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CHAPTER I 

THE RESEARCH PROBLEM 

Introduction 

Thirteen years have passed since the first calculus reform meeting at Tulane 

University when many questions were asked regarding the purpose of requiring calculus 

as part of the degree plan for a wide diversity of disciplines. Several computer scientists 

and mathematicians contended that with the rapidly changing technological climate a 

change in the mathematics curriculum was necessary (Conley, 1997). Their 

recommendation was a move away from calculus and a move toward finite mathematics 

(Douglas, 1986). The effectiveness of calculus instruction was also an integral 

component of the discussions. Several complaints were noted in the methods workshop 

(Douglas, 1986). Among these complaints were: 

• Calculus is used to weed out students from mathematics and the sciences. 

• Most calculus courses do not develop conceptual understanding. 

• Calculus is very narrow in its scope of thinking and expectations of students. 

• Calculus as currently taught is irrelevant for nearly 50% of the students taking it. 

The majority of the participants at the Tulane conference agreed that changes in both 

content and teaching must be made (Douglas, 1986). However, there were those 

participants who believed that sweeping changes in calculus content and teaching were 

riot necessary. The debate continued the following year when the colloquium Calculus 
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for a New Century: A Pump, Not a Filter convened in Washington, D.C. One of the 

primary questions that continues to be addressed is the appropriateness of the 

methodology employed in teaching college students fundamental calculus concepts. 

Becker (1990) suggests that research at the college level is needed to determine the 

impact new teaching methods will have on student learning. 
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Traditionally, calculus has been a course in which an instructor lectures to a class 

quite large in number without much interactive questioning or discussion (Solow, 1994). 

The instructor assigns substantial amounts of homework that is usually not graded, and 

bases the evaluation of the students on exams alone (Tucker, 1995). Gradually 

calculators have been incorporated into the course content, and, within the last few years, 

the use of calculus software has been included in the course outline in many institutions. 

According to Tucker ( 1995), the use of graphing calculators and mathematical computing 

software is now so widespread that these items are no longer considered part of the 

calculus reform effort. 

According to Steen (1987), there are three areas related to calculus teaching where 

significant changes are taking place. The first area is the training of calculus teaching 

assistants. The second area is the effect that student writing has on achievement in 

calculus content. The final concern lies in the implementation of a constructivist 

approach in the teaching and learning of calculus. The primary focus of this study will be 

in the third area with secondary research directed at the correlation of geometric 

reasoning to conceptual reasoning in calculus. 
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Statement of the Problem 

This study will focus on calculus instruction at the college level. Most of the 

research regarding calculus reform deals with the use of calculators and computer 

software in the calculus classroom. However, very little research has been done with 

regard to the impact of teaching strategies and learning styles when applied to the 

teaching of the calculus. One purpose of the study is to provide information as to whether 

changes in modes of instruction affect the level of learning in a beginning calculus 

course. Secondly, the study is to provide information as to whether there is a relationship 

between conceptual understanding in geometry and conceptual understanding in calculus. 

Specifically, the questions under investigation are: 

1) In what way does the use of a constructivist approach to instruction affect 

student learning of the geometric concept of derivative in a first semester 

calculus course? 

2) What is the relationship between a student's van Hiele level and that student's 

geometric conceptual understanding of the derivative in a first semester 

calculus course? 

These questions will be investigated using several different instruments. The first 

instrument to be employed is a placement exam mandatory for all students beginning the 

mathematics/science/computer science course sequences. The second instrument is a test 

based on the van Hiele model of geometric understanding, with particular attention paid 

to problems involving tangent and secant concepts. The students in two different sections 

of Calculus I will be presented material relating to the first derivative and its geometric 

interpretation. Section one will be conducted using traditional instructional techniques, 
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which include primarily lecture and demonstration. Section two will be conducted using 

a constructivist approach to instruction. The primary vehicles for aiding the students in 

the construction of their knowledge about the first derivative will be group work, 

discussion, and writing. Both classes will be administered a post-test after completing the 

section that discusses derivatives. The post-test will contain problems requiring 

procedural understanding as well as items which will require conceptual understanding. 

Thus the study will be quantitative in nature. The population for this will be composed of 

freshman and sophomore Calculus I students enrolled during the 1998 fall semester at a 

private mid-western university. 

Importance of the Study 

The primary goal of calculus reform is to encourage students to pursue fields that 

employ the use of mathematics. A secondary goal of the reform movement is the 

improvement of students' conceptual understanding, mathematical reasoning skills, and 

problem-solving abilities. The third goal of the calculus reform movement is for students 

to see the beauty, power, and pure enjoyment ofleaming calculus. According to Tucker 

(1995) in the first assessment study since implementation of the reform, "a key finding of 

the assessment study has been that how calculus is taught has changed more than what is 

taught" (p. 5). Lucas (1998) observed that following the adoption of a reform calculus 

text for her AP Calculus class, the methodology employed in the classroom changed 

drastically. By group investigation and discovery, the students became competent 

conceptual learners in calculus. As a result of these methodology changes, the reported 

AP Calculus test scores rose substantially. This study will investigate whether the 
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constructivist approach in instruction does indeed aid the calculus reform movement in 

attaining these goals for student learning. 

Definitions 

For the remainder of this study, the following terms will be used. The meanings 

are discussed below. 

Let/be a function and suppose that/is defined at the point c. The derivative of a 

function/for our study will be defined both geometrically and algebraically. 

Geometrically, the derivative of a function/at any pointx is the slope of the tangent line 

that touches fat x. The idea is represented in Figure 1.1. 

C c+Ax C c+Ax C 

(a) (b) (c) 

Figure 1.1 

In Figure 1.1 ( a), the line drawn from point P to point Q forms the secant line PQ. 

The slope of PQ is found by: 

f(c + Ax) - f(c) f(c + Ax) - f(c) 
m= =------

(c + Ax) - C Ax , 

By letting Ax become small, Q moves closer to P as in Figure 1.1 (b ), and the 

secant lines approach the tangent line at x = c, as indicated in Figure 1.1 ( c ). Thus, to find 
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the slope of the tangent line to a curve/at any x in the domain off, the derivative is 

defined by 

limAx ~ 0 f(x+Ax)- f(x). 
Ax 

Constructivism is the educational theory whereby students construct their own 

knowledge by either a natural ability to think, by learning from the environment, or by a 

combination of both a natural ability and environmental influences. The result is an 

autonomous, intellectual student (Kamii, 1985). 

A traditional calculus course refers to both the teaching methodology employed in 

a typical Calculus I course in colleges and universities and the design of the course itself. 

Traditional methodology usually consists of lectures, demonstrations, homework 

assignments, and ~xaminations (Tucker, 1995). The design of a traditional calculus class 

includes lecture sessions aimed at large numbers of students, a textbook with outdated 

applications and hundreds of rote exercises, and little or no computer/calculator 

applications (Tucker, 1995). 

A reform calculus course refers also to both the teaching methodology employed 

and the design of the course itself. Though the level or reform varies among colleges and 

universities involved in the movement, at the very least a reform calculus course uses a 

text which de-emphasizes integration techniques and encourages graphing calculators. 

This is coupled with class sizes relatively small in number, usually 25 to 30 students. 

More radically reformed courses employ computer lab work, cooperative learning, open-

ended projects, writing assignments and an increased emphasis on modeling and 

applications (Steen, 1987). 



A van Hiele level is a classification level of geometric thinking established 

according to the theory of Pierre and Dina van Hiele (Clements, 1992). The van Hiele 

theory asserts that students progress through sequential, hierarchical levels of thought in 

the process of learning geometry (Clements, 1992). The van Hiele levels are as follows: 
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Level 1: Visual. Students identify shapes according to their appearance. They 

do not attend to the properties nor are they conscious of the properties 

of the shapes. 

Level 2: Descriptive/Analytic. Students recognize and identify shapes 

according to their properties. 

Level 3. Abstract/Relational. Students are able to form abstract 

definitions and can sometimes provide logical arguments geometrically. 

They discover properties of classes of geometric objects by informal 

deduction. 

Level 4: Formal Deduction. Students are capable of establishing theorems 

within an axiomatic system and can construct original proofs. Their 

reasoning is based on relationships between properties of classes of 

figures. 

Level 5: Rigor /Mathematical. Students can reason formally by 

manipulating definitions, theorems, and axioms within a mathematical 

system. Their reasoning is based on relationships between formal 

constructs. 



Procedural knowledge is knowledge that is algorithmic in nature and involves 

knowledge of rules and symbols (Hiebert & Lefever, 1986). This knowledge includes 

awareness of surface features, not knowledge of meaning. 

Conceptual knowledge is knowledge that involves relationships and assimilation 

of ideas (Hiebert & Lefever, 1986). This knowledge includes a network or relationships 

between old and new information. 

Assumptions 
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It will be assumed that the students will respond to the instruments with integrity 

and that the means of student ability in both sections of Calculus I are relatively the same. 

This is due primarily to the fact that the students entering the calculus sequence come 

from comparable mathematical backgrounds and are placed in Calculus I because of their 

score on the placement exam. 

Limitations 

This study will be limited in scope since the sample will be drawn from the 

university's students; thus the sample is not a true random sample. The results of the 

study will generalize only to colleges or universities that conduct their calculus courses in 

a similar manner. 

Another limitation of the study results from the use of writing as a means of 

evaluation. Gay's 1990 study acknowledges limitations oftest items that include the 

writing skills of the persons completing the instrument. Since the post-test will include 

questions which requires a written answer, the lack of ability or experience in providing 

written answers to mathematics problems may affect the responses to the post-test item. 
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After the data was collected, the researcher decided that questions 2(b) and 2( c) 

should be reworded for future reference. Though the results were not significantly 

affected by omitting the question, it was decided that more mathematical accuracy should 

· be included in the questions. For 2(b) specifically, the researcher suggests that either 

point a or point b be fixed so as. to not confuse the students when discussing the slope of 

the secant line. Question 2( c) should be worded so that the slope of the tangent line at a 

point on the curve is represented as a limit. The question could possibly be restated as 

follows: Discuss what you are finding if you take the limit of the slope of the secant line 

as point b approaches point a on the curve. Question 3 could possibly be even more 

conceptual in nature if the tangent line is not included in the sketch of the curve. 

Question 3 would then become one of discussion, as opposed to one of determining a 

specific value at a point. 

Overview 

This study will be divided into five chapters. The first chapter will present the 

statement of the problem, while chapter II will provide a review of the literature that has 

provided the basis for this study. A brief history of the calculus reform movement and 

studies conducted within the reform movement will be cited, as well as studies that have 

investigated students' knowledge of the derivative. Works pertaining to the constructivist 

theory of learning will also be cited. Studies conducted that compare procedural learning 

to conceptual learning will be included, and works investigating the van Hiele levels of 

geometric reasoning will be discussed. Chapter III will discuss the research design to be 

employed and the processes of collection and analysis of data. The results of the analysis 
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of quantitative data used dming the study will be discussed in Chapter IV, and Chapter V 

will present conclusions and recommendations for future study. 



Chapter II 

REVIEW OF THE LITERATURE 

Introduction 

Most of the research regarding calculus reform concerns the use of calculators and 

computer software in the calculus classroom. In comparison, much less research has been 

conducted with regard to the impact of teaching strategies and learning styles when 

applied to the teaching of the calculus. The literature used as a background and basis for 

this study is categorized as: 1) history of calculus reform, 2) constructivism in 

mathematics, 3) procedural and conceptual learning in mathematics, and 4) van Hiele 

theory and learning in geometry. A history of calculus reform is included since the 

methodologies employed in the study are based on the philosophies of the calculus 

reform movement. Since constructivism in teaching is at the heart of the reform 

movement and since two significant components of constructivism in mathematics 

education are writing and group work, a body of literature on constructivism is included 

in this study. Constructivism is closely linked to conceptual learning; therefore, a body 

of literature with a comparison of procedural to conceptual learning is included. Finally, 

a body of literature that defines and discusses van Hiele levels is included to provide a 

basis for relating geometric knowledge to geometric knowledge of the derivative. 

11 
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History of Calculus Reform 

The place of calculus in the mathematics curriculum was unquestioned until 

around 1981, when several computer scientists and mathematicians called for the 

inclusion of discrete mathematics in the curriculum in place of, or in addition to, calculus. 

With the ever increasing computational power of the personal computer and scientific 

calculator, the primary argument was that a mathematics course was needed that dealt 

with computational theory and issues rather than the continuous cases investigated in 

calculus (Douglas, 1986). This siege waged upon the study of calculus caused many 

mathematicians to reflect upon the role of calculus in the college curriculum. After five 

years of fragmented debate, the first conference on calculus reform convened at Tulane 

University. Spearheaded by Ronald Douglas, the conference was entitled "Toward a 

Lean and Lively Calculus." Many problems were discussed, such as the high failure rate 

of-students taking calculus, the lack of mathematics majors in the United States, and the 

lack of personal contact with students taking calculus courses (Douglas, 1986). The 

discussions held at this conference paved the way for the calculus reform movement. 

For nearly two years after that conference there was much activity in the calculus 

reform arena. The Neal Report to the National Science Board (1986) called for renewed 

support from the National Science Foundation in the support for undergraduate education. 

There was also published a mathematics discipline workshop report which called for 

change in calculus. This report and the call for calculus reform were enthusiastically 

supported by a small core of mathematicians in all areas of higher education and were 

also supported by the engineering community. 
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The calculus reform notion was fueled by a movement in the mathematics 

community, which was driven by the National Council of Teachers of Mathematics 

(NCTM). The NCTM was founded in 1920 to assure the place of mathematics in the 

secondary curriculum, but it was not until the 1980's that it took a leadership role in 

promotion of mathematics reform (Kilpatrick, 1997). With the publication of Curriculum 

and Evaluation Standards for School Mathematics, the NCTM sought to provide a vision 

of the future (Kilpatrick, 1997). The arguments given for reform of school mathematics 

curriculum, instruction, and assessment rested on the idea that since all "industrialized 

nations have experienced a shift from an industrial to an information society," (NCTM, 

pg. 3), the mathematics that students need to know has changed also. A substantial 

portion of the standards-based reform comes from the position that mathematics has 

become more computational and less formal. Thus, with the advent of computer software 

and graphing calculators that can do messy calculations, students can perhaps focus more 

on the concepts to be learned as opposed to exercise after exercise of meaningless hand 

calculations. Most observers of mathematics classrooms have been convinced that some 

type of change was and still is needed (Kilpatrick 1997). This period of reform activity 

culminated in a formal announcement of the National Science Foundation Calculus 

program and a colloquium on calculus reform hosted by the National Research Council 

(Haver, 1998). 

A colloquium on calculus reform convened in 1987 in Washington, D.C. and 

boasted support from 700 participants. This conference, an extension of the Tulane 

meeting, was entitled "Calculus/or the New Century: A Pump, Not a Filter." The 
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problems with the current status of the calculus were restated and presented in fuller 

detail. Issues discussed included the following: 

• Since a college education is more commonplace than 40 or 50 years ago, there are 
many calculus students whose high school mathematics backgrounds are inadequate 
(Kolata, 1987). 

• Different departments want calculus in their degree requirements, thus calculus 
has been altered to serve these client's disciplines (Steen, 1987). 

• Calculus has become a course of mathematical manipulation, with not much 
emphasis being placed on problem solving and intuition (Steen, 1987). 

• During the late sixties and early seventies, there was a change in the complexion 
of the typical calculus class. More students were embarking upon math-related 
careers, and there was less money available for instruction. As a result, class sizes 
increased dramatically, and personal involvement from the instructor was 
minimized (Steen, 1987). 

• Students and faculty alike were generally dissatisfied with the current calculus 
textbooks, due to their unreadability and lack of word problems (Reed, 1987). 

The participants provided many possible solutions to these problems. Some of 

these solutions included: writing a new breed of calculus textbook; encouraging more 

personal involvement from the calculus instructor, including collecting and grading 

homework; integrating graphing calculators and computer software into the calculus 

course; and introducing new teaching strategies to enhance the learning of calculus. 

The Calculus Program had from its beginning the goal of bringing about large-

scale improvement in Calculus instruction for all students throughout the nation. The 

program's primary focus ·was to raise "students' conceptual understanding, problem-

solving skills, analytical and transference skills, while implementing new methods to 

reduce tedious calculations." (Haver, p. 2). The attack was to be two-directional: high 

school, college, and university mathematics leaders and professional societies were to be 
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closely involved in all phases of the reform; and calculus reform textbooks and other 

instructional materials were to be developed, tested, and refined for all students, not just a 

chosen few. (Haver, 1998). 

So the reform movement truly began. Many colleges and universities that 

believed in the reform movement reduced calculus class sizes to between 20 and 35 

students (Solow, 1994). In addition, many universities opted to change Calculus to a four 

hour per week course, with a day of computer lab work included, thus allowing students 

the opportunity to use mathematical software to reinforce concepts and numerically 

perform differentiation and integration. Another technological addition was the 

requirement of a graphing calculator for use in class with concept investigations and for 

use on homework (Haver, 1998). 

Many calculus instructors began to change their approach to how they presented 

material. Rather than adhering to a format of standing in front of the room and lecturing 

to students without any interaction, these instructors began to require that students be 

involved in and more accountable for their learning. Students were to be required to 

write about the concepts they were encountering. This was accomplished by writing in 

journals, homework assignments containing writing sections (Keith, 1994), or by written 

portions on calculus exams (Lucas, 1998). Students were also required to collaborate 

with other students to discuss concepts and investigate open-ended problems (Shenk, 

1994). Technology was introduced into the calculus courses in the forms of graphing 

calculators and mathematical computer software (Cannon, 1994). Projects were 

incorporated into the calculus curriculum at many institutions, with these projects usually 

consisting of problems that might require two or three weeks to complete (Selden, 1994).· 
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At some institutions, students unaccustomed to the new format were strongly encouraged 

to meet with the instructor of the reform course prior to enrollment (Simmons, 1994). 

One of the most prominent pieces of evidence from the reform movement is a 

calculus text-book written by Deborah Hughes-Hallett and Andrew Gleason of Harvard 

(1994). The textbook is often referred to as the Harvard calculus text book. As is the 

case with many other reform text books, the Harvard text examines the calculus from 

three perspectives: algebraically, graphically, and numerically (Culotta, 1992). Many of 

the exercises in the text require numerical or graphical methods to find their solutions and 

contain more problems that are relevant to modem mathematical trends (Knisley, 1997), 

thus incorporating technology with mathematical learning (Hughes-Hallett, 1994). 

The calculus reform movement also caused the mathematics community as a 

whole to exchange ideas and to think collectively about the classes that are being offered 

to students (Ipina, 1994). This type of discourse serves only to strengthen the 

mathematics curriculum and the bond among mathematics educators. 

To say that not all mathematics instructors have been supportive of the reform 

effort is an understatement. In fact, there has been quite a division among 

mathematicians as to whether calculus-both content and teaching-should have been 

changed at all. There are many points of opposition, among them being: 

• The reform textbooks do not treat concepts with enough rigor. The reform 
textbooks do not include enough proof, and the "proofs" that they do contain are 
not really proofs at all, just heuristic arguments (Wu, 1997). 

• Reform textbooks have many exercises that are just too open-ended, and there are 
not enough good problems contained in them (Wu, 1997). 



• Good students are sacrificed in the quest to reach marginal students (Holden, 
1998). 
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• Knowledge of arithmetic and algebra in students starting calculus has fallen, and 
the reform effort has tried to compensate for this by emphasizing the use of 
graphing calculators (Askey, 1997). 

Wu (1997) is not alone in his criticism of reform textbooks. Weintraub (1997) 

also bemoans the lack of logical structure in the Harvard text, which is replaced instead 

with an "incoherent mass of assertions that one has to accept on the authority of the 

authors (pg. B5). Swann (1997), who believes that texts such as the Harvard text 

encourage the abandonment of rigor in calculus echoes this sentiment. Askey (1997) 

believes that there are some mathematics results that are more important than others to 

know, that mathematical definitions should not be altered in any way without very good 

reason, and that reform text books do a disservice to students in both these areas. Roberts 

(1997) warns that though the reform movement calls for a leaner calculus text, leaner 

does not imply better. Additionally, Balakrishnan (1997) feels that calculus has been 

tampered with too much already. 

Askey (1997) supports Wu's statement that there are not enough good problems 

in reform texts. He points out that there are many important, rigorous topics that were 

treated in pre-reform algebra and pre-calculus books that are not discussed even in current 

calculus texts. Bookman and Friedman (1998) report that many students in reformed 

calculus courses get very frustrated at not having a way to verify their answers, and many 

good math students do not get enough practice with symbolic manipulation. The findings 

from a survey that included student interviews echo this opinion (Holden, 1998). 

According to this survey, opposition to reform calculus comes primarily from the very 
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top students in the class. These students oppose the notion of being treated as guinea pigs 

and feel that they are being cheated out of instruction of important mathematical skills. 

Wu (1997) joins Askey (1997) in his opposition to constructivist teaching 

practices because he believes that teachers are not allowed to be leaders and provide 

insight for students struggling with concepts. Students do not get the appropriate practice 

with calculations when in the group setting, thus reducing the mathematics abilities of 

these students. In addition, Wilson (1997) believes that the reliance on computers and 

calculators has caused students to never learn to perform difficult calculations. 

Many calculus instructors that have been using the reform calculus format for 

some time, however, believe that the change has brought a major improvement with 

regard to students' conceptual understanding. Maher (1997) suggests that, rather than 

using time and energy to debate about the reform texts, mathematics educators should 

instead use that time and energy to research why it is that the reform texts have been so 

successful. Lucas (1998) reports that with the use of reform materials, her calculus 

students are better at recognizing the different methods of differentiation and integration, 

they are more flexible in their thinking with regard to calculus problems, and that overall 

they are much better problem solvers. Lock (1997) refers to two studies that have 

compared the calculus skills of traditional calculus students versus reform-calculus 

students. In both of these studies, the reform-calculus students performed at a higher 

level than the. traditional calculus students did. Garner (1998) provides results in his 

study that point to reform calculus students having a higher performance on conceptual 

problems. Russ (1997) suggests that it is not enough that calculus course content is 
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changed; upper level mathematics courses should be altered also to reflect these changes. 

These differences of perspective will be explored more in the following paragraphs. 

Constructivism 

In Sinclair's (1987) discussion of constructivism, she states that Piaget (1973) 

believed students learn first and foremost through actions. Therefore it is. behavior that 

makes some sort of change to a students' knowledge base (Kilpatrick, 1987). And 

conceptual knowledge is attained only when it has been discussed with and by others 

(V ergnaud, 1987). Von Glaserfield (1995) assumes that knowledge is not transmitted but 

instead is constructed. Students have only their personal experiences on which to rely in 

the constructive process. 

Cobb (1991) describes the constructivist perspective of mathematical learning not 

as a process of internalizing carefully packaged knowledge, but as a matter of 

reorganizing activity, where that activity can be interpreted broadly to include conceptual 

activity or thought" (p. 5). Students do not enter a calculus class with blank slates, but 

rather with some preconception of what mathematics should be. Thus the mathematical 

images that students construct are more than likely quite different from the ones that 

instructors are trying to convey to them (Steen, 1987). Therefore, it is imperative that 

schooling should include some educational component whereby students are involved in 

the construction oftheir knowledge (Wheeler, 1987). Barnard (1989) sees the teacher's 

role as a facilitator and scaffolder by providing the necessary support in the student's 

construction of knowledge. 

Many students see mathematics as little more than a collection of facts, formulas, 

and algorithms that are to be applied to problems, which are then checked by the teacher 
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or against some answer key (Barton, 1994). Traditional methodology in calculus 

teaching does not lend itself to the development of intuitive skills, which are imperative 

in the construction of mathematical knowledge (Stevenson, 1987). The National 

Research Council (1989) states that very few mathematics teachers have had the 

experience of constructing their own mathematical knowledge for the subjects they are 

asked to teach, and inclusion of technology alone will not necessarily ensure that 

conceptual knowledge is broadened. Porzio ( 1997) found that the use of a mathematical 

software package alone did not enhance students' conceptual knowledge. However, with 

the addition of activities designed for students to explore different representations of the 

concept of derivative, their conceptual understanding was increased. 

Emese (1994) found that most students in his calculus classes (88%) preferred a 

constructive/discovery style of learning instead of the traditional style of instruction. The 

results of a study conducted by Frid (1994) demonstrate that students learn calculus 

concepts by constructing conceptualizations that are "viable models of their experiential 

world" (p. 93). If students do prefer to construct their knowledge and if an instructor 

subscribes to a constructivist view of learning, the goal for the instructor becomes finding 

appropriate activities for students to engage in so the students can construct their own 

knowledge about the concepts (Cobb, 1991). The two most prominent applications of the 

constructivist philosophy are cooperative learning and writing. 

Cooperative Learning 

Much of the construction of knowledge takes place through the interaction among 

students, with the teacher as a participant in the problem-solving process. By interacting 

with others, students are able to explain their solutions, to seek clarification, and to 
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resolve conflicts. This leads to opportunities for the students to "reconceptualize a 

problem and extend their conceptual framework to incorporate the alternative solutions 

method" (Wood, pg. 245). Stephen Monk, of the University of Washington, has taken 

this idea of interaction and applied it in the calculus classroom. Monk assigns small 

learning groups and distributes problems to be solved by the group members. He then 

navigates the classroom, serving as a resource person rather than the expert. (Cipra, 

1987). Monk believes that explaining an idea to another student leads to a deeper 

understanding of that idea. Dr. Kim Kirpaktrick, of Project NExT, also reinforces group 

participation in her calculus classes and believes that it enhances student learning and 

enthusiasm (Shannon, 1998). 

There has been limited research done with respect to cooperative learning and 

calculus, but based on what is available, results indicate that cooperative learning does 

indeed help students develop conceptual understanding. Oliveros (1997) reported that 

working in small groups helped students solidify their conceptual understanding of the 

concept of rate. Schoenfeld (1994 b) encourages student discussion throughout the 

semester in his problem-solving class, and has found that students internalize their 

conceptual knowledge when they share their thought processes. Wheatley (1995) 

designed a four-course program based on collaboration and writing. His findings suggest 

that, as a result of collaboration with others, students reconceptualized mathematical 

ideas that were previously misunderstood, their confidence in mathematical knowledge 

increased, their attitude towards mathematical learning was more positive, and they made 

connections among algebra, geometry, and calculus. Bonsague (1994) found evidence 

that his program of intervention and peer tutoring in an academic setting directly affected 
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student performance in calculus, particularly minority students. He believed that the 

student interaction was a primary reason for the program's success. A study comparing 

Project CALC students to traditionally taught students found that Project CALC students 

scored significantly higher on a problem-solving instrument than did the traditionally 

taught students (Bookman, 1994). Project CALC is a calculus reform project that was 

developed as a lab-based course strongly emphasizing cooperative learning. Brosnan 

(1995) reported that the use of cooperative learning groups increased students' conceptual 

learning in her liberal arts calculus class. 

Writing 

A major point of emphasis in the National Council of Teachers of Mathematics 

(NCTM) Standards (1989) is that students learn to communicate their understanding of 

mathematics in both mathematical and everyday language. The report Preparing for a 

New Calculus (1994) reinforces the idea of incorporating writing in the calculus 

classroom by stating that rethinking of instructional strategies should involve "increasing 

expectations for students' abilities to read, write, and speak about mathematics" (p. 60). 

Writing helps students reflect on their knowledge and thoughts, and causes their implicit 

knowledge to become explicit. Writing also assists the teacher in assessment of student 

progress by directing communication from all students in class, by providing information 

about students' thought processes, beliefs, and errors, and by providing tangible evidence 

of student's achievements (Masingila, 1996). 

Writing allows students to make inferences and relate information to their own 

environment and experiences, and writing allows students to communicate to the teacher 

in their own words (Shepard, 1993). In Shepard's (1993) study, it was observed that 
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students using writing assignments spent more time thinking about the problems they 

were working on than students working on traditional drill and practice problems. Dirkes 

(1991) studied the use of writing and listing in self-directed problem solving. She found 

that as college students progressed through the semester, their writing and listing skills 

improved substantially, and their problem-solving skills increased as well. By requiring 

students to keep a journal, Wheatley (1995) was able to recognize growth in students' 

abilities to solve problems. 

Keith (1994) uses writing frequently throughout the semester in her calculus class, 

primarily because 

"frequently we may think we understand something when we only 

recognize it; we confuse familiarity with understanding. This 

becomes obvious when we have to explain it in writing (pg. 6)." 

Writing in calculus is one of the innovations discussed by Steen in his 

presentation at the calculus reform colloquium in 1987. David Smith, of Duke 

University, employs writing assignments with regularity in his calculus classes. His 

contention is that if students cannot read and interpret the instructions, then they will 

certainly have difficulty solving the problem .. He also maintains that being able to 

explain the solution process of a problem to another (whether instructor or student) 

solidifies understanding (Cipra, 1987). Masingila (1996) found that using writing in 

calculus allows development in mathematical understanding, and through writing ( as well 

as other forms of communication) teachers can assess students' mathematical 

understanding. Keith (1994) has found that by writing, students are more apt to draw 

connections, make translations, and summarize what they have learned. Writing 
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assignments also allow Keith to evaluate students' knowledge of a particular math 

concept when the assignments are used in conjunction with an exam over the same 

concept. Rose (1994) uses journals in her calculus class, and finds that she is more able 

to recognize student needs and difficulties, as well as to establish a positive rapport with 

her students. Stoughton (1994) implements writing in his calculus class by assigning two 

term papers, one at the beginning of the semester and the other toward the end. The 

topics are chosen from a list already created by the instructor. Stoughton finds that the 

students' writing ability and level of mathematical thought is significantly better on the 

second paper, and most students surveyed feel that writing the papers caused them to 

ponder more deeply certain mathematical concepts. 

Many institutions of higher education now consider writing an important 

component in the calculus curriculum. According to the report Assessing Calculus 

Reform Efforts by the Mathematical Association of America (1995), 35% of the 

participants in a survey conducted among universities, 4-year colleges, or community 

colleges reported substantial use of writing in their calculus classes (Tucker, 1995). 

Procedural versus Conceptual Knowledge 

One of the most enduring debates in mathematics education is that of conceptual 

knowledge versus procedural knowledge. Throughout the history of mathematics 

education, different instructional programs have been implemented which focus on one 

kind of knowledge as opposed to the other (Hiebert, 1992). Though the arguments for 

one kind of knowledge or another have been persuasive at times (primarily due to the 

spokesperson endorsing that particular philosophy), there has not been significant 

progress in understanding of the issue (Hiebert, 1992). Hiebert (1992) discusses two 
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procedural knowledge. 
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Instead of trying to decide which type of knowledge is more important, perhaps 

the first step for the mathematics education community is to understand how conceptual 

and procedural knowledge are related (Hiebert, 1992). Byrnes and Wasik (1991) present 

two approaches with regard to how students acquire procedural and conceptual 

knowledge. The simultaneous approach is founded on the idea that conceptual 

knowledge and procedural knowledge are assimilated at the same time, with conceptual 

knowledge being both necessary and sufficient for acquisition of procedural knowledge. 

Therefore, computational mistakes are the result of inadequate conceptual knowledge. 

The dynamic approach, on the other hand, is based on the idea that procedural knowledge 

and conceptual knowledge act upon and with each other. A well-developed conceptual 

knowledge base, coupled with general problem-solving skills, help to develop new 

procedures for solving a specific problem. The learner then discriminates and generalizes 

to decide in which contexts to apply the procedure. With continued use, the application 

of the procedure becomes more automatic, and conceptual knowledge is enhanced when 

one tries to make sense of the results of some procedure. Therefore, conceptual 

knowledge is necessary but not sufficient in the acquisition of procedural skills. Byrnes' 

study suggests that children acquire mathematical knowledge via the dynamic approach. 

Secondly, Hiebert (1992) suggests that what is needed are more precise 

definitions of conceptual and procedural knowledge so that specific relationships between 

them can be established. Several studies offer definitions of both conceptual and 

procedural knowledge. Skemp (1987) defines conceptual understanding as "knowing 
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what to do and why (p. 153)". Procedural knowledge is based on the usage of procedures 

without reference to the concept supporting them. Grimison (1992) defines conceptual 

knowledge as knowledge of process, whereas conceptual knowledge is referred to as 

knowledge of content. 

Before the mathematics reform movement, most mathematics courses consisted of 

routine exercises, which provided little conceptual understanding (Schoenfeld, 1994a). 

Many mathematics teachers and students still believe that mathematics teaching and 

learning consists of memorization of facts and application of facts, and that conceptual 

knowledge cannot develop until the learner has successfully acquired the individual 

elements of the concept and the elementary operations and procedures surrounding the 

concept (Steinbring, 1989). A fifth grade teacher in Putnam's (1992) case study stated 

that the "hows" of mathematics are what is important, not the concepts. The teacher 

believed that the conceptual aspect of mathematics is difficult to teach and that students' 

minds are not mature enough to understand the concept behind the procedure. 

Schoenfeld (1985) found that most secondary students believed mathematics to be a 

discipline requiring primarily memorization. These beliefs are also found in a study of 

fifth graders conducted by Frid and Malone (1994). 

The reform movement encouraged mathematics instructors to reevaluate the 

learning goals for mathematics. Teachers were exhorted to include meaning into the 

process of teaching from the beginning. To ignore the meaning behind procedures was to 

deny the learner the opportunity to grow conceptually (Steinbring, 1989). With the 

inclusion of technology, reformers called for a decrease in the number of procedural 
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problems; they felt that more time should be spent on problems which encourage students 

to develop strong conceptual understanding (Davis, 1994). 

Calculus reformers believe that conceptual understanding is of utmost importance 

for students. Kaput (1997) writes that teaching methodologies should focus more on 

conceptual learning so that especially gifted mathematics students will know calculus 

more deeply, and even those not particularly gifted in mathematics will learn "an even 

broader and richer mathematics of change and variation (p. 731)." Prados (1997), an 

engineering professor, believes that in the education of engineers for the 21st century, 

emphasis must be placed on concepts and not on manipulation of symbols. In a 

commentary on calculus reform, Ostebee (1997) proposes that more time should be spent 

in helping students understand the meaning of theorems and deferring their rigorous 

proofs until later courses in analysis. Ricardo (1997) feels that many of the students that 

failed his traditionally taught calculus courses did so because of the maze of algebraic 

manipulations and mounds of trigonometric substitutions, not because of the lack of 

conceptual understanding of calculus. Pence (1995) found that many first year calculus 

students do not have strong understanding of algebraic operations, and that this 

understanding is closely tied to success in calculus. 

There are several studies that support the idea of teaching for conceptual 

understanding. Roddick (1995) compared students from a reform calculus course with 

students from a traditional calculus background. Her results indicated that reform 

students were more able to discuss all aspects of a problem, both from a procedural and 

conceptual standpoint. The reform students were also more confident in how to apply 

their knowledge to other situations. Tall (1987) found that by using technology and 
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extensive interaction, students were able to develop a better conceptual notion of the 

geometric interpretation of the derivative. In a study of college mathematics learning 

conducted by Dubinsky (1994), results indicate that by teaching conceptually, student 

understanding is increased and problem-solving abilities are acquired. Hagelgans (1997) 

states that by using a more conceptual approach to teaching calculus, students are more 

involved in their learning and the attrition rate in her first semester calculus is nearly zero. 

Van Hiele Theory of Geometry 

The theory of Pierre and Dina van Hiele is founded on the belief that students 

progress through levels of thought in geometry (van Hiele, 1986). The following 

characteristics define the van Hiele theory: 

• "Learning is a discontinuous process .. That is, there are jumps in the 
learning curve which reveal the presence of discrete, qualitatively different 
levels of thinking. (Clements, pg. 426)." 

• The levels are sequential and follow a hierarchy. Movement from one 
level to the next is highly dependent upon the instruction that the learner 
receives; progress from one level to the next is more dependent on 
instruction than on a learner's age or maturity. (Clements, 1992). 

• Implicit conceptual understanding becomes explicit when a student moves 
up to the next level (Clements, 1992). 

• The language used at each level is unique to that level; the development of 
the structure of the learner's language is a primary factor and crucial to 
movement through the levels (Clements, 1991). 

Several studies indicate that the van Hiele levels are fairly accurate in describing 

students' geometric conceptual development. Usiskin (1982) found that approximately 

75% of secondary students fit the van Hiele model. Burger and Shaughnessy (1986) 
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found that in clinical interviews conducted with students from kindergarten to college, 

students' geometry behaviors were consistent with the description ofthe van Hiele levels. 

There are no uniform results indicating whether the levels are discrete. One of the 

main difficulties lies in classifying a student when that student is in transition from one 

level to another (Fuys, et al, 1988). For many researchers, the fact that these problems 

exist is evidence enough to question the discreteness of the levels. 

Research indicates that students do not reason at the same van Hiele level across 

different geometry topics. Burger and Shaughnessy (1986) found that students exhibited 

different characteristics of different levels on varying tasks. Fuys (1988) reported the 

same results. Students often lapsed to level 1 thinking when encountering a new topic. 

Fuys also found, however, that students were quickly able to move back to the higher van 

Hiele level under which they were operating prior to the task. 

Most research indicates that there is a hierarchy of levels, progressing from level 1 

to level 5 (Clements, 1992). The assignment to a level, however, is not dependent upon 

age or grade (Burger, 1986). Moreover, progression through the van Hiele levels is 

expedited through the teaching/learning process (Wirzup, 1976). 

There is evidence to support the existence of a level more basic than the van 

Hiele's level 1 (visual). For example, 34% of the secondary students involved in 

Usiskin's study (1982) failed to demonstrate cognitive characteristics of even the visual 

level. Fuys (1988) classifies these students as "weak level l." Clements (1992) proposes 

that based on the findings from this and other van Hiele-based research, there exists a 

level 0, which is also referred to as pre-recognition. At the pre-recognition level, students 

cannot identify common shapes; learners may identify only a subset of a shape's visual 
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characteristics. For example, they may be able to differentiate between a rectangle and a 

circle, but not be able to tell the difference between a rectangle and a triangle. 

Fuys (1988) and van Hiele (1986) support the reclassification of the original 

model into a three-level model. The more recent model is characterized as follows: 

• Visual (previously Level 1) 

• Analytic (previously Level 2) 

• Theoretical (previously Level 3-5). 

There are some problems with the newer characterization. First, the researchers 

warn that the 3-level model may not be sufficiently refined to categorize students 

properly. Secondly, the newer characterization seems to combine some attributes of 

levels 1 and 2 from the previous model into the visual level of the newer model. Finally, 

there is a question of whether if, by combining and changing levels, there is indeed a 

discrete, hierarchical nature to the model. Similarly, there seems to be heavy overlapping 

between levels with the newer model, thus challenging the notion of hierarchical 

dependency of the levels (Clements, 1992). 

Other research challenges the idea that students operate at only a single van Hiele 

level. Gutierrez et al (1991) used a vector with four components representing the degree 

of acquisition for each of the van Hiele levels 1 through 4. Level 5 was not included in 

the vector because the researchers felt that Level 5 acquisition could not be measured 

satisfactorily. The study found many students who were simultaneously developing two 

consecutive levels of reasoning. 
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There have been many instruments designed in an attempt to assess the van Hiele 

model ofreasoning (Burger and Shaughnessy, 1986; Usiskin, 1982; Fuys, Geddes, 

Tischler, 1988; De Villiers, 1987). The four primary categories of tests (Gutierrez, 1991) 

that have been created are: 

• Paper and pencil, multiple-choice questions 

• Paper and pencil, open-ended questions 

• Clinical interviews, open-ended questions 

• Learning sequences. 

Limited research is available which investigates the relationship between the van 

Hiele levels in geometry and calculus. Fitzsimmons (1995) paired calculus students 

according to their van Hiele levels, with some pairs being of the same level and other 

pairs being separated by one or more levels. The control group consisted of students that 

were taught traditionally. Results indicated a significant difference in achievement 

favoring the experimental groups over the control group on the geometric portion of the 

final calculus examination. Poehl (1997) found that the completion of one nine-week 

course in AP Calculus increased the level of geometry understanding in students. 

However, the results of the study also indicated that Usiskin's (1982) van Hiele Geometry 

test had no construct validity for determining a learner's van Hiele level. 

Summary 

Historically, the issue of calculus reform has created much controversy in the 

mathematics community. There seems to be quite a gulf between those instructors and 

researchers who favor reform and other colleagues whose oppose the idea of changing the 



way calculus should be taught. Mathematics educators who use the reform techniques 

believe that the methodologies do indeed make a difference in conceptual learning for 

students, but little research has been done to support this opinion. 

32 

One of the major components of calculus reform is constructivism. This 

philosophy is based on the idea that students create their knowledge; they are not passive 

vessels to be filled with ideas. Therefore, it is the responsibility of the instructor to 

provide opportunities for students to construct this knowledge. Two significant teaching 

techniques that lend themselves to constructivist ideas are group collaboration and 

writing. 

The underlying motivation for using constructivist methods of teaching is to assist 

students in developing conceptual knowledge. Though a student can perform well in 

situations that require only procedural knowledge, that same student may not be equipped 

with the conceptual knowledge necessary to answer questions which extend basic ideas to 

a more forma level. Constructivist advocates believe that reform methodologies do 

enhance a student's conceptual knowledge base. 

The van Hiele levels of geometry are measures of conceptual geometry 

knowledge. Students operate at one of three levels, with level 1 being the most basic 

level. Level 2 represents an intermediate level of conceptual geometry knowledge, and 

level 3 is the highest level of conceptual reasoning. Little research has been done that 

relates van Hiele level to calculus learning. 



CHAPTER III 

THE RESEARCH DESIGN 

Introduction 

This study utilized quantitative methods to evaluate the effects that constructivist 

teaching strategies have on the learning of the concept of derivative in a first semester 

calculus course. The study also investigated whether there is a relationship between the 

van Hiele level of a student and that student's conceptual knowledge of the geometric 

interpretation of the derivative. The study focused on the following research questions: 

1) In what way does the use of a constructivist approach to instruction affect 

student learning of the geometric concept of derivative in a first semester 

calculus course? 

2) What is the relationship between a student's van Hiele level and that student's 

geometric conceptual understanding of the derivative in a first semester 

calculus course? 

The Sample 

The subjects in this study were first semester calculus students at a small private 

university located in the southwest, with an enrollment of approximately 5,000 students. 

Enrollment in either section was self-selected by the subjects during a normal enrollment 

period. The first section, Section 1, met for fifty minutes on Mondays, Tuesdays, 

Wednesdays, and Fridays at 8:50 a.m. The second section, Section 2, met for fifty 

minutes on Mondays, Tuesdays, Wednesdays, and Fridays at 4:30 p.m. The set of section 
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one subjects consisted of twenty-two students, all freshmen and sophomores. Of the 

twenty-two students, 18 were male and 4 were female. The set of twenty-four subjects in 

section two was similarly composed of freshmen and sophomores. Of the twenty-four 

students, 17 were male and 7 were female. Both sections did contain additional students, 

but these students were not included in the study for one of three reasons. (1) 

Upperclassmen were not included because the researcher limited the sample to 

freshman/sophomre calculus students at the institution. (2) Some students were not 

included in the study because they withdrew from the class prior to the administration of 

either the van Hiele instrument or the post-treatment. (3) Other students, though still 

enrolled in calculus, were not included because they did not take the van Hiele test. The 

student population in first-semester calculus consisted of students from one of four areas: 

pre-medicine, ·computer science, engineering, or mathematics. 

Instruments 

Pre-Treatment 

Two separate instruments were utilized in the pre-treatment phase of the study. 

The first instrument that was employed was.a placement exam mandatory for all students 

beginning the mathematics/engineering/science/computer science course sequences. This 

instrument provided a quantitative measure of the algebraic/mathematical skills of the 

students in each calculus section, thus revealing whether the two sections were of 

approximately the same ability level. The test was administered prior to the beginning of 

the semester to assist students in determining which mathematics course most strongly 

correlated to their skill level at the time. The exam consisted of thirty-five multiple­

choice questions; calculators were not permitted on the placement exam. 
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The second instrument was a 25-problem, multiple-choice examination designed 

on the van Hiele model of geometric understanding (U siskin, 1982). This instrument, 

employed to determine each student's van Hiele level (Clements, 1992), was administered 

to each section prior to the beginning of the chapter dealing with derivatives. Based on 

scores received on each of five sections of the instrument, students were assigned to one 

of the five van Hiele levels. 

Post-Treatment 

The post-treatment instrument was prepared by the investigator and contained 

questions that were either procedural or conceptual in nature. The procedural questions 

required only calculations or a brief sketch. The conceptual questions required either that 

students provide a written explanation for their answers, or that they be able to answer 

questions based on the geometric definition of derivative. A copy of the instrument is 

included in Appendix C. 

Question 1 was conceptual in nature, in that the student was asked to discuss what 

is meant by the geometric interpretation of the derivative. 

Question 2 was divided into three parts. The first part was procedural; the student 

was asked to provide a sketch of a curve and a secant line to the curve. Parts 2 and 3 

were conceptual in nature. Part 2 required an explanation of how the slope of the secant 

line is changing as points a and b approach each other on a curve. Part 3 asked the 

student to discuss what is being found when points a and b on the curve coincide. 

Question 3 required that the students determine the derivative of a function based 

on a sketch depicting a function with a line tangent drawn to the function at a given point. 
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Thus the students were required to apply their conceptual knowledge of what is meant by 

the derivative of a function at a particular point. 

Question 4 was a procedural problem that asked students to only calculate the 

derivative of a polynomial function at a particular x-value. No explanation or discussion 

was required, and the students could find the answer easily if they understood how to 

apply the power rule of differentiation. 

The Treatment 

Both calculus sections used the same text, Discovering Calculus: A Preliminary 

Version (Levine, 1994), and the homework assignments from the book were the same for 

each section. Discussion of the derivative began in chapter 3 of the text, and both 

sections began chapter 3 during the same week. 

The Control Group 

In Section 1, the control group, classes were conducted in a traditional manner, 

with a lecture format being the prevalent teaching methodology employed (Tucker, 

1995). On the first day of lessons dealing with the derivative, the instructor in Section 1 

began the discussion by stating the formal definition of the derivative. Problems were 

then assigned which required students to find the derivatives of different functions by 

using the definition. The second day of instruction involving the derivative began with 

the instructor presenting a demonstration via the use of a graphing calculator, whose 

screen was projected onto the front wall of the classroom. Using the graphing calculator, 

a secant line was drawn to a curve. The instructor demonstrated the changes in the slope 

of the secant line as the intersection points moved closer and closer together along the 

curve. 
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The third day of instruction regarding the derivative, as well as the subsequent 

class periods, was taught in the traditional lecture format. Differentiation techniques 

were introduced, and homework was assigned to practice these techniques. Additional 

homework problems were photocopied from other another text since the instructor felt 

that there were not enough practice problems in the current text. The graphing calculator 

was used extensively throughout treatment of the derivative, though primarily in the 

context of demonstration by the instructor. Homework was not collected; in lieu of 

homework collection, quizzes were administered by the instructor which lasted 

approximately 15 to 20 minutes. Problems on these quizzes included homework 

problems or similar problems. An exam treating differentiation was administered after all 

sections of chapter 3 had been covered in class. 

The Treatment Group 

During the coverage of the chapter on derivatives, Section 2 (the treatment group), 

was taught using constructivist strategies (Steen, 1987). A primary instructional 

constructivist strategy that was employed was small group collaboration. This teaching 

strategy, discussed in detail in Chapter II, has been used extensively by Monk (Tucker, 

1995). On the first day of treatment of chapter 3, which was an introduction to the 

derivative, the students were asked to form small groups of two or three. The instructor 

then drew a sketch of a function on an overhead transparency. Each group was asked to 

sketch a similar function, then draw a secant line anywhere on the function. The students 

were then asked to imagine that one point of intersection of the secant line and the curve 

move along the curve toward the other point of intersection. Each group was then asked 

to discuss what changes were taking place with regard to the slope of the secant line. 
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Finally, the students were asked to discuss the situation where the two intersection points 

actually coincided. After the discussions, the groups were given the assignment of 

writing a summary of the behavior of the slope of the secant line as one intersection point 

approached the other point of intersection. 

An investigation using the graphing calculator was conducted on day two of the 

lessons treating the derivative. Students were again asked to form small groups, divided 

so as to ensure that each group had access to a graphing calculator. The instructor drew a 

specific function, and then labeled three points a, b, and con the function, where a 

corresponded to the smallest x-value, and where c corresponded to the largest x-value. 

Half of the groups was asked to use points a and b as initial points, and the other half was 

asked to use points band c as initial points. Using one of these sets of two points, the 

students were asked to calculate the slope of the secant line passing through the two 

points. They were then asked to recalculate the slope ofthe secant line at certain stages 

as one point began to move along the curve toward point b. The groups were able to 

recognize quickly that there existed a limiting value for the slope, regardless of which set 

of starting points were used, and that the limiting value was the slope of the line tangent 

to the curve at point b. The instructor sketched a second function, with a jump 

discontinuity in the graph at x = 1. The groups were then asked to discuss whether a 

tangent line existed for the function as x approached 1 from both the left and right. The 

class then discussed each group's answers. 

On day three of the lessons involving the derivative, the instructor introduced the 

formal definition of derivative, and asked the class to discuss how the formal definition 

was related to the investigations that had been conducted in the previous class periods. 



After the discussion, the class assignment was to write a paragraph about this 

relationship. 
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Students were given homework problems from the text that required finding the 

derivative by using the formal definition, and subsequent class periods introduced various 

techniques of differentiation. Quizzes were given that required the students to provide 

written responses to questions rather than just perform calculations. These writing 

strategies were based on the work of David Smith of Duke University, who uses writing 

extensively in his calculus classes with positive results (Cipra, 1987). 

Writing assignments, small group collaboration, and class discussions were 

utilized throughout the treatment of chapter 3. A chapter exam was given after all 

sections of chapter 3 were discussed. 

Collection of the Data 

It was not necessary for the researcher to administer the placement examination 

since the placement test is required for all students preparing to enroll in a math class. 

However, the results of the placement examination were not immediately available. 

Permission to use the placement exam scores for all the subjects involved in the study 

was granted by the placement examination administrator. 

The van Hiele geometry test was administered in both calculus sessions by the 

researcher during a regular class session, within the same week of each other, and prior to 

the treatment. No calculators were allowed on the exam. 

The post-treatment instrument was administered in both calculus sessions by the 

researcher during a regular class session and within the same week of each other. The 

post-treatment instrument was given after treatment of chapter 3 in both sections and after 



the chapter exam was given in both sections. No graphing calculators were allowed on 

the exam. 

Analysis of the Data 

The mean of the placement exam scores was calculated for both Section 1 and 

Section 2. The means were then compared to determine whether the classes were 

similarly composed. 
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The van Hiele level instruments were scored by comparison to a multiple choice 

answer key. The instrument is designed so that the first five questions correspond to van 

Hiele level 1, questions 6-10 correspond to van Hiele level 2, questions 11-15 correspond 

to van Hiele level 3, 16-20 correspond to van Hiele level 4, and questions 21-25 

corresponding to van Hiele level 5. To determine at which level a particular student was 

to be assigned, the researcher investigated each block of 5 problems. To be operating at a 

particular level, the subject must have answered at least four of the five problems in that 

corresponding block correctly. Otherwise, the subject was assigned to the van Hiele level 

lower than the level being investigated. For example, if a subject answered 4 out of 5 

problems correctly on block 1-5, but answered only 2 problems correctly on block 6-10, 

then that subject was assigned to level 1. Once two problems in a block were answered 

incorrectly, the subject was assigned to the lower van Hiele level, and the researcher 

graded no further on the instrument. Therefore, it is possible that students may have 

answered 4 or more questions correctly in a block corresponding to a higher van Hiele 

level. This is a limitation that will be addressed in Chapter V. 

After reading the articles by Fuys (1988) and Clements (1992), the recent 3-level 

van Hiele model that was discussed in Chapter II was utilized in the study. In the 3-level 
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model, levels 1 and 2 remain essentially unchanged, whereas level 3 actually combines 

all oflevels 3,4, and 5. Statistics using both models were calculated and are included in 

· Chapter IV. 

The researcher developed the post-treatment instrument; no grading scheme 

existed prior to the scoring of the instrument. Therefore a rubric was designed to score 

the post-treatment instrument. In the rubric, procedural problems were graded as either 

correct or incorrect, and no partial credit was awarded. The instrument contained two 

problems procedural in nature, and each procedural problem was worth 5 points. All 

other problems were conceptually oriented problems. Each conceptual problem was 

worth a total of 10 points, with the number pf points being awarded based on the 

accuracy and completeness of the students' answers. 

A measure of reliability for the post-treatment instrument was calculated using the 

split-half reliability procedure outlined in Gay (1992), and corrected using the Spearman­

Brown correction formula. The reliability coefficient that was calculated was not 

necessarily accurate, primarily because the post-test instrument does not include many 

problems. The split-half reliability measure tends to provide more accurate measures for 

longer instruments. However, since the post-treatment was administered only one time, 

the split-half reliability test was the most valid option. 

The grading scheme is presented below in Table I. 



42 

TABLE I 

RUBRIC FOR SCORING OF POST-TREATMENT INSTRUMENT 

Problem Number and Explanation of Solution Points 
Points Possible Awarded 

Problem 1; 10 pts. mention of slope of curve 5 
mention of tangent line to curve 5 
mention of slope of tangent line to curve 8 
complete discussion 10 

Problem 2, part (a); 5 pts. missing parts of graph, besides labels 0 
all parts of graph, only labels omitted 5 

Problem 2, part (b ); 10 pts. mention of slope of tangent line to curve 5 
change partially correlates with sketch 5 
mention of approximation of slope of curve. 5 
change compl~tely correlates with sketch 10 

Problem 2, part ( c ), 10 pts. mention of tangent line 3 
mention of derivative off(x) at a= b 6 
mention of slope of curve 6 
mention of slope of tangent line 8 
complete discussion 10 

Problem 3; 10 pts. recognizes points on tangent line 3 
finds equation of tangent line 5 
finds slope, wrong sign 8 
correct slope 10 

Problem4; 5 pts. incorrect procedure 0 
correct procedure 5 

After the post-treatment instruments were scored, totals were calculated for both the 

procedural and conceptual portions of the test. 

Means for section number and van Hiele level were calculated, as well as means 

for the both the procedural and conceptual portions of the post-treatment instrument. 

Based on the information gleaned from Stevens (1992), a multivariate analysis of 

variance (MANOV A) seemed the best statistical approach to take in analyzing the data. 

Thus, using the SPSS statistical software package, a MANOV A was performed to 
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determine differences on the two dependent variables and the two independent variables. 

The two independent variables included the placement instrument and the van Hiele 

instrument, whereas the two dependent variables included the totals of the procedural and 

conceptual scores of the post-treatment instrument, respectively. The significance of 

difference was calculated using Roy's Largest Root test. 

If there was no interaction between the independent variables, then a one­

way analysis of variance (ANOVA) was performed for each independent variable. On 

the other hand, if an interaction between the independent variables was significant, then 

two-way ANOV As were performed using the procedural and conceptual totals in separate 

analyses. To account for the possibility of multivariate interaction, a discriminant 

analysis was performed. The eigenvalues were investigated, as were the canonical 

correlation values. 



CHAPTER IV 

RESULTS 

Introduction 

The focus of this study was conceptual knowledge as it pertains to the geometric 

interpretation of the derivative in a first semester calculus course. Primarily, the 

researcher sought information as to whether teaching methodology affects conceptual 

learning of the derivative in calculus. Secondly, the relationship between a student's van 

Hiele geometry level and the student's ability to reason conceptually was investigated. 

The results are summarized in two sections: (1) Results of Pre-Treatment Data, and 

(2) Results of Post-Treatment Data. 

Results of Pre-Treatment Data 

The placement exam means and standard deviations for each section are 

summarized in Table II. These statistics were calculated to determine whether the 

sections were beginning at the same level procedurally. Since the placement exam means 

of the two sections were not significantly different, no equalization of the sections was 

necessary. 
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TABLE II 

PLACEMENT EXAMINATION MEANS AND STANDARD DEVIATIONS 

Mean Standard Deviation Sample Size 

Section 1 19.60 5.23 n = 20 

Section 2 19.92 3.60 n = 24 

The validity of the exam was not calculated. However, professors in the mathematics 

education department found that there was a high correlation between the students' scores 

on their placement examinations and the grades they received in their respective courses. 

The reliability was evaluated using the split-half reliability procedure. Since there were 

35 items on the test and a split-half reliability coefficient was calculated, the coefficient 

was adjusted used the Spearman-Brown formula (Gay, 1992). The reliability was found 

to be .85 for the placement examination. 

Table III provides a summary for the number of students at each van Biele level 

in each section. Note that there were two students who did not take the placement exam, 

but who did take the van Biele test. Though the placement exam statistics were affected, 

the researcher felt it important to include the two van Biele scores so as to maintain 

similar sample sizes in both sections. 
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TABLE III 

NUMBER OF STUDENTS AT EACH VAN HIELE LEVEL FOR EACH SECTION 
AND AVERAGE VAN HIELE LEVEL IN EACH SECTION 

Number at Number at Number at Van Hiele Sample 
Level 1 Level2 Level3 Average Size 

Section 1 5 1 16 2.50 n = 22 

Section 2 8 4 12 2.17 n = 24 

Results of Post-Treatment Data 

As stated in chapter three, the study was designed to investigate the affect of two 

independent variables (section number and van Hiele level) on two dependent variables 

(procedural portion of post-treatment test and conceptual portion of post-treatment test). 

therefore, the researcher felt that a multivariate analysis of variance (MANOVA) would 

provide the most information regarding if and how much the independent variables 

affected the post-treatment instrument, and whether there was an interaction between the 

two independent variables. Before the MANOV A procedure was applied to the data, the 

means of the post-treatment instrument were calculated for each section. These statistics 

aided the researcher in determining whether any relationship appeared to exist between 

the sections. The means for both the procedural portion and conceptual portion of the 

exam are summarized in Table IV. 



TABLE IV 

MEANS AND STANDARD DEVIATIONS ON POST-TREATMENT 
INSTRUMENT FOR BOTH SECTIONS 
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Statistic PT Procedural PT Conceptual 

Section 1 Mean 9.32 16.14 

Standard Deviation 1.76 9.10 

N 22 22 

Section 2 Mean 8.54 16.62 

Standard Deviation 2.32 10.59 

N 24 24 

After the means were calculated, the MANOV A procedure was applied to the 

post-treatment data to determine whether any interaction existed between section number 

and van Hiele level. The results of the MANOVA procedure are summarized below in 

Table V. 

TABLEV 

POST-TREATMENT RESULTS FROM MANOVA 

Effect 

Class# 

VH level 

Class # * VH Level 

Multivariate 
Test 

Roys's Largest Root 

Roys's Largest Root 

Roys's Largest Root 
. * md1cates s1gmficance at p = .05 

F Prob. 
Value Value DF >F 

.067 1.305 2 .283 

.229 4.570 2 .016* 

.024 .476 2 .625 
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As shown in the table, there was no significant interaction between section 

number and van Hiele level. Also, there was no significant main effect detected from 

section number. However; note the F-values for the main effect detected by van Hiele 

level. For all the multivariate tests, van Hiele level contributed significantly to the scores 

on the post-treatment instrument. The researcher chose to include all the multivariate 

tests from the SPSS statistical package since they all produced significance within .05, 

particularly Roy's Largest Root test. Stevens (1992) noted in his discussion of 

multivariate tests that Roy's statistic is most powerful when differences among groups 

are concentrated on the first discriminant function. Therefore, based on the results of the 

MANOVA, additional tests were found to be necessary. A discriminant analysis was 

performed after the MANOV A procedure to determine whether the differences_ in the 

groups was indeed the concentrated on the first discriminant function, and the results will 

be summarized later in this section. 

Since the main effect of van Hiele level was significant, the researcher felt it was 

necessary to further investigate this relationship between van Hiele level and the post­

treatment instrument. Therefore a one-way analysis of variance (ANOVA) was 

performed for (1) van Hiele level and the procedural portion of the post-treatment 

instrument, and (2) van Hiele level and the conceptual portion of the post-treatment 

instrument. The results are summarized in Table VI. 
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TABLE VI 

ONE WAY ANALYSIS OF VARIANCE 

Dependent· Prob. 
Source Variable DF F value >F 

VH Level PT Procedural 2 1.077 .350 

VH Level PT Conceptual 2 4.538 .017* 

* indicates significance at p = .05 

As seen in Table VI, there was a significant difference between van Hiele level 

and the conceptual portion of the post-treatment instrument. An investigation of the 

correlation between conceptual and procedural performance was conducted and found to 

be .328, which is considered by Stevens (1992) to be a moderate correlation. Therefore a 

discriminant analysis was performed to further investigate this correlation. 

The first test in the discriminant analysis applied to the data was Box's M test. 

Using this test, homogeneity of the group covariance matrices was investigated. The F-

value was found to be 1.15, with a significance value of .351. Since the F-value was not 

significant, the assumption of homogeneity of covariance was not violated. Therefore the 

differences in the group covariance matrices were not significantly different enough to 

warrant equalization procedures. 
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The means on the post-treatment instrument for each van Hiele level were 

compared to determine whether there appeared to be any significant difference between 

them; they are displayed in Table VII. 

TABLE VII 

MEANS ON POST-TREATMENT INSTRUMENT FOR EACH VAN HIELE LEVEL 

Post-Treatment 
VH Level Category Mean Standard Deviation 

1 PT Procedural 8.08 2.53 

PT Conceptual 12.62 9.12 

2 PT Procedural 9.00 2.24 

PT Conceptual 8.40 5.86 

3 PT Procedural 9.29 1.78 

PT Conceptual 19.57 9.43 

Since it appeared a possible significant difference in the means among the van 

Hele levels could exist, a test of this difference was performed. The calculation of Wilks' 

Lambda determines whether a significant difference exists between the means for 

different groups. Wilks' Lambda was calculated to test for equality among van Hiele 

level means for conceptual performance and procedural performance, and the results are 

summarized in Table VIII. 
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TABLE VIII 

TEST OF SIGNIFiCANCE AMONG VAN HIELE LEVEL MEANS 

I 

Wilks' Lambda F-value Significance 

PT Conceptual .818 4.791 .013* 

PT Procedural .933 1.532 .228 

* md1cates s1gmficance at p = .05 

There was a significant difference among the van Hiele levels on the conceptual portion 

of the post-treatment instrument, but the differences of means was not significant for 

procedural performance. 

The residual test procedure involving Bartlett's Chi-Square tests (Stevens, 1992) 

was performed to determine the number of significant discriminant functions. 

Ascertaining the number of discriminant functions assists the researcher in determining 

which of the dependent variables contributes most significantly to the difference in means 

between groups. The results for the discriminant functions are summarized in Table IX. 

TABLE IX 

TEST FOR SIGNIFICANT DISCRIMINANT FUNCTIONS 

Test of Wilks' 
Function(s) Lambda Chi-Square OF Significance 

1 through 2 .785 10.290 4 .036* 

2 .961 1.693 1 .193 

* md1cates s1gmficance at p = .05 
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The maximum number of possible discriminant functions was two, which is the 

minimum of the number of van Hiele levels and the number of dependent variables. 

The test of the combination of both discriminant functions (which combined both . 

eigenvalues) yielded a significant z2 at the .05 level; thus there was significant overall 

association. A test of the residual or second discriminant function, with the largest 

eigenvalue removed, revealed no significant association. Therefore the only significant 

function is the first function. 

The eigenvalues were then investigated to determine which eigenvalue 

contributed most to the total association. These eigenvalues are representative of the 

contribution of the dependent variables to the total variance. The eigenvalues are 

displayed in Table X. 

TABLEX 

EIGENVALUES 

%of Canonical 
Function Eigenvalue Variance Cumulative % Correlation 

1 .224 84.7 84.7 .428 

2 .041 15.3 100.0 .198 

Since the eigenvalues additively partition total association and discriminant functions are 

uncorrelated (Stevens. 1992), the"% of Variance" was calculated by dividing the 

eigenvalue in question by the sum of both eigenvalues. The first eigenvalue is the 

primary contributor to the total association (84.7%). 
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To interpret the first discriminant function, the researcher investigated both the 

standardized coefficients and the discnminant-variable correlations as suggested by 

Stevens (1992). The correlations were used to determine the underlying constuct that 

was represented by the discriminant function. The SPSS procedure empirically clustered 

the two dependent variables; the next step in the analysis was to determine which 

dependent variable(s) most significantly defined the first discriminant function. The 

correlations are summarized inTable XI. 

TABLE XI 

POOLED WITHIN-GROUPS CORRELATION BETWEEN CANONICAL 
DISCRIMINANT FUNCTIONS AND DISCRIMINATING VARIABLES 

Function 1 Function 2 

PT Conceptual .996 -.086 

PT Procedural .408 .913 

As seen in the table, conceptual performance primarily defined the first discriminant 

function, with moderate involvement from procedural performance. 

Next, the standardized coefficients were examined to determine if there was any 

redundancy for conceptual performance or procedural performance. In other words, is 

there any overlap between procedural performance and conceptual performance? The 

standardized coefficients of the discriminant functions are summarized in Table XII. 



TABLE XII 

STANDARDIZED CANONICAL DISCRIMINANT FUNCTION COEFFICIENTS 

Function 1 Function 2 

PT Conceptual .966 -.432 

PT Procedural .091 1.055 

The analysis revealed that conceptual performance was not redundant because of its 

coefficient value of .966, whereas procedural performance was redundant (.091). 

The last step in the analysis was to investigate the group centroids (means) to 

determine the relationship between van Hiele level and performance. The results are 

displayed in Table XIII. 

TABLE XIII 

UNSTANDARDIZED CANONICAL DISCRIMINANT FUNCTIONS 
EVALUATED AT GROUP MEANS 

VH Level Function 1 Function 2 

1 -.439 -.248 

2 -.848 .426 

3 .355 .004 
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The means of the van Hiele levels on the first discriminant function indicated that there 

was a separation between level 3 and the other two levels. 
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Since the subject/variable ratio was 23 to 1, there was high reliability in the 

results from the discriminant analysis (Stevens, 1992). At this point it is important to 

discuss the validity and reliability of the post-treatment instrument. Though no test of 

validity was performed on the instrument, content validity was assessed by two 

mathematics education professors. The reliability of the conceptual portion of the 

instrument was calculated using the split-half reliability procedure, and was adjusted 

using the Spearman-Brown correction formula. The reliability was found to be .68. It 

should be noted, however, that the number of items on the post-treatment instrument was 

extremely small, thus increasing the possibility of an inaccurate reliability coefficient. 

An interpretation of all of the results summarized in this chapter will be presented 

in Chapter V. 



CHAPTERV 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Summary 

One of the primary components of calculus reform is a call for a change in 

teaching methodology. Reform advocates feel that changing the way students are 

introduced to calculus concepts will enhance their understanding of these concepts. The 

reform movement also encourages a three-pronged approach to the introduction of a 

calculus concept: symbolically, numerically, and geometrically. This study was designed 

primarily to investigate the relationship between teaching modes of instruction and 

calculus learning. Secondly, the study sought to provide information as to whether there 

is a relationship between conceptual learning in geometry and conceptual learning in 

calculus. 

The sample for the study included freshman and sophomore students (n = 46) 

enrolled in beginning calculus in a small, midwestem, private university during the fall 

semester of 1998. This study used quantitative methods to investigate the following 

research questions: 

1. In what way does the use of a constructivist approach to instruction affect 

student learning of the geometric concept of derivative in a first semester 

calculus course? 

2. What is the relationship between a student's van Hiele level and that 

student's geometric conceptual understanding of the derivative in a first 

56 
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semester calculus course? 

The placement examination, which was used as a pre-treatment instrument, was an 

examination already in place at the university. This instrument, whose main purpose is to 

help place beginning engineering, mathematics, computer science, or pre-medical 

students in the appropriate mathematics class, was used in this study to determine 

whether the composition of the two sections involved in the study was similar. The 

means for both Section One and Section Two (19.6 and 19.92, respectively) indicated 

that the student population in each section was comparable. Note that, for the placement 

examination, section one included four less students in its sample size (n = 20) than in 

Section two (n = 24). Two of the students who took the van Hiele test and the post-

treatment instrument did not take the placement examination. Although this difference in 

sample size certainly could affect section one's mean on the placement examination, the 

researcher believed the inclusion of these two students even more important when 

evaluating the van Hiele instrument and the post-treatment instrument. 

The decision to use the van Hiele instrument was based primarily on the desire to 

determine whether conceptual reasoning ability in geometry translates to conceptual 

reasoning ability in calculus, and also to determine at what van Hiele levels these 

calculus students were operating prior to the treatment. The van Hiele instrument 

consisted of 25 multiple choice questions, with each group of five questions correlating to 

a higher van Hiele level oflearning. Based on the research ofFuys (1988) and van Hiele 

( 1986), students were then classified as belonging to one of three van Hiele categories. 

• Level (1) Visual, corresponds to a van Hiele level of 1 on the instrument. 

• Level (2) Analytical, corresponds to a van Hiele level of 2 on the 
instrument. 



• Level (3) Theoretical, corresponds to a van Hiele of 3,4, or 5 on the 
instrument. 

An analysis of the data from the van Hiele instrument revealed that there were 

three more students operating at level one in Section Two than in Section One. There 

were also three more students operating at level two in Section two than in Section one. 

However, there were four more students operating at level three in Section One than in 
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Section Two, and this difference accounts primarily for the larger van Hiele level mean in 

Section One. 

After the pre-treatment instruments were given, each section began the chapter 

that introduced differentiation. Section One (the control group) was taught using 

traditional teaching methods, which included primarily lecture and demonstration, 

whereas Section Two (the treatment group) was conducted using reform methodology. 

Group collaboration, class discussion, and writing were emphasized in the treatment 

group. 

The post-treatment instrument was developed by the researcher. Four of the 

questions were designed to determine whether students could reason geometrically about 

the derivative. Two of the questions were strictly procedural in nature, requiring only 

computational skill and little calculus conceptual knowledge. A rubric was designed to 

provide a quantitative score for each question on the instrument. 

The results of the data analysis provided some insight into the relationship 

between teaching methodology and conceptual reasoning, as well as the relationship 

between van Hiele level and conceptual performance. 



Conclusions 

The following conclusions address the two research questions and provide 

additional insight into students' conceptual knowledge of the derivative. These 

conclusions are presented in the context of the limitations of the study. 

I. Though Section Two's mean van Hiele level score was lower on the pre-
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treatment instrument than the mean van Hiele level score for Section One, the post­

treatment instrument indicates higher conceptual performance for Section Two. This is 

of particular interest since there were three students in Section One who were not 

involved in the study due to either dropping the class or receiving an incomplete. Section 

Two experienced no attrition, and all students of all van Hiele levels participated in the 

study. 

The differences in the means between the control group and the treatment group might 

have been significant had these other students been involved in the study. 

In the comparison of the procedural performance for the two sections, Section 

One's scores were significantly higher. This is consistent with previous research cited 

that compared procedural skills of traditional calculus students to procedural skills of 

reform calculus students. Since traditionally taught calculus courses tend to emphasize 

calculational techniques, it is not surprising that the traditionally taught Section One 

would attain a higher procedural score than that of Section Two, whose basis was more 

conceptual in nature. 

2. According to the results of the MANOVA procedure performed on the 

data, teaching methodology alone did not significantly affect procedural or conceptual 

post-treatment performance. Therefore the findings in this study did not support the 
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reform literature, which purports that reform methodology enhances conceptual ability. 

As stated previously, however, attrition from Section One for the three-week duration of 

the study could have greatly affected the outcomes of the MANOVA procedure, as well 

as the fact that only one chapter was included in the study. 

The MANOVA results indicated that regardless of the van Hiele level of a 

student, teaching methodology combined with van Hiele level did not enhance conceptual 

performance, nor did it enhance procedural performance. Again, attrition in Section One 

could have affected these results. 

3. The MANOVA revealed that the van Hiele level of a student was 

significantly related to that student's performance on the post-treatment instrument. After 

finding this significant difference, two one-way ANOV As were performed: one between 

van Hiele level and procedural performance, and the other between van Hiele level and 

conceptual performance. Results indicated a significant relationship between van Hiele 

level and conceptual performance on the post-treatment instrument. 

An investigation of the means and standard deviations on the post-treatment 

instrument for each van Hiele level further defined this relationship. Though the 

procedural means were quite close in value to each other for all three van Hiele levels 

(8.08, 9.00, and 9.29, respectively), the difference in mean values for conceptual 

performance was substantial, especially for those students at level 3. The students at van 

Hiele level 3 scored much higher on the conceptual portion (19.57) of the instrument than 

those students at either level 1 (12.62) or level 2 (8.40). An item worthy of note is that 

the students at van Hiele level 1 scored higher on the conceptual portion of the instrument 

than those students at van Hiele level 2. There were three more level 1 students in the 
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reform section than in the traditionally taught section; and there were three more level 2 

students in Section 2 than in Section 1. A possible explanation for this difference in 

conceptual performance could be that the reform teaching methodology was more 

beneficial to lower level students, which reinforces results from other research regarding 

calculus reform. 

The calculation of Wilks' Lambda, which provides a statistical comparison of the 

mean differences for the van Hiele levels on both the procedural and conceptual portions 

of the post-treatment instrument, revealed a significant difference on the conceptual 

portion of the instrument. Therefore, it certainly seemed that a student's van Hiele level 

significantly affected his conceptual performance. 

What remained to be investigated was whether there was significant association 

between conceptual performance and procedural performance. In other words, the 

researcher sought to determine how much a student's conceptual performance was related 

to that student's procedural performance. 

The discriminant analysis performed on SPSS resulted in two discriminant 

functions, with only the first function being significant. By examining the correlations 

between the two resulting discriminant functions and the dependent variables, the 

correlation between conceptual performance and the first discriminant function was .996, 

whereas the correlation between procedural perf01:mance and the first discriminant 

function was only .408. This means that conceptual performance primarily defined the 

first discriminant function, therefore contributing most significantly to the percentage of 

variance in the first discriminant function. 
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By inspection of the standardized coefficients for the first discriminant function, 

the coefficient representing the contribution by conceptual performance was .966, 

whereas the coefficient representing procedural performance was only .091. These 

results indicate that given conceptual performance, procedural performance did not 

contribute substantially in defining the relationship between van Hiele level and 

performance on the post-treatment instrument. Statistically speaking, procedural 

performance was a redundant variable. 

Cornbining the information from the coefficient and the discriminant-variable 

correlations, it can be said that the first discriminant function could be characterized as 

one that described the relationship between van Hiele level and conceptual performance. 

To complete this investigation of the relationship between van Hiele level and 

conceptual performance, the means of the van Hiele levels on the first discriminant 

function were calculated using SPSS. The results indicated a separation between those 

students at level 3 and those students at both levels 1 and 2. Students at van Hiele level 3 

tended to score higher on the conceptual portion of the post-treatment instrument. 

Based on the results from this study, there is a very significant relationship 

between van Hiele level and calculus conceptual learning, particularly for those students 

operating at van Hiele level 3. This important finding suggests a substantial relationship 

between what students learn in geometry and how well they perform conceptually in 

calculus. These results provide information that should be utilized by instructors at the 

high school level, the collegiate level, and by educational researchers. 
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· Recommen'dations 

The following recommendations are offered for mathematics educators who teach 

calculus and for those interested in further research. 

1. The use of reform teaching methodologies should continue to be 

encouraged, particularly to the benefit of students with more marginal mathematics skills. 

Ricardo (1997) believed that teaching with a more conceptual basis will benefit those 

students with weak computational skills, and Roddick (1995) found that students taught 

using reform methods were more capable of communicating their conceptual knowledge 

than those students from a traditional calculus background. Lucas (1998) cited the 

increase in conceptual performance by using reform methodology and Garner (1998) 

provided results that indicated a significant increase in conceptual understanding by use 

of reform teaching methods. 

2. While implementing reform teaching methods, further research should be 

conducted that investigates the relationship between reform teaching methods and 

calculus success, especially as it relates to conceptual knowledge. Haver (1998) 

indicated the increase in the development of reform materials. This information would be 

beneficial for all educators involved with calculus, whether in the capacity of teacher or 

researcher. If instructors and researchers were to be able to review results from research 

that investigates the contribution these materials are making to the acquisition of calculus 

conceptual knowledge, teaching methodologies could be enhanced to accommodate this 

relationship. Though many calculus instructors and researchers feel that reform methods 

are most beneficial to students (Lucas, 1998; Kilpatrick, 1997), research investigating 

these methods is still much needed. 
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3. Further research is recommended with regard to the relationship between 

van Hiele level and calculus conceptual knowledge. This is particularly important 

because there is very little research that has been done which investigates this 

relationship. Fitzsimmons (1995) found that by pairing students according to van Hiele 

level and encouraging these pairs of students to work together throughout the semester, 

there was significant improvement in the students' scores on the geometric portion of the 

calculus final. The scores of these students were significantly higher than the scores of 

students who were taught using traditional methods. Results cited by Poehl (1995) 

indicated that students who took a nine-week AP calculus course increased their level of 

_geometric reasoning, but little other research exists which investigates how conceptual 

understanding in geometry affects conceptual understanding in Calculus. 

A more complete understanding of this relationship would be helpful in several 

ways to instructors of both geometry and calculus. Geometry teachers would be more 

enlightened as to what areas of geometry should be emphasized so as to enhance students' 

geometric conceptual development and increase their confidence in their ability to do 

mathematics. This increase in conceptual ability and confidence could certainly serve to 

encourage more students to take higher mathematics courses such as calculus. 

Calculus instructors could use van Hiele level testing to identify students that 

need additional assistance in the development of their geometric conceptual knowledge 

base. Armed with this additional identification of a student's geometri conceptual 

knowledge, perhaps instructors would be able to help more calculus students experience 

success. Greater success in calculus could influence attrition rates in that course,causing 

them to diminish, and encourage more students to choose mathematically related careers. 



These are two of the primary goals of the reform movement (Douglas, 1986), and all 

materials, methods, or devices that will enhance the attainment of these goals should be 

given serious consideration. 
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MATH PLACEMENT TEST 

Please read the following instructions carefully: 

1. You may mark on this test. However, only answers on your 
computer card will be graded. 

2. USE ONLY A #2 PENCIL. 

3. Time Limit: 60 minutes. 

77 

4. Since this is a placement test and not one for which you will receive a grade, 
blind guessing will reduce the validity and usefulness of the results. Answer 
only those questions whose answers you know or for which you can make an 
educated choice. 
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1. Which equation illustrates the associative property of addition? 

A. 3 + 5 = 5 + 3 
B. 2+(-2)=0 
C. 2(3 + 4) = 2(3) + 2(4) 
D. (3 +4) + 7 = 3 + ( 4 + 7) 

2. Solve for x: 3x + 2 = -1 

A. 
-1 
-
3 

B. 
1 
-
3 

C. -1 
D. 1 

3. Solve: x 2 +7x=-l2 

A. {3,4} 
B. {-4,-3} 
C. {-4,3} 
D. {-3,4} 

4. Solve: lx-51 = 2 

A. {3,7} 
B. {-3,7} 
C. {-7,-3} 
D. (2,5} 

5. What is the equation for the line that passes through the points (-1,0) and (0, 1 )? 

A. y=-x 
B. y=x 
C. x+y= 1 
D. y=x+ 1 

6. What is the equation of the line whose slope is 2 and whose y-intercept is -4? 

A. y+2x =-4 
B. y = 2x-4 
C. y =-4x+2 
D. y = 12x-7 
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7. If f (x) = 4-3x, what is.f{l)? 

A. -1 
B. l 
C. 7 
D. -7 

8. Solve this system: 
x=y-2 

2x+3y = 0 

A. {i -4} 
5' 5 

B. {~ -4} 
5 ' 5 

C. {-6 4} 
5 '5 

D. {=2 ~} 4 '4 
9. (m + 3n)(2m - n) 

A. 2m 2 + 5mn-3n 2 

B. 2m 2 -3n 2 +6 

C. 2m 2 -3n 2 

D. m2 +6mn-3n 2 

l 0. Factor the following: a 2 -a-30 
A. ( a + 5)( a + 6) 
B. (a-S)(a-6) 

C. (a-5)(a+6) 

D. (a+5)(a-6) 

11. Which inequality corresponds to the graph? 

A. X ~ -2 
B. y~-2 
C. x ~-2 
D. y~-2 

y=-2 
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12. The expression, 3(x + y) + 2(x + 3y), is equivalent to: 

A. 5(2x+4y) 
B. 5x+4y 
C. 5x+8y 
D. 5x+9y 

. 8x 3 -4x . 1.fi 13. The express10n, ,s1mp 1 1es to: 
4x 

A. 2x 2 

B. 8x3 

C. 2x 2 -1 
D. 8x3 -1 

14. Factor the following polynomial expression: l2x 2 + 60x + 75 

A. 3(2x + 5) 2 

B. (6x + 25)(2x + 3) 

C. (3x + 25)( 4x + 3) 
D. (4x+25)(3x+3) 

15. Simplify the following: M 

A. 16F3 

B. 4fj 

C. 8J°6 

D. 6.J8 

16. Simplify (-4+ 7i)-(6-2i), where i = ~: 

A. -10 + Si 
B. 2 +Si 
C. 2+9i 
D. -10 + 9i 



17. Solve: 3~=4 

A. ±~ 
9 

B. ±4 
9 

C. ~ 
D. 16 -

9 

8 Th . x-3 x+2 . . 1 1 . e expression,-----, 1s eqmva ent to: 
5 10 

x-4 
A. 

10 
x-8 

B. 
10 

C. x-4 
D. x- 8 

19. Solve the following for equation for a: 

A. -1 
B. 1 
C. 4 
D. 5 

a 
a+-=5 

4 

20. Suppose thaty varies directly withx and thaty = 50 whenx = 40. 
Findy whenx = 65. 

A. 0.8 
B. 32 
C. 52 
D. 81.25 

21. Find the discriminant of 3x2 + 2x + 2: 

A. -2±J28 
B. 28 

C. -2±..J-20 
D. -20 
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22. Solve for x in the following equation: 
X X 
-+-=l 
2 5 

A. 10 
10 

B. 
7 
7 C. 
2 
7 

D. 
10 

23. Solve the equation for x: 

A. 3 

B. _.!_! 
6 

C. 4 
D. 7 

24. Solve for x in the equation: 

A. 49 
B. 63 
C. 56 
D. 65 

25. The domain of y = sinx is: 

A. {-1 $ y $ l} 
B. {-l$x$l} 
C. {all real numbers} 
D. {O =:;; y =:;; 21r} 

1 
-=6 
x+2 

6 
-x=42 
7 
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26. Find the value of the given trigonometric function for an angle a. whose terminal side 
passes through the point (-3,7). 

Cota.= 

A. 3 

7 

B. 
-7 -
3 

C. 
-Jss 

3 

D. -3 

7 

27. If tan A= - Jj, and 0~ ~A~ 180°, then A= 
3 

A. 120° 
B. 60° 
C. 150° 
D. 30° 

28. The length of the hypotenuse of a 30°-60°-90° triangle is 4 cm. Find the 
length of the leg opposite the 60° angle. 

A. 2Jj cm 
B. 2cm 

C. 2.J2 cm 
D. 4cm 

29. Express the following angle measure in degrees: 

A. 140° 
B. 18° 
C. 70° 
D. 126° 

7tr d' - ra 1ans 
10 



30. Identify the graph. 

,, y 

2 

A. y = sinx + 1 

B. y = cosx 

C. y=smx 

D. y = 1-cosx 

31. The logarithmic form of x 2 = 10 is 

A. log., 10 = 2 

B. Jog 10 X = 2 

C. iog 2 y = X 

D. log 2 x=y 

32. If 2 .. = 8, then x = 

A. 4 
1 

B. 
4 

C. 1 
D. 3 

33. log 3 5x = 

A. log 3 5x + log 3 x 

B. logxl5 

C. log3 5 -log3 x 

log 3 5 
D. 
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34. If 3.r = 7, thenx = 

A. 
}og10 3 

}og10 7 

B. 
}og10 7 

}og10 3 

C. log10 3 - log10 7 

D. log 10 7 - log 10 3 

35. The exponential form of log4 y = 10 is 

A. YIO =4 

B. y4 =10 

C. y=410 

D. y=I04 
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VAN HIELE GEOMETRY TEST 

1. Which of these are squares? 

(a) K only 
(b) L only 
(c) M only 
(d) Land M only 
( e) All are squares. 

K 

2. Which of these are triangles? 

ov 
u V 

(a) None of these are triangles. 
(b) V only 
(c) W only 
(d) Wand X only 
(e) V and W only 

3. Which of these are rectangles? 

s 

(a) Sonly 
(b) T only 
(c) Sand T only 
(d) Sand U only 
(e) All are rectangles. 

DD 
L M 

w X 

u 
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4. Which of these are squares? 

0 I 7 0 
F G H I 

(a) None of these are squares. 
(b) G only 
(c) F and G only 
(d) G and I only 
( e) All are squares. 

5. Which of these are parallelograms? 

..___/~/ <> 
J M L 

(a) J only 
(b) L only 
(c) J and M only 
(d) None of these are parallelograms. 
( e) All are parallelograms 

6. PQRS is a square. 

Which relationship is true in all squares? 

(a) PR and RS have the same lengths. p Q 

(b) QS and PR are perpendicular. 

(c) PS and QR are perpendicular. 

(d) PS" and "QS have the same length 
R s 

(e) Angle Q is larger than angle R. 
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7. In a rectangle, GHJK, GJ and HK are the diagonals. 

G H 

. C?:s::I 
K J 

Which of (a) - (d) is not true in every rectangle? 
(a) There are four right angles. 
(b) There are four sides. 
( c) The diagonals have the same length. 
( d) The opposite sides have the same length. 
( e) All of (a) - ( d) are true in every rectangle. 

8. A rhombus is a 4-sided figure with all sides of the same length. 

Here are three examples. 

0 0 
Which of ( a) - ( d) is not true in every rhombus? 

(a) The two diagonals have the same length. 
(b) Each diagonal bisects two angles of the rhombus. 
( c) The two diagonals are perpendicular. 
( d) The opposite angles have the same measure. 
( e) All of (a) - ( d) are true in every rhombus. 



9. An isosceles triangle is a triangle with two sides of equal length. 
Here are three examples. 

Which of (a) - (d) is true in every isosceles triangle? 
(a) The three sides must have the same length. 
(b) One side must have twice the length of another side. 
(c) There must be at least two angles with the same measure. 
( d) The three angles must have the same measure. 
(e) None of(a)- (d) is true in every isosceles triangle. 

10. Two circles with centers P and Q intersect at R and S to form a 4-sided figure 
PQRS. Here are two examples. 

Which of (a) -(d) is not always true? 
(a) PQRS will have two pairs of sides of equal length. 
(b) PQRS will have at least two angles of equal measure. 
(c) The lines PQ and RS will be perpendicular. 
( d) Angles P and Q will have the same measure. 
(e) All of (a) - (d) are true. 
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11. Here are two statements. 

Statement 1: Figure F is a rectangle. 

Statement 2: Figure F is a triangle. 

Which is correct? 

(a) If 1 is true, then 2 is true. 
(b) If 1 is false, then 2 is true. 
( c) 1 and 2 cannot both be true. 
( d) 1 and 2 cannot both be false. 

· (e) None of (a)- (d) is c.orrect. 

12. Here are two statements. 

Statement S: AABC has three sides of the same length. 

Statement T: In AABC, LB and LC have the same measure. 

Which is correct? 

(a) Statements Sand T cannot both be true. 
(b) If S is true, then T is true. 
( c) If T is true, then S is true. 
( d) If S is false, then T is false. 
(e) None of (a) - (d) is correct. 
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13. Which of these can be called rectangles? 

D 
p 

(a) All can. 
(b) Q only. 
(c) Ronly. 
(d) P and Q only. 
(e) Q and R only. 

14. Which is true? 

Q R 

(a) All properties of rectangles are properties of all squares. 
(b) All properties of squares are properties of all rectangles. 
( c) All properties of rectangles are properties of all parallelograms. 
( d) All properties of squares are properties of all parallelograms. 
(e) None of (a) - (d) are true. 

15. What do all rectangles have that some parallelograms do not have? 

(a) opposite sides equal 
(b) diagonals equal 
( c) opposite sides parallel 
( d) opposite angles equal 
(e) none of (a)- (d) 
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16. Here is right triangle ABC. Equilateral triangles ACE, ABF, and BCD 
have been constructed on the sides of ABC. 

F 

D 

From this information, one can prove that AD, BE, and CF have a point in 
common. What would this proof tell you? 

(a) Only in this triangle drawn can we be sure that"'Al}, BE, ancfCFhave 
a point in common. 

(b) In some but not all right triangles, AD, BE, and CF have a point in 
common. 

(c) In any right triangle, AD, BE, and CF have a point in common. 

(d) In any triangle, AD, BE, ancfcFhave a point in common. 

( e) In any equilateral triangle, AD, 13E, and CT have a point in common. 

17. Here are three properties of a figure. 
Property D: It has diagonals of equal length. 
Property S: It is a square. 
Property R: It is a rectangle. 

Which is true? 

(a) D implies S which implies R. 
(b) D implies R which implies S. 
(c) S implies R which implies D. 
( d) R implies D which implies S. 
(e) R implies S which implies D. 
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18. Here are two statements. 

I. If a figure is a rectangle, then its diagonals bisect each other. 

IL If the diagonals of a figure bisect each other, the figure is a 
rectangle. 

Which is correct? 

(a) To prove I is true, it is enough to prove that II is true. 
(b) To prove II is true, it is enough to prove that I is true. 
( c) To prove II is true, it is enough to find one rectangle whose diagonals 

bisect each other. 
(d) To prove II is false, it is enough to find one non-rectangle whose diagonals 

bisect each other. 
(e) None of (a)- (d) is correct. 

19. In geometry: 

(a) Every term can be defined and every true statement can be proved true. 

(b) Every term can be defined but it is necessary to assume that certain 
statements are true. 

( c) Some terms must be left undefined but every true statement can be proved 
true. 

( d) Some terms must be left undefined and it is necessary to have some statements 
which are assumed true. 

(e) None of (a)- (d) is correct. 
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20. Examine these three sentences. 

(1) Two lines perpendicular to the same line are parallel. 
(2) A line that is perpendicular to one of two parallel lines is perpendicular 

to the other. 
(3) If two lines are equidistant, then they are parallel. 

In the figure below, it is given that lines m and pare perpendicular and lines 
n and pare perpendicular. Which of the above sentences could be the reason 
that line mis parallel to linen? 

(a) (1) only 
(b) (2) only 
(c) (3) only 
( d) Either (1) or (2) 
(e) Either (2) or (3) 

p 

n 

21. In F-geometry, one that is different from the one you are use to, there are 
exactly four points and six lines. Every line contains exactly two points. 
If the points are P, Q, R, and S, the lines are {P,Q}, {P,R}, {P,S}, {Q,S}, 
And {R,S}. 

Q 

p 

s 

R 

Here are how the words "intersect" and "parallel" are used in F-geometry. 

The lines {P,Q} and {P,R} intersect at P because {P,Q} and {P,R} have Pin 
common. 

The lines {P,Q} and {P,R} are parallel because they have no points in 
common. 

From this information, which is correct? 

(a) {P,R} and {Q,S} intersect. 
(b) {P,R} and {Q,S} are parallel. 
(c) {Q,R}and {R,S} are parallel. 
( d) {P ,S} and { Q,R} intersect. 
(e) None of (a)- (b) is correct. 
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22. To trisect an angle means to divide it into three parts of equal measure. In 1847, 
P.L. Wantzel proved that, in general, it is impossible to trisect angles using only a 
compass and an unmarked ruler. From his proof, what can you conclude? 
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(a) In general, it is impossible to bisect angles using only a compass and an unmarked 
ruler. 

(b) In general, it is impossible to trisect angles using only a compass and a marked 
ruler. 

( c) In general, it is impossible to trisect angles using any drawing instruments. 
( d) It is still possible that in the future someone may find a general way to trisect 

angles using only a compass and an unmarked ruler. 
(e) No one will ever be able to find a general method for trisecting angles using only 

a compass and an unmarked ruler. 

23. There is a geometry invented by a mathematician J in which the following is true: 

The sum of the measures of the angles of a triangle is less than 180°. 

Which is correct? 

(a) J made a mistake in measuring the angles of the triangle. 
(b) J made a mistake in logical reasoning. 
( c) J has a wrong idea of what is meant by "true." 
( d) J started with different assumptions than those in the usual geometry. 
(e) None of (a) - (d) is correct. 

24. Two geometry books define the word rectangle in different ways. 

Which is true? 

(a) One of the books has an error. 
(b) One of the definitions is wrong. There cannot be two different definitions for 

rectangle. 
( c) The rectangles in one of the books must have different properties from those in 

the other book. 
( d) The rectangles in one of the books must have the same properties as those in the 

other book. 
( e) The properties of rectangles in the two books might be different. 



25. Suppose you have proved statements I and II. 

I. If p, then q. 
II. Ifs, then not q. 

Which statements follow from statements I and II? 

(a) If p, thens. 
(b) If not p, then not q. 
(c) If p or q, thens. 
( d) Ifs, then not p. 
(e) If nots, then p. 
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APPENDIXC 

POST-TREATMENT INSTRUMENT 
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Derivative Quiz 

Instructions: Answer each question as completely as possible. 

1. We have discussed two different interpretations of the derivative. The first 
interpretation was the physical interpretation which dealt with the instantaneous 
rate of change of the dependent variable with respect to the independent variable. 
The second interpretation was a geometric or graphical perspective. Discuss this 
geometric interpretation of the derivative. 

2. Given a functionf(x), suppose you are asked to find the slope of the secant line 
passing through two distinct points a and b onf(x). 
(a) Draw a sketch that represents the problem. 

(b) Now suppose in your sketch that a and b get closer and closer together 
on the curve. What happens to the slope of the secant line as this happens? 

(c) Discuss what you are actually finding when a= b. 
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3. Given the following sketch, determine the derivative of f(x) at x = -1. 

4. Find the value of the derivative of f (x) = 2x 2 - 3x + 1 at x = 2. 



APPENDIXD 

SCORES ON INSTRUMENTS 
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SUBJECT CLASS# 
1 1 
2 1 
3 1 
4 1 
5 1 
6 1 
7 1 
8 1 
9 1 
10 1 
11 1 
12 1 
13 1 
14 1 
15 1 
16 1 
17 1 
18 1 
19 1 
20 1 
21 1 
22 1 
23 2 
24 2 
25 2 
26 2 
27 2 
28 2 
29 2 
30 2 
31 2 
32 2 
33 2 
34 2 
35 2 
36 2 
37 2 
38 2 
39 2 
40 2 
41 2 

SCORES ON INSTRUMENTS 
FOR BOTH SECTIONS 

PLACEMENT VHLEVEL 
- 1 

21 3 
- 1 

23 3 
18 3 
18 3 
19 3 
20 3 
13 1 
21 3 
29 1 
22 3 
22 3 
18 1 
23 3 
21 3 
18 3 
21 3 
23 3 
18 2 
21 3 
24 3 
19 3 
20 1 
22 3 
9 1 

23 3 
22 2 
18 3 
22 1 
23 3 
19 3 
11 1 
20 1 
23 3 
21 1 
17 1 
23 2 
23 3 
23 3 
20 2 
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PTPRO PTCON 
10 0 
10 26 
5 8 
10 16 
10 13 
5 8 
10 23 
10 13 
10 23 
10 16 
10 21 
10 28 
10 21 
10 5 
10 33 
5 21 
10 8 

-
10 30 

-
10 5 

-
10 5 

-
10 18 
10 14 
5 13 
10 8 
10 30 
5 13 
10 28 
10 14 
10 33 
10 21 
10 23 
10 33 
5 8 
5 26 
10 28 
10 8 
10 23 
10 10 
10 13 
10 23 
10 13 

-
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SUBJECT CLASS# PLACEMENT VHLEVEL PTPRO PT CON 
42 2 22 3 5 0 
43 2 19 2 5 0 
44 2 19 1 5 0 
45 2 22 3 10 26 
46 2 18 3 11 5 
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