting to note that λ_{max} for Cu₄I₄(P(*p*-tolyl)₃)₄ and Cu₄Br₄(P(*p*-tolyl)₃)₄¹¹ are 520 nm and 490 nm, respectively. These two compounds crystallize in same space group (*R*-3) and both exhibit 3-fold symmetry axis. They are isostructural. A change of halide from iodide to bromide results in a change of emission from a lower energy to higher energy by about 30 nm. The emission is due to one electron moving from an orbital (HOMO) primarily dominated by the halogen to a new orbital (LUMO) that is dominated by copper. Because the electronegativity of Br is greater than that of I, the HOMO-LUMO separation is bigger in the bromide complex than in the iodide complex. Thus, it is expected that a change from bromide to iodide, results in the shift of the wavelength maxima to higher wavelength.

Rhombs

There are three subgroups of this group. Rhombs with 4 phosphorus ligands, 3 phosphorus ligands and 2 phosphorus ligands. $Cu_2I_2(P(diphenylmethyl))_4$.tetrahydrofuran belongs to the first subgroup. The structure consists of a dinuclear

 $Cu_2I_2(P(diphenylmethyl))_4$ molecule with two bridging iodide ions, and with a solvent molecule (tetrahydrofuran) included in the unit cell.

The following three compounds belongs to the second subgroup (rhombs with 3 ligands): $Cu_2I_2(P(m-tolyl)_3)_3$, $Cu_2I_2(P(p-tolyl)_3)_3$ (Space group PT), $Cu_2I_2(P(p-tolyl)_3)_3$ (Space group $P2_1/a$), $Cu_2I_2(P(triphenyl))_3$ (Space group $P2_1$) and $Cu_2I_2(P(triphenyl))_3$ (Space group $P2_1/c$). In these complexes, two copper atoms are bridged by two iodide ions, and one phosphine ligand is bonded to one Cu atom (roughly trigonal planar) whereas two ligands are bound to the other Cu atom (distorted tetrahedral geometry). It can be seen from Table 8 that these compounds all emit at very similar λ_{max} . Thus, emission may be considered to be arising from the same mechanism within each solid.

 $Cu_2I_2(P(o-tolyl)_3)_2$ and $Cu_2I_2(P(cyclohexyl)_3)_2$ belongs to the third group (rhombs with 2 ligands). The structure is dinuclear with two copper atoms joined by two iodide bridges. Coordination around copper is close to trigonal planar. It can be noted that in the latter case that the tricyclohexylphosphine ligands are orienting themselves in a way as not to interfere with the rhombic motif (Figure 26, 28). Also, it can be observed that tricyclohexylphosphine probably can not form a cubane form with CuI since tricyclohexylphosphine is considered to be among the bulkiest of the phosphine ligands.

An interesting observation has to do with the series, para-, meta- and ortho- tritolylphosphines. Whereas both meta and para ligands, upon reacting with CuI, form complexes of either cubane or rhombic motifs with three ligands, the use of ortho-tolyl ligand only leads to rhombs with two ligands. That can be explained on the basis of steric bulkiness. To quantify this bulkiness, one can use the concept of Tolman's cone angle (θ)⁷⁶. This steric parameter was introduced after it became clear that the ability of phosphorus ligands to compete for coordination positions on a metal could not be explained in terms of electronic character. Rather, correlation existed with the angle at metal of the cone swept out by the van der Waals radii of the groups attached to phosphorus. The theoretical cone angles in the para, meta and ortho complexes are 145°, 165° and 194°, respectively⁷⁶.

The *Ab Initio* calculations for $Cu_2I_2(P(diphenylmethyl))_4$.tetrahydrofuran show that the HOMO orbital is dominated by p orbitals on the halide whereas the LUMO has major contributions from p and s orbitals on copper. Both HOMO and LUMO also have appreciable contribution from the p and s orbitals on phosphorus. Calculations performed for rhombs with 2 phosphorous ligands (with and without symmetry elements) and 3 phosphorous ligands show that the contribution is similar to the case with 4 phosphorous ligands except that the phosphorus contribution is limited to the LUMO level.

The λ_{max} for Cu₂I₂(P(cyclohexyl)₃)₂¹⁰ (non-centrosymmetric motif), which exhibits no symmetry element, is 375 nm. However, the wavelength maxima for Cu₂I₂(P(*o*tolyl)₃)₂ (centrosymmetric motif) and Cu₂I₂(P(cyclohexyl)₃)₂ (centrosymmetric motif) are 426 and 450 nm, respectively (Table 3). The λ_{max} for these compounds are longer than the case without symmetry elements. Again, the imposition of a symmetry elements results in a shift of emission to lower energy. This correlates with a forbidden character of the transition between normal HOMO and LUMO levels resulting in transition from HOMO to LUMO+n followed by emission to an intermediate level and radiationless decay to the ground state. The *Ab initio* results support this observation. For the first case (no symmetry), the transition HOMO (26) \rightarrow LUMO (27) and to higher MO's (28, 29), is allowed, however, the transition HOMO (26) $A_n \rightarrow$ LUMO (27) A_n is not allowed when a center of symmetry is present in the cluster. From the selection rules, only gerade (g) to ungerade (u), or the reverse, transitions are allowed. So, in this case, only the transition HOMO (26) $A_u \rightarrow LUMO$ (28, 30) A_g is allowed.

The difference between $Cu_2I_2(P(o-tolyl)_3)_2 (\lambda_{max=} 426 \text{ nm})$, $Cu_2I_2(P(cyclohexyl)_3)_2 (\lambda_{max=} 450 \text{ nm})$ can be rationalized on the basis of the latter being more basic than the former. This increased ability for electron donation will let the HOMO-LUMO energy separation smaller in the latter, thus it emits at longer wavelength.

There is another interesting correlation that can be observed for the rhombs in general. From Table 3, it can be seen that there is a progressive increase in the wavelength maxima as one goes from motifs with 2 ligands ($\lambda_{max} = 426$ nm) to motifs with 3 ligands (473 nm) to motifs with 4 ligands (547 nm). So, as more phosphorus atoms are attached to the rhomb, the more there is a shift of emission to lower energy. If one resorts to results of *ab initio* calculations for these complexes (Table 4), one may relate this behavior to the following difference in contributing atomic orbitals to HOMO and LUMO levels of these complexes. The HOMO orbitals for all 3 rhombs have p orbitals on bridging iodides pointing at each other across the rhombs. The difference in the frontier orbitals is more pronounced in the LUMO level. For Cu₂L₂L₂, a copper encompassing orbital is major with involvement of the adjacent phosphorus and the two bridging iodides.

For $Cu_2I_2L_3$, the trigonal planer copper shows major involvement along with its attached phosphorus atoms and one bridging iodide. For $Cu_2I_2L_4$, LUMO involves only one tetrahedral copper atom and the attached phosphorus atom. The halides are not

involved. Apparently, Cu-P overlap is of lower energy than Cu-I overlap and the $Cu_2I_2L_4$ LUMO is of lower energy.

Monomers

There are two groups of monocopper complexes, monomers with 3 phosphorous ligands and monomers with 2 phosphorous ligands. CuI(P(diphenylmethyl)), belongs to the former. The angles at the copper are nearly tetrahedral. This complex was the single example of this type prepared and was not further studied. The following complexes belong to the latter group: CuI(P(cyclohexyl)₃)₂.benzene, CuI(P(cyclohexyl)₃)₂.toluene, $CuI(P(cyclohexyl)_3)_2$ (from hexane), $CuI(P(cyclohexyl)_3)_2$ (from a mixture of tetrahydrofuran and *n*-pentane), $CuBr(P(cyclohexyl)_3)_2$ (from hexane) and $CuBr(P(cyclohexyl)_{3})_{2}$ (from benzene)¹¹. Coordination around the copper atom is nearly trigonal planar. In the first two cases, a benzene and toluene molecules, respectively, were co-crystallized within the unit cell. These structures may have 2-fold symmetry axis For the first case, the Cu-X bond lies on a or no symmetry element at all. crystallographic 2-fold symmetry axis and one half of the molecule compromises the asymmetric unit.

 $CuX(P(cyclohexyl)_3)_2$ complexes have interesting structural and catalytic properties.⁷⁷⁻⁷⁸ The complex $CuBr(P(cyclohexyl)_3)_2$ was synthesized from both hexane and benzene. The bromide form crystallized from benzene lacks an internal crystallographic symmetry element within the cluster and emits at 400 nm. The bromide form crystallized from hexane crystallizes with a two fold axis passing through the copper and bromine atoms and relating the two tricyclohexylphosphine groups. This

solid state form emits at 460 nm.

The iodide form crystallized from hexane similarly has a two fold axis passing through the copper and iodide atoms. It emits at 364 nm. The iodide form crystallized from a mixture of tetrahydrofuran and *n*-pentane (like the bromide) has no crystallographic symmetry element within the CuI(P(cyclohexyl)₃)₂ cluster. We recorded the emission spectrum for this solid ($\lambda_{max} = 350$ nm), but were unable to complete X-ray data collection due to decomposition of the crystal. However, the unit cell parameters correspond exactly to those published in a paper by Soloveichik et. al⁷⁹. To facilitate the comparison between the tricyclohexylphosphine allotropes, their crystal data is given in Table 5. Comparison of the structural details of the four structures shows that they display very similar bond lengths and angles (Table 6). Thus, the emission may be considered to be arising from the same species (CuX(P(cyclohexyl)₃)₂) within each solid.

The *Ab Initio* calculations for the different monomers show that the HOMO orbital is dominated by p orbitals on the halide whereas the LUMO has major contribution from p and s orbitals on copper. The LUMO level also has appreciable contribution from the p and s orbitals on phosphorus. But in general there is no huge difference in the *ab initio* calculated contribution between the iodide (with and without symmetry) and bromide cases (with and without symmetry).

Within the bromide and the iodide series, the imposition of a symmetry element results in a shift of emission to lower energy. This correlates with a forbidden character of the transition between normal HOMO and LUMO levels resulting in transition from HOMO to LUMO+n followed by emission to an intermediate level and radiationless

	Ζ		œ			4						8						2	-				
	Unit Cell	Dimensions	a = 18.084(2) Å b = 9.1150(10) Å	c = 22.327(2) Å $\alpha = 90.0$ deg.	$\beta = 96.710(10) \text{ deg.}$ $\gamma = 90.0 \text{ deg.}$	a = 9.982(2) Å	b = 15.571(3) Å	c = 24.074(3) Å	$\alpha = 90.0$ deg.	$\beta = 97.830(0) \text{ deg.}$	$\gamma = 90.0$ deg.	a = 18.441(9) Å	b = 9.276 (6) Å	c = 22.51(2) Å	$\alpha = 90.0$ deg.	$\beta = 97.03(5) \text{ deg.}$	$\gamma = 90.0$ deg.	a = 9.534(2) Å	b = 22.975(5) Å	c = 9.058(2) Å	$\alpha = 97.38(1)$ deg.	$\beta = 114.49(1)$ deg.	$\gamma = 93.40(1)$ deg.
ropes	Symmetry		2			1						2						1					
the [CuXL ₂] Allot	Crystal system/	space group	monoclinic, C2/c			monoclinic,	$P2_1/c$					monoclinic,	C2/c					triclinic, PT					
ystal Data of	Formula	Weight (g/mol)	263.4			704.3						375.6						751.32					
Table 5 Cr	Empirical	formula	C ₁₈ H ₃₀ CuBrP ₂			C ₃₆ H ₆₆ CuBrP ₂						C ₁₈ H ₃₃ Cu _{0.5} I _{0.5} P						C ₃₆ H ₆₆ CuIP ₂					
	Compound		CuBr(P(C ₆ H ₁₁) ₃) ₂ (Crystallized from	hexane)		CuBr(P(C ₆ H ₁₁) ₃) ₂	(Crystallized from	benzene)				CuI(P(C ₆ H ₁₁) ₃) ₂	(Crystallized from	hexane)				CuI(P(C ₆ H ₁₁) ₃) ₂	(Crystallized from	mixture) ⁷⁹			

decay to the ground state. As stated in the cubane motif discussion, the cause behind forbiddance was not identified. However, the possible reasons for this were discussed.

	Briderara				
Compound	Cu-X	Cu-P	P-C	P-Cu-X	P-Cu-P
	(Å)	(Å)	(Å)	angle	angle (°)
				Ő	
$CuBr(P(C_6H_{11})_3)_2$	2.390(4)	2.263(3)	1.843(14)-	112.4(1)	135.1(2)
(Crystallized from			1.853(14)		
hexane)					
$CuBr(P(C_{6}H_{11})_{3})_{2}$	2.384(6)	2.276(8)-	1.821(30)-	107.3(3)-	136.5(4)
(Crystallized from		2.287(8)	1.935(32)	115.7(3)	
benzene)					
$CuI(P(C_6H_{11})_3)_2$	2.587(3)	2.285(3)	1.864(9)-	112.2(1)	135.5(1)
(Crystallized from			1.871(9)		
hexane)					
$CuI(P(C_{6}H_{11})_{3})_{2}$	2.5913(7)	2.2753(12)-	1.855(4)-	110.99(3)-	134.06(4)
(Crystallized from		2.2846(12)	1.865(4)	114.79(3)	
mixture) ⁷⁹					

Table 6 Structural Data in the [CuXL₂] Allotropes

A change of halide from bromide to iodide results in a change of emission from a lower energy to higher energy. This is not consistent with what was seen for the cubanes. The bromo and iodo monomers have LUMO levels which are very similar in orbital population. Both show a major contribution from copper P_z orbitals but with involvement also of the $4P_z$ orbitals of the halide which are pointing in the direction of copper. In the case of Br, there is also contribution from P_z orbitals on both P atoms.

For these monomers, the change of halide is apparent more specifically in the orbital population at the HOMO level. For the iodide, d orbitals on copper are slightly populated and the 3 and $4P_y$ orbitals on iodide make the major contribution. For bromide, there is a further contribution from the s orbitals on phosphorous. One can postulate that

the energy transition from HOMO to LUMO for the iodide is a more difficult transition (and thus of higher energy) on the basis of greater differences of copper and iodide orbital size making electron excitation more difficult. The overlap efficiency for a bromide to copper excitation will be greater and thus the transition is of lower energy.

Cu₄I₆-nitrogen based ligand

 $Cu_4I_6[di-1,10-phenanthrolino copper(II) iodide]_2$ belongs to this group. It is the only ionic complex that was prepared in this study. Also, it is the only complex with nitrogen based ligand. The copper atoms form a tetrahedron with six edges, each bridged by an iodide atom. Copper is three coordinate with Cu-I distances (2.525-2.684Å). The Cu-Cu distances are nonbonding (2.914Å).

CONCLUSIONS

The main objective of this work was to understand the relationship between solid state emission characteristics and the structural symmetry of crystalline complexes of copper(I), iodine and Lewis base ligands with phosphorus donor atoms. Nineteen copper(I) halide phosphine complexes have been synthesized, crystallized and characterized by single crystal X-ray diffraction. These complexes can be grouped into four classes: i) hexaiodohexacopper, $Cu_6I_6L_4L'_2$ (L= trisubstituted phosphine and L'= acetonitrile) ii) cubanes $Cu_4I_4L_4$, iii) rhombs, $Cu_2I_2L_4$, $Cu_2I_2L_3$ and $Cu_2I_2L_2$ plus iv) monomers, $CuIL_3$ and $CuXL_2$. The solid forms crystallize with a variety of internal symmetry elements including centers of symmetry and 2- or 3-fold rotation axes. The emission spectra of these solid complexes show that groups of complexes, identical in

structural motif, but differing in internal crystallographic symmetry element display emission at wavelengths of different λ_{max} .

Ab initio calculations allowed the identification of major atomic contributions to HOMO, LUMO and LUMO+n orbitals and also the identification of allowed and forbidden transitions. Complexes of all motifs show the HOMO orbitals to be dominated by contribution from halide p orbitals and LUMO levels to be dominated by copper based orbitals. Thus the excitation mechanism involves excitation of halide based electron density into copper orbitals. Differences in emission maxima for identical clusters which differ in solid state symmetry may be understood in terms of the influence of the symmetry element present on the choice of frontier orbitals involved in the radiative process.

Examination of three families of copper(I) halide complexes has allowed a correlation of structural and emission characteristics. For the cubanes, the effects of 2and 3-fold axes have been observed to lead to a shift in the wavelength maxima to lower energy compared with the wavelength maximum observed for a complex with no internal symmetry. For instance, λ_{max} for Cu₄I₄(P(*m*-tolyl)₃)₄, which exhibits no symmetry element, is 385 wavelength maximum emission for nm. However, the of $Cu_{A}I_{A}(P(diphenylmethyl))_{A}$ (2-fold axis), $Cu_{A}I_{A}(P(phenyldimethyl))_{A}$ (2-fold axis) and $Cu_4I_4(P(p-tolyl)_3)_4$ (3-fold axis) are 570, 592 and 520 nm, respectively. The λ_{max} for these compounds are thus of lower energy than those observed for a similar solid state cluster without symmetry elements. The imposition of a symmetry element (2- or 3-fold axis) results in a shift of emission to lower energy, which correlates with a forbiddance of the transition between normal HOMO and LUMO levels representing a transition from

HOMO to LUMO+n followed by emission to an intermediate LUMO level and radiationless decay to the ground state.

In the rhombs, the presence of center of symmetry affects the position of the For example, The λ_{max} for $Cu_2I_2(P(cyclohexyl)_3)_2$ (nonwavelength maxima. centrosymmetric motif), which exhibits no symmetry element, is 375 nm. However, the $Cu_2I_2(P(o-tolyl)_3)_2$ (centrosymmetric wavelength maxima motif) and for Cu₂I₂(P(cyclohexyl)₃)₂ (centrosymmetric motif) are 426 and 450 nm, respectively. The $\lambda_{\mbox{\tiny max}}$ for these compounds are longer than for the case without symmetry elements. Again, the imposition of a symmetry elements results in a shift of emission to lower energy. This correlates with a forbidden character of the transition between normal HOMO and LUMO levels resulting in excitation from HOMO to LUMO+n followed by emission to an intermediate LUMO level and radiationless decay to the ground state. The Ab initio results support this observation. For the first case (no symmetry), the transition HOMO (26) \rightarrow LUMO (27) and to higher MO's (28, 29), is allowed, however, the transition HOMO (26) $A_{u} \rightarrow LUMO$ (27) A_{u} is not allowed when a center of symmetry is present in the cluster. From the selection rules, only gerade (g) to ungerade (u), or the reverse, transitions are allowed. So, in this case, only the transition HOMO (26) $A_{\mu} \rightarrow LUMO$ (28, 30) A_g is allowed and emission occurs from LUMO (28) to MO (27) followed by radiationless transition to HOMO (26).

Comparison of emission maxima for the series of increasing phosphine content: $Cu_2I_2L_2$, $Cu_2I_2L_3$ and $Cu_2I_2L_4$ showed that increased phosphine ligation resulted in a progressive increase in the wavelength maxima. *Ab initio* calculations for these complexes, one may relate this behavior to the following difference in contributing atomic orbitals to HOMO and LUMO levels of these complexes. The HOMO orbitals for all 3 rhombs have p orbitals on bridging iodides pointing at each other across the rhombs. The difference in the frontier orbitals is more pronounced in the LUMO level.

For $Cu_2I_2L_2$, a copper encompassing orbital is major with involvement of the adjacent phosphorus and the two bridging iodides. For $Cu_2I_2L_3$, the trigonal planer copper shows major involvement along with its attached phosphorus atoms and one bridging iodide. For $Cu_2I_2L_4$, LUMO involves only one tetrahedral copper atom and the attached phosphorus atom. The halides are not involved. Apparently, Cu-P overlap is of lower energy than Cu-I overlap and the $Cu_2I_2L_4$ LUMO is of lower energy.

The effect of 2-fold axis was observed again in the monomer family. With both the analogues bromide and the iodide complexes, the imposition of the 2-fold rotational axis results in a shift of emission to lower energy. The change from iodide to bromide resulted in a shift of observed emission to lower energy.

Thus, this work has shown that alkyl and aryl phosphine substituted complexes of copper iodide adopt a variety of forms and stoichiometries yet all emit in the visible when excited in the ultraviolet. Comparison of the emission characteristics of formulas of isostructural complexes which differ only in intra cluster symmetry element has confirmed that center of symmetry, 3-fold symmetry axis perturbs the wavelength of maximum emission. This work has shown for the first time that 2-fold axes are capable of similar influence.

Figure 6 Projection View of Cu₆I₆(P(*m*-C₇H₇)₃)₄(CH₃CN)₂

Empirical formula	$C_{88}H_{90}Cu_6I_6N_2P_4$
Formula weight	2442.14
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	Cubic, Fd-3
Unit cell dimensions	$a = 26.874(4) \text{ Å} \alpha = 90.0 \text{ deg.}$
	$b = 26.874(4) \text{ Å} \beta = 90.0 \text{ deg.}$
	$c = 26.874(4) \text{ Å}$ $\gamma = 90.0 \text{ deg.}$
Volume	19409(5) Å ³
Z, Calculated density	8, 1.672 Mg/m ³
Absorption coefficient	3.306 mm^{-1}
F(000)	9472
Crystal size	0.1 x 0.1 x 0.1 mm
Theta range for data collection	2.14 to 29.98 deg.
Index ranges	$-1 \le h \le 37, -37 \le k \le 1, -1 \le l \le 37$
Reflections collected / unique	8008 / 2385 [R(int) = 0.0849]
Goodness-of-fit	1.003
Final R indices [I>2sigma(I)]	R1 = 0.0584, wR2 = 0.1322
R indices (all data)	R1 = 0.1558, $wR2 = 0.1778$
Extinction coefficient	0.000022(11)
Largest diff. peak and hole	1.003 and -0.601e. $Å^{-3}$

Table 7. Crystal Data and Structure Refinement for $Cu_6I_6(P(m-C_7H_7)_3)_4(CH_3CN)_2$

	X	у	Z	U(eq)	
I(1)	5085(1)	6250	1250	64(1)	i -
Cu(2)	5657(1)	6843(1)	657(1)	67(1)	
P(1)	5168(1)	7332(1)	168(1)	58(1)	
Cu(3)	5739(1)	5739(1)	739(1)	102(1)	
C(1)	5511(3)	7837(3)	-150(3)	65(2)	
C(2)	5329(4)	8314(3)	-237(3)	87(3)	
C(3)	5605(4)	8687(3)	-475(3)	90(3)	
C(4)	6076(4)	8575(4)	-628(4)	101(3)	
C(5)	6276(4)	8114(5)	-542(4)	134(5)	
C(6)	5983(3)	7744(4)	-307(4)	107(4)	
C(7)	5406(5)	9193(4)	-579(5)	175(7)	
C(99)	5000	5000	0	83(6)	
N(98)	5288(4)	5288(4)	288(4)	126(6)	
C(98)	5288(4)	5288(4)	288(4)	126(6)	
H(2A)	4992	8390	-146	80	
H(4A)	6279	8830	-773	80	
H(5A)	6605	8034	-654	80	
H(6A)	6108	7412	-268	80	
H(7A)	5651	9400	-737	80	
H(7B)	5121	9161	-792	80	
H(7C)	5307	41	-269	80	

Table 8. Atomic Coordinates ($x10^4$) and Equivalent Isotropic Displacement Parameters (Å²x 10³) for Cu₆I₆(P(*m*-C₇H₇)₃)₄(CH₃CN)₂

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

I(1)-Cu(3)#1	2.6188(12)
I(1)-Çu(3)	2.6188(12)
I(1)-Cu(2)	2.7278(8)
I(1)-Cu(2)#1	2.7278(8)
Cu(2)-P(1)	2.274(3)
Cu(2)-I(1)#2	2.7278(8)
Cu(2)-I(1)#3	2.7278(8)
Cu(2)-Cu(3)	2.985(2)
Cu(2)-Cu(3)#1	2.985(2)
Cu(2)-Cu(3)#4	2.985(2)
P(1)-C(1)#3	1.851(7)
P(1)-C(1)#5	1.851(7)
P(1)-C(1)	1.851(7)
Cu(3)-N(98)	2.097(18)
Cu(3)-I(1)#2	2.6188(12)
Cu(3)-I(1)#6	2.6188(12)
Cu(3)-Cu(2)#4	2.985(2)
Cu(3)-Cu(2)#1	2.985(2)
C(1)-C(6)	1.360(11)
C(1)-C(2)	1.390(10)
C(2)-C(3)	1.402(11)
C(3)-C(4)	1.363(13)
C(3)-C(7)	1.488(11)
C(4)-C(5)	1.370(13)
C(5)-C(6)	1.417(13)
C(99)-N(98)	1.341(18)
C(99)-C(98)#7	1.341(18)
C(99)-N(98)#7	1.341(18)
Cu(3)#1-I(1)-Cu(3)	95.8(2)
Cu(3)#1-1(1)-Cu(2)	67.83(5) (7.83(5)
Cu(3)-I(1)-Cu(2)	07.83(D)
Cu(3)#1-I(1)-Cu(2)#1	07.83(5)
Cu(3)-I(1)-Cu(2)#1	07.03(3)
Cu(2)-I(1)-Cu(2)#1	111.30(0)
P(1)-Cu(2)-I(1)#2 P(1)-Cu(2)-I(1)	110.48(3)
P(1)-Cu(2)-I(1)	110.48(3)
I(1)#2-Cu(2)-I(1)	108.44(3)
r(1)-U(2)-1(1)=0	110.46(<i>3)</i> 108.44(2)
I(1)=2-U(2)-I(1)=2 $I(1)=C_{2}(2)=I(1)=2$	100.44(<i>3)</i> 109.44(<i>3</i>)
I(1) - U(2) - I(1) = 0 $P(1) - C_{1}(2) - C_{2}(2)$	100.44(<i>3)</i> 121.25/9)
r(1)-U(2)-U(3)	131.43(ð) 54.246(19)
1(1 <i>)</i> #2-UU(2 <i>)</i> -UU(3 <i>)</i>	34.340(18)

Table 9. Bond Lengths [Å] and Angles [deg] for $Cu_6I_6(P(m-C_7H_7)_3)_4(CH_3CN)_2$

Table 9. (Continued)

C(1)#3-P(1)-C(1)#5	104.8(3)	
C(1)#3-P(1)-C(1)	104.8(3)	
C(1)#5-P(1)-C(1)	104.8(3)	
C(1)#3-P(1)-Cu(2)	113.8(2)	
C(1)#5-P(1)-Cu(2)	113.8(2)	
C(1)-P(1)-Cu(2)	113.8(2)	
N(98)-Cu(3)-I(1)#2	102.65(10)	
N(98)-Cu(3)-I(1)	102.64(10)	
I(1)#2-Cu(3)-I(1)	115.35(7)	
C(6)-C(1)-C(2)	116.5(8)	
C(6)-C(1)-P(1)	118.2(6)	
C(2)-C(1)-P(1)	125.3(6)	
C(1)-C(2)-C(3)	123.3(9)	
C(4)-C(3)-C(2)	118.1(8)	
C(4)-C(3)-C(7)	118.5(9)	
C(2)-C(3)-C(7)	123.3(10)	
C(3)-C(4)-C(5)	120.8(9)	
C(4)-C(5)-C(6)	119.5(10)	
C(1)#3-P(1)-C(1)#5	104.8(3)	
C(1)#3-P(1)-C(1)	104.8(3)	
C(1)#5-P(1)-C(1)	104.8(3)	
C(1)#3-P(1)-Cu(2)	113.8(2)	
C(1)#5-P(1)-Cu(2)	113.8(2)	
C(1)-P(1)-Cu(2)	113.8(2)	
N(98)-Cu(3)-I(1)#2	102.65(10)	
N(98)-Cu(3)-I(1)	102.64(10)	
I(1)#2-Cu(3)-I(1)	115.35(7)	
N(98)-Cu(3)-I(1)#6	102.65(10)	
C(6)-C(1)-C(2)	116.5(8)	
C(6)-C(1)-P(1)	118.2(6)	
C(2)-C(1)-P(1)	125.3(6)	
C(1)-C(6)-C(5)	121.7(9)	
N(98)-C(99)-C(98)#7	180.000(6)	
N(98)-C(99)-N(98)#7	180.000(6)	
C(99)-N(98)-Cu(3)	180.0(17)	

Symmetry transformations used to generate equivalent atoms: #1 x,-y+5/4,-z+1/4 #2 y,z+1/2,x-1/2 #3 z+1/2,-x+5/4,-y+3/4 #4 -x+5/4,-y+5/4,z #5 -y+5/4,-z+3/4,x-1/2 #6 z+1/2,x,y-1/2 #7 -x+1,-y+1,-z

	U11	U22	U33	U23	U13	U12
 I(1)	58(1)	68(1)	65(1)	10(1)	0	0
Cu(2)	67(1)	67(1)	67(1)	8(1)	-8(1)	8(1)
P(1)	58(1)	58(1)	58(1)	3(1)	-3(1)	3(1)
Cu(3)	102(1)	102(1)	102(1)	0(2)	0(2)	0(2)
C(1)	68(5)	64(5)	63(4)	8(4)	-9(4)	0(4)
C(2)	104(7)	69(5)	89(6)	8(5)	18(5)	5(5)
C(3)	144(9)	63(5)	65(5)	13(4)	11(5)	3(6)
C(4)	100(7)	101(7)	101(7)	31(6)	6(6)	-15(6)
C(5)	79(7)	159(11)	165(11)	76(10)	24(7)	8(7)
C(6)	79(6)	99(7)	143(9)	56(7)	21(6)	12(6)
C(7)	260(18)	91(8)	173(13)	41(9)	95(13)	31(10)
C(99)	83(6)	83(6)	83(6)	27(9)	27(9)	27(9)
N(98)	126(6)	126(6)	126(6)	-11(7)	-11(7)	-11(7)
C(98)	126(6)	126(6)	126(6)	-11(7)	-11(7)	-11(7)

Table 10. Anisotropic Displacement Parameters ($A^2 \times 10^3$) for $Cu_6I_6(P(m-C_7H_7)_3)_4(CH_3CN)_2$

The anisotropic displacement factor exponent takes the form: -2 pi² [$h^2a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

Figure 8 Projection View of Cu4I4(P(C₆H₅)₂CH₃)₄

Empirical formula	$C_{26}H_{26}Cu_2I_2P_2$
Formula weight	781.3
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	monoclinic, C2/c
Unit cell dimensions	$a = 25.958(10) \text{ Å} \alpha = 90.0 \text{ deg.}$
	b = 12.130(6) Å β = 110.710 (10) deg.
	$c = 19.822(7) \text{ Å} \gamma = 90.0 \text{ deg.}$
Volume	5842(4) Å ³
Z, Calculated density	8, 1.777 Mg/m ³
Absorption coefficient	3.691 mm ⁻¹
F(000)	3008
Crystal size	0.1 x 0.1 x 0.1 mm
Theta range for data collection	2.14 to 29.98 deg.
Index ranges	$-1 \le h \le 36, -17 \le k \le 1, -27 \le l \le 26$
Reflections collected / unique/	9839 / 8526 [R(int) = 0.0225]/
observed	3668(5.0>σ(F))
Goodness-of-fit	1.25
Final R indices [I>2sigma(I)]	R1 = 0.0483, $wR2 = 0.0581$
R indices (all data)	R1 = 0.1200, $wR2 = 0.0774$
Extinction coefficient	-0.000019(5)
Largest diff. peak and hole	0.81 and $-0.52 \text{ e}\text{\AA}^{-3}$

Table 11. Crystal Data and Structure Refinement for $Cu_4I_4(P(C_6H_5)_2CH_3)_4$

	X	у.	Z	U(eq)
I(1)	-647(1)	1952(1)	1446(1)	57(1)
I(2)	596(1)	4663(1)	1954(1)	65(1)
Cu(1)	447(1)	2434(1)	2189(1)	70(1)
Cu(2)	-465(1)	4154(1)	1808(1)	70(1)
P(1)	908(1)	1606(2)	1545(1)	63(1)
P(2)	-1057(1)	4997(2)	810(1)	59(1)
C(2)	-838(6)	4829(9)	44(6)	98(6)
C(111)	-1138(4)	6515(7)	842(4)	60(4)
C(112)	-689(4)	7150(8)	1218(5)	72(4)
C(113)	-751(5)	8310(9)	1233(6)	83(5)
C(114)	-1235(5)	8825(9)	898(7)	89(6)
C(115)	-1663(5)	8199(10)	516(9)	132(8)
C(116)	-1639(5)	7061(9)	478(8)	114(7)
C(1)	645(6)	2188(10)	626(5)	102(6)
C(212)	2002(5)	986(9)	2224(8)	313(23)
C(213)	2570	1162	2475	360(28)
C(214)	2780	2158	2332	239(18)
C(215)	2423	2977	1937	367(31)
C(216)	1855	2801	1686	356(28)
C(211)	1645	1805	1830	95(6)
C(221)	846(4)	105(8)	1415(4)	57(4)
C(222)	790(5)	-558(9)	1961(5)	74(5)
C(223)	770(5)	-1714(9)	1886(6)	84(5)
C(224)	788(4)	-2199(9)	1295(6)	77(5)
C(225)	829(6)	-1587(9)	748(6)	97(6)
C(226)	863(5)	-432(9)	804(5)	91(6)
C(121)	-1767(4)	4490(7)	512(6)	72(4)
C(122)	-2083(6)	4275(10)	-199(7)	102(6)
C(123)	-2633(7)	3922(12)	-410(9)	115(8)
C(124)	-2849(6)	3835(12)	97(11)	132(8)
C(125)	-2556(6)	3975(16)	798(10)	158(11)
C(126)	-1998(5)	4319(13)	1017(8)	114(7)
H(2A)	-1091	5189	-373	80
H(2B)	-479	5147	161	80
H(2C)	-823	4057	-54	80
H(11A)	-340	6804	1463	80
H(11B)	-434	8747	1489	80
H(11C)	-1273	9608	935	80
H(11D)	-2006	8555	255	80
H(11E)	-1959	6641	207	80
H(1A)	834	1846	343	80

Table 12. Atomic Coordinates ($x10^4$) and Equivalent Isotropic Displacement Parameters (Å²x 10³) for Cu₄L₄(P(C₆H₅)₂CH₃)₄

H(1B)	257	2046	410	80	
H(1C)	708	2969	645	80	
H(21A)	1858	301	2323	80	
H(21B)	2816	598	2747	80	
H(21C)	3171	2279	2505	80	
H(21D)	2568	3662	1839	80	
H(21E)	1609	3364	1415	80	
H(22A)	764	-226	2388	80	
H(22B)	747	-2157	2275	80	
H(22C)	770	-2987	1249	80	
H(22D)	836	-1932	315	80	
H(22E)	899	-13	412	80	
H(12A)	-1925	4381	-565	80	
H(12B)	-2840	3762	-906	80	
H(12C)	-3232	3652	-43	80	
H(12D)	-2719	3833	1155	80	
H(12E)	-1786	4426	1519	80	
· ·					

Table 12. (Continued)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

I(1)-Cu(1)	2.761 (2)
I(1)-Cu(2)	2.763 (2)
I(1)-Cu(1A)	2.635 (2)
I(2)-Cu(1)	2.794 (2)
I(2)-Cu(2)	2.737 (2)
I(2)-Cu(2A)	2.667 (2)
$\hat{Cu}(1)$ - $\hat{Cu}(2)$	3.043 (2)
Cu(1)-P(1)	2.270 (4)
Cu(1)-I(1A)	2.635 (2)
Cu(1)- $Cu(1A)$	2.987 (3)
Cu(1)- $Cu(2A)$	2.871 (2)
Cu(2)-P(2)	2.273 (3)
Cu(2)-I(2A)	2.667 (2)
Cu(2)- $Cu(1A)$	2.871 (2)
Cu(2)- $Cu(2A)$	2.945 (2)
P(1)-C(1)	1.846 (10)
P(1)-C(211)	1.809 (13)
P(1)-C(221)	1.837 (10)
P(2)-C(2)	1.810 (14)
P(2)-C(111)	1.857 (9)
P(2)-C(121)	1.832 (10)
C(111)-C(112)	1.374 (13)
C(111)-C(116)	1.409 (14)
C(112)-C(113)	1.417 (14)
C(113)-C(114)	1.349 (16)
C(114)-C(115)	1.336 (16)
C(115)-C(116)	1.386 (16)
C(221)-C(222)	1.397 (15)
C(221)-C(226)	1.390 (15)
C(222)-C(223)	1.410 (15)
C(223)-C(224)	1.325 (17)
C(224)-C(225)	1.350 (18)
C(225)-C(226)	1.405 (16)
C(121)-C(122)	1.381 (15)
C(121)-C(126)	1.355 (21)
C(122)-C(123)	1.405 (22)
C(123)-C(124)	1.316 (30)
C(124)-C(125)	1.339 (24)
C(125)-C(126)	1.419 (20)
Cu(1)-I(1)-Cu(2)	66.9(1)
Cu(1)-I(1)-Cu(1A)	67.2(1)
Cu(2)-I(1)-Cu(1A)	64.2(1)

Table 13. Bond Lengths [Å] and Angles [deg] for $Cu_4I_4(P(C_6H_5)_2CH_3)_4$

.

Table 13. (Continued)

Cu(1)-I(2)-Cu(2)	66.8(1)
Cu(1)-I(2)-Cu(2A)	63.4(1)
Cu(2)-I(2)-Cu(2A)	66.0(1)
I(1)-Cu(1)-I(2)	107.1(1)
I(1)-Cu(1)-Cu(2)	56.6(1)
I(2)-Cu(1)-Cu(2)	55.7(1)
I(1)-Cu(1)-P(1)	104.7(1)
I(2)-Cu(1)-P(1)	101.7(1)
Cu(2)-Cu(1)-P(1)	133.1(1)
I(1)-Cu(1)-I(1A)	107.1(1)
I(2)-Cu(1)-I(1A)	113.4(1)
Cu(2)-Cu(1)-I(1A)	105.1(1)
P(1)-Cu(1)-I(1A)	121.8(1)
I(1)-Cu(1)-Cu(1A)	54.4(1)
I(2)-Cu(1)-Cu(1A)	104.0(1)
Cu(2)-Cu(1)-Cu(1A)	56.8(1)
P(1)-Cu(1)-Cu(1A)	150.8(1)
I(1A)-Cu(1)-Cu(1A)	58.4(1)
I(1)-Cu(1)-Cu(2A)	106.6(1)
I(2)-Cu(1)-Cu(2A)	56.2(1)
Cu(2)- $Cu(1)$ - $Cu(2A)$	59.6(1)
P(1)-Cu(1)-Cu(2A)	145.9(1)
I(1A)-Cu(1)-Cu(2A)	60.1(1)
Cu(1A)-Cu(1)-Cu(2A)	62.6(1)
I(1)-Cu(2)-I(2)	108.6(1)
I(1)-Cu(2)-Cu(1)	56.5(1)
I(2)-Cu(2)-Cu(1)	57.5(1)
I(1)-Cu(2)-P(2)	102.0(1)
I(2)-Cu(2)-P(2)	109.6(1)
Cu(1)-Cu(2)-P(2)	138.7(1)
I(1)-Cu(2)-I(2A)	113.4(1)
I(2)-Cu(2)-I(2A)	107.6(1)
Cu(1)-Cu(2)-I(2A)	105.8(1)
P(2)-Cu(2)-I(2A)	115.4(1)
I(1)-Cu(2)-Cu(1A)	55.7(1)
I(2)-Cu(2)-Cu(1A)	108.7(1)
Cu(1)-Cu(2)-Cu(1A)	60.6(1)
P(2)-Cu(2)-Cu(1A)	140.4(1)
I(2A)-Cu(2)-Cu(1A)	60.5(1)
I(1)-Cu(2)-Cu(2A)	104.5(1)
I(2)-Cu(2)-Cu(2A)	55.9(1)
Cu(1)-Cu(2)-Cu(2A)	57.3(1)
P(2)-Cu(2)-Cu(2A)	152.8(1)
I(2A)-Cu(2)-Cu(2A)	58.1(1)

Table 13. (Continued)

$\overline{\text{Cu(1A)-Cu(2)-Cu(2A)}}$	63.1(1)
Cu(1)-P(1)-C(1)	107.5(5)
Cu(1)-P(1)-C(211)	118.4(5)
C(1)-P(1)-C(211)	103.8(7)
Cu(1)-P(1)-C(221)	118.7(4)
C(1)-P(1)-C(221)	104.9(5)
C(211)-P(1)-C(221)	101.9(5)
Cu(2)-P(2)-C(2)	111.3(4)
Cu(2)-P(2)-C(111)	117.8(3)
C(2)-P(2)-C(111)	102.3(5)
Cu(2)-P(2)-C(121)	115.0(3)
C(2)-P(2)-C(121)	105.6(6)
C(111)-P(2)-C(121)	103.4(4)
P(2)-C(111)-C(112)	119.3(7)
P(2)-C(111)-C(116)	122.9(7)
C(112)-C(111)-C(116)	117.8(9)
C(111)-C(112)-C(113)	119.1(9)
C(112)-C(113)-C(114)	122.8(10)
C(113)-C(114)-C(115)	117.2(11)
C(114)-C(115)-C(116)	123.6(11)
C(111)-C(116)-C(115)	119.4(10)
P(1)-C(211)-C(212)	120.0(4)
P(1)-C(211)-C(216)	119.9(4)
P(1)-C(221)-C(222)	119.3(7)
P(1)-C(221)-C(226)	124.0(8)
C(222)-C(221)-C(226)	116.7(9)
C(221)-C(222)-C(223)	120.0(10)
C(222)-C(223)-C(224)	121.6(11)
C(223)-C(224)-C(225)	120.2(11)
C(224)-C(225)-C(226)	120.3(12)
C(221)-C(226)-C(225)	121.1(11)
P(2)-C(121)-C(122)	124.1(11)
P(2)-C(121)-C(126)	118.1(8)
C(122)-C(121)-C(126)	117.8(11)
C(121)-C(122)-C(123)	122.4(15)
C(122)-C(123)-C(124)	117.4(14)
C(123)-C(124)-C(125)	122.9(15)
C(124)-C(125)-C(126)	119.9(18)
C(121)-C(126)-C(125)	119.3(13)

	U11	U22	U33	U23	U13	U12
I(1)	61(1)	52(1)	52(1)	-8(1)	10(1)	-6(1)
I(2)	63(1)	56(1)	74(1)	-5(1)	21(1)	12(1)
Cu(1)	77(1)	71(1)	65(1)	6(1)	30(1)	1(1)
Cu(2)	66(1)	64(1)	70(1)	7(1)	12(1)	11(1)
P(1)	73(2)	63(2)	59(1)	-6(1)	32(1)	0(1)
P(2)	62(2)	46(1)	61(1)	6(1)	12(1)	2(1)
C(2)	148(12)	66(7)	84(7)	22(8)	46(8)	13(6)
C(111)	64(6)	53(5)	57(5)	7(5)	13(4)	-2(4)
C(112)	69(7)	60(6)	74(6)	1(5)	9(5)	1(5)
C(113)	102(9)	56(7)	83(7)	-24(6)	23(6)	-14(5)
C(114)	85(8)	53(7)	128(9)	25(6)	35(7)	-5(6)
C(115)	73(8)	56(8)	223(17)	6(7)	-4(10)	9(9)
C(116)	66(7)	47(7)	191(14)	-1(6)	-1(8)	2(8)
C(1)	149(12)	93(9)	74(7)	8(8)	51(8)	13(6)
C(212)	75(13)	432(51)	358(37)	-57(22)	-16(17)	100(38)
C(213)	65(13)	350(46)	580(59)	-29(20)	9(22)	2(43)
C(214)	58(11)	337(37)	332(32)	-76(17)	81(16)	-107(28)
C(215)	90(15)	235(31)	707(72)	-80(19)	57(28)	34(37)
C(216)	85(14)	219(26)	688(65)	-52(16)	42(24)	171(34)
C(211)	77(8)	104(10)	114(9)	-20(8)	47(7)	-27(8)
C(221)	57(5)	63(6)	53(5)	1(5)	21(4)	2(4)
C(222)	92(8)	71(7)	66(6)	-1(6)	36(5)	-2(5)
C(223)	105(9)	67(7)	87(7)	11(7)	43(7)	20(6)
C(224)	85(8)	57(6)	90(7)	-4(6)	32(6)	-6(6)
C(225)	147(12)	68(8)	88(8)	-23(8)	58(8)	-25(6)
C(226)	142(11)	79(8)	62(6)	-27(8)	49(7)	-9(6)
C(121)	59(6)	45(6)	87(7)	11(5)	-5(5)	-6(5)
C(122)	97(9)	87(9)	100(9)	-16(8)	8(7)	-4(7)
C(123)	121(14)	83(10)	112(11)	5(9)	5(10)	-11(9)
C(124)	62(8)	86(10)	184(16)	2(7)	-34(10)	-27(12)
C(125)	88(11)	238(23)	155(15)	-41(13)	52(11)	-12(15)
C(126)	64(7)	162(14)	109(9)	-37(9)	21(7)	-4(9)

Table 14. Anisotropic Displacement Parameters $(A^2 \times 10^3)$ for $Cu_4I_4(P(C_6H_5)_2CH_3)_4$

The anisotropic displacement factor exponent takes the form: -2 pi² [$h^2a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

Figure 10 Projection View of $Cu_4I_4(PC_6H_5(CH_3)_2)_4$

Empirical formula	$C_{16}H_{22}Cu_2I_2P_2$
Formula weight	657.16
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	monoclinic, C2/c
Unit cell dimensions	$a = 26.116(10) \text{ Å} \alpha = 90.0 \text{ deg.}$
	$b = 11.899(4) \text{ Å}$ $\beta = 131.87(2) \text{ deg.}$
	$c = 19.524(9) \text{ Å} \gamma = 90.0 \text{ deg.}$
Volume	4518(3) Å ³
Z, Calculated density	8, 1.932 Mg/m^3
Absorption coefficient	4.752 mm^{-1}
F(000)	2496
Crystal size	0.1 x 0.1 x 0.1 mm
Theta range for data collection	2.01 to 30.01 deg.
Index ranges	$-1 \le h \le 36, -1 \le k \le 16, -27 \le l \le 1$
Reflections collected / unique/	3997 / 3652 [R(int) = 0.0785]
Goodness-of-fit	0.925
Final R indices [I>2sigma(I)]	R1 = 0.0688, w $R2 = 0.1599$
R indices (all data)	R1 = 0.1497, $wR2 = 0.2101$
Extinction coefficient	0.00037(8)
Largest diff. peak and hole	0.973 and $-0.606 \text{ e}\text{\AA}^{-3}$

Table 15. Crystal Data and Structure Refinement for $Cu_4I_4(PC_6H_5(CH_3)_2)_4$

	X	у	Z	U(eq)
I(1)	4458(1)	-513(1)	1050(1)	65(1)
I(2)	4032(1)	2353(1)	2213(1)	69(1)
Cu(1)	4615(2)	1750(2)	1544(2)	75(1)
Cu(2)	4357(2)	71(2)	2321(2)	75(1)
P(1)	4108(3)	2505(3)	151(3)	58(2)
P(2)	3349(3)	-653(3)	1807(4)	63(2)
C(1)	3230(2)	2192(16)	-720(2)	120(16)
C(2)	4430(15)	1941(13)	-347(17)	107(11)
C(3)	3038(13)	-63(14)	2325(18)	95(11)
C(4)	2631(16)	-279(16)	588(15)	99(11)
C(11)	4141(11)	4055(11)	84(12)	52(6)
C(12)	4270(13)	4731(14)	745(14)	75(8)
C(13)	4274(15)	5911(13)	698(17)	86(9)
C(14)	4155(14)	6374(13)	-45(15)	69(8)
C(15)	4059(16)	5726(12)	-714(15)	96(10)
C(16)	4023(14)	4564(13)	-658(14)	78(8)
C(21)	3258(12)	-2161(12)	1837(13)	54(6)
C(22)	3818(13)	-2885(13)	2178(13)	71(8)
C(23)	3755(14)	-4054(14)	2171(15)	81(9)
C(24)	3167(16)	-4541(15)	1881(16)	86(10)
C(25)	2624(16)	-3860(18)	1542(16)	91(10)
C(26)	2659(14)	-2662(13)	1516(17)	77(9)
H(1A)	3038	2527	-1293	80
H(1B)	3168	1392	-791	80
H(1C)	3000	2484	-525	80
H(2A)	4200	2286	-933	80
H(2B)	4915	2085	55	80
H(2C)	4350	1145	-427	80
H(3A)	2613	-423	2064	80
H(3B)	3368	-184	2978	80
H(3C)	2962	729	2201	80
H(4A)	2214	-597	394	80
H(4B)	2584	523	515	80
H(4C)	2720	-582	220	80
H(12A)	4380	4392	1276	80
H(13A)	4303	6372	1127	80
H(14A)	4200	7175	-45	80
H(15A)	3994	6070	-1212	80
H(16A)	3903	4089	-1145	80
H(22A)	4252	-2569	2432	80
H(23A)	4121	-4531	2344	80

Table 16. Atomic Coordinates ($x10^4$) and Equivalent Isotropic Displacement Parameters (Å²x 10³) for Cu₄I₄(PC₆H₅(CH₃)₂)₄
Table 16. (Continued)					
H(24A)	3138	-5336	1933	80	
H(25A)	2197	-4194	1304	80	
H(26A)	2263	-2211	1269	80	

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

I(1)-Cu(2)#1	2.653(4)
I(1)-Cu(2)	2.754(2)
I(1)-Cu(1)	2.796(2)
I(2)-Cu(1)	2.683(2)
I(2)-Cu(1)#1	2.728(4)
I(2)-Cu(2)	2.810(2)
Cu(1)-P(1)	2.270(5)
Cu(1)-I(2)#1	2.728(4)
Cu(1)-Cu(1)#1	2.820(5)
Cu(1)- $Cu(2)$	2.848(3)
Cu(1)-Cu(2)#1	2.857(4)
Cu(2)-P(2)	2.269(6)
Cu(2)-I(1)#1	2.653(4)
Cu(2)-Cu(1)#1	2.857(4)
Cu(2)-Cu(2)#1	2.941(6)
P(1)-C(2)	1.788(15)
P(1)-C(1)	1.76(4)
P(1)-C(11)	1.854(13)
P(2)-C(3)	1.810(14)
P(2)-C(21)	1.816(15)
P(2)-C(4)	1.85(2)
C(11)-C(12)	1.358(19)
C(11)-C(16)	1.403(19)
C(12)-C(13)	1.41(2)
C(13)-C(14)	1.38(2)
C(14)-C(15)	1.39(2)
C(15)-C(16)	1.39(2)
C(21)-C(26)	1.37(3)
C(21)-C(22)	1.42(3)
C(22)-C(23)	1.40(2)
C(23)-C(24)	1.36(3)
C(24)-C(25)	1.36(3)
C(25)-C(26)	1.43(3)
Cu(2)#1-I(1)-Cu(2)	65.88(12)
Cu(2)#1-I(1)-Cu(1)	63.18(8)
Cu(2)-I(1)-Cu(1)	61.75(6)
Cu(1)-I(2)-Cu(1)#1	62.81(9)
Cu(1)-I(2)-Cu(2)	62.41(6)
Cu(1)#1-I(2)-Cu(2)	62.09(9)
P(1)-Cu(1)-I(2)	114.20(16)
P(1)-Cu(1)-I(2)#1	109.59(17)
I(2)-Cu(1)-I(2)#1	108.42(9)

Table 17. Bond Lengths [Å] and Angles [deg] for $Cu_4I_4(PC_6H_5(CH_3)_2)_4$

Table 17. (Continued)

P(1)-Cu(1)-I(1)	97.73(12)
I(2)-Cu(1)-I(1)	115.13(9)
I(2)#1-Cu(1)-I(1)	111.43(10)
P(1)-Cu(1)-Cu(1)#1	156.37(12)
I(2)-Cu(1)-Cu(1)#1	59.37(8)
I(2)#1-Cu(1)-Cu(1)#1	57.82(11)
I(1)-Cu(1)-Cu(1)#1	105.50(5)
P(1)-Cu(1)-Cu(2)	139.4(2)
I(2)-Cu(1)-Cu(2)	60.97(7)
I(2)#1-Cu(1)-Cu(2)	109.74(12)
I(1)-Cu(1)-Cu(2)	58.39(6)
Cu(1)#1-Cu(1)-Cu(2)	60.53(8)
P(1)-Cu(1)-Cu(2)#1	134.51(14)
I(2)-Cu(1)-Cu(2)#1	110.79(8)
I(2)#1-Cu(1)-Cu(2)#1	60.36(9)
I(1)-Cu(1)-Cu(2)#1	55.96(8)
Cu(1)#1-Cu(1)-Cu(2)#1	60.22(9)
Cu(2)-Cu(1)-Cu(2)#1	62.06(12)
P(2)-Cu(2)-I(1)#1	120.81(14)
P(2)-Cu(2)-I(1)	106.58(15)
I(1)#1-Cu(2)-I(1)	106.04(11)
P(2)-Cu(2)-I(2)	97.53(15)
I(1)#1-Cu(2)-I(2)	113.31(10)
I(1)-Cu(2)-I(2)	112.46(8)
P(2)-Cu(2)-Cu(1)	130.37(19)
I(1)#1-Cu(2)-Cu(1)	108.65(13)
I(1)-Cu(2)-Cu(1)	59.85(6)
I(2)-Cu(2)-Cu(1)	56.61(6)
P(2)-Cu(2)-Cu(1)#1	145.17(13)
I(1)#1-Cu(2)-Cu(1)#1	60.86(9)
I(1)-Cu(2)-Cu(1)#1	105.63(9)
I(2)-Cu(2)-Cu(1)#1	57.54(8)
Cu(1)-Cu(2)-Cu(1)#1	59.24(10)
P(2)-Cu(2)-Cu(2)#1	155.35(12)
I(1)#1-Cu(2)-Cu(2)#1	58.71(12)
I(1)-Cu(2)-Cu(2)#1	55.41(7)
I(2)-Cu(2)-Cu(2)#1	104.93(6)
Cu(1)-Cu(2)-Cu(2)#1	59.12(8)
Cu(1)#1-Cu(2)-Cu(2)#1	58.83(10)
C(2)-P(1)-C(1)	100.4(13)
C(2)-P(1)-C(11)	105.9(7)
C(1)-P(1)-C(11)	103.7(9)
C(2)-P(1)-Cu(1)	113.1(9)
C(1)-P(1)-Cu(1)	114.5(7)
C(11)-P(1)-Cu(1)	117.5(5)

Table 17. (Continued)

C(3)-P(2)-C(21)	104.3(7)
C(3)-P(2)-C(4)	100.3(13)
C(21)-P(2)-C(4)	103.7(9)
C(3)-P(2)-Cu(2)	115.2(7)
C(21)-P(2)-Cu(2)	120.0(7)
C(4)-P(2)-Cu(2)	111.0(8)
C(12)-C(11)-C(16)	118.0(14)
C(12)-C(11)-P(1)	121.0(11)
C(16)-C(11)-P(1)	120.9(10)
C(11)-C(12)-C(13)	122.5(15)
C(14)-C(13)-C(12)	117.4(15)
C(13)-C(14)-C(15)	122.7(15)
C(16)-C(15)-C(14)	117.2(14)
C(15)-C(16)-C(11)	121.9(14)
C(26)-C(21)-C(22)	116.9(15)
C(26)-C(21)-P(2)	123.2(16)
C(22)-C(21)-P(2)	119.8(14)
C(23)-C(22)-C(21)	121(2)
C(24)-C(23)-C(22)	121(2)
C(23)-C(24)-C(25)	118.0(17)
C(24)-C(25)-C(26)	123(2)
C(21)-C(26)-C(25)	120(2)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+1/2

.

	U11	U22	U33	U23	U13	U12
<u> </u>	71(2)	50(1)	75(1)	-10(1)	49(1)	-3(1)
I(2)	73(2)	53(1)	90(1)	1(1)	58(1)	9(1)
Cu(1)	86(4)	65(1)	74(2)	8(1)	53(2)	10(1)
Cu(2)	64(4)	65(1)	95(2)	0(1)	53(3)	-3(2)
P(1)	60(6)	52(2)	62(3)	0(2)	40(4)	0(3)
P(2)	58(6)	61(2)	75(3)	5(2)	47(5)	3(3)
C(1)	140(6)	67(11)	120(2)	7(13)	70(4)	6(19)
C(2)	180(4)	69(9)	160(2)	-31(12)	150(3)	-32(15)
C(3)	100(3)	75(10)	170(3)	-23(13)	110(3)	-22(14)
C(4)	100(4)	95(12)	86(17)	28(12)	50(3)	6(17)
C(11)	30(2)	43(6)	64(11)	-12(7)	27(16)	-13(9)
C(12)	80(3)	78(10)	77(13)	-12(10)	59(19)	-13(13)
C(13)	100(3)	54(8)	117(18)	-14(11)	80(3)	-6(14)
C(14)	20(3)	53(8)	84(16)	2(10)	10(2)	-7(12)
C(15)	160(4)	55(8)	104(17)	0(9)	100(2)	-8(13)
C(16)	90(3)	65(8)	76(13)	-2(9)	50(2)	-6(13)
C(21)	20(2)	63(8)	57(12)	12(9)	19(17)	7(10)
C(22)	60(3)	70(9)	81(15)	-17(9)	50(2)	-21(12)
C(23)	90(3)	56(8) ·	110(2)	-1(11)	80(3)	-10(13)
C(24)	90(4)	55(9)	83(16)	16(11)	50(3)	-7(15)
C(25)	60(4)	91(14)	87(18)	11(13)	30(3)	-15(17)
C(26)	60(3)	62(9)	110(2)	-10(11)	50(3)	1(13)

Table 18. Anisotropic Displacement Parameters $(A^2 \times 10^3)$ for $Cu_4I_4(PC_6H_5(CH_3)_2)_4$

The anisotropic displacement factor exponent takes the form: -2 pi^2 [$h^2a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

Figure 12 Projection View of Cu₄I₄(P(m-C₇H₇)₃)₄

Empirical formula	$C_{84.25}H_{84.25}Cu_4I_4P_4$
Formula weight	1982.41
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	Tetragonal, I-42d
Unit cell dimensions	$a = 32.248(16) \text{ Å} \alpha = 90.0 \text{ deg.}$
	$b = 32.248(16) \text{ Å} \beta = 90.0 \text{ deg.}$
	$c = 32.174(14) \text{ Å}$ $\gamma = 90.0 \text{ deg.}$
Volume	33459(28) Å ³
Z, Calculated density	8, 0.787 Mg/m^3
Absorption coefficient	1.298 mm^{-1}
F(000)	7822
Crystal size	0.2 x 0.2 x 0.2 mm
Theta range for data collection	1.79 to 30.07 deg.
Index ranges	$-1 \le h \le 45, -1 \le k \le 45, -45 \le l \le 1$
Reflections collected / unique/	27816 / 13990 [R(int) = 0.5427]
Goodness-of-fit	0.900
Final R indices [I>2sigma(I)]	R1 = 0.1210, $wR2 = 0.1115$
R indices (all data)	R1 = 0.4715, $wR2 = 0.1903$
Extinction coefficient	0.0000014(13)
Largest diff. peak and hole	0.572 and –0.566 eÅ ⁻³

Table 19. Crystal Data and Structure Refinement for $Cu_4I_4(P(m-C_7H_7)_3)_4$

	X	у	Z	U(eq)
I(1)	2664(1)	1179(1)	372(1)	67(1)
I(2)	3378(1)	161(1)	73(1)	68(1)
I(3)	2596(1)	94(1)	1155(1)	69(1)
I(4)	3677(1)	878(1)	1089(1)	68(1)
Cu(1)	2827(2)	917(2)	1162(2)	85(2)
Cu(2)	3417(2)	90(2)	924(1)	83(2)
Cu(3)	2592(2)	333(2)	334(2)	85(2)
Cu(4)	3502(2)	1002(2)	248(2)	73(2)
P(1)	2570(5)	1287(4)	1696(4)	73(4)
P(2)	3794(4)	-445(4)	1186(3)	65(4)
P(3)	2043(4)	63(4)	-39(4)	66(4)
P(4)	3907(4)	1405(4)	-150(3)	58(4)
C(111)	2020(2)	1358(15)	1687(17)	110(2)
C(112)	1783(17)	1462(16)	1335(15)	130(2)
C(113)	1325(17)	1563(16)	1430(3)	220(5)
C(114)	1160(3)	1450(2)	1660(3)	400(10)
C(115)	1300(2)	1328(12)	2025(15)	160(4)
C(116)	1798(11)	1278(18)	2036(19)	110(2)
C(117)	1097(15)	1304(14)	2367(12)	120(2)
C(121)	2703(12)	1844(14)	1755(9)	64(16)
C(122)	3130(2)	1897(10)	1729(11)	150(3)
C(123)	3405(14)	2282(19)	1760(18)	90(2)
C(124)	3140(14)	2560(3)	1836(15)	230(8)
C(125)	2760(2)	2596(12)	1822(13)	140(3)
C(126)	2543(16)	2205(12)	1798(12)	110(2)
C(127)	3892(12)	2303(13)	1786(14)	103(19)
C(131)	2685(11)	1107(17)	2238(13)	70(16)
C(132)	2757(14)	668(18)	2268(12)	94(19)
C(133)	2843(12)	478(17)	2663(14)	100(2)
C(134)	2882(17)	676(15)	3048(18)	120(2)
C(135)	2842(14)	1080(2)	2953(12)	110(2)
C(136)	2721(11)	1312(12)	2585(10)	52(13)
C(137)	2846(10)	-55(12)	2688(12)	95(19)
C(211)	3575(14)	-965(13)	1061(11)	67(16)
C(212)	3846(11)	-1290(13)	1012(8)	44(14)
C(213)	3726(12)	-1670(2)	929(17)	130(3)
C(124)	3330(2)	-1766(16)	884(13)	120(3)
C(215)	2998(14)	-1430(2)	928(13)	90(2)
C(216)	3141(11)	-1012(13)	996(13)	79(18)
C(217)	2503(13)	-1425(12)	881(12)	110(2)
C(221)	4289(15)	-509(13)	998(13)	71(15)

Table 20. Atomic Coordinates (x10⁴) and Equivalent Isotropic Displacement Parameters $(\text{\AA}^2 x \ 10^3)$ for Cu₄I₄(P(*m*-C₇H₇)₃)₄

Table 20. (Continued)

$\begin{array}{llllllllllllllllllllllllllllllllllll$					
$\begin{array}{cccccc} C(223) & 5040(2) & -559(14) & 1090(2) & 120(2) \\ C(224) & 5070(2) & -581(170 & 640(2) & 120(3) \\ C(225) & 4773(19) & -540(2) & 401(17) & 130(3) \\ C(225) & 4393(12) & -465(18) & 550(15) & 120(3) \\ C(227) & 4794(16) & -531(14) & -68(13) & 160(3) \\ C(231) & 3840(3) & -850(5) & 1970(6) & 430(9) \\ C(232) & 3886(17) & -190(3) & 1878(18) & 210(6) \\ C(233) & 4045(19) & -39(14) & 2380(3) & 210(4) \\ C(234) & 3965(18) & -340(2) & 2560(2) & 130(3) \\ C(235) & 3820(14) & -782(14) & 2410(3) & 220(5) \\ C(236) & 3740(3) & -800(3) & 1945(19) & 400(10) \\ C(237) & 3830(2) & -1102(11) & 2652(14) & 270(5) \\ C(311) & 2111(14) & -610(3) & -61(18) & 130(3) \\ C(312) & 1710(3) & -680(2) & -29(16) & 240(6) \\ C(313) & 1771(16) & -1160(5) & -93(19) & 330(9) \\ C(314) & 2130(2) & -1350(2) & -196(18) & 180(4) \\ C(315) & 2360(2) & -1143(16) & -300(12) & 140(3) \\ C(316) & 2440(16) & -679(17) & -190(16) & 101(19) \\ C(317) & 1420(2) & -1433(18) & -34(16) & 170(3) \\ C(322) & 1940(3) & 20(3) & -926(11) & 240(6) \\ C(323) & 1933(17) & 159(19) & -1270(2) & 130(3) \\ C(324) & 1961(14) & 553(19) & -1354(16) & 140(3) \\ C(325) & 1984(13) & -1074(19) & 87(19) \\ C(326) & 2003(13) & 740(2) & -645(15) & 160(3) \\ C(327) & 1987(13) & 1243(18) & -1065(17) & 170(3) \\ C(323) & 172(14) & 232(11) & -87(11) & 54(12) \\ C(333) & 794(13) & 294(12) & 95(13) & 60(14) \\ C(334) & 738(13) & 360(2) & 497(17) & 90(3) \\ C(335) & 1030(2) & 330(2) & 720(3) & 140(3) \\ C(334) & 738(13) & 360(2) & 497(17) & 90(3) \\ C(335) & 1030(2) & 330(2) & 720(3) & 140(3) \\ C(334) & 738(13) & 377(14) & 1236(16) & 120(2) \\ C(411) & 4024(13) & 1186(13) & -682(12) & 59(14) \\ C(412) & 407(15) & 146(6) & -1093(16) & 140(3) \\ C(413) & 4166(15) & 1220(2) & -1415(14) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13$	C(222)	4663(13)	-523(15)	1210(2)	110(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(223)	5040(2)	-559(14)	1090(2)	120(2)
$\begin{array}{cccccc} C(225) & 4773(19) & -540(2) & 401(17) & 130(3) \\ C(226) & 4393(12) & -465(18) & 550(15) & 120(3) \\ C(231) & 3840(3) & -850(5) & 1970(6) & 430(9) \\ C(232) & 3886(17) & -190(3) & 1878(18) & 210(6) \\ C(233) & 4045(19) & -39(14) & 2380(3) & 210(4) \\ C(234) & 3965(18) & -340(2) & 2560(2) & 130(3) \\ C(235) & 3820(14) & -782(14) & 2410(3) & 220(5) \\ C(236) & 3740(3) & -800(3) & 1945(19) & 400(10) \\ C(237) & 3830(2) & -1102(11) & 2652(14) & 270(5) \\ C(311) & 2111(14) & -610(3) & -61(18) & 130(3) \\ C(312) & 1771(16) & -1160(5) & -93(19) & 330(9) \\ C(314) & 2130(2) & -1350(2) & -196(18) & 180(4) \\ C(315) & 2360(2) & -1143(16) & -300(12) & 140(3) \\ C(316) & 2440(16) & -679(17) & -190(16) & 101(19) \\ C(317) & 1420(2) & -1433(18) & -34(16) & 170(3) \\ C(322) & 1940(3) & 20(3) & -926(11) & 240(6) \\ C(323) & 1933(17) & 159(19) & -1270(2) & 130(3) \\ C(324) & 1961(14) & 553(19) & -1354(16) & 140(3) \\ C(325) & 1984(13) & -1074(19) & -1074(19) & 87(19) \\ C(326) & 2003(13) & 740(2) & -645(15) & 160(3) \\ C(333) & 794(13) & 294(12) & 95(13) & 60(14) \\ C(333) & 794(13) & 294(12) & 95(13) & 60(14) \\ C(333) & 794(13) & 294(12) & 95(13) & 60(14) \\ C(333) & 794(13) & 294(12) & 95(13) & 60(14) \\ C(333) & 794(13) & 294(12) & 95(13) & 60(14) \\ C(334) & 738(13) & 360(2) & 497(17) & 90(3) \\ C(335) & 1030(2) & 330(2) & 720(3) & 140(3) \\ C(336) & 1439(18) & 267(14) & 631(15) & 110(2) \\ C(411) & 4024(13) & 1186(13) & -682(12) & 59(14) \\ C(334) & 738(13) & 360(2) & 497(17) & 90(3) \\ C(335) & 1030(2) & 330(2) & 720(3) & 140(3) \\ C(336) & 1439(18) & 267(14) & 631(15) & 110(2) \\ C(411) & 4024(13) & 1186(13) & -682(12) & 59(14) \\ C(334) & 738(13) & 360(2) & 497(17) & 90(3) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(411) & 4261(17) & 154(15) & -1146(12) & 140(3) \\ C(422) & 3936(9) & 2329(14) & 312(12) & 70(16) \\ C(422) & 3936(9) & 2329(14) & 312(12) & 70(16) \\ C(422) & 3936(9) & 2329(14) & 312(12) & 70(16) \\ C(422) & 3936(9) & 2703(11) & 447(12) & -180(4) \\ C(424) & 3390(4) & 26$	C(224)	5070(2)	-581(170	640(2)	120(3)
$\begin{array}{ccccccc} C(226) & 4393(12) & -465(18) & 550(15) & 120(3) \\ C(227) & 4794(16) & -531(14) & -68(13) & 160(3) \\ C(231) & 3840(3) & -850(5) & 1970(6) & 430(9) \\ C(232) & 3886(17) & -190(3) & 1878(18) & 210(6) \\ C(233) & 4045(19) & -39(14) & 2380(3) & 210(4) \\ C(234) & 3965(18) & -340(2) & 2560(2) & 130(3) \\ C(235) & 3820(14) & -782(14) & 2410(3) & 220(5) \\ C(236) & 3740(3) & -800(3) & 1945(19) & 400(10) \\ C(237) & 3830(2) & -1102(11) & 2652(14) & 270(5) \\ C(311) & 2111(14) & -610(3) & -61(18) & 130(3) \\ C(312) & 1710(3) & -680(2) & -29(16) & 240(6) \\ C(313) & 1771(16) & -1160(5) & -93(19) & 330(9) \\ C(314) & 2130(2) & -1350(2) & -196(18) & 180(4) \\ C(315) & 2360(2) & -1143(16) & -300(12) & 140(3) \\ C(316) & 2440(16) & -679(17) & -190(16) & 101(19) \\ C(317) & 1420(2) & -1433(18) & -34(16) & 170(3) \\ C(322) & 1940(3) & 20(3) & -926(11) & 240(6) \\ C(323) & 1933(17) & 159(19) & -1270(2) & 130(3) \\ C(324) & 1961(14) & 553(19) & -1354(16) & 140(3) \\ C(325) & 1984(13) & -1074(19) & -1074(19) & 87(19) \\ C(331) & 1515(9) & 205(9) & 167(14) & 56(15) \\ C(333) & 794(13) & 294(12) & 95(13) & 60(14) \\ C(334) & 738(13) & 360(2) & 497(17) & 90(3) \\ C(335) & 1030(2) & 330(2) & 720(3) & 140(3) \\ C(335) & 1030(2) & 330(2) & 720(3) & 140(3) \\ C(335) & 1030(2) & 330(2) & 720(3) & 140(3) \\ C(335) & 1030(2) & 330(2) & 720(3) & 140(3) \\ C(335) & 1030(2) & 330(2) & 720(3) & 140(3) \\ C(335) & 1030(2) & 330(2) & 720(3) & 140(3) \\ C(335) & 1030(2) & 330(2) & 720(3) & 140(3) \\ C(335) & 1030(2) & 330(2) & 720(3) & 140(3) \\ C(335) & 1030(2) & 330(2) & 720(3) & 140(3) \\ C(411) & 4024(13) & 1186(13) & -682(12) & 59(14) \\ C(411) & 4024(13) & 118(6(10) & -1048(13) & 73(16) \\ C(411) & 4024(13) & 118(6(10) & -1048(13) & 73(16) \\ C(411) & 4024(13) & 118(6(10) & -1048(13) & 73(16) \\ C(411) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(411) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(411) & 4261(17) & 154(15) & -1146(12) & 140(3) \\ C(422) & 3930(4) & 2640(3) & -500(3) & 750(17) \\ \end{array}$	C(225)	4773(19)	-540(2)	401(17)	130(3)
$\begin{array}{ccccccc} C(227) & 4794(16) & -531(14) & -68(13) & 160(3) \\ C(231) & 3840(3) & -850(5) & 1970(6) & 430(9) \\ C(232) & 3886(17) & -190(3) & 1878(18) & 210(6) \\ C(233) & 4045(19) & -39(14) & 2380(3) & 210(4) \\ C(234) & 3965(18) & -340(2) & 2560(2) & 130(3) \\ C(235) & 3820(14) & -782(14) & 2410(3) & 220(5) \\ C(236) & 3740(3) & -800(3) & 1945(19) & 400(10) \\ C(237) & 3830(2) & -1102(11) & 2652(14) & 270(5) \\ C(236) & 3740(3) & -680(2) & -29(16) & 240(6) \\ C(311) & 2111(14) & -610(3) & -61(18) & 130(3) \\ C(312) & 1710(3) & -680(2) & -29(16) & 240(6) \\ C(313) & 1771(16) & -1160(5) & -93(19) & 330(9) \\ C(314) & 2130(2) & -11350(2) & -196(18) & 180(4) \\ C(315) & 2360(2) & -1143(16) & -300(12) & 140(3) \\ C(316) & 2440(16) & -679(17) & -190(16) & 101(19) \\ C(317) & 1420(2) & -1433(18) & -34(16) & 170(3) \\ C(322) & 1940(3) & 20(3) & -926(11) & 240(6) \\ C(323) & 1933(17) & 159(19) & -1270(2) & 130(3) \\ C(324) & 1961(14) & 553(19) & -1354(16) & 140(3) \\ C(325) & 1984(13) & -1074(19) & 1074(19) & 87(19) \\ C(326) & 2003(13) & 740(2) & -645(15) & 160(3) \\ C(327) & 1987(13) & 1243(18) & -1065(17) & 170(3) \\ C(331) & 1515(9) & 205(9) & 167(14) & 56(15) \\ C(332) & 1172(14) & 232(11) & -87(11) & 54(12) \\ C(333) & 794(13) & 294(12) & 95(13) & 60(14) \\ C(334) & 738(13) & 360(2) & 497(17) & 90(3) \\ C(335) & 1030(2) & 330(2) & 720(3) & 140(3) \\ C(336) & 1439(18) & 267(14) & 631(15) & 110(2) \\ C(411) & 4024(13) & 1186(13) & -682(12) & 59(14) \\ C(412) & 4071(15) & 1466(10) & -1048(13) & 73(16) \\ C(411) & 4024(13) & 1186(13) & -682(12) & 59(14) \\ C(411) & 4024(13) & 1186(13) & -682(12) & 59(14) \\ C(411) & 4024(13) & 1186(13) & -682(12) & 59(14) \\ C(412) & 4071(15) & 1466(10) & -1048(13) & 73(16) \\ C(411) & 4261(17) & 154(15) & -1146(12) & 140(3) \\ C(411) & 4261(17) & 154(15) & -1146(12) & 140(3) \\ C(411) & 4261(17) & 154(15) & -1146(12) & 140(3) \\ C(411) & 4261(17) & 154(15) & -1146(12) & 140(3) \\ C(411) & 4261(17) & 154(15) & -1146(12) & 140(3) \\ C(422) & 3930(9) & 229(14) & 312(12) & 70(16) \\ C(422) & 3930(9) & 269(13) & -500(3) & 75$	C(226)	4393(12)	-465(18)	550(15)	120(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(227)	4794(16)	-531(14)	-68(13)	160(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(231)	3840(3)	-850(5)	1970(6)	430(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(232)	3886(17)	-190(3)	1878(18)	210(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(233)	4045(19)	-39(14)	2380(3)	210(4)
$\begin{array}{ccccccc} C(235) & 3820(14) & -782(14) & 2410(3) & 220(5) \\ C(236) & 3740(3) & -800(3) & 1945(19) & 400(10) \\ C(237) & 3830(2) & -1102(11) & 2652(14) & 270(5) \\ C(311) & 2111(14) & -610(3) & -61(18) & 130(3) \\ C(312) & 1710(3) & -680(2) & -29(16) & 240(6) \\ C(313) & 1771(16) & -1160(5) & -93(19) & 330(9) \\ C(314) & 2130(2) & -1350(2) & -196(18) & 180(4) \\ C(315) & 2360(2) & -1143(16) & -300(12) & 140(3) \\ C(316) & 2440(16) & -679(17) & -190(16) & 101(19) \\ C(317) & 1420(2) & -1433(18) & -34(16) & 170(3) \\ C(321) & 2022(11) & 223(16) & -575(14) & 73(17) \\ C(322) & 1940(3) & 20(3) & -926(11) & 240(6) \\ C(323) & 1933(17) & 159(19) & -1270(2) & 130(3) \\ C(324) & 1961(14) & 553(19) & -1354(16) & 140(3) \\ C(325) & 1984(13) & -1074(19) & 87(19) \\ C(326) & 2003(13) & 740(2) & -645(15) & 160(3) \\ C(327) & 1987(13) & 1243(18) & -1065(17) & 170(3) \\ C(331) & 1515(9) & 205(9) & 167(14) & 56(15) \\ C(332) & 1172(14) & 232(11) & -87(11) & 54(12) \\ C(333) & 794(13) & 294(12) & 95(13) & 60(14) \\ C(334) & 738(13) & 360(2) & 497(17) & 90(3) \\ C(335) & 1030(2) & 330(2) & 720(3) & 140(3) \\ C(336) & 1439(18) & 267(14) & 631(15) & 110(2) \\ C(337) & 1088(13) & 377(14) & 1236(16) & 120(2) \\ C(411) & 4024(13) & 1186(13) & -682(12) & 59(14) \\ C(412) & 4071(15) & 1466(10) & -1048(13) & 73(16) \\ C(413) & 4166(15) & 1220(2) & -1415(14) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(415) & 4210(16) & 574(16) & -1093(16) & 140(3) \\ C(422) & 3936(9) & 239(14) & 312(12) & 70(16) \\ C(422) & 3936(9) & 239(14) & 312(12) & 70(16) \\ C(422) & 3390(4) & 2640(3) & -500(3) & 750(17) \\ \end{array}$	C(234)	3965(18)	-340(2)	2560(2)	130(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(235)	3820(14)	-782(14)	2410(3)	220(5)
$\begin{array}{ccccccc} C(237) & 3830(2) & -1102(11) & 2652(14) & 270(5) \\ C(311) & 2111(14) & -610(3) & -61(18) & 130(3) \\ C(312) & 1710(3) & -680(2) & -29(16) & 240(6) \\ C(313) & 1771(16) & -1160(5) & -93(19) & 330(9) \\ C(314) & 2130(2) & -1350(2) & -196(18) & 180(4) \\ C(315) & 2360(2) & -1143(16) & -300(12) & 140(3) \\ C(316) & 2440(16) & -679(17) & -190(16) & 101(19) \\ C(317) & 1420(2) & -1433(18) & -34(16) & 170(3) \\ C(321) & 2022(11) & 223(16) & -575(14) & 73(17) \\ C(322) & 1940(3) & 20(3) & -926(11) & 240(6) \\ C(323) & 1933(17) & 159(19) & -1270(2) & 130(3) \\ C(324) & 1961(14) & 553(19) & -1354(16) & 140(3) \\ C(325) & 1984(13) & -1074(19) & 1074(19) & 87(19) \\ C(326) & 2003(13) & 740(2) & -645(15) & 160(3) \\ C(332) & 1172(14) & 232(11) & -87(11) & 54(12) \\ C(333) & 794(13) & 294(12) & 95(13) & 60(14) \\ C(334) & 738(13) & 360(2) & 497(17) & 90(3) \\ C(335) & 1030(2) & 330(2) & 720(3) & 140(3) \\ C(337) & 1088(13) & 377(14) & 1236(16) & 120(2) \\ C(411) & 4024(13) & 1186(13) & -682(12) & 59(14) \\ C(412) & 4071(15) & 1466(10) & -1048(13) & 73(16) \\ C(413) & 4166(15) & 1220(2) & -1415(14) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 4230(13) & 848(14) & -1406(17) & 120(2) \\ C(414) & 3390(4) & 2640(3) & -500(3) & 750(17) \\ \end{array}$	C(236)	3740(3)	-800(3)	1945(19)	400(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(237)	3830(2)	-1102(11)	2652(14)	270(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(311)	2111(14)	-610(3)	-61(18)	130(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(312)	1710(3)	-680(2)	-29(16)	240(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(313)	1771(16)	-1160(5)	-93(19)	330(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(314)	2130(2)	-1350(2)	-196(18)	180(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(315)	2360(2)	-1143(16)	-300(12)	140(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(316)	2440(16)	-679(17)	-190(16)	101(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(317)	1420(2)	-1433(18)	-34(16)	170(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(321)	2022(11)	223(16)	-575(14)	73(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(322)	1940(3)	20(3)	-926(11)	240(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(323)	1933(17)	159(19)	-1270(2)	130(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(324)	1961(14)	553(19)	-1354(16)	140(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(325)	1984(13)	-1074(19)	-1074(19)	87(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(326)	2003(13)	740(2)	-645(15)	160(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(327)	1987(13)	1243(18)	-1065(17)	170(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(331)	1515(9)	205(9)	167(14)	56(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(332)	1172(14)	232(11)	-87(11)	54(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(333)	794(13)	294(12)	95(13)	60(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(334)	738(13)	360(2)	497(17)	90(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(335)	1030(2)	330(2)	720(3)	140(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(336)	1439(18)	267(14)	631(15)	110(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(337)	1088(13)	377(14)	1236(16)	120(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(411)	4024(13)	1186(13)	-682(12)	59(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(412)	4071(15)	1466(10)	-1048(13)	73(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(413)	4166(15)	1220(2)	-1415(14)	120(2)
$\begin{array}{cccccccc} C(415) & 4210(16) & 574(16) & -1093(16) & 140(3) \\ C(416) & 4119(12) & 789(16) & -730(13) & 120(3) \\ C(417) & 4261(17) & 154(15) & -1146(12) & 140(3) \\ C(421) & 3678(13) & 1953(12) & -264(12) & 77(16) \\ C(422) & 3936(9) & 2329(14) & 312(12) & 70(16) \\ C(423) & 3680(3) & 2703(11) & -447(12) & -180(4) \\ C(424) & 3390(4) & 2640(3) & -500(3) & 750(17) \\ \end{array}$	C(414)	4230(13)	848(14)	-1406(17)	120(2)
$\begin{array}{ccccccc} C(416) & 4119(12) & 789(16) & -730(13) & 120(3) \\ C(417) & 4261(17) & 154(15) & -1146(12) & 140(3) \\ C(421) & 3678(13) & 1953(12) & -264(12) & 77(16) \\ C(422) & 3936(9) & 2329(14) & 312(12) & 70(16) \\ C(423) & 3680(3) & 2703(11) & -447(12) & -180(4) \\ C(424) & 3390(4) & 2640(3) & -500(3) & 750(17) \end{array}$	C(415)	4210(16)	574(16)	-1093(16)	140(3)
$\begin{array}{cccccc} C(417) & 4261(17) & 154(15) & -1146(12) & 140(3) \\ C(421) & 3678(13) & 1953(12) & -264(12) & 77(16) \\ C(422) & 3936(9) & 2329(14) & 312(12) & 70(16) \\ C(423) & 3680(3) & 2703(11) & -447(12) & -180(4) \\ C(424) & 3390(4) & 2640(3) & -500(3) & 750(17) \end{array}$	C(416)	4119(12)	789(16)	-730(13)	120(3)
C(421)3678(13)1953(12)-264(12)77(16)C(422)3936(9)2329(14)312(12)70(16)C(423)3680(3)2703(11)-447(12)-180(4)C(424)3390(4)2640(3)-500(3)750(17)	C(417)	4261(17)	154(15)	-1146(12)	140(3)
C(422)3936(9)2329(14)312(12)70(16)C(423)3680(3)2703(11)-447(12)-180(4)C(424)3390(4)2640(3)-500(3)750(17)	C(421)	3678(13)	1953(12)	-264(12)	77(16)
C(423)3680(3)2703(11)-447(12)-180(4)C(424)3390(4)2640(3)-500(3)750(17)	C(422)	3936(9)	2329(14)	312(12)	70(16)
C(424) 3390(4) 2640(3) -500(3) 750(17)	C(423)	3680(3)	2703(11)	-447(12)	-180(4)
	C(424)	3390(4)	2640(3)	-500(3)	750(17)

Table 20. (Continued)

C(425)	3113(15)	2379(14)	-474(10)	71(17)
C(426)	3262(11)	1947(12)	-361(10)	66(15)
C(427)	2620(14)	2434(16)	-479(14)	170(3)
C(431)	4466(14)	1519(9)	44(12)	75(15)
C(432)	4466(12)	1636(10)	462(13)	60(14)
C(433)	4840(2)	1780(3)	620(2)	110(3)
C(434)	5230(5)	1600(3)	440(3)	570(16)
C(435)	5182(12)	1749(13)	120(3)	250(6)
C(436)	4830(2)	1566(18)	-180(12)	180(4)
C(437)	4918(15)	1828(19)	1104(15)	180(3)
H(11A)	1927	1437	1074	80
H(11B)	1177	1712	1214	80
H(11C)	882	1353	1628	80
H(11D)	1942	1181	2278	80
H(11F)	825	1378	2272	80
H(11G)	1098	1019	2456	80
H(11H)	1174	1479	2595	80
H(12A)	3321	1672	1671	80
H(12C)	3250	2834	1835	80
H(12D)	2583	2835	1830	80
H(12E)	2253	2187	1859	80
H(12F)	4013	2570	1834	80
H(12G)	3978	2115	2001	80
H(12H)	3981	2199	1521	80
H(13A)	2781	487	2032	80
H(13B)	2974	552	3303	80
H(13C)	2875	1264	3187	80
H(13E)	2672	1602	2540	80
H(13F)	2767	-157	2419	80
H(13G)	3130	-128	2742	80
H(13H)	2671	-177	2896	80
H(21A)	4141	-1273	1046	80
H(21B)	3918	-1898	920	80
H(21C)	3235	-2046	857	80
H(21D)	2954	-785	1047	80
H(21F)	2398	-1693	804	80
H(21G)	2427	-1366	1163	80 \
H(21H)	2388	-1218	701	80
H(22A)	4628	-468	1505	80
H(22B)	5266	-615	1277	80
H(22C)	5343	-636	528	80
H(22D)	4274	-433	350	80
H(22F)	5074	-565	-164	80
H(22G)	4627	-758	-167	80
H(22H)	4683	-275	-172	80

H(23A) H(23C) H(23D) -322 H(23B) -1056 H(23G0 -1042H(23H) -1217 H(23I) -1298 H(31A) -544 H(31C) -1640 -232 H(31B) -1299 -334 H(31D) -489 -272 H(31H) -1716 -92 H(31I) -1410 H(31J) -1343 -221 H(32A) -270 -878 H(32B) -18 -1510 H(32C) -1621 H(32D) -421 H(32F) -793 H(32G) -1268 H(32H) -1123 H(33A) -379 H(33B) -104 H(33C) H(33D) H(33G) H(33H) H(33I) H(41A) -1047 H(41B) -1673 H(41C) -1663 H(41D) -630 H(41E) -535 H(41F) -1432 H(41G) -969 H(41H) -1092 H(42A) -287 H(42B) -448 H(42C) -610 H(42D) -375 H(42E) -530 H(42F) -717 H(42G) -241 H(43A) H(43B)

Table 20. (Continued)

H(43C)	5406	1817	-62	80
H(43D)	4821	1521	-474	80
H(43E)	5195	1885	1197	80
H(43F)	4737	2048	1192	80
H(43G)	4825	1571	1222	80

Table 20. (Continued)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

I(1)-Cu(1)	2.729(6)
II-Cu3	2.743(7)
I1-Cu4	2.791(7)
I2-Cu3	2.725(7)
I2-Cu2	2.751(6)
I2-Cu4	2.802(7)
I3-Cu3	2.753(7)
I3-Cu2	2.750(7)
I3-Cu1	2.757(7)
I4-Cu2	2.729(7)
I4-Cu1	2.754(7)
I4-Cu4	2.793(6)
Cu1-P1	2.253(14)
Cu2-P2	2.272(13)
Cu3-P3	2.309(14)
Cu4-P4	2.244(12)
P1-C111	1.79(7)
P1-C121	1.85(4)
P1-C131	1.87(5)
P2-C221	1.72(4)
P2-C211	1.86(4)
P2-C231	2.58(19)
P3-C321	1.80(4)
P3-C331	1.89(4)
P3-C311	2.18(8)
P4-C411	1.89(4)
P4-C431	1.94(4)
P4-C421	1.95(4)
C111C116	1.35(6)
C111-C112	1.40(6)
C112-C113	1.54(7)
C113-C114	1.00(10)
C114-C115	1.30(11)
C115-C117	1.28(4)
C115-C116	1.63(8)
C121-C126	1.28(5)
C121-C122	1.40(7)
C122-C123	1.52(6)
C123-C124	1.26(11)
C123-C127	1.57(5)
C124-C125	1.23(7)
C125-C126	1.44(6)
C131-C136	1.30(4)

Table 21.	Bond Lengths [Å] and Angles [deg] for
	$Cu_4I_4(P(m-C_7H_7)_3)_4$

Table 21. (Continued)

C131-C132	1.44(6)
C132-C133	1.44(5)
C133-C134	1.40(7)
C133-C137	1.72(6)
C134-C135	1.35(6)
C135-C136	1.45(5)
C211-C212	1.37(5)
C211-C216	1.42(5)
C212-C213	1.31(6)
C213-C214	1.31(7)
C214-C215	1.53(6)
C215-C216	1.45(6)
C215-C217	1.60(5)
C221-C222	1.39(6)
C221-C226	1.49(5)
C222-C223	1.29(7)
C223-C224	1.47(7)
C224-C225	1.23(6)
C225-C226	1.34(6)
C225-C227	1.51(6)
C231-C236	0.8(2)
C231-C232	1.29(18)
C231-C235	1.54(19)
C232-C233	1.77(10)
C233-C234	1.16(7)
C234-C235	1.56(10)
C235-C237	1.30(5)
C235-C236	1.51(10)
C311-C316	1.16(6)
C311-C312	1.32(9)
C312-C313	1.57(16)
C313-C314	1.34(12)
C313-C317	1.46(10)
C314-C315	1.08(8)
C315-C316	1.56(6)
C321-C322	1.33(7)
C321-C326	1.68(7)
C322-C323	1.19(8)
C323-C324	1.30(7)
C324-C325	1.27(5)
C325-C327	1.36(6)
C325-C326	1.41(7)
C331-C332	1.38(4)
C331-C336	1.53(5)
C332-C333	1.37(4)

Table 21. (Continued)

C333-C334	1.32(6)
C334-C335	1.18(8)
C335-C336	1.36(7)
C335-C337	1.69(9)
C411-C416	1.32(5)
C411-C412	1.49(5)
C412-C413	1.45(5)
C413-C414	1.23(6)
C414-C415	1.34(6)
C415-C416	1.39(6)
C415-C417	1.38(5)
C421-C426	1.38(5)
C421-C422	1.48(5)
C422-C423	1.52(6)
C423-C424	0.97(16)
C424-C425	1.23(12)
C425-C426	1.52(5)
C425-C427	1.60(5)
C431-C432	1.40(5)
C431-C436	1.40(6)
C432-C433	1.40(7)
C433-C434	1.51(16)
C433-C437	1.57(7)
C434-C435	1.13(12)
C435-C436	1.60(8)
Cu1-I1-Cu3	75.5(2)
Cu1-I1-Cu4	83.24(18)
Cu3-I1-Cu4	82.6(2)
Cu3-I2-Cu2	75.68(19)
Cu3-I2-Cu4	82.73(18)
Cu2-I2-Cu4	82.73(18)
Cu3-I3-Cu2	75.25(18)
Cu3-I3-Cu1	74.85(18)
Cu2-I3-Cu1	75.28(19)
Cu2-I4-Cu1	75.7(2)
Cu2-I4-Cu4	83.30(17)
Cu1-I4-Cu4	82.77(19)
P1-Cu1-I1	118.3(4)
P1-Cu1-I4	117.1(4)
I1-Cu1-I4	97.3(2)
P1-Cu1-I3	114.6(4)
I1-Cu1-I3	103.9(2)
I4-Cu1-I3	103.0(2)
P2-Cu2-I4	118.1(4)

Table 21. (Continued)

P2-Cu2-I2	117.2(4)
I4-Cu2-I2	97.5(2)
P2-Cu2-I3	114.7(4)
I4-Cu2-I3	103.9(2)
I2-Cu2-I3	103.0(2)
P3-Cu3-I2	118.4(4)
P3-Cu3-I1	117.6(4)
I2-Cu3-I1	98.0(2)
P3-Cu3-I3	113.4(4)
I2-Cu3-I3	103.6(2)
I1-Cu3-I3	103.6(2)
P4-Cu4-I1	121.8(4)
P4-Cu4-I4	121.2(4)
I1-Cu4-I4	95.01(19)
P4-Cu4-I2	122.0(4)
I1-Cu4-I2	95.1(2)
I4-Cu4-I2	94.85(18)
C111-P1-C121	96(2)
C111-P1-C131	105(2)
C121-P1-C131	99(2)
C111-P1-Cu1	115(2)
C121-P1-Cu1	120.4(11)
C131-P1-Cu1	118.2(17)
C221-P2-C211	100(2)
C221-P2-Cu2	117.2(16)
C211-P2-Cu2	113.7(17)
C221-P2-C231	106(3)
C211-P2-C231	95(4)
Cu2-P2-C231	122(4)
C321-P3-C331	103.5(19)
C321-P3-C311	105(2)
C331-P3-C311	110.1(16)
C321-P3-Cu3	114.7(15)
C331-P3-Cu3	114.7(13)
C311-P3-Cu3	108.4(16)
C411-P4-C431	100.2(17)
C411-P4-C421	104.3(18)
C431-P4-C421	103.9(15)
C411-P4-Cu4	114.6(15)
C431-P4-Cu4	117.8(13)
C421-P4-Cu4	114.3(14)
C116-C111-C112	116(6)
C116-C111-P1	119(4)
C112-C111-P1	125(5)
C111-C112-C113	115(6)

Table 21. (Continued)

C114-C113-C112	125(8)
C113-C114-C115	128(10)
C117-C115-C114	129(8)
C117-C115-C116	118(7)
C114-C115-C116	112(5)
C111-C116-C115	119(5)
C126-C121-C122	107(4)
C126-C121-P1	143(4)
C122-C121-P1	110(3)
C121-C122-C123	132(5)
C124-C123-C122	102(5)
C124-C123-C127	130(6)
C122-C123-C127	128(5)
C123-C124-C125	138(9)
C124-C125-C126	113(7)
C121-C126-C125	127(5)
C136-C131-C132	115(5)
C136-C131-P1	131(4)
C132-C131-P1	114(3)
C133-C132-C131	121(5)
C134-C133-C132	127(5)
C134-C133-C137	114(3)
C132-C133-C137	118(5)
C135-C134-C133	104(5)
C134-C135-C136	135(5)
C131-C136-C135	118(4)
C212-C211-C216	122(4)
C212-C211-P2	118(3)
C216-C211-P2	120(4)
C213-C212-C211	123(4)
C214-C213-C212	122(5)
C213-C214-C215	120(5)
C216-C215-C214	117(4)
C216-C215-C217	108(5)
C214-C215-C217	135(5)
C211-C216-C215	116(4)
C222-C221-C226	107(4)
C222-C221-P2	129(4)
C226-C221-P2	123(4)
C223-C222-C221	132(7)
C222-C223-C224	112(7)
C225-C224-C223	124(7)
C224-C225-C226	121(6)
C224-C225-C227	126(6)
C226-C225-C227	113(5)

Table 21. (Continued)

C225-C226-C221	122(4)
C236-C231-C232	151(10)
C236-C231-C235	73(10)
C232-C231-C235	130(10)
C236-C231-P2	90(10)
C232-C231-P2	67(10)
C235-C231-P2	163(10)
C231-C232-C233	94(9)
C234-C233-C232	98(6)
C233-C234-C235	133(9)
C237-C235-C234	121(8)
C237-C235-C236	125(8)
C234-C235-C236	113(6)
C237-C235-C231	152(10)
C234-C235-C231	83(6)
C236-C235-C231	30(8)
C231-C236-C235	77(10)
C316-C311-C312	154(8)
C316-C311-P3	107(6)
C312-C311-P3	94(5)
C311-C312-C313	92(5)
C314-C313-C317	115(10)
C314-C313-C312	126(10)
C317C313-C312	119(8)
C315C314-C313	113(10)
C314-C315-C316	128(7)
C311-C316-C315	96(6)
C322-C321-C326	111(5)
C322-C321-P3	133(5)
C326-C321-P3	114(4)
C323-C322-C321	128(9)
C322-C323-C324	124(7)
C325-C324-C323	121(6)
C324-C325-C327	134(7)
C324-C325-C326	125(6)
C327-C325-C326	100(6)
C325-C326-C321	109(5)
C332-C331-C336	116(4)
C332-C331-P3	122(4)
C336-C331-P3	121(3)
C331-C332-C333	118(4)
C334-C333-C332	124(4)
C335-C334-C333	118(0)
C334-C335-C336	131(8)
C334-C335-C337	132(6)

Table 21. (Continued)

C336-C335-C337	96(6)
C335-C336-C331	112(5)
C416-C411-C412	118(4)
C416-C411-P4	121(4)
C412-C411-P4	121(3)
C413-C412-C411	110(3)
C414-C413-C412	123(5)
C413-C414-C415	131(5)
C416-C415-C414	108(5)
C416-C415-C417	129(5)
C414-C415-C417	123(5)
C411-C416-C415	129(5)
C426-C421-C422	122(4)
C426-C421-P4	113(3)
C422-C421-P4	123(3)
C421-C422-C423	112(4)
C424-C423-C422	115(8)
C423-C424-C425	145(10)
C424-C425-C426	115(7)
C424-C425-C427	130(7)
C426-C425-C427	115(4)
C421-C426-C425	110(4)
C432-C431-C436	118(4)
C432-C431-P4	111(3)
C436-C431-P4	130(4)
C433-C432-C431	117(5)
C432-C433-C434	117(8)
C432-C433-C437	122(6)
C434-C433-C437	108(6)
C435-C434-C433	94(10)
C434-C435-C436	119(8)
C431-C436-C435	109(4)

	U11	U22	U33	U23	U13	U12
<u>I(1)</u>	66(1)	67(1)	38(1)	11(1)	6(1)	17(1)
I(1)	71(2)	62(2)	70(2)	-3(2)	-9(2)	3(2)
I(2)	75(2)	67(2)	61(2)	-11(2)	2(2)	10(2)
I(3)	74(2)	69(2)	65(2)	-6(2)	-(2)	7(2)
I(4)	75(2)	69(2)	61(2)	-6(2)	-7(2)	-1(2)
Cu(1)	103(5)	71(4)	81(4)	-6(4)	7(4)	15(4)
Cu(2)	92(5)	78(5)	78(4)	2(4)	-5(4)	9(4)
Cu(3)	78(5)	91(5)	86(5)	-4(4)	-9(4)	-5(4)
Cu(4)	83(5)	69(4)	68(4)	-1(3)	-7(3)	3(4)
P(1)	81(11)	67(10)	73(9)	-7(8)	-24(8)	12(9)
P(2)	65(9)	81(10)	50(7)	-15(7)	-6(7)	2(8)
P(3)	58(9)	74(10)	66(8)	7(8)	6(7)	-1(8)
P(4)	63(9)	57(8)	53(7)	-23(7)	-1(7)	10(7)
C(111)	210(8)	40(3)	90(4)	50(3)	20(5)	20(4)
C(112)	160(6)	150(6)	70(4)	-70(4)	-20(4)	80(5)
C(113)	90(4)	90(5)	480(14)	20(7)	-200(7)	50(4)
C(114)	560(18)	160(8)	470(13)	-160(8)	420(13)	350(11)
C(115)	370(10)	0(2)	100(4)	40(2)	210(5)	50(4)
C(116)	0(2)	170(6)	150(5)	0(5)	10(3)	10(3)
C(117)	190(6)	100(5)	80(3)	20(3)	10(4)	-80(5)
C(121)	80(3)	100(4)	12(19)	-40(2)	80(2)	-50(3)
C(122)	400(10)	0(19)	40(2)	-16(2)	60(4)	-150(4)
C(123)	50(4)	130(5)	100(4)	60(4)	30(4)	-50(4)
C(124)	50(4)	600(2)	40(3)	120(8)	-40(3)	-220(8)
C(125)	350(10)	0(2)	80(4)	-20(3)	-110(5)	-10(4)
C(126)	180(5)	50(3)	90(3)	-10(3)	160(4)	30(4)
C(127)	60(4)	110(5)	130(4)	-10(4)	-40(3)	-20(4)
C(131)	0(2)	130(5)	80(3)	-10(4)	0(2)	-40(3)
C(132)	100(4)	150(5)	30(3)	40(3)	30(3)	0(4)
C(133)	40(3)	190(6)	90(3)	140(3)	40(4)	-70(3)
C(134)	130(5)	100(4)	130(5)	60(4)	-20(4)	100(4)
C(135)	50(3)	250(7)	20(2)	-10(4)	-10(2)	30(4)
C(136)	60(3)	60(3)	40(2)	-60(2)	-10(2)	-10(2)
C(137)	20(3)	130(4)	130(4)	110(4)	-20(3)	-20(3)
C(211)	90(4)	90(4)	30(2)	-50(2)	60(2)	-30(3)
C(212)	30(2)	90(3)	8(16)	-20(2)	38(17)	-70(3)
C(213)	0(2)	170(7)	210(6)	80(5)	-70(3)	20(3)
C(214)	210(8)	70(4)	70(4)	-60(3)	0(5)	60(5)
C(215)	40(3)	180(6)	50(3)	80(4)	-20(2)	-80(4)
C(216)	10(2)	80(4)	150(4)	80(3)	50(3)	20(2)
C(217)	70(4)	70(3)	190(5)	-60(4)	50(4)	-10(3)

Table 22. Anisotropic Displacement Parameters ($A^2 \times 10^3$) for $Cu_4I_4(P(m-C_7H_7)_3)_4$

Table 22. (Continued)

	The second secon						
	C(121)	70(4)	70(3)	70(3)	-20(3)	30(3)	50(3)
	C(222)	10(2)	110(5)	220(7)	-80(5)	70(4)	-60(3)
	C(223)	160(7)	10(3)	200(7)	-20(4)	-60(7)	-20(4)
	C(224)	70(5)	80(4)	230(8)	-70(5)	0(6)	-20(4)
	C(225)	70(4)	240(8)	80(4)	120(5)	20(4)	40(5)
	C(226)	0(2)	260(8)	100(4)	10(5)	0(3)	-50(4)
	C(227)	190(8)	120(5)	160(5)	-20(4)	150(5)	-4(5)
	C(231)	80(6)	300(2)	900(3)	200(2)	200(11)	-40(10)
	C(232)	40(4)	490(14)	110(5)	300(8)	40(3)	30(6)
	C(233)	120(5)	0(2)	500(13)	40(5)	-30(7)	-10(3)
	C(234)	110(5)	160(7)	130(6)	10(6)	0(5)	-40(5)
	C(235)	20(3)	50(3)	590(12)	260(5)	0(5)	-10(2)
	C(236)	420(15)	620(19)	150(6)	-350(10)	-250(8)	420(14)
	C(237)	610(14)	0(3)	200(6)	-60(4)	-170(8)	80(6)
	C(311)	10(3)	250(9)	120(5)	-80(5)	30(3)	0(4)
	C(312)	400(13)	280(9)	50(4)	-20(5)	-150(6)	310(10)
	C(313)	0(3)	900(3)	50(4)	70(9)	30(3)	30(8)
	C(314)	200(7)	250(10)	90(5)	70(5)	40(4)	-170(7)
	C(315)	320(9)	90(4)	20(3)	-40(3)	-70(4)	190(5)
	C(316)	60(40	120(5)	120(5)	10(4)	10(4)	-20(4)
	C(317)	270(9)	170(7)	80(4)	-30(4)	10(6)	20(8)
	C(321)	0(2)	130(5)	90(3)	50(3)	30(2)	-40(3)
	C(322)	480(14)	230(9)	0(2)	50(4)	40(5)	0(9)
	C(323)	90(5)	110(5)	200(7)	-80(6)	100(5)	-20(4)
	C(324)	100(4)	170(6)	160(5)	-100(5)	-160(4)	0(4)
	C(325)	20(3)	120(5)	120(5)	-30(4)	-20(3)	-60(3)
	C(326)	30(3)	360(11)	70(4)	-40(6)	90(3)	-60(5)
	C(327)	60(4)	320(9)	130(5)	10(6)	10(4)	-170(5)
	C(331)	5(19)	0(18)	160(4)	50(2)	-60(2)	-42(16)
•	C(332)	70(3)	40(3)	40(2)	10(2)	10(3)	0(3)
	C(333)	40(3)	90(4)	60(3)	-50(3)	10(3)	-10(3)
	C(334)	0(2)	190(7)	90(5)	-40(5)	-10(3)	-20(4)
	C(335)	80(5)	140(6)	190(9)	-10(6)	70(6)	-50(6)
	C(336)	150(6)	90(4)	90(4)	20(3)	-120(4)	50(4)
	C(337)	70(4)	90(5)	200(6)	-30(5)	60(5)	-20(3)
	C(411)	70(3)	40(3)	70(3)	-50(2)	-60(3)	30(3)
	C(412)	170(5)	0(19)	50(3)	10(2)	0(3)	-10(3)
	C(413)	80(4)	270(7)	20(3)	40(4)	30(3)	60(5)
	C(414)	60(3)	50(3)	250(6)	-150(4)	-20(4)	60(3)
	C(415)	260(7)	30(4)	110(4)	50(4)	-80(5)	-20(5)
	C(416)	0(2)	240(7)	130(4)	-150(5)	30(2)	-30(3)
	C(417)	200(7)	150(6)	60(3)	-40(4)	-80(4)	-60(6)
	C(421)	70(3)	60(3)	100(3)	-90(3)	-30(3)	-20(3)
	C(422)	0(18)	110(4)	100(3)	50(3)	-30(2)	-70(2)
	C(423)	520(13)	0(2)	30(3)	20(2)	50(5)	10(5)

C(424)	1100(4)	800(2)	400(14)	-450(16)	-230(18)	-400(2)
C(425)	120(4)	70(3)	17(19)	-10(2)	-50(2)	100(3)
C(426)	50(3)	90(3)	60(3)	-70(2)	-70(2)	-30(3)
C(427)	130(5)	200(6)	160(5)	140(5)	-30(4)	90(5)
C(431)	150(4)	0(18)	70(3)	-32(19)	-30(3)	-80(2)
C(432)	60(3)	20(2)	100(3)	-60(2)	-60(3)	0(2)
C(433)	130(5)	120(7)	100(5)	20(5)	-100(4)	20(5)
C(434)	1200(5)	50(10)	440(16)	50(10)	-400(2)	-100(2)
C(435)	0(2)	20(3)	730(18)	220(6)	50(5)	20(2)
C(436)	300(8)	220(7)	30(3)	10(4)	140(4)	-130(7)
C(437)	90(5)	260(9)	200(6)	90(7)	-40(6)	-20(5)

Table 22. (Continued)

The anisotropic displacement factor exponent takes the form: -2 pi² [$h^2a^{*2} U_{11}$ +.. + 2 h k a* b* U₁₂]

Figure 14 Projection View of Cu₂I₂(P(C₆H₅)₂CH₃)₄.C₄H₈O

Empirical formula	C ₁₃ H ₁₃ CuIO _{0.11} P
Formula weight	392.42
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	monoclinic, C2/c
Unit cell dimensions	$a = 27.66(5)$ Å $\alpha = 90.0$ deg.
	b = 13.08(2) Å β = 125.06(13) deg.
	$c = 19.73(4) \text{ Å} \gamma = 90.0 \text{ deg.}$
Volume	5844(17) Å ³
Z, Calculated density	18, 2.007 Mg/m^3
Absorption coefficient	4.152 mm^{-1}
F(000)	3400
Crystal size	0.1 x 0.1 x 0.1 mm
Theta range for data collection	1.80 to 30.11 deg.
Index ranges	$-1 \le h \le 38, -18 \le k \le 1, -27 \le l \le 23$
Reflections collected / unique/	9708 / 8499 [R(int) = 0.1878]
Goodness-of-fit	1.065
Final R indices [I>2sigma(I)]	R1 = 0.1433, $wR2 = 0.3244$
R indices (all data)	R1 = 0.2941, $wR2 = 0.4237$
Extinction coefficient	0.00000(15)
Largest diff. peak and hole	4.051 and $-1.850 \text{ e}\text{\AA}^{-3}$

Table 23. Crystal Data and Structure Refinement for $Cu_2I_2(P(C_6H_5)_2CH_3)_4.C_4H_8O$

	X	у	Z	U(eq)
I(1)	3187(1)	8002(1)	1302(1)	51(1)
Cu(2)	2867(1)	6478(2)	199(1)	49(1)
P(2)	2590(2)	5077(3)	610(3)	47(1)
P(1)	3468(2)	6107(4)	-228(2)	48(1)
C(111)	3534(8)	4696(13)	-321(12)	52(4)
C(112)	3882(12)	4148(16)	438(15)	79(7)
C(113)	3911(12)	3021(19)	390(18)	85(7)
C(114)	3601(14)	2580(2)	-410(2)	105(10)
C(115)	3254(11)	3150(2)	-1130(2)	98(9)
C(116)	3231(9)	4178(18)	-1058(13)	76(7)
C(121)	3194(9)	6633(17)	-1269(11)	66(5)
C(131)	4258(8)	6479(14)	377(9)	52(4)
C(132)	4625(8)	6256(16)	116(12)	66(5)
C(133)	5221(8)	6550(2)	570(11)	75(6)
C(134)	5483(8)	7048(18)	1367(11)	72(6)
C(135)	5126(8)	7251(17)	1613(9)	71(6)
C(136)	4516(7)	6980(16)	1144(9)	59(5)
C(211)	2030(8)	5226(13)	832(9)	48(4)
C(212)	1497(9)	5610(19)	266(11)	76(7)
C(213)	1039(11)	5703(19)	379(14)	84(7)
C(214)	1149(10)	5396(18)	1140(13)	75(6)
C(215)	1701(11)	4970(2)	1720(14)	97(8)
C(216)	2131(10)	4880(2)	1589(12)	84(7)
C(221)	3194(9)	4376(13)	1516(11)	57(5)
C(222)	3720(8)	4899(16)	2094(11)	66(5)
C(223)	4204(12)	4380(2)	2780(12)	92(8)
C(224)	4190(11)	3350(2)	2880(12)	80(7)
C(225)	3715(13)	2826(19)	2324(15)	93(8)
C(226)	3164(12)	3273(17)	1606(15)	85(7)
C(231)	2226(10)	4140(19)	-254(14)	90(8)
C(1)	300(4)	5210(8)	8050(5)	190(5)
C(2)	550(3)	4420(6)	7810(6)	100(4)
C(3)	310(9)	4150(19)	8300(11)	510(15)
C(4)	-280(4)	4600(6)	7900(6)	240(6)
H(11A)	4089	4451	979	80
H(11B)	4141	2639	896	80
H(11C)	3653	1862	-423	80
H(11D)	3021	2802	-1649	80
H(11E)	2977	4535	-1572	80
H(12A)	3451	6481	-1437	80
H(12B)	2815	6327	-1652	80

Table 24. Atomic Coordinates ($x10^4$) and Equivalent Isotropic Displacement Parameters (Å²x 10³) for Cu₂I₂(P(C₆H₅)₂CH₃)₄.C₄H₈O

H(12C)	3150	7360	-1263	80
H(13A)	4463	5845	-372	80
H(13B)	5446	6403	351	80
H(13F)	5282	7611	2123	80
H(13D)	4274	7161	1329	80
H(21A)	1413	5834	-255	80
H(21B)	657	5947	-62	80
H(21C)	859	5490	1256	80
H(21D)	1775	4737	2233	80
H(21E)	2509	4603	2012	80
H(22A)	3740	5628	2060	80
H(22B)	4561	4752	3162	80
H(22C)	4519	2996	3344	80
H(22D)	3701	2103	2396	80
H(22E)	2822	2875	1217	80
H(23A)	2110	3556	-83	80
H(23B)	1883	4439	-736	80
H(23C)	2498	3930	-381	80

Table 24. (Continued)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

II-Cu2	2.698(4)
I1-Cu2	2.795(7)
Cu2-P2	2.305(5)
Cu2-P1	2.307(5)
Cu2-I1	2.795(7)
P2-C221	1.84(2)
P2-C211	1.844(16)
P2-C231	1.857(18)
P1-C131	1.855(19)
P1-C121	1.867(18)
P1-C111	1.873(18)
C111-C116	1.37(2)
C111-C112	1.42(3)
C112-C113	1.48(3)
C113-C114	1.41(4)
C114-C115	1.38(4)
C115-C116	1.36(3)
C131-C132	1.41(2)
C131-C136	1.41(2)
C132-C133	1.40(2)
C133-C134	1.45(3)
C134-C135	1.35(3)
C135-C136	1.43(2)
C211-C212	1.34(2)
C211-C216	1.42(2)
C212-C213	1.41(3)
C213-C214	1.41(3)
C214-C215	1.39(3)
C215-C216	1.36(3)
C221-C222	1.41(3)
C221-C226	1.46(3)
C222-C223	1.41(3)
C223-C224	1.37(3)
C224-C225	1.32(3)
C225-C226	1.48(3)
C4C2	1.18(10)
C4-C3	1.47(19)
C4-C1	1.64(11)
C4-C1	2.02(12)
C3-C1	1.5(2)
C3-C2	1.48(19)
C3-C2	2.1(2)
C2-C4	1.18(10)

Table 25. Bond Lengths [Å] and Angles [deg] for $Cu_2I_2(P(C_6H_5)_2CH_3)_4.C_4H_8O$

Table 25. (Continued)

C2-C1	1.47(10)
C2-C3	2.1(2)
C1-C1	1.83(15)
C1-C4	2.02(12)
	()
Cu2-I1-Cu2	70.45(15)
P2-Cu2-P1	114.6(2)
P2-Cu2-I1	108.98(18)
P1-Cu2-I1	118.60(18)
P2-Cu2-I1	102.23(18)
P1-Cu2-I1	101.2(2)
I1-Cu2-I1	109.55(15)
C221-P2-C211	103.9(7)
C221-P2-C231	105.8(11)
C211-P2-C231	101.7(8)
C221-P2-Cu2	115.9(6)
C211-P2-Cu2	119.5(6)
C231-P2-Cu2	108.4(8)
C131-P1-C121	101.2(8)
C131-P1-C111	100.1(8)
C121-P1-C111	104.8(9)
C131-P1-Cu2	122.7(5)
C121-P1-Cu2	113.8(7)
C111-P1-Cu2	112.0(5)
C116-C111-C112	119.9(19)
C116-C111-P1	123.9(17)
C112-C111-P1	115.9(14)
C111-C112-C113	118(2)
C114-C113-C112	117(3)
C115-C114-C113	123(3)
C116-C115-C114	118(3)
C115-C116-C111	124(3)
C132-C131-C136	117.5(16)
C132 C131-P1	122.8(13)
C136-C131-P1	119.7(12)
C133-C132-C131	122.6(17)
C132-C133-C134	119.0(16)
C135-C134-C133	117.6(16)
C134-C135-C136	123.6(15)
C131-C136-C135	119.5(15)
C212-C211-C216	116.8(16)
C212-C211P2	121.1(12)
C216 -C211-P2	122.0(15)
C211-C212-C213	124.1(17)
C212-C213-C214	119(2)

Table 25. (Continued)

C215-C214-C213	116.9(19)
C216-C215-C214	123(2)
C215-C216-C211	121(2)
C222-C221-C226	119(2)
C222-C221-P2	118.9(14)
C226-C221-P2	121.7(16)
C221-C222-C223	121(2)
C224-C223-C222	121(2)
C225-C224-C223	119(2)
C224-C225-C226	125(2)
C221-C226-C225	114(2)
C2-C4-C3	107(10)
C2-C4-C1	101(7)
C3-C4-C1	56(9)
C2-C4-C1	46(5)
C3-C4-C1	95(10)
C1-C4-C1	59(6)
C4-C3-C1	68(10)
C4-C3-C2	109(10)
C1-C3-C2	60(10)
C4-C3-C2	32(6)
C1-C3-C2	72(10)
C2-C3-C2	86(10)
C4-C2-C1	98(8)
C4-C2-C3	128(10)
C1-C2-C3	60(9)
C4-C2-C3	41(6)
C1-C2-C3	90(8)
C3-C2-C3	89(9)
C3-C1-C2	60(8)
C3-C1-C4	56(8)
C2-C1-C4	101(7)
C3-C1-C1	103(8)
C2-C1-C1	83(6)
C4-C1-C1	71(6)
C3-C1-C4	85(8)
C2-C1-C4	35(4)
C4-C1-C4	98(6)
C1-C1-C4	50(5)

	U11	U22	U33	U23	U13	U12
$\overline{\mathbf{I}(1)}$	58 (1)	55(1)	30(1)	3(1)	18(1)	6(1)
$\Gamma(1)$	50(1)	33(1)	30(1)	-3(1)	10(1)	0(1)
Cu(2)	03(1)	47(1)	59(1)	2(1)	31(1)	1(1)
$\Gamma(2)$ D(1)	54(2)	42(2) 55(2)	44(2)	-1(2)	33(2)	-3(2)
P(1)	34(3)	33(3)	55(2)	-2(2)	27(2)	3(2)
C(111)	08(12)	40(10)	/1(11)	0(8)	53(10)	-2(9)
C(112)	130(2)	54(13)	8/(15)	2(11)	/8(16)	5(13)
C(113)	99(18)	76(16)	107(19)	-4(15)	/5(17)	-6(14)
C(114)	110(2)	78(18)	180(3)	-30(2)	110(2)	-19(18)
C(115)	62(15)	77(19)	160(3)	-41(19)	69(19)	-18(13)
C(116)	67(13)	92(17)	64(12)	-51(12)	34(11)	-20(12)
C(121)	70(12)	87(15)	45(9)	6(9)	34(9)	0(11)
C(131)	66(11)	55(11)	33(7)	0(7)	28(8)	8(9)
C(132)	51(11)	74(14)	67(12)	-19(10)	31(10)	-3(10)
C(133)	38(9)	140(2)	50(10)	1(12)	25(8)	6(12)
C(134)	43(10)	113(18)	48(9)	-11(11)	20(8)	-21(11)
C(135)	68(12)	95(17)	23(7)	-23(8)	10(8)	-17(11)
C(136)	40(8)	101(15)	38(8)	-13(9)	22(7)	-3(10)
C(211)	56(10)	51(10)	40(8)	-7(7)	30(8)	-18(8)
C(212)	60(12)	117(19)	47(10)	35(11)	30(10)	31(13)
C(213)	77(15)	105(19)	62(12)	24(12)	34(12)	16(14)
C(214)	84(16)	97(17)	72(13)	8(12)	61(13)	-2(13)
C(215)	83(17)	160(3)	60(13)	-7(16)	48(14)	-8(17)
C(216)	85(15)	140(2)	41(9)	-1(12)	44(11)	3(15)
C(221)	99(15)	42(10)	57(10)	-5(8)	61(11)	-8(10)
C(222)	55(11)	54(11)	51(10)	3(9)	8(9)	2(10)
C(223)	108(19)	97(19)	34(9)	1(1)	19(11)	18(16)
C(224)	99(17)	89(18)	41(10)	10(11)	33(11)	26(15)
C(225)	140(2)	62(15)	72(15)	30(12)	59(17)	37(15)
C(226)	140(2)	57(14)	82(15)	-11(11)	73(17)	-5(14)
C(231)	86(15)	120(2)	82(15)	-63(15)	59(14)	-59(14)
-()	00(10)		0=(10)			()

Table 26. Anisotropic Displacement Parameters $(A^2 \times 10^3)$ for $Cu_2I_2(P(C_6H_5)_2CH_3)_4.C_4H_8O$

The anisotropic displacement factor exponent takes the form: -2 pi^2 [$h^2a^{*2} U_{11}$ +.. + 2 h k a* b* U_{12}]

Figure 16 Projection View of $Cu_2I_2(P(m-C_7H_7)_3)_3$

Figure 17 Emission Spectrum of $Cu_2I_2(P(m-C_7H_7)_3)_3$

Empirical formula	
	C63F163CU212F3
Formula weight	1293.9
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	triclinic, <i>P</i> ī
Unit cell dimensions	$a = 11.892(9) \text{ Å}$ $\alpha = 86.15(4) \text{ deg.}$
	b = 13.893(12) Å β = 86.49(12) deg.
	$c = 19.586(16) \text{ Å} \gamma = 72.65(5) \text{ deg.}$
Volume	$3082(4) \text{ Å}^3$
Z, Calculated density	2, 1.394 Mg/m ³
Absorption coefficient	1.805 mm^{-1}
F(000)	1300
Crystal size	0.1 x 0.1 x 0.1 mm
Theta range for data collection	2.14 to 29.98 deg.
Index ranges	$-1 \le h \le 16, -18 \le k \le 19, -27 \le l \le 27$
Reflections collected / unique/	20424 / 18008 [R(int) = 0.0418]/
observed	6435(4.0>σ(F))
Goodness-of-fit	1.19
Final R indices [I>2sigma(I)]	R1 = 0.0593, $wR2 = 0.0641$
R indices (all data)	R1 = 0.1693, $wR2 = 0.0929$
Extinction coefficient	-0.00012(3)
Largest diff. peak and hole	0.86 and $-0.60 \text{ e}\text{\AA}^{-3}$

Table 27. Crystal Data and Structure Refinement for $Cu_2I_2(P(m-C_7H_7)_3)_3$

	X	у	Z	U(eq)
I(1)	2755(1)	8786(1)	3424(1)	57(1)
I(2)	5430(1)	9269(1)	1869(1)	57(1)
Cu(1)	3152(1)	10197(1)	2407(1)	51(1)
Cu(2)	4771(1)	8088(1)	2783(1)	59(1)
P(2)	2048(2)	10138(2)	1486(1)	47(1)
P(1)	3180(2)	11531(2)	3041(1)	45(1)
P(3)	6108(2)	6546(2)	2964(1)	51(1)
C(111)	3597(8)	12548(6)	2523(4)	49(4)
C(112)	4451(9)	12981(7)	2719(5)	62(4)
C(113)	4690(9)	13781(8)	2316(6)	74(5)
C(114)	4072(10)	14164(8)	1728(5)	67(5)
C(115)	3206(10)	13764(7)	1520(5)	62(4)
C(116)	2993(9)	12951(7)	1928(4)	56(4)
C(117)	2532(12)	14187(9)	882(5)	103(7)
C(121)	4205(8)	11244(6)	3751(4)	45(3)
C(122)	3945(9)	11722(7)	4382(4)	59(4)
C(123)	4797(10)	11490(7)	4879(5)	67(5)
C(124)	5924(10)	10828(7)	4750(5)	71(5)
C(125)	6201(9)	10341(7)	4125(5)	66(4)
C(126)	5333(8)	10562(7)	3635(4)	54(4)
C(127)	7418(9)	9577(9)	3987(6)	94(6)
C(131)	1758(8)	12227(6)	3472(4)	46(3)
C(132)	1243(9)	13306(7)	3404(5)	62(4)
C(133)	180(9)	13776(8)	3759(5)	70(4)
C(134)	-384(9)	13203(8)	4181(5)	66(4)
C(135)	82(9)	12152(8)	4267(5)	61(4)
C(136)	1150(8)	11679(7)	3901(5)	57(4)
C(137)	-551(10)	11529(9)	4724(6)	91(6)
C(211)	443(8)	10329(7)	1670(4)	51(4)
C(212)	-237(9)	9870(7)	1311(5)	68(5)
C(213)	-1428(9)	10047(8)	1488(6)	81(5)
C(214)	-1995(9)	10713(8)	2004(6)	77(5)
C(215)	-1345(9)	11207(8)	2345(5)	64(4)
C(216)	-112(8)	10986(7)	2191(5)	58(4)
C(217)	-1971(10)	11952(9)	2885(6)	103(6)
C(221)	2526(7)	8897(6)	1087(5)	48(3)
C(222)	2475(9)	8043(7)	1511(5)	62(4)
C(223)	2815(9)	7075(7)	1252(6)	70(5)
C(224)	3254(9)	6966(8)	573(6)	67(4)
C(225)	3321(9)	7772(8)	137(5)	67(4)
C(226)	2960(9)	8745(8)	401(5)	64(4)

Table 28. Atomic Coordinates (x10⁴) and Equivalent Iisotropic Displacement Parameters ($Å^2x$ 10³) for Cu₂I₂(P(*m*-C₇H₇)₃)₃
Table 28. (Continued)

C(227)	3819(12)	7640(9)	-600(6)	109(7)
C(231)	2106(8)	11032(6)	750(4)	50(4)
C(232)	1083(8)	11586(7)	385(5)	55(4)
C(233)	1182(10)	12233(8)	-186(5)	67(5)
C(234)	2290(11)	12302(8)	-416(5)	72(5)
C(235)	3301(11)	11765(9)	-72(5)	78(5)
C(236)	3206(9)	11160(8)	513(5)	64(4)
C(237)	81(11)	12846(10)	-573(6)	105(7)
C(311)	6711(8)	5862(7)	2175(5)	54(4)
C(312)	6010(9)	6078(8)	1602(5)	68(4)
C(313)	6398(11)	5536(10)	1013(5)	84(6)
C(314)	7469(12)	4789(9)	983(5)	79(5)
C(315)	8199(10)	4551(8)	1551(5)	72(5)
C(316)	7798(9)	5118(8)	2144(5)	71(4)
C(317)	9395(12)	3753(10)	1519(7)	141(8)
C(321)	5631(8)	5585(7)	3511(5)	54(4)
C(322)	6419(9)	4646(8)	3743(5)	70(4)
C(323)	5980(10)	3956(7)	4127(5)	70(5)
C(324)	4775(10)	4160(7)	4294(5)	66(5)
C(325)	3987(9)	5062(8)	4063(5)	63(4)
C(326)	4407(8)	5784(7)	3674(4)	53(4)
C(327)	2650(10)	5290(10)	4208(7)	103(6)
C(331)	7433(8)	6635(7)	3364(4)	51(4)
C(332)	8238(9)	7006(8)	2961(5)	71(5)
C(333)	9239(9)	7147(9)	3239(6)	72(5)
C(334)	9410(9)	6939(8)	3938(6)	75(5)
C(335)	8602(9)	6583(8)	4349(5)	69(5)
C(336)	7608(9)	6434(7)	4072(5)	61(4)
C(337)	10107(12)	7560(13)	2799(7)	147(10)
H(11A)	4874	12718	3126	80
H(11B)	5279	14069	2446	80
H(11C)	4234	14715	1459	80
H(11D)	2426	12646	1784	80
H(11E)	2784	14739	676	80
H(11F)	2674	13664	563	80
H(11G)	1705	14420	1005	80
H(12A)	3187	12204	4464	80
H(12B)	4605	11782	5318	80
H(12C)	6517	10707	5083	80
H(12D)	5525	10243	3206	80
H(12E)	7445	9323	3541	80
H(12F)	8024	9900	4008	80
H(12G)	7541	9027	4326	80
H(13A)	1649	13696	3118	80

-156 H(13B) H(13C) -1121 H(13D) -1256 H(13E) H(13F) -752 -34 H(13G) H(21A) H(21B) -1883 H(21C) -2820 H(21D) -2793 H(21E) -1633 H(21F) H(21G) -1883 H(22A) H(22B) H(22C) H(22D) H(22E) -816 H(22F) -602 H(22G) -847 H(23A) H(23B) -822 H(23C) -232 H(23D) H(23E) -940 H(23F) -276 -756 H(23G) -472 -262 H(31A) H(31B) H(31C) H(31D) H(31E) H(31F) H(31G) H(32A) H(32B) H(32C) H(32D) H(32E) H(32F) H(32G) H(33A) H(33B) H(33C)

Table 28. (Continued)

Table 28. (Continued)

7054	6192	4358	80
9858	7664	2335	80
10123	8191	2964	80
10882	7086	2813	80
	7054 9858 10123 10882	7054619298587664101238191108827086	70546192435898587664233510123819129641088270862813

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

I(1)-Cu(1)	2.819 (3)
I(1)-Cu(2)	2.583 (3)
I(2)-Cu(1)	2.804 (3)
I(2)-Cu(2)	2.591 (3)
Cu(1)-Cu(2)	3.059 (3)
Cu(1)-P(2)	2.315 (3)
Cu(1)-P(1)	2.308 (3)
Cu(2)-P(3)	2.276 (3)
P(2)-C(211)	1.863 (10)
P(2)-C(221)	1.857 (9)
P(2)-C(231)	1.850 (9)
P(1)-C(111)	1.855 (10)
P(1)-C(121)	1.849 (9)
P(1)-C(131)	1.861 (8)
P(3)-C(311)	1.861 (9)
P(3)-C(321)	1.854 (10)
P(3)-C(331)	1.842 (10)
C(111)-C(112)	1.408 (16)
C(111)-C(116)	1.401 (12)
C(112)-C(113)	1.408 (16)
C(113)-C(114)	1.392 (15)
C(114)-C(115)	1.400 (18)
C(115)-C(116)	1.415 (14)
C(115)-C(117)	1.513 (15)
C(121)-C(122)	1.417 (12)
C(121)-C(126)	1.408 (11)
C(122)-C(123)	1.401 (15)
C(123)-C(124)	1.400 (14)
C(124)-C(125)	1.412 (15)
C(125)-C(126)	1.405 (14)
C(125)-C(127)	1.539 (13)
C(131)-C(132)	1.441 (12)
C(131)-C(136)	1.406 (14)
C(132)-C(133)	1.403 (13)
C(133)-C(134)	1.388 (16)
C(134)-C(135)	1.401 (15)
C(135)-C(136)	1.419 (13)
C(135)-C(137)	1.524 (17)
C(211)-C(212)	1.411 (16)
C(211)-C(216)	1.412 (12)
C(212)-C(213)	1.389 (15)
C(213)-C(214)	1.417 (16)
C(214)-C(215)	1.399 (18)

Table 29. Bond Lengths [Å] and Angles [deg] for $Cu_2I_2(P(m-C_7H_7)_3)_3$

Table 29. (Continued)

C(215)-C(216)	1.423 (14)
C(215)-C(217)	1.526 (15)
C(221)-C(222)	1.417 (13)
C(221)-C(226)	1.414 (13)
C(222)-C(223)	1.404 (14)
C(223)-C(224)	1.399 (16)
C(224)-C(225)	1.381 (16)
C(225)-C(226)	1.415 (15)
C(225)-C(227)	1.528 (15)
C(231)-C(232)	1.434 (12)
C(231)-C(236)	1.418 (15)
C(232)-C(233)	1.409 (14)
C(233)-C(234)	1.395 (18)
C(233)-C(237)	1.544 (16)
C(234)-C(235)	1.396 (16)
C(235)-C(236)	1.395 (15)
C(311)-C(312)	1.402 (14)
C(311)-C(316)	1.395 (12)
C(312)-C(313)	1.399 (15)
C(313)-C(314)	1.382 (16)
C(314)-C(315)	1.416 (16)
C(315)-C(316)	1.423 (14)
C(315)-C(317)	1.521 (16)
C(321)-C(322)	1.424 (12)
C(321)-C(326)	1.418 (13)
C(322)-C(323)	1.382 (16)
C(323)-C(324)	1.398 (16)
C(324)-C(325)	1.388 (13)
C(325)-C(326)	1.410 (15)
C(325)-C(327)	1.537 (16)
C(331)-C(332)	1.397 (15)
C(331)-C(336)	1.411 (13)
C(332)-C(333)	1.409 (17)
C(333)-C(334)	1.394 (17)
C(333)-C(337)	1.522 (20)
C(334)-C(335)	1.397 (16)
C(335)-C(336)	1.406 (16)
Cu(1)-I(1)-Cu(2)	68.8(1)
Cu(1)-I(2)-Cu(2)	68.9(1)
I(1)-Cu(1)-I(2)	104.1(1)
I(1)-Cu(1)-Cu(2)	51.9(1)
I(2)-Cu(1)-Cu(2)	52.2(1)
I(1)-Cu(1)-P(2)	107.1(1)

Table 29. (Continued)

$\overline{I(2)-Cu(1)-P(2)}$	100.3(1)
Cu(2)-Cu(1)-P(2)	110.1(1)
I(1)-Cu(1)-P(1)	102.4(1)
I(2)-Cu(1)-P(1)	109.5(1)
Cu(2)-Cu(1)-P(1)	119.0(1)
P(2)-Cu(1)-P(1)	130.9(1)
I(1)-Cu(2)-I(2)	117.9(1)
I(1)-Cu(2)-Cu(1)	59.2(1)
I(2)-Cu(2)-Cu(1)	58.8(1)
I(1)-Cu(2)-P(3)	127.0(1)
I(2)-Cu(2)-P(3)	115.0(1)
Cu(1)-Cu(2)-P(3)	173.7(1)
Cu(1)-P(2)-C(211)	116.5(3)
Cu(1)-P(2)-C(221)	113.0(3)
C(211)-P(2)-C(221)	102.5(4)
Cu(1)-P(2)-C(231)	116.1(3)
C(211)-P(2)-C(231)	104.3(4)
C(221)-P(2)-C(231)	102.7(4)
Cu(1)-P(1)-C(111)	113.2(3)
Cu(1)-P(1)-C(121)	116.9(3)
C(111)-P(1)-C(121)	103.3(4)
Cu(1)-P(1)-C(131)	116.5(3)
C(111)-P(1)-C(131)	102.6(4)
C(121)-P(1)-C(131)	102.3(4)
Cu(2)-P(3)-C(311)	114.9(3)
Cu(2)-P(3)-C(321)	117.9(3)
C(311)-P(3)-C(321)	102.5(4)
Cu(2)-P(3)-C(331)	112.0(3)
C(311)-P(3)-C(331)	103.4(4)
C(321)-P(3)-C(331)	104.5(4)
P(1)-C(111)-C(112)	123.0(7)
P(1)-C(111)-C(116)	119.0(8)
C(112)-C(111)-C(116)	117.9(9)
C(111)-C(112)-C(113)	120.1(9)
C(112)-C(113)-C(114)	120.5(11)
C(113)-C(114)-C(115)	121.2(10)
C(114)-C(115)-C(116)	117.3(9)
C(114)-C(115)-C(117)	120.9(10)
C(116)-C(115)-C(117)	121.8(11)
C(111)-C(116)-C(115)	123.0(10)
P(1)-C(121)-C(122)	123.6(6)
P(1)-C(121)-C(126)	117.7(6)
C(122)-C(121)-C(126)	118.6(8)
C(121)-C(122)-C(123)	119.6(8)

Table 29. (Continued)

C(122)-C(123)-C(124)	121.0(9)
C(123)-C(124)-C(125)	120.2(10)
C(124)-C(125)-C(126)	118.3(8)
C(124)-C(125)-C(127)	120.9(10)
C(126)-C(125)-C(127)	120.8(9)
C(121)-C(126)-C(125)	122.1(8)
P(1)-C(131)-C(132)	124.0(7)
P(1)-C(131)-C(136)	118.7(6)
C(132)-C(131)-C(136)	117.3(8)
C(131)-C(132)-C(133)	120.4(9)
C(132)-C(133)-C(134)	120.2(9)
C(133)-C(134)-C(135)	121.7(9)
C(134)-C(135)-C(136)	118.0(10)
C(134)-C(135)-C(137)	121.3(8)
C(136)-C(135)-C(137)	120.7(9)
C(131)-C(136)-C(135)	122.4(8)
P(2)-C(211)-C(212)	123.6(7)
P(2)-C(211)-C(216)	117.2(8)
C(212)-C(211)-C(216)	119.1(9)
C(211)-C(212)-C(213)	119.8(9)
C(212)-C(213)-C(214)	121.4(11)
C(213)-C(214)-C(215)	119.5(10)
C(214)-C(215)-C(216)	119.1(9)
C(214)-C(215)-C(217)	119.2(9)
C(216)-C(215)-C(217)	121.7(10)
C(211)-C(216)-C(215)	120.9(10)
P(2)-C(221)-C(222)	116.9(7)
P(2)-C(221)-C(226)	124.8(7)
C(222)-C(221)-C(226)	118.3(8)
C(221)-C(222)-C(223)	120.8(9)
C(222)-C(223)-C(224)	118.5(10)
C(223)-C(224)-C(225)	123.0(10)
C(224)-C(225)-C(226)	117.8(9)
C(224)-C(225)-C(227)	122.5(10)
C(226)-C(225)-C(227)	119.6(10)
C(221)-C(226)-C(225)	121.5(9)
P(2)-C(231)-C(232)	122.9(7)
P(2)-C(231)-C(236)	119.6(6)
C(232)-C(231)-C(236)	117.6(8)
C(231)-C(232)-C(233)	120.6(9)
C(232)-C(233)-C(234)	119.6(9)
C(232)-C(233)-C(237)	120.8(10)
C(234)-C(233)-C(237)	119.6(9)
C(233)-C(234)-C(235)	120.9(10)

Table 29. (Continued)

C(234)-C(235)-C(236)	119.9(11)	
C(231)-C(236)-C(235)	121.4(9)	
P(3)-C(311)-C(312)	117.9(6)	
P(3)-C(311)-C(316)	122.8(7)	
C(312)-C(311)-C(316)	119.2(9)	
C(311)-C(312)-C(313)	119.8(9)	
C(312)-C(313)-C(314)	121.1(10)	
C(313)-C(314)-C(315)	120.6(10)	
C(314)-C(315)-C(316)	117.5(9)	
C(314)-C(315)-C(317)	121.2(10)	
C(316)-C(315)-C(317)	121.2(10)	
C(311)-C(316)-C(315)	121.7(9)	
P(3)-C(321)-C(322)	123.4(8)	
P(3)-C(321)-C(326)	117.5(6)	
C(322)-C(321)-C(326)	119.0(9)	
C(321)-C(322)-C(323)	119.6(10)	
C(322)-C(323)-C(324)	121.3(9)	
C(323)-C(324)-C(325)	120.2(10)	
C(324)-C(325)-C(326)	119.9(10)	
C(324)-C(325)-C(327)	121.6(11)	
C(326)-C(325)-C(327)	118.6(9)	
C(321)-C(326)-C(325)	120.1(8)	
P(3)-C(331)-C(332)	118.3(7)	
P(3)-C(331)-C(336)	122.4(7)	
C(332)-C(331)-C(336)	119.0(10)	
C(331)-C(332)-C(333)	121.6(10)	
C(332)-C(333)-C(334)	119.1(11)	
C(332)-C(333)-C(337)	121.3(11)	
C(334)-C(333)-C(337)	119.6(11)	
C(333)-C(334)-C(335)	119.9(11)	
C(334)-C(335)-C(336)	121.1(10)	
C(331)-C(336)-C(335)	119.3(9)	

	U11	U22	U33	U23	U13 U1
I(1)	58(1)	49(1)	61(1)	-12(1)	1(1) -3(1
I(2)	44(1)	59(1)	65(1)	-11(1)	2(1) -4(1
Cu(1)	47(1)	49(1)	57(1)	-12(1)	-9(1) -9(1)
Cu(2)	50(1)	54(1)	70(1)	-11(1)	-9(1) -2(1
P(2)	39(1)	48(1)	53(1)	-12(1)	-4(1) -8(1
P(1)	45(1)	41(1)	48(1)	-11(1)	-6(1) -3(1)
P(3)	44(1)	52(1)	57(2)	-13(1)	-6(1) -1(1
C(111)	56(6)	41(5)	47(5)	-10(5)	2(5) -8(4
C(112)	72(7)	66(7	57(6)	-33(6)	-15(5) -4(5
C(113)	61(7)	74(7)	96(9)	-32(6)	-6(7) -5(7)
C(114)	82(8)	60(6)	68(7)	-37(6)	10(6) -7(6
C(115)	79(8)	57(6)	48(6)	-16(6)	-1(5) 2(5
C(116)	68(7)	56(6)	51(6)	-31(5)	0(5) -1(5
C(117)	140(13)	99(9)	75(8)	-46(9)	-22(8) 23(7
C(121)	47(5)	35(5)	51(5)	-7(4)	-7(4) -6(4
C(122)	70(7)	47(5)	50(6)	-2(5)	-13(5) 2(4
C(123)	90(8)	53(6)	56(6)	-14(6)	-14(6) -4(5
C(124)	87(9)	56(6)	76(7)	-26(6)	-42(6) 5(6
C(125)	61(7)	57(6)	78(7)	-10(5)	-25(6) 1(6
C(126)	55(6)	54(6)	53(6)	-15(5)	-13(5) -5(4
C(127)	56(7)	101(9)	116(10)	-4(7)	-29(7) 0(8
C(131)	44(5)	49(5)	40(5)	-1(4)	-12(4) -9(4
C(132)	66(7)	59(6)	61(6)	-20(6)	-6(5) -3(5
C(133)	56(7)	62(7)	77(7)	8(6)	-8(6) -14(6
C(134)	46(6)	82(8)	64(7)	-5(6)	-5(5) -20(0
C(135)	50(6)	73(7)	63(6)	-20(6)	3(5) -7(5
C(136)	46(6)	49(5)	74(7)	-12(5)	-1(5) -5(5)
C(137)	68(8)	103(9)	98(9)	-19(7)	10(7) -17(7
C(211)	45(5)	53(5)	54(6)	-14(5)	-1(5) -3(5)
C(212)	61(7)	60(6)	85(8)	-17(6)	-4(6) -16(5)
C(213)	48(7)	78(8)	129(10)	-30(6)	-25(7) -28(
C(214)	50(7)	86(8)	101(9)	-26(6)	-1(6) -22(
C(215)	53(7)	68(7)	67(7)	-12(6)	3(5) -15(5
C(216)	45(6)	62(6)	68(6)	-11(5)	-13(5) -13(5
C(217)	57(8)	129(11)	105(9)	4(8)	7(7) -42(8
C(221)	38(5)	40(5)	61(6)	-2(4)	-5(4) -9(4)
C(222)	66(7)	53(6)	71(7)	-20(5)	-16(5) -14(5
C(223)	68(7)	54(6)	88(8)	-15(5)	-23(6) -5(6
C(224)	62(7)	55(6)	81(8)	-3(5)	-17(6) -27(6
C(225)	57(7)	73(7)	63(7)	1(6)	-10(5) -33(6
C(226)	60(7)	74(7)	55(6)	-9(6)	-11(5) -16(

Table 30. Anisotropic Displacement Parameters $(A^2 \times 10^3)$ for $Cu_2I_2(P(m-C_7H_7)_3)_3$

C(227)	126(12)	92(9)	93(9)	-1(8)	-3(9)	-45(7)
C(231)	54(6)	51(5)	44(5)	-12(5)	-10(5)	-11(4)
C(232)	54(6)	52(6)	58(6)	-9(5)	-13(5)	-9(5)
C(233)	68(8)	69(7)	59(7)	-12(6)	-16(6)	-4(5)
C(234)	91(9)	83(8)	42(6)	-25(7)	-18(6)	5(5)
C(235)	86(9)	111(9)	50(6)	-53(8)	15(6)	4(6)
C(236)	44(6)	79(7)	70(7)	-20(5)	-6(5)	4(6)
C(237)	115(11)	108(10)	99(9)	-43(9)	-31(9)	16(8)
C(311)	51(6)	48(5)	57(6)	-8(5)	-7(5)	-3(4)
C(312)	56(7)	83(7)	61(7)	-15(6)	-7(6)	-3(6)
C(313)	81(9)	122(10)	58(7)	-43(8)	-12(6)	-4(7)
C(314)	101(10)	83(8)	57(7)	-31(8)	10(7)	-15(6)
C(315)	86(8)	72(7)	55(7)	-17(6)	6(6)	-8(5)
C(316)	62(7)	76(7)	62(7)	0(6)	-9(6)	-6(6)
C(317)	133(14)	128(12)	117(12)	33(11)	7(10)	-40(10)
C(321)	46(6)	52(6)	62(6)	-11(5)	-5(5)	-4(5)
C(322)	58(7)	68(7)	81(7)	-15(6)	-9(6)	-1(6)
C(323)	72(8)	53(6)	84(8)	-16(6)	-7(6)	11(6)
C(324)	89(9)	53(6)	63(6)	-34(6)	-2(6)	4(5)
C(325)	60(7)	74(7)	62(6)	-30(6)	12(5)	-9(5)
C(326)	49(6)	49(5)	63(6)	-15(5)	-9(5)	0(5)
C(327)	79(9)	110(10)	118(11)	-31(8)	11(8)	5(8)
C(331)	39(5)	56(6)	53(6)	-6(5)	1(5)	-18(4)
C(332)	59(7)	93(8)	66(7)	-29(6)	-5(6)	0(6)
C(333)	51(7)	93(8)	77(8)	-29(6)	3(6)	-14(6)
C(334)	42(6)	84(8)	102(9)	-20(6)	-11(6)	-26(7)
C(335)	56(7)	91(8)	57(6)	-11(6)	-11(6)	-15(6)
C(336)	50(6)	68(7)	63(7)	-11(5)	1(5)	-13(5)
C(337)	112(12)	259(21)	110(11)	-120(14)	1(9)	-6(12)

Table 30. (Continued)

The anisotropic displacement factor exponent takes the form: -2 pi² [$h^2a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

Empirical formula	$C_{63}H_{63}Cu_2I_2P_3$
Formula weight	1293.92
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	triclinic, <i>P</i> ī
Unit cell dimensions	$a = 11.242(16) \text{ Å}$ $\alpha = 94.81(2) \text{ deg.}$
	$b = 14.056(13) \text{ Å}$ $\beta = 90.72(2) \text{ deg.}$
	$c = 21.182(17) \text{ Å} \gamma = 108.42(2) \text{ deg.}$
Volume	3162(6) Å ³
Z, Calculated density	2, 1.359 Mg/m^3
Absorption coefficient	1.759 mm^{-1}
F(000)	1300
Crystal size	0.1 x 0.1 x 0.1 mm
Theta range for data collection	1.89 to 30.02 deg.
Index ranges	$-1 \le h \le 15, -19 \le k \le 19, -29 \le l \le 29$
Reflections collected / unique	21040 / 18428 [R(int) = 0.2643]
Goodness-of-fit	0.946
Final R indices [I>2sigma(I)]	R1 = 0.2073, $wR2 = 0.3030$
R indices (all data)	R1 = 0.5833, $wR2 = 0.4811$
Extinction coefficient	-0.00149(16)
Largest diff. peak and hole	0.854 and –1.286 eÅ ⁻³
	· · · · · · · · · · · · · · · · · · ·

Table 31. Crystal Data and Structure Refinement for $Cu_2I_2(P(p-C_7H_7)_3)_3$

	X	у	Z	U(eq)
I(1)	2284(3)	3851(2)	2575(1)	86(1)
I(2)	4826(2)	1924(2)	2574(1)	61(1)
Cu(1)	2298(4)	1866(3)	2558(2)	54(1)
Cu(2)	4505(4)	3688(3)	2564(2)	66(1)
P(1)	1468(8)	1131(6)	1567(4)	46(2)
P(2)	1738(8)	1337(6)	3554(4)	51(2)
P(3)	6349(9)	4998(7)	2621(4)	60(3)
C(111)	1710(3)	-140(2)	1351(14)	48(9)
C(112)	1900(4)	-480(3)	729(17)	95(14)
C(113)	2170(4)	-1390(3)	646(18)	83(13)
C(114)	2000(5)	-2010(3)	1140(3)	130(2)
C(115)	2050(4)	-1580(4)	1750(2)	130(2)
C(116)	1660(5)	-700(3)	1848(17)	120(2)
C(117)	2480(5)	-3030(3)	990(2)	160(2)
C(121)	2150(4)	1830(2)	895(13)	73(13)
C(122)	1380(4)	2030(2)	418(14)	87(14)
C(123)	2000(4)	2600(3)	-23(12)	97(17)
C(124)	3050(6)	2890(3)	-191(19)	160(3)
C(125)	3940(4)	2770(3)	342(19)	108(16)
C(126)	3450(4)	2240(3)	875(17)	83(14)
C(127)	3920(4)	3620(3)	-633(17)	160(2)
C(131)	-250(2)	890(2)	1407(9)	44(10)
C(132)	-1010(3)	-20(3)	1097(17)	78(13)
C(133)	-2270(4)	-180(2)	940(15)	89(14)
C(134)	-2830(3)	620(3)	1100(14)	77(13)
C(135)	-2070(3)	1390(3)	1418(14)	67(12)
C(136)	-920(4)	1600(3)	1611(13)	71(12)
C(211)	240(4)	1440(2)	3832(14)	65(11)
C(212)	-610(3)	1650(3)	3413(15)	71(12)
C(213)	-1840(3)	1630(2)	3562(19)	59(10)
C(214)	-2180(4)	1490(4)	4210(2)	108(17)
C(215)	-1270(4)	1330(2)	4630(14)	67(11)
C(216)	-90(3)	1290(2)	4451(16)	56(10)
C(217)	-3550(4)	1400(3)	4370(15)	100(15)
C(221)	2880(3)	1960(3)	4204(16)	65(11)
C(222)	3670(3)	2980(2)	4188(12)	61(11)
C(223)	4490(3)	3460(3)	4627(14)	68(11)
C(224)	4660(4)	3050(3)	5203(17)	86(14)
C(225)	3900(3)	2040(3)	5304(14)	63(10)
C(226)	3040(3)	1540(2)	4745(15)	62(10)
C(227)	5610(4)	3500(3)	5759(19)	127(18)

Table 32. Atomic Coordinates (x10⁴) and Equivalent Isotropic Displacement Parameters $(\text{\AA}^2 x \ 10^3)$ for Cu₂I₂(P(*p*-C₇H₇)₃)₃

C(231)	1600(3)	0(3)	3614(11)	56(11)
C(232)	370(3)	-770(2)	3595(16)	67(11)
C(233)	390(3)	-1790(2)	3560(13)	62(10)
C(234)	1460(3)	-2070(2)	3553(15)	56(9)
C(235)	2590(3)	-1340(2)	3577(14)	56(10)
C(236)	2690(3)	-283(19)	3597(13)	49(9)
C(237)	1370(4)	-3220(2)	3516(18)	114(17)
C(311)	7160(3)	5230(3)	3403(17)	61(10)
C(312)	7460(4)	4430(3)	3636(16)	120(2)
C(313)	7940(3)	4530(2)	4240(2)	85(14)
C(314)	8160(3)	5500(3)	4640(15)	86(15)
C(315)	7790(4)	6180(3)	4383(17)	86(15)
C(316)	7320(4)	6050(3)	3816(19)	80(12)
C(317)	8800(3)	5530(2)	5354(16)	81(12)
C(321)	6230(3)	6280(2)	2464(18)	69(12)
C(322)	5220(4)	6490(3)	2561(11)	73(12)
C(323)	5010(5)	7450(3)	2514(18)	104(16)
C(324)	6220(5)	8300(3)	2446(15)	84(15)
C(325)	7220(5)	8060(2)	2420(2)	110(2)
C(326)	7390(3)	7060(3)	2403(15)	77(12)
C(327)	6040(5)	9360(3)	2500(2)	150(2)
C(331)	7510(3)	4760(2)	2116(12)	48(9)
C(332)	8810(4)	4930(3)	2240(2)	91(14)
C(333)	9560(4)	4750(3)	1760(3)	107(16)
C(334)	9200(4)	4320(3)	1140(2)	76(13)
C(335)	7940(6)	4160(3)	1050(2)	115(18)
C(336)	7100(3)	4340(3)	1472(19)	83(13)
C(337)	10090(4)	4030(3)	690(2)	150(2)
H(11A)	1815	-104	382	80
H(11C)	2471	-1578	246	80
H(11B)	2320	-1883	2090	80
H(11F)	1371	-517	2250	80
H(11G)	2439	-3244	542	80
H(11H)	3323	-2884	1153	80
H(11I)	1922	-3549	1205	80
H(12A)	484	1755	411	80
H(12B)	1469	2860	-269	80
H(12C)	4826	3080	317	80
H(12D)	3980	2139	1203	80
H(12F)	3423	3725	-976	80
H(12G)	4346	4256	-398	80
H(12H)	4528	3327	-800	80
H(13A)	-652	-537	981	80
H(13B)	-2789	-809	736	80

Table 32. (Continued)

H(13C)	-2449	1894	1550	80	
H(13D)	-475	2214	1866	80	
H(13E)	-4437	1007	1041	80	
H(13F)	-4339	263	464	80	
H(13G)	-4693	-137	1128	80	
H(21A)	-320	1851	3006	80	
H(21B)	-2439	1666	3246	80	
H(21C)	-1483	1220	5061	80	
H(21D)	495	1174	4744	80	
H(21E)	-3969	1570	4021	80	
H(21F)	-3964	709	4446	80	
H(21G)	-3573	1829	4743	80	
H(22A)	3590	3308	3819	80	
H(22B)	4998	4131	4564	80	
H(22C)	3953	1738	5690	80	
H(22E)	2534	847	4769	80	
H(22F)	6121	4175	5686	80	
H(22G)	5168	3526	6140	80	
H(22H)	6143	3093	5801	80	
H(23A)	-392	-607	3623	80	
H(23C)	-394	-2329	3527	80	
H(23D)	3335	-1541	3559	80	
H(23E)	3498	230	3618	80	
H(23F)	2197	-3278	3519	80	
H(23G)	933	-3527	3872	80	
H(23H)	918	-3560	3130	80	
H(31A)	7357	3822	3365	80	
H(31B)	8116	3981	4415	80	
H(31C)	7872	6797	4634	80	
H(31D)	7047	6578	3666	80	
H(31E)	8912	6175	5578	80	
H(31F)	8252	5013	5583	80	
H(31G)	9595	5419	5316	80	
H(32A)	4528	5941	2678	80	
H(32C)	4191	7532	2519	80	
H(32D)	7969	8624	2425	80	
H(32B)	8180	6940	2344	80	
H(32G)	6833	9870	2460	80	
H(32H)	5459	9393	2174	80	
H(32I)	5719	9475	2908	80	
H(33A)	9141	5160	2661	80	
H(33B)	10440	4943	1862	80	
H(33C)	7601	3894	632	80	
H(33D)	6233	4176	1346	80	

Table 32. (Continued)

9675	3753	282	80				
10775	4630	631	80				
10398	3551	867	80				
	9675 10775 10398	9675 3753 10775 4630 10398 3551	9675 3753 282 10775 4630 631 10398 3551 867	9675 3753 282 80 10775 4630 631 80 10398 3551 867 80			

Table 32. (Continued)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

I(1)-Cu(2)	2.579(7)
I(1)-Cu(1)	2.792(5)
I(2)-Cu(2)	2.618(5)
I(2)-Cu(1)	2.817(6)
Cu(1)-P(1)	2.307(9)
Cu(1)-P(2)	2.324(10)
Cu(1)-Cu(2)	2.948(6)
Cu(2)-P(3)	2.290(10)
P(1)-C(121)	1.83(4)
P(1)-C(131)	1.88(3)
P(1)-C(111)	1.91(3)
P(2)-C(211)	1.84(4)
P(2)-C(221)	1.83(3)
P(2)-C(231)	1.85(3)
P(3)-C(331)	1.79(3)
P(3)-C(311)	1.83(4)
P(3)-C(321)	1.91(3)
C(111)-C(116)	1.36(4)
C(111)-C(112)	1.41(4)
C(112)-C(113)	1.41(4)
C(113)-C(114)	1.40(5)
C(114)-C(115)	1.36(6)
C(114)-C(117)	1.69(6)
C(115)-C(116)	1.44(6)
C(121)-C(126)	1.40(4)
C(121)-C(122)	1.42(4)
C(122)-C(123)	1.34(4)
C(123)-C(124)	1.19(6)
C(124)-C(125)	1.55(6)
C(124)-C(127)	1.56(5)
C(125)-C(126)	1.43(5)
C(131)-C(132)	1.39(4)
C(131)-C(136)	1.47(4)
C(132)-C(133)	1.39(4)
C(133)-C(134)	1.47(5)
C(134)-C(135)	1.27(4)
C(134)-C(137)	1.51(4)
C(135)-C(136)	1.29(4)
C(211)-C(216)	1.38(4)
C(211)-C(212)	1.41(4)
C(212)-C(213)	1.42(4)
C(213)-C(214)	1.45(5)
C(214)-C(215)	1.42(5)

Table 33. Bond Lengths [Å] and Angles [deg] for $Cu_2I_2(P(p-C_7H_7)_3)_3$

C(214)-C(217)	1.54(5)
C(215)-C(216)	1.40(4)
C(221)-C(226)	1.37(4)
C(221)-C(222)	1.43(4)
C(222)-C(223)	1.28(4)
C(223)-C(224)	1.43(4)
C(224)-C(225)	1.44(5)
C(224)-C(227)	1.54(4)
C(225)-C(226)	1.50(4)
C(231)-C(236)	1.41(4)
C(231)-C(232)	1.46(4)
C(232)-C(233)	1.43(4)
C(233)-C(234)	1.37(4)
C(234)-C(235)	1.35(4)
C(234)-C(237)	1.59(4)
C(235)-C(236)	1.45(3)
C(311)-C(316)	1.35(4)
C(311)-C(312)	1.40(5)
C(312)-C(313)	1.35(4)
C(313)-C(314)	1.49(5)
C(314)-C(315)	1.31(4)
C(314)-C(317)	1.66(4)
C(315)-C(316)	1.28(4)
C(321)-C(322)	1.27(4)
C(321)-C(326)	1.43(4)
C(322)-C(323)	1.45(5)
C(323)-C(324)	1.53(5)
C(324)-C(325)	1.28(5)
C(324)-C(327)	1.56(5)
C(325)-C(326)	1.47(4)
C(331)-C(332)	1.41(4)
C(331)-C(336)	1.45(4)
C(332)-C(333)	1.39(5)
C(333)-C(334)	1.40(5)
C(334)-C(335)	1.37(6)
C(334)-C(337)	1.51(5)
C(335)-C(336)	1.37(5)
Cu(2)-I(1)-Cu(1)	66.44(15)
Cu(2)-I(2)-Cu(1)	65.59(14)
P(1)-Cu(1)-P(2)	129.9(3)
P(1)-Cu(1)-I(1)	104.7(2)
P(2)-Cu(1)-I(1)	107.3(3)
P(1)-Cu(1)-I(2)	105.7(3)

Table 33. (Continued)

Table 33. (Continued)

P(2)-Cu(1)-I(2)	100.4(3)
I(1)-Cu(1)-I(2)	107.25(16)
P(1)-Cu(1)-Cu(2)	115.3(3)
P(2)-Cu(1)-Cu(2)	114.7(3)
I(1)-Cu(1)-Cu(2)	53.31(14)
I(2)-Cu(1)-Cu(2)	53.96(14)
P(3)-Cu(2)-I(1)	125.7(3)
P(3)-Cu(2)-I(2)	113.4(3)
I(1)-Cu(2)-I(2)	120.69(19)
P(3)-Cu(2)-Cu(1)	173 3(3)
I(1)-Cu(2)-Cu(1)	60.25(15)
I(2)-Cu(2)-Cu(1)	60.45(15)
C(121)-P(1)-C(131)	101 5(14)
C(121)-P(1)-C(111)	102.0(14)
C(131)-P(1)-C(111)	102.0(14) 104 4(14)
C(121)-P(1)-Cu(1)	115 9(11)
C(131)-P(1)-Cu(1)	117.4(7)
C(111)-P(1)-Cu(1)	113.6(9)
C(211)-P(2)-C(221)	104.7(15)
C(211)-P(2)-C(231)	104.1(14)
C(221)-P(2)-C(231)	101.3(14)
C(211)-P(2)-Cu(1)	116.3(11)
C(221)-P(2)-Cu(1)	115.4(13)
C(231)-P(2)-Cu(1)	113.2(8)
C(331)-P(3)-C(311)	101.7(14)
C(331)-P(3)-C(321)	107.4(15)
C(311)-P(3)-C(321)	103.6(15)
C(331)-P(3)-Cu(2)	113.3(11)
C(311)-P(3)-Cu(2)	113.0(11)
C(321)-P(3)-Cu(2)	116.4(11)
C(116)-C(111)-C(112)	122(3)
C(116)-C(111)-P(1)	115(3)
C(112)-C(111)-P(1)	123(2)
C(111)-C(112)-C(113)	117(3)
C(114)-C(113)-C(112)	120(4)
C(113)-C(114)-C(115)	119(4)
C(113)-C(114)-C(117)	114(5)
C(115)-C(114)-C(117)	121(5)
C(114)-C(115)-C(116)	118(5)
C(111)-C(116)-C(115)	118(4)
C(126)-C(121)-C(122)	119(4)
C(126)-C(121)-P(1)	119(2)
C(122)-C(121)-P(1)	122(3)
- () - (-)	(-)

Table 33. (Continued)

C(123)-	-C(122)-C(121)	115(4)
C(124)	-C(123)-C(122)	137(4)
C(123)-	-C(124)-C(125)	109(3)
C(123)-	-C(124)-C(127)	142(5)
C(125)-	-C(124)-C(127)	105(5)
C(126)-	-C(125)-C(124)	121(4)
C(121)-	-C(126)-C(125)	117(4)
C(132)-	-C(131)-C(136)	115(3)
C(132)-	-C(131)-P(1)	122(3)
C(136)-	-C(131)-P(1)	124(2)
C(133)-	-C(132)-C(131)	122(4)
C(132)	-C(133)-C(134)	120(3)
C(135)-	-C(134)-C(133)	113(3)
C(135)-	-C(134)-C(137)	129(4)
C(133)	-C(134)-C(137)	119(3)
C(134)	-C(135)-C(136)	133(4)
C(135)-	-C(136)-C(131)	117(3)
C(216)	-C(211)-C(212)	119(3)
C(216)	-C(211)-P(2)	121(3)
C(212)	-C(211)-P(2)	120(2)
C(211)	-C(212)-C(213)	125(3)
C(212)	-C(213)-C(214)	117(3)
C(213)	-C(214)-C(215)	117(4)
C(213)	-C(214)-C(217)	117(4)
C(215)-	-C(214)-C(217)	126(5)
C(216)	-C(215)-C(214)	125(4)
C(211)	-C(216)-C(215)	118(3)
C(226)	-C(221)-C(222)	114(3)
C(226)	-C(221)-P(2)	125(3)
C(222)	-C(221)-P(2)	121(2)
C(223)	-C(222)-C(221)	124(3)
C(222)	-C(223)-C(224)	123(4)
C(223)	-C(224)-C(225)	120(3)
C(223)	-C(224)-C(227)	130(4)
C(225)	-C(224)-C(227)	111(3)
C(224)	-C(225)-C(226)	112(3)
C(221)	-C(226)-C(225)	127(3)
C(236)	-C(231)-C(232)	119(3)
C(236)	-C(231)-P(2)	119(2)
C(232)	-C(231)-P(2)	121(2)
C(233)	-C(232)-C(231)	116(3)
C(234)	-C(233)-C(232)	125(3)
C(235)	-C(234)-C(233)	119(3)
C(235)	-C(234)-C(237)	120(3)

Table 33. (Continued)

C(233)-C(234)-C(237)	121(3)	
C(234)-C(235)-C(236)	121(3)	
C(231)-C(236)-C(235)	120(3)	
C(316)-C(311)-C(312)	116(3)	
C(316)-C(311)-P(3)	126(3)	
C(312)-C(311)-P(3)	117(3)	
C(313)-C(312)-C(311)	119(4)	
C(312)-C(313)-C(314)	120(3)	
C(315)-C(314)-C(313)	115(3)	
C(315)-C(314)-C(317)	130(4)	
C(313)-C(314)-C(317)	115(3)	
C(316)-C(315)-C(314)	123(4)	
C(315)-C(316)-C(311)	126(4)	
C(322)-C(321)-C(326)	121(3)	
C(322)-C(321)-P(3)	121(3)	
C(326)-C(321)-P(3)	116(3)	
C(321)-C(322)-C(323)	128(4)	
C(322)-C(323)-C(324)	112(4)	
C(325)-C(324)-C(323)	116(4)	
C(325)-C(324)-C(327)	130(4)	
C(323)-C(324)-C(327)	113(4)	
C(324)-C(325)-C(326)	131(4)	
C(321)-C(326)-C(325)	112(3)	
C(332)-C(331)-C(336)	113(3)	
C(332)-C(331)-P(3)	131(3)	
C(336)-C(331)-P(3)	117(3)	
C(331)-C(332)-C(333)	121(4)	
C(334)-C(333)-C(332)	129(4)	
C(335)-C(334)-C(333)	108(4)	
C(335)-C(334)-C(337)	129(4)	
C(333)-C(334)-C(337)	123(4)	
C(334)-C(335)-C(336)	130(5)	
C(335)-C(336)-C(331)	120(4)	

	U11	U22	U33	U23	U13	U12
<u>I(1)</u>	69(2)	45(2)	141(3)	10(2)	-15(2)	15(2)
I(2)	60(2)	43(1)	79(2)	4(1)	2(1)	16(1)
$\hat{Cu}(1)$	64(3)	41(2)	56(3)	1(2)	-5(2)	16(2)
Cu(2)	62(3)	48(3)	85(3)	1(2)	-11(3)	14(3)
P(1)	59(6)	36(5)	49(5)	-4(4)	4(4)	26(5)
P(2)	43(6)	47(5)	60(6)	-1(4)	-8(5)	11(5)
P(3)	60(7)	45(5)	73(6)	-3(5)	-8(5)	16(6)
C(111)	60(2)	50(2)	38(18)	-2(16)	-17(17)	25(19)
C(112)	130(4)	120(4)	50(2)	0(2)	-10(2)	70(3)
C(113)	110(4)	50(2)	110(3)	-20(2)	50(3)	60(3)
C(114)	140(5)	40(3)	160(5)	0(3)	-30(4)	-40(3)
C(115)	120(4)	120(5)	130(5)	10(4)	-50(4)	20(4)
C(116)	230(6)	110(4)	60(3)	30(3)	60(3)	100(4)
C(117)	280(7)	110(4)	160(4)	-40(3)	-50(4)	170(5)
C(121)	150(4)	60(2)	28(17)	-6(15)	-60(2)	60(3)
C(122)	140(4)	70(3)	40(2)	21(19)	0(2)	10(3)
C(123)	200(5)	180(4)	2(14)	11(19)	50(2)	170(4)
C(124)	380(8)	90(3)	70(3)	50(2)	200(4)	150(4)
C(125)	110(4)	90(3)	80(3)	0(3)	30(3)	-20(3)
C(126)	70(3)	70(3)	70(3)	30(2)	20(2)	-50(2)
C(127)	190(6)	130(4)	100(4)	-70(3)	-80(4)	10(4)
C(131)	16(15)	70(2)	0(11)	-11(12)	49(10)	-48(15)
C(132)	7(18)	90(3)	120(3)	-10(3)	-20(2)	0(2)
C(133)	140(4)	24(18)	80(3)	-34(18)	0(3)	0(3)
C(134)	80(3)	110(3)	40(19)	-50(2)	-50(2)	40(3)
C(135)	60(3)	90(3)	60(2)	-50(2)	-40(2)	50(2)
C(136)	120(4)	60(2)	21(17)	-27(16)	10(2)	30(3)
C(137)	40(3)	130(4)	120(3)	10(3)	-40(2)	20(3)
C(211)	100(3)	60(2)	23(18)	-10(16)	10(2)	10(2)
C(212)	10(2)	120(3)	50(2)	-20(2)	35(16)	-10(2)
C(213)	17(19)	50(2)	110(3)	0(2)	-30(2)	15(18)
C(214)	70(4)	120(4)	120(4)	-60(3)	-30(3)	20(3)
C(215)	100(3)	50(2)	50(2)	-36(16)	-40(2)	20(2)
C(216)	50(2)	60(2)	90(3)	-23(18)	10(19)	70(2)
C(217)	150(5)	130(4)	40(2)	10(2)	-10(3)	70(4)
C(221)	70(3)	70(2)	90(3)	10(2)	-20(2)	70(2)
C(222)	130(4)	40(2)	11(15)	-14(14)	-17(19)	30(2)
C(223)	100(3)	100(3)	23(17)	14(19)	-2(19)	70(3)
C(224)	90(4)	110(4)	70(3)	-60(3)	-20(2)	70(3)
C(225)	80(3)	70(3)	50(2)	9(19)	-10(2)	40(2)
C(226)	70(3)	50(2)	80(2)	-35(18)	-10(2)	40(2)

Table 34. Anisotropic Displacement Parameters ($A^2 \times 10^3$) for $Cu_2I_2(P(p-C_7H_7)_3)_3$

C(227) 120(4)	40(2)	190(5)	-50(3)	0(4)	0(3)
C(231) 60(2)	110(3)	20(14)	71(18)	62(15)	50(2)
C(232) 20(2)	31(19)	140(3)	10(2)	-20(2)	-6(18)
C(233) 70(3)	40(2)	70(2)	43(17)	40(2)	0(2)
C(234) 20(2)	40(2)	100(3)	-9(18)	17(19)	-3(19)
C(235) 50(2)	24(16)	110(3)	29(18)	-10(2)	33(18)
C(236) 30(2)	13(14)	80(2)	-12(15)	1(18)	-12(15
C(237) 120(4)	25(19)	160(4)	40(2)	-70(3)	-30(2)
C(311) 60(3)	35(19)	100(3)	20(2)	50(2)	20(2)
C(312) 130(4)	80(3)	60(3)	-20(2)	-70(3)	-70(3)
C(313) 80(3)	10(15)	190(4)	10(2)	0(3)	48(19)
C(314) 21(19)	130(4)	70(2)	80(3)	8(17)	-50(2)
C(315) 170(5)	60(2)	60(2)	60(2)	70(3)	60(3)
C(316) 110(4)	50(2)	90(3)	30(2)	10(3)	40(3)
C(317) 20(2)	40(2)	180(4)	60(2)	30(2)	-4(18)
C(321) 20(2)	13(15)	170(4)	-18(19)	30(2)	9(17)
C(322) 110(3)	90(3)	12(15)	39(17)	31(18)	10(3)
C(323) 120(4)	90(4)	110(3)	0(3)	-30(3)	50(4)
C(324) 170(5)	40(2)	50(2)	22(18)	20(3)	30(3)
C(325) 160(5)	11(18)	170(4)	-30(2)	-100(4)	30(3)
C(326) 50(3)	80(3)	90(3)	0(2)	30(2)	20(3)
C(327) 210(6)	30(2)	190(5)	20(3)	30(4)	20(3)
C(331) 90(3)	53(19)	30(16)	-27(14)	-1(17)	70(2)
C(332) 40(3)	110(4)	120(4)	-20(3)	-40(3)	30(3)
C(333) 80(4)	100(4)	160(5)	-20(3)	20(4)	60(3)
C(334) 40(3)	50(2)	130(4)	-10(2)	30(3)	10(2)
C(335) 180(6)	100(4)	90(3)	20(3)	80(4)	70(4)
C(336) 30(2)	100(3)	100(3)	10(3)	20(2)	10(3)
C(337) 150(5)	170(5)	180(5)	-30(4)	10(4)	150(4)

Table 34. (Continued)

The anisotropic displacement factor exponent takes the form: -2 pi^2 [$h^2a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

Figure 20 Projection View of Cu₂I₂(P(p-C₇H₇)₃)₃

Empirical formula	$C_{63}H_{63}Cu_2I_2P_3$
Formula weight	1293.92
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	monoclinic, $P2_1/a$
Unit cell dimensions	$a = 11.300(6)$ Å $\alpha = 90.0$ deg.
	b = 40.524(18) Å β = 110.47(2) deg.
	$c = 14.283(7)$ Å $\gamma = 90.0$ deg.
Volume	6127(5) Å ³
Z, Calculated density	5, 1.753 Mg/m^3
Absorption coefficient	2.270 mm^{-1}
F(000)	3250
Crystal size	0.2 x 0.2 x 0.2 mm
Theta range for data collection	3.5 to 22.5 deg.
Index ranges	$-15 \le h \le 1, -57 \le k \le 1, -19 \le l \le 20$
Reflections collected / unique/	20879 / 17888 [R(int) = 0.3308]
Goodness-of-fit	0.961
Final R indices [I>2sigma(I)]	R1 = 0.2067, wR2 = 0.2606
R indices (all data)	R1 = 0.5673, $wR2 = 0.4082$
Extinction coefficient	0.00035(15)
Largest diff. peak and hole	0.797 and -0.910 eÅ ⁻³

Table 35. Crystal Data and Structure Refinement for $Cu_2I_2(P(p-C_7H_7)_3)_3$

	x	у	Z	U(eq)
I(1)	2341(2)	1337(1)	1411(2)	66(1)
Cu(3)	4625(3)	1354(1)	1091(2)	55(1)
Cu(4)	4294(4)	1424(1)	3024(3)	69(1)
I(2)	6466(2)	1534(1)	2896(2)	75(1)
P(1)	4940(8)	812(2)	806(6)	48(2)
P(2)	4519(7)	1807(2)	107(6)	49(2)
P(3)	3874(9)	1424(2)	4453(6)	64(3)
C(111)	4570(3)	516(9)	1630(2)	79(13)
C(112)	3700(3)	265(7)	1190(2)	56(10)
C(113)	3480(3)	69(10)	1860(2)	90(14)
C(114)	3960(4)	76(7)	2880(4)	94(15)
C(115)	4800(4)	331(11)	3290(2)	94(13)
C(116)	5080(3)	555(8)	2640(3)	78(11)
C(117)	3680(4)	-137(9)	3630(3)	141(17)
C(121)	3880(3)	676(6)	-470(2)	54(9)
C(122)	2610(4)	744(5)	-770(2)	90(13)
C(123)	1860(3)	654(7)	-1670(2)	82(13)
C(124)	2220(3)	514(7)	-2380(2)	84(13)
C(125)	3480(3)	480(9)	-2150(2)	95(14)
C(126)	4420(3)	548(7)	-1130(2)	66(10)
C(127)	1370(3)	448(10)	-3460(2)	135(17)
C(131)	6520(2)	675(7)	914(18)	42(7)
C(132)	6920(2)	351(5)	943(19)	41(8)
C(133)	8140(2)	254(6)	1052(19)	53(9)
C(134)	9050(3)	504(7)	1050(2)	62(10)
C(135)	8680(3)	828(8)	1020(2)	69(10)
C(136)	7420(3)	929(7)	940(2)	57(9)
C(137)	10340(2)	395(9)	1050(2)	110(15)
C(211)	5730(3)	1845(6)	-500(3)	55(9)
C(212)	5570(3)	1924(8)	-1450(2)	68(11)
C(213)	6480(3)	1953(11)	-1850(2)	98(17)
C(214)	7680(5)	1890(8)	-1250(3)	102(17)
C(215)	7950(2)	1792(7)	-300(3)	78(12)
C(216)	6990(3)	1790(7)	150(2)	66(10)
C(217)	8810(4)	1909(10)	-1610(3)	150(2)
C(221)	4630(3)	2225(9)	762(18)	57(11)
C(222)	5460(3)	2461(8)	800(2)	67(11)
C(223)	5520(3)	2756(8)	1390(2)	65(10)
C(224)	4700(3)	2777(8)	1920(3)	63(10)
C(225)	3900(3)	2502(8)	1880(2)	59(10)
C(226)	3900(3)	2235(7)	1320(2)	70(11)

Table 36. Atomic Coordinates (x10⁴) and Equivalent Isotropic Displacement Parameters $(\text{\AA}^2 x \ 10^3)$ for Cu₂I₂(P(*p*-C₇H₇)₃)₃

Table 36. (Continued)

C(227)	4760(3)	3083(7)	2560(2)	76(11)	
C(231)	3060(3)	1834(9)	-1010(3)	79(11)	
C(232)	2470(3)	2138(8)	-1350(3)	71(11)	
C(233)	1410(2)	2128(8)	-2320(3)	95(16)	
C(234)	1270(4)	1820(8)	-2824(19)	120(2)	
C(235)	1700(4)	1555(7)	-2510(3)	160(3)	
C(236)	2670(3)	1576(8)	-1610(2)	67(11)	
C(237)	20(3)	1882(8)	-3870(2)	73(10)	
C(311)	2440(5)	1171(12)	4310(3)	130(2)	
C(312)	1390(3)	1319(9)	4550(2)	71(10)	
C(312)	260(3)	1098(12)	4330(2)	86(13)	
C(314)	110(6)	786(12)	3980(3)	130(3)	
C(315)	1190(4)	661(11)	3820(3)	107(16)	
C(316)	2270(4)	859(12)	4010(3)	126(17)	
C(317)	-960(3)	579(11)	3840(3)	137(19)	
C(321)	3450(3)	1839(9)	4760(2)	74(11)	
C(321)	3510(3)	1940(10)	5700(2)	79(13)	
C(322)	2990(4)	2225(11)	5870(3)	96(15)	
C(324)	2470(3)	2432(10)	5100(3)	72(12)	
C(325)	2520(3)	2355(7)	4200(3)	70(11)	
C(326)	3010(3)	2054(8)	4010(2)	62(10)	
C(327)	1820(3)	2738(10)	5190(2)	107(14)	
C(321)	5100(3)	1284(8)	5590(2)	67(10)	
C(332)	4840(3)	1150(8)	6460(2)	78(11)	
C(333)	5860(3)	1046(7)	7300(2)	71(11)	
C(334)	7050(3)	1055(10)	7420(3)	102(15)	
C(335)	7340(3)	1184(10)	6510(2)	100(13)	
C(336)	6330(2)	1265(8)	5660(2)	77(12)	
C(337)	8140(3)	948(10)	8350(2)	124(16)	
H(11A)	3291	243	485	80	
H(11C)	2876	-107	1628	80	
H(11D)	5168	364	3996	80	
H(11E)	5626	740	2897	80	
H(11E)	4167	-88	4310	80	
H(11G)	2795	-107	3521	80	
H(11H)	3821	-362	3482	80	
H(12A)	2266	840	-302	80	
H(12R)	965	682	1872	80	
H(12C)	3807	362	-2589	80	
H(12D)	5322	534	-921	80	
H(12E) H(12F)	518	512	-3549	80	
H(12G)	1650	561	-3931	80	
H(12H)	1403	214	-3551	80	
$H(12\Delta)$	6205	182	864	80	
H(13R)	8387	26	1133	80	
1(12D)	0302	20	1133	00	

H(13C)	9330	989	1129	80
H(13D)	7185	1158	864	80
H(13F)	10760	599	1022	80
H(13G)	10776	285	1669	80
H(13H)	10326	257	502	80
H(21A)	4738	1988	-1886	80
H(21B)	6316	1966	-2558	80
H(21C)	8773	1706	63	80
H(21D)	7168	1768	860	80
H(21F)	8519	1987	-2286	80
H(21G)	9448	2056	-1197	80
H(21H)	9167	1692	-1582	80
H(22A)	5976	2441	401	80
H(22B)	6159	2920	1438	80
H(22C)	3389	2514	2299	80
H(22D)	3368	2052	1342	80
H(22E)	5318	3247	2468	80
H(22F)	3922	3175	2384	80
H(22G)	5045	3016	3250	80
H(23A)	2733	2333	-951	80
H(23C)	922	2324	-2569	80
H(23D)	1476	1360	-2916	80
H(23E)	3083	1370	-1379	80
H(23F)	-148	1678	-4233	80
H(23G)	-718	1949	-3729	80
H(23H)	238	2049	-4253	80
H(31A)	1463	1536	4834	80
H(31C)	-452	1198	4434	80
H(31D)	1115	448	3510	80
H(31E)	3020	760	3956	80
H(31F)	-1661	664	4004	80
H(31G)	-1235	533	3139	80
H(31H)	-660	380	4213	80
H(32A)	3949	1803	6260	80
H(32B)	2930	2270	6515	80
H(32C)	2235	2507	3654	80
H(32D)	2979	1991	3355	80
H(32E)	1544	2861	4575	80
H(32F)	1110	2684	5377	80
H(32G)	2409	2870	5705	80
H(33A)	3985	1137	6450	80
H(33B)	5658	958	7846	80
H(33C)	8194	1221	6540	80
H(33E)	6494	1292	5050	80
H(33F)	7787	867	8831	80

Table 36. (Continued)

Table 36. (Continued)					
H(33G)	8663	782	8222	80	
H(33H)	8629	1142	8611	80	

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

I(1)-Cu(4)	2.598(4)	
I(1)-Cu(3)	2.775(4)	
Cu(3)-P(1)	2.283(9)	
Cu(3)-P(2)	2.290(9)	
Cu(3)-I(2)	2.786(4)	
Cu(3)-Cu(4)	2.927(5)	
Cu(4)-P(3)	2.251(9)	
Cu(4)-I(2)	2.563(5)	
P(1)-C(131)	1.82(2)	
P(1)-C(111)	1.83(4)	
P(1)-C(121)	1.88(3)	
P(2)-C(231)	1.85(3)	
P(2)-C(211)	1.86(3)	
P(2)-C(221)	1.92(3)	
P(3)-C(331)	1.81(3)	
P(3)-C(321)	1.84(4)	
P(3)-C(311)	1.87(3)	
C(111)-C(116)	1.36(4)	
C(111)-C(112)	1.40(4)	
C(112)-C(113)	1.33(4)	
C(113)-C(114)	1.37(4)	
C(114)-C(115)	1.39(4)	
C(114)-C(117)	1.49(4)	
C(115)-C(116)	1.41(4)	
C(121)-C(122)	1.37(4)	
C(121)-C(126)	1.39(4)	
C(122)-C(123)	1.32(4)	
C(123)-C(124)	1.34(4)	
C(124)-C(125)	1.35(4)	
C(124)-C(127)	1.52(4)	
C(125)-C(126)	1.50(4)	
C(131)-C(132)	1.38(3)	
C(131)-C(136)	1.44(3)	
C(132)-C(133)	1.39(3)	
C(133)-C(134)	1.44(4)	
C(134)-C(135)	1.38(4)	
C(134)-C(137)	1.52(3)	
C(135)-C(136)	1.44(4)	
C(211)-C(212)	1.35(4)	
C(211)-C(216)	1.42(4)	
C(212)-C(213)	1.35(3)	
C(213)-C(214)	1.35(5)	
C(214)-C(215)	1.34(4)	

Table 37	Bond Lengths [Å] and Angles [deg] for
1 4010 57.	Dond Lengths [11] and Imples [deg] for
	$Cu_{2}I_{2}(P(n-C_{7}H_{7})_{2})_{2}$

C(214)-C(217) 1.54(4)1.45(4)C(215)-C(216) 1.32(4)C(221)-C(222) 1.34(4)C(221)-C(226) C(222)-C(223) 1.44(4)1.40(4)C(223)-C(224) C(224)-C(225) 1.42(4)C(224)-C(227) 1.53(4)C(225)-C(226) 1.35(4)1.33(4)C(231)-C(236) C(231)-C(232) 1.41(4)C(232)-C(233) 1.48(4)C(233)-C(234) 1.42(4)C(234)-C(235) 1.20(6)C(234)-C(237) 1.67(4)C(235)-C(236) 1.37(5)C(311)-C(316) 1.33(5)C(311)-C(312) 1.47(5)C(312)-C(313) 1.50(4)C(313)-C(314) 1.35(5)C(314)-C(315) 1.41(6) C(314)-C(317) 1.43(6) C(315)-C(316) 1.41(5)1.33(4)C(321)-C(326) C(321)-C(322) 1.38(4)C(322)-C(323) 1.36(5)C(323)-C(324) 1.35(4)C(324)-C(325) 1.34(4)C(324)-C(327) 1.47(4)C(325)-C(326) 1.40(4)C(331)-C(336) 1.37(3)C(331)-C(332) 1.48(3)C(332)-C(333) 1.40(4)C(333)-C(334) 1.30(4)C(334)-C(337) 1.52(4)C(334)-C(335) 1.53(4)C(335)-C(336) 1.38(3) Cu(4)-I(1)-Cu(3)65.91(12) 129.8(3) P(1)-Cu(3)-P(2)P(1)-Cu(3)-I(1)102.6(2) 105.6(2) P(2)-Cu(3)-I(1)107.7(2)P(1)-Cu(3)-I(2)P(2)-Cu(3)-I(2)102.7(2)I(1)-Cu(3)-I(2)106.90(13)

Table 37. (Continued)

Table 37. (Continued)

P(1)-Cu(3)-Cu(4)	109.9(2)
P(2)-Cu(3)-Cu(4)	120.3(3)
I(1)-Cu(3)-Cu(4)	54.13(11)
I(2)-Cu(3)-Cu(4)	53.26(11)
P(3)-Cu(4)-I(2)	125.1(3)
P(3)-Cu(4)-I(1)	114.9(3)
I(2)-Cu(4)-I(1)	119.88(15)
P(3)-Cu(4)-Cu(3)	172.9(3)
I(2)-Cu(4)-Cu(3)	60.55(11)
I(1)-Cu(4)-Cu(3)	59.96(11)
Cu(4)-I(2)-Cu(3)	66.19(12)
C(131)-P(1)-C(111)	100.7(15)
C(131)-P(1)-C(121)	105.5(12)
C(111)-P(1)-C(121)	102.6(14)
C(131)-P(1)-Cu(3)	119.1(10)
C(111)-P(1)-Cu(3)	115.5(12)
C(121)-P(1)-Cu(3)	111.5(8)
C(231)-P(2)-C(211)	99.9(16)
C(231)-P(2)-C(221)	104.8(15)
C(211)-P(2)-C(221)	102.6(12)
C(231)-P(2)-Cu(3)	114.6(10)
C(211)-P(2)-Cu(3)	117.5(10)
C(221)-P(2)-Cu(3)	115.4(9)
C(331)-P(3)-C(321)	104.5(14)
C(331)-P(3)-C(311)	106.5(17)
C(321)-P(3)-C(311)	104(2)
C(331)-P(3)-Cu(4)	118.4(10)
C(321)-P(3)-Cu(4)	111.7(8)
C(311)-P(3)-Cu(4)	110.7(12)
C(116)-C(111)-C(112)	122(3)
C(116)-C(111)-P(1)	120(3)
C(112)-C(111)-P(1)	118(2)
C(113)-C(112)-C(111)	113(3)
C(112)- $C(113)$ - $C(114)$	130(3)
C(113)-C(114)-C(115)	115(3)
C(113)-C(114)-C(117)	130(4)
C(115)-C(114)-C(117)	115(4)
C(114)-C(115)-C(116)	119(3)
C(111)- $C(116)$ - $C(115)$	121(3)
U(122)-U(121)-U(120)	122(3)
U(122)-U(121)-P(1)	119(2)
C(120)-C(121)-F(1)	119(2)
C(123)- $C(122)$ - $C(121)$	117(3)
C(122)-C(123)-C(124)	12/(3)
U(123)-U(124)-U(123)	113(3)

Table 37. (Continued)

C(123)-C(124)-C(127)	126(4)
C(125)-C(124)-C(127)	117(4)
C(124)-C(125)-C(126)	123(3)
C(121)-C(126)-C(125)	113(3)
C(132)-C(131)-C(136)	117(2)
C(132)-C(131)-P(1)	126(2)
C(136)-C(131)-P(1)	116(2)
C(133)-C(132)-C(131)	125(2)
C(132)-C(133)-C(134)	119(2)
C(135)-C(134)-C(133)	117(3)
C(135)-C(134)-C(137)	124(3)
C(133)-C(134)-C(137)	119(3)
C(134)-C(135)-C(136)	124(3)
C(131)-C(136)-C(135)	118(3)
C(212)-C(211)-C(216)	117(3)
C(212)-C(211)-P(2)	129(3)
C(216)-C(211)-P(2)	114(2)
C(211)-C(212)-C(213)	127(3)
C(214)-C(213)-C(212)	117(3)
C(215)-C(214)-C(213)	121(3)
C(215)-C(214)-C(217)	116(4)
C(213)-C(214)-C(217)	123(3)
C(214)-C(215)-C(216)	121(3)
C(211)-C(216)-C(215)	116(3)
C(222)-C(221)-C(226)	122(3)
C(222)-C(221)-P(2)	126(2)
C(226)-C(221)-P(2)	112(3)
C(221)-C(222)-C(223)	122(3)
C(224)-C(223)-C(222)	117(3)
C(223)-C(224)-C(225)	118(3)
C(223)-C(224)-C(227)	119(3)
C(225)-C(224)-C(227)	123(3)
C(226)-C(225)-C(224)	121(3)
C(221)-C(226)-C(225)	121(3)
C(236)-C(231)-C(232)	117(3)
C(236)-C(231)-P(2)	120(3)
C(232)-C(231)-P(2)	121(3)
C(231)-C(232)-C(233)	115(3)
C(234)-C(233)-C(232)	114(2)
C(235)-C(234)-C(233)	130(3)
C(235)-C(234)-C(237)	125(3)
C(233)-C(234)-C(237)	103(3)
C(234)-C(235)-C(236)	112(2)
C(231)-C(236)-C(235)	129(3)
C(316)-C(311)-C(312)	116(4)

Table 37. (Continued)

C(316)-C(311)-P(3)	125(5)					
C(312)-C(311)-P(3)	119(3)					
C(311)-C(312)-C(313)	114(3)					
C(314)-C(313)-C(312)	129(4)					
C(313)-C(314)-C(315)	113(5)					
C(313)-C(314)-C(317)	126(6)					
C(315)-C(314)-C(317)	121(4)					
C(316)-C(315)-C(314)	121(5)					
C(311)-C(316)-C(315)	128(5)					
C(326)-C(321)-C(322)	117(3)					
C(326)-C(321)-P(3)	118(2)					
C(322)-C(321)-P(3)	125(3)					
C(323)-C(322)-C(321)	124(3)					
C(324)-C(323)-C(322)	118(4)					
C(325)-C(324)-C(323)	119(4)					
C(325)-C(324)-C(327)	118(4)					
C(323)-C(324)-C(327)	123(4)					
C(324)-C(325)-C(326)	123(3)					
C(321)-C(326)-C(325)	118(3)					
C(336)-C(331)-C(332)	114(2)					
C(336)-C(331)-P(3)	121(2)					
C(332)-C(331)-P(3)	124(2)					
C(333)-C(332)-C(331)	119(3)					
C(334)-C(333)-C(332)	128(3)					
C(333)-C(334)-C(337)	126(4)					
C(333)-C(334)-C(335)	115(3)					
C(337)-C(334)-C(335)	120(3)					
C(336)-C(335)-C(334)	118(3)					
C(331)-C(336)-C(335)	126(3)					
<u></u>	U11	U22	U33	U23	U13	U12
---------	--------	--------	--------	---------	--------	---------
I(1)	55(1)	76(2)	78(2)	-8(1)	39(1)	-7(1)
Cu(3)	61(3)	52(2)	57(2)	0(2)	28(2)	-1(2)
Cu(4)	70(3)	87(3)	61(2)	3(2)	35(2)	-2(2)
I(2)	67(2)	108(2)	59(1)	-11(1)	33(1)	-26(2)
P(1)	57(6)	50(5)	46(5)	1(4)	28(4)	0(5)
P(2)	39(5)	57(5)	59(5)	-5(4)	29(4)	0(4)
P(3)	82(7)	66(6)	57(5)	4(5)	40(5)	2(5)
C(111)	90(3)	80(3)	31(18)	-12(19)	-20(2)	0(2)
C(112)	80(2)	70(2)	39(18)	64(17)	47(18)	27(19)
C(113)	70(3)	130(4)	50(2)	-50(2)	0(2)	-30(3)
C(114)	130(4)	0(15)	190(4)	60(2)	100(3)	11(18)
C(115)	120(4)	110(4)	60(2)	0(2)	40(2)	-10(3)
C(116)	50(2)	50(2)	130(3)	0(2)	10(2)	-21(18)
C(117)	180(5)	100(3)	150(4)	-20(3)	70(4)	0(3)
C(121)	50(2)	36(17)	70(2)	43(16)	26(18)	59(16)
C(122)	200(4)	0(13)	90(2)	-60(14)	70(3)	11(19)
C(123)	60(2)	80(3)	100(3)	-100(2)	30(2)	-30(2)
C(124)	90(3)	32(19)	70(2)	6(17)	-60(2)	-10(2)
C(125)	60(2)	160(4)	70(2)	-50(2)	30(2)	-100(3)
C(126)	31(19)	60(2)	100(3)	0(2)	15(19)	29(17)
C(127)	140(4)	180(5)	90(3)	-40(3)	50(3)	-40(4)
C(131)	18(15)	60(2)	42(17)	-13(15)	0(13)	14(15)
C(132)	24(16)	0(12)	90(2)	22(13)	4(15)	10(11)
C(133)	37(18)	17(14)	80(2)	2(14)	-8(16)	54(14)
C(134)	60(2)	27(17)	90(2)	-30(17)	10(2)	26(17)
C(135)	60(2)	60(2)	100(3)	-32(19)	40(2)	-60(2)
C(136)	37(19)	60(2)	70(2)	21(17)	14(18)	-14(17)
C(137)	40(2)	170(4)	140(4)	0(3)	50(2)	50(2)
C(211)	60(2)	16(15)	120(3)	-14(18)	70(2)	-13(16)
C(212)	50(2)	130(3)	50(2)	-10(2)	43(18)	-30(2)
C(213)	70(2)	230(5)	4(15)	10(2)	26(17)	50(3)
C(214)	240(5)	70(2)	70(3)	40(2)	160(3)	10(3)
C(215)	11(15)	50(2)	180(4)	-20(2)	40(2)	2(15)
C(216)	80(3)	70(2)	80(2)	-21(19)	60(2)	-40(2)
C(217)	220(5)	130(4)	160(4)	-40(3)	150(4)	-100(4)
C(221)	33(17)	140(3)	15(14)	26(17)	27(13)	50(2)
C(222)	50(2)	70(3)	120(3)	-20(2)	80(2)	-7(19)
C(223)	40(2)	60(2)	90(3)	0(2)	20(2)	6(19)
C(224)	31(19)	50(2)	90(3)	40(2)	1(18)	23(17)
C(225)	60(2)	80(3)	70(2)	27(19)	60(19)	0(2)
C(226)	110(3)	19(16)	90(3)	-23(17)	50(2)	-22(18)

Table 38. Anisotropic Displacement Parameters ($A^2 \times 10^3$) for $Cu_2I_2(P(p-C_7H_7)_3)_3$

C(227)	50(2)	60(2)	110(3)	-40(2)	20(2)	-44(18)
C(231)	60(3)	70(3)	120(3)	20(2)	50(2)	-20(2)
C(232)	30(19)	50(2)	160(4)	-10(2)	60(2)	4(17)
C(233)	0(12)	120(3)	200(4)	150(3)	78(19)	87(16)
C(234)	250(5)	100(2)	32(16)	-47(17)	80(2)	-210(3)
C(235)	400(7)	47(19)	150(3)	-90(2)	240(4)	-200(3)
C(236)	80(2)	80(2)	70(2)	-70(2)	52(19)	10(2)
C(237)	60(2)	90(3)	80(2)	10(2)	40(2)	-30(2)
C(311)	160(5)	160(4)	50(2)	-30(3)	30(3)	-160(4)
C(312)	90(3)	60(2)	80(3)	0(2)	50(2)	-20(2)
C(313)	50(2)	170(4)	50(2)	30(3)	17(18)	10(3)
C(314)	150(5)	90(4)	80(3)	-50(3)	-60(4)	20(4)
C(315)	120(4)	80(3)	90(3)	-30(3)	10(3)	-50(3)
C(316)	60(3)	150(5)	160(4)	-20(3)	30(3)	-70(3)
C(317)	60(3)	180(5)	170(4)	-10(4)	40(3)	-60(3)
C(321)	70(2)	150(3)	31(17)	30(2)	52(17)	-30(2)
C(322)	50(2)	140(4)	20(17)	80(2)	-11(16)	10(2)
C(323)	70(3)	130(4)	80(3)	50(3)	30(2)	20(3)
C(324)	40(2)	100(3)	60(2)	-70(3)	1(19)	-20(2)
C(325)	70(3)	32(19)	80(3)	6(18)	-10(2)	6(19)
C(326)	100(3)	70(2)	50(2)	2(18)	70(2)	-30(2)
C(327)	90(3)	160(4)	80(3)	20(3)	40(3)	-40(3)
C(331)	38(19)	90(3)	70(2)	50(2)	27(17)	17(19)
C(332)	50(2)	140(3)	60(2)	40(2)	50(19)	20(2)
C(333)	100(3)	50(2)	50(2)	2(17)	20(2)	50(2)
C(334)	20(2)	150(4)	110(3)	50(3)	0(2)	30(3)
C(335)	30(2)	190(4)	70(2)	10(3)	-2(19)	0(3)
C(336)	4(14)	160(3)	47(18)	50(2)	-14(14)	39(19)
C(337)	80(3)	180(4)	110(3)	70(3)	30(3)	50(3)

Table 38. (Continued)

The anisotropic displacement factor exponent takes the form: -2 pi² [$h^2a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

Figure 22 Projection View of Cu₂I₂(P(C₆H₅)₃)₃

Figure 23 Emission Spectrum of $Cu_2I_2(P(C_6H_5)_3)_3$

Empirical formula	$C_{54}H_{45}Cu_2I_2P_3$
Formula weight	1167.7
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	monoclinic, $P2_1$
Unit cell dimensions	$a = 10.714$ (7) Å $\alpha = 90.0$ deg.
	b = 20.910 (14) Å β = 105.92(3) deg.
	$c = 11.903$ (8) Å $\gamma = 90.0$ deg.
Volume	1025(3) Å ³
Z, Calculated density	2, 1.502 Mg/m^3
Absorption coefficient	2.145 mm^{-1}
F(000)	1156
Crystal size	0.2 x 0.2 x 0.2 mm
Theta range for data collection	1.8 to 30.0 deg.
Index ranges	$-1 \le h \le 15, -29 \le k \le 29, -16 \le l \le 16$
Reflections collected / unique/	17220 / 15030 [R(int) = 0.418]/
observed	10772(4.0>σ(F))
Goodness-of-fit	1.17
Final R indices [I>2sigma(I)]	R1 = 0.0465, $wR2 = 0.0539$
R indices (all data)	R1 = 0.0694, wR2 = 0.0598
Extinction coefficient	0.0021(5)
Largest diff. peak and hole	1.79 and -2.20 eÅ^{-3}

Table 39. Crystal Data and Structure Refinement for $Cu_2I_2(P(C_6H_5)_3)_3$

	X	у	Z	U(eq)
I(1)	8050(1)	3882	8793(1)	48(1)
I(2)	9753(1)	2801(1)	6444(1)	70(1)
Cu(1)	8392(1)	3748(1)	6727(1)	54(1)
Cu(2)	9145(1)	2711(1)	8628(1)	47(1)
P(1)	7482(2)	4538(1)	5502(1)	52(1)
P(2)	7593(1)	1943(1)	8561(1)	43(1)
P(3)	11212(1)	2707(1)	9874(1)	42(1)
C(111)	7030(6)	4395(3)	3914(5)	52(2)
C(112)	7951(7)	4103(3)	3433(6)	70(3)
C(113)	7711(8)	4003(4)	2247(6)	77(3)
C(114)	6485(8)	4193(3)	1507(6)	69(3)
C(115)	5562(7)	4464(4)	1953(6)	75(3)
C(116)	5835(7)	4581(4)	3169(5)	67(3)
C(121)	8573(7)	5225(3)	5701(6)	60(2)
C(122)	8892(9)	5541(4)	4773(8)	89(3)
C(123)	9745(10)	6066(4)	4975(11)	108(5)
C(124)	10328(10)	6265(4)	6109(11)	105(5)
C(125)	10032(11)	5944(5)	7002(9)	121(5)
C(126)	9181(10)	5443(4)	6808(8)	97(4)
C(131)	5946(7)	4851(3)	5721(5)	64(2)
C(132)	5059(8)	4378(4)	5931(6)	78(3)
C(133)	3823(9)	4588(7)	5982(7)	116(5)
C(134)	3481(12)	5212(8)	5857(8)	126(6)
C(135)	4339(13)	5671(6)	5692(8)	126(5)
C(136)	5586(9)	5491(4)	5578(6)	81(3)
C(211)	8137(5)	1127(3)	8357(5)	50(2)
C(212)	9184(7)	872(3)	9242(7)	70(3)
C(213)	9606(7)	251(3)	9142(9)	83(3)
C(214)	9047(8)	-114(3)	8192(9)	84(4)
C(215)	8049(10)	132(4)	7323(9)	105(4)
C(216)	7581(8)	750(3)	7420(7)	81(3)
C(221)	7027(5)	1869(3)	9885(5)	50(2)
C(222)	6728(7)	1278(3)	10321(7)	71(3)
C(223)	6327(9)	1255(4)	11339(8)	88(4)
C(224)	6154(8)	1809(4)	11928(8)	85(4)
C(225)	6442(8)	2384(3)	11502(7)	83(3)
C(226)	6876(7)	2413(3)	10502(6)	68(3)
C(231)	6032(5)	2028(3)	7389(5)	54(2)
C(232)	4873(6)	1766(4)	7510(7)	78(3)
C(233)	3728(8)	1819(5)	6557(9)	102(4)
C(234)	3760(9)	2137(4)	5571(10)	105(4)

Table 40. Atomic Coordinates ($x10^4$) and Equivalent Isotropic Displacement Parameters (Å²x 10³) for Cu₂I₂(P(C₆H₅)₃)₃

Table 40. (Continued)

C(235)	4884(11)	2370(4)	5435(9)	113(4)
C(236)	6058(8)	2326(4)	6370(7)	98(3)
C(311)	12019(5)	1919(3)	10020(5)	48(2)
C(312)	12468(7)	1594(3)	11071(6)	65(2)
C(313)	12948(8)	977(3)	11095(7)	75(3)
C(314)	13010(7)	673(3)	10087(7)	76(3)
C(315)	12590(8)	979(3)	9051(7)	76(3)
C(316)	12059(7)	1598(3)	8992(7)	67(3)
C(321)	12332(5)	3252(3)	9417(5)	47(2)
C(322)	11972(6)	3901(3)	9294(6)	65(2)
C(323)	12767(8)	4358(3)	8967(7)	76(3)
C(324)	13917(8)	4153(4)	8719(7)	78(3)
C(325)	14252(8)	3523(4)	8787(7)	80(3)
C(326)	13478(6)	3062(3)	9160(6)	66(3)
C(331)	11396(5)	2944(3)	11395(4)	46(2)
C(332)	12502(7)	3249(3)	12084(6)	63(2)
C(333)	12588(8)	3401(3)	13252(6)	76(3)
C(334)	11588(9)	3251(4)	13743(6)	77(3)
C(335)	10501(8)	2955(4)	13054(6)	73(3)
C(336)	10393(6)	2799(3)	11923(5)	59(2)
H(11A)	8767	3960	3931	80
H(11B)	8347	3811	1921	80
H(11C)	6313	4130	679	80
H(11D)	4724	4578	1456	80
H(11E)	5206	4804	3463	80
H(12A)	8454	5414	3988	80
H(12B)	9982	6267	4337	80
H(12C)	10896	6629	6238	80
H(12D)	10474	6071	7785	80
H(12E)	8957	5235	7446	80
H(13A)	5279	3932	6024	80
H(13B)	3199	4287	6112	80
H(13C)	2649	5350	5922	80
H(13D)	4106	6116	5653	80
H(13E)	6146	5800	5367	80
H(21A)	9499	1112	9952	80
H(21C)	10336	80	9722	80
H(21D)	9322	-547	8138	80
H(21E)	7727	-111	6618	80
H(21F)	6837	911	6840	80
H(22A)	6785	891	9904	80
H(22B)	6172	842	11629	80
H(22C)	5838	1792	12608	80
H(22E)	6374	2774	11908	80
H(22F)	7054	2825	10224	80

H(23A)	4825	1557	8215	80
H(23B)	2930	1631	6615	80
H(23C)	2965	2181	4961	80
H(23D)	4910	2577	4722	80
H(23E)	6859	2496	6285	80
H(31A)	12432	1806	11777	80
H(31B)	13272	757	11825	80
H(31C)	13354	247	10118	80
H(31D)	12656	771	8350	80
H(31E)	11672	1800	8254	80
H(32A)	11164	4032	9424	80
H(32B)	12567	4807	8943	80
H(32C)	14431	4460	8444	80
H(32D)	15037	3395	8608	80
H(32E)	13714	2618	9224	80
H(33A)	13197	3357	11753	80
H(33B)	13359	3610	13709	80
H(33C)	11640	3359	14539	80
H(33D)	9815	2844	13393	80
H(33E)	9613	2597	11468	80

Table 40. (Continued)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

I(1)-Cu(1)	2.599 (2)
I(1)-Cu(2)	2.744 (2)
I(2)-Cu(1)	2.537 (2)
I(2)-Cu(2)	2.854 (2)
Cu(1)-P(1)	2.240 (2)
Cu(2)-P(2)	2.299 (2)
Cu(2)-P(3)	2.303 (2)
P(1)-C(111)	1.843 (6)
P(1)-C(121)	1.827 (7)
P(1)-C(131)	1.854 (8)
P(2)-C(211)	1.839 (6)
P(2)-C(221)	1.844 (7)
P(2)-C(231)	1.870 (5)
P(3)-C(311)	1.847 (6)
P(3)-C(321)	1.842 (6)
P(3)-C(331)	1.835 (6)
C(111)-C(112)	1.409 (11)
C(111)-C(116)	1.398 (9)
C(112)-C(113)	1.379 (10)
C(113)-C(114)	1.422 (10)
C(114)-C(115)	1.367 (12)
C(115)-C(116)	1.417 (10)
C(121)-C(122)	1.407 (12)
C(121)-C(126)	1.378 (10)
C(122)-C(123)	1.407 (13)
C(123)-C(124)	1.387 (16)
C(124)-C(125)	1.366 (17)
C(125)-C(126)	1.366 (15)
C(131)-C(132)	1.440 (12)
C(131)-C(136)	1.391 (11)
C(132)-C(133)	1.412 (14)
C(133)-C(134)	1.353 (22)
C(134)-C(135)	1.380 (20)
C(135)-C(136)	1.430 (17)
C(211)-C(212)	1.416 (8)
C(211)-C(216)	1.362 (9)
C(212)-C(213)	1.390 (10)
C(213)-C(214)	1.360 (12)
C(214)-C(215)	1.368 (12)
C(215)-C(216)	1.403 (11)
C(221)-C(222)	1.409 (9)
C(221)-C(226)	1.389 (9)
C(222)-C(223)	1.394 (13)

Table 41. Bond Lengths [Å] and Angles [deg] for $Cu_2I_2(P(C_6H_5)_3)_3$

Table 41. (Continued)

C(223)-C(224)	1.393 (12)
C(224)-C(225)	1.373 (12)
C(225)-C(226)	1.392 (13)
C(231)-C(232)	1.399 (10)
C(231)-C(236)	1.371 (11)
C(232)-C(233)	1.428 (10)
C(233)-C(234)	1.358 (16)
C(234)-C(235)	1.349 (16)
C(235)-C(236)	1.436 (12)
C(311)-C(312)	1.389 (9)
C(311)-C(316)	1.406 (10)
C(312)-C(313)	1.387 (10)
C(313)-C(314)	1.375 (12)
C(314)-C(315)	1.353 (11)
C(315)-C(316)	1.408 (10)
C(321)-C(322)	1.407 (8)
C(321)-C(326)	1.402 (9)
C(322)-C(323)	1.405 (11)
C(323)-C(324)	1.411 (12)
C(324)-C(325)	1.362 (12)
C(325)-C(326)	1.421 (12)
C(331)-C(332)	1.397 (8)
C(331)-C(336)	1.418 (10)
C(332)-C(333)	1.405 (10)
C(333)-C(334)	1.389 (13)
C(334)-C(335)	1.374 (11)
C(335)-C(336)	1.360 (10)
$C_{11}(1) I(1) C_{12}(2)$	70.2(1)
Cu(1) I(1) - Cu(2)	70.5(1) 60.2(1)
U(1) - U(2) - U(2)	116 A(1)
I(1)-Cu(1)-I(2) I(1)-Cu(1)-P(1)	110.4(1) 112 8(1)
I(2)-Cu(1)-P(1)	130 7(1)
I(1)-Cu(2)-I(2)	102.5(1)
I(1) - Cu(2) - P(2)	107.9(1)
I(2)-Cu(2)-P(2)	111.0(1)
I(1)-Cu(2)-P(3)	108.1(1)
I(2)-Cu(2)-P(3)	99.6(1)
P(2)-Cu(2)-P(3)	125.3(1)
Cu(1)-P(1)-C(111)	119.6(2)
Cu(1)-P(1)-C(121)	110.3(2)
C(111)-P(1)-C(121)	103.8(3)
Cu(1)-P(1)-C(131)	114.4(2)
C(111)-P(1)-C(131)	102.0(3)
C(121)-P(1)-C(131)	105.3(3)

Table 41. (Continued)

$\overline{Cu(2)-P(2)-C(211)}$	113.6(2)
Cu(2)-P(2)-C(221)	115.7(2)
C(211)-P(2)-C(221)	103.0(3)
Cu(2)-P(2)-C(231)	116.7(2)
C(211)-P(2)-C(231)	103.9(2)
C(221)-P(2)-C(231)	102.0(3)
Cu(2)-P(3)-C(311)	114.0(2)
Cu(2)-P(3)-C(321)	113.4(2)
C(311)-P(3)-C(321)	104.7(3)
Cu(2)-P(3)-C(331)	117.3(2)
C(311)-P(3)-C(331)	103.1(2)
C(321)-P(3)-C(331)	102.9(3)
P(1)-C(111)-C(112)	118.1(4)
P(1)-C(111)-C(116)	122.9(6)
C(112)-C(111)-C(116)	119.0(6)
C(111)-C(112)-C(113)	121.8(6)
C(112)-C(113)-C(114)	118.3(8)
C(113)-C(114)-C(115)	121.2(6)
C(114)-C(115)-C(116)	120.0(6)
C(111)-C(116)-C(115)	119.7(7)
P(1)-C(121)-C(122)	123.5(5)
P(1)-C(121)-C(126)	120.1(6)
C(122)-C(121)-C(126)	116.3(7)
C(121)-C(122)-C(123)	121.2(8)
C(122)-C(123)-C(124)	119.9(11)
C(123)-C(124)-C(125)	118.2(9)
C(124)-C(125)-C(126)	122.1(9)
C(121)-C(126)-C(125)	122.2(9)
P(1)-C(131)-C(132)	115.8(6)
P(1)-C(131)-C(136)	123.4(6)
C(132)-C(131)-C(136)	120.5(7)
C(131)-C(132)-C(133)	117.8(9)
C(132)- $C(133)$ - $C(134)$	121.5(11)
C(133)-C(134)-C(135)	121.1(12) 120 4(12)
C(134)- $C(135)$ - $C(135)$	120.4(12) 118 5(0)
C(151)-C(150)-C(155)	117.7(5)
P(2)-C(211)-C(212)	117.7(5)
P(2)-C(211)-C(210)	124.2(5)
C(212)-C(211)-C(210)	110.1(U) 110.9(6)
C(211)-C(212)-C(213)	117.0(U) 121 1(7)
U(212)-U(213)-U(214) U(212)-U(214)-U(215)	121.1(7) 110 $A(7)$
C(213) - C(214) - C(213) C(214) - C(215) - C(216)	117.4(<i>1)</i> 120 5(8)
C(214)-C(213)-C(210) C(211) C(216) C(215)	120.3(0)
C(211)-C(210)-C(213) D(2) C(221) C(222)	121.0(7)
F (2)-U(221)-U(222)	143.3(3)

Table 41. (Continued)

P(2)-C(221)-C(226)	119.8(5)
C(222)-C(221)-C(226)	116.9(7)
C(221)-C(222)-C(223)	120.4(7)
C(222)-C(223)-C(224)	121.5(8)
C(223)-C(224)-C(225)	118.0(9)
C(224)-C(225)-C(226)	121.1(8)
C(221)-C(226)-C(225)	122.0(6)
P(2)-C(231)-C(232)	121.6(5)
P(2)-C(231)-C(236)	118.2(5)
C(232)-C(231)-C(236)	120.2(6)
C(231)-C(232)-C(233)	118.8(8)
C(232)-C(233)-C(234)	120.3(8)
C(233)-C(234)-C(235)	121.1(8)
C(234)-C(235)-C(236)	120.3(10)
C(231)-C(236)-C(235)	119.3(8)
P(3)-C(311)-C(312)	124.0(5)
P(3)-C(311)-C(316)	118.0(4)
C(312)-C(311)-C(316)	117.7(5)
C(311)-C(312)-C(313)	120.5(7)
C(312)-C(313)-C(314)	121.3(7)
C(313)-C(314)-C(315)	119.5(7)
C(314)-C(315)-C(316)	120.6(8)
C(311)-C(316)-C(315)	120.2(7)
P(3)-C(321)-C(322)	116.4(5)
P(3)-C(321)-C(326)	124.7(5)
C(322)-C(321)-C(326)	118.9(6)
C(321)-C(322)-C(323)	121.0(6)
C(322)-C(323)-C(324)	118.8(7)
C(323)-C(324)-C(325)	120.9(8)
C(324)-C(325)-C(326)	120.5(8)
C(321)-C(326)-C(325)	119.8(7)
P(3)-C(331)-C(332)	123.1(5)
P(3)-C(331)-C(336)	119.3(4)
C(332)-C(331)-C(336)	117.5(5)
C(331)-C(332)-C(333)	119.9(7)
U(332)-U(333)-U(334)	121.1(/)
C(333)-C(334)-C(335)	118.4(/)
U(334)-U(335)-U(336)	121.9(8)
U(331)-U(330)-U(333)	121.2(0)

	U11	U22	U33	U23	U13	U12
	52(1)	44(1)	40(1)	4/1)	10(1)	1/1)
$\mathbf{I}(\mathbf{I})$	53(1)	44(1)	49(1)	4(1)	19(1)	1(1)
I(2)	96(1)	6/(1)	54(1)	30(1)	35(1)	9(1)
Cu(1)	59(1)	52(1)	50(1)	6(1)	12(1)	2(1)
Cu(2)	44(1)	44(1)	51(1)	-4(1)	9(1)	4(1)
P(1)	61(1)	52(1)	40(1)	11(1)	9(1)	I(1)
P(2)	39(1)	39(1)	44(1)	-3(1)	0(1)	4(1)
P(3)	38(1)	42(1)	47(1)	1(1)	11(1)	3(1)
C(111)	59(4)	51(3)	44(3)	1(3)	9(3)	-2(2)
C(112)	70(4)	89(4)	51(3)	22(3)	14(3)	-8(3)
C(113)	88(5)	88(5)	59(4)	11(4)	28(4)	-15(4)
C(114)	95(6)	66(4)	47(3)	-8(4)	20(4)	-2(3)
C(115)	64(4)	105(5)	46(3)	10(4)	1(3)	-3(3)
C(116)	72(5)	87(5)	44(3)	9(4)	16(3)	-7(3)
C(121)	63(4)	50(3)	63(4)	5(3)	12(3)	-1(3)
C(122)	106(6)	78(5)	70(5)	-18(4)	0(4)	8(4)
C(123)	116(8)	75(5)	125(9)	-18(5)	19(7)	22(5)
C(124)	92(7)	67(4)	148(9)	-19(4)	20(7)	-14(5)
C(125)	122(8)	122(8)	105(7)	-46(6)	9(6)	-40(6)
C(126)	119(8)	99(6)	70(5)	-22(5)	22(5)	-24(4)
C(131)	71(4)	82(4)	35(3)	25(3)	6(3)	0(3)
C(132)	68(5)	115(6)	52(4)	20(4)	17(4)	10(4)
C(133)	65(6)	225(13)	55(4)	10(7)	11(4)	-2(5)
C(134)	103(8)	208(15)	66(5)	77(9)	24(5)	-17(7)
C(135)	142(9)	145(9)	69(5)	98(8)	-6(6)	-26(6)
C(136)	101(6)	83(5)	53(3)	36(4)	9(4)	-4(3)
C(211)	41(3)	41(3)	63(3)	-8(2)	6(3)	3(2)
C(212)	54(4)	52(3)	85(5)	-2(3)	-14(4)	7(3)
C(213)	52(4)	55(4)	127(8)	5(3)	-1(4)	17(4)
C(214)	79(5)	43(3)	127(8)	9(3)	27(5)	5(4)
C(215)	137(8)	65(4)	90(6)	22(5)	-8(6)	-31(4)
C(216)	88(5)	63(4)	70(4)	25(4)	-15(4)	-10(3)
C(221)	41(3)	51(3)	56(3)	-1(2)	11(2)	6(2)
C(222)	82(5)	55(3)	85(5)	-8(3)	35(4)	13(3)
C(223)	110(6)	68(4)	99(6)	-1(4)	53(5)	33(4)
C(224)	92(6)	89(5)	85(6)	-2(4)	43(5)	26(5)
C(225)	104(6)	64(4)	102(6)	-6(4)	66(5)	3(4)
C(226)	89(5)	48(3)	79(5)	-7(3)	41(4)	7(3)
C(231)	45(3)	47(3)	60(3)	4(2)	-6(3)	-2(2)
C(232)	42(4)	116(6)	67(4)	-2(4)	-2(3)	-5(4)
C(233)	42(4)	136(7)	111(7)	5(4)	-9(4)	-23(6)
C(234)	75(6)	87(5)	114(8)	15(4)	-38(5)	2(5)
	, 2(0)	5,(5)	11-(0)	1-(7)	23(2)	~(3)

Table 42. Anisotropic Displacement Parameters $(A^2 \times 10^3)$ for $Cu_2I_2(P(C_6H_5)_3)_3$

C(235)	118(8)	100(6)	95(6)	-22(6)	-15(6)	42(5)
C(236)	76(5)	94(5)	89(5)	-28(4)	-34(4)	43(4)
C(311)	39(3)	48(3)	57(3)	1(2)	13(2)	5(2)
C(312)	64(4)	64(4)	63(4)	9(3)	12(3)	9(3)
C(313)	80(5)	65(4)	81(5)	22(3)	22(4)	23(3)
C(314)	71(4)	51(3)	105(6)	18(3)	24(4)	7(4)
C(315)	83(5)	59(4)	89(5)	14(3)	30(4)	-2(4)
C(316)	77(5)	50(3)	77(4)	10(3)	28(4)	-3(3)
C(321)	40(3)	53(3)	47(3)	-2(2)	11(2)	2(2)
C(322)	54(3)	44(3)	95(5)	-5(3)	18(3)	11(3)
C(323)	80(5)	58(4)	87(5)	-20(3)	17(4)	18(3)
C(324)	70(5)	91(5)	74(5)	-31(4)	22(4)	17(4)
C(325)	62(5)	94(5)	93(6)	-21(4)	37(4)	-9(4)
C(326)	50(4)	76(4)	76(4)	-8(3)	26(3)	-3(3)
C(331)	47(3)	47(2)	42(3)	5(2)	7(2)	4(2)
C(332)	64(4)	60(3)	58(4)	-2(3)	6(3)	2(3)
C(333)	81(5)	74(4)	56(4)	1(4)	-10(4)	-1(3)
C(334)	107(6)	71(4)	49(4)	21(4)	13(4)	4(3)
C(335)	86(5)	81(4)	63(4)	19(4)	39(4)	10(3)
C(336)	60(4)	64(3)	55(3)	-1(3)	19(3)	-3(3)

Table 42. (Continued)

The anisotropic displacement factor exponent takes the form: -2 pi^2 [$h^2a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

Figure 24 Projection View of $Cu_2I_2(P(C_6H_5)_3)_3$

Figure 25 Emission Spectrum of Cu₂I₂(P(C₆H₅)₃)₃

Empirical formula	$C_{54}H_{45}Cu_2I_2P_3$
Formula weight	1167.7
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	monoclinic, $P2_1/c$
Unit cell dimensions	$a = 15.921(12) \text{ Å} \alpha = 90.0 \text{ deg.}$
	b = 19.763(11) Å β = 109.69(9) deg.
	$c = 18.46(2) \text{ Å}$ $\gamma = 90.0 \text{ deg.}$
Volume	5469(8) Å ³
Z, Calculated density	4, 1.418 Mg/m^3
Absorption coefficient	2.026 mm^{-1}
F(000)	2312
Crystal size	0.2 x 0.2 x 0.2 mm
Theta range for data collection	2.14 to 29.98 deg.
Index ranges	$-1 \le h \le 22, -27 \le k \le 1, -26 \le l \le 24$
Reflections collected / unique/	18431/15924[R(int)=0.1614]/
observed	5546(8.0>σ(F))
Goodness-of-fit	2.14
Final R indices [I>2sigma(I)]	R1 = 0.0730, wR2 = 0.0955
R indices (all data)	R1 = 0.1461, wR2 = 0.1511
Extinction coefficient	0.00023(4)
Largest diff. peak and hole	2.08 and -1.68 e. Å ⁻³

Table 43. Crystal Data and Structure Refinement for $Cu_2I_2(P(C_6H_5)_3)_3$

	 X	V	7	U(ea)	
	~	J	<i>L</i>		
I(1)	2441(1)	-1661(1)	7500(1)	57(1)	
I(2)	2638(1)	509(1)	7435(1)	55(1)	
Cu(1)	3296(1)	-661(1)	6983(1)	43(1)	
Cu(2)	2035(1)	-515(1)	7964(1)	57(1)	
P(1)	2784(2)	-591(1)	5654(2)	41(1)	
P(2)	4754(2)	-752(2)	7801(2)	42(1)	
P(3)	1233(2)	-373(2)	8752(2)	54(1)	
C(111)	1587(8)	-633(5)	5150(8)	48(5)	
C(112)	1156(10)	-328(8)	4424(9)	74(7)	
C(113)	268(11)	-400(8)	4050(9)	79(7)	
C(114)	-249(10)	-762(9)	4334(10)	79(7)	
C(115)	148(10)	-1083(8)	5049(12)	93(9)	
C(116)	1068(8)	-994(7)	5457(8)	61(6)	
C(121)	3204(8)	-1262(6)	5191(7)	47(5)	
C(122)	3912(8)	-1665(6)	5662(9)	63(6)	
C(123)	4234(9)	-2215(7)	5326(10)	70(7)	
C(124)	3846(10)	-2345(7)	4536(10)	71(7)	
C(125)	3176(11)	-1967(7)	4073(9)	71(7)	
C(126)	2826(10)	-1409(7)	4391(8)	71(6)	
C(131)	3141(8)	193(6)	5289(7)	49(5)	
C(132)	2792(10)	814(6)	5439(9)	74(7)	
C(133)	3040(14)	1396(7)	5184(12)	114(11)	
C(134)	3646(13)	1385(9)	4778(11)	109(10)	
C(135)	4024(11)	784(8)	4671(11)	94(9)	
C(136)	3742(8)	203(7)	4871(8)	65(6)	
C(211)	5441(7)	-1442(6)	7587(7)	50(5)	
C(212)	5179(9)	-2101(6)	7659(10)	77(7)	
C(213)	5700(11)	-2649(8)	7530(10)	89(8)	
C(214)	6444(10)	-2513(8)	7323(10)	91(8)	
C(215)	6662(10)	-1837(7)	7235(10)	80(8)	
C(216)	6172(8)	-1316(7)	7368(7)	56(5)	
C(221)	5401(7)	12(5)	7758(7)	39(4)	
C(222)	6121(8)	227(6)	8377(8)	54(5)	
C(223)	6579(9)	818(7)	8332(9)	67(6)	
C(224)	6337(9)	1186(7)	7635(9)	66(7)	
C(225)	5617(10)	959(7)	7013(10)	77(7)	
C(226)	5156(8)	389(7)	7077(8)	60(6)	
C(231)	4927(7)	-890(5)	8831(7)	42(4)	
C(232)	4276(8)	-669(6)	9132(7)	51(5)	
C(232)	4367(10)	-743(7)	9894(0)	63(6)	
C(234)	5088(12)	-1040(8)	10370(0)	81(8)	
0(237)	5000(12)	-10+7(0)	10373(3)	01(0)	

Table 44. Atomic Coordinates ($x10^4$) and Equivalent Isotropic Displacement Parameters (Å²x 10³) for Cu₂I₂(P(C₆H₅)₃)₃

.

Table 44. (Continued)

C(235)	5753(10)	-1291(8)	10105(9)	82(7)
C(236)	5640(9)	-1191(7)	9308(8)	67(6)
C(311)	54(8)	-272(7)	8205(8)	63(6)
C(312)	-348(11)	-777(8)	7612(9)	81(7)
C(313)	-1262(14)	-692(11)	7196(10)	110(10)
C(314)	-1756(12)	-152(14)	7313(16)	126(13)
C(315)	-1340(13)	318(11)	7881(13)	101(10)
C(316)	-469(9)	261(8)	8289(9)	74(7)
C(321)	1514(8)	375(6)	9384(8)	52(5)
C(322)	1657(8)	362(7)	10176(8)	59(6)
C(323)	1884(9)	934(9)	10617(9)	75(7)
C(324)	1922(9)	1549(8)	10274(10)	75(7)
C(325)	1802(10)	1593(7)	9530(10)	81(8)
C(326)	1595(9)	980(7)	9040(9)	68(6)
C(331)	1229(8)	-1071(6)	9412(7)	54(5)
C(332)	559(9)	-1145(7)	9729(9)	76(7)
C(333)	588(10)	-1646(8)	10252(10)	87(8)
C(334)	1311(10)	-2097(7)	10489(9)	75(7)
C(335)	1996(9)	-2012(7)	10160(9)	70(7)
C(336)	1933(8)	-1516(6)	9616(8)	58(6)
H(11A)	1508	-61	4198	80
H(11B)	-5	-177	3566	80
H(11C)	-877	-819	4066	80
H(11D)	-208	-1353	5267	80
H(11E)	1333	-1221	5940	80
H(12A)	4171	-1567	6201	80
H(12B)	4722	-2488	5635	80
H(12C)	4068	-2713	4313	80
H(12D)	2921	-2071	3535	80
H(12E)	2348	-1134	4071	80
H(13A)	2365	819	5703	80
H(13B)	2801	1820	5279	80
H(13C)	3838	1801	4615	80
H(13D)	4455	780	4411	80
H(13E)	3968	-220	4757	80
H(21A)	4663	-2195	7800	80
H(21B)	5523	-3108	7571	80
H(21C)	6790	-2883	7237	80
H(21D)	7165	-1748	7073	80
H(21E)	6364	-860	7337	80
H(22A)	6296	-26	8848	80
H(22B)	7072	976	8760	80
H(22C)	6644	1591	7582	80
H(22D)	5464	1193	6530	80

H(22E)	4638	255	6657	80
H(23A)	3753	-451	8791	80
H(23B)	3905	-595	10083	80
H(23C)	5151	-1093	10913	80
H(23D)	6278	-1501	10454	80
H(23E)	6089	-1358	9113	80
H(31A)	3	-1135	7510	80
H(31B)	-1547	-1018	6805	80
H(31C)	-2384	-129	7033	80
H(31D)	-1686	693	7955	80
H(31E)	-198	598	8671	80
H(32A)	1624	-66	10410	80
H(32B)	1986	908	11159	80
H(32C)	2081	1949	10585	80
H(32D)	1827	2024	9298	80
H(32E)	1509	1003	8500	80
H(33A)	57	-843	9568	80
H(33B)	121	-1693	10470	80
H(33C)	1338	-2450	10853	80
H(33D)	2498	-2313	10321	80
H(33E)	2389	-1478	9386	80

Table 44. (Continued)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

I(1)-Cu(1)	2.746 (3)
I(1)-Cu(2)	2.579 (3)
I(2)-Cu(1)	2.779 (3)
I(2)-Cu(2)	2.569 (3)
Cu(1)-P(1)	2.314 (4)
Cu(1)-P(2)	2.311 (4)
Cu(2)-P(3)	2.254 (5)
P(1)-C(111)	1.819 (12)
P(1)-C(121)	1.824 (13)
P(1)-C(131)	1.854 (13)
P(2)-C(211)	1.871 (13)
P(2)-C(221)	1.844 (11)
P(2)-C(231)	1.848 (13)
P(3)-C(311)	1.818 (12)
P(3)-C(321)	1.841 (13)
P(3)-C(331)	1.842 (14)
C(111)-C(112)	1.418 (19)
C(111)-C(116)	1.351 (21)
C(112)-C(113)	1.356 (20)
C(113)-C(114)	1.325 (27)
C(114)-C(115)	1.408 (25)
C(115)-C(116)	1.414 (19)
C(121)-C(122)	1.413 (16)
C(121)-C(126)	1.423 (18)
C(122)-C(123)	1.429 (21)
C(123)-C(124)	1.404 (23)
C(124)-C(125)	1.345 (20)
C(125)-C(126)	1.446 (23)
C(131)-C(132)	1.413 (19)
C(131)-C(136)	1.417 (22)
C(132)-C(133)	1.352 (23)
C(133)-C(134)	1.407 (34)
C(134)-C(135)	1.375 (26)
C(135)-C(136)	1.331 (23)
C(211)-C(212)	1.387 (18)
C(211)-C(216)	1.378 (20)
C(212)-C(213)	1.432 (23)
C(213)-C(214)	1.388 (27)
C(214)-C(215)	1.404 (22)
C(215)-C(216)	1.363 (21)
C(221)-C(222)	1.384 (15)
C(221)-C(226)	1.399 (18)
C(222)-C(223)	1.393 (19)
•	

Table 45. Bond Lengths [Å] and Angles [deg] for $Cu_2I_2(P(C_6H_5)_3)_3$

Table 45. (Continued)

C(223)-C(224)	1.414 (22)
C(224)-C(225)	1.395 (19)
C(225)-C(226)	1.371 (21)
C(231)-C(232)	1.401 (19)
C(231)-C(236)	1.321 (16)
C(232)-C(233)	1.373 (21)
C(233)-C(234)	1.338 (20)
C(234)-C(235)	1.404 (27)
C(235)-C(236)	1.436 (23)
C(311)-C(312)	1.459 (20)
C(311)-C(316)	1.384 (22)
C(312)-C(313)	1.408 (24)
C(313)-C(314)	1.386 (35)
C(314)-C(315)	1.389 (33)
C(315)-C(316)	1.341 (22)
C(321)-C(322)	1.402 (20)
C(321)-C(326)	1.380 (19)
C(322)-C(323)	1.368 (21)
C(323)-C(324)	1.381 (24)
C(324)-C(325)	1.324 (26)
C(325)-C(326)	1.481 (21)
C(331)-C(332)	1.387 (23)
C(331)-C(336)	1.373 (17)
C(332)-C(333)	1.374 (23)
C(333)-C(334)	1.404 (21)
C(334)-C(335)	1.426 (25)
C(335)-C(336)	1.383 (20)
Cu(1)-I(1)-Cu(2)	72 1(1)
Cu(1)-I(2)-Cu(2)	71 7(1)
I(1)-Cu(1)-I(2)	102 3(1)
I(1)-Cu(1)-P(1)	111 9(1)
I(2)-Cu(1)-P(1)	103.6(1)
I(1)-Cu(1)-P(2)	102.9(1)
I(2)-Cu(1)-P(2)	105.4(1)
P(1)-Cu(1)-P(2)	127.9(2)
I(1)-Cu(2)-I(2)	113.4(1)
I(1)-Cu(2)-P(3)	125.7(1)
I(2)-Cu(2)-P(3)	120.8(1)
Cu(1)-P(1)-C(111)	118.3(5)
Cu(1)-P(1)-C(121)	113.5(4)
C(111)-P(1)-C(121)	102.3(5)
Cu(1)-P(1)-C(131)	113.2(4)
C(111)-P(1)-C(131)	104.5(5)

Table 45. (Continued)

C(121)-P(1)-C(131)	103.4(6)
Cu(1)-P(2)-C(211)	116.7(4)
Cu(1)-P(2)-C(221)	111.2(3)
C(211)-P(2)-C(221)	102.3(6)
Cu(1)-P(2)-C(231)	116.9(4)
C(211)-P(2)-C(231)	102.4(5)
C(221)-P(2)-C(231)	105.8(5)
Cu(2)-P(3)-C(311)	111.0(5)
Cu(2)-P(3)-C(321)	116.1(5)
C(311)-P(3)-C(321)	104.5(6)
Cu(2)-P(3)-C(331)	117.5(5)
C(311)-P(3)-C(331)	102.5(6)
C(321)-P(3)-C(331)	103.7(6)
P(1)-C(111)-C(112)	123.6(11)
P(1)-C(111)-C(116)	119.5(9)
C(112)-C(111)-C(116)	116.8(11)
C(111)-C(112)-C(113)	121.7(16)
C(112)-C(113)-C(114)	122.4(15)
C(113)-C(114)-C(115)	118.1(14)
C(114)-C(115)-C(116)	120.0(17)
C(111)-C(116)-C(115)	120.8(14)
P(1)-C(121)-C(122)	117.6(10)
P(1)-C(121)-C(126)	122.7(9)
C(122)-C(121)-C(126)	119.6(12)
C(121)-C(122)-C(123)	119.3(13)
C(122)-C(123)-C(124)	119.6(12)
C(123)-C(124)-C(125)	122.4(15)
C(124)-C(125)-C(126)	119.8(14)
C(121)-C(126)-C(125)	119.4(12)
P(1)-C(131)-C(132)	117.7(11)
P(1)-C(131)-C(136)	123.7(9)
C(132)- $C(131)$ - $C(136)$	118.6(12)
C(131)-C(132)-C(133)	119.4(17)
C(132)- $C(133)$ - $C(134)$	120.3(10)
C(133)- $C(134)$ - $C(135)$	120.2(18)
C(134)- $C(135)$ - $C(135)$	120.0(19)
C(131)-C(130)-C(135)	121.0(14)
P(2) - C(211) - C(212) P(2) - C(211) - C(216)	110.0(11)
$\Gamma(2)$ - $U(211)$ - $U(210)$ $\Gamma(212)$ $\Gamma(211)$ $\Gamma(214)$	122.0(7) 120.6(12)
C(212) - C(211) - C(210)	120.0(13) 110 0(15)
C(211) - C(212) - C(213)	117.U(1 <i>3)</i> 110.7(1 <i>4</i>)
C(212) - C(213) - C(214) C(212) - C(214) - C(215)	117./(14 <i>)</i> 118.0/15)
C(213)-C(214)-C(213)	110.7(1 <i>3)</i> 121.2(16)
U(214)-U(213)-U(210)	121.3(10)

Table 45. (Continued)

C(211)-C(216)-C(215)	120.5(13)
P(2)-C(221)-C(222)	122.4(9)
P(2)-C(221)-C(226)	118.9(8)
C(222)-C(221)-C(226)	118.7(11)
C(221)-C(222)-C(223)	120.9(12)
C(222)-C(223)-C(224)	119.8(11)
C(223)-C(224)-C(225)	118.7(13)
C(224)-C(225)-C(226)	120.6(14)
C(221)-C(226)-C(225)	121.3(11)
P(2)-C(231)-C(232)	119.3(8)
P(2)-C(231)-C(236)	123.2(12)
C(232)-C(231)-C(236)	117.5(13)
C(231)-C(232)-C(233)	122.5(11)
C(232)-C(233)-C(234)	120.3(16)
C(233)-C(234)-C(235)	119.6(16)
C(234)-C(235)-C(236)	118.3(13)
C(231)-C(236)-C(235)	121.9(15)
P(3)-C(311)-C(312)	116.9(11)
P(3)-C(311)-C(316)	124.6(10)
C(312)-C(311)-C(316)	118.4(11)
C(311)-C(312)-C(313)	116.1(16)
C(312)-C(313)-C(314)	122.9(18)
C(313)-C(314)-C(315)	118.8(17)
C(314)-C(315)-C(316)	120.4(20)
C(311)-C(316)-C(315)	123.3(15)
P(3)-C(321)-C(322)	124.4(10)
P(3)-C(321)-C(326)	116.3(11)
C(322)-C(321)-C(326)	119.2(12)
C(321)-C(322)-C(323)	121.5(13)
C(322)-C(323)-C(324)	119.9(15)
C(323)-C(324)-C(325)	121.3(15)
C(324)-C(325)-C(326)	120.3(15)
C(321)-C(326)-C(325)	117.6(14)
P(3)-C(331)-C(332)	122.1(9)
P(3)-C(331)-C(336)	118.5(11)
C(332)-C(331)-C(336)	119.3(12)
C(331)-C(332)-C(333)	121.6(13)
C(332)-C(333)-C(334)	120.4(17)
C(333)-C(334)-C(335)	117.2(14)
C(334)-C(335)-C(336)	120.9(12)
C(331)-C(336)-C(335)	120.4(14)

	U11	U22	U33	U23	U13	U12
$\overline{I(1)}$	79(1)	47(1)	55(1)	-13(1)	37(1)	4(1)
I(1) I(2)	73(1)	44(1)	60(1)	6(1)	40(1)	2(1)
$C_{\rm U}(1)$	47(1)	48(1)	41(1)	-2(1)	22(1)	2(1) 2(1)
Cu(2)	61(1)	64(1)	56(1)	-3(1)	32(1)	$\frac{2(1)}{1(1)}$
P(1)	50(2)	41(2)	39(2)	4(1)	24(1)	4(1)
P(2)	44(2)	44(2)	$\frac{33(2)}{44(2)}$	-1(1)	23(1)	4(1)
P(3)	58(2)	55(2)	59(2)	-1(1) 4(2)	25(1) 35(2)	$\frac{3}{2}$
C(111)	50(2) 57(7)	36(6)	53(8)	3(5)	22(6)	-4(6)
C(112)	65(9)	93(11)	66(11)	-3(8)	22(0)	8(9)
C(112) C(113)	81(11)	96(12)	54(10)	26(9)	13(9)	17(9)
C(113)	58(9)	92(12)	75(12)	16(9)	6(9)	-12(10)
C(114)	70(10)	87(12)	131(17)	-2(9)	47(11)	14(12)
C(116)	58(8)	64(9)	56(9)	$\frac{1}{2}(5)$	$\frac{4}{(11)}$	17(12)
C(121)	50(0) 52(7)	44(6)	58(9)	-2(6)	36(6)	-4(6)
C(121)	52(7) 56(7)	60(8)	81(10)	-2(0)	35(7)	-4(0)
C(122) C(123)	71(9)	50(8)	95(13)	-1(7) 8(7)	35(9)	-17(8)
C(123)	92(10)	49(8)	95(13)	-6(8)	64(10)	-17(0)
C(124)	115(12)	54(8)	62(10)	-0(0)	53(10)	-23(9)
C(125)	106(11)	74(9)	40(9)	12(8)	36(8)	-13(0)
C(120) C(131)	62(7)	48(7)	39(8)	-4(6)	20(6)	3(6)
C(131)	121(12)	43(7)	87(11)	-4(0) 5(8)	73(10)	5(8)
C(132)	121(12) 186(19)	47(9)	160(19)	45(10)	124(17)	38(10)
C(133)	139(16)	84(13)	111(16)	-25(12)	50(13)	43(12)
C(135)	111(13)	71(10)	137(17)	12(10)	90(12)	27(11)
C(136)	69(8)	56(8)	84(11)	-2(7)	47(8)	9(8)
C(211)	47(7)	44(7)	64(9)	1(5)	23(6)	0(6)
C(212)	79(9)	40(7)	136(15)	6(7)	67(10)	16(8)
C(212)	106(12)	55(9)	117(15)	-15(9)	54(11)	-6(9)
C(213)	79(10)	71(11)	136(16)	25(8)	55(11)	11(11)
C(215)	90(10)	57(9)	114(14)	5(8)	64(10)	-6(9)
C(216)	56(7)	61(8)	63(9)	6(6)	36(7)	2(7)
C(221)	39(6)	41(6)	43(7)	0(5)	20(6)	6(6)
C(222)	61(8)	56(8)	55(9)	-4(6)	33(7)	5(7)
C(223)	64(8)	73(9)	67(10)	-18(7)	25(8)	-10(8)
C(224)	65(9)	50(8)	93(12)	-9(7)	39(9)	-1(8)
C(225)	79(10)	68(9)	96(13)	-1(8)	46(10)	40(9)
C(226)	51(7)	70(9)	56(9)	-6(6)	14(7)	13(7)
C(231)	42(6)	41(6)	40(7)	-2(5)	12(6)	14(6)
C(232)	56(7)	57(8)	44(8)	-2(6)	22(6)	3(6)
C(233)	68(9)	71(9)	56(10)	-11(8)	27(8)	-5(8)
C(234)	108(12)	98(12)	52(10)	-29(10)	46(10)	-2(9)

Table 46. Anisotropic Displacement Parameters $(A^2 \times 10^3)$ for $Cu_2I_2(P(C_6H_5)_3)_3$

C(235)	87(10)	91(12)	66(11)	5(9)	24(9)	18(9)
C(236)	70(9)	78(10)	60(10)	-4(8)	30(8)	8(8)
C(311)	58(8)	78(9)	60(9)	-6(7)	30(7)	18(8)
C(312)	92(11)	75(10)	65(11)	-22(9)	12(9)	5(9)
C(313)	104(14)	133(18)	72(13)	-77(13)	3(11)	10(12)
C(314)	60(11)	162(23)	161(24)	-1(14)	43(14)	103(20)
C(315)	83(14)	105(15)	119(18)	10(11)	41(12)	27(13)
C(316)	58(9)	97(11)	66(10)	26(8)	21(8)	15(9)
C(321)	53(7)	41(6)	73(10)	5(5)	36(7)	6(6)
C(322)	72(8)	59(8)	46(8)	0(7)	18(7)	-6(7)
C(323)	65(9)	111(13)	50(10)	2(9)	20(8)	3(10)
C(324)	74(9)	83(11)	75(12)	-12(8)	35(9)	-20(10)
C(325)	95(11)	60(9)	110(14)	-18(8)	63(11)	-12(10)
C(326)	82(9)	64(9)	77(11)	15(7)	50(8)	18(8)
C(331)	62(7)	52(7)	64(9)	6(6)	42(7)	8(7)
C(332)	76(9)	71(9)	106(13)	29(7)	63(9)	45(9)
C(333)	90(10)	91(11)	104(13)	7(9)	65(10)	21(11)
C(334)	115(12)	43(7)	75(11)	12(8)	43(10)	17(7)
C(335)	77(9)	57(9)	80(11)	22(7)	32(9)	4(8)
C(336)	62(8)	56(8)	64(9)	4(6)	32(7)	-1(7)

Table 46. (Continued)

The anisotropic displacement factor exponent takes the form: -2 pi² [$h^2a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

Figure 27 Emission Spectrum of $Cu_2I_2(P(o-C_7H_7)_3)_2$

Empirical formula	$C_{21}H_{21}CuIP$
Formula weight	494.8
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	triclinic, <i>P</i> ī
Unit cell dimensions	$a = 9.363(2) \text{ Å}$ $\alpha = 102.180(10) \text{ deg.}$
	$b = 10.130(2) \text{ Å} \beta = 99.01(2) \text{ deg.}$
	$c = 11.689(3) \text{ Å}$ $\gamma = 101.79(2) \text{ deg.}$
Volume	1037.6(4) Å ³
Z, Calculated density	2, 1.584 Mg/m ³
Absorption coefficient	2.616 mm ⁻¹
F(000)	488
Crystal size	0.1 x 0.1 x 0.1 mm
Theta range for data collection	2.14 to 29.98 deg.
Index ranges	$-13 \le h \le 1, -13 \le k \le 13, -16 \le l \le 16$
Reflections collected / unique/	7003 / 5983 [R(int) = 0.0416]/
observed	3578(4.0>σ(F))
Goodness-of-fit	1.20
Final R indices [I>2sigma(I)]	R1 = 0.0526, $wR2 = 0.0641$
R indices (all data)	R1 = 0.0908, $wR2 = 0.0694$
Extinction coefficient	-0.00149(16)
Largest diff. peak and hole	1.42 and -0.59 eÅ ⁻³

Table 47. Crystal Data and Structure Refinement for $Cu_2I_2(P(C_7H_7)_3)_2$

	x	у	Z	U(eq)
I(1)	777(1)	6053(1)	8802(1)	58(1)
Cu(1)	1225(1)	6039(1)	11054(1)	48(1)
P(1)	2856(2)	7662(2)	12566(1)	37(1)
C(111)	3065(6)	9441(6)	12352(4)	41(2)
C(121)	4771(6)	7452(6)	12899(5)	43(2)
C(131)	2233(6)	7759(5)	13994(4)	37(2)
C(112)	1816(7)	9897(7)	11927(5)	51(2)
C(132)	1917(6)	8975(6)	14582(5)	42(2)
C(116)	4493(8)	10330(7)	12597(6)	56(3)
C(126)	5474(7)	7629(6)	14101(5)	48(2)
C(133)	1371(7)	9056(7)	15638(5)	55(2)
C(114)	3448(11)	12125(8)	12010(7)	77(4)
C(122)	5534(7)	7074(7)	11985(6)	56(2)
C(125)	6882(7)	7368(7)	14370(6)	59(3)
C(117)	247(8)	8998(8)	11659(6)	67(3)
C(124)	7602(8)	6940(7)	13448(8)	70(3)
C(115)	4676(10)	11669(8)	12418(7)	74(3)
C(123)	6911(8)	6811(8)	12291(7)	69(3)
C(127)	4899(10)	6962(12)	10693(6)	93(4)
C(113)	2041(10)	11254(8)	11763(6)	69(3)
C(136)	2015(6)	6574(6)	14476(5)	43(2)
C(137)	2421(7)	5236(6)	13960(5)	51(2)
C(135)	1461(7)	6714(7)	15540(5)	53(2)
C(134)	1143(7)	7918(7)	16106(5)	57(3)
H(13A)	2079	9771	14252	80
H(11A)	5347	10012	12881	80
H(12A)	4985	7931	14736	80
H(13B)	1151	9901	16030	80
H(11B)	3573	13048	11893	80
H(12B)	7350	7484	15189	80
H(11C)	270	8107	11810	80
H(11D)	-322	9445	12164	80
H(11E)	-206	8874	10835	80
H(12C)	8554	6730	13626	80
H(11F)	5655	12279	12587	80
H(12D)	7417	6531	11662	80
H(12E)	5574	6703	10199	80
H(12F)	3967	6270	10444	80
H(12G)	4733	7847	10618	80
H(11G)	1195	11581	11477	80
H(13C)	2781	5305	13244	80

Table 48. Atomic Coordinates ($x10^4$) and Equivalent Isotropic Displacement Parameters (Å²x 10³) for Cu₂I₂(P(C₇H₇)₃)₂

3185	5082	14531	80
1555	4473	13773	80
1300	5925	15880	80
765	7961	16827	80
	3185 1555 1300 765	3185508215554473130059257657961	318550821453115554473137731300592515880765796116827

Table 48. (Continued)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

I(1)-Cu(1)	2.604 (1)
I(1)-Cu(1A)	2.581 (1)
Cu(1)-P(1)	2.250 (1)
Cu(1)-I(1A)	2.581 (1)
P(1)-C(111)	1.847 (6)
P(1)-C(121)	1.839 (6)
P(1)-C(131)	1.842 (6)
C(111)-C(112)	1.401 (9)
C(111)-C(116)	1.400 (8)
C(121)-C(126)	1.413 (8)
C(121)-C(122)	1.406 (9)
C(131)-C(132)	1.391 (8)
C(131)-C(136)	1.422 (8)
C(112)-C(117)	1.508 (9)
C(112)-C(113)	1.405 (11)
C(132)-C(133)	1.401 (9)
C(116)-C(115)	1.396 (11)
C(126)-C(125)	1.398 (10)
C(133)-C(134)	1.370 (11)
C(114)-C(115)	1.379 (14)
C(114)-C(113)	1.376 (12)
C(122)-C(123)	1.377 (10)
C(122)-C(127)	1.506 (10)
C(125)-C(124)	1.398 (12)
C(124)-C(123)	1.371 (12)
C(136)-C(137)	1.511 (9)
C(136)-C(135)	1.412 (9)
C(135)-C(134)	1.372 (10)
Cu(1)- $I(1)$ - $Cu(1A)$	74.4(1)
I(1)-Cu(1)-P(1)	126.5(1)
I(1)-Cu(1)-I(1A)	105.6(1)
P(1)-Cu(1)-I(1A)	127.7(1)
Cu(1)-P(1)-C(111)	112.8(2)
Cu(1)-P(1)-C(121)	117.3(2)
C(111)-P(1)-C(121)	105.1(3)
Cu(1)-P(1)-C(131)	111.7(2)
C(111)-P(1)-C(131)	104.4(3)
C(121)-P(1)-C(131)	104.5(3)
P(1)-C(111)-C(112)	120.8(4)
P(1)-C(111)-C(116)	119.4(5)
C(112)-C(111)-C(116)	119.9(6)
P(1)-C(121)-C(126)	119.2(5)

Table 49.	Bond Lengths [Å] and Angles [deg] for					
$Cu_2I_2(P(C_7H_7)_3)_2$						

Table 49. (Continued)

P(1)-C(121)-C(122)	121.7(4)
C(126)-C(121)-C(122)	119.1(6)
P(1)-C(131)-C(132)	120.1(4)
P(1)-C(131)-C(136)	120.2(4)
C(132)-C(131)-C(136)	119.6(5)
C(111)-C(112)-C(117)	122.6(6)
C(111)-C(112)-C(113)	118.4(6)
C(117)-C(112)-C(113)	119.0(7)
C(131)-C(132)-C(133)	121.4(6)
C(111)-C(116)-C(115)	120.2(7)
C(121)-C(126)-C(125)	120.2(6)
C(132)-C(133)-C(134)	119.6(6)
C(115)-C(114)-C(113)	120.0(8)
C(121)-C(122)-C(123)	118.5(6)
C(121)-C(122)-C(127)	122.0(7)
C(123)-C(122)-C(127)	119.4(7)
C(126)-C(125)-C(124)	119.9(7)
C(125)-C(124)-C(123)	118.7(7)
C(116)-C(115)-C(114)	120.0(7)
C(122)-C(123)-C(124)	123.4(7)
C(112)-C(113)-C(114)	121.4(8)
C(131)-C(136)-C(137)	124.0(5)
C(131)-C(136)-C(135)	116.6(5)
C(137)-C(136)-C(135)	119.3(6)
C(136)-C(135)-C(134)	123.1(7)
C(133)-C(134)-C(135)	119.7(6)

	U11	U22	U33	U23	U13	U12
<u>I(1)</u>	66(1)	67(1)	38(1)	11(1)	6(1)	17(1)
Cu(1)	53(1)	55(1)	38(1)	20(1)	7(1)	7(1)
P(1)	40(1)	44(1)	33(1)	18(1)	10(1)	11(1)
C(111)	50(3)	48(3)	34(2)	21(3)	14(2)	18(2)
C(121)	43(3)	46(3)	42(3)	16(2)	9(2)	9(2)
C(131)	37(3)	45(3)	32(2)	12(2)	6(2)	11(2)
C(112)	67(4)	63(4)	37(3)	35(3)	21(3)	17(3)
C(132)	43(3)	46(3)	43(3)	14(2)	12(2)	15(2)
C(116)	63(4)	54(4)	57(4)	14(3)	15(3)	22(3)
C(126)	48(3)	49(3)	50(3)	15(3)	5(3)	17(3)
C(133)	63(4)	62(4)	41(3)	21(3)	21(3)	4(3)
C(114)	121(7)	58(4)	75(5)	36(5)	43(5)	37(4)
C(122)	48(4)	67(4)	53(3)	24(3)	14(3)	5(3)
C(125)	49(4)	53(4)	75(4)	16(3)	-6(3)	28(3)
C(117)	60(4)	95(5)	58(4)	47(4)	8(3)	20(4)
C(124)	45(4)	60(4)	108(6)	27(3)	11(4)	17(4)
C(115)	83(5)	63(5)	83(5)	12(4)	27(4)	31(4)
C(123)	49(4)	81(5)	79(5)	31(4)	23(4)	5(4)
C(127)	79(5)	164(9)	50(4)	56(6)	30(4)	16(5)
C(113)	100(6)	81(5)	55(4)	58(5)	30(4)	34(4)
C(136)	44(3)	43(3)	38(3)	9(2)	4(2)	10(2)
C(137)	65(4)	44(3)	48(3)	20(3)	9(3)	16(3)
C(135)	56(4)	61(4)	46(3)	9(3)	14(3)	22(3)
C(134)	63(4)	72(4)	44(3)	17(3)	25(3)	20(3)

Table 50. Anisotropic Displacement Parameters ($A^2 \times 10^3$) for $Cu_2I_2(P(C_7H_7)_3)_2$

The anisotropic displacement factor exponent takes the form: -2 pi^2 [$h^2a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

Figure 28 Projection View of Cu₂I₂(P(C₆H₁₁)₃)2

Empirical formula	$C_{36}H_{66}Cu_2I_2P_2$
Formula weight	941.7
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	triclinic, <i>P</i> ī
Unit cell dimensions	$a = 8.980(10) \text{ Å}$ $\alpha = 96.500(10) \text{ deg.}$
	b = 9.923(10) Å β = 94.050(0) deg.
	$c = 13.061(7) \text{ Å}$ $\gamma = 116.520(10) \text{ deg.}$
Volume	$1025(3) Å^{3}$
Z, Calculated density	1, 1.526 Mg/m^3
Absorption coefficient	2.643 mm^{-1}
F(000)	476
Crystal size	0.2 x 0.2 x 0.2 mm
Theta range for data collection	3.5 to 22.5 deg.
Index ranges	$-12 \le h \le 1, -12 \le k \le 13, -18 \le l \le 18$
Reflections collected / unique/	7000 / 5950 [R(int) = 0.1228]/
observed	2806(5.0>σ(F))
Goodness-of-fit	2.30
Final R indices [I>2sigma(I)]	R1 = 0.1019, wR2 = 0.1210
R indices (all data)	R1 = 0.1786, $wR2 = 0.1661$
Extinction coefficient	-0.0007(6)
Largest diff. peak and hole	2.49 and $-1.13 \text{ e}\text{Å}^{-3}$

Table 51. Crystal Data and Structure Refinement for $Cu_2I_2(P(C_6H_{11})_3)_2$

	x	У	Z	U(eq)
I(1)	1492(1)	9346(2)	4084(1)	73(1)
Cu(1)	1519(2)	10930(2)	5837(1)	48(1)
P(1)	3742(4)	12160(4)	7092(3)	31(1)
C(11)	5479(16)	13839(16)	6738(11)	45(6)
C(12)	7063(19)	14759(21)	7550(12)	67(8)
C(13)	8390(20)	16224(21)	7213(13)	78(8)
C(14)	8892(19)	15850(24)	6173(13)	77(9)
C(15)	7351(18)	14891(21)	5332(12)	59(8)
C(16)	6031(18)	13462(17)	5673(11)	50(7)
C(21)	4646(13)	10829(13)	7472(9)	26(5)
C(22)	3333(17)	9207(16)	7192(12)	46(6)
C(23)	4107(20)	8101(17)	7365(14)	60(7)
C(24)	5016(20)	8464(18)	8490(14)	59(8)
C(25)	6342(16)	10159(16)	8720(12)	48(6)
C(26)	5608(17)	11253(15)	8558(10)	42(6)
C(31)	3185(15)	12901(14)	8337(11)	39(5)
C(32)	2653(17)	14151(15)	8109(11)	40(6)
C(33)	2194(18)	14770(16)	9134(12)	48(6)
C(34)	786(19)	13481(18)	9533(12)	50(7)
C(35)	1250(18)	12208(17)	9726(11)	46(7)
C(36)	1771(15)	11623(16)	8746(11)	40(6)
H(11A)	5043	14542	6623	80
H(12A)	7583	14110	7631	80
H(12B)	6737	14981	8207	80
H(13A)	9350	16748	7739	80
H(13B)	7885	16883	7121	80
H(14A)	9439	15229	6284	80
H(14B)	9676	16753	5939	80
H(15A)	7707	14623	4698	80
H(15B)	6838	15531	5197	80
H(16A)	5081	12937	5140	80
H(16B)	6521	12795	5775	80
H(21A)	5479	10934	7023	80
H(22A)	2802	8993	6488	80
H(22B)	2491	9028	7645	80
H(23A)	4925	8257	6896	80
H(23B)	3267	7053	7211	80
H(24A)	5501	7792	8587	80
H(24B)	4191	8296	8955	80
H(25A)	7189	10330	8271	80
H(25B)	6863	10373	9427	80

Table 52. Atomic Coordinates ($x10^4$) and Equivalent Isotropic Displacement Parameters (Å²x 10³) for Cu₂I₂(P(C₆H₁₁)₃)₂

H(26A)	4813	11123	9039	80	
H(26B)	6454	12300	8692	80	
H(31A)	4146	13333	8864	80	
H(32A)	1740	13757	7551	80	
H(32B)	3598	14977	7907	80	
H(33A)	1853	15529	8995	80	
H(33B)	3148	15243	9667	80	
H(34A)	-194	13053	9021	80	
H(34B)	520	13887	10157	80	
H(35A)	315	11396	9948	80	
H(35B)	2185	12608	10270	80	
H(36A)	2105	10857	8876	80	
H(36B)	809	11163	8219	80	

Table 52. (Continued)

I(1)-Cu(1)	2.618 (4)
I(1)-Cu(1A)	2.604 (4)
Cu(1)-P(1)	2.252 (4)
Cu(1)-I(1A)	2.604 (4)
P(1)-C(11)	1.838 (13)
P(1)-C(21)	1.923 (15)
P(1)-C(31)	1.899 (15)
C(11)-C(12)	1.546 (18)
C(11)-C(16)	1.570 (22)
C(12)-C(13)	1.549 (23)
C(13)-C(14)	1.519 (26)
C(14)-C(15)	1.550 (20)
C(15)-C(16)	1.527 (21)
C(21)-C(22)	1.492 (15)
C(21)-C(26)	1.516 (17)
C(22)-C(23)	1.566 (28)
C(23)-C(24)	1.550 (24)
C(24)-C(25)	1.544 (19)
C(25)-C(26)	1.527 (26)
C(31)-C(32)	1.565 (24)
C(31)-C(36)	1.522 (17)
C(32)-C(33)	1.567 (22)
C(33)-C(34)	1.519 (20)
C(34)-C(35)	1.536 (28)
C(35)-C(36)	1.534 (22)
Cu(1)-I(1)-Cu(1A)	71.8(1)
I(1)-Cu(1)-P(1)	124.9(2)
I(1)-Cu(1)-I(1A)	108.2(1)
P(1)-Cu(1)-I(1A)	126.8(1)
Cu(1)-P(1)-C(11)	114.1(5)
Cu(1)-P(1)-C(21)	111.3(3)
C(11) - P(1) - C(21)	10/.1(/)
Cu(1)-P(1)-C(31)	112.7(4)
C(11) - P(1) - C(31)	105.1(6)
C(21)-P(1)-C(31)	106.0(6)
P(1)-C(11)-C(12)	117.9(11)
P(1)-U(11)-U(10)	112.4(9)
C(12)-C(11)-C(10)	108.9(12)
C(11)-C(12)-C(13)	114.0(14)
C(12)-C(13)-C(14)	110.7(15)
C(13)-C(14)-C(15)	112.3(13)
C(14)-C(15)-C(16)	113.4(14)

Table 53. Bond Lengths [Å] and Angles [deg] for $Cu_2I_2(P(C_6H_{11})_3)_2$

C(11)-C(16)-C(15)	112.0(12)	
P(1)-C(21)-C(22)	109.9(10)	
P(1)-C(21)-C(26)	116.1(10)	
C(22)-C(21)-C(26)	115.0(11)	
C(21)-C(22)-C(23)	110.5(12)	
C(22)-C(23)-C(24)	111.3(14)	
C(23)-C(24)-C(25)	109.1(14)	
C(24)-C(25)-C(26)	113.2(12)	
C(21)-C(26)-C(25)	110.0(12)	
P(1)-C(31)-C(32)	108.5(10)	
P(1)-C(31)-C(36)	111.5(9)	
C(32)-C(31)-C(36)	110.1(12)	
C(31)-C(32)-C(33)	108.8(12)	
C(32)-C(33)-C(34)	110.6(11)	
C(33)-C(34)-C(35)	111.8(15)	
C(34)-C(35)-C(36)	110.9(13)	
C(31)-C(36)-C(35)	112.3(11)	

Table 53. (Continued)

	U11	U22	U33	U23	U13	U12
I(1)	47(1)	120(1)	53(1)	49(1)	-4(1)	-24(1)
Cu(1)	46(1)	57(1)	46(1)	28(1)	-1(1)	1(1)
P(1)	33(2)	28(2)	34(2)	16(1)	1(1)	3(1)
C(11)	36(7)	38(8)	44(8)	5(6)	2(6)	0(6)
C(12)	49(9)	80(13)	41(9)	1(8)	-2(7)	12(9)
C(13)	53(9)	70(13)	50(10)	-26(8)	-8(7)	20(9)
C(14)	38(8)	97(15)	56(11)	-3(9)	-7(7)	18(10)
C(15)	50(9)	77(12)	41(9)	24(8)	0(7)	2(8)
C(16)	51(8)	48(9)	40(8)	15(7)	5(6)	1(7)
C(21)	29(6)	24(6)	33(6)	16(5)	1(5)	13(5)
C(22)	53(8)	37(8)	48(8)	22(7)	-21(6)	15(7)
C(23)	67(10)	29(9)	70(11)	14(7)	-8(8)	-4(8)
C(24)	63(9)	46(10)	64(11)	27(8)	-18(8)	0(8)
C(25)	43(7)	48(9)	49(9)	20(7)	-10(6)	1(7)
C(26)	51(8)	30(7)	29(7)	7(6)	-11(6)	6(6)
C(31)	39(7)	22(7)	49(8)	11(6)	6(6)	-3(6)
C(32)	51(8)	33(8)	44(8)	27(6)	10(6)	5(6)
C(33)	47(7)	43(9)	52(9)	23(7)	7(6)	-5(7)
C(34)	64(9)	54(10)	44(9)	36(8)	17(7)	7(7)
C(35)	51(8)	55(10)	44(8)	36(7)	5(6)	2(7)
C(36)	39(7)	42(8)	43(8)	23(6)	2(6)	17(6)

Table 54. Anisotropic Displacement Parameters ($A^2 \times 10^3$) for $Cu_2I_2(P(C_6H_{11})_3)_2$

The anisotropic displacement factor exponent takes the form: -2 pi² [$h^2a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

Figure 30 Projection View of CuI(P(C₆H₅)₂CH₃)₃

Empirical formula	C ₁₃ H ₁₃ Cu _{0.3333} I _{0.3333} P
Formula weight	263.7
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	orthorhombic, <i>Pna2</i> ₁
Unit cell dimensions	$a = 17.575$ Å $\alpha = 90.0$ deg.
	$b = 10.578$ Å $\beta = 90.0$ deg.
	$c = 20.341 \text{ Å} \gamma = 90.0 \text{ deg.}$
Volume	$3782(4) Å^3$
Z, Calculated density	12, 1.584 Mg/m^3
Absorption coefficient	2.616 mm^{-1}
F(000)	1600
Crystal size	0.1 x 0.1 x 0.1 mm
Theta range for data collection	3.5 to 22.5 deg.
Index ranges	$-1 \le h \le 28, -1 \le k \le 14, -1 \le l \le 24$
Reflections collected / unique/	6945 / 6032 [R(int) = 0.0327]/
observed	3797(4.0>σ(F))
Goodness-of-fit	1.25
Final R indices [I>2sigma(I)]	R1 = 0.0543, $wR2 = 0.0597$
R indices (all data)	R1 = 0.0901, $wR2 = 0.0704$
Extinction coefficient	-0.00033(3)
Largest diff. peak and hole	1.37 and $-0.57 \text{ e}\text{\AA}^{-3}$

Table 55. Crystal Data and Structure Refinement for $CuI(P(C_6H_5)_2CH_3)_3$

	X	у	Z	U(eq)
I(1)	3146(1)	6161(1)	1930	52(1)
Cu(1)	3809(1)	7069(1)	3136(1)	43(1)
P(1)	4732(1)	5818(2)	3214(2)	50(1)
P(2)	4099(1)	9054(2)	2731(2)	46(1)
P(3)	3057(1)	6917(3)	4125(2)	48(1)
C(1)	4588(5)	4122(9)	3147(10)	79(5)
C(2)	4512(5)	9022(9)	1805(7)	60(4)
C(3)	2234(5)	7534(14)	3900(8)	81(5)
C(111)	5283(5)	6110(10)	2410(7)	53(4)
C(112)	5090(6)	5722(12)	1675(7)	64(4)
C(113)	5458(6)	6015(15)	1051(9)	85(6)
C(114)	6050(6)	6680(14)	1136(9)	76(5)
C(115)	6242(5)	7062(12)	1850(9)	77(5)
C(116)	5878(5)	6791(12)	2484(8)	68(4)
C(121)	5258(5)	5965(10)	4057(7)	52(3)
C(122)	5252(5)	7066(13)	4471(7)	71(5)
C(123)	5652(6)	7236(15)	5118(8)	79(5)
C(124)	6029(7)	6264(17)	5362(9)	92(6)
C(125)	6051(6)	5168(18)	4970(10)	100(7)
C(126)	5679(6)	4972(13)	4317(8)	81(5)
C(211)	3443(5)	10228(8)	2541(6)	52(3)
C(212)	3596(6)	11484(9)	2393(7)	70(4)
C(213)	3085(6)	12338(10)	2234(8)	81(5)
C(214)	2460(6)	11963(10)	2197(7)	76(4)
C(215)	2306(6)	10710(10)	2315(9)	86(5)
C(216)	2799(5)	9821(9)	2507(8)	69(4)
C(221)	4665(4)	9950(9)	3363(6)	54(3)
C(222)	5329(5)	10039(13)	3224(9)	89(5)
C(223)	5732(8)	10655(16)	3765(10)	108(7)
C(224)	5501(9)	11120(13)	4403(10)	100(7)
C(225)	4843(8)	10988(13)	4581(9)	95(6)
C(226)	4438(6)	10390(11)	4045(7)	71(4)
C(311)	3289(5)	7760(12)	4985(6)	64(4)
C(312)	3038(6)	8960(12)	5157(9)	90(6)
C(313)	3281(8)	9605(16)	5778(11)	113(7)
C(314)	3758(9)	9207(20)	6189(10)	120(8)
C(315)	4039(7)	7983(22)	6058(9)	119(8)
C(316)	3786(6)	7279(14)	5447(8)	81(5)
C(321)	2822(4)	5338(10)	4481(5)	49(3)
C(322)	2516(6)	5172(12)	5194(7)	68(4)
C(323)	2301(6)	3967(12)	5414(8)	74(4)

Table 56. Atomic Coordinates ($x10^4$) and Equivalent Isotropic Displacement Parameters (Å²x 10³) for CuI(P(C₆H₅)₂CH₃)₃

C(324)	2396(6)	2944(12)	4944(7)	75(5)
C(325)	2714(6)	3103(11)	4234(8)	81(5)
C(326)	2907(5)	4301(10)	4020(7)	60(4)
H(1A)	5068	3696	3194	80
H(1B)	4249	3848	3489	80
H(1C)	4372	3924	2727	80
H(2A)	4621	9868	1663	80
H(2B)	4970	8529	1798	80
H(2C)	4144	8649	1516	80
H(3A)	1887	7517	4264	80
H(3B)	2308	8392	3759	80
H(3C)	2027	7048	3543	80
H(11A)	4636	5224	1631	80
H(11B)	5280	5737	628	80
H(11C)	6370	6929	777	80
H(11D)	6689	7580	1887	80
H(11E)	6051	7103	2902	80
H(12A)	4965	7776	4313	80
H(12B)	5643	8034	5343	80
H(12C)	6273	6311	5783	80
H(12D)	6327	4462	5147	80
H(12E)	5724	4186	4084	80
H(21A)	4118	11749	2413	80
H(21E)	3214	13207	2158	80
H(21B)	2059	12527	2069	80
H(21C)	1785	10454	2263	80
H(21D)	2662	8963	2606	80
H(22A)	5557	9749	2823	80
H(22B)	6264	10770	3674	80
H(22C)	5862	11528	4686	80
H(22D)	4634	11227	4999	80
H(22E)	3911	10246	4142	80
H(31A)	2673	9364	4876	80
H(31B)	3068	10430	5848	80
H(31C)	3916	9703	6560	80
H(31D)	4381	7579	6359	80
H(31E)	3992	6453	5368	80
H(32A)	2460	5894	5476	80
H(32B)	2126	3817	5854	80
H(32C)	2236	2119	5083	80
H(32D)	2772	2381	3953	80
H(32F)	3088	4450	3582	80

Table 56. (Continued)

2.881 (3)
2.099 (3)
2.312 (3)
2.412 (4)
1.818 (10)
1.925 (13)
1.954 (13)
2.018 (14)
1.738 (9)
1.882 (11)
1.652 (11)
2.006 (13)
1.867 (11)
1.587 (19)
1.279 (14)
1.459 (21)
1.267 (17)
1.544 (24)
1.469 (22)
1.437 (18)
1.390 (17)
1.504 (21)
1.321 (22)
1.407 (26)
1.495 (24)
1.389 (13)
1.214 (13)
1.314 (15)
1.169 (16)
1.374 (16)
1.337 (15)
1.205 (13)
1.516 (18)
1.461 (25)
1.445 (29)
1.220 (22)
1.448 (21)
1.388 (18)
1.381 (18)
1.496 (27)
1.256 (26)
1.411 (30)
1.514 (25)

Table 57. Bond Lengths [Å] and Angles [deg] for $CuI(P(C_6H_5)_2CH_3)_3$

Table 57. (Continued)

C(321)-C(322)	1.557 (17)
C(321)-C(326)	1.451 (16)
C(322)-C(323)	1.404 (18)
C(323)-C(324)	1.454 (20)
C(324)-C(325)	1.557 (22)
C(325)-C(326)	1.382 (16)
I(1)-Cu(1)-P(1)	99.6(1)
I(1)-Cu(1)-P(2)	95.1(1)
P(1)-Cu(1)-P(2)	115.4(1)
I(1)-Cu(1)-P(3)	117.8(1)
P(1)-Cu(1)-P(3)	108.6(1)
P(2)-Cu(1)-P(3)	118.6(1)
Cu(1)-P(1)-C(1)	120.6(3)
Cu(1)-P(1)-C(111)	102.9(3)
C(1)-P(1)-C(111)	99.5(7)
Cu(1)-P(1)-C(121)	112.4(3)
C(1)-P(1)-C(121)	102.1(7)
C(111)-P(1)-C(121)	119.6(4)
Cu(1)-P(2)-C(2)	113.4(3)
Cu(1)-P(2)-C(211)	125.6(3)
C(2)-P(2)-C(211)	92.4(5)
Cu(1)-P(2)-C(221)	109.3(4)
C(2)-P(2)-C(221)	117.1(4)
C(211)-P(2)-C(221)	98.2(5)
Cu(1)-P(3)-C(3)	102.9(6)
Cu(1)-P(3)-C(311)	125.9(3)
C(3)-P(3)-C(311)	104.2(6)
Cu(1)-P(3)-C(321)	120.3(3)
C(3)-P(3)-C(321)	105.5(5)
C(311)-P(3)-C(321)	96.0(5)
P(1)-C(111)-C(112)	130.6(7)
P(1)-C(111)-C(116)	113.7(11)
C(112)-C(111)-C(116)	115.6(12)
C(111)-C(112)-C(113)	132.1(10)
C(112)-C(113)-C(114)	111.2(15)
C(113)-C(114)-C(115)	117.1(14)
C(114)-C(115)-C(116)	132.8(9)
C(111)-C(116)-C(115)	111.2(13)
P(1)-C(121)-C(122)	125.1(8)
P(1)-C(121)-C(126)	121.7(10)
C(122)-C(121)-C(126)	113.1(12)
C(121)-C(122)-C(123)	127.4(11)
C(122)-C(123)-C(124)	118.0(14)

Table 57. (Continued)

C(123)-C(124)-C(125)	116.3(16)
C(124)-C(125)-C(126)	127.3(15)
C(121)-C(126)-C(125)	117.8(13)
P(2)-C(211)-C(212)	127.2(8)
P(2)-C(211)-C(216)	112.2(8)
C(212)-C(211)-C(216)	120.5(10)
C(211)-C(212)-C(213)	125.4(10)
C(212)-C(213)-C(214)	115.1(11)
C(213)-C(214)-C(215)	120.1(11)
C(214)-C(215)-C(216)	127.0(10)
C(211)-C(216)-C(215)	111.8(10)
P(2)-C(221)-C(222)	113.0(11)
P(2)-C(221)-C(226)	129.8(7)
C(222)-C(221)-C(226)	116.5(12)
C(221)-C(222)-C(223)	109.1(15)
C(222)-C(223)-C(224)	133.7(13)
C(223)-C(224)-C(225)	119.7(16)
C(224)-C(225)-C(226)	107.0(16)
C(221)-C(226)-C(225)	133.9(11)
P(3)-C(311)-C(312)	124.2(10)
P(3)-C(311)-C(316)	124.0(10)
C(312)-C(311)-C(316)	111.5(13)
C(311)-C(312)-C(313)	122.7(13)
C(312)-C(313)-C(314)	126.7(17)
C(313)-C(314)-C(315)	114.5(18)
C(314)-C(315)-C(316)	120.3(15)
C(311)-C(316)-C(315)	124.2(14)
P(3)-C(321)-C(322)	122.6(8)
P(3)-C(321)-C(326)	113.7(8)
C(322)-C(321)-C(326)	123.5(9)
C(321)-C(322)-C(323)	119.5(11)
C(322)-C(323)-C(324)	115.8(13)
C(323)-C(324)-C(325)	124.8(11)
C(324)-C(325)-C(326)	118.6(12)
C(321)-C(326)-C(325)	117.7(12)

	U11	U22	U33	U23	U13	U12
<u>I(1)</u>	42(1)	46(1)	69(1)	4(1)	-12(1)	-4(1)
Cu(1)	25(1)	40(1)	64(1)	-1(1)	2(1)	4(1)
P(1)	27(1)	42(1)	79(2)	3(1)	-2(1)	3(2)
P(2)	36(1)	37(1)	65(2)	-3(1)	$1(1)^{-1}$	4(1)
P(3)	29(1)	51(1)	66(2)	4(1)	6(1)	2(1)
C(1)	37(4)	40(5)	160(14)	-2(4)	-10(8)	8(8)
C(2)	47(5)	57(6)	75(11)	-1(4)	16(6)	4(7)
C(3)	27(4)	101(9)	114(12)	13(5)	10(6)	12(9)
C(111)	22(3)	53(6)	84(9)	2(4)	-7(5	0(7)
C(112)	32(4)	74(8)	87(9)	-3(5)	-6(5)	-14(7)
C(113)	43(5)	116(11)	95(11)	9(6)	16(7)	-26(10)
C(114)	29(5)	89(9)	108(12)	8(5)	14(6)	4(9)
C(115)	25(3)	88(8)	118(12)	-5(4)	13(6)	20(10)
C(116)	26(4)	71(7)	105(10)	1(4)	-13(6)	15(8)
C(121)	23(3)	53(6)	79(8)	4(4)	-3(4)	12(6)
C(122)	36(4)	86(8)	92(10)	7(5)	-10(6)	16(9)
C(123)	58(6)	94(10)	85(10)	0(7)	1(7)	-2(9)
C(124)	48(6)	142(14)	85(11)	-6(8)	-24(7)	33(11)
C(125)	53(6)	115(13)	131(15)	15(7)	-39(8)	58(12)
C(126)	49(5)	79(8)	114(12)	8(6)	-5(7)	34(9)
C(211)	48(5)	32(4)	76(7)	-3(4)	-3(5)	2(5)
C(212)	60(6)	42(5)	107(10)	-5(4)	3(7)	7(6)
C(213)	70(6)	38(5)	134(12)	15(5)	-14(8)	14(6)
C(214)	59(6)	61(6)	107(10)	23(5)	-23(7)	-13(7)
C(215)	44(5)	60(6)	155(14)	6(5)	-33(7)	0(8)
C(216)	44(5)	36(5)	128(11)	-1(4)	-7(7)	-7(7)
C(221)	28(3)	43(4)	92(9)	0(3)	-3(4)	6(5)
C(222)	37(4)	99(9)	131(12)	-18(5)	-4(7)	-13(10)
C(223)	53(7)	113(12)	159(17)	-9(7)	-24(9)	-25(12)
C(224)	83(9)	82(9)	136(15)	-21(8)	-50(10)	-8(11)
C(225)	77(8)	96(10)	111(12)	-22(8)	-12(8)	-30(9)
C(226)	49(5)	69(7)	96(10)	-7(5)	-5(7)	-3(7)
C(311)	42(5)	77(7)	72(8)	-18(5)	20(5)	-19(6)
C(312)	51(6)	74(8)	144(14)	-5(6)	26(8)	-42(9)
C(313)	63(7)	107(11)	169(18)	-36(8)	31(10)	-71(13)
C(314)	62(8)	172(17)	124(15)	-58(10)	28(9)	-87(13)
C(315)	49(6)	201(21)	107(12)	-5(10)	-9(8)	-26(15)
C(316)	42(5)	98(9)	101(10)	-4(6)	-10(6)	-19(9)
C(321)	24(3)	61(6)	62(6)	-8(4)	7(4)	8(5)
C(322)	46(5)	77(8)	82(9)	-6(5)	5(5)	-2(7)
C(323)	41(5)	90(8)	92(9)	-18(6)	16(6)	25(8)

Table 58. Anisotropic Displacement Parameters $(A^2 \times 10^3)$ for $CuI(P(C_6H_5)_2CH_3)_3$

C(324)	53(6)	69(7)	104(10)	-26(6)	-10(7)	19(8)
C(325)	58(6)	62(7)	123(12)	-13(5)	0(7)	5(8)
C(326)	45(5)	59(6)	77(8)	-14(5)	1(5)	0(6)

Table 58. (Continued)

The anisotropic displacement factor exponent takes the form: -2 pi^2 [$h^2a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

Figure 32 Projection View of Cul(P(C₆H₁₁)₃)₂.C₆H₆

Empirical formula	$C_{39}H_{69}CuIP_2$
Formula weight	790.3
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	triclinic, <i>P</i> ī
Unit cell dimensions	$a = 9.534(6)$ Å $\alpha = 92.44(2)$ deg.
	$b = 9.644(5)$ Å $\beta = 98.07(3)$ deg.
	$c = 25.519(13) \text{ Å}$ $\gamma = 116.42(4) \text{ deg.}$
Volume	2067(2) Å ³
Z, Calculated density	2, 1.270 Mg/m^3
Absorption coefficient	1.376 mm^{-1}
F(000)	830
Crystal size	0.2 x 0.2 x 0.2 mm
Theta range for data collection	1.75 to 22.5 deg.
Index ranges	$-1 \le h \le 13, -11 \le k \le 7, -35 \le l \le 35$
Reflections collected / unique/	7593 / 7429 [R(int) = 0.2079]/
observed	4737(4.0>σ(F))
Goodness-of-fit	1.54
Final R indices [I>2sigma(I)]	R1 = 0.0561, $wR2 = 0.0669$
R indices (all data)	R1 = 0.0915, $wR2 = 0.1783$
Extinction coefficient	-0.00048(10)
Largest diff. peak and hole	1.17 and –0.48 eÅ ⁻³

Table 59. Crystal Data and Structure Refinement for $CuI(P(C_6H_{11})_3)_2.C_6H_6$

	x	у	Z	U(eq)
$\overline{I(1)}$	4391(1)	5541(1)	2818(1)	74(1)
$C_{\rm U}(1)$	$\frac{4371(1)}{2440(1)}$	6800(1)	2728(1)	43(1)
P(1)	1985(1)	7088(2)	1842(1)	36(1)
P(2)	1915(1)	7608(2)	3496(1)	41(1)
C(111)	2076(5)	5478(8)	1445(2)	39(3)
C(112)	2069(8)	5495(11)	842(2)	64(5)
C(112)	2459(9)	4172(12)	631(3)	76(5)
C(113)	1326(8)	2566(12)	767(3)	79(5)
C(115)	1302(8)	2580(12)	1358(3)	77(5)
C(115)	877(7)	3841(0)	1561(3)	55(A)
C(121)	181(5)	7336(0)	1567(2)	<i>4</i> 0(3)
C(122)	-6(6)	7712(9)	985(2)	56(4)
C(122) C(123)	-1438(6)	8040(10)	843(3)	62(4)
C(123)	-2977(6)	6700(10)	947(3)	58(4)
C(125)	-2816(7)	6323(10)	1513(3)	58(4) 68(4)
C(126)	-1390(6)	5963(9)	1654(3)	57(4)
C(120)	3662(5)	8935(8)	1694(2)	40(3)
C(132)	3780(6)	10342(10)	2030(3)	59(<u>4</u>)
C(132)	5183(7)	10942(10) 11904(11)	1949(3)	67(5)
C(134)	6762(7)	11704(11) 11775(10)	2056(3)	74(4)
C(135)	6677(6)	10430(10)	1707(3)	56(4)
C(136)	5267(5)	8853(9)	1800(3)	53(3)
C(211)	198(5)	6049(8)	3750(2)	44(3)
C(212)	-1299(6)	5177(10)	3311(2)	59(4)
C(213)	-2580(6)	3789(10)	3517(3)	65(4)
C(214)	-3011(6)	4275(10)	4019(3)	71(4)
C(215)	-1539(7)	5130(11)	4456(3)	69(4)
C(216)	-230(6)	6576(9)	4260(2)	56(4)
C(221)	1669(7)	9439(10)	3435(2)	57(4)
C(222)	188(9)	9128(12)	3009(3)	77(6)
C(223)	311(12)	10767(15)	2878(3)	98(7)
C(224)	426(12)	11718(15)	3352(4)	102(8)
C(225)	1789(12)	11980(14)	3788(4)	90(7)
C(226)	1747(10)	10405(13)	3927(3)	80(6)
C(231)	3640(5)	8252(9)	4064(2)	46(3)
C(232)	5190(6)	9468(9)	3890(2)	55(4)
C(233)	6654(6)	9967(10)	4336(3)	70(4)
C(234)	6849(7)	8568(12)	4513(3)	74(5)
C(235)	5374(7)	7429(10)	4701(2)	69(5)
C(236)	3856(6)	6849(9)	4262(2)	55(4)
C(3)	6480(16)	203(27)	-30(5)	127(11)

Table 60. Atomic Coordinates ($x10^4$) and Equivalent Isotropic Displacement Parameters (Å²x 10³) for CuI(P(C₆H₁₁)₃)₂.C₆H₆

Table 60. (Continued)

		2(22)		120/10
C(2) 63	12(16) 146	(23)	145(5)	132(12)
C(1) 48	03(21) 126	03(24)]	101(4)	134(14)
H(11A) 31	03 556	4	1586	80
H(11B) 284	41 648	6	/67	80
H(11C) 10	39 532	28 6	667	80
H(11D) 35	32 440)1 7	780	80
H(11E) 23	81 416	5 2	252	80
H(11F) 16	50 181	.5 6	546	80
H(11G) 27	1 227	2 5	579	80
H(11H) 53	8 157	'2	1423	80
H(11I) 23	31 276	6	1542	80
H(11J) -19	91 360)6	1403	80
H(11K) 93	7 385	53 1	1940	80
H(12A) 26	1 823	30 1	1775	80
H(12B) -20	02 679	7 7	760	80
H(12C) 954	4 856	51 9	921	80
H(12D) -15	561 822	29 4	477	80
H(12E) -12	896	54	1063	80
H(12F) -31	196 578	37 7	716	80
H(12G) -38	693 693	36 8	863	80
H(12H) -20	537 722	20	1743	80
H(12I) -37	783 546	53	1567	80
H(12J) -12	285 575	59 ž	2018	80
H(12K) -15	570 505	53	1430	80
H(13A) 34	39 907	78	1328	80
H(13B) 39	67 101	170	2396	80
H(13C) 27	84 103	384	1963	80
H(13D) 52	53 127	7 4 0	2187	80
H(13E) 50	08 121	20	1589	80
H(13F) 76	68 127	/26	2019	80
H(13G) 69	07 115	547 2	2416	80
H(13H) 64	59 106	519	1346	80
H(13I) 76	69 103	380	1761	80
H(13J) 52	02 800)8	1568	80
H(13K) 54	72 866	53 2	2162	80
H(21A) 53	6 527	79 :	3846	80
H(21B) -10	003 483	30	3006	80
H(21C) -17	716 588	33 :	3205	80
H(21D) -21	192 304	10	3589	80
H(21E) -34	519 329	99	3247	80
H(21F) -34	517 492	26	3938	80
H(21G) -3'	749 336	58	4153	80
H(21H) -19	838 546	50 4	4764	80
H(21I) _1	105 442	36	4561	80
				~ ~

H(21K)	702	7046	4533	80	
H(22A)	2557	10127	3283	80	
H(22B)	-757	8531	3151	80	
H(22C)	175	8529	2696	80	
H(22D)	-664	10542	2644	80	
H(22E)	1163	11260	2684	80	
H(22F)	-536	11351	3498	80	
H(22G)	633	12708	3230	80	
H(22H)	2777	12566	3669	80	
H(22I)	1782	12563	4101	80	
H(22J)	2651	10568	4189	80	
H(22K)	802	9842	4073	80	
H(23A)	3432	8756	4355	80	
H(23B)	5049	10362	3804	80	
H(23C)	5363	9025	3576	80	
H(23D)	6508	10479	4639	80	
H(23E)	7590	10699	4216	80	
H(23F)	7041	8081	4214	80	
H(23G)	7769	8926	4790	80	
H(23H)	5519	6531	4780	80	
H(23I)	5229	7875	5020	80	
H(23J)	3957	6274	3966	80	
H(23K)	2921	6166	4394	80	
H(3A)	7519	337	-68	80	
H(2A)	7247	2441	256	80	
H(1A)	4633	2139	263	80	

Table 60. (Continued)

I(1)-Cu(1)	2.626 (2)
Cu(1)-P(1)	2.296 (2)
Cu(1)-P(2)	2.279 (2)
P(1)-C(111)	1.858 (8)
P(1)-C(121)	1.883 (7)
P(1)-C(131)	1.887 (5)
P(2)-C(211)	1.885 (5)
P(2)-C(221)	1.891 (10)
P(2)-C(231)	1.880 (5)
C(111)-C(112)	1.538 (8)
C(111)-C(116)	1.555 (9)
C(112)-C(113)	1.573 (16)
C(113)-C(114)	1.532 (13)
C(114)-C(115)	1.512 (12)
C(115)-C(116)	1.534 (14)
C(121)-C(122)	1.549 (8)
C(121)-C(126)	1.549 (8)
C(122)-C(123)	1.533 (11)
C(123)-C(124)	1.531 (8)
C(124)-C(125)	1.509 (10)
C(125)-C(126)	1.546 (11)
C(131)-C(132)	1.526 (12)
C(131)-C(136)	1.553 (9)
C(132)-C(133)	1.553 (10)
C(133)-C(134)	1.553 (12)
C(134)-C(135)	1.506 (13)
C(135)-C(136)	1.574 (9)
C(211)-C(212)	1.551 (6)
C(211)-C(216)	1.546 (9)
C(212)-C(213)	1.531 (9)
C(213)-C(214)	1.517 (11)
C(214)-C(215)	1.531 (8)
C(215)-C(216)	1.562 (9)
C(221)-C(222)	1.559 (10)
C(221)-C(226)	1.506 (12)
C(222)-C(223)	1.586 (19)
C(223)-C(224)	1.448 (17)
C(224)-C(225)	1.505 (15)
C(225)-C(226)	1.559 (19)
C(231)-C(232)	1.563 (7)
C(231)-C(236)	1.551 (12)
C(232)-C(233)	1.544 (8)
C(233)-C(234)	1.520 (15)

Table 61. Bond Lengths [Å] and Angles [deg] for $CuI(P(C_6H_{11})_3)_2.C_6H_6$

Table 61. (Continued)

C(234)-C(235)	1.507 (9)
C(235)-C(236)	1.560 (8)
C(3)-C(2)	1.360 (35)
C(3)-C(1A)	1.383 (23)
C(2)-C(1)	1.370 (27)
C(1)-C(3A)	1.383 (23)
- (/ - (/	
I(1)-Cu(1)-P(1)	105.8(1)
I(1)-Cu(1)-P(2)	117.3(1)
P(1)-Cu(1)-P(2)	136.2(1)
Cu(1)-P(1)-C(111)	108.3(2)
Cu(1)-P(1)-C(121)	119.0(2)
C(111)-P(1)-C(121)	111.4(3)
Cu(1)-P(1)-C(131)	109.7(2)
C(111)-P(1)-C(131)	105.3(3)
C(121)-P(1)-C(131)	102.1(3)
Cu(1)-P(2)-C(211)	114.1(2)
Cu(1)-P(2)-C(221)	111.4(2)
C(211)-P(2)-C(221)	111.7(3)
Cu(1)-P(2)-C(231)	112.2(2)
C(211)-P(2)-C(231)	104.3(2)
C(221)-P(2)-C(231)	102.4(3)
P(1)-C(111)-C(112)	120.4(6)
P(1)-C(111)-C(116)	112.6(4)
C(112)-C(111)-C(116)	110.1(5)
C(111)-C(112)-C(113)	109.2(7)
C(112)-C(113)-C(114)	112.3(7)
C(113)-C(114)-C(115)	111.4(7)
C(114)-C(115)-C(116)	111.1(8)
C(111)-C(116)-C(115)	110.9(6)
P(1)-C(121)-C(122)	118.2(4)
P(1)-C(121)-C(126)	112.5(6)
C(122)-C(121)-C(126)	109.4(4)
C(121)-C(122)-C(123)	111.6(5)
C(122)-C(123)-C(124)	111.8(7)
C(123)-C(124)-C(125)	111.7(4)
C(124)-C(125)-C(126)	111.2(6)
C(121)-C(126)-C(125)	111.3(7)
P(1)-C(131)-C(132)	110.1(4)
P(1)-C(131)-C(136)	110.9(5)
C(132)-C(131)-C(136)	110.4(4)
C(131)-C(132)-C(133)	113.2(6)
C(132)-C(133)-C(134)	109.6(8)
C(133)-C(134)-C(135)	111.7(5)

Table 61. (Continued)

C(134)-C(135)-C(136)	110.5(6)
C(131)-C(136)-C(135)	110.7(7)
P(2)-C(211)-C(212)	112.8(4)
P(2)-C(211)-C(216)	115.4(4)
C(212)-C(211)-C(216)	111.1(5)
C(211)-C(212)-C(213)	110.8(5)
C(212)-C(213)-C(214)	112.0(7)
C(213)-C(214)-C(215)	111.2(5)
C(214)-C(215)-C(216)	111.3(6)
C(211)-C(216)-C(215)	109.4(6)
P(2)-C(221)-C(222)	111.1(6)
P(2)-C(221)-C(226)	120.0(6)
C(222)-C(221)-C(226)	110.8(8)
C(221)-C(222)-C(223)	107.7(7)
C(222)-C(223)-C(224)	111.8(9)
C(223)-C(224)-C(225)	113.9(12)
C(224)-C(225)-C(226)	111.3(9)
C(221)-C(226)-C(225)	110.8(7)
P(2)-C(231)-C(232)	109.7(4)
P(2)-C(231)-C(236)	111.6(4)
C(232)-C(231)-C(236)	111.0(6)
C(231)-C(232)-C(233)	111.4(5)
C(232)-C(233)-C(234)	111.5(6)
C(233)-C(234)-C(235)	110.7(7)
C(234)-C(235)-C(236)	112.3(6)
C(231)-C(236)-C(235)	110.5(6)
C(2)-C(3)-C(1A)	122.0(17)
C(3)-C(2)-C(1)	117.8(15)
C(2)-C(1)-C(3A)	120.0(22)

.

	U11	U22	U33	U23	U13	U12
<u>I(1)</u>	101(1)	104(1)	57(1)	81(1)	15(1)	20(1)
Cu(1)	47(1)	48(1)	39(1)	25(1)	10(1)	9(1)
P(1)	38(1)	36(1)	36(1)	18(1)	5(1)	5(1)
P(2)	44(1)	47(1)	35(1)	23(1)	7(1)	8(1)
C(111)	44(2)	28(6)	44(3)	15(2)	7(2)	3(3)
C(112)	84(4)	65(9)	48(3)	38(4)	10(3)	3(4)
C(113)	85(5)	66(10)	72(4)	32(4)	20(4)	-15(5)
C(114)	66(4)	60(9)	103(6)	27(4)	10(4)	-26(5)
C(115)	73(4)	23(8)	124(7)	17(4)	28(4)	-2(5)
C(116)	58(3)	18(7)	88(5)	12(3)	25(3)	-1(4)
C(121)	44(2)	61(7)	45(3)	27(3)	8(2)	11(3)
C(122)	46(3)	71(7)	56(3)	31(3)	8(2)	24(4)
C(123)	59(3)	70(9)	61(4)	37(4)	1(3)	19(4)
C(124)	47(3)	56(7)	70(4)	26(3)	0(2)	12(4)
C(125)	47(3)	83(8)	83(4)	34(4)	15(3)	21(4)
C(126)	45(3)	63(7)	66(4)	26(3)	15(2)	23(4)
C(131)	39(2)	41(6)	41(2)	19(3)	6(2)	10(3)
C(132)	53(3)	40(7)	88(5)	22(3)	22(3)	15(4)
C(133)	72(4)	31(9)	99(6)	20(4)	26(4)	15(5)
C(134)	51(3)	56(8)	98(5)	7(3)	19(3)	12(5)
C(135)	52(3)	45(7)	72(4)	20(3)	18(3)	15(4)
C(136)	39(2)	52(7)	71(4)	22(3)	11(2)	6(4)
C(211)	47(2)	41(6)	43(3)	18(3)	9(2)	10(3)
C(212)	57(3)	60(8)	47(3)	17(3)	4(2)	4(4)
C(213)	55(3)	62(8)	63(4)	14(3)	6(3)	9(4)
C(214)	51(3)	77(8)	77(4)	19(3)	14(3)	19(5)
C(215)	66(4)	76(9)	56(4)	20(4)	22(3)	25(4)
C(216)	55(3)	62(7)	46(3)	21(3)	15(2)	10(3)
C(221)	75(3)	61(8)	52(3)	44(4)	12(3)	21(4)
C(222)	97(5)	89(11)	63(4)	65(6)	-10(4)	6(5)
C(223)	125(6)	112(14)	90(6)	88(8)	2(5)	23(7)
C(224)	144(7)	92(13)	124(8)	92(8)	48(7)	47(8)
C(225)	148(7)	43(14)	91(6)	56(7)	13(5)	-2(7)
C(226)	112(5)	74(12)	60(4)	52(6)	6(4)	-2(5)
C(231)	45(3)	49(6)	41(3)	19(3)	5(2)	8(3)
C(232)	52(3)	52(7)	58(3)	20(3)	11(2)	16(4)
C(233)	46(3)	82(9)	68(4)	20(3)	5(3)	-5(4)
C(234)	53(3)	104(10)	69(4)	42(4)	4(3)	14(5)
C(235)	67(3)	94(9)	55(3)	46(4)	-2(3)	16(4)
C(236)	57(3)	64(7)	46(3)	28(3)	10(2)	21(4)
C(3)	88(7)	172(22)	128(9)	58(10)	32(6)	45(11)

Table 62. Anisotropic Displacement Parameters $(A^2 \times 10^3)$ for $CuI(P(C_6H_{11})_3)_2.C_6H_6$

/

C(2)	105(8)	168(25)	102(8)	41(9)	14(6)	65(11)	
C(1)	197(13)	150(26)	109(8)	126(15)	26(9)	53(11)	

Table 62. (Continued)

The anisotropic displacement factor exponent takes the form: -2 pi^2 [$h^2a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

.

Empirical formula	$C_{26.333}H_{42.6667}Cu_{0.6667}I_{0.6667}P_{1.33330}$
Formula weight	527.5
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	triclinic, <i>P</i> ī
Unit cell dimensions	$a = 9.62(3) \text{ Å}$ $\alpha = 92.72(3) \text{ deg.}$
	$b = 9.622(10) \text{ Å}$ $\beta = 94.900(0) \text{ deg.}$
	$c = 25.473(16) \text{ Å} \gamma = 116.05(2) \text{ deg.}$
Volume	2100(6) Å ³
Z, Calculated density	3, 1.251 Mg/m^3
Absorption coefficient	1.355 mm^{-1}
F(000)	826
Crystal size	0.1 x 0.1 x 0.1 mm
Theta range for data collection	3.5 to 22.5 deg.
Index ranges	$-1 \le h \le 13, -13 \le k \le 12, -35 \le l \le 35$
Reflections collected / unique/	13647 / 11694 [R(int) = 0.2251]/
observed	3256(8.0>σ(F))
Goodness-of-fit	2.65
Final R indices [I>2sigma(I)]	R1 = 0.0895, $wR2 = 0.1131$
R indices (all data)	R1 = 0.2164, $wR2 = 0.1524$
Extinction coefficient	-0.0003(3)
Largest diff. peak and hole	1.94 and –1.22 eÅ ⁻³

Table 63. Crystal Data and Structure Refinement for $CuI(P(C_6H_{11})_3)_2.C_7H_8$

	X	у	Z	U(eq)
I(1)	5219(2)	4306(2)	2155(1)	77(1)
Cu(1)	7172(2)	3059(2)	2252(1)	48(1)
P(1)	7477(5)	2773(5)	3135(1)	43(2)
P(2)	7817(5)	2299(5)	1491(2)	45(2)
C(111)	5832(19)	994(21)	3278(6)	47(9)
C(112)	5733(23)	-481(21)	2951(7)	67(11)
C(113)	4344(23)	-2068(27)	3022(9)	86(13)
C(114)	2760(24)	-1900(27)	2912(9)	86(12)
C(115)	2805(22)	-562(26)	3256(7)	73(12)
C(116)	4167(17)	954(18)	3164(6)	44(8)
C(121)	7317(17)	4411(19)	3516(5)	41(8)
C(122)	8512(24)	5955(26)	3386(7)	78(13)
C(123)	8128(23)	7269(22)	3583(8)	72(10)
C(124)	7994(27)	7267(28)	4172(9)	89(14)
C(125)	6898(26)	5758(28)	4311(7)	81(13)
C(126)	7185(24)	4354(23)	4112(6)	66(10)
C(131)	9268(18)	2606(23)	3424(6)	54(9)
C(132)	9288(22)	2175(26)	4000(6)	70(11)
C(133)	10726(26)	1890(32)	4164(8)	100(14)
C(134)	12243(24)	3019(27)	4032(7)	76(13)
C(135)	12195(22)	3446(26)	3463(7)	73(11)
C(136)	10811(22)	3736(29)	3290(7)	84(13)
C(211)	9582(20)	3855(23)	1249(6)	63(10)
C(212)	10124(20)	3414(24)	729(6)	64(10)
C(213)	11483(22)	4853(27)	545(7)	78(12)
C(214)	12835(21)	5675(27)	957(8)	78(12)
C(215)	12395(22)	6169(23)	1467(7)	70(11)
C(216)	11016(23)	4751(27)	1671(7)	80(13)
C(221)	8054(23)	485(22)	1548(6)	63(10)
C(222)	8001(32)	-512(29)	1075(8)	97(15)
C(223)	7983(32)	-2057(27)	1206(8)	99(15)
C(224)	9340(35)	-1787(30)	1620(10)	116(18)
C(225)	9288(36)	-894(34)	2095(9)	124(19)
C(226)	9388(28)	708(27)	1977(8)	92(14)
C(231)	6226(17)	1699(19)	935(5)	42(8)
C(232)	4622(20)	506(23)	1092(7)	63(10)
C(233)	3210(22)	-8(23)	660(7)	67(10)
C(234)	3020(21)	1340(26)	479(7)	71(11)
C(235)	4592(20)	2586(25)	300(7)	68(10)
C(236)	5970(20)	3065(20)	733(6)	54(9)
C(100)	3621(60)	8541(64)	4790(14)	153(36)

Table 64. Atomic Coordinates (x10⁴) and Equivalent Isotropic Displacement Parameters $(\text{\AA}^2 x \ 10^3)$ for CuI(P(C₆H₁₁)₃)₂.C₇H₈

Table 64. (Continued)

,

			and the second se	
C(101)	2503(80)	7560(126)	4624(30)	148(55)
C(102)	4330(97)	10794(89)	5018(15)	189(82)
C(103)	3304(149)	9753(104)	4804(30)	127(61)
C(104)	4940(203)	8208(137)	4816(40)	184(86)
H(11A)	5975	859	3647	80
H(11B)	6675	-574	3044	80
H(11C)	5668	-329	2582	80
H(11D)	4461	-2252	3387	80
H(11E)	4341	-2921	2810	80
H(11F)	1927	-2877	2971	80
H(11G)	2618	-1727	2547	80
H(11H)	2912	-740	3622	80
H(11I)	1849	-485	3177	80
H(11J)	4024	1091	2796	80
H(11K)	4165	1824	3364	80
H(12A)	6351	4374	3365	80
H(12B)	8608	5940	3014	80
H(12C)	9493	6127	3572	80
H(12D)	7190	7161	3381	80
H(12E)	8963	8256	3533	80
H(12F)	7687	8038	4294	80
H(12G)	8977	7487	4368	80
H(12H)	5901	5566	4133	80
H(12I)	6819	5766	4685	80
H(12J)	8158	4495	4297	80
H(12K)	6381	3374	4184	80
H(13A)	9172	1685	3228	80
H(13B)	8349	1252	4027	80
H(13C)	9311	3001	4233	80
H(13D)	10631	986	4333	80
H(13E)	12995	2620	4089	80
H(13F)	12580	3940	4270	80
H(13G)	12174	2622	3230	80
H(13H)	13126	4369	3428	80
H(13I)	10910	4639	3120	80
H(21A)	9247	4623	1154	80
H(21B)	9258	2995	455	80
H(21C)	10462	2627	790	80
H(21D)	11105	5588	446	80
H(21E)	11818	4533	237	80
H(21F)	13621	6576	829	80
H(21G)	13275	4976	1037	80
H(21H)	12043	6937	1391	80
H(21I)	13278	6635	1734	80

H(21J)	11411	4050	1793	80
H(21K)	10690	5134	1968	80
H(22A)	7145	-199	1699	80
H(22B)	8944	67	922	80
H(22C)	7137	-683	818	80
H(22D)	8076	-2580	891	80
H(22E)	6978	-2682	1314	80
H(22F)	10346	-1333	1496	80
H(22G)	9133	2804	1719	80
H(22H)	10095	-789	2366	80
H(22I)	8309	-1422	2234	80
H(22J)	9373	1281	2294	80
H(22K)	10361	1272	1839	80
H(23A)	6483	1231	640	80
H(23B)	4390	955	1397	80
H(23C)	4735	-393	1190	80
H(23D)	2263	-751	776	80
H(23E)	3421	-483	357	80
H(23F)	2817	1818	784	80
H(23G)	2153	1042	210	80
H(23H)	4473	3477	196	80
H(23I)	4811	2110	-1	80
H(23J)	6920	3804	618	80
H(23K)	5749	3556	1030	80

Table 64. (Continued)

$\overline{I(1)-Cu(1)}$	2.637 (9)
Cu(1)-P(1)	2.289 (8)
Cu(1)-P(2)	2.269 (9)
P(1)-C(111)	1.828 (16)
P(1)-C(121)	1.882 (21)
P(1)-C(131)	1.889 (22)
P(2)-C(211)	1.880 (17)
P(2)-C(221)	1.868 (26)
P(2)-C(231)	1.860 (16)
C(111)-C(112)	1.572 (29)
C(111)-C(116)	1.586 (27)
C(112)-C(113)	1.557 (26)
C(113)-C(114)	1.604 (37)
C(114)-C(115)	1.504 (36)
C(115)-C(116)	1.518 (23)
C(121)-C(122)	1.500 (25)
C(121)-C(126)	1.536 (22)
C(122)-C(123)	1.539 (38)
C(123)-C(124)	1.517 (30)
C(124)-C(125)	1.454 (31)
C(125)-C(126)	1.563 (39)
C(131)-C(132)	1.544 (24)
C(131)-C(136)	1.485 (24)
C(132)-C(133)	1.551 (39)
C(133)-C(134)	1.465 (29)
C(134)-C(135)	1.528 (27)
C(135)-C(136)	1.511 (37)
C(211)-C(212)	1.570 (26)
C(211)-C(216)	1.553 (23)
C(212)-C(213)	1.557 (25)
C(213)-C(214)	1.484 (24)
C(214)-C(215)	1.518 (30)
C(215)-C(216)	1.576 (26)
C(221)-C(222)	1.488 (32)
C(221)-C(226)	1.544 (31)
C(222)-C(223)	1.533 (42)
C(223)-C(224)	1.524 (40)
C(224)-C(225)	1.468 (40)
C(225)-C(226)	1.547 (45)
C(231)-C(232)	1.566 (22)
C(231)-C(236)	1.542 (30)
C(232)-C(233)	1.550 (25)
C(233)-C(234)	1.475 (36)

Table 65. Bond Lengths [Å] and Angles [deg] for $CuI(P(C_6H_{11})_3)_2.C_7H_8$

Table 65. (Continued)

C(234)-C(235)	1.584 (24)
C(235)-C(236)	1.533 (24)
C(100)-C(101)	1.105 (85)
C(100)-C(102)	2.004 (100)
C(100)-C(103)	1.328 (152)
C(100)-C(104)	1.436 (219)
C(100)-C(10B)	1.797 (103)
C(101)-C(103)	1.917 (146)
C(102)-C(103)	1.124 (108)
C(102)-C(10A)	1.797 (103)
C(102)-C(10C)	0.955 (137)
C(104)-C(10B)	0.955 (137)
$\mathbf{I}(1) = \mathbf{C}_{1}(1) \mathbf{P}(1)$	105 2(2)
I(1)-Cu(1)-P(1) I(1)-Cu(1)-P(2)	105.3(3)
I(1)-Cu(1)-P(2) P(1) Cu(1) P(2)	110.7(2)
P(1)-Cu(1)-P(2)	137.3(3)
Cu(1)- $F(1)$ - $C(111)$	108.7(5)
C(111) P(1) C(121)	108.0(0)
$C_{111} - F(1) - C(121)$ $C_{11}(1) - F(1) - C(121)$	103.8(8)
C(111) P(1) C(131)	104.0(0)
C(121) - P(1) - C(131)	104.5(5)
$C_{1}(1) - P(2) - C(211)$	113.8(6)
Cu(1) - P(2) - C(221)	111.6(6)
C(211) - P(2) - C(221)	110.6(10)
$C_{u}(1)-P(2)-C(231)$	112 4(6)
C(211) - P(2) - C(231)	105 7(7)
C(221)-P(2)-C(231)	102.1(8)
P(1)-C(111)-C(112)	111.8(12)
P(1)-C(111)-C(116)	115.6(13)
C(112)-C(111)-C(116)	106.0(12)
C(111)-C(112)-C(113)	116.8(18)
C(112)-C(113)-C(114)	108.2(21)
C(113)-C(114)-C(115)	111.4(16)
C(114)-C(115)-C(116)	111.0(17)
C(111)-C(116)-C(115)	115.0(17)
P(1)-C(121)-C(122)	110.9(14)
P(1)-C(121)-C(126)	119.2(15)
C(122)-C(121)-C(126)	112.4(13)
C(121)-C(122)-C(123)	110.7(18)
C(122)-C(123)-C(124)	110.8(20)
C(123)-C(124)-C(125)	112.2(17)
C(124)-C(125)-C(126)	115.3(21)
C(121)-C(126)-C(125)	108.1(17)

Table 65. (Continued)

P(1)-C(131)-C(132)	116.5(14)	
P(1)-C(131)-C(136)	118.3(16)	
C(132)-C(131)-C(136)	113.9(14)	
C(131)-C(132)-C(133)	111.1(17)	
C(132)-C(133)-C(134)	117.7(23)	
C(133)-C(134)-C(135)	113.3(16)	
C(134)-C(135)-C(136)	113.6(18)	
C(131)-C(136)-C(135)	117.1(21)	
P(2)-C(211)-C(212)	117.0(12)	
P(2)-C(211)-C(216)	116.1(11)	
C(212)-C(211)-C(216)	109.8(16)	
C(211)-C(212)-C(213)	111.3(16)	
C(212)-C(213)-C(214)	114.0(16)	
C(213)-C(214)-C(215)	113.2(18)	
C(214)-C(215)-C(216)	110.8(16)	
C(211)-C(216)-C(215)	114.4(15)	
P(2)-C(221)-C(222)	122.1(16)	
P(2)-C(221)-C(226)	112.2(14)	
C(222)-C(221)-C(226)	111.6(23)	
C(221)-C(222)-C(223)	113.6(18)	
C(222)-C(223)-C(224)	110.9(18)	
C(223)-C(224)-C(225)	109.9(30)	
C(224)-C(225)-C(226)	112.4(21)	
C(221)-C(226)-C(225)	109.7(17)	
P(2)-C(231)-C(232)	112.0(10)	
P(2)-C(231)-C(236)	113.5(10)	
C(232)-C(231)-C(236)	106.4(16)	
C(231)-C(232)-C(233)	115.6(14)	
C(232)-C(233)-C(234)	111.4(15)	
C(233)-C(234)-C(235)	110.8(19)	
C(234)-C(235)-C(236)	111.9(15)	
C(231)-C(236)-C(235)	114.4(14)	
C(101)-C(100)-C(102)	135.2(86)	
C(101)-C(100)-C(103)	103.6(91)	
C(102)-C(100)-C(103)	31.9(52)	
C(101)-C(100)-C(104)	114.8(90)	
C(102)-C(100)-C(104)	109.7(56)	
C(103)-C(100)-C(104)	139.8(72)	
C(101)-C(100)-C(10B)	146.7(88)	
C(102)-C(100)-C(10B)	78.0(53)	
C(103)-C(100)-C(10B)	109.2(60)	
C(104)-C(100)-C(10B)	31.9(52)	
C(100)-C(101)-C(103)	42.3(71)	
C(100)-C(102)-C(103)	102.0(53)	
	10	1
------------	------------	---------
Toble 65	('ontinuo	v L V
		- ()
1 4010 05.	Commac	·• /
	`	

C(103)-C(102)-C(10A)	139.4(111)	
C(100)-C(102)-C(10C)	154.0(145)	
C(103)-C(102)-C(10C)	167.3(157)	
C(10A)-C(102)-C(10C)	52.7(125)	
C(100)-C(103)-C(101)	34.0(39)	
C(100)-C(103)-C(102)	109.3(120)	
C(101)-C(103)-C(102)	143.0(125)	
C(100)-C(104)-C(10B)	95.4(142)	

	U11	U22	U33	U23	U13	U12
I(1)	112(1)	116(1)	51(1)	93(1)	12(1)	18(1)
Cu(1)	55(1)	65(2)	37(1)	36(1)	11(1)	10(1)
P(1)	46(3)	56(3)	35(2)	29(3)	8(2)	8(2)
P(2)	50(3)	57(3)	36(2)	32(3)	9(2)	9(2)
C(111)	48(11)	58(13)	39(8)	27(10)	1(8)	6(8)
C(112)	89(15)	49(14)	86(13)	50(13)	24(12)	10(10)
C(113)	76(15)	82(20)	95(16)	31(15)	18(13)	9(13)
C(114)	68(15)	69(18)	96(15)	5(13)	21(13)	11(13)
C(115)	67(14)	104(19)	63(11)	55(15)	-7(10)	-10(11)
C(116)	43(10)	15(11)	72(10)	6(9)	23(9)	13(8)
C(121)	25(9)	56(12)	47(9)	20(9)	15(7)	9(8)
C(122)	84(15)	111(20)	58(11)	59(15)	18(11)	13(12)
C(123)	69(14)	46(13)	97(15)	21(11)	22(12)	-2(11)
C(124)	105(18)	85(20)	97(16)	54(16)	39(15)	9(14)
C(125)	102(17)	104(21)	50(11)	57(17)	15(12)	-6(11)
C(126)	91(15)	64(15)	49(10)	43(13)	6(10)	-4(9)
C(131)	38(11)	71(15)	50(9)	20(10)	14(8)	23(9)
C(132)	78(14)	104(18)	40(9)	49(14)	14(10)	28(10)
C(133)	78(17)	127(23)	100(16)	45(17)	-1(13)	79(16)
C(134)	79(16)	105(19)	67(12)	64(16)	-7(11)	6(12)
C(135)	64(13)	97(18)	72(12)	49(14)	2(11)	8(11)
C(136)	57(14)	151(22)	73(12)	67(15)	26(11)	59(14)
C(211)	66(13)	107(17)	39(9)	63(13)	-1(9)	-4(9)
C(212)	59(12)	93(17)	33(8)	27(12)	11(9)	0(9)
C(213)	66(15)	114(19)	50(11)	31(14)	30(12)	17(12)
C(214)	42(13)	114(19)	76(13)	27(13)	30(12)	27(13)
C(215)	68(14)	65(16)	62(11)	19(12)	-3(11)	-4(10)
C(216)	82(15)	130(21)	52(11)	67(16)	15(11)	11(12)
C(221)	78(13)	65(14)	57(10)	44(12)	3(10)	0(9)
C(222)	150(22)	100(20)	76(13)	88(19)	9(14)	-2(12)
C(223)	158(23)	92(19)	92(15)	86(18)	57(17)	27(14)
C(224)	185(26)	99(21)	135(20)	118(22)	52(20)	39(17)
C(225)	167(25)	168(29)	89(16)	134(25)	-36(17)	-7(17)
C(226)	122(19)	110(20)	80(13)	89(18)	-10(13)	3(13)
C(231)	37(10)	55(12)	39(8)	23(9)	13(8)	6(8)
C(232)	61(13)	74(15)	55(10)	34(12)	-2(10)	3(10)
C(233)	60(13)	73(16)	64(11)	25(12)	13(11)	1(10)
C(234)	50(13)	106(19)	60(11)	40(13)	-2(10)	0(12)
C(235)	52(13)	91(16)	52(10)	24(12)	-1(10)	27(10)
C(236)	66(12)	48(13)	51(9)	25(10)	12(9)	24(9)
C(100)	203(47)	237(60)	81(24)	141(41)	55(30)	78(29)

Table 66. Anisotropic Displacement Parameters $(A^2 \times 10^3)$ for CuI(P(C₆H₁₁)₃)₂.C₇H₈

Table	66	(Contin)	(har
I able	00.	(Comm	ieu)

C(101)	104(52)	252(105	69(48)	61(52)	-9(40)	60(56)
C(102)	433(130	252(104	59(26)	303(112	72(38)	50(36)
C(103)	253(103	62(69)	89(48)	86(73)	47(56)	8(40)
C(104)	371(148	117(99)	139(73)	147(97)	178(94)	49(59)

The anisotropic displacement factor exponent takes the form: $-2 pi^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]$

Figure 36 Projection View of Cul(P(C₆H₁₁)₃)₂ (hex)

Empirical formula	$C_{18}H_{33}Cu_{0.5}I_{0.5}P$
Formula weight	375.6
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	monoclinic, C2/c
Unit cell dimensions	$a = 18.441(9) \text{ Å} \alpha = 90.0 \text{ deg.}$
	b = 9.276(6) Å β = 97.03(5) deg.
	$c = 22.51(2) \text{ Å}$ $\gamma = 90.0 \text{ deg.}$
Volume	3820(5) Å ³
Z, Calculated density	8, 1.306 Mg/m ³
Absorption coefficient	1.485 mm^{-1}
F(000)	1576
Crystal size	0.2 x 0.2 x 0.2 mm
Theta range for data collection	2.14 to 29.98 deg.
Index ranges	$-1 \le h \le 25, -13 \le k \le 1, -31 \le l \le 31$
Reflections collected / unique/	6735 / 5580 [R(int) = 0.0663]/
observed	2025(6.0>σ(F))
Goodness-of-fit	1.64
Final R indices [I>2sigma(I)]	R1 = 0.0672, wR2 = 0.0794
R indices (all data)	R1 = 0.1561, wR2 = 0.1065
Extinction coefficient	-0.00028
Largest diff. peak and hole	1.38 and –0.96 e. Å ⁻³

Table 67. Crystal Data and Structure Refinement for $CuI(P(C_6H_{11})_3)_2$ (hex)

	X	у	Z	U(eq)	
I(1)	0	5847(1)	2500	78(1)	
Cu(1)	0	3059(1)	2500	42(1)	
P(1)	594(1)	2126(2)	3366(1)	43(1)	
C(11)	901(5)	3563(10)	3923(4)	50(3)	
C(12)	1493(6)	4536(10)	3725(4)	61(3)	
C(13)	1601(7)	5899(12)	4109(5)	91(5)	
C(14)	1742(7)	5582(12)	4773(5)	89(5)	
C(15)	1153(8)	4612(13)	4960(5)	95(5)	
C(16)	1059(7)	3222(11)	4580(4)	80(4)	
C(21)	1404(5)	1021(9)	3231(4)	46(3)	
C(22)	1880(6)	1760(10)	2798(4)	63(4)	
C(23)	2479(8)	770(11)	2622(5)	84(5)	
C(24)	2957(6)	155(12)	3168(5)	75(4)	
C(25)	2477(6)	-618(11)	3565(5)	76(4)	
C(26)	1881(6)	366(11)	3771(4)	64(4)	
C(31)	39(5)	906(8)	3789(4)	46(3)	
C(32)	-650(6)	1631(10)	3949(5)	68(4)	
C(33)	-1092(6)	659(11)	4321(5)	77(4)	
C(34)	-1284(6)	-771(11)	4001(5)	77(4)	
C(35)	-606(7)	-1496(11)	3838(5)	82(5)	
C(36)	-169(7)	-502(10)	3468(5)	74(4)	
H(11A)	490	4203	3904	80	
H(12A)	1387	4779	3309	80	
H(12B)	1940	3996	3778	80	
H(13A)	1163	6464	4034	80	
H(13B)	1998	6460	3993	80	
H(14A)	1769	6464	4998	80	
H(14B)	2204	5099	4854	80	
H(15A)	700	5133	4919	80	
H(15B)	1274	4359	5373	80	
H(16A)	1502	2668	4640	80	
H(16B)	670	2643	4698	80	
H(21A)	1205	193	3013	80	
H(22A)	2114	2578	3001	80	
H(22B)	1575	2102	2450	80	
H(23A)	2779	1279	2373	80	
H(23B)	2247	-15	2395	80	
H(24A)	3211	935	3383	80	
H(24B)	3315	-500	3047	80	
H(25A)	2780	-992	3907	80	
H(25B)	2240	-1417	3351	80	

Table 68. Atomic Coordinates ($x10^4$) and Equivalent Isotropic Displacement Parameters (Å²x 10³) for CuI(P(C₆H₁₁)₃)₂ (hex)

H(26A)	1579	-163	4014	80	
H(26B)	2111	1141	4006	80	
H(31A)	330	664	4159	80	
H(32A)	-953	1862	3584	80	
H(32B)	-525	2515	4159	80	
H(33A)	-1527	1140	4410	80	
H(33B)	-796	453	4693	80	
H(34A)	-1597	-571	3638	80	
H(34B)	-1542	-1393	4245	80	
H(35A)	-728	-2389	3635	80	
H(35B)	-300	-1709	4203	80	
H(36A)	263	-986	3374	80	
H(36B)	-471	-288	3101	80	

Table 68. (Continued)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Cu(1)-I(1)	2.587 (3)	
Cu(1)-P(1)	2.285 (3)	
Cu(1)-P(1A)	2.285 (3)	
P(1)-C(11)	1.871 (9)	
P(1)-C(21)	1.867 (9)	
P(1)-C(31)	1.864 (9)	
C(11)-C(12)	1.524 (14)	
C(11)-C(16)	1.504 (13)	
C(12)-C(13)	1.531 (14)	
C(13)-C(14)	1.514 (17)	
C(14)-C(15)	1.509 (19)	
C(15)-C(16)	1.545 (16)	
C(21)-C(22)	1.549 (13)	
C(21)-C(26)	1.537 (12)	
C(22)-C(23)	1.525 (17)	
C(23)-C(24)	1.532 (16)	
C(24)-C(25)	1.514 (17)	
C(25)-C(26)	1.543 (15)	
C(31)-C(32)	1.520 (14)	
C(31)-C(36)	1.519 (12)	
C(32)-C(33)	1.532 (16)	
C(33)-C(34)	1.530 (15)	
C(34)-C(35)	1.504 (17)	
C(35)-C(36)	1.536 (17)	
I(1)-Cu(1)-P(1)	112.2(1)	
I(1)-Cu(1)-P(1A)	112.2(1)	
P(1)-Cu(1)-P(1A)	135.5(1)	
Cu(1)-P(1)-C(11)	112.1(3)	
Cu(1)-P(1)-C(21)	112.3(3)	
C(11)-P(1)-C(21)	108.5(4)	
Cu(1)-P(1)-C(31)	115.5(3)	
C(11)-P(1)-C(31)	103.3(4)	
C(21)-P(1)-C(31)	104.5(4)	
P(1)=C(11)=C(12)	113.2(0)	
P(1)-C(11)-C(16)	121.0(7)	
C(12)-C(11)-C(16)	110.7(8)	
C(11)-C(12)-C(13)	111.8(9)	
C(12)-C(13)-C(14)	113.0(9)	
C(13)-C(14)-C(15)	110.4(10)	
C(14)-C(15)-C(16)	112.3(11)	
C(11)-C(16)-C(15)	111.3(8)	
P(1)-C(21)-C(22)	112.7(6)	

Table 69. Bond Lengths [Å] and Angles [deg] for $CuI(P(C_6H_{11})_3)_2$ (hex)

P(1)-C(21)-C(26)	118.7(6)	
C(22)-C(21)-C(26)	111.0(7)	
C(21)-C(22)-C(23)	112.4(8)	
C(22)-C(23)-C(24)	112.3(10)	
C(23)-C(24)-C(25)	109.2(10)	
C(24)-C(25)-C(26)	112.8(8)	
C(21)-C(26)-C(25)	110.8(8)	
P(1)-C(31)-C(32)	112.3(6)	
P(1)-C(31)-C(36)	113.7(7)	
C(32)-C(31)-C(36)	108.9(8)	
C(31)-C(32)-C(33)	112.7(8)	
C(32)-C(33)-C(34)	111.2(10)	
C(33)-C(34)-C(35)	110.6(9)	
C(34)-C(35)-C(36)	111.8(9)	
C(31)-C(36)-C(35)	112.2(9)	

Table 69. (Continued)

<u>A</u>	U11	U22	U33	U23	U13	U12
I(1)	97(1)	33(1)	99(1)	0	-5(1)	0
Cu(1)	42(1)	38(1)	47(1)	0	8(1)	0
P(1)	49(1)	37(1)	44(1)	-6(1)	7(1)	2(1)
C(11)	53(6)	54(5)	45(5)	-14(5)	13(4)	0(4)
C(12)	59(6)	61(5)	62(5)	-33(5)	7(5)	-8(5)
C(13)	88(9)	72(7)	111(10)	-42(7)	4(7)	-17(7)
C(14)	101(10)	84(8)	80(7)	-46(8)	6(7)	-21(7)
C(15)	124(12)	98(9)	67(7)	-31(9)	20(7)	-28(7)
C(16)	97(9)	73(7)	70(7)	-40(7)	14(6)	-4(6)
C(21)	43(5)	45(4)	49(5)	1(4)	3(4)	-1(4)
C(22)	69(7)	64(6)	58(6)	7(6)	12(5)	11(5)
C(23)	94(9)	76(7)	90(8)	12(7)	39(7)	2(7)
C(24)	58(7)	65(6)	105(8)	1(5)	17(7)	-9(6)
C(25)	67(7)	62(6)	96(8)	17(6)	-4(6)	14(6)
C(26)	61(6)	69(6)	60(6)	-3(5)	4(5)	14(5)
C(31)	50(5)	38(4)	52(5)	-11(4)	10(4)	6(4)
C(32)	69(7)	58(6)	79(7)	-14(5)	23(6)	-3(5)
C(33)	62(7)	80(7)	93(7)	-18(6)	29(6)	-2(7)
C(34)	61(7)	79(7)	94(8)	-27(6)	15(6)	13(6)
C(35)	92(9)	52(6)	108(9)	-36(6)	33(7)	-2(6)
C(36)	87(8)	49(5)	91(7)	-23(6)	34(7)	-14(5)

Table 70. Anisotropic Displacement Parameters $(A^2 \times 10^3)$ for $CuI(P(C_6H_{11})_3)_2$ (hex)

The anisotropic displacement factor exponent takes the form: -2 pi² [$h^2a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

Empirical formula	C ₂₄ H ₁₆ Cu ₃ I ₄ N ₄
Formula weight	1058.63
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	Triclinic, <i>P</i> ī
Unit cell dimensions	$a = 10.640(15) \text{ Å} \alpha = 77.51(9) \text{ deg.}$
	$b = 12.060(11) \text{ Å}$ $\beta = 84.13(13) \text{ deg.}$
	$c = 12.838(19) \text{ Å}$ $\gamma = 82.92(9) \text{ deg.}$
Volume	$1591(4) A^3$
Z, Calculated density	2, 2.209 Mg/m^3
Absorption coefficient	5.885 mm^{-1}
F(000)	974
Crystal size	0.2 x 0.2 x 0.2 mm
Theta range for data collection	1.93 to 30.01 deg.
Index ranges	$-14 \le h \le 1, -16 \le k \le 16, -18 \le l \le 18$
Reflections collected / unique	10580 / 9210 [R(int) = 0.1862]
Goodness-of-fit on F ²	0.970
Final R indices [I>2sigma(I)]	R1 = 0.0872, $wR2 = 0.2085$
R indices (all data)	R1 = 0.2061, $wR2 = 0.2849$
Extinction coefficient	0.0003(6)
Largest diff. peak and hole	1.404 and -1.526 eÅ ⁻³

Table 71. Crystal Data and Structure Refinement for $Cu_4I_6[di-1,10-phenanthrolino\ copper(II)\ iodide]_2$

	X	у	Z	U(eq)
I(1)	2576(1)	5389(1)	3706(1)	76(1)
I(2)	3163(1)	5143(1)	7154(1)	77(1)
I(3)	435(1)	11637(1)	965(1)	74(1)
I(4)	4886(1)	2309(1)	5467(1)	76(1)
Cu(1)	1842(2)	10201(1)	2406(1)	62(1)
Cu(6)	3708(3)	4318(3)	5380(3)	74(1)
Cu(7)	3677(3)	6029(3)	5211(3)	76(1)
Cu(8)	4911(3)	5919(3)	3698(3)	74(1)
Cu(9)	4778(4)	4216(3)	4117(3)	78(1)
N(1)	3243(10)	11235(9)	2144(9)	65(3)
C(2)	3170(14)	12301(13)	2288(15)	84(5)
C(3)	4180(2)	12984(18)	2075(17)	119(7)
C(4)	5404(18)	12463(18)	1732(14)	98(6)
C(4')	5515(14)	11352(15)	1534(13)	81(4)
C(5)	6687(15)	10780(18)	1127(14)	94(6)
C(6)	6761(16)	9668(19)	954(14)	96(6)
C(6')	5639(16)	9065(14)	1213(12)	75(4)
C(7)	5654(18)	7993(17)	1056(14)	96(6)
C(8)	4500(2)	7398(15)	1222(19)	123(8)
C(9)	3385(16)	8039(12)	1632(14)	83(5)
N(10)	3371(11)	9087(9)	1810(9)	64(3)
C(10')	4497(13)	9570(11)	1609(10)	60(3)
C(10")	4416(13)	10721(12)	1768(11)	63(3)
N(91)	587(10)	9019(8)	2800(9)	60(3)
C(92)	-45(15)	8652(12)	2107(15)	83(5)
C(93)	-787(16)	7661(13)	2495(16)	88(5)
C(94)	-900(14)	7186(12)	3549(14)	76(4)
C(94')	-226(11)	7598(10)	4282(14)	67(4)
C(95)	-234(14)	7104(11)	5436(12)	68(4)
C(96)	429(13)	7505(13)	6044(14)	77(4)
C(96')	1203(11)	8481(10)	5661(12)	61(3)
C(97)	1879(14)	8951(13)	6315(12)	74(4)
C(98)	2591(15)	9881(14)	5847(13)	81(4)
C(99)	2566(13)	10287(12)	4747(12)	65(3)
N(910)	1897(9)	9853(9)	4105(9)	58(3)
C(910)	1226(10)	8958(10)	4553(10)	52(3)
C(91")	507(11)	8501(10)	3860(11)	53(3)
H(2A)	2363	12607	2571	80
H(3A)	4055	13766	2151	80
H(4A)	6142	12871	1629	80

Table 72. Atomic Coordinates ($x10^4$) and Equivalent Isotropic Displacement Parameters (Å²x 10³) for Cu₄I₆[di-1,10-phenanthrolino copper(II) iodide]₂

H(5A)	7439	11170	992	80	
H(6A)	7539	9314	667	80	
H(7A)	6443	7613	818	80	
H(8A)	4484	6652	1074	80	
H(9A)	2611	7680	1803	80	
H(92A)	-24	9035	1369	80	
H(93A)	-1177	7346	1999	80	
H(94A)	-1426	6578	3810	80	
H(95A)	-749	6496	5741	80	
H(96A)	428	7139	6787	80	
H(97A)	1853	8656	7073	80	
H(98A)	3075	10211	6271	80	
H(99A)	3062	10903	4422	80	

Table 72. (Continued)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

I(1)-Cu(6)	2.585(6)
I(1)-Cu(9)	2.624(5)
I(1)-Cu(8)	2.639(5)
I(1)-Cu(7)	2.651(5)
I(2)-Cu(7)	2.525(6)
I(2)-Cu(8)'	2.557(5)
I(2)-Cu(6)	2.661(6)
I(2)-Cu(9)'	2.683(6)
I(3)-Cu(1)	2.684(4)
I(4)-Cu(9)	2.561(5)
I(4)-Cu(6)	2.573(5)
I(4)-Cu(7)'	2.616(5)
I(4)-Cu(8)'	2.629(4)
Cu(1)-N(1)	2.017(10)
Cu(1)-N(91)	2.022(10)
Cu(1)-N(910)	2.135(12)
Cu(1)-N(10)	2.166(12)
Cu(6)-Cu(9)	1.901(7)
Cu(6)-Cu(8)'	1.935(6)
Cu(6)-Cu(7)	2.024(5)
Cu(6)-Cu(9)'	2.747(5)
Cu(6)-Cu(7)'	2.812(7)
Cu(6)-Cu(8)	2.875(7)
Cu(7)-Cu(9)'	1.896(6)
Cu(7)-Cu(8)	2.250(7)
Cu(7)-Cu(8)'	2.807(6)
Cu(7)-Cu(9)	2.914(7)
Cu(8)-Cu(9)	2.027(5)
Cu(8)-Cu(9)'	2.825(7)
N(1)-C(2)	1.329(19)
N(1)-C(10")	1.410(18)
C(2)-C(3)	1.40(2)
C(3)-C(4)	1.45(3)
C(4)-C(4')	1.41(2)
C(4')-C(10")	1.44(2)
C(4')-C(5)	1.45(2)
C(5)-C(6)	1.40(3)
C(6)-C(6')	1.45(2)
C(6')-C(7)	1.35(2)
C(6')-C(10')	1.39(2)
C(7)-C(8)	1.47(3)
C(8)-C(9)	1.45(3)

Table 73. Bond Lengths [Å] and Angles [deg] for Cu_4I_6 [di-1,10-phenanthrolino copper(II) iodide]₂

Table 73. (Continued)

C(9)-N(10)	1.330(18)
N(10)-C(10')	1.373(17)
C(10')-C(10")	1.438(19)
N(91)-C(91")	1.368(17)
N(91)-C(92)	1.343(18)
C(92)-C(93)	1.48(2)
C(93)-C(94)	1.35(2)
C(94)-C(94)	1.44(2)
C(94')-C(91")	1.398(17)
C(94')-C(95)	1.47(2)
C(95)-C(96)	1.30(2)
C(96)-C(96')	1.487(19)
C(96')-C(910)	1.413(18)
C(96')-C(97)	1.405(19)
C(97)-C(98)	1.42(2)
C(98)-C(99)	1.39(2)
C(99)-N(910)	1.363(16)
N(910)-C(910)	1.358(15)
C(910)-C(91")	1.462(17)
N(1)-Cu(1)-N(91)	172.5(4)
N(1)-Cu(1)-N(910)	93.8(4)
N(91)-Cu(1)-N(910)	81.1(4)
N(1)-Cu(1)-N(10)	80.4(5)
N(91)-Cu(1)-N(10)	95.7(5)
N(910)-Cu(1)-N(10)	106.4(4)
N(1)-Cu(1)-I(3)	92.3(3)
N(91)-Cu(1)-I(3)	95.2(3)
N(910)-Cu(1)-I(3)	136.0(3)
N(10)-Cu(1)-I(3)	117.6(3)
N(1)-C(2)-C(3)	124.9(17)
C(2)-C(3)-C(4)	117.2(19)
C(4')-C(4)-C(3)	119.7(14)
C(4)-C(4')-C(10")	118.8(15)
C(4)-C(4)-C(5)	123.9(15)
C(10")-C(4')-C(5)	117.4(16)
C(6)-C(5)-C(4')	122.1(14)
C(5)-C(6)-C(6')	118.6(16)
C(7)-C(6')-C(10')	117.2(16)
C(7)-C(6')-C(6)	121.1(17)
C(10')-C(6')-C(6)	121.7(16)
C(6')-C(7)-C(8)	122.1(17)
C(9)-C(8)-C(7)	113.9(16)

N(10)-C(9)-C(8)	124.1(16)	
C(9)-N(10)-C(10')	117.1(12)	
N(10)-C(10')-C(6')	125.4(13)	
N(10)-C(10')-C(10")	114.8(12)	
C(6')-C(10')-C(10")	119.7(13)	
N(1)-C(10")-C(10')	119.2(11)	
N(1)-C(10")-C(4')	120.2(13)	
C(10')-C(10")-C(4')	120.6(14)	
C(91")-N(91)-C(92)	119.9(11)	
N(91)-C(92)-C(93)	119.5(14)	
C(94)-C(93)-C(92)	120.0(13)	
C(93)-C(94)-C(94')	119.6(13)	
C(91")-C(94')-C(94)	117.5(14)	
C(91")-C(94')-C(95)	118.5(12)	
C(94)-C(94')-C(95)	124.0(12)	
C(96)-C(95)-C(94')	120.3(13)	
C(95)-C(96)-C(96')	124.4(15)	
C(910)-C(96')-C(97)	119.3(12)	
C(910)-C(96')-C(96)	115.8(12)	
C(97)-C(96')-C(96)	124.9(14)	
C(98)-C(97)-C(96')	119.4(14)	
C(97)-C(98)-C(99)	117.3(12)	
N(910)-C(99)-C(98)	124.0(12)	
C(910)-N(910)-C(99)	118.6(11)	
N(910)-C(910)-C(96')	121.4(10)	
N(910)-C(910)-C(91")	118.2(11)	
C(96')-C(910)-C(91")	120.3(11)	
N(91)-C(91")-C(94')	123.3(11)	
N(91)-C(91")-C(910)	116.0(10)	
C(94')-C(91")-C(910)	120.6(12)	

Table 73. (Continued)

Symmetry transformations used to generate equivalent atoms: 1-x, 1-y, 1-z.

	U11	U22	U33	U23	U13	U12
<u>I(1)</u>	67(1)	70(1)	90(1)	-8(1)	-10(1)	-12(1)
I(2)	73(1)	78(1)	82(1)	-23(1)	-1(1)	-8(1)
I(3)	73(1)	82(1)	63(1)	-11(1)	-6(1)	-4(1)
I(4)	86(1)	56(1)	88(1)	-15(1)	-12(1)	-11(1)
Cu(1)	59(1)	68(1)	58(1)	-10(1)	-3(1)	-15(1)
Cu(6)	74(2)	72(2)	79(3)	-18(2)	-1(2)	-15(2)
Cu(7)	72(2)	68(2)	86(3)	-14(2)	-2(2)	-7(2)
Cu(8)	77(2)	66(2)	79(3)	-17(2)	-4(2)	-11(2)
Cu(9)	84(2)	70(2)	82(3)	-19(2)	-6(2)	-16(2)
N(1)	62(6)	73(7)	61(8)	-10(6)	-6(5)	-19(5)
C(2)	59(8)	81(10)	107(14)	-17(9)	11(8)	-12(7)
C(3)	148(18)	121(15)	106(16)	-37(12)	21(13)	-86(14)
C(4)	86(12)	149(17)	64(12)	-24(11)	10(9)	-52(11)
C(4')	60(9)	110(12)	71(12)	-17(9)	0(7)	-14(8)
C(5)	60(9)	150(16)	82(13)	-34(12)	-5(8)	-34(10)
C(6)	63(9)	166(19)	61(12)	-35(11)	-3(8)	-1(10)
C(6')	91(11)	78(9)	48(9)	-12(7)	-14(8)	23(8)
C(7)	93(12)	121(15)	65(12)	-20(10)	-14(9)	38(11)
C(8)	150(2)	57(9)	150(2)	-21(11)	10(16)	10(11)
C(9)	81(10)	59(8)	98(14)	-2(8)	1(9)	0(7)
N(10)	76(7)	61(6)	53(8)	-9(5)	-7(6)	2(5)
C(10')	64(8)	74(8)	39(8)	-6(6)	-5(6)	3(6)
C(10")	63(8)	82(9)	42(8)	-10(6)	-2(6)	-9(6)
N(91)	71(7)	56(6)	52(7)	-5(5)	-13(5)	-13(5)
C(92)	84(10)	66(8)	94(13)	9(8)	-28(9)	-11(7)
C(93)	99(11)	78(9)	100(15)	-28(9)	-43(10)	-18(8)
C(94)	79(9)	64(8)	84(13)	-6(8)	-6(8)	-16(7)
C(94')	46(6)	57(7)	103(13)	-23(7)	-15(7)	1(5)
C(95)	76(9)	59(7)	64(11)	-8(7)	6(7)	-4(6)
C(96)	62(8)	85(10)	75(11)	-6(8)	12(7)	-9(7)
C(96')	52(7)	60(7)	72(11)	-26(7)	1(6)	10(5)
C(97)	80(9)	96(10)	45(9)	-16(8)	1(7)	-5(8)
C(98)	86(10)	105(11)	62(11)	-28(9)	-7(8)	-28(9)
C(99)	65(8)	82(9)	50(9)	-17(7)	-6(6)	-14(6)
N(910)	50(5)	67(6)	56(7)	-16(5)	1(5)	-6(5)
C(910)	46(6)	71(7)	39(8)	-15(6)	6(5)	-5(5)
C(91")	47(6)	60(7)	51(8)	-14(6)	7(5)	-4(5)

Table 74. Anisotropic Displacement Parameters ($A^2 \times 10^3$) for Cu_4I_6 [di-1,10-phenanthrolino copper(II) iodide]₂

The anisotropic displacement factor exponent takes the form: -2 pi² [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

Bibliography

- 1. Karlin, K. D.; Zubieta, J., Copper Coordination Chemistry: Biochemical and Inorganic Perspectives, Adenine Press, New York, 1983.
- 2. Randall, J. T., Tran. Faraday Soc. 1938, 35, 2.
- 3. Hardt, H. D., Z. Anal. Chem. 1973, 265, 337.
- 4. Weber, P.; Hart, H. D., Inorg. Chim. Acta 1981, 64, L51.
- 5. Hardt, H. D.; Gechnidjani, H., Inorg. Chim. Acta 1975, 15, 47.
- 6. Schramm, V., Inorg. Chem. 1978, 17, 714.
- 7. Hardt, H. D.; Pierre, A., Inorg. Chim. Acta 1977, L59, 25.
- 8. Rath, N. P.; Holt, E. M., J. Chem. Soc. Chem. Commun. 1985, 665.
- 9. Tompkins, J. A., Ph. D. Thesis, Oklahoma State University, Stillwater, Oklahoma, 1988.
- 10. Bao, Xiaohua, Ph. D. Thesis, Oklahoma State University, Stillwater, Oklahoma, **1991**.
- 11. Durand, Paul, M.S. Thesis, Oklahoma State University, Stillwater, Oklahoma, 1995.
- 12. Crosby, G. A., Acc. Chem. Res., 1975, 8, 321.
- 13. Lytle, F. E., Appl. Spectry., 1970, 24, 319.
- 14. Burger, K., *Coordination Chemistry: Experimental Methods*, Butterworth, London, 1973.
- 15. Churchill, M. R.; Klara, K. L., Inorg. Chem. 1974, 13, 1427.
- 16. Churchill, M. R.; Klara, K. L., Inorg. Chem. 1974, 13, 1899.
- 17. Churchill, M. R.; Klara, K. L., Inorg. Chem. 1974, 13, 1065.
- 18. Churchill, M. R.; DeBoer, B. G.; Donovan, D. J., Inorg. Chem. 1975, 14, 617.
- 19. Churchill, M. R.; DeBoer, B. G.; Mendak, S. J., Inorg. Chem. 1975, 14, 2041.

- 20. Churchill, M. R.; Rotella, F. J., Inorg. Chem. 1977, 16, 3267.
- 21. Goel, R. G.; Beauchamp, A. L., Inorg. Chem. 1983, 22, 395.
- 22. Barron, P. F.; Dyason, J. C.; Engelhardt, L. M.; Healy, P. C.; White, A. H., *Inorg. Chem.* **1984**, 23, 3766.
- 23. Dyason, J. C.; Engelhardt, L. M.; Pakawatchai, C.; Healy, P. C.; White, A. H., Aust. J. Chem. 1985, 38, 1243.
- 24. Dyason, J. C.; Healy, P. C.; Engelhardt, L. M.; Pakawatchai, C.; Patrick, C. L.; Raston, C. L.; White, A. H., J. Chem. Soc. Dalton Trans. 1985, 831.
- 25. Attar, S.; Bowmaker, G. A.; Alcock, N. W., Frye, J. S.; Bearden, W. H.; Nelson, J. H., *Inorg. Chem.* **1991**, 30, 4743.
- 26. Ramaprabhu, S.; Amstutz, N.; Lucken, E. A. C.; Bernardinelli, G., J. Chem. Soc. Dalton Trans. 1993, 871.
- Stepnicka, P.; Gyepes, R.; Podlaha, J., Collect. Czech. Chem. Commun. 1998, 63, 64.
- 28. Eller, P. G.; Kubas, G. J.; Ryan, R. R., Inorg. Chem. 1977, 16, 2454.
- 29. Hengefeld, A.; Kopf, J.; Nast, R., Chem. Ber. 1977, 110, 3078.
- 30. Albano, V. G.; Bellon, P. L.; Ciani, G.; Manassero, M., J. Chem. Soc. Dalton Trans. 1972, 171.
- 31. Negita, H.; Hiura, M.; Kushi, Y.; Kuramoto, M.; Tsutomu, O., Bull. Chem. Soc. Jpn. 1981, 54, 1247.
- 32. Akrivos, P. D.; Hadijikadou, S. K.; Karagiannidis, P.; Mentzafos, D.; Teris, A. *Inorg. Chim. Acta.*, **1993**, 206, 163.
- 33. Camus, A.; Randaccio, L., Inorg. Chim. Acta. 1974, 12, 23.
- 34. Churchill, M. R.; Rotella, F. J., Inorg. Chem. 1979, 18, 166.
- 35. Hadijikadou, S. K.; Aslandidis, P.; Karagiannidis, P.; Hountas, A.; Terzis, A., *Inorg. Chim. Acta* **1991**, 184, 161.
- 36. Bowmaker, G. A.; Camp, D.; Hart, R. D.; Healy, P. C.; Skelton, B. W.; White, A. H., Aust. J. Chem. 1992, 45, 1155.
- Hadijikadou, S. K.; Aslandidis, P.; Akrivos, P. D; Karagiannidis, P.; Kojic-Prodic, J.; Luic, M. Inorg. Chim. Acta., 1992, 197, 31.

- 38. Larsonneur-Galibert, A. M.; Casten, P., Jaud, J.; Bernardinelli, G., *Transition Met. Chem.* **1996**, 21, 546.
- 39. Lobana, T. S.; Paul, S.; Castineiras, A., Polyhedron 1997, 16, 4023.
- 40. Zukerman-Schpector, J.; Castellano, E. E.; Mauro, A. E.; Roveri, M. R., *Acta Cryst.* **1986**, C42, 302.
- 41. Gill, J. T.; Mayerle, J. J.; Welcker, P. S.; Lewis, D. F.; Ucko, D. A.; Barton, D. J.; Stowens, D.; Lippard, S. J., *Inorg. Chem.* **1976**, 15, 1155.
- 42. Barron, P. F.; Dyason, J. C.; Healy, P. C.; Engelhardt, L. M.; Pakawatchai, C.; Patrick, C. L.; White, A. H., J. Chem. Soc. Dalton Trans. 1987, 1099.
- 43. Baker, L.; Bowmaker, G. A.; Hart, R. D.; Harvey, P. J.; Healy, P. C.; White, A. H., *Inorg. Chem.* **1994**, 33, 3925.
- 44. Bowmaker, G.; Dyason, J. C.; Healy, P. C.; Engelhardt, L. M.; Pakawatchai, C.; White, A. H., J. Chem. Soc. Dalton Trans. 1987, 1089.
- 45. Bowmaker, G. A; Engelhardt, L. M.; Healy, P. C.; Kildea, J. D.; Papasergio, R. I.; White, A. H., *Inorg. Chem.* 1987, 26, 3533.
- 46. Bowmaker, G. A; Camus, A.; Healy, P. C.; Skelton, B. W.; White, A. H., *Inorg. Chem.* **1989**, 28, 3883.
- 47. Bowmaker, G.; Jirong, W.; Hart, R. D.; White, A. H.; Healy, P. C., J. Chem. Soc. Dalton Trans. 1982, 787.
- 48. Glusker, J. P.; Trueblood, K. N., *Crystal Structure Analysis; A Primer*, Oxford University Press, New York, **1985**.
- 49. Stout, G. H.; Jensen, L. H., X-Ray Structure Determination A Practical Guide, John Wiley & Sons, New York, 1989.
- 50. Jeffery, J. W., Methods in X-Ray Crystallography, Academic, London, 1971.
- 51. Kasper, J. S.; Lonsdale, K., ED., *International Tables for X-Ray Crystallography*. Vol. II, the Kynoch Press, Birmingham, England, **1967**.
- 52. Luger, Peter, *Modern X-Ray Analysis on Single Crystals*, Walter de Gruyter & Co., New York, **1980**.

- 53. SHELXTL PC for Siemens Crystallographic Research Systems. Release 4.1, Siemens Analytical X-Ray Instruments, Inc., Madison, Wl, 1990.
- 54. Rendell, David, *Fluorescence and Phosphorescence Spectroscopy*, (Ed.: Mowthorpe, David), John Wiley & Sons, London, England, **1987**.
- 55. Leverenz, H. W., An Introduction to Luminescence of Solids, Dover Publications, Inc., New York, **1968**.
- 56. Luminescence Spectroscopy, Edited by Lumb, M. D., Academic Press, New York, 1978.
- 57. XSCANS V2.0 Technical Reference, Siemens Analytical X-Ray Instrument, Inc, Madison, WI, **1990**.
- 58. Sheldrick, G. M., Acta Cryst., 1990, A46, 467.
- 59. Sheldrick, G. M., A Computer Program for Crystal Structure Determination, University of Cambridge, England, **1976**.
- 60. Sheldrick, G. M., SHELX86: A Computer Program for Crystal Structure Determination, University of Gottingen, **1986**.
- 61. Sheldrick, G. M., SHELXL97. Program for the Refinement of Crystal Structures, University of Gottingten, Germany, 1997.
- 62. International Tables for X-Ray Crystallography, Kynoch Press: Birmainham, England, Vol. IV, p. p. 55, 59 and 149, **1974**.
- Gaussian 94, Revision E.2, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Peterson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA, 1995.
- 64. Hinchliffe, A., *Modeling Molecular Structures*, John Wiley & Sons, New York **1994**.
- 65. Wyckoff, R. W. G.; Posnjak, E., J. Am Chem Soc. 1922, 44, 30.
- 66. Nurtaeva, A.; Holt, E. M., Acta Cryst. 1999, SX1087.

- 67. Rath, N. P.; Holt, E. M., J. Chem. Soc. Chem. Commun. 1986, 311.
- 68. Hu, G.; Holt, E. M., Acta Cryst. 1994, C50, 1576.
- 69. Hu, G.; Holt, E. M., Acta Cryst. 1994, C50, 1578.
- 70. Rath, N. P.; Holt, E. M., J. Chem. Soc. Chem. Commun. 1985, 665.
- 71. Mahdjour-Hassan-Abadi, F., Ph. D. Thesis, Freie Universitat, Berlin. 1985.
- 72. Hartal, H.; Fuchs, J., Angew Chem. 1986, 98, 550.
- 73. Nurtaeva, A.; Holt, E. M., Acta Cryst. 1998, C54, 594.
- 74. Nurtaeva, A.; Hu, G.; Holt, E. M., Acta Cryst. 1998, C54, 597.
- 75. Herzberg, G., *Electronic Spectra of Polyatomic Molecules*, D. Van Nostrand Co., Princeton, **1966**.
- 76. Tolman, C. A., Chem. Rev. 1977, 3, 313.
- 77. Green, J.; Sinn, E.; Woodward, S.; Butcher, R., Polyhedron 1993, 12, 991.
- 78. Green, J.; Sinn, E.; Woodward, S., Inorg. Chim. Acta 1995, 230, 231.
- 79. Soloveichik, G. L.; Eisenstein, O.; Poulton, J. T.; Streib, W. E.; Huffman, J. C.; Caulton, K. G., *Inorg. Chem.* **1992**, 31, 3306.

VITA

Zaki S. Seddigi

Candidate for the Degree of

Doctor of Philosophy

Thesis: CORRELATION OF CRYSTALLOGRAPHIC SYMMETRY AND EMISSION IN SOLID STATE COPPER(I) HALIDE PHOSPHINE COMPLEXES

Major Field: Chemistry

Biographical:

- Education: B. Sc. in Chemistry with honors from K. F. University of Petroleum & Minerals (KFUPM) in 1991 at Dhahran, KSA, 1994 MS in Inorganic Chemistry from KFUPM. Completed requirements for the Degree of Doctor of Philosophy with major in chemistry at Oklahoma State University, Stillwater, Oklahoma in December, 1999.
- Experience: KFUPM: 1991 to 1994 was a graduate teaching assistant, taught freshman chemistry laboratories and participated in tutoring of general chemistry freshman courses; In 1994, appointed lecturer of Chemistry at the Department of Chemistry at KFUPM. In 1995, awarded a scholarship from KFUPM to study in USA for a Ph.D. degree in Chemistry. Attended the International Summer School of Crystallography at Athens, Georgia, 1998.
- Professional Membership: American Chemical Society (ACS), Phi Lambda Upsilon, Toastmasters International.