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PREFACE 

This dissertation consists of three separate essays. The reader is referred to the 

individual abstracts for a more complete description of the work contained in each essay. 

Essay I is entitled "The Overlapping Data Problem". Essay II and III are entitled "The 

Optimal Investment Strategy of a Hedge Fund" and "Performance Persistence of Hedge 

Funds" respectively. Essay I considers the overlapping data problem. A generalized least 

squares (GLS) estimator is derived and its properties are compared to the properties of 

commonly used estimators, like the Newey-West estimator. Also, combinations of the 

overlapping data problem with other econometric problems are addressed. 

Essays II and III look at some issues related to hedge funds. Essay II develops a 

theoretical model regarding the optimal investment strategy of a hedge fund. The objective 

function in the model is maximization of manager's total fees. The model also allows for 

some concavity in the objective function that is introduced through an asymmetric 

withdrawals function. Essay III tests whether performance persistence exists in the hedge 

fund industry. Several procedures are employed to detect if performance persists among 

hedge funds. Essay ill also uses some of the estimation methods developed and/or 

discussed in Essay I. 
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The Overlapping Data Problem 

Abstract 

We consider the overlapping data problem. The conventional estimation approach 

with overlapping data is to use the Newey-West estimation procedure. When the standard 

assumptions hold generalized least squares is asymptotically efficient. Monte Carlo results 

show that the Newey-West procedure has considerably larger variances of parameter 

estimates and lower power than GLS. Hypothesis tests using the Newey-West procedure 

also have incorrect size even with sample sizes as large as one thousand. We also discuss 

possible estimation approaches when overlapping data occurs in conjunction with some other 

econometric problem. With lagged dependent variables or errors in the explanatory 

variables, GLS is no longer the preferred estimator. 

Key words: autocorrelation, Monte Carlo, Newey-West, overlapping data 
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The Overlapping Data Problem 

Introduction 

Time series studies estimating multiple-period changes can use overlapping data in 

order to achieve greater efficiency (Gilbert). A common example is using annual returns 

when monthly data are available. A one-year change could be calculated from January to 

December, another from February to January, and so on. In this example the January to 

December and February to January changes would overlap for eleven months. The 

overlapping of observations creates a moving average (MA) error term and thus ordinary 

least squares (OLS) parameter estimates would be inefficient and hypothesis tests biased 

(Hansen and Hodrick). Past literature has recognized the presence of the moving average 

error term. Our paper provides a criticism of econometric practice. 

One way of dealing with the overlapping observations problem is to use a reduced 

sample in which none of the observations overlap. For the example given above, the reduced 

sample will have only one observation per year. Thus, for a 30-year period of monthly data 

only 30 annual changes or observations will be used instead of249 (the maximum number 

of overlapping observations that can be created for this period) annual observations. This 

procedure will eliminate the autocorrelation problem but it is obviously highly inefficient. 

A second way involves using average data. For our example this means using the average 

of the 12 overlapping observations that can be created for each year. This procedure results 

in the same degree of data reduction and apparently 'uses' all the information. In fact, not 

only is it inefficient, it also, as Gilbert shows, does not eliminate the moving average error 
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term and can complicate estimation. A third way is to use the overlapping data and to 

account for the moving average error term in hypothesis testing. Several generalized method 

of moments (GMM) estimators have been constructed that can provide asymptotically valid 

hypothesis tests when using data with overlapping observations. These GMM estimators 

include Hansen and Hodrick (HH) (1982), Newey-West (NW) (1987), and Andrews and 

Monahan (AM) (1992). A fourth way is to use OLS estimation with overlapping data which 

yields biased hypothesis tests. We argue that all of these methods are inferior to other 

methods. 

To illustrate the enormity of the problem the number of empirical articles involving 

the use of overlapping data in regression analysis in three journals during 1996 were counted. 

The journals were, The Journal of Finance, The American Economic Review, and The 

Journal of Futures Markets. The methods of estimation are classified as OLS with non­

overlapping data (OLSNO), OLS with the Newey-West (1987) variance covariance 

estimator, OLS with any of the other GMM estimators, and just OLS. The numbers are 

presented in Table 1. 

Table 1 shows the number of empirical articles involving the use of overlapping data 

as a total and as a percentage of the total number of the empirical articles in the journal for 

that year. Most of the empirical articles that use overlapping data involve asset returns or 

economic growth. A common feature of these articles is that returns or growth are measured 

over a period that is longer than the observation period. For example, data are observed 

monthly and the estimation is done annually. As a result, the estimation involves temporal 

aggregation. There are several possible reasons to use aggregated data. The most common 
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reason given is measurement error in independent variables. For example, Jones and Kaul 

(p. 469), state that they select "use of quarterly data on all variables as a compromise 

between the measurement errors in monthly data ... ". Another reason could be the lack of 

normality in the nonaggregated data. Also, when some data are missing, using overlapping 

data allows using all of the data. Finally, when many lags are included as explanatory 

variables, using aggregated data would appear to require estimating fewer lag parameters 1 

and thus reduce the loss of degrees of freedom. Most authors provide no justification for 

using overlapping data, but there must be some advantage to using it or it would not be so 

widely used. 

Table 1 also shows each of the estimation methods frequency of use. The OLSNO 

and Newey-West estimation methods are used most often. We defined OLSNO as 

estimation using non-overlapping observations. This means that the data exist to create 

overlapping observations but the researchers chose to work with non-overlapping 

observations. It might be more correct to say that OLSNO is used simply because it is not 

a practice to create overlapping data. The OLSNO method will yield unbiased and consistent 

parameter estimates and valid hypothesis tests. But it will be inefficient since it "throws 

away information." 

The GLS estimation procedure derived in this paper could not be applied in every 

situation described by Table 1 where Newey-West or OLSNO estimation is used. An 

example would be the case when lagged values of the dependent variable or some other 

While fewer lags are used in practice, as we discuss later, the true autoregressive lag polynomial 
is typically unchanged when overlapping data are used. 
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endogenous variable are used as an explanatory variable. In this case, as Hansen and 

Hodrick argue, the GLS estimates will be inconsistent since an endogeneity problem is 

created when the dependent and explanatory variables are transformed. We suggest to use 

the unrestricted maximum likelihood estimation methods developed for time-series models 

when lagged dependent variables are used as explanatory variables and overlapping data are 

used. The number of cases where lagged values of the dependent variable are used as an 

explanatory variable is reported for two of the journals mentioned earlier. In The Journal 

of Finance, from a total of 26 articles reported in Table 1, only six include a lagged 

dependent variable as an explanatory variable (three with the Newey-West estimator and 

three with OLSNO). For the American Economic Review journal only one (with the Newey-

West estimator) of 14 articles included a lagged dependent variable. 

In this paper we will discuss the general overlapping data problem and argue that the 

Newey-West and OLSNO estimation are grossly inefficient ways of handling the 

overlapping data problem since the order of the MA process is known. This will be done by 

determiningand comparing the small-sample properties ofNewey-West, OLSNO, MLE, and 

GLS estimates. Unrestricted maximum likelihood estimation is included as an alternative 

to GLS to show what happens when the MA coefficients are estimated3• Also, the power and 

size of the hypothesis tests for the four methods of estimation will be compared. Monte 

Carlo simulation methods are used. Finally, we discuss ways of adapting the GLS 

3 

The GLS estimator is the maximum likelihood estimator. The true MLE would have the 
parameters of the moving average process be known rather than estimated. Such a restricted 
MLE should be used with large sample sizes since it uses less storage than GLS. 
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estimation procedure to handle additional econometric problems such as lagged dependent 

variables, missing data or heteroskedasticity. 

Theory 

Estimation with multiple-period changes can use data with overlapping observations 

in order to ensure greater efficiency of estimates. Here, we consider only strictly exogenous 

explanatory variables. Other variations of the overlapping data problem are considered in 

Section VI. 

To consider the overlapping data problem we start with the following regression 

equation: 

y = ~IX + U 
t t t (1) 

where, y, is the dependent variable, x, is the vector of strictly exogenous independent 

variables, and u, the error term. Equation (1) represents the basic data which are then used 

to form the overlapping observations. The error terms, u,, in (1) have the following 

properties: E[ u,] = 0, E[ u,2] = a/, and Cov[ u,, us] = 0 if t * s. 

However, one might want to use aggregated data and instead of (1) estimate the 

following equation: 

y = ~x + e 
t t t (2) 

where Y, and X, represent an aggregation of y, and x, respectively. To estimate (2) the 

overlapping observations are created by summing the original observations as follows: 
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t+k-1 t+k-1 t+k-1 

Y1 = L y1, ~ = L x ., and e = L u. 
j=t j=t J t j=t J 

(3) 

where k is the number of periods for which the changes are estimated. If n is the original 

sample size, then n - k + 1 is the new sample size. These transformations of the dependent 

and independent variables induce a MA process in the error terms of (2). 

From the assumption that the original error terms were uncorrelated with zero mean, 

it follows that: 

k-1 k-1 

E[eJ = E[L u _.] = L E[u _.] = 0. 
J=O tJ J=O tJ 

(4) 

Also, since the successive values of uj are homoskedastic and uncorrelated, the unconditional 

variance of e, is: 

Var[e l = a2 = E[e 2] = ka2 • t1 e t u (5) 

Based on the fact that two different error terms, e, and e, + s, have k - s common original error 

terms, u, for any k - s > 0, the covariances between the error terms are: 

cov[e ,e ] = E[e e ] = (k-s)a2 V(k-s)>O. 
t t+s t t+s u (6) 

Dividing by ka/ gives the correlations: 

k-s 
corr[e e ] = - V(k-s)>O. 

t' t+s k (7) 
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Collecting terms we have: 

1 
k-1 k-s 1 

0 0 
k k k 

k-1 1 
k-1 k-s 1 

0 
k k k k 

k-1 1 
k-1 k-s 1 

-
k k k k 

n = (8) 

1 k-s k-1 
1 

k-1 
k k k k 

0 
1 k-s k-1 

1 
k-1 

k k k k 

0 O· 
1 k-s k-1 

1 
k k k 

where, Q is the correlation matrix. The correlation matrix, Q, appears in Gilbert's paper 

without a derivation, but we have not found it elsewhere, although the presence of a moving 

average error term is commonly recognized. 

With Q derived analytically the generalized least squares (GLS) parameter estimates 

and their variance-covariance matrix can be obtained as follows: 

(9) 

and 

(10) 

where X= (~, ... ,x:_k+I)and Y= (Y1, ••• , Yn-k+ 1). Under these assumptions, the GLS 

estimator will be best linear unbiased and asymptotically efficient. If errors are normally 
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distributed, then GLS is efficient in small samples, standard hypothesis test procedures 

would be valid in small samples, and the GLS estimator would be the maximum likelihood 

estimator. 

Alternative Estimation Methods 

The next issue to be discussed is the OLSNO and Newey-West estimation methods 

and their inefficiency. We consider only Newey-West rather than the alternative GMM 

estimators. As Davidson and MacK.innon (p. 611) say "the Newey-West estimator is never 

greatly inferior to that of the alternatives." First a review of Newey-West's estimation 

method is presented. Parameter estimates are obtained by using OLS with overlapping data 

as follows: 

b = (X'xr1x'Y (11) 

and the variance of b is: 

Var[b] = a2(X'Xr 1• 
e (12) 

The OLS estimate b is unbiased and consistent but inefficient. While the OLS estimate of 

a/ is biased and inconsistent. To calculate Newey-West's autocorrelation consistent 

covariance matrix first the OLS residuals are obtained. Then the Newey-West's 

autocorrelation consistent estimator is calculated using the formula: 
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where, 

I k-1 

s = s0 + -- I: 
n-k+l i=I 

n-k+l 

L_ w1.e1e1 _ 1.(x1x1
1_ 1 + x x 1) 

t=1+1 t-1 t 

1 n~l 2 I 
L,; e. X.X. 

n-k+l i=} I l I 

(13) 

(14) 

is the White heteroskedasticity consistent estimator, w; = I - i I k, is a scalar weight, and n -

k + I is the sample size. Then the autocorrelation consistent covariance matrix is estimated 

as: 

V = (n-k+ I)(X'xr 1s(X1X). (15) 

The OLSNO method of estimation obtains parameter estimates using OLS with a 

reduced sample where the observations do not overlap. The OLS estimates of the variance 

are unbiased since with no overlap there is no autocorrelation. The OLSNO parameter 

estimates are less efficient than the GLS estimates because of the reduced number of 

observations used in estimation. For the example of one-year changes the number of 

observations in OLSNO estimation is 12 times less than the number of observations in GLS 

estimation. 

The Newey-West estimator uses OLS with the overlapping data to obtain the 

parameter estimates which results in those parameter estimates being inefficient. In addition, 

the Newey-West estimator of the variance-covariance matrix is only consistent and thus the 
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GLS estimator will provide more accurate hypothesis tests in small samples. While it is 

known that GLS is the preferred estimator, the loss from using one of the inferior estimators 

in small samples is not known. We use a Monte Carlo study to provide information about 

the small-sample differences among the estimators. 

Monte Carlo Study 

A Monte Carlo study was conducted to determine the size and power of the 

hypothesis tests when using overlapping data and GLS, OLSNO, Newey-West, and 

unrestricted MLE, estimation methods. The Monte Carlo study also provides a measure of 

the efficiency lost from using OLSNO, Newey-West, and when the MA coefficients are 

estimated. The mean and the variance of the parameter estimates are calculated to measure 

bias and efficiency. Mean-squared error (MSE) is computed for each method of estimation. 

To determine the size of the hypothesis tests, the percentages of the rejections of the true null 

hypotheses are calculated. To determine the power of the hypothesis tests the percentage of 

the rejections of false null hypotheses are calculated. 

Data and Procedure 

Data are generated using Monte Carlo methods. A single independent variable x with 

an i.i.d. uniform distribution4 (0, 1) and error terms u with a standard normal distribution are 

4 

When autocorrelation in x is large and the error term follows a first-order autoregressive 
process, Greene (1997, p.589) finds that the inefficiency of OLS relative to GLS increases when 
thex' s are positively autocorrelated. Since many real-world datasets.have explanatory variables 
that are positively autocorrelated, the inefficiency of OLS found here may be conservative. 
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generated. We also considered a N (0, 1) for x but these results are not included in the paper 

since the conclusions did not change. The options RANUNI and RANN OR in SAS Version 

6.11 · are used. The dependent variable y is calculated based on the relation represented in 

equation (1). For simplicity Pis assumed equal to one. The data set with overlapping 

observations ofXand Yis created by summing thex's andy's as in (3). 

The regression defined in (2) was estimated using the set of data containingX and Y. 

The number of replications is 2000. For each of the 2000 original samples, different vectors 

x and u are used. This is based on Edgerton's findings that using stochastic exogenous 

variables in Monte Carlo studies improves considerably the precision of the estimates of 

power and size of the hypothesis tests. Six sample sizes Tare used, respectively, 30, 100, 

200,500, 1000, and 2000. Three levels of overlapping k-1 are used, respectively, 1, 11, and 

29. The levels 1 and 29 are chosen to represent two extreme levels of overlapping of 

practical interest. The level 11 is chosen because it corresponds to using annual changes 

when monthly data are available. 

The OLSNO, the Newey-West, and GLS estimates of Pwere obtained for each of the 

2000 samples using PROC IML in SAS software version 6.12. The unrestricted MLE 

estimates of Pwere obtained using PROC ARIMA in SAS. The .(]matrix to be used in GLS 

estimation was derived in equation (8). The Newey-West estimation was validated by 

comparing it with the available programmed estimator in SHAZAM software Version 7.0 

using the OLS ... /AUTCOV option. The power of the tests are calculated for the null 

hypothesis P= 0. 

13 



Results 

The means of the parameter estimates and their standard deviations as well as the 

MSE values for the three overlapping levels 1, 11, and 29, for the OLSNO, Newey-West, and 

GLS are presented in Tables 2, 3, and 4. The true standard deviations for the GLS estimation 

are lower than those for the OLSNO and Newey-West estimation. This shows that the 

Newey-West's and OLSNO parameter estimates are less efficient than the GLS estimates. 

The inefficiency is greater as the degree of overlapping increases and as the sample size 

decreases. For a sample size of 100 and overlapping level 29, the sample variance of the 

GLS estimates is O .119 while the sample variance of the Newey-West and OLSN O estimates 

is 2.544 and 7.969 respectively. Besides the more efficient parameter estimates, the 

difference between the estimated and actual standard deviations of the parameter estimates 

are almost negligible for the GLS estimation regardless of sample size or overlapping level. 

The estimated standard deviations for the OLSNO estimation show no biases as expected, 

but the estimated standard deviations do vary from actual standard deviations in small 

samples. The Newey-West estimation tends to underestimate the actual standard deviations 

even for overlapping level 1. The degree of underestimation increases with the increase of 

overlapping level and as sample size decreases. Sometimes the estimated standard deviation 

is only one-fourth of the true value. The Newey-West covariance estimates have previously 

been found to be biased downward in small samples (eg. Nelson and Kim; Goetzmann and 

Jorion). The parametric bootstrap suggested by Mark can lead to tests with correct size, but 

still uses the inefficient OLS estimator. 
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The inferiority of the Newey-West and OLSNO parameter estimates compared to the 

GLS estimates is also supported by the MSE values computed for the three methods of 

estimation. Thus, for the sample size 100 and the overlapping level 29, the MSE for the 

GLS, Newey-West, and OLSNO estimation is respectively 0.12, 2.55, and 8.02. 

The means of the parameter estimates and their standard deviations as well as the 

MSE values for the three overlapping levels 1, 11, and 29, for the unrestricted MLE are 

presented in Table 5. The results are similar to the results presented for the GLS estimation. 

However, in small samples the actual standard deviations of the MLE estimates are larger 

than those of the GLS estimates. As the degree of overlapping increases the sample size, for 

which the standard deviations for both methods are similar, also increases ( e.g. from 100 for 

overlapping 1 to 1000 for overlapping 29). 

The Newey-West and OLSNO estimation methods also perform considerably poorer 

than the GLS estimation in hypothesis testing. The results of the hypothesis tests are 

presented in Table 6. The Newey-West estimator rejects true null hypotheses far too often. 

In one extreme case, it rejected a true null hypothesis 50.0% of the time instead of the 

expected 5%. In spite of greatly underestimating standard deviations the Newey-West 

estimator has considerably less power than GLS except with the· smallest sample sizes 

considered. While the OLSNO estimation has the correct size, the power of the hypothesis 

tests is much less than the power of the tests with GLS. 

The results of the hypothesis tests for the unrestricted MLE are presented in Table 

7. While the power of the hypothesis tests is similar to the power for the GLS estimation, 

the size is generally larger than the size for the GLS estimation. Unrestricted MLE tends to 
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reject the true null hypotheses more often than it should. However, this problem is reduced 

or eliminated as larger samples are used, i.e. 500, 1000, 2000 observations. Table 7 also 

presents the number ofiterations for each run, as well as the number/percentage ofiterations 

that converge. The number/percentage of iterations that converge decreases as the degree 

of overlap increases and sample size decreases. Given the convergence problems, as shown 

in Table 7, it can be concluded that, when MLE is chosen as the method of estimating (2), 

the MA coefficients should be restricted rather than estimated unless the sample size is quite 

large. On the other hand, the GLS estimator, depending on computer resources, tends to run 

into storage problems when the sample size is around 2500 observations with the 64 MB 

computer used here. MLE provides an alternative estimation method that does not create a 

storage problem. 

Variations on the Overlapping Data Problem 

In practice, overlapping data often occur at the same time as some other econometric 

problems. Since the solutions are not obvious, we now discuss how the properties and 

estimation methods would need to change with changes in the assumptions. Also, if the 

explanatory variables were strictly exogenous, no observations were missing, and the errors 

were distributed normally as assumed so far there would be no need to use overlapping data 

since the disaggregate model could be estimated. For some changes in assumptions we 

present solutions, but for others we can only make suggestions to be pursued in further 

research. 
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Lagged dependent variables. 

The case of overlapping data and a lagged dependent variable ( or some other variable 

that is not strictly exogenous) was a primary motivation for Hansen and Hodrick' s estimator. 

In the usual case of autocorrelation and a lagged dependent variable, ordinary least squares 

estimators are inconsistent. Engle shows, for the case where the first lag of the dependent 

variable is used as an explanatory variable, that the use ofOLS with aggregated data could 

lead to biases of either sign and almost any magnitude. It is a general belief that with 

nonoverlapping data, ordinary least squares parameter estimates are consistent even with a 

lagged dependent variable if the lag is greater than the level of overlap. However, as we will 

show, this is not the case. With a lagged dependent variable, autocorrelation exists beyond 

the level of overlap and thus OLS estimates are inconsistent. Generalized least squares 

estimates are also inconsistent, but consistent estimates can be obtained using the maximum 

likelihood methods developed for time-series models. Therefore, we suggest maximum 

likelihood estimation for models with a lagged dependent variable when overlapping data 

are used. When nonoverlapping data are used, estimates of the parameters of the 

disaggregated process can often no longer be recovered. With nonoverlapping data, MLE 

is still preferred even though the time-series process can be quite different than the original 

process. The models usually estimated with OLSNO or Newey-West are misspecified. 

Marcellino ( 1996, 1999) discusses in detail the issues related to temporal aggregation 

of time-series models. Following his notation, ( except that x and y are switched) let 

g(L)y1 = fl..L)x, + s(L)u, 
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represent a general autoregressive disaggregated model where Lis the lag operator, g(L), 

j{L), and s(L) are polynomials of orders g, f, and s in the lag operator, x, is strictly 

exogenous, and u1 is a white noise (WN) process, u1 - WN(O,oJ. The overlapping 

observations are obtained using the following relation: 

(l+L+ ... +Lk- 1)g(L)y1 = (l+L+ ... +Lk- 1)j{L)x1 + (l+L+ ... +Lk- 1)s(L)u1 (17) 

or 

G(L)Y, = F(L)X1 + S(L)e1 t = k, k + 1, ... , T (18) 

where k is the order of the summation, and Y and X are the overlapping observations. Our 
t t 

previous results in (9) and (10) can be derived as a special case of (18). In most instances, 

G(L)=g(L). If s(L)=l, then S(L) will provide the same covariance matrix as in (5) and (6). 

While GLS estimates would not be consistent, consistent estimates can be obtained with the 

maximum likelihood methods developed for time-series models. When s(L )= 1 the MA 

coefficients would be known and asymptotically efficient estimates would require restricting 

the MA coefficients. 

Marcellino refers to the process of creating overlapping data as the first step of the 

average sampling. The second step, that is often applied by past literature, is what 

Marcellino calls point-in-time sampling of order kto the overlapping data. In a point-in-time 

sampling process only the k th Y1 and~ observations of the process in (17) and (18), for our 

example, are retained: 
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G*(B)Y = F*(B)X + S*(B)e 
t t t (19) 

where Yt = ~k, and B = Lt. Ournonoverlapping observations are average sampling of the 

disaggregated process in (1 ). Marcellino derives the upper bounds of the autoregressive 

(AR), g, and moving average (MA), s, order for the aggregated process obtained by point-in-

time or average sampling. In the case of overlapping observations, the usual practice in 

empirical work is to estimate the average sampling process in (19) rather than the process 

that involves overlapping data in (18). The assumption made is that lagged dependent 

values of order k or higher are uncorrelated with the error terms (i.e. S * ( L) = I ). 

However, Marcellino (1996) shows that ''there is an aggregated MA component even with 

an original pure AR process" (p. 13)5• Thus, if the autocorrelation in the error term in (18) 

is ignored in the estimation, as is usually done with OLSNO or Newey-West, parameters are 

estimated inconsistently. To illustrate and confirm the theoretical results, an example is now 

provided. 

Consider the disaggregated model given below: 

u, - N(O, 1) (20) 

where for simplicity a 0 = 0 and a 2 = 1. The value selected for a 1 is 0.5. Fork= 3, the 

model usually estimated is: 

5 

See also Brewer (1973), Wei (1981), and Weiss (1984). 
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Y=A +AY +AX+e , "'o "'1 ,-3 "'2 , 1 (21) 

where Y = y + y 1 + y 2,andX = x + x 1 + x 2 . As we will show, theerrorterm 
t t t- t- t t t- t-

in this model is an MA(l) and additional lags of X should be included. To get the 

overlapping observations apply (17) to (20) to get: 

(22) 

where g(L) = (1 - O.SL), f{L) = 1, and s(L) = 1, and therefore the model analogous to 

our previous model in (2) is 

Y = O.S Y 1 + X + e . 
t t- t t (23) 

The model in (23) also has the same variance-covariance matrix, described by (5) and (6), 

as our previous model in (2). 

To obtain (21) we can start from (23), substitute for ~-l and then for ~-2 to get: 

y = 0.53 y 3 + X + o.sx 1 + 0.52 X 2 + E • 
t t- t t- t- t (24) 

The error term e, in (24) is a MA process of order four of the error term u1 in (20) with 

coefficients 1.5, 1.75, 0.75 and 0.25, e, = u1 + l.5u1 _ 1 + l.75u1_ 2 +0.75u1 _ 3 +0.25u1_ 4 • The MA 

process for e, can be derived simply by substituting for the original error term u, or by 

following the procedure discussed by Marcellino (1996, 1999). Following Marcellino's 

procedure, the MA process, N(L), fore,, can be derived using the following relation N(L) = 

C(L) * S(L), where, for our example, C(L) = (1 + 0.5 L + 0.25 L 2) and S(L) = (1 + L + L 2). 
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If only the k th Y, and X, observations are observed in practice ( average sampling) 

then, ~-I' and ~-2 are not observable. In this case, an analytical solution of (24) cannot 

be derived. To be consistent with our previous result, Xis strictly exogenous and not 

autocorrelated. Based on the temporal aggregation literature (Brewer (1973), p.141, Weiss 

(1984), p. 272, and Marcellino (1996) p. 32), no analytical solution is possible unless x, is 

generated by some autocorrelated process and the unobserved terms can be derived from the 

observed terms. However, based on the fact that the AR coefficient is the same whether 

point-in-time or average sampling is used, we know then that the AR coefficient is 0.125. 

The number oflags for the X and the order of the MA process cannot be derived analytically. 

Therefore, we used Box-Jenkins methods to identify which lags to include in the model. We 

estimated the following models: 

Y = o.53 Y 3 + Rix + p3x 3 + v ,: ,:- t' ,: ,:- ,: (25) 

and 

(26) 

The model in (26) is sound theoretically in the sense that the unobserved lags for X are X,.1 

and X,.2 and thus it makes sense to include them in the model. However, the model in (26) 

may not be feasible in practice. It uses nonoverlapping data for the Y, but it requires 

overlapping data on the X which may not always be available. 

To confirm our analytic findings we estimated the models in (23 ), (24 ), (25), and (26) 

with MLE using PROC ARIMA in SAS software version 6.12 using a large Monte Carlo 
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sample of 500,000 observations. The results are reported in Table 8. The empirical 

estimates of the AR and MA coefficients and the coefficients of the Xs for the models in (23) 

and (24) fully support our analytic findings. One potential problem with the model in (24) 

is the noise introduced in estimating ~-l' and ~-2 . The variable~- l includes x1 _ 1, x1_2 , 

and x1_3 , and ~- 2 includes x1_2 , x1_3 , and x1_4 , while onlyx1_ 1 and x1_2 are relevant. This 

errors-in-variables problem biases parameter estimates toward zero. The noise introduced 

and the associated bias would be greater as the degree of overlap increases. 

We estimated (25) with MLE and nonoverlapping data, while (26) is estimated using 

both overlapping and nonoverlapping data. Both models result in an ARMA(l, 1) process 

with the AR coefficient O .118 for (25) and O .123 for (26) which are close to the analytical 

value of 0.125. The MA coefficient is the same for both models, 0.163 which provides 

support to the choice of these models. Higher lags of X for the model in (25) were not 

significant. 

We also estimated (25) with Newey-West and OLSNO. The lagged value oftheX 

is not included in the estimation in order to be consistent with the models usually estimated 

in the empirical literature. These models are the same as the model presented in (21 ). The 

parameter estimates were identical for both methods. The parameter estimates are 0.278 for 

the coefficient on Y, _ 3, and 1.415 for the coefficient on X,. The parameter estimate for 

Y,_ 3 is biased upwards for two reasons. First,Y,_3 is correlated with the missing 

explanatory variable X,_ 3 . Also, the coefficient of Y,_ 3 is capturing part of the effect of the 

missing MA term. Thus, our empirical estimates confirm the inconsistency ofNewey-West 

andOLSNO. 
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With overlapping data and a lagged dependent value as an explanatory variable the 

only consistentestimation method is maximum likelihood with (23). Unlike GLS, maximum 

likelihood provides consistent estimates when the explanatory variables are predetermined 

whether or not they are strictly exogenous. Also, the model in (23) has the familiar ARMA 

process, with the AR order the same as the AR order of the disaggregated model (in our case 

(20)) and MA order k-1. 

Nonnormality 

The GLS estimator does not assume normality, so estimates with GLS would remain 

best linear unbiased and asymptotically efficient. The hypothesis tests derived depend on 

normality. Hypothesis tests based on normality would still be valid asymptotically provided 

the assumptions of the central limit theorem hold. As the degree of overlapping increases, 

the residuals would approach normality, so nonnormality would be less of a concern. The 

Newey-West estimator is also only asymptotically valid. The GLS transformation of the 

residuals might also speed the rate of convergence toward normality since it is "averaging" 

across more observations than the OLS estimator used with Newey-West. However, the 

empirical results show that the faster rate of convergence for GLS is small. 

We estimated (2) with two correlated x's and with the error term u following a!­

distribution with four degrees of freedom. Results are reported in Table 9. The main 

difference with the previous results is the increased standard deviations for all methods of 

estimation. Proportionally, the increase in standard deviations is slightly larger for Newey­

West and O LSN O. Thus, the Monte Carlo results support our hypothesis that the advantages 
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of GLS would be even greater in the presence ofnonnormality. This can also be seen from 

the hypothesis test results presented in Table 9. The power of the three methods of 

estimation is reduced with the biggest reduction occurring for the Newey-West and OLSNO. 

Finally, the increase of the standard deviations and the resulting reduction in power of 

hypothesis tests, is larger when the correlation between the two x's increases. This is true 

for the three methods of estimation. 

Missing observations 

Missing observations can be a reason to use overlapping data. It is not unusual in 

studies of economic growth to have key variables observed only every five or ten years at 

the start of the observation period, but every year in more recent years. Using overlapping 

data allows using all of the data. 

When some observations are missing, one can derive the correlation matrix in (8) as 

if all observations were available and then delete the respective rows and columns for the 

missing overlapping observations. The Newey-West estimator assumes autocovariance 

stationarity and so available software packages that include the Newey-West estimator would 

not correctly handle missing observations. It should, however, be possible to modify the 

Newey-West estimator to handle missing observations. 

Varying levels of overlap 

It is not uncommon in studies of hedging to consider different hedging horizons 

which leads to varying levels of overlap (i.e. k is not constant). This introduces 
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heteroskedasticity of known form in addition to the autocorrelation. In this case it is easier 

to work with the covariance matrix than the correlation matrix. The covariance matrix is o2 
u 

times a matrix that has the number of time periods (the value of k,) used in computing that 

observation down the diagonal. The off diagonal terms would then be the number of time 

periods for which the two observations overlap. Allowing for the most general case of 

different overlap between every two consecutive observations, the unconditional variance 

of e, (given in (5)) now is: 

Var[e 1 = o2 = E[e 2] = ko2 • t1 e t tu (27) 

Previously, two different error terms, e, and e,+s, had k- s common original error terms, u, 

for any k- s > 0. Now, they may have less thank- s common u's and there no longer is a 

monotonic decreasing pattern of the number of the common u's as e, and e,+s get further 

apart. We let k,s represent the number of common u' s ( overlapping periods) between e, and 

e, + s· Therefore, the covariances between the error terms e, and e, + s, are: 

cov[e ,e ] = E[e e ] = (k )if 
t t+s t t+s tr u (28) 

The covariance matrix is then: 

kl kl2 kl3 .•. kls O 0 

k21 k2 k23 k2s 0 

(29) 

0 0 kts ... k,(,-2) k,(t-1) k, 
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where, k,s = ks,· The standard Newey-West procedure does not handle varying levels of 

overlap since it assumes autocovariance stationarity. 

Additional source of autocorrelation 

In practice there may be sources of autocorrelation in addition to that caused by the 

overlapping data problem. Mathematically, this would imply that ut in (1) is autocorrelated. 

If the disaggregated process is an MA process, then the procedure developed in the lagged 

dependent variable section can be applied straight forward. If the error term in (1) follows 

an ARMA process then the same procedure can be applied with slight modification. Assume 

thatu1 in (1) follows the process: 

(30) 

where~' is a white noise (WN) process, ~, - WN(O,a~)- Aggregation of (1) to obtain the 

overlapping observations 

(l+L+ ... +Lk-t)y1 = (l+L+ ... +Lk-t)x, + (l+L+ ... +Lk-l)u, (31) 

introduces the same level k of aggregation to (30), which now becomes: 

(1 + L + ... + L k- 1)m(L)u = (1 + L + .•. + L k- 1)h(L)~ 
I . I (32) 

or 

M(L)e, = H(L)~. (33) 
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Then, the procedures discussed in the lagged dependent variable case can be applied with· 

respect to (30) to obtain the order and the values of the AR and MA coefficients in (33) to 

be used in estimating (2). In this case, any of the standard methods for estimating a 

regression with ARMA errors can be used. 

Heteroskedasticity 

If the residuals in the disaggregated data (u, in (1)) are heteroskedastic, then 

estimation is more difficult. Define o2 as the time-varying variance of ut and o2 as· the 
~ ~ 

k-1 
time-varying variance of e,. Assume the u,'s are independent and thus o2 = L o2 .• For 

et . 0 ut-J ,= 
simplicity, assume that o2 depends only on x,. · If o2 is assumed to be a linear function 

~ ~ 

k-1 
of x ( o2 = y' x '\ then the function aggregates nicely so that o2 = L y 1 x . = y'x. But, 

t ut t' et ·-o t-J t 
,- ·=o 

if multiplicative heteroskedasticity is assumed (o2 = exp (y1x)) then o2 = f exp(y'x _.) 
ut et k- l t J 

and there is no way to consistently estimate y using only aggregate data (nonoverlapping 

data also have the same problem). 

The covariance between e, and e, + s for any k - s ~ 0 would be 

k-1 

Cov (et' et+)=]; o!(t-,)· (34) 

Since the correlation matrix, 0 is known, as given by (8), the covariance matrix can be 

derived using the relation: 

~ = r'or (35) 
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where r = D.L4Gly'X1, y1X2, ••• , y'xrJwheretheDIAGfunctioncreatesadiagonalmatrix 

from the vector argument. A feasible generalized least squares estimator can then be 

developed using (16). It might be reasonable to use (9) as the first stage in a FGLS 

estimation that corrected for heteroskedasticity. 

Errors in variables 

The most common reason authors give for using overlapping data is a problem with 

errors in the explanatory variables. Errors in the explanatory variables causes parameter 

estimates to be biased toward zero, even asymptotically. Using overlapping data reduces this 

problem, but the problem is only totally removed as the level of overlap, k, approaches 

infinity. 

We added to the x in (1) a measurement error, w, that is distributed normally with the 

same variance as the variance of x, w - N (0, 1/12). We then conducted the Monte Carlo 

study with x not being autocorrelated and also with x being autocorrelated with a 

autoregressive coefficient of 0.8. In addition to estimating (2) with GLS, Newey-West, and 

OLSNO, we also estimated (1) using the disaggregate data. The results are reported in Table 

10. · The estimation was performed only for two sample sizes, respectively 100 and 1000 

observations. In the case when x is not autocorrelated, there is no gain in using overlapping 

observations, in terms of reducing the measurement error. This is true for all methods of 

estimation. 

In the case when x is autocorrelated, the largest reduction in measurement error 

occurs when Newey-West and OLSNO are used. Moreover, the bias is always larger for 
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GLS estimates compared to Newey-West and OLSNO estimates. The reduction in the 

measurement error because of using overlapping observations is confirmed by comparing 

the Newey-West and OLSNO estimates to the disaggregate estimates. The GLS 

transformation of the variables instead of further reducing the measurement error, 

compounds the error on the overlapping observations. This compounding effect almost 

totally offsets the error reduction effect of the aggregation process that creates the 

overlapping observations. This can be seen from the results of Table 10 where the GLS 

estimates are just barely less biased than the disaggregate estimates. Therefore, the GLS 

estimation is not an appropriate estimation method if the reason for using overlapping data 

is errors in the variables. Newey-West standard errors are still biased, so the preferred 

estimation method in the presence of large errors in the variables would be OLS with 

overlapping data and with standard errors calculated using Monte Carlo methods. 

Imperfect overlap 

Sometimes observations overlap, but they do not overlap in the perfect way assumed 

here and so the correlation matrix is no longer known. An example would be where the 

dependent variable represents six months returns on futures contracts. Assume that there are 

four different contracts in a year, the March, June, September, and December contracts. 

Then, the six-month returns for every two consecutive contracts would overlap while, the 

six-months returns between say March and September contracts would not overlap. Two six­

month returns for, say the March contract, that overlap for three months would be perfectly 

correlated for these four months. The six-month returns for the March and June contracts 
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would overlap for three months, but they would not be perfectly correlated during these three 

months, since the March and June contract are two different contracts. Let 

{
cr . if m = 0 JS 

Cov(ujt•ust+m) = . 
0 otherwise 

(36) 

be the covariance between the monthly returns m months ( or days if disaggregated data are 

daily data) apart for the March and June contracts where uil and us, are the error term from 

regression models with disaggregate data for the March and June contract. Then, 

(37) 

and 

(38) 

where 'ss is the number of overlapping months between the March and May contracts and 

O' is = pp; where P; (i = 1, 2) is the correlation between the u's for two consecutive 

contracts with maturities three ( p1 ) and six ( p2 ) months apart. The covariance matrix for 

(2) in this case is: 
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k 
k-1 k-2 k-3 k-4 k-5 

0 0 0 0 0 0 -k- --,;-P11cP1 TP2 1cP2 

k-1 k 
k-1 k-2 k-3 k-4 k-5 

0 0 0 0 0 
k -k- TP1 -k-pl TP2 TP2 

k-3 k-2 k-1 
k 

k-1 k-2 k-3 k-4 k-5 
0 0 0 -k-pl TP1 k -k- 1cP11cP1 -k-p2 TP2 

k-4 k-3 k-2 k-1 
k 

k-1 k-2 k-3 k-4 k-5 
0 0 

I: = 02 
-k-P2 k P1 k P1 -k- -k- -k- P1 k P1 TP2 -k-p2 

(39) . 

0 0 0 0 0 0 

Nonparametric methods 

Sometimes authors want to use nonparametric methods that assume independence. 

In this case the only general solutions we can propose are to use nonoverlapping data, switch 

to a parametric method, or use Monte Carlo hypothesis testing procedures such as 

bootstrapping. 

Cross-section time-series data 

Sometimes the overlapping data are part of a cross-section time-series dataset. 

Studies of economic growth are an example of where such a dataset would be used. In this 

case Q is still constructed in much the same way except it now becomes block diagonal. 

Cross-section time-series data will often be cross-sectionally heteroskedasticand so the same 
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problems as discussed above under heteroskedasticity apply except that the covariance of the 

errors becomes block diagonal. 

Next, assume that the disaggregate data have an error component so (1) becomes 

Y = P'x + u + r 
it it t ~it 

Then (2) becomes 

where t + k - 1 t + k - 1 t + k - 1 

Y.t = L y .. ,X.t L x .. , and e.1 = L u .. 
I j=t I] I j=t I] I j=t I] 

Now var(e;) = (k+ 1)~ + (k+ 1)20~ and 

if k-s-:?. 0 

if k-s<O. 

One possible estimator is an FGLS estimator which estimates the fixed effects model 

corrected for autocorrelation and then uses the estimated fixed effects to estimate the error 

components. The second is a maximum likelihood or restricted maximum likelihood 

estimator analogous to those discussed by Searle, Casella, and McCulloch. We leave the 

appropriateness of such estimators to be resolved by subsequent research. The Newey-West 

estimator can handle overlapping data and error components, but the covariance matrix needs 

to be estimated separately for each block. 
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Conclusions 

We have explored using the GLS estimator when working with overlapping data. 

When explanatory variables are strictly exogenous the GLS estimator is superior to the 

commonly used estimators. The alternative estimators that were compared with the GLS 

estimator were, the Newey-West estimator and ordinary least squares with nonoverlapping 

data (OLSNO) and unrestricted MLE. Unrestricted MLE tends to reject the true null 

hypotheses more often than it should. However, this problem is reduced or eliminated as 

larger samples are used, i.e. 1000, 2000 observations. GLS estimator can exhaust computer 

memory limits when the sample size is large. MLE can be used instead since it requires less 

memory. 

There is a gain in the efficiency of the parameter estimates when the GLS estimator 

is used instead of the other two estimators. The gain in efficiency increased with the level 

of overlapping. With overlapping of29 time periods, the MSE ofNewey-West was roughly 

20 times larger than the MSE of GLS. The MSE of the OLSNO estimator was even larger. 

The Newey-West estimator rejected true null hypotheses too often. This problem 

persisted even with sample sizes of 1,000. The power of the Newey-West hypotheses tests 

also was much slower to converge to one than the power of the GLS estimator. While 

hypothesis tests with the OLSNO estimator had the correct size, they had considerably lower 

power than either of the other two estimators. 

We have also evaluated ways of obtaining parameter estimates when our original 

assumptions are relaxed. Several of these are especially important since they provide the 
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motivation for using overlapping data in the first place. Others are important because they 

are commonly faced in empirical work. If the motivation for using overlapping data is 

missing observations or nonnormality then GLS is still the preferred estimator. When lagged 

dependent variables are used as explanatory variables, GLS is inconsistent, but the usual 

Newey-West and OLSNO estimators are misspecified and therefore also inconsistent. 

Consistent parameter estimates can be obtained with maximum likelihood. When the reason 

for using overlapping data is to reduce bias due to errors in the variables, GLS is nearly as 

biased as the disaggregate model. We suggest using OLS to estimate parameters and using 

Monte Carlo methods to calculate standard errors. 

As we have shown, overlapping data is often used in finance and in studies of 

economic growth. The commonly used estimators are either inefficient or yield biased 

hypothesis tests. The appropriate estimator to use with overlapping data depends on the 

situation. 
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Table 1. Number of Articles Using Overlapping Data, 1996. 

Journal Number of articles Total number of Percentage 
empirical of articles 

articles in the with 
OLSNO N-W Other" OLS Total journal overlapping 

data 

J. Finance 16 8 8 26 55 47.3 

Amer. Econ. 10 3 2 14 77 18.2 
Rev. 

J. Fut. Mkts. 12 3 5 2 19 43 44.2 
Note: The sum of the columns 2 through 5 may be larger than the total in column 6 since some 
articles use more than one method of estimation. 
a These include HH and AM estimators. 
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Table 2. Parameter Estimates, Standard Deviations, and MSE for OLSNO, Newey-West, 
and GLS Estimation (Overlapping I). 

GLS Estimation Newey-West Estimation Non-overlapping Estimation 

Sample Parameter Standard MSE Parameter Standard MSE Parameter Standard MSE 
Size Estimates Deviations Estimates Deviations Estimates Deviations 

30 0.981 0.639 8 0.440 0.971 0.631 8 0.654 0.970 0.893 8 0.865 
0.663 b 0.808 b 0.930 b 

100 1.005 0.348 8 0.119 0.996 0.374 8 0.179 0.997 0.490 8 0.247 
0.345 b 0.423 b 0.497b 

200 0.993 0.246 8 0.060 0.993 0.269 8 0.092 0.989 0.346 8 0.119 
0.244 b 0.303 b 0.345 b 

500 1.001 0.155 8 0.024 1.003 0.172 8 0.036 1.001 0.219 8 0.048 
0.154 b 0.189 b 0.218 b 

1000 1.001 0.110 8 0.012 0.997 0.122 8 O.oI8 1.005 0.155 8 0.024 
0.109 b 0.134 b 0.156 b 

2000 1.002 0.077 1 0.007 0.998 0.086 8 0.010 1.002 0.110 8 0.014 
0.082 b 0.098 b 0.116 b 

Note: The sample sizes are the sizes for samples with overlapping observations. 
• These are the estimated standard deviations of the parameter estimates. 
b These are the actual standard deviations of the parameter estimates. 

Note: The model estimated is Y, = J3 'X1 + e1 where J;° and X, represent some aggregation of 

the original disaggregated variables. For simplicity Pis chosen equal to 1. The model is estimated 
using Monte Carlo methods involving 2000 replications. The errors for the original process are 
generated from a standard normal distribution and are hornoskedastic and not autocorrelated. As a 

result of the aggregation, e1 follows an MA process with the degree of the process depending on the 

aggregation level applied to y and X . 

36 



Table 3. Parameter Estimates, Standard Deviations, and MSE for OLSNO, Newey-West, 
and GLS Estimation (Overlapping 11 ). 

GLS Estimation Newey-West Estimation Non-overlapping Estimation 

Sample Parameter Standard MSE Parameter Standard MSE Parameter Standard MSE 
Size Estimates Deviations Estimates Deviations Estimates Deviations 

30 1.001 0.647" 0.418 1.032 0.665 8 3.527 1.220 2.940 8 21.216 
0.647b 1.878 b 4.601 b 

100 0.998 0.348 8 0.129 1.003 0.651 • 1.096 1.008 1.256 • 1.711 
0.359 b 1.047 b 1.308 b 

200 0.994 0.245 • 0.056 0.989 0.527" 0.487 0.993 0.871 • 0.802 
0.236 b 0.698 b 0.895 b 

500 1.005 0.155 • 0.024 1.005 0.363 8 0.207 1.026 0.540 8 0.294 
0.155 b 0.455 b 0.542 b 

1000 0.997 0.110 8 0.013 1.004 0.262 • 0.099 1.002 0.382 8 0.152 
0.112 b 0.315 b 0.390 b 

2000 0.995 0.078 • 0.006 0.999 0.189 8 0.050 0.999 0.270 • 0.074 
0.077b 0.223 b 0.272 b 

Note: The sample sizes are the sizes for samples with overlapping observations. 
• These are the estimated standard deviations of the parameter estimates. 
b These are the actual standard deviations of the parameter estimates. 
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Table 4. Parameter Estimates, Standard Deviations, and MSE for OLSNO, Newey-West, 
and GiS Estimation (Overlapping 29). 

GLS Estimation Newey-West Estimation Non-overlapping Estimation 

Sample .Parameter Standard MSE Parameter Standard MSE Parameter Standard MSE 
Size Estimates Deviations Estimates Deviations .Estimates Deviations 

30 0.996 0.648 8 0.446 0.996 0.539 • 4.858 
0.668 b 2.204 b 

100 1.005 0.349 8 0.119 1.077 0.711 • 2.551 1.233 2.228 • 8.023 
0.345 b 1.595 b 2.823 b 

200 0.996 0.245 8 0.062 1.016 0.694 • 1.478 0.988 1.467 1 2.469 
0.248 b 1.216 b 1.571 b 

500 1.005 0.155 8 0.025 1.029 0.523 8 0.528 1.025 0.867 8 0.798 
0.158 b 0.726 b 0.893 b 

1000 1.004 0.110 8 0.012 1.011 0.394 • 0.246 1.010 0.605 8 0.374 
0.110 b 0.496 b 0.611 b 

2000 1.002 0.077 • 0.006 1.002 0.290 • 0.118 1.004 0.427" 0.181 
0.078 b 0.343 b 0.425 b 

Note: The sample sizes are the sizes for samples with overlapping observations. 
• These are the estimated standard deviations of the parameter estimates. 
b These are the actual standard deviations of the parameter estimates. 
c These values cannot be estimated because of the very small number of observations. 
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Table 5. Parameter Estimates, Standard Deviations, and MSE for the Maximum Likelihood 
Estimates Assuming the MA Coefficients are Unknown for Three Levels of Overlapping (I, 
11, and 29). 

Overlapping I Overlapping 11 Overlapping 29 

Sample Parameter Standard MSE Parameter Standard MSE Parameter Standard MSE 
Size Estimates Deviations Estimates Deviations Estimates Deviations 

30 0.975 0.622 a 0.391 1.019 0.541 a 0.694 -C 

0.624 b 0.833 b 

100 1.010 0.343 a 0.120 0.998 0.311 a 0.140 0.991 0.281 • 0.207 
0.347 b 0.374 b 0.455 b 

200 0.989 0.243 a 0.061 0.995 0.230 a 0.065 0.984 0.216 a 0.078 
0.247b 0.256 b 0.278 b 

500 0.990 0.154 a 0.025 0.990 0.149 a 0.025 0.986 0.145 • 0.027 
0.156 b 0.158 b 0.165 b 

1000 0.991 0.112 8 0.013 0.991 0.107 8 0.013 0.990 0.105 8 0.013 
0.109 b 0.112 b 0.112 b 

2000 0.995 0.078 a 0.006 0.995 0.076 8 0.006 0.995 0.075 8 0.006 
0.077 b 0.078 b 0.080 b 

Note: The sample sizes are the sizes for samples with overlapping observations. 
• These are the estimated standard deviations of the parameter estimates. 
b These are the actual standard deviations of the parameter estimates. 
0 These values cannot be estimated because of the very small number of observations. 
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Table 6. Power and Size Values of the Hypothesis Tests for OLSNO, Newey-West, and 
GLS Estimation (Overlapping 1, 11, 29). 

Degree of Sample GLS Estimation Newey-West Estimation Non-overlapping Estimation 
Overlapping Size 

Power Size Power Size Power Size 

30 0.319 0.052 0.366 0.135 0.181 0.044 

100 0.043 0.500 0.090 0.500 0.052 

200 0.042 0.081 0.049 

500 0.053 0.078 0.052 

1000 0.049 0.075 0.056 

2000 0.058 0.089 0.072 

11 30 0.315 0.044 0.500 0.492 0.045 0.044 

100 0.056 0.434 0.254 0.111 0.046 

200 0.039 0.486 0.169 0.194 0.045 

500 0.048 0.500 0.124 0.455 0.050 

1000 0.053 0.104 0.500 0.051 

2000 0.046 0.997 0.094 0.958 0.049 

29 30 0.340 0.049 0.500 0.500 

100 0.044 0.500 0.417 0.070 0.056 

200 0.055 0.449 0.291 0.070 0.046 

500 0.061 0.500 0.176 0.203 0.044 

1000 0.050 0.500 0.132 0.364 0.055 

2000 0.059 0.885 0.113 0.646 0.051 

Note: The sample sizes are the sizes for samples with overlapping observations. 
• These values cannot be estimated because of the very small number of observations. 
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Table 7. Power and Size Values of the Hypothesis Tests for the Maximum Likelihood 
Estimates Assuming the MA Coefficients are Unknown for Three Levels of Overlap (1, 11, 
and 29). 

Degree of Sample Total Number Iterations that Converge 
Overlap Size of Iterations Powerb Size b 

Number Percentage 

30 1000 999 99.9 0.331 0.070 

100 1000 1000 100 0.827 0.047 

200 1000 1000 100 0.982 0.058 

500 1000 1000 100 1.000 0.060 

1000 1000 1000 100 1.000 0.062 

2000 1000 1000 100 1.000 0.051 

11 30 1400 994 71.0 0.476 0.252 

100 1000 995 99.5 0.884 0.109 

200 1000 1000 100 0.980 0.085 

500 1000 998 99.8 0.998 0.075 

1000 1000 1000 100 1.000 0.069 

2000 1000 1000 100 1.000 0.056 

29 30 

100 1600 970 60.6 0.814 0.254 

200 1200 1027 85.6 0.980 0.135 

500 1200 1082 90.2 1.000 0.081 

1000 1100 1066 96.9 1.000 0.078 

2000 1000 932 93.2 1.000 0.060 

Note: The sample sizes are the sizes for samples with overlapping observations. 
• These values cannot be estimated because of the very small number of observations. 
b These are calculated based on the number of replications that converged. 
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Table 8. Parameter Estimates of Different Models for the Case of the Lagged Dependent Variable. 

Equation 
Number 

(23) 

(24) 

(26) 

(25) 

(25) 

Method of 
Estimation 

MLE 

MLE 

MLE 

MLE 

Newey-West 
OLSNO 

Data Estimated Model 

Overlapping 
Y1 =0.0016 +0.496 Y1_ 1 + I.0065X1 +e, +E1_1 +0.99999E1_2 

Overlapping 
Y, = 0.078 + 0.108 Y1_3 + 1.007 X, +0.493_x;_ 1 + 0.234_x;_ 2 +e, + 1.471 E1_ 1 + l.69e1_2 +0.69e1_3 +0.219e1_4 

Overlapping 
Y, =0.019 +0.123 Y,_ 3 + l.002_x;_ 1 +0.489_x;_ 2 +0.2Sl_x;_3 +e, +0.163e,_ 1 

Nonoverlapping 
Y, =0.015 +0.118 Y, _3 + l.413X, +0.342X,_ 3 + e, +0.163 e,_ 3 

Nonoverlapping 
Y, =0.278Y,_ 3 + l.415X, +e, 

Note: The models in Table 8 are estimated using a large Monte Carlo sample of 500,000 observations. The unrestricted maximum likelihood estimates are 
obtained using PROC ARIMA while the Newey-West and OLSNO estimates are obtained using PROC IML in SAS. 



Table 9. Parameter Estimates, Standard Deviations, MSE, and Power and Size of Hypothesis Tests for OLSNO, Newey-West, 
and GLS Estimation with Two Xs and Nonnormal Errors(Overlapping 1, 11, and 29). 

Degree GLS Estimation Newey-West Estimation Non-overlapping Estimation 
of Sample 

Overlap Size Parameter Standard MSE Power Size Parameter Standard MSE Power Size Parameter Standard MSE Power Size 
Estimates Deviations Estimates Deviations Estimates Deviations 

30 1.014 0.953' 1.007 0.208 0.046 0.997 0.898 • 1.606 0.288 0.152 1.049 1.334' 3.220 0.201 0.128 
1.003 • 1.267 • 1.794 • 

100 0.969 0.498' 0.261 0.494 0.053 0.969 0.526' 0.386 0.460 0.095 0.999 0.700' 0.766 0.342 0.111 
0.510 • 0.621 • 0.875 • 

500 1.008 0.226' 0.050 0.988 0.051 1.005 0.249' 0.074 0.956 0.082 0.996 0.317' 0.152 0.832 0.117 
0.223 • 0.273 • 0.390 • 

1000 1.004 0.159' 0.024 l 0.042 1.00) 0.177' 0.037 0.999 0.070 1.002 0.225 • 0.082 0.971 0.121 
0.155 • 0.192 • 0.286 • 

11 30 1.019 0.943' 0.890 0.202 0.049 0.977 0.830' 6.684 0.579 0.541 
0.943 • 2.585 • 

JOO 0.994 0.507' 0.274 0.498 0.052 0.998 0.915' 2.196 0.338 0.244 0.944 2.059 • 4.975 0.072 0.051 
0.523 • 1.482 • 2.230 • 

~ 500 1.008 0.226' 0.051 0.993 0.049 1.010 0.524' 0.439 0.517 0.138 1.035 0.810' 0.687 0.236 0.056 vJ 
0.225 • 0.663 • 0.828 • 

1000 1.003 0.159' 0.025 l 0.042 1.022 0.378' 0.209 0.734 0.107 1.016 0.557' 0.323 0.432 0.057 
0.159 • 0.457 • 0.568 • 

29 30 1.014 0.935' 0.990 0.193 0.056 1.014 0.654' 6.833 0.629 o.611 
0.995 • 2.614 • 

100 1.009 0.507' 0.294 0.513 0.046 0.995 0.911 ' 5.420 0.505 0.455 0.982 4.919' 81.94 0.063 0.059 
0.543 • 2.328 • 9.052 • 

500 1.010 0.226' 0.051 0.989 0.050 0.958 0.759' 1.085 0.335 0.177 0.950 1.350' 1.920 0.103 0.052 
0.225 • 1.041 • 1.385 • 

1000 1.000 0.)60' 0.026 1 0.058 1.008 0.570' 0.547 0.464 0.143 1.023 0.898 • 0.818 0.200 0.056 
0.162 • 0.739 • 0.904 • 

Note: The sample sizes are the sizes for samples with overlapping observations. 
• These are the estimated standard deviations of the parameter estimates. 
h These are the actual standard deviations of the parameter estimates. 
c These values cannot be estimated because of the very small number of observations. 



Table 10. Parameter Estimates, Standard Deviations, and MSE, for GLS, Newey-West, OLSNO, and the Disaggregate Estimation 
with Measurement Errors in X (Overlapping 1, 11, and 29). 

Correlat. Sample Degree GLS Estimation Newey-West Estimation Non-overlapping Estimation Disaggregate Estimation 
of Size of 
X Overlap Parameter Standard MSE Parameter Standard MSE Parameter Standard MSE Parameter Standard MSE 

Estimates Deviations Estimates Deviations Estimates Deviations Estimates Deviatio 
ns 

0 100 1 0.494 0.252' 0.320 0.493 0.269' 0.354 0.494 0.360' 0.389 0.494 0.250' 0.318 
0.252 • 0.311 • 0.361 • 0.250 • 

11 0.509 0.252' 0.310 0.512 0.479' 0.784 0.503 0.952' 1.303 0.510 0.239' 0.303 
0.263 • 0.739 • 1.028 • 0.251 • 

29 0.495 0.253 • 0.320 0.480 0.501' 1.675 0.390 1.789' 5.709 0.497 0.222' 0.303 
0.254 • 1.185 • 2.310• 0.223 • 

1000 I 0.499 0.079' 0.257 0.502 0.088' 0.257 0.501 0.112' 0.261 0.499 0.079' 0.257 
0.077 • 0.095 • 0.111 • 0.077 • 

11 0.502 0.079 • 0.255 0.499 0.189' 0.303 0.497 0.277' 0.332 0.501 0.079' 0.255 
0.080 • 0.221• 0.281 • 0.080 • 

29 0.499 0.079' 0.257 0.517 0.285' 0.366 0.509 0.441' 0.440 0.499 0.078 • 0.257 
.i:,. 0.078 • 0.364 • 0.445 • 0.011• 
.i:,. 

0.8 • 100 I 0.718 0.191 • 0.119 0.816 0.174' 0.080 0.816 0.218' 0.084 0.716 0.190' 0.120 
0.199" 0.214" 0.223 • 0.198" 

11 0.731 0.187' 0.111 0.931 0.187' 0.096 0.934 0.337' 0.127 0.721 0.181' 0.113 
0.196 • 0.302 • 0.351 • 0.187 • 

29 0.730 0.186' 0.110 0.963 0.174' 0.186 0.966 0.536' 0.493 0.720 0.166' 0.109 
0.194 • 0.429• 0.701 • 0.174" 

1000 1 0.735 0.058 • 0.074 0.833 0.055 • 0.032 0.832 0.066' 0.033 0.734 0.058' 0.074 
0.060 • 0.065 • 0.067" 0.060 • 

11 0.733 0.058' 0.075 0.940 0.071' 0.011 .0.941 0.096 • 0.013 0.732 0.058' 0.075 
0.062 • 0.086 • 0.097" 0.062 • 

29 0.736 0.058' 0.073 0.954 0.091' 0.016 0.950 0.135' 0.021 0.735 0.057' 0.074 
0.061 • 0.116 • 0.138" 0.060 • 

Note: The sample sizes are the sizes for samples with overlapping observations. 
• These are the estimated standard deviations of the parameter estimates. 
b These are the actual standard deviations of the parameter estimates. 
c The x is generated as follows: x, = x0, + c.>,, where x0, - uniform (0, 1) and c.>1 - N (0, 1/12). 
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The Optimal Investment Strategy of a Hedge Fund 

Abstract 

This paper presents a model of a hedge fund manager's decision problem.. The 

objective is to maximize the net present value of the manager's fees. The model assumes 

fees are paid discretely and that the manager is paid both of fixed fee and an incentive fee. 

The inclusion of withdrawals in the model introduces nonlinearity in the objective function. 

This nonlinearity in the objective function and the inclusion of fixed fees may explain why 

poor performers do not increase the variance of their portfolio to infinity as previous work 

suggest. 

Key words: hedge funds, optimal investment strategy, fixed fee, incentive fee. 
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The Optimal Investment Strategy of a Hedge Fund 

Introduction 

The potential conflict ofinterest between investment advisors and their clients concerns 

economists, policy makers, and investors, among others. Of particular interest is the way in 

which compensation arrangements between the two parties affect the conflict (Cohen and 

Starks). The fiduciary relationship between portfolio managers and the investors is often 

viewed as a principal-agent relationship. An agency relationship exists when one party, the 

agent, is engaged by another party, the principal, to perform some specified service on behalf 

of the principal (Starks). The methodology from the agency literature in economics and 

finance has been used to study the impact of various compensation arrangements on the 

conflict of interest between these two groups in a world where only mean (return) and 

variance (risk) matter. 

Starks (1987), using agency theory, investigates the effect of two types of performance 

incentive fees: symmetric performance incentive fees and "bonus" performance incentive 

fees. In the case of the symmetric performance fee schedule, the manager receives a 

percentage of the market value of the assets plus a bonus or a penalty, depending on whether 

the portfolio return was higher or lower than the return on some market index. In the case 

of the "bonus" performance fee schedule, the manager receives a percentage of the market 

value of the assets plus a bonus if the portfolio's return exceeds the return on the index 

(benchmark). No penalty is assessed when the return is below the benchmark return. Starks 

finds that when the manager's only decision is to select the portfolio's risk level, the 
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symmetric performance fee schedule will provide the appropriate incentives for selecting the 

investor's desired risk level. On the other hand, if the manager will also decide the level of 

resources, then the agency problem will not be eliminated by the symmetric performance 

fee schedule. In this case, the manager's optimal level of resources will be less than the 

investor's optimal level ofresources. However, under the bonus performance fee schedule 

the manager will choose an even lower level of resources and a higher than optimal level of 

risk. 

Cohen and Starks employing a principal-agent model and the assumptions of the 

Capital Asset Pricing Model (CAPM) show that for certain utility functions, estimation risk 

leads the manager to choose a lower beta portfolio than otherwise. By making more strict 

assumptions about preferences, they show that the manager will provide more effort but also 

a riskier portfolio than the investor prefers. They also show that the investor will prefer a 

manager who is more risk preferring than the investor. 

Golec provides empirical tests of the investor-investment advisor relationship. His 

model, also based on agency theory, differs from Starks' model and other models in two 

aspects. In Golec' s model, the input of the agent is clearly specified as investment 

information rather than general effort. In addition, the investment information (the input) 

affects not only the expected return of the portfolio, it also affects the variance of returns. 

Golec examines the relation between the fixed fees and incentive fees with the fund size 

(dollar amount of investment), fund's beta with respect to a market index, the agent's 

information ratio (defined as the tradeoffbetween expected return and variance of returns), 

and the nonrandom return associated with the information available to the agent. Golec finds 
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that the incentive fee should be negatively related to the fund size and positively related to 

the beta, the agent's information ratio, and the nonrandom return. Golec also finds that 

contrary to the prediction the fixed fee and the incentive fee are not negatively related. 

Several papers (Grinblattand Titman; Carpenter; Goetzmann, Ingersoll, and Ross) have 

also looked at the effect of asymmetric contracts upon the manager's incentives to invest 

effort and take risks. An asymmetric contract contains a "high water mark" provision that 

requires the manager to make up past deficits before earning the incentive portion of the fee 

(Brown, Goetzmann, and Park). All of these studies show analytically that the value of the 

manager's contract increases with portfolio variance due to the call-like feature of the "high 

water mark" contract. In their study of the fund manager's investment problem, Grinblatt 

and Titman assume that the manager can hedge the fee in his personal portfolio. Thus the 

objective of the manager is to maximize the market value of the fee. However, as Carpenter 

shows, this objective leads to the manager opting to increase the fund volatility to infinity. 

Carpenter in her study "assumes that the manager cannot hedge the fee in his private account 

because shorting securities that he purchases on his client's behalf is a breach of fiduciary 

duty" (Carpenter, p.l). Then the manager's objective in Carpenter's model becomes the 

maximization of the expected utility of the incentive fee. Carpenter derives the optimal 

investment policy for the one-period and multi period-cases. Carpenter shows that a 

manager with constant relative and absolute risk averse utility functions, rather than 

maximizing portfolio risk, dynamically adjusts volatility in response to changes in the asset 

value over time. As assets grow large and the manager accumulates profits, he begins 

gambling with his own money and therefore prefers to lower asset volatility. On the other 
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hand, when asset value approaches zero, the manager increases portfolio volatility up to 

infinity. Goetzmann, Ingersoll and Ross find that the value of the incentive fee for the 

asymmetric contracts depends on the volatility of the assets as well as on the investor 

withdrawal policy. The value of the incentive fee is high when the asset volatility is high and 

when the probability of investors withdrawing too soon is high. The fixed fee provides the 

greatest value to the manager when asset volatility is low and when investors are expected 

to remain for a long term. 

However, Brown, Goetzmann, and Park show that hedge fund managers and 

commodity trading advisors (CTA) behavior is different from what theory predicts. They 

find that managers that performed well significantly reduced their variance. Based on theory 

predictions, the poor performers are expected to increase volatility to meet their high water 

mark. They find that this is not the case for the hedge fund/CT A managers. Brown, 

Goetzmann, and Park argue that the reason why hedge fund/CT A managers do not behave 

as the theory says they should is the great implicit costs to taking risks that might lead to 

termination. 

Richter and Brorsen develop a model that accounts for a knockout feature (fund 

termination) to analyze its influence on the incentive fee and manager's performance. Using 

the continuous-time approach they derive the distributions for the life of the fund and the 

maximum value reached by the managed capital during the life of the fund. The continuous­

time model developed by Richter and Brorsen incorporates a knockout feature, an innovation 

compared to previous models, but considers neither investor's nor manager's withdrawals. 

Goetzmann, Ingersoll, and Ross incorporate withdrawals in their differential equation 
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approach but they also assume away risk.less arbitrage. The assumption of no-risk.less 

arbitrage is not realistic for hedge funds. In addition, managers are usually paid the incentive 

fee at the end of a certain period, a quarter or year and not continuously as in the models of 

Richter and Brorsen and Goetzmann, Ingersoll, and Ross. 

The purpose of this research is to determine the optimal investment strategy for an 

individual hedge fund. The optimal investment strategy will be determined by maximizing 

manager's fees. In her multi-period model Carpenter assumes that the strike price of the 

incentive fee is reset each year at the current fund level. Instead, in this paper, the 

benchmark will be some market index and its value will change from year to year. We will 

also add to the multi period model developed by Carpenter the possibility to account for 

investor's and manager's withdrawals. An additional feature in the model will be the 

cumulative net loss, NL. According to the disclosure document of Steven C. Hutson, Inc., 

the cumulative net loss, if any, carried over from previous.periods is subtracted from the 

returns before the incentive fee is calculated. 

The Model 

The manager controls a fund with the size X, at time t: At the end of each year, t = 1, 

2, ... , T, the manager receives the fixed fee, a~, plus the incentive fee IF,, 

(45) 

wherea1 is a constant that may vary for each fund, R,+I is one plus the fund rate of return 

for the period t+ 1 which is calculated after the fixed fee has been subtracted and is expressed 
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as a function of the fund size, R t+I = f(x,) withf'(x,) < 0, R01is one plus the benchmark rate 

of return, such as the riskless rate, S&P500, or zero, and NL, is the net loss for the period t 

expressed as follows: 

NL = max[(NL 1 - RX 1"), 01(1 - W /X'\ 
t t- I t- I t' (46) 

where W, accounts for investor and manager withdrawals as well as the new money and will 

also be expressed as an asymmetric function of past returns and variability: 

aw, aw, 
W1 = g(R,-;• oR,(t-i)), i = l, 2, 3; ~ < 0; a > 0 (47) 

t-i CJR,(t-1) 

where a R is the variability of the returns. The X, + 1 is calculated using the relation: 

(48) 

Thus, at the end of the year the manager's total fee equals: 

(49) 

In this paper incentive fees are assumed to be paid in discrete-time, similar to the 

model developed by Carpenter. The manager's utility function, U, is assumed to be a Von-

Neumann Morgenstern utility function that satisfies the conditions of being strictly 

increasing, strictly concave, and at least twice continuously differentiable. The manager 

operates in a complete, no-arbitrage, continuous-time financial market that consists of a 

riskless asset with interest rater, and n risky assets. As in Carpenter, the risky asset prices, 
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P., are assumed to be governed by a standard n-dimensional Brownian motion, Z, as 
I 

presented by the equations: 

dP. 
I, t 

P. 
I, t 

= (r + µ )dt + a dZ 
t i,t i,t i,t (50) 

where the interest rate r,, the excess appreciation rates µ. , and the volatilities a. , are 
4t 4t 

bounded and progressively measurable with respect to 11, the information available at time 

t. In addition, 

(51) 

where 11: denotes the manager's investment strategy which is a function of fund size and net 

losses as given by: 

(52) 

wheres represents continuous time and tru(s) represent the truncated s so that it equals the 

latest discrete point in time. The use of tru(s) is necessary since net loss is measured 

annually. The relation in (52) will be approximated as linear, but the parameters will also 

be a function of time, fund size, and net loss. The instantaneous change in the parameters 

in a continuous time framework allows for the change in 11: 1 during this continuous time 

framework. 

The investment strategy for the manager is an n-dimensional process 11: , whose i-th 
t 

component, 11:. , is the value of the holdings of risky asset i in the portfolio at time t. An 
1,t 
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admissible strategy must be progressively measurable with respect to I , must prevent fund 
t 

value from falling below zero, and must have finite variance. Under such a strategy, 

portfolio value evolves according to: 

dX = (r X + 11:1 µ )dt + 11:1 ~ dW 
t tt ti It I (53) 

where ~ is the variance-covariance matrix of the variances of the n risky assets. 
I 

The manager chooses an investment strategy to maximize his expected discounted 

utility of total fee. Then the value function for his problem at any year t = 0, 1, ... , T-1 is: 

T-t-1 

F 1(x)= max ~ piE[U(au-¥,+i+max[a1((R,+j+I - R0(t+J}~+i - NL,+)• O]IJ,)] (54) 
(1t,, t ;; s ;; 1) J = 0 

subject to: 

dX = (r X + 11:1 µ )ds + 11:1 ~ dW (55) 
s ss ss ss s 

NL, = max[ -[(R1 - R0(t-l))~_ 1 - NL,_ 1], 0)(1 - W/X) (56) 

(57) 

(58) 

x-w~x 
t t max (59) 
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X . ~ 0 v1· = 1, 2, ... , T- t 
t+J (60) 

where A is the discount rate,R . is the annual rate of return as defined earlier, I is the P ,v , 

information available at time t, and i is a vector of ones. The subscript t represents discrete 

points in time while the subscript s represent the continuous time for the process governing 

the value of the portfolio,X The constraint in (58) means that borrowing at the risk free rate 

r is not allowed. The constraint in (59) says that when the fund size reaches a specified 

maximum level X , the fund will be closed to new money. 
max 

Dynamic Programming 

The maximization problem represented in (54) through (60) can be modeled as a 

dynamic programming (DP) problem. The parts of the DP model will be defined as follows. 

The objective function, F consists in maximizing the expected utility of the present value 
m 

of V over the planning horizon: 
m 

Fm(Xm, NLm) =maxEU[Vm(Xm, NLm, 1tm) + PFm+l (k(Xm, NLm, 1tm))] 
ltm 

(61) 

with 

(62) 

The planning horizon, Mis the number of stages in the decision problem. Taylor and Duffy 

argue that five to ten discrete stages ( m = 0, ... , M) are usually adequate to· provide a 

reasonable approximation to the solution to a continuous variable problem. The state 

57 



variables will be the levels of the fund size, X , and the net losses, NL for each stage. The 
. m m 

decision variable, the variable which the fund managers can control, will be the proportion 

of the funds under management that will be invested, 1C • The restriction on 1C will be such 
m m 

that the amount of finds invested in risky assets does not exceed the amount of funds 

available to the manager. The state transition equation that shows the relationship between 

current decisions and states, and states in the next stage, is given by 

X 1 = k(X, NL , 1C ); X0 = x 
m+ m m m (63) 

where x is the initial fund size. The fund size is assume~ to be lognormally distributed. The 

net loss is not a stochastic variable. The net loss is a deterministic variable once the value 

of the fund size is determined. The return function that gives the returns at each stage as a 

function of state and decision variables is given by V ( X , NL , 1C '. The optimal decision 
m m m m/ 

rule that shows the relation between the optimal value of the decision variable and the state 

variables is represented by: 

(64) 

Conclusions 

This paper addresses the issue of an optimal investment strategy for a hedge fund. The 

objective function is maximizing the manager's discounted utility of total fees. The model 

assumes the manager is paid both the fixed fee and an incentive fee and that the fees are paid 

discretely. To be able to determine the manager's decision process information on fund size 
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and carryover losses is needed. Also, the return function with respect to fund size and the 

withdrawals function with respect to past returns and volatility will need to be estimated. 

In addition, the withdrawals function should allow for an asymmetric effect of returns. 

Negative returns may cause investors to take their money out of the fund, while positive 

returns do not necessarily mean more money is flowing into the fund. This asymmetry 

introduces nonlinearity in the objective function that could explain why the poor performers 

do not increase the variance of the portfolio to infinity as previous th~oretical work suggests. 

Regarding the estimation of the withdrawals function it is important to separate funds 

that accept new money from funds that do not. The sign of the first derivatives of the 

withdrawals function with respect to returns will be ambiguous if one cannot separate funds 

that take new money. If possible to separate, then only the funds that accept new money 

should be used in the estimation. In this case, the sign of the first derivatives will be 

negative. The sign of derivatives could also be positive if fund size is at the maximum level. 

Regarding the returns function, it is important to take into account the fact that the 

returns/size relation could be different for every fund. 

The choice variables in the maximization problem are the maximum fund size and the 

trading strategy, that is, how and where will the money be invested? The choice of risk level 

will depend on the fixed vs. incentive fee levels. Fixed fee encourages surviving, while 

incentive fee encourages a more risk taking behavior. The carryover net losses also affect 

the risk choice. If a net loss has already occurred the manager may increase risk to make up 

this loss. The choice of risk level can be incorporated through the manager's utility function. 
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As a fmal conclusion the discrete approach looks promising. However, further research 

is needed to address this issue. Solving the maximization problem represented in (54) 

through ( 60) via dynamic programming, or through comparative dynamics would provide 

more insight regarding the hedge fund managers behavior. 
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Performance Persistence of Hedge Funds 

Abstract 

This paper tests whether performance persistence exists in the hedge fund industry 

in the sense that some funds have consistently higher returns than others. Several procedures 

are used to determine if performance persists. The results show that performance persists in 

hedge funds with some funds showing the greatest persistence across all the procedures. The 

results also indicate a strong negative relation between hedge fund capitalization and returns. 

The results are consistent with the hypothesis that hedge fund managers exploit market 

inefficiencies. 

Key words: hedge funds, performance persistence, style analysis, overlapping data. 
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Performance Persistence of Hedge Funds 

Introduction 

Hedge funds are similar to mutual funds except they have considerably fewer 

restrictions on their trading. Most U.S. hedge funds are organized as a limited partnership, 

or a limited liability company (Brown, Goetzmann, and Ibbotson ( BGI)) established to 

invest in public securities where the general partners make a substantial personal investment. 

Caldwell (p. 1) argues that hedge funds are "broadly perceived by the investing public to be 

imprudent investments." Better understanding of how to evaluate hedge fund returns is 

needed in providing a better product to investors and in successfully marketing the better 

product. A common definition of hedge funds does not exist. Hedge funds are mostly 

defined by their freedom from the regulatory controls based on the Investment Company Act 

of 1940. They are designed to exploit market inefficiencies. A hedge fund can take both 

long and short positions, use leverage and derivatives, invest in concentrated portfolios, and 

move quickly between different markets. Hedge funds can also take large risks on 

speculative strategies like short sales, swaps and arbitrage. 

There are several classifications for hedge funds. In our data, hedge funds are 

classified based on their strategy. Some of these strategies are: global, regional, market 

neutral, short sales, long only, event driven, and macro (Table 1). A broader classification 

of the hedge fund strategies by Agarwal and Naik groups them into two categories, non­

directional and directional. Non-directional strategies have low correlation with the market, 

while directional strategies have high correlation with the market. Also, hedge funds are 
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classified into two major types, U.S. (or onshore) and offshore. Offshore funds are limited 

liability corporations or partnerships established in tax neutral jurisdictions that allow 

investors an opportunity to invest outside their own country and minimize their tax liabilities 

(Liang, p. l ). BGI argue that the most interesting feature of hedge funds is that they are 

perceived mostly as pure "bets" on managerial skill. While the mutual fund strategies are 

considered as investment styles with relative return targets, the hedge fund strategies are 

considered as investment styles with absolute return targets (Fung and Hsieh). In other 

words, the mutual fund performance is evaluated relative to certain benchmarks while hedge 

funds are not judged by their ability to track a passive benchmark. · In addition, compensation 

in mutual funds is generally based on the fund size independent of performance. On the other 

hand, compensation in hedge funds is largely based on performance. Fung and Hsieh ( 1997) 

using Sharpe's style analysis show the distinction between mutual and hedge fund 

investment strategies. Fung and Hsieh argue that manager's returns have three key 

determinants: 1) the asset categories the manager invests in, 2) strategy or direction 

component (short/long), and 3) the use ofleverage. Mutual fund managers usually employ 

only the first component in their strategies. Hedge fund managers, on the other hand, employ 

dynamic, leveraged strategies that also involve the second and third component of the return. 

As a result of their absolute return target nature, the compensation of hedge fund 

managers is based largely on performance. Hedge fund managers receive a fixed fee, usually 

1 to 2 % of net assets, and an incentive fee. Some hedge funds pay the incentive fee only 

after some hurdle rate is met. The hurdle rate, depending on the fund, may be fixed, ranging 

from zero to 10%, or set equal to the return on some stock index. In addition, most hedge 
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funds have a "high watermark" provision so that incentive fees are only paid when the annual 

realized profit is above the previous maximum share value of the fund (Brown, Goetzmann, 

and Park). 

In contrast to mutual funds, hedge funds are not required to register with the SEC and 

disclose their asset holdings (Liang). As of June 1997, the SEC allows hedge funds to have 

up to 499 limited partners without any registration and disclosure requirements. However, 

65% of investors must be accredited investors with a net worth of at least $1 million, or 

steady annual incomes of $200,000 or more. There is also a minimum investment 

requirement of typically $250,000. In addition, first time investors cannot withdraw their 

money for a specified time period (a lockup period feature). 

The limited reporting required of hedge funds makes it difficult to estimate the size 

of the industry. Pacelle (1997) notes that hedge funds currently have $200-300 billion under 

management and are growing rapidly. Agarwal and Naik (1999) report an estimated number 

of about 4000 onshore and offshore hedge funds with more than $400 billion of invested 

capital compared to about 6,000 mutual funds with $2 trillion in assets. However, Fung and 

Hsieh note that "on a leveraged basis the positions taken by a large hedge fund often exceed 

those of the largest mutual fund" (p. 281 ). Due to the difficulty of obtaining data about 

hedge funds, there is limited academic research in this area .. 

Fung and Hsieh's (1997) extension of Sharpe's (1992) style regressions includes 

dynamic strategies as additional regressors and can be used in performance attribution and 

style analysis of both mutual and hedge fund managers. Following Fung and Hsieh 

researchers studying hedge funds have used a multi-factor model to perform the style 
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regression analysis. Examples include Liang (1998) and Agarwal and Naik (1999). BGI 

(1997) examine the performance of hedge funds and whether returns are predictable from 

past returns. They use annual data and a sample containing only offshore hedge funds. BGI 

find positive risk-adjusted performance for offshore funds but no performance persistence, 

or managerial skill. Thus they attribute offshore hedge fund performance to the style effects. 

Moreover, they conclude that "Funds-of-Funds" (funds that invest in winning hedge funds) 

perform more poorly than the average return for their sample. If there is some performance 

persistence, managers of"Funds-of-Funds" have apparently not learned how to exploit it. 

Ackerman, McEnally, and Ravenscraft ( 1997) conclude that hedge funds outperform mutual 

funds. Liang (1998) finds that on a risk-adjusted basis, most hedge funds earn positive 

abnormal returns. Liang also concludes that compared with mutual funds as a whole, hedge 

funds offer a better risk-return trade-off. In general, hedge funds provide a more efficient 

investment opportunity set for investors compared to mutual funds. Agarwal and Naik 

(1999) add that a portfolio that combines alternative and passive investment strategies 

provides a significantly better risk-return trade-off than passive-only investment strategy. 

Agarwal and Naik also find that hedge funds outperform the benchmark consisting of a 

combination of the various asset classes by 6% to 15% per year. In addition they find some 

performance persistence for various hedge fund strategies. However, they conclude that this 

persistence is mostly driven by losers continuing to be losers rather than winners being 

winners. Park and Staum using the nonparametric procedure of Spearman rank correlation 

present evidence for performance persistence among Commodity Trading Advisors (CT As) 

and hedge funds. 
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This paper addresses the issue of performance persistence of hedge funds in the sense 

that some funds have consistently higher returns than others and the source of returns for 

hedge funds. In addition, the impact of size on performance will be studied. Only two 

previous papers address primarily the performance persistence of hedge funds BGI, and Park 

and Staum. The evidence from these two papers is mixed, one does not find performance 

persistence while the other does. However, Park and Staum use only one nonparametric 

method to study performance persistence while BGI use several methods. Agarwal and Naik 

also provide evidence of performance persistence for some hedge fund strategies. Three 

alternative methods will be used to test for performance persistence. To determine if 

performance persists, one of the usual procedures employed is to regress current returns on 

past returns. In addition, we regress Sharpe's ratio against a lagged Sharpe's ratio. The 

Sharpe ratio will be used as a dependent variable because studies involving commodity funds 

find greater performance persistence using a Sharpe ratio rather than returns (Brorsen). We 

improve on previous research by using overlapping data (with annual observations) to 

increase the number of our observations and so increase the efficiency of our parameter 

estimates and the power of our tests. In addition, this procedure will be performed by 

estimating separate regressions for each style of trading. 

Secondly, the style analysis similar to the Sharpe's (1992) and Fung and Hsieh 

(1997) style regressions will be considered. The null hypothesis to be tested is whether once 

adjusted for changes in overall returns do funds all have the same mean returns? The 

rationale behind this is that if all funds have the same mean returns then no performance 

persistence exists. Finally, an out-of-sample test using the Spearman rank correlation test 
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will be used. The ranking and the testing will be performed based on four measures, the 

mean returns, the Sharpe's ratio, the ratio of the mean returns to the standard deviation of 

returns, and the ratio of the intercepts from the style regressions to the standard deviation of 

returns. 

To identify the source of returns for hedge funds a measure of the size of funds will 

also be considered as an additional explanatory variable in the regressions in the first and 

second procedure, both in their estimation for the whole sample and in the subsamples for 

each style. One hypothesis concerning the source ofreturns for hedge funds is the existence 

of inefficiencies in pricing of assets in the debt, equity, currency and commodities markets. 

If size of fund matters, it offers support for the hypotheses that inefficiency exploitation is 

the source of returns for hedge funds. 

Performance Persistence 

Performance persistence usually means identifying winners and losers within a 

particular industry. Moreover, it means identifying winners that follow winners or losers that 

follow losers. From a practical point of view the interest is to determine if some funds have 

consistently higher returns than others. The importance of finding performance persistence 

rests on the fact that it would enable investors to beat the market average. The winners and 

losers within an industry are determined by evaluating them based on a given benchmark or 

an index for the industry. For the mutual fund industry the most commonly used benchmark 

is the S&P500 index. However, the S&P500 index could not be used as a benchmark for the 

hedge fund industry given the diversity of hedge fund strategies and their exposure to 
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different security markets. One possibility in the case of the hedge fund industry is to create 

an index for the industry. Creating such an index is difficult due to the lack of data available 

to truly represent the whole hedge fund industry and a single index cannot represent the 

diverse strategies that hedge funds use. The other possibility is to use a multi-factor model 

with the factors representing the asset classes where hedge funds invest, equities, bonds, 

currencies, commodities, and cash. 

Hedge fund managers employ dynamic and leveraged strategies that are also 

perceived as strategies with absolute return targets. These are the features, as Park and 

Staum argue, that have given the hedge fund industry a reputation for manager skill. But, 

why do hedge funds exist? One hypothesis regarding the source of returns for hedge funds 

is existence of market inefficiencies in . the sense of mispriced securities. Hedge fund 

managers seek out and exploit these market inefficiencies. If one accepts the above 

hypothesis, then the existence of performance persistence would imply market inefficiency. 

Hedge fund managers dynamically change their strategies by constantly seeking out new 

market inefficiencies to exploit and therefore, it is difficult to evaluate the above question. 

However, evidence of an inverse relation between a hedge fund returns and its market 

capitalization would imply that hedge fund managers exploit market inefficiencies. The 

argument for this is that these market inefficiencies cannot be scaled up, thus putting more 

money to exploit the inefficiency should cause the returns to decrease. Another issue related 

to performance persistence is the fees charged by the hedge fund managers. If the 

compensation of hedge fund managers is largely based on performance then the return to 

unique skills could be captured by a manager in the form of higher fees. However, this 
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pattern of managers with unique skills charging higher fees is difficult to observe for the 

hedge fund industry given the short life of the industry. Most existing hedge funds were 

established in the 90's. Also, the small number of funds before the 90's makes it difficult to 

accurately estimate performance persistence and observe a relation between performance 

persistence and manager fees. 

As Gruber (p. 793) notes "The surprising thing about persistence is not that it exists, 

but rather how strong it appears to be." Several measures can be used to quantify 

performance persistence. One of the widely used measures is Jensen's alpha, the intercept 

in the Capital Asset Pricing Model (CAPM). In the case of hedge funds that extensively use 

leverage in their investment strategies the leverage invariant measures of performance 

persistence are more appropriate. Such measures include the Sharpe's ratio and the appraisal 

ratio, defined as the ratio of alpha to the standard deviation. 

Data 

Data about hedge funds were provided by LaPorte Asset Allocation. There are two 

datasets about hedge funds. One data set contains monthly data about fund returns 

(arithmetic) and size, or the total capitalization. There are 1209 hedge funds included in the 

data set. The second data set provides information regarding the characteristics of the hedge 

funds. These characteristics include whether a fund is a hedge fund or Fund-of Funds, 

whether it is a U.S. (or onshore), or offshore fund, the date the fund started, location and the 

name of the manager, as well as the style of the fund. The style of the fund is basically 

determined by the markets and/or securities where the fund invests. There are seven styles 
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in the data set: 1) Global, 2) Sector, 3) Market Neutral, 4) Global Macro, 5) Short Sales, 6) 

Event Driven, and 7) Long Only. The two types of Fund-of-Funds (FOF), U.S. and offshore 

FOF (or FOF NonU.S.), are also considered as separate styles in the paper. In addition, the 

datasets include information about incentive, and management fees. 

Table 2 reports the annual summary statistics about the hedge fund data. The number 

of funds increased from just 2 in 1977 to 1209 in 1998. Also, the total capitalization 

increased from $195 million in 1977 to$ 110,560 million in 1998. There is a slight decrease 

in the capitalization from 1997 (the maximum for the sample) to 1998. Table 2 also shows 

that the average management fee decreased over time while the average incentive fee has 

grown. One problem with the data set is that no fund drops out of the sample. This would 

of course introduce survival bias in the empirical analysis. However, for the problem of 

performance persistence that will be investigated in this paper this bias should have a 

minimum or no effect at all on the results. As Park and Staum report this bias would weaken 

the evidence for the hypothesis that losers repeat. It does however bias the average returns 

across all funds reported. Thus, caution is needed when comparing the results for hedge 

funds versus results from other industries. 

Table 3 reports the mean, standard deviation, and the Sharpe ratio for both S&P500 

and the equal-weighted portfolio of the hedge funds for each year. The annually reported 

means for both the S&P500 and hedge funds portfolio are averages of monthly means for 

each year. The standard deviation for the equal-weighted portfolio for each year is calculated 

as an average of the individual fund's annual standard deviations. This is done to eliminate 

the cross-sectional variation in the estimates of the standard deviation and thus allows for a 
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comparison with the S&P500 standard deviation. The average mean for the equal-weighted 

portfolio is 1.39% which is higher than the mean 0.87% of the S&P500. Also the mean 

standard deviation for the equal-weighted portfolio is slightly smaller than the standard 

deviation for the S&P500. The numbers respectively are 0.034 and 0.039. This can also be 

seen by the values of the Sharpe ratios. The mean Sharpe ratio (calculated as an average of 

the annual Sharpe Ratios) for the equal-weighted portfolio is 0.357 while the mean Sharpe 

ratio for the S&P500 is 0.16. In term of the Sharpe ratio, the equal-weighted portfolio beats 

the S&P500 in all the years before 1995 with the exception of 1989. Remember that the 

hedge fund data set does not include defunct funds. Thus, the returns for the equal-weighted 

portfolio of hedge funds are likely overestimated. 

Table 4 reports number of funds for each style. The largest number of funds, 430 fall 

into the style Global. The styles Market Neutral and Event-Driven are also represented by 

a large number of funds, respectively 232 and 123. In addition, there are a large number of 

Funds-of-Funds, with a total of 267. From these 127 are U.S. FOF and 140 are offshore 

FOF. The smallest number of funds, 14 and 18 are for the styles Short Sales and Long Only 

respectively. The Long Only funds appear only in the last seven years starting in 1992. 

Table 5 reports capitalization of funds for each style. The largest capitalizations are 

for the styles Global, Global Macro, and Market Neutral with million U.S.$ respectively 

29,685, 25,324, and 20,263. The U.S. FOF have a small capitalization given the relatively 

large number of such styles. The styles Short Sales and Long Only besides having the 

smallest number of funds also have the smallest capitalizations respectively million U.S.$ 

676 and 400. 
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The data for the asset classes to be used in the style analysis regressions were 

obtained as follows. Several Morgan Stanley Capital.International (MSCI) Equity indices, 

MSCI World index, MSCI USA index, and MSCI Emerging Markets index were provided 

by Morgan Stanley Dean Witter. The Federal Reserve Bank Trade-Weighted Dollar Index, 

the bond indices, and the risk-free rate data were collected from the Saint Louis Federal 

Reserve Economic Database. The S&P500 data were obtained from the daily master file of 

the Center for Research of Security Prices (CRSP). 

Procedures 

Three alternative methods are used to test for performance persistence. First, returns 

are regressed against lagged returns: 

j+k-1 · 

L r = ex + 
t=j it i 

j+k-1 j+k-1 

P, ~ ri(t-12) + ~ eit (65) 
i = l, ... ,n; t = l, ... ,T; j = l, ... ,T-k+l; e. - N(O,a~) 

It IE 

where, r;, is excess return of fund i in month t, k = 12 so that we have the jth annual return. 

We use overlapping data (with annual observations) to increase the number of our 

observations and to increase the efficiency of our parameter estimates and the power of our 

tests. Two consecutive annual overlapping observations will, in this case, overlap for eleven 

months. For example, one annual observation will be from January to December and the 

other observation from February to January, thus overlapping for eleven months. The 

generating process for the returns is assumed to be: 

75 



e. - N(O,a~) 
It le 

where a; is the mean return of fund i. Substituting (66) into (65) we get: 

j+k-1 j+k-1 

12 a. + L e .1 = a. + 12 a. P. + P. L 
I t=j l I I I I t=j 

e. 
z(t-12) 

j+k-1 

+ I: 
t=j 

(66) 

(67) 

By taking the expectations of both sides in ( 67) it can be seen that a; = 0 and p; = 1. If, 

however, we assume no performance persistence, ie. (a;= a V i), the empirical estimate of 

p from (1) should be zero. Any positive estimate of p would imply performance persistence. 

We estimate ( 65) using maximum likelihood estimation (MLE) methods developed for time-

series models. As Harri and Brorsen show, MLE is the only method of estimation that 

provides consistent estimates in the case of a lagged dependent explanatory variable and 

overlapping observations. The model in (65) is estimated using PROC ARIMA in SAS 

software version 6.12. The potential problem with MLE estimation is the missing 

observations. Missing observations occur because of creating the lagged values and also 

because fund returns between two consecutive funds need to be separated from each other. 

Therefore, we also estimate (65) by simple OLS. In addition, we estimate (65) using 

disaggregate monthly data. The regression in ( 65) is also estimated by regressing the 

Sharpe's ratio against a lagged Sharpe's ratio: 
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~ (r - rn I o.. = a. + n.. ~ (r. - rf. ) I o. . + ~ e,.t ~ it Jf I) 1 P, ~ i(t-12) t-12 1(j-l) ~ 
t~ t~ t~ (68) 

i = 1, ... ,n; t = 1, ... ,T; 1· = 1, ... ,T-k+ 1; E. - N(O,a2 .) 
It €1 

where, o .. is the standard deviation of fund i for the jth annual observation and rf is the 
I) 

interest rate on three-month constant maturity Treasury Bills. The Sharpe ratio is used as a 

dependent variable because studies involving commodity funds find greater performance 

persistence using a Sharpe ratio rather than returns. In addition, the regressions in ( 65) and 

(68) are estimated separately for each style of trading. 

Secondly, the style analysis similar to Sharpe's (1992) and Fung and Hsieh (1997) 

style regressions is considered. Style here is determined based on the strategy followed by 

a particular hedge fund. The regression to be estimated is: 

K 

+ L PkFkt + E. ; 
k= l It 

i 1, ... , n; t = 1, ... ,T; (69) 

where, rit is the return of fund i in month t, Pk is the factor loading, and F kt is the return on 

the 'Jch asset class factor in month t. Eight asset classes are used. These are three equity 

classes: S&P500, Morgan Stanley Capital International (MSCI) world equities excluding 

U.S. equities (Wexus), and MSCI emerging markets equities (Em); two bond indices: a 

government bond index (Govbd) and a corporate bond index (Corpbd); the 1-month 

eurodollar deposit for cash (Edmth); the price of gold for commodities (Gold); and the 

Federal Reserve's Trade Weighted Dollar Index for currencies (Trdwgtd). The regression 
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in (69) allows for different intercepts for each fund within a particular style. The null 

hypothesis to be tested is whether once adjusted for changes in overall returns do funds all 

have the same mean returns? The rationale behind this is that if all funds have the same 

mean returns then no performance persistence exists. The style regressions in (69) are 

estimated using the PROC MIXED procedure of the SAS software version 6.12. The BY 

option is used to run separate regressions for each style. The CLASS statement is used to 

identify a fixed effects model that allows for different intercepts across funds for a particular 

style. The REPEATED/GROUP statement is used to correct for heteroskedasticity. 

Finally, an out-of-sample test using the Spearman rank correlation test is used. Four 

measures are used to rank the funds. These are 1) the mean returns; 2) the Sharpe's ratio; 3) 

the ratio of the mean returns to the standard deviation of returns; and 4) the a-s from the 

regression in (5). The test is performed over a one-year selection period and a three-year 

performance period. For example, one test is performed starting with 1977 as the selection 

period and 1978-1980 as the performance period. The next test is conducted with 1978 as 

the selection period and 1979-1981 as the performance period. Then, the correlation 

estimates from each period are averaged. The arithmetic average and the weighted average 

with the number of observations for each period used as weights are calculated. Monte Carlo 

hypothesis tests are performed on the two averaged correlation estimates. To perform the 

Monte Carlo hypothesis tests 1000 thousand samples of the same sizes as the size of the 

actual data are generated under the null hypothesis of no performance persistence. The 

RANNOR command in SAS is used to generate the data from a standard normal N(O, 1) 

distribution. Then, the two averaged correlation estimates are obtained for all 1000 samples 
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and compared to the actual averaged correlation estimates obtained from our original data. 

A p-value is calculated based on the number of the correlation estimates from the generated 

samples that are larger than the actual estimates. Also, a five-percent critical value is 

obtained by selecting the 50th observation from the sample of 1000 estimates from the 

generated samples after they are first ranked on a descending order. This procedure is 

performed using all funds and for each style separately. 

A measure of the size of funds, the logarithm of the market capitalization, is also 

considered as an additional explanatory variable in the regressions in (65), (68), and (69), 

both in their estimation for the whole sample and for each style. One hypothesis concerning 

the source of returns for hedge funds is the existence of inefficiencies in pricing of assets in 

the debt, equity, currency and commodities markets. If size of fund matters, it offers support 

for the hypotheses that inefficiency exploitation is the source of returns for hedge funds. 

This is based on the hypothesis that hedge fund managers exploit market inefficiencies in the 

form of mis-priced securities. Since the size of these inefficiencies is fixed, putting more 

money to exploit a particular inefficiency would cause the returns to decrease. 

Results 

Table 6 presents the results from the regressions of returns versus lagged returns and 

the Sharpe's ratios versus lagged Sharpe's ratios for the MLE and OLS estimations. The!­

statistics are given in parentheses. In general, the results from the Sharpe's ratios regressions 

are stronger in support of performance persistence then the results from the returns 

regressions, consistent with previous research. However, the Sharpe's ratio does not separate 
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persistence due to the mean from persistence due to the variance of returns. The MLE 

estimates for the lagged r~turns and most of the MLE estimates for the lagged Sharpe's 

ratios are negative. This could be due to negative autocorrelation present in fund returns for 

the short-term horizon of one year. Again caution is needed in describing the MLE results 

because of the uncertain· effect of missing observations in the estimation. Based on the 

results from the disaggregate model presented in Table 7, there is evidence of very short­

term performance persistence for almost all styles except Short Sales. For most of the styles 

performance persists for three to four months with the biggest effect observed in .the first 

month. Most of the lagged values beyond lag twelve have negative and very small 

coefficients. This could also explain the negative coefficient obtained with the MLE 

estimation. 

Table 8 reports the results for the style analysis using the multi factor regression in 

(69). The results are reported for all styles and for each style separately. The last three rows 

of Table 8 report the F-value, the degrees of freedom, and the p-value for the null hypothesis 

that the intercepts for all funds within a style are equal. The rejection of this hypothesis 

implies that performance persistence exists. The hypothesis is rejected for five styles, the 

Global, Market Neutral, Global Macro, FOF-U.S., and FOF offshore styles. The hypothesis 

of no performance persistence is also rejected when the estimation is performed with all 

styles. 

Table 9 reports summary results for the Spearman rank correlation tests. The table 

reports the Spearman correlations for all the funds and for each style separately. Also, the 

Spearman correlations are estimated using four different measures, the mean returns, the 
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Sharpe's ratio, the mean returns divided by the standard deviation of returns, and each fund's 

intercept from the style regressions. The correlation estimates reported in Table 9 are 

averages, a simple average and a weighted average, across the different estimation periods. 

The entries for each cell in Table 9 are the average (simple or weighted) correlation estimate, 

the p-value, and the five-percent critical value. The number of periods varies for each style. 

The Spearman correlations for each period are reported in the Appendix. The correlations 

in Table 9 are all positive with the exception of the correlation for the Long Only style when 

the intercepts from the style regression are used to rank the funds. Moreover, with few 

exceptions, most of the coefficients are below the five-percent critical value where the null 

hypothesis of no performance persistence would be rejected. This evidence provides little 

support for the hypothesis that performance persistence does exist in the hedge fund industry. 

The strongest evidence for performance persistence comes when the intercepts from the style 

regressions are used to rank the funds. Styles that show the most performance persistence, 

are Market Neutral, Global Macro, Short Sales, Long Only, and the two types of FOFs. 

None of the correlations for the Global style is significant. The average correlations in Table 

9 should be interpreted carefully. They weight equally the correlations from the earlier 

periods when the number of funds is small and the correlations are usually small and not 

accurately estimated. Most of the correlation for the early periods are not significant 

supporting the view that it is difficult to detect performance persistence given the short life 

of the hedge fund industry. In addition, there is an obvious decrease of the correlation for 

the last period, 1994-1997, regardless of the measure used to rank the funds. Also, some 
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correlations are not significant. Thus, the small correlations from the earlier and the last 

periods may bias downward the average correlation reported in Table 9. 

Table 10 presents results for the size /returns relation. The logarithm of the market 

capitalization for each fund is added as an additional explanatory variable in the regressions 

(65), (68), and (69). The parameter estimates and the t-statistics (in parentheses) for the 

logarithm of the market capitalization are presented in Table 10. The results for the other 

variables are not reported in Table 10 since they are very similar to results reported in Tables 

6, 7, and 8. The results regarding the role of size in returns are mixed across different 

regressions. Three out of four methods of estimation provide evidence in support of the 

size/returns relation. The exception is the disaggregate estimation where most of the 

coefficients for the size variable are not significant. For the other methods of estimation the 

size variable is significant for almost all styles. However, the coefficients for the style 

analysis estimation are almost all negative while the coefficients for the OLS and MLE 

estimation are mostly positive. The results of Table 10 should be interpreted with caution 

because, as Ackermann et. al. that also use an earlier version of the same data note, the time 

series on size is not complete (for a number of funds size is reported only annually). 

Conclusions 

This paper finds evidence of performance persistence in the hedge fund industry. The 

data used in this study cover a longer period than most of the previous research on hedge 

funds. In addition, several procedures are used to determine if performance persistence 

exists. We use overlapping observations to add power to our estimation and obtain more 
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efficient estimates. All three procedures, the regression of mean returns and Sharpe's ratios 

against their lagged values, the style regressions, and the Spearman rank correlation test, 

provide evidence that performance persists in the hedge fund industry. This is consistent 

with the findings of Park and Staum, and Agarwal and Naik that performance persistence 

exists in the hedge fund industry. The performance persistence is greater for some of the 

fund styles. The ones that show the greatest persistence are Global Macro, Market Neutral, 

and the two FOF styles. They are consistently picked as such by the three different 

procedures. The Event Driven, Sector, Global, and Long Only styles also show some 

performance persistence. The Short Sales styles is not selected by any of the procedures as 

persistent. Agarwal and Naik also find that some hedge fund styles exhibit greater 

performance persistence than others. 

The results for the size/return relation are mixed. The style analysis finds a strong 

negative relation between the size and returns and thus supports the hypothesis that hedge 

fund mangers exploit market inefficiencies. The results from the mean returns and Sharpe's 

ratio regressions are not so supportive to this hypothesis with most of the funds showing no 

relation at all between size and returns. 
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Table 1. Definitions of Hedge Fund Styles. 

Style Definition 

Global Manager pays attention to economic change around the world (except the United 
States). 

Sector Manager focuses on specific regions of the world, e.g. Latin America, Asia, Europe. 
(Regional) 

Market Half long/half short. Manager attempts to lock-out or neutralize market risk. 
Neutral 

Global Opportunistic trading manager that profits from changes in global economies, typically 
Macro based on major interest rate shifts. 

Short Sales Manager takes a position that stock prices will go down. Used as a hedge for long-only 
portfolios. 

Long Only Manager takes a position that stock prices will go up. Used as a hedge for short-only 
portfolios. 

Event Manager focuses on securities of companies in reorganization and bankruptcy, ranging 
Driven from senior secured debt to the common stock of the company. 

Fund of Capital is allocated among a number of hedge funds, providing investors with access to 
Funds managers they might not be able to discover or evaluate on their own. 

Source: Ackermann et. al. (p. 843). 
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Table 2. Annual Summary Statistics for All Hedge Funds. 
Number of Funds' Total Capitalization in Mean Return Standard Maximum Minimum Average Annual Average Annual 

Year million U.S. Dollars' (arithmet. (%))b Deviation b Return b Return b Mngt. Fee (%) Incentive Fee (%) 

1977 2 195.2 0.38 0.528 1.50 -0.22 1.9 2 

1978 2 196.9 1.55 3.58 6.49 -11.90 1.75 s 
1979 2 199.2 2.58 4.08 10.35 -7.35 1.15 s 
1980 4 206.828 2.30 5.03 11.91 -13.06 1.73 6.15 

1981 4 212.6 0,60 4.71 11.82 -13.90 1.83 10 

1982 s 300.14 2.10 3.SS 12.61 -6.66 1.53 lf78 

1983 9 394.602 1.52 2.43 6.SS -7.96 1.27 12.18 

1984 17 532.07 1.31 6.95 75.90 -27.38 1.09 12.51 

1985 25 937.187 2.67 3.59 19.09 -9.37 1.08 12.20 

1986 36 1,344.9 1.63 5.48 36.78 -36.82 0.97 14.07 

1987 so 1,662.63 1.21 9.08 86.IS -42.84 1.06 14.86 

1988 67 6,699.46 1.57 3.67. 20.85 -12.21 1.06 15.34 
00 

1989 98 7,265.24 1.40 Vl 3.91 53.36 -18.12 1.07 16.15 

1990 140 8,640.58 0.61 4.84 3(68 -20.78 1.09 16.11 

1991 190 12,981.46 2.02 S.41 81.11 -27.41 1.07 16.25 

1992 270 18,706.04 1.31 4.15 38.57 -34.39 1.09 16.58 

1993 371 34,093.27 l.95 4.15 42.39 -35.09 1.12 16.89 

1994 547 55,577.47 0.09 4.04 53.16 -25.80 1.14 17.08 

1995 699 59,347.57 1.58 4.65 184.17 -27.27 1.17 17.24 

1996 941 84,079.72 1.76 4.85 65.24 -37.02 1.19 17.58 

1997 1166 120,722.49 1.66 S.61 115.66 -58.26 1.21 17.87 

1998' 1209 110,560.10 -0.53 7.66 92.16 -99.99 1.22 18.05 

Source: Hedge fund data were provided by LaPorte Asset Allocation. 
Note: "These are calculated at the ~nd of the year. 
b These are calculated using monthly data. 
• For 1998 the calculations are for the months January through August. 



Table 3. Mean Returns, Standard Deviations, and Sharpe Ratios for S&PSOO and the 
Equally Weighted Portfolio of Hedge Funds. 

S&P500 Hedge Funds 
Year 

Mean Std. Dev Sharpe Ratio Mean Std. Dev Sharpe 
Ratio 

1977 -1.018% 0.027 -0.376 0.377% 0.003 1.204 

1978 0.088% 0.048 o.oi8 1.478% 0.029 0.508 

1979 0.967% 0.039 0.249 2.472% 0.030 0.824 

1980 1.911% 0.052 0.364 2.157% 0.042 0.516 

1981 -0.853% 0.037 -0.230 0.488% 0.041 0.120 

1982 1.147% 0.053 0.042 2.020% 0.032 0.342 

1983 1.328% 0.028 0.206 1.476% 0.018 0.400 

1984 0.116% 0.039 -0.179 1.113% 0.033 0.089 

1985 1.948% 0.034 0.385 2.580% 0.028 0.701 

1986 1.137% 0.051 0.122 1.460% 0.045 0.210 

1987 0.167% 0.094 -0.035 0.772% 0.075 0.037 

1988 0.974% 0.029 0.137 1.496% . 0.027 0.344 

1989 2.008% 0.035 0.372 1.318% 0.027 0.228 

1990 -0.565% 0.053 -0.229 0.495% 0.039 -0.038 

1991 1.946% 0.044 0.332 1.870% 0.036 0.384 

1992 0.364% 0.021 0.031 1.216% 0.032 0.292 

1993 0.568% 0.017 0.184 1.850% 0.032 0.504 

1994 -0.129% 0.031 -0.160 0.010% 0.031 -0.114 

1995 2.446% 0.015 1.359 1.472% 0.030 0.333 

1996 1.538% 0.031 0.360 1.632% 0.034 0.356 

1997 2.251% 0.046 0.399 1.498% 0.041 0.261 

1998 -1.276% 0.073 -0.231 

Average 0.873% 0.039 0.160 1.393% 0.034 0.357 
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Table 4. Number of Hedge Funds for Each Style and Year. 

Year Globa Sector Market Global Short Event Long FOF- FOF Total 
1 Neutral Macro Sales Driven Only U.S. Non U.S. 

1977 2 

1978 2 

1979 2 

1980 4 

1981 4 

1982 5 

1983 3 2 2 9 

1984 9 2 2 2 17 

1985 11 4 2 5 2 25 

1986 15 5 6 6 2 2 36 

1987 18 10 8 2 5 5 2 50 

1988 22 14 8 4 6 8 5 67 

1989 30 17 10 4 16 12 8 98 

1990 52 19 11 6 18 19 14 140 

1991 71 3 24 14 7 22 27 22 190 

1992 98 6 44 19 8 26 4 34 31 270 

1993 128 8 65 28 9 39 5 47 42 371 

1994 194 14 92 32 11 55 7 75 67 547 

1995 243 22 125 41 12 76 8 85 87 699 

1996 337 34 168 52 12 104 13 105 116 941 

1997 415 55 219 63 13 122 18 124 137 1166 

1998 430 57 232 68 14 123 18 127 140 1209 

87 



Table 5. Market Capitalization of Hedge Funds for Each Style and Year (million $U.S.). 

Year Global Sector Market Global Short Event Long FOF- FOF Total 
Neutral Macro Sales Driven Only U.S. Non U.S. 

1977 193.2 2 195.2 

1978 193.2 3.7 1%.9 

1979 193.2 6 199.2 

1980 193.2 12 1.628 0 206.828 

1981 193.2 19.4 0 0 212.6 

1982 193.2 13.545 27.7 0 65.695 300.14 

1983 193.2 20.385 84.3 0 96.717 394.602 

1984 290.471 22.509 0 112.2 0.9 105.99 532.07 

1985 516.633 16.501 36 183.626 3.6 180.827 937.187 

1986 684.696 63.629 65 297.126 13.5 220.948 1344.899 

1987 751.576 159.349 62.813 30.182 298.225 48.316 312.166 1662.627 

1988 2253.17 199.514 3238.08 28.4 470.896 121.438 387.965 6699.463 

1989 1564.22 1.242 769.289 3312.45 155.1 677.060 268.639 517.238 7265.238 

1990 1636.02 5.933 619.89 4481.02 186.617 769.404 462.628 479.064 8640.576 

1991 2689.53 20.057 876.015 6679.26 239.176 956.93 578.138 942.356 12981.46 

1992 4512.64 57.504 1591.17 8678.33 228.891 1237.97 16.49 808.946 1574.09 18706.03 

1993 7387.72 97.097 3273.03 14676.92 250.328 2276.49 27.1 1356.54 4748.04 34093.27 

1994 13176.85 157.99 4622.12 25089.67 420.780 3735.03 46.188 2091.11 6237.74 55577.48 

1995 16268.18 422.475 5899.92 22314.75 451.376 4535.13 84.097 2405.34 6966.31 59347.58 

1996 22519.90 1144.20 10922.96 29510.68 · 489.951 6540.15 180.977 3470.40 9300.50 84079.72 

1997 34880.66 2273.71 21067.14 32232.60 536.39 10371.64 404.802 5129.34 13826.20 120722.5 

1998 29685.09 1724.62 20263.98 25324.54 676.98 11674.72 400.85 5727.47 15081.85 110560.1 
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Table 6. Results for the Regressions of Mean Returns and Sharpe Ratio on Their Lagged Values for the MLE and OLS Estimations 
(I-statistics are given in parentheses). 

OLS Estimation Maximum Likelihood Estimation • 

Style Number of 
Observations Sharpe Ratio Regressions Return Regressions Sharpe Ratio Regressions Return Regressions 

Intercept Lagged R2 Intercept Lagged R2 Intercept Lagged Sh. Intercept Lagged 
Sh. Ratio Returns Ratio Returns 

All 27561 0.146 0.636 0.68 15.597 0.0315 0.001 0.102 0.271 18.435 -0.283 
(6.68) (240.2) (104.9) (5.35) (l.95) (65.73) (73.87) (-58.24) 

Global 9792 0.1033 0.591 0.62 18.91 -0.036 0.001 0.152 0.04 19.99 -0.288 
(14.8) . (127.1) (61.0) (-3.5) (8.62) (7.48) (35.5) (-32.9) 

Sector 688 0.333 0.175 0.034 24.88 0.053 0.003 0.43 -0.25 31.08 -0.378 
(15.7) (4.9) (19.5) (1.38) (17.7) (-8.32) (13.95) (-10.2) 

Market 4529 0.347 0.495 0.24 10.86 0.175 O.o35 0.508 0.109 14.27 -0.14 
Neutral (25.9) (37.4) (41.2) (12.8) (34.98) (10.31) (35.5) (-11.7) 

~ Global 1708 0.192 0.01 0.0001 17.25 -0.002 0.0001 0.282 -0.169 22.l -0.274 
Macro (19.7) (0.48) (27.0) (-0.09) (18.4) (-9.86) (20.1) (-14.7) 

Short 422 -0.008 0.007 0.0001 3.97 -0.069 0.004 0.03 -0.184 7.24 -0.348 
Sales (-0.58) (0.16) (3.90) (-1.34) (1.26) (-5.94) (4.65) (-12.2) 

Event 3399 0.195 0.638 0.68 17.7 0.006 0.0002 -0.813 0.258 22.26 -0.337 
Driven (1.12) (84.8) (46.4) (0.39) (-1.7) (25.8) (28.7) (-23.7) 

Long 246 0.462 -0.178 0.033 38.0 -0.335 0.11 0.409 -0.276 32.86 -0.409 
Only (12.6) (-2.88) (16.6) (-5.46) (14.5) (-8.01) (11.99) (-9.95) 

FOF-U.S. 3559 o.405 0.277 0.08 12.83 0.02 0.0004 0.329 -0.046 15.31 -0.32 
(31.1) (17.5) (49.1) (1.18) (6.85) (-4.04) (37.7) (-21.2) 

FOF 3210 0.324 0.04 0.002 14.36 -0.059 0.003 0.32 -0.149 15.44 -0.333 
Offshore (32.8) (2.55) (39.6) (-3.18) (25.95) (-11.7) (24.4) (-18.9) 

Note:• The data generating process for the returns is given in (2). In the estimation we use overlapping observations created as shown in (3). 



Table 7. Results for the Regressions of Mean Returns on Their Lagged Values for the Disaggregate Estimation (I-statistics are 
given in parentheses). 

Style All Global Sector Market Global Short Sales Event Driven Long Only FOF-U.S. FOF Offshore 
Neutral Macro 

Obs. 31945 11341 730 5374 2330 753 3551 306 3912 3648 

Intercept 0.768 (52.8) 0. 798 (10.3) 1.731 (6.5) 0.666 (33.l) 0.803 (8.03) 0.522 (2.67) 0.996 (14.4) 2.261 (2.8) 0.832 (22.4) 0.75 (15.7) 

Lag 1 0.077 (17 .3) 0.087 (8.8) 0.101 (2.9) 0.068 (7.8) 0.042 (2.4) 0.047 (1.3) 0.120 (8.5) 0.103 (1.6) 0.059 (5.2) 0.075 (5.4) 

Lag2 0.029 (6.6) 0.043 (4.3) 0.024 (0.7) 0.026 (3.1) 0.008 (0.5) -0.09 (-2.5) 0.04 (2.9) 0.045 (0.7) 0.014 (1.3) 0.038 (2.8) 

Lag3 0.016 (3.9) 0.048 (4.8). -0.005 (-0.1) 0.03 (3.8) -0.002 (-0.l) -0.025 (-0. 7) -0.029 (-2.1) 0.02 (0.3) 0.008 (0.8) 0.009 (0.7) 

Lag4 -0.014 (-3.3) -0.024 (-2.34) 0.032 (0.95) -0.009 (-I.I) -0.004 (-0.3) -0.053 (-1.5) -0.009 (-0.7) -0.084 (-1.2) -0.006 (-0.6) -0.026 (-2.1) 

Lag5 -0.012 (-3.0) -0.039 (-3.9) -0.075 (-2.2) 0.012 (1.5) 0.027 (1.6) -0.077 (-2. l) -0.018 (-1.3) -0.012 (-0.2) -0.025 (-2.4) -0.006 (-0.5) 

' Lag6 -0.018 (-4.4) -0.039 (-3.8) -0.046 (-1.3) -0.001 (-0.l) -0.009 (-0.5) -0.077 (-2.1) -0.007 (-0.5) -0.077 (-I.I) -0.013 (-1.3) -0.031 (-2.6) 

'° Lag 7 0.035 (8.9) 0.10 (9.8) -0.028 (-0.8) 0.025 (3.6) 0.020 (1.2) 0.092 (2.5) 0.003 (0.2) 0.006 (0.1) 0.039 (3.9) 0.039 (3.4) 
0 

Lag 8 0.025 (6.6) 0.051 (4.9) 0.014 (0.4) 0.018 (2.6) 0.041 (2.5) -0.015 (-0.4) 0.009 (0.7) 0.071 (1.01) 0.004 (0.4) 0.054 (4.8) 

Lag9 0.025 (6.7) 0.05 (5.l) 0.07 (2.2) 0.007 (I.I) O.Q35 (2.1) 0.103 (2.8) 0.028 (2.2) 0.232 (3.3) 0.032 (3.3) 0.031 (2.8) 

Lag 10 0.007 (1.7) 0.024 (2.3) -0.028 (-0.8) 0.012 (1.7) 0.02~ (1.7) 0.016 (0.4) -0.025 (-1.99) -0.041 (-0.6) -0.015 (-1.7) 0.021 (l.95) 

Lag 11 -0.033 (-9.l) -0.077 (-7.4) -0.155 (-4.6) -0.004 (-0.6) -0.012 (-0.8) -0.086 (-2.4) -0.016 (-1.3) -0.308 (-4.2) -0.037 (-4.l) -0.052 (-4.9) 

Lag 12 0.001 (0.4) -0.02 (-1.9) -0.035 (-1.1) 0.016 (2.6) -0.023 (-1.4) 0.024 (0.7) 0.012 (1.0) -0.118 (-1.5) -0.001 (-0.1) -0.037 (-3.5) 

Lag 13 -0.008 (-2.3) -0.026 (-2.5) 0.029 (0.87) -0.006 (-0.98) -0.024 (-1.5) -0.115 (-3.1) -0.019 (-1.6) -0.044 (-0.6) -0.007 (-0.8) -0.025 (-2.4) 

Lag 14 -0.003 (-0.9) O.Ql5 (l.5) -0.081 (-2.4) -0.005 (-0.86) 0.003 (0.2) 0.054 (1.5) -0.022 (-1.9) -0.132 (-1.6) -0.01 (-1.2) -0.002 (-0.2) 

Lag 15 -0.004 (-1.2) -0.041 (-3.9) -0.042 (-1.3) 0.005 (0.89) 0.022 (1.4) -0.103 (-2.8) -0.017 (-1.4) -0.104 (-1.3) -0.017 (-2.l) -0.002 (-0.2) 

Lag 16 -0.003 (-1.0) -0.078 (-7 .5) -0.008 (-0.3) 0.004 (0.67) -0.016 (-0.9) -0.04 (-1.1) 0.013 (I.I) 0.052 (0.6) 0.008 (1.0) -0.011 (-1.2) 

Lag 17 0.008 (2.4) 0.053 (5.0) 0.066 (1.98) 0.002 (0.4) 0.019 (1.2) 0.048 (1.3) -0.008 (-0.8) 0.069 (0.8) 0.006 (0.8) -0.009 (-0.9) 



Table 7. (Continued) Results for the Regressions of Mean Returns on Their Lagged Values for the Disaggregate Estimation 
(t-statistics are given in parentheses). 

Style All Global Sector Market Neutral Global Macro Short Sales Event Driven Long Only FOF-U.S. FOF 
Offshore 

Num. of 31945 11341 730 5374 2330 753 3551 306 3912 3648 
Obs. 

Lag 18 0.007 (2.3) -0.004 (-0.4) 0.047 (1.4) 0.001 (0.1) 0.063 (3.8) 0.008 (0.2) 0.013 (1.2) 0.008 (0.1) 0.006 (0.8) 0.007 (0.7} 

Lag 19 -0.019 (-6.2) -0.031 (-2.9) -0.044 (-1.4) -0.019 (-3.8) -0.027 (-1.6) -0.019 (-0.5) -0.032 (-2.8) -0.135 (-1.5) -0.018 (-2.4) -0.01 (-1.1) 

Lag20 0.007 (2.3) 0.010 (0.9) -0.068 (-2.1) -0.0001 (-0.01) 0.039 (2.3) 0.036 (0.98} 0.002 (0.2) 0.17 (1.9) 0.013 (1.7) 0.017 (l.92} 

Lag 21 0.007 (2.2) 0.010 (0.9} -0.021 (-0.6} 0.012 (2.4) 0.006 (0.3) -0.019 (-0.5} -0.0002 (-0.2) -0.015 (-0.2) -0.001 (-0.1) -0.001 (-0.1} 

Lag22 0.005 (1.6} 0.008 (0.7) -0.031 (-1.2) -0.003 (-62} 0.021 (1.2) 0.105 (2.8) 0.008 (0.8} 0.144 (1.6} 0.001 (0.1} 0.011 (1.3} 

Lag23 -0.001 (-0.2) -0.031 (-2.9) -0.027 (-1.2) -0.003 (-0.59) 0.042 (2.5) 0.01 (0.3) 0.007 (0.7} 0.037 (0.4} -0.003 (-0.5) 0.017 (2.0) 

\0 
Lag24 0.007 (2.3} 0.009 (0.8} . 0.003 (0.14) 0.0003 (0.07} 0.024 (1.4} 0.052 (1.4} 0.031 (2.98} -0.056 (-0.6} 0.003 (0.4) 0.001 (0.1} 

..... Note: The results for the Global style are not corrected for heteroskedasticity since otherwise the estimation did not converge . 



Table 8. Results for the Style Regressions of Hedge Fund Returns on Eight Asset Classes 
Ct-statistics are given in parentheses). 
Variable All Global Sector Market Global Short Event Long FOF- FOF 

Neutral Macro Sales Driven Only U.S. NonU.S. 

Intercept -lo.40 -16.25 -20.67 -3.378 -3.99 9.15 -9.13 74.06 -6.99 -8.53 
(-9.47) (-7.74) (-1.59) (-2.12) (-1.06) (0.96) (-3.65) (2.6) (-4.48) (-3.04) 

S&P500 0.011 0.014 0.021 0.006 0.011 -0.005 0.009 0.023 0.008 0.013 
(21.44) (12.75) (4.81) (7.79) (5.93) (-1.0) (6.35) (2.98) (10.04) (11.23) 

Wexus -0.005 -0.006 -0.005 -0.003 -0.006 0.0008 -0.005 -0.005 -0.004 -0.006 
(-20.33) (-11.59) (-2.74) (-7.61) (-6.51) (0.34) (-6.45) (-1.65) (-9.85) (-10.38) 

Em 0.014 0.02 0.037 0.006 0.01 -0.018 0.011 0.073 0.010 0.014 
(28.94) (19.74) (9.38) (7.17) (5.32) (-3.25) (8.03) (8.83) (13.73) (12.55) 

Gold 0.028 0.037 0.018 0.013 O.D28 0.006 0.025 -0.057 0.018 0.027 
(21.92) (14.36) (1.21) (7.07) (6.39) (0.41) (7.31) (-1.88) (9.10) (8.21) 

Trdwgtd -0.006 -0.019 -0.287 -0.007 O.oI5 0.188 0.0008 -0.892 0.008 -0.019 
(-1.25) (-1.83) (-4.69) (-0.88) (0.83) (3.68) (0.06) (-6.52) (0.99) (-1.55) 

Edmth 0.057 -0.049 -0.946 0.045 0.389 0.205 0.033 -3.582 0.099 0.066 
(1.7) (-0.69) (-3.26) (0.92) (3.15) (0.73) (0.35) (-5.32) (2.0) (0.86) 

Govbd -0.916 -0.957 -13.131 -0.417 -2.068 11.525 -1.015 -15 .. 908 -0.80 -0.720 
(-5.29) (-2.7) (-4.07) (-1.5) (-3.16) (4.09) (-2.32) (-2.48) (-3.15) (-1.57) 

Corpbd 1.09 1.47 16.132 0.449 1.302 -13.498 1.043 16.773 0.769 0.735 
(5.79) (3.82) 4.35 (1.48) (1.79) (-4.16) (2.28) (2.3) (2.80) (1.42) 

F-value • 1.61 1.63 1.01 2.08 2.03 1.24 1.01 0.97 1.41 1.90 

Df 1208 429 56 231 67 13 122 17 126 139 

P-value 0.0001 0.0001 0.4546 0.0001 0.0001 0.2432 0.4384 0.4956 0.0018 0.0001 

Note: • The null hypothesis being tested is the hypothesis ofno perfonnance persistence. 
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Table 9. Average Spearman Rank Correlations (5% critical value in parentheses). 

All Global Sector Market Global Short Event Long FOF- FOF 
Measure Neutra Macro Sales Driven Only U.S. Non U.S. 

I 

Mean 0.38 0.33 0.59· 0.39 0.42 0.20 0.35 0.17 0.24 0.30 
(0.569) (0.533) (0.582) (0.5599 (0.60) (0.616) (0.552) (0.677) (0.538) (0.545) 

) 

Sh. Ratio 0.45 0.36 0.59 0.49 0.45 0.21 0.49 0.44 0.20 0.28 
(0.623) (0.538) (0.65) (0.607) (0.67) (0.639) (0.636) (0.75) (0.603) (0.62) 

Mean/Std 0.57 0.31 0.58 0.10· 0.44 0.53 0.60· 0.31 0.20 0.33 
(0.651) (0.475) (0.588) (0.573) (0.615) (0.61) (0.562) (0.65) (0.549) (0.553) 

Alpha 0.19 0.11 -0.34 0.21• 0.16 • 0.59· 0.31 0.65 • 0.38· 0.33 • 
( 0.211) (0.113) (0.123) (0.156) (0.1559) (0.151) (0.393) (0.126) (0.16) (0.15) 

Note: • Denotes that the correlation coefficient is significant at the 5% level of significance. 
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Table 10. Results for the Regressions of Returns on the Lagged Value of the Logarithm of 
Market Capitalization (t-statistics are given in parentheses). 

OLS Estimation MLE Estimation Disaggregate 
Regression Estimation Style Analysis 

Mean Returns Sharpe Ratio Mean Returns Sharpe Ratio 

All 1.11 0.02 3.23 0.05 0.07 -0.34 
(17.5) (l.79) (32.2) (8.11) (3.86) (-9.87) 

Global 1.62 0.007 6.98 0.11 -0.02 -0.43 
(11.9) (1.7) (32.2) (12.85) (-0.1) (-5.76) 

Sector -0.82 -0.06 6.44 0.05 -0.33 -0.51 
(-1.17) (-4.57) (5.49) (3.39) (-1.8) (-2.0) 

Market -0.03 O.D7 1.04 O.D7 -0.06 -0.13 
Neutral (-0.3) (10.4) (5.97) (8.02) (-5.7) (-2.75) 

Global 2.45 0.05 3.92 0.06 0.2 -0.52 
Macro (12.5) (13.7) (12.7) (13.6) (4.4) (-3.57) 

Short Sales 4.49 0.05 6.15 0.09 0.33 1.21 
(8.34) (5.99) (9.07). (6.89) (l.88) (2.01) 

Event 0.05 0.11 0.76 -0.01 -0.03 -0.29 
Driven (0.3) (1.18) (3.4) (-0.81) (-1.74) (-3.69) 

Long Only -3.56 -0.08 1.2 0.02 -0.37 -0.24 
(-3.67) (-4.36) (1.06) (0.97) (-1.16) (-0.42) 

FOF-U.S. 1.32 0.09 2.67 0.13 -0.02 -0.49 
(1.07) (11.1) (12.6) (16.2) (-0.6) (-7.52) 

FOF 0.87 0.02 2.8 0.03 0.001 -0.51 
Non U.S. (5.31) (3.72) (9.24) (5.44) (0.02) (-5.26) 
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Appendix 

Table 11. Spearman Rank Correlations of Mean Returns. 

Period All Global Sector Market Global Short Event Long FOF- FOF 
Neutral Macro Sales Driven Only U.S. Non U.S. 

'83- '86 0.13 -0.76 • -0.30 0.25 -0.17 0.56 • 

'84- '87 -0.19 • 0.37' -0.16 0.21 -0.39 • 0.42' 

'85 - '88 0.12 • 0.67 • 0.07 -0.31 0.10 0.16 -0.003 

'86- '89 0.50' 0.55' 0.64· 0.76' 0.18' 0.60' 0.20 

'87 - '90 0.57" 0.67' 0.86· 0.38' 0.59' -0.08 0.50' 

'88 - '91 0.49 • 0.37' 0.52' 0.47' 0.50' 0.30' 0.14 0.53 

'89- '92 0.45' 0.34' 0.59' 0.69' -0.03 0.42' 0.44' 0.02 

'90- '93 0.46' 0.41 • 0.83' 0.62" 0.74 • -0.23 • 0.38 • 0.42 • -0.10 

'91 - '94 0.44 • 0.46' 0.72' 0.45 • 0.46' 0.45 • 0.73 • 0.55 • 0.63 • 

'92- '95 0.64" 0.44 • 0.71 • 0.51' 0.55 • 0.10 0.59 • 0.63 • 0.68' 

'93 - '96 0.57" 0.33 • 0.49 • 0.57' 0.39 • 0.65' 0.33 • 0.33 • 0.50' 0.42 • 

'94- '97 0.43 • 0.10' 0.20• 0.36' 0.02' -0.05 0.09' 0.02 0.08 • 0.06' 

Note: • denotes the correlation coefficient is significant at the 5% level of significance. 
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Table 12. Spearman Rank Correlations of Sharpe Ratios. 

Period All Global Sector Market Global Short Event Long FOF- FOF 
Neutral Macro Sales Driven Only U.S. NonU.S. 

'84- '87 0.79" 0.42" -0.87 • 0.86 • 

'85 - '88 0.35 • 0.09 0.87" 0.44" 0.02 

'86- '89 0.16" .. 0.02 0.87 • 0.44· -0.02 0.37 0.02 

'87- '90 0.30' 0.56 • 0.91 • 0.27" 0.58' -0.61 ' -0.19 

'88 - '91 0.49' 0.36 • 0.50• 0.35 • -0.58 • 0.14 -0.07 0.59• 

'89- '92 0.36 • 0.61 8 0.76· 0.82" 0.44· 0.61 • 0.59 • -0.10 

'90- '93 0.62' 0.51 • 0.73' 0.48 • 0.12 0.33 • 0.41 • 0.58 • 

'91 - '94 0.49" 0.52 • 0.77 8 0.26" 0.71 • 0.24 o.57 • 0.36 • 0.69" 

'92- '95 o.51 •. 0.51 • 0.58 • ·0.27' 0.68· 0.45 • 0.59 • 0.33 • 0.47' 

'93 - '96 0.51 • 0.22' 0.54 • 0.54" 0.15 • 0.12• 0.52 • 0.38 • 0.25 • 0.27' 

'94- '97 0.30 • 0.11 • 0.46 • 0.52' 0.11 0.12 0.64' . 0.51 • 0.12 • 0.17' 

Note: • denotes the correlation coefficient is significant at the 5% level of significance. 
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Table 13. Spearman Rank Correlations of Mean Returns/Standard Deviation Ratios. 

Period All Global Sector Market Global Short Event Long FOF- FOF 
Neutral Macro Sales Driven Only U.S. Non U.S. 

'83 - '86 0.72· -0.82 • 0.11· 0.71' -0.38. 0.57 • 

'84- '87 0.79· 0.33 • 0.79· 0.74 • -0.28 0.20 

'85 - '88 0.53 • 0.11 0.70 • -0.07 0.66· -0.06 -0.21 

'86- '89 0.28" 0.27 • 0.66' 0.71' 0.69' 0.59' 0.40· 

'87 - '90 0.47' 0.65 8 0.83 8 0.28" 0.44 • O.o! 0.35 • 

'88- '91 0.53 • 0.29' 0.73 8 0.55 • 0.80' 0.48 • 0.38 8 0.21 

'89- '92 0.49" o.50' 0.76' 0.76' 0.36' 0.52' 0.28' 0.09 

'90- '93 0.62 8 0.58' 0.83 • 0.79' 0.63' 0.10• 0.61' 0.55 • 0.56· 

'91 - '94 0.64" 0.62' 0.78 • 0.69' 0.66' 0.53' 0.10• 0.48 8 0.77 • 

'92 - '95 0.69' 0.51 8 0.47' 0.56 8 0.66 • 0.34 8 0.53 • 0.40 • 0.59· 

'93 - '96 0.62' 0.37 8 0.51 • 0.66· 0.18 • 0.73 8 0.53 • 0.40· 0.27· 0.25 • 

'94- '97 0.47' 0.25 8 0.34' 0.50 • 0.06 0.23 8 0.60' 0.22' 0.14 • 0.12 • 

Note: • denotes the correlation coefficient is significant at the 5% level of significance. 
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Table 14. Spearman Rank Correlations of Style Regression Intercepts. 

Period All Global Sector Market Global Short Event Long FOF- FOF 
Neutral Macro Sales Driven Only U.S. Non U.S. 

'85 - '88 0.03 0.76 • 

'86- '89 -0.05 -0.08 0.50 -0.5 1 • 

'87 - '90 0.3 0.04 0.80 0.7 0.2 

'88 - '91 0.51' 0.33 -0.17 0.036 0. 8 I • 

'89- '92 0.18 0.29 -0.005 0.75 1 • 0.3 0.36 0.4 

'90- '93 0.38 8 0.008 0.27 0.25 1 • 0.58 • 0.37 0.74· 

'91 - '94 0.26' 0.014 0.19 0.15 0.2 0.39 0.90· 0.52 

'92 - '95 -0.06 -0.34 -0.12 -0.24 0.66 -0.17 0.084 0.23 

'93 - '96 0.09 -0.22 8 0.30 0.44· 0.27 0.29 -0.14 0.5 0.16 0.17 

'94- '97 0.27' 0.29" -0.32 0.52 • 0.0005 0.41 -0.19 0.8 -0.22 -0.10 

Note: • denotes the correlation coefficient is significant at the 5% level of significance. 
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