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CHAPTERl 

INTRODUCTION 

As the number of mttltiniedia · applications and products increases, image 

compression techniques continue to be important tools for the efficient storage and 

transmission of gray-scale and color images. Image coders fall into one of two general 

categories: transform based coders or sub band coders. Orthogonal transforms such as the 
. . . . . ~ . . 

Discrete Cosine Transform (DCT) are typicaHy used in popular compression algorithms 

because of their good · energy compaction properties and their ability to decorrelate the 

image data well. · The availability of fast computation algorithms also contribute to the 

wide use of standard transform"'.based compression algorithms like JPEG (Joint 

Photographic Experts Group) [19] [35] and MPEG (Motion Pictures Experts Group) [20]. 

Subband (or wavelet) coders [15] [45] [50] are another popular method for compressing 

image data. By cascading horizontal and vertical two band filter banks, subband coding 

provides a scalable or multiresolution image representation. 

Most algorithms in digital image compression focus oh achieving high signal-to-

noise ratios at high compression ratios. Transmission of data over a communications 

channel frequently results in the loss or corruption of the original data. This loss can be 

due to noise, network congestion, signal degradation, jamming, etc. Another source of 

loss is the compression algorithm used at the encoder. A hybrid transform was proposed 
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by Yarlagadda and Hershey in [54] and [55] for possible use in situations where the 

. communications channel results in severely degraded output images. The Hadamard 

Naturalness-Preserving Transform (HNPT) of an image contains some of the features of 

the original image while other transform coefficient characteristics are the result of the 

Hadamard portion of the transform. 

This thesis describes an image coding system which focuses on both the 

compression of HNPT data and the restoration of images received from corrupted HNPT 

data. The techniques presented look at all three aspects of the data transmission problem: 

compression of image data, lossy transmission, and restoration and error concealment in 

the received images. The error concealment technique presented differs from 

conventional error detection/correction methods such as Hamming codes and is 

implemented at the decoder. The algorithms described in the following chapters are well 

suited to a communications channel with limited bandwidth and with computational 

power available at the decoder. 

In order to generate low bit rate output, image coders remove redundancy and 

transmit a reduced data set. OCT-based coders divide an image into small blocks, 

decorrelate the data with their selected transform, discard high-frequency transform 

coefficients, quantize remaining coefficients, and finally entropy encode the data to be 

sent to the decoder. Subband coders split the original image's frequency band into 

smaller non-overlapping frequency bands. The subbands can be encoded independently 

using either pdf optimized quantizers [48] or uniform threshold quantizers [15] [45]. 

Vector quantization techniques have also been used to take advantage of the correlation 

between subband samples in the different subbands [47][48]. To achieve moderate 
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compression ratios, a number of the less important transform/subband coefficients are 

discarded and the overall image context is preserved with some loss of detail. To achieve 

high compression ratios, a greater number of transform/subband coefficients are 

discarded resulting in lower quality decoded images. 

Distortion is a measure of the quality of a compressed representation of the image. 

Mean square error (MSE) is the most commonly used distortion measure. For N pixels, 

(1.1) 

where the X; 's are the input signal values and X; 's are the reconstructed signal values. 

MSE provides a measure of the error between the original signal and the signal 

reconstructed from the compressed representation. Signal-to-noise ratio (SNR) and peak 

signal-to-noise ratio (PSNR) are also MSE based distortion metrics 

(J'2 

SNR = 10log10 -­
MSE 

M2 
PSNR = 10log10 -­

MSE 

(1.2) 

(1.3) 

where cr2 is the signal variance and Mis the maximum peak value in the input signal. For 

8 bit grayscale images M has a value of 255. Although these quantitative distortion 

measures are widely used because of their ease of implementation, they are not 

necessarily good indicators of visual quality. 

At high compression ratios the image data is coarsely approximated and distortion 

is inevitable. The three main types of distortion are classified either as blurring, 

blocking, or ringing artifacts. Blurring results from the loss of high frequency 

information during quantization and occurs in both transform and subband coded images. 
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The blocking artifact is the most noticeable artifact of low bit rate JPEG compression. 

The discontinuities between boundaries of adjacent blocks are a natural consequence of 

the independent processing of each block. On the other hand, low bit rate subband coded 

images suffer from ringing artifacts near sharp edges. 

In some cases, the goal of a good image compression algorithm can be redefined 

as preserving image features that are important to the user and reducing any undesirable 

distortions from compression of the data. As an example, the human visual system has 

more sensitivity to edge distortion in an image than to high noise levels [ 18]. In flat, 

smooth regions of an image, the human observer has a lower contrast sensitivity [3]. For 

this reason a visually pleasing restored image may not always be the most accurate 

reconstruction (high PSNR). Medical imaging is another area where large blocks of 

storage space are required to store the data. A typical MRI image contains 256x256x12 

pixels. Loss of valuable details and other image information could lead to a wrong 

diagnosis. Current biomedical imaging programs [28] allow the user to select which 

regions of the image are to be preserved with little or no compression. 

The theory of projections onto convex sets (POCS) has been suggested [42] [51] 

to improve the quality of JPEG compressed images. POCS provides an iterative method 

for restoring a representation of the original image from partial image data. A priori 

knowledge about characteristics of the original image is used along with the received 

image to reconstruct an estimate of the original. Some examples of a priori knowledge 

are image smoothness, i.e. no blocking artifacts, and valid pixel intensities. 

Iterative restoration techniques similar to POCS have been successfully used with 

the HNPT to restore data that is lost due to errors in the communications channel [31] 
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· [32] [33][54]. In [54], the reconstruction algorithm was designed with two considerations 

in mind. First, many tactical images have large regions of a known background texture 

such as a clear sky. Texture is a spatial property that can be described in terms of 

qualitative measures such as smoothness, coarseness, and periodicity of image features. 

Secondly, for images where large contiguous portions of the transmitted data are lost, a 

human operator can identify these regions and substitute a texture estimate for the 

missing pixels. 

There are two useful aspects of the HNPT which should be noted. First is the 

computational complexity of performing the transform. The HNPT of an image can be 

constructed using only additions and subtractions. Second, the HNPT is a closed, convex 

function. Since fast algorithms are available for computing the Hadamard transform 

[44][54], using the HNPT in conjunction with a convex set based restoration scheme is 

feasible. 

The remainder of this thesis is organized as follows. In Chapter 2 the HNPT is 

formally defined and statistical properties of HNPT coded images are discussed. Chapter 

3 provides an overview of the image compression, transmission, and reconstruction 

processes. This chapter introduces the basic algorithms for both transform coding and 

subband coding of images. Also included is a discussion of the image restoration 

problem and POCS based image recovery techniques. Network assumptions for packet­

based image transmission are presented. Chapter 4 discusses histogram modeling and 

quantization issues. Quantizers designed specifically for use in compressing the HNPT 

coefficients are presented along with image compression results. Chapter 5 describes the 

iterative image recovery algorithm developed using the ideas of convex projections based 
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restoration. The mathematical theory of POCS is also discussed in Chapter 5. Finally, 

Chapter 6 presents conclusions of this study and suggestions for future research. 
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CHAPTER2 

THE HADAMARD NATURALNESS-PRESERVING TRANSFORM 

The Naturalness-Preserving transform (NPT) was first proposed in 1983 by 

Y arlagadda and Hershey [ 54]. The NPT is a member of a set of operators known as 

hybrid transforms. The hybrid transform of an image retains some of the features of the 

original image. An important feature of a NPT transformed "signal" is that each pixel, 

point, or segment of the signal contains information about the entire signal. This unique 

property allows a degraded signal to be reconstructed iteratively from the remaining 

portion of the transform domain data. The Hadamard NPT (HNPT) has been used for 

image coding [54], for reconstruction of one-dimensional signals [32], and for 

reconstruction of missing voice frames [26]. 

2.1 Naturalness-Preserving Transforms 

In general, a hybrid transform can be expressed as a linear combination of 

orthogonal matrices. 

I 

v,(a)= Lki(a)Mi (2.1) 
i=I 

I 

Mi is an orthogonal matrix and L k; (a)= 1. For the hybrid case of I= 2, v,( a) is 
i=I 
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(2.2) 

· where ki( a) is a weighted function of a. The inverse of If/( a) is expressed as 

(2.3) 

and k12 (a)- kf (a)* 0. The transform of a 2n x 2n image P is then 

0 ::;; a ::;; 1, a * 0.5 (2.4) 

The Hadamard NPT and its inverse are defined below with Hn being the normalized 

Hadamard matrix of order N=2n. 

'!f(a) = a I+ (1-a)Hn (2.5) 

(2.6) 

Hn is defined by 

·Hn = HI ®Hn-1 (2.7) 

where® denotes the Kronecker product and the lowest order Hadamard matrix, H1, is 

(2.8) 

For a= 1, the transformed image Q is simply the original image. When a= 0, Q is the 

Hadamard transform of the image. 

2.2 Image Coding and the HNPT 

The two-dimensional NPT of an image is defined by Equation (2.4). Using 

Equation (2.5) to expand this result for the Hadamard NPT yields 
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The resulting image is a sum of a weighted version of the original image, a weighted 

version of the Hadamard transformed image, and a weighted "cross product" image. 

Y arlagadda and Hershey proposed the NPT for use in image compression and in 

reconstruction of degraded images such as jammed or noisy images [54]. Since every 

transformed pixel contains information about the entire image, missing portions of the 

received image can be filled in with a known image texture. The iterative algorithm 

enforces consistency with known values in both the transform domain and the image 

domain. At the ith iteration, the reconstructed image is given by 

P; = lfl(p)Q;_1 lfl(p) where /3 = a/(2a -1) (2.10) 

and the transformed image is defined as 

Qi = lf!(a )P; lf!(a). (2.11) 

Regions in the transform domain which are correctly received are not altered during the 

iterative process. Correct values from Q0 are retained in each iteration to obtain Qi-I . In 

the image domain, a known or constant texture is substituted into the appropriate region 

" of the reconstructed image yielding P; . One drawback of this algorithm is the 

requirement of human intervention to locate the correctly received image data, to define 

the known texture used in the reconstruction, and to determine the number of iterations 

required during the reconstruction process. 

Data transmission over an asynchronous transfer mode (A TM) network [ 41] 

allows for identification of lost packets. The data stream is segmented into fixed-size 

cells or packets containing the packet header and an information field. The A TM 
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adaptation layer (AAL) provides the framework for handling transmission errors and 

packet segmentation and reassembly. By using an appropriate transmission network, 

image regions that correspond to incorrectly received data can be easily identified by the 

transmission protocols. 

More recently, the HNPT has been successfully used to reconstruct missing 

frames of voice data. Kohler and Y arlagadda [26] used a reconstruction algorithm 

similar to the image reconstruction procedure described by Equations (2.10) and (2.11 ). 

Coded speech is ordered sequentially in a 2n x 2n matrix and transformed using the 

HNPT. Known background information such as a predetermined background noise or 

silence can be used to form I'; . The HNPT reconstruction algorithm performance was 

compared to frame repetition techniques. Both signal-to-noise comparisons and listening 

tests demonstrate the effectiveness of the reconstruction procedure. For random packet 

losses of five to twenty five percent, the HNPT reconstruction algorithm was preferred by 

listeners over 80% of the time. 

Osinubi and King [32] used the one-dimensional HNPT for encoding and 

restoration of images transmitted over lossy packet networks. A portion of the HNPT 

coded signal is sent in "guaranteed" packets while the remaining packets are sent if the 

network traffic is not too heavy. By using the one-dimensional HNPT, a row-scanned 

image P can be expressed as a vector Sand Equation (2.9) is simplified. The transformed 

signal R is then described by only two weighted components, a weighted version of the 

original signal and a weighted version of the Hadamard transform of the signal. 

R = 'lf(a)S = aS +(l-a)HnS (2.12) 
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For dropped packets, a signal estimate was reconstructed using the available known 

packets of the HNPT coefficients. Their iterative reconstruction scheme converged for 

values of a< 0.5 and was successful in restoring good quality reconstructions even with 

50% packet loss. 

2.3 Implementation and Examples 

The Hadamard matrix.is constructed using the relationship in [53] 

. H =-1_ .. An (2.13) 
n Jjj' . ·N 

where A is a sparse matrix of order N = 2n and.is defin:ed as 

1 1 0 0 0 0 

0 0 1 1 .. 0 0 .. 

0 0 0 0 1 1 (2.14) A= 
1 -1 0 0 0 0 

0 0 1 -1 0 0 

0 0 0 0 1 ..:.1 

Using Equations (2.9) and (2.13), the HNPT of an image can be constructed using only 

additions and subtractions. Each multiplication by matrix A requires N 2 /2 additions and 

N 2 /2 subtractions. Omitting scaling constants, Equation (2.9) can be computed using 

· (41og2 N +3)N2 addition operations. Fastalgotjthms similar to the FFT algorithm have 

been developed to compute the Hadamard transform [ 44] [ 53]. · 

Figure 2.1 shows the original 512 x 512 Zelda image, the transformed images for 

two values of alpha, and the corresponding coefficient histograms. As expected, larger 

values of a allow the original image to be evident in the image of the HNPT coefficients 
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and the transform coefficient histograms to have the same general shape as the original 

Image. As a decreases, the percentage of transform coefficients surrounding the 

coefficient mean increases dramatically and the histogram becomes more peaked. Tue 

shape of the HNPT coefficient histogram is indicative of the probability density function 

(pdf) characteristics that best model the data. 

2.4 Statistical Properties of HNPT Coded Images 

This section presents a brief look at the statistical properties of HNPT coefficients 

including calculation of the mean, variance, and correlation coefficients for a variety of 

test images. Tue horizontal and vertical correlation coefficients are calculated for non­

sequency ordered HNPT data with further discussion of the shape of the coefficient 

distribution reserved for Chapter 4. A sample of the results for the test image Goldhill is 

presented in Table 2.1 for selected values of a. Tue statistics of the other test images 

follow the same general characteristics. 

For values of a < 0.2, the mean IS significantly smaller than the standard 

deviation and is relatively close to zero. As expected, the correlation coefficients are 

small for values of a< 0.5. Decorrelation of the image data and the ability of a transform 

to pack the signal energy into a small number of transform coefficients are desired 

qualities for compression purposes. For this reason, only values of a< 0.5 will be used 

to encode the image data. Looking at values of a< 0.2 reveals that over 90 percent of the 

coefficient energy is contained in an 8 x 8 block of the lowest sequency coefficients. In 

the following chapters, a = 0.2 will be the HNPT weighting coefficient used for most 

examples. 
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TABLE 2.1 Statistics of HNPT Coefficients of Goldhill 

Standard Correlation Coefficients 

a Mean Deviation Ph Pv 

0.00 0.89 122.47 0.005 0.001 

0.10 3.64 102.56 0.038 0.016 

0.20 8.26 86.78 0.098 0.060 

0.30 14.73 74.70 0.183 0.135 

0.40 23.07 65.57 0.283 0.236 

0.49 31.08 59.79 0.363 0.326 

0.60 45.33 52.69 0.478 0.467 

0.70 59.26 47.80 0.580 0.597 

0.80 75.05 44.35 0.709 0.746 

0.90 92.70 44.02 0.853 0.887 

1.00 112.21 49.07 0.937 0.941 

2.5 Summary 

This chapter provides an introduction to the Hadamard Naturalness-Preserving 

Transform and its application to image coding. Previous research · using the HNPT for 

both image and speech reconstruction is presented. The effects of transforming an image 

using the HNPT are demonstrated and the general statistical properties of HNPT coded 

images are summarized for a range of weighting constants. Chapter 3 provides additional 

introductory material in the areas of image coding and image reconstruction techniques. 
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CHAPTER3 

INTRODUCTION TO IMAGE COMPRESSION AND RESTORATION 

Compression techniques can be classified· as either lossless or lossy. . Lossless 

compression algorithms preserve all the image information while achieving only modest 

compression ratios. The need for higher compression ratios for image storage and image 

transmission requires a reduction in the amount of data used to represent an image. This 

loss of information leads to degradation of image quality and the need for image 

restoration algorithms. Image coders consist of three basic stages. Figure 3.1 shows the 

basic block diagram for a transform based image coder [ 46]. 

Original..._ Signal Lossless Compressed . 
,,. Decomposition\ ~ Quantization ~ Entropy 

Bitsheam -Image Transform Coding 

Figure 3.1 Generic Image Coder 

The first stage is a lossless process which decorrelates the data either through 

sub band coding or transform coding. Most of the loss occurs in the second stage where 

the data is quantized using either scalar, vector, or predictive quantization methods. The 

quantization process leads to a trade-off between minimizing the number of bits or 

maintaining acceptable image quality. For subband coders, zigzag scanning and run-
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length coding can also be used to increase compression ratios. The final coding stage, 

entropy coding, is a reversible lossless step. 

At high compression ratios, the transform/subband coefficients are coarsely 

approximated. As a result of the quantization process, the decoded image contains 

distortions. One method of reducing the number of artifacts in the decoded images is to 

. apply some kind of image post-processing. Also, perfect transmission of the compressed 

image data over a communications channel is not guaranteed due to noise and/or 

jamming. The loss of any encoded data introduces additional artifacts in the 

reconstructed image. The technique of projections onto convex sets (POCS) is one 

method of removing image artifacts caused either by compression or by channel loss. 

This chapter reviews both transform and subband based coders. Included are 

examples of baseline JPEG compression and subband compression. The differences in 

compression artifacts between the two algorithms are noted. Also included is a general 

discussion of image restoration problems and specific examples of POCS based 

restoration schemes. For a more complete discussion of image coding techniques, the 

reader is referred to the following texts ( [22], [36], and [ 46] ). This chapter concludes 

with an introduction to packet-based networks, specifically asynchronous transfer mode 

(A TM) networks. Properties of A TM networks that are relevant to the reconstruction 

process are listed. 

3.1 Block-Based Transform Coding 

Image transformation can be looked at as a decomposition of the data into its 

frequency or spectral components. Theoretically, the Karhunen-Loeve transform (KLT) 
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is optimal iri terms of coefficient decorrelation and energy compaction [2]. The KLT 

achieves exact diagonalization of the image's autocovariance matrix. This results in most 

of the image energy being concentrated in a small fraction of the transform coefficients. 

Since the KL T is image dependent and computationally complex, the discrete cosine 

transform (DCT) provides a fast, efficient method of achieving close to exact 

diagonalization of the autocovariance matrix. 

3 .1.1 The Discrete Cosine Transform 

The discrete cosine transform matrix is a separable, unitary transform matrix. The 

forward transform of an N x N image block P is obtained by applying the transform 

matrix D first to the columns 

Q'=DP (3.1) 

and then applying the transform to the resulting rows of Q' . 

. (3.2) 

where DT denotes the transpose of D and Q is the N x N matrix of transform coefficients. 

The transform matrix D contains the N orthonormal discrete· cosine basis vectors written 

as its rows. 

D _ [(2m + l)br] 
km -am cos 
· 2N 

where am = ..[f;- k = 0 (3.3) 

=H k=l,2, ... ,N-l 

Q is the DC or low frequency coefficient and corresponds to the average intensity level 
o,o 

in the image block. The remaining coefficients are referred to as AC coefficients. The 
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inverse transform provides a mapping from the transform domain coefficients Q back to 

image space. 

(3.4) 

The matrix transform can also be expressed in vector space form. Let p denote the vector 

representation of the image matrix P. p is a N2 x 1 vector obtained by lexicographically 

ordering P by either its rows or columns. Similarly let q denote the vector representation 

of the transform coefficients. Then the two dimensional unitary transform and its inverse 

written in vector form are given by 

q=Dp and (3.5) 

3.1.2 JPEG 

At the present time, block-based transform coders (specifically JPEG) are the 

most familiar coders to the average computer user [35]. The JPEG still image standard 

includes four modes of compression: sequential, lossless, progressive, and hierarchical. 

The sequential, baseline JPEG algorithm segments the image data into 8 x 8 pixel blocks 

and each image block is encoded in a left-to-right, top-to-bottom scan. The discrete 

cosine transform is used to decorrelate the data. The transform coefficients are quantized 

and data is further compressed using entropy encoding. As an additional step after 

quantization, the DC coefficients are encoded using a first order predictor and lossless 

differential encoding while the AC coefficients are scanned in a zigzag order to create a 

one dimensional sequence amenable to run-length encoding. Figure 3.2 illustrates the 

basic JPEG encoding procedure. Decoding follows the encoding process in reverse 

order. 



Compressed Original _ 
~ 

Forvrard Entropy 
-----;a' Quantize f-------,; -----3' Image 

Image DCT Co cling 
Data 

Figure 3.2 Baseline JPEG 

(a) (b) 

(c) (d) 

Figure 3.3 Example of Transform Coded Goldhill Using Baseline JPEG 
(a) Compression Ratio 7.96: l (b) Selected subregion 
( c) Compression Ratio 20 .4 3: 1 ( d) Selected subregion 
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Figure 3.3 provides a representative example cif JPEG compression performance 

at approximate compression ratios of 8: 1 and 20: 1. The PSNR is 30.28dB and 26.63dB 

respectively for Figures 3.3a and 3.3c. These images were obtained from The Waterloo 

BragZone and Fractals Repository website. The site is maintained by the University of 

Waterloo, Ontario and provides an excellent resource in comparing the results from 

different image compression algorithms. The most noticeable artifact in JPEG 

compressed images is "blocking" which is due to the structure of the algorithm. By 

processing pixel blocks independently, the correlation between blocks is removed and 

artificial boundaries are introduced in the reconstructed image. Some "ringing artifacts" 

are also evident near edges as a result of quantizing and eliminating some high frequency 

coefficients. 

3.2 Subband Coding 

Subband coding involves filtering an image to create subimages that represent 

smaller frequency bands than the original image's frequency band. Each subband tends 

to have features similar to the original image content. Block transform coding also 

provides frequency band information when the transform coefficients are arranged 

differently. By reordering the block transform coefficients, the newly formed blocks 

(subbands) correspond to regions with different frequency components [4][22]. 

Conversely, subband coefficients can be reordered to provide spatial information [49]. fu 

Figure 3 .4, the 2 x 2 blocks of transform coefficients are rearranged to form their 

corresponding subbands. 



a b a b a a b b 

C d C d a a b b 

a b a b C C d d 

C d C d C C d d 

(a) (b) 

Figure 3.4 Relationship Between Block Transform Coding and Subband Coding 
Output Coefficients (a) Block transform coding output (b) Subband coding output 
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Subband coding divides a signal into frequency bands. The subband 

representation is obtained by repeated convolutions with a pair of FIR filters in both the 

horizontal and vertical directions. After subsampling by two the process is repeated 

either on the lowpass subband (octave decomposition) or on each subband (full-band 

decomposition). This process is generally referred to as subband analysis. The decoder 

performs the inverse of the operation described above. The sub band signals are fed into 

. the synthesis filter bank where they are upsampled, filtered, and summed. Figure 3.5 

depicts a one-dimensional two-band filter bank system. For subband image coding, the 

analysis/synthesis process occurs in both the horizontal and vertical directions. For full-

band decomposition, each subband is fed into the analysis filter bank. As a result, there 

will be 4j subbands where j is the number of decomposition levels. Octave 

decomposition results in· 4 + 3(j -1} sub bands. In this case, only the lowpass sub band is 

passed to the filter bank. 
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H0 (w) Yo G0 (w) 
X 

analysis section synthesis section 

Figure 3.5 Two-band Analysis/Synthesis Filter Bank 

Several techniques are available for quantizing the subband coefficients. One 

option is to independently quantize each subband. High frequency subbands have been 

quantized using both Lloyd-Max quantizers [48] or uniform threshold quantizers [45]. 

The lowpass subband is a lowpass filtered subsampled version of the original image and 

can be encoded using JPEG [45] or DPCM [50]. Vector quantization across the bands is 

another quantization option [47] and is easiest when the subbands are the same size as in 

full-band decomposition. 

Figure 3.6 shows two examples of subband coding from the University of 

Waterloo database. The coder used is the Efficient Pyramidal Image Coder (EPIC) 

developed by Simoncelli and Adelson at MIT Media Labs [1] [40]. EPIC uses a 

biorthogonal wavelet decomposition combined with run-length and Huffman entropy 

encoding. For compression ratios of approximately 8:1 and 20:1, the PSNR is 29.93dB 

and 26.45dB respectively for Figures 3.6a and 3.6b. A good example of ringing noise 

can be seen in the roof lines and other house edges. At higher compression ratios, JPEG 

suffers from blockiness while the subband encoded images appear blurry. 



(a) (b) 

(c) (d) 

Figure 3.6 Example of Sub band Coded Goldhill Using Wavelet Based EPIC Coder 
(a) Compression Ratio 8.47:1 (b) Selected subregion 
( c) Compression Ratio 20.31: 1 ( d) Selected subregion 

3.2.1 Subband Filters 
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The relationship between the input and the output of the analysis/synthesis system 

shown in Figure 3.5 is given by 



.. X'(ejw )= +x(ejw )[Ho(ejw )Go(ejw )+ HI (ejw )GI (ejw )] 
+t x(ej(w+tr) )[Ho (ej(w+,r) )Go (ejw )+ HI (ej(w+,r) )GI (ejw )] 
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(3.6) 

and G1 (ejw) are the lowpass and highpass synthesis filters. The second term in Equation 

(3.6) is the aliasing term. Perfect reconstruction filters,X'{ejw )= x(ejw ), eliminate the 

aliasing component. 

A quadrature mirror filter (QMF) analysis/synthesis system is one of the most 

commonly used for subband decomposition. QMF's provide near-perfect reconstruction 

and are derived from a single lowpass filter, H0 [7]. The highpass filters are formed 

simply by modulating the lowpass filter. The filters are symmetric and are defined by 

Go{ejw )= H)ejw) 
HI (ejw) = H

O 
(ej(w+1r)) . 

GI (ejw )= -G0 (ej(w+1r)) 

An excellent overview of subband coding using QMF's is given in [36] and [8]. 

3.2.2 Hadamard Subband Coding 

(3.7) 

Yu and Mitra [58] have formalized a method for subband coding with the 

Hadamard transform. One advantage of Hadamard transform coding is the simplicity of 

the operation. Only additions and subtractions are required to perform the Hadamard 

transform. 

Consider an N x N image P. If the image is divided into subimages of size M x 

M, there are L2 subimages where L=NIM and is assumed to be an integer. Each subimage 
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contains spatial information about a specific region. To obtain frequency information, 

the spatial blocks must be transformed into M2 (L x L) subbands. 

P can be described as an ordered grouping of the M x M spatial subimages. For 

the case of M = 2, Bij will be a 2 x 2 pixel block. 

P= (B . . ) l,J i,j = 1,2, ... ,L (3.8) 

B.. = [bl,! 
l,J b 

2,1 

(3.9) 

Rewriting Bij as vector bij the pixel block can be transformed by a M2 x M2 matrix D. 

(3.10) 

The result of this operation can be written as 

c .. =Db .. l,J l,J 
(3.11) 

Just as Bij was reordered, the vector Cij can be reordered to form the matrix Cij· 

Lowpass filtering of Bij is equivalent to 

(3.12) 

The row gradient is given by 

(3.13) 

and the column gradient is given by 

(3.14) 

Finally, diagonal edge information is obtained from 

(3.15) 

Combining Equations (3.12) - (3.15), the transformation matrix D is given by a scaled 

version of the Hadamard transform. 
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1 1 1 1 

D=! 1 - 1 1 - 1 

4 1 1 -1 -1 
1 -1 -1 1 

(3.16) 

The lowpass subband can be passed on to the same set of filters to provide multi-

resolutional information. Figure 3.7 shows the results of Hadamard subband coding on 

Lena. 

Figure 3.7 Hadamard Subband Coding of Lena 

3 .3 General Image Restoration 

The classical image restoration problem assumes two dominant types of 

degradation - blurring and noise. The degradation model is defined by 
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y=Hx+n (3.17) 

where y is the observed image, x is the ideal or original image, H is the blurring 

operator, n models the noise, and y, x, and n are lexicographically ordered vector 

representations of their respective images. Blur can be caused by motion between the 

camera and the scene or it can be caused by the imaging system being out of focus. The 

noise is generally modeled as an additive white Gaussian noise process. 

The goal of the restoration process is to operate on the corrupted image to restore 

an estimate that closely approximates the original image. Generally some knowledge of 

the blurring ftmction, the noise, and the original image are assumed. By assuming a 

model for the point spread ftmction of the imaging system (blur model), the problem 

becomes one of inverting Equation (3 .17). Since inverse filtering techniques lead to an 

increase in noise effects, constrained restoration (iterative algorithms) offer a trade-off 

between noise smoothing and maintaining image sharpness. The most common 

restoration filter, the Wiener filter, and the Kalman filter both fall into the non-iterative 

category. 

Given an estimate of the point spread ftmction, the Wiener filter is optimized to 

obtain the minimum mean square error. The filter's transfer ftmction [17] is given by 

H* (u, V )s X (u, V) 
(3.18) 

IH(u, v)! 2 S)u, v)+ s)u, v) 

where H(u, v) is the blur transfer ftmction, S)u, v) is the image spectral density, and 

Sn (u, v) is the noise spectral density. In reality, estimation of S x (u, v) and Sn (u, v) is the 

main difficulty in implementing the Wiener filter. Constrained least squares restoration 
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requires an estimate only of the noise mean and variance not the spectral density. Tue 

solution is given by 

where C is a smoothness operator and y is a constraint constant. Other iterative, 

regularized restoration methods are available [24] [25]. 

Tue projection approach to image restoration chooses constraints based on prior 

knowledge about image characteristics. Tue difference between set-theoretic methods 

and regularized restoration is that the convex set solution is any image that satisfies the 

defmed constraints. Tue more restrictive the constraint sets, the narrower the possible 

solution space. One drawback to convex set restoration is the computational expense 

incurred. Several iterations are usually required before convergence. These methods are 

only suitable for image decoders with computational power available. 

3.4 Image Restoration Algorithms Incorporating POCS 

This section reviews the recent image restoration literature where POCS based 

algorithms have been implemented to improve the quality of compressed images. 

Convex projection techniques have been used to improve JPEG encoded images, to 

improve video sequences, and to enhance primitive-based wavelet coding. 

3.4.1 Reduction of Blocking Artifacts in Still Images 

Tue use of a block OCT compression algorithm automatically introduces artificial 

boundaries in the reconstructed image at high compression ratios. Rosenholtz and Zakhor 

proposed the use of two projection operators to reduce these blocking artifacts in JPEG 
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coded images [39]. . The· first projection operator uses the set of band-limited images 

with a specific cut-off frequency. By applying an ideal lowpass filter to the received 

image, this constraint is meant to reduce both the horizontal and the vertical blocking 

artifacts that are present. The second projection operator restricts the decoded DCT 

coefficients to their proper quantization intervals. Any DCT coefficient that lies outside 

its quantization range is projected to the appropriate range boundary. The projection for 

the quantization constraint is defined as 

f(x,y) < a 

a~f(x,y)~b 

f(x,y) >b 

(3.20) 

where a and bare the quantization interval boundaries. Equation (3.20) can also be used 

to ensure valid pixel intensities ( [a,b] = [0,255] ). Rosenholtz and Zakhor assumed that 

an ideal low-pass filter was the filter used in the band-limiting projection operation. 

However, the filter specified in [39] is not an ideal low-pass filter and thus the filtering 

constraint set is not convex. Their algorithm instead solves a constrained minimization 

problem. The quantization constraint is defined by a convex set while the lowpass 

filtering minimizes the blocking artifacts. 

Care must be taken to properly choose constraint sets and to correctly define 

projection operators. (Note: PLimiJ(x,y) detailed above is a valid projection operator [56]) 

Improper constraints result in either an empty intersection or a solution which is actually 

based on a different methodology than anticipated. 

Yang, et al [ 51] also proposed convex constraints based on knowledge of the DCT 

coefficient characteristics and on image smoothness. The quantization constraint insures 

consistency with the encoded data by enforcing quantization interval boundaries. The 
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smoothness constraint is based on the characteristics of the original image and focuses 

specifically on smoothness between block boundaries. This constraint is defined by 

limiting the variation of the pixel values between the boundaries of adjacent blocks. 

Yang's algorithm reduced blocking artifacts and improved the signal-to-noise ratio of the 

recovered image in fewer than 20 iterations. 

3.4.2 Edge Preservation 

By nature, compression algorithms truncate high frequency coefficients. Zeroing 

these coefficients causes Gibbs artifacts [30], i.e. ringing near image edges. The 

sharpness of the edges is an important factor in the perceived quality of a compressed 

image. Su and Mersereau [ 42] combine edge preservation with a quantization constraint 

and lowpass filtering for post-processing of JPEG compressed images. Edges are 

preserved during each iteration by limiting the difference between the original 

decompressed image and the restored image at each pixel location. To enhance the edge­

preserving constraint, individual pixels are classified as uniform, texture, or edge pixels 

and each block is labeled by the strength of its edges. 

The smoothing of the output image is not part of the convex projections process. 

By combining the lowpass filtering with the convex constraints and wisely choosing the 

filter coefficients, the iterative algorithm becomes a constrained optimization problem. 

The algorithm presented is simple and effective. Both ringing and blocking artifacts are 

reduced in fewer than five iterations. Su and Mersereau also present additional 

comparisons between their algorithm and Zahkor's algorithm mentioned earlier in 
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Chapter 3.4.1. Su and Mersereau's restoration scheme offers less blurring, sharper edges, 

and a slightly increased signal-to-noise ratio. 

The optimal reconstruction procedure developed by Zhong [60] incorporates 

convex constraint sets in a constrained optimization algorithm. The quantization 

constraint defined by Equation (3.20) is combined with an "evolution procedure" to 

reduce ringing artifacts. The evolution procedure is designed to reduce blocking artifacts 

by decreasing the total variations and to reduce Gibbs artifacts by updating high 

frequency coefficients associated with edges. Further discussion of Zhong's evolution 

procedure is given in [59]. The evolution process removes compression artifacts while 

the projections operator keeps transform coefficients in their appropriate quantization 

range. The optimal reconstruction technique described in [60] was applied to JPEG 

encoded images with a compression ratio of 17:1. The algorithm successfully reduced 

blocking artifacts without blurring the image and improved the appearance of ringing 

artifacts. 

3.4.3 Reduction of Blocking Artifacts in Video 

Coded video sequences can also suffer from blocking artifacts. Additional errors 

due to transmission losses further affect the quality of the received video sequence. Sun 

and Kwok [43] proposed a restoration algorithm based on the characteristics of the good 

blocks that are surrounding blocks lost in transmission. An important contribution of this 

algorithm is the inclusion of edge continuity information. Additional constraints require 

restored pixels to lie in a valid intensity range and impose smoothness. 



32 

PLimit defined in Equation: (3.20) can be used to impose the constraint of valid 

pixel values. The edge and smoothness constraints are defined in the Fourier domain by a 

similar convex set description - the transform coefficients of the data are required to lie 

in a prescribed region. Psmooth is a lowpass filter that zeroes Fourier coefficients outside a 

cutoff frequency Rth· Fis the N x N OFT and m and n are the Fourier domain indices. 

p f( ) = { 0 .J m 2 + n 2 
· > R1h 

smooth x,y 
F(m,n) otherwise 

(3.21) 

In the Fourier domain, edge coefficients lie in a direction that is orthogonal to the edge. 

Thus, P edge is a directional bandpass filter with bandwidth Bth· Edges are assigned a 

direction based on the gradient angle 8. The allowed edge categories lie in one of eight 

regions equally spaced from 8=0° to 8= 180°. 

pedgef(x,y) = { 
0 lm-n*tan(B+90°)l>B1h 

F(m,n) otherwise 
(3.22) 

The algorithm begins by identifying lost blocks and determining if a block is 

smooth or contains edges. Using the projection operators listed above, a damaged block 

and its eight neighboring blocks are first combined into a larger block. This larger block 

is identified as either a smooth block or an edge block before applying the projection 

operators. The definition of PLimit is expanded so that the pixel values in neighboring 

good blocks remain the same and only the pixel values in the damaged block are altered. 

The projection operator Pc ensures that correctly received values are not altered by the 

restoration process and is described by 

{
k(x,y} M(x,y}=O 

Pcf(x,y}= J(x,y} M(x,y}=l (3.23) 
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where M(x,y) denotes the location of the correctly received pixel values k(x,y). Although 

PLimit and Pc were combined into one operator in this paper, they can also be applied 

independently. 

For the still image tests, good quality restored images were obtained in less than 

ten iterations. Applying the POCS algorithm to video sequences yielded better 

performance than motion compensated block copying. The best results were obtained 

when restoring mid frequency and low frequency blocks. 

3.4.4 Applications to Subband/Wavelet Compressed Images 

Croft and Robinson [ 6] used a wavelet decomposition to approximate a 

multiresolution Difference-of-Gaussians (D-o-G) filter and to perform compression using 

the second derivative extrema of the D-o-G filter. In the high frequency subbands, the 

largest magnitude watershed and watercourse lines are calculated and chain-coded. 

Watershed and watercourse lines describe the ridges and valleys of the image surface. 

The large amplitude extrema identify the most significant edge information. The lowpass 

subband is compressed by subsampling followed by DPCM coding. 

The projection operators used in the recovery/decoding process are the discrete 

wavelet transform and Pc. For this algorithm, Pc is used to impose consistency with the 

encoded data in each subband. First, the values of the lowpass wavelet coefficients are 

preserved during each iteration. The smoothing characteristics of the lowpass wavelet 

filter also help prevent the ~reation of any false extrema in the high frequency subbands. 

Edge information is kept consistent by updating the highpass coefficients only at 

watershed and watercourse locations. 
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Using a subband coder and POCS, Croft and Robinson developed an iterative 

reconstruction scheme that provides better quality reconstructed images than a JPEG 

coder. Improvements were most noticeable in edge continuity. However for highly 

textured, finely detailed images such as Goldhill, JPEG provides better compression 

results. 

3.5 Image Transmission over Asynchronous Transfer Mode Networks 

Transmission of data over a communications channel frequently results in the loss 

or corruption of the original data. Data loss can be due to noise, network congestion, 

signal degradation, jamming, etc. The loss of image data presents a reconstruction 

problem at the decoder. This section provides an introduction to asynchronous transfer 

mode (ATM) networks and details some of the packetization requirements for successful 

reconstruction of lost image data [ 41]. 

3.5.1 ATM Networks 

ATM networks transmit data in fixed-size cells or packets. The use of fixed-size 

cells allows the switching mechanism to be implemented in hardware so that packets are 

switched more efficiently. The data's route between switches or nodes is determined 

prior to transmission over a virtual circuit. By establishing a predetermined path, routing 

decisions are not required at each node. One disadvantage to this approach is that packets 

cannot be routed away from congestion. The buffering, queuing, and error control 

necessary at each node can incur additional delay. In the datagram approach, each packet 

is treated as a separate unit. By treating packets individually, the packets can be routed 
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around any congestion or node failure that develops in the network. This thesis considers 

use of the virtual circuit approach. Packets are transmitted in a known order and the 

sequencing information is known at the receiver. 

A TM packets consist of a 5 byte header and 48 byte data field. The header 

contains information necessary for routing and prioritization of packets. The ATM 

adaptation layer (AAL) provides the framework for handling of transmission errors and 

packet segmentation and reassembly for different types of data. Addition of information 

such as sequence numbers and error correction codes adds some overhead and decreases 

the available payload. The additional header information within the packet payload 

allows for identification of lost packets and bit error correction within a packet which is 

essential for image transmission. 

3.5.2 Transmission Assumptions for Image Reconstruction 

The packet-based transmission network described above has several properties 

that are necessary for reconstruction of lost image data. The ATM adaptation layer 

provides for error correction within a packet and insertion of sequence numbers. Other 

assumptions about packetization of HNPT coded image data for facilitating image 

reconstruction at the decoder include segmenting and interleaving the coefficient data. 

Segmentation of the data can occur in either the spatial or the frequency domain. 

For spatially based packetization, bursty errors in the network can cause loss in adjoining 

areas of the image. Interleaving the data before packetization avoids the problem of large 

areas of loss. Compression techniques such as quantization, run-length encoding and 

Huffman encoding are allowable as long as codewords fit within the packet payload. 
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Arithmetic coding among several packets is not allowable. In this case, loss of a packet 

causes loss of synchronization at the decoder [ 18]. 

3.6 Summary 

Both DCT based encoders and subband encoders provide fast, efficient algorithms 

for compressing image data. The artifacts incurred at low bit rates for either compression 

technique and possible loss of data during transmission suggest the option of additional 

post-processing at the decoder. 

Current research employs POCS techniques within a constrained minimization 

algorithm to improve the quality of compressed images. These image restoration 

techniques focus on the decoding phase of an image coder and allow the incorporation of 

a priori knowledge in the decoding process. Convex constraints based on image 

smoothness, allowable pixel magnitudes, allowable pixel variations, and consistency with 

the decoded data have been used successfully. It is important to note that POCS based 

restoration techniques are applied in the post-processing phase of an image coder. Since 

several iterations are usually required for convergence of the algorithm, there is a 

computational cost along with delays associated with these methods. Using these 

examples, constraints can be developed which describe the characteristics of a HNPT 

encoded signal. 
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CHAPTER4 

QUANTIZATION AND CODIN"G OF HNPT COEFFICIENTS 

To design an effective quantizer, the shape of the coefficient density function 

distributions should be modeled accurately; For discrete cosine transform coding, 

Reininger and Gibson [38] determined that non-de coefficients were better modeled as a 

Laplacian distribution than as a Gaussian or Rayleigh distribution .. For subband coding, 

the generalized Gaussian probability density function provides a better fit to the subband 

data than the Laplacian density function [45] [48]. Another popular quantization option 

used in sub band coding is uniform threshold quantizers [9]. These uniform quantizers 

perform almost as well as optimally designed entropy constrained quantizers. 

4.1 Histogram Fitting 

For large values of a ( 0:::;; a:::;; 1, a* 0.5 ), i.e. a> 0.7, the HNPT histogram 

exhibits the characteristics of the originaHmage histogram. As the value of a decreases, 

the histogram exhibits more of the Hadamard characteristics and becomes more peaked 

and narrow as seen in Figure 2.lc. The generalized Gaussian probability density function 

was considered as a possible model for the HNPT coefficient histogram. The generalized 

Gaussian pdf is given by 

(4.1) 
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where a and b are defined as 

and 
r(-r3J 

b=-1 

a, rG J. (4.2) 

In Equation ( 4.2), I'( ) is the Gamma function and y is a shape parameter which describes 

the exponential decay. For y = 1.0, Equation (4.1) becomes the Laplacian pdf and y = 2.0 

results in the Gaussian pdf. However, for Hadamard coefficients, a gamma density 

function defmed by 

br ( 2 . )1'2 
p(x)=--e-blxllxlr-1 and b=-r_+_r_ 

2I'(y) ax 
(4.3) 

provides a good fit with the data [10] [14]. For the gamma pdf a shape parameter y = 1.0 

also results in the Laplacian. Figure 4.1 compares the HNPT (a= 0.2) histogram with 

the gamma pdf and the generalized gaussian pdf. For appropriately chosen values of y, 

the overall shape of the density functions are very similar. In the figure below, there are 

minor differences in peak height and in the pdf s shape at the tails. As lxl ~ oo , both the 

generalized gaussian and the gamma pdf have a broader tail than the HNPT histogram. 
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Figure 4,1 Probability Density Functions (a) Gamma pdf 

(b) HNPT histogram. ( C) Gep.eraliied Gaussian pdf 
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4.2 Determination ofHNPT Histogram Characteristics 
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The Kolmogorov-Smimov (KS) test was used to determine goodness-of-fit 

between the histogram data and the two density functions described above for values of 

a< 0.5. The KS test statistic, tKs, provides a distance measure between the sample data's 

distribution function Fx ( ) and a given distribution function F( ) . The density function 

which minimizes the KS distance measure is considered to provide the best fit with the 

data. The KS test.statistic is defined by. 

(4.4) 

The KS test was performed on the zero mean HNPT coefficient.distribution of ten, 8 bit 

monochrome images. The image data set consists of seven images of size 256 x 256 

· · pixels and three images of size 512 x 512 pixels. The HNPT weighting constant, a, was 

incremented over the range O ·:::;;a_< 0.5. The range ofy for the generalized gaussian was 
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0.02 sys 1.0 while allowable values for the gamma distribution shape parameter were 

0.05 sys 1.0. The best value ofy minimizes the Kolmogorov-Smimov distance measure 

for a given distribution function. For selected values of a, Table 4.2 lists the best values 

of y for both density functions. 

The results can be summarized as follows. For a= 0, a Hadamard transformed 

image, our best fit y differs slightly from the values presented in [14]. Our tests indicate 

that r = 0.43 provides a better fit over the image set used rather than y = 0.5. Also, the 

shape parameter values listed for the gamma density function differ from the results 

presented in [10]. With r= 3.0, the gamma density function provides a good fit at the 

tails of the variance normalized HNPT coefficient data, however, it does not provide an 

accurate description of the coefficient behavior close to zero [ 11]. 

Using the shape parameter values listed in Table 4.1, both the generalized 

gaussian and the gamma density functions provide a good fit with the high sequency 

HNPT data. The results are close enough that either density function can be selected for 

an appropriately chosen value of y. Table 4.2 summarizes the average values of y for 

both density functions. For O s a < 0.5, the value of y varies more when using the 

generalized gaussian pdf to model the transform data. In order to simplify the quantizer 

design, the gamma density function will be used with either y = 0.5 or y = 0.6. 

The KS test was also performed on a selected portion of the low sequency HNPT 

coefficients. Sequency is a generalization of the concept of frequency and is defined as 

one half of the number of zero-crossings per unit time [2]. Sequency can be used to 

describe functions whose zero-crossings are not equally spaced over an interval. 
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Table 4.1 Best Value ofy Determined by Kolmogorov-Smimov Test 

Best Value of y for Generalized 

Gaussian density function 

a o.oo 0.10 0.20 0.30 0.40 0.49 

0.19 0.19 0.26 0.36 0.39 0.33 

0.26 0.26 0.30 0.36 0.37 0.42 

0.26 0.26 0.29 0.34 0.36 0.36 

0.25 0.25 · 0.29 0.35 0.41 0.49 

0.22 0.22 0.26 0.32 0.34 0.37 

0.17 0.31 0.34 0.25 0.37 0.43 

0.18 0.25 0.33 0.40 0.39 0.49 

0.27 0.28 0.32 0.33 0.36 0.39 

0.20 0.20 0.23 0.27 0.32 0.39 

0.17 0.17 0.24 0.25 0.28 0.32 

Best Value of y for Gamma 

density function 

0.00 0.10 0.20 0.30 0.40 0.49 

0.36 0.47 0.60 0.69 0.55 0.53 

0.50 0.54 0.67 0.60 0.65 0.72 

0.51 0.53 0.67 0.60 0.65 0.72 

0.48 0.54 0.57 0.65 0.68 0.73 

0.43 0.50 0.57 0.57 0.59 0.63 

0.25 0.63 0.61 0.36 0.55 0.61 

0.29 0.42 0.54 0.60 0.69 0. 77 

0.53 0.53 0.60 0.56 0.57 0.62 

0.37 0.40 0.46 0.51 0.62 0.64 

0.25 0.43 0.40 0.46 0.51 0.54 
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Table 4.2 Average value of y 

Generalized Gaussian Gamma 

y y 

0 ~ a~ 0.1 0.25 a=O 0.43 

0.1 <a~ 0.2 0.30 0 <a~0.2 0.50 

0.2 < a~ 0.3 0.34 0.2 <a< 0.5 0.60 

0.3 <a~ 0.4 0.37 

0.4 <a< 0.5 0.42 

For periodic functions, the sequency is one half the number of sign changes per 

period. If the function is aperiodic, the sequency is one half the number of sign changes 

per unit time. The Hadamard transform coefficients and thus the HNPT coefficients can 

be reordered with sequencies arranged in increasing order. The HNPT of a one 

dimensional data sequence is defmed as 

q(n) = '!f(a )p(n) n = O,l, ... N -1. (4.5) 

The relationship between the non-sequency ordered coefficients q(n) and the sequency 

ordered coefficients qs(n) is given by 

q(n) = qs (b(n)) n=O,l, ... N-l . (4.6) 

where ( n) is the bit-reversal of the binary representation of n and b( n) is the Gray code­

to-binary conversion of (n). For example, whenN= 4, 

q(3)= qs(2). (4.7) 
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For two,.dimensional data, -the rows can be reordered with increasing sequency followed 

by reordering the columns. 

The histogram of the first row and the first column of the sequency ordered 

coefficients is compared to the same density functions discussed earlier. In this case, the 

generalized gaussian provided a better fit to the low sequency data. For y = 0.5 and y = 

0.75, the quantizers listed in [48] can be used. For y = 1.0, the pdf is Laplacian and the 

appropriate quantizers can be found in [21]. The results are summarized in Table 4.3. 

Table 4.3 Shape Parameter for Low Sequency HNPT Coefficients 

Generalized Gaussian 

y 

0 ~a~ 0.2 0.50 

0.2 <a~ 0.4 0.75 

0.4 <a~ 0.5 1.00 

4.2.1 Hadamard Subband Coding 

Using the same histogram fitting techniques with the Hadamard subband coding 

method described in Section 3.2.2 reveals that the generalized Gaussian pdf provides a 

good fit with the subband histogram data using a shape parameter value of y = 0.5. The 

same set of quantizers used for wavelet sub band coding in [ 4 7] can also be used with 

Hadamard subband coding. 
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4.3 Lloyd-Max Quantizers 

Lloyd-Max (LM) quantizers are optimized to yield the minimum mean-squared 

error for a specified number of reconstruction levels [21]. The quantization error 

between a quantized signal y and the original signal x is given by 

q=y-x. (4.8) 

Using quantization error variance as an error criterion, the following equation must be 

minimized. 

The xk's are the decision levels and the Yk's are the reconstruction levels. 

and 

xi.opt = -oo 

xk,opt = 1 * G\,opt + Yk-1,opt) 

X N+l,opt = OO 

k=2,3, ... ,N 

k=l, 2, ... ,N. 

(4.9) 

( 4.10) 

(4.11) 

The optimum values of Xk and Yk are solutions to the nonlinear equations above. 

One method of solving these equations begins by assigning the initial values of Yk and 

using Equation (4.10) to compute the decision levels. A new set of reconstruction levels 

is calculated and the process is repeated until the mean-squared error between successive 

iterations is below a specified threshold. By minimizing the mean-squared error, the 

Lloyd-Max quantizer design allows more decision levels in regions where the signal's 

pdf is large. One example of a seven level Lloyd-Max quantizer for the gamma pdf in 
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Equation ( 4.3) is given m Table 4.4 where k is the level number and Yk is the 

reconstruction level. The quantizer specified is for zero mean and unity variance with the 

decision levels centered between the reconstruction levels. Other quantizer designs for 

the gamma distribution are found in [23] and [34]. The results presented here are similar 

with some variations due to differences in the stopping criteria. In addition to quantizers 

designed for a shape parameter of y = 0.5, Appendix B also lists quantizers designed for 

y= 0.6. 

Since the HNPT coefficient histogram changes shape with changing values of a, 

these quantizers will only be used to compress the data when a< 0.5. For values of a> 

0.5, a significant portion of the original image .content is still present in the transform 

coefficients and the data is not decorrelated enough for good compression results. 

Table 4.4 Lloyd-Max Reconstruction Levels 
for Gamma pdf with y = 0.6 

k Yk 

1 -3.589 

2 -1.726 

3 -0.674 

4 0.000 

5 3.589 

6 1.726 

7 0.674 
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· 4.4 Uniform Threshold Quantizers 

Since the HNPT coefficients histogram contains such a sharp center peak ( see 

Figure 3.1), symmetric uniform threshold quantizers (UTQ's) or "dead zone" quantizers 

provide another quantizer option. UTQ's are symmetric uniform quantizers with the 

reconstruction levels at the midpoints of the .threshold intervals [9][45]. Dead zone 

quantizers are a variant of uniform threshold quantizers that have a center dead zone with 

a larger width than the fixed threshold interval. Generally the region around the origin is 

twice the size of the other intervals. Increasing the size of the dead zone minimizes 

quantization error noise in the high frequency subbands and has little effect on perceptual 

quality [ 15]. One advantage of these quantizers is their ease of implementation. The 

width of the dead zone and the quantization step size are the only information needed for 

coding and decoding. 

Several researchers have presented results demonstrating that the performance of 

uniform threshold quantizers is close to that of a optimum entropy constrained quantizer 

[5] [9] [45]. Berger [5] has shown that a uniform threshold quantizer is optimal for 

exponential and Laplacian probability density functions while Farvardin and Modestino 

[9] compare the performance of optimum quantizers and uniform quantizers for several 

generalized distributions. In both cases, rate-distortion curves provide a means of 

evaluating quantizer performance. An optimum quantizer is defined as a quantizer that 

minimizes the distortion (mean-squared error in this case) subject to an entropy 

constraint. The distortion is defined in Equation ( 4.9). 

(4.12) 
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Like the Lloyd-Max quantizers described in the previous section, the xk's are the decision 

levels and the Yk's are the reconstruction levels. The output entropy rate is 

N 

H = - LPk log 2 Pk bits I sample 
k=I 

(4.13) 

where Pk is the probability that reconstruction level Yk will occur. Finding the optimal 

quantizer involves solving a set on simultaneous nonlinear equations. Farvardin and 

Modestino show that uniform threshold quantizers closely approximate the rate-distortion 

behavior of optimal quantizers. 

Figure 4.2 shows the rate-distortion performance of the uniform threshold 

quantizers designed for the gamma pdf. The rate-distortion performance curves are 

obtained by varying the quantizer step size and calculating the distortion and entropy 

associated with an N level quantizer. The optimum N level uniform threshold quantizer 

corresponds to the step size resulting in the minimum distortion. Also included are the 

Gish-Pierce asymptotic results [16]. Gish and Pierce demonstrate that as distortion 

approaches zero (large values of N), the optimum quantizer with an entropy constraint 

should tend toward a uniform quantizer and that rate and distortion are related by 

Equation (4.14). 

D(H ) = __!__ 2 2(hs-Ho) 
0 12 

(4.14) 

D is the distortion, HO = log2 N is the rate, and hs is the differential source entropy 

defmed below. 

h. = - [
00
p)x) log 2 Px (x)dx bits/sample ( 4.15) 
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For the gamma density function with an arbitrary y, hs is given by Equation (4.16) where 

lflis known as either Euler's psi function or the digamma function. 

(4.16) 

4.5 Implementation 

Figure 4.3 shows the block diagram . of the encoding system for image 

compression using the HNPT. The input image is transformed using the HNPT. In order 

to reduce the bit rate, the low sequency coefficients and the high sequency coefficients 

are encoded separately with their respective quantizers. For the high sequency 

coefficients, only the coefficients with nonzero quantized values are transmitted along 

with a map of their positional information. The quantization information is further 

compressed by using adaptive Huffman encoding [12] [13]. In addition to the quantized 

data, the low and high sequency means and variances are transmitted as overhead 

information. Also included in the overhead are the value of a, the number of 

quantization levels, and a 2 x 2 block of the lowest sequency coefficients. Assuming two 

bytes for each overhead parameter and four bytes for the low uncompressed low 

sequency coefficients, the overhead information corresponds to transmitting an additional 

0.004 bpp. 
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Figure 4.3 Block Diagram of HNPT hnage Encoder 

4.6 Compression Results and Comparison to Other Coding Techniques 

This section presents the compression results using both the Lloyd-Max 

quantizers and the uniform threshold quantizers described earlier. Coding results are 

presented for the following images Goldhill, C256, and Zelda. The reconstructed images 

are evaluated in terms of signal-to-noise ratio and the average bits per pixel (bpp ). For all 

examples presented, the HNPT weighting coefficient is a = 0.2 and the low sequency 

coefficients are encoded using the generalized gaussian Lloyd-Max quantizer with y=0.5. 

Figure 4.4 compares the original Goldhill and C256 images with reconstructed 

images at two different bit rates; For the low sequency coefficients, 31 quantization 

levels were used. The different bit rates are due to the type of quantizer used with the 

high sequency coefficients. Figure 4.4b was obtained using a Lloyd-Max quantizer with 

31 levels. The Lloyd-Max quantizer resulted in bit rates of 2.77 bpp and 2.99 bpp and 

peak signal-to-noise ratios of 25.29 dB and 26.24 dB for Goldhill and C256 respectively. 
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When the UTQ ( N = 33) was used, both the compression ratio and the signal-to-noise 

ratio increased. For Goldhill, the bit rate decreased to 1.70 bpp and the PSNR increased 

slightly to 25.43 dB. While for C256, the bit rate decreased to 1.46 bpp and the PSNR 

increased to 26.67 dB. 

Understanding the coding artifacts caused by the HNPT compression scheme will 

assist in the development of a POCS based restoration algorithm. The artifacts 

introduced into the reconstructed images are evident in Figure 4.4. The reconstructed 

images all contain blocking artifacts caused by the periodic structure of the Hadamard 

transform. Figure 4.5 shows the difference images between the original images of 

Figure 4.4a and the reconstructed images of Figure 4.4c. The difference images reveal 

that the greatest source of error in the reconstructed image is due to the current method of 

quantizing the low sequency coefficients. There is no evidence of missing edges (high 

frequency information). The difference image contains large blocks of apparently 

uniform magnitude values. These blocking artifacts present additional reasons for 

improving the coding of the low sequency coefficients. 

Figure 4.6 presents the results for encoding Zelda at a compression ratio of about 

12:1. The only difference in the encoder is the quantizer used for the high sequency 

coefficients. Quantizer levels were adjusted to achieve approximately the same 

compression ratio using the two different methods. Again, the visually distracting 

blocking artifacts are present. Another point of interest is the subjective quality of the 

two reconstructed images. The result from the Lloyd-Max quantizer appears grainier 

while the UTQ encoded result has smoother appearing blocks. Also, the PSNR for the 

UTQ reconstructed image is higher at 22.18 dB compared to 18.07 dB. This is a result of 
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being able to use more high sequency quantization levels to achieve a similar bit rate to 

the Lloyd-Max quantizer. The bit rate and PSNR results for Figures 4.4 and 4.6 are 

summarized in Table 4.5. 

The HNPT coding results at a compression ratio of 8: 1 are compared with 

equivalent JPEG encoding results. Figure 4.7 demonstrates the typical artifacts 

introduced by both types of coders at comparable data rates. In this case, JPEG produces 

a significantly better reconstruction. While the difference in edge quality appears 

minimal, large blocking artifacts and the grainy image appearance reduces the perceptual 

quality of the HNPT encoded images. 

Table 4.5 Average Bit Rate and PSNR 

Picture Quantizer N1s NHs Bit Rate PSNR 

Goldhill LM 31 31 2.77 bpp 25.29 dB 

UTQ 31 33 1.46 bpp 25.43 dB 

LM 15 5 1.27 bpp 20.72 dB 

UTQ 31 9 1.06 bpp 21.90 dB 

C256 LM 31 31 2.99 bpp 26.24 dB 

UTQ 31 33 1.46 bpp 26.67 dB 

Zelda LM 31 8 0.69 bpp 18.07 dB 

UTQ 31 65 0.68 bpp 22.18dB 
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(a) 

(b) 

(c) 
Figure 4.4 Original and reconstructed Goldhill and C256 

(a) Original images (b) at -3 .0 bpp Lloyd-Max (c) at - l.5bpp UTQ 
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Figure 4.5 Original and Difference Images at l .5bpp 



(a) 

(b) 

(c) 

Figure 4.6 Original and reconstructed Zelda: (a) Original 
(b) at 0.69 bpp Lloyd-Max (c) at 0.68 bpp UTQ 
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(a) (b) 

(c) (d) 

Figure 4.7 Comparison Between JPEG and HNPT Coding 

(a) Original (b) JPEG compressed Goldhill 1 bpp 

(c) 1.06 bpp UTQ (d) 1.27 bpp Lloyd-Max 
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4.7 Summary 

This chapter presents an encoding scheme using the Hadamard Naturalness­

Preserving transform. In order to design quantizers, two possible models for the HNPT 

coefficient probability density function are presented. With appropriately chosen shape 

parameters, both the generalized Gaussian and. the gamma density functions provide a 

good fit with the HNPT coefficient data. Both Lloyd-Max quantizer and uniform 

threshold quantizer designs are presented using the gamma density function. 

Understanding the coding artifacts caused by the HNPT will assist m the 

development of a POCS based restoration scheme. The greatest source of error in the 

reconstructed image is due to the current method of quantizing the low sequency 

coefficients because the quantizers are designed for optimum quantization of the high 

sequency coefficients. As a result, the reconstructed images all contain blocking artifacts 

caused by the periodic structure of the Hadamard transform. For higher compression 

ratios, this degradation has an appearance similar to adding salt and pepper· noise to the 

image. Comparisons are also made between the HNPT encoding scheme and baseline 

JPEG. 
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CHAPTERS 

HNPT RECONSTRUCTION ALGORITHM 

The method of convex projections was introduced to the image processing 

community by Youla and Webb [57]. In order to apply convex constraints to image 

recovery pro bl ems, known properties ( a priori knowledge) of the original image must be 

defined as closed convex sets. These constraints can be used within an iterative 

algorithm to improve the quality of the received image. Some examples of a priori 

knowledge would be image smoothness (i.e. reduced blocking and ringing artifacts), 

nonnegativity of pixel values; edge continuity, and preservation of correctly received 

values. It is important to note that POCS based restoration techniques are applied in the 

post-processing phase of an image coder. Since several iterations are usually required for 

convergence of the algorithm, there is a computational cost associated with these 

methods. 

5.1 Definitions 

Each desired property of the reconstructed image is defined as a convex set and 

the resulting image solution is a member of the intersection of all the constraint sets. 

This section introduces some of the definitions needed to describe a POCS based 

recovery algorithm. 
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A Hilbert space_ H: His an inn:er product space. For example, L2 (9t) is the space 

of two-dimensional square integrable functions where the inn:er product is defined by 

-+«>+«> 

(f(x,y),g(x,y)) = J JJ(x,y)g*(x,y)dxdy (5.1) 
-co-oo 

and g*(x,y) denotes the complex conjugate of g(x,y). 

Convex set S: A set S in H is convex if and only if for any arbitrary points x1 and 

x2 E S, the vector x = ax, + (1- a )x2 is also in S for O ~ a~ 1. For any two points x1 and 

x2 in a convex set, all the elements of the line connecting x1 and x2 are also in the set. 

Closed set S: A set Sin His closed if it contains all of its.limit points. The set of 

all points in the interval [ a, b ] is closed. 

Projection onto S: Given xEH and a closed convex set SEH, there exists a x'ES 

which is closest to the initial point x ( d = min II x-x'II ) . The distance between x and x' is 

am1mmum. 

Projection operator: P maps x to x '. P: H ~ S or PxES. P is a function or 

mapping that assigns to a point x the point x' = Px E S. 

5.2 The Projection Method 

Known properties of a data set are defined as constraints which belong to some 

closed convex set S;. Form known properties, there exist m convex sets S;, i= 1,2, ... m. 
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The projection of a function f E H onto S; forces f to lie on the intersection, 

( f E Sn = n~=' S; ) of these sets. The projection operator Pi projects f onto the desired 

constraint set S;. By alternately projecting onto each convex set, every iteration brings f 

closer to the data estimate that is common to all the sets as is shown in Figure 5 .1. 

Figure 5.1 Illustration of POCS Technique 

The restoration procedure begins with an initial estimate of the original function fo 

where fo may lie outside all of the convex sets S;. Each iteration projects the previous 

estimate onto each of the convex sets and generates a new estimate. 

i = 1,2, ... m (5.2) 

Youla and Webb show that if two convex sets intersect, convergence will occur [56]. 

Convergence is typically measured by a closeness metric such as mean-square error or 

maximum absolute pixel difference. If the constraint sets do not intersect, the solution 

will oscillate between a point in each set. The convergence point will be unique only if 
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the sets' intersection, Sn, contains a single point. Otherwise, any solution m the 

intersection is considered feasible. 

The procedure to implement an image recovery algorithm using POCS 1s 

described below. 

• Formulate a priori knowledge in the form of convex sets. S;, i = 1, 2, ... , m 

• Develop the corresponding projection operators, P;. 

• Implement Equation (5.2) until the desired stopping criterion d(J;, J;_1) is met. 

5.3 Convex Sets and Projection Operators 

The HNPT signal reconstruction problem can be described as that of signal 

reconstruction from partial transform domain information. This section provides a 

review of the projection operators to be used from Chapter 3 and their corresponding 

convex constraint sets. A nonexpansive projection operator, P;, can be associated with 

each constraint. The projection operator maps all images which violate the constraint 

onto S;. Prior knowledge about desired image properties is used along with information 

about the HNPT coefficients. Typical images have the following properties: 

• Pixel limits - the restored pixel values should lie in the range [0,255] 

• Consistency with known values - correctly received values are unchanged 

• Smoothness - the recovered image should be smooth to reduce blocking artifacts. 

After applying the HNPT to image data, there remains some correlation between 

transform coefficients. This correlation exists because the HNPT is a hybrid transform 

which contains a portion of the original image and also because the Hadamard transform 

is not the ideal transform for decorrelating a signal (The Karhunen-Loeve Transform is 



62 

optimum based on the mean-square error criterion [2] ). Also, the distribution of the high 

sequency HNPT coefficients is known to be the gamma distribution. Using this 

knowledge, correctly received coefficients can be used to reconstruct lost values. The 

following convex sets and projection operators are used for HNPT reconstruction. 

1) SL : The set of N x N images whose pixel values lie in a closed interval [a, b] 

(5.3) 

where i,j denotes pixel indices and [a,b] = [O, 255]. Any pixel that lies outside the valid 

intensity range is projected to the appropriate range boundary. The projection for limiting 

pixel values is defined below. 

PL/={;. l,J 

b 

J;.<a l,J 

a~ J;,1 ~ b 

J;.>b l,J 

(5.4) 

Equation (5.4) can also be used to ensure valid quantization ranges where a and bare the 

quantization interval boundaries. 

2) Sc: The set of images with some pixel intensities equal to known values 

(5.5) 

where k;J are the known pixel values in an index set M. In a practical communications 

channel, packetization of the encoded data allows for synchronization of the bitstream, 

prioritization of the packets, and progressive transmission of the data. Since the data is 

transmitted in a specified order, the location of lost packets can be determined [ 18] [ 4 3]. 

The definition of PL is expanded so that neighboring pixel values remain the same and 

only the pixel values in the damaged areas are altered. The projection operator Pc 
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ensures that correctly received values are· not altered by the restoration process and is 

described by 

{ ki,j (i,J) EM 
Pcf= 

J;,j otherwise. 
(5.6) 

M denotes the location of the correctly received pixel values. PL and Pc can be combined 

into one operator or they can be applied independently. 

3) ST: The set of images with transform coefficients equal to known values. 

(5.7) 

where Tis a linear transform operator, [TJL,j are the transform coefficients, and Z;J are 

known coefficients in an index set M. In this case, T is the two-dimensional N x N 

HNPT. The projection operator PT onto ST is 

{ z (i,J)eM 
[PrT f] = [TJ] i,j otherwise (5.8) 

4) Ss: The set of images without blocking artifacts. 

S s = { f E 9l N 2 I f is smooth at block boundaries (5.9) 

The projection operator PT can be used to impose smoothness where T is the two-

dimensional discrete Fourier transform. With this definition, an image is lowpass filtered 

and any coefficients outside a specified frequency are zeroed. Yang et. al. provide a 

mathematical definition specifically for smoothness at block boundaries [51] [52]. 

(5.10) 
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Q is a linear operator such that Qf is the difference between the adjacent columns 

at block boundaries where Ji denotes the ith column of the image. The norm of Qf, II Qf II , 

is a measure of the intensity variation at the block boundaries. 

I 

[ 
31 l 2 

and II Qf II = ~ II fs.; - fs.;+1 ll 2 (5.11) 

E is a scalar upper bound for the set and is a measure of the intensity variation between 

adjacent columns of the entire image. 

(5.12) 

f' denotes the blocky image and Skis defined as 

I 

[ 
31 l 2 s k = ~ 11 1;.i+k - 1;.i+k+l !12 k = 1,2, ... , 7. (5.13) 

For a 256 x 256 image with 8 x 8 blocks, the projection onto Ss is given by 

{ 
!; = a · J; + (1- a)· h+i and 

]=Psf= !;+1 =(1-a)·J;!a·j:+1 

otherwise J; = J; 
for k = 1, 2, ... , 31 and i = 8 · k (5.14) 

where a = ~ [
11 
! II +I] . Ps can be applied to the image rows in a similar fashion. 

5.4 Implementation 

For the following examples, random transform coefficients (not packets) are 

dropped. The location of the lost data is known and the transform coefficients are 
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initialized to zero at the decoder. This assumption is consistent with the transmission 

protocols available in ATM networks [41]. For packet transmission, data is sent in a 

predetermined order. Additionally, interleaving the data prevents losing large contiguous 

areas of data. 

Transform coefficients that are lost in transmission can be replaced with an 

estimate obtained from neighboring values using linear interpolation. Lost coefficients 

can have at most four correctly received neighbors. The reconstructed coefficient ci . is 
,J 

given by 

(5.15) 

High sequency coefficients . with the largest number of correctly received neighbors are 

reconstructed first. These new values are then used to reconstruct the coefficients with 

fewer available neighbors. If a neighboring coefficient is missing, the corresponding 

weight is set to zero until the adjacent coefficient is reconstructed. Low sequency 

coefficients are reconstructed using only the two largest neighbor coefficients. Using F 

and the projection operators described earlier, Equation (5.2) is written as 

(5.16) 

Image restoration at the decoder is performed iteratively by repeated application of the 

projections defined above. Also note that Fis not a convex projection _operator but it 

does have properties that are useful in the restoration process. If F is nonexpansive, it 

will not interfere with the convergence of the algorithm. The algorithm defined by 

Equation (5.16) can be better described as a constrained minimization algorithm 

employing POCS techniques. Mean-square error (MSE) is used as a distance metric 

between iterations to determine convergence. 
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5;5 Image Reconstruction Results 

In this section, experimental results are presented for the POCS reconstruction 

techniques. Figures 5.3 through 5.6 demonstrate the performance of the reconstruction 

algorithm for random coefficient loss with loss percentages ranging from 10% to 30%. 

The reconstruction technique is evaluated by computing the peak signal-to-noise ratio. 

Figure 5.2 presents the original images for comparison purposes. Sample reconstructed 

images for Goldhill and a 256 x 256 section of Zelda are shown in Figures 5.3 and 5.4. 

For both test images, 10% of the transform coefficients are randomly lost. Figures 5.3d 

and 5.4d demonstrate the convergence of the algorithm in less than 10 iterations. Figures 

5.4 and 5.5 are a military vehicle test image provided by Sandia National Laboratories. 

Figure 5.4 demonstrates the results for 10% coefficient loss and Figure 5.5 provides 

reconstruction examples for 20% and 30% coefficient loss. 

The application of a POCS based restoration scheme improved the quality of the 

reconstructed images. In terms of visual quality, all the reconstructed images exhibit 

some blocking artifacts which are caused by the low sequency reconstruction. To 

determine the effectiveness of the smoothing constraint, Equation ( 5 .16) was 

implemented without Ps. For the examples shown, the addition of Ps improved the final 

PSNR by .05 dB to .15 dB and reduced but did not completely eliminate the blocking 

artifacts. Signal-to-noise ratios are much improved for all the reconstructed images. The 

PSNR results are summarized in Table 5.1. 

With its variety of complicated textures and edge information, Goldhill provides a 

challenging test case. In general, high frequency details are preserved while low 

frequency regions are not reconstructed well by the current algorithm. Both Goldhill and 
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Zelda demonstrate the reconstruction errors encountered in low frequency regions. The 

visual effect on the images is that of adding salt and pepper noise. Reduction of this error 

would increase signal-to-noise ratios. 

The results for C256 are more promising. The vehicle image has a different 

texture content than the standard test images. The Sandia images have a low detail, 

almost uniform background texture. Despite high loss, the vehicle images in Figure 5.6 

are recognizable and larger vehicle features such as wheels are preserved. With 30% 

coefficient loss, the road disappears into the background and smaller windows and 

structures are lost. Figure 5.7 presents the PSNR results for loss percentages ranging 

from 5% to 30% for C256, Cameraman, and Goldhill. 

Table 5.1 Reconstruction Performance 

Picture % Lost Coefficients Initial PSNR Final PSNR 

Goldhill 10.4% 15.9 dB 26.0 dB 

Zelda 10.3% 17.1 dB 24.0 dB 

C256 10.4% 16.9 dB 30.6 dB 

C256 21.3% 13.8 dB 28.0 dB 

C256 30.0% 12.3 dB 25.6 dB 



(a) 

(b) 

(c) 

Figure 5.2 Original Images: (a) Goldhill 
(b) Zelda subimage ( c) C256 vehicle 
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Figure 5.3 Goldhill with 10% Random Loss : (a) Initial image, PSNR =15.9 dB (b) First 

iteration of reconstruction algorithm ( c) Final reconstructed image, PSNR = 26.0 dB 

( d) Demonstration of convergence 
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10 

Figure 5.4 Zelda Subimage with 10% Random Loss : (a) Initial image, PSNR =17.1 dB 

(b) First iteration of reconstruction algorithm ( c) Final reconstructed image, PSNR = 24.0 

dB ( d) Demonstration of convergence 
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Figure 5.5 C256 Vehicle Image with 10% Random Loss : (a) Initial image, PSNR =16.9 

dB (b) First iteration of reconstruction algorithm ( c) Final reconstructed image, PSNR = 

30.6 dB (d) Demonstration of convergence 
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(a) (b) 

(c) (d) 

Figure 5.6 C256 Vehicle Image : (a) Initial image with 20% random loss, PSNR =13 .8 

dB (b) Final reconstructed image, PSNR = 28.0 dB (c) Initial image with 30% random 

loss, PSNR = 12.3 dB (d) Final reconstructed image, PSNR = 25.6 dB 
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In Chapter 3 some basic packet network assumptions are presented. This section 

reviews those assumptions and describes some assumptions directly related to HNPT 

coding and reconstruction. The following network properties are assumed: 

• Coefficient data is transmitted in a predetermined order. Thus, insertion of sequence 

numbers provides a method for identification of lost packets. 

• Interleaving the data before packetization avoids the problem of loss in adjoining 

areas of an image. · 
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Segmentation of the data can occur in either the spatial or the frequency domain. 

By sequency orderingthe HNPT coefficients before transmission, packetization occurs in 

the frequency domain and interleaving is achieved naturally. Loss of a packet would 

correspond to loss of frequency information from different spatial regions in the image. 

The effect would be similar to the random coefficient loss simulated in Section 5 .4 

5.7 Summary 

An image reconstruction technique employing projections onto convex sets is 

proposed to improve the quality of HNPT coded images degraded by random coefficient 

loss. Prior knowledge about desired image properties is used along with information 

about the HNPT coefficients. Specific constraints such as limiting pixel values, 

preservation of correctly received values, and image smoothness are combined with 

linear interpolation for reconstruction of lost coefficients. The techniques presented 

improve the peak signal-to-noise ratio and converge within 5 iterations. 
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CHAPTER6 

CONCLUSIONS AND FUTURE WORK 

This chapter summarizes the research presented .in this thesis and highlights the 

major contributions of this research .. · .Future work· on improving the compression .and 

restoration algorithms is also discussed. 

6.1 Summary and Conclusions 

The Hadamard Naturalness-Preserving Transform has been proposed for possible 

use in situations where the communications channel results in severely degraded output 

images due to noise and/orjamming. An image coder using the HNPT along with a 

decoder-based restoration scheme using convex projections is presented. The algorithms 

are designed for use in packet-based transmission systems with low bandwidth and 

computational power available at the decoder. 

In order to design quantizers, histogram fitting techniques were utilized to 

determine the shape of the HNPT coefficient histogram. Both Lloyd-Max quantizers and 

uniform threshold quantizers have been designed for use in encoding HNPT coefficients. 

The current quantizers perform well in quantizing the high sequency coefficients. 

When data is corrupted by noise or lost during transmission, the received data . · 

cannot completely describe the original image content. A POCS based reconstruction 
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scheme uses prior knowledge about natural images along with the received data to 

reconstruct an estimate of the original image. The reconstruction algorithm also allows a 

· priori knowledge about characteristics of HNPT transformed data to be incorporated into 

the restoration process. The restoration algorithm described in this thesis proved 

successful in improving visual quality even in example cases where thirty percent of the 

transform coefficients are lost. By enforcing consistency with known transform 

coefficients, corrupted coefficients were brought closer to an estimate of their original 

magnitude. The restoration algorithm improved the quality of degraded HNPT coded 

images within 5 iterations. 

6.2 Contributions 

The following are major contributions of this research. The shape of the HNPT 

coefficient histogram has been characterized for weighting constant values over the range 

0 ~a< 0.5. For appropriately chosen shape parameters, both the generalized Gaussian 

probability density function and the gamma density function provide a good fit with the 

high sequency HNPT data. The gamma density function shape parameter has less 

variation in its shape parameter values and thus is chosen for modeling the HNPT 

coefficients. Both Lloyd-Max quantizers and uniform threshold quantizers are designed 

for the gamma distribution using the shape parameter values of either y = 0.6 or y = 0.5. 

The major source of error in the compressed images is a result of the current method of 

selecting and quantizing the low sequency coefficients. Although the HNPT coded 

images do not exhibit the same visual quality as JPEG coded images, compression results 

demonstrate the effectiveness of the high sequency coefficient quantizers. 
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The performance of the HNPT reconstruction algorithm works well for the 

standard test images and is particularly effective for images from Sandia's linear array 

imaging system. The method of projections onto convex sets allows for the description 

of available information in the form of convex constraint sets and also allows for an 

iterative reconstruction algorithm. The HNPT encoder is not required to send any 

additional information. All computation is performed at the decoder. The POCS 

reconstructed images have better visual quality and higher signal-to-noise ratios than 

those reconstructed from partially received HNPT coefficient data. Using C256 as an 

example, a coefficient loss of 30% results in an initial PSNR of 12.3 dB. After 

application of the POCS reconstruction algorithm, the PSNR is 25.6 dB. The 

disadvantage of using the convex projections approach to reconstruction is the delay 

involved in the repeated iteration of the constraints. 

6.3 Suggested Future Work 

Periodic blocking artifacts in both the HNPT compressed images and the POCS 

reconstructed images are due to the current method of determining the location of the low 

sequency coefficients. Low sequency coefficients are generally located in the first row 

and first column of the sequency ordered HNPT coefficients. This assumption works 

well but does not completely determine the location of all the higher magnitude 

coefficients. The HNPT encoder can be improved by including more coefficients in the 

low sequency quantization. A small amount of additional overhead would be needed to 

transmit this information. 
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The current smoothness constraint only operates on the blocking artifact 

boundary. This approach works well but does not completely eliminate the · blocking 

artifact. Smoothness sets utilizing image statistics from a larger local neighborhood or 

the addition of a lowpass filter can be utilized to reduce the blocking artifacts. If the filter 

is nonexpansive, it will not interfere with the convergence of the POCS algorithm. The 

results in Chapter 5 are from unquantized coefficients. The same concepts can be 

extended to quantized values. Additional constraints would take into account 

quantization interval boundaries and preservation of image edges. 
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APPENDIX A 

TEST IMAGES 

This appendix provides examples of the 8 bit grayscale images used in this 

research. Peppers, Zelda, and Mandrill are 512 x 512 images. The remaining images are 

256x256. The A256 and C256 images were provided by Sandia National Labs. 



85 

A256 C256 

Cameraman Bird 

Bridge Lena 
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Goldhill Peppers 

Zelda Mandrill 
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APPENDIXB 

QUANTIZATION TABLES 

This appendix lists the quantization tables used for the compression examples 

given in Chapter 4 of this paper. Symmetric Lloyd-Max quantizers were designed for the 

Gamma probability density function (Equation (4.3)) with a shape parameter value equal 

to y = 0.5 or y = 0.6. Both the decision and reconstruction levels are listed for each 

quantizer. Because the quantizers are symmetric, each table lists only the absolute value 

of each level. 



88 

y= 0.5 
Number of Levels 3 4 5 6 
Distortion 0.2939 0.2232 0.1377 0.1131 

Xk Yk Xk Yk Xk Yk Xk Yk 
.9256 1.850 1.300 2.255 2.030 3.024 2.317 3.321 

0.000 0.000 ·0.345 0.519 1.037 0.772 1.313 
0.000 0.000 0.230 

y= 0.5 
Number of Levels 7 8 15 16 
Distortion 0.0813 0.0695 0.0211 0.0187 

Xk Yk Xk Yk Xk Yk Xk Yk 
2.879 3.905 3.113 4.146 5.018 6.083 5.011 6.026 
1.282 1.853 1.500 2.080 3.334 3.952 3.393 3.995 
0.355 0.710 0.545 0.919 2.285 2.715 2.367 2.791 

0.000 0.000 0.171 1.530 1.854 1.623 1.944 
0.951 1.205 1.049 1.302 
0.497 0.698 0.594 0.796 
0.149 0.297 0.235 0.391 

0.000 0.000 0.078 

y= 0.5 
Number of Levels 31 32 
Distortion 0.0054 0.0052 

Xk Yk Xk Yk 
7.242 8.328 7.312 8.399 
5.517 6.155 5.586 6.224 
4.429 4.880 4.497 4.948 
3.632 3.979 3.699 4.046 
3.005 3.286 3.071 3.352 
2.490 2.724 2.555 2.790 
2.055 2.255 2.119 2.320 
1.680 1.854 1.743 1.917 
1.353 1.506 1.414 1.568 
1.065 1.200 1.124 1.260 
0.810 0.930 0.867 0.988 
0.583 0.690 0.638 0.746 
0.383 0.477 0.435 0.530 
0.208 0.289 0.256 0.339 
0.064 0.128 0.105 0.173 

0.000 0.000 0.036 
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y= 0.5 
Number of Levels 63 64 
Distortion 0.0014 0.0013 

Xk Yk Xk Yk 
9.525 10.625 9.558 10.658 
7.777 8.426 7.810 8.458 
6.669 7.129 6.701 7.161 
5.852 6.209 5.885 6.241 
5.206 5.496 5.238 5.528 
4.672 4.916 4.703 4.948 
4.216 4.427 4.248 4.459 
3.820 4.006 3.852 4.037 
3.471 3.635 3.502 3.667 
3.158 3.306 3.189 3.337 
2.875 3.009 2.906 3.040 
2.617 2.740 2.648 2.771 
2.380 2.494 2.411 2.525 
2.162 2.267 2.193 2.298 
1.960 2.058 1.991 2.088 
1.772 1.863 1.802 1.893 
1.597 1.682 1.627 1.712 
1.432 1.512 1.462 1.542 
1.278 1.353 1.308 1.382 
1.133 1.204 1.163 1.233 
0.997 1.063 1.026 1.092 
0.869 0.931 0.897 0.960 
0.748 0.806 0.776 0.834 
0.634 0.689 0.661 0.717 
0.526 0.578 0.553 0.605 
0.425 0.474 0.452 0.501 
0.331 0.377 0.357 0.403 
0.243 0.286 0.268 0.311 
0.163 0.201 0.186 0.225 
0.090 0.124 0.111 0.147 
0.028 0.056 0.046 0.076 

0.000 0.000 0.016 
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y=0.6 
Number of Levels 3 4 5 6 
Distortion 0.2879 0.2127 0.1341 0.1080 

Xk Yk Xk Yk Xk Yk Xk Yk 
0.858 1.715 1.240 2.123 1.884 2.793 2.175 3.093 

0.000 0.000 0.358 0.487 0.975 0.750 1.257 
0.000 0.000 0.243 

y=0.6 
Number of Levels 7 8 15 16 
Distortion 0.0779 0.0659 0.0202 0.0181 

Xk Yk Xk Yk Xk Yk Xk Yk 
2.658 3.589 2.890 3.827 4.593 5.552 4.662 5.600 
1.200 1.726 1.421 1.954 3.075 3.635 3.172 3.725 
0.337 0.674 0.535 0.888 2.124 2.516 2.230 2.619 

0.000 0.000 0.183 1.435 1.732 1.544 1.841 
0.902 1.137 1.011 · 1.247 
0.478 0.667 0.583 0.774 
0.145 0.290 0.240 0.392 

0.000 0.000 0.088 

y=0.6 
Number of Levels 31 32 
Distortion 0.0051 0.0049 

Xk Yk Xk Yk 
6.596 7.569 6.662 7.636 
5.050 5.623 5.116 5.689 
4.071 4.477 4.137 4.543 
3.353 3.666 3.417 3.731 
2.785 3.040 2.849 3.104 
2.318 2.531 2.381 2.595 
1.922 2.104 1.984 2.168 
1.579 1.739 1.641 1.801 
1.279 1.420 1.340 1.481 
1.013 1.138 1.072 1.198 
0.776 0.888 0.833 0.946 
0.563 0.664 0.620 0.721 
0.374 0.463 0.428 0.519 
0.206 0.285 0.258 0.338 
0.064 0.128 0.109 0.178 

0.000 0.000 0.041 
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y=0.6 
Number of Levels 63 64 
Distortion 0.0013 0.0013 

Xk Yk Xk Yk 
8.641 9.623 8.675 9.658 
7.079 7.659 7.113 7.693 
6.086 6.499 6.120 6.533 
5.354 5.674 5.388 5.708 
4.774 5.035 4.808 5.068 
4.293 4.513 4.327 4.547 
3.884 4.074 3.917 4.107 
3.527 3.694 3.560 3.727 
3.210 3.359 3.243 3.392 
2.927 3.062 2.960 3.094 
2.671 2.793 2.703 2.826 
2.437 2.549 2.469 2.581 
2.222 2.325 2.254 2.357 
2.023 2.119 2.055 2.151 
1.839 1.928 1.870 1.960 
1.667 1.750 1.698 1.781 
1.506 1.584 1.537 1.615 
1.355 1.428 1.386 1.459 
1.213 1.281 1.243 1.313 
1.079 1.144 1.109 1.174 
0.952 1.014 0.986 1.044 
0.833 0.891 0.863 0.921 
0.720 0.775 0.749 0.805 
0.613 0.665 0.642 0.694 
0.512 0.561 0.540 0.590 
0.416 0.463 0.444 0.491 
0.326 0.370 0.354 0.398 
0.242 0.283 0.269 0.310 
0.164 0.201 0.189 0.227 
0.092 0.126 0.116 0.151 
0.029 0.058 0.050 0.080 

0.000 0.000 0.019 
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