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CHAPTER 1
INTRODUCTION

This study attempts-to specify and estimate statistical ‘models appropriate for predict-
ing undergraduate enrollment dﬁrations. Known as failure-time br duration models,
these methods offer elegant ways to account for two types of information available in
persistence data; namely, the time—té—exit and thé tyﬁe or characteristics of exit. This
approach is well suited for longitudinal enrollment data Whére a cohort of students
are followed over time: |

"To see that peréisténce in higher education is an interesting topic of study, one
need only examine the pervasiveness of student departure. Of the nearly 2.4 million
students -entering ‘higher education in 1993 for the first time, over 1.5 million will
depart from their first choice institution without receiving a degree. Furthermore, of
the 1.5 million leaving their first institution, nearly 1.1 million will withdraw from
higher education altogether (Tinto, 1993). When ‘res._tricting attention to four-year
institutjoﬁs, -at least two regularities can ‘be observed: First, the typical institution
can rqutinely expect to lose 25 to 30 percent of its entering freshman cohort every
academic year. Second, half of the entering cohort will zictually maintain continuous
enrollment and attain a degree.

This -sizable -and -continuing -attrition is not without consequence,-either for -the
individuat or the institution. For individual students, attaining a degree takes longer

and is more costly, if it is attained at all. Much of the monetary, occupational, and



social rewards of higher -education are conditional -on -earning a college degree. This
does not imply that students who fail to obtain a college degree do not benefit from
their college experience; however, it is commonly recognizéd that a college degree,
especially a four-year degree, is an importanﬁ signal to employers and thus, a key to
entry inte desirable occupations. |

Student attrition also affects institutions in that students represent, among other
things, an important source of revenue including tuition, fees;'__ state appropriations,
and donations from graduates. Even with relatively stable attrition rates across
entering student-cohorts, institutions will feel budgetary pressure if overall-enrollment
is declining. Indeed, the projected decline in the college-going population appears to
- have arrived. Belated recognition of this fact has led institutions to appreciate, as
never before, -the necessity of 'retai-niﬁg as ‘many students as possible. Bean (1982)

summarizes the prevailing sentiment succinctly:-

In a period when demographic data suggest that freshmen enrollments
will decline substantially, the irﬁpdrtance of improving retention rates may
become more-a matter-of institutional survivael than of academic interest
(P 292).
In response to these pressures, most four-year institutions have invested, in one form
or another, in marketing and recruitment activities aimed at increasing the number
of applicants. Most have also expanded -their efforts to-attract applicants other than
the trq,ditional college-bound high schbol student. As a result, the composition of the
student body at most four-year institutions have become increasingly heterogeneous,
and this diversity has been a confounding influence in studying persistence patterns.
Partly in tesponse to the increased demand for understanding student-departure,
a greaf deal of scholarly effort has been expended on the empirical study of student
attrition. Traditional (post 1975) studies of student departure are typically institution

specific, using path-analytic methods to allocate the variance of factors relating to
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enrollment behavior. Student-departure is usually -defined as a discrete-event (depart
or continue) within a fixed time period (usually the freshman year). While there is
good reason for focusing on the first year of enrollment (most departures occur during
this time), the fixed-time approach generally does not account for the impact “fixity”
or censoring has on the estimated parameters of the model. The censoring arises
because some students have not dropped out by the end of the time window, and not
accounting for this could result in misleading inferences, especially if the results are
to be generalized to second or third v-year persistence. Table 1.1'depicté the exit rates

of 2090 fall 1993 freshman at Oklahoma State University.

Table 1.1: Observed Annual Exit Rates of 2090 Fall 1993
Freshman at Oklahoma State University.

Year ' Exit Rate
Fall 1993 ‘ ' 0
Fall 1994 1 27.0
Fall 1995 13.2
Fall 1996 7.3

As can be seen in Table 1.1 most departﬁre (27 percent) occurs in the first year,
and of these survivors, 13.2 percent fail to make it to the second year. Ignoring
subsequent departure behavior in research could lead to retention policies that are
“frontTloa,ded” .Where most of all resourceé devoted to retention ére used In the first
year. The rationale is to design policies that get students “over the hump” so that
their likelihood of persisting improves. These policies may be misguided, especially
if the student'isvhig’hly exit=prone-to :'begin with. In this case, such efforts may only
postpone the inevitable. A second problem is that even when data are available on
where students depart to when leaving an institution, traditional methodologies either
ignore this information entirely or handle it in rather awkward ways. Finally, most

traditional studies are not well suited for actually predicting an individual student’s



time-to-exit. The primary reason for this is that in all -path-analytic approaches, the
wltimate dependent variable depends on unobservable factors, and the quantification
of these factors is rarely (if ever) a consideration. Indeed the strength of path analysis
is that it allows investigators to make iﬁfereﬁces about the parameters of independent
variables-when unobservable factors exist. “Prediction” in these studies usually refers
to the amount of variance in the dependent variable explained by an independent
variable. This, of course, is not the same thing as actually predicting thev dependent
- variable.

Some important questions that are addressed in this study include: How are ob-
served enrollment durations distributed and what influence do unmeasured student
characteristics have on these observations?u To what extent do relative academic
standing, classroom cOmpositidﬁ and Stafﬁﬁg, commitment indicators, previous aca-
demic experience and skills, and -background ~charécteristics 1nfluence persistence? In
terms pf predicting persistence, does the model developed here offer improved predic-
tive accuracy relative to competing models? To énswer these questions, this study
builds upon the key consistencies found in previous research on student attrition.
In particular, the conceptual model proposed by Tinto {1975) is used as a basis for
selectilpg important independent variables to be included. The economics of relative
status as proposed by Frank (1985) and extended to higher education by Heath (1993)
is used to specify'a key variable in predicting studeﬁt persistence: the academic rank
of a student in relation to his m—hér immediate peers. This study-differs from prévi—
ous studies in a number of importaﬁt respects. First, a truly longitudinal approach is
used where time-to-exit is taken as the depeﬁdent variable. Second, the data used in
this study allow for the distinction between a student who transfers to another insti-
tution and onewho-drops-out of the ‘systém. Third, a statistical methodology is used
that is appropriate for enrollment duration analysis, and a model is specified that is

general enough to allow for different types of exit and for the influence of unmea-



sured student -charact"eristicson‘observed enrollment-durations. Finally, prediction is
assessed in terms of the model’s ability to accurately predict the dependent variable.
The model developed in this study is compared to potential competitors in terms of
predictive accuracy where a hold-out sample is used for out-of-sample validation (a
practice rarely used in previous attrition research).

The organization of this dissertation is as follows. Chapter 2 reviews both the
literature conceptualizing the process éf student attrition and the empirical studies
of the process. Chapter 3 lays out the research design, the specific hypotheses to
be tested, and the statistical Iﬁethodology -used in this study. ‘Chapter 4 discusses
the data used iﬁ this study. Chapter 5 provides an analysis of the modeling results.
Chapter 6 provides additional discussion and conclusions. A summary of the key

findings is provided below:

e A student’s academic performance relative to his-or her immediate classmates
is directly related to persistence. A student earning D’s in classes where D is
the average is more likely to persist than if he or she were in classes where B is

the average. This is independent of the effect of poor overall performance.
e Marginal changes in class size do not affect a student’s likelihood of persisting. -

e Classroom staffing has a major impact on persistence. A student whose courses
are taught primarily be graduate student teaching assistants is less likely to

persjst than if he or she were being taught primarﬂy by faculty.
e Dropouts behave differently than transfers.

e Student heterogeneity"(nnmeasured orunobserved) affects the observed dropout
rates. When slow quitting students are studied together with fast quitting
students, the observed average dropout rates over time are dominated initially

by the fast quitters.



o The hypotheses regarding the predictive performance of the WGH model were
inconclusive. The WGH model could not beat OLS or ordered logit in predict-
ing enrollment duration according to goodness-of-fit tests; howevér, the WGH
model had a much higher hit rate. Multinomial logit performed better than
WGH in predicting departure destination based on goodness-of-fit tests and hit

rates.



CHAPTER 2

REVIEW OF THE LITERATURE

A wide variety of research has emerged in 'resp-onée‘to concerns about college student
attritipn. Most can be classified into three categories: psychological, sociological, and
econbmic. None are mutually exclusive and each have implications for policies dealing
with attrition. Excellent surveys of the literature include Tinto (1975), Terenzini and
Pascarella-{1980), and Tinto{1993). Emerging from these surveysis-a conrin‘ehensive
and sweeping view of sttrdent: attrition, now referred to as the “interactional theory”

of student departure.

2.1 Tinto’s Model

The interactional theory of student departure has gained a considerable following since
its principal contributor, Vincent Tinté, pubiished his 1975 article. Tinto’s theory is
derived from Van Gennep’s rites of —passage and Durkheim’s theory of suicide. The
former stresses that entering college involves stages of passage, a separation from past
communities, transition from high school to college, and incorporation into the soci-
ety of college. The latter suggests that student withdrawal, like suicide, arises when
individuals are -either unable to become sufficiently integrated and establish mem-
bershiP within the communities of college, namely the academic and social systems
that exist on campuses, or when the norms and rules on campus are not well defined.

Obviously, dropout can occur if a student fails to integrate academically (poor grade



performance, for example). In this case, dropout can -either be voluntary (like sui-
cide) qr forced through dismissal. Social integration, through peer group associations,
extracurricular activities, and interaction with faculty and administrative personnel,
plays an important part as well. The more students participate in the social life on
campﬁs/, the more likely they are to continue enrollment. However, excessive -soéial
integration can inhibit academic integratioh, thus leading to withdrawal. For Tinto,
the key to understanding the attrition process is to understan(i_ how levels of academic
and social integration of the students change éver time and how institutions influence
these systems. Adso important —tov the process are the decisions made by students
regarding the costs and benefits of continuing enrollment. Tinto acknowledges that
the ultimate decision to discontinue enrollment is a rational one; that is, at the time
of dropout,i the perceived costs of continuing enrollment are greater than the benefits.
Unfortundtely, ‘Tinto -does not ‘develop 'this-notion"fﬁrther, -and ‘it does not explicitly
enter his longitudinal model.

Of primary importance for Tinto was to develop a predictive theory of dropout.
He also believed that knowledge of how student perceptions and integration changed
over time was -the appropriate focus for validating such a theory. As a result, he
developed a conceptual model of student departure from a longitudinal perspective.
The original diagram of Tinto is presented in F igure 2.1.

In Figure 2.1, a decision is ultimately made to either continue enrollment at a
specific institution -or leave t. This decision is systematically influenced by the - inter-
play of social, economic, and institutional forces that precede it. For example, family
background, individual attributes, and precoliege schooliﬁg all have an influence on
the student’s initial commitments to the specific institution. These commitments
are manifested in-terms of goal commitments (earning a college degree) and institu-
tional commitments (attending a particular institution). For given levels of initial

commitments, students bégin to integrate into the academic and social systems of



Figure 2.1: Tinto’s Longitudinal Model of Institutional Departure.
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the institution. The former is reflected primarily in terms of grade performance ‘ﬁnd
intellectual development, while the latter in terms of peer-group and faculty interac-
tions. The degree to which a student integratesvinto the vsyst.‘ems of the institution
influences the extent to which goal and institutional commitments are revised. These
revisions, along with the level of initial commitment, ultimately influence the decision
to stay or leave the institution.

In this framework, attrition occurs primarily because of low goal commitment or
low institutional commitment, both being directly related to persistence. The level
of initial -commitments, together with integration and commitment revision, permit a
number of plausible cases in which dropout WO;lld likely occur. For exampie, a strong
prior goal commitment to degree completion, in spite of low levels of academic and
social integration, could lead to a decision to “stick if out.” It could also lead to a
transfer. - Another 'possibility s a student -‘with moderately high prior goal commit-
ment, and whb is highly integrated socially but not acadeﬁﬁcally. In this case, the
student may have the drop decision forced upon him (i.e., suspension) or may elect

to transfer to an institution with similar social systems but more forgiving academic



systems.

Tinto also points out that researchers frequently fail to distinguish between the
various forms of dropout. The behaviors associated with voluntary withdrawal are
considerably different than those for academic dismissal. While it is true that a lack
of academic integration can lead to either from of dropout, -voluntary withdrawal
has a mismatch dimension that is much less prevalent in academic dismissal. It is
also important to distinguish between a corriplete cessation of involvement in higher
education (system dropout), a temporary ‘b'reak in enrollment (stopout), and‘ discon-
tinuing enroliment in one institution to continue in another “(transfer). Each of these
types should exhibit differing behaviors.

Other important dimensions given by Tinto (1975) include college quality and
student composition. The higher thé Quality of the college, as measured by the
proportien of PhD faculty or incomeper student , the higher are the-graduation rates.
Tinto notes that this comparison masks important interactions among institutional
quality, student composition, and individual performance. He cites the “frog pond”
affect where there is a direct relationship between the ability level of the student body
and the .expectations -individual students hold for themselves. Students will tend to
self-sort, perhaps transferring to institutions where their abilities and expectations
are in line with that of the institution. A countervailing force that dampens the
self—sbrting process is what Tinto refers to as the “social status” effect. Paraphrasing
Tinto (1975, p.114) the préstige- of an insti-f;ﬂt-ion is-of value to-the individuals within
the institution and may prevent individuals of low ,relative rank from dropping out.

Tinto never published an empirical investigation of his theory. His contribution
was to define a consistent method for research that yields testable hypothesis. In par-
ticular, “[Tinto’s] theoretical model of dropout...argues that the process of dropout
from college can be viewed: as a longitudinal process-of interactions between the indi-

vidual and the academic and social systems of the college” Tinto (1975, p.94). Tinto

10



presents several claims that are potentially empirically testable, which are summa-

rized 3s follows:

Academic and social integration are directly related to persistence.

Grade performance is likely to be the strongest indicator of academic integra-

tion.

Social integration is reflected primarily through peer group associations, infor-

mal faculty interactions, and extracurricular activities.
Goal and 'instituvtional commitments are directly related to persistence.

Initial goal commitments are shaped by family background, individual attributes,
and pre-college schooling. These initial commitments are re-evaluated-as the

indiyidual begins the integration process upon entering college.

For given levels of goal commitment, institutional commitment is directly re-
lated to persistence, and for high levels of goal commitment, varying levels
of institutional commitment may indicate the difference between dropout and

tranpfer.

It is important to distinguish between the various types of dropout: Volun-
tary withdrawal versus -academic -dismissal, and between system withdrawal

(dropout), dropout and return (stopout), and transfer.

Tinto’s longitudinal model is tailor-made for path analysis. In the next section,

path analysis is briefly described and examples in the literature of using path analysis

to test many of Tinto’s core relationships are discussed.

It Fhould be noted that Tinto’s model does not take into account certain .char-

acteristics of student departure observed over time. First, Tinto does not explicitly

deal with the observed pattern of dropout experienced on many campuses; namely,.

. 11



exit rates tise at first, reach a maximum, then decline over time. ‘He does recognize
that the majority of attrition occurs during the ﬁrst year of enrollment. A partial
explanation is that as one approaches his educational goal, the likelihood of dropout
should decrease. This suggests that the college may have some impact on the drop
behavior-of more tenured students, and that to reduce attrition, policies need -only
focus pn getting students “over the hump.” If the exit profile instead reflects the
mobility-prone students drop‘ping out early, leaving behind the “slow quitters”, then
such policies may not produce the intended effect, but only delay the inevitable.
The distinction between dropout, ‘stopout, -and transfer ‘s mportant-for reasons
other than the behavioral ones given by Tinto. There are different processes at
work generating the observed data on dropout, sfopout and transfer. In particular,
the statistical treatment of a stopout shoﬁld be different from a dropout or transfer
because it is a renewal process, exhibiting an on-again-off-again pattern absent with
other forms of dropout. This difference may also show up in the behavioral variablés,
but to address stopout explicitly in a statistical sense requires a completely different,

and more complicated analytical approach.

2.2 Extensions of Tinto’s Model

Interactional theory has enjoyed considerable attention in institutional research liter-
ature precisely because it offers a comprehensive frameWork in which to understand
the dropeut process It s -also well-suited for -empirical estimation. Though most
claim that the models developed are predictive,b much of the _aiscussion in the pa-
pers revolves around the explanatory (confirmatory) power of the models. The usual
mode of empirical implementation has been to track an entering cohort of freshman
for several months, obtaining repeated observations -on responses to survey questions
designed to “load” on academic and soctal integration, as well as to obtain informa-

tion on the other elements in the path diagram. Once the data has been collected,
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the structural path coefficients are -estimated. The directions and magnitudes are
then examined to determine the relative strengths of the hypothesized relationships.
A comprehensive review of this literature is found in Pascarella (1980). The next

section provides a brief, nontechnical discussion of path analysis.

2.2.1 A Brief Discussion of Péth Analysis

A nontechnical discussion of path analysis is found in (Kline, 1994) and a more
comprehensive presentation is in‘ Loehl’in.(1987). According to Loehlin (1987) path
analysis, factor -analysis, -and linear structural relations analysis {LISREL) are all
forms of latent variable analysis because somé of the variables are not directly ob-
served. A centrai part of path analysis ié that the process is time-ordered and this
is depicted in what is called a path diagram. Figﬁre 2.1 represents such a diagram,
though it -should not be interpreted as a literal representation of -an estimable path
model, Straight one-headed arrows represent causal relationships between variables
while two-headed arrows represent simple correlations. Typically the two-headed ar-
rows are also curved to rﬁake them more distinct than the one-headed causal arrows.
Also, not shown “in 2.1 are various one-headed unlabelled arrows leading to certain
variab}es. These are known as residua,l arrows and represent a composite of other
influences on the variables they point to.

There are essentially two types of variables encountered in patv‘h analysis: in-
dependent or source variables and depen&en—t -or downstream variables. These are
~ analogous to exogenous or predetermined, and endogenous variables in the econo-
metric literature. Independeht ‘va,ria,bles‘ are considered the source of causation. They
do not have one-headed arrows pointing toward them; however, they can have two-
headed cerrelation arrows connecting them. Dependent or downstream variables are
causally dependent on the other variables in the path diagram. In Figure 2.1, the

pre-entry attributes and external commitments are the source variables; everything
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else is downstream. Residual arrows are attached to all downstream variables and
never to a source variable. The “source” variables corresponding to the residual ar-
rows are assumed to be random variables :with Z€ero means,v constant variance, and
are uncorrelated with the source variables. It is also assumed that the relationships
indicated by arrows are linear.

Specifying a path model as a system of equations suggests that the number of equa-
tions will equal the number of downétream'variables, and each equation expresses a
downstream variable as a function of its causal path. Thé causal paths fhen represent
the structural parameters ofa simultz;neoﬁs equations modelva.nd all the identification
problems associated with simultaneous equations apply to path analysis as well. The
usual method foi‘ ensuring identification is to be sure not to have more causal paths
(unknown parameters) than downstream variables (equdtions). This is equivalent to
the exclusion restrictions used for identiﬁcé,tion in simultaneous equations models.
Many path models use the time—mdered assumption of the process for creating a re-
cursive system of equations. ‘In éuch a system, ordinary least squares can be used
to obtain consistent estimates of model’s parameters, and the standardized estimates
are called path coefficients. When some of the downstream variables are latent, factor
analysis is used to obtain the path coefficients. The factor pattern from a factor anal-
ysis are the path coefficients. In Tinto’s model, goal and institutional commitments
as well as academic and social integration are considered latent variables. The signs
of the path coefficients independéntly reflect the direction of change in an upstream
variable on a downstream variable and its magnitﬁdé and statistical significance the

partial strength of the relatioﬁship.

2.2.2 Empirical Examples of Tinto’s Model

The literature is replete with empirical examples of Tinto’s model being estimated by

path-analytic methods. Most differ slightly in the exclusion restrictions used to create
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recursive models while preserving the key Components of the model. These models
typically rely on a combination of longitudinally tracked student records and surveys.
Terenzini and Pascarella (1980) describes the ﬁndihgs of six studies aimed at testing
the validity of Tinto’s model. Bean (1980), Bean (1982), and Bean (1983) alludes to
a theory of worker turnéﬂzer as a theory of student attrition. The final model closely
resembles the Tinto model, and Bean ﬁsed a path analysis to assess the iinportance of
goal commitment on dropout. Pascarella ana Terenzini (1983) used Tinto’s original
path diagram in a path analysis, focusing on voluntary Withdfawal. A generalization
of path analysis, LISREL (LInear Structural RELationship Iﬁodeling), was used by
Stage (198‘8v) and Stage (1989) to commitment levels and the integration aspect of
Tinto’s model. Eaton and Bean (1995) redefine academic and social integration in
terms of academic and social approach /avoidance, as suggested from the psychological
theory of coping‘. They use LISREL analysis on the expanded model.

The path—analytié m'ethods,vfor estimating interactional structural models have a
number of limitations. Obviouély, the quality of the survey instrument will influence
the precision of the path coeflicients. More importantly, since much interest centers
on the process byv which students revise their goal and institutional commitments,
many of the questions in the instrument involve the intientions of the student. It is
frequently assumed that statements of intent are point estimates (forecasts) of future
behavior. This is too optimistic. According to Manski (1990), even when intentions
are formed under the best of circumstances (i.e., rational ‘expectat'ion's) the best a
researcher can hope for is to place bounds on probable behavior. In addition to the
statistical limitations, there are practical considerations. As previously mentioned,
most of the studies involve repeated administration of survey instruments at key
points during the period of study. There must be .‘at least two collection points
and most opt for three or more. This is likely to be prohibitively costly for most

institutions to maintain on an on-going basis.
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Comparing the studies using Tinto’s framework is difficult because the researchers
often use different statistical methodologies, apply these techniques to different pop-
ulations, use different survey instruments, and expand, restrict, or redefine the orig-
inal model to suit their purposes. Discussing the results of Vari_ous models therefore
amounts to comparing the directional impaét of key variables. In spite of these diffi-

culties, Tinto’s conceptual design has demonstrated a remarkable robustness.

. Integratién Constructs: Those studies that explicitly controlled for academic
and social integration found that higher-levels of each were directly related to
persisténce. Eaton and Bean (1995) uses self-reported responses to surveys to
establish directional impacts of academic ahd social integration on persistence.
They find that higher academic integration tended to reduce the‘intent to leave.
Particularly important is student formal and informal interaction with faculty.
This is directly related to academic integration. Pascarella (1980) finds similar
results. In studies segménted by sex Pascarella and ‘Terenzbini (1983), Stage
(1988) social integration is far more important in predicting dropout for women
than for men. In both studies, surveys are used to obtain data for develop-
ing these constructs. The surveys differ among the studies, thus limiting the

comparability of the results.

o Commitment Constructs: Again, where explicitly controlled for, goal and in-
stitutional commitments are directly related to persistence. Comparing the
relative strengths of either across studies is difficult because of the variations in

the causal model specifications.

e Family Background: A wide variety of variables are considered to be included
in this category. In some form or another, they tend to reflect some dimension
of socio-economic status, particularly parent education, income, and hometown

demographics. Pascarella (1980) and Stage (1988) find that background char-
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acteristics are not significantly related to persistence. Other studies find similar

results and exclude such characteristics from the analysis (e.g.,Bean (1982)).

e Individual Attributes and Pre-College Experier_lce: Individual attributes typ-
ically include race, sex, standardized test scores, and choice of major. Pre-

- College experience variables are drawn from high school performance measures
such as grade point average, ‘cla,ss rank, and extracurricular involvement. Most
analyses are segmented by sex in order differentiate cért ain behavioral character-
istics, sﬁch as the aforementibned social integration. Where explicitly accounted

for Pascarella (1980), pre-college experience is directly related to persistence.

The merits of these studies are besf understood Within the ‘context of why they
were undertaken. They serve to validate Tinto’s concéptual design and to provide
a list of potential independent variables important in modeling student persistence,
both of which appear to have been accomplished. The criticisms of these analyses
are many, depending especially on the statistical orientation of those reviewing these
methods. Some common criticisms emerge. First, most of the analyses claim to be
involved in developing predictive models of student attrition, yet with the exception
of Pascarella and Terenzini (1983), none fully explore the predictive capabilities of
their models. Most interpretations of model prediction cente; around an independent
variable’s (or set thereof) ability to explain variation. Predictive performance should
not be assessed solely in terms of this explanatory dime‘r‘l“sion; it should include, indeed
emphasize, the model’s ability, taken as a whole, to predict the dependent variable
accurately. Second,‘ models are fitted to‘ the the data in ways that may not hold up to
out-of-sample validation. The use of a hold-out sample for validation purposes does
not appear to be a wide-spread practice in the literature (Terenzini & Pascarella,
1980). Third, these models assume a relatively short dropout time horizon, usually
the first year. Granted, the first couple of semesters are where the majority of attrition

is observed, but these methods cannot be used to predict dropout' “after the hump.”"
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2.3 Economics and Student Persistence

Tinto’s model is essentially a sociological model of student attrition. The key drivers
of the decision process are the student’s ability or inability to integrate into the social
systems of college. Furthermore, attrition is presented as if it weré a treatable condi-
tion. Very little emphasis is placed on the rational process by which students weigh
the costs and benefits of persisting in college. Economic theéry stresses this point.
Early research by McKenzie and Staaf (1974), Kohn, Manski, and Mundel (1976),
and Manski and Wise (1983) stressed that individual decisions about persistence are
no different in substance than any other economic decision that weighs the costs and
benefits of alternative ways of investing one’s scarce resources.

Human capital theory has played an important role in providing a framework
to model student decision making. In one line of thought, the student is both é
producer and consumer of “knowledge” Levin and Tsang (1987). The student is
engaged in producing a number of activities (one being attending college) requiring
scarce resources. The ultimate purpose of these activities is to enter the student’s
utility function in a way that yields the highest utility attainable, given the various
constraints facing the student. To achieve this utility level, the student must produce
these activities in the most eflicient way péssible. Observed chqices (i.e., what school
to attend and whether to persist) depend on the interplay between the student’s
preferences and the constraints s/he faces.

An alternative method of modeling student attrition arises naturally out of the
labor economics literature on search theory énd matching. -An excellent survey of
this literature is found in Mortensen (1986). In the job search and matching models,
the wage is the key decision bvariaitble. ‘The parallel for students is grade performance.
For a given freshman cohort,’ the chosen college represents the result of an optimal
search strategy and a criterion for determining which college to accept. In essence,

the choice is based on which of all admissible institutions yield the highest net bene- -
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fits, where admissible means the institutions are feasible (i.e., will admit the student)
and achieve at least the minimum (reservation) level of expected relative grade per-
formance. Because information about prospective colleges is imperfect, acquiring
information about them involves a cost in time and resources. Because of this, no
rational student will search indefinitely for the perfect college to attend, and will
likely continue search after enrolling at an institution. This is reasonable since much
of what is unknown about the student—college match (especially grade performance)
can only be determined through experience. A student learns about these charac-
teristics over time and re-evaluates his decision. The decision to persist, transfer to
another institution, or leave higher education altogether, involves a corﬁparison of
what is learned “on the job” and the opportunities available to the student.

An offshoot of the human capital approéch ﬁofes that decisions to attend spéciﬁc
institutions are influenced by more than lifetime eafnings considerations. They are
also influenced by considerations of where the student willvlikely fit in the academic
and social hierarchy of the institution. Heath (1993, p.83) terms “global status”
as the earnings a student expects, given his major, vdegree, and institutional choice.
“Local status” is primarily reflected in terms of grade performance. To the extent
that local status matters, a student faces a trade-off between global and local status
and will trade one for the other according to his preferences when making college-
going decisions. Frank (1985) generalized the concépts of global and local status as
economic goods. | |

Heath (1993) explores these ideas in a utility maximization model and derives a
number of implications. First}, if s‘ome students prefer more local status than others, it
is to be expected that equally able students will choose different calibre institutions
simply because some students prefer to be “a big fish in a small pond.” Second,

as enroliment tenure increases, students prefer increasing global status. The skills

a student learns while attending college are somewhat transferable, and as students
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learn about their true abilities, they may transfer to institutions offering greater global
status. Also, at the given institution, seniors would prefer measures to increase global
status (for example, higher entrance standards) because such measures enhance the
long-run value of their degrees without subjecting them to the conseqﬁences of greater

rigor.

2.4 Chapter Summary

In order to pull together many of the results of this cha,pter so that important measur-
able variables rria,y be identified, refer back to 2.1. The chronology of events leading to
the departure decision may be categorized as follows: Pre-college Attributes, Initial
Goals and Commitments, Institutional Experiences, Academic and Social integra-
tion, and Revised Goals and Commitments. The list below summarizes the types of

variables used in student persistence research within these categorizations.

e Pre-College Attributes: These are the source variables in a path analysis. In
most studies of student attrition, pre-college attributes have been found to be of
secondary importance. A further breakdown of pre-college attributes includes
family background variable such as parent’s education, income, and student’s
sex and race. The student’é skills and abilities are also considered and these are
usually measured by a standardized tests such as the SAT or ACT. Finally, the
student’s prior .bschooling is considered and measufes include high school grade

point average, graduating rank and class size, and extracurricular involvement.

o Initial Goals and Commitments: These are latent variables in a path analysis.
The primary method of obtaining data on initial goals and commitments is by
using self-reported responses to surveys administered during the first semester
of college. Measuring goals includes expectations about the highest degree to be

earned and importance of graduating. Institutional commitments are usually
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measured by considering the student’s ranking of the chosen university relative

to others and their relative confidence about their choice.

e Institutional Ezperiences: Several variables have been considered in measuring
institutional experiences. Within the academic systems, the primary variables
considered are the student’s academic performance aé measured by grade point
average, and student-faculty interactions. Measuring student-faculty interac-
tions usué,lly takes the form of a self-reported count in the past semester of the
number of formal contacts with faculty lasting at least 10 minutes (not counting

class time). Regarding the social systems of college, informal peer group and

faculty interactions are captured through self-reported extracurricular activities.

e Academic and Social Integration: These are also latent factors in the path/factor
analysis, and as such, rely on how the measured characteristics relate to them.
The preceding bullet lists some of the measures that are used in combination

with survey results to from the integration factors.

o Revised Goals and Commitments: These are again latent variables which must
necessarily be measured by follow-up surveys to the initial goals and commit-
ments. In some cases, where a student drops before the survey is administered,

and exit survey or interview can be used to obtain the data.

e Departure Decision: This decision is observed when a student either stops com-
ing to all classes or fails to enroll in the following semester. This is usually
defined to occur within some time window, for example, during the first year of

enrollment.

Clearly, much of what is used in studying persistence involves repeated and ex-
tensive use of surveys. This poses potential problems for retention research. First,

institutional budgets may be such that proper survey administration is not feasible,
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and even if feasible, the administration may not receive adequate attention. Second,
legal considerations may require that the students be given the option to make their
responses anonymous; thus precluding the ability to track an entire cohort and raising
self-selection bias problems. Finally, given fhe variety of survey instruments used in
the literature, and the fact that the responses are self-reported, it is difficult to get a
sense of the reliability of the instruments. |

There are a number of variables not ﬁsed in the literature that may help to fill the
gap where survey data is lacking. Variables that have received little or no attention
include high school background information such as expenditure per student, school
district po‘pulaﬁon7 average home value in the district (a proxy for tax revenue re-
sources), the student-teacher ratio in the district, and the district poverty rate. Under
academic performance, the student’s relative rank.does not réceive attention. This
variable measures the academic performance of the student relative to the students in
the portfolio of courses he or she is taking and is suggested by the local/global status
theory discussed above. Related to student-faculty interactions are the number of
students per course in a student’s portfolio and the proportion of those courses being
taught by graduate teaching assistants. Finally, proxies for goals and commitments
include the course-load a student takes per semester and whether the student attends

Sumimer Courses.
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CHAPTER 3

MODELING METHODOLOGY

As discussed in Chapter 2, most research has been aimed at explaining variation in
student dropout behavior using path anaiysis to specify a structural model and to
estimate the impacts of the behavioral component of the model. Dropout is usually
defined as a binary event that occurs within a fixed time window. Prediction is
usually associated with the relative importance (in terms of partial R-square) of
each estimated coefficient’s impact on dropout. .The approach used in this study is

considerably different.

3.1 Hypotheses

The aim of this study is to use statistical duration methods to model student attrition,
test 'hypotheses pertaining to attrition; and evaluate the predictive performance of
the duration model relaﬁve tobcompetitors. Like previous studies, a longitudinal
approach is used where a cohort of students is followed for a given period of time,
and attrition is influenced by a number of factors. Unlike other studies, the random
variable of interest is the amount of time a student remains enrolled, aé well as the
destination of the student, once departure has occurred.

Using enrollment duration underscores the dynamic nature of student enrollment
by utilizing the longitudinal data more effectively for hypothesis testing; the effects of

regressors are understood not only in terms of whether a student voluntarily drops out -

23



or not, but also in terms of the time to dropout, and the destination of the student
after dropout (i.e., system dropout or transfer). Furthermore, the use of duration
methods offers a way to coﬁtrol for the influence of unmeasured characteristics on
observed exit rates. The pattern of dropoﬁt, the initial increase in exit rates early
in enrollment, followed by declining rates after a certain peak, is not part of the
péth analysis typically undertaken. Finally, path models ére seldom used in a truly
predictive capacity, that is, to predict dropout. In this study the ability of a duration

model, taken as a whole, to predict actual out-of-sample dropout is evaluated.

3.1.1 Exit Rate/ Persistence Behavior

Control variables useful for explaining and predicting dropout have been suggested by
Tinto (1975) and validated empirically by the empirical stqdies outlined in Chapter 2.
Academic integration, as measured by grade point average (GPA), was identified as an
important factor, being directly related to persistence (inversely reiated-to dropout).
A better measure in line with the status-seeking theories of Frank (1985) and Heath
(1993) is the relaﬁve rank of the student to his/her immediate classmates. Relative

rank of a student enrolled in ¢ = 1,2,---, N courses is defined as follows:

n

]

RELRANK =

==
Q

1=1

where S; is the student’s grade point for course i and C; is the class grade point
average for course i. If the academic performance of an individual student deviates
substantially from that of the average in the portfolio of courses currently taken, then

the likelihood of exit should increase. Formally stated:

Hypothesis 1 For a given portfolio of courses, and all else constant, persistence

increases with relative rank to a certain point then decreases.
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In other words, the relationship between persistence and relative rank is nonlinear.
Low or high relative ranks indicate a possible mismatch bétween the individual and
course-portfolio he or she is taking. Furthermore, low relative rank applies only to
the portfolio of courses, and does not necessarily imply probational enrollment. If the
rank falls below some reservation level, students are more ‘likely to seek alternatives
where their abilities. are more in line with that of the immediafe group. In other words,
local status ‘matters. On the other hand, high ranking students are more likely to
seek alternatives yielding a higher expected return (global status) while maintaining
parity between themselves and that of the group. This reasoning also suggests that

| in terms of relative rank, and that of other behavioral characteristics, the alternatives

a student chooses upon exit are distinct.

Hypothesis 2 The behavioral characteristics, in terms of the parameters of the mod-

els, are individually and collectively different for dropouts and transfers.

In terms of the Hypothesis 1, when distinguishing between the destinations, the
hypothesized impact of relative rank for dropouts should not exhibit the nonlinear-
ity expected for transfers. Likewise, the behavior of transfers in general should be
different than that of dropouts.

In Tinto’s framework, relative rank would be considered part of academic inte-
gration. Another dimensioh of academic integration is that of ‘student-faculty in-
teractions. Two proxy varia,bleé are considered for this dimension for an individual
student: the number of students per class in the student’s portfolio and the propor-
tion of the portfolio taught by graduate student te:aJchivnvg assistants. The hypothesis

for the number of students is:
Hypothesis 3 Persistence and average class size are inversely related.

Students in large classes are less likely to interact with faculty for a number of

reasons. Competing for faculty attention is more difficult (at least not any easier)
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in large classes. For a given amount of time outside of class, the average time per
student available decreases as class size increases. There is also an increased sense
of anonymity in large claéses. Large classes are impersonal: faculty can rarely know
all students by name. Each of these factors contributes to lower student-faculty
interaction and academic integration. This, in turn, increases likelihood of départﬁre.

A high proportion of 'a,vstude.nt’s portfoiio being taught by graduate students is

also expected to have an impact on exit rates. This impact is formally stated as:

Hypothesis 4 Within the portfolio of courses taken by a student, the higher the
proportion of those courses being tadght- by graduate students, the less likely the student

will persisi.

Hypothesis 4 follows directly from the fact that graduate student teachers are
generally not considered to be faculty by the students, parents, faculty, or admin-
istration. Thus, the higher the number of graduate students teaching courses, the
fewer the opportunities forvstudents to interact with fé,culty, and this leads to lower
academic integration. It also leads to lower social integration by reducing informal
student-faculty interaction.

Tinto considered a student’s goals and commitments to earning a degree and to
the institution as important predictors of persistence. One measure of commitment
is whether or not the student enrolls in sumimer courses. This is Beca,use summer
enrollment is not required to maintain full-time student status or to graduate within

four years. Stated as a hypot.hesis':

Hypothesis 5 Students participating in summer courses are more likely to persist,

all else constant.
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3.1.2 Observed Pattern of Attrition

The pattern of dropout typically observed is one Where‘ dropouts rise rapidly in the
beginning, reach a maximum rate, and then fall over time. In duration modeling
terminology, an increasing exit rate is called positive duration dependence and a de-
creasing exit rate is called negative duration dependence. The explanatory variables
used in the model serve to characterize at least some dijmensions of this behavior.
However, if important variables are omitted from the model, the observed exit rate
will be biased downward (i.e., toward negative duration dependence). In terms of
duration models, these omitted variables are generically considered as unmeasured

heterogeneity. The effect of unmeasured heterogeneity is illustrated in Figure 3.1.

Figufe 3.1: Ttustration of Heterogeneity on Observed Hazard.
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If the student cohort is comprised of two sub—populations,‘ “slow quitters” and
“fast quitters” and we observe hazard rates for the cohort as a whole, then the
observed hazard rates will reflect the fast quitting behavior first followed by that of
the reraining slow quitters. In essence, the observed quit rates reflect the self-sorting

behavior of a heterogeneous population.
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In this study, the distribution of the unmeasured heterogeneity is parametrically
specified. The estimated parameter measures the impact of unobservable /unmeasured
student characteristics on the observed dropout rate. If the heterogeneity is signifi-

cant, then any observed negative duration dependence is augmented by it.

Hypothesis 6 Observed enrollment duration is affected by unmeasured heterogene-

ity.

If false, then all important variables are .included in the model, and a simpler model
can be used (i.e., one without heterogeneity) . If trué, the underlying process may still
| exhibit negative duration dependence. Tinto (197‘_5) ‘hypothesized that the likelihood
of dropout should diminish the clo'sér one is to achieving one’s goal. Analogous
to Mortensen (1988) students may have riéing reservation levelsbf relative rank with
tenure. As a student’s relative rank improves, the likelihood of being lured to another
institution of similar global status is reduced; especially when that institution is
offering similar relative rank prospects. On the other hand, the underlying process
could exhibit positive duration dependence. The signaling effect of a college degree
aside, the knowledge and skills students accumulate during their enrollment tenure
is likély to have some market value, and for some the difference between expected

earnings with and without degree could be negligible. Unfortunately, the data used

in this study are not rich enough to test these competing hypotheses.

3.1.3 Predictive Evaluation

In Chapter 2, the models reviewed discussed validity in terms of the agreement be-
tween Tinto’s hypothesized directional impacts and that of the estimated coefficients.
This was sometimes presented as “predictive validity.” This study differs in the in-
terpretation of predictive validify. The model’s predictive vafidity is evaluated by its

ability to predict dropout using out-of-sample data. Models that fit well in-sample
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often do poorly -out-of-sample, and ones that berfofm ‘relativély well out-of-sample
are considered to be more robust. Of coufse, this is only true when pretesting is
used variable selection or if there is structural change in the data generating process.
The variable selection procedures in this study differ from other research in that the
procedures here are primarily based on collinearity diagnostics and not statistical
selection méthods, such as stepwise regression.

A specific parametric model of student attrition is considered in this study: en-
rollment duration is assumed to be distributed as a Weibull random variable and that
unmeasured heterogeneity enters multiplicatively as a unit Gamma random variable
with constant variance, or Weibull with Gamma Heterogeneity (WGH) model for
short. The complete statistical speéiﬁcation is pfesented below; however, a brief ex-
planation of the choice is in order. The Weibull Speciﬁcatioh allows flexibility in
the determination of durafcién dependence; positive, negative, or constant. This is
controlled parametrically and the parameter estimate provides insight into the pro-
cess. The unmeasured heterogeneity enters Iﬁultiplicatively as a unit Gamma with
constant variance precisely because the estimate of the variance yields the degree to
which unmeasured heterogeneity affects the observed enrollment duration. The dura-
tion models estimated in this study are compared to two competing models: Ordinary
Least Squares (OLS) regression of dropout time on the independent variables, and an
ordered logit model, which is considered to be a semip.ara,metric method for estimat-
ing duration models Greene (1995). OLS is a me_t*hddo'lbgy closely tied to the models
reviewed in Chépter 2. Ordered logit has not been used.in retention research and
is considered because here it ésfimates the probébilities of dropout in a theoretically
consistent way, and it circumvents the problem of unmeasured heterogeneity. Stated

in terms of a hypothesis,

Hypothesis 7 The WGH model outperforms OLS or ordered logit in terms of out-

of-sample enrollment duration prediction.
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The predictive validity is evaluated by considering two components of the problem:
enrollment duration itself, and the destination after enrollment is terminated. The
destination of the student is categorical and a number of models exist to deal with
a categorical dependent variable (for example, the multinomial logit). This offers

another testable hypothesis regarding the WGH model:

Hypothesis 8 The WGH model outperforms multinomial logit in terms of out-of-

sample destination prediction.

The WGH model generalized to multiple destinations uses what are called tran-
sition intensities. These are similar to the multinomi‘alicounterpa.rts} and can be

compared to them in terms of classification accuracy.

3.2 Statistical Methodology

The material presented in this section draws heavily from Lancaster (1990), Amemiya,
(1985), Heckman and Singer (1986), and Petersen (1986). Notational styles are
adopted from Greene (1993) and Lancaster (1990).

3.2.1 Hazard Functions

Assume ‘that the time to departure is a continuous random Va,riable, T, and that a
large number of students enroll for the first time at a given university, identified as
T =0. Thus, T measures' the duration of stay at the uh’ivérsity. For the moment,
students are assﬁmed to be homogeneous with réspect to the systematic factors that
affect the distribution of T. This implies that everyone’s duration of stay ¢ will be a |
realization of a random variable from the same probability distribution.

Let dt be a short interval of time after ¢. The probability that a student departs

within an interval dt at or after ¢ is P(t < T < ¢t + dt|T > t). Dividing by dt yields
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the average probability of departure per unit of time over the interval after ¢, and

taking the limit of shorter and shorter intervals formally defines the hazard function:

< >
A(D) = Tim P<T<t+dT>1)
dt—0 dt
Thus A(t) measures the instantaneous rate of departure per unit of time at .
Denote the duration distribution function as F(t) = P(T < t) = [} f(2)dz and
the probability density function as f(¢) = dF/dt. Then

o) = 017> 0 = L0

by the law of cbﬁditional probability where 1 — F(t) = P(T > t). The denominator
is known as the svurvivor function and measures the probability a student will be
enrolled to period t. Denote this as S(t) =1 — F(¢). Note that f(t) = —dS(t)/dt.
There is no requirement that lim; ;.. f§ h(z)dz — oo or equivalently that lim; e, 1—
F(t) — 0. If these conditions are satisfied, the duration distribution is termed non-
defective; otherwise, it is defective. A defective distribution implies that in the limit,

there is a positive probability of survival.

Given the initial condition S(0) = 1, h(¢) = f(¢)/S(?) is a differential equation in

t. This is seen by noting that h(¢)S(¢) = —dSjdt. Thus, dS/dt + :h'(t)S'(t) =0is a

homogeneous first order differential equation. The solution is given by

S(t) = exp [~ / t h(z)dz] . (3.1)

Aside from the negative sign, the term in the exponent of equation 3.1 is know
as the integrated hazard. The above arguments establish a fundamental relationship
between the hazard and survivor functions; if either are known, then the other can

easily be derived. This relationship is used repeatedly in this section.
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3.2.2 Duration Dependence

Positive duration dependence is said to occur if dh(t)/dt > 0, whereas negative du-

ration dependence occurs if dh(t)/dt < 0. The former implies that the rate of exit

increases over time while. the latter means that the rate of exit decreases with time.
The condition dh(t)/dt = 0 defines a memoryless system which is uniquely identified

with the exponential distribution.

3.2.3 Product Integral Representat‘io-n' of the Survivor Func-
tion

Another way to consider the fundamental relationship between the hazard and sur-
vivor function is to consider the product integralbrepresentatioin of the survivor func-
tion. Consider the event T > t with probability S(t). Divide the interval from zero to
t into n—1 subintervals with s; =0, s5,- -, s,‘,_I, S, = t. Tohave T' > t it is necessary
and sufficient to survive each subinterval, and that the event 7' > ¢ is equivalent to

the event T > 83, T > 89,---,T > s,. Thus according to (Lancaster, 1990, p.11),

P21 = [P 28T > sm0)

= H[l - P(T‘< Sle > 8]'_1)]
7=2 .

= JI0 = P(sj-1 ST < 55T > s85-1)]
=2 '

= I = A(si-1)(si = si-1)] + Ba (3.2)

=2
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by the product law of probability, where R, goes to zero as the difference (s; — s;_;)
goes to zero. Equation 3.2 is true for any n, thus

P(T > 1) = ghl1 — h(s)ds]

where

o401 — h(s)ds] = Jim T11~ h(ssa)(s; — 51-2) (33)

Equation (33) defines the product integral of the function A(s) from 0 to ¢. By
(3.1) S(t) = P(T > t); hence, it follows that -

1
pb[1 — h(s)ds] = exp [—/ h(z)dz] . ‘ (3.4)
o :
Another property of the product integral representation of the survivor function
is that it factors into products of conditional survivor functions, that is p) = pg - !,
for 0 < t; < t. This follows because

exp [— /th(z)dz]: = exp [—— /: h(z)dz — /tt h(z)dz].‘

o i

= exp [—— /Ot1 h(z)dz] - eXp [— /tlt h(z)dz] . (3.5)

In general, the survivor function factors into the product of conditional survivor func-
tions for nonoverlapping adjacent segmentsrof time. This is an especially convenient
property when dea,ling with fime—varying covariates, and this topic is taken up below.
Essentially in the product integral representation of the survivor function at ¢, the
survival to ¢ is considered to be the survival through a sequence of Bernoulli trials
where success is surviving through the interval [s;-;, s;). The probability of success,
given the survival to the start of the interval, is one minus the product of the hazard
rate for that intervai and the interval length, as the interval length goes to zero.

A discrete time hazard model is defined when h(t) is zero except at a finite or
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countably infinite number of points ¢;, where the hazard function takes values h;{;).
‘This implies that P(s;_; < T < s;|T > sj-1) = hy if [sj_1,5;) contains the point

and is zero if [s;_1, s;) contains none of the points ¢;. In this case, (3.3) becomes

P(T>t) = gpll —h(s)ds]

= I (-4 (3.6)

Jlti<t

The above considerations illustrate a connection Between'discrete time (Markov)
models and continuous time (duration) models. In fact, Amemiya (1985, p.433)
begins his discussion of duration models as the limit of discrete time Markov models
and proceeds to derive many of the above results from that perspective. He further
states that one may want to consider using a continuous timé Markov model (i.e., a
duration model) in situations where observations are observed discretely over irregular

intervals. -

[[]n many practical situations a researcher may be.able to observe the
state of an individual only at discrete times. If the observations occur at
irregular timeé, it is probably more reasonable to assume a continuous-
time Markov model rather than a discrete-time model (Amemiya, 1985,

pp.440-441).

Lancaster (1990, pp.12-13) provides other reasons for considering continuous-time

models over their discrete counterparts.

First it is often mathematically simpler and more elegant. 'Second,‘. there
is rarely in ecoﬁofnics a natural discrete-time unit. And third, if different
investigators each work with a continuous-time model they will report
estimates of parameters that are at least dimensionally comparable even

when their data may be grouped or aggregated over time in different ways.
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These considerations are especially relevant when dealing with enrollment data,
which are almost always recorded discretely (i.e., semesters or quarters) and often in

irregular intervals (e.g., summer versus fall semester).

3.2.4 Censoring

Most duration studies involve some sort of censoring mechanism. Kalbfleisch and
Prentice (1980) describe many forms of censoring that can occur. Notationally, dj is
a censoring indicator, assuming a value of 1 if the failure event % occurs and 0 if cen-
sored. The type of concern in this study is right censoring. This occurs because some
students are still enrolled when the sarﬁpling period is terminated: The censoring
just describes is ‘sometimes referred to as Type I censoring. Also considered as Type I
censoring is the case when censoring times vary between individuals but are known in
advance. If cens.orinvg‘ times vary and are not known in advance, this is referred to as
random censoring. In contrast, Type II censoring occurs when the experiment isvter—
minated after observing a certain failure time (after the earliest) with the remaining
surviving times censored. The importance of censoring is that censored observations
are incomplete; that is, their failure times have not been observed. Essentially, all
that can be estimate.d from these observations is the probability of being censored.
Estimation is also more complicated because the log-likelihood function now contains

the survivor function in the equation.

3.2.5 Multiple Destination Models

The type of process considered in this study is a single cycle model with multiple
destinations. Single cycle refers to the passage of a person from entry into a state to
exit from it. Thus, the cycle of student enrollment will end when the student transfers
to another institution or drops out of the system.

Multiple destinations can be introduced simply by subscripting the hazard and
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survivor functions, though the interpretation of each changes somewhat. Suppose
there are K possible destinations & = 1,2,---, K and let the set dx contain dummy
variables where dj, equals 1 if destination k is entered and zero otherwise. Then the

transition intensities are written as
hi(t)dt = P(depart to state & in the interval, (t,t —i-.dt) given survival to t).

Lancaster (1990) shows that the hazard function is the sum of the transition intensities

over the destination states:

h(t) = Y k(). | (3.7)

Obviously, when there is only one destination, the transition intensity is the hazard
function.

The marginal probabilities of the destinations are defined as
7, = P(departure to destination k), k£ =1,2,---, K.

The connection between the marginal probabilities and ‘the transition intensities is

established by first noting that

S(t)hi(t)dt = P(survival to ) x P(departure to k in (¢,¢ + dt)| survival to t)

= P(departure to k in ¢, + dt). (3.8)

In essence, (3.8) svpeciﬁes the proportion of an entering cohort that departs to
destination & in (¢,¢ + dt). Integrating over ¢ gives the proportion of the cohort

departing for destination %,

e = /0 " S(s)hi(s)ds. (3.9)
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. The survivor function conditional on departure to destination k is
Sk(t) = P(survival to ¢, given that depaxture is to k)

with Fy(t) and fi(t) being the corresponding distribution and density functions. The
probability of surviving to ¢ and departing to & is ﬂ‘kSk(t): It follows that summing
these probabilities over the number of destinations gives the probability of surviving

to ¢, that is, the survivor function:
S@t) = mSk(t). (3.10)
k=1
The probability of departure to &k in (¢,¢ + dt) is
S(t)hi(t)dt = my fi(t)dt. - (3.11)

To see this, integrate (3.11) over ¢

/0 T S()he(t)dt = /0 e fu(t)dt
= m j{, ~ fult)dt

= ﬂ'k

which is the marginal probability as specified _in"(‘3.9).' From (3.11) the transition
intensity hx(t) is equal to fi(¢)mx/S(t), which shows that the conditioning event for
the transition intensity is survival to ¢, not survival to ¢ and departure to k.

The joint probability density function of the destination indicators dy and T is
derived from (3.1), (3.7), and (3.11). First note that

P(departure to k at t) = hy(t)S(t)dt
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Pi(t) = hi(?) exp[ /th(u du] \ (3.12)

Then the joint probability density function for the dj and ¢ is

o
v

P(dlad%'”adK’t) =

o
Il
-

hk(t) "exp( / dehk(u)du)]
= exp (—/OFth(u)du) H Ry (t)%
o k=1 le ,
- expg[dkloghk(t)— /0 hk(u)du]. (3.13)

i
| ﬁ,':}x

Once a functional form is specified for the transition intensities, (3.13) leads immedi-

ately to the likelihood function.

3.2.6 Covariates

Introducing covariates (or explanatory variables) into the analysis allows for system-
atic differences between students to condition the duration distribution. Thus, the

hazard may be written as

Pt <T <t+dt|T >t,x)

h{thx) = Jim dt

where X is a vector of covariates. The covariates aré assumed to be time invariant.
If this is not the case, then special estimation problems arise, with implications for
hazard function models. |

Kalbfleisch and Prentice (1980) ideﬁtify two broad classifications for covariates;
external and internal. External covariates are either considered fixed over time or if
they vary, they are not directly related to the observed durations or exit rates. Time-

varying external covariates do not functionally depend on stochastic process that
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generates the durations. They are exogenous (Lancaster, 1990). Examples of fixed
external covariates in this study include ACT scores, race, and sex. Time-varying
external covariates would include, for example, the student’s age, grade point aver-
age, or marital status. Internal, time—va.fying covariates are observed so long as the
individual survives and is not censored. Its observed value carries information about
the survival time of the corresponding individual. Examples of internal covariates in
this study include the relative rank of a student or enrollment status. These variables
are considered to be endogenous, though not necessarily in the same sense as simul-
taneous equations. The endogeneity in duration models affects the interpretation the
hazard and the relationship between fhe hazard and survivor function. Internal co-
variates preclude the probabilistic interpretation of the hazard and survivor functions
because the conditional pfobability of exit atb time ¢ is c‘onditioned_ by x(t), itself a
function of t. Inferences about the hazard conditional on x(t) can be made if certain
assumptions about x(t) are made.

Denote a vector of time-varying covariates as x(s) whose value at time ¢ is x(¢).
The process may be stochastic (grade point average) or deterministic (age). If stochas-
tic, the state space may be discrete or continuous. Petersen (1986) has shown that
if time can be divided into nonoverlapping adjacent time segments such that the
time-varying covariates are constant in each segment, then the likelihood function
can be factored into a step-like function which can be maximized according to the
parameters of the model. For simplicity, #ssume only one destination and no cen-
soring. To formulate the model, let ¢ be divided into n exhaustive, nonoverlapping
intervals sp < 53 < -+ - < 8y, where sp = 0 and s,, = ¢t. The covariates are assumed to
stay constant within each interval, but may vary between intervals. The hazard for

the interval (s;_1,s;) is h(t|x;). Then from the relationship between the hazard and
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survivor function,

P(T > T > 5. l,x_,)—exp( Z/SH ulx;)d )

Thus, the survivor and probability density functions are

S(tx(t)) = HPT>SJ|T>3] 1, %)

=1

- eXp( E [ hlub-a)d ) (3.14)

and -
F@x(@) = h(tx(2)S(tx(t))
= h(t|x(t)) x exp( Z/s_l u|X] ) . (3.15)

Using the results from (3.13) for the case of multiple destinations, (3.15) becomes

k=1

p(dy,ds,- - -, dg, tx(t)) = expz l:dklog hi(t) Z/ h(u|x;_ u} . (3.16)

3.2.7 Accelerated Failure Times and Proportional Hazard
Models

The assumption behind both the accelerated failure time and proportional hazard
model is the ability to separate the hazard fﬁnctions’intq two parts. The proportional

hazard model assumes the hazard can be expressed in the following form:
h(x,t) = k1 (x)ka(t),

where k; and k; are the same functions for all individuals. The function k; is called
the baseline hazard. Covariates affect the hazard multiplicatively. The ability to

factor the hazard into two parts is a great simplification in estimation; especially for -

40



log-transformation of the hazard.

The accelerated failure time model expresses the duration of an individual as

Ty
T =
CABY
where Ty is a random variable not involving x or B8 and A is some function.” The
duration or failure time of an vindividual is accelerated or decelerated with x relative
to To depending on whether A > 0 or A < 0 (hence the name). Taking logs of both

sides yields
log T =log \(x'B) 4+ log To + U

where if A(x'8) = exp (x'B), the model would résémble a linear regression model and
be estimable via least squares, depending on the assumptions about the error term
U. If some observations were censored, then least sciuares would not be appropriate;
instead, limited dependent vé,ria,ble procedures such at the tobit model could be used.
In any case, though it is possible to use simpler estimation techniques in duration
modeling, Kalbfleisch and Prentice (1980) shows that they are inefficient relative to

maximum likelihood, especially the ordinary least squares estimator.

3.2.8 Unmeasured Heterogeneity

When regressors are used in the hazard function, it is sometimes assumed that those
covariates (1) completelsf capture the systematic differences between individuals, and
(2) they are measured without error, denoted v. If either of these assumptions fail
to hold, the models will contain unmeasured hetefogeheity. 1n standard regression,
assumptions about the error term are made to alleviate the effects of unmeasured
heterogeneity. In duration models, the effect of unmeasured heterogeneity is to bias
the hazard function toward negative duration dependence. To see this consider the

argument given by Heckman and Singer (1986, p.53) which is based on an applicatidn
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of the Cauchy-Schwartz theorem. Let A(t|x,v) be the hazard conditional on x, v and
h(t|x) be the hazard conditional only on x. The conditional distributions for these

hazards are respectively F (tlk, v) and F(¢|x). Then by the definition of the hazard

function
4 f(tx,v)
ARy = T o)
O = Ju fx v)du(v)
MR = TSRk vl
and \ ' : v
dh(tx,v) ) ftlx,v) 1
ot - 1—F(t|x,v) _[I—F(tlx,v)]
Then
Oh(tjx) fv[1_F(tgx,u)]2Mg;‘—’?ldu(u)
ot - F(x,v)ldu(v) _1 |
[, F(the,v)du(v)]® = [, (L8ESsdu(v) f,[1 — F(t]x, v)ldu(v)

[ — F(tho,v)Jdu(o)]

The numerator of the second term can be rearranged further to show

L ftx,v)du@) £2(tx,v)
1 — F{t|x, v)]du(v ( ) - : du(v)| .
/! )% [ VLI = F(tlx, v))du(v) / (/1 = F(tlx,v))? )

The bracketted term is always nonpositive by the Cauchy-Schwartz inéquality.
Incorporating unmeasured hetbero‘ger‘ieit‘y into the duration model is usually accom-
plished by conditioning the hazard fﬁnctibn, ﬁ(tlx(t), v(t)). If v(t) = v for all t, this
is referred to as unmeasured scalar heterogeneity, and is often used in practice. Fur-
thérmore, unmeasured heterogeneity is 'a,ssﬁmed‘t-o enter the hazard multiplicatively;

h(t|x,v) = vh(t|x).

42



3.2.9 Parametric Hazard Specification, Estimation, and In-

ference

Now consider specific forms of the duration distribution. In particular, consider the

Weibull model:
F(t) =1 —exp(—At)® (3.17)
S(t) = exp (—Atv)"‘ | (3.18)
f(t) = aXt* ' exp (—At)* (3.19)
h(t) = ad(A)*1 ,, (3.20)

where a, A > 0 and equations 3.17 through 3.20 describe the distribution, sur-
vivor, density, and hazard functions, respectively. Models with covariates typically
specify A = exp(—x’ B). This notation will be suppressed in the following discussion.
Depending on whether « is less than (greater than) 1, the hazard will be monotoni-
cally decreasing (increasing), and in the case where a equals 1, the hazard is constant.
Thus, the Weibull model by itself would not be an appropriate specification for the
observed duration of enrollment. Aécounting for unmeasured heterogeneity results in
a mixture model specification that allows non-monotonic hazard rates.

Assume that v is dist‘ributed as a Gamma random variable. The density of v is

a,,a—1,~bu
b*vele

f(v)—m—7aab>0;?)20

with E(v) = a/b, Var(v) = a/b%, and the denominator is the Gamma function. If v
is a realization of a unit Gamma random variable with mean 1 and variance o2, then

a=b=0, E(v) =1, and Var(v) = 0% = 1/0. The density of v now becomes

43



Lancaster (1990) shows that a mixture of the Gamma with Weibull distributions
yields what is called the Burr distribution, the survivor function may be written as

(Greene, 1995, p. 738)

S(t) = expected value over v of S(t}v)

- /0 " oS(thv)dy
= [146(\)°]Y/°

where S(t{v) = vexp —(At)®. Recall that the hazard is the product of the survivor
and density functions, and that the density is minus the derivative of the survivor

function, it is fairly simple to show that the hazard function is

h(t) = eA(M) 7ML+ 6(a)*) ! (3.21)

= a,\(,\t)"fIS(t)?. - (3.22)

The first term, aA(At)*~1, is the Weibull hazard and {1 + 6(A\¢)*]™! is the mixture
survivor function. The parameter 6 captures the effect of unmeasured heterogeneity.
The log-logistic model emerges as a special case when 6 = 1, and the Weibull model

results when § = 0. The expected survival time is given by

rA+ )G —3)
oFEI(E 4 1)

E(T) = M~

Lancaster (1990, pp. 195-197) provides a score statistic test to determine the
existence of an interior maximum of 8, which occurs for non negative values. This
has implications for the appropriateness of the mixture model. A quick method of

checking this by computing the following

S =

DO |

v[iti'“?,étnl

n=1
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where 1,, is the duration of individual n. If S is negative, then potential computing
problems are likely in trying to fit the mixture model to data.

In specifying the likelihood function, let n = 1,2,-- -, N denote the nth individual,
k=1,2,---, K be the kth destination, and v be a J dimensional vector of parameters.
Based on (3.22), this vector includes a, 8, and ¢ where A = exp(—x’,3). The data
consist of a duration ¢ and a vector d of K — 1 binary destination indicators of which
exactly one is unity and the rest are zero. (The origin state is echuded). The log

likelihood contribution of an individual is (Lancaster, 1990)

L; —Z[dnkloghnk / () du] (3.23)

where h,.(t) is the transition intensity of individual n out of the origin state, the
summation is over all possible states, excluding the origin, and the kth element of

the vector dy, is dnx. The full log likelihood is given by

N K
D=3 [d 108 Ak(t / i (u)du] (3.24)

n=1 k=1

or, by interchanging the order of summation

K
L=Y 1L | : (3.25)
P> o |
where
N .
L= 3 [duk log hoi(tn / o (). (3.26)
o n=1 .

L is in part the sum of the contributions from each of the X —1 destinations. If K* <
K are specified parametrically and the remaining unspecified transition intensities
are functionally independent of 4, their contribution in (3.25) becomes an additive

constant. Since adding a constant to the log likelihood does not affect maximization
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with respect to «, (3.25) may be written as

L= L. (3.27)
keK*

Following Lancaster, simplify the notation by writing

tn
op = /0 i (w)du

The first order conditions are

—_Z Z [nk__znk] _07j=172a"'7J7 (328) v

67.7 n=1keK* L

where .
W = oh 2 = gz_

a ')’J 0 ’YJ

and J is the dimensionality of 4. The Hessian is given by

Foabope RSt~ EE N

a’Yja’)’l n=1keK
Ll=12---,J

The information matrix is -

oL } (3.30)

I = —E‘»[B’yja’yz" .
The maximum likelihood estimates, 7, are found by solving equation (3.28) for 7.
The well-known asymptotic pfoperties of the MLE are (1) the MLE is consistent, (2)
the MLE is asymptotically normally distributed, and (3) the MLE is asymptotically
efficient.

The MLEs # are substituted into (3.30) to derive an estimate of the asymptotic
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covariance matrix of 4
V{H) =13)7T

which may be used for hypothesis testing about the elements of ~.

3.2.10 Predictive Measurements

The Weibull model is compared to competing models in terms of both predicting
enrollment duration and the destination upon departure. The bmodels used for pre-
dicting enrollment duration are ordinary least square (OLS) and ordered logit. The
model used for predicting destinationv(i.e;, continue, transfer, or dropout) is a multi-
nomial logit. The competing models are estimated using data from the last semester
enrolled (just prior to departure). In contrast, the WGH model is estimated using the
longitudinal data for each student which includes data observed each semester the
student is enrolled. However, all models use the final semester’s e‘nroﬂment data for
making predictions. This is done so that predictions from aﬂ models are compared
on the same information sets.

If longitudinal dynamics matter in the departure decision, then the WGH model
should have a predictive advantage because it uses this information in the estimation
process. On the other hand, if only the most recent information matters, the WGH
model mdy nof have an advan_tdgé and could perform worse than the other models.
The WGH model may also perform worse because it is overparameterized; that ié, it
imposes too much structure on t‘hé problem and does not fit the data well. Before
discussing how prediction comparisons are made, each of fhe competing models are
briefly described. For a textbook discussion of these Iﬁodels, see Greene (1993). To
avoid confusion, the parameter vector  is used generically to describe a vector of
unknown parameters. to be estimated and is not intended to be specific to any one

model.
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Ordinary Least Squares

Consider the linear model, y = X3 + ¢ where y is a T x 1 vector of observations on
enrollment durations, X is a 7' X K matrix of independent variables, 8 is a K x 1
vector of unknown parameters, and e is the distlirba,nce term assumed to be an inde-
pendently, identically distributed random variable with zero mean, constant variance,
and no correlation with the independent variables. Then the OLS estimator is given
by

B = (X'X)'Xy. | (3.31)

If the assumptions about the error term are correct, then the OLS estimator is un-
biased, consistent, and has smaller sampling variance than any other linear unbiased
estimator. If the error term is normally disfr’ibuted, then the OLS estimator is also
the maximum likelihood estimator and is asymptotically efficient.

Because enrollment durations are nonnegative, the zero mean assumption of the
error term is questionable.. However, if the log of duration is used instead, the accel-
erated lifetime model described in the above section applies, and though ineflicient

relative to maximum likelihood, OLS can be used.

Ordered Logit

Suppose the linear model for the ith individual (¢ = 1,2,---,T) is now given by
y* = B'x; +e; where y} is unobserved enrollment duration; however, what is observed
is |

0 ifyr <0

1 H0<y <m

I
N

Yi if py <yi < pg

J it p <yl
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where the y’s are unknown parameters to be estimated along with 3. This is the
process that describes the data in this study: observed durations are either zero
semesters, one semester, two semesters, etc.
Let pt9 = —oo and pj = oo. Then define the following
Uoifpi <y <py

Zis =8 .
0 otherwise

and

P(zij =1) = F(u; — B'%:) — F(ujoy — %)

where F is the standard logistic cumulative distribution function (c‘df ), 1/ ( I4exp(—8'%;)).

The likelihood function is given by

L= TTTIIF (s = B'%) = Plosms = Bx)]". (3.32)

=1 j=1

Equation 3.32 can be maximized with respect to the y; and 3 using iterative methods.

Multinomial Logit

Suppose there are m unordered categories for each individual ¢ = 1,2,---,T with

correspbnding probabilities P, P, -, Py, and F is the standard logistic cdf. Let

P‘l ‘ )
— = F(fx;)
Pil ‘l‘ Hm . (ﬁlx )

P
2 — P(Bx;
P + Pim (Ba2)
Pl j—1 | 7
— - = F(B X
P 1+ P (Big-13)
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These imply that

Pij F(/B_;x’z) ]
-sz 1 F(ﬂ;)@) exp(ﬂ]xl)
Note that
P 1-P, 1 1
j=1 -sz -P'im -sz .
so that
-1
Pin = e
+ X7 exp(Bix:)
and

o exp(Bxi)
U1+ i exp(Bxi)

If we consider the P;; and P, as multinomial probabilities and a dummy category
indicator is defined as
1 if individual iis observed in-category j

Yi; = ‘
0 otherwise

then the multinomial logit model likelihood function can be written as

T _
L=[[ P¥ Py Pim. (3.33)

im
i=1

Equation 3.33 can be maximized with respect to the unknown parameter.s‘ B} using

iterative methods.

Predictive Evaluation Methodsb

The problem of evaluating the predictive performance of the WGH model is divided
into two parts: (1) evaluate the ability of the WGH model to predict enrollment
duration and (2) evaluate its ability to predict departure destination. Regarding
enrollment duration, the WGH model is compared to OLS and ordered logit. With

respect to departure destination, the WGH model is compared to multinomial logit.

30



All models are compared using statistical methods suitable for contingency tables.

To be consistent With the discrete nature of the dependent variable, the integer
value of each model’s duration predictions are used for comparison to the actual
number of semesters completed. That is if the WGH, OLS,v or ordered logit yielded a
prediction of 6.8 semestefs, the integer part, 6, would be used for predicted enrollment
duration. This is consistent with how the dependent variable is defined: if a student’s
actual (unobserifed) departure occurred at 6.8 semesters, the student would have been
observed to complete 6 semesters and fail ‘to enroll in the 7th.

The WGH and OLS model yield predictions of enrollment duration whereas or-
dered logit predicts the probability of departing at a particular semester. To convert
the ordered logit probébility predictions into enrollment durations, the following for-

mula is used:

T
ETIME =Y t*P,
t=1

where ? is the semester and P is the predicted probability of"de‘parting at semester 7.
Both the modeling and validation data are censored at the 7th semester; therefore,
any prediction exceeding the 7th semester is censored as well.

The discrete enrollment predictions are cross-tabulated with the actual enrollment
durations, forming a contingency table. A model is said to predict well if there is
a strong, positive linear association between the predicted and actual enrollment
durations. Various tests and measures of goodness—of—ﬁt,are available for contingency
tables and those used in this study'.Wﬂl be deSéribed shoftly.

The categorical dependent variable designating‘ departure destination is deﬁned
as follows: If a student survives to the 7th semeéter, then the ciestination variable is
coded 0 for “continue.” If the student drops out, the destination variable is coded 1
and if the student transfers, a 2 is coded. To compare the WGH model’s ability to
predict departure destinations, the predicted enrollment duration and the transition

intensities are used to define a categorical destination prediction variable. If the pre-
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dicted enrollment duration is at least 7 semesters, then the destination prediction is
coded zero to designate “continue.” If the predicted enrollment duration is less than
7 semesters, then the maximum of the transition intensitiés are used to determine
whether the student drops out or transfers. ‘If this maximum is the dropout intensity,
then the destination prediction is coded 1 for “dropb‘ut”7 otherwise the destination
prediction is coded 2 for “transfer.” For the multinomial predictions, the maximum of
the three probabilities is Chosen as the prediéted destination and coded accordingly.
In the multinomial model, continued enrollment is set to be the normalizing cate-
gory. The WGH and mult_iﬁomidl destination predictions are cross-tabulated with
the actual destinations to form contingency tables. Again, a good fit is indicated by
a str(;ng, positive linear association between the actual and pi‘edicted destinations.

The general form of an r X ¢ cortingency table is presented in Table 3.1:

Table 3.1: An r x ¢ Contingency Table.

Actual Qutcome

Predicted Outcome 1 2 - ¢ Total
1 ni; Mz ot N ni.
2 R21 N2z -+ Ny na.
T Nr1r Npz 0 Npe L
Total ny Ng -+ N, n
Notes -

ni; is the number of ¢ predictions that were actually j.
n;. is the sum of row 1.

n.; is the sum of column j.

r; is the ith row number (rank order).

¢;j is the jth column number (rank order).

=3 2 nirifn

= i X, nijci/n

7
c

The Kruskal-Wallis nonparametric test is used to test the null hypothesis that
the predictions of the £ models are independent samples from identical populations.

For large samples, the statistic is approximately distributed as a chi-square random
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variable with & — 1 degrees of freedom under the null hypothesis and is computed as

follows:
n+1 Zk -—3(n+1)

where r; is the sum of the ranked predictions of model i. Failure to reject the null
hypothesis suggests that the models predict similarly. Rejecting the null hypothesis
provides a basis for comparing the relative differences between the fnodels.

Within each model, a Simple (corrected for continuity) chi—square test is used for
testing the indépéndence of the actual and predicted duratiéns and destinations. The

test is computed as follows:

e,-j

C : ZZ [‘max(O, Inij — eij] — ().‘-5)]2

where n;; and e;; are the observed and expected frequen'ciesl, respectively, for ceﬂ
ij. The expected frequency is calculated as follows: e;; = (n,n]) /n. This statistic is
distributed as a chi-square random variable with (r—1)(c—1) degrees of freedom under
the null hypothesis of independence. Failure to reject the null hypothesis implies
that the model’s predictions are independent of the actual outcomes. Rejecting the
null hypothesis provides a basis for measuring the degree of association between the
predictions and actual outcomes.

When ¢;; < ‘5, the chi—squdre test ébove may not be valid, and test results are only
approximations. Fisher’s exact test can be used to confirm the suggested significance
from the chi-square approximation. To perform Fisher’s exact test, all possible tables
of nonneg‘ative iﬁtegers are computed consistent With fixed n; and n.jv. For each table,

a hypergeometric probability (p-value) is computed using the following formula:

33



The p-value for the observed table, P..;, is also computed. The p-value of the test
is the sum of all p-values less than or equal to P,.;, and if this sum is less than
or equal to a chosen significance level, a Signiﬁcant association between the rows
and columns exists. Unfdrtunate_ly, the test is not computationally practical when
nf(r — 1)(ec—=1) > 5 (SAS Insfitute, 1990, pp.333-34). In this study, this fraction
is 593/49 ~ 12 usingr the smaller validation sample, implying Fisher’s exact test is
infeasible.

Association fmkeasures for enrollment durati;)n are straightforward because of the
ordinal natur,evbetween actual and predicted durations. Pearson’s correlation coef-
ficient is used to evaluate the degree‘of‘ association between predicted and actual

enrollment durations. This statistic is computed as follows:

o i ;i (ri — 7)(¢; — )
‘ \/Ei > nai(ri — 7) 305 225 nij(e; — ©)

It has range —1 <'r < 1. When comparing model predictions, the model with the
highest correlation coefficient is presumed to be the best performer of those being
compared.

A more restrictive measure of association is the overall hit rate: 3 ,_; ni/n. It
measures the degree of exact agreement between the predicted and actual outcomes.
‘High hit rates can be a Iﬁisleading indicator of overall fit if there is an especially high
concentration of hits in a particular diagonal cell.

Pearson’s correlation coeflicient is not an a_ppropriat“e measure of association for
the destination models (St‘okes,»DaVis, & Koch, 1995, p.95). This is because the rows
and columns of these tables are not ordinal. The measure used instead is a conditional
entropy coefficient. The entropy coeﬁicient measures the uncertainty (entropy) of the

actual outcomes explained by the predictions. Its range is 0 < Ugr < 1 and is

o4



computed as follows:

= S (mifn) I (i fn) — Sy(ng/m) In (/) + 555 5 (nis /) In (i /)
-3 (nj/n)In(n;/n)

Ugir =

The model with the higher entropy coefficient is presumed to predict better.

For a general discussion of the the tests and associations measures discussed above,

see Stokes et al. (1995) and SAS Institute (1990).

3.3 Chapter Summary

This chapter began by describing the major hypotheses to be addressed in the analy-
sis. Four hypotheses were presented relating to the longitudinal charaéter of student
~ enrollment, as well as to the relative merits of using statistical duration methods to
model persistence. Theoretical considerations suggest that the effect bf écademic in-
tegration is nonlinear; that is, low levels of academic integration (measured here by
relative rank) are associated with a low likelihood of persistence. As relative rank
increases, the likelihood of persistence increases, but after a point, higher relative
rank decreases this likelihood. Distinguishing between system dropout and transfer
is important, and it is hypothesized that the behaﬁora‘l characteristics of each are
different. Related to student-faculty interaction and academic integration, two vari-
ables are considered to be i‘nversely relafed fo persistence: the average class size in
a student’s portfolio and the proportion of the portfolio being taught by graduate
teaching assistants. Two measures that show highér goal commitment and should be
directly related tb persistence are the student’s Williﬁ‘gness to take a heavier course
load and the willingness to enroll in summer courses.

Many characteristics that are theoretically important to predicting student persis-
tence are unobservable. Social integration, goal commitments; and others all reflect

to a certain degree the students tastes and preferences, and given that these tastes
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a,nd preferences vary considerably from student to student, it is hypothesized that
this unmeasured heterogeneity is the primary reason for the observed pattern of stu-
dent departure. In other words, students self-sort. The declining dropout rates with
enrollment tenure reflect this self-selection process, and not that continued enroll-
ment profoundly changes preferences in.favor of persistence. Finally, the model used
in this study is compared to competing models in terms of out-of-sample predictive
accuracy. This type of validation has not been the norm in previous studies. It is
hypothesized that the model devéloped here will outperform the comparison models
in out—of—sampie predictive accuracy.

The statistical approach was also described in this chapter. A general approach
to modeling duration data using haiard functions was described and various proper-
ties were illustrated. The method of incorporating covariates into the analysis was
illustrated and linkages between linear models and hazard models were made. It
was shown how the éffeCt of unmeasured heterogeneity influences the hdzard, and
how, given assumptions about the hazard and unmeasured heterogeneity, a para-
metric model of duration could be specified and estimated using maximum likeli-
hood. Under certain conditions, these techniques can be used to estimate cause- or

destination-specific hazard models (also called transition intensities).
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CHAPTER 4

DESCRIPTION OF THE DATA

The data in this study cons'isted of a cohort of new freshmen"begin‘ning enrollment
in the Fall 1993 semester at Oklahoma State University (OSU). There were 2,188
new freshmen ofﬁcially recorded as enrolled at this time. Of these, 98 were excluded
from analysis: 14 were erroneously included with the freshman class, 8 never attended
their first semester, 62 were missing background data, and 14 were aﬁtually trans-
fer students. Thus there were 2,090 true new freshmen available for analysis and the
summary statistics for these students are presented in this chapter. For modeling pur-
poses, an additional 258 students were excluded because of an academic suspension in
the subsequent semesters. This was done to be consistent with the existing methods
of studying voluntary attrition. Of the remaining 1,832 students, 799 (43.6 percent)
voluntarily departed by the Fall 1996 semester. Various background characteristics
as well as regular semester coufse and perforfnance data were used to estimate the
models, Background information included the student’s high school rank as a per-
centage of the glraduating class size, the composite ACT score, the student’s sex and
ethnicity, and t:he residency status of the student. Longitudinal data included the
relative rank of the student within the current portfolio of courses taken, the aver-
age number of students in the portfolio, the proportion of instruction conducted by
graduate student teaching assistants, financial aid, summer enrollment, problematic

enrollment (i.e., academic notice or probation), and preprofessional and engineering
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major indicato;s. The dependent variables measure the number of semesters of con-
tinuous enrollment and whether the student, immediately upon departure, transfers
to another institution or drops out of the system. These data are randomly assigned
to two samples: two-thirds of the data are used to estimate the models and one-third
are used to provide oﬁt-of-sample predictive validation.

There are tyo primary data sources: Student Records maintained at OSU, and
the Unitized Déta System (UDS) maintained by the Oklahoma State Regents for
Higher Education. A third source, School District data obtained from the National
Center for Educational Statistics, was initially considered but ultimately not used.
The following sections describe the data available from each source. Obviously, not
all data are directly used in the analysis. Many of the variables are included for
matching purpbse or to facilitate the creation of analysis variables. A final list of

analysis variables is provided in the chapter summary.

4.1 Student Records

Student records are maintained and updated by OSU on a per-semester basis, and
the fall semester marks the beginning of a new school year. For analysis purposes,
any summer enrellment activity is usually combined with the 'resﬁlts of the follow-
ing faﬂ semester, so that fall and spring vsemesters ére the tracking units. This is
done primarily because summer enrollment is_not required to maintain “continuing
student” status for financial aid and reporting purposes.

Student records data for this study were extracted from‘ several sources and three
files were created: the student demographics, course data, and student retention fites.

The student demographics file elements are described in Table 4.1.
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Table 4.1: ‘Variable Names and Descriptions from Okla-
homa State University Student Demographics File

Variable Description :

ID Student’s OSU identification number*

LNAME Student’s last name

FNAME Student’s first name

SEX Student’s sex (M or F)*

RESIDENT  Student’s residency status (In- or Out-of-State)*
CLASS Classification code (Freshman, Sophomore, etc.)*
BIRTHMON  Student’s birth month (MM)*

BIRTHDAY  Student’s birth day (DD)*

BIRTHYR Student’s birth year (YY)*

MARITAL Marital status indicator*®

STARTOSU  Year and Semester started OSU* -

DORM Dorm code* ‘

HSCODE High school code*

HSGPA High school grade point average (4.0 scale)™
HSRANK High school rank*

CLASSIZE High school graduating class size*

HSGRAD Indicator of high school graduation™

HSENGL OSRHE high school english units requirement
HSMATH OSRHE high school mathematies units requirement
HSHIST OSRHE high school history units requirement
HSSCI OSRHE high school science units requirement
HSOTHER OSRHE other high school units requirements
ENGLSTAT  Indicator: met OSRHE english requirement
MATHSTAT  Indicator: met OSRHE mathematics requirement
HISTSTAT Indicator: met OSRHE history requirement
SCISTAT Indicator: met OSRHE science requirement
NATMERIT Indicator of being a national merit scholar
ACTENGL ACT English sub-score*

ACTMATH  ACT Mathematics sub-score*

ACTREAD  ‘ACT Reading sub-score™

ACTSCE A€T Secience sub-score™

ACTCOMP - ACT composite score®

SATVERB SAT Verbal score™

SATQUANT SAT Quantitative score™

ETHNIC Ethnicity code*

MAJCODE Major code*

COLLEGE College enrolled in*

CURHRS Current semester hours attempted*
ACCUMGPA  Accumulated grade point average (4.0 scale)*

Note: An asterisk * indicates the element was extracted for use in this study

- continued on next page
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Table 4.1 continued from previous page

Variable ~ “DPescription -

ACCUMHRS Accumulated hours*

ACADSTAT = Academic status code

SEMHOURS Current hours completed*
SEMGRDPT Current grade points earned*
HRSPASS Hours earned “pass”*

HRSI " Hours earned incomplete*
TRNCRHR  Hours transferred to OSU*
TRNGPTS  Grade points transferred to OSU*
TRNHRSP Hours transferred “pass”*
TRNHRSF Hours transferred “fail”*

LASTCOL College code of last college attended
EXPGRAD  Expected semester and year of graduation
WITHDRDA - Formal withdraw date
WDREASON Reason code for formal withdrawal
OSUEMP -~ Indicator of OSU student employee

FINAID Indicator of financial aid reeipient® -
ATHTYPE Athlete type code

ATHSCH = Athletic scholarship indicator*
STREET ‘Current street address

CITY Current city -

STATE Current state

Z1P Current zip code

PERMSTR  Permanent street address
PERMCITY  Permanent city
PERMSTAT Permanent state
PERMZIP Permanent zip code

Note: An psterisk * indicates the element was extracted for use in this study

With the eXception of student ID, all other variables that céuld uniquely identify
the student were excluded. The reason for retaining ID was to prdvide a match
criterion for other data sources. Once matching. was complete and the data sets
constructed, ID was removed. .The remaining excluded variables were excluded either
because they lacked variation (e.g., the high-school units variables) or because they
were insufliciently populafed (e.g., withdraw reason and date).

Missing data for key variables such as ACT scores and high school performance
posed a significant problem. Approximately 15 percent (275 obéervatibns) had one or

more missing values per student for these variables. However; when these missing val-

60



ues were compared with the variables that had no missing values (i.e., ethnicity, sex,
and residency status) no particular pattern emerged. Rather than drop the observa- .
tions, a number‘\of methods were examined to replace the missing values. A large sam-
ple of 21,532 entering freshmen between the fall 1990 and spriﬁg 1997 semesters was
constructed. The data were then segmented according to ethnicity, sex, and residency
status, and the segment means were used to replace missing values in the current sam-
ple. This is esséntially the same method suggested in Greene (1993, pp.276-7). The
advantage of using this method over simply replacing the blanks with sample means
is that information in the form of covariation between the regressors is used to es-
timate the missing values. The priméry reason for using this approach here was to
preserve as many degrees of freedom as possible, so that ultifnately the data could
be split into relatively lafge estimation and validation samples. The means uéed for
substitution are presented in Table 4.2. The before- aﬁd after-subsﬁtution means and
standard deviations are presented in Table 4.3. In Table 4.3 the ‘va;riab}e RANKPCTL
is computed as follows: RANKPCTL = (CLASSIZE—HSRANK)/CLASSIZE.

Table 4.2: Missing Value Replacements for ACT and
High School Performance Data. Fall 1990 to Spring 1997 -

Semesters.

Category ' Female Male
' ~ Mean N Mean N

In-State Asian : ‘
ACTENGL 2221 132 21.23 151

ACTMATH ' 22.31 132 24.68 152
ACTREAD 23.23 121 22:82 146
ACTSCI 21.41 121 22.84 146
CLASSIZE ' 327.04 126 331.90 145
HSGPA 353 120 3.32 141
HSRANK 62.85 126 85.88° 145
Out-of-State Asian

ACTENGL 2267 9 . 2277 13

ACTMATH 2122 9 - 2354 - 13

ACTREAD 2411 9 24.33 12

continued on.next page
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Table 4.2 continued from previous page

Category ‘ - Female Male
Mean N Mean N
ACTSCI 2322 9 24.17 12
CLASSIZE 42529 7 270.62 13
HSGPA 3.37 5 3.28 15
HSRANK 86.29 7 80.69 13
In-State Black
ACTENGL , 2020 244 19.32 217
ACTMATH ' 1871 243 1951 218
ACTREAD 2095 232 20.86 210
ACTSCI 19.19 232  20.75 210
CLASSIZE ©266.85 241 22194 216
HSGPA 3.20° 236 - 3.02 - 217
HSRANK 75.53 241 83.80 215
Out-of-State Black
ACTENGL 2041 27 1768 53
ACTMATH _ 20.000 26 1864 53
ACTREAD 21.75 24 19.10 50
ACTSCI 19.71 24 1886 50
CLASSIZE 31564 39  321.82 76
HSGPA 3.15 32 26l 66 -
HSRANK 91.26 39 164.43 76
In-State Hispanic
ACTENGL 22.86 130 21.74 111
ACTMATH 20.82 © 130 22,12 11t
ACTREAD 24.52 125 2340 104
ACTSCI 2167 125 2366 104
CLASSIZE 328.27 128 250.17 104
HSGPA 3.39- 123 - 3.19 105 -
HSRANK . 7112 129 87.53 - 104
Out-of-State Hispanic - '
ACTENGL 22.63 8 19.25 - 24
ACTMATH o 120.25 8 91.42° 24
ACTREAD 2271 7 2092 24
ACTSCI = 2029 7 2.75 24
CLASSIZE . 389.33 12 - 365.61 28
HSGPA 3.27 10 290 24
HSRANK 78.33 12  138.64 28
In-State Native American o
ACTENGL 22.66 696 21.81 583
ACTMATH 20.25 693 22.13 583
ACTREAD 24.00 664 24.00 582
ACTSCI 21.94 664 23.76 547

continued.on next page
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Table 4.2 continued from previous page

Category Female Male
Mean N  Mean N
CLASSIZE 205.43 661 214.36 547
HSGPA 342 655 323 555
HSRANK 54.97 661 73.52 534
Out-of-State Native American
ACTENGL 21.86 28 2150 22
ACTMATH 2061 28  24.23 22
ACTREAD. 23.52° 27 22560 20
ACTSCI 22.11 27  24.10 20
CLASSIZE 319.35 31  329.66 29
HSGPA 333 27 311 26
HSRANK 9371 31° 11775 28
In-State Other :
ACTENGL 193.46 7034 22.70 6616
ACTMATH 21.28 7000 22.88 6602
ACTREAD 2496 6544 24.49 6035
ACTSCI 22.36 6546 24.29 6035
CLASSIZE 1 969.82 6702 270.66 6206
HSGPA 342 6520 324 6028
HSRANK 69.08 ° 6702 89.13 ° 6203
QOut-of-State Other ‘ .
ACTENGL 2385 671 23.09 549
ACTMATH 2239 671 23.71 648
ACTREAD 95.36 652 2491 619
ACTSCI 23.33 652 2444 619
CLASSIZE 295.36 718 ~ 298.52 822
HSGPA 3.40 634 317 704
HSRANK 7441 716 102:58 821
Non Resident Alien
ACTENGL 2133 79 19.65 17
ACTMATH 2033 9 24.88 17
ACTREAD 19.67 9 2153 17
ACTSCI 20.44 9 23.82 17
CLASSIZE - 331.80 5 275.00 3
HSGPA 332 5 297 3
73.00 5 108.33 3

HSRANK
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Table 4.3: Before and After Comparison of Missing Value
Imputation.

Variable Before After
. . Mean St Dev Mean St Dev

ACTENGL 23.37 4.37 23.32 4.20
ACTMATH 22.71 4.33 22.69 4.17
ACTREAD 25.10 5.46 25.00 . 5.22
ACTSCI 23.62 4.28 23.56 4.09
HSGPA 3.08 1.14 3.41  0.50
RANKPCTL 0.76 0.21 0.75 0.20

Note that the mean of HSGPA demonstrated the most dramatic change. This is
because they were originally coded as zero if missing. Note alsé that the variability
of HSGPA decreased considerably. This may have implications for obtaining stable
_parameter estimates when estimating the models.

Like the student demographic file, the course data file is maintained by OSU on
a per-semester basis. Each student in the file will have multiple observations, one for
each course enrolled in. T‘he course dat# ﬁ'lés contains data on all enrolled students so
it was necessary to match the fall 1993 cohort IDs against the IDs in the course data
files to obtain the relevant records. This was done for the fall and spring semesters

from fall 1993 to fall 1996. The file elements are described in Table 4.4.

Table 4.4: Variable Names and Descriptions from The
Course Data File

Variable Description : ;
ID Student’s OSU ID number™
PREFIX -  Course prefix (e.g., ECON)*

NUMBER Course number (e.g., 2013)*
SECTION Course section

GRADE Final letter grade earned in course*
NUMSTUDS Number of students enrolled in course*
NUMA Number of As granted in course*
NUMB Number of Bs granted in course*
NUMC Number of Cs granted in course™*

Note: An asterisk * indicates the element was extracted for use in this study
continued on next page
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Table 4.4 contipued from previous page

Variable * Description -
NUMD Number of Ds grarted in course*
NUMF Number of Fs granted in course*
NUMI Number of incompletes granted in course*
NUMP Number of passes granted in course®
- NUMW Number of withdraws in courses*

NUMWF Number of withdraw-failing in course*
INSTNAME Instructor’s name

INSTETH - Instructor’s ethnicity code
INSTGEND  Instructor’s sex code (M or F)
TEACHER  Instructor’s title*

Note: An asterisk * indicates the element was extracted for use in this study

Variables were excluded either to protect pri{racy, such as instructor name, or
because they were not likely to be useful in the analysis. A potentially important
variable, instructor’s ethnicity, was excluded because upon examination, 85 percent
of the responses were i‘eported as the catchall category “other”.

The student retention file is simply a per-semester tracking file where new fall
semester freshman and transfer cohorts are followed longitudinally. Several of the
elements previously described are used to populate the fields in this file. The elements

of the new freshman file are described in Table 4.5.

Table 4.5: Variable Names and Descriptions from The
New Freshma,n Student Retention Data File

Variable ‘Description .
ID ‘Student’s QSU ID*
NAME Student’s full name

STARTOSU Starting year and semester-of the student*
ACTENGL  ACT English sub-score*

ACTMATH ACT Mathematics sub-score™

ACTREAD ACT Reading sub-score*

ACTSCI ACT Science sub-score*

HSGPA High school grade point average™
CLASS Student elassification™
SEX Sex code (M or F)*

Note: An asterisk * indicates the element was extracted for use in this study
continued -on-next page
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Table 4.5 continued from previous page

‘Variable - Description -

ETHNIC Ethnicity code*

MAJCODE . Major code*

ACCHRS  Accumulated hours*

ACCGPA Accumulated grade point average*
ACADSTAT Enrollment status®
DEGREE Degree earned*

YRGRANT  Semester and year granted*

Note: An asterisk * indicates the element was extracted for use in this study

These three files from the basis of the data used in the analysis.

4.2 Unitized Data System

The second primary data source is the Unitized Data System (UDS), which is main-
tained by the Oklahoma State Regents for Higher Education (OSRHE). All insti-
tutions in the pklahoma, state system of higher education are required to submit
student-level and faculty- and staff—lével data each semester to OSHRE in a épeciﬁc
format. This format forms the file layout that OSRHE ultimately constructs. The
UDS provides a longitudinal picture of the performance and movement of students,
faculty, and staff within Oklahoma’s higher education system. Of primary interest in
this study is thé'tracking of student enrollment between institutions. OSRHE used
the fall 1993 cohort IDs to construct a longitudinal dé@ta set for the fall 1993 to fall

1996 semesters. The elements of this data set are described in Table 4.6.

Table 4.6: Variable Names and Descriptions from The
Unitized Data System File

Variable Description
ID Student’s ID
INST Institution code*

LASTCOL  Institution FICE code of last college attended

ENRACT Enrollment status code® -

Note: An asterisk * indicates the element was extracted for use in this study
continued on next page
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Table 4.6 continued from previous page

Variable Pescription

CLASS Student classification

WDRAW  Formal withdrawal indicator

CHRS Current hours attempted

RGPA Retention grade point average (4.0 scale)
EDGOAL Immediate educational goal

HIDEG Highest college degree/certificate earned
PGMCODE Current instructional program code
DEG1 First degree awarded code

DEG2 Second degree awarded code

PGM1 Instructional program code for degree 1
PGM2 Instructional program code for degree 2
IOR Institution of record™

FINAID1 Financial aid code for grants

FINAID2 Financial aid code for leans

FINAID3 Financial aid code for scholarships

FINAID4 Financial aid code for student employment

FINAID5 Financial aid code for other support

Note: An asterisk * indicates the element was extracted for use in this study

Examining the contenf of these data raised serious questions}aboutt}heir integrity.
For example, it was discovered that codes unique to FINAID4 were being used to
populate the other FINAID variables. For students who remained enrolled at OSU
throughout the analysis period, there were discrepancies between RGPA and current
hours in the UDS and those maintained in OSU student records. Because of these
considerations, the UDS data was only used to determine if a student transferred,

given that OSU student records indicated a termination of enrollment.

4.3 Schoo]l,D’istrict Data

~ Primary and secondary school district data was obtained from the National Center -
for Educational Statistics web-site. The data were compiled for all states in 1989 and
are avajlable in both summary and detail form. Except for major metropolitan areas,
Oklahoma school districts are closely tied to the counties in which they reside. The

original intent for this data was to provide proxies for previous edueational resources
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and the demographics of the area where t'hé student attended high school. The

elements initially considered are presented in Table 4.7.

Table 4.7: Variable Names and Descriptions from Okla-
homa School District Data

Variable Description

ZIPCODE  School district zip code

SCHOOL - High school name

HSCODE  High school code

DISTPOP Sgﬁhool district population
POVRATE Poverty rate for the distriet
VALHOME Median home value in the district
INCOME Median family income in the district
STRATIO  District student-teacher ratio
EXPSTUD Total expenditure per student
DISTRICT  School district name

A distinction was also made as to whether the school was private, fublic, or
magnet. Some pf the high:schools were too new to be included in the 1989 district
data. Zip codes were used to supply values: for these fields, and in instances where a
match could not be established, the Oklahoma average values were used. High school

codes of “999999” were given the United States average values.

4.4 - Variable Descriptions

To prepare the data for analysis, both the dependent and independent variables were
created and ultimately arrahged into a longifudinal data set. Each are described in

turn.

4.4.1 Dependent Variables

Time enrolled used the number of consecutive fall and spring semesters completed.

The variable TIME was created to indicate the total number of semesters completed.

68



A break in enrollment was identified based on the OSU retentionvﬁle data, and the
UDS data were used to determine if the student enrolled in another institution in
the Oklahoma State system. If so, a transfer dummy variable (TRANSFER) was
created, and was set to 1 at the time of transfer and zero otherwise. If transfer could
not be identified, a dropout dummy variable (DROPOUT) was created, and set to
1 at the time of dropout and zero otherwise. If the} student dropped out for at least
one semester, did not attend anywhere else, and ultimﬁtély resumed enrollment, the
indicator variable STOPOUT was created and accordingly assigned a value of one.
If the student graduated, an indicator variable GRADUATE was created. Finally,
if the student réemained continuOuély enrolled through fall 1996, a censoring or end-

of-sampling-period indicator (CENSOR) was created. Summary statistics of these

variables are presented in Table 4.8.

Table 4,8: Summary Statistics of Persistence Related
Vari'c}bles. N=2,090.

Variable Mean Description

CENSOR .50 - Censoring indicator. (0 if censored, 1-otherwise)
DROPOUT .36 Dropout indicator (1 if dropout, 0 otherwise)
GRADUATE .01  Graduation indicator {1 if graduated, 0 otherwise)}
STOPOUT .07 Stopout indicator (1 if stopout, 0 otherwise)

TIME 4.95 = Enrollment duration (1,2,---,7 semesters. SD=2.39)
TRANSFER .06 Transfer indicator (1 if transfer, 0 otherwise)

The proper treatment of stopout is as a renewal process and is beyond the scope
of this Study. Therefofe, stdpout and dropout are trea,t‘e_d equivalently. Also, the
handful .(29) of students who graduated did so at the end of the sampling period and
were also enrolled at that time. For these individuals, the censoring and graduate
indicators were treated equivalently. Table 4.9 ranks the top destination schools for

students transferring from OSU.
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Table 4.9: Top Destination Schools for OSU Transfers.

Rank School

University of Central Oklahoma

Tulsa Junior College

University of Oklahoma

OSU Technical Branch - Oklahoma City
East Central University

Oklahoma City Community College
Langston Untversity

Northern Oklahoma College

Cameron University

Mid-American Bible College
Northwestern Oklahoma State University
Southeastern Oklahoma State University
Rose State College = '
Southerp Nazarine University

Oklahoma Panhandle State University
Eastern Oklahoma State College
Northeastern Oklahoma A&M College
Western. Oklahama State College
Seminole Junior College

Oral Roberts University

O © WO G0 00 ~J O OO i W N -

— = = = = = O
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In the presemt sample, the top three schools in Table 4.9 account for over 61

percent of the transfers between the fall 1993 and fall 1996 semesters.

4.4.2 Independent Variables

A number of potential indépeﬁdent variables were considered for the analysis. Some
of the variables remain constant over the student’s enrollment while others vary while
the student is enrolled. Table 4.10 provides summary statistics and descriptions of
the variables that remain constant and Table 4.11 does the >same for the time-varying

independent variables.
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Table 4.10: Summary Statistics of Time-Constant Inde-
pendent Variables

Variable Mean Std Dev Description
ACTENGL 23.11 4.21 ACT English scere
ACTMATH 22.49 4.17 = ACT Math score
ACTREAD 24.81 5.20 - ACT Reading score

ACTSCI 23.43 4.08 ACT Science score

ALIEN .01 .07 Foreign student indicator (0,1)
ASTAN .02 .13 Asian student indicator (0,1)
BLACK .03 .16 - Black student indicator (0,1) -

CLASSIZE -~ 259.90 213.3. ‘Graduating class size in high school
DISTPOP -54.19 83.83 * HS district population (00)

DROPOUT .36 .48 Dropout indicator (0,1)
EXPSTUD - 3.69. .84 Expenditure per student (000) -
HISP .02 .13 Hispanic student indicator (0,1)
HSGPA 3.35 .53 HS grade point average (4.0 Scale)
HSRANK = 75.53 96.74 HS graduating rank -
INCOME 26.20 - 6.49 HS district median income (000)
NATAM .08 .27 Native American indicator (0,1)
OTHER .85 .35 White student indicater (0,1)
POVRATE 14.36 5.75 HS district poverty rate

- PRIVATE 05 21 Private/Magnet school indicator (0,1)
RANKPCTL 73 .21 HS rank relative to HS class size
RESCODE A3 .34 Non-resident indicator (0,1)
SEXCODE 51 .50 Female student indicator

- STRATIO 17.08 2.28 HS district student-teacher ratio

VALHOME 54.50 19.06 HS district median home value (000)

An average ACT score, ACTCOMP, was computed for each student. Also, a
combined ethnic 1nd1cator NONWHITE, was computed by summlng the ASTAN|,
BLACK, HISP, NATAM, and ALIEN indicators. The variable RANKPCTL is com-
puted as (CLASSIZE - HSRANK)/CLASSIZE. Values approaching unity indicate a

top high school graduate.
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Table 4.11: Summary Statistics of Time-Varying Inde-
pendent Variables
t

Variable Mean Std Deviation Deéscription
CHF93 13.62 2.76 Current hours attempted
CHS94 14.14 2.59 -
CHF9%4 14.27 2.01
CHS95 14.16 2.12
CHF95 14.19 2:04
CHS96  14.26 2.20
CHF96 - 1416 2.39
CHS97 14.01 -2.58
CRANKF93 1.02 : -~ .37 <Class rank
CRANKS94  1.01 .38
- CRANKF9%4  1.03 | 37
CRANKS95  1.04 34
CRANKF95  1.04 .33
CRANKS9  1.06 29
CRANKTF96 102 30
CRANKS97 1.02 .25
FI3GPA 263 7 .99 Current grade point average
S94GPA 2.61 1.00-
F94GPA 2.66 - .96 -
S95GPA 2.84 .76
F95GPA 2.81 .90
S96GPA 2.94 .82
F96GPA 2.93. - 87
S97GPA 3.05 .80
FAIDF93 43 .50 Financial aid indicator {0,1)
FAIDS94 44 50
FAIDF94 .26 44
- FAIDS95 2 44
FAIDF95 AT 50
FAIDS96 49 .50
FAIDF96 49 S .B80
FAIDS97 .51 .50
NSTUDF93 69.10 28.50  Average class size
NSTUDS94  68.31 25.64 |
NSTUDF%4 83.41 - 36.74
NSTUDS95 75.34 33.07
NSTUDF95 74.11 - '35.62
NSTUDS9 . 61.32 29.29
NSTUDF9 533.63 29.00
NSTUDS97  48.89 25.81

continued on pext page -
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Table 4.11 continued from previous page

“Variable © ~Mean Std Deviation Description

PCTGF93 .39 .23 Proportion graduate student TAs
PCTGS94 45 27

PCTGF94 30 22

PCTGS9 28 .22

PCTGF95 20 21

PCTGS96 19 .21

PCTGF9% .16 19

PCTGS97 13 | 18 |

PROBF93 15 - .35 - Problematic enrollment indicator (0,1)
PROBS94 .06 | 23 _—

PROBF9%4 .05 .22

PROBS95 .03 S

PROBF95 .02 13

PROBS96 .01 A1

PROBF96 .01 BN

PROBS97 .02 12

To calculate the class rank variables (CRANK) the student’s grade average was
computed for the courses completed. This is different from the standard grade point
average in at least two respects. First only the grade earned is considered with the
standard coding of A=4, B=3, C=2, Dzi, and F=0. The number of credits earned
was not factored in. Second, if the course was “pass/fail”, pass was assigned 2 and fail
was assigned 0. A similar grade average was computed for each course a student was
enrolled in. Their individual grade average is divided by the course average, and this
ratio is averaged across the portfolio of courses taken that semester. The problematic
enrollment indicator variables (PROB) assumes values of one when a student is either
put on academic notice, probation, or suspension (notice or probation in the modeling
data). This condition is evaluated for each semester. To assess the impact of graduate
student teaching on student persistence, the fraction of the student’s portfolio taught
by a graduate s“tudent was computed. This fraction is calculated for each semester.

Three other variables not presented in the list were the summer enrollment, en-

gineering, and pre-professional indicators, SUMMER, ENGINEER, and PREPROF
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respectively. The summer indicator assumed a value of one for the fall semester if
a student was enrolled in summer courses prior to that fall semester. The engineer
indicator assumes a value of one for each semester a student claims an engineering
type major (e.g, €lectrical engineering). Likewise, the pre-professional indicator as-
sumes a value of one for each semester a student claims a pre-professional major (e.g.,
pre-law). These were determined from the official list of major codes provided by the
OSU Office of Admissions. |

The full list of independent variables considered for analysis is as follows. Time-
constant variables include: ACTCOMP, ALIEN, ASIAN, BLACK,'DISTPOP, EX-
PSTUD, HISP, HSGPA, INCOME, NATAM, POVRATE, PRIVATE, RANKPCTL,
RESCODE, SEXCODE, STRATIO, and VALHOME. Time-varying covariates in-
clude: CHRS {time series of CHF93.- CHS97), RELRANK (time series of CRANKF93
- CRANKS97), RELRNK2 (RELRANK squared), CURGPA (time series of F93GPA
- S97GPA), FINAID (time series. of FAIDF93 - FAIDS97), NSTUDNT (time series
of NSTUDF93 - NSTUDS97), PCTGRAD {time series of PCTGF93 - PCTGS97),
PROBENR (time series of PROBF93 - PROBS97), SUMMER, ENGINEER, and
PREPROF. The Dependent variables indude DURATION (cumulative enrollment
duration), DROPOUT, and TRANSFER.

4.5 Data Reduction Methods

Because the models in this study are nonlinear, it is important to determine the
degree of multicollinearity in the data. Highly collinear data may pose convergence
problems for nenlinear optimization routines because the parameters are unstable and
affect the precision with which parameters of the model can be estimated. Indeed,
the model would not converge using the full list of regressors. As an initial step, a
linear model is used where the dependent variable is the log of enrollment duration.

This is equivalent to an accelerated lifetime regression in the absence of censoring and
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ordinary least squares could be used. For the moment, censoring is ignored. With
a reduced specification that still allows the major hypotheses to be analyzed, the
hazard models are re-estimated. A final collinearity analysis is conducted using the

Hessian based on the MLEs.

4.5.1 Multicollinearity Diagnostics

Three basic diagnostic tools are used to detect multicollinearity: the Variance In-
flation Factors (VIFS), the Condition Index (CI), and Variance Proportions (VPs).
VIFs afe essentiéﬂy“thé multiple by which the variance of the corresponding estimates
are ingreased, the increase being attributable to multicollinearity. A rule of thumb is
to consider VIFs exceeding 2 to 5 as iﬁdicating serious multicollinearity. The CI is
the square root of the ratio of the largest to smallest eigenvalue in scaled (X’X). The
rule of thumb for the CI is that severe multicollinearity exists for Cls greater than 30.
Finally VPs measure the proportion of varianée associated with the each eigenvalue
in the scaled (X'X). Combinations of variables with high VPs for a small eigenvalue
(large CI) indicate near linear dependencies between those variables. The VIFs are

~ presented in Table 4.12.

Table 4.12: Variance Inflation Factors of the Independent

Variables
Variable _ - VIF
RELRANK 22.1167
RELRNK2 12.4388
INCOME ' 9.9645
CURGPA 8.5613
VALHOME: 5.6509
POVRATE 5.2776
HSGPA 4.4948
RANKPCTL 4.3400
STRATIO 3.4987
EXPSTUD 2.8082
RESCODE - 2.6307

continued on next page
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Table 4.12 continued from previous page

Variable VIF
DISTPOP 2.4454
PRIVATE 1.4716
ACTQOMP 1.3625
PROBENR C 1.3421
NSTUDNT 1.1868
ENGINEER 1.1628
CURHRS . 1.1588
SEXCODE 1.1564
PCTGRAD 1.1556
FINAID ' 1.0975
ALIEN ~ 1.0656
NATAM 1.0616
BLACK : 1.0583
PREPROF . 1.0578 -
HISP , 1.0328
" ASIAN 1.0300
- SUMMER 1.0293
"INTERCEP 1.0000

From Table 4.12 the following parameters are potentially affected by multicollinear-
ity: RELRANK, RELRNK2, INCOME, CURGPA, VALHOME, POVRATE, HS-
GPA, RANKPCTL, STRATIO EXPSTUD, RESCODE, and DISTPOP. The CIs and

VPs for selected regressors arekpresented in Table 4.13.
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Table 4.13: Variance Proportions for Selected Regressors
with Condition Number Values over 30.

Condition Number ’

Variable 35.90723 - 56.06765 57.94555 61.2944 114.18853 Sum

INTERCEP 0.0148 0.0003 0.0000  0.0009 0.9819 0.9979
POVRATE 0.0001 0.1531 0.2637  0.0509 0.2975.  0.7653
VALHOME - 0.3461 0.0021 0.0570 0.0989 0.2135 0.7176
INCOME 0.0701  0.2004 0.3565  0.0836  0.2827  0.9933
STRATIO 0.0862 0.3258 0.1242 0.0129  .0.4278 0.9769
EXPSTUD 0.0133 0.1167 0.0253  0.0262 0.2880  0.4695
HSGPA 0.0103 0.0455 0.0097  0.7803 0.1427 0.9885
RANKPCTL 0.0212 - 0.0400 0.0013 0.5884  0.0794  0.7303
RELRANK 0.0037 0.3520 0.5395  0.0921 0.0033 0.9906
RELRNK2 0.0144 0.2347 0.3282  0.0641 0.0122 0.6536
CURGPA 0.0715 0.1671 0.2740  0.0281 . 0.0021 0.5428

The immediate conclusioﬁ from Table 4.13 is that severe multicollinearity exists.
The six smallest eigenvalues produce condition numbers from 35.91 fo a .condition
index of 114.19. The VPs in Table 4.13 suggest several héar‘ linear dependéncies.
This is shown by examining the sum of the VPs for high condition numbers, and to
determine which variables are involved, a VP of 0.45 or greater is used. Because the
_intercept is involved, the linear combination of these variables exhibits little variation.

Because the linear combination of the district data appears to have little varia-
tion, each variable has a high VIF. Since the literature éuggests that these variables
are, at best, of secondary importance, they are excluded from the analysis. REL-
RANK and RELRNKZ are central to a major hypothesis to be tested, so they are‘
retained. CURGPA is excluded because of the near linear relationship to RELRANK
and RELRNK2. These relationéhips are in Table 4.13. Because it is part of Tinto’s
specification that prior school experience be included, RANKPCTL is retained. This
decisign is based on the knowledge that to graduate in the top of one’s class, he or
she must necessarily have a high grade point average. Furthermore, RANKPCTL de-
flates one’s ordiﬁa,l class rank by the graduating class size. Therefore, RANKPCTL
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contains more information than HSGPA. Finally, Tinto’s framework specifies that
prior skills are important to persistence.

| Considerations other than multicollinearity were important in determining what
to include and exclude from the analysis. The only other variables explicitly ex-
cluded ;from the analysis were PRIVATE and -CURHRS. PRIVATE is an indicator
‘variab_le of whether a student attended a priva,te or public high school. It was ex-
cluded because obfb low occurrence (only 98 of 2090 students attended private high
schools). CURHRS was excluded because it is used in the definition of the depen-
dent variable and is likely to be jointly determined with persistence; hence, including
it could imtroduce sifnu}taﬁeity bias. The individual ethnicity indieators (ASIAN,
BLACK, HISP, NATAM, and ALIEN) were excluded, and in their place, a non-
white/white indicator (NONWHITE) was used. This variable is merely the sum of
the ethnicity indica,térs. Also included SUMMER which relates to the commitment
hypotheses (Hypothesis 3) to be tested. NSTUDNT and PCTGRAD are included
because they are central to Hypotheses 3 and 4. Other variables included primar-
ily for control purposes are RESCODE, SEXCODE, FINAID, ENGINEER, PRE-
PROF, and PROBENR. Thus, the final list of variables included for analysis are:
ACTCOMP, ENGINEER, FINAID, NONWHITE, NSTUDNT, PCTGRAD, PRE-
PROF, PROBENR, RANKPCTL, RELRANK, RELRNK2, RESCODE, SEXCODE,
and SUMMER. The VIFs for the final list of modeling variables are presented in Table
4.14.

Table 4.14: Variance Inflation Factors for the Final List
of Independent Variables '

Variable VIF
RELRANK 12.6257
RELRNK2 11.8919
RANKPCTL 1.4279
PROBENR 1.2881

continued on next page
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Table 4.14 continued from previous page

Variable - VIF
ACTCOMP 1.2709
PCTGRAD 1.1.320
ENGINEER : 1.1202
SEXCODE 1.1121
NSTUDNT 1.0580
FINAID. 1.0425
RESCODE | 10409 -
PREPROF ~1.0369
NONWHITE 1.0348

SUMMER 10190

The VIFs for RELRANK and' REL‘RNKQ are still extremely high; however, this
is because when one is taken as the dependent varlable and regressed on the other
independent varlables the other is mcluded as an mdependent variable. The R-
Squares from these regressions are very high (approximately 0.93). This tends to
drive up the VIFs for either variable. When each one is excluded from the regression,
the VIFs for RELRANK and RELRNK2 are 1.27 and 1.25, respectively. Thus the
high VIFs on these two variables reflect the fact that they are functionally related.

The specification in Table 4.14 converged and the scaled Hes31an evaluated at the
MLE:s is used to detect collinearity in the nonlinear model. The Hessian is computed
using the matrix of second partial derivatives of the log—likelihood function evaluated
at the MLEs. In general, this is not proportional to the linear model Hessian, (X'X),
and therefore the VPs do not hecessarily indicate which variables are involved in thev
collinearity. The condition index still provides a measure of how ill-conditioned the

Hessian is. These results are presented in Table 4.15.
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Table 4.15: Variance Proportions Corresponding to the
Two Largest Condition Numbers from the Scaled Hessian
of the Hazard Model.

: Condition Number
Variable 27.2100 38.3306 . Sum VPROP
INTERCEP 0.1833  0.7639 0.9472
ACTCOMP 0.5989  0.2879 0.8868
ENGINEER  0.0408 0.0024 0.0432

FINAID 0.0001 0.0000 0.0001
NONWHITE 0.0080  0.0005 0.0084
NSTUDNT  0.0205 0.0050 0.0256
PCTGRAD  0.0279  0.0663 0.0942
PREPROF 0.0035 - 0.0001 0.0036

PROBENR 0.0000  0.0972 0.0972
RANKPCTL  0.0009  0.0000 0.0009
RELRANK 0.3028  0.6846 0.9874
RELRNK2 0.2376  0.6747 0.9123
RESCODE 0.0058  0.0008 0.0066
SEXCODE 0.0336  0.0020 0.0357
SUMMER 0.0061  0.0011 0.0072

The condition index is 38.33 which indicates that their is still a collinearity prob-
lem. This seemed evident in that the model needed 23 iterations to converge. Even
though the VPs here do not necessarily indicate the variables involved in the collinear-
ity, they suggest that a linear combination of ACTCOMP, RELRANK, and REL-
RNK2 are collinear with the intercept. Variables or combinations of variables collinear
with the intercept suggest low variability. In light of what these variables are mea-
suring, it seems reasonable to expect this relationship and that there may not be
much independent yariation in these variables. This may impact etther the signs or

statistical significance of these coeflicients.

4.6 Chapter Summary

This chapter provides a detailed description of the data used in this analysis. All data

-sources are described, along with a discussion of the time-frames of sampling, variable
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definitions, overlaps in the data, as well as limiting factors and problems encountered.
A description of both the dependent and independent variables is provided along with
summary statistics. Data reduction methods are explained, the intermediate results

presented, and the final analysis list of variables presented.
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CHAPTER 5

ANALYSIS AND RESULTS

This chapter pies’ents the main results of the analysis and tests the hypotheses of
the study. In the previous chapter, variable descriptions and summary statistics were
presented. This chapter concentrates specifically on thé'model estimation results
and predictive assessments as they related to the primary hypotheses. The following
chapter summarizes and discusses these results in greater detail. Statistical software

used included LIMDEP 7.0 for estimation and SAS 6.12 for validation.

5.1 Hypothesis Tests

To begin analyzing and testing the hypotheses, a single stage hazard model is es-
timated where no distinction is made between system dropout and transfer. The

results are pfesented in Table 5.1.

Table 5.1: Parameter Estimates for Single-Stage Haz-
ard Model - General Attrition. Dependent Variable:

Log(DURATION).

Variable Coefficient Std Error T-Stat P-Value
CONSTANT 0.8317 0.3732  2.2285  0:0258
ACTCOMP -0.2264 0.1247 -1.8151 0.0695
ENGINEER 0.3704 0.1760. 2.1052  0.0353
FINAID -0.0112 0.0811 -0.1381 0.8902
NONWHITE 0.0484 0.1123  0.4313 0.6662
NSTUDNT -0.1441 0.1251 -1.1523 0.2492

continued on next page
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Table 5.1 continued from previous page

Variable Coeflicient Std Error T-Stat - P-Value
PCTGRAD -0.8835 0.1507 -5.8644 - 0.0000
PREPROF -0.5066 0.1721 -2.9440 .0.0032
PROBENR -0.4575 0.1437 -3.1838  0.0015
RANKPCTL 0.0623  0.0216  2.8880  0.0039
RELRANK 2.9658 0.3779  7.8475 0.0000 .
RELRNK2 -0.8188 0.1889 -4.3340  0.0000
RESCODE -0.3257 0.1105 -2.9489 0.0032
SEXCODE -0.1904 0.0845 -2.2543  0.0242
SUMMER 0.2859 0.2238  1.2774  0.2015
Theta 0.4764 0.2041 2.3341 0.0196
Alpha : 1.4490 0.1167 12.4165  0.0000
Log-Like -1524.528 '

N Obs 6389

N Iter 23

5.1.1 The Impact of Relative Rank on Enrollment Duration

Recall Hypothesis 1 states that the likelihood of persistence should be low for stu-
dents of low relative rank, increase as rank increases, and decrease again as rank
increases. In other words, persistence should exhibit quadratic behavior in relative
rank. Testing this condition involves examining the sign and statistical significance
of the RELRNK2 coefficient as well as the marginal behavior of enrollment duration
with respect to éhanges in RELRANK in Table 5.4; support for the hypothesis is sug-
gested by a statistically significant negative"coefﬁcient. Examination of RELRNK?2
in Table 5.1 suggests that the hypothesis is suppdrted. It should be noted that the
model estimated in Table 5.1 is a single destinatiori model where no distinction is
made between system dropout and transfer. The multiple destination models are
presented in Tables 5.2 and 5.3. Table 5.2 provides estimates for the transition inten-
sity where transfer is the destinations. Table 5.3 provides estimates for the system

dropout transition intensity.
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Table 5.2: Parameter Estimates for Transition In-
tensity Model - Transfer. Dependent Variable:
Log(DURATION). '

Variable Coeflicient  Std Error T-Stat P-Value
CONSTANT 3.9068 1.1158 3.5012  0.0005
ACTCOMP -0.1285 0.3744 -0.3431  0.7315
ENGINEER 0.7106 - 0.6645 1.0693  0.2849
FINAID 0.2695 0.2563 1.0515  0.2930
NONWHITE 0.7623  0.5501 1.3858 ~ 0.1658
NSTUDNT -0.6775  0.3876 -1.7478  0.0805
PCTGRAD -0.7414 0.5133 -1.4444  0.1486
PREPROF -0.0013 0.5859 -0.0023 = 0.9982
PROBENR -0.8024 0.4503 -1.7819  0.0748
RANKPCTL -0.0743 0.0765  -0.9702  0.3319
RELRANK 17769  0.8745 2.0320  0.0422
RELRNK?2 -0.1371 0.4578 -0.2995  0.7645
RESCODE 0.8763 0.6183 14173 . 0.1564
SEXCODE -0.1162 = 0.2675 -0.4343  0.6641
SUMMER -0.1592 0.5002 -0.3182  0.7503
Theta 0.3527 1.0782 0.3271  0.7436
Alpha 13694 0.2917  4.6953  0.0000
Log-Like -260.357

N Obs 6389

N Iter 21

Table 5.3: Parameter Estimates for Transition Inten-
sity Model - System Dropout. Dependent Variable:
Log(DURATION). T

Variable Coeflicient Std Error T-Stat P-Value
CONSTANT 0.7542 0.4009 1.8814 . 0.0599
ACTCOMP -0.2330 0.1328 -1.7547  0.0793
ENGINEER 0.3260 . 0.1810  1.8008  0.0717
FINAID -0.0490 - 0.0853 -0.5746  0.5656
NONWHITE -0.0043 0.1165 -0.0373  0.9703
NSTUDNT -0.0542 0.1327 -0.4081  0.6832
PCTGRAD- -0.8893 0.1596 -5.5735  0.0000
PREPROF -0.5508 0.1788 -3.0803  0.0021
PROBENR -0.4325 0.1494 -2.8947  0.0038
RANKPCTL 0.0739 0.0229  3.2339  0.0012
RELRANK 3.0524 0.4243 7.1943  0.0000

continued on next page
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Table 5.3 continued from previous page

Variable Coeflicient Std Error T-Stat P-Value
RELRNK?2 -0.8688 0.2164 -4.0155  0.0001
RESCODE -0.4076 0:1163 -3.5053  0.0005
SEXCODE -0.1967 . 0.0895 -2.1983  0.0279
SUMMER 0.3840 - 0.2452 1.5661  0.1173
Theta 0.6282 0.2431 2.5839  0.0098
Alpha 1.4799 - 0.1280 11.5620  0.0000
Log-Like -1411.432

N Obs 6389

N Iter 28

The RELRNK?2 coefficient in the transfer transition intensity is not statistically
significant; however, it is significant in the dropout intensity. The sign of RELRNK2
- is negative for both the transfer transition intensity andb dropout intensify.

The marginal effect of RELRANK on enrollment duration was computed at stan-
dard deviation units below and above its mean with all other independent variables
at their respective sample means. In general, the marginal eﬁeét used here is defined
as a change in. enrollment duration due to an x-unit standard deviation change in the
independent variable, all other independent variables constant at their means. This

“situation depicted the persistence of the “average” student. To assess differences in
above- and below—average students, ACTCOMP and RANKPCTYL are varied accord-
ingly. A “gifted” student is defined here as an average student with ACTCOMP
and RANKPCTL two standard déviations above the méan. Intuitively, this student’s
ACT composite score was at least 32 and he or she also graduated in the top of his
or her high school elass. Likewise, a “challenged” student is defined as an average
student with ACTCOMP and RANKPCTL two standard deviations below the mean
(a 16 composite score and bottom third rank, respectively). Also evaluated is the
ratio of the transition intensity to the dropout imtensity {(TD Ratio). Numbers less
than 1 indicate that should exit occur, dropout is more likely than transfer; likewise

numbers greater than 1 indicate transfer is more likely. All marginal effects had TD
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ratios less than 1 and as will be seen when evaluating predictive performance, the

WGH model did not predict transfers. These effects for RELRANK are presented in

Table 5.4.
Table 5.4: Marginal Impact of RELRANK on Enrollment Dura-
tion. _ :
Average . Gifted Challenged
SD Unit A Duration TD Ratio . A Duration. TD Ratio A Duration TD Ratio
-3 -2.5946 0.0954 -2.7024 0.1567 -2.4910 0.0580
-2 - -1.8827 0.1101 -1.9610 0.1779 -1.8075 0.0680
-1 -0.9715 0.1349 -1.0119 0.2139 -0.9327 0.0848
0 0.0000  0.1601- 0.0000 0.2494 0.0000 0.1023
1 - 0.8094 0.1735 - 0.8430 0.2657 0.7771 0.1128
2 1.2285 0.1674 1.2796 0.2524 1.1795 0.1105
3 1.1270 = 0.1434 1.1738 0.2135 1.0820 0.0959
Mean X 1.0826
Std Dev X 0.3153

Mean T 3.5874

Interpreting the results in Table 5.4 is straightforward. A one standard deviation
unit decrease (-1) iﬁ RELRANK results in enrollment duration decreasing by 0.9715
semesters {i.e., slightly under a semester)for the average student, 1.0119 semesters for
the gifted student, and 0.9327 semesters for the challeﬁged student. Also, all students
are more likely to deipart‘ the system than transfer within the systém, as indicated by
a relative transfer intensity of 0.1349, which is less than 1. As RELRANK increases
from low to high, -enroﬂmenti duration indeed increas_és up to a point, then begins to
decrease; however, this turning point appears fo be for exceptioria,l performers', rank-
ing at least 3 standard deviations above the mean. This suggests that for the majority
of students, RELRANK is directly related to persistence. Any student falling 2 stan-
dard deviations below the mean in RELRANK is-likely to exit nearly two semesters
earlier than the at-par performer. Finally, the general pattern of persistence appears

to be consistent between the average, gifted, and challenged students. Gifted students
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appear fo be less likely to leave when faced with below-par relative performance and
less likely to persist when enjoying above-par performance; however, these differences

are fairly small.

5.1.2 Distinguishing Between Dropout and Transfer

Hypothesis 2 states that dropouts and transfers behave differently. The coefficients

from each transition intensity are tested for equality and the results are presented in

Table 5.5.

Table 5.5: Test of Equality Between Transfer and
Dropout Coefficients. : : -

Variable Transfer Dropout Std Error T-Stat P-Value
ACTCOMP -0.1285  -0.2330 - 0.2536  0.4123  0.3401
ENGINEER 0.7106 0.3260 0.4228 0.9098  0.1815
FINAID 0.2695  -0.0490 0.1708 = 1.8648  0.0311
NONWHITE  0.7623  -0.0043 0.3333 2.3002 0.0107
NSTUDNT 0.6775  -0.0542 - 0.2602  2.3958  0.0083
PCTGRAD -0.7414  -0.8893 , 0.3364 0.4397  0.3301
PREPROF -0.0013 -0.5508 ' 0.3823 1.4371  0.0753
PROBENR -0.8024  -0.4325 0.2999 1.2335  0.1087
RANKPCTL  -0.0743  0.0739 0.0497 2.9815- 0.0014
RELRANK 1.7769  3.0524 0.6494 1.9642  0.0248
RELRNK2 -0.1371  -0.8688 0.3371 2.1706  0.0150
RESCODE 0.8763  -0.4076 10.3673  3.4956 °  0.0002
SEXCODE -0.1162  -0.1967 0.1785 0.4508  0.3261

SUMMER -0.1592  0.3840 - 0.3727  1.4575  0.0725

Five of 14 variables were not significantly different at the o = 0.10 level: ACT-
COMP, ENGINEER, PCTGRAD, PROBENR, and SEXCODE. A joint test where
the behavior coefficients in the dropout transition intensity were assumed equal to
those in the transition intensity yielded a Wald chi-square statistic of 2133.39, Which is
significant at any desired level. Thus, the hypothesis is supported and it is important

to distinguish between dropouts and transfers.
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5.1.3 The Impact of Class Size on Enrollment Duration

Hypothesis 3 states that larger class sizes impede student-faculty interaction and
- thus, academic integration. It is expected that an increase in class size would tend
to reduce the likelihood of persistence. To test this, the coefficient on NSTUDNT -
should be negative and statistically signiﬁcaﬁt. Examining Tables 5.1, 5.2, and 5.3
it can be seen tha,f the coefficients are ‘negative in the single stage model, transfer
intensity, and the dropout intensity model. Statistical significance is achieved only
in the transfer intensity model. The marginal impact of NSTUDNT on -enrollment

duration is presented in Table 5.6.

Table 5.6: Marginal Impact of NSTUDNT on Enrollment Duration.

‘Average Gifted ~ Challenged

SD Unit A Duration TD Ratio A Duration TD Ratio A Duration TD Ratio

-2 0.2396 0.1020 . 0.2495 0.1709 0.2300 0.0609

-1 0.1178 0.0972 0.1227 0.1629 0.1131 0.0579

0 0.0000 0.0924 0.0000 071551 0.0000 0.0551

1 -0.1141 0.0878 -0.1188 0.1475 -0.1095 0.0523

2 -0.2246 0.0834 -0.2339 0.1401 -0.2156 0.0496
Mean X 04.7016.
Std Dev X 0.3250
Mean T 3.5874

In general, duration decreases as NSTUDNT increases; however, even at the ex-
tremes, the change in duration is well below a full semester. For any student, cutting
the average class size in half (from 70 to 35) increases enroliment duration by only
about 1/10th of a semester. Therefore, though there is support for the hypothesized
direction of NSTUDNT, the independent impact on enrollment duration appears to
be fairly small.
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5.1.4 The Impact of Graduate Teaching Assistants on En-

rollment Duration

Similar to Hypothesis 3, Hypothesis 4 states that a higher proportion of a student’s
portfolio being taught by graduate teaching assistants reduces student-faculty inter-
action and academic integration. This in turn leads to lower levels of persistence.
To test the hypothesis, the sign of PCTGRAD should be negative and sté,tistica,lly
significant. Referring back to Tables 5.1 and 5.3, this is indeedv the case. The transfer
intensity was correct in sign but lacked statistical significance. Indeed looking ahead
to the OLS and_ordered logit results in Tables 5.8 and 5.9, PCTGRAD is negative
and significant as well. The signs of PCTGRAD for the multinomial model in Table
5.17 are positive and significant. This is not a contradiction because the multino-
mial probabilities are for the destination after departure. Positive signs here are also
consistent with Hypothesis 4. Thus, Hypo’chesis 4 is supporfeti and appears Tobust
to different model spei:iﬁcations. The marginal impact of PCTGRAD on enrollment

duration is presented in 5.7.

Table 5.7: Marginal Impact of PCTGRAD on Enrollment Dura-

tion.
Average Gifted Challenged

SD Unit A Duration ~ TD Ratio A Duration TD Ratio A Duration TD Ratio

-1 0.5751 ~ 0.1745 0.5990 0.2923 0.5522 0.1041

0 0.0000 0.1766 0.0000 0.2963 0.0000 0.1053

1 -0.4957 0.1791 -0.5163 0.3009 -0.4759 0.1066

2 - -0.9228 0.1819. -0.9612 0.3059  -0.8860 0.1082

3 -1.2910 0.1850 -1.3447 0.3113 - -1.2394 0.1099
Mean X 0.2985.
Std Dev X 0.2466
Mean T 3.1879

Enrollment duration decreases as PCTGRAD increases, consistent with the hy-

pothesis. For any student, a standard deviation increase in PCTGRAD from the mean
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bappea,rs to decrease enrollment duration by about 1/2 of a semester. Intuitively, in a
six-course portfolio with four faculty and 2 graduate teaching assistants, replacing one
faculty member with a graduate teaching assistant can reduce enrollment duration
by nearly 1/2 of a semester. Similarly, replacing one of the graduate assistants with

regular faculty can increase enrollment duration by over 1/2 of a semester.

5.1.5 The Impact of Summer Enrollment on Enrollment Du- |
ration

Hypothesis 5 states that enrolling in summer courses demonstrates an educational
commitment, and this should tfanslate into higher levels of persistence. To test this
hypothesis, the sign of the SUMMER  coefficient shou-ld be positive and statistically
significant. Examining Tables 5.1, 5.2, and 5.3, only the single stage model and
the dropout intensity model support the hypothesis; however, neither model achieves
statistical signiﬁcance. The transfer intensity model has the wrong sign; however, the
coeflicient is not significant by conventional standards. Thus, Hypothesis 5 does not

appear to be empirically supported.

5.1.6 The Impact of Unmeasured Heterogeneity on The Haz-
ard Function

Hypothesis 6 states that the existence of unmeasured heterogeneity significantly con-
_tributes to the negative duration dependence observed in the sample. Support for
the hypothesis is ’found by exarﬁinjng the statiéticai éigniﬁcance of the parameter
“Theta” in Table 5.1. Hetefogeneity is significant in the single-stage and dropout in-
tensity models. Examining the shape parameter “Alpha” suggests that the processes
exhibits positive duration dependence. The coefficient is 1.449, 1.369, and 1.479 in

the single-stage, transfer, and dropout models, respectively. This would produce a
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Weibull hazard function that rises rapidly at first, then tends to flatten out over time;
that is, the increase in the rate of exit with each unit of time beeomes smaller and
smaller. If this is a reasonable characterization for the enrollment hazard function,
then heterogeneity is the primary reason for the observed negative duration depen-
dence. Had the “Alpha” vcoeﬂicients been less than unity, the hazard would exhibit
negative duration dependeﬁce and heterogeneity would make it more pronounced. Be-
cause the heterogeneity coefficient is significant and the shape parameters are greater
than unity, the observed negative duration dependence arises primarily from unmea-

sured student characteristics.

5.1.7 The Predictive Performance of The Weibull ‘Hazard
Model: Enrollment " Duration

Hypothesis 7 states that the Weibull model with gamma heterogeneity offers better
predictive performance than the standard ordinary least squareé (OLS) or the ordered
logit model. The coefficients for the ‘OLS and ordered logit models are presented in -

Tables 5.8 and 5.9, respecti\}ely.

Table 5.8: Ordinary Least Squares Coefficients of De-
terminants of Student Persistence. Dependent Variable:

DURATION.
Variable Coeflicient Std Error T-Stat P-Value
CONSTANT 5.3907 0.4693 11.4870  0.0000
ACTCOMP -0.1510 0.1433 -1.0530 0.2922
ENGINEER -0.0079 0.1938 -0.0410  0.9675
FINAID 0.1138 0.1052 1.0810. 0.2796
NONWHITE 0.2632 0.1295 2.0320  0.0421
NSTUDNT -1.4584 0.1706 -8.5490  .0.0000
PCTGRAD -3.7790 0.2203 -17.1510  0.0000
PREPROF -1.0963 0.2923 -3.7500.  0.0002
PROBENR -1.3993 0.2160 -6.4780  0.0000
RANKPCTL 0.1344 0.0296 4.5490  0.0000
RELRANK 1.3981 0.3345 4.1800  0.0000

continued or next page
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Table 5.8 continued from previous page

Variable Coeflicient Std Error  T-Stat P-Value
RELRNK?2 -0.1119 0.1815 -0.6160 0.5377
RESCODE -0.4230 0.1541  -2.7440 0.0061
SEXCODE -0.2231 0.1083  -2.0590  0.0395

SUMMER -1.4774 0.4902 -3.0140  0.0026

Table 5.9: Ordered Logit Coefficients of Determinants of
Student Persistence. Dependent Variable: DURATION

Variable Coefficient Std Error  T-Stat = P-Value
CONSTANT 1.5473 - 03115 4.9670 - 0.0000
ACTCOMP -0.0763 0.1067 -0.7160  0.4743
ENGINEER 0.1742 0.1633  1.0670  0.2860
FINAID 0.0684 0.0730 0.9360 - 0.3493
NONWHITE 0.1648 0.0973  1.6930 .. 0.0905
NSTUDNT -0.9026 0.0982 -9.1910  0.0000
PCTGRAD -2.0488 0.1524 -13.4470  0.0000
PREPROF -0.5781 0.2195 -2.6350  0.0084
PROBENR. -0.7108 0.1364 -5.2130 = 0.0000
RANKPCTL 0.0869 0.0193  4.4980 - 0.0000
RELRANK 0.8782 0.2386  3.6810  0.0002
RELRNK2 -0.0819 0.1273  -0.6440  0.5197 -
RESCODE -0.3081 0.1068 -2.8840  0.0039
SEXCODE -0.1830 0.0752  -2.4330  0.0150
SUMMER -0.4235 0.3789 -1.1180  0.2638
Mu( 1) 0.6145 0.0451 13.6140  0.0000
Mu( 2) 0.8403 0.0514 16.3480 - 0.0000
Mu( 3) 1.0288. 0.0544 - 18.9190  0.0000
Mu( 4) 1.1404 0.0562 - 20.2910 = 0.0000
Mu( 5) 1.3392 0.0582 22.9940  0.0000
Log-Like -1390.304 S

N Obs 1239

N Iter B .30 .

The Kruskal-Wallis test isused to determine if the predictions from each model are
independent samples from identical populations. Failure to reject the null hypothesis
implies that each model yields similar predictions, so similar in fact that each cannot

be distinguished from the other models. The statistic assumed a value of 1,210.0 for in-
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sample and 584.67 for out-of-sample validation and are significant at all conventional
levels. Pair-wise Kruskal-Wallis tests were conducted to see if any pair yielded similar
predictions. The statistics for in-sample results are as follows: WGH vs. OLS =
812.41, WGH vs. ordered logit = 1,035.7, and OLS vs. ordered logit = 48.45. These
are significant at all -com#en—t-ional 1eve1s.i The out-of-sample statistics are as follows:
WGH vs. OLS = 397.95, WGH vs. ordefed logit = 495.73, and OLS vs. ordered
logit = 24.06. Again, these are significant at all conventional levels.

Three sets of contingency tabies are presented below: WGH versus actual, OLS

versus actual, and ordered logit versus actual. The in-sample results are presented in

Tables 5.10, 5.11, and 5.12, respectively.

Table 5.10: In-Sample Predicted versus Actual Enroll-
ment Duration - WGH Model.

Actual Semesters
Predicted 1 2 3 4 5 6 7 - Total

0 11 1 2 1 1 1 0 17
1 21 11 7 3 4 4 8 58
2 1n 7 6 3 2 1 2 32
3 12 7 2 1 1 2 5 30
4 6 13 5 1 0 2 4 31
5 7 10 3 5 0 4 10 39
6 11 11 0 4 2 1 11 40
7 69 87 38 36 23 47 675 975

Total 148 147 63 54 33 62 715 1292

Table 5.11: In-Sample Predicted versus Actual Enroll-
ment Duration - OLS Model.

Actual Semesters

Predicted 1 2 3 4 5 6 7 Total

0 ) 2 2 0 1 O

0 10
1 4 7 & 1 0 1 0 31
2 25 21 14 3 2 3 6 4

continued on  next page



Table 5.11 continued from previous page
Actual Semesters
Predicted 1 2 3 4 5 6 7 Total

3 40 46 14 14 6 5 21 146
4 36 47 12 20 7 13 76 211 -
3 23 16 6 10 9 18 207 289
6 3 6 7 5 7 13 308 349
7 2 2 0 1 1 9 97 112

Total 148 147 63 54 33 62 715 1229

Table 5.12: In—Sample Predicted versus Actual Enroll-
ment Duration - Ordered Logit Model.

Actlial Semesfcrs .
Predicted 1 2 3 4 5 6 7  Total

1 6 1 0 0 1 0 0 8
2 27 17 17 2 1 4 3 71
3 48 57 13 16 7 5 21 167
4 46 51 23 22 8 16 108 274
5 19 18 8 13 14 26 421 519
6 2° 3 2 1 2 11 162 183

Total 148 147 63 54 33 62 715 1222

The out-of-sample results are presented in Tables 5.13, 5.14, and 5.15, respectively.

Table 5.13: OQut-of-Sample Predicted versus Actual En-
rollment Duration - WGH Model.

Actual Semesters ,
Predicted 1 2. 3 4 5 6 7 Total

0 4 12 1 2 0 0 10
1 g8 8 3 1 1 1 2 24
2 7 3 3 0 0 1 4 18
3 6 2 3 1 1 3 4 20
4 4 4 0 2 1 0 4 15
3 3 4 1 0 1 1 2 12
6 3 5 1 2 0 1 4 16
7 40 49 17 28 14 25 305 478

Total 75 76 30 35 20 32 325 593
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Table 5.14: Out-of-Sample Predicted versus Actual En-
rollment Duration - OLS Model. ’

Actual Semesters

Predicted 1 2 3 4 5 6 7  Total

0 1 0 1 1 0 0 0 3

1 6 5 2 0 0 1 0 14
2 11 10 7 1 6 2 3 40
3 23 18 6 5 3 1 7 63
4 18 27 11 11 4 7 36 114
5 11 10 2 11 6 10 96 146
6 5 6 1 6 1 10 133 162
7 0 00 0 06 0 1 5 5

Total 75 76 30 35 20 32 325 593

Table 5.15: Out-of-Sample Predicted versus Actual En-
rollment Duration - Ordered Logit Model.

Actual Semesters

Predicted 1 2 3 4 5 6 7  Total

1 1 0 1 1 0 0 O 3

2 9 v 6 1 4 2 2 31
3 26 25 9 4 5 2 7 78
4 25 32 10 13 5 8 51 144
3 14 12 4 16 6 17 198 267
6 0 0 0 0 0 3 67 70

Total 75 76 30 35 20 32 325 593

Table 5.16 presents the chi-square, Pearson’s correlation, conditional entropy, and

hit rate statistics for both in-sample and out-of-sample data sets.
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Table 5.16: In- and -Out-of-Sample Test and Association
Results for WGH, OLS, and Ordered Logit Models .

In-Sample Out-of-Sample
Statistic  WGH OLS Ordered Logit WGH OLS  Ordered Logit
Chi-Square 336.9 611.2 = 597.1 138.8 304.0 271.5
Correlation  0.249  0.635 0.624 0.377 0.610 0.588
Entropy 0.094 0.196 0.184 0.077 0.191 0.174
Hit Rate 0.579 0.154 0.068 0.545 0.167 - 0.066

According to the chi—sqﬁare statis_ticvs, each model’s prediction bears a statistically
significant relationship with the acfual enrollment durations. The strength of the
relationship, as fneasured by Pearson’s Correlation, is leastv impressive with the WGH
model. Both OLS and ordered logit’s pr_edictioﬁs are more strongly related to act‘ual
durations than those of the WGH model. OLS appears to be the best predictor
according to the correlation and entropy statistic, followed by ordered logit, and
finally the WGH model. However, according to the hit rates, the WGH model strongly
outperforms the others. This is because the WGH model sﬁccéssfuﬂy predicted a large
number of students persisting to the censoring semester. Therefore, these results are

inconclusive regarding predictive hypothesis 7 of enrollment.

5.1.8 Predictive Performance of the Weibull Model: Exit
Destinations

Hypothesis 8 states that the WGH model offers better predictive performance than
multinomial logit when predicting departure destination. The estimated coeflicients

for the multinomial model are presented in Table 5.17.
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Table 5.17: Multinomial Logit Coefficients of Determi-
nants of Dropout, and Transfer. Normalized on Persis-

tence
Varjable Coefficient Std Error T-Stat P-Value
' Characteristics for Prob(Dropout)
CONSTANT -0.2594 0.7462 -0.348  0.7281
ACTCOMP 0.4343 0.2393  1.815 . 0.0695
ENGINEER -0.5404 0.3259 -1.658  0.0972
FINAID -0.4340 - 0.1597  -2.718  0.0066
NONWHITE 0.0455  0.2183  0.209 - 0.8347
NSTUDNT 2.0909 . - 0.2637  7.928  0.0000
PCTGRAD 3.9607 0.3503 11.307  0.0000
PREPROF 1.3931 0.4348 - 3.204 - 0.0014
PROBENR 1.4400 0.4020 3.582  0.0003
RANKPCTL -0.1705 ~ 0.0453 -3.761  0.0002
RELRANK -4.1610 0.8709  -4.778 - 0.0000
RELRNK?2 1.3323 . .0.4829  2.759  0.0058
RESCODE 0.8288  0.2196  3.775  0.0002
SEXCODE 0.6131 0.1656  3.702°  0.0002
SUMMER 30.577 1052178.5  0.000  1.0000
Characteristics for Prob(Transfer) v

CONSTANT -3.9034 - 1.41100 -2.766  0.0057
ACTCOMP 0.3713  .0:47150  0.787 = 0.4311
ENGINEER -1.0382  0.80039 -1.297  0.1946
FINAID -0.8862 0.33659  -2.633  0.0085
NONWHITE -0.9654 0.62635 -1.541  0.1233
NSTUDNT 2.7592 0.44642  6.181  0.0000
PCTGRAD 3.6501 0.66092  5.523 = 0.0000
PREPROF 0.7337 0.83610  0.878  0.3802
PROBENR 1.8179 0.57569  3.158  0.0016
RANKPCTL ~  0.0353 0.09630  0.366 ~ 0.7142
RELRANK -3.2811 1.40142 -2.341  0.0192
RELRNK2 0.6705 - 0.85236  0.787  0.4315
RESCODE -0.8027 0.75226 -1.067  0.2859
SEXCODE 0.5312 0.33767  1.573  0.1157

SUMMER 31.0978 1052178.5 0.000 . 1.0000

As above, the Kruskal-Wallis test is used to determine if the predictions from each
model are independent samples from ideéntical populations. The statistic assumed a
value of 62.747 for in-sample and 31.205 for out-of-sample validation and each is

~ significant at all conventional levels.
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The WGH and multinomial logit contingency tables are presented below: The
in-sample results for the WGH and multinomial logit models are presented in Tables
5.18 and 5.19, respectively. The out-of-sample results for the WGH and multinomial

logit models are presented in Tables 5.20 and 5.21, respectively.

Table 5.18: In-Sample Predicted versus Actual Destina-
tion - WGH Model.

Actual Destination
Predicted Continue Dropout Transfer Total

~ Continue 675 267 33 975
Dropout 40 189 17 246
Transfer 0 1 0 1

Total 715 457 30 1222

Table 5.19: In-Sample Predicted versus Actual Destina-
tion - Multinomial Logit Model.

Actual Destination
Predicted Continue Dropout Transfer Total

Continue 636 147 17 800

Dropout = 79 310 33 422

Transfer 0 0 0 0
Total 715 457 50 1222

Table 5.20: Qut-of-Sample Predicted versus Actual Des-
tination - WGH Model.

Actual Destination | -
Predicted Continue Dropout Transfer Total

Continue = 308 147 23 478
Dropout 20 87 8 115
Transfer 0 0 0 0

Total 328 234 31 593
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Table 5.21: Out-of-Sample Predicted versus Actual Des-
tination - Multinomial Logit Model.

Actual Destination
Predicted Continue Dropout Transfer Total

Continue = 300 = 83 10 393

Dropout 28 151 21 1200
Transfer 0 0 0 0
Total 328 234 31 - 593

Table 5.22 presents the chi-square, conditional entropy, and hit rate statistics for

both in-sample and out-of-sample data sets. - .

Table 5.22: In- and Out-of-Sample Test and Association
Results for WGH, OLS, and Ordered Logit Models .

In-Sample Out-of-Sample

Statistic 'WGH Multinomial Logit WGH Multinomial Logit
Chi-Square  230.3 420.5 85.3 208.5
Entropy 0.120 = 0.222 - .0.077 0 0.222
Hit Rate 0.707 0.774 0.666 0.761

Based on the chi-square results, there is a significant relationship between the
predicted and actual destinations for both models, in both in-sample and out-of-
sample validation. The coﬁditional entropy statistic suggests that more uncertainty
in the actual destinations. is predicted by the multinomial predictions than the WGH
predictions. Also, the multinomial model has a higher hit rate than WGH. This is
‘the case in both in-sample and out-of-sample data. These resuits do not support the

hypothesis that the WGH model is a better predictor of departure destination.

5.1.9 Other Results

A number of variables were included in the analysis for purposes of control. The vari-

ables are ACTCOMP, ENGINEER, FINAID, NONWHITE, PREPROF, PROBENR,
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RANKPCTL, RESCODE, and SEXCODE. According to the persistence literature,
the variables ACTCOMP and RANKPCTTL reflect the student’s pre-college schooling
- performance and skills. In previous studies, these have been found to be of secondary
importance in predicting persistence, especially when various aspects of the fresh-
man ‘year experience are considered. Each are expected to be directly related to
persistence. ENGINEER indicates that a student is an engineering major. Get-
ting into the engineering program is a competitive, selective process, and this would
reflect a commitment to persistence. PREPROF indicates the student is enrolled
in a pre-professional program and is included to account for exit rates between the
third and sixth semesters. Whiie pfe—professional indicates a certain commitment,
the impact on persistence is expected ito be negative because, upon completing the
required course-work, the student usually transfers to another institution to com-
plete their training. In this study, this should occur sometime pﬁor to the censoring
date. NONWHITE is a composite ethnicity indicator and SEXCODE indicates the
student is female, both of which have been found to be negétively related to persis-
tence. PROBENR indicates the student is a problem-enrollment in that he or she
is under academic notice or probation, and it is expected to be negatively related to
persistence. FINAID indicates the student is receiving financial aid. This indicates
a willingness to enter into a financial contract for education and should be positively
related to persistence. Finally, RESCODE indicates the student is not a resident.
This is a proxy for long distance from home and has been found in other studies to
be negatively related to persistence.

Using a standard level of significance of 0.10 in the siﬁgle—svtage model, the only
significant variables from the list above are ACTCOMP, ENGINEER, PREPROF,
PROBENR, RANKPCTL, RESCODE, and SEXCODE. None of these variables were
significant in the transition intensity model. With the exception of ACTCOMP, each

had the expected signs. The marginal impacts of these variables are presented in
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Tables 5.23, 5.24, 5.25, 5.26, 5.27, 5.28, and 5.29, respectively.

Table 5.23: Marginal Impact of ACTCOMP on Enrollment Dura-

tion.
Average Gifted ' Challenged

SD Unit = A Duration: TD Ratio A Duration TD Ratio A Duration TD Ratio

-3 0:7037 0.2293 0.8259 0.4232 0.5996 0.1244

-2 0.4550 0.2322 0.5340 0.4288 0.3877 0.1258

-1 0.2207 0.2352 0.2590 0.4346 0.1880 0.1274

0 0.0000 0.2383 - 0.0000 0.4406 0.0000 0.1290

1 -0.2079 0.2415 - -0.2440 0.4467 - -0.1771 0.1306

2 : -0.4038 0.2448 -0.4739 0.4531 -0.3440 0.1323

3 -0.5883 0.2482 -0.6905 - 0.4596 - -0.5012 0.1341
Mean X 2.4036
Std Dev X . 0.3821

Mean T 3.5874

A clear negative relationship is exhibited between ACTCOMP and enrollment
duration across all duration models . For exceptional students (3 standard deviations
above the mean) expected enrollment dufation drops by half a semester. The TD
ratios indicate that students are more likely to depart. the system than to transfer
within the system. This result runs counter to intuition; however, it does suggest
that admitting bright students does not guarantee persistence. This also suggests

that raising admissions standards via the ACT scores may not improve persistence.

Table 5.24: Marginall Impact of ENGINEER on Enrollment Dura-

tion.
Average Gifted ’ Challenged

Indicator A Duration TD Ratio A Duration TD Ratio A Duration TD Ratio

0 0.0000 0.1731 0.0000 0.2896 0.0000 0.1034

1 1.0144 0.1873 1.0666 0.3111 0.9739 0.1127
Mean X 0.1163
Std Dev X 0.3206
Mean T 3.4824
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Engineering majors exhibit a stronger propensity to persist than the average stu-
dent by about a semester. Again, should departure occur, it appears more likely the

student will drop out of the system than transfer.

Table 5.25: Marginal Impact of PREPROF on Enrollment Dura-

tion.
Average Gifted Challenged

Indicator A Duration TD Ratio A Duration TD Ratio A Duration TD Ratio

0 0.0000 0.1698 - 0.0000 0.2841 © - 0.0000 0.1014

1 -1.0757 0.1951 -1.1204 0.3270 -1.0328 0.1164
Mean X 0.0460
Std Dev X 0.2095
Mean T 3.6456

Students enrolled in pre-professional fields are less likely to persist and when

departure occurs, they are more likely to drop out of the system than to transfer.

Table 5.26: Marginal Impact of PROBENR on Enrollment Dura-

tion.
» Average Gifted Challenged
Indicator A Duration TD Ratio A Duration TD Ratio A Duration TD Ratio
0 0.0000 0.1622 0.0000 0.2714 0.0000 0.0969
1 -0.9852 0.1488 -1.0262 0.2501 -0.9459 0.0885
Mean X 0.0449
Std Dev X 0.2071

Mean T 3.6387

Students who are placed on academic notice or probation are expected to withdraw
about one semester sooner than the average student, and according to the TD ratios,

are more likely to drop out of the system than transfer.
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Table 5.27: Marginal Impact of RANKPCTL on Enroliment Du-

ration.
Average Gifted Challenged

SD Unit A Duration TD Ratio A Duration ‘TD Ratio A Duration TD Ratio

-3 -0.7661 0.0431 -0.6799 0.0395 -0.8632 0.0471

-2 -0.5309 0.0407 -0.4711 0.0374 -0.5982 0.0443

-1 -0.2761 0.0384 -0.2450 0.0354 - -0.3111 0.0418

0 0.0000 0.0364 0.0000 0.0336 0.0000 0.0395

1 0.2991 0.0346 0.2654 0.0319 0.3370 0.0375
Mean X - 7.8221
Std Dev X 1.8634

Mean T 3.5874

Students graduating in the top of their high school class aré more likely to persist
than the average student. This is indicated by a one-standard deviation increase in

RANKPCTL and adds nearly a third of a semester to expected enrollment duration.

Table 5.28: Marginal Impact of RESCODE on Enrollment Dura-

tion.
Average Gifted Challenged
Indicator A Duration TD Ratio A Duration TD Ratio = A Duration TD Ratio
i) 0.0000 0.1964 0.0000 0.3285 0.0000 0.1173
1 -0.7426 0.2600 -0.7735 0.4321 -0.7130 0.1562
Mean X 0.1237
Std Dev X . 0.3292

Mean T 3.6886

Nonresident students are expected to per81st about 0.75 semesters less than the
average, and the TD ratios indicate they are more hkely to drop out of the system

than to transfer.
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Table 5.29: Marginal Impact of SEXCODE on Enrollment Dura-

tion.
Average Gifted Challenged

Indicator A Duration TD Ratio A Duration TD Ratio A Duration TD Ratio

0 0.0000 0.1731 -0:0000 0.2896 0.0000 0.1033

1 -0.4722 0.2300 -0.4918 0.3826 -0.4533 0.1381
Mean X 0.5077
Std Dev X 0.5000
Mean T 3.8349

The marginal impact of being a female student reduces expected enrollment dura-
tion by nearly half a semester relative to the average male student. Similar to other

results, female student are more likely to drop out of the system than to transfer.

5.2 Chapter Summary

This chapter presented the analysis and empirical evidence used to test the four main

hypotheses of this study. A sufnmary of the findings follows:

e Hypothesis 1 that relative rank was quadratically related to persistence was
supported by the evidence. When no distinction is made regarding where the
student exits to, the hypothesis was supported. The signs of RELRNK2 in each
model were negative; however, the coeflicient in the transfer intensity was not
statistically significant. In terms of marginal impact oﬁ enroilment duration,

relative rank is the single most influential variable examined.

o Hypothesis 2 regarding the behavior of | dropouts and transfers was supported.

Dropouts and transfers are behaviorally distinct.

o Hypothesis 3 regarding the relationship between class size and persistence was

not supported. Statistical significance was lacking to support the notion that
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larger class sizes were an impediment to academic integration and persistence.

The marginal impact on enrollment duration was also weak.

Hypothesis 4 regarding the relationship between classroom staffing and persis-
tence was strongly supported, both within the hazard models considered and in
competitor models as well. The hypothesis states that the likelihood of persis-
tence is lower the higher the pr‘oportion of graduaté student teaching assistants
in a student’s portfolio. Marginal analeis also shows changes in PCTGRAD
to be moderately influential to changes in enrollment duration; adding a third
teaching assistant by subbstituting for a faculty member in a six-course portfolio

can potentially reduce the average student’s persistence by half a semester.

Hypothesis 5 regarding the relationship between summer enrollment and persis-
tence was generally supported. Students who take summer courses are at least
as likely or more likely to persist as those who don’t (by about 0.75 semesters

according to marginal analYSis).

Hypothesis 6 of the relationship between unobserved student heterogeneity and
the observed pattern of departure was supported. The shape parameter esti-
mate suggests that the enrollment duration hazard exhibits positive dﬁration
" dependence, and unmeasured heterogeneity, as parameterized in the model, was
found to be a signiﬁcanf contribufor of the observed negative duration depen-
dence. Thus, unmeasired pérsonal différences in preference for persistence are

primarily responsible for the observed pattern of student departure.

The hypotheses regarding the predictive performance of the WGH model were
inconclusive. The WGH model could not beat OLS or ordered logit in predict-
ing enrollment duration according to goodness-of-fit tests; however, the WGH

model had a much higher hit rate. Multinomial logit performed better than
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WGH in predicting departure destination based on goodness-of-fit tests and hit

rates.

e Seven control variables were found to be significant: ACTCOMP, ENGIN EER,‘
PREPROF, PROBENR, RANKPCTL, RESCODE, and SEXCODE. None of
these variables were significant in the transition intensity model. With the
exception of ACTCOMP, each had the expected signs. However, ACTCOMP’s

marginal impact was not particularly large.

The following chapter discusses some of the other findings in the analysis as well

as offers concluding remarks.
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. CHAPTER 6

SUMMARY, DISCUSSION, AND CONCLUSION

The emphasis-of this study was to specify and estimate statistical models appropriate
for predicting undergraduate enrollment durations. Known as failure-time or duration
models, these methods offer elegant ways to account for two types of information
available in persistence déta; namely, the time-to-exit and the type or characteristics
of exit, This appro'ach. is well suited for longitudinal enrollment data where a cohort
of students are followed over time.

A hazard regression model was specified assuming that enrollment durations were
distributed as Weibull random variables, that observable student characteristics in-
fluence the scale of the distribution, and that unobservable student characteristics
influence the shape of the distribution. In particular, these unobservable characteris-
tics were assumed to enter the hazard model multiplicatively as Gamma distributed
“random variables with unit mean and constant variance. This‘ type of model has
become -knowﬁ in the econometric literature as a Weibuﬂl hazard model with-Gamma
heterogeneity. Two specifications were e’stimat“ed: a single-stage model of non-specific
student departure, and multiple destination transition iﬁtensity models where transfer
and system dropout are made distinct. The sample was right-censored; any student
not departing by the sixth semester (Fall 1996) had covariate observations up to that
point. Whether they departed in the future was not known. The parameters of the

model were estimated using maximum likelihood.
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The data used in this study consisted of records on 1,832 Fall 1993 entering fresh-
man at Oklahoma State University. Of these, 799 (43.6 percent) voluntarily departed
by the Fall 1996 semester. Various background characteristics as well as semester
course data were used to estimate the models. ‘Background information included the
student’s high -school‘ran‘k as a percentage of the graduating class size, the composite
ACT score, the student’s sex and ethnicity, and the resi_dency status of the student.
Longitudinal data included the relative rank of the student within the current port-
folio of courses taken, the average number of sﬁudents in the portfolio, the proportion
of instruction conducted by graduate student teaching assistants, financial aid, sum-
mer enrollment, problematic enrollment (i.e., academic notice or probation), and
pre-professional and engineering major indicatorbs. The dependent variables measure
the number of semesters of continuous enrollment and whether the student, immedi-
ately upon departure, transferred to another institution or 'dropped out of the system.
These data were randomly assigned to two samples: two-thirds of the data were used
to estimate the models and one-third were used to provide out-of-sample predictive
validation. |

This study contains a number of hypotheses about how various observable char-
acteristics affect persistence. The relationship of how unmeasured characteristics
influences observed exit rates is also considered. F inally, the predictive performance
of the proposed models relative to competitors is e\}aluated. o

As expected, it was found that the behavior of dropouts is different than trans-
fers. This result is consistent with Tinto (1993) and the empirical literature where
the distinction was made (Horn, 1998). The coefficients from each specification were
individually tested and jointly tested under the null hypothesis that they were the
same. Five of the 14 independent variables had parameter estimates that were not
statisticalty different: ACTCOMP, ENGINEER, PCTGRAD, PROBENR, and SEX-

CODE. A joint test of all 14 variables found transfers and dropouts to be statistically
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different.

Of those factors affecting persistence, Tinto (1975) and later in Tinto (1993)
claimed that acadefnic’: and social integration were especially important in a stu-
dent’s persistence-departure decision. There is general agreement that the current
academic performance is a good indicator of academic integration, and that student-
faculty interaction is an important component of social integration (Terenzini and
Pascarella (1980), Pascarella (1980), Bean (1982), Pascarella and Terenzini (1983),
Stage (1988), Stage (1989), Bean and Metzner (1985), Eaton and Bean (1995), and
Pascarella, Edison, Hagedorn, Nora, and Terenzini (1996)). It has been consistently
found that these integration measures are directly related to persistence. The mea-
sure of academic integrétion used in this study is called relative rank and it measures
the average grade performance of the individual student relative to the class over the
portfolio of courses taken per éemester. This variable allows for the hypothesis that
a student performing as well as his or her classmates is more likely to persist than a
student performing well belo‘wv or above the rest of ciass, especially if this performance
is consistent across the portfolio of courses taken. The intuitive reason to expect this‘
for high performing students is that they will likely move on to better alternatives in
terms of prestige and expected income upon graduating (see Frank (1985) and Heath
(1993)). The results of this study support this hypothesis, thoﬁgh it was found that
only the extremely high performing students (i.e;, at least three standard deviations
above the mean) exhibit decreasing pei‘sistence. For the vast majority of students,
the higher one’s performance is relative to oné’s peers, the higher the likelihood of
persistence. |

This result has as much to say about the character of the institution as it does
about the student. For example, this hypothesis is not likely to hold at an elite
private institution, if for no other reason than there are very few better alternatives

for high performing students. The evidence supported the hypothesis for dropouts
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but not for transfers. That is, high performing students are more likely to persist
or dropout than transfer. This ‘im‘plies two things; first, because high performing
students are less likely to transfer to other institutions in the state system, Oklahoma
State University is a relatively high ranking institution within the system. Second,
while high performers_ are more likely to drop out of the system, this does not imply
they are dropping out of higher education altogether. Data were not available on
students who transfer out-of-state. These considerations suggest that the predictions
involving relative rank for high p.erformirvlg" st}ldenté be interpreted with caution.

Another key finding was the ‘relationsﬁip between persistence and the instructional
composition of a student’s coﬁrse portfolio. In particular, a consistent finding in the
proposed and competitor‘ models alike is a negative relationship between persistence
and the proportion of instruction conducted by graduate studeht assistants. It does
not appear that any previous study has considered this; however, by reinterpreting |
Tinto’s social integration frﬁmework, this result is plausible. This is because graduate
teaching assistants are not considered to be regular university faculty by anyone
involved, with the possible exception of the graduate students themselves. As a result,
if more instruction is conducted by graduate students, there will necessarily be less
opportunity for students to interact with the faculty. Furthermore, Pascarella and
Terenzini (1983) found that low faculty interaction resulted in lower social integration
and persistence. The'inurie’dia:te policy implication,‘then, 1s that as pé,rt of a retention
program, instruction conducted by graduate students should be {imited.

This conclusion is not warranted. Fir}st,vthe evidence presented here does not pro-
vide a complete picturév of the cOmpleXity surrounding graduate students as instruc-
tors. For instance, data were not available or in reliable form to determine whether
student -evaluations or graduate instructor ethnicity played a part in lower persis-
tence. Additionally, nothing is known about the level of teachiﬁg experience of the

graduate instructor. Also, low performing students may simply use graduate teaching
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assistants as convenient scapegoats for their poor academic performance. Second, an
institution would need to consider the expected benefits of increased undergraduate
retention against the expected costs of achieving it. Such costs could include, for
example, reduced grant money and research production from faculty, higher faculty
and graduate student attrition, and general loss of academic prestige because of lower
volume or quality of research. On the other hand, it may be possible to shift many of
the research responsibilities to graduate students, minimizing the impact on research
production and freeing faculty to undertake more instruction. Whether this strategy
does a disservice to graduate students in terms of their career development would also
need to be considered. In short, the complexi'ty"'of graduate students as instructors
is an area that deserves careful attention and research, and thé results of such an
undertaking shoﬁld be a part of an informed retention policy.

Other significant findings include whether the student enrolls in summer school,
and whether the student is or is not a state resident. Each can be considered proxies
of commitment in Tinto’s framework; the first is expected to be directly related and
the second negatively related to persistence. These effects were supported by the
empirical evidence. A fliteral interpretation of Tinto’s framework would not have
a problem with the first result. Higher levels of commitment are indicated by a
willingness to enroll in summer courses since summer enrollment is not required to
maintain full-time-student status or to earn a degree within four years. The second
is less obvious. Non-residents face a tough decision; an‘example might be whether
to attend an in-state institution of lesser prestigé, but also relatively inexpensive and
closer to home, or atténd a more expensive and prestigious out-of-state institution
further from home. However, distance and prestige constant, out-of-state students
should exhibit lower commitment than in-state students based on the cost differential
alone: Qut-of-state; non-legacy undergraduates paid an additional $115.56 tuition per

credit hour during the 1997 academic year. A legacy student is an out-of-state student,
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but treated as in-state by virtue of their alumni parents. Unfortunately, data were not
available on whether a student is legacy or not. Furthermore, a key requirement for
establishing residency is that the student relocate to Oklahoma for at least one year
not for the sole purpose of education. This is usually accomplished through full-time
employment. Obviously, if this is attempted while maintaining enroltment, there will
necessarily be less time available for academic studies, all else constant. Indeed, the
average relative rank for in-state students was 1.12 compared to 1.07 for out-of-state
students. Not only do out-of-state students have higher tuition expenses, they also
pay a high price for establishing residency. Unfortlinately, employment data were not
available to formally test this notion.

The pattern of exit was found to be influenced by unobservable characteristics of
the students or unmeasured heterogeneity. It was shown in Chapter 3 that unmea-
sured heterogeneity biased the hazard function toward negative duration dependence,
wheré the probability of exit decreases over time. This study allowed for heterogeneity
through a parametric specification of its distribution; more specifically, unmeasured
heterogeneity was assumed to be a random variable from a Gamma distribution with
unit mean and constant variance. When combined with a parametrically specified
hazard function, the size and significance of the Gamma variance indi’ca,tes hetero-
geneity is affecting observed exit rates. A positive, significant estimate suggests that
observed negativé duration dependence is attributable to unobserved differences be-
tween individuals and not to state dependence. Intuitively, the mobility prone stu-
dents are the first to leave, and incfeasingly the persistefs are composed of students
with lower and lower chances of departure. o

From a practical standpoint, these results suggest that policies intended to improve
retention in the first year may not work as well as expected. Tinto (1993, pp. 145-
53) provides some guidelines or “principles of effective: retention,” one of which is

to “front-load” retention efforts during the first year. The economic rationale is
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straightforward; given a fixed budget and resource for retention purposes, they should
be expended where they are likely to have the most impact. The implicit assumptionis
that they will have a lasting impact, tha‘g is, if students can make it over the first year |
hump, their probability of persisting improves. This has been echoed in the recent
attritipn literature (e.g., (Berkner, Alamin, McCormick,,& Bobbitt, 1996) and (Horn,
1998)). Such policies may have the effect of reducing attrition in the first year, and
it may be tempting to take this as a sign ofvam‘ successful policy. Based on the results
in this study, such a conclusion may 'bé premature: On the one hand, a necessary
condition for reducing overall attrition is to reduce it during the first year. After all,
students cannot persist to the third year if they don’t persist through the first and
second. On the other hand, front-loading may only increase the chances a student
persists: the policy may be p'ostp'oning the mobility-prone student’s departures to
later semesters where less is invested in retention. |

One potential limitation of these results‘ is that the unmeasured heterogeneity
could be due to limited data on social integration. Granted, student-faculty formal
and informal interactions are an important component of social {and academic) in-
tegration; however, there are other dimensions as well. The frequency and quality of
peer group interactions and “buy-in” to the institution’s culture via school apparel
and novelties are just two examples. These data are unavailable in this study and
are geﬁeraﬂy difficult and costly to obtain. Most empirical studies héve used survey
instruments designed to measure the differing dimensions of social integration, repeat-
edly administering them to a given cohort over time. The administrative logistics of
this process make it difficult to capture and maintain a reliable source of data, and
not surprisingly, relatively few institutions invest in this process.

Other control variables were considered as well. Six were found to be statistically
significant at the 0.10 level in the single-stage model. These were the student’s ACT

composite score, engineering major, pre-professional degree, problematic enrollment,
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high schoeol rank, and female student. The composite ACT score was negatively re-
lated to persistence in the WGH, OLS, and ordered logit models. Based on marginal
analysis, small differences in this score may not be important. Everything else con-
stant, a student scoring three standard deviations above the mean ‘(a nearly perfect
score) is expected to persist half a semester less than the average student. Further-
more, they appear destined to dro‘p‘ out of the systerﬁ rather than transfer. Based
on earlier discuésipns, this may be reasonable.' ACT scores are a key admissions
component in most universities, and students with high ACT scores may be treating
Oklahoma State University as an intermediate step to a better out-of-state alter-
native, Again, data were not available to test this assertion. It also suggests that
admitting bright students does not guarantee persistence. Furthermore, raising ad-
mission standards via higher ACT requirements will not likely have the expected
impact on retention.

The other results were in line with expectétions, and based ‘on marginal analysis,
some had particularly strong effects. For éxémple, average engineers are expected
to persist about one semester longer than an equival_ent non-engineer. On the other
hand, those in pre-professional degrees {e.g., veterinary medicine) are likely to stay
one semester less than the average student. Likewise, students on academic notice or
probation are likely to (voluntarily) stay one semester less that the average student.
Female students are likely té persist 1 /2 a semester less than the average male. This
last result is also supported in the literature. Pascarella ﬁnd Terenzini (1983) found
that persistence between males and females dif_feréd greatly. They attributed the
difference primarily to the differences bétweeri social and academic integration, aca-
demic integration affecting males more strongly, and social integration more strongly
affecting females. As mentioned earlier, measures of social integration were not read-
ily avaitable in this study and this may be influencing the impact of being a female

student on persistence.
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The models in this study were also evaluated in terms of predictive performance
compared to competing models on a hold-out sample. The results were inconclusive.
In both in- and out-of-sample validation, the Weibull model could not béat OLS in
predicting enrollment duration based on goodness-of-fit tests; however, WGH had
a much higher hit rate. The WGH Iﬁodel was much more successful in predicting
persisting students. This result implies that even though the WGH model may not
predict the exact departure time very well, it is able to identify the persisters better
than OLS or ordered logit. On thev other hand, the WGH model.is not as well suited
as multinomial logit for identifying where studéhts are likely to go once they leave.
The WGH model could not beat multinomial logit in predicting departure destination
according to goodness-of-fit té’sts or hit rates.

Throughout this study, Tinto’s theoretical framework was taken as given. Tinto’s
theory of student attrition is first and foremost a sociological one. In particular,
Durkheim’s theory of suicide is used as a basis for understanding the dropout process
where students dropout primarily because they afe unable to integrate into the social
and academic systems of college. For Durkheim, these forms are egoistic and anomic
suicide, where the social part of an individual’s nature is insufficiently developed or
the social setting lacks the needed rules to constrain individuals by integrating them
into the collective whole. These forms of suicide were thought to be most prevalent in
the transition beriod to modern society (Ashley & Orenstein, 1985)‘. The transition
from high school to college, the institutional étructures, and the relative normlessness
a student typically experieﬁces are seen as the primary drivers of student departure.
The process flow by Whi(;h a student integrates into the social and academic systems
has been depicted by Tinto in his well-known diagram of the longitudinal process of
student departure (see Figure 2.1 on page 9).

Clearly, student departure does not have the same consequence as suicide; oth-

erwise, dropout would be a rare event. The fact that student attrition is a sizable
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phenomenon suggests that the suicide model is not entirely adequate for explaining
dropout. A serious weakness of linking suicide to student departure is that it frames
such departure iﬁ terms of self-destructive behavior. Tinto (1993, pp. 1, 37-45) read-
ily points out that students who attend college and fail to obtain a degree may well
receive some benefits from the experience and that attending college is as much about
personal discovery as ‘earning a degree. Even so, the general theme of his work is aptly
expressed in the title of his 1993 book, “Leaving College: Rethinking the Causes and
Cures of Student Attrition,” where half of the book diagnoses the student depar-
ture problem and the remaining third of the book prescribes the treatments available
to institutions for reducing or‘containing attrition. Student departure is seen as a
treatable condition.

A different pefspective would be to assume that a student’s decision to persist or
withdraw arises from rational choice. That is, a student will persist at an institution
if the present value of expected net benefits is nonnegative. Once negative, a depar-
ture occurs. Whether or not a stud"ent‘ continues at a different institution depends
on the opportunities and constraints the student faces. Students continually evaluate
the net benefit condition based on the arrival of new information, thus preserving the
longitudinal character of departure. Students are at once producers and consumers
of their educational experience. They combine pre-college skills and experiences as
well as background characteristics and current experiences to prodﬁce educational
outcomes. These butcomes enter as arguments in the utility function for persistence.
To the extent academic and social integration are important in the decision process,
the factors affecting either will enter into the student’s utility function as well. In
this framework, it is possible that a student’s willingness to trade social integration
for academic integration is feasible, thus leaving the persistence decision unchanged
(assuming the student maintains the minimum standards on academic performance).

Institutional factors affecting social integration, such as policies to increase student-
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faculty interaction, can leave academic integration constant and retain more students
by virtue of lowering the relative price of social integration. In this way, the dimen-
sions and extent of institutional actions regarding student departure are seen in terms
of responding to demand and not in terms of ti‘eating a condition. An implication
here is that institutions Will vary in their level of concern over student attrition. Two
institutions with the same attrition rates can vary greatly in how attrition is viewed;
one can view it as a condition to be treated and the other can view it as a marketing
tool to attract (the best) students. The variance depends on the goals and objectives
of the institution. o

Because aftrition is ultimately about choice, it seems that economics would have
a great deal to offer institutional researchers. Tinto’s work has been extremely impor-
tant in aligning instituxfionél‘reseafc'h around a common model of student departure.
- What it lacks, and what economics can provide, is an analytical theory capable of
mathematically specifying structural relationships in the dropout decision process.
The literature on optimal job search, matching, and turnover in the labor market
is a promising starting point for developing a theoretical model of the student de-
parture decisions (in particular, see Mortensen (1986), Mortensen (1988), Jovanovic
(1979), and Jovanovic (1984)). Such a theoretical model can aid in the specification of
the duration model, potentially improving the precision of the estimated parameters
and improving its predictions. Unfortunate.ly,‘ these theories are very complex and
extremely difficult to estimate empirically.

Two variables that were especially important in predicting persistence were the
relative rank of the student and the classfoom staffing composition of the student’s .
course portfolio. Relative rank should prove especially useful for evaluating the impact
of “learning communities” Tinto (1993). Learning communities are an integrated
approach for placing small cohorts of students in the same courses with the same

instructors. These “teams of learners” presumably benefit from the shared experience
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and find the systems of college less alienating. When evaluating the effectiveness of
learning communities on persistence, a student’s relative rank should prove more
useful than overall grade point average, since relative rank will measure a student’s
performance relative to his or her teammates. Future studies may also benefit in
accounting for classroom staffing, especially when classes are staffed with regular full-
time faculty, temporary faculty, and graduate teaching assistants. Temporary faculty
include professionals who teach ‘a class on the side, full-time visiting, or part-time -
instructors. The classroom staffing ‘question offers several interesting area forb further
research; for example, (1) whether graduate tea(:‘hiwng assistants have a different impact
on persistence than pdrt%ime instructofs, or (2) whether, at four-year institutions,
students from feeder schools staffed with part—ti‘rﬁe instru;itors are less likely to persist

than students from feeder school staffed predominantly with full—time staff.
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