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1 Introduction 

1.1 History 

In 1991, a group of physicists [6] made some startling predictions on the number of 

rational curves on a quintic threefold X, i.e. a subvariety of lP4 given by a degree five 

polynomial JF5 (z0 , ... , z4 ) = 0. An equivalent form of this prediction goes as follows. 

Consider the following H*lP4[[et]][t]-valued functions 

2 oo · oo (p+kd)T 

J(T) = e!T + ~ ~ndd3 tt ~+ kd)2' 

Here nd is the number of degree d rational curves in lP4 that are situated in the quintic 

threefold X and p is the hyperplane class. 

Consider the following change of variables 

T = I1(t). 
Io(t) 

(1) 

Then the prediction was that 

I(T) 
Io(T) = J(T). (2) 

This allows us to compute as many numbers nd as desired. 

What was startling to mathematicians about these predictions is that the number 

of rational curves in a quintic threefold was not known to be finite. In fact the famous 

Clemens conjecture, which is still open, states precisely that. So, not only were the 

physicists claiming the finiteness of these numbers, they were able to compute them. 
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This phenomenon ignited an exciting and massive undertaking for mathematicians 

to try to lay the foundations and understand the content of these predictions. The end 

result was the Gromov-Witten theory and Mirror Theorems. The numbers nd are in 

this context essentially the Gromov-Witten invariants of the quintic and the prediction 

is now formulated in the form of the mirror theorems. The intuitive idea that nd is 

the number of degree d rational curves on lP4 lying on the quintic X is more subtle 

than we first thought. They do not always coincide, even if the Clemens Conjecture 

is assumed. The mirror theorem then computes the Gromov-Witten invariants of the 

quintic X. 

In [13] Givental formulated and proved a mirror theorem for Fano and Calabi-Yau 

complete intersections X in a projective space pm, i.e. for X given by a section of 

the bundle V = EBi=l O(ki) where ki > 0 and E;=l ki ~ m + 1. The idea was to 

construct two H*pm[[et]][t]-valued functions Jv and Iv by solving some diferential 

equations. Even though Jv is defined on pm, it encodes gravitational descendants 

(which are generalized G-W invariants) of X [8]. Then the mirror theorem says that 

after a change of variables, Iv = Jv. The end result is that it allows us in principle 

to compute gravitational descendants (in particular G-W invariants) of X. Later on 

[12] Givental generalized this to a mirror theorem for complete intersections in toric 

varieties. 
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1.2 Statement of the problem and results 

In this study we are interested in extending mirror theorems to the case of 

(3) 

for certain positive ki and lj. The vector bundle V induces a modified Gromov-Witten 

theory in pm. Suppose X ~ pm is given by a section of v+ and Y is a projective 

manifold such that X 4 Y with Nx/Y = i*(V-). The pure Gromov-Witten theory 

of Y and the modified Gromov-Witten theory of pm are closely related. 

In Theorem 3.5.2 we describe one aspect of this relation, namely the relation 

between their quantum V-modules. Under natural restrictions, the generator Jy of 

the pure V-module of Y pulls back to the generator lv of the modified V-module 

of pm. It follows that even though Jv is defined on pm, it encodes the gravitational 

descendants of Y supported in X. 

In the chapter on applications, we give an example where the quantum product 

of Y pulls back to the modified quantum product in pm. 

A natural hypergeometric series Iv is defined. Then in Theorem 4.1.1 we show 

that after a change of variables, Iv = Jv. This allows us to compute on pm the 

gravitational descendants of Y supported on X. 

The only way that X remembers the ambient variety Y in this context is by the 

normal bundle. Y can therefore be substituted by a local manifold. It suggests that 

there should be a local version of mirror symmetry. This was first realized by Katz, 

Klemm, and Vafa [18]. The principle of local mirror symmetry in general has yet to 

be understood. Recently a group of authors [7] have made some calculations that 
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contribute towards it. 

Theorem 4.1.1 was first proven by Lian, Liu and Yau in [21] using a different 

approach. 

We prove the mirror theorem following the Givental scheme for complete inter

sections in the projective space. Our proof makes use of the localization theorem in 

the moduli space of stable maps that was first introduced by Kontsevich in [20] and 

of the Frobenius manifolds suggested by Givental in [13]. 

Several applications of the mirror theorem proven in this work are treated in the 

last chapter. The first one deals with computing the contributions of the multiple 

covers of a rigid rational curve in a Calabi-Yau threefold X to the corresponding 

Gromov-Witten invariant. In the second application we consider the case of a Calabi

Yau threefold X that contains a projective plane IP2 . In this case a quantum product 

is constructed in IP2 that is a natural restriction of the quantum product in X. The 

mirror theorem for this example allows us to compute the virtual numbers of degree 

d rational plane curves in the Calabi-Yau X. 

4 



2 Preliminaries 

In this section we give a brief overview of the moduli space of stable maps and the 

localization techniques for the moduli space of stable maps to projective space. 

2.1 Moduli space of stable maps of genus zero 

The notion of stable maps is due to Kontsevich [20]. 

Definition 2.1.1 A genus zero stable map is a connected, nodal marked curve of 

arithmetic genus zero (C, x 1, x 2 , ... , Xn) together with a morphism f : C---+ X satisfy

ing the following conditions: 

1. x1 , x2 , •.• , Xn are ordered, smooth points of C. 

2. If f is constant on a component Ci of C then that component contains three 

special points {i.e. marked or nodal). 

The second condition forces the stable map to have only finitely many automor

phisms. 

If f*(C) = f) E H2(X, Z) we say that the stable map (C, x1, ... , Xn, f : C ---+ X) 

has class f). 

Families of stable maps of class f) over a scheme S can be defined naturally thus 

giving a contravariant functor from schemes to sets [11]. If Xis projective variety, this 

moduli functor is coarse, i.e. the functor can be coarsely represented by a projective 

scheme over C. We denote this coarse moduli space by Mo,n(X, (:)). Its expected 
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dimension is 

-Kx ·/3+dimX +n-3. (4) 

Another viewpoint which will not be pursued in this study is that the above con

travariant functor is an algebraic stack. 

This moduli space comes equipped with some natural morphisms due to the uni

versal property. 

• The evaluation maps ei: Mo,n(X, /3)-+ X which sends f: (C, xi, ... , Xn,)-+ X 

to f(xi). 

• The forgetful map 7rn : Mo,n(X, /3) -+ Mo,n-i(X, /3) which forgets one of the 

marked points and then, if necessary collapses the incident component to satisfy 

condition 2 of stability. 

The following objects will be central to this study. 

Definition 2.1.2 A line bundle£ on Xis called convex (concave) if H 1(C, f*(.£) = 

0 (H0(C, !*(£) = 0) for any genus zero stable map (C, x1 , ... xn, !). 

Definition 2.1.3 A direct sum of convex and concave line bundles on X is called a 

concavex vector bundle. 

2.2 Deformation theory of the moduli space of stable maps 

There is a deformation-obstruction theory for stable maps [23]. Naming sheaves by 

their fibres, the basic exact sequence for the tangent space and the obstruction space 
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of Mo,n(X, /3) is 

0--+ Ext0 (0c(Lxi),Oc)--+ H0 (C,f*TX)--+ IM--+ 
i 

(5) 

Here IM = Ext1(/*0x --+ Oc, Oc) is the tangent space to Mo,n(X, /3) at the point 

{f : (C, x1 , ... , Xn,) --+ X} and T = Ext2(/*0x --+ Oc, Oc) is the obstruction space 

at the same point. Ext0(0c(Ei xi), Oc) represents infinitesimal automorphisms of 

the marked source curve and Ext1(0c(Ei xi), Oc) its infinitesimal deformations. If 

H 1(C, f*TX) = 0 for any genus zero stable map (C, x1, ... , Xn, f : C --+ X) we say 

that Xis convex. For a convex X, the obstruction bundle T vanishes and the moduli 

space is unobstructed of the expected dimension. Examples of convex varieties are 

homogeneous spaces G / P [11]. For nonconvex varieties, this moduli space may behave 

badly and have components of larger dimensions. In this case, a Chow homology 

class of the expected dimension has been constructed (3) [23). It is called the virtual 

fundamental class. We will denote it by [Mo,n(X, /3)]virt. This class behaves well. 

We will be using here the following facts. 

• The virtual fundamental class is preserved when pulled back by the forgetful 

map 1rn. A proof of this fact can be found in section 7.1.5 of [8). 

• If the obstruction sheaf T is free, the virtual fundamental class refines the top 

Chern class of T. This fact is proven in Proposition 5.6 of [3). 
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2.3 Localization 

2.3.1 Equivariant cohomology 

The notion of equivariant cohomology and the localization theorem that we are about 

to explain is valid for any compact connected Lie group. We will only state without 

proof the results that we will be using. The main reference here is [1]. For a detailed 

exposition of this subject we suggest Chapter 9 of [8). 

Let T = (C*)s+l which is classified by the principal T-bundle (C00+1 - {O} )s+l -+ 

(CIP00 )s+l. If 'lri : (CIP00 )s+l -+ (CJP00 is the i-th projection for i = 0, 1, ... , s, we 

let Ai = c1(1r;(O(l))). We will use O(Ai) for the line bundle 1r;(O(l)). Clearly 

H*((CJP00 )s+l = C[Ao, ... , As]. If Xis a manifold with T-action, we let 

(6) 

Definition 2.3.1 The equivariant cohomology of X is 

Hf(X) := H*(XT)- (7) 

Obviously, if X = {point} we have XT = (CIP00 )s+l. Therefore 

Hf({point}) = H*(C1P00 )8+1 = C[Ao, ... ,As]. (8) 

The equivariant cohomology Hf(X) is a C[Ao, ... , As)-module via the equivariant 

morphism X -+ {point}. 

Let XT = UXi be the decomposition of the fixed point locus into its connected 

components. Xi is smooth for all j. Let ii : Xi -+ X be the inclusion. The 

normal bundle N; of Xi in X is equivariant therefore it has an equivariant Euler 

class EulerT(N;). We will be using the following form of the localization theorem 
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Theorem 2.3.1 Let a E Hr(X) @<C(Ao, ... , As)· Then 

r Lf iJ(a) 
Jxr a= iEJ (X;)r Eulerr(J\0). 

(9) 

In this study we will be interested in the case X = ps. Let Xo, Xi, ... , Xs be characters 

of the torus T. Clearly a basif for the characters of the torus is given by ci(to, ... , ts) = 
I 

I 

ti. In terms of this basis let 'X.i = ( aii). We will say that the weight of the character ci 

is Ai· Similarly the weight of the character Xi is Ei aii)..i· Let O(xi) = O(Ei aiiAi) 

be a line bundle over ( <ClP00 ) s+l. Consider the following action of T on ps 

(to, t1, ... ,ts)· (zo, Z1, ... , Zs) = (xo(t)zo, ... , Xs(t)zs)• 

Hi,lP8 = <C[Ao, ... , As,P]/ IT (p- L aiiAi). 
i 

(10) 

(11) 

We will be interested in the case Xi = ci· For the corresponding T-action we have 

H;,JPs = <C[)..0 , ... , A8 ,p]/ fI/p - Ai). Let us see what the localization theorem says 

in this case. The locus of the fixed points consists of points Pi for j = 0, 1, ... , s 

where Pi is the point whose j-th coordinate is 1 and all the other ones are 0. Let 

<pi= flkt/P - Ak) for j = 0, 1, ... , s. Then for a, /3 E H;,(JPs) @<C(Ao, ... , As) we have 

(12) 

for all k. Also iJ(</Ji) = flkt/Ai - Ak) = Eulerr(J\0). The localization theorem says 

that for any polynomial F(p) E <C(Ao, ... , As)[p] we have 

(13) 
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2.3.2 Localization techniques in Mo,n(JP8, d) 

Since lP7' is convex, the moduli space M o,n (JPs, d) is of the expected dimension. A 

simple calculation shows that dim M o,n (JPs, d) = s + d + sd + n - 3. Let T act 

diagonally on V with weights -..\0 , -..\1 , ... , -As· It gives rise to an action of Ton lP8. 

By translating the target of a map we get an action of T on M o,n (JPs, d). Kontsevich 

[20] has identified fixed point components of this action in terms of decorated graphs. 

Our treatment here follows that of (15]. 

If f : (C, x1 , ... , xn) --+ JPs is a fixed stable map then the image curve is a fixed curve 

in JPS. Also all marked points, collapsed components and nodes are mapped to the 

fixed points Pi of the T-action on JPS. A noncontracted component must be mapped 

to a fixed line PiPi on lP8. The only branch points are the two fixed points Pi and Pi. 

It follows that the restriction of the map f to this component is determined by its 

degree. The graph r corresponding to the fixed point component containing such a 

map is constructed as follows. The vertices correspond to the connected components 

of J-1{p0 ,p1 , .. ,,Ps}. The edges correspond to the noncontracted components of the 

map. The graph is decorated as follows. Each edge is marked by the degree of the 

map on the corresponding component, and each vertex is marked by the fixed point 

of JPS where the corresponding component is mapped to. To each vertex we associate 

a leg for each marked point that belongs to the corresponding component. The fixed 

point component Mr corresponding tor is constructed as follows. For a vertex v, let 

n( v) be the number of legs or edges incident to that vertex. Also for an edge e let de 
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be the degree of the stable map on the corresponding component. Let 

Mr := II M o,n(v) · (14) 
V 

There is a finite group of automorphisms Gr acting on Mr [8] [15]. This group fits in 

the following exact sequence 

0-+ II Z/deZ-+ Gr-+ Aut(r)-+ 0. (15) 
e 

Here Aut(r) is the automorphism group of the decorated graph r. The fixed point 

component corresponding to the decorated graph r is 

Mr =Mr/G. (16) 

The order of the automorphism group G is 

ar = II de· IAut(r)I. (17) 
e 

Let ir : Mr c......+ Mo,n(lP'8, d) be the inclusion of the fixed point component correspond-

ing tor and Nr its normal bundle. This bundle is T-equivariant. We will be using the 

following variation of the Bott residue formula for orbifolds. Let a be an equivariant 

cohomology class in HT ( M o,n (1P'8 , d)). Then 

r a= L r ( ii,(a) ). 
1-J.fo,n(lf'•,d)T r J-Mr arEulerr(Nr) 

(18) 

To compute the equvariant Euler class of the normal bundle we use the restriction of 

the basic deformation-obstruction exact sequence on Mr (recall that lP'8 is convex). 

0-+ Ext0(nc(L Xi), Oc) -+ H0(C, f*TlP'8 ) -+IM-+ Ext1(0c(L xi), Oc) -+ 0. 
i i 

(19) 
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We use this sequence to compute the weights of the T-action on IM, The equivari

ant Euler class of the normal bundle Nr is the product of the nonzero weights (i.e. 

the moving part of the tangent space). Recall that Ext0 (nc(Ei xi), Oc) represents 

the infinitesimal automorphisms of the pointed curve and Ext1(0c(Ei xi), Oc) its 

infinitesimal deformations. On the other hand H 0 (C, f*TF) represents the infinites

imal deformations of the map. From the above exact sequence we conclude that we 

can compute the weights as follows. 

For Ext0(0c(Ei xi), Oc) we only compute the weights of the reparametrizations 

of the marked curve. 

For Ext1(0c(Eixi), Oc) we compute the weights for smoothing the nodes and 

moving the nodes and the marked points. We emphasize one important piece here, 

namely the Chern classes of the. cotangent line bundles of the fixed point compo

nent. The fiber of such a line bundle at the i-th marked point of a stable map 

(C, x1, x2, ... , Xn, f) is the cotangent space r;ic. They come from deforming the nodes 

where a contracted component meets an uncontracted one. We can integrate these 

classes by using the Witten-Kontsevich formulas [27]. 

For H 0 (C, j*Tf'8 ) we use the normalization sequence at the nodes of the source 

curve to express the deformation of f in terms of the deformations of the restriction 

off to the components of C. For example, let (C = C1 U C2 , f) with Ci ~ f'1 for 

i = 1, 2, be a stable map in M 0,0 (F, d). Let x = C1 nC2 . The normalization sequence 

is 

(20) 
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We twist this by f*(Tf'8 ) and take the cohomology sequence to obtain 

(21) 

The weights of the torus action on H 0 (C, j*Tf'8 ) are obtained by taking the union of 

the weights of the torus action on H 0 (Ci, f*(Tf'8 ) for i = 1, 2 and then substracting 

the weights of the action on Tt(x)f'8 • Both sets of latter weights are easier to compute. 

Finally we multiply the nonzero weights to obtain the equivariant Euler class of 

the normal bundle Nr. 

Remark 2.3.1 The torus action and localization techniques described here will be 

used in proving the Mirror Theorem for the case of a concavex bundle in a projective 

space. 
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3 The quantum product induced by a vector bun

dle 

3.1 Notations. 

We will consider the case when the vector bundle is a direct sum of line bundles. To 

make formulas and notations shorter, we will focus in the case V = O(k) EB 0(-l) 

on pm with k, l > 0. We will consider the action of (C* on the total space of any 

line bundle £, by scaling on the fiber and trivial on pm. It gives rise to an action of 

T = (C*) 2 on V. Then Iey = pm x lP00 x JPOO. Let,\= c1('7r/(?poo(l)) for i = 1, 2 and 

p the equivariant hyperplane class. Since the action of Ton pm is trivial 

One computes the equivariant Euler classes of summand line bundles: 

Define 

EulerT(O(k)) = kp - A1 

EulerT(O(-l)) = -lp- A2. 

P := H*(F, Q[,\1, A2]) 

R := Hi,(lPm) ®(Q[.>.1 ,.>.2J Q(,\1, ,\2) = H*(F, Q(,\1, ,\2)). 

Let T0 = 1, T1 = p, ... , Tm = pm be a basis of Ras a Q(,\1 , ,\2)-vector space. Clearly 

-lp - ,\2 is invertible in R. Let 



be given by 

1 kp-.X1 
w(a) := a U l A . 

JP'¥ - p- 2 

Define a pairing in n as follows: 

(a, b) := w(a U b). 

This is a perfect pairing. Let (9rs) := ( (Tr, T8 )) the matrix of this pairing and (grs) its 

inverse. Let Ti = E7=o giiTi be the dual basis with respect to this pairing. Clearly 

i (-lp -.X2) 
T = Tm-i · kp- .Xi . (22) 

This implies that in H*(F x pm) 0 (Q(.X1 , .X2) we have 

where ~ = E:o ~ 0 T m-i is the class of the diagonal in F x F. Consider now the 

following equivariant diagram: 

Mo,n+i (F, d) en+i F 

1~ 
Mo,n(F,d) 

where 

1r(C, X1, ... , Xn, Xn+i, f) = (C, X1, ... , Xn, f). 

The curve 6 is obtained from C after collapsing the unstable components. Define the 

equivariant bundles and their equivariant Euler classes: 
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Et:= Eulerr(V/) 

Ed:= Eulerr(Vi) = EtE-;;. (23) 

Note that Mo,n(IP"\d)T = Mo,n(F,d) x JP>00 x JP>00 • Let 'lri be the projection map to 

the i-th factor of Mo,n(F, d)T. It is clear that: 

Et= L eu(Vi)(-A1)u 

Ei = LCu(Vd-)(-A2)u. (24) 

3.2 Modified equivariant Gromov-Witten invariants and quan-

tum cohomology. 

For i = 1, 2, ... , n let 'Yi E 'R. Introduce the following modified integrals: 

(25) 

and consequently the following equivariant potential: 

(26) 
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Remark 3.2.1 Definitions {25} and {26} are slightly imprecise. The precise formu-

lation would be that the integrals must be over Mo,n(JPffl, d)r. However, since the 

torus action on Mo,n(JPffl, d) is trivial we can think of the standard integration with 

coefficients in Q( A 1 , A2) . 

Consider the equivariant map that forgets the first point 

1T": Mo,n(F,d)-+ Mo,n-1(F,d) 

Proof. Let Mk= Mo,k(JPffl, d) and Mn,n = Mn XMn-i Mn· Consider the following 

equivariant commutative diagram: 

Mn-I 

The maps ii"n+I and ?rn+1 forget respectively then-th and n+ 1-th marked points. We 

compute: 

But by the projection formula we have 

(28) 

Since the map µ is birational and Mn+I is normal 
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therefore 

(29) 

The equation (27) becomes 

(30) 

The last equality follows from base extension properties since both maps 1r and 1f n 

are flat. 

For the case of a negative line bundle we have 

We now use the spectral sequence 

(32) 

where :F is a sheaf of O Mn+1-modules. The map µ is birational. If we think of Mn 

as the universal map of Mn-I, then the map µ has nontrivial fibers only over pairs 

of stable maps in Mn that represent the same special point (i.e. node or marked 

point) of a stable map in Mn-I· These nontrivial fibers are isomorphic to JP>I. Since 

:F = e~+l 0(-l) we obtain Rqµ*:F = 0 for q > 0. It follows that this spectral sequence 

degenerates, giving 

Now we proceed as in (29) to conclude 

RI1rn+1*e~+10(-l) = 1r~(RI1fn*e~O(-l)). 

18 
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The lemma is proven. t 

The above lemma is essential in proving that the modified correlators satisfy the 

same properties that the usual G-W invariants do. We now list and prove these 

properties. 

Point mapping axiom. Let d = 0. Then Mo,n(pm, 0) = Mo,n x pm and all the 

evaluation maps equal the projection to the second factor. 

- h IIn * ( kp - ,X1 ) Io('Y1, ... , 'Yn) = _ ei ('Yi) z A = 
Mo,n(JPm,o)T i::::l - P - 2 

If n > 3 the dimension of Mo,n is bigger than one. Therefore p2*(Mo,n x pm) = 0 i.e. 

fo('Y1, ... , 'Yn) = 0. For n = 3, M 0,3 (pm, 0) = pm therefore 

Fundamental class property. Let 'Yn = 1 and d -=I- 0. Consider the following 

equivariant morphism: 

which forgets the last marked point. Using Lemma 3.2.1 we obtain: 

Therefore: 
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The last equality is because the fibers of 1r are positive dimensional. If d = 0, by 

the first property we know that the integral is zero unless n = 3. In that case: 

Divisor property. Let 'Yi = tp be a divisor with t E Q(-\1 , -\2) and d =I= 0. Then 

(35) 

The proof of the divisor property in [11] works here as well. The only modification 

needed is to use Lemma 3.2.1. 

Let 

- 83~ 
<I>ijk = 8ti8tj8tk 

For a, b E R define 
m 

a *vb:= L ~ijrTr. (36) 
r=O 

Theorem 3.2.1 QH;,F := (R, *v) is a commutative, associative algebra with unit 

To. 

Proof. Note that 

The commutativity follows from the symmetry of the new integrals. T0 is the unit 

due to the fundamental class property for the modified Gromov-Witten invariants. 

We now turn our attention to proving the associativity. We proceed as in Theorem 4 

in [11). We have 
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Since the matrix (gld) is nonsingular, (~ *v Ti) *v n = ~ *v (Ti *v Tk) is equivalent 

to 

(37) 
e,f e,f 

Equation (37) is called the WDVV equation for the modified potential~- To 

prove this equation we need a lemma. Before stating and proving it, we mention some 

divisors on Mo,n (JPfl, d). Let A and B be a partition of the set of marked points and 

d =di+ d2 . Consider the closure D = D(A, B, di, d2) in Mo,n(JPffl, d) of stable maps 

( C, xi, f) of the following type. The source curve is a union C = Ci U C2 with Ci ~ ]Pi 

two curves meeting transversally at a node x. The marked points corresponding to 

A are on the curve Ci and those corresponding to B are on C2. The restriction off 

to Ci has degree di. Then D = D(A, B, di, d2) is a divisor and 

where the extra marked point comes from the node x [11]. Let ex and ex be the evalu-

ation maps at the additional marked point in Mo,IAl+i(JPfl, di) and Mo,IBl+1(JPfl, d2). 

Lemma 3.2.2 For any classes 'Yi, ... , "In in R: 

Proof. This lemma is the analogue of the Lemma 16 in [11]. The proof needs a 

minor modification. 
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Lett: D(A,B,d1,d2)-+ M1 xM2 = Mo,IAl+1(1Pmi,d1) xMo,IBl+1(F,d2);a: D-+ 

Mo,n(F' d); µ = (ex, ex) : M1 X M2-+ :ipm X :ipm and 8: :ipm -+ :ipm X :ipm the diagonal 

embedding. Consider the following fibre square: 

D ~ M1XM2 

JPlm ~ JPlm X JPlm 

In the above diagram vis the evaluation map at the meeting point x in D. Consider 

the normalization sequence at x: 

(39) 

Twist it by f*(Opm(k)) and take the cohomology sequence. We obtain: 

0-+ H0 (C, f*(Opm(k))) ~ H0 (C', flc,(Opm(k))) EB H0 (C", flc,,(Opm(k)))-+ 

-+ Ot(x)(k)-+ 0. 

On D this sequence implies: 

(40) 

We now twist the exact sequence (39) by f*( Opm(-l)) and take cohomology to obtain: 

(41) 

By combining equations (40) and (41) we obtain the restriction of Ed in the divisor 

*( ) *(E E) *(-lp-A2) a Ed = 1, di x d2 v kp _ Ai . (42) 

Therefore 
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The lemma is proven. t 

We can now complete the proof of the associativity. Let q, r, s, t be four different 

integers in {1, 2, ... n}. Let D(q, r, s, t) = I: D(A, B, d1 , d2) where the sum is over all 

partitions AU B = {1, 2, ... , n} such that q, r E A and s, t E B, and over all d1 and 

d2 that sum to d. There exists an equivariant morphism: 

71': Mo,n(JPffl, d)-+ Mo,4( {pt}, 0) = 1P1 

that forgets the map and all the marked points but q, r, s, t. Obviously 

[D(q, r, s, t)] = [D(q, s, r, t)] 

in M 0,4( {pt}, 0). Pulling back these linearly equivalent divisors in Mo,n(:rm, d) we 

obtain [D(q, r, s, t)] = [D(q, s, r, t)]. Now integrate the class 

n-4 
IT (et('y)) U e:_3 (11) U e:_2 (Tj) U e:_1 (Tk) U e:(11) U Ed 
i=l 

over D(q, r, s, t) and use Lemma 3.2.2 to obtain the associativity.t 

If we restrict &ijk to the divisor classes 'Y = tp, and use the divisor property for 

the modified Gromov-Witten invariants, we obtain the small product: 

(43) 

Here q = et. We extend this product to R ®IQ) Q[q] to obtain the small equivariant 

quantum cohomology ring SQH:;,:rm. 
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We will use *v to denote both the small and the big quantum product. The 

difference will be clear from the context. 

Remark 3.2.2 • Equation (42) and Lemma 3.2.1 are the basis for translating 

properties of pure Gromov- Witten or gravitational correlators to the modified 

ones. 

• One can see from (22) and (24) that if V is a pure negative line bundle, all 

ingredients in (43} are polynomials in ..\1 and ..\2 . Therefore the nonequivariant 

limit of this product exists. An example of this situation is treated in the last 

chapter. 

3.3 Modified equivariant gravitational descendants. 

Let .Ci be the universal cotangent line at the i-th marked point. They can be defined 

as follows. Let 1r n+l : Mo,n+1 (:rm, d) -+ Mo,n (:rm, d) be the morphism that forgets 

the last marked point and contracts unstable components. Let Si for i = 1, 2, ... , n be 

the sections of the marked point. Then the cotangent line bundle at the i-th marked 

point is defined to be 

(44) 

We define the modified gravitational descendants to be 

A combination of arguments used in proving the topological recursion relations for 

pure Gromov-Witten theory (see Lemma 10.2.2 in [8]) and in the proof of Lemma 3.2.2 

(see Remark 3.2.2) can be used to show this: 
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Theorem 3.3.1 The following modified topological recursion relations hold: 

Jd( Tk1 ''/1, Tk2 ''/2, Tk3 "/3, II Tsi Wi) = 
iEJ 

Ljd1(Tk1 -l"/I, II Ts;Wi,Ta)Jd2 (Ta,Tk2"/2,Tk3"/3, II Ts;Wi) 
iE/i iEh 

(45) 

where the sum is over all splittings d1 + d2 = d and partitions 11 U 12 = l and over 

all indices a. 

3.4 Equivariant quantum differential equations. 

Consider the system of first order diferential equations on the big quantum cohomol-

tia8 = Ti*V : i = 1, ... , m. 
ti 

(46) 

Theorem 3.4.1 The space of solutions of these equations has the following basis: 

Proof. We have 

On the other hand 
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We use the topological recursion relations (45) and calculations similar to Proposition 

10.2.1 of [8] to obtain: 

Substituting we get: 

The theorem is proven. t 

Notation. We will use the following notation 

(47) 

We can restrict the section sa to 'YE H 0 (IP711') E9 H 2 (IP711') to obtain solutions Ba of 

A calculation similar to Proposition 10.2.3 in [8] shows that 

oo m to+Pt1 
_ to+Pt1 ~ ~ d e Ii U Ta . 
Sa = e Ii U Ta + L....t L....t q ( ti _ C , Tj) dT1 . 

d=l j=O 

(48) 

Consider now the following R[[t0 , t 1 , q]]-valued function 

m 

iv= L (h l)Ta (49) 
a=O 
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where the pairing is the one defined in the introduction. Substituting ( 48) in ( 49) we 

obtain: 
oo m to+Pt1 

- ~ to+Pt1 a ~ ~ d e " U Ta a 
Jv = L.)e n. U Ta, l)T + L- L-q ( 'ti_ c , l)dT . 

a d=l a=O 

Using the projection formula we obtain: 

- (to+Pt1) ( ~ d ( Ed ) (-lp-,\1)) 
Jv = exp 'ti 1 + L-q e1* n(n - c) U kp - ,\2 . 

d>O 

(50) 

A nonequivariant counterpart of Iv is desirable and the following lemma provides 

that. 

Lemma 3.4.1 Iv has a nonequivariant limit. 

Proof. Consider the following exact sequence on Mo,1 (F, d): 

where for a section u E H0 (C, J*((O(k))) we have a(u) = u(x1). Let 

E~ = Eulerr (VJ). (51) 

Then 

E~Eulerr(ei*(O(k))) = Et. (52) 

We compute 

( Ed ) (-lp- A1) e1 U = 
* 'ti( 'fi - C) kp - A2 

~ ( { ( Ed ) (-lp -A1) m-r) r 
L- }pm e1* n(n - c) u kp - A2 P P = 

r 

L ( { ei(Pm-r) * (-lp -A1) E) r 
r }-Mo,i(f'm,d) n(n - c) e1 kp - A2 d p . 
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We substitute (52) in the last line to obtain 

We finally obtain 

In this formula we can see clearly that lv has a nonequivariant limit since all the 

objects are polynomials in A. The lemma is proven. t 

Let 

Jv = exp (to :pt1) (1 + Lqde1* (nfJ~ic)) U (-lp)) 
d>O 

be the nonequivariant limit of lv. In the next section we will see that Jv is a natural 

object. 

3.5 Behaviour of the J-function 

Assume that pm is embedded in a smooth variety X with normal bundle V = V(-l) 

for some l > 0. Let i denote the embedding. 

Lemma 3.5.1 The class pm-l = [line] of a line in pm is an edge of the Mori cone 

MX of X. 

Proof. Let Ci, C2 , ... Cn be irreducible curves in X and 

[line] = [C1] + ... + [Cn]. 
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We will show that Ci C F for all i which implies that [l] = [Ci] for some i. Let 

I= {i: Ci CF} and J = {1, 2, ... , n} - I. We assume that J is nonempty. If 

[line] - I)ci] 
iEI 

has non positive degree in F, we intersect with an ample divisor in X to see that 

[line] - I)ci] = L[Ci] 
iEI iEJ 

is impossible. Otherwise, we intersect with [F] to get the same contradiction. All 

the curves Ci lie in F. The lemma is proven. t 

Lemma 3.5.2 Let [CJ = d[line] be the homology class of a curve in F. Then 

Mo,n(F, d) = Mo,n(X, i*([C])). 

Proof. Let [µ] = (C, xi, ... xn, f: C-+ XE Mo,n(X, d) and f(C) = C1 U C2 U ... U Cn 

be the irreducible decomposition. By Lemma 3.5.1, [Ci] = mi[line] in H 2(F, Z) for 

some mi > 0. Therefore Ci · [Fl = -lmi i.e. Ci C F. It follows that f factors 

through F and therefore ( C, X1, .. . Xn, f : C -+ F) E Mo,n (F, d). 

On the other hand, an argument similar to the one used for multiple covers of ra-

tional curves in a Calabi-Yau threefold (Section 7.4.4. in [8]), shows that Mo,n(F, d) 

is a component of Mo,n(X, d). When combined the two arguments imply the lemma.t 

Let M := Mo,n(F, d) = Mo,n(X, d). Recall from section 2 that on M we have 

a vector bundle Vd = R11r*(e~+1(0(-l))) and its top Chern class Ed= Ctop(Vi). 

Lemma 3.5.3 [Mo,n(X, d)]virt =Ed· [M]. 
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Proof. We recall that the map 1r: Mo,n(X, d) --+ Mo,n-i(X, d) satisfies 

1r*([Mo,n-1(X, d)Jvirt) = [Mo,n(X, d)Jvirt (54) 

Also recall from Lemma 3.2.1 that the map 1r in (54) for X = :rm satisfies the relation: 

1r*(Ed) = Ed. It follows that we only need to prove this lemma in the case n = 0. 

The moduli space M 0,0 (X, d) is described locally at (C, f : C --+ X) by the 

following tangent-obstruction sequence: 

0--+ Ext0 (nc, Oc)--+ H 0 (J*TX)--+ 7 .!!+ Ext1(nc, Oc)--+ 

--+ H 1 (f *TX) --+ Y --+ 0 

where 7 is the tangent space and Y is the obstruction space. We are continuing our 

earlier convention of describing sheaves by their fibers. Consider the following short 

exact sequence on :rm 

0--+ TF--+ TXjpm--+ 0(-l)--+ 0. 

Taking its corresponding cohomology sequence we obtain 

H0 (f *TX) ~ H0 (f *T"JP>m) 

and 

H1(f*TX) ~ H 1(f*(O(-l)). 

Now the tangent-obstruction sequence reads 

0--+ Ext0 (nc, Oc) --+ H0(f*TF) --+ 7 .!!+ Ext1(0c, Oc) --+ 

--+ H 1 (!* ( 0(-l)) --+ Y --+ 0. 
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The tangent-obstruction sequence for Mo,n(F, d) implies that 'f/ is surjective. Thus 

Vi !::::'. Y. Since the obstruction sheaf Y is locally free and Mo,n (F, d) is a smooth 

stack, Proposition 5.6 in (3] implies the lemma.t Let m1 =pm-I, m2 , ... , mr be a basis 

of MX. Denote l the embedding of Fin X. It gives rise to 

We can extend it to a homomorphism: 

l* : H* X[[t~, Qi]] -:-t H*F[[to, ti, ql] (55) 

by defining l*(tD = ti : i = 0, 1 : l*(ti) = 0 : i > 1 : l*(q1 ) = q : l*(qi) = 0 : i > 1. In 

Let D1 , ... , Dr be generators of the cone of nef divisors of X. It is shown in [13] 

that the generator of the quantum '.D-module for the pure Gromov-Witten theory of 

Xis 

J = (to+tD) (l+ '°" (3 ([Mo,i(X,/J)]virt)) 
x exp 'Ii L....J q e1* fi(fi _ c) 

(3EMX 

Here, q/3 = qf1 • ••• • q:r where /3 = d1m1 + ... + drmr. 

The following results show that ]-function behaves nicely. 

Theorem 3.5.1 l*(Jx) = Jv. 

Proof. Consider the following fiber diagram 
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The moduli spaces M 0,1 (pm, d) and M 0,1 (X, d) are the same and i is the identity 

map. Notice that for f3 = dm1 

By excess intersection theory: 

*( ([M0,1(X,/3)]virt)) ( Ed ) ( ) 
1, eh li(li _ c) = eh li(li _ c) U Euler V . 

The theorem is proven. t 

Now, let X be a smooth hypersurface in pm given by a section of V = O(k). If 1, 

is the embeding of X in pm and dimX > 2, then it is shown in [8] that 

1,*(Jx) = Euler(O(k))Jv. 

Combining these two results, we can prove the following theorem. 

Theorem 3.5.2 Let X be a smooth hypersurface of degree k in pm and Y a smooth 

projective variety containing X such that N = Nx/Y = 1,*(0(-l)). Assume that MX 

is a face of MY and that if C C Y is an irreducible curve with [C] E MX then 

C C X. Furthermore suppose that dim X > 2 {i.e. m > 3). Let j be the embedding 

of X in Y. Let V = O(k) EB 0( -l) on pm and j* be the map constructed similarly to 

1,* in {55). Then 

1,*(j*(Jy)) = Euler(O(k))Jv. 

Proof. Let p be the hyperplane class in pm. The assumption dimX > 2 implies that 

H 2 Xis generated by 1,*(p). Let {D1 = i*(p), D2 , ... ,Dr} be a set of generators of the 
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cone of nef divisors of Y and {/31, /32 , ... f3r} generators of the Mori cone MY of Y. 

Here /31 is a generator of MX. We establish the notation: tD := t1D1 + ... +trDr;d = 

( d1 , d2 , .•. , dr); qd = qf 1 • ••• • q:r . Consider the following diagram: 

y X 

where the square on the left is a fibre square. An argument completely similar to 

Lemma 3.5.2 implies that 

Let M(Y,/3i) := [Mo,1(Y,j*(/3))]virt and M(X,/31) := [Mo,1(X,/31)]virt. We repeat-

edly use the projection formula: 

(56) 

The equality in the second row follows from excess intersection theory in the left 

square. 

We now make use of an argument used in [26]. Recall that : 
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Denote this moduli space by M. Looking at Min two different ways (i.e. considering 

the moduli problems of maps to X and Y) we conclude that there are two obstruction 

theories in M which differ exactly by the bundle R1fr*e2(N). It is shown in [26] that 

under these conditions: 

where 

1r: Mo,2(X,/3)-+ Mo,1(X,/3) 

is the map that forgets the second marked point. Consider the following commutative 

diagram: 
Mo,2(X, /3) ~ X 

li li 
Mo,2(JP'ffl,d) ~ lP"11' 

We compute: 

There is the following fibre square: 

We apply Proposition 9.3 in [16] to obtain: 

Therefore: 
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On the other hand, Proposition 11.2.3 of [8] says that : 

(58) 

Substituting (57) and (58) in (56) we obtain 

,.(j"(Jy)) = exp C' :t,p) ( kp + ~ qf'e,. (n(:~ c)) u (-lp)) . (59) 

Recall that on H*(M0,1 (:ipm, d)) we have: 

Substituting this in (59) and using the projection formula we get 

,.(j'(Jy)) = exp C' :t,p) (kp) (1 + ~ qf'e,. (nff~~i) u (-Ip)) . (60) 

The theorem is proven. t 
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4 Mirror Theorem 

This chapter is the heart of the work. We will formulate and prove the mirror theorem 

which in a slightly different form was first proven by Lian, Liu and Yau using a 

different approach [21]. 

4.1 Notations and set up. 

j E J. 

Consider the hypergeometric series on lP8: 

(61) 

Theorem 4.1.1 Assume that k + l ~ s + 1 and that J is nonempty. There is a 

change of variables of the form t 1 -+ t 1 + I1(q) which transforms Iv into Jv, 

We use Givental's approach for complete intersections in projective spaces [13] to 

prove an equivariant version of the theorem. The standard diagonal action of T = 

( C*)s+l on W = cs+i gives rise to an action of T on :rs. The representation for the 

equivariant cohomology with Q-coefficients of the torus Tis Q[Ao, A1, ... , As] where Ai 

is first chem class of the representation of the i-th factor C*. Denote by the same 

letter p the equivariant hyperplane class. Then the equivariant cohomology of lP8 is: 

s 

Hi,(JPS) = Q[p, A]/ II (p - Ai), 
i=O 

Let Pi : i = 0, 1, ... , s be the fixed points of this action and </Ji = Tik;i:i(P - Ak) their 

corresponding equivariant Thom classes. 
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Remark 4.1.1 For the remainder of this work whenever we refer to the equivariant 

cohomology, class or map it will be for the above torus action and not for the one 

introduced in the first few chapters. 

If all the maps and classes appearing in the function Jv are the equivariant ones 

then the equivariant Jtq is obtained. 

eq _ (to+ pti) ( " d ( E~E;; ) ( )) _ Jv - exp Ii 1 + L- q eh h(h _ c) U -lp -
d>O 

( to+ tip) exp Ii S(q, Ii). (62) 

We will also consider an equivariant counterpart of the function Iv, namely: 

( to + tip) S'( Ii) exp Ii q, . (63) 

Theorem 4.1.2 A similar equivariant change of variables transforms Itq into Jtq. 

Define correlators: 

and 

where the pairing is the equivariant push-forward to a point. They determine S and 

S' according to these formulas: 

s 

s = Lsi u <pi 
i=O 
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where </Ji is dual to <Pi· Similarly for S'. By the projection formula we have 

(64) 

The proof of the equivariant mirror theorem is based on exhibiting similar prop-

erties of the correlators Si and s:. Si satisfies one more property which uniquely 

determines it. After the change of variables, that property is satisfied by s: as well, 

which implies Si = s:. 
We now proceed with displaying properties of the correlators Si and s:. 

4.2 Linear recursion relations 

Lemma 4.2.1 The correlators Si satisfy the following linear recursion relations: 

~ d ( -1) ~ d ( Aj - Ai) 
si = 1 + L.Jq ~,d n + ~ _q ci,j,dsj q, d 

d=l d=l,3=/=i 

(65) 

where Ri,d(n-1) are polynomials and 

( , , ) nkd (k, >.;..:..>.i) nld-l ( l, >.;->.j) 
C· . = Aj - Ai m=l Ai + m d m=O - Ai + m d 

i,3,d ( ) Ild ns ( >.·->.;). (66) dn dn + Ai - Aj m=l k=O,(k,m)f=(j,d) Ai - Ak + m~ 

Proof. It is not clear from the formulation of this lemma whether we can formally 

substitute n = >.;~>.;. We will see during the proof of this lemma that the substitution 

makes sense. We will use the localization theorem to evaluate the integrals that 

appear in the formula for Si. There are three types of fixed point components Mr of 

M~ 1 (JP8 , d). The first one consists of those Mr where the component containing the 
' 

marked point is collapsed to Pi· We denote the set of these components by J1 d· Let 
' 

~ d be the set of those Mr in which the component containing the fixed point is a 
' 
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multiple cover of some line Pi,Pi for some j =/= i with the marked point mapped to 

Pi· Finally let Pod be the rest of the fixed point components. Recall the localization 
' 

theorem: 

{ ei(-lp</Ji) E' E- _ L { 1 (ei(-lp</Ji) E' E-) + 
hvto,i(P•,d) n(n - c) d d - . }Mr arEuler(Nr) n(li- c) d d r 

rE :Fl,,d 

L { 1 (ei(-lp</Ji) E' E-) 
. }Mr arEuler(Nr) n(n- c) d d r + 

rE :Fi,d 

~ f 1 (ei(-lp</Ji) E' E-) 
~ }Mr arEuler(Nr) li(li- c) d d r. 

rE :F2,d 

Here the r subscript means the restriction of the class to the fixed point component 

Mr. Notice first that: 

~ f 1 (ei(-lp</Ji) E' E-) _ O 
L...J. } Mr arEuler(Nr) li(li - c) d d r - · 

rE :Fl,,d 

(67) 

Indeed, let rj E Po,d represent a fixed point component with the marked point 

mapped to the fixed point Pi for some j =/= i. Since (ei(</Ji))rj = 0 we are done. 

Next, in each fixed point component that belongs to Pi d the class c is nilpotent. 
' 

Indeed, if r is the decorated graph that represents such a fixed point component, let 

Mo,k correspond to the vertex of r that contains the marked point. Then k :::; d + 1. 

There is a morphism: 

cp : Mr i-+ Mo,k 

such that cp*(c) = er. But clearly cd-l = 0 on Mo,k· This implies that: 

is a polynomial in t;,-1. 
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We now consider the fixed point components of .r~ d. Again let r represent such a 
' 

component. For a stable map ( C, x1 , !) in r let C' be the component of C containing 

x1, C" the rest of the curve, x = C' n C" and f(x) = Pi for some j #- i. Let d' be 

the degree of the map f on the component C'. Then (C", x, fie") is a fixed point in 

M 0,1 (JP8, d - d'). Denote its decorated graph by r". As r moves in .71,d, the set of 

all such r" exhausts all the fixed points in M 0,1 (JP8, d - d') where the first marked 

point is mapped to Pi· Clearly Aut(r) = Aut(r"). Recall from (17) the formula for 

the automorphism group G of the fixed point component Mr 

ar = IGI = II de· IAut(r)1. 
edges e 

This implies that: 

ar = d'arn, 

In order to compute er we need to compute the weight of the T-action on T;1 C. But 

x1 E C' and f maps C' to the line PiPi ~ JP1 with degree d'. The weight of the 

-\·-A· 
T-action on r;i is Ai - Ai· It follows that er= 3 d' i 

We can split Euler(Nr) in three pieces: smoothing the node x, deforming the 

maps fie, and fie"· Using localization techniques we obtain: 

(-\·--\· ) 
Euler(Nr) = 3 d' i - c~ Euler(Nr" )· 

d'-1 2 ( -Xi-Ai) II II . Ai - Ak + m d' . 
m=O k=O,(m,k)#(O,i) 

Consider the normalization sequence at the node x: 

(69) 
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Twist it by f* ( CJ( -l)) and take the cohomology sequence. We obtain the following: 

where 

Eulerd' = Euler(H1(C', flc,0(-l))). 

The right side is a short notation for the Euler class of the bundle whose fiber is 

H 1(C', flc,0(-l)). Let (zo, Z1, ... , Zs) be the coordinates on JPS. Choose the coordi-

nates (Yo, Y1) on C' such that zi(f lc,) = yg' and Zj(Jlc .. ) = yf. There is a basis for 

H 1(C',flc,(O(-l))) = H 1(0p1(-ld'). It consists of 

s ld'-2-s 1 
~~ ld' 
( )!d'-1 - ld'- -1 1+ : s = 0, 1, ... , - 2. 
YoY1 Yo s y1 s 

It allows us to compute: 

!d'-2 (1 + s - ld' 1 + s ) !d'-i ( ,\- - ,\·) 
Eulerd, = II d' ,\i - ~,\j = II -l,\i + s id' 3 • 

s=O s=l 

Therefore we have: 

(70) 

Now twist (69) by f*(CJ(k)) and take the cohomology sequence. We obtain: 

0-+ H0 (C, f*(CJ(k)))-+ H0 (C', f*(CJ(k))) EB H0 (C", f*(CJ(k)))-+ OPi(k)-+ 0. 

We take the Euler classes of the corresponding bundles to obtain: 

(71) 

where 

Euler!, = Euler(H0 (C', fl 0,CJ(k))). 
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Substituting (Et)r = k>..i(E~)r in (71) and computing Euler!, we finally get: 

kd' . 

( I) II ( Aj - Ai) ( I ) Ed r = r=l k>..i + r d' Ed-d' r"· (72) 

It follows from (67) and (68) that: 

(73) 

From this representation of Si it is clear that the coefficients of the power series 

>..- - >.-
Si = I::o Si,dqd belong to Q(>.., Ii). Since er= 3 d' i they do not have a pole at 

).. - >..- >..- - ).. 
Ii = i d 3 for any j =/- i and any d > 0. Therefore the substitution Ii = i d 3 in 

Si makes sense. We use the equations (72) and (70) to obtain: 

(74) 

Substituting this into (73) we obtain 

The lemma is proven. t 

Lemma 4.2.2 The correlators SI satisfy the same linear recursion relations. 
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Proof. We recall that 

s: = I)et)dn~=l(!Ai + r;in) n~:~(-Ui - mn) = 

d=O Tim=l nj=o(Ai - Aj + mn) 

I)et)d n~~l (kAi s+ mn) n~:~(-Ui - mn) . 

d=O dn Tim=l nj=O,(j,m);e(i,d)(Ai - Aj + mn) 
(75) 

By the calculus of residues in the variable n we have 

n kd ( !;) nld-1 ( z , ) d 
m=l kAi + mn m=O - Ai - mn. = R;, (n-1) L 1 

dn n~=l n;=O,(j,m);e(i,d/Ai - Aj + mn) ,d + m=l,r;ei dn(Ai - Ar + mn) 

n d ns (A A + Ar-Ai) n=I,(j,n);e(r,m) j=O,(j,n);e(i,d) i - j n--;;:-

n kd (kA· + nAr-Ai) nld-1(-ZA· _ nAr-Ai) 
n=l i m n=O i m (76) 

for some polynomials R;,,d(ri-1) in ri-1 . We substitute equation (76) in (75) to obtain 

00 00 d 1 

s: = l + EqdR;,,d + Eqd~ ~ dn(Ai - Ar+ mn). 

n kd (kA· + nAr-Ai) nld-1(-ZA· _ nAr-Ai) 
n=l i m n=O i m (77) 

n d ns (A A + Ar-Ai). n=I,(j,n);e(r,m) j=O,(j,n);e(i,d) i - j n--;;:-

We change the order of summation in the second summand of SI to obtain for a fixed 

r =I= i 

00 d 1 nkd (kA·+ Ar-Ai)Tild-1(-U·- Ar-Ai) 
~ d ~ n=l i n m n=O i n m 

L-q L- dn(Ai - Ar+ mn) Tid . TI~ . . (A· - A·+ nAr-Ai) 
d=l m=l n=l,(J,n);e(r,m) 3=0,(j,n);e(i,d) i J m 

00 1 

~ qm n(Ai - Ar + mn). 

00 nkd (kA· + nAr-Ai) nld-1(-ZA· _ nAr-Ai) 
~ d-m n=l i m n=O i m (78) 
L- q dTid . n~ . . (Ai - A.+ nAr-Ai). d=m n=l,(3,n);e(r,m) J=0,(3,n);e(i,d) J m 

Now, 

00 nkd (kA. + n Ar-Ai) nld-1 (-ZA. _ n Ar-Ai) 
~ d-m n=l i m n=l i m _ 

L-q dTid . n~ . . (Ai-A·+nAr-Ai) -d=m n=l,(3,n);e(r,m) J=O,(j,n)#(i,d) J m 
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n km (kA· + Ar-Ai) nlm-1(-l>..· _ Ar-Ai) 
_ n=l i n m n=O z n m 

nm ns (A·_ A.+ Ar-Ai) n=l,(j,n)#(r,m) j=O z J n m 

oo nku (kA _ Ar-Ai) nlu-1(-l).. _ Ar-Ai) L u n=l r n m n=O r n m 

u=O q n~=l,(j,n)#(i,u) n;=o(Ak - Aj + nAr~Ai)(m + u). 
(79) 

The denominator in the last sum can be transformed as follows 

u s ( Ar-Ai) n n Ar - Aj + n m u. 
n=l,(3,n);t=(r,u) J=O 

Putting everything together we finally get 

n km (kA· + nAr-Ai) nlm-1(-lA· _ nAr-Ai) 
n=l z m n=O z m 

nm ns (A. _ A. + Ar-Ai) n=l,(j,n);t=(r,m) j=O i . J n m 

oo nku (kA _ Ar-Ai) nlu-1(-l>.. _ nAr-Ai) 
~ u n=l r n m n=O r m 
L....J q nu n2 (A _A. Ar-Ai) u=O n=l,(j,n)#(r,u) j=O r J + n m U 

(80) 

Th 1 d . S' ( Ar - Ai ) b h £ Ar - Ai . . . . e ast summan 1s not yet k q, ecause t e actor 1s m1ssmg m 
m m 

the denominator. Divide and multiply with it and we get 

00 00 ( ') 1 d m , Ar - Ai 

Si = 1 + L q ~,d + L . q Ci,r,mS q, m 
d=l m=l,k;t:z 

(81) 

with 

A _ A· nkm (kA· + nA;-Ar) nlm-1(-l>..· _ nAr-Ai) C· - r z n=l z m n=O z m 

z,r,m - mfi(Ai - Ar + mfi) nm-1 (. )..J.( ) n~-o(Ai - A3· + n Ar-Ai) n- , J,n -,- r,m J- m 

i.e. the same linear recursion relations that were satisfied by Si. The lemma is 

proven.t 
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4.3 Linear and nonlinear sigma models for a projective space. 

We explain here some of the features that will be used in proving the double polyno

miality property for the correlators S and S'. 

Let 

Md:= Mo,o(lPs x lP1 , (d, 1)). (82) 

This moduli space compactifies the space of degree d maps lP1 -+ ps. We call Md the 

degree d nonlinear sigma model of ps. 

We will also consider 

(83) 

which is also a compactification of degree d maps from lP1 to ps. An element in 

H 0 (JP1, OlP'1(d))s+l is an s + 1-tuple of degree d homogeneous polynomials in two 

variables w0 and w1 . As a vector space, H 0 (JP1 , OlP'1(d))s+l is generated by the vectors 

vir = (0, ... , 0, w0wf-r, 0 ... , 0) for i = 0, 1, ... , s and r = 0, 1, ... , d. The only nonzero 

component of vir is the i-th one. Nd is called the degree d linear sigma model 

of the projective space ps. The terminology for Md and Nd comes from physics. 

For more on this subject, we recommend Appendix Bin [8]. 

The action of T x C* in ps x JP1 with weights A in the ps factor and (n, 0) in the 

lP1 factor, gives rise to an action of T x C* in Md by translation of maps. There is 

also an action of T x C* on Nd. Let l = (to, ... , ts) ET and t EC*. This action is 
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Let r;, be the equivariant hyperplane class in Nd. There is an equivariant map: 

We briefly describe this map set-theoretically and show that it is equivariant (for a 

proof that it is a morphism see [13] or (21]). A stable map (C, f) E Md is given as 

follows: 

C = Co u C1 U ... u Cn 

deg((1r2 o f)b) = 0: i = 1, 2, ... , n 

deg((1r1 o f)b) = ki: i = 1, 2, ... , n 

We can choose coordinates on Co ""P1 so that 1r2 o I : C0 f--+ P1 is given by I (Yo, y1) = 

(Y1, Yo). Let Con Ci= (ai, bi) and 1r1 o I= [Jo : Ji : ... : Is] : Co f--+ ps. Then the def-

inition of 'ljJ is 
n 

'1/J(C, f) := IT (biwo - aiw1ti[fo : 11 : ... : Is]. (85) 
i=l 

This map is equivariant. Indeed, let r = (t, t) ET x C* with t = (to, t1, ... , ts)- Let 

r · (C, I= (!1, /2)) = (C,] = (f1, f2)). 

Then f2(yo,Y1) = (ty1,Yo) and f1(Yo,Y1) = t· f1(Yo,Y1). To find '1/J(C,]), we need to 

choose a representation of ( C, f) such that f 2 permutes the coordinates. If we let a 

be an automorphism of Co given by a(y0 , y1 ) = (y0 , t-1y1), that representation is 

(C,]oa = (f1 oa,J2 oa)) = (C,f1,f2). 
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The only difference between 6 and C is that C0 n Ci= (ai, tbi). Also 

f1 : Co i--+ JPs 

is given by f1(Yo, Y1) = f. f1(Yo, r 1y1). Therefore 

n 

'l/J(C, ]) = II (bitwo - aiw1ti[tofo(wo, r 1w1) : ... : tsfs(wo, r 1w1)]. 
i=l 

Since the /i's have the same degree we have: 

therefore 

n 

'l/J(C, ]) = II (bitwo - aiw1ti[tofo(two, w1) : ... : tsfs(two, w1)] = 7 · 'l/J(C, !). 
i=l 

We now describe the structure of the T x C* -fixed points in Nd and Md. 

Consider first the linear sigma model Nd. Let Pi,r be the points of Nd corresponding 

to the vectors Vir· The only fixed points of the T x C* -action on Nd are precisely the 

points Pir· The weight of the hyperplane class at the fixed point Pir is Ai+ rn and 

the Euler class of the tangent space TNd at Pir is [21] 

Eir = II (Ai - Aj + rn - tn). 
(j,t)=fi( i,r) 

(86) 

We now turn our attention to the nonlinear sigma model Md. A T x C*-fixed 

point component in Md consists of stable maps ( C, !) with C = C0 U C1 U C2 and 

f = (/1,/2) : Ci--+ JPS x JP1 such that deg(flci) = (dj,O) for j = 1,2 with d1 + 

d2 = d and deg(flc0 ) = (0, 1). Also /1(00 ) = Pi, a T-fixed point in JP8 • Choose 
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coordinates (Yo, Y1) in Co rv lP1 such that C1 n Co= x1 = (1, 0), C2 n Co= x2 = (0, 1) 

and f2(Yo, Y1) = (Y1, Yo). We will denote this component by r~1 ,d2 • Note that this 

component is mapped by 'ljJ to Pi,d2 E Nd. Therefore, the weight of the T x C* -action 

for the class '1/J*(K) in such a component is,\+ d21i. There is a canonical isomorphism 

of this component to r~1 x r~2 where r~; is a decorated graph representing a fixed 

point component in M 0,1 (lP8 , di) with the image of the marked point being Pi. Let's 

find the normal bundle of this component in the above identification. Consider the 

normalization sequence 

(87) 

Twist (87) by J*(TJP2 x JP1) and take the cohomology sequence. We obtain 

In K-theory, this implies the following relations of the Euler classes of bundles 

[H0 (C, f*(TlP8 X lP1))] = [H0 (C1, J;(TJP8))] + [H0 (C2, J;(TlP8 ))]+ 

+[H0 (C0 , J;(TlP1 ))] - [Tp;JP8]. (88) 

The class [H0 (C1 , f{(TlP8 ))] is part of Nr; as it stands for the deformations of the 
d1 

restriction of the map f on C1 • Similarly for [H0 (C2 , f{(TlP8 ))]. The other pieces of 

the normal bundle Nr; account for deforming the nodes and reparametrizations. 
d1,d2 

Moving the node Xj as well as other nodes along Ci (for j = 1, 2) and reparametrizing 

components of Ci will be accounted for in Nr~. . What is left then is moving the nodes 
3 
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Xj, j = 1, 2 along C0 and smoothing them and reparametrizing C0 . In other words, 

We substitute (4.3) into (89) to obtain 

where Cj, j = 1, 2 is the first Chern class of the cotangent line bundle for Nri . 
dj 

4.4 Double polynomiality 

Define the map 

pf : H*JP'8 ®IQ[>.J Q(-X) ---+ Q(-X) 

as follows: 

pf(a) := ls au ( ~f P). 
T 

The obvious cancellation is not carried out for pedagogical reasons. 

Lemma 4.4.1 If z is a variable, the expression: 

W'(z, h) = pf(S'(qezn, fi)ePzS'(q, -fi)) = 1s S'(qezn, fi)ePzS'(q, -fi) U ( ~fp) (90) 
T 

belongs to Q(-X)[fi)[[q, z]]. 

Proof. The lemma will follow from the identity 

00 kd ld-1 

W'(z, h) = L qd 1 ez~ IT (kK - mfi) IJ (-lK + mfi). (91) 
d=O Nd m=O m=l 
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The integral on the right side is a T x C*-equivariant pushforward to a point. For 

d = 0 the convention 

f kd ld-1 f ( k ) 
J Nd ez~ 1! (kK + mn) !I (-[K, + mn) = }-!P'T ePZ -~ 

is taken. 

Apply the localization formula to both integrals (90) and (91). 

8 kA·e>..;z 
W'(z, n) = L (-lA·) n ~ -(A· - A·). i=O i J=pi i J 

f d2TI:'!1(kAi - mn) n~~~1(-Ui + mn) 
d2=0 q TI~=l n;=o(Ai - Aj - mn) . 

But now, for d1 > 0, d2 > 0 

TI:'!o(k>i.i + mn) n~~-;:1(-ui - mn) TI:'!1 (kAi - mn) n~~~1(-ui + mn) 

TI#i(>i.i - >i.i) TI:=1 TI;=0 (>i.i - Aj + mn) TI~=1 TI;=0 (>i.i - Aj - mn) 

TI~!1/d2 ) (k(>i.i + d11i) - mn) TI!'!!td2)-i (-l(>i.i + d11i) + mn) 

n;=O n:!t,(j,m)=p(i,d1/Ai + d11i - Aj - mn) 
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Therefore 
00 d S 

W'(z, n) = L qd LL e(Ai+d11i)z 

d=O d1=0 i=O 

rr~=o(k(.,\ + d11i) - mfi) rr~:i (-l(>.i + d11i) + mfi) 

rr;=O rr~=O-,(j,m)#(i,d1) (>.i + d11i - Aj - mfi) 

By the localization formula in Nd and the formulas (86) we can see that 

00 kd ld-1 

W'(z, n) = L qd 1 ez~ II (kK - mfi) II (-lK + mfi). 
d=O Nd m=O m=l 

The lemma is proven.t 

Lemma 4.4.2 If z is a variable, the expression: 

W(z, n) = pf(ePZS(qezn, n)S(q, -fi)) 

belongs to Q(>.)[n][[q, z]]. 

Proof. Consider the following diagram 

Mo,1 (JP8 x JP1, ( d, 1)) ~ lP8 x JP1 

1~ 
Mo,o (lP8 x JP1, ( d, 1)) 

Define: 

The lemma will follow from the identity: 
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Again we make use of the localization formula. The left side equals 

Recall that 

Si = 1 + f)et)d f ei(-lp¢>i) E~Ei. 
d=l }-Mo,1(f's,d) fi(fi - c) 

(93) 

Let's compute the localization of Euler(Wd) in Nri . If we twist the normalization 
dj 

sequence (87) by J* ( 0( -l) ® Op1) and take the corresponding long exact cohomology 

sequence, we get 

The first piece is trivial. To compute the weights of the action, notice that we have 

an isomorphism 

The left hand side is generated by say· z!, therefore the weight of that piece is -l)..i· 

In K-theory then 

Similarly, twisting the normalization sequence (87) by J*(O(k) ®Op1) and taking the 

corresponding cohomology sequence we obtain: 

Putting everything together we see that the contribution of such a component Nri 
d1,d2 

to (93) is 
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Summing over all fixed point components, we get the lemma. t 

4.5 Uniqueness 

coefficients in H,i,JP>S [[n-1]] that satisfy the following conditions: 

1. So= Sb= 1 

2. They both satisfy the recursion relations of Lemma 4.2.1. 

3. They both have the double polynomiality property of Lemma 4.4.1. 

4. For any d, Sd = S~ mod (n-2). 

Then S = S'. 

Proof. Let d0 > 0 be such that Sd = S~ for all d < d0 and all O ~ i ~ s. We want to 

show that Sdo - S~0 = 0. By induction, this would prove this lemma. The recursion 

relations and the induction hypothesis imply that 

Sdo,i - S~o,i = Rdo,i - R~o,i E Q(A)[n-1 ] 
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where Rd,i and R~,i are the polynomials in the recursion relations for, respectively Si 

and sr By condition (4), Rdo,i - R~o,i has a zero of order at least two at the origin. 

Let R(n-1 , A) be an element in H.j.IP8 ® (Q(A)[n-1 l[[q]] such that };(R) = Rdo,i - R~o,i 

for all i. By the localization formula in IP8 such an R(n-1, A) can be found. The 

coeficient of qdo in W(S) - W'(S') is 

pf(e(p+don)z R(n, A)+ ePZ R(-n, A)). 

By the condition (3), this coefficient should be a polynomial in n. Let 

r 
"""'ak R(n, A)= LJ nk· 
k=2 

Let 2s + 1 be the largest odd number such that a2s+l =/- 0. We have 

R(n, A) = fj,2!+1 (Bh- 1 +A+ O(n)) 

where A, B E H.j.IP8 ® (Q(A) and O(n) is a polynomial vanishing for n = 0. If we 

expand the exponentials, we obtain 

pf(e(p+don)z R(n, A)+ ePZ R(-n, A)) = fj,2!+1pf(2AePZ + doBzePZ + O(n)). 

Since this should be a polynomial in n, we obtain 

and this implies that A= 0 and B = 0. Sos= 0 and this means that R = 0. The 

lemma is proven.t 
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4.6 Mirror transformation 

We recall from the formulation of the mirror theorem that we are assuming that 

there is at least one negative line bundle in V. Recall that: 

Going back to the simplified presentation (i.e. III = 1 and IJI = 1), we can expand 

1eq as follows: 

eq _ (to+ pt) ( p 1 1 ) 
I - exp n 1 + 11 h. fid(s+l-k-l) + o( fi2) 

where 

I _ ~ d (-1) 1d(ld - l)!(kd)! 
1 - L...J q (d!)s+l . 

d=l 

Notice the following consequences of Theorem 4.1.1 and Theorem 4.1.2. 

• A negative line bundle produces a factor of ~. It implies that if V contains 2 or 

more negative line bundles, then Jeq = 1eq. This will be very important in the 

applications in the next section. 

• If k + l < s + 1, then again Jeq = 1eq. 

We obtain the following theorem. 

Theorem 4.6.1 Let V = (EBiEIO(ki)) EB (EBjEJO(-lj)) where EiEiki + EjEJli < 

s + 1. If III > 1 or k + l < s + 1 then 

( E~E;; ) _ niEl n::1 (kip+ mn) njEJ n~~-;1(-ljp - mn) 
eh n(n - c) - n~=l (p + mfi)s+l 
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Proof. As mentioned above in this case we have Jeq = 1eq. Recall that 

eq (to+ pt1) ( """ d ( E~E;; ) Il( )) Jv = exp h 1 + L...J q e1* h(h _ c) U . -lip . 
d>O 3EJ 

We obtain the equivariant identity: 

The restriction of p to any fixed point Pi is nonzero. This implies that p is invertible. 

Therefore we obtain 

We can take the nonequivariant limit of this.identity to obtain : 

The theorem is proven. t 

This theorem is particularly useful when Euler(V-) = 0 in ps. In that case 

the mirror theorem is true trivially. An example of such a situation when V 

OJP1 ( -1) EB OJP1 ( -1) is treated on the chapter on the examples. 

The only remaining case is k + l = s + 1. We have: 

I eq _ (to+ pt) ( I p ( 1 )) - exp h 1 + 1 h + o 1;,2 • 

Lemma 4.6.1 Assume that Z(q, h) satisfies conditions a,b,c of Lemma 4.5.1. Then 

Z = exp( ¥)Z(qeli, h) also satisfies those conditions. 

Proof. The first condition is obvious. Let's prove the second condition. We write 

~ the recursion relations for Z and multiply by e ,. . 
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with 

A -A· rrkm (kA·+n>.i-Ar)ITlm-1(-lA·-n>.r-Ai) C· _ r i n=l i m n=O i m _ 
i,k,m - mn(Ai - Ar+ mn) IT:=l,(i,n)#(k,m) I1J=o(Ai - Aj + n\;/i) -

R(A) 

with R(A) E Q(A). We have the following identity 

The punch line here is that 

where 

Therefore 

Now, 

( li)mc (l1Ai) Z ( Ii Ak - Ai) _ m lime ( l1Ak) qe i,k,mexp T k qe , m - q e i,k,mexp >.k~>.i · 
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m (f1Ak) ( I Ak-Ai) = q Ci k mexp .--------. Zk qe 1 , + ,, ~ m 
m 

m Jim ( I1>.k) R(>.)I ( li)Z _ me z- ( Ak - Ai) ~ UR' (Ii-I) q e exp .xk;;,,Ai mli 2 q, k - q i,k,m k q, m + ~q i,u 

where 

If we substitute everything in the formula for Zi we get the recursion relation with 

the same coefficients. 

We now check double polynomiality for Z. 

- Ii - ( I1 (qezli)p I ( zli) Ii 11 (q)p I ( } ) pf(Z(qez , li)epz Z(q, -Ii)) = pf e Ii Z(qe 1 qe ez , li)ePze -Ii Z(qe 1 q , -Ii) 

f (z( zli Ji(qezli) n,) p(z+ft(qezli)-I1(q))z( Ji(q) n)) = p qe e , e Ii qe , -

_ W ( li(q) + I1(qezli) - I1(q)) - qe , z Ii 

where 

W(q, z) = pf(Z(qezn, li)ePz Z(q, -Ii)). 

Since I1(qezli) - I1(q) vanishes for Ii= 0 we find that the coefficients of the power 

series 

are polynomials with respect to Ii. The lemma is proven. t 

4. 7 Completing the proof 

Notice that 

S = exp ( 1:) S(qe1 , Ii) = S'(q, Ii), mod(li-2 ) 
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Since S and S' satisfy the conditions of the Lemma 4.5.1 they are equal. The "-" 

transformation has an inverse which is the one prescribed in the formulation of the 

theorem.t 
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5 Examples 

In this chapter we will see some aplications of the mirror theorem. 

6 JP>1 with V = 0(-1) EB 0(-1) 

Let C be a rational curve in a Calabi-Yau threefold X with normal bundle N = 

0(-1) EB 0(-1) and /3 = [CJ E H2(X, Z). Since Kx = Ox, the expected dimension 

of the moduli space M 0,0 (X, d/3) is zero. However this moduli space contains a 

component of positive dimension, namely Mo,o (P1 , d). Indeed, let f : P1 --+ C be an 

isomorphism, and g: P1 --+ P1 a degreed multiple cover. Then fog is a stable map 

that belongs to M 0,0 (X, d/3). For a proof of the fact that M 0,0 (P1 , d) is a component 

of Mo,o(X, d/3) see section 7.4.4 in [8]. Let Nd be the degree of [Mo,o(X, d/3)]virt. We 

want to compute the contribution nd of M 0,0 (P1 , d) to Nd. Kontsevich asserted in 

[20] and Behrend proved in [2] that the restriction of [Mo,o(X, d/3)]virt to M 0,0 (P1 , d) 

is precisely Ed for V = 0(-1) EB 0(-1). Therefore: 

Note that dim M 0,0 (P1 , d) = 2d- 2 and the rank of the bundle Vi is also 2d- 2. We 

use the mirror theorem to compute numbers nd. Since V contains two negative line 

bundle we can apply Theorem 3.4.1. It says: 
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An expansion of the left hand side using the divisor property for the modified gravi-

tational descendants (see for example section 10.1.2 of [8]) gives: 

On the other hand: 

1 1 2p 

(p + dn) 2 d2fi2 - d3fi3. 

We obtain: 

a well known formula that was first found by Voisin [28). For a proof of the formula 

in this form see [24). We also get 

cEd= --. l 2 

Mo,1(1P'1,d) d3 

7 JP>2 with V = Op2(-3) 

Let X be a Calabi-Yau threefold containing a JP2 • By the adjunction formula the 

normal bundle of JP2 in X is KIP'2 = 0(-3). Let C = d[l] be a rational curve in JP2 . 

Since Kx = Ox, the expected dimension of the moduli space Mo,o(X, [C]) is zero. On 

the other hand, this moduli space has a component, namely Mo,o (JP2 , d), of dimension 

3d- 1. In fact, we have shown that these moduli spaces coincide (Lemma 3.5.2) and 

the virtual fundamental class of Mo,o(X, [CJ) is the the refined top Chern class of the 

bundle R17r*(ei(KIP'2)) over M 0,0(JP2, d) (Lemma 3.5.3). Here: 

Mo,1 (1P2 , d) ~ JP2 

1~ 
Mo,o (1P2 , d) 
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By definition the zero pointed Gromov-Witten invariant: 

Nd:= deg[Mo,o(X, [C])]virt = f_ Ed 
JMo,o (lP2 ,d) 

is called the virtual number of degree d rational curves in X. 

Consider the quantum product for JP2 with V = Op2(-3). The pairing is: 

(a, b} := f a U b U ( 3 
1 A) 

J(JP'2)c. - p -

We compute the intersection matrix: 

(9rs) = 0 

-.x-1 0 0 

Its inverse is: 

0 0 -.\ 

0 -.\ -3 

-.\ -3 0 

Consider the basis 1,p,p2 for n as a Q(.X)-module. Let -,\p2 , -3p2 - .Xp, -3p- ,\ be 

its dual basis. Since both bases and Ed are polynomials in .X, we can restrict *v in 

P = H*(JP2, Q[.X]) and take the nonequivariant limit of *v· We obtain the following 

quantum product on H*JP2 @ Q[[q]] 

00 

a *vb:= a U b + L qdTk Id(a, b, -3pTk) 
d=l 

where p is the hyperplane class in JP2 , and T0 = p2 , T1 = p, T2 = 1 a basis for H*JP2 

with its dual T 0 = 1, T 1 = p, T 2 = p2 • Also Id is the nonequivariant limit of id i.e. 

for ,'1, ,'2, ... , 'Yn E H*lP2 
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For example, using the divisor axiom we obtain 

Theorem 3.2.1 implies this: 

p *v p = p2 (1- 3 Lqdd3Nd)
d>O 

Theorem 7.0.1 (H*JP2 , *v) is an associative,commutative and unital ring with unity 

Denote by i the embedding i: JP2 y X. 

Lemma 7.0.1 The map i* : (H* X, Q) -+ (H*JP2, Q) is surjective. 

Proof. Since the normal bundle of JP2 in X is OJP2(-3), it follows that 

The lemma is proven. t 

i*[X] = T 0 

i*(-![JP2]) = T 1 
3 

i*(-![l]) = T 2 
3 . 

Let [line] E H2 (X, Z) be the class of a line l C lP2 and [C1] = [l], [C2], .•. [Ck] the 

generators of M X. Consider the small quantum cohomology ring of X 

QH;X = (H* X @Q[q1, q2, ... , qk], *) 

and the new small quantum cohomology ring of JP2 

(H*lP2 @ Q[[q]l, *v) 
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where the products are given by three point correlators. Recall the extension of i* to: 

i* : H* X © Q[[q1, Q2, ... , qkl] i-+ H*"JP'2 © (Q[[q)) 

as follows : i*(qi) = 0: i = 2, ... , k and i*(q1) = q. 

Theorem 7 .0.2 The map [* is a ring homomorphism. 

Proof. Complete {T0 = [X),T1 = -![JP2),T2 = -!p} into a basis of (H*X,(Q) by 

adding elements from Ker( i*). Let { To = [pt], T1 = p, T2 = [JP2), ... } be the dual basis. 

Let a, b E H* X. We want to show 

i*(a * b) = i*(a) *v i*(b). 

But 

Note that this formula is true for a Z-basis, but due to the uniqueness of the quantum 

product, it is true for any Q-basis as well. Therefore, 

Now, i*(Tk) = Tk for k = 0, 1, 2 and for the rest of generators i*(Tk) = 0. The 

theorem follows from the readily checked fact: i*(Tk) = -3pTk fork= 0, 1, 2.t 

Using the divisor and fundamental class properties of the modified gravitational 

descendants (see section 10.1.2 of [8]) it is easy to show that: 

to+ tip P d 
( ) ( 

2 00 ) 

Jv = exp 'Ii 1- 3'1i,2 ~q dNd . 
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On the other hand, consider the hypergeometric series corresponding to the total 

space of OlP'2(-3): 

l ( to+t1p)~ dn:::~(-3p-m1i) 
:= exp L....Jq d • 

ti d=O Tim=l (p + m1i) 3 

We expand this function and obtain 

where 

~ d d(3d-1)! 
11 = 3 ~q (-1) (d!)3 . 

The mirror theorem for this case says that the formal functions l and J coincide 

up to the change of variables T1 = t1 + 11. This theorem allows us to compute the 

virtual number of rational plane curves in the Calabi-Yau X. The first few numbers 

N _ 3 N _ -45 N _ 244 are 1 - , 2 - - 8-, 3 - 9 · 
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8 A mirror conjecture for a split projective bundle 

The problem that we address here is the following. Let X be a smooth projective 

variety over the field of complex numbers and V = ffiJ=o.Ci a direct sum of line bundles 

on X. Consider 
IP(V) 

1~ 
X 

We want to relate the quantum 'D-modules of X and of the projective bundle 

IP(V) over X. Givental has shown that these modules are generated by a single 

formal vector-valued function J, therefore, equivalently the problem is to relate JlP'(V) 

with Jx, 

8.1 The formulation of the conjecture 

Let z = c1 (01P'(V)(l)). Without loss of generality we can assume that £ 0 = Ox. Then 

H*IP(V) as a H* X-module is generated by z with the single Grothendieck relation 

n 

z Il(z - ci(.Ci)) = 0. 
i=l 

There exists the following short exact sequence 

(94) 

which splits as follows. For (3 E H2(X, Z), let i(/3) be such that 1r*i(f3) = (3 and 

1 z=O. 
i(/3) 

(95) 

For example, we can define 

n 

i(/3) = 1r*(p.d.{3) IT(z - c1(Lj)) 
j=l 
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where p.d. means Poincare dual. 

Lemma 8.1.1 If the line bundles Ci are nonnegative then z is a nef divisor. 

Proof. Let C be a curve in JP(V) with f : C -+ JP(V) the inclusion map. We have 

the following surjection 

1r*(V) -+ OlP'(V)(z) -+ 0. 

Restricting this sequence to C we obtain 

Since degf*(.Ci) ~ 0 for all i, we obtain that z · C ~ O.t 

The basis for our conjecture is the following lemma. 

Lemma 8.1.2 If the line bundles .Ci are nonnegative then 

MJP(V) = M X E9 Z>o · [line] 

where [line] is the class of a line in the fiber of 1r. 

(96) 

(97) 

(98) 

Proof. Let C be a curve in JP(V). Then C' = C - i(1r*(C)) satisfies 1r*(C') = 0. 

Therefore C' = n · [line]. From the definition of i we conclude that n = z · C. From 

Lemma 8.1.1 we get that n ~ O.t 

It follows that if C E JP(V) is a curve, there exist unique /3 E M X and d such that 

[C] = /3 + d[line]. We will use the notation [C] = (d, /3). 

Clearly we have 

(z - 1r*c1 (.Ci), i(/3))1P'(V) = -(c1 (.Ci), /3) X· 
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Let P1,P2, ···,Pk be the generators of the nef cone of X and /31, ... , f3k a Z~0-basis for 

MX. Recall 

Mo,1(X,/3) ~ X, 

the evaluation map at the marked point. Let tp = L~=l tiPi and 

where c is the first Chern class of the cotangent line bundle at the marked point on 

M 0,1 (X, /3). The generator of the quantum V-module for the quantum cohomology 

of X is (13] 

( to +tp) ~ /3 Jx = exp fi L- q 113. 
/3EMX 

(99) 

Define the following Givental type hypergeometric series 

I, ( to+ tp + tk+lZ) 
IP(V) := exp fi . 

~ d /3 ITn [I~=-oo(z - c1(.Ci) + mfi) * 
L- ql q2 d-(/3,ci(.C,)}x 7r J13. 

/3EMX;d~O i=O ITm=-oo (z - C1 (.Ci) + mfi) 

There exist the following exact sequences 

These imply that 

(100) 

Let (d, /3) be a curve class in H2JP(V). We obtain 

-(d, /3) · KIP(V) = (n + l)d - /3 · Kx - /3 · 1r*c1(V). 
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Therefore 

dim[Mo,k(JP(V), (d, ,B))tirt = dim[Mo,k(X, ,B)trt + n + (n + l)d - ,8 · 1r*c1(V) = 

dim[Mo,k(X, ,B)trt + n - L { c1(.Ci) + (n + l)d. 
i 1(3 

(101) 

Conjecture 8.1.1 There exists a mirror transformation from IIP(V) to JIP(V) of the 

form 

t~ =to+ fo(q)fi + f (q) 

t~ =ti+ fi(q). 

8.2 Evidence for the conjecture 

First, it follows from Givental's work [12] that the conjecture is true in the case of 

toric varieties where V is a direct sum of toric line bundles. 

Before we mention another evidence for the conjecture, we need to state the Quan-

tum Lefschetz Principle [19]. Let Y be convex (for simplicity) and ,8 E H2 (Y, Z). Let 

Z CY be the zero locus of a vector bundle W = EBi£i. We recall from Lemma 3.4.1 

the bundle W~ over M 0,1 (Y, ,8) whose fiber over a stable map ( C, x1, !) is the sections 

of H0 (C, f*(W)) that vanish at X1. Let 

This is the generator of the quantum 'D-module of Z. Consider also 

( to+ tp) Iw = exp fi Euler(W) x 
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l L /3 II m=-oo C1 Ci + mh 1 ( TIJ13(c1(.C.i))( () ) ( )) 

+ f3=f=o q i TI~=-00 (c1 (Ci) + mh) ei h(h- c) . 
(103) 

The Quantum Lefschetz Principle (which is not yet proven in general) asserts that 

under suitable conditions Jw equals Iw after a change of variables of the form 

t~ =to+ fo(q)h + f(q) 

The second evidence for the conjecture comes from this proposition. 

Proposition 8.2.1 Conjecture 6.1.1 together with the Quantum Lefschetz Principle 

produces the generator J x of the quantum 'D-module of X. 

Proof. Indeed, X 0 is the complete intersection of the divisors 

in lP(V). Consider the following cohomology-valued function 

We can expand the factor 

1 

Il~=l (z + mh) 

and the exponential part as a power series in z. Using 

n 

z II (z - c1(£i)) = 0 
i=l 
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we find 

Make a change of variables t' 0 = t0 + q1 . With this new variables we have I = J x0 • 

The proposition is proven. t 

8.3 An equivariant version of the conjecture 

We will assume that there is a torus action T in X and the fixed point locus is finite. 

Furthermore, assume that the line bundles Ci are T-equivariant. Introduce an action 

of another torus T' of rank n + 1 on the total space of the projective bundle. T' acts 

trivially on X and by scaling on the fiber of JP(V). We have therefore an action of the 

big torus TX T' on JP(V). One can see that XrxT' = Xr X (JPOOr+l. Let 7T"i be the i-th 

projection from (JP00 )n and C'i = (Ci)T ® 1r;01Pf'(..XD a line bundle over XrxT'· Then 

lPrxT' (V) = JP( EBf=1 .L:'i). Therefore we have the following presentation of HTxT'JP(V) 

as a HTX-module: 

n 

H;xT'(JPV) = H;X[z, A~, A~, ... , ..X~]/ II (z - c1((£i)r) - ..X~). (105) 
i=O 

We will also consider only the fibrewise action on JP(V). In that case we have 

n 

H;,(JPV) = H*X[z, ..X~, ..X~, ... , ..X~]/ II (z - c1(£i) - ..XD. (106) 
i=O 

Let Pr for r = 1, 2, ... , s be the fixed points of the T-action on X with ¢1, ¢2, ... , <Ps 

their equivariant Thom classes. Let Hi,r(..X) be the restriction of c1(.L:i)T to the fixed 

point Pr· Also, let Bj be sections of 1r given by the natural projection 

(107) 
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Denote by Xi the image of this section in lF(V). Then the T' equivariant Euler 

class of the normal bundle N; of the section Xj in lF(V) is 

1Pi = Il(c1(.Cj)T- c1(.Ci)T + Ai - A~). 
i=Fi 

(108) 

Let Pi,r be the fixed points for the action of the big torus T x T' on lF(V). The point 

Pi,r corresponds to the T-fixed point Pr of X embedded on lF(V) by the section Bj-

The T x T' -equivariant Euler class of the tangent space of lF(V) at Pi,r is 

Ei,r = </Jr II (Hj,r(A) - Hi,r(A) + Aj - AJ (109) 
i=j:j 

We formulate an equivariant version of the conjecture. Let 

l eq ·- (to+ tp + tk+IZ) 
lP'(V} .- exp ti · 

"'"' d /3 IIn n~=-oo(z - c1(.Ci) - A~+ mfi) * rq (110) 
L...J Q1 Q2 nd-(/3,c1{.C,})x ( - (I'·) - \I ) 7f /3 • 

/3EMX;d?:.O i=O m=-oo z C1 1..,i Ai+ mfi 

Conjecture 8.3.1 There exists an equivariant mirror transformation from 1;(V) to 

7eq 
JJP'(V)" 

One can hope to prove this conjecture by exhibiting similar properties of 1;(V) and 

J;(V). Recently a group of authors [27) have suggested the extension of the mirror 

theorems to "balloon manifolds". It is not clear to us whether their approach would 

work in the case we are interested. 

8.4 Double polynomiality 

We here prove a general lemma. 
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Let Y be a smooth projective variety, Di,D2 , ... ,Dk the generators of the cone of 

effective divisors, C1, C2 , ... ,Ck generators of the Mori cone MY of Y. Assume that 

Di is base point free for all i. Let tD = Li tiDi. Recall 

_ (to+ tD) '°" /3 ([Mo,1(Y, /3)]virt) _ (tD) 
Jy - exp n /3~Y q e1* n(n _ c) - exp fi: S(q, n), (111) 

the generator of the quantum V-module of Y. Here /3 = Li diCi and q/3 = etd = 

the map 

'lj;i: Y-t lf'Tii (112) 

be given by the complete linear system IDil· Let M13Y := Mo,o(Y x lP1, /3 + 1). The 

map 'lj;i gives rise to the map: 

(113) 

The C*-action on lP1 with weights (n, 0) gives rise to a C* action on the space M 13Y. 

Let O = [1, O] E JP1 and oo = [O, 1] E lP1 . The fixed point components of this action 

correspond to partitions /31 + /32 = (3. For a partition (/31, /32) of /3, the corresponding 

fixed point component M131 ,132 consists of stable maps of the following form 

f : C = Co U C00 U C1 -+ Y X lP1 (114) 

where f maps C0 to Y x {O} with homology class /31 , C00 to Y x { oo} with homology 

class /32 and C ~ lP1 to {y} x lP1 with degree 1. Let /3j = Li djiCi for j = 1, 2 and 

map </Ji has the following form 

(115) 
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Consider the following diagram 

where 8 is the diagonal embedding and pis the natural inclusion. 

Definition 8.4.1 We will say that Y is semiconvex if it satisfies the following 

condition 

(116) 

Examples of semiconvex varieties are convex varieties (see Section 6 of [13)). 

Let Ll. be the diagonal in Y x Y. Note that the fixed point component Mf3i,fh is 

isomorphic to ¢-1(Ll.). It follows that for semiconvex varieties 

We believe that all varieties are semiconvex. However, in trying to prove this, we are 

presented with technical difficulties which we are not able to overcome at this point. 

Recall that Nd/~m; is the linear sigma model for the degree di stable maps to Jil>"li, 

i.e. the projective space of (mi+ 1)-tuples of degree di-polynomials in two variables 

w0 and w1 . Let Ki be the equivariant hyperplane class in Nd;F;. Let 

(118) 

Lemma 8.4.1 Let Y be a semiconvex variety. The following holds 

(119) 

where the integral on the right side is the equivariant push forward to a point. 
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Proof. We will apply the localization formula to the right side of (119) and show 

that it is equal to the left side. Consider the following diagram 

M cf,; N =· 
fh,fh - d;.lr ' 7 Ip; 

Mo,1 (Y, /31) -e-1-Y --¢-;-Fi 

Let x =Pio 'I/Ji o e1. The map Pi: pm; -+ Nd;pm; is given by 

It can be written as the composition of the following three maps: 

• - : Ndlipm; -+ Nd1;F; given by the permutation of variables i.e. 

-[fo(wo, w1), ... ] = [fo(w1, wo), ... ], 

Therefore we obtain 

where Hi is the hyperplane class of pm; . Consequently 

(120) 

(121) 

(122) 

Let c0 and c00 be the Chern classes of the cotangent line bundles at the marked point 

of M 0,1 (Y, /31) and M 0,1 (Y, /32 ) respectively. We recall the deformation-obstruction 

exact sequence for the moduli space M/3 

0-+ Ext0 (nc, Oc)-+ H0 (C, f*TX)-+ IM-+ 
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-+ Ext1(0c, Oc)-+ H1(C, f*TX)-+ i-+ 0. (123) 

We restrict it to the fixed point component M131 ,132 to compute the Euler class of its 

virtual normal bundle. Consider the normalization sequence at the nodes x0 and x00 

(124) 

Twist by f* (TX) and take the cohomology sequence. We obtain the following K

theory identity 

[H0 (C, f*(TX))] - [H1(C, f*(TX))] = [H0 (C0 , f*(TX))] - [H1(C0 , f*(TX))]+ 

[H0 (C00 , f*(TX))] - [H1(C00 , f*(TX))] + [H0 (C1, f*(TX))]-

[H1(C1, f*(TX))] - [Tf(xo)X] - [T1(x00 )X] = [H0 (Co, f*(TY))]-

[H1(Co, f*(TY))]+[H0(C00 , f*(TY))]-[H 1(C00 , f*(TY))]+[H0 (1Pil, TIP1)]-[T1(xo)Y]. 

(125) 

For the infinitesimal deformations of C we obtain 

The last two terms correspond to smoothing the nodes x0 and x00 • 

Finally, for the infinitesimal automorphisms of C we have 

From the exact sequence (123) we obtain 
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[Euler('TM )] - [Euler(T)] = [H0 (C, f*(TX))] - [H1 (C, f*(TX))]+ 

[Ext1(nc, Oc)] - [Ext0 (nc, Oc)]. (128) 

We restrict to the moving part (in the terminology of [15]) and use (125), (126) and 

(127) to obtain 

The third term is actually fixed. It will cancel with a fixed one dimensional piece 

coming from [H0 (JP'1 , TJP'1 )]. The only parts that survive correspond to smoothing the 

two nodes and moving them along C. We obtain 

Let {Ta} and {Ta} be dual basis in Y so that [~] = Ea Ta® Ta. Using (122) and 

the fact that Y is semiconvex, we compute 

1 a = S(qezli, n)eDz S(q, n). 1 e*(T.) 1 
[Mo,i{Y,,(h)Jvirt -fi(-fi - c) y 

The lemma is proven. t 
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8.5 Recursion relations 

We will prove here some recursion relations for the hypergeometric series JIP'(V} in 

general, i.e. without the assumption of the torus action on X. Let 

and 

(131) 

the restriction of S to the section Xi. For any k > 0 let 

Lemma 8.5.1 The hypergeometric series Si satisfies the following recursion rela-

tions: 

(132) 

where ~d/3 are Laurent polynomials in Ii and Cij(k) are a set of H* X ® Q(X)-valued 

coefficients. 

Proof. The hypergeometric series Si has poles at Ii = 0 or Ii = hijk for some 

j -=/ i and some k > 0. The latter poles only arise from the coefficients of qf q~ with 
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We compute 

(133) 

The goal is to find a presentation 

(134) 

where Pid13(1i) is a Laurent polynomial in Ii and Cii(k) are some suitable coeficients. 

We will do this by substracting the polar parts of Si at hijk's. Equation (134) is 

equivalent to 

(135) 

Let Si(fi) = Ed,/3 qfqf Si,d,f3(1i). Then to prove (135) we must show that 

(136) 

or 

A careful investigation of Si reveals that the coeficient of qf q~ in Si is zero unless 

d- J13 c1(.Ci) ~ 0. Also recall that d- k - J13 c1(.Ci) ~ 0. It follows that both sides of 
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the equation (137) are nonzero. We can then find the coefficients Cii(k). For a =I- j 

we use the following identity 

Substituting this identity in the left side of (137) after some algebraic transformations 

we obtain: 

The lemma is proven.t 

8.6 What is left to complete the proof of this conjecture 

Three more things are needed to complete the proof of this conjecture. 

First, the double polynomiality condition for the hypergeometric series Ill'(V). This 

needs an understanding of the relations between the linear sigma models of X and 

that of IP(V). 

Second, the recursion relations for the series Jll'(V). 

Third, a uniqueness result which determines Jll'(V) uniquely from the three prop-

erties displayed here. This should not be much different from the case of a toric 

variety. 

These will be left for future work. 
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