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CHAPTER I 

INTRODUCTION 

The Standard Model (SM) 

The Standard Model is based on a Lagrangian that contains all observed par­

ticles in nature. It is symmetric under poincare transformations, as any theory must 

be. But it is also symmetric under internal local symmetry transformations based 

on the gauge group U(l)y x SU(2)w x SU(3)c where Y, W, and C stand for the hy­

percharge, weak isospin, and color respectively. The observed fermions are arranged 

in the following multiplets. 

wL = ( : t en, QL = ( :: t um, dn; (1) 

where the subscript L and R stand for the left and right-handed particles. The 

left-handed particles are doublets under SU(2)w, while the right-handed particles 

are singlets. The index i stand for the SU(3)c indices. The quarks are triplets 

under SU(3)c, while the leptons are singlets. Equation (1) shows the first family 

of fermions. There are two other families. All three are shown in Table I. Their 

multiplet stucture under U(l)y x SU(2)w x SU(3)c is the same as the first family. 

By Noether's theorem we know that symmetry implies conserved quantities. 

The invariance of a Lagrangian under poincare transformations results in conserva­

tion of energy, momentum and angular momentum. This is a good reason to believe 

a Lagrangian should be invariant under poincare transformations. But, what about 

the local gauge symmetries? All they appear to do at first glance is to mix the fields 

in the multiplets. Could this have a physical result? The answer, since I've begged 

1 
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Table I. The SM particle nomenclature 

1 2 3 

electron neutrino = Ve muon neutrino = Vµ tauon neutrino = Vr 

electron= e muon=µ tauon = T 

up quark= u charm quark=c top quark =t 

down quark= d strange quark= s bottom quark =b 

it, is probably obvious. Yes. The result of the symmetry of the Lagrangian under 

those symmetry operators is conservation of their corresponding charges. And, since 

electric charge is conserved, that's a good reason to belive that Lagrangians should 

be symmetric under such groups. Not only that but the SM is invariant under these 

group transformations even if the corresponding parameters are allowed to be func­

tions of space-time. This is called local gauge invariance. In such a case the charge 

is conserved at every point in space, that is, in every particle interaction. This is 

the state of affairs in the SM. The charges conserved in the SM at low energy are 

the electric charge and color. However, something else is implied by the invariance 

of the Lagrangian under the local group symmetry. That is the existence of addi­

tional particles. Indeed, particles beyond the matter particles do exist in nature, 

such as the familiar photon. In fact, the SM predicted the existence of several ad­

ditional particles before they were observed. In the model, it is the demanding of 

local invariance of the Lagrangian under the group symmetries that requires the in­

troduction of these particles. A theory that is locally invariant like the SM is called a 

gauge theory; the particle symmetries are called guage symmetries and the particles 

implied by the symmetries are called gauge particles. The gauge particles are the 

messenger particles that transmit forces between the matter particles or between the 

gauge particles themselves. In the SM the gauge symmetries are with respect to the 

groups SU(2)w, U(l)y and SU(3)c. I said the SM implies conservation of electric 

charge and color. Where did these other charges come from? Well, actually the SM 

story begins at energies corresponding to temperatures much higher than those at 

which we live. That is the SM is not only a model that explains the present but 
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also a theory that explains the past, back maybe as long ago as 10-32 seconds after 

the beginning (big bang). At that time, and that energy ("' 1014 GeV), the SM was 

invariant under SU(2)w x U(l)y. But, as the universe cooled it underwent a phase 

transition, a change in state. At an energy scale of 100 GeV, the U(l)y x SU(2)w 

symmetry broke down spontaneously to U(l)EM· The universe never lost its color 

symmetry. The question is how does the SM lose the weak and hypercharge symme­

tries and gain the electric charge symmetry, and what are the implications of such 

a symmetry transition? Before I try to answer that question let me first introduce 

you to the rest of the SM. 

The SM Lagrangian is 

L = LF + La+ Ls + Ly (2) 

where the subscript F indicates the fermion sector of the Lagrangian which contains 

the kinetic energy terms for the fermions. The subsript G refers to the gauge particle 

sector. It contains the kinetic energy terms for the gauge particles. The subscript S 

refers to the kinetic and potential energy terms of a scalar particle, called the Higgs 

particle. None of these terms contain mass terms because they would destroy the 

particle gauge symmetries SU(2)w and U(l)y. And finally, the Y subscript refers to 

the sector in the Lagrangian that connects fermion fields to the scalar boson field. 

It is called the Yukawa term. The explicit form of these terms are given below. 

The fermion term is 

(3) 

where 

(4) 

The ,µ are the Dirac matrices and, for a single local gauge symmetry, 

(5) 

The symbol g is the gauge coupling, the Ti are the generators and Aµi are the gauge 

fields. For the three group symmetry of the SM, there are three gauge couplings, 
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denoted by 91 ,92 , and 93 • The gauge fields belong to the adjoint representations of 

the gauge groups. They transform as 

(6) 

where the fijk are the structure constants of the group 

(7) 

Since U(l)y has only one generator, fijk = 0 for this group. 

The gauge term for the SM is 

1 µVB lwµvw. laµva La = - 4 B µv - 4 i iµv - 4 i iµv (8) 

where µ and v are summed over and 

(9) 

The scalar term is 

Ls = ( Dµ</>) t ( Dµ</>) - V( </>) (10) 

where V is the potential energy of the field </>, and </> is a complex scalar doublet with 

respect to SU(2)w 

(11) 

This is the SM Higgs doublet. The electric charges for the matter fields are given by 

Q = / 3 + f, where / 3 is the third component of the isospin and Y is the hypercharge. 

And the Yukawa term is 

(12) 

where a and {3 are family indices and are summed over and </>c = ia2</>*. 

The problem was that Lagrangian symmetries like these don't allow mass terms 

and hence don't predict massive particles. This was a serious problem because, even 

before 1967, scientists realized that the particles did indeed have mass. This was 

the stumbling stone to understanding how to generate the masses of the particles 



5 

without destroying gauge symmetry explicitly. If one simply added explicit mass 

terms to the Lagrangian, the symetry is broken explicitly and, it makes the theory 

have infinities. This would render the theory meaningless. The problem was solved 

in 1967 by Weinberg, Salam and Glashow by incorporating spontaneous symmetry 

breaking. These men built the SM, incorperating earlier work done by other scientists 

like Higgs and N ambu. And it was proved by a brilliant mathematicion 't Hooft 

that the theory was in fact finite and renormalizable. Here is the way they did 

it. Besides constructing the specific symmetry structure and particle assignments 

described above, they used the Higgs scalar potential energy in the model to obtain 

a non-zero vacuum expectation value for the scalar field. Here's how. The potential 

energy of the scalar field is 

(13) 

This function has a minimum, not at zero vacuum expectation value ( vev) for <p but 

at 
{µ2 

l</>I = V 2,\ = v. (14) 

This means the universe could have a ground state energy that does not respect the 

U(l)y x SU(2)w symmetry. Thus, the Lagrangian respects the symmetry, but the 

ground state does not. This is called spontaneous symmetry breaking and is similar 

to the breaking of rotational symmetry by ferromagnets. The result of this non­

intuitive idea is that by perturbatively expanding the scalar around the minimum of 

the potential there is a shift in the field. That is, the field becomes explicitly 

(15) 

where v is the vacuum expectation value of VJ and the vevs of </>1,2,3,4 are zero and v 

is a real constant. We can rewrite</> as 

<p = exp ( ig20:( X )iTtu<2)) ( Q ) 
</>+v . 

(16) 

This is called the unitary guage. If <pis substituted into the above Lagrangian and 

the Lagrangian is then written in the unitary gauge, the particles that are supposed 
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to, like the electron and quarks, but not the photon, get massive. The symmetry 

reduces to the U(l) electric charge symmetry and the color symmetry, which agrees 

with nature. It also, predicts the massive gauge bosons that were searched for, 

and discovered as a result. The SM is beautiful. It has 9 massless gauge bosons 

corresponding to the exact remaining gauge symmetry U(l)EM x SU(3)c and three 

massive gauge bosons: w+, w-, zo. 
The Standard Model is still, well, the standard. To this day there is no iron clad 

evidence that the standard model is wrong, except perhaps in the area of neutrino 

physics, which will be discussed shortly. However, by no means have scientists put 

away their slide rules and begun fretting that all has been discovered. In fact, there 

are reasons to believe the SM is only approximately true, at low energies. That there 

could be other heavier particles that can only be produced at higher energies that 

are not in the SM. 

Questions not answered by the Standard Model 

In spite of the remarkable agreement between the SM and experiments, the SM 

fails to answer some very important questions. For example, the range in masses of 

the fermions goes from .5M e V for the electron to "' 17 4Ge V for the top quark. Since 

the same mechanism is responsible for giving masses to all the massive fermions, why 

such a huge range in their masses? This is the fermion mass hierarchy problem. 

I mentioned the SM is a theory that can explain the past in addition to the 

present. The values of the parameters in the SM depend on the energy scale. Their 

values at low energy aren't the same as at high energy. When the three SM gauge 

couplings are evolved from the present energy to higher energy there is an energy at 

which all three (almost) intersect. If the coupling constants do intersect then there 

would be a new single group symetry with one charge instead of three. The idea is 

that this unification symmetry breaks down to the SM when the energy drops below 

the critical value, just like the SM breaks down to U(l)EM x SU(3)c below the 

electroweak energy scale. This is Grand Unification Theory (GUT). And the energy 

at which the couplings approximately intersect is the GUT energy. But the problem 
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with GUTs is that when the mass of the Higgs boson is evolved from the GUT energy 

to the present energy it is corrected by a term proportional to the GUT energy. The 

GUT energy is "' 1016Ge V. So, there's no good reason why the mass of the Higgs at 

our low energy shouldn't be much larger than the electroweak scale ("' 250GeV). But 

the Higgs mustn't be much larger than the electroweak scale or else it won't be able 

to participate in contributions to cross sections necessary to cancel contributions that 

grow too fast with energy. Otherwise, the cross sections would become larger than 

the observed cross sections. This is the gauge hierarchy problem. Supersymmetry 

(SUSY) solves this problem by giving every fermion (boson) a bosonic (fermionic) 

partner with the same mass and couplings. Since fermionic partners contribute to the 

boson mass correction with the same strength, but with opposite sign as the bosons, 

the total quadratic correction is then zero, and the hierarchy problem vanishes. There 

is much activity going on aimed at measuring SUSY particles. 

Also, the SM says nothing about partides with spin higher than s = 1. Yet 

there are theories that predict the existence of fundamental particles with higher 

spin. For example, in supersymmetry there is the gravitino (s = i) and the graviton 

(s = 2). Some string theories also allow for particles with higher spins and masses 

far below the Planck mass [1]. It is also possible that new bound states could exist 

that have higher spin, like a quark-Higgs or quark-gluon bound state. Such a particle 

would have spin i and would be a color triplet like a quark. In fact there might be 

fundamental spin i color triplets. In Chapter 2, I investigate the production and 

detection of such a particle. 

Massive neutrinos 

When explaining the SM I mentioned the Yukawa term in the Lagrangian. 

When the scalar field develops its vacuum expectation value and is shifted it is 

the Yukawa term which gives mass to the fermions. After the column matrices are 

multiplied together and terms in v are collected we get mass terms like 

(17) 
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for the leptons, and similar ones for the up and down quarks. Here, M~13 = h~13v. And 

as usual, a and /3 are family indices. The matrix M~/3 is a mass matrix. Diagonalizing 

it gives 

(18) 

where a is the only sum index. But looking at only one term, say a= 1, we have 

(19) 

This is the electron mass term. Notice that it connects left and right-handed fields. 

This is true of all charged fermion mass terms. But notice that there are no right­

handed neutrinos in the SM. Therefore, there is no mechanism within the SM to give 

them mass. However, there is growing evidence that neutrinos are massive. There­

fore, it is important to determine how to extend the SM to give mass to neutrinos. 

The most obvious way, perhaps, is to simply include right-handed neutrinos Nf} in 

the SM. If three right-handed neutrinos ( one for each generation ) were added we 

get a Dirac neutrino mass matrix in the Yukawa term of the Lagrangian similar to 

the one for the charged leptons 

(20) 

that would give three massive Dirac neutrinos upon diagonalization. The right­

handed particles are invariant (singlets) under the weak, color and hypercharge sym­

metries. Hence, right-handed neutrinos have no interaction with any bosons or other 

matter fields. So, right-handed neutrinos are sterile. Since this is so, there can be a 

sterile mass term 

(21) 

in addition to the Dirac mass terms. Where the hat on a field means it is the charge­

parity (CP) conjugate field. There is nothing to prevent such a mass term in the case 

of sterile neutrinos since they have no observable charge. These are called Majorana 

mass terms, and these right-handed neutrinos are called Majorana neutrinos. So 

there is no constraint from symmetry against adding by hand such terms to the SM 
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Lagrangian. The Dirac and Majorana mass terms can be combined 

(22) 

and expressed as a matrix equation 

(23) 

where VL and NR are columns containing the neutrinos from the three generations 

and Mand A are 3 x 3 matrices and I've used M13a.PR13NLa = Ma./3NRa.VLf3· This mass 

matrix is a Majorana mass matrix because some bilinears connect one particle and 

one antiparticle of opposite chirality and all mass eigenstates are Majorana neutrinos. 

Majaorana mass matrices are required to be symmetric, as this one is. 

Now we address the question of how to generate very small masses for neutrinos. 

To simplify matters for the moment let's pretend there is just one generation. So in 

eqaution (23), VL and NR are are just the neutrino fields and Mand A are numbers. 

So the mass matrix has two eigenvalues. One is negative but the negative sign can 

be absorbed into the definition of the neutrino field. The eigenvalues are then given 

by 
1 

m1,2 = 2( v' A2 + 4M2 ± A). (24) 

Since the M element came from the usual SM symmetry breaking we would expect 

it to be about the same size as the mass of the charged fermion SU(2)w partner 

of the neutrino. But the A element has another origin. Recall, it was put in by 

hand. We could therefore speculate that this mass occurs at a much higher energy 

scale (maybe the GUT scale), and is much larger in size. If so, the eigenvalues are 

approximately 

(25) 

So, one mass eigenstate is very heavy, too heavy to be seen, and one is very light, 

much lighter than its SU(2)w charged partner. This would explain the lightness of 

the neutrino compared to its charged fermion partner. In the actual case of three 

generations one obtains three ultra-heavy neutrinos and three very light neutrinos 
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with masses proportional to the masses of their charged fermion partners. This model 

would then predict a light neutrino hierarchy similar to the hierarchy of the charged 

partners. This mechanism is called the see-saw mechanism. 

There are other ways of introducing mass terms into the SM without disturbing 

its symmetry. One is to introduce a scalar SU(2)w triplet into the theory: 

~= 

Then we can write an SU(2)w singlet 

~o 

~­

~--

Lsinglet = - faf3JRa T • ~'l/JL(3 

(26) 

(27) 

where the vector components of T are the 2 x 2 SU(2) group generators. Since the 

fermion bilinear is just the symmetric SU(2)w triplet combination of two doublets, 

its dot product with the scalar triplet is a singlet. When the scalar triplet develops 

a vev in the direction of the neutral component, as before, the vacuum expectation 

of the scalar is 

< 01~10 >= 

So Lsinglet contains a neutrino mass term. 

v' 

0 

0 

(28) 

(29) 

where M0 13 = J0 13v'. This mass matrix can be diagonalized to obtain massive Ma­

jorana neutrinos, without violating the SM symmetry. However, this spontaneous 

symmetry breaking would contribute mass terms for the gauge bosons in the same 

way the SM symetry breaking did. And could give a different value of the ratio of 

the gauge boson masses. Therefore, since the ratio predicted by the SM in good 

agreement with experiment, we must have 

v' « v. (30) 
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Since fermion masses are prportional to vevs, the above requirement is consistent 

with the neutrinos being much less massive than the other fermions. 

We could combine the two methods outlined above for giving mass to the 

neutrinos. Instead of adding three right-handed neutrinos though, we might only 

add one. Perhaps the other two are too heavy to be seen. Incidentally, for reasons 

I'll soon reveal, we don't want this sterile neutrino to be heavy but rather very light. 

In this case the three active SM neutrinos could mix with the sterile through the 

regular SM Yukawa Lagrangian, as in the first case above. But the three active 

neutrinos could mix via a new scalar triplet, as in the second case above. That way 

we would obtain a 4 x 4 neutrino mass matrix with three active neutrinos and one 

sterile. Such a mass matrix could appear as 

mas mse msµ msr 

M= 
mes mee meµ mer 

(31) 
mµs mµe mµµ ffiµr 

firs fire firµ mrr 

where the 1-1 element comes from the sterile mass term like in the example above. 

The other members in the top row and first column come from the Yukawa inter­

actions between the right-handed sterile and the active neutrinos. The 3 x 3 block 

containing the rest of the elements are from the new scalar triplet that combines the 

active neutrinos. Since some bilinears connect a particle and antiparticle, this mass 

matrix is Majorana, and hence must be symmetric. 

This mass matrix is the preferred mass matrix experimentally, even if its origen 

has nothing to with the method by which it was obtained above. In fact, a sterile 

neutrio doesn't have to be one of the Dirac partners of one of the active neutrinos in 

the SM. It's origin may have nothing to do with the SM. But regardless of how such 

a mass matrix occurs, the experimental data currently favors three active neutrinos 

plus a sterile neutrino. The reason the fourth neutrino must be sterile is because of 

the constraint from Z-decay at the LEP collider (Z -+ 1/iVi). The measurement of 

of the visible width of the and the total width of the Z-boson at the LEP collider 
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showed that the total number of light SU(2)w doublet light neutrinos is equal to 

three (Here, light means mv < 'Pf-). 

Neutrino oscillations in vacuum 

Now if the 4 x 4 mass matrix in equation (31) is diagonalized the eigenvalues 

and the unitary matrix that relates the flavor basis and the mass basis can be found. 

It is neutrino flavor states that interact with matter. But neutrinos propagate ac­

cording to the time dependent Schroedinger equation, as a superposition of energy 

eigenstates. This difference of bases is responsible for the possibility that a neutrino 

produced as a certain flavor will change into some other flavor after propagating 

some distance. The eigenvectors of the mass matrix are the mass eigenstates. 

(32) 

This equation is in the mass basis so the subscript D means the mass matrix is 

diagonal and the subscript m identifies the mass basis. Since the mass matrix is 

symmetric, the matrix in the flavor basis is related to the diagonal matrix in the 

mass basis by a single unitary operator. We have 

(33) 

where the subscript f identifies the flavor basis. Comparing these two equations we 

have 

UT -Xj - Xm. (34) 

Or, 

(35) 

Therefore, 

(36) 

where a is a flavor label and i is a mass eigenstate label. The time dependent 

relationship between the flavor states and mass eigenstates is 

(37) 
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where Ei = J p2 + m~ is the energy of an eigenstate with momentum p and mass mi, 

Now, let us find the probability that a neutrino initially in the flavor state a could 

be found in the flavor state /3 sometime later. The probability amplitude is given by 

< v.alva(t) >=< v.al exp(-iEit)UailVi > 

=< VjlUJ.a exp(-iEit)Uailvi > 

= exp(-iEit)UaiUpi 

(38) 

(39) 

(40) 

where we have summed over j and used the orthonormality of the mass eigenstates. 

So, the probability of the flavor transition is 

P(va --t vp) = I < v.alva(t) > 12 

= I)exp(-iEit)UaiUpi)(exp(-iEjt)UajUpj)* 
i,j 

= L UaiUpiu:ju.Bj exp(i(Ej - Ei)t). 
i,j 

If the unitary matrix is real, we can write the probability 

P( ) _ ""'U. ·U ·U. ·U . (exp(i(Ei - Ei)t) + exp(-i(Ei - Ei)t) 
Va --t Vp - ~ m ,Bz a3 ,83 2 

z,J 

= L UaiUpiUajUpj cos((Ej - Ei)t) 
i,j 

(41) 

(42) 

(43) 

= da,B + L UaiUpiUajUp;(cos((Ej - Ei)t) - 1) (44) 
i,j 

where the dummy indices were interchanged and the probability was added to itself 

and the sum was divided by two. Also, we've used 

L UaiUpiUajUpj = da,B• 
i,j 

The last expression of the probability becomes 

( ) r ""' ( . 2 ((Ei - Ei)t)) P Va --t Vp = Oa,B + T.1 UaiUpiUajUpj -2 sm 2 , 

(45) 

(46) 

This equation is symmetric in the dummy indexes, and terms with i = j are absent. 

So, we can express the probability in the form 

(47) 
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Now, being so light, neutrinos are extremely relativistic p » mi so the energy Ei = 

VP2 + mr can be approximated Ei ~ p + ~. Therefore, Ej - Ei 

t ~ x, and as already shown, p ~ E. and the probability becomes 

2 2 
l'V m;-m; and 

2p ' 

(48) 

where c5mJi = mJ - mr. But, so far we've expressed the probability in natural units. 

Converting over to more convenient units we have 

(49) 

where x is now in kilometers, Eis in GeV, and the c5mJi are in eV. This could also 

be written as 

(50) 

if Lji = I.27~m~-. The quantities Lji are the oscillation lengths associated with the ,. 
mass-squared-differences c5mJi· Or (and I promise this is the last form I'll introduce 

for the probability for now), we could write the probabillity as 

P(va -+ 1113) = Oaf3 - L 4UaiU13iUajUt3j sin2(.~ji) 
i<j 

(51) 

'f A 21rx 1.27.Sm~-x N h . .c h b b'l' h . 1 Uji = LJ; = E '' • ow we ave expressions 1or t e pro a 1 1ty t at a neutrmo 

of one flavor will oscillate into another as it propagates through the vacuum. But 

what about when neutrinos propagate through matter? 

Neutrino oscillations in matter 

Propagation through matter is not CP invariant because in this case the prob­

abilities do depend on the sign of the c5mJi even if the vacuum probabilities don't. In 

the case of oscillations of neutrinos in the sun we should expect this because neutri­

nos and antineutrinos don't interact with the sun in the same way. When an electron 

neutrino travels the sun it undergoes both charged current ( the messenger boson is 

charged) and neutral current (the messenger boson is neutral) elastic collisions with 
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electrons, whereas when muon or tauon neutrinos propagate, they only experience 

neutral current elastic interactions since there are very few muons and tauons in 

the sun. Since interactions modify the effective mass of the electron neutrino differ­

ently than the other neutrinos the unitary matrix that relates the flavor and mass 

eigenstates must compensate, hence the probabilities change. The interactions of 

antineutrinos are different than for the neutrinos because there aren't many antielec­

trons, antimuons, and antitauons in the sun. Therefore, the way antineutrinos mix 

will be different than for neutrinos. 

As an example of why these statements are true consider oscillations between 

only two neutrino flavors Ve and V:1: in the sun, where x can be µ, T, or a sterile 

neutrinos. The unitary matrix in the case of two flavors, in vacuum is 

_ ( cos( 0) - sin( 0) ) U- . 
sin( 0) cos ( 0) 

(52) 

The effective hamiltonian in the flavor basis for neutrinos in matter is approximately 

HJ -
e// -

m2+m2 ( - 5
4m

2 cos(20) + Yee 54m
2 sin(20) ) p+ x e+ P P 

4p 5 2 • 5 2 
:;;, sm(20) :;;, cos(20) + Vxx 

(53) 

where Yee and Yxx are the effective potential energies of the neutrinos due to their 

interactions with matter and 8m2 = m; - m~. The effective mixing angle in matter 

is given by 

(20-) _ . 8m2 sin(20) 
tan - 2 • 

8m cos(20) - 2(Yee - Vxx)P 
(54) 

If 

8m2 cos(20) - 2(Yee - Vxx)P = 0 (55) 

the effective mixing is maximal, even if the vacuum mixing angle is very small. 

Therefore, the relative sign between 8m2 and Yee - Yxx is important. Unless their 

signs are the same, the effect will suppress rather than enhance oscillations. The 

sign of the potentials is opposite for antineutrinos. Therefore, if an oscillation is en­

hanced for neutrinos, it will be suppressed for antineutrinos. This type of oscillation 
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enhancement/suppression is called MSW after Mikheyev, Smirnov and Wolfenstein 

[2]. 

1f X =µor T then Yee= ,v2Gpne +- 0$n and Vxx = - 0$n. Where nn is the 

number density of neutrons in the matter, ne is the number density of electrons, and 

G F is the Fermi constant given above. The ,v2G pne term comes from the elastic 

charged current interactions of the electron neutrino with with electrons in the sun, 

which is absent for the muon or tauon neutrinos since there are few muons and 

tauons in the sun. The - G~n term came from the neutral current interactions of the 

neutrinos with the neutrons in the sun. Neutral current interactions with electrons 

and protons are absent since they have opposite signs and cancel out. Since Yee > Vxx 

in this case, mx must be larger than me in order for enhanced oscillations to occur. 

If x = s then Yee = V2GFne + - G$n and Vxx = 0. In this case too, the mass of the 

electron neutrino must be lighter. In particular if the electron is created in the sun 

then in order for MSW enhancement to work, the sterile neutrino has to be heavier 

than the electron neutrino. I have required this in my models. 

In the two active flavor case above the probability that the electron produced 

in the sun would remain an electron neutrino as it left the sun is [3] 

(56) 

where 

P ( 1rom2 sin2(20) ) 
LZS = exp -

4E cos(20)1 d: ln(ne)lres 
(57) 

is the Landau-Zenner-Stuckelberg Probability. The subscript res means that the 

derivative of the natural log of the electron density is evaluated at the point in the 

sun where the density passed through the value that temporarily caused maximal 

mixing between the electron neutrino and the other active neutrino. This formula 

assumes the electron density to drop off linearly as the electron leaves the sun. 

Neutrino experiments 

There are three classes of experiments being conducted today that indicate the 

existence of massive neutrinos. They are the solar experiments [4,5], the atmospheric 
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experiments [6-8], and the Los Alamos Liquid Scintillator Neutrino Detector (LSND) 

experiment [9,10]. 

The MSW mechanism could be important in understanding the solar neutrino 

experiments. Electron neutrinos are produced in the sun and according to the Stan­

dard Solar Model (SSM) [11] we know how many electrons from the sun should be 

reaching the earth. However, the number of electrons from the sun are about half 

the SSM prediction. Neutrino oscillations seem the most likely explanation of this 

discrepancy. If oscillations are the answer two possibilities exist. The supression is 

due to vacuum oscillations or MSW matter enhanced transitions. If the oscillations 

are from propagation through the vacuum, the distance between the earth and the 

sun must correspond to the vacuum oscillation length of the electron neutrino. We 

can't rule this solution out, even though it would seem highly unlikely that this co­

incidence would occur. In the case of MSW solutions, there are two possibilities. In 

one case the vacuum mixing angle between the electron and the neutrino it mixes 

with is very small. This is called the small angle MSW solar solution. The other case 

requires a rather large vacuum mixing. This solution is naturally called the large 

angle MSW solution. It's up to the solar experiments to determine which scenario 

is correct. 

The atmospheric experiments reveal an anomaly. It is based on the ratio of 

muon neutrinos to electron neutrinos in detectors on the surface of the earth. The 

atmosphere is continually bombarded by cosmic rays, namely protons. When the 

protons interact with the atmosphere positive charged pions are produced which 

quickly decay into a antimuons and muon neutrinos. The antimuons then quickly 

decay into antimuon neutrinos, electron neutrinos and antielectrons: 

7r+ -+ µ+ + Vµ 

+ A + + + µ -+ Vµ Ve e . 

(58) 

(59) 

Simply counting the number of muon neutrinos and electron neutrinos implies that 

the ratio of muon type neutrinos to electron neutrinos should be about two. However, 

the experimental results disagree. The measured ratio is about unity. The likely 
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explanation of this anomaly is that the of the muon neutrinos oscillate into another 

flavor as they propagate through the vacuum. 

The last, but not least, experiment is the LSND experiment at Las Alamos. It 

measures the appearance of electron type neutrinos in a beam of muon type neutrinos. 

Two types of experiments were done at LSND and both imply the same 8m2 and 

mixing amplitude for Vµ -+ Ve oscillations even though they are quite different in 

nature. The first experiment done at LSND involved the decay of 7r+ that were at 

rest in a collider beam stop. Protons collided with a target which produced the 

pions. Most of the pions then come to rest in a beam stop before decaying. When 

they decay a µ+ and a muon antineutrino are produced: 

(60) 

Then, the reaction 

Ve + p -+ e+ + n (61) 

is looked for in the downstream detector. The number of observed events was 22, with 

only 4.6 background events. This experiment is the decay at rest (DAR) experiment. 

A decay in flight (DIF) experiment was also done. Some of the pions produced in the 

target decay before they get to the beam stop. Therefore, there are vµ neutrinos with 

momentum corresponding to the momentum of the parent pions. Then, electrons 

with the correct energy are looked for in the downsteam detector. They look for 

Ve +12 C-+ e- + anything. (62) 

The number of events was 40, with a background of 22. Both experiments have a 

length scale of only about 30 meters. In order for the oscillation length of P(vµ-+ ve) 

to be that small, the corresponding mass-squared-difference must be large compared 

to the solar and atmospheric experiments. The solar experiment indicates a mass­

squared-difference much smaller than either of the other two experiment types. If 

we accept the best fit values the experiments give for the mass-squared-differences, 

it seems four neutrinos are needed to explain the LSND results together with the 

solar and atmospheric neutrino experimental results. Otherwise, it is impossible to 

get the three mass-squared-differences that are separated by orders of magnitude. 
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In Chapter 3, I assume the existence of four massive neutrinos for the reason I 

gave above. One must be sterile, as I've explained. I will analyze 147 mass matrices 

to see if they can fit the experimental constraints for the small angle MSW, large 

angle MSW, and vacuum oscillation solutions of the solar discrepancy. 



CHAPTER II 

SPIN i QUARKS 

The recent discovery of the top quark at the Fermilab Tevatron, both by the 

CDF and DO Collaboration, has filled the last missing ingredient in the fermionic 

sector of the SM. The measured mass and the cross section values are in agreement 

with those expected from the Standard Model. With the luminosity and/or energy 

upgrade of the Tevatron collider and with the commissioning of the LHC, we will be 

able to explore the missing bosonic ingredient of the SM, namely the Higgs boson. 

We will also be able to explore the presence of heavy 4th generation fermions and 

also other exotic gauge bosons and fermions. In this work I consider the production 

of such an exotic particle, namely a spin i quark. Just like an ordinary quark, I 

assume it to be a color triplet. 

It is not outside the realm of possibility that a spin i quark could exist as a 

fundamental particle. We could also have spin i bound states of ordinary quarks 

with gluons or the Higgs boson. There are also theoretical models in which spin ~ 

quarks arise as bound states of three heavy quarks for sufficiently strong Yukawa 

couplings (12]. The masses of these bound states are typically expected to be a few 

Te V. A heavy spin i quark could also exist as the lightest Regge recurrences of light 

spin ! quarks. These also could exist as Kaluza-Klein modes in string theory if one 

or more of the compactification radii is of the order of the weak scale rather than 

the Planck scale. Such weak compactification in the framework of both string theory 

or field theory has recently become popular (1]. In this work, I consider the collider 

production of point-like spin i color triplet quarks, in pp , pp and 11 colliders. The 

production of spin i quarks has been previously considered by Moussallam and Soni 

for hadronic collisions (13]. My analytical results for the gluon fusion subprocess is 

in disagreement with theirs. 

20 
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Feynman rules for spin ! particles 

The Lagrangian and the equations of motion for a free spin ! particle of mass 

M can be written as [14,15) 

(63) 

(64) 

where 

Aa/3 ( i(} - M)ga/3 + iA( "'fa0f3 + 'Yf30a) 

iB +2 'Ya (},13 +CM 'Ya'Y/3 (65) 

with B = 3A2 + 2A + 1 and C = 3A2 + 3A + 1. The parameter A is arbitrary except 

that A f. -!- The field VJa satisfies the subsidiary conditions 

0 

The Lagrangian (1) is invariant under the point transformation [15,16) 

VJa + d,a'Y>. 'Ip). 
A-2d 
1 +4d 

(66) 

(67) 

(68) 

(69) 

where dis an arbitrary parameter except d f. -1.The propagator Sa13(p) is given by 

1 [ 1 2 
Sa13(p) = , - M 9af3 - 3 'Ya'"'f/3 - 3M2 Pa P/3 

- 3~ ( 'YaP/3 - 'Yf3Pa)] 

+{ 6~2 1'Ya'Yf3 - 3°! 'Ya'Y/3 

+ 3~2 "Ya P/3 + 3~2 'Yf3Pa} (70) 
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where 

a=A+l b= A. 
2A + 1' 2A + 1 

Note that the terms depending on the parameter A disappear on the mass shell. 

Pascalutsa has proposed that the spin ~ field 'I/Ja can be redefined so that all the A 

dependent terms can be absorbed in the definition of 'I/Jex and no explicit A dependence 

appears in the propagator [17]. In my calculation, as an additional check, I used the 

general A dependent propagator given by (70) since the cross sections or any physical 

quantity is independent of A. Moussallam and Soni took A = -1. The interaction 

Lagrangian for the color triplet spin ~ quarks with the gluons or photon is obtained 

by using the minimal substitution 

(71) 

in (63): 

where g is the coupling constant, Ta are group generators and A: are the gauge 

fields. In the case of interactions with photons, there is only one generator: the 

charge operator (Qe). And there is only one gauge field: the photon, with the 

electric coupling (e). In the case of interactions with gluons, the Ta are the eight 

generators of SUc(3). And there are the eight gluon gauge fields. The coupling is 

the SUc(3) strong coupling. 

Calculation of cross sections for hadron colliders 

In this section, I calculate the cross sections for the processes 

pp --+ QQ + anything (73) 

and 

pp --+ QQ + anything (74) 

where Q represents the spin ~ quark. 
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The subprocesses contributing to both reactions (73) and (74) are 

g + g---+ QQ (75) 

and 

q + q---+ QQ. (76) 

· The Feynman diagrams contributing to the gluon-gluon (gg) and quark-antiquark 

(qq) subprocess are shown in figure 1. The amplitudes for the t, u and s-channels 

are 

Mt g2u.P(p) (-,tgpc, + A7Cigl'P) Taf.µa(k) 

{ 1 [ga/3 - ! "Ye, "Y/3 - _2_ (p - k r (p - k )f3 
i>- ,- M 3 3M2 

-3~ ("Yc,(p- k)/3 - "Y/3(p- k)°) l 
a 2 ( .t. 71.) a /3 ab a /3 

+ 6M2 fl' - "' "Y "Y - 3M "Y "Y 

+ 3~2 "Yc,(p - k)/3 + 3~2 "Yf3(p- k)°} 
("Yv9/3<T + A713g<TV) nf.vb(k')v(T(p') (77) 

Mu g2u.P(p) ( "Yv gPCi + A7°gVP) nf.vb(k') 

{ [ga/3 - i "Ya"Y/3 - 3!2 (k - p')°(k - p')f3 

+ 3~ ( "Ya(k - p')/3 - "Yf3(k - p')°)] , - ;, - M 

a 2 ( 7/. .t.') a /3 ab a /3 + 6M2 "' - fl' "Y "Y - 3M "Y "Y 

a a(k ')/3 ab f3(k ')a} + 3M2 "Y - P + 3M2 "Y - P 

("Yµgf3u + A713guµ)Taf.µa(k)vu (78) 
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Ms - -g2ifabc uP(p)'y0 TavP(p') ~ lµb(k)lvc(k') 
s 

[(2k + k't gµa - (k + 2k'tgva + (k' - k)°gµv] , (79) 

I point out here that although Mt and Mu depend on the contact transformation 

parameter A, E IMll and E IMJI, and all the cross terms which are separately inde­

pendent of A. Mt, Mu and Ms satisfy the appropriate gauge invariance conditions. 

The amplitude for the quark subprocess (76) is given by 

(80) 

Using (75)-(79), the cross section for the gluon-gluon subprocess is obtained to be 

[18] 

( -) 7ra~ { · 1 1 + /3 [ 2 . a gg -+ QQ - 116, 640.s 60 n 1 - /3 66 y + Sy 

1 1] +886 + 5, 184- + 1,296 2 y y 

+f3[24y4 + 1, 178y3 -13,626y2 + 11,380y 

-97, 200 - 602,640 t]} (81) 

where a 3 = g2 / 471" and y = s / M 2 and /3 = J1 - 4/ y . Most of the coefficients in 

(81) are in disagreement with those of Eq. (14) of Moussallam and Soni [13]; only 

the first and last term in the first square bracket and the first term in the second 

square bracket agree. Professor B. Moussallam has informed me that he has found 

an algebraic error in their calculations [19]. After correcting for that error, their 

new results agree with equation (81). For the quark-antiquark subprocess, the cross 

section is [18] 

A - 71"0~ [8 2 16 16 1 l a( qq -+ QQ) = -A /3 -y - - y - - + 96 - • 
81s 3 3 3 y 

(82) 

This quark-antiquark subprocess was not calculated in (13]. 

The total cross sections for the processes (73) and (74) are obtained by folding 

in the appropriate quark, antiquark and gluon momentum distributions. I have used 

the distributions produced by the CTEQ Collaboration evaluated at q2 -:- M 2 • 
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In figure 2, I give the contributions to the cross section for spin i quark ( Q) 

pair production at the Tevatron (pp, vs = 1.8 Te V) due to the gluon-gluon and 

quark-antiquark subprocesses and also the total cross section. As expected, at this 

energy, the cross section is dominated by the quark-antiquark subprocess because, 

at lower energies, only the quarks have enough energy to participate in heavy quark 

production. The results for the Te V 2000 (pp, vs = 4 Te V) is shown in figure 3. 

The quark-antiquark cotribution still dominates. 

At LHC (pp, vs= 14 TeV), QQ pairs can be copiously produced. The total 

cross sections, the gluon-gluon contributions and quark-antiquark contributions are 

shown in figure 4~ As expected, at LHC, the cross sections are dominated by the 

gluon-gluon contributions. This is because, at higher energy, the more numerous 

gluons are energetic enough to participate in production of the heavy quarks. For 

M = 300 GeV, the total cross section u is 104 pb, while for M = 1 TeV, u = 0.90 

pb. With the projected luminosity [20] of I.Ox 1034cm-2 seC1, we shall have about 

3 billion QQ events for M = 300 GeV and about 300,000 for M = 1 TeV. 

Production in photon-photon collisions 

In photon-photon collisons, only the t and u-channel of figure 1 contribute for 

the QQ pair production. For the cross section, we obtain [18] 

- 71"0:2 { 1 + ,8 [ 2 u(;; ~ QQ) = 12158 601n 1 _ ,8 15y - Sy - 22 

+648 ~ - 1,296 :2] + ,8 [3 y4 + 136 y3 - 2, 772 y2 

+6, 080 y - 9, 720 - 38,880 ~]} (83) 

where a is the fine structure constant to be evaluated at q2 = M 2 • I gave the spin i 
quarks a charge of Qe = 1 for generality. 

The results for the total cross sections for M = 200 Ge V to 1 Te V are given in 

figure 5 for vs from 500 Ge V to 2.5 Te V. 
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Detecting spin I quarks in colliders 

The method to detect spin I quarks depends on their nature. I considered three 

types of spin l color triplets. They are: a quark-Higgs bound state, a quark-gluon 

bound state, and a fundamental spin i quark that can undergo weak decay into a 

top quark and a weak boson. This· can occur when the SM is extended to contain 

the heavy quarks such as in [13]. In all cases below, the SM background will be large 

and its cross section will wipe out the cross section of the the spin l quark. However 

there are tags that can be used to separate the heavy quark signal· from the rest of 

the QCD background. The tags are isolated leptons in the final state. The leptons 

produced according to the SM will not be isolated but will be accompanied close by, 

in angle, a jet. However, in the case of a heavy quark, the isolated leptons are the 

result of the fact that the heavy quarks produced are moving much slower than the 

lighter SM quarks. It is the slowness of the heavy quarks that is also responsible 

for the jets they decay into occupying a broader solid angle and the overall decay 

products being relatively isotropic. Another tag is the bottom quark vertex detector. 

It is now possible to directly determine if a decay involves a bottom quark because 

there is sufficient resolution to see the short bottom track. Since the lifetime of a 

bottom is known, such a track is tagged. This is also called flavor tagging. Now for 

the specific cases. First I discuss hadron colliders. 

Each quark-Higgs bound state will decay into a quark and a Higgs. The quark 

with the largest coupling to the Higgs is the top quark, because the Yukawa coupling 

is proportional to the quark mass. In fact, the top-Higgs coupling might be non­

perturbatively large. So, it is not unreasonable that such a bound state is possible. 

Therefore, the quark that the heavy bound state decays into will be a top quark. 

The top will decay into a bottom and a weak charged (W+) boson. The Higgs will 

decay into two bottom quarks if it is lighter than a weak boson pair. If heavier, it 

will decay into a weak boson pair. So, each heavy quark gives three bottom quarks 

and a weak boson or one bottom quark and three weak bosons. Since a heavy quark­

antiquark pair is produced there will be six bottom quarks and two weak bosons or 
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six bosons and two bottom quarks for each heavy pair produced. So, there could 

be as many as 2 + 12 jets down to only two jets. In the case of six or more jets 
2 

the SM background would be strongly supressed by powers of a 3 = ~"' .1 and the 

isotropy of the jets could possibly tag a heavy quark decay. And if the pair decays 

into six bottoms, the background of such an event would be sufficiently small so that 

the spin i quarks could be seen. But if there were fewer than six jets, there would 

be at least four charged leptons. It is not easy to get this type event in the SM. 

This, together with the isolated lepton tag and the isotropic tag should be sufficient 

to identify the event as a heavy quark decay. I conclude that if quark-Higgs bound 

states exist, they should be seen at LHC or the upgraded Tevatron. 

In the case of quark-gluon bound states, each heavy quark will decay into 

a quark and a gluon. Therefore each pair of heavy quarks would give four jets. 

All we have is the isotropic tag. But, this alone won't be enough to identify a 

heavy quark pair. It might be possible to make such a severe high transverse energy 

cut that the pair could be identified, since the background drops off very quickly 

with high transverse energy. That is, demand that a quark pair event have large 

momentum transverse to the beam direction in order to evade the background, since 

the SM events will tend to have momentum more in the direction of the beam. It is 

inconclusive whether the spin i could be seen if a quark-gluon bound state. 

Finally, I'll discuss the decays of a spin i quark that can undergo weak decay 

into an ordinary top quark and a charged weak boson. Since the top will decay into 

a bottom quark and charged weak boson, a pair of heavy quarks would give two 

tops and two charged weak bosons. The tops would each decay into a bottom and a 

charged weak boson. So, we end up with two bottoms and four charged weak bosons. 

This would give two bottoms and a maximum of eight other jets, for a total of ten 

jets. Therefore, once again, there are lots of jets or leptons and so the spin i quark 

events could be sufficiently tagged. The more leptons that show up when all the 

bosons don't decay into quarks to produce jets, the more neglegible the background 

becomes, since more a 3 are replaced by a 2 or a. Therefore, if such spin J quarks 

exist, they should be seen at the future hadron colliders. 
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The fact that no signal at the Tevatron has been observed is probably a good 

reason to belive that a spin ~ quark would have to weigh more than 200 Ge V. The 

signal for a spin i is not the same as the top quark but has several things in common 

with it. The isotropic tag and isolated leptons should have been noticed, especially 

since a great effort was being made to find the top quark. Based on the energy of 

the Tevatron, it is probably safe to say that, if a spin i exists, its mass is more than 

about 300 GeV. 

In a photon collider, the QCD background would be drastically reduced and 

the collider energy wouldn't have to be shared by partons. However, the spin~ cross 

section would be reduced too. If the two are reduced by about the same factor, the 

arguments used for the different types of spin ~ quarks should carry over to photon 

colliders. 

Concluding discussion 

I have calculated the production of exotic spin ~ color triplet quarks at high 

energy hadronic and photon-photon colliders. At LHC, the cross sections are very 

large and such a particle of mass up to 1 Te V will be copicously produced. At 

the upgraded Tevatron, the cross sections are somewhat smaller but still could be 

observable if the mass is 400 GeV or smaller. I have also calculated the production 

cross sections for photon-photon collisions at various center of mass energies. Finally, 

I've discussed the method and possiblity of detecting spin ~ at hadron and photon 

colliders and it appears that if spin ~ quarks exist as quark-Higgs bound states as 

fundamental particles that experience weak decays, they will be detectable at future 

colliders. 

In writing the interaction (72), I have assumed that the spin J quarks are 

point like. As a result, at very high energy, my cross sections grow like s3 • This will 

violate tree unitarity for large enough s and so the higher order corrections to the 

tree diagrams will be important at large s. If there are spin J quark bound states, 

(72) represents an effective interaction, and at very high energy, the cross section 
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will be damped due to some form factors. As a result, my cross sections would be 

somewhat over estimated. 



CHAPTER III 

MASSIVE NEUTRINOS 

The experimental status 

The long-standing issue of the mass of neutrinos appears to be moving rapidly 

towards settlement. The improved statistics of the Super-Kamiokande experiment 

for atmospheric neutrinos - up-down asymmetries of multi-Ge V muon neutrinos and 

of the ratio of ratios of the observed numbers of Vµ to Ve to the prediction - bear 

strong, consistent indications [6] of a non-zero neutrino mass in agreement with the 

findings of earlier experiments [7 ,8]. The observed flux of solar neutrinos by all the 

running experiments - the earlier results from Homestake, Kamiokande, SAGE and 

GALLEX [4] and the most recent high statistics confirmation of these results by the 

Super-Kamiokande experiment [5) - is at variance with the theoretical expectations 

and finds a natural explanation in the framework of oscillation of massive neutrinos 

[21]. In addition, there is the result from the Los Alamos Liquid Scintillator Neutrino 

Detector (LSND) which gives the first laboratory evidence for the oscillation of both 

Vµ -+ Ve [9) as well as vµ -+ Ve type [10]. Based on these experiments there is 

little doubt that neutrinos have mass, contrary to the SM. Since the experiments 

indicate neutrino oscillations I analyze 147 neutrino mass matrices to find those that 

can satisfy all the experimental data and to make predictions, testable in future 

long-baseline neutrino oscillation experiments. 

The need for four neutrinos 

In my analyses I assume real mass matrices which give real mixing matrices 

because I neglect CP violation for vacuum oscillations. Therefore, the probability 
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for oscillations between flavors a and (3 may be written 

P(va -+ v13) = daf3 - 4 L UakU13kUa;U13;sin 2 D..jk 
k<j 

where D..;k = fJm;kL/4E = l.27(flmJk/eV2 )(L/km)/(GeV/E),fJm;k 

Defining [22) A'Jf = -4UakU13kUa;U13; the probability is 

P(va-+ v13) = daf3 + L A'Jf sin2 D..jk• 
k<j 
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(84) 

(85) 

But, there are only three measured scales for the D..jk· They correspond to the three 

mass-squared-difference scales associated with the solar, atmospheric and LSND neu­

trino experiments. Therefore, the probability is approximately 

P( ) {' AOl/3 · 2 A AOl/3 · 2 A AOl/3 · 2 A Va -t Vf3 = Oaf3 + sunszn L.l.sun + atmSZn L.l.atm + LSNDsin L.l.LSND (86) 

where Di.sun corresponds to the solar scale, ~atm to the atmospheric scale and D..LsND 

to the LSND scale. The factors A~fn,atm,LSND are the corresponding oscillation am­

plitudes. The three fJm 2 values suggested by the solar, atmospheric, and LSND 

experiments are vastly different; fJm 2 rv 10-5 (orl0-10), 10-3 and 1 eV2 respectively. 

With three known neutrinos (ve, vµ, v7 ), we can have only two independent fJm2• 

Thus, a fourth neutrino is required. By the experimental constraints from zo de­

cay at LEP, this fourth neutrino must be sterile (inactive) with respect to the SM. 

Therefore, one is led to the introduction of a fourth sterile neutrino species which is 

ultralight ( denoted by Vs) [23,24). 

I assume the mass hierachy shown in figure 6. It has been shown that this 

hierarchy satisfies all the experimental data [24), and also provides a mechanisim 

whereby neutrinos can contribute to the invisible mass density of the universe. 

Flavor scenarios 

There are two possible flavor scenarios that can solve the solar and atmospheric 

experiments. Either the electron neutrinos in the sun oscillate into sterile neutrinos 

and the atmospheric muon neutrinos oscillate into tau neutrinos or electron neutrinos 
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in the sun oscillate into tau neutrinos and the atmospheric muon neutrinos oscillate 

into sterile neutrinos. 

Based on the measurements of the 4 He ratio, one might only consider the flavor 

scenario that Ve -+ V 8 explained the solar puzzle via the small angle MSW oscillation, 

and vµ. -+ V-r the atmospheric problem (henceforth, this scenario is designated Sce­

nario A). The reason is that this allows the sterile neutrino mixing with the active 

neutrinos to be very small. If the cosmological bound on 8m2 and A:!n [25] 

(87) 

is correct this is the only possible solution. However, there is some dispute as to what 

bounds the 4 He ratio implies for the number of neutrino flavors. There are ways of 

getting around the bound (87). For example, it is possible that oscillations between 

the active neutrinos and a sterile neutrino can cause asymmetries (26] in the numbers 

of neutrinos and antineutrinos. This can effect the 4 He ratio in a way that would 

make a lower value still consistent with four flavors. Therefore, in this analysis I have 

also considered the second flavor scenario in which the atmospheric problem is solved 

with large mixing between Vµ. and V 8 and the solar puzzle is explained by oscillations 

between Ve and V-r, (henceforth, this second scenario is designated Scenario B). The 

other possibilities, where the atmospheric anomaly is explained by mixing of Vµ. and 

Ve are disflavored by the CHOOZ reactor experiment [27] at 90% CL. I don't consider 

them here. 

Experimental constraints 

In the paper by Bahcal, Krastev and Smirnov [28) it is pointed out that if 

a global fit is made to all the data from the chlorine, GALLEX, SAGE and Su­

perKamiokande (SK) experiments, including the electron neutrino event rates, earth 

regeneration day-night effect and the preliminary spectral resolution of the electron 

events at SK, then the large angle MSW solutions to the solar puzzle are ruled out at 

the 99% CL. Without the spectral resolution they are not. However, I have used the 

allowed ranges for the solar mass squared differences and solar mixings consistent 
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· Table II. The 95% confidence level ranges for the SAM mass-squared-differences and 
mixing amplitudes for scenarios A (x = sterile) and B (x = r). 

flavor Scenario mass-squared-difference A!:n 
Ve-+ Vs 2.7 X 10-6eV2 - 7 X 10-6eV2 3.5 X 10-3 - 1. 7 X 10-2 

Ve-+ Vr 3.5 X 10-6eV2 - 10-5eV2 3.5 X 10-3 - 1.5 X 10-2 

with all the data except the spectral resolution results, since the spectral analysis is 

still preliminary. 

The ranges for the neutrino mass-squared-differences and mixing amplitudes 

[29] that correspond to the small angle MSW [2] (SAM) solutions to the solar neutrino 

puzzle for both flavor scenarios are shown in Table II. 

The ranges in mass squared differences and mixing amplitudes [29] for the large 

angle MSW (LAM) and vacuum long wavelength (VLW) solutions to the solar puzzle 

are given in Table III. The solar data allows LAM and VLW solutions with Ve -+ Vr 

(Scenario B) solar oscillations but the claim has been made that it rules out those 

with Ve-+ Vs (Scenario A) at 99% CL [28,29]. 

The ranges in mass-squared-differences and mixing amplitudes for the allowed 

by the atmospheric neutrino data [30] is given in Table IV for both flavor scenarios. 

Finally, the LSND data [9,10] along with the constraints from the reactor ex­

periment at Bugey [31] and E776 at BNL [32] suggest that 

(88) 

for the electron to muon type oscillations at LSND. 

The 4 x 4 neutrino mass matrices 

The most general 4 x 4 mass matrix has sixteen complex elements. However, 

since there is no immediate observational necessity of incorporating CP violation in 

the v sector, I choose the elements to be real. Further, I assume the mass eigenstates 

are all Majorana neutrinos. So, the mass matrices are Majorana and are, therefore, 

symmetric like the one in equation (31). 
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Table III. The 95% CL ranges for the mass-squared-differences and mixing ampli­
tudes for the LAM and VLW solutions to the solar puzzle. 

Oscillation Type mass-squared-difference A!~n 

LAM 5 X 10-6eV2 ::; 8m2 ::; 3.6 X 10-5eV2 .4 ::; A!!n ::; .9 

VLW 6 X 10-11eV2 ::; 8m2 ::; 10-10eV2 .67 ::; A!!n ::; 1.0 

Consider the mass matrix [33) 

t:182 t:283 0 0 

t:283 0 0 t:8 
(89) M=m 

0 0 C s 

0 t:8 s -c 

This matrix is written in the basis v8 (or v'T),ve,vµ,v'T (or v8 ). The neutrinos in 

parentheses refer to scenario B and scenario A is without the parentheses. The 

powers of delta [22) have been added to fix the hierarchy of the matrix parameters. 

Such a hierachy is dictated by the experimental data. Delta is a smallness parameter 

(8 « 1). Therefore, the larger the power of the factor of 8 on a matrix element, the 

smaller the element. The relative size of the elements is then made obvious by simple 

inspection. Also, the factors of 8 are handy in computing the approximate eigenvalues 

and eigenvectors of the matrix. The exact eigenvalues can be expanded in powers 

of 8. Keeping terms to some power of 8 is equivalent to expanding in powers of the 

matrix paramters and determining what power, for a given parameter, to truncate 

the expansion by how large it was assumed to be. But, using 8 automatically keeps 

track of the assumed hi er achy and allows expansion in only one variable ( 8), instead 

of as many expansions as there are parameters. After the calculations are completed 

8 is set equal to unity. 

The 20 models are obtained by permuting the t:2 and t elements amongst the 

1-2, 1-3, 1-4, 2-3, and 2-4 elements in the matrix. The 20 matrices that result are 
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Table IV. The 95% CL ranges for the atmospheric mass-squared-differences and 
mixing amplitudes for scenarios A (x = sterile) and B (x = r). 

flavor Scenario mass-squared-difference A:!n 
Vµ-+ Vs 8 X 10-4eV2 ~ om2 ~ 9 X 10-3eV2 . 75 ::; A::n ~ 1.0 

Vµ-+ Vr 3.2 X 10-4eV2 ~ om2 ~ 8 X 10-3eV2 .75 ~ A::n ~ 1.0 

Ml=m (90) 

0 l s -c 

M2=m (91) 
0 f. C S 

0 0 s -c 

M3=m (92) 
f. 0 C S 

0 0 s -c 

M4=m 
f.2 0 0 0 

(93) 
0 0 C S 

l O s -c 

0 0 0 l 
M5=m 

f.2 0 C S 

(94) 

0 l s -c 
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M6=m (95) 

0 0 s -c 

0 0 0 0 
M7=m (96) 

f2 0 C S 

t O s -c 

f1 f f2 0 

t O O 0 
A18 = m (97) 

f2 0 C S 

0 0 s -c 

f1 0 0 f2 

M9 = m O O O t (98) 

f1 0 0 f2 

0 0 f 0 
MlO=m (99) 

0 f C s 

f2 0 s -c 

Mll =m 
0 0 0 0 

f O C S 

(100) 

f2 0 s -c 



M12=m 

M13=m 

M14=m 

M15=m 

M16=m 

M17=m 

€1 € 0 €2 

€ 0 0 0 

Q Q C S 

€2 0 s -c 

€1 0 0 0 

0 0 € €2 

Q € C S 

0 €2 s -c 

€1 € 0 0 

€ 0 0 €2 

0 0 C s 

0 €2 s -c 

€1 0 € 0 

0 0 0 €2 

€ Q C S 

0 €2 s -c 

€1 0 0 € 

0 0 0 €2 

Q Q C S 

€1 0 0 0 

0 0 €2 € 

0 €2 C s 

0 € s -c 
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(101) 

(102) 

(103) 

(104) 

(105) 

(106) 
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Table V. The factors of delta on the five parameters that correspond to the seven 
hierarchies. 

Hierarchy 

Hl 

H2 

H3 

H4 

H5 

H6 

H7 

M18=m 

M19=m 

M20=m 

s C t 

JO JO Jl 

JO JO Jl 

JO JO Jl 

JO Jl Jl 

JO Jl Jl 

JO J2 Jl 

JO J2 Jl 

t1 0 0 t 

0 0 t2 0 

t1 
J2 

J2 

J3 

J3 

J4 

J3 

J4 

0 t2 C S 

t O s -c 

t1 0 t 0 

0 0 t2 0 

0 0 s -c 

0 0 s -c 

t2 
J3 

J2 

J2 

J3 

J3 

J3 

J3 

(107) 

(108) 

(109) 

For each of the models obtained by permutation I tried seven hierarchies be­

tween the matrix parameters. They are shown in Table V. 

The 3-4 element in the models isn't far from unity since it controls the large 

atmospheric mixing angle. The parameters outside the lower right 2 x 2 sector 
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of the matrices control the size of the mass-squared-difference that is associated 

with atmospheric mixing. In particular, I choose l to control the atmospheric mass­

squared-difference. So, the size of l relative to the 3-4 element is fixed by experiment. 

So, in all hierarchies l is multiplied by one power of 8. I call the 2 x 2 sector containing 

the elements c,s that control the atmospheric mixing angle the atmospheric sector. 

The 2 x 2 sector that contains f 1 and f 2 controls the solar mixing and 8m2 • It is, 

therefore, called the solar sector. 

For Ml, the hierachies have the following interpretations. In the hierarchy Hl 

the 1-1 element is much larger than the 1-2 element. This means that the mixing 

in the solar sector could be small. Therefore, this hierarchy represents a possible 

SAM solution. Also, the size of the largest element in the solar sector is one order 

smaller than that of l. This approximately corresponds to the relative size of the 

measured solar mass-squared-difference to that for atmosphere in a SAM solution. 

This can be seen if one realizes that since l (multiplied by 8) approximately rep­

resents the atmospheric mass splitting, its square ( order 82 ) should determine the 

atmospheric mass-squared-difference. Likewise, it is the largest element in the solar 

sector (multiplied by 82 ) that determines the solar splitting and its square (order 

84 ) that determines the solar mass-squared-difference. This is consistent with the 

atmospheric 8m2(,..., 10-3 ) and the solar 8m2(,..., 10-6). 

In the hierarchy H2 the 1-1 element is the same order as the 1-2 element. This 

means that the mixing in the solar sector could be large. Therefore, this hierarchy 

represents a possible LAM or VLM solution. But, the relative size of the solar mass­

squared-difference to the atmospheric mass-squared-difference is the same as for Hl. 

So, this hierachy is a possible LAM solution, since in the case of VLW the solar 

mass-squared-difference is much smaller. 

In the hierarchy H3 the 1-1 element is much smaller than the 1-2 element. This 

means that the mixing in the solar sector could be large. Therefore, this hierarchy 

represents another possible LAM or VLM solution. But it must be a LAM solution 

for the same reason H2 must be. 



40 

In the hierarchy H4 the 1-1 element is the same order as the 1-2 element. This 

means that the mixing in the solar sector could be large. Therefore, this hierarchy 

represents a possible LAM or VLM solution. But, in this case the relative size of 

the mass squared difference in the solar sector to that of the atmospheric sector 

is of order «54 • Given «5m2 "' 10-2 for the atmosphere, this would correspond to a 

«5m2 "' 10-s for the solar. Here, the solar «5m2 is far too small for this to be a LAM 

solution. Actually, it's too big for this to be a VLW solution. However, the the 

main function of the «5 factors is to maintain hierarchy, not to rigidly commit the 

parameters to exact relative sizes. Therefore, if we allow some flexibility in the sizes 

prescribed by the «5 factors we can accept this as a possible VLW solution. The same 

is true about hierarchies H5,H6, and H7. 

The above interpretations don't apply to all the 20 models. For example, in the 

case of M5, the 1-2 element is zero. Hence, even for the H2 and H3 hierarchies it's 

likely to be a SAM solution. In fact, it turned out that H2 provided a SAM solution, 

while for Hl and H3 no ranges for the five parameters could be found, which would 

make the probability variables agree with experiments (i.e. Hl and H3 failed). It 

could not be forseen that H2 would work, while Hl and H3 would fail. Therefore, 

it was necessary to try both hierarchies in order to find a solution. Likewise, in the 

VLW hierarchies I could not be certain that H4, H5, H6, and H7 would fail. Yes, 

since the 1-2 element is zero we would expect them to fail but it was still possible 

that the other parameters could cause the large solar mixing needed. For example, 

although the 1-2 element in M15 is zero, the H7 hierarchy yielded large angle solar 

mixing. Even so, it failed for other reasons. Therefore, herein I have studied all 

seven hierachies for each model to find those which work. 

A new class of matrices 

I also introduce a new matrix that doesn't fit into the same class as the 20 

matircies above. This is because the parameter in the 3-3 and 4-4 positions has been 

moved off the diagonal into the 2-3 position. If these elements are held fixed and the 

same elements as above were permuted we would obtain 20 more models. However, 
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here I only treat the seven hierarchies of this single model. It is 

f1 f2 0 0 

f2 0 C f 
M21 =m (110) 

0 C 0 1 

0 f 1 0 

Other related mass matrix textures 

There have been other discussions of four neutrino mass matrices in the liter-

ature. One form [34,35] (which I refer to as M22), 

f1 f2 0 0 

f2 0 0 f 
!1122 = m (111) 

0 0 C s 

0 f s C 

has been confronted with the data in [35,22]. I have included the seven hierachies 

for this model in my analysis to check my results with those obtained in [35,22] and 

so I can compare its predictions with those of my models. 

Experimental constraints on model parameters 

As indicated in Tables II, III, IV and equation (88), there are three possible 

solutions to the neutrino anomalies if solar, atmospheric and LSND are all accepted. 

They are SAM (for either scenario A or B), LAM (for scenario B) and VLW (for 

scenario B). For each solution there are six experimental constraints. They are the 

8m2 measurements and oscillation amplitudes for the sun, atmosphere, and LSND. 

To obtain these quantities, parameterized in terms of the five parameters in each 

model I calculated the mass eigenvalues m 1, m 2 , m 3 , and m 4 and formed the three 

mass-squared-differences. Since these give the three scales that correspond to the 

experiments as explained, these quantities give three of the six needed. The other 

three are obtained by calculating the probabilities in order to get the amplitudes 

Aes AµT d Aµe 
sun, atm, an LSND· 
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Because of the negative sign on the 4-4 element the matrices Ml thru M20 do 

not require maximal atmospheric mixing. Therefore, it is convenient to parameterize 

them in terms of trig functions. That is, 

c-+ cos(21 ) s-+ cos(21 ). (112) 

However, if c is small compared to s, it is simpler to set s = 1 and to leave the 

matrix parameterized in terms of c. Note that the number of parameters is the same 

in either case. In the case of VLW solutions the size of c must be small compared to s. 

This is because the parameter c often shows up in the denominator of A:~n· If it isn't 

small enough then we can't achieve A::n ,..., 1, which is required for a VLW solution. 

Also, c shows up in the solar mass-squared-difference ( c5m~un) and if c isn't small 

enough the difference isn't small enough compared to the other constraints ( 8m~tm, 

At~ND, etc.). Also, for M21 c must be small or it will destroy the correct atmospheric 

mass-squared-difference. So, maximal mixing is required ands= 1. Lastly, without 

the negative sign on the 4-4 element, M22 [34,35] requires maximal mixing, which 

implies c is small compared to s. So, s = 1 and this model is parameterized in terms 

of c. 

In the analysis I found none of my proposed models Ml thru M21 to be able 

to fit the VLW experimental constraints. Only M22 [34,35] could do so. In fact, 

M22 [34,35] was able to fit the SAM, and LAM contraints as well. Of the 21 models 

that I proposed, Ml, M2, M5, M6, M9, MIO, and M21 fit the SAM constraints and 

Ml, M2, and M21 fit the LAM constraints. In Tables VI to XX, I show the six 

constrained quantities in terms of the five parameters of the models for which ranges 

could be found that caused the six expressions to all fall within the experimental 

limits. The model, type of solution, and hierarchy that correspond to the parameters 

are indicated in each table. 
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Table VI. Ml-SAM (Hl) parameterization. 

Measured Quantity Parameterization 

OmLsND m2 

om~tm 2m2f2 cos(21 ) 

om~un m2(f~ - f4 cos2(21 ) 

Aµe 
LSND 4f2 sin2(21 ) 

AµT atm sin2(21 ) 

A::n (4ED/(f1 - f2 cos(2,))2 

Table VII. M2-SAM (Hl) parameterization. 

Measured Quantity Parameterization 

OmLsND m2 

om~tm 2m2f2 cos(21 ) 

om~un m2(f~ - f4 cos2(21 ) 

Aµe 
LSND 4f2 cos2(21 ) 

Aµr atm sin2(21 ) 

A::n (4fn/(f1 + f2cos(2,))2 

Table VIII. M5-SAM (H2) parameterization. 

Measured Quantity Parameterization 

omlsND m2 

om~tm 2m2f2 cos(21 ) 

om~un m2(f~ - f4 cos2(21 ) 

Aµe 
LSND 4f2 sin2(21 ) 

AµT atm sin2(21 ) 

A::n (4f2f~ sin2(21 ))/(f1 - f2 cos(21 ))2 
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Table IX. M6-SAM (H2) parameterization. 

Measured Quantity Parameterization 

'5misND m2 

'5m!tm 2m2t:2 cos(21 ) 

'5m;un m2(t:~ - t:4 cos2(21 ) 

Aµe 
LSND 4t:2 cos2(21 ) 

Aµ'T atm sin2(21 ) 

Aes sun (4t:2t:~cos2(21 ))/(t:1 + t:2 cos(21 ))2 

Table X. M9-SAM (H2) parameterization. 

Measured Quantity Parameterization 

'5misND m2 

'5m!tm 2m2t:2 cos(21 ) 

'5m;un m 2(t~ - t:4 cos2(21 ) 

Aµe 
LSND 4t:2 sin2(21) 

Aµ'T 
atm sin2(21 ) 

Aes sun (4t:2 t~ cos2(21 ))/(t:1 - t:2 cos(21 ))2 

Table XI. MlO-SAM (H2) parameterization. 

Measured Quantity Parameterization 

'5misND m2 

'5m~tm 2m2t:2 cos(21 ) 

'5m;un m2 ( t~ - t:4 cos2 (21 ) 

Aµe 
LSND 4t:2 cos2(21 ) 

Aµ'T atm sin2(21 ) 

A:!n (4t:2 t~ sin2(21 ))/(t:1 + t:2 cos(2,))2 
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Table XII. M21-SAM (Hl) parameterization. 

Measured Quantity Parameterization 

'5mtsND m2 

iSm!tm 4cm2t: 

'5m~im m 2( t:~ - 4c2t:2) 

Aµe 
LSND 4t:2 

AµT 
atm 1 

Aes sun (4t:~)/(2ct:: + t:i)2 

Table XIII. Ml-LAM (H2) parameterization. 

Measured Quantity Parameterization 

'5mtsND m2 

iSm!tm 2m2t::2 cos(21 ) 

'5m~un m 2(t::1 + t:2 cos(2,)h/t:~ + 4t:~ - 2t::2t:1 cos(21 ) + t:4 cos2(21 ) 

Aµe 
LSND 4t:2 sin2(21 ) 

AµT atm sin2(21 ) 

A:~n (4t::D/(t:~ + 4t:~ - 2t:2t::1 cos(21 ) + t:4 cos2(21 )) 

Table XIV. M2-LAM (H2) parameterization. 

Measured Quantity Parameterization 

'5m1,sND m2 

iSm!tm 2m2t::2 cos(21 ) 

'5m~un m 2(t::1 - t:2 cos(2,)h/t:~ + 4t:~ + 2t:2t::1 cos(21 ) + t:4 cos2(21 ) 

Aµe 
LSND 4t:2 cos2(21 ) 

A/LT atm sin2(21 ) 

A:~n (4t::~)/(t:~ + 4t:~ + 2t:2t::1 cos(21 ) + t:4 cos2(21 )) 
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Table XV. M21-LAM (H2) parameterization. 

Measured Quantity Parameterization 

iSmlsND m2 

Jm~tm 4cm2f 

Jm~un m2(E1 - 2CE)J4c2E2 + 4cu1 +ff+ 4E~ 

Aµe 
LSND 4f2 

Aµ'T 
atm 1 

A::n (4ED/(4c2f2 + 4cEE1 + f~ + 4E~) 

Table XVI. M22-SAM (Hl) parameterization. 

Measured Quantity Parameterization 

iSmlsND m2 

Jm~tm 4cm2 

Jm~un m2f2 
1 

Aµe 
LSND 4f2 

AµT atm 1 

A::n (4ED/f~ 

Table XVII. M22-LAM (H2) parameterization. 

Measured Quantity Parameterization 

'5m1sND m2 

'5m~tm 4cm2 

Jm~un m2E1 Jff + 4f~ 

Aµe 
LSND 4f2 

AµT atm 1 

A::n (4f~)/(f~ + 4f~) 
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Table XVIII. M22-LAM (H3) parameterization. 

Measured Quantity Parameterization 

cSmlsND m2 

cSm~tm 4cm2 

cSm!m 2m2e:1e:2 

Aµe 
LSND 4c::2 

AµT 
atm 1 

A!~n 1 

Table XIX. M22-VLW (H6) parameterization. 

Measured Quantity Parameterization 

cSmlsND m2 

cSm~tm 4cm2 

c5m~1m m2c::1 Jc::~ + 4c::~ 
Aµe 

LSND 4c::2 

AµT 
atm 1 

Aes 
sun ( 4c::D/( c::~ + 4c::~) 

Table XX. M22-VLW (H7) parameterization. 

Measured Quantity Parameterization 

cSmlsND m2 

cSm~tm 4cm2 

cSm~un 2m2( e:1 + cc::2)c::2 

Aµe 
LSND 4c::2 

AµT 
atm 1 

A:~n 1 
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Model parameter ranges 

I haven't specified the basis in which the matrices are represented because, 

until now it hasn't mattered. As mentioned above, the SAM data allows scenarios 

A and B. But LAM and VLW data only allow scenario B. It is convenient to use 

different bases when discussing these two scenarios. In the case of scenario A, the 

basis v8 ,ve,vµ,v7 is the matrix representation that corresponds to the definitions of 

the solar and atmospheric sectors above. Whereas, in scenario B it is the basis 

v 7 ,Ve,vµ,V8 • The only difference being that the V 8 and V7 flavors are interchanged. 

And so, when I speak of solutions in scenario A or B, the corresponding basis will 

apply. If I discuss a LAM or VLW solution it is automatic that the basis is that of 

B. But if discussing a SAM solution I will distinguish between the bases by putting 

either an A or B after the name of the matrix to indicate scenario A or B. 

A random number generator was used to find the ranges in the parameters 

that allowed the quantities in Tables VI through XX to satisfy the experimental 

constraints. The ranges of the parameters that result are shown in Tables XXI 

through XLII. The parameter "Y is defined in equation (112). 
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Table XXL MlA-SAM (Hl) parameter ranges. 

Parameter Ranges 

m(eV) .45 - 1.74 

"Y .52- .76 

f 2.6 X 10-2 - .1 

f1 1.1 X 10-3 - 6.3 X 10-3 

f2 1.5 X 10-5 - 2.1 X 10-4 

Table XXII. M2A-SAM (Hl) parameter ranges. 

Parameter Ranges 

m(eV) .45 - 1.6 

"Y .52 - .67 

f 4.7 X 10-2 - .1 

f1 1.6 X 10-3 - 6.9 X 10-3 

f2 8.5 X 10-5 - 6.0 X 10-4 

Table XXIII. M5A-SAM (H2) parameter ranges. 

Parameter Ranges 

m(eV) .45 - 1.75 

"Y .52 - .77 

f 2.5 X 10-2 - .1 

f1 1.1 X 10-3 - 6.1 X 10-3 

f2 2.3 X 10-4 - 4.4 X 10-3 
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Table XXIV. M6A-SAM (H2) parameter ranges. 

Parameter Ranges 

m(eV) .45 - 1.73 

'Y .52- .66 

f 4.6 X 10-2 - .1 

f1 1.6 X 10-3 - 6.7 X 10-3 

f2 4.3 X 10-3 - 10-2 

Table XXV. M9A-SAM (H2) parameter ranges. 

Parameter Ranges 

m(eV) .45-1.75 

'Y .52 - .77 

f 2.4 X 10-2 - .1 

f1 10-3 - 7.3 X 10-3 

f2 5. 7 X 10-4 - 10-2 

Table XXVI. MlOA-SAM (H2) parameter ranges. 

Parameter Ranges 

m(eV) .45 - 1.63 

'Y .52 - .67 

f 4.6 X 10-2 - .1 

f1 1.6 X 10-3 - 7.0 X 10-3 

f2 2.0 X 10-3 - 8.5 X 10-3 



51 

Table XXVII. M21A-SAM (Hl) parameter ranges. 

Parameter Ranges 

m(eV) .45 - 1.59 

C .01- .1 

f 2.3 X 10-2 - .1 

f1 1.4 X 10-3 - 10-2 

f2 8.2 X 10-5 - 1.2 X 10-3 

Table XXVIII. MlB-SAM (Hl) parameter ranges. 

Parameter Ranges 

m(eV) .45 - 1.74 

' .52 - .78 

f 2.5 X 10-2 - .1 

f1 1.1 X 10-3 - 7.8 X 10-3 

f2 1. 7 X 10-5 - 3.3 X 10-4 

Table XXIX. M2B-SAM (Hl) parameter ranges. 

Parameter Ranges 

m(eV) .45 - 1.5 

' .52 - .67 

f 4.7 X 10-2 - .1 

f1 2.0 X 10-3 - 7.7 X 10-3 

f2 1.2 X 10-4 - 6.6 X 10-4 
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Table XXX. M5B-SAM (H2) parameter ranges. 

Parameter Ranges 

m(eV) .45 - 1.74 

'Y .52 - .78 

f 2.3 X 10-2 - .1 

f1 1.2 X 10-3 - 7.9 X 10-3 

f2 3.4 X 10-4 - 8.8 X 10-3 

Table XXXI. M6B-SAM (H2) parameter ranges. 

Parameter Ranges 

m(eV) .45 - 1.74 

'Y .52- .67 

f 4.6 X 10-2 - .1 

f1 1.8 X 10-3 - 8.0 X 10-3 

f2 4.0 X 10-3 - 10-2 

Table XXXII. M9B-SAM (H2) parameter ranges. 

Parameter Ranges 

m(eV) .45-1.75 

'Y .53 - .76 

f 2.3 X 10-2 - .1 

f1 1.2 X 10-3 - 7.8 X 10-3 

f2 7.6 X 10-4 - 10-2 
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Table XXXIII. MlOB-SAM (H2) parameter ranges. 

Parameter Ranges 

m(eV) .45 - 1.68 

, .52- .67 

f 4.7 X 10-2 - .1 

fl 1.8 X 10-3 - 8.2 X 10-3 

f2 1.8 X 10-3 - 10-2 

Table XXXIV. M21B-SAM (Hl) parameter ranges. 

Parameter Ranges 

m(eV) .45 - 1.74 

C .01- .1 

f 2.2 X 10-2 - .1 

f1 1.9 X 10-3 - 10-2 

E2 1.2 X 10-4 - 1.1 X 10-3 

Table XXXV. Ml-LAM (H2) parameter ranges. 

Parameter Ranges 

m(eV) .45 - 1.75 

, .52 - .78 

f 2.3 X 10-2 - .1 

f1 4. 7 X 10-6 - 10-3 

f2 2.9 X 10-4 - 10-2 
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Table XXXVI. M2-LAM (H2) parameter ranges. 

Parameter Ranges 

m(eV) .45 - 1.71 

"Y .52 - .67 

f 4.5 X 10-2 - .1 

f1 1. 7 X 10-3 - 10-2 

f2 1. 7 X 10-3 - 10-2 

. Table XXXVII. M21-LAM (H2) parameter ranges. 

Parameter Ranges 

m(eV) .45 - 1.73 

C .01- .1 

f 2.2 X 10-2 - .1 

f1 1.4 X 10-3 - 10-2 

f2 1.2 X 10-3 - 10-2 

Table XXXVIII. M22A-SAM (Hl) parameter ranges. 

Parameter Ranges 

m(eV) .45 - 1.49 

C 1.3 X 10-4 - 10-2 

f 2.2 X 10-2 - .1 

f1 1.3 X 10-3 - 5.6 X 10-3 

f2 5.4 X 10-5 - 3.2 X 10-4 
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Table XXXIX. M22B-SAM (Hl) parameter ranges. 

Parameter Ranges 

m(eV) .45 - 1.58 

C 6.2 X 10-5 - 10-2 

f 2.3 X 10-2 - .1 

t:1 1.5 X 10-3 - 6.8 X 10-3 

t:2 6.0 X 10-5 - 3.9 X 10-4 

Table XL. M22-LAM (H2) parameter ranges. 

Parameter Ranges 

m(eV) .45 - 1.74 

C 3.4 X 10-5 - 10-2 

f 2.2 X 10-2 - .1 

t:1 9.6 X 10-4 - 10-2 

t:2 6.8 X 10-4 - 10-2 

Table XLI. M22-VLW (H6) parameter ranges. 

Parameter Ranges 

m(eV) .45 - 1.74 

C 5. 7 X 10-5 - 10-2 

f 2.2 X 10-2 - .1 

t:1 1.8 X 10-7 - 1.5 X 10-5 

t:2 3.9 X 10-s - 10-4 
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Suggested experimental tests 

Here I briefly discuss some experiments that have been suggested that could 

possibly test the models. 

A muon storage ring has been suggested [36] as a possible source of a neutrino 

beam resulting from the decay of antimuons into Vµ and Ve, The oscillation of the 

electron neutrinos into either tau or muon neutrinos could be measured at a detector 

located some distance away. An example of such an experiment was given [36] in 

which a storage ring at Fermilab consists of antimuons with an average energy of 20 

GeV. One detector could be set up at the Gran Sasso lab in Italy, 10,000 km from 

Fermilab. Another could be much closer like the SOUDAN mine in Minnesota (740 

km). I also suggest that a detector could be set up e;en closer, say at 10 km. The 

oscillations these detectors could look for are Ve -+ v7 and Ve -+ Vw The sensitivities 

in om2 and the corresponding mixing angles that they would be capable of are shown 

in figures 7 thru 22. The Gran Sasso and SOUDAN sensitivities are based on one 

event per year, while the 10 km sensitivity is based on 100 events per year. 

Probability predictions 

Once the ranges of the parameters are known it is straightforward to calculate 

the amplitudes that correspond to different mass-squared-differences for any oscil­

lation and to predict the ranges of their values. I have done so for the oscillation 

channels that could be measured in the experiments mentioned above. There are 

Table XLII. M22-VLW (H7) parameter ranges. 

Parameter Ranges 

m(eV) .45-1.75 

C 5.3 X 10-5 - 10-2 

€ 2.2 X 10-2 - .1 

€1 1.1 X 10-s - 10-4 

€2 1.5 X 10-7 - 10-4 
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Table XLIII. Parameterized probability amplitudes for P(ve ~ Vr ). 

Model-Hierachy LSND Amplitude Atmospheric Amplitude 

MlA-SAM (Hl) 4t2 cos2(2-y) t 2 sin2 (2-y) 

M2A-SAM (Hl) 4t2 sin 2 ( 2-y) -t2 sin2(2-y) 

M5A-SAM (H2) 4t2 cos2(2-y) t 2 sin2 (2-y) 

M6A-SAM (H2) 4t2 sin 2 ( 2-y) -t2 sin2(2-y) 

M9A-SAM (H2) 4t2 cos2(2-y) t 2 sin2 (2-y) 

MlOA-SAM (H2) 4t2 sin2 (2-y) -t2 sin2(2-y) 

M21A-SAM (Hl) 4c2 f2 - c2 

M22A-SAM (Hl) 0.0 f2 

two mass scales that play a role in these experiments. They are the LSND scale and 

the atmospheric scale of equation (86). The solar mass scale oscillation term is zero 

since its oscillation wavelength is much larger than these experimental dimensions. 

The amplitudes of these two oscillation terms in equation (86) will be called the 

LSND amplitude and the atmospheric amplitude respectively. I show them both 

in parameterized form for all matrices and hierarchies that were successful in Table 

XLIII and Table XLIV. Table XLIII shows the amplitudes for P(ve ~ Vr) and Table 

XLIV shows the amplitudes for P(ve ~ vµ), 

Note the negative signs on some of the terms don't affect the analysis. Inci­

dently, they don't imply the probability is negative since the terms in the probability 

interfere so that the probability always stays positive. It is like a short Fourier series 

that represents a positive function. 

In Table XLV, I give the predicted probability amplitude ranges of equation 

(86) for the oscillations at the LSND mass scale and the atmospheric mass scale in 

the case of Ve ~ Vr oscillations. These are the amplitudes that could be measured 

in the muon source experiments mentioned above. If only one number is given, it 

represents both upper and lower limits. 

In Table XLVI, I show the probability amplitudes predicted by the models for 

oscillations of Ve into Vw Of course, the amplitude at the LSND mass scale is already 
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Table XLIV. Parameterized probability amplitudes for P(ve --+ vµ). 

Model-Hierachy LSND Amplitude Atmospheric Amplitude 

MlA,B (Hl) 4t:2 sin2(21 ) -f2 sin2(2,) 

MlB (H2) 4t:2 sin2(21 ) -t:2 sin2(21 ) 

M2A,B (Hl) 4t:2 cos2(21 ) t:2 sin2(21 ) 

M2B (H2) 4t:2 cos2(21 ) t:2 sin2(21 ) 

M5A,B (H2) 4t:2 sin2 (21 ) -f2 sin2(21 ) 

M6A,B (H2) 4t:2 cos2(21 ) t:2 sin2(2,) 

M9A,B (H2) 4t:2 sin2(2,) -t:2 sin2(2,) 

MlOA,B (H2) 4t:2 cos2(21 ) t:2 sin2(2,) 

M21A,B (Hl) 4t:2 -f2 + c2 

M21B (H2) 4t:2 -f2 + c2 

M22A,B (Hl) 4t:2 -(2 

M22B (H2) 4t:2 -(2 

M22B (H6) 4t:2 -(2 

M22B (H7) 4t:2 -(2 

given above as the LSND experimental costraint. And the predicted amplitudes at 

this mass scale should be equal to the experimental limits. In fact, they are not the 

same in all models. In some cases predicted the ranges in these amplitudes are only 

a subset of the allowed ranges and, therefore, if certain regions of the allowed space 

are ruled out then some of the models could be disflavored. Only the matrix names 

are shown because the results were the same regardless of flavor scenario and type 

of solar solution (SAM, LAM, VLW) or hierarchy. 

I also superimposed the ranges in Tables XLV and XLVI onto figures 7 thru 22 

that show the sensitivities of the experiments. The rectangular regions indicate the 

predicted ranges in 8m2 and the corresponding predicted ranges in the amplitudes. 

Also, in figures 7 thru 22 the range of mixing angles allowed by LSND is indicated by 

brackets. By placing the predictions on the sesitivity plots of the experiments it can 
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Table XLV. Predicted amplitudes for P(ve ---+ v7 ) oscillations. 

Model LSND Channel Atm. Channel 

Ml A-SAM 4.9 X 10-5 - 7.3 X 10-3 5.5 X 10-4 - 9.6 X 10-3 

M2A-SAM 6. 7 X 10-3 - 3.8 X 10-2 1.7 X 10-3 - 9.4 X 10-3 

M5A-SAM 2.1 X 10-5 - 8.1 X 10-3 5.0 X 10-4 - 9.5 X 10-3 

M6A-SAM 6.4 X 10-3 - 3. 7 X 10-2 1.6 X 10-3 - 9.3 X 10-3 

M9A-SAM 3.5 X 10-5 - 9.2 X 10-3 5.1 X 10-4 - 9.7 X 10-3 

MlOA-SAM 6.4 X 10-3 - 7.3 X 10-2 1.6 X 10-3 - 9.4 X 10-3 

M21A-SAM 4.1 X 10-4 - 4.0 X 10-2 0 -10-2 

M22A-SAM 0.0 5.0 X 10-4 - 10-2 

be seen how testable the predictions are, and by indicating the LSND allowed region 

it is easy to see which predictions are only subsets of the LSND allowed region. 

Results 

First of all, M22 was the only model to accomodate the VLW constraints. 

Therefore, if VLW is determined to be the source of the suppression of solar electron 

neutrinos, my models could be ruled out. 

The M22 [35] does not predict an amplitude at the LSND scale in Ve ---+ v7 os­

cillations, whereas all of my models do. Therefore, if these oscillations are measured, 

M22 [35] would be ruled out. Also, since only scenario A predicts such oscillations 

if they occur then scenario B can be ruled out. These LSND scale amplitudes are 

mostly covered by the Fermilab to SOUDAN and the Fimilab to Gran Sasso ex­

amples but in some cases the ten kilometer experiment could be useful to cover the 

entire predicted ranges. The amplitudes at the atmospheric scales are mostly covered 

by the detector at SOUDAN except for M21, whose minimum predited amplitude is 

zero. For the Ve ---+ Vµ oscillations, the complete allowed ranges for the LSND experi­

ment are covered by the detector at SOUDAN and, therefore, so are the predictions. 

As mentioned above, most of the space allowed by LSND is not predicted by some 
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Table XLVI. Predicted amplitudes for P(llµ ---+ lie) oscillations. 

Model LSND Channel Atm. Channel 

Ml 2.2 X 10-3 - 3.8 X 10-2 5.4 X 10-4 - 10-2 

M2 2.0 X 10-3 - 9.0 X 10-3 1. 7 X 10-3 - 9.3 X 10-3 

M5 2.0 X 10-3 - 3.8 X 10-2 5.0 X 10-4 - 9.4 X 10-3 

M6 2.0 X 10-3 - 9.1 X 10-3 1.6 X 10-3 - 9.3 X 10-3 

M9 2.0 X 10-3 - 3.9 X 10-2 5.1 X 10-4 - 9.6 X 10-3 

MlO 2.0 X 10-3 - 9.3 X 10-3 1.6 X 10-3 - 9.4 X 10-3 

M21 2.0 X 10-3 - 4.0 X 10-2 0.0 - 9.0 X 10-3 

M22 2.0 X 10-3 - 4.0 X 10-2 5.0 X 10-4 - 10-2 

of my models in the lie ---+ llµ oscillations, whereas the M22 [35] prediction fills the 

whole LSND allowed region. So, if the small lower end of the allowed mixing angle 

in the LSND allowed region is ruled out some of my models could be disfavored. 

Other experimental tests 

Turning now to other tests of the models, the first well known point to em­

phasize is that the lie ---+ lls oscillation solution to the solar neutrino problem will be 

tested once the Sudbury Neutrino Observatory (SNO) measures the neutral current 

effects of the solar neutrinos. In the lie ---+ ll7 oscillation scenario one would expect 

<l>cc/<l>Nc '.:::'. .4. Where the subscripts CC and NC stand for charged current and 

neutral current respectively. And <l> represents the signal for the appropriate process 

before the incorporation of the cross sections and detection efficiencies. This is be­

cause both lie and ll7 would interact with the detector via NC interactions, but only 

lie could interact via CC interactions because tauons are too heavy to be produced 

by solar neutrinos. However, for the lie ---+ ll8 case, one should get <l>cc/<l>Nc '.:::'. 1. 

This is because only electron neutrinos could interact with the detector via CC or 

NC interactions because lls is sterile. 
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In the models, the neutrinoless double beta decay vanishes at the tree level 

since its amplitude is proportional to < m,,e > which is given by 

{113) 

Here M,,e,,e is the Ve - Ve element of the neutrino mass matrix in the weak basis. 

Clearly all models predict zero neutrinoless beta decay since this entry vanishes in 

all models. 

Concluding discussion 

In this chapter I analyzed 20 mass matrices. For each one, seven matrix element 

hierarchies were investigated. These hierarchies correspond to different solutions to 

the solar puzzle: small angle MSW, large angle MSW, and vacuum oscillation. In 

this group of 140 models, only 8 were found that could satisfy the experimental con­

straints. Six agreed with the small angle MSW constriants and 2 with the large angle 

MSW constraints. None of the models could fit the vacuum oscillation constraints. 

For these 8 models, predictions were made that can be tested in future experiments. 

Also, I looked at a member of a new class of mass matrices, in the seven hierarchies. 

Two of the seven models fit the constraints, one to the small and one to the large 

angle MSW constraints. But, like the other 140 models, none were able to satisfy 

the vacuum oscillation constraints. I made predictions for the two successful models. 

In conclusion, I have found ten four neutrino mass matrices out of 147 models 

that fit all neutrino observations with five parameters. I have made predictions and 

shown how they can be tested. I also, mention some measurable differences between 

my models and that of M22 [35,22]. 
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Figure 1: Feynman diagrams for spin 3/2 quark pair production subprocesses. 
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Figure 11. The Ye~v. predicted parameter space for the M9A-SAM model. 
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Figure 12. The Ve~V, predicted parameter space for the MlOA-SAM model. 
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Figure 13. The Ve~v, predicted parameter space for the M21A-SAM model. 
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Figure 14. The Ye~v. predicted parameter space for the M22A-SAM model. 
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Figure 15. The Ve~Vµ predicted parameter space for the Ml matrix. 
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Figure 16. The Ye~Yµ predicted parameter space for the M2 matrix. 
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Figure 17. The Ve~Vµ predicted parameter space for the M5 matrix. 
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Figure 18. The Ye~Yµ predicted parameter space for the M6 matrix. 
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Figure 19. The Ve~Vµ predicted parameter space for the M9 matrix. 
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Figure 20. The Ve~Vµ predicted parameter space for the MIO matrix. 
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Figure 21. The Ye~Yµ predicted parameter space for the M21 matrix. 
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Figure 22. The Ve~Vµ predicted parameter space for the M22 matrix. 
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