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PREFACE 

Numerous statistical procedures for conducting sequential experiments have been developed over the past 

five decades. Many such procedures have been analyzed more or less completely in terms of asymptotic 

performance. However, some of the more recent model-based procedures involving principles of 

maximum likelihood have proven somewhat less tractable to such analyses. The focus of this dissertation 

is the asymptotic behavior of the Logit-MLE procedure for binary response data first proposed by Wu 

(1985). Under weak assumptions it is shown that a first-order approximation of the dynamics of this 

procedure produces consistent sequential estimates. Subsequent simulation shows that the accuracy of the 

approximation improves as the sequential trial count increases, thus giving weight to the argument that 

the Logit-MLE procedure per se also produces consistent estimates. 

Each of my committee members contributed to this research effort in his or her own unique way. 

Foremost thanks go to my advisor, Dr. Barry Moser, for providing me with a very stimulating problem to 

investigate, great assistance \\'ith the literature in this area, and careful guidance throughout the process. 

My committee members from the Department of Statistics, Dr. Moser, Dr. Mark Payton, and Dr. Melinda 

McCann, all contributed to an outstanding environment, both inside the classroom and out. in which to 

carry out this research. Thanks are also due to Dr. John Chandler of the Department of Computer Science 

for serving as my outside committee member, and for providing advice (and source code) for my 

simulations. 

Finally, I would like to ~ my wife, Dr. Michelle Kegler, for her patience and support throughout my 

studies. 

iv 



TABLE OF CONTENTS 

Chapter 

1 SEQUENTIAL ESTIMATION 
1.1 The Estimated Quantal Response Problem 
1.2 Sequential Estimation Methods 
1.3 The Adaptive Logit-MLE Procedure 
1.4 Research Questions 

2 FIRST-ORDER APPROXIMATION OF THE LOGIT-MLE PROCEDURE 
2.1 A Rationale for Approximation 
2.2 The MLE Normal Equations 
2.3 Step Size Approximation 
2.4 An Approximating Procedure 

3 ANALYSIS OF THE APPROXIMATING LOGIT-MLE PROCEDURE 
3.1 Applying the Almost Supermartinga/e Theorem 
3 .2 Assumptions Supporting Proof of Convergence of the Approximating Procedure 
3.3 Asymptotically Invariant Bounds 
3 .4 Convergence of the Approximating Sequence 

4 A SIMULATION STUDY 
4. I Relative Error Analysis 

5 SUMMARY OF FINDINGS 

REFERENCES 

APPENDIX A: THE LOG-LIKELIHOOD HESSIAN 

APPENDIX B: SIMULATION PROGRAM 

V 

Page 

1 
1 
2 

14 
20 

22 
22 
23 
25 
30 

34 
34 
35 
37 
37 

44 
44 

51 

52 

53 

58 



LIST OF FIGURES AND TABLES 

Table/Figure 

Figure 1.1 The Estimation Problem 

Figure 1.2 Two-parameter Logit Function 

Figure 1.3 Control Variable Ranges for "O" and "I" Responses 

Figure 1.4 Sample Point Selection in the Adaptive Logit-MLE Procedure 

Figure 1.5 Formal Specification of the Adaptive Logit-MLE Procedure 

Figure 2.1 Approximating Procedure 

Figure 4.1 Quantal Response Curve for Simulations 

Table 4.2 Relative Error of Approximation with Sequences Converging (p0 = 0.25) 

Table 4.3 Relative Error of Approximation with Sample Points Dispersed (p0 = 0.25) 

Table 4.4 Relative Error of Approximation with Sequences Converging (p0 = 0.10) 

Table 4.5 Relative Error of Approximation .with Sample Points Dispersed (p0 = 0.10) 

vi 

Page 

I 

10 

15 

16 

18 

33 

46 

47 

48 

49 

49 



NOMENCLATURE I LIST OF SYMBOLS 

Term I Symbol Definition 

multiplier used in the stochastic approximation iteration form Xn+i = x0 - a0 ·(y0 -p0) 

scale parameter in the two-parameter logit function \j/(x;µ,~) 

maximum likelihood estimate of the parameter~ after n Logit-MLE trials 

EQRP estimated quantal response problem 

Hessian matrix for the log-likelihood function log .e0 after n Logit-MLE trials 

likelihood function for the parametersµ and~ after n Logit-MLE trials 

µ location parameter in the two-parameter logit function 'l'(x;µ,~) 

maximum likelihood estimate of the parameterµ after n Logit-MLE trials 

n trial index in a sequential experiment 

terminal trial index of the exact phase of the approximating Logit-MLE procedure 

Dr terminal trial index of the startup phase in the Logit-MLE procedure 

terminal trial index of the sequential phase in the Logit-MLE procedure 

target probability of positive response in the EQRP 

\j/(x;µ,~) two-parameter logit function with location parameter µ and scale parameter ~ 

R(x) true probability of positive response at control variable level x in the EQRP 

estimate ofx0 on trial n in the approximating Logit-MLE procedure 

X control variable in the quantal response function R(x) 

XO target control variable setting corresponding to probability p0 in the EQRP 

estimate of x0 on trial n of a sequential experiment 

Yn binary response on trial n of a sequential experiment 
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CHAPTER I 

SEQUENTIAL ESTIMATION 

1.1 The Estimated Quanta) Response Problem 

Abstractly, the object of study is some phenomenon involving a binary response. Without loss of 

generality the response levels can be labeled success and failure. It is assumed that the probability p of 

success on any given trial is influenced in a systematic way by the level of some variable x under control 

of the experimenter. The functional relationship between p and x, although unknown, will be assumed 

throughout the treatment to be continuous and strictly increasing. Additional assumptions may be 

imposed depending on the context. The underlying relationship will be denoted by the function R(x): 

R(x) = Pr{ success I x } . 

The experimental objective is to estimate the unique level x = x0 at which the probability of success 

assumes a particular value O < p0 < 1. Figure 1.1 below illustrates a typical situation: 

R(x) 

1 

0 
p ···················-------·---··------·-··:>.. 

0-'-~~~~~~~~~-~~·~~~~~~~~~ X 
XO 

Figure 1.1 The Estimation Problem 

The curve characterizing the underlying response relationship is sometimes called the quanta! response 
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curve. The problem described will thus be referred to as the estimated quanta/ response problem (EQRP). 

This problem is generally considered part of the much broader domain of stochastic approximation. 

1.2 Sequential Estimation Methods 

This section surveys important developments applicable to the EQRP defined in §1.1. The focus is 

confined to sequential estimation methods. The simplest sequential estimation method involves making a 

single observation at some level of the control variable x believed to be close to the target level x0• Based 

on the observed response (and possibly prior observations) a new level ofx is chosen and the cycle repeats. 

The process terminates when some stopping rule ( often a given sample size) is satisfied. More complex 

designs may involve taking multiple observations at x on each iteration or taking observations at several 

levels of x simultaneously. The essential feature is the sequential manner in which the data are collected. 

Many of the results to be described below are in fact applicable to a class of problems much broader than 

the EQRP framework. Although the conditions required to support the general application of a particular 

theorem may be numerous, many such conditions· are automatically satisfied in. the more limited context 

of the EQRP. Only those conditions not.implied by the ones already set forth above are specified when 

referencing any particular theorem. On occasion this may seem to diminish the accomplishments of the 

researchers mentioned, but when considered in a more general stochastic approximation framework the 

progression of results is more marked. 

1.2.1 Consistency Results 

Robbins and Monro (1951) are generally credited with initiating the main line of research concerning 

methods for treating various stochastic approximation problems. Their paper presented an estimation 

method applicable to the EQRP as a special case. Their idea was to form a sequence of estimates of x0 

based on responses observed over successive trials. Letting Xn denote the setting of the control variable on 

trial n the corresponding response Yn - BIN(l,R(xn)). In their analysis the quantal response function must 
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satisfy the additional condition that it is differentiable at x0 . The authors defined a positive sequence of 

real numbers { an} to be a sequence of type 1 In if it satisfies: 

(1.2.1) 
00 

Lau I (a1 + ... + an-1) oo. 
n=2 

It can be shown that any sequence satisfying_ c'/n s an s c"/n where O < c' s c" is such a sequence. A 

common example is the sequence { 1/n}. Based on any sequence of type 1/n it was demonstrated that the 

sequence of estimates defined by: 

Xn+I (1.2.2) 

. with x1 arbitrary .will converge in probability to x0 as n ~ oo. Iterations such as (l.2.2) as well as 

numerous variants have come to be known as Robbins-Monro processes. No further properties were 

attributed to such processes by Robbins and Monro in their original paper, but their work ushered in a 

very productive period during which their results were refined and extended by numerous researchers: 

Applying the findings of Wolfowitz (1952) to the EQRP provides the same convergence result as that of 

Robbins and Monro with the differentiability condition on R(x) at x0 removed. Moreover, the conditions 

(1.2.1) on the multiplier sequence {au} can be replaced with the slightly simpler conditions: 

<X) 

L8n2 < 00 
n=I 

(1.2.3) 

00 

Lan 00. 
n=l 
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This class of sequences {an} is at least as large as the class defined in (1.2.1). The conditions (1.2.3) on 

{ ao} are the ones most commonly cited in subsequent literature. 

Blum (1954) provided a stronger convergence result. Without assuming differentiability of R(x) at x0 it 

was shown that.a sequence {xn} defined as in (1.2.2) with {an} satisfying (1.2.3) will converge to x0 

almost surely. 

In the proof of each convergence result thus far the sequence {ao} is generally taken to be comprised of 

terms which do not depend on the random variables x and y. Robbins and Siegmund (1971) greatly 

relaxed this limitation. Their result shows that each multiplier ao may be a nonnegative (measurable) 

function of (X1,Y1) , ... , (xn-1,Yn-1). Provided that the resulting sequence {ao} satisfies conditions (l.2.3) 

then Xn ~ x0 almost surely. Although the values of Xn and Yn will be known at the time an is used in the 

iteration (1.2.2) they are excluded from its formulation. 

1.2.2 Asymptotic Normality Results 

Apart from the issue of convergence the other principal focus of research concerned the asymptotic 

distribution of iterates Xn of the form (1.2.2). Using differing approaches Chung (1954) and Sacks (1958) 

derived conditions under which the standardized estimate: 

Zn - V~ · (Xn - x0) (1.2.4) 

is asymptotically normal with an asymptotic mean of zero and asymptotic variance to be given below. 

The assumptions required for asymptotic normality are somewhat more involved than those required for 

the convergence results. To fix ideas the result of Sacks (1958) will be considered here since it appeared 

latest and seems to be the most general. There are several conditions on R(x) not automatically satisfied 

in the EQRP as defined. · It must be assumed that the response function can be expressed in the form: 
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R(x) p0 + a.1 ·(x - x0) + 8(x,x0) (1.2.5) 

where a.1 > 0 and 8(x,x0) = o(lx-x01) as x ~ x0. It must also be assumed that there exists a positive 

constant K such that: 

JR(x) - p0J ~ K·Jx - x0J Vx. (1.2.6) 

Note that condition (1.2.5) implies differentiability ofR(x) at x0 with R'(x0) = a.1. Consider any constant 

A such that: 

(1.2.7) 

If the sequence of multipliers {an}= {Nn} then the standardized iterates Zn will be asymptotically normal 

with asymptotic mean zero and asymptotic variance: 

(1.2.8) 

This result has several practical implications. If a lower bound a.1' > 0 on R'(x0) can be reasonably 

assumed then iterates Xn generated using {an}= {Nn} with A> l/(2a1') will be asymptotically normally 

distributed with asymptotic mean x0 and asymptotic variance cr/ln where cr/ is as given in (1.2.8). Since 

the form specified for { an} makes it a sequence of type 1/n it also follows that Xn converges almost surely 

to x0 due to results already presented. 

1.2.3 Asymptotically Optimal Processes 

The variance formula (1.2.8) stimulated additional research. Differentiation wrt A reveals that selecting 

A = 1/a.1 = l/R'(x0) minimizes cr/ at p0(1-p0)Ja/ while simultaneously satisfying condition (1.2.7). 
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Therefore a sequence {xn} based on {an} = { 1/(n·a.1) } will possess the convergence and asymptotic 

normality properties already discussed along with minimum asymptotic variance among all sequences 

using multipliers of form {an} = {Nn} with A> l/(2a.1). A Robbins-Monro process possessing these 

properties is usually regarded as asymptotically optimal. The obvious limitation is that R(x) is unknown. 

This led to attempts to incorporate various estimates ofR'(x0) into the sequential estimation process. One 

of the earliest such methods was the extended Robbins-Monro process proposed by Venter (1967). It is 

assumed that the response function can be expressed over some interval x0-i, < x < x0+8 in the form: 

R(x) p0 + a.1 ·(x - x0) + a.2·(x - x0)2 + . . . + a..-(x - x0)' + 8(x,x0) (1.2.9) 

where a.1 > 0 and 8(x,x0) = o(jx-x0 j •) as x -+ x0. To achieve all of the important asymptotic results the 

index limits in (1.2.9) must be an integer in {2,3,4, ... } u {oo}. As will become evident below a large 

value of sis beneficial. Condition (1.2.9) again implies differentiability ofR(x) at x0 with R'(x0) = a.1. 

The proposed procedure also assumes that R'(x0) e (a,b) where a and b are known positive constants. 

Given a current estimate x0 of x0 the next iteration of the procedure involves a pair of experimental 

responses. The response Ynlower is observed at the setting Xnlower = Xn - Cn and the response Ynupper is 

observed at the setting Xnupper = Xn + Cn where {Cn} is a sequence of gradually diminishing positive 

constants. Any sequence of the form { Cn} = { c/n1} where c > 0 and y e (1/.i, 1h) is suitable for purposes 

) 
here, although the class of acceptable sequences is defined more broadly. An estimate of R'(x0) is then 

defined by: 

n 

(1/n) L (ykupper -yklower) / (2·Ck) 
k=I 

and subsequently truncated to: 

max { a, min{Bn, b} } . 

(1.2.10) 

(1.2.11) 
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A typical application of this slope estimate in fonning the next estimate of x0 is then: 

Xn+I (1.2.12) 

Ifs~ 2 in (1.2.9) and: 

S·CX.1 > y•b (1.2.13) 

then Xn ~ x0 almost surely as n ~ oo and An~ ex.,= R'(x0) almost surely as n ~ oo, and: 

- d 

Vn·(Xn - x0) ~ N(O, p0(1-p0)/(2cx./)). (1.2.14) 

The asymptotic variance given in (1.2.14) is one-fourth the minimum asymptotic variance previously 

given for Robbins-Monro processes involving multiplier sequences of the form { an} = { A/n}. This is 

attributable to the fact that two observations are made per iteration in the extended Robbins-Monro 

process. Hence the extended process is no less efficient and this was indeed mentioned by Venter as a 

defense against the criticism that it requires two observations per iteration. 

Anbar ( 1978) proposed using a least squares regression estimate of R' ( x0) based on just one experimental 

response per iteration. Under this approach condition (1.2.5) is assumed for R(x). Another assumption 

concerning R(x) bearing a similarity to (1.2.6) is the existence of constants O < K, < K2 < oo such that: 

(1.2.15) 

Moreover, the control variable x must be restricted to some interval [xmin, x~ where Xnun and Xmax are 

assumed to satisfy: 
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0 < R(xmir,) < R(xmax) < 1 . (1.2.16) 

Given observations (X1,Y1), ... , (xn,YJ the least squares estimator is then defined in the usual way: 

n n 

L (Xk - Xn)·Yk I L (xk - x,,)2 n~2 (1.2.17) 
k=l k=l 

with Bo and B1 represented by arbitrary initial guesses. In an approach similar to that taken by Venter it 

is assumed that constants a and b satisfying K1 :s; a < cx.1 < b :s; K2 are known. These constants are used to 

truncate the slope estimate as necessary: 

max {a, min{Bn-1, b}}. (1.2.18) 

Notably the truncation is lagged by one iteration. This is evidently due to the need to appeal to the 

convergence result of Robbins and Siegmund (1971) previously described in §1.2.1. The truncated slope 

· estimate is cycled back into the iteration process via: 

Xn+1 = Xn - (1/(n·An)) • <Yn - p°) . (1.2.19) 

Provided that: 

(1.2.20) 

then x0 ~ x0 almost surely as n ~ oo and B0 ~ cx.1 = R'(x0) almost surely as n ~ oo, and: 

- d 

Vn·(Xn - x0) ~ N(O , p0(1-p0)tcx./) . (1.2.21) 
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Thus Anbar's method also achieves the minimum asymptotic variance discussed previously. Note that 

here the untruncated slope estimator is strongly consistent as opposed to the truncated estimator in 

Venter's results. In order to reduce potentially excessive bias associated with early observations both 

Venter and Anbar discuss the possibility of also truncating the data sequence used in forming the slope 

estimates; once n is sufficiently large only the observations (xm,Ym) , ... , (xn,Yn) would be used. Only 

Anbar provides specific limitations on the extent of truncation permissible. 

Procedures such as those specified by Venter and Anbar rely on multipliers an which are influenced by all 

or most of the data observed up to any given moment. Such procedures are often called adaptive Robbins

Monro processes. By comparison, a nonadaptive Robbins-Monro process based on a sequence { an} fixed 

in advance selects each successive level of x based solely on the current level Xn, the response Yn observed 

at that level, and the preselected multiplier value an. 

1.2.4 Model-Based Approaches 

The adaptive approaches discussed in §1.2.3 make almost no assumptions about the form of the 

underlying response function R(x). They tend to concentrate on using local information about R(x) as 

opposed to possibly more global properties. Wu (1985) proposed an approach whereby a parametric 

model form suitable to the binary response situation serves as a working model of R(x). The stated 

purpose was to take better advantage of the information contained in the data, a goal regarded as 

especially important given the small sample sizes often accompanying sequential ex"periments. Much of 

Wu's presentation centers specifically on the two-parameter logit function \jl(x;µ,p) as a model for the 

underlying R(x): 

(1.2.22) 

This function is S-shaped and strictly increasing in x when p > 0. The parametric model form \jl(x;µ,p) 

has been empirically shown to accommodate the mean response data for a wide variety of phenomena 
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involving binary responses. A typical graph of 'l'(x) with f3 > O appears in Figure 1.2: 

1 ----
X 

Figure 1.2 Two-parameter Logit Function 

Wu's method involves calculating maximum likelihood estimates (MLEs) for the model parametersµ and 

f3 based on all of the data observed through the current iteration n. Let R, and t0 denote the MLEs based 

on the data available after completion of n trials. These parameter estimates determine the fitted model 

Wn(x) ;;;; \j/(x;µ,,$n). The next level for the control variable x is then determined by solving: 

A 
\jln(X) (1.2.23) 

for x = xn+1- A new response Yn+1 is observed with x = xn+1 and the cycle is repeated. Wu called this 

particular model-based approach the Logit-MLE procedure. For experiments involving small to medium 

sample sizes simulation studies suggest that such an approach is quite effective compared to other 

methods previously considered. However, only under quite strong assumptions was Wu able to 

demonstrate any asymptotic properties for this procedure. Treatment of the asymptotic behavior of the 

Logit-MLE procedure is the central focus of the research proposal to follow. 

In all of the findings discussed thus far the control variable x is permitted to vary continuously. Other 

methods confine x to a·discrete set {d1,d2, ••• ,dN} of design points fixed in advance of the experiment. 
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Shen and O'Quigley (1996) considered such an approach based on one-parameter models of R(x). Let 

cp(x;8) represent such a model. As in the approach taken by Wu the MLE of the model parameter 8 is 

reestimated as each additional data point is observed. Let On denote the MLE based on the data available 

after n trials. This parameter estimate determines the fitted model $,,(x) = cp(x;On). The next setting for 

the control variable x is then determined by selecting the design point which minimizes the difference 

between the currently fitted model and the target probability level: 

Xn+! (l.2.24) 

In such a procedure the target design point x1 is the value in {d1,d2, ... ,dN} that minimizes the difference 

between the true response function R(x) and the target probability level: 

arg minx e {d1,cli·····~l IR(x) - Pol . (l.2.25) 

Let 81 designate the parameter value that causes the curve cp(x;81) to pass through the point (x1,R(xr)). 

That is, 81 is the parameter value that causes the model curve to agree with the true response curve at the 

target design point x1 . Under certain assumptions the authors obtained the following results which share 

the convergence p~operty for {Xn} cited earlier for procedures estimating x0 over a continuous range: 

Xn -+ x1 almost surely as n -+ oo (1.2.26) 

on -+ 8 T almost surely as n -+ 00 • (1.2.27) 

Moreover, the MLE ~n is asymptotically normal with a known asymptotic variance. 
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Moser and Faries (1996) investigated a variant of Wu's Logit-MLE procedure whereby simultaneous 

observations.are taken on each iteration at the control variable settings xn+1,1 and xn+1,2 satisfying: 

(1.2.28) 

where O < p1 < p2 < 1. This procedure simultaneously estimates the two roots x1 and x2 of the underlying 

response function R(x) satisfying: 

(1.2.29) 

In simulation studies this procedure has been shown to perform favorably. It also has been shown to 

provide relatively accurate extrapolated estimates for roots x • corresponding to values p • other than p1 and 

p2• Extrapolation is accomplished via the fitted model: 

A • • 
\jln(X) = p . (1.2.30) 

Extrapolated estimates tend to be more accurate using this approach than for the original Logit-MLE 

procedure given the same number of total observations in each. One possible viewpoint concerning this 

difference is that by estimating roots at p1 < p2 greater heterogeneity in the control variable settings is 

induced. This appears to effect close agreement between the fitted model ~n(x) and the true response 

function R(x) over a wider range of values for x. 
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As in the case of Wu's original procedure the asymptotic behavior for the Moser-Faries variant remains an 

open issue. However, by following the discretization approach of Shen and O'Quigley the authors were 

able to demonstrate similar asymptotic results. 

In the work done by Shen and O'Quigley as well as by Moser and Faries it is precisely the restriction of x 

to a discrete set of points which facilitates proof of various asymptotic results. Discretization of x does, 

however, have shortcomings. There is no assurance that any of the available design points are "close" to 

the desired root(s) of the true response function R(x). The convergence results can also be sensitive to 

model misspecification, that is, too great a disagreement between the working model form c:p or \JI and 

R(x). Simulations show that only slight model misspecification can lead to convergence to the wrong 

design point or a failure to converge altogether. Nonetheless, by selecting a sufficiently fine array of 

design points estimates are often satisfactory. 

1.2.5 Summary 

There has been significant advancement in the area of sequential estimation since the advent of the 

Robbins-Monro procedure. The model-based procedures developed in the 1980s and 1990s represent the 

"state of the art" in terms of sophistication and finite-sample accuracy in simulations. However, the 

asymptotic behavior of estimates generated using many model-based procedures is not understood as 

thoroughly as for earlier procedures. Sequential estimation procedures are intended for use in situations 

involving limited sample sizes and this might raise the issue of undue concern over asymptotic 

performance. Nevertheless, when applying any procedure it is reassuring to know that it possesses good 

large-sample properties so that reasonable finite-sample behavior can be anticipated on grounds other than 

empirical. 

The purpose of this dissertation is to extend what is known about the asymptotic performance of model

based estimation procedures when the control variable x is permitted to vary continuously. In many 
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experimental settings such an approach seems more natural than requiring x to be discrete. Moreover, 

any asymptotic results are then more directly comparable to results associated with earlier methods. The 

particular focus of study is Wu's Logit-MLE procedure. This procedure is described in much greater 

detail in II.3. The associated research questions are then briefly presented in 11.4. 

1.3 The Adaptive Logit-MLE Procedure 

The Logit-MLE procedure proposed by Wu (1985) uses the two-parameter logit function (l.2.22) to model 

the underlying response function R(x). Various authors refer toµ as the shift or location parameter and P 

as the slope or scale parameter. When p is fixed the·model reduces to a one-parameter logit function and 

the associated estimation procedure is considered nonadaptive. When µ and P are both subject to 

estimation the procedure is considered adaptive. The present treatment focuses on the adaptive case. 

1.3.1 The Startup Phase 

The startup phase of an experiment relying on the adaptive Logit-MLE procedure involves conducting 

. preliminary trials over various levels of the control variable x until the response pattern fulfills conditions 

which are necessary and· sufficient for existence and uniqueness of the Ml.Es of the model parameters µ 

and p. (Determination of the Ml.Es will be discussed in §2.2.) Letting: 

x; = level of x on trial i 

y, = observed response {failure= 0, success= 1 } on trial i 

the key condition is the presence of overlap between the range of x values associated with "O" responses 

and the range of x values associated with ·~ l" responses. Based on general results determined by 

Silvapulle (1981) the overlap conditions for the current model were characterized precisely by Wu. 

Assuming sample points {x1, ... ,xn} and observed responses {Y1, ... ,Yn} with not ally; equal let: 
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x\= - max { Xi Yi= 1 } . 

Figure 1.3 identifies these quantities for a hypothetical response pattern: 

y 

I . ------------------------------•- -•- ---. -. ------------------------.- ----------- ------------• ---. 

i i 
+ + x~ x= 

X 

Figure 1.3 Control Variable Ranges for "O" and "I" Responses 

The MLEs 11 and fJ exist (and are unique) if and only if one of the following conditions is satisfied: 

Note that if all "O" responses fall at a single point x- and all "1" responses fall at a single point x+ the 

MLE existence and uniqueness condition cannot be satisfied. Once satisfied, the overlap condition will 

persist for the remainder of the experiment and the startup phase is terminated. The startup phase is not 

of principal concern here, and will henceforth be referred to only peripherally. 
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1.3.2 The Sequential Estimation Phase 

After completion of the startup phase all further trials are to be conducted sequentially by letting the fitted 

curve {v(x) = \Jf(x;1'.l$) guide the selection of sample points in an iterative manner. In this sequential 

phase of the estimation process, let: 

~ = MLE ofµ based on observed data points (x1,y1), ... , (Xn,Yn) 

~n = MLE of f3 based on observed data points (x1,y1), ••• , (Xn,Yn) . 

After completion of trial n the value of the ne:\.1 sample point will generally be determined by solving: 

(1.3.1) 

for x = xn+ 1 • The next sample point Xn+ 1 · is thus determined by finding the value of the control variable x at 

which the currently fitted function assumes the value p0• See Figure 1.4 below: 

po ··········································,> 

X 

Xn+I 

Figure 1.4 Sample Point Selection in the Adaptive Logit-MLE Procedure 

rrtn ct= 0 the solution to (1.3.1) is easily shown to be: 
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Xn+J [log(p0) - log(l-p0) -ftn] I f3'n. (1.3.2) 

Ifsome stopping criterion for the experiment is satisfied.then x0 +1 represents the terminal estimate of x0• 

Otherwise one trial is performed with x = Xn+i and the resulting binary response Yn+J is recorded. Then 

based on all previously observed data and the new observation: 

revised :MLEs ftn+1 and ~n+1 are calculated and the cycle is repeated. 

1.3.3 The Adaptive Logit-MLE Procedure 

Sections 1.3 .1 and 1.3 .2 present the essential ideas underlying the proposed estimation approach. To 

remove any ambiguity the procedure described in Figure 1.5 on the following page will henceforth 

.represent the implementation of the adaptive Logit-:MLE procedure unless stated otherwise. The 

following definitions are necessary: 

n - current trial index 

nr - index of final trial of the startup phase (1.3.3) 

nT - index of terminal trial of sequential phase . 

As a practical matter it may happen that the :MLE existence and uniqueness conditions described in §1.3 .1 

are not satisfied in a particular experiment or simulation run with a fixed sample size for any n :5: nT. In 

an actual experiment it is anticipated that the experimenter's knowledge in choosing the initial levels for x 

combined with a sufficiently large allowance for nT should preclude this possibility. In simulation studies 
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1. Conduct the startup phase. Initialize n = n1. 

2. Calculate the MLEs ~ and in. 

3. lfin-:/:. 0 calculate X..+! according to (1.3.2). Otherwise Set Xn+l = X0 • 

4. If n = nr stop. The terminal estimate of x0 is Xn+l · 

5. Conduct trial n+ 1 by observing the response Yn+1 at the sample point Xn+I· 

6. Increment the trial counter: n = n+ 1. 

7. Return to step 2. 

Figure 1.5 Formal Specification of the Adaptive Logit-MLE Procedure 

the most expedient measure is to simply discard such runs. At any rate, the present concern is the 

performance of the procedure as nr ~ oo and it will therefore be assumed that the startup conditions can 

always be satisfied. 

1.3.4 Known Asymptotic Properties 

If the scale parameter is fixed at some constant p0 the Logit-MLE procedure is considered nonadaptive. 

Wu demonstrated that the nonadaptive Logit-MLE procedure is equivalent to a Robbins-Monro process 

having iteration form: 

Xn+l Xn - (dJn)·{y0 - p0). 

The term du is naturally bounded from below by a positive constant, but must be artificially bounded from 

above to attain convergence.. The lower bound d can be determined analytically and by choosing an upper 

bound D > d and defining: 
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Dn min {dn, D} 

Wu argued that the modified Robbins-Monro iteration: 

Xn+J Xn - (Dnfn)·(yn - p0) 

will result in x,, ~ x0 almost surely. No results on asymptotic normality or an optimal rate of convergence 

are implied. 

In the adaptive procedure both of the parameters µ and 13 are estimated. Wu demonstrated that by 

assuming (1£,1;1t) converges uniformly to some constant (µ·,13·) where 13·:;:. 0 it follows that Xn ~ x0 almost 

~ly. Such consistency implies that most of the sample points will eventually be in close proximity, and 

assuming this the following first-order approximation to the adaptive procedure was derived: 

Xn - (1/(n·CJ) · <Yn - p0) (1.3.4) 

where: 

n n 

L (xk - x.J·Yk I L (xk - x,,)2 . (1.3.5) 
k=I k=I 

Because x,, rather than Xn appears in the denominator of (1.3.5) this expression does not represent the 

usual regression slope estimator Bn. Wu provided the argument, however, that the consistency of Xn also 

implies that Ci ~ Bn as n ~ oo and that therefore the first-order approximation (1.3.4) will be 

asymptotically equivalent to the adaptive Robbins-Monro process proposed by Anbar (1978). Under 

conditions similar to those required by Anbar for asymptotic optimality (see §1.2.3) this approximation to 

the adaptive Logit-MLE procedure should therefore also be asymptotically optimal. 
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1.4 Research Questions 

By assuming that the MLEs @i.JJ converge to some constant (µ.,f) in the adaptive Logit-MLE 

procedure Wu was able to show that Xii~ x0 almost surely. This consistency result was then used to 

justify the first-order approximation (1.3.4) to the adaptive procedure. By applying the consistency result 

again it · was argued further that the approximation will be asymptotically equivalent to an adaptive 

Robbins-Monro process that is asymptotically optimal. Several questions are left open: 

1. Does Xn actually converge to the correct root x0 in the adaptive procedure? 

Because of the nonlinearity of the two".'parameter logit model the analysis of the adaptive procedure is 

aided by first-order approximations. The particular approximation (1.3.4) derived by Wu may not be 

well-suited for studying consistency of the adaptive procedure, however, since it relies on consistency in 

its derivation. 

An alternative first-order approximation will be formulated in §2: The formulation will rely on the 

Newton-Raphson method as applied in the determination of the MLEs (~JJ. The approximation will 

then be used to define a modified adaptive procedure to serve as the basis for further study. In the 

discussion which follows the sequence of estimates generated by this approximating procedure will be 

denoted by {wn} in order to distinguish it from the sequence {xn} generated by the original procedure. 

In §3 assumptions will be presented which support a conclusion of almost sure convergence of the 

sequence {wn} to the root value x0• It should be possible to reach this conclusion without imposing 

· assumptions concerning convergence of the MLEs (~~n). The convergence proof will appeal to the 

almost supermartingale theorem of Robbins and Siegmund (1971). 

2. To what extent is it reasonable to study the adaptive Logit-MLE procedure by w~ of first-order 

approximations? 
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This question will be addressed in §4 by means of simulation. Comparison of the original adaptive 

Logit-MLE procedure and the approximating procedure can be accomplished using simulation runs 

based on identical streams of pseudo-random numbers. By addressing the accuracy of the first-order 

approximation the utility of the results associated with question 1 may be evaluated accordingly. The 

specific method is detailed in §4.1. 
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CHAPTER2 

. FIRST-ORDER APPROXIMATION OF THE LOGIT-MLE PROCEDURE 

2.1 A Rationale for Approximation 

The adaptive Logit-MLE procedure defined in §1.3 determines successive sample points by means of the 

inverse of the fitted two-parameter logit function: 

Xn+J . [log(p0) - log(l-p0)-µ,J I in (2.1.1) 

provided that in::;:. 0. The Ml.Es 11,, and in are not the result of any closed-form function of the obsexved 

data points (X1,Y1), ... , (Xn,Yn) and hence no closed-form expression in (X1,Y1), ... , (Xn,Yn) is available by 

which to directly analyze the actions of the procedure. . The goal of this chapter is to develop an 

approximation to the adaptive Logit-MLE procedure which is more amenable to analysis than (2.1.1). 

This approximation will be expressed in terms of the obsexved data but will not be completely free of the 

MLEs. The major advantage it will offer is its conformity to an adaptive Robbins-Monro iteration of the 

form: 

(2.1.2) 

The benefit of working with this form is that one may appeal to the vast collection of results applicable to 

Robbins-Monro processes. In this particular adaptive form the multiplier an is not fixed in advance but is 

instead a function of the previously obsexved pairs (x1,Y1) , ... , (Xn-1,Yn-1) thereby making it suitable for 

application of the almost supermartingale theorem of Robbins and Siegmund (1971). Application of this 

theorem to obtain a convergence·resultwill be the main topic in §3. 
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2.2 The MLE Normal Equations 

This section details the formulation of the normal equations which determine the MLEs '11n and in on each 

iteration of the sequential phase of the adaptive Logit-MLE procedure. Given the assumed two-parameter 

logit model (1.2.22) and a set of observations recorded over n independent trials: 

the likelihood function for the parameters µ and 13 is: 

n n 

- TI [\j/(Xi; µ, 13)li . (1 - \jl(X;; µ, 13)] l-yi 
i=J 

- TI [ eµ+f3xi li I [ I + eµ+f3xi ] 
i=l 

The log-likelihood function is then given by: 

n 

log Ln(µ,13) - L [ yi(µ+l3x;) - log(l + eµ+f3x;)] 
i=J 

The partial derivatives of the log-likelihood function wrt µ and 13 are: 

a log Ln(µ,13) I aµ 

and: 

a log Ln(µ,13) I a13 

n 

L [ Yi - eµ+f3x; I (1 + eµ+f3x;)] 
i=J 

n 

L X;·(yi - eµ+f3xi I (I + eµ+f3xi)] 
i=J 
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n 

L l Yi - \j/(Xi; µ, 13)] 
i=I 

n 

L X;·(y; - \j/(X;; µ, 13)] 
i=J 

(2.2.1) 

(2.2.2) 



Setting both partial derivatives to zero results in the following normal equations: 

n 
Nn1(µ,l3) - :r [yi - \Jl(Xi; µ, 13)] 0 ' i-1 

(2.2.3) 

n 
Nn2(µ,l3) - :r Xj•[y; - \Jl(X;; µ, 13)] 0 

i-1 

Under conditions detailed in §1.3.1 there will exist a unique solution ('Jln,in) to system (2.2.3). The same 

conditions also imply that there will exist some minimal heterogeneity in the sample points {x1, ... ,xn}. 

By Lemma A. l of Appendix A the following Hessian matrix associated with the log-likelihood function: 

[ 
fl logLn(µ,13) I 8µ2 

fl log Ln(µ,j3) I 8l38µ 

a2 log Ln(µ,13) I 8µ813 J 
& log Ln(µ,13) I 8132 

will then be negative definite. The solution to (2.2.3) therefore can be taken as maximizing the log-

likelihood function. Solutions of system (2.2.3) must generally be determined numerically. A typical 

approach is to apply the Newton-Raphson method. For details the reader is referred to Agresti (1990). 

Since the Hessian matrix will be negative definite then it will also have a nonvanishing determinant. As a 

consequence the solution ('µ11,t) to system (2.2.3) will vary continuously in the data values x1,y1, ... ,xn,Yn· 

This may be formally demonstrated by applying the implicit function theorem to system (2.2.3) at the 

solution (x1,y1, ... ,xn,Yn,Jln,'!Jn) and noting that the appropriate Jacobian determinant will equal the Hessian 

determinant for the log-likelihood function. 
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2.3 Step Size Approximation 

For any two successive estimates Xn and Xn+I generated by the adaptive Logit-MLE procedure define: 

AXn+l - Xn+l - Xn . (2.3.1) 

The term Axn+I will be referred to as the step size. The primary goal of this section is to develop some 

form for expressing the step size which will facilitate further analysis, in particular one which will lend 

itself to obtaining a convergence result. The treatment assumes that the startup phase described in t 1.3 .1 

has been completed and that the Ml.Es 'Pi, and ~n exist. Assuming that $n * 0 upon completion of a given 

trial n the next sample point will be determined according to (2.1.1). That is: 

Xn+l [log(p0) - log(l-p0) -11.,J I ~n. 

Defining C0 = log(p0) - log(l-p0) this can be written more compactly as: 

Xn+1 [C0 - ~] 1$n. 

By also defining: 

A~ -
A A 
~ - ~-] 

A A 
- 13n - l3n-1 

the step size can be expressed as: 

Ax.i+1 [C0 -11.,] I $n - [C0 - ~-d I in-1 
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0 ('). A .-(} /.',. 0 A I!!!. 
[C - (f-1,n.J + Aµ,,)] / LPn-1 + APn] - [C - µ,,.i] / Pn-1 

(2.3.2) 

Based on (2,3.2) the behavior of AXn+1 may be studied through the behavior of A'µ,. and Afin, Note that the 

lbs of the system of normal equations (2.2.3) can be written: 

At the beginning of trial n the values 'µ,..1 and i 0 •1 are known and these quantities satisfy: 

Therefore: 
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Since x0 will have been selected so that 'l'(x0 ; ~-J, in-J) = p0 this last system further simplifies to: 

Yn -p0 

Extracting the common element on the rhs and writing the system in vector form results in: 

1 

(2.3.3) 

Both sides of (2.3.3) represent the gradient of the log-likelihood function log Ln(µ,!3) evaluated at the prior 

MLEs (~_1,'IJn.1). A single iteration of the Newton-Raphson procedure applied to the functions Nn1 and 

Nn2 starting at (~_1.frn-i) provides an approximation of (~,in) - (~_1,~n-i) = (Ll~,Ll~n). Based on the rhs 

of (2.3.3) this approximation is: 

-1 

- [H(x1, ... ,Xn,~-1.frn-J)] · (yn - p0) • (2.3.4) 

with the 2 x 2 Hessian matrix Hn = H(x1, ... ,x0 ,~_1,in-1) given explicitly by: 
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n n 
-LZi - L Xj•Z; 

i=J i=J 

Hn - H(X1, ... ,Xn,11.i-1Jn-1) - (2.3.5) 
n n 

- L Xj•Z; - L x/.2; 
i=J i=l 

where the scalar elements Zi are defined as: 

(2.3.6) 

Given any heterogeneity among the sample points {x1, ... ,xn} this Hessian will be negative definite by 

Lemma A.I and the indicated inverse exists. Substituting the inverse of (2.3.5) into (2.3.4) yields the 

following expression for the approximation: 

n n 
~ L x/.zi -LXj0 Zj 

y,i-po i=l i=J 

[J. 
r-../ 

det(Hn) n n 
Af3n - L X;•Z; LZi 

i=l i=J 

Carrying out the matrix-vector multiplication on the rhs provides a somewhat simpler form: 

n 
~ L xi'(xi - xn)·Zi 

Yn -p0 i=l 

(2.3.7) 

r-../ 
det(Hn) n 

Af3n L (Xn - XJ•Zj 
i=l 
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/.;. 

Even for moderate n approximation (2.3.7) empirically gives excellent estimates of AR, and A~n-

Applying this approximation the quantity AR,+ Ain-Xn can in tum be approximated by: 

n 

lYn - p0] • L [Xi·(Xi - Xn)·Zi + Xn·(Xn - Xi)·Z;] I det(Bn) 
i=] 

n 

lYn - p0] • L [Xi·(Xi - Xn)·Z; - Xn·(X; - Xn)·z;) I det(Bn) 
i=l 

n 

lYn - p0] • L (x; - xJ2·Zi I det(Bn) 
i=l 

Substituting approximation (2.3.8) into (2.3.2) gives the following approximation for the step size: 

n 
0 ~ ~ 

lYn - P ] · [ - (1/ ~J · L (x; - Xnt·z; I det(Hn)] 
i=l 

Equivalently (2.3.9) maybe written: 

n 

Xn - [ (1/ in) · L (Xi - Xn)2·Zi I det(Bn)] · [Yn - p0] 
i=l 
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(2.3.9) 

(2.3.10) 



It has already been mentioned that the 2 x 2 Hessian Hn is negative definite and therefore det(Hn) > 0. 

Provided that the MLE in becomes persistently positive at some point in the process then (2.3.10) has 

the form of an adaptive Robbins-Monro iteration in which the multiplier an is defined by: 

(2.3.11) 

The approximation developed in this section provides the basis for an approximating Logit-MLE 

procedure to be defined in the next section. Under reasonably mild assumptions the approximating 

procedure will be shown to generate a sequence of estimates which converge to x0 almost surely. 

2.4 An Approximating Procedure 

Approximation (2.3.10) will be used to modify the adaptive Logit-MLE procedure defined in §1.3.3. The 

sequence of estimates of x0 generated by the modified procedure will be denoted by { wn} to clearly 

distinguish it from the sequence {xn} generated by the original adaptive procedure. The startup phase of 

the modified procedure will be identical in structure to that of the original procedure. The sequential 

phase in the modified procedure will also have the same structure as in the original procedure up to some 

predetermined trial index nE. That is, for sequential trials n1 < n :5: nE the sample points will be selected 

using the inverse of the fitted two-parameter logit function just as in the original adaptive procedure: 

Wn+1 [log(p0) - log(l-p0) -Jin] tin (2.4.1) 

it being understood that the MLEs are now based on data points labeled as (W;,Y;). After trial nE of the 

sequential phase, however, sample points will be determined according to the approximation: 

n 

Wn+J Wn • 
A ~ 0 

[(1/ ~n-1) • L (w; · Wnt·z; f det(Hn)l • lYn · p ] (2.4.2) 
i-1 
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where the terms z1, ... , Zn and Hn are similarly understood to rely on the data points (wi,Yi): 

(2.4.3) 

Hn = H(w1, ... ,Wn, °µu-1, frn-1) . 

Exact definitions of Zi and Hn appear in §2.3. The sequential estimation procedure obtained through the 

use of this approximation scheme will henceforth be referred to as the approximating Logit-MLE 

procedure. 

Note that the multiplier an in (2.4.2) is defined by: 

n 

an - (1113'n-I) · L (w; - Wnfz; I det(Hn) 
i=l 

(2.4.4) 

This multiplier has the same form as in (2.3.11) with the exception that in-1 appears in place of in· The 

reason is that in depends explicitly on the binary response y~ while 13'0 _1 does not. In §3.4 the almost 

supermartingale theorem of Robbins and Siegmund (1971) will be applied to show convergence of the 

approximating procedure and this theorem technically does not permit functional dependency between an 

and the pair (wn,Yn). It may be noted that an still appears to involve a dependency on the sample point Wn 

directly through the terms (w; - wJ2 and indirectly through Zn and Hn. However, w0 is completely 

determined by (w1,y1), ... ,(w0 _1,yn-I) via the estimation procedure and therefore an as defined in (2.4.4) 

depends only on (w1,y1), ... ,(w0 _1,y0 _1). Early adaptive procedures such as that of Anbar (1978) abided by 

this technicality; in papers appearing later it seems to have often been dismissed. A conservative 

approach will be taken here. 
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The framework used to present the. original adaptive Logit-MLE procedure in Figure 1.5 of §1.3.3 is 

shown in Figure 2.1 on the next page with appropriate modifications to define the approximating 

procedure. The trial index definitions (1.3.3) are also repeated below with the addition of an index 

reference value dividing the sequential trials into the exact phase and the subsequent approximating 

phase: 

n - current trial index 

n1 - index of final trial of the startup phase 

(2.4.5) 

nE - index of final sequential trial prior to commencing approximation 

nr - index of terminal trial of sequential phase . 

It is assumed that n1 < nE < nr. As the terminal trial index nr ~ oo the asymptotic performance of the 

approximating procedure becomes relevant. The approximating procedure is intended only for use in 

analyzing the original adaptive procedure. As stated in §1.4 the principal objective is to prove almost sure 

convergence of the approximating sequence {Wn} to the root x0. Treatment of.convergence will be the 

subject of §3. 

Once convergence has been proven the next issue is the extent to which the step size in the approximating 

procedure corresponds to the step size in the true Logit-MLE procedure. Simulation will be employed for 

this purpose and the index reference value nE will be useful in this regard. By using identical streams of 

pseudo-random variates the approximating and original procedures can be forced to maintain identical 

states through the index value nE. Only after trial nE can the sequences {wn} and {Xn} differ. The idea is 

to set nE large enough to allow the estimation process to "quiet down" and thereafter compare the 

approximated and actual step sizes. Treatment of this issue is the subject of §4. 
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1. Conduct the startup phase. Initialize n = n1. 

Sequential Trials: Exact Phase 

/\ A 
2. Calculate the MLEs J.Ln and f3n-

3. lf13'n :;t: 0 calculate Wn+l according to (2.4.1). Otherwise set Wn+l = Wn. 

4. Conduct trial n+ 1 by observing response Yn+1 at the sample point Wn+J. 

5. Increment the trial counter: n = n+ 1. 

6. Ifn < nE return to step 2. 

Sequential Trials: Approximating Phase 

7. Calculate the MLEs l1n-1 and in-I· 

8. Ifin-1 :;t: 0 calculate Wn+J according to (2.4.2). Otherwise set Wn+l = Wn. 

9. Ifn = ny stop. The terminal estimate ofx0 is Wn+J· 

10. Conduct trial n+l by observing response Yn+1 at the sample point Wn+1-

1l. Increment the trial counter: n = n+ 1. 

12. Return to step 7. 

Figure 2.1 Approximating Procedure 
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CHAPTER3 

ANALYSIS OF THE APPROXIMATING LOGIT-MLE PROCEDURE 

The present chapter analyzes the asymptotic properties of the approximating Logit-MLE procedure 

defined in §2.4. The issue of foremost interest is whether the sequence {wn} generated by the 

approximating procedure will converge to x0. 

The iteration (2.4.2) is the basis of the approximating procedure. Under certain assumptions the almost 

supermartingale theorem of Robbins and Siegmund (1971) can be applied to this iteration to demonstrate 

that Wn -';- x0 almost surely. Section 3.1 below details the framework in which this theorem may be 

applied to stochastic approximation problems in general. The remaining sections of this chapter concern 

the application of this framework to the approximating Logit-MLE procedure. 

3.1 Applying the Almost Supermartingale Theorem 

Application 2 of Robbins and Siegmund (1971) pertains to problems such as the EQRP defined in §1.1. 

The iteration studied by Robbins and Siegmund has the generic form: 

Wn+l (3.1.1) 

where an(-) is a nonnegative measurable function of the n-1 previous pairs (w1,t1), ... , (wn.1,tn.1) with a1(-) 

arbitrary. Conditional on these n-1 pairs tn is a random variable parameterized by w = Wn such that: 

(3.1.2) 

The functions M(-) and er(·) must also be measurable and there must exist constants a,b > 0 such that: 

34 



cr(w) + IM(w)I s; a + b·lwl (3.1.3) 

for all -oo < w < oo. Moreover, there must exist a real number.8 such that for every O < E < 1: 

inf 6 < lw-0! < 1/s M(w)·(w-8) > 0 . (3.1.4) 

Then, if for every sequence (w1,t1), (w2,tz), (W3,t3), ... it holds that: 

00 

L an((w1,t1), ... ,(wn-1,tn-1)) 00 (at least whenever sup n lwnl < oo) (3.1.5) 
n=l 

and: 

00 

L an((W1,t1), ... ,(Wn-l,tn-l))2 < 00 (3.1.6) 
n=l 

it follows from the almost supermartinga/e theorem that w0 -+ 8 a.s. 

3.2 Assumptions Supporting Proof of Convergence of the Approximating Procedure 

This section details the assumptions under which a proof of convergence of the sequence {wn} generated 

by the approximating Logit-MLE procedure can be obtained. Four assumptions have already been made 

in earlier chapters, characterizing the estimation problem and the preliminary conditions which must be 

satisfied prior to commencement of the sequential phase ofthe procedure: 

(Al) The target probability p0 is confined to the open interval (0,1). 
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(A2) The underlying quantal response function R(·) is continuous and strictly increasing. 

(A3) Given the control variable level Wn on trial n the response variable Yn - BIN(l,R(wn)). 

(A4) Upon completion of the startup phase the pattern of sample points and responses will exhibit 

the overlap necessary for existence of the MLEs as discussed in § 1. 3 .1. 

Satisfying the "overlap conditions" automatically implies that the sample points used during the 

startup phase cannot all be equal. Specµically, ifn1 is the index of the final startup trial there 

will exist wi * wi for some I :s: i < j :s: n1. 

When nT of (2.4.5) is made arbitrarily large the following additional assumptions become meaningful: 

(A5) There will exist some index value N1 such that on any trial n ~ N1 the control variable Wn will lie 

in some bounded interval ofR characterized by [wmin,wmaxJ. 

(A6) There will exist some index value N2 such that upon completion of any trial n ~ N2 the lvtLEs 

(~e'J lie in some bounded subset ofR2 characterized as[~.~ x [f3min,f3maxl where 13mm > 0. 

The restriction on the lvtLE in means that any fitted curve 'V(w;~JJ must be strictly increasing 

following completion of trial N2• 

(A7) There will exist some index value N3 and some constant M such that on every trial n ~ N3 it will 

hold that (wn - Wn)2 :s: M2-8w,n2 where Wn and 8w,n2 denote the empirical mean and variance (see 

Appendix A) ofw1, ... , Wn. In other words, on any trial n ~ N3 the current sample point Wn will 

be assumed to fall within ±M empirical standard deviations of the current sample point mean. 
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3.3 Asymptotically Invariant Bounds 

In this section several quantities are defined which are important in the asymptotic analysis of the 

approximating Logit-MLE procedure. 

By assumption (A5) of §3.2 the iterates w0 generated by the approximating procedure may vary over an 

unrestricted range until trial N1. On trial N1 and all subsequent trials w0 will be confined to the interval 

[wmm,wmax1 specified in (A5). As of trial N1 there will thus exist an asymptotically invariant bound: 

and it Will hold that W; E [-Wabs, Wabs] for all iterates W1,W2,W3, .... 

An asymptotically invariant bound on the terms Zi defined in (2.3.6) will also exist. Based on the bound 

Wabs defined above and the intervals specified in assumptions (A5) and (A6) of §3.2 the following bound 

may be defined: 

w E [-wabs' wabsl 

µ E [!Jmin , IJmax] 

P e [Pmin , Pmaxl 

Referring again to assumptions (A5) and (A6) let N = max{N1,N2}. The terms Zi in (2.4.4) are not static; 

each one changes after each trial as the MLEs µ,, and in are updated. However, on any trial n > N it will 

hold that O < i;2 ~ zi < 1 for all i = 1,2,3, ... ,n. In this way i;2 acts as a "retroactive" lower bound for all zi. 

Moreover, the terms Gz,n defined in (A.3) of Appendix A will satisfy 8 2 ~ Gz,n for all n > N. 

3.4 Convergence of the Approximating Sequence 

This section culminates the analysis of the asymptotic behavior of the approximating Logit-MLE 
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procedure. The objective is to show that under the assumptions of §3.2. the approximating procedure will 

generate a sequence of estimates { Wn} such that w0 ---+ x0 almost surely. 

· Let N = max{N1, N2, N3} where the Ni are the threshold index values in assumptions (A5) - (A7) of §3.2. 

LetN' = max{N, nE} where nE indexes the last trial of the exact phase of the approximating procedure. 

Upon completion of trial n = N' the estimate of x0 is wN'+l · On all trials n > N' the properties specified in 

assumptions (Al) - (A7) may be considered in force and sample points will be detennined according to 

the approximation (2.4.2). It was argued in §2.4 that the approximation can be expressed in the fonn: 

Wn+J (3.4.1) 

The precise objective is to demonstrate that starting from the estimate WN·+1 the sequence of estimates 

{w0 } produced by the approximating phase of the procedure will converge (a.s.) to the root x0 as the 

tenninal index value nr becomes arbitrarily large. In order to apply the result of Robbins and Siegmund 

(1971) detailed in §3.l an equivalent problem will be considered, defined by translating the response 

variable y and the quanta! response function R( ·) as follows: 

0 
- Yn-P 

Under this translation the iteration fonn (3.4.1) is then equivalent to: 
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(3.4.2) 

(3.4.3) 



which matches the generic form specified in (3.1.1). It will be demonstrated that this equivalent problem 

satisfies the remaining conditions of §3 .1. 

Under assumption (A3): 

Yn - BIN(l,R(wn)) . 

From this and (3.4.2) it follows that: 

Var[tn] - cr\wn) R(wn)·(l-R(wn)) < 1 

and thus (3.1.2) is satisfied. 

The measurability requirements on M( ·) and cr( ·) will be satisfied due to continuity of these functions; both 

are continuous functions ofR(·) which is continuous by assumption (A2) of§3.2. Moreover, 0::;; R(wn)::;; 1 

and O < p0 < 1 so: 

and therefore (3 .1.3) may be satisfied by choosing a = 2 with b > 0 arbitrary. 

In assumption (A2) of §3.2 the function R(·) is also assumed to be strictly increasing with R(x0) = p0. 

Hence M(·) is also strictly increasing with M(x0) = 0. Thus for any O < & < 1: 
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infs<iw-xoi<llsM(w)·(w-x0) ~ min{IM(x0 -s)l·s,M(x0 +s)·s} > O 

so by letting e = x0 it follows that (3 .1. 4) is satisfied. 

The remaining conditions pertain to the sequence of multipliers {an·} for the approximating procedure, 

defined via the correspondence (3.4.3). Note that based on this correspondence: 

and therefore it is acceptable to work with the multipliers {an} exactly as they are defined in the 

approximating procedure. These multipliers were given in (2.4.4) to have the form: 

(3.4.4) 

Under assumption (A6) the MLE in-I will be persistently positive for n > N'. Hence by the discussion at 

the end of §2.3 the multipliers an(·) will also be persistently positive for n > N'. 

The measurability requirement for the multipliers an(·) may be addressed demonstrating continuity. 

Specifically, it needs to be established that an(·) is continuous in its arguments W1,Y1, ... ,wn-1,Y~-1- At the 

close of §2.2 an argument was presented that the Ml.Es ~-1 and ~n-1 are continuous in W1,Y1, ... ,Wn-1,Yn-1-

The terms (w; -wn)2 are clearly continuous in w1, ... ,wn. From (2.3.6) it follows that each z; for i =1, ... ,n 

is continuous in its arguments w;, ~-I, and in-I· From the proof of Lemma A.2 in Appendix A it is 

evident that det(Hn) is continuous in W1, ... ,wn and z1, ... ,z,,. Hence, if Wn is a continuous function of 

W1,Y1, ... ,Wn-1,Yn-1 then an(·) is a .composition of continuous functions of W1,Y1, ... ,Wn-1,Yn-1 and therefore 

continuous in these arguments. It will now be argued by induction that this is indeed the case. Consider 

that the last estimate of x0 provided by the exact phase of the approximating procedure is given by: 
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WI1io 
0 0 A ~ [log(p ) - log(l-p ) -~ _ d I PI1io _ 1 

this being a continuous function of the MLE~ which are themselves continuous in w1,y1, ••• ,wI1io_1,yI1io_1• 

Now suppose that Wn is a continuous function ofw1,y1, ... ,Wn-J,Yn-J for arbitrary n 2 nE. Then: 

with an as in (3.4.4). Clearly Wn+I is directly continuous in Wn, an, and Yn· But by the induction hypothesis 

and the discussion preceding it, an is a function ofw1,y1, ... ,wn-J,Yn-I and is continuous in these arguments. 

Hence Wn+1 is continuous in W1,Y1, ... ,Wn,Yn and the induction argument is complete. 

Finally, it must be shown that conditions (3.1.5) and (3.1.6) are satisfied. This involves demonstrating the 

existence of constants O < c' :s: c" such that the multipliers satisfy c'/n :s: an(·) :s: c"/n for all n > N'. First 

the lower bound will be established. Assuming that n > N': 

n 
A 2 

{ from (3.4.4) } an - (1/ Pn-1) . L (Wj - Wn) •Zj I det(Hn) 
i=J 

n 
2 (11P~ · L (Wi - Wn)2.Zi I det(Hn) { assumption (A6) } 

i=J 

n 
2 (8z IPmax) · L (Wi - wn)2 I det(H0 ) { invariant bound 8z of §3.3 } 

i=l 

n 
2 (8z IPmax) · L (Wi - Wn)2 / det(Hn) { Wn minimizes the SS } 

i=J 

{ definition of&w,n2 } 
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/ A A 2 / 2 A 2 2: (s, J-'ma,J • ll·O"w,n n ·O"w,n 

Thus c' = s, I Pmax where c' > 0. 

Next, the upper bound will be established. Assuming that n > N': 

n 

s (l!Pnun) · L (w; - wn)2.z; I det(HJ 
i-1 

n 

S (l!Pnun) · L (w; - Wn)2 I det(Hn) 
i-1 

n 

(l!Pnun) · [ L (W; - Wn)2 + n•(Wn-Wn)2 ] I det(Hn) 
i-1 

[ 2][A2 -21 [A2] 1/(Pmin·Sz,n ) ' O"w,n + (Wn-WJ f n·crw,n 
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{ Lemma A.2} 

{ from (3.4.4) } 

{ assumption (A6) } 

{ 0 < Z; < I \ii } 

{ definition of&w,n2 } 

{ Lemma A.2} 

{ assumption (A 7) } 



{ invariant 1::2 of §3 .3 } 

Since O < c'/n ::; an(·) ::; c"/n for all n > N' then due to familiar results associated with the series :Din 

and the series L l/n2 it follows that: 

Hence conditions (3.1.5) and (3.1.6) are met and it is proven that w0 ~ e = x0 a.s. as nT ~ oo. 
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CHAPTER4 

A SIMULATION STUDY 

The paper by Wu (1985) introducing the Logit-MLE procedure and the present dissertation both offer a 

convergence proof based on some form of first-order approximation. The key idea common to both is that 

eventually the true step size (2.3.1) becomes almost linear in the quantity Yn - p0, that is: 

LiXn+l - -an . (yn - po) (4.1) 

where an is adaptive. There is, however, a critical distinction between the formulations of the two 

approximations. The approximation (1.3.4) formulated by Wu calls for the prior iterates x1 , ••• , Xn to lie 

in close proximity. It does not support an explanation of how such a state is reached. The approximation 

(2.4.2) formulated here does not rely on such a proximity assumption, thus providing a more reasonable 

means by which to argue convergence. 

In §4.1 the basic accuracy of the first-order approximations will be evaluated by studying the relative 

error: 

I -an · <Yn - p0) - LiXn+l I I I LiXn+J J (4.2) 

arising out of the competing approximation schemes during simulated experiments. 

4.1 Relative Error Analysis 

A desirable property for either first-order approximation is that greater accuracy be realized as the trial 

count n increases. Sequential experiments may be simulated in order to evaluate the accuracy of the 

approximations in n, but when implemented in the usual way such simulations tend to generate sequences 

of estimates which gradually cluster. Thus, an (apparently) increasing accuracy is likely to be confounded 
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with the process of convergence. We would like to know whether accuracy increases independent of 

convergence, and this can be evaluated across simulation runs involving various parameter settings. 

Each simulation run will consist of some number of startup trials distributed evenly over fixed levels of x, 

followed by some number of sequential trials carried out as prescribed by the adaptive Logit-MLE 

procedure. Let the sequence of iterates generated up to this point be denoted by x1 , ... , Xn. An identical 

sequence W1 , ... , Wn Will be maintained in parallel to X1 , ... , Xn SUCh that W1 = X1 , ... , W0 = X0 • The 

nexi iterate Xn+J will again be generated using the Logit-MLE procedure but the next iterate Wn+1 will be 

determined using a first-order approximation. Wu's approximation is calculated by applying (1.3.4) to 

the data (w1,y1), ... , (Wn,Yn). The competing approximation is calculated by applying (2.4.2) to the same 

data. Whichever approximation is used, the relative error measure is: 

r.e. I Xn+I - Wn+J I f I Xn+J - Xn I (4.1.1) 

which is equivalent to (4.2). To maintain consistency with the approximating procedure of §2.4 the same 

trial index definitions will be employed here. For example, in a simulated experiment involving 40 

startup trials, followed by 10 sequential trials carried out using the Logit-MLE iteration, followed by one 

trial with the Logit-MLE iteration and the approximation carried out in parallel, the appropriate index 

settings would be: 

nr = 40, 

nE = 50, 

nr = 51. 

4.1.1 Simulation Setup 

Simulated binary responses will be generated using streams of IID U(O,l) pseudo-random variates and a 

piecewise-linear quantal response function R(·). The response function R(·) is graphed in Figure 4.1 
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below with important reference points labeled on the axes. 

R(x) 

1.0 

.90 

.25 

0.0+-~~~~~~~~~~~~----.-~~~~~~~~~~~----.-~~~~~ 

0 225 425 500 

Figure 4.1 ·Quantal Response Curve for Simulations 

X 

This form of quantal response function was selected for two reasons. First, it allows root estimation to be 

simulated for a target point x0 where the function is differentiable or at a point where it is 

nondifferentiable. Second, it is different enough from the shape of a two-parameter logit function that the 

simulation results may reasonably be considered independent of correct model specification. 

For a given simulation run let {u0 } deuote a stream ofIID U(O,l) pseudo-random variates. On the nth trial 

of the experiment the value Un represents the "response profile" of the current experimental unit. The 

simulated binary response Yn associated with a control variable setting of x = Xn will then be generated in 

the usual way: 
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Yn [ 0
1 , Un ~ R(xn)] 

, otherwise 
(4.1.2) 

The startup trials for each simulated experiment will be evenly allocated over the control variable settings 

x = 100, x = 200, x = 300, x = 400. If the response pattern for the startup phase fails to satisfy the 

existence and uniqueness conditions (described in §1.3.1) for the Ml.Es of the logit function parameters 

the simulation run will be abandoned. 

4.1.2 Simulation Results 

Table 4.2 below displays the relative error analysis for various settings of the index limits n1, nE, nr. The 

estimation target was x0 corresponding to p0 = 0.25. (Note incidentally that the quantal response function 

is not differentiable at this point.) Each table entry resulted from N = 10,000 simulation runs. All of the 

simulation runs involved n1 = 40 startup trials. The number of subsequent Logit .. l\,1LE sequential trials 

was 1, 10, 60, 160, and 460 in ascending order for the five different index settings. 

Approximation (2.4.2) Approximation (1.3.4) 

n1, ng, nr average worst<ase average worst .. case 

40, 41, 42 .01180 .33435 .29883 .69545 

40, 50, 51 .00627 .25839 .25032 .34165 

40, 100, 101 .00302 .05996 .14395 .46144 

40,200,201 .00234 .04589 .10245 .86573 

40,500,501 .00170 .03802 .07475 1.38266 

Table 4.2 Relative Error of Approximation with Sequences Converging (p0 = 0.25) 
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The results in Table 4.2 suggest that both approximations improve on average as the trial count increases. 

In the worst-case analysis only approximation (2.4.2) improves. (At least one case was encountered where 

approximation (l.3.4) yielded a directional error.) The sequences generated in these simulations were 

permitted to naturally converge as the trial count increased. The gradual improvement in approximation 

accuracy is therefore potentially confounded with simultaneous convergence. The results reported in 

Table 4.3 below address the issue of whether accuracy improves due to amassing data or due to sample 

points gradually clustering. The simulation runs summarized in this table involved the same total trial 

counts as the simulations reported in the last four lines of Table 4.2 but with nearly all trials allocated to 

the startup phase, thereby artificially forcing dispersion among the x-values used to calculate the 

approximations. 

Approximation (2.4.2) Approximation (1.3.4) 

n!, nE, nr average worst-case average worst-case 

49, 50, 51 .00782 .22271 .30345 .51591 

99, 100, 101 .00262 .03435 .31575 .46160 

199,200,201 .00099 .01608 .32737 .42444 

499,500,501 .00030 .00334 .33509 .40733 

Table 4.3 Relative Error of Approximation with Sample Points Dispersed (p0 = 0.25) 

Although such an allocation would not be used in practice, it does strongly suggest that the accuracy of 

approximation (2.4.2) is attributable primarily to an increasing trial count. Approximation (1.3.4) shows 

essentially no improvement in n under these conditions, which is consistent with its reliance on close 

proximity of sample points. 
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Tables 4.4 and 4.5 parallel the analyses of Tables 4.2 and 4.3, respectively, with the estimation target 

switched to x0 corresponding to p0 = 0.10. The quantal response function is differentiable at this point 

and moreover the estimation objective tends to the extreme. The conclusions with respect to 

approximation (2.4.2) do not change appreciably. However, approximation (l.3.4) shows no 

improvement in this setting even when the sequences are permitted to converge. 

Approximation (2.4.2) Approximation (1.3.4) 

n1, nB, nr average worst-case average worst-case 

40, 41, 42 .01281 .25105 .44298 .70395 

40, 50, 51 .00582 .19320 .46984 .64720 

40, 100, 101 .00214 .06540 .47871 .60478 

40,200,201 .00128 .04399 .48006 2.23299 

40,500,501 .00069 .02671 .47793 2.20608 

Table 4.4 Relative Error of Approximation with Sequences Converging (p0 = 0.10) 

Approximation (2.4.2) Approximation (1.3.4) 

ni, nE, nr average worst-case average worst-case 

49, 50, 51 .00893 .15153 .44197 .71034 

99, 100, 101 .00353 .06877 .43617 .70772 

199,200,201 .00178 .03593 .43424 .64860 

499,500,501 .00074 .01067 .43353 .58804 

Table 4.5 Relative Error of Approximation with Sample Points Dispersed (p0 = 0.10) 
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4.1.3 Simulation Program 

All of the simulations reported in §4.1.2 were carried out using the C++ program listed in Appendix B 

with the parameters appearing in the first section of the program properly set. The program implements a 

"shuffle" generator to produce the U(O,l) pseudo-random streams {un}. In all cases identical seeds were 

used to initialize the streams for the simulations comparing approximations (2.4.2) and (1.3.4). 
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CHAPTERS 

SUMMARY OF FINDINGS 

A first-order approximation to the movement of the adaptive Logit-MLE procedure may be formulated 

with few special assumptions beyond those usually made in the quantal response setting. An estimation 

procedure based on this first-order approximation converges with probability one to the correct value x0 

under mild assumptions, which may be incorporated into the estimation procedure if desired. 

In simulated experiments, the relative error of the first-order approximation decreases steadily as the trial 

count n increases, independent of whether the sequence of estimates converges or is dispersed. This 

empirical result in combination with the proven convergence of the first-order procedure provides a strong 

argument for convergence of the true Logit-MLE procedure. 
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APPENDIX A 

THE LOG-LIKELIHOOD HESSIAN 

Several properties of the Hessian matrix associated with the log-likelihood function (2.2.1) are established 

in this appendix. A simple derivation shows that the first-order partial derivatives of the two-parameter 

logit function (1.2.22) wrt µ and pare: 

a 'l'(x;µ,p) I 8µ 'l'(x;µ,p) · [ I - 'l'(x;µ,p)] 

a 'l'(x;µ,p) I ap x · 'l'(x;µ,p) · [ I - \j/(x;µ,p)] . 

Applying these results in conjunction with the first-order partials (2.2.2) of the log-likelihood function, 

the following second-order partial derivatives can be quickly determined: 

n 

- L \j/(X;;µ,p) . [ I - \j/(X;;µ,P)l 

n 

- L X;. 'l'(X;;µ,p) . [ I - \j/(X;;µ,P)l 
i=l 

n 

- L x? · \j/(x;;µ,p) · [ I - \j/(x;;µ,P)l 
i=l 

Adopting the shorthand notation of §2.3 let: 

z; - z(x;;µ,p) - 'l'(x;;µ,P)·[l - 'l'(x;;µ,p)] . 

Note that for any finite arguments O < z; < 1. 
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The Hessian matrix associated with the log-likelihood function log -4'n(µ,p) may then be expressed as: 

n n 

- L Z; - L X;·Z; 
i-1 i-1 

n 

- L x/·z; 
i~J 

Two useful results will now be stated and proved. 

Lemma A.I 

Given sample points x1, ... ,xn such that not all x; are equal, the matrix H(x1, ... ,Xn,µ,p) is negative definite. 

We may equivalently demonstrate that A= -H(x1, ... ,Xn,µ,p) is positive definite. 

n 

Clearly the leading submatrix A1 = L z; has a positive determinant. 
i-1 

It remains to show that det(A) > 0. Note that: 

det(A) 

Rewriting: 

det(A) 
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n n n n 

L L x{zi·Zj - L L Xi·Zi·XfZj 
i=l j=l i=! j=l 

n n 

L L Xi·(Xi-X}Zi·Z· i=l j=l j l 

n n 

L L [xi·(xi-Xj)·Zi·Zj + xr(xrxi)·zfz; I 
1 <J 

n n . 

L L [Xi·(Xi-Xj) 0 Zi 0 Zj - Xf(Xi-Xj)·Z;:Zj I 
i<j 

n n 

L L (xi-x/·zi·Zj 
i<j 

Since x; =t:- xi for some i =t:- j and since all products Z;·Zi > 0, it follows that det(A) > 0. Therefore A is 

positive definite. • 

The next lemma requires some further definitions. Given the sample points x1, ... ,xn recall that the 

empirical mean and empirical variance are defined respectively as: 

n 
Xn - LxJn (Al) 

i=l 

n 
flx} - L (Xi - x,J2 I n (A.2) 

i=l 

Given x1, .•• ,x0 and any fixed µ and ~ also define: 
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&z,n - min { Zi } - min { z(xi;µ,J3) } 
i i 

(A.3) 

noting that &z.n > 0. 

LemmaA.2 

· Proof 

Since His 2 x 2 then det(H) = det(-H). In the proofofLemma A. l note that det(-H) = det(A). Thus: 

n n 

det(H) LL (x;-x/·z;•Zj . 
i<j 

Since O < 6z,n :,;; Z; < 1 for i = l, ... ,n then: 

n n 

6z,n 2 • L L (Xi-xj)2 
i<j 

By symmetry: 

n n 

:5: det(H) < L L (x;-xj)2 . 
i <j 

n n 

(1/2) L L (xi-xi 
i=J j=l j 

n n 

(112) L L [(x/xn) - (x·-xn)]2 
i=J j=l j 
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n n 

(1/2) L L [(xi-Xn)2 + (xrxn)2 - 2(xi-Xn)(XrXn)] 
i=l j=l 

n n 

(112) [ n L (x;-xn)2 + n L (xrxn)2 

i=l j=l 

Substituting this result into (A.4) gives: 

2 2A 2 d 2A 2 
6z.n ·n ·crx.n :5: et(H) < n ·crx,n • 
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APPENDIXB 

SIMULATION PROGRAM 

/*=========================================================================*/ 
/* PROGRAM ENVIRONMENT SECTION */ 
/*=========================================================================*/ 

#include <iostream.h> 
#include <iomanip.h> 
#include <math.h> 
#include <values.h> 

/*=========================================================================*/ 
/* PROGRAM CONSTANTS */ 
/*=========================================================================*/ 

const int NRUNS 10000; II number of simulations to run 

const int NS 40; II terminal trial index for startup phase 

const int NSDX 4; II number of distinct x-values in startup phase 

const int NE 41; II terminal trial index for exact phase 

const int NT 42; II terminal trial index 

const double XMAX 500.0; II defines effective range for x 

const double PO· 0.25; II target "success" probability 

const double EPS 1.0e-8; II general E for computational precision 

const char ATYPE 'N'; II switches type of first-order approximation: 
II • 'N' Newton-Raphson first step 
II • 'W' = Wu 

/*=========================================================================*/ 
/* MATHEMATICAL/SIMULATION ROUTINES */ 
/*================================== -=====================================*/ 

/*-------------------------------------------------------------------------*/ 
/* This function returns the probability of success "p" corresponding to */ 
/* a given value of the control variable "x" based on a piecewise-linear */ 
/* quantal response function. (This is the data generator.) */ 
/*-------------------------------------------------------------------------*/ 

double Quantal(double x) 
{ 

/* Establish breakpoints of the piecewise-linear quantal response curve: */ 

const int NBP = 4; 

double RCx[NBP] 0, .45*XMAX, .85*XMAX, XMAX}; 
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double RCp[NBP] {0.00, 0.25, 0.90, 1.00}; 

/* Declare other variables: */ 

int i; 
double p; 

/* Calculate the probability of success at x: */ 

if (x <= RCx[O]) 
{ 
p = RCp[O); 

} 
else if (x >= RCx[NBP-1]) 

{ 
p = RCp[NBP-1]; 

} 
else 

{ 

RCx [i+l]) i++; 
i = 0; 
while (x > 
p = RCp[i] + ((x - RCx[i]) / (RCx[i+l] - RCx[i])) * (RCp[i+l] -

RCp[i]); 
} 

return p; 

/*-------------------------------------------------------------------------*/ 
/* This function returns the probability of success "p" corresponding to */ 
/* a given value of the control variable "x" using a two-parameter logit */ 

·/*curve to model the quantal response function. */ 
/*----------------------------------------------------------------------- ·-*/ 
double Logit(double mu, double beta, double x) 

{ 

double z, p; 

/* Calculate the exponent: */ 

z =mu+ beta*x; 

/* Calculate the probability of success at x: */ 

if (z < -500.0) 
{ 
p = 0.0; 

} 
else if (z > 500.0) 

{ 
p = 1. O; 

} 
else 

{ 
p exp(z) I (1.0 + exp(z)); 

} 

return p; 
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/*-------------------------------------------------------------------------*! 
/* This function implements a U(O,l) PRNG based on a shuffling algorithm. */ 
/* * I 
/* Argument descriptions: */ 
/* * I 
/* • seeda -- generator seed "a" to be set initially to an integer value */ 
/* in the range [1.0,2147483646.0] and thereafter not changed */ 
/* by the user * I 
/* • seedb -- generator seed "b" to be set initially to an integer value */ 
/* in the range [1.0,2147483710.0] and thereafter not changed */ 
/* by the user */ 
/*•reset -- initialization flag to be set to 1 on the first call */ 
/*-------------------------------------------------------------------------*/ 

double Uniform(double& seeda, double& seedb, int& reset) 
{ 

canst double 
canst double 
canst double 

MODA 
MODB 
MULT 

2147483647.0; 
2147483711. O; 
16807.0; 

canst int TABLE_SIZE = 128; 

static double table[TABLE_SIZE]; 

int j; 

double u; 

/* Initialize the shuffle table on the first call: */ 

if (reset) 
{ 
for (j = O; j < TABLE_SIZE; j++) 

{ 

} 

seeda 
seedb 
table[j] 

reset= O; 
} 

fmod(MULT*seeda, MODA); 
fmod(MULT*seedb, MODB); 
(seeda + seedb/MODB) / MODA; 

/* Randomly draw and regenerate shuffle table entries*/ 
/* until an entry on the interval (0,1) is extracted: */ 

do 
{ 
/* Draw an element from the table at random: */ 

do 
{ 
seeda 
seedb 
j 

} 

fmod(MULT*seeda, MODA); 
fmod(MULT*seedb, MODB); 
int(fmod(seedb, double(TABLE_SIZE))); 

while ( (j < 0) 11 (j >= TABLE_SIZE)); 

u = table[j]; 

/* Replace the table element with a new value: */ 
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table[j] = (seeda + seedb/MODB) I MODA; 
} 

while ( (u <= 0.0) 11 (u >= 1.0)); 

/* Return the new U(O,l) PRN: */ 

return u; 

/*=========================================================================*/ 
/* ESTIMATION ROUTINES */ 
/*=========================================================================*/ 

/*-------------------------------------------------------------------------*/ 
/* Based on a sequence of observed (x,y) pairs this function determines if*/ 
/* the MLEs exist for the parameters (µ,B) in a two-parameter logit model. */ 
/*-------------------------------------------------------------------------*/ 

int MLEs_Exist(double x[J, double y[], int n) 
{ 

double minimum_O, maximum 0, minimum_l, maximum 1; 

int i; 

/* Determine the x-range over which "0" responses have occurred and the*/ 
/* x-range over which "1" responses have occurred: */ 

minimum 0 
maximum O 
minimum 1 
maximum-1 

MAXDOUBLE; 
MINDOUBLE; 
MAXDOUBLE; 
MINDOUBLE; 

for (i =. O; i < n; i++) 
{ 
if ( y [ i ] == 0 ) 

{ 
minimum 0 
maximum-a 

} 
else 

{ 
minimum 1 
maximum-1 

} 

x[i] < minimum 0 
x[i] > maximum-a 

x[i] < minimum 1 
x[i] > maximum-1 

? x[i] minimum 0; -
? X [ i] maximum O; 

? x[i] minimum 1; -
? x[i] maximum 1; 

/* Check whether the MLE existence conditions are met: */ 

if (maximum_O <= minimum 1) 
{ 
return O; 

} 
else if (maximum 1 <= minimum_O) 

{ -
return 0; 

} 
else if ((minimum_O 

{ 
maximum_O) && (minimum_l 
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return 0; 
} 

else 
{ 
return 1; 

} 

/*-------------------------------------------------------------------------*/ 
/* This function implements the Newton-Raphson procedure to find the MLEs */ 
/* of the parameters characterizing a two-parameter logit curve, based on */ 
/* a sequence of observed (x,y) pairs. It is assumed that the MLEs exist; */ 
/* this can be verified using the function 'MLEs Exist' defined elsewhere */ 
/* in this program. */ 
/* * I 
/* The starting values for the MLEs are set externally. This allows MLEs */ 
/* from earlier calculations to be used as the starting values, generally */ 
/* resulting in quicker convergence. */ 
/*-------------------------------------------------------------------------*/ 

void MLEs(double x[], double y[], int n, double& mu, double& beta) 
{ 

int i; 

double p, z, gl, g2, Hll, H12, H22, detH, Dl, D2; 

/* Calculate the MLEs: */ 

do 
{ 
gl 
g2 
Hll 
H12 
H22 

for (i 
{ 

0.0; 
0.0; 
0.0; 
0.0; 
0.0; 

O; i < n; i++) 

p Logit(mu, beta, x[i]); 

} 

detH 

Dl 
D2 

gl += (y[i]-p); 
g2 += x[i]*(y[i]-p); 

z 

Hll 
H12 
H22 

p* (1.0-p); 

z; 
x[i]*z; 
x[i]*x[i]*z; 

Hll*H22 - H12*H12; 

gl*H22 - g2*H12; 
g2 *Hll - gl *H12; 

mu Dl/detH; 
beta - D2/detH; 

} 
while (gl*gl + g2*g2 > EPS); 
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/*-------------------------------------------------------------------------*/ 
/* This routine determines the next sample point x based on the adaptive */ 
/* Logit-MLE procedure. n */ 
/*-------------------------------------------------------------------------*/ 
void Logit_MLE(double x[], double y[], int n) 

{ 

double mu, beta; 

/* Calculate the MLEs based on currently available data: */ 

mu 0.0; 
beta 0.0; 

MLEs(x, y, n, mu, beta); 

/* Calculate the next adaptive Logit-MLE sample point: */ 

if (fabs(beta) > EPS) 
{ . 
x [n] = (log (PO) - log (1. 0 - PO) - mu) I beta; 

} 
else 

{ 
x[n] 

} 
x[n-1]; 

/*------------------------------------------------------------------------·*/ 
/* This routine determines the next sample point w using a Newton-Raphson */ 
/* first-step approximation. n */ 
/*-------------------------------------------------------------------------*/ 
void NR_First_Step(double w[], double y[], int n) 

{ 

double mu_prior, beta_prior; 

int i; 

double p, z, S, Hll, Hl2, H22, detH, a; 

/* Calculate the lagged MLEs based on currently available data: */ 

mu_prior 0.0; 
beta_prior 0.0; 

MLEs(w, y, n-1, mu_prior, beta_prior); 

/* Determine the next sample point: */ 

if (fabs(beta_prior) > EPS) 
{ 
/* Calculate the coefficient 'a': */ 

S = 0.0; 
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Hll 0.0; 
H12 0.0; 
H22 0.0; 

for (i 0; i < n; i++) 
{ 
p 
z 
s += 
Hll -
H12 
H22 -

Logit(mu_prior, beta_prior, w[i]); 
p*(l.0-p); 
(w[i]-w[n-l])*(w[i]-w[n-1]) * z; 
z; 
w[i]*z; 
w[i]*w[i]*z; 

} 

detH Hll*H22 - H12*Hl2; 

a (1.0 I beta_prior) * (SI detH); 

/* Calculate the sample point: */ 

w[n] = w[n-1] - a*(y[n-1] - PO); 
} 

else 
{ 
w[n] 

} 
w[n-1]; 

/*-------------------------------------------------------------------------*/ 
/* This routine determines the next sample point w using the first-order */ 
/* approximation of Wu. n */ 
/*-------------------------------------------------------------------------*/ 

void Wu First Order(double w[], double y[], int n) 
{ - . -

int i; 

double sumw, sumy, sumwy, sumsq, c; 

/* Calculate the coefficient c: */ 

sumw 0.0; 
sumy 0.0; 
sumwy 0.0; 
sumsq 0.0; 

for (i = 0; i < n; i++) 
{ 

+= w[i]; 
+= y[i]; 
+= w[i]*y[i]; 

sumw 
sumy 
sumwy 
sumsq += (w[i]-w[n-l])*(w[i]-w[n-1]); 

} 

c = sumsq I (sumwy - sumw*sumy/n); 

/* Calculate the sample point: */ 

w[n] = w[n-1] - (c/n)*(y[n-1] - PO); 
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/*-------------------------------------------------------------------------*/ 
/* This routine determines the next sample point w using the specified */ 
/* type of first-order approximation. n */ 
/*-------------------------------------------------------------------------*/ 
void Approximate(double w[], double y[], int n, char type) 

{ 

switch (type) 
{ 
case 'N': /* Newton-Raphson first-step approximation: */ 

NR First Step(w,y,n); 
break; -

case 'W': /* Wu's first-order approximation: */ 
Wu First Order(w,y,n); 
break; -

default: w[n] = w[n-1]; 
break; 

/*=========================================================================*/ 
/* OUTPUT ROUTINES */ 
/*=========================================================================*/ 

/*-------------------------------------------------------------------------*/ 
/* This routine prints a heading for a table of simulation run summaries. */ 
/*-------------------------------------------------------------------------*/ 
void Print_Heading(void) 

{ 

cout <<" ** SIMULATIONS FOR ESTIMATION OF L(" 
<< setprecision(2) 
<< setw(4) 
<< PO 
<< ") **" 
<< endl 
<< endl; 

cout <<:"Run# 
cout <<" 

Error/Movement"<< endl; 
--------------" << endl; 

/*-------------------------------------------------------------------------*/ 
/* This routine prints a footing for a table of simulation run summaries. */ 
/*-------------------------------------------------------------------------*/ 
void Print_Footing(double avg_error, double max_error) 

{ 

cout << endl 
<< endl 
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<< " AVERAGE ERROR WAS " 
<< setprecision(S) 
<< setw(8) 
<< avg error 
<< endl 
<<" HIGHEST ERROR WAS" 
<< setprecision(S) 
<< setw(8) 
<< max error 
<< endl; 

/*-------------------------------------------------------------------------*/ /* This routine prints a summary line for one simulation run. */ 
/*-------------------------------------------------------------------------*/ 
void Run_Summary(in~ run, double error) 

{ 

cout << setiosflags(ios::fixed) 
<< setiosflags(ios::showpoint) 
<< setw(S) 
<< run 
<<" " 
<< setprecision(S) 
<< setw(8) 
<< error 
<< endl; 

/*=========================================================================*/ 
/* MAIN PROGRAM * / 
/*=========================================================================*/ 

void main() 
{ 

/* Arrays for tallying trial outcomes for Logit-MLE procedure: */ 

double x[NT], ye[NT]; 

/* Arrays for tallying trial outcomes for approximating procedure: */ 

double w[NT], ya[NT]; 

/* Simulation run counter: */ 

int run; 

/* Completed simulation run counter: */ 

int completed; 

/* Trial index: */ 
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int trial; 

/* Quantal response probability variable: */ 

double p; 

/* PRNG variables: */ 

double seeda, seedb, u; 
int reset; 

/* Approximation error measurement variables: */ 

double minimum_x, maximum_x, x_movement; 
double error, sum_error, max_error; 

/* Initialize the PRNG once at the beginning of the entire simulation: */ 

seeda 
seedb 
reset 

1247483131. O; 
951711238.0; 

l; 

/* Initialize the overall error measurements: */ 

sum error 0.0; 
max error 0.0; 

/* Print the simulation table heading: */ 

Print_Heading(); 

/* Initialize the count of completed simulation runs: */ 

completed= O; 

/* Perform simulation runs: */ 

for (run= l; run<= NRUNS; run++) 
{ 
/* Initialize the trial index: */ 

trial= O; 

/* Perform startup trials. Startup trials are evenly allocated*/ 
/* across NSDX sample points equally spaced between O and XMAX: */ 

while (trial< NS) 
{ 

} 

x [trial] 
w[trial] 
p 
u 
ye[trial] 
ya[trial] 
trial++; 

(trial/(NS/NSDX) + 1) * XMAX/(NSDX+l); 
x[trial]; 
Quantal(x[trial]); 
Uniform(seeda,seedb,reset); 
(u < p) ? 1 : O; 
ye[trial]; 
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/* If the MLEs don't exist after startup abandon the simulation run: */ 

if (!MLEs Exist(x,ye,trial)) 
{ -

cout << "Startup phase did not yield MLEs -- run abandone.d." << endl; 
continue; 

} 

/* Perform trials for the exact sequential phase: */ 

while (trial< NE) 
{ 

} 

Logit MLE(x,ye,trial); 
w[trial] x[trial]; 
p Quantal(x[trial]); 
u Uniform(seeda, seedb, reset); 
ye[trial] (u < p) ? 1 : O; 
ya[trial] ye[trial]; 
trial++; 

/* Initialize extremes of x movement during the approximation phase: */ 

minimum x 
maximum x 

x[trial-1]; 
x[trial-1]; 

/* Perform trials for the approximating sequential phase: */ 

while (trial < NT) 
{ 
/* Determine the Logit-MLE sample point: */ 

Logit_MLE(x,ye,trial); 

/* Determine the approximated sample point: */ 

Approximate(w,ya,trial,ATYPE); 

/* Update the x movement variables: */ 

minimum x 
maximum x 

(x[trial] < minimum x) ? x[trial] 
(x[trial] > maximum=x) ? x[trial] 

minimum_x; 
maximum_x; 

/* Calculate the error on final trial of approximation phase: */ 

if (trial== NT-1) 
{ 
x movement 
error 

maximum x - minimum x; 
fabs(w[trialJ-x[trialJ) I x_movement; 

} 

/* Generate the binary responses for the current trial: */ 

u 
p 
ye[trial] 
p 
ya[trial] 

trial++; 
} 

Uniform(seeda,seedb,reset); 
Quantal(x[trial]); 
(u < p) ? 1: O; 

- Quantal(w[trial]); 
(u < p) ? 1: 0; 
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/* Increment the count of completed simulations: */ 

completed++; 

/* Print the summary line for the current run: */ 

Run_Summary(run, error); 

/* Update the overall error measurements: */ 

sum error+= error; 
max error (error> max_error) ? error max_error; 

/* Print the simulation table footing: */ 

Print_Footing(sum_~rror/completed, max_error); 
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