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CfIAPTER 1 

INTRODUCTION-

This stµdy-at-tempt-sto specify and ·estimate st-atist-ical models appropriat-efor predict­

ing un,dergraduate enrollment durations. Known as failure-time or duration models,_ 

these methods offer elegant ways to account for two types of information available in 

persistence data; namely, the time-to-exit and the type or characteristics of exit. This 

approaph 1s well suited for longitudinal enrollment data where a cohort of students 

are followed over time: 

To see that persistence in higher education is · an interesting topic of study, one 

need only examine the pervasiveness of student departure. Of the nearly 2.4 million 

students entering -higher -ecltteati-on in -1993 for -the ·first -time, over 1.5 million will 

depart from their first choice institution without receiving a degree. Furthermore, of 

the 1.5 million leaving their first institution, nearly 1.1 million will withdraw from 

higher education altogether (Tinto, 1993). When restricting attention to four-year 

institutjon-s, ·at l-ea-st -two-regularities ·can be observed-: First, ·the -typical in-stituti-on 

can r9utinely expect to lose 25 to 30 percent of its entering freshman cohort every 

academic year. Second, half of the entering cohort will actually maintain continuous 

enrollment and attain a degree. 

This ,sizable and ·cont-irruing attrition i-s -not without -consequence, -either for the 

individual or the institution; For individual students-, attaining a degree-takes longer-­

and is more costly, if it is attained at all. Much of the monetary, occupational, and 
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social r~rds -of high-er -edu-ca-tion ·-are· conditional ·on -earning---a -college ·degree. This 

does. not imply that students who fail to obtain a college degree do not benefit from 

their college experience; however, it is commonly recognized that a college degree, 

especially a four-year degree, is an important signal to employers and thus, a key to 

entry in,tzy-desirable-occupation-s. 

Stv.dent attrition also affects institutions in that students represent, among other 

things, an important source of revenue including tuition, fees, state appropriations, 

and· donations from graduates. Even with relatively stable attrition rates across 

enteri:p.g-student,-cohort-s, ins-titut-ions-willfeel-bu-dget-ary pressure-if overaH-emoHmerrt 

.is declining. Indeed, the projected decline in the college-going population appears to 

have arrived. Belated recognition of this fact has led institutions to appreciate, as 

never before, -the necessity of-retaining --as ·many student-s -a-s ;possible. Bean -(i-982) 

summrrizes the prevailing sentiment succinctly: . 

In a period when demographic data suggest that freshmen enrollments 

will decline substantially, the importance of improving retention rates may 

become _mer-e--a matt-er -of inst-itut-ional-sttr-vival -th-a-n -of --ae-adem-ie- int-er-est 

(p. 292). 

In response to these pressures, most four-year institutions have invested, in one form 

or another, in marketing and recruitment activities aimed at increasing the number 

of appUcant-s. Most -have -al-so-expanded -t-heir -efforts t-o -att-ra-ct ap¢icants -other than 

the tr1ditional college-bound high school student. As a result, the composition of the 

student body at most four-year institutions have become increasingly heterogeneous, 

and this diversity has been a confounding influence in studying persistence patterns. 

Partly-in -respon-se -to t-he increased ·demand for ttnderst-anding -student-depart-ure, 

a grea~ deal of scholarly effort has been expended on the empirical study of student 

attrition. Traditional (post 1975) studies of student departure are typically institution 

specific, using path-analytic methods to allocate the variance of factors ,re.la.ting to 
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enrollment behavior. -Student-departure is· usually -defined as a -di-scret-e··-event -(-depart· 

pr continue) within a fixed time period (usually the freshman year). While there is 

good reason for focusing on the first year of enrollment (most departures occur during 

this time), the fixed-time approach generallydoes not account for the impact "fixity" 

or censprin-g has -on -t-he -estimated parameters of-the model. The censoring arises 

becau~e some students have not dropped out _by the end of the time window, and not 

accounting for this could result in misleading inferences, especially if the results are 

to be generalized to second or third year ·persistence. Table Ll ·-depiet-s the-exit -rates 

of209Q fall 1993 freshman at Oklahorna State University. 

Table 1.1: Observed Annual Exit Rates of 2090 Fall1993 
Freshman at Oklahoma State University. 

Year· 
Fall 19-93-
Fall 1994 
Fall 1995 
Fall 1996 

Exit Rate 
o. 

· 27.0 
-13.2. 

7.3 

As can be seen in Table 1.1 most departure (27 percent) occurs in the first year, 

and of these survivors, 13.2 percent fail to make it to the second year. Ignoring 

subseqµent departure.behavior in research could lead to retention policies that are 

"frontrloaded" where most or all resources devoted to retention are used in the first 

year. The rationale is to design policies that_ get students "over the hump" so that 

their likelihood of persisting improves. These policies may be misguided, especially 

if the stooent is highly ·exita.-prone-to -begin with. fn 'this -ca-se, such efforts nray only 

postp9ne the inevitable: A second problem is that even when data are available on 

where students depart to when leaving an institution; traditional methodologies either 

ignore this information ·entirely or handle it in -rather ·awkward ways. Finally, -most 

tradition.al studies are not well suited for actually predicting an individual student's 
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time-to,,exit. The -primary ·reason ·for-this -i-s ·that in all ·path:aanalytic ·approaches, -the 

_ultimate dependent variable depends on unobservable factors, and the quantification· 

of these factors is rarely (if ever) a consideration. Indeed the strength of path analysis 

is that it allows investigators to make inferences about the parameters of independent 

variable,,s-when-unobservable·factors exist. 'Prediction"-int-hese·studies-usually-refers 

to the amount of variance in the dependent variable explained by an independent 

variable. This, of course, 'is not the same thing as actually predicting the dependent 

. variable. 

Soqie 1mportant questions that are addressed :in this stuay-indude: How are ob­

served enrollment durations distributed and what influence do unmeasured student 

characteristics have on these observations? To what extent do relative academic 

standing, classroom composition and staffing, commitment indicators, previous aca­

demic e~enee-and skills,an-d ·ba-ekgrotm-d-ch-araet-eristics infl.11ence persistence? In 

terms pf predicting persistence, does the model de:veloped here offer improved predic­

tive accuracy relative to competing models? To answer these questions, this study 

builds upon the key consistencies found in previous research on student attrition. 

In parti,cu-lar, the-coneeptual modd-proposed·by· T-into {197-5} is 11-sed·-a-s -a-basis for 

selectifg important independent variables to be included. The economics of relative 

status as proposed by- Frank (1985) and extended to higher education by Heath (1993) 

is used to specify a key variable in predicting student persistence: the academic rank 

of a stufleflt-in ~-at-ion t-o his -or-her immediate peers. Thffl -stttdy-differs from previ­

ous stµdies in a number of important respects. First, a truly longitudinal approach is 

used where time-to-exit is taken as the dependent variable. Second, the data used in 

this study allow for the distinction between a student who transfers to another insti­

tution c)n-dmre·who-drops·out·-of-th-e-system. Third, -ast-atisti-cal niethodmogy·is used 

that is appropriate· for- entolhneitt duration analysis; and a- model- is specified that is 

· general enough to allow for different types of exit and for the influence of unmea-
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sured st.uden:t ·characteristics-on observed-enrolhnent··durations. 'F-:inally;-prediction is 

assess,d in terms of the model's ability to accurately predict the dependent variable. 

The model developed in this study is compared to potential competitors in terms of 

predictive accuracy where a hold-out sample .is used for out-of-sample validation ( a 

practice-1"arely-u-sed ·in previous attrition research).· 

Thr organization of this dissertation is as follows. Chapter 2 reviews both the 

literature conceptualizing the process of student attrition and the empirical studies 

of the process. Chapter 3 lays out the research design, the specific hypotheses to 

be tested, ·an:d the -statistical -methodology used -in this study. Ch-apter 4 discusses 

the data used in this study. Chapter 5 provides an analysis of the modeling results. 

Chapter 6 provides additional discussion and conclusions. A summary of the key 

findings is provided below: 

• A stu.dent;s academic ·performance relative-to his or ·her ·immediate ·dassmat-es 

is dfrectly related to persistence. A student earning D's in classes where D is 

the average is more likely to persist than ifhe or she were in classes where Bis 

the average. This is independent of the effect of poor overall performance. 

• Marginal changes in class size do not affect a student's likelihood of persisting. 

• Classroom staffing has a major impact on persistence. A student whose courses 

are taught primarily be· graduate student-· teaching assistants is less likely to 

perslst than if he or .she<were being taught primarily by faculty. 

• Dropouts behave differently than trap.sfers: 

• Student heterogeneity·(-unmeasured or-unobserved) affects the observed ·dropout 

rater When slow quitting students are studied together with fast quitting 

students, the observed average dropout rates over time are dominated initially 

by the fast quitters. 
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• The hypotheses regarding the predictive performance of the WGH model were 

inconclusive. The WGH model could not beat OLS or ordered logit in predict­

ing enrollment duration according to goodness-of-fit tests; however, the WGH 

model had a much higher hit rate. Multinomial logit performed better than 

WGH in predicting departure destination based on goodness-of-fit tests and hit 

rates. 
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CHAPTER 2 

. REVIEW OF THE LITERATURE 

A wide _variety ·ofresearch·-has ·emerged in-response ·to -concerns -about ·-college-student 

attritipn. Most can be classified into three categories: psychological, sociological, and 

economic. None are mutually exclusive and each have implications for policies dealing 

with attrition. Excellent surveys of the literature include Tinto (1975), Terenzini and 

PascareJla-·(1980-), and Tinto{l-993}. -Emerging ·from these ~rveys·is ·a -comprehensive 

and sweeping view of student attrition-, now referred to as the "interactional theory" 

of student departure. 

2.1 Tinto'~ Model 

The interactional theory of student departure has gained a considerable following since 

its principal contributor, Vincent Tinto, published his 1975 article; Tinto's theory is 

derived fr-om Van--Gennep'-s--rites of ·passage and 'ffilrkheim'-s theory of·stticide. The 

formef stresses that entering college involves stages of passage, a. separation from past 

communities, transition from high school to college, and incorporation into the soci-

ety of college. The latter suggests that student withdrawal, like suicide, arises when 

individµals are ·either ·unable· to ·become sufficiently -integrated an-d ·establish ·mem­

bership within the communities of college, namely the .academic and social systems 

that exist on campuses, or when the norms and rules on campus are not well defined. 

Obvfously, dropout can occur ifa student fails to integrate academically (poor _grade 
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perforD).anee, -for -example}. · -Irr this case, -dropout- -can -either be voluntary -(like ·sui­

cide) qrforced through dismissal. Social integration, through peer group associations, 

extracurricular activities, and interaction with faculty and administrative personnel, 

plays an important part as well. The more students participate in the social life on 

campus,., ,t-he more -likely they are ·to -continue -enrollment. However, -ex-eessive -social 

integr~tion can inhibit academic integration, thus leading to withdrawal. For Tinto, 

the key to understanding the attrition process- is to understand how levels of academic 

and social integration of the students change over time and how institutions influence 

these ~,Y.-Stems. _ Also important -to the process are the -decisions made by students 

regarding the c9sts and benefits of continuing enrollment. Tinto acknowledges that 

the ultimate decision to discontinue enrollment is a rational one; that is, at the time 

of dropout, the perceived costs of c~ntinuing enrollment are greater than the benefits. 

U nfortqnat-dy, -Tinto -does n-ot develop -this notion-further ,-and -it -does -not -explicitly 

enter his longit1,1dinal model. 

Of primary importance for Tinto was to develop a predictive theory of dropout. 

He also believed that knowledge of how student perceptions and integration changed 

over time was -the -appropriate ·focus ·for validating -such a theory. As -a TeSUlt, he 

_developed a conceptual model of student departure from a longitudinal perspective. 

The original diagram of Tinto is presented in Figure 2.1. 

In Figure 2.1, a· decision is ultimately made to either continue enrollment at a 

specific iustitution -or -leave it: This -decision -is -syst-ematieally-irifiuenced·by-the inter­

play of social, ec:onomic, and institutional forces that precede it. For example, family 

background, individual attributes, and precollege schooling all have an influence on 

the student's initial commitments to the specific institution. These commitments 

are ma;ufested-in·terms-of-goal commitment-s-{-earnin-g a eollege:degr-ee) -and mtitu­

tional commi-tments (attending a- particular institution}; For given levels· of init-ial 

commitments, students begin to integrate into the academic and social systems of 
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Figure .2.1-: Tint-o's Longitudinal Model of Institutional Depart-ure. 

Family 

Background 

Skills 
and 

Abilities 
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Schooling 

Intentions 

! 
Goal 
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Institutional 

-- --- ------ ---------~ 

Academic 
Performance 
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l Integration 

-------- ----------· 

::ommitment . N--------- ----------· : : : : Social 
L ________ ____ :_ ____ ] : xtracurricula iv· Integration 

External 
ommitment 

; Activities l . . . . . . . . 
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Interactions 

. . ·--------- ----- -- ----. 

Intentions 

~::1· ~ 
Institutional 
~ommitment 

--------- ---------· 

External 
Pommitment 

Departure 
Decision 

the instjttrtion. The former is -reflected primarily -intenns of grade performance ·and 

intelleptual development, while the latter in terms of peer-group and faculty interac­

tions. The degree to which a student integrates into the systems of the institution 

influences the extent to which goal and institutional commitments are revised. These 

revisions, -along with the level of initial commitment, ultimately-influence the decision 

to stay or leave the institution. 

In this framework, attrition occurs primarily because of low goal commitment or 

low institutional commitment, both being directly related to persistence. The level 

of initiaJ-commitments, together -with -integration and commitment· revision, -permit a 

numb~r of plausible cases in which dropout would likely occur. For example, a strong 

prior goal commitment to degree completion, in spite of low levels of academic and 

social integration, could lead to a decision to "stick it out." It could also lead to a 

transfer:~ -Anot-her possibility-is -a stu<lent · with -moderat-dy high prior -goal commit­

ment, and who is highly integrated socially but not academically. In this case, the 

student may have the drop decision forced upon him (i.e., suspension) or may elect 

to transfer to an institution with similar social systems but more forgiving academic 
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system:,. 

Tinto also points out that researchers frequently fail to distinguish between the 

various forms of dropout. The behaviors associated with voluntary withdrawal are 

considerably different than those for academic dismissal. While it is true that a lack 

of acad~ic -int-egration -can lead to -either from of dropout, voluntary withdrawal 

has a mismatch dimension that is much less prevalent in academic dismissal. It is 

also important to distinguish between a complete cessation of involvement in higher 

education (system dropout), a temporary break in enrollment (stopout), and discon­

tinuing.enrollment -in one institution-to-continue.in -'anoth-er-(transf-er). Each ofth-ese 

types should exhibit differing behaviors. 

Other important dimensions given by Tinto (1975) include college quality and 

student composition. The higher the quality of the college, as measured by the 

proportjon --of Ph;D facn-lty-or income per student, the higher a-re -the-gra'duation rates. 

Tinto notes that this comparison masks important interactions among institutional 

quality, student composition, and individual performance. He cites the "frog pond" 

affect where there is a direct relationship between the ability level of the student body 

and the .expectations individual students hol-d for themselves. Stud-ent-s will tend -to 

self-sort, perhaps transferring to institutions where their abilities and expectations 

are in line with that of the institution. A countervailing force that dampens the 

self-sorting process is what Tinto refers to as the "social status" effect. Paraphrasing 

Tinto (J-97 5, p.il 47 the -pr-estige of an inst-i-t-ution is --of va.hre to the indivi'dna1s -within 

the in~titution and may prevent individuals of low relative rank from dropping out. 

Tinto never published an empirical investigation of his theory. His contribution 

was to define a consistent method for research that yields testable hypothesis. In par­

ticular, "{'I'into1si -theoretical model --of 'd-ropout ... -argues that the process -ofdropout 

from college can be viewed a& a longitudin-al proces& of interactions-between the indi­

vidual and the academic and social systems of the college" Tinto (1975, p.94). Tinto 
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presents several claims that are potentially empirically testable, which are summa­

rized <\s follows: 

• Academic and social· integration are directly related to persistence. 

• Gr.a.de performance is: likely to ·be the strongest indicator of academic ·integra­

tion. 

• Social integration is reflected primarily through peer group associations, infor­

mal faculty interactions, and extracurricular activities. 

• Goal and ·ins~itutional commitments are directly related to persistence. 

• Initial goal commitments are shaped by family background, individual attributes, 

and pre-,.college schooling. T'hese initial commitments ·are re-evalnated -as the 

indiyidual begins the integration process upon entering college. 

• For given levels of goal commitment;· institutional commitment is directly re­

lated to persistence, and for high levels of goal commitment, varying levels 

of institutional commitment may indicate the difference between dropout and 

tranrfer. 

• It is important to distinguish between the various types of dropout: Volun­

tary withdrawal -versu-s -aca:demic -dismissal, ·and between -s-yst-em withdrawal 

(p.ropout ), dropout and return ( stopout), and transfer. 

Tinto's longitudinal model is tailor-made for path· analysis. In the next section, 

path analysis is briefly described and examples in the literature of using path analysis 

to test .many of'finto-,s core relationships are discussed. 

It fhould be noted that Tinto's model does not take into account certain char­

acteristics of student departure observed over time. First, Tinto does not explicitly 

deal with the observed pattern of dropout experienced on many campuses.; namely,_ 
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exit rates rise :at-fust,·reacli ·a maximum, -then -decline ·overtime. ;He -does recognize 

that the majority of attrition occurs during the first year of enrollment. A partial 

explanation is that as one approaches his educational goal, the likelihood of dropout 

should decrease. This suggests that tl:1.e college :uiay have some impact on the drop 

behavi9r-ofmore-ten11red st11dent-s, -an-d·th-at to -reduce-attrition,·policies ·need -only 

focus pn getting students "over the hump." If the exit profile instead reflects the 

mobility-prone students dropping out early, leaving behind the "slow quitters", then 

such policies may not produce _the intended effect, but only delay the inevitable. 

The .-distinction-between -dropout, -stopout, ·and transfer is import-ant-for Teasons 

other than the behavioral ones given by Tinto. There are different processes at 

work generating the observed data on dropout, stopout and transfer. In particular, 

the statistical treatment of a stopout should be different from a dropout or transfer 

because .it -is -a -renewal ·process,··exhibit-ing ··an on--a-gain--off ~a-gain pattern absent ·with 

other forms of q.ropolit. This difference may also show up in the behavioral variables, 

but to address stopout explicitly in a statistical sense requires a completely different, 

and more complicated analytical approach. 

2.2 Exten13ions of Tinto's Model 

Interadional theory has enjoyed considerable attention. in institutional research liter­

ature precisely because it offers a comprehensive framework in which to understand 

the dropout -proeess. It· ·is --also ·well--suited for ·empirical -est-imation. Though most 

claim that the models developed .are predictive, much of the _discussion in the pa­

pers revolves around the explanatory (confirmatory) power of the models. The usual 

mode of empirical implementation has been to track an entering cohort of freshman 

for sev~ months, -obtaining -repeat-ed ·observations -on responses to -survey-questions 

designed to- ''load" on academic and social integration, as weH as to- ob-tain- informa~ 

tion on the other elements in the path diagram. Once the data has been collected, 
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the structural path -coeffi:cient-ir -are ·estimated. The directions ·and- ·magnitudes are 

then examined to determine the relative strengths of the hypothesized relationships. 

A comprehensive review of this literature is found in Pascarella (1980). The next 

section provides a brief, nontechnical discussion of path analysis. 

2.2.1 A Brief Discussion of Path Analysis 

A nontechnical discussion of path analysis is found in (Kline, 1994) and a more 

comprehensive presentation is in Loehlin (1987); According to Loehlin (1987) path 

analysi.,s, -factor analysis, -and-tin.ear ·strn-ctural relations analysis {LISREL} are all 

forms of latent variable analysis .because some of the. variables are not directly ob­

served. A central part of path analysis .is that the process is time-ordered and this 

is depicted in what is called a path diagram. Figure 2.1 represents such a diagram, 

though jt -should ·not -be -interpreted as a literal representation -of ·an· -estimable· path 

model1 Straight one-headed arrows represent causal relationships between variables 

while two-headed arrows represent simple correlations. Typically the two-headed ar­

rows are also curved to make them more distinct than the one-headed causal arrows. 

Also, npt -shown in 2~1 ··-are· various -one-hea-ded unlabelled -arrows lea-ding -t-o certain 

variab~es. The&e are known as residual arrows and represent a composite of other 

influences on the variables they point to. 

There are essentially two types of variables encountered in path analysis: in­

dependent -or 'SOtlrce -variables and -dependent-or -downstream -variables. These are 

analo9ous to e~ogenous or predetermined, and endogenous variables in the econo-
. . 

metric literature. Independent V<µ'iables are considered the source of causation. They 

do not have one-headed arrows pointing toward them; however, they can have two-

headed ..correlation arrows -connecting-them. ·Dependent -or -downstream variables -are 

causally dependent on the other- variables in the- path diagram. In Figure- 2-.1, the-

pre-entry attributes and external commitments are the source variables; everything 
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else is downstr~am. Residual arrows are attached to · all downstream variables and 

never to a sour~e variable. The "source" variables corresponding to the residual ar­

rows are assumed to be random variables with zero means, constant variance, and 

are uncorrelated with the source variables. It is also assumed that the relationships 

indicated by arrows are linear. 

Specifying a path model as a system of equations suggests that the number of equa­

tions will equal the number of downstream· variables, and each equation expresses a 

downstream variable as a function of its causal path. The causal paths then represent 

the structural parameters of a simultaneous equations model and all the identification 

problems associated with simultaneous equations apply to path analysis as well. The 

usual method for ensuring identification is to be sure not to have more causal paths 

(unknown parameters) than downstream variables (equations). This is equivalent to 

the exclusion restrictions used for identification in simultaneous equations models. 

Many path models use the time-ordered assumption of the process for creating a re­

cursive system of equations. In such a system, ordinary least squares can be used 

to obtain consistent estimates of model's parameters, and the standardized estimates 

are called path coefficients. When some of the downstream variables are latent, factor 

analysis is used to obtain the path coefficients. The factor pattern from a factor anal­

ysis are the path coefficients. In Tinto's model, goal and institutional commitments 

as well as academic and social integration are considered latent variables. The signs 

of the path coefficients independently reflect the direction of change in an upstream 

variable on a downstream variable and its magnitude and statistical significance the 

partial strength of the relationship. 

2.2.2 Empirical Examples of Tinto's Model 

The literature is replete with empirical examples of Tinto's model being estimated by 

path-analytic methods. Most differ slightly in the exclusion restrictions used to create 
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recursive models while preserving the key components of the model. These models 

typically rely on a combination of longitudinally tracked student records and surveys. 

Terenzini and Pascarella (1980) describes the findings of six studies aimed at testing 

the validity of Tinto's model. Bean (1980), Bean (1982), and Bean (1983) alludes to 

a theory of worker turnover as a theory of student attrition. The final model closely 

resembles the Tjnto model, and Bean used a path analysis to assess the importance of 

goal commitment on dropout. Pascarella and Terenzini (1983} used Tinto's original 

path diagram in a path analysis, focusing on voluntary withdrawal. A generalization 

of path analysis, LISREL (Linear Structural RELationship modeling), was used by 

Stage (1988) and Stage (1989) to commitment levels and the integration aspect of 

Tinto's model. Eaton and Bean (1995) redefine academic and social integration in 

terms of academic and social approach/ avoidance, as suggested from the psychological 

theory of coping. They use LISREL analysis on the expanded model. 

The path-analytic methods for estimating interaction.al structural models have a 

number of limitations. Obviously, the quality of the survey instrument will influence 

the precision of the path coefficients. More importantly, since much interest centers 

on the process by which students revise their goal and institutional commitments, 

many of the questions in the instrument involve the intentions of the student. It is 

frequently assumed that statements of intent are point estimates (forecasts) of future 

behavior. This is too optimistic. According to Man.ski (1990), even when intentions 

are formed under the best of circumstances (i.e., rational expectations) the best a 

researcher can hope for is to place bounds on probable behavior. In addition to the 

statistical limitations, there are practical considerations. As previously mentioned, 

most of the studies involve repeated administration of survey instruments at key 

points during the period of study. There must be at least two collection points 

and most opt for three or more. This is likely to be prohibitively costly for most 

institutions to maintain on an on-going basis. 
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Comparing the studies using Tinto's framework is difficult because the researchers 

often use different statistical methodologies, apply these techniques to different pop­

ulations, use different survey instruments, and expand, restrict, or redefine the orig­

inal model to suit their purposes. Discussing the results of various models therefore 

amounts to comparing the directional impact of key variables. In spite of these diffi­

culties, Tinto's conceptual design has demonstrated a remarkable robustness. 

• Integration Constructs: Those studies that explicitly controlled for academic 

and social integration found that higher levels of each were directly related to 

persistence. Eaton and Bean (1995) uses self-reported responses to surveys to 

establish direct!onal · impacts of academic and social integration on persistence. 

They find that higher academic integration tended to reduce the intent to leave. 

Particularly important is student formal and informal interaction with faculty. 

This is directly related to academic integration. Pascarella (1980) finds similar 

results. In stu~ies segmented by sex Pascarella and Terenzini (1983), Stage 

(1988) social integration is far more important in predicting dropout for women 

than for men. In both studies, surveys are used to obtain data for develop­

ing these constructs. The surveys differ among the studies, thus limiting the 

comparability of the results. 

• Commitment Constructs: Again, where explicitly controlled for, goal and in­

stitutional commitments are directly related to persistence. Comparing the 

relative strengths of either across studies is difficult because of the variations in 

the causal mqdel specifications. 

• Family Background: A wide variety of variables are considered to be included 

in this category. In some form or another,· they tend to reflect some dimension 

of socio-economic status, particularly parent education, income, and hometown 

demographics. Pascarella (1980) and Stage (1988) find that background char-

16 



acteristics are not significantly related to persistence. Other studies find similar 

results and exclude such characteristics from the analysis (e.g.,Bean (1982)). 

• Individual Attributes and. Pre-College Experience: Individual attributes typ­

ically include race, sex, standardized test scores, and choice. of major. Pre­

College experience variables are drawn from high school performance measures 

such as grade point average1 class rank, and extracurricular involvement. Most 

analyses are segmented by sex in order .qi:fferen:tiate certain behavioral character-

. istics, such as the aforementioned sociaLintegration. Where explicitly accounted 

for Pascar~lla ( 1980), pre-college experience is directly related to persistence. 

The merits of these studies are best understood within the context of why they 

were undertaken. They serve to validate Tinto's conceptual design and to provide 

a list of potentipl independent variables important in modeling student persistence, 

both of which appear to have been accomplished. The criticisms of these analyses 

are many, depending especially on the statistical orientation of those reviewing these 

methods. Some common criticisms emerge. First, most of the analyses claim to be 

involved in developing predictive models of student attrition, yet with the exception 

of Pascarella and Terenzini (1983), none fully explore the predictive capabilities of 

their models. Most interpretations of model prediction center around an independent 

variable's ( or set thereof) ability to explain variation. Predictive performance should 

not be assessed solely in terms of this explanatory dime~sion; it should include, indeed 

emphasize, the model's. ability, taken as a whole, to predict the dependent variable 

accurately. Second, models are fitted to the the data in ways that may not hold up to 

out-of-sample validation. The use of a hold-out sample for validation purposes does 

not appear to be -a wide-spread practice in the literature (Terenzini & Pascarella, 

1980). Third, these models assume a relatively short dropout time horizon, usually 

the first year. Granted, the first couple of semesters are where the majority of attrition 

is observed, but these methods cannot be used to predict dropout' "after the· hump." 
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2.3 Economics and Student Persistence 

Tinto's model is essentially a sociological model of student attrition. The key drivers 

of the decision process are the student's ability or inability to integrate into the social 

systems of college. Furthermore, attrition is presented as if it were a treatable condi-

tion. Very littlEr emphasis is placed on the rational process by which students weigh 

the costs and benefits of persisting in college. Economic theory stresses this point. 

Early research by McKenzie and Staaf (1974), Kohn, Mansk1, and Mundel (1976), 

and Manski and Wise (1983) stressed that individual decisions about persistence are 

no different in substance than any other economic decision that weighs the costs and 

benefits of alternative ways ofinvesting one's scarce resources~ 

Human capital theory has played an important role in providing a framework 

to model student decision making. In one line of thought, the student is both a 

producer and consumer of "knowledge" Levin and Tsang (1987). The student is 

engaged in producing a number of activities ( one being attending college) requiring 

scarce resources. The ultimate purpose of these activities is to enter the student's 

utility function in a way that yields the highest utility attainable, given the various 

constraints facing the student. To achieve this utility level, the student must produce 

these activities in the most efficient way possible. Observed choices (i.e., what school 

to attend and whether to persist) depend On the 1.nterplay between the student's 

preferences and the constraints s/he faces. 

An alternative method of modeling _student attrition .arises naturally out of the 

labor economics literature on search theory and rilatching .. An excellent survey of 

this literature is found in Mortensen (1986). In the job search and matching models, 

the wage is the key decision variable. 'The parallel for students is grade performance. 

For a given fre~hman cohort, the chosen college represents the result of an optimal 

search strategy and a criterion for determining which college to accept. In essence, 

the choice is· based on which of all admissible institutions· yield the. highest net bene-

18 



fits, where admissible means the institutions are feasible (i.e., will admit the student) 

and achieve at least the minimum (reservation) level of expected relative grade per­

formance. Because information about prospective colleges is imperfect, acquiring· 

information about them involves a cost in time and resources. Because of this, no 

rational student will search indefinitely for the perfect college to attend, and will 

likely continue ~earch after enrolling at an institution. This is reasonable since much 

of what is unknown about .the student-college match (especially grade performance) 

can only be determined through. experience. A student lear.ns about these charac­

teristics over ti:rp.e and re-evaluates his decision. The decision to persist, transfer to 

another institution, or leave higher education altogether, involves a comparison of 

what is learned "on the job" and the opportunities available to the student. 

An offshoot of the human capital approach notes that decisions to attend specific 

institutions are influenced by more than lifetime earnings considerations. They are 

also influenced by considerations of where the student will likely fit in the academic 

and social hierarchy of the institution. Heath (1993, p.83) terms "global status" 

as the earnings a student expects, given his major, degree, and institutional choice. 

"Local status" is primarily reflected in terms of grade performance. To the extent 

that local statul'l matters, a student faces a trade-off between global and local status 

and will trade one for the other according to his preferences when making college­

going decisions. Frank (1985) generalized the concepts of global and local status as· 

economic goods. 

Heath (1993) explores these ideas in a utility maximization model and derives a 

number of implications. First, if some students prefer more local status than others, it 

is to be expected that equally able students will choose different calibre institutions 

simply because some students prefer to be "a big fish in a small pond." Second, 

as enrollment tenure increases, students prefer increasing global status. The skills 

a student learns while attending college are somewhat transferable, and as students 
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learn about their true abilities, they may transfer to institutions offering greater global 

status. Also, at the given institution, seniors would prefer measures to increase global 

status (for example, higher entrance standards) because such measures enhance the 

long-run value of their degrees without subjecting them to the consequences of greater 

ngor. 

2.4 Chapter Summary 

In order to pull together many of the results of this chapter so that important measur­

able variables may be identified, refer back to 2.1. The chronology of events leading to 

the departure decision may be categorized as follows: Pre-college Attributes, Initial 

Goals and Commitments, Institutional Experiences, Academic and Social integra­

tion, and Revised Goals and Commitments. The list below summarizes the types of 

variables used in student persistence research within these categorizations. 

• Pre-College Attributes: These are the source variables in a path analysis. In 

most studies pf student attrition, pre-college attributes have been found to be of 

secondary importance. A further breakdown of pre-college attributes includes 

family background variable such as parent's education, income, and student's 

sex and race. The student's skills and abilities are also considered and these are 

usually measured by a standardized tests such as the SAT or ACT. Finally, the 

student's prior schooling is considered and measures include high school grade 

point average, graduating rank and class size, and extracurricular involvement. 

• Initial Goals and Commitments: These are latent variables in a path analysis. 

The primary method of obtaining data on initial goals and commitments is by 

using self-reported responses to surveys administered during the first semester 

of college. Measuring goals includes expectations about the highest degree to be 

earned and importance of graduating. Institutional commitments are usually 
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measured by considering the student's ranking of the chosen university relative 

to others and their relative confidence about their choice. 

• Institutional Experiences: Several variables have been considered in measuring 

institutional experiences. Within the academic systems, the primary variables 

considered are the student's academic performance as measured by grade point 

average, .and student-faculty interactions. Measuring student-faculty interac­

tions usually takes the form of a self-reported count in the past semester of the 

number of formal contacts with faculty lasting at least 10 minutes ( not counting 

class time). Regarding the social systems of college, informal peer group and 

faculty i~teractions are captured through self-reported extracurricular activities. 

• Academic and Social Integration: These are also latent factors in the path/factor 

analysis, and as such, rely on how the measured characteristics relate to them. 

The preceding bullet lists some of the measures that are used in combination 

with survey results to from the integration factors. 

• Revised Goals and Commitments: These are again latent variables which must 

necessarily be measured by follow-up surveys to the initial goals and commit.,. 

ments. In some cases, where a student drops before the survey is administered, 

and exit survey or interview can he used to obtain the data. 

• Departure Decision: This decision is observed when a student either stops com­

ing to all classes or fails to enroll in the following semester. This is usually 

defined to occur within some time window, for example, during the first year of 

enrollment. 

Clearly, much of what is used in studying persistence involves repeated and ex­

tensive use of surveys. This poses potential problems for retention research. First, 

institutional budgets may be such that proper survey administration is not feasible, 
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and even if feasible, the administration may not receive adequate attention. Second, 

legal considerations may require that the students be given the option to make their 

responses anonymous; thus precluding the ability to track an entire cohort and raising 

self-selection bias problems. Finally, given the variety of survey instruments used in 

the literature, and the fact that the responses are self-reported, it is difficult to get a 

sense of the reliability of the instruments. 

There are a number of variables not used in the literature that may help to fill the 

gap where survey data is lacking. Variables that have received little or no attention 

include high school background information such as expenditure per student, school 

district population, average home value in the district ( a proxy for tax revenue re­

sources), the student-teacher ratio in the district, and the district poverty rate. ·Under 

academic performance, the student's relative rank does not receive attention. This 

variable measures the academic performance of the student relative-to the students in 

the portfolio of courses he or she is taking and is suggested by the local/ global status 

theory discussed above. Related to student-faculty interactions are the number of 

students per course in a student's portfolio and the proportion of those courses being 

taught by graduate teaching assistants. Finally, proxies for goals and commitments 

include the course-load a student takes per semester and whether the student attends 

summer courses. 
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CHAPTER 3 

MODELING METHODOLOGY 

As discussed in Chapter 2, most research has been aimed at explaining variation in 

student dropout behavior using path analysis to specify a structural model and to 

estimate the impacts of the b.ehavioral component of the model. Dropout is usually 

defined as a binary event that occurs within a fixed time window. .Prediction is 

usually associated with the relative importance (in terms of partial R-square) of 

each estimated coefficient's impact on dropout. The approach used in this study is 

considerably different. 

3.1 Hypotheses 

The aim of this study is to use statistical duration methods to model student attrition, 

test hypotheses pertaining to attrition, and evaluate the predictive performance of 

the duration model relative to competitors. Like previous studies, a longitudinal 

approach is used where a cohort of students is followed for a given period of time, 

and attrition is influenced by a number of factors. Unlike other studies, the random 

variable of interest is the amount of time a student remains enrolled, as well as the 

destination of the student, once departure has occurred. 

Using enrollment duration underscores the dynamic nature of student enrollment 

by utilizing the longitudinal data more effectively for hypothesis testing; the effects of 

regressors are understood not only in terms of whether a student voluntarily drops out 
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or not, but also in terms of the time to dropout, and the destination of the student 

after dropout (i.e., system dropout or transfer). Furthermore, the use of duration 

methods offers a. way to control for the influence of unmeasured characteristics on 

observed exit rates. The pattern of dropout, the initial increase in exit rates early 

in enrollment, followed by declining rates after a certain peak, is not part of the 

path analysis typically undertaken. Finally, path models are seldom used in a truly . 

predictive capacity, that is, to predict dropout. In this study the ability of a duration 

model, taken as a whole, to predict actual cmt..,of-sample dropout is evaluated. 

3 .1.1 Exit Rate /Persistence Behavior 

Control variables useful for explaining and predicting dropout have been suggested by 

Tinto (1975) and validated empirically by the empirical studies outlined in Chapter 2. 

Academic integration, as measured by grade point average(GPA), was identified as an 

important factor, being directly related to persistence (inversely related to dropout). 

A better measure in line with the status-seeking theories of Frank (1985) and Heath 

(1993) is the relative rank of the student to his/her immediate classmates. Relative 

rank of a student enrolled in i = 1, 2, · · ·, N courses .is defined as follows: 

. RELRANK = _!_.f, Bi 
N i=1 Ci 

where Si is the student's grade point for course i and Ci is the class grade point 

average for course i. If the academic performance of an individual student deviates 

substantially from that of the average in the portfolio of courses currently taken, then: 

the likelihood of exit should increase. Formally stated: . 

Hypothesis 1 For a given portfolio of courses, and all else constant, persistence 

increases with relative rank to a certain point then decreases. 
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In other words, the relationship between persistence and relative rank is nonlinear. 

Low or high relative ranks indicate a possible mismatch between the individual and 

course-portfolio he or she is taking. Furthermore, low relative rank applies only to 

the portfolio of courses, and does not necessarily imply probational enrollment. If the 

rank falls below some reservation level, students are more likely to seek alternatives 

where their abiljties are more in line with that of the immediate group, In other words, 

local status matters. On the other hand, high ranking students are more likely to 

seek alternatives yielding a higher expected return (global status) while maintaining 

parity between themselves and that of the group. This reasoning also suggests that 

in terms of relative rank, and that of other behavioral characteristics, the alternatives 

a student chooses upon exit are distinct. 

Hypothesis 2 The behavioral characteristics! in terms ofthe parameters ofthe mod­

els, are individ'l{,ally and collectively different for dropouts and transfers. 

In terms of the Hypothesis 1, when distinguishing between the destinations, the 

hypothesized impact of relative rank for dropouts should not exhibit the nonlinear­

ity expeded for transfers. Likewise, the behavior of transfers in general should be 

different than that of dropouts. 

In Tinto's framework, relative rank would be considered part of academic inte­

gration. Another dimension of academic integration is that of student-faculty in­

teractions. Two proxy variables are considered for this dimension for an individual 

student: the number of students per class in the student's portfolio and the propor­

tion of the portfolio taught by graduate student teaching assistants. The hypothesis 

. for the number of students is: 

Hypothesis 3 Persistence and average class size are inversely related. 

Students in large classes are less likely to interact with faculty for a number of 

reasons. Competing for faculty attention is more difficult (at least not any easier) 
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in large clas~s. For a given amount of time outside of class, the average time per 

student available decreases as class size increases. There is also an increased sense 

of anonymity in large classes. Large classes are impersonal: faculty can rarely know 

all students by name. Each of these factors contributes to lower student-faculty 

interaction and academic integration. This, in turn, increases likeliho~d ·of departure. 

A high proportion of a student's portfolio being taught by graduate students is 

also expected to have an impact on exit rates. This impact is formally stated as: 

Hypothesis 4 Within the .portfolio of courses taken by a student, the higher the 

proportion of those courses be~ng taught by graduate students, the less likely the student 

will persist. 

Hypothesis 4 follows directly from the fact that graduate student teachers are 

generally not considered to be faculty by the students, parents, faculty, or admin­

istratio,n. Thus~ the higher the number of.graduate students teaching courses, the 

fewer the opportunities for students to interact with faculty, and this leads to lower 

academic integration. It·. also leads to lower social integration by reducing informal 

student-faculty interaction. 

Tinto considered a student's goals and commit~ents to earning a degree and to 

the institution as important predictors of persistence. One measure of commitment . 

is whether or not the student enrolls in summer courses. This is because summer 

enrollment is not required to m~ntain full-time stu.dent status or to graduate within 

four y~ars. Stated as a hypothesis: 

Hypothesis 5 Students participating in summer courses are more likely to persist, 

all else constant. 
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3.1.2 Observed Pattern of Attrition 

The pattern of dropout typically observed is one where dropouts rise rapidly in the 

beginning, reach a maximum rate, and then fall over time. In duration modeling 

terminology, an increasing exit rate is called positive duration dependence and a de-

creasing exit rate is called negative duration dependence. The explanatory variables 

used in the model serve . to characterize at least some dimensions of this behavior. 

However, if important variables are omitted from the model, the observed exit rate 

will be biased downward (i.e., toward negative duration dependence). Iri terms of 

duration models, these omitted variabies are generically considered as unmeasured 

heterogeneity. The effect of unmeasured heterogeneity is illustrated in Figure 3.1. 

. . 
Figure 3.1: .Itlustration ot Heterogeneity on Observed Hazard. 
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If the student cohort is comprised of two sub-populations, "slow quitters" and 

"fast quitters" and we observe hazard rates for the cohort as a whole, then the 

observed hazard rates will reflect the fast quitting behavior first followed by that of 

the remaining slow quitters. In essence, the observed quit rates reflect the self-sorting 

behavior of a heterogeneous population. 
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In this study, the distribution of the unmeasured heterogeneity is parametrically 

specified. The estimated parameter measures the impact of unobservable/unmeasured 

student characteristics on the observed dropout rate. If the heterogeneity is signifi­

cant, then any observed negative duration dependence, is augmented by it. 

Hypothesis 6 Observed enrollment duration is affected by unmeasured heterogene-

ity. 

If false, then all important .variables are included in the model, and a simpler model 

can be used (i.e., one without heterogeneity). If true, the underlying process may still 

exhibit negative duration dependence. Tinto (1975) hypothesized that the likelihood 

of dropout should diminish the closer one is to achieving one's goal. Analogous 

to Mortensen (1988} students may have rising reservation levels .of relative rank with 

tenure. As a student's relative rank improves, the likelihood of being lured to another 

institution of similar global status is reduced; especially when that institution is 

offering similar relative rank prospects. On the other hand, the underlying process 

could exhibit positive duration dependence.· The signaling effect of a college degree 

aside, the knowledge and skills students accumulate during their enrollment tenure 

is likely to hav~ some market value, and for some the difference between expected 

earnings with and without degree could. be negligible. unfortunately, the data used­

in this study are not rich enough to test these competing hypotheses. 

3.1.3 PrecJictive Evaluation 

In Chapter 2, the models reviewed discussed validity in terms ofthe agreement be­

tween Tinto's hypothesized directional impacts and that of the estimated coefficients. 

This wa.s sometimes presented as "predictive validity." This study differs in the in­

terpretation of predictive validity; The model's· predictive validity is evaluated by its 

ability to predict dropout using out-of-sample data. Models that fit well in-sample 
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often do poorly -out-of-sample, and ones that perform relatively well out-of-sample 

are considered to be more robust. Of course, this is only true when pretesting is 

used variable selection or if there is structural change in the data generating process. 

The variable selection procedures in this study differ from other research in that the 

procedures here are primarily based on collinearity diagnostics and not statistical 

selection methods, such as stepwise regression. 

A specific parametric model of student attrition is considered in this study: en-
. . . 

rollment duration is assumed to be distributed as a Weibull random variable and that 

unmeasured heterogeneity enters multiplicatively as a unit Gamma random variable 

with constant variance, or Weibull with Gamma. Heterogeneity (WGH) model for 

short. The complete statistical specification is presented below; however, a brief ex­

planation of the choice is in order. The Weibull specification allows flexibility in 

the determination of duraiion dependence; positive,· negaiive, or constant. This is 

controlled parametrically arid the parameter estimate provides insight into _the pro­

cess. The unmeasured heterogeneity enters multiplicatively as a unit Gamma with 

constant variance precisely because the estimate of the variance yields the degree to 

which unmeasured heterogeneity affects the observed enrollment duration. The dura­

tion models estimated in this study are compared to two competing models: Ordinary 

Least Squares (OLS) regression of dropout time on the independent variables, and an 

ordered logit model, which is considered to .he a semiparametric method for estimat­

ing duration models Greene (199,5). ·OLS is a methodology closely tied to the models 

reviewed in Chf;tpter 2. Ordered logit has not been used in retention research and 

is considered because here it estimates the probabilities of dropout in a theoretically 

consistent way, and it circumvents the problem of unmeasured heterogeneity. Stated 

in terms of a hypothesis, 

Hypothesis 7 The WGH model outperforms OLS or ordered logit in terms of out-

of-sample enrollment duration prediction. 

29 



The predictive validity is evaluated by consideringtwo components of the problem: 

enrollment duration itself, and the destination after enrollment is terminated. The 

destination of the student is categorical and a number of models exist to deal with 

a categorical dependent variable ( for example, the multinomial logit). This offers 

another testable hypothesis regarding the WGH model: 

Hypothesis 8 The WGH model outperforms multinomial logit in terms of out-of­

sample destination prediction. 

The WGH n;iodel generalized to multiple destinations uses what are called tran­

sition intensities. These are similar to the multinomial counterparts and can be 

compared to them in terms of classification accuracy. 

3.2 Statistical Methodology 

The material presented in this section draws heavily from Lancaster (1990), Amemiya 

(1985), Heckman and Singer (1986), and Petersen (1986). Notational styles are 

adopted from Qreene (1993) and Lancaster (1990). 

3.2.1 Hazard Functions 

Assume that the time to departure is a continuous random variable, T, and that a 

large number of students enroll for the first time at a. given university, identified as 

T = 0. Thus, T measures the duration of stay at the university. For the moment, 

students are as!')umed to be homogeneous with respect to the systematic factors that 

affect the distribution of T. This implies that everyone's duration of stay t will be a 

realization of a random variable from the same probability distribution. 

Let dt be a short interval of time after t. The probability that a student departs 

within an interval dt at or after t is P(t :::; T < t + dtlT 2'.: t). Dividing by dt yields 
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the average probability of departure per unit of time over the interval after t, and 

taking the limit of shorter and shorter intervals formally defines the hazard function: 

h( ) _ 1. P(t < T < t + dtlT > t) 
t - Im . · . 

dt-+O . dt · 

Thus h(t) measures-the instantaneous rate of departure per unit of time at t. 

Denote the duration distribution function as F{t) = P(T < t) = Ii f(z)dz and 

the probability density function as f(t) = dF/dt. Then 

h(t) = f(tlT > t) = l !~(t) 

by the law of conditional probability where 1- F(t) = P(T > t). The denominator 

is known as the survivor Junction -arid measures the probability a student will he 

enrolled to period t. Denote this as S{t) = 1 - F(t). Note that f{t) = -dS(t)/dt: 

There is no requirement that limt-+oo Ii h( z)dz ~ oo or equivalently that limt-+oo 1-

F( t) ~ -0. H these conditions are satisfied, the duration distribution is termed non­

defective; otherwise, it is defective. A defective distribution implies that in the limit, 

there is a positive probability of survival. 

Given the initial condition S(O) = 1, h(t) = f(t)/ S(t) is a differential equation in 
. . . ~ 

t. This is seen by noting that h(t)S(t) ~ -dS/dt. Thus, dS/dt + h(t)S(t) = 0 is a 

homogeneous first order differential equation. The solution is given by 

S(t) = exp [- £t h(z)dz]: {3.1) 

Aside from the negative sign, the term in the exponent of equation '3.1 is know 

as the integrated hazard. The above arguments establish a fundamental relationship 

between the hazard and survivor functions; if either are known, then the other can 

easily be derived. This relationship is used repeatedly in this section. 

31 



3.2.2 Duration Dependence 

Positive duration dependence is said to occur if dh(t)/dt > 0, whereas negative du­

ration dependence occurs if dh(t)/dt < 0. The former implies that the rate of exit 

increases -over time while the latter means that the rate of exit decreases with -time. 

The condition dh(t}fd:t = fr defines a memoryless system whivh is uniquely identified 

with the exponential distribution. 

3.2.3 Product Integral Representation of the Survivor Fune-

tion 

Another way to consider the fundamental relationship between the hazard and sur­

vivor function is to consider the product integral representation of the survivor func-

tion. Consider the event T ~ t with probability Set): Divide the interval from zero to 

t into n-1 subip.tervals with s1 · = O, s 2 , • • • , sn-l, s;,,. = t. To have T ~ t it is necessary 
.. '. 

and sufficient to survive each subinterval, and that the event T 2 t is equivalent to 

the event T 2 si, T ~ s2 , • • ·, T > Sn. Thus according to (Lancaster, 1990, p.11), 

P(T 2 t) 
n 

II P(T ~ Sj IT 2 Sj-1) 
j::::::2-

n 

Il[l - P(T <silT 2 Sj-1)] 
j=2 

n 

Il[l - P(s4-1 ::; T < silT 2 8;-1)] 
j=2 . 

n 

Il[l - h(sj_i)(sj - Sj-i)] + Rn 
j=2 
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by the product law of probability, where Rn goes to zero as the difference (sj - Sj-I) 

goes to zero. Equation 3.2 is true for any n, thus 

where 

P(T 2: t) = Pb[l - h(s)ds] 

n 

Pb[l - h(s)ds] - lim .[I[1 - h(sj_i)(sj - Sj_1 )] 
n-tcc 

j=2 
(3.3) 

Equation (3.3) defines·the product integral of the function h(s) from Oto t. By 

(3.1) S(t} = P(T 2: t); hence, it follows that 

Pb[l - h( s )ds] = exp [- lot h(z )dz] . (3.4) 

Another property of the product integral representation of the survivor function 

is that it factors into products of conditional survivor functions, that is pi = Pb1 • Pt 
for O :S t 1 :S t. This follows because 

exp [- lt h(z)dz] - exp [- fot1 h(z)dz -1: h(z)dz]. 

exp [- fot1 h(z)dz] · exp [-1: h(z)dz]. (3.5) 

In general, the survivor function factors into the product of conditional survivor func-

tions for nonoverlapping adjacent segments of time. This is an especially convenient 

property when dealing with time-varying covariates, and this topic is taken up below. 

Essentially in the product integral representation of the survivor function at t, the 

survival to t is considered to be the survival through a sequence of Bernoulli trials 

where success is surviving through the interval [sj-I, Sj)- The probability ofsuccess, 

given the survival to the start of the interval, is one minus the product of the hazard 

rate for that interval and the interval length, as the interval length goes to zero. 

A discrete time hazard model is defined when h(t) is zero except at a finite or 
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countably infinite number of points ti, where the hazard function takes values hf(tj) . 

. Thrs implies that P(s.i-1 :::; T < SjlT ~ Sj-1) = ht if [sj-1, sj} contains the point tk 

and is zero if [sj-1,Sj) contains none of the points ti. In this case, {3.3) becomes 

P(T > t) p~[l - h(s)ds] 

II c1 - hj). 
ilti<t 

(3.6) 

The. above considerations· illustrate a connection· between· discrete· time (Markov) 

models and continuous time ( duration) models. In fact, Amemiya (1985, p.433) 

begins his discussion of duration models as the limit of discrete time Markov models 

and proceeds to .derive many of the above results from that perspective. He further 

states that one may want to consider using a continuous time Markov model (i.e., a 

duration model) in situations where observations are observed discretely over irregular 

intervals. 

[I]n many practical situations a researcher may be,able to observe· the 

state qf an individual only at discrete times. If the observations occur at 

irregular times, it is probably more reasonable to assume a continuous-
. . 

time Markov mode1 · rather than a discrete-time model (Amemiya, 1985, 

pp.440-44l)~ 

Lancaster (1990, pp.12-13) provides other reasons for considering continuous-time 

models over their discrete counterparts. 

· First it js · often mathematically simpler and more elegant:.· Second, there 

is rarely in economics a natural discrete-time unit. And third, if different 

investigators each work with a continuous-time model they will report 

estimates of parameters that are at least dimensionally comparable even 

when their data may be grouped or aggregated over time in different ways. 
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These con.siderations are especially relevant when dealing with enrollment -data, 

which are almost always recorded: discretely (i.e., semesters or quarters) and often in 

irregular intervals (e.g., summer versus. fall semester). 

3.2.4 Censoring 

Most duration studies involve some sort of censoring mechanism. Kalbfleisch and 

Prentice (1980) describe many forms of censoring that can occur. Notationally, dk is 

a censoring indica:tor, assuming a value of l if the failure event k occurs and O if cen­

sored. The type of concern in this study is right censoring. This occurs because some 

students are still enrolled when the sampling period is termiria:ted: The censoring 

just describes is sometimes referred to as Type I censoring. Also considered as Type I 

censoring is·the case when censorin-g times vary between individuals but are known in· 

advance. If censoring times vary and are not known in advance, this is referred to as 

random censoring. In contrast, Type II censoring occurs when the experiment is ter­

minated after observing a certain failure time ( after the earliest) with the remaining 

surviving times censored. The importance of censoring is.that censored observations 

are incomplete; that is, their failure times have not been observed. Essentially, all 

that can be estimated from these observations is the probability of being censored. 

Estimation is also more complicated because the 1og~likelihood function now contains 

the survivor function in the equation. 

3.2.5 Multiple Destination Models 

The type of process considered in this study is a single cycle model with -rnultiple 

destin~tions. Sip.gle cycle refers to the passage of a person from entry into a state to 

exit from it. Thus, the cycle of student enrollment will end when the student transfers 

to another institution or drops out of the system. 

Multiple destinations can be introduced -simply by subscripting the -hazard -and 
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survivor functions, though the interpretation of each changes somewhat. Suppose 

there are K possible destinations k = 1, 2, · · ·, K and let the set dk contain dummy 

variables where dk equals 1 if destination k is entered and zero otherwise. Then the 

transition intensities are written as 

hk(t)dt = P( depart to state kin the interval, (t, t + dt) given survival tot). 

Lancaster (1990) shows that the hazard function is the sum of the transition intensities 

over the destination states: 
K 

h(t) = L hk(t). (3.7) 
k=l 

Obviously, when there is only one destination, the transition intensity is the hazard 

function. 

The marginal probabilities of the destinations are defined as 

7rk = P( departure to destination k ), k = 1, 2, · · ·, K. 

The connection between the marginal probabilities and the transition intensities is 

established by first noting that 

S(t)hk(t)dt P(survival tot) x P(departureto kin (t,t+dt)I survival tot) 

P(departure to kin t, t + dt). (3.8) 

In essence, (3.8) specifies the proportion of an entering cohort that departs to 

destination k in (t, t + dt). Integrating over t gives the proportion of the cohort 

departing_ for destination k, 

(3.9) 
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The survivor function conditional on departure to destination k is 

Sk(t) = P(survival to t,given that departure is to k) 

with Fk(t) and fk(t) being the corresponding distrib~tion and density functions. The 
"· 

probability of surviving tot and departing to k is 7rkSk(t). It follows that summing 

these probabilities over the number of destinations gives the probability of surviving 

tot, that.is, the survivor function: 

K 

S(t) = L 7rkSk(t). 
k=I 

The probability of departure to kin (t, t + dt) is 

To see this, integrate (3.11) over i 

fo 00 'lrkfk(t)dt 

'Irk fo00 }k(t}dt 

(3.10) 

(3.11) 

which is the- marginal probability ·as specified jri {3:9). From ·(3.H) the transition 

intensity hk(t) is equal to fk(t)1rk/ S(t), ,which shows that the conditioning event for 
. . 

the transition intensity is survival tot, not survi~al tot and departure to k. 

The joint probability density function of ·the destination indicators dk and T is 

derived from (3.1), (3.7), and (3.11). First note that 

P( departure to k at t) hk( t)S( t )dt 
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P,(t) = h,( t) exp [- J.' t. h,( u )du] dt. (3.12) 

Then the joint probability density function for the dk and t is 

K 

II Pk(tlk 
k=l· 

. ft [ h,( t)'• exp (- J.' t.d,h, ( u )du)] 
exp (- J.'t.h,(u)du) fl h,(t)'• 

K · t 

exp]; [dkloghk(t)- fo hk(u)du]. (3.13) 

Once a functional form is specified for the transition intensities, (3.13) leads immedi­

ately to the likelihood function. 

3.2.6 Covariates 

Introducing covariates ( or explanatory variables) into the analysis allows for system­

atic differences between students to condition the duration distribution. Thus, the 

hazard may be written as 

··h( I.) 1. P_ (t~T<t+dtjT2::t,x)· t X - Im---· -------
. . -: dt-+0 : dt . . . 

where xis a vector of covariates. The covariates are assumed to be time invariant. 

If this is not the case, then special estimation problems arise, with implications for 

hazard function models. 

Kalbfleisch and Prentice (1980) identify two broad classifications for covariates; 

external and internal. External covariates are either considered fixed over time or if 

-they vary, they are not directly related to the observed durations or exit rates. Time-­

varying external covariates do not functionally depend on stochastic process that 
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generates the durations. They are exogenous (Lancaster, 1990). Examples of-fixed 

external covariates in this study include ACT scores, race, and sex. Time-varying 

external covariates would include, for example, the student's age, grade point aver­

age, or marital status. Internal, time-'-varying covariates are observed so long as the 

individual survives and is not censored. · Its observed value carries information about 

the survival time of the corresponding individual. Examples of internal covariates in 

this study include the relative rankof a student or enrollment status. These variables 

are considered to be endogenous, though not necessarily in the same sense as simul­

taneous equations. The endogeneity in duration models affects the interpretation the 

hazard and the relationship between the hazard and survivor function. Internal co­

variates preclude the probabilistic interpretation of the hazard and survivor functions 

because the conditional probability of exit at time t is conditioned by x(t), itself a 

function oft. Inferences about the hazard conditional on x(t) can he made if certain 

assumptions about x(t} are made. 

Denote a vector of time~varying covariates as x( s) whose value at time t is x( t). 

The process may be stochastic (grade point average) or deterministic (age). If stochas­

tic, the state space may be discrete or continuous. Petersen (1986) has shown that 

if time can be divided into nonoverlapping adjacent time segments such that the 

time-varying covariates are constant in each segment, then the likelihood function 

can be factored into a step-like function which can be maximized according to the 

parameters of the model. For simplicity, assume only one destination and no cen­

soring. To formulate the model, let t be divided into n exhaustive, nonoverlapping 

intervals so< s1 <···<Sn, where so={} and Sn= t. The covariates are assumed to 

stay constant within each interval, but may vary between intervals. The hazard for 

the interval (sj-t, Sj) is h(tlxi)- Then from the relationship between the hazard and 
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survivor function1 

Thus, the survivor and probability density functions are 

n 

S(tlx(t)) II P(T ~ SjlT 2: Sj-1, Xj) 
j=l . 

exp(-t 1Sj .··h(utXj-1)du) 
. 3=1 113-l 

(3.14) 

a,nd 

J(tlx(t)) h(tlx(t))S(tlx( t)) 

h( tlx( t)) x exp (-t. (. h( ulx; )du) . (3.15) 

Using the results from (3.13) for thecase of multiple destinations, (3.15) becomes 

(3.16) 

3.2. 7 Accelerated· Failure·. Times_ and Proportional Hazard 

Models 

The assumption behind both the accelerated failure time and proportional hazard 

model is the ability to separate the hazard fu11ctiorn(into two parts. The proportional 

hazard m.odel assumes the hazard, can he expressed_ in the following form: 

where k1 and k2 are the same functions for all individuals. The function k2 is called 

the baseline hazard. Covariates affect the hazard .. multrplicatively. The ability to 

factor the hazard into two parts is a great simplification in estimation, especially -for 
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log-transformation of the hazard. 

The accelerated failure time model expresses the duration of an individual as 

To 
T = A(x'/3)' 

where To is a random variable not involving x or /3 and A is some function.· The 

duration or failure time of an individual is accelerated or decelerated with x relative 

to T0 depending on whether A > 0 or A < 0 (hence the name). Taking logs of both 

sides yields 

logT= log A(x'/3) + logT0 + U 

where if A(x'/3) = exp (x'/3), the model would resemble a linear regression model and 

be estimable via least squares, depending on the assumptions about the error term 

U. If some observations were censored, then least squares would not be appropriate; 

instead, limited dependent variable procedures such at the tobit model could be used. 

In any case, though it is possible to use simpler estimation techniques in duration 

modeling, Kalbfleisch and Prentice (1980) shows that they are inefficient relative to 

maxim.um likelihood, especially the ordinary least squares estimator. 

3.2.8 Unmeasured Heterogeneity 

When regressors are used in the hazard function, it is sometimes assumed that those 

covariates (1) completely capture the systematic differences between individuals, and 

(2) they are measured without error, denoted v. If either of ·these· assumptions fail 

to hold, the models will contain unmeasured heterogeneity. In standard regression, 

assumptions about the error term are made to alleviate the effects of unmeasured 

heterogeneity. In duration models, the effect of unmeasured heterogeneity is to bias 

the hazard function toward negative duration dependence. To see this consider the 

argument given by Heckman and Singer (1986, p.53) which is based on an application 
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of the C.auchy-:Schwartz theorem. Let h( t/x, v) be the hazard conditional on x, v and 

h(tlx) be the hazard conditional only on x. The conditional distributions for these 

hazards are respectively F(tlx,v) and F(tlx). Then by the definition of the hazard 

function 

Then 

oh(tlx) 
at 

h{tlx,v) 

h(tlx) 

~d 

oh(tlx,v)' 
at 

J(tj:x,v) 
1- F(t[x,v) 

fv J(tlx, v)du(v) 
fvfl-'- F(tlx,v)]du(v) 

aJ(~l;,v> + [ J(tlx, v) J 2 

1- F(tlx,v) 1 - F(tlx,v) 

fv[l - F(tlx,v)] 8h(~l;,v>du(v) 
fvfl - E'(tlx,v)]du(v) 

[fv f(tJ:x, v)du( v )]2 
-L~ fv 1!~~~l~~v) du(v) fv[i ~ F( fix, v )]du(v) 

+ Uv[l- F(tlx,v)]du(v)] 2 

The numerator of the second term can be rearranged further to show 

f [l- F(tlx,v}Jdu(v) x [·( fvf(tlx,v)du(v) )' -1. f2(tlx,v) du(v)]. 
lv . . .· Jfv[l-F(tJx,v)}du(v) · v(y'l.-F(tlx,v))2 

The bracketted term is always nonpositive by the Cauchy-'Schwartz inequality~ 

Incorporating unmeasured heterogeneity into the duration model is usually accom­

plished by conditioning the hazard function, h(tlx(t), v(t)). If p(t) = v for all t, this 

is referred to as unmeasured scalar heterogeneity, and is often used in practice. Fur­

thermo;re, unmeasured heterogeneity is ass1i1Iled to enter the hazard multiplicatively; 

h(tlx, v} = vh(tlx}. 
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3.2-.9 Parametric Hazard_ Specification, Estimation, and In-

ference 

Now consider specific forms of the duration distribution. In particular, consider the 

Weibull model: 

F(t) = 1 - exp (--\t)° (3.17) 

S(t) = exp (--\t)° (3.18) 

J(t) = 0:-\t'=~-1 exp ( ~-Xt)° (3.19) 

h(t) = 0:-\(-\t)°-1 ·· (3.20) 

where a,.,\ > i) and equations 3~17 through 3:·20 describe the distribution, sur­

vivor, density, and hazard functions, respectively. Models with covariates typically 

specify ,\ = exp(-x',B). This notation will be suppressed in the following discussion. 

Depending on whether a is less than (greater than) 1, the hazard will be monotoni­

cally decreasing (increasing), and in the case where a equals 1, the hazard is constant. 

Thus, the Weibull model by itself would not be an appropriate specification for the 

observed duration of enrollment. Accounting for unmeasured heterogeneity results in 

a mixture model specification that allows non-monotonic hazard rates. 

Assume t.hat v is distributed as a Gamma random variable. The density of v is 

with E(v) = a/b, 'Var(v) = a/b2 , and the denominator is the Gamma function. If v 

is a realization of a unit Gamma random variable with mean 1 and variance u2 , then 

a= b = 0, E(v)= 1, and Var(v) = u2 = 1/0. The density of v now becomes 
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Lancaster (1990) shows that a mixture· of the Gamma with Weibull distributions 

yields what is called the Burr distribution, the survivor function may be written as 

(Greene, 1995, p. 738) 

S(t) expected value over v of S(tlv) 

hop vS( t ~v )dv ·· 

- [1 + O(M)°'t11° 

where S(tjv) = vexp-(Aq:r. Recall that the hazard is the product of the survivor 

and density functions, and . that the density is mmm; the· derivative of the survivor 

function, it is fairly simple to show that the hazard function is 

h(t) - aA(..\t}°-1fl + 9(-Af}°Y-1 

o:.X(.Xt)°'~1 S(t)°. 

(3.21) 

(3.22) 

The first term, o:A(.Xt)a"""\ is the Weibull hazard and fl + O(At)0 ]-"'"1 is the mixture 

survivpr functidn. The parameter I) captures the effect of unmeasured heterogeneity. 

The log-logistic model emerges as a special case when I)= 1, and the Weibull model 

results when I)= 0. The expected survival time is given by 

. 1 1 1) 
E(T) = ->.1faT(1+ ;)r(e - ; 

. . l)Hi f( ! +1) 

Lancaster (1990; pp. 195-197) ·provides a score statistic test to determine the 

existence of an interior maximum of 0, which occurs for non negative values. This 

has implications for the appropriateness of the mixture model A -quick method of 

checking this by computing the following 
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where tn is the duration of individual n. If Sis negative, then potential computing 

problems are likely in trying to fit the mixture model to data. 

In specifying the likelihood function, let n = 1, 2, · · ·, N denote the nth individual, 

k = 1, 2, · · ·, K be the kth destination, and I be a J dimensional vector of parameters. 

Based on (3;22), this vector includes a, ,B, and O where ;;\ = exp(-x' n,B). The data 

consist of a duration t and a vector d of K -l binary destination indicators of which 

exactly one is unity and the rest are zero. (The origin state is excluded). The log 

likelihood contribution of an individual is (Lancaster, 1990) 

(3.23) 

where hnk(t) is the transition intensity of individual n out of the origin state, the 

summation is over all possible states, excluding the origin, and the kth element of 

the vector dn is dnk. 'fhe full log likelihood is given by 

(3.24) 

or, by interchanging_ the order of summation 

(3.25) 

where 

(3.26) 

L is in part the sum ofthe contributions from each ofthe K - 1 destinations. If K* < 

K are specified parametrically and the remaining unspecified transition intensities 

are functionally independent of 1 , their contribution in (3.25) becomes an additive 

constant. Since adding a constant to the log likelihood does not affect maximization 
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with respect to 1 , (3.25) may be written as 

(3.27) 

Following Lancaster, simplify the notation by writing 

[tn 
Znk = Jo hnk(u)du. 

The first order conditions are 

aL ~ "'""" [d h~k j ] o· . 1 2 J a. = ~ ~ . nk h - znk = 'J = ' ' ... ' ' 
IJ n=l kEK* • nk . 

(3.28) 

where 

and J is the dimensionality of 1 . The Hessian is given by 

(3.29) 

j, l = 1-, 2, · · · ., J. 

The information matrix is 

lj1 = -E [a~;:,J · (3.30) 

The maximum likelihood estimates, i, are found by solving equation (3.28} for ,. 

The well-known asymptotic properties of the MLE are (1) the MLE is consistent, (2) 

the MLE is asymptotically normally distributed, and (3) the MLE is asymptotically 

efficient. 

The MLEs i are substituted into (3.30) to derive an estimate of the asymptotic 
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covariance mairix of i 

V(i) = J(it1 /T 

which may be used for hypothesis testing about the elements of 1 . 

3.2.10 Predictive Measurements 

The Weibull model is compared to c,ompeting models in terms of both predicting 

enrollment duration and the destination upon departure. The models used for pre­

dicting enrollment duration are ordinary least square (OLS) and ordered logit. The 

model used for predicting destination (i.e,, continue, transfer, or dropout) is a multi­

nomial logit. The competing models are estimated using data from the last semester 

enrolled (just prior to departure). In contrast, the WGH model is estimated using the 

longitudinal data for each student which includes data obse;~ed each semester the 

student is enrolled. However, all models use the final semester's enrollment data for 

making predictions. This is done so that predictions from all tnodels are compared 

on the same information sets. 

If longitudinal dynamics matter in the departure decision, then the WGH model 

should have a predictive advantage because it uses this information in the estimation 

process. On the other hand, if only the most recent information matters, the WGH 

model may not· have an advantage and. could perform worse_ than the other models. 
o) 

The WGH model may also perform worse because it is overparameterized; that is, it 

imposes too much $tructure on the problem and does Iiot fit the data well. Before 

discussing how prediction comparisonsare made, each ~f the competing models are 

briefly described .. For a textbook discussion of these models, see Greene (1993). To 

avoid confusion, the parameter vector (3 is · used generically to describe a vector of 

unknown parameters to be estimated and is not intended to be specific to any one 

model. 
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Ordinary Least Squares 

Consider the linear model, y = X(3 + e where y is a T x 1 vector of observations on 

enrollment durations, X is a T x K matrix of independent variables, (3 is a K x 1 

vector of unknown parameters, and e is the disturbance term assumed to be an inde­

pendently, identically distributed random variable with zero mean, constant variance, 

and no correlation with the independent variables. Then t_he OLS estimator is given 

by 

~ = (X'X).:_1X'y. (3.31) 

If the assumptions about the error· term are correct, then the OLS estimator is un-

biased, consistent, and has smaller sampling variance than any other linear unbiased 

estimator. If the error term is normally distributed, then the OLS estimator is also 

the maximum likelihood estimator and is asymptotically efficient. 

Because enrollment durations are nonnegative, the zero mean assumption of the 

error term is questionable. However, if theJog of duration is used instead, the accel­

erated lifetime model described in the above section applies, and though inefficient 

relative to maximum likelihood, OLS can be used. 

Ordered Logit 

Suppose the linear model for the ith individual (i == 1,2, · · ·, T) is now given by 

Yi~ (3'xi + ei where Yi is unobserved enrollment duration; however, what is observed.· 

IS 

0 if y·~ <O 
i -

J if µJ-1 < Yi 
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w:here the µ's are unknown parameters to be estimated along with f). This is the 

process that describes the data in this study: observed durations are either zero 

semesters, one semester, two semesters, etc, 
. . 

Let µ0 = -oo and µJ = oo. Then define.the following 

Z .. -{· 1 tJ - . 

0 · otherwise 

and 

where Fis the standard logistic cumulative distribution function ( cdf), 1/(l+exp(-/3.'xi)). 

The likelihood function is given by 

T J 

L=flll[F(µj - (3'xi) - F(µj-1 - (3'xi)t;!. (3.32) 
i=lj=l 

Equation 3.32 can be maximized with respect to the µj and (3 using iterative methods. 

Multinomial Logit 

Suppose there are m unordered categories for each individual i = 1, 2, · · ·, T with 

corresponding probabilities Pi1 , Pi2 , • · •. , Pim and F is the standard logistic cdf. Let 

. Pi1 + Pi~ 
· Pi2 

Pi,j-1 

Pi,j-1 + Pim 
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These imply that 

Note that 

so that 

and 

exp(J3jxi)· 
Pii .. 1. · "\"""m-'1 (/3' ) · + uj;,1 exp · ;_xi 

If we consider the Pij and Pim as multjnoniial probabilities and a dummy category 

indicator is defined as 

y;; { 
1 if individual iis observed· in· category j 

0 otherwise 

then the multinomial logit model likelihood function can be written as 

T 
L _ II pYil pYi2 pYim 

- il i2 '' · im · 
i=l 

(3.33) 

Equation 3.33 can be maximized with respect to the unkn.own parameters /3.i using 

iterative methods. 

Predictive Evaluation Methods 

The problem of evaluating the predictive performance of the WGH model is divided 

into two parts: (1) evaluate the ability of the WGH model to predict enrollment 

duration and (2) evaluate its ability to predict departure destination. Regarding 

enrollment .duration, the WGH model is compared to OLS and ordered logit. With 

respect to departure destination, the WGH model is compared to multinomial logit .. 
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All models are compared using statistical methods suitable for contingency tables. 

To be consistent with the discrete nature of the dependent variable, the integer 

value of each model's duration predictions are used for comparison to the actual 

number of semesters completed. That is if the WGH, OLS, or ordered logit yielded a 

prediction of 6.8 semesters, the integer part, 6, would be rn;ied for predicted enrollment 

duration. This is consistent with how the dependent variable is defined: if a student's 

actual (unobserved) departure occurred at 6.8 semesters, the student would have been 

observed to complete 6 semesters and fail to enroll in the 7th. 

The WGH and OLS model yield predictions of enrollment duration whereas or-

dered logit predicts the probability of departing at a particular semester. To convert 

the ordered logit probability predictions into enrollment durations, the following for-

mula is used: 
T 

ETIME =Lt* Pt 
t=l 

where tis the semester and Pt is the predicted probability of departing at semester t. 

Both the modeling and validation data are censored at the 7th semester; therefore, 

any prediction exceeding the 7th semester is censored as well. 

The discrete enrollment predictions are cross-tabulated with the actual enrollment 

durations, forming a contingency table. A model is said to predict well if there is 

a strong, positive linear association between the predicted and actual enrollment 

durations. Various tests and measures of goodness-of-fit _are available for contingency 

tables and those used in this study will be described shortly. 

The categorical dependent variable designating departure destination is defined 

as follows: If a student survives to the 7th semester, then the destination variable is 

coded O for "continue." If the student drops out, the destination variable is coded 1 

and if the student transfers, a 2 is coded. To compare the WGH model's ability to 

predict departure destinations, the predicted enrollment duration and the transition 

intensities are used to define a categorical destination prediction variable. If the pre-
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dieted enrollment duration is at least 7 semesters, then the destination prediction is 

code9- zero to designate "continue." If the predicted enrollment duration is less than 

7 semesters, then the maximum of the transition intensities are used to determine 

whether the student drops out or transfers. If this maximum is the dropout intensity, 

then the destination prediction is coded 1 for "dropout", otherwise the destination 

prediction is coded 2 for "transfer." For the multinomial predictions, the maximum of 

the three probabilities is chosen as the predicted destination and coded accordingly. 

In the multinomial model, continued enrollment is set to be the normalizing cate­

gory. The WGH and multinomial destination predictions are cross-tabulated with 

the actual destinations to form contingency tables. Again, a good fit is indicated by 

a strong, positive linear association between the actual and predicted destinations. 

The general form of an r x c contingency table is presented in Table 3.1: 

Table 3.1: An r x c Contingency Table. 

Actual Outcome 
Predicted Outcome 1 2 C Total 

1 nu n12 n1c n1. 

2 n21 n22 n2c n2. 

r nr1 nr2 nrc nr. 

Total n.1 n.2 n.c n 

Notes 
nij is the number of i predictions that were actually j. 
ni. is the sum of row i .. 
n.j is the sum of column j. 
ri is the ith row number (rank order). 
Cj is the jth column number (rankorder). 
f = I:i Lj niirdn 
c = Li Lj nijCjjn 

The Kruskal-Wallis nonparametric test is used to test the null hypothesis that 

the predictions of the k models are independent samples from identical populations. 

For large samples, the statistic is approximately distributed as a chi-square random 
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variable with k - 1 degrees of freedom under the null hypothesis and is computed as 

follows: 

where ri is the sum of the ranked predictions of model i. Failure to reject the null 

hypothesis suggests that the models predict similarly. Rejecting the null hypothesis 

provides a basis for comparing the relative differences betw1cen the models. 

Within each model, a simple ( corrected for. continuity) chi-square test is used for 

testing the independence of the actual and predicted durations and destinations. The 

test is computed as follows: 

. C =LL [max(O, lnij - eijl - 0.5)] 2 

i j · eij 

where nij and eij are the observed and expected frequencies, respectively, for cell 

ij. The expected frequency is calculated as follows: eij ~ (ni.n.j)/n. This statistic is 

distributed as achi-sq~are random variable with (r-1)( c-1) degrees of freedom under 

the null hypothesis of independence. Failure to reject the null hypothesis implies 

that the model's predictions are independent of the actual outcomes. Rejecting the 

null hypothesis provides a basis for measuring the degree of association between the 

predictions and actual outcomes. 

When eij ::;; 5, the chi-square test above may not be valid, and test results are only 

approximations. Fisher's exact test can be used to confirm the suggested significance 

from the chi-square approximation. To perform Fisher's exact test, all possible tables 

of nonnegative integers are computed consistent with fixed ni. and n.j· For each table, 

a hypergeometric probability (p-value) is computed using the following formula: 

p = (TI~=l ni.!)(TI.i=l n)) 
n'TI··n··' • iJ iJ. 
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The p-value for the observed table, Pcrit, is also computed. The p-value of the test 

is the sum of all p-values less than or equal to Pcrit, and if this sum is less than 

or equal to a chosen significance level, a significant association between the rows 

and columns exists. Unfortunately, the test is not computationally practical when 

n/(r - l)(c ~ 1) > 5 (SAS Institute, 1990, pp.333-34). In this study, this fraction 

is 593/49 ~ 12 using the smaller validation sample, implying Fisher's exact test is 

infeasible. 

Association measures for enrollment duration are straightforward because of the 

ordinal nature between actual and predicted durations. Pearson's correlation coef-

ficient is used to evaluate the degree· of association between predicted and actual 

enrollment durations. This statistic is computed as follows: 

It has range -1 ~ r ~ 1. When comparing model predictions, the model with the 

highest correlation coefficient is presumed to be the best performer of those being 

compared. 

A more restrictive measure of association is the overall hit rate: Li=j nij/n. It 

measures the degree of exact agreement between the predicted and actual outcomes. 

High hit rates can be a misleading indicator of overall fit if there is an especially high 

concentration of hits in a particular diagonal cell. 

Pearson's correlation coefficient is not an appropriate measure of association for 

the destination models (Stokes, Davis, & Koch; 1995, p.95). This is because the rows 

and columns of these tables are not ordinal. The measure used instead is a conditional 

entropy coefficient. The entropy coefficient measures the uncertainty (entropy) of the 

actual outcomes explained by the predictions. Its range is O ~ Uc1R ~ 1 and is 
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computed as follows: 

The model with the higher entropy coefficient is presumed to predict better. 

For a general discussion of the the tests and associations measures discussed above, 

see Stokes et al. (1995) and SAS Institute (1990). 

3.3 Chapter Summary 

This chapter began by describing the major hypotheses to be addressed in the analy-

sis. Four hypotheses were presented relating to the longitudinal character of student 

enrollment, as well as to the relative merits of using statisticc1,l duration methods to 

model persistence. Theoretical considerations suggest that the effect of academic in­

tegration is nonlinear; that is, low levels of academic integration ( measured here by 

relative rank) are associated with a low likelihood of persistence. As relative rank 

increases, the likelihood of persistence increases, but after a point, higher relative 

rank decreases this likelihood. Distinguishing between system dropout and transfer 

is important, and it is hypothesized that the behavioral characteristics of each are 

different. Related to student-faculty interaction and academic integration, two vari-

ables are considered to be inversely related to persistence: the average class size in 

a student's portfolio and the proportion of the portfolio being taught by graduate 

teaching assistants. Two measures that show higher goal commitment and should be 

directly related to persistence are the student's willingness to take a heavier course 

load and the willingness to enroll in summer courses. 

Many characteristics that are theoretically important to predicting student persis-

tence are unobservable. Social integration, goal commitments, and others all reflect 

to a certain degree the students tastes and preferences, and given that these tastes 
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and preferences vary considerably from student to student, it is hypothesized that 

this unmeasured heterogeneity is the primary reason for the observed pattern of stu­

dent departure. In other words, students self-sort. The declining dropout rates with 

enrollment tenure reflect this self-selection process, · and not that continued enroll­

ment profoundly changes preferences in .. favor· of persistence. Finally, the model used 

in this study is compared to competing models in terms of out-of-sample predictive 

accuracy. This type of validation has not been the norm in previous studies. It is 

hypothesized that the model developed here will outperform the comparison models 

in out-of-sample predictive accuracy. 

The stafoitical approach was also described in this chapter. A general approach 

to modeling duration data using hazard functions was described and various proper­

ties were illustrated. The method of incorporating covariates · into the analysis was 

illustrated and linkages between linear models and hazard models were made. It 

was shown how the effect of unmeasured heterogeneity influences the hazard, and 

how, given assumptions about the hazard. and unmeasured heterogeneity, a para­

metric model of duration could · be specified and estimated using maximum likeli­

hood. Under certain conditions, these techniques can be used to estimate cause- or 

destination-specific hazard models (also called transition intensities). 
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CJIAPTER 4 
! 

DESCRIPTION OF THE·DATA 

The data in thi~ study consisted of a cohort of new freshmen beginning enrollment 

in the Fall 1993 semester at Oklahoma State University (OSU). There were 2,188 

new freshmen officially recorded as enrolled at this time. Of these, 98 were excluded 

from analysis: 14 were erroneously included with the freshman class, 8 never attended 

their fi,rst semester, · 62 were missing background data, and 14 were actually -trans- · 

fer students. Thus there were 2,090 true new freshmen available for analysis and the 

summary statistics for these students are presented in this chapter. For modeling pur­

poses, an additional 258 students were excluded because of an academic suspension in 

the subsequen;t -semesters·. This wa~ -done t-o be consistent with the existing methods 

of studying voluntary attrition. Of the remaining 1,832 students, 799 ( 43.6 percent) 

voluntarily departed by the Fall 1996 semester. Various background characteristics 

as well as regular semester course and performance data were used to estimate the 

models, -Background information included -the student's high -school rank as a per-

centage of the graduating class size,·the composite ACT score, the student's sex and 

ethnicity, and the residency status of the student. Longitudinal data included the 

relative rank of the student within the current portfolio of courses taken, the aver­

age nm;nber of ~udents in-the portfolio, the proportion of instruction conducted by 

graduate student teaching assistants, financial aid, 's-nmmer enrollment, p-roblematie. 

enrollment (i.e., academic notice or probation), and preprofessional and engineering 
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major indicators. The dependent variables measure the number of semesters of con-
' 

tinuous enrollment and whether the student, immediately upon departure, transfers 

to another institution or drops out of the system. These data are randomly assigned 

to two samples: two-thirds of the data ,are used to estimate the models and one-third 

are used to provide o:ut-of-sample predictive validation. 

Th~re are two primary data sources:. Student Records maintained at OSU, and 

the Unitized Data System (UDS) maintained by the Oklahoma State Regents for 

Higher Education. A third source, School District data obtained from the National 

Center for Educational -Statistics, was initially considered hut :ultimately not used. 

The following sections describe the data available· from each source. Obviously, not 

all data are directly used in the analysis. Many of the variables are included for · 

matching purpose or to facilitate the creation of analysis variables. A finar list of 

analysis variabl~s is provided in the chapter summary. 

4.1 Student Records 

Student records are maintained and updated by OSU on a per-semester basis, and 

the fall semester marks the beginning of a new school year. For analysis purposes, 

any SUIJlfiler enrollment activity is usually combin~d with the results of the follow-
. . 

ing fall semestey, so that fall and spring semesters are the tracking units. This is 

done primarily because summer enrollment is not r~quired to maintain "continuing 

student" status for financial aid and reporting purposes. 

Student reco,rds data for this study were extra-cted from several sources and three 

files were created~ the student demographics, course data, and student retention files.. 

The student demographics file elements are described in Table 4.1. 
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Table 4~1: Variable Names and Descriptions from Okla­
homa State University Student Demographics File 

Variable Description 
ID Student's OSU identification number* 
LNAME Student's last name 
-FNAME Student's first name 
SEX Student's sex (M or F)* 
RESIDENT Student's residency status (In- or Out-of-State)* 
CLASS Classification code (Freshman, Sophomore, etc'.)* 
BIRTHMON Student's birth month (MM)* 
BIRTHDAY Student's birth day (DD)* 
BIRTHYR Student's birth year {YY)* 
MARlff AL Marital status indicator* 
STARTOSU Year and Semester started OSU* 
DORM Dorm code* 
HSCODE High school code* 
HSGPA High school grade point average (4.0 scale)* 
HS RANK . High sehool rank* 
CLASSIZE High school graduating class size* 
HSGRAD Indicator of high school graduation* 
HSENGL OSRHE high school english units requirement 
HSMATH OS:RHE high school mathematics units requirement 
HSHIST OSRHE high school history units requirement 
HSSCI OSRHE high school science units Iequirement 
HSOT;HER .OSRHE other high school units requirements 
ENGLSTAT Indicator: met OSRHE english requirement 
MATHSTAT Indicator: met OSRHE mathematics requirement 
HISTSTAT Indicator: met OSRHE history requirement 
SCISTAT Indicator: met OSRHE science requirement 

. N ATMERIT Iookator of being a national merit scholar 
ACTENGL ACT English sub-score* 
ACTMATH ACT ·Mathematics sub-score* 
ACTR;EAD ACT Reading sub-score* 
ACTSCI ACT Science-sub-score*· 
ACTCOMP ACT composite score* 
SATVERB SAT Verbals.core* 
SATQUANT SAT Quantitative score* 
ETHNIC Ethnicity code* 
MAJCODE Major code* 
COLLEGE College enrolled in* 
CURJIRS Current semester hours attempted* 
ACCUMGPA Accumulated grade point average-(4.0 scale}* 
Note: An asterisk * indicates the element was extracted for use in this study 

· · contin:11ed on next- pa.g.e 
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Table 4.1 continued from previous page 
Variable · Description 
ACCUMHRS Accumulated hours* 
ACADSTAT · Academic status code 
SEMHOURS Current hours completed* 
SEMGRDPT Current grade poirrts earned* 
HRSPASS Hours earned "pass"* 
HRSI Hours earned incomplete* 
TRNGRHR Hours transferred to OSU* 
TRN GPTS . G!'ade points transferf€id to OS-U* 
TRNHRSP Hours transferred "pass"* 
TRNHRSF Hours transferred "fail"* 
LASTCOL College code of last college attended 
EXPGRAD Expected semester and yeai- of graduation 
WITHDRDA Formal withdraw date 
WDREASON Reasoncodefor formal withdrawal 
OSUEMP Indicator of OSU student employee 
FIN AID lndi£ator of financial aid recipient* 
ATHTYPE Athlete type code 
ATHSCH Athletic scholarship indicator* 
STREET Current street address 
CITY Current city 
STATE Current state 
ZIP Current zip code 
PERMSTR · Permanent street address 
PERMCITY Permanent city 
PERMSTAT Permanent state 
PERMZIP Permanent zip code 
Note: An ~sterisk * indicates the element was extracted for use in this study 

With the exception of student ID, all other variables that could uniquely identify 

the student were excluded. The reason for retaining ID was to provide a match 

criterion for. other -data sources. Once matching was complete and the data sets 

constructed, ID was removed. The remaining excluded variables were excluded either 

because they lacked variation ( e.g., the high school units variables) or because they 

were insufficiently populated (e.g., withdraw reason and date). 

Missing datq. for key variables such as ACT scores an-d high school performance 

posed a significant prob-lem. Ap-proxiinately.15 percent (2-75 observations} ha-done or 

more missing values per student for these variables~ However; when these missing val-
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ues were compa,red with the variables that had no missing values {i.e., ethnicity, sex, 

and residency status) no particular pattern emerged. Rather than drop the observa- . 

tions, a number 'of methods were examined to replace the missing values. A large sam-

ple of 21,532 entering freshmen between the fall 1990 and spring 1997 semesters was 

constru,cted. The data were then segmented according to ethnicity, sex, and residency 

status, and the ~egment means were used to replace missing values in the current sam­

ple. This is ess~ntially the same method suggested in Greene (1993, pp.276-7). The 

advantage of using this method over simply .replacing the blanks with sample means 

is that .information in the form of covariation between the regressors is used -to es­

timate the missing values. The primary reason for using this approach here was to 

preserve as many degrees of freedom as possible, so that ultimately the data could 

be split into relatively large estimation and validation samples, The means used for 

substitution are pre~nted in Table 4;2. The before- and after-substitution means :and 

-standard deviations arep-resented in Tab-le-4.3. In "I'able4.3 thevariab-leRANKPCTL 

is computed as follows: RANKPCTL = (CLASSIZE-HSRANK)/CLASSIZE. 

Table 4.2: Missing Value Replacements for ACT and 
High. School Performance Data. Fall 1990 to Sp:ring· 1997 · 
Semesters. 

Cateiory Female Male· 
Mean· N Mean N 

In-State Asian 
ACTENG-L 22:21. ·132 · . 21.23 151 
ACTMATH 22.31 132 24.68 152 
ACTREAD 2-3:.23: · 121· 22:s2 146-
ACTS CI 21.41 121 22.84 146 
CLASSIZE 327.04 "126 · 331:90 145 
HSGP,A 3.53 120 3.32 141 
HS RANK 6:2-;85 . 126- •. 85-.ss· 145. 
Out-of-State Asian 
ACTENGL 22.67 9 22.77. · 13 
ACTMATH 21.22 9 23.54 13 
ACTREAD 24.11 9 24.33 1.2 

continued o.n.nex.tpage 
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Table 4.2 continued from previous page 
I 

Category Female· Male 
Mean N Mean N 

ACTS CI 23.22 9 . 24.17 12 
CL ASSIZE 425.29 7 270.62 13 
HSGPA 3.37 5 3.28 15 
HS RANK 86.29 7 80.69 13 
In-State Black 
ACTENGL 20.20 244 19.32 217 
ACTMATH 18-: 71 . 243 19.5-1 2-18 
ACTREAD 20.95 232 20.86 210 
ACTSCI 19.19 232 20.75 2W 
CLAS SIZE 266.85 241 221.94 216 
HSGPA 3..20 23-6 3.02 · 217 
HS RANK 75.53 241 83.80 215 
Out-of-State Black 
ACTENGL 20.41 27 17.68 53 
ACTMATH 20.00· 26 18.64. 53 
ACTREAD 21.75 24 19.10 50 
ACTSCI 19.71 24 18.86 .· 5{) 
CLAS SIZE 315.64 39 321.82 76 
HSGPA 3..15 32 2.61 66 
HS RANK 91.26 39 164.43 76 
In-State Hispanic 
ACTENGL 22.86 130 21.74 111 
ACTMATH 26-.82 . 130 22.12 111 
ACTREAD 24.52 125 23.40 104 
ACTS CI 2L67 125 23.-66 104 
CLASSIZE 328.27 128 250.17 104 
HSGPA 3..39 · 123 · 3.19 105 
HS RANK 71.12 129 87.53 104 
Out-of-State Hispanic 
ACTENGL 22.63 8 19.25 24 
ACTMATH 2&.25- 8 21.42 24. 

AC TREAD 22.71 7 20.92 24 
ACTS CI 20.29 7 21.75 24 

CLAS SIZE 389.33 12 365.61 28 
HSGPA 3.27 10 2..90 24· 
HS RANK 78.33 12 138.64 28 
In-State Native American 
ACTENGL 22.66 696 21.81 583 
ACTMATH 20.25 693 22.13- 583 
ACTREAD 24.00 664 24.00 582 
ACTS CI 21.94 664 23.76 547 

continued .on. nmct page 
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Table 4.2 contir,ued from previous page 
Category Female Male 

Mean N Mean N 
CLAS SIZE 205.43 .· -661 214.36 ·547 
HSGPA 3.42 655 3.23 555 
HS RANK . 54.9:7 66-1 73;52 534 
Out-of-State Native American 
ACTENGL 21.86 28' 2L50 22 
ACTlVCATH 20.61 28 24.23 22 
ACTREAD 23;52 •. 27· 22:60 20 · 
ACTSCI 22.11 27 24.10 20 
CLAS SIZE · 319.35 31 329.66 29 
HSGPA ·3;33. 27 3.11 26 
HS RANK 93-.11' 31 ·. 117.75 28. · 
In-State Other 
ACTENGL. .. 23.46 7034 ·22.7-0 ·6616 
ACTMATH 21.28 7000 ·22.88 6602 
ACTREAD 24:26 · o544· 24.49- 003:5 
ACTS CI 22.36 6546 24.29 6035 
CLAS SIZE 269.82 6702 270.66 6206 
HSGPA 3.42 6520 3.24 6028 
HS RANK 69-.08- . 6-70:2 8-9.13 . 6-263-
Out-of-State Other 
ACTENGL . 23.85 . 6'71 .. 23.09 64-9 
ACT.MATH 22.39 671 23.71 648 
-AC TREAD 25-:36- 652 •. 24:91 6-19-
ACTS CI 23.33 652 24.44 619 
CLAS SIZE 295:36 . 718 .· 298.52 -822 
HSGPA 3.40 634 3.17 704 
HS RANK 14.41' 716- · 10.2:58 8-21 
Non Resident Alien 
ACTENGL 21.33 ... 9 . 19.-65 · 17 

ACTMATH 20.33 9 24.88 17 
ACTREAD- 19-;&7 · 9- . 21.53- · 17 
ACTS CI 20.44 9 23.82 17 
CLAS SIZE 331.80 5 275.00 3 
HS GPA 3.32 5 2.97 - 3 
HS RANK 73.00 5 108.33 3 
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Table 4.3: Before and After Comparison of Missing Value 
Imputation. 

Variable 

ACTENGL 
ACTMATH 
ACTREAD 
ACTS CI 
HSGPA 
RANKPCTL 

Before 
Mean St Dev 
23.37 4.37 
22.71 4.33. 
25 .. 10 5.46 
23.62 4.28 
3.08 1.14 
0.76 0.21 

After 
Mean StDev 
23.32 4.20 
22.69' 4.17 
25.00 5.22 
23.56 4.09 
3.41 0.50 
0.75 0.20 

Note that the mean of HSGPA demonstrated the most dramatic change. This is 

because they were originally coded as zero if missing. Note also that the variability 

of HSGPA decreased considerably. This may have implications for obtaining -stable 

parameter estimates when estimating the models. 

Like the student demographic file, the course data file is maintained by OSU on 

a per-semester basis. Each student in the file will have multiple observations, one for 

each course enroJled in. The course data -files contains data on all enrolled students so 

it was necessary to match the fall 1993 cohort IDs against the IDs in the course data 

files to obtain the relevant records. This was done for the fall and spring semesters 

from fall 1993 to fall 1996. The file elements are described in Table 4.4. 

Table 4,4: Variable Names and Descriptions from The 
Course Data File 

Variable Description 
ID Student's OSU ID number* 
PREFIX Course prefix ( e.g., ECON)* 
NUMBER Course·numher (e.g., 20-13)* 
SECTION Course section 
GRADE Final letter grade earned in course* 
NUMSTUDS Number of students enrolled in course* 
NUMA Number of As granted in course* 
NUMB · Number of Bs granted in course* 
NUMC Number of Cs granted in <:ourse* 
Note: An asterisk * indicates the element was extracted for use in this study 

continued on next page 
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Table 4.4 continued from previous page 
Variable °' Description · 
NUMD Number of Ds granted in course* 
NUMF Number of Fs granted in course* 
NUMI Number of incompletes granted in course* 
NUMP Number of passes granted in course* 
NUMW Number of withdraws in courses* 
NUMWF Number of withdraw-failing in course* 
INSTNAME Instructor's name 
INSTETH · Instructor's ethnicity code 
INSTGEND Instructor's sex code (M or F) 
TEACHER Instructor's title* 
Note: An f',Sterisk * indicates the element was extracted for use in this study 

Variables were excluded either to protect privacy, such as instructor name, or 

because they were not likely to be useful in the analysis. A potentially important 

variable, instructor's -ethnicity, was excluded because upon examination, 85 percent 

of the response~ were reported as the catchall category "other". 

The student retention file is simply a per-semester .tracking file where new fall 

semester freshman and transfer cohorts are followed longitudinally. Several of the 

element-s previ01t3-sly described are used to populate the fields in this file. The elements 

of the new freshman file are described in Table 4.5. 

Table 4.5: Variable Names and Descriptions from The 
New Freshman Student Retention Data File 

Varic1ible · Description 
ID ·.Student's OSU ID* 
NAME Student's full name 
STARTOSU Starting year and semester of the student* 
ACTENGL ACT English sub-score* 
ACTMATH ACT Mathematics s1±o-score* 
ACTREAD ACT Reading sub-score* 
ACTS CI ACT Science sub-score* 
HSGPA High school grade point average* 
CLASS Student classification* 
SEX Sex code (M or F)* 
Note: An asterisk * indicates the element was extracted for use in this study 

cominued -.on next. page 
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Table 4:P' continued from previous page 
· Variable · Description · 
ETHNIC Ethnicity code* 
MAJ CODE. Major code* 
ACCHRS Accumulated hours* 
ACCGPA Ac.cumulated grade point average* 
ACADSTAT Enrollment status* · 
DEGREE Degree earned* 
YRORANT Semester and year granted* 
Not~: An astEJrisk * indicates the element was extracted for use in this study 

These three files from the basis of the data used in the analysis. 

4.2 U nitiz.ed Data System 

The second primary data source is the Unitized Data System (UDS), which is main­

tained ,b-y the Oklahoma State Regents for :Higher Education {OSRHE). All insti­

tution~ in the pklahoma state system of higher education .are required to submit 

student-level and faculty- and staff-level data each semester to OSHRE in a specific 

format. This format forms the file layout that OSRHE ultimately constructs. The 

UDS provides a longitudinal picture of the performance and movement of students, 

facultf, and sta~ within Oklahoma's higher education system. Of primary interest in 

this study is the· tracking of student enrollment between instituticms. OSRHE used 

the fall 1993 cohort IDs to construct a longitudinal data set for the fall 1993 to fall 

1996 s~mesters. The elements of this data set are q.escribed in Table 4.6. 

Table 4.6: Variable Narries and Descriptions from The 
Unitized Data System File 

Variable 
ID 
INST 
LASTCOL 
ENRACT 

Description 
Stu_dent 'S-lD 
Institution code* 
Institution FICE code of last college ,attended 
Enr-ollmen.t status code* 

Note: An asterisk * indicates the element was extracted for use in this study 
continued on next pa,g-e 
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Table 4.6 conti:pued from previous page 
Variab-le lreserip-tio-n · 
CLASS Student classification 
WDRAW Formal w1thdrawal indicator. 
CHRS Current hours attempted 
RGPA B':etention grade-point average (4.0 scale) 
EDGOAL . Immediate educational goal 
HID EG Highest college· degree/ certificate earned 
PGMCODE Current instructional program code 
DEGl fust degree awarded code 
DEG2 Second degree awarded code 
PG Ml ln.structional -program-c-0de for .{fegr..ee l 
PGM2 . Instructional program code for degree 2 
IOR Institutionofreoord* 
FINAID1 Financial aid code for grants 
FIN AID2 Financial. aid .code for Joans 
FIN AID3 financial aid code for sch,olarships . 
FIN AID4 Financial aid. code for student employment 
FIN AID5 Financial aid code for other support 
Note: An asterisk * indicates the element was extracted for use in this study 

Ex~ning the content ofthese data raised serious questions about their integrity. 

For e~ample, it was discovered that codes unique to FIN AID4 were being used to 

populate the other FINAID variables. For students who remained enrolled at OSU 

throughout the analysis period, there were discrepancies between RGPA and current 

hours jn the :UDS and those maintained in· OSU student records. Because ofihese 

considerations, the UDS-. data was only used to determine if a student transferred, 

given that OSU student records indicated a termination of enrollment. 

4.3 SchooJ District Data 
! . 

Primary and secondary school district data was obtained from the National Center · 

for Educational Statistics web-site. The data were compiled for all states in 1989 and 

are available in -1;><>th summary and detail form. Except for major metropolitan areas, 

Oklahoma schoof districts are· closely tied to the counties in which they reside. The 

original intent for this data was to provide proxies for _preV:WllS- educational resoUi'ces 
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and the -demographics of the area where the student attended high school. The 

elemeI\tS initially considered are presented in Table 4. 7. 

Table 4.7: Variable Names and Descriptions from Okla­
homa School District Data 

Vari~ble 
ZIPCODE 
SCHOOL 
HSCODE 
DISTPOP 
POVRATE 
VALHOME 
INCOME 
STRATIO 
EXP STUD 
DISTRICT 

Pescription 
School district zip code 
High school name 
High -scho.ol code 
Sf,hool district population 
Pbverty r.ate for the district 
Median home value in the district 
Median family income in the district 
District student-teacher ratio 
Total expenditure per student 
School district name 

A distinctim;i. was· also made as to· whether the -school was private, public, or 

magnet. Some pf the high schools were too new to be induded in the 1989 district 

data. Zip codes were used to supply values for these fields, and in instances where a 

match could not. be established, the Oklahoma average values were used. High school 

codes of "99999~" were given the United States average values. 

4.4 . Variable Descriptions 

To prepare the data for analysis, both the dependent and independent variables were 

created and ultimately arranged into a longitudinal data set. Each are described in 

turn. 

4.4.1 Dependent Variables 

Time enrolled used the number of consecutive fall and spring semesters completed. 

The variable TIM-E was created to indicate the total number of semesters completed. 
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A brea,k: in enrollment was identified based on the OSU retention file data, and the 

UDS data wen:') used to determine if the student enrolled in another institution in 

the Oklahoma State system. If so, a transfer dummy variable (TRANSFER) was 

created, and was set to 1 at the time of transfer and zero otherwise. If transfer could 

not be,id-entified, a dropout dummy variable (DROPOUT) was created, and set to 

1 at the time of dropout and zero otherwise. If the student dropped out for at least 

one semester, did not attend anywhere else, and ultimately resumed enrollment, the 

indicator variable STOPOUT was .created and accordingly assigned a value of one. 

If the student graduated, an indicator variable -GRADUATE was created. Finally, 

if the i'!tudent remained continuously enrolled through fall 1996, a censoring or end-
. ' 

of-sampling-period indicator ( CENSOR) was created. Summary statistics of these 

variables are presented in Table 4.8. 

Table 4,,..8: Summary Statistics of Persistence Related 
Variq,bles, N=2,090. 

Variable 
CENSOR 
DROPOUT 
GRADUATE 
STOPOUT 
TIME 
TI{ANSFE1t 

Mean 
.50 
.36 
J}l 
.07 

4.95 
.06 

Description 
Censoring indicator ( 0 if censored, l otherwise) 
Dropout indicator (1 if dropout, 0 otherwise) 
Graduation· indicator ( 1 if graduated, 0 otherwise) 
Stopout indicator (1 if stopout1 0 otherwise) 
Enrollment duration (1, 2, · · ·, 7 semesters. SD=2.39) 
Transfer indicator ( 1 if transfer, 0 otherwise) 

The proper treatment of stopout is as a renewal process and is beyond the scope 

of this study. Therefore, stopout and dropout are treated equivalently. Also, the 

handful ( 29) of stud-en ts who graduated -did so at the end of the sampling period and 

were ""lso enrolled at that time. For these individuals, the censoring and graduate 

indicators were treated equivalently. Table 4.9 ranks the top destination schools for 

students transferring from OSU. 
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Table 4.9: Top Destination Schools for OSU Transfers. 
i 

Rank School 
1 University of Central Oklahoma 
2 Tulsa Junior College 
3 University of Oklah.oma 
4 OSU Technical Branch - Oklahoma City 
5 East Central University 
5 Oklahorpa City Community College 
6 Langston University· 
7 Northern Oklahoma College 
8 Cameron University 
8 Mid-AIT}erican Bible College 
9 Northwestern Oklahoma State-University 
9 Southeastern Oklahoma State University 
9 Rose State· College 
9 Southerµ Nazarine University 
10 Oklaho:rha Panhandle State'University 
10 Eastern Oklahoma State College 
10 Northeastern Oklahoma A&M College 
10 Western OklahQma State College 
10 Seminole Junior College 
10 Oral Roberts University 

In the present sample, the top three schools in Table 4.9 account for over 61 

percent of the transfers between the fall 1993 and fall 1996 semesters. 

4.4.2 Independent Variables 

A number of yotential independent variables were considered for the analysis. Some 

of the variables remain constant over the student's enrollment while others vary while 

the student is enrolled. Table 4.10 provides summary statistics and descriptions of 

the variables that remain constant and Table 4.11 does the same for the time-varying 

indep<:rndent variables. 
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Table 4}0: Summary Statistics of Time-Constant Inde­
pendent Variables 

Variable Mean Std Dev Description 
ACTENGL . 23.11 4.21 ACT English score 
ACTlv,IATH 22.49 4.17 · ACT Math score 
AC TREAD 24.81- 5.20 · ACT Reading_ ·score 
ACTSCI 23.43. 4.08 ACT Science score 
ALIEN .01 ·.07 Foreign student indicator (0,1) 
ASIAN .02 .13 Asian. student indicator (0,1) 
BLACK .03 .16' · Black student indicator (O,l) 
CLASSIZE 259.90 213.3 Graduating class size in high school 
DISTPOP .· 54.19 83.S3 HS district population (00) 
DROPOUT .36 . .48 · Dropout indicator (0,1) 
EXPSrr'UD 3.69 .84· · Expenditure per student (000) 
HISP .02 .13 Hisp~nic student indicator (0,1) 
HSGPA 3 •. 35 .53 HS grade point average '( 4.0 Scale) 
HS RANK 75.53 . 96.74 HS graduating rank 
INCOME 26.20 6A9 HS ~istrict median income (000) 
NATAM .08 .27 Native American indicator (0,1) 
OTHER .85 .35 White student indicator {0,1) 
POVRATE 14.36 5.75 HS district poverty rate 
PRIVATE .05 .21 Private/Magnet school indicator (0,1} 
RANKPCTL .73 .21 HS rank relative to HS class size 
RESCOD.E .13 .34 Non-r.esident indicator {0,1) 
SEXQODE .51 .50 Female student indicator 
STRATIO 17.08 2.28 HS district student-teacher.ratio 
VALHOME 54.50 19.06 HS district median home value (000) 

An .average ACT score, ACT-COMP, was computed for ea-ch -student. Also, a 
. . 

combi:µed ethni~ indicator, NONWHITE, was computed by summing the ASIAN, 

BLACK, HISP, NATAM, and ALIEN indicators. The variable RANKPCTL is com­

puted as {CLAS.SIZE - H-SRANK)/CLASSIZE .. Values approaching 11riity indicate a 

top hi~h school graduate. 
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Table4,.ll: Summary Statistics of Time-Varying lnde­
penqent Variables 

Variable 
CHF93 
CHS91 
CHF94 
CHS95 
CHF95 
CHS96 
CHF96-
CHS97 
CRANKF93 
GRANKS94 
CRANKF94- . 
CRANKS95 
CRANKF95 
CRANKS96 
CRANKF96 
CRANKS97 
F93GPA 
S94GPA 
F94GPA 
S95GPA 
F95GPA 
S96GRA 
F96GFA 
S97GPA 
FAIDF93 
FAID$94 
FAIDF94-

. FAIDS95 
FAIDF95 
FAIDS96 
FAIDF9.6 
FAIDS97 
NSTUDF93 
NSTUDS94 
NSTUDF94-
NSTUDS95 
NSTUDF95 
NSTlJDS96 . 
NSTUDF96 
NSTUDS97 

I 

Mean 
13;62 
14.14 
14.2-7 
14.16 
14.19 
14.26 
14.16: 
14.01 
1.-02 
1.01 
1.03-
1.04 
l.,04 
'1.06 

· 1.02 
1.02 
2.ti3 
2.61" 
2.66-
2.84 
2.-81 
'2.94 
~t93-
3.05 

A3 
044 
.2o­
;27 
A7 
.49 
.49-
.51 

-69-.lO 
68.31 

I 

83.41 
75.34 
74.11 
61.32 
53-.63-
48.89 

Std Deviation: Description 
· 2.76 Current holl:rs attempted 
2.59 
2.01 
2.12 
2:-04 
2.20 
2.3-9-

-2 .. 58 
.37 -Class tank 
.38 
.3-7 
.34 

.. 33 
.29 
.30' 
.25 
. 99 -Current grade -point average 

· 1.00 
.96- .. 

.76 
.. 90 

.82 

.8-7 

.80 

..50 Financial aid indicator {{l,l) 

.50 
044 
.44 
.-50 
.50 
.50 
.50 

28.50 · Average-class size 
25.64 
36.74· 
33.07 
"35.62 
29.29 
29;00 
25.81 

contin11ed on- next page · 
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Table 4.11 continued from previous page 
-Variable · Mean S.td Deviation Description 
PCTGF93 .39 .23 Proportion graduate student TAs 
PCTGS94 .45 .27 
PCTGF94 .30 .22 
PCTGS9-& .28- .22 
PCTGF95 .20 .21 
PCTGS96 .19 .21 
PCTGF96 .16 .19 
PCTGS9-7 . 13 .18 . 
PROBF93 .15 .35 Problematic enrollment indicator ( 0,1) 
PROBS94 ;06 .23 
PROBF94 .05 .22 
PROBS95- . 03: .18- . 
PROBF95 .02 .13 
PROBS96 .01 .11 
PROBF96 .01 .11 
PROBS97 .02 .12 

To calculate the class rank variables (CRANK) the student's grade average was 

computed for the courses completed. This is different from the standard grade point 

average in at least -two respects. First only the grade earned is considered with the 

standard coding of A=4, B=3, C=2, D=l, and F=O. The number of credits earned 

was not factored in. Second, if the course was "pass/fail", pass was assigned 2 and fail 

was assigned 0. A similar grade average was computed for each course a student was 

enrolled in. Their individual grade average is divided bythe·course average, and -this 

ratio is averageq. across the portfolio of courses taken that semester. The problematic 

enrollment indicator variables (PROB) assumes values of one when a student is either 

put on academic notice, probation, or suspension (notice or probation in the modeling 

data). '!'his condition is evaluated for each semester. To assess the 1.mpaetofgraduate 

student teaching on student persistence, the fraction of the student's portfolio taught 
' 

by a graduate student was computed. This fraction is calculated for each semester. 

Three other variables not presented in the list were the summer enrollment, en­

gineering,__ and pre-professional indicators, SUMMER, ENGINEER, and PREPROF 
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respectively. The summer indicator assumed a val.ue of one for -the fall semester if 

a student was enrolled in summer courses prior to that fall semester. The engineer 

indicator assumes a value of one for each semester a student claims an engineering 

type major (e.g~ electrical engineering). · Likewise, the pre-professional in-dicator as­

sumes a value of one for each semester a student claims a pre-professional major (e.g., 

pre-law). These were determined from the official list of major codes provided by the 

OSU Office of Admissions. 

The fu]l list of independent variables considered for analysis is as follows. Time­

constant variables include: ACTCOMP, ALIEN, ASIAN, BLACK, DISTPOP, EX­

PSTUD, HISP, HSGPA, INCOME, NATAM, POVRATE, PRIVATE, RANKPCTL, 

RESCODE, SEXCODE, STRATIO, and VALHOME. Time-varying covariates in­

clude: CHRS {time-seriesofCHF93.--CHS97), RELRANK {time series'of-CRANKF93 

. - CRJ\NKS97), RELRNK2 (RELRANK squared), CURGPA (time series of F93GPA 

- S97GPA), FINAID (time series.ofFAIDF93 - FAIDS97), NSTUDNT (time series 

of NSTUDF93 - NSTUD-S97), PCTGRAD-(time series of PCT-GF93 ~ PCTGS97), 

PRO~ENR (time series of PROBF93 - PROBS97), SUMMER, ENGINEER, and 

PREPROF. The Dependent variables include DURATION (cumulative enrollment 

. duration), DROPOUT, and TRANSFER. 

4.5 Data lleduction Methods 
\ . . 

Because the models in this study are nonlinear, it is important to determine the 

degree of multicollinearity in the data. Highly collinear data may pose convergence 

.problems for nonlinear optimization routines·becausethe parameters are unstable and 

affect the precision with which parameters of the model can be estimated. Indeed, 

the model would not converge using the full list of regressors .. As an initial step, a 

linear m-0del is used where the dependent variable is.the log of enrollmei:tt. dura-tion. 

This is equivalent to an. accele:ratedlifetime regression in the absence of censoring and 
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ordinary least ~quares could be used. For the moment, censoring is ignored. With 

a reduced specJfication that still allows the major hypotheses to be analyzed, the 

hazard models are re-estimated, A final collinearity analysis is conducted using the 

Hessian based on the MLEs. 

4.5.1 Mul~icollinearity Diagnostics 

Three basic diagnostic tools are used to detect multicollinearity: the Variance In­

flation Factors (VIFs), the Condition Index (CI), and Variance Proportions (VPs). 

VIFs are essentially-the multiple by which -the variance of the corresponding estimates 

are inqreased, the increase being attributable to multicollinearity. A rule of thumb is 

to consider VIFs exceeding 2 to 5 as indicating serious multic<:>llinearity. The CI is 

the square root of the ratio of the largest to smallest eigenvalue in scaled (X'X). The 

rule of thumb for the -CI is·that severe multicollinearity exists forCls greater than 30. 

Finallr VPs measure the proportion of variance associated with the each eigenvalue 

in the scaled (X'X). Combinations of variables with high VPs for a small eigenvalue 

(large CI) indicate near linear dependencies between those variables. The VIFs are 

• presented in Table 4.12. 

Table 4.12: Variance Inflation Factors of the Independent 
Variables · 

Variable 
REL RANK 
RELRNK2 
INCOME 
CURGPA 
VALHOME 
POVRATE 
HSGPA 
RANJ(PCTL 
STRATIO 
EXP STUD 
RESCODE 

VIF 
22.1167 
12.4388 

9.9645' 
8.5613 
5-.650-9, 
5.2776 
4.4948 
4.3400 
3.4987 
2.8082 
2 .. 6307 

continued on next page 
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Table 4.12 continued from previous page 
Variable VIF 
DISTPOP 2.4454 
PRIVATE L4'716 
ACTOOMP L3625 
PROB-ENR 1.3421 
NSTUDNT 1.1868 
ENGINEER 1.1628 
CUR}iRS 1.1588 
SEXCODE 1.1564 
PCTGRAD 1.1556 
FIN AID' L09'75 
ALIEN 1.0656 
NATAM 1.06-1& 
BLACK . 1.0583 
PREPROF 1.-0578 
HISP 1.0328 
ASIAN 1.0300 
SUMMER 1.0293 

· INTERCEP 1.0000 

From Table 4.12thefoilowing parameters are potentially affected bymnlticollinear-

ity: JtELRANK, RELRNK2, INCOME, CURGPA, VALHOME, POVRATE, HS­

GPA, RANKPCTL, STRATIO EXPSTUD, RESCODE, and DISTPOP. The Cis and 

VPs for selected regressors are presented in Table 4.13. 
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Table 4.13: Variance Proportions for Selected Regressors 
with Condition Number Values over 30. 

Variable 
INTEflCEP 
POVRATE 
VALHOME 
INCOME 
STRA,TIO. 
EXP STUD 
HSGPA 
RANKPCTL 
JlELRANK 
RELRNK2 
CURGPA 

· 35.90723 
0.0148 
0.0001 
0.3461 
.Q.-0701 
0.0862 
0.0133. 
0.0103 
.0,0212 
0.0037 
0.0144 
0.0715 

56.06765 
0.0003 
0.153,1 
0.0021 
.o.2004 
0.3258 
0.116.7 
0.0455 
0.0400 
0.3520 · 
0.2347 . 
0.1671 

Condition ·Number 
.57.94555 6L2944 

0.0000 0.0009 
0-.2637 0.05().9. 
0.0570 0.0989 
-0 . .3565 0.0836 
0.1242 
0.0253-
0.0097 
-0.0013 
0 .. 5395 
0.3282 
0.2740 

0.0129 
0.0262 
0.7803 
0.5884 

. 0.0921 
0.0641 
0.0281 

114.18853 
0.9819 
0.29.75. 
0.2135 

'• . :Q.2827 

. 0.4278 
0~2880 
0.1427 
0.:0794 
0.0033 
0.0122 
0~0021 

Sum 
0.9979 
0-.7653-
0.7176 
.Q.9933 
0.9769 
0.4695-
0.9885 
0.7303 
0.9906 
0.6536 
0.5428 

The immediate conclusion from Tabie 4.13 is that severe multicollinearity exists. 

The six smallest eigenvalues produce condition numbers from 35.91 to a condition 

index of 114.19. The VPs in Table 4~13 suggest several near linear dependencies. 

This is shown by examining the sum of the VPs for high condition numbers, and to 

determ,ine which variables are involved, a VP of 0.45 or greater is used. Because the 

. interc~pt is involved, the linear combination of these variables exhibits little variation. 

Because the linear combination of the district data appears to have little varia­

tion., each variable has a high VIF. Since the literature suggests that these variables 

are, at .best, of secondary importance, · they .are excluded from the anaiysis. REL­

RAN~ and RELRNK2 are central to .a major hypothesis· to be tested, so they are 

retained. CURGPA is excluded because of the near linear relationship to RELRANK 

and RELRNK2. These relationships are in Table 4.13. Because it is part of Tinto's 

specification that prior schooi experience be included, RANKPCTL is retained. This 

decisiqn is based on the knowledge that to graduate in the top of one's class, he or 

she must necessarily have a high grade point average. Furthermore, RANKPCTL de­

flates one's ordinal class rank by the graduating class size. Therefore, RANKPCTL 
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contains more information than HSG-PA. Finally, Tinto's framework specifies that 

prior skills are important to persistence. 

Considerations other than multicollinearity were important in determining what 

to include and exclude from the analysis. The only other variables explicitly ex-

eluded ,from the aJ1alysis were PRIVATE and -CU-RHRS. PRIVATE. is an indicator 

· variab~e of whether a student attended a private or public high school. It was ex­

cluded because of low occurrence ( only 98 of 2090 students attended private high 

schools). CURHRS was excluded because it is used in the definition of the depen­

dent variable and is likely to be jointly determined with persistence; hence, indudin:g 

it could introtlnee- simultaneity bias. · The individual ethnicity indieators (ASIAN, 

BLACK, HISP, NATAM, and ALIEN) were excluded, .and in their place, a non­

white/white indicator (NONWHITE~ was. used. This variable is merely the sum of 

the etp.nicity indicators .. Also included SUMMER which relates to the commitment 

hypotheses (Hypothesis 5) to be tested. NSTUDNT and PCTGRAD are included 

because they are central to Hypotheses 3 and 4. Other varia,bles included primar-

ily for ,eontrol purposes are RES-CODE, SEX-CODE, FINAID, EN-GINEER, PRE­

PROF, and PROBENR. Thus, the final list of variables included for analysis are: 

ACTCOMP, ENGINEER, FINAID, NONWHITE, NSTUDNT, PCTGRAD, PRE­

PROF, PROBENR, RANKPCTL, RELRANK, RELRNK2, RESCODE, SEXCODE, 

and SUMMER. The VIFs for the final list of modeling variables are presented in Table 

4.14. 

Table 4.14: Variance Inflation Factors for the Final List 
of Independent Variables 

Variable 
REL RANK 
RELRNK2 
RANKPCTL 
PROBENR 

VIF 
12.625-7 
11.8919 
.L4279 
1.2881 

continued on next page 
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Table 4.14 continued from previous page 
Va:riable VIF 
ACTCOMP 1.2709 
PCT GRAD 1.1320 
ENGirEER 1.1202 
SEXCODE 1.1121 
NSTUDNT 1.0580 
FIN AID 1.0425 
RES CODE 1.0409 
PREPROF 1.0369 
NONWHITE 1.0348 
SUMMER 1.0190 

The VIFs for RELRANK and RELRNK2 are -still extremely high; however, this 

is becCfl.USe when one is taken as the dependent variable, and regressed on the other 

independent variables, the other is included as an independent variable. The R-

Squares from these regressions are very high ( approximately 0.93). This tends to 

drive up the VIFs for either variable. When ea"Ch one is excluded from the regression, 

the VIFs for RELRANK and RELRNK2 are 1.27 and 1.25, respectively. Thus the 

high VIFs on these two variables reflect the fact that they are functionally related. 

The specification in Table 4.14 converged and the scaled Hessian evaluated at the 

MLEs is used to -detect collinearity in the nonlinear model. The Hessian is computed 

using }he matrix of second partial derivatives of the log-likelihood function evaluated 

at the MLEs. In general, this is not proportional to the linear model Hessian, (X'X), 

and therefore the VPs do not necessarily indicate which variables are involved in the 

collinearity. The condition index still provides a measure of how -ill-conditioned the 

Hessian is. These results are presented in Table 4.15. 
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Table 4.15: Variance Proportions Corresponding to the 
Two Largest Condition Numbers from.the Scaled Hessian 
of the Hazard Model. 

Variable 
Condition Number 

27.2100 38.3306 . Sum VPROP 
0-.1833- 0. 7639 0-.9472 
0.5989. 0.2879 0.8868 
{UM.OS .· -0.-0024 -0.0432 
0.0001 0.0000 0.0001 
0.0080- Q_.0005- 0.0084 
0.0205 0.0050 0.0256 
-0,02'79 . 0;06()3 . 0.0942 
0.0035 .· .. 0.0001 0.0036 
0,.0000. 0-.09-72 0-.09-72 
0.0009 0.0000 . 0.0009 
0,3028 -0.6846 -0.9874 

INTERCEP .· 
ACTCOMP 
ENGINEER 
FINAJD 
NONWHITE 
NSTUDNT 
PCT GRAD 
PREPROF 
PROB-ENR 
RANKPCTL 
REL RANK 
RELllNK2 
RESQODE 
SEXCODE 
SUMMER 

· 0.2376 0.6747 0.9123 
0.0058 0.0008 0.0066 
0.0336 0.0020 0.0357 
0.0061 0.0011 0.0072 

The ..c-ondition index is 38.33· which indicates that their is -still a collinearity prob-

lem. This seemed evident in. that the model needed 23 iterations to converge. Even 

though the VPs here do not necessarily indicate the variables involved in the collinear­

ity, they suggest that a linear combination of ACTCOMP, RELRANK, and REL­

RNK2 ar-e collinear with·the intercept. Variables or combinations of variables collinear 

with the intercept suggest low variability. In. light of what these variables are mea-

su:ring, it seems reasonable to ·expect· this relationship and that there may not be 

much independent variation in these variables. This may impact either the signs or 

statistical significance of these coefficients. 

4.6 Chapter Summary 

This chapter provides a detailed description of the data used in this analysis. All data 

. sources are described,.along with a discussion ofthe time-frames.of sampling, variable 
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definitions, overlaps in the data, as well as limiting factors and problems encountered. 

A description of both the dependent and independent variables is provided along with 

summary statistics. Data reduction methods are explained, the intermediate results 

presented, and the final analysis list of variables presented. 
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CHAPTERS 

ANALYSIS AND RESULTS 

This chapter presents the main results of the analysis and tests the hypotheses of 

the st11-dy. In the previous chapter, variable iiestriptions and summary statistics were 

presented. This chapter concentrates specifically on the model estimation results 

and predictive assessments as they related to the primary hypotheses. The following 

chapte;r summarizes and discusses these results in greater detail. Statistical software 

used included LIMDEP 7.0 for estimation and SAS 6.12 for validation. 

5.1 Hypothesis Tests 

To begin analyzing and testing the hypotheses, a single stage hazard model is es­

timated where no distinction is made between system dropout and transfer. The 

results are presented in Table 5.1. 

Table 5.1: Parameter Estimates for Single-Stage Haz­
ard Model - General Attrition. Dependent Variable: 
Log(DURATION). 

Variable Coefficient Std Error T-Stat P-Value 
CONSTANT 0;8317 .• 0.3732 2.2285 0,0258 
ACTCOMP -0.2264 0.1247 -1.8151 0.0695 
ENGINE-ER 0-.3704 0.1760- 2.1052 0.0353-
FIN AID -0.0112 0.0811 -0.1381 0.8902 
NONWHITE 0.0484 0.1123 0.4313 0.6fi62 
NSTVDNT -0.1441 0.1251 -1.1523 0.2492 

continued on next page 
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Table 5.1 continued from previous page 
v~iable 
PCTGRAD 
PREPROF 
PROaENR 
RANKPCTL 
REL RANK 
RELRNK2 
RESCODE 
SEX CODE 
SUMMER 
Theta 

. Alph~ 
Log-4ike 
N Obs 
Niter 

Coefficient Std Error 
-0.8835 0.1507 
-0.5066 -0.,1721 
-0.4575 0.1437 
0-.06-23- Q..0216-
2.9658 0.3779 

-0..8188 0.1889 
-0.3257 0.1105 
-0.1904- Q.. 0845-
0. 2859 0.2238 
0.4764 0.2041 
1.4490 0.1167 

-1524.528 
6389 

23 

T-Stat 
-5.8644. 
-2.9440 

. -3.1838 · 
2.8880-
7.8475 

-4.3340 
-2.9489 
-2.2543-
1.2774 
.2.3341 

12.4165 

P-Value 
0.0000 
-0.0032 
0.0015 
0-.0039-
0.0000, 
-0,0000 
0.0032 
0.0242 
0.2015 
0.019.6 
0.0000 

5.1.~ The Impact of Relative Rank on Enrollment Duration 

Recall Hypothesis 1 states that the likelihood of persistence ·should be low for stu-

dents of low relative rank, increase as rank increases, and decrease again as rank 

increases. In other words, persistence should exhibit quadratic behavior in relative 

rank. Testing this condition involves examining the sign and statistical significance 

of the RELRNK2 coefficient as well as the marginal behavior of enrollment duration 

with respect to changes in RELRANK in Table 5.4; support for the hypothesis is sug­

gested by a statistically significant negative· coefficient. Examination of RELRNK2 

in Taqle 5.1 suggests that the hypothesis is supported. It should be noted that the 

model estimated in Table 5.1 is a single destination model where no distinction is 

made between system dropout and transfer. The multiple destination models are 

present_ed in Tables 5;2 and 5;3. Table 5;2 provides estimates for-the transition inten­

sity where transfer is the destinations-. Table 5.3 provides estimates for the system 

dropout transition intensity. 
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T.able 5.2: Parameter Estimates for Transition In­
tensity Model - Transfer. Dependent Variable: 
Log(DURATION). 

Variable Coefficient· 
CONS-TANT . 3.00t>S 
ACTCOMP -0.1285 
ENGINEER 0.7106 
FIN A~D 0.2695 
NONWHITE 0-. 7623-
NSTUDNT -0.6775 
PCTGRAD ·-0.7414 
PREPROF -0.0013 
PROB-ENR .-0-.8024 
RANKPCTL · -0.0743 
RELRANK 1. 7769 
RELRNK2 -0.1371 
RESCOD-E 0$1'.63-
SEXCODE -0.1162 
SUMMER -0.1592 
Theta 0.3527 
Alpha 1.39-94 
Log-Like -260.357 
N O~s 6389 
N ltt,r 21 

Std Error T-Stat 
l.1158. . 3-.5012 
0.37 44 -0.3431 

· .0.6645 1.0693 
0.2563 1.0515 
0-.5501 1.3853-
0. 3~76 -1. 7478 
-0.5133 -L4444 
0;5859 -0.0023 
0.4503- -1. 7819 
0.0765 · . -0.9702 

· 0.8745 2 .. 0320 
.0.4578 -0.2995 
0-.6-183- 1.4173-.. 
0.2675 -0.4343 
0.5002 -0.3182 
1.0782 0.3271 
0-.29-17 4.6953 

P-Value 
0.0005. 
0.7315 

.. o.2849 
0.2930 
0.1658 
0.0805 
-0.1486 
0.9982 
0.0748 
0.3319 
-0.-0422 
0.7645 
0-.1564 
0.6641 
0.7503 
0.7436 
0.0000 

Table 5.3: Parameter Estimates for Transition Inten­
sit~ Model - System .·Dropout. Dependent Variable: 
Log(DURATION) .. 

Variable 
CONSTANT 
ACTQOMP 
ENGINEER 
FIN AID 
NONWHITE 
NSTUDNT 
PCTGRAD­
PREPROF 
PROBENR 
.RANKPCTL 
REL RANK 

Coefficient 
0.'7542 

-0.2330. 
· ·0-.3200 
-0.0490 
-0,00~3 
-0.0542 
-0-.8893-
-0.5508 
~o.4325 
0.0739 
3.0524 

Std' Error 
~.4009 . 
0.1328 

. 0.18-10 
0.0853 

.. 0,1165 
0.1327 
0.1596-
0.1788 
0.1494 
0.0229 
0.4243 

T-Stat 
1.8814 

-J. 7547 
1.8008 

-0.5746 
-0.0373 
-0.4081 
-5-.5135-
-3.0803 
-2.8947 
3.2339 
7.1943 

P-Value 
-0.0599 
0.0793 

. 0.0717 
0.5656 
0.9703 
0.6832 
0.0000 
0.0021 
0."0038 
0.0012 
0.0000 

co11.tin ued on next page 
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Table 5.3 continued from previous page 
Variable Coefficient Std- Error 
RELRNK2 -0.8688 0.2164 
RESCODE · -0.4076 -0;11-63 
SEXCODE -0.1967 . 0.0895 
SUMMER U.3840 0.2452 
Theta 0.6282 0.2431 
Alpha 1.4799 0.1280 
Log-Like -1411.432 
N Obs 6389 
N Iter 28 

T-Stat 
-4.0155 
--3.5053 
-2.1983 
1.5661 
2.5839 

11.5620 

P-Value 
0.0001 
-0.-0005 
0.0279 
0.1173 
0.0098 
0.0000 

The RELRNK2 coefficient in the transfer transition intensity is not statistically 

signifirant; however, it is significant in the dropout intensity. The sign of RELRNK2 

is negative for both the transfer transition intensity and dropout intensity. 

The marginal effect of RELRANK on enrollment duration was computed at stan-

dard d(;wiation units below and above its mean with all other independent variables 

at their respective sample means. In general, the marginal effect used here is defined 

as a change in enrollment duration due to an x-unit standard deviation change in the 

independent variable, all other independent variables constant at their means. This 

situatjon depicted the persistence of the -''average" student. To assess differences in 

above- and below-average students, ACTCOMP and RANKPCTL are varied accord­

ingly. A "gifted" student is defined here as an average student with ACTCOMP 

and RANKPCTL two standard deviations above the mean. Intuitively, this student's 

ACT composite score was at least 32 and he or she also graduated in the top of his 

or her high school class. Likewise, a "challenged" student is defined as an average 

student with ACTCOMP and RANKPCTL two standard deviations below the mean 

(a 16 composite score and bottom third rank, respectively). Also evaluated is the 

ratio of the transition intensity to the dropout intensity (TD RatioJ. Numbers less 

than 1 indicate that should exit occur, dropout is more likely than transfer; likewise 

numbers greater than 1 indicate transfer is more likely. All marginal effects had TD 
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ratios less than 1 and as will be seen when evaluating predictive performance, the 

WGH model did not predic~ transfers. These effects for RELRANK are presented in 

Table 5.4. 

SD Unit 
-:1 
-2 
-1 
0 
1 
2 
3 

MeanX 
Std Dev X 

Mean T 

Table 5.4: Marginal Impact of RELRANK on Enrollment Dura­
tion. 

Average 
A Duration TD Ratio . 

-2.5946 0.0954 
-1.8827 0.1101 
-0.9715 0.1349 
0.0000 0.1601 · 
0.8094 0.1735 
1.2285 0.1674 
1.1270 0.1434 

1.0826 
0.3153 
3.5874 

A Duration. 
-2.7024 
-1.9610 
-1.0119 
0.0000 
0.8430 
1.2796 
1.1738 

TD Ratio 
0.1567 
0.1779 
0.2139 
0.2494 
0;2657 
0.2524 
0.2135 

Challenged 
A Duration TD Ratio 

~2.4910 0.0580 
-1.8075 0.0680 
-0.9327 0.0848 
0.0000 0.1023 
0.7771 0.1128 
1.1795 0.1105 
1.0820 0.0959 

Interpreting the results in Table 5.4 is straightforward. A one standard deviation 

unit decrease (-1) in RELRANK results in enrollment duration decreasing by 0.9715 

semester,s {i.e., slightly under a semester) for the average student, 1 ;0119 semesters for 

the gifted student, and 0.9327 semesters for the challenged student. Also, all students 

are more likely to depart the system than transfer within the system, as indicated by 

a relative transfer intensity of 0.1349, which is less than 1. As RELRANK increases 

from low to high, enrollment duration indeed increases up to a -point, then begins to 

decrease; however, this turning point appears to be for exceptional performers, rank-

ing at least 3 standard deviations above the mean. This suggests that for the majority 

of students, RELRANK is directly related to persistence. Any student falling 2 stan­

dard deviations below the mean in RELRANK is· likely to exit nearly two semesters 

earlier than the at-par performer. Finally, the general pattern of persistence appears 

to be consistent between the average, gifted, and challenged students. Gifted students 
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appear to he less likely-to leave when faced with below-par relative performance and 

less likely to persist when enjoyin~ above-par performance; however, these differences 

are fairly small. 

5.1.2 Distinguishing Between Dropout and Transfer 

Hypothesis -2 "States that dropouts and transfers behave differently. The coefficients 

from each transition intensi~y are tested for equality and the results are presented in 

Table 5.5. 

Table 5.5: Test of _Equality Between Transfer and 
Dropout Coefficients. 

Vari,{ble Transfer Dropout Std Error T-Stat P-Value 
ACTCQMP -0.1285- -0.2330 0.25l6 0.4123 0.3401 
ENGINEER 0.7106 0.3260 0.4228 0.9098 0.1815 
FIN AID 0.2695 -0.0490 0.1'708 1.8648 0.0311 
NONWHITE 0.7623 -0.0043 0.3333 2.3002 0.0107 
NSTUDNT 4.6775- 4.05-42 0.260-2 2.395-8 0.0083 
PCTGRAD -0.7414 -0.8893 0.3364 0.4397 0.3301 
PREPROF -0.0013 -0.5508 0.3823 1.4371 {L0753 
PROBENR -0.8024 -0.4325 0.2999 1.2335 0.1087 
RANKPCTL --OJ}743 0.C)-73-9 0-.049-7 2.9815- 0.00-14 
REL RANK 1.7769 3.0524 0.6494 1.9642 0.0248 
RELRNK2 -'-0.1371 -0.8688 0.3371 2.1706 0.0150 
RESQODE 0.8763 -0.4076 0.3673 3.4956 · 0.0002 
SEX CODE -0.1162 -0.1967 0.1785 0.4508 0.3261 
SUMMER -0.1592 . 0.3840 0.3727 1.4575 0.0725 

Fiv~ of 14 variables were not "Significantly differen-t at the a = O.lO ievel: ACT­

COM]p, ENGINEER, PCTGRAD, PROBENR, and SEXCODE. A joint test where 

the behavior coefficients in the dropout transition intensity were assumed equal to 

those in the transition intensity yielded a Wald chi-square statistic of 2133.39, which is 

signifiqmt -at any desired level. Thus, the hypothesis is supported and it is important 

to disting_uish between dropouts and transfers. 
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5.1.3 The Impact of Class Size on Enrollment Duration 

Hypothesis 3 states that larger class sizes impede student-faculty. interaction and 

thus, academic integration. It is expected that an increase in class size would tend 

to reduce the -likelihood of persistence. To test this, the coefficient on NSTUDNT 

should be negative and statistically significant. Examining Tables 5.1, 5.2, and 5.3 

it can be seen that the coefficients are n~gative in the single stage model, transfer 

intensity, and the dropout intensity model. Statistical significance is achieved only 

in the transfer intensity model. The marginal impact of NSTUDNT on enrollment 

duratipn is presented in Table 5.6. 

Table 5.6: Marginal Impact of NSTUDNT on Enrollment Duration. 

SD U;nit 
-~ 
-1 
0 
1 
2 

Mean-X 
Std Dev X 

Mean T 

Average 
~ Duration TD Ratio 

0.2396 0.1020 
0.1178 0.0972 
0.0000 0.0924 

-0.1141 0.0878 
-0.2246 0.0834 

-0..'l{H .. £. 
0.3250 
3.5874 

~ Duration 
0.2495 
0.1227 
0.0000 

-0.1188 
-0.2339 

TD Ratio 
0.1709 
0.1629 
0:1551 
0.1475 

· 0.1401 

Challenged 
~ Duration TD Ratio 

0.2300 0.0609 
0.1131 0.0579 
0.0000 0.0551 

-0.1095 0.0523 
-0.2156 0.0496 

In ~neral, duration decreases as NSTUDNT increases; however, even at-the ex-· 

treme~, the change in duration is well below a full semester. For any student, cutting 

the average class size in half (from 70 to 35) increases enrollment duration by only 

about 1/lOth of a semester. Therefore, though there is support {or the hypothesized 

direction -of NSTUDNT, the independent impact on enrollment duration appears to 

be fairly small. 
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-5.1.4 The Impact of Graduate Teaching Assistants on En-

rollment Duration 

Similar to Hypothesis 3, Hypothesis 4 states that a higher proportion of a student's 

portfolio being taught by graduate teaching assistants reduces student-faculty inter­

action and a-cademic integration. This in turn lead-s to lower levels of persi-stence. 

To test the hypothesis, the sign of PCTGRAD should be negative and statistically 

significant. Referring back to Tables 5.1 and 5.3, this is indeed the case. The transfer 

intensity was correct in sign but lacked statistical significance. Indeed looking ahead 

to the OLS and ordered logit results in Tables 5."8 and 5.-9,· PCTGRAD is negative 

and si~nificant as well. The signs of PCTGRAD for the multinomial model in Table 

5.17 are positive and significant. This is not a contradiction because the multino­

mial probabilities are for the destination after departure. Positive signs here are also 

consistent with Hypothesis 4. Thus, Hypothesis 4 is supported -and appears robust 

to different model specifications. The marginal impact of PCTGRAD on enrollment 

duration is presented in 5. 7. 

SD Unit 
-1 
0 
1 
2 
3 

Mean X 
Std Dev X 

Mean T 

Table 5.7: Marginal Impact of PCTGRAD on Enrollment Dura­
tion. 

Average 
A Duration TD Ratio 

0.5751 0.1745 
0.0000 0.1766 

-0.4957 0.1791 
-0.9228 0.1819. 
-1.2910 0.1850 

0.2985 
0.2466 
3.1879 

A Duration 
0.5990 
0,0000 

-0.5163 
-0.9612 
-1.3447 

TD Ratio 
0.2923 
0.2963 
0.3009 
0.3059 
0.3113 

Challenged 
A Duration TD Ratio 

0.5522 0.1041 
0.0000 0.1053 

-0.4759 0.1066 
-0.8860 0.1082 
-1.2394 0.1099 

Enrollment duration decreases as PCTGRAD increases, consi-stent with the hy­

pothesis-. E'or any student, a standard deviation increase in PCTGRAD from the mean 
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appear.s -to decrease enrollment duration by about l/2 of a -semester. Intuitively, in a 

_six-course portfolio with four faculty and 2 graduate teaching assistants, replacing one 

faculty member with a graduate teaching assistant can reduce enrollment duration 

by nearly 1/2 of a semester. Similarly, replacing one of the graduate assistants with 

regular faculty can increase enrollment duration by over 1/2 of a semester. 

5.1.5 The Impact of Summer Enrollment on Enrolbnent Du­

ration 

Hypothesis 5 states that enrolling in summer courses demonstrates an educational 

commitment, and this should translate into higher levels of persistence. To test this 

hypothesis, the sign,. -of the -SUMMER coefficient 13hould be positive and -statisticaHy 

signific;:ant. Examining -Tables 5.1, 5.2, and 5.3, only the single stage model and 

the dropout intensity model support the hypothesis; however, neither model achieves 

statistical significance. The transfer intensity model has the wrong sign; however, the 

coefficient is not -significant by conventional standards. Thus, Hypothesis 5 does -not 

appea:i; to be empirically supported. 

5.1.6 The Impact of Unmeasured Heterogeneity on The Haz­

ard Function 

Hypothesis 6 states that the exi~tence of unmeasured heterogeneity significantly con-

- tributes to the negative duration dependence observ~d in the_ sample. Support for 

the hypothesis is found by examining the statistical -significance -of -the parameter 

"Thetr" in Table 5.1. Heterogeneity is significant in the single-stage and dropout in­

tensity models. Examining the shape parameter "Alpha" suggests that the processes 

exhibits positive duration dependence. The coefficient is l.449, l.369, and 1.471) in 

the single-stage, transfer, and dropout models, respectively. This would produce a 
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Weibull hazard function that rises rapidly-at first, -then -tends io ·flatten out over time; 

that i~, the increase in the rate of exit with each unit of time becomes smaller and 

smaller. If this is a reasonable characterization for the enrollment hazard function, 

then heterogeneity is the primary reason for the observed negative duration depen­

dence .. Had -the ·"Alpha" -coefficients been less -than unity, the hazard would -exhibit 

negatiye duration dependence and heterogeneity would make it more pronounced. Be­

cause the heterogeneity coefficient is significant and the shape parameters are greater 
. ~ . 

than u;nity, the observed negative duration dependence arises primarily from unmea-

sured ~tudent characteristics. 

5.1. 7 The Predi.ctiv.e Performance -of ,The W.eibull ,Hazar-d 

Model: Enrollment Duration 

Hypothesis 7 states that the Weibull model with gamma heterogeneity offers better 

predictive performance than the standard ordinary least squares (OLS) or the ordered 

logit model. The -coeflicients for the OLS and ordered -logit models are presented in 

Tables 5.8 and 5.9, respectively. 

Table 5.8: Ordinary Least Squares Coefficients of De­
terminants of Student Persistence. Dependent Variable: 
DUR,ATION. 

Variable 
CONSTANT 
ACTCOMP 
ENGirEER 
FINA1D­
NONWHITE 
NSTUDNT 
PCTqRAD 
PRE PROF 
PROBENR 
RANKPCTL 
.REL RANK 

Coefficient 
5.3907 

--0.151-0 
-0.0079 
0-.1138-
0.2632 

-1.4.584 
-3.7790 
-l.0963-
-1.3993 
0.1344 
1.3981 

Std E:r:ror 
0.4693 
-0.1433 
0.1938 
0-.1052· 
0.1295 
0.1706 
0.2203 
0-.29-23-
0.2160 
OA0296 
0.3345 

'I'-S-tat P-Value 
11.4870 0.0000 
-1.-0530 

. -0.0410 
1.08-10-
2.0320 

--8.5490 
-17.1510 

-3-. 7500-
-6.4780 
4.5490 
4.1800 

-0.2922 
0.9675 
0.2796-
0.0421 
0.0000 
0.0000 
0.0002 
0.0000 
0.0000 
0.0000 

continued- Oft next page 
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Table 5.8 continued from previous page 
Variable Coefficient Std Error 
RELRNK2 -0.1119 0.1815 
RESCODE -0.4230 0.1541 
SEXOODE -0.2231 0.1083 
SUMMER -1.4774 0.4902 

T-Stat 
-0.6160 
-2.7440 
-2.0590 
-3.0140 

P-Value 
0.5377 
0;0061 
0.0395 
0.0026 

Table 5.9: Ordered Logit Coefficients of Determinants of 
Student Persistence. Dependent Variable: DURATION 

Variq,ble Coefficient Std Error T-Stat P-Value 
CONSTANT 1.5473- 0.3-115- 4.96-70 · 0-.0000 
ACTCOMP -0.0763 0.1067 -0.7160 0.4743 
ENGINEER 0.1742 0.1633 1.0670 0.2860 
FINAlD 0.0684 0.0730 0.9360 0.3493 
NONWHITE 0-.164S 0.0-9'73- 1.6930- 0-.0905 
NSTUDNT -0.9026 0.0982 -9.1910 0.0000 
PCTGRAD -2.0488 0.1524 -13.4470 0.-0000 
PREPROF -0.5781 0.2195 -2.6350 0.0084 
PROB-ENR -0-.7108- 0.1364 --5.2130- 0.0000 
RANKPCTL 0.0869 0.0193 4.4980 0.0000 
REL RANK 0.-8782 -0.2386 3.6810 0.0002 
RELRiNK2 -0.0819 0.1273 -0.6440 0.5197 
RES CODE -0-.308-1 0.1068- -2.8840 0..0039 
SEXCODE ~0.1830 0.0752 -2.4330 0.0150 
SUMMER -0.4235 0.3789 ~1.1180 0.2638 
Mu(l) 0.6145 0.0451 13.6140 0.0000 
Mu( 2) 0.8403 0.0514 16.3480 0.0000 
Mu( 3) 1.0288 0.0544 18.9190 0.0000 
Mu( 4) 1.1404 0.0562 20.2910 0.0000 
Mu( 5) 1.3392 0.0582 22.9940 0.0000 
Log-4ike -1390.304 
N Obs 1239 
N Iter 30 

The Kruskal""'WaHis test is used io determine if ihe predictions from each model are 

indep~ndent samples from identical populations. Failure to reject the null hypothesis 

implies that each model yields similar predictions, so similar in fact that each cannot 

be distinguished from the other models. The statistic assumed a value of 1,210.0 for in-
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sample ,and 584."67 for out~of-sample validation and are significant at ali -conventional 

levels. Pair-wise Kruskal-Wallis tests were conducted to see if any pair yielded similar 

predictions. The statistics for in-sample results are as follows: WGH vs. OLS = 

812.41, WGH vs. ordered logit = 1,035.7, and OLS vs. ordered logit = 48.45. These 

are sig:i;iificant at all conventional levels. The out-of-sample statistics are as follows: 

WGH vs. OLS = 397.95, WGH vs .. ordered logit = 495.73, and OLS vs. ordered 

logit = 24.06. Again, these are significant at all conventional levels. 

Three sets of contingency tables are presented below: WGH versus actual, OLS 

versus ~etuai, and ordered logit versus actual. The in-sample results are presented in 

Tables 5.10, 5.11, and 5.12, respectively. 

Table 5.10: In-Sample Predicted versus Actual Enroll-
ment Duration - WGH Model. 

Actual Semesters 
Predicted 1 2 3 4 5 6 7 Total 

0 11 1 2 1 1 1 0 17 
1 21 11 7 3 4 4 -8 58 
2 11 7 6 3 2 1 2 32 
3 12 7- 2 1 1 2 5 30 
4 6 13 5 1 0 2 4 31 
5 7 10 3 5 0 4 10 39 

~ 11 11 0 4 2 1 11 40 
7 69 87 38 36 23 47 675 975 

Total 148 147 63 54 33 62 715 1222 

Table 5.11: In-Sample Predicted versus Actual Enroll­
ment puration - 0 LS Model. 

Actual Semesters 
Predicted 1 2 3 4 5 6 7 Total 

0 5 2 2 0 1 0 0 10 
1 14 7 8 1 0 1 0 31 
2 25 21 14 3 2 3 6 74 

continued on next· page 
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Table 5.11 continued from previous page 
Actual Semesters 

Predicted 1 2 3 4 5 6 7 Total 
3 40 -46 -14 14 -6 5 21 146 
4 36 47 12 20 7 13 76 211 
5 23 16 6 10 9 18 207 289 
6 3 6 7 5 7 13 3-08 349 
7 2 2 0 1 1 .9 97 112 

Total 148 147 63 54 33 62 715 1222 

Table 5.12: In-Sample Predicted versus Actual Enroll-
ment Duration - Ordered Logit Model. 

.- Actual Semesters 
Predicted 1 

I 
2 3 4 5 6 7 Total 

L 6 1 0 0 1 0 0 •.· 8 
2 27 17 17 2 l 4 3 71 
3 48 57 13 16 7 5 21 167 
4 46 51 23 22 8 16 108 274 
5 19 18 '8 13 14 26 -421 519 
6 2 . 3 2 1 2 11 · 162 •·183 

Total- 148 147 63 54 33 62 715 1222 

The out-of-sample results are presented in Tables 5.13, 5.14, and 5.15, respectively. 

Table 5.13: Out-of-Sample Predicted versus Actual En-
r6llment · Duration - WGH Model. 

Actual Semesters 
Predicted 1 2. 3 4 5 6. 7 Total 

0 4 1 .· 2 1 2 0 0 10 
1 8-- -8 3 1 1 1 2 24-
2 7 3 3 0 0 1 4 18 
3 .6 2 -3 1 1 3 4 20 
4 4 4 0 2 1 0 4 15 
5 3 4 1 0 1 1 2 12 
6 3 5 1 2 0 1 4 16 
7 40 49 17 28 14 25 305 478 

TotQ,l 75 76 30 35 20 32 325 593 
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Table 5.14: Out-of-Sample Predicted versus Actual En-
rollment Duration - 0 LS Model. 

Actual Semesters 
Predicted 1 2 3 4 5 6 7 Total 

0 1 0 1 1 0 0 0 3 
1 6 5 2 0 0 1 0 14 
2 11 10 7 1 6 2 3 40 
3 23 18 6 5 3 1 7 63 
4 18 27 11 11 4 7 36 114 
5 11 10 2 11 6 10 96 146 
6 5 6 1 6 1 10 133 162 
7 0 0 0 0 0 1 50 51 

Total 75 76 30 35 20 32 325 593 

Table 5.15: Out-of-'Sample Predicted versus Actual En-
rollment Duration - Ordered Logit Model. 

Actual Semesters 
Predicted 1 2 3 4 5 6 7 Total 

1 1 0 1 1 0 0 0 3 
2 9 7 6 1 4 2 2 31 
3 26 25 9 4 5 2 7 78 
4 25 32 10 13 5 8 51 144 
5 14 12 4 16 6 17 198 267 
6 0 0 0 0 0 3 67 70 

Total 75 76 30 35 20 32 325 593 

Table 5.16 presents the chi-square, Pearson's correlation, conditional entropy, and 

hit rate statistics for both in-sample and out-of-sample data sets. 
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Table 5.16: In- and Gut-of-Sample Test and Association 
Results for WGH, OLS, and Ordered Logit Models . 

In-Sample Out-of-Sample 
Statistic WGH OLS Ordered Logit WGH OLS Ordered Logit 

Chi~Square 336.9 611.2 597.l 138.8 304.0 271.5 
Correlation 0;249 0.635 0.624 0.377 0.610 0.588 

Entropy 0.094 0.196 0.184 0.077 0.191 0.174 
Hit Rate 0.579 0.154 0.068 0.545 0.167 0.066 

According to the chi-square statistics, each model's prediction bears a statistically 

significant relationship with the actual enrollment durations. The strength of the 

relationship, as measured by Pearson's Correlation, is least impressive with the WGH 

model. Both OLS and ordered logit's predictions are more strongly related to actual 

durations than those of the WGH model. OLS appears to be the best predictor 

accmding to the correlation and entropy statistic, followed by ordered logit, and 

finally the WGH model. However, according to the hit rates, the WGH model strongly 

outperforms the others. This is because the WGH model successfully predicted a large 

number of students persisting to the censoring semester. Therefore, these results are 

inconclusive regarding predictive hypothesis 7 of enrollment. 

5.1.8 Predictive Performance of the Weibull Model: Exit 

Destinations 

Hypothesis 8 states that the WGH model offers better predictive performance than 

multinomial logit when predicting departure destination. The estimated coefficients 

for the multinomial model are presented in Table 5.17. 
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TabJe 5.17: Multinomial Logit Coeffi.CJ.ents of Determi­
nants of Dropout, and Transfer. Normalized on Persis­
tence 

Variable Coefficient Std Error T-Stat P-Value 
Characteristics for Prob (Dropout) 

CONSTANT 
ACTCOMP 
ENGINEER. 
FIN AID 
NONWHITE 
NSTUDNT 
PCT GRAD 
PREPROF 
PROBENR 
RANKPCTL 
REL RANK 
RELRNK2 
RESCODE 
SEXCODE 

·suMMER 

-0.2594 0. 7 462 -0.348 
0.4343 0.2393 L815 

-0.5404 0.3259 -1.658 
-0.4340 · 0.1597 -2.718 
0.0455 . ', 0.2183 0.209 .. ··· 
2.0909 0.2637 7.928 
3.9607' 0.3503 11.307 
1.3931· 0.4348 · 3.204 
1.4400 0.4020 3.582 

-0.1705 0.0453 .. -3. 761 
. -4.1610 0.8709 ,, -4.778 . 

1.3323 . 0.4829 2.759 
0.8288 0.2196 .· 3.775 
0.6131 . 0.1656 3.702 

. · 30.577 1052178.5 0.0.00 

0.7281 
.. 0.0695 

0.0972 
0.0066 
0.8347 
0.0000 
0.0000 

· 0.0014 
0.0003 
0.0002 
0.0000 
0.0058 
0.0002 
0.0002 
1.0000 

Characteristics for Prob(Ttansfer) 
CONSTANT -3.9034 1.41100 · -2.766 · 0.0057 
ACTCOMP 0'.3713 .0.47150 0.787 · 0.4311 
ENGINEER -1.0382 0.80039 -1.297 0.1946 
FINA.ID -0.8862 0.33659 -2.633 0.0085 

·NONWHITE -0.9654 0.62635 -1.541 0.1233 
NSTUDNT 2.7592 0.44642 6.181 0;0000 
PCTGRAD 3.6501 0.66092 5.523 0.0000 
PREPROF 0.7337 0.83610 0.878 0.3802 
PROBENR 1.8179 0.57569 3.158 0.0016 
RANKPCTL 0.0353 0.09630 0 .. 366 0.7142 
REL RANK -3.2811 1.40142 -2.341 0.0192 
RELRNK2 0.6705 · 0.85236 0.787 0.4315 
RES·CODE .:.0;8027 .Q.75226 -1.067 0.2859 
SEXCODE 0.5312 0.33767 1.573 0.1157 
SUMMER 31.0978 1052178.5. 0.000 .· · 1.0000 

As above, the Kruskal-Wallis test is used to determine if the predictions from each 

model are independent samples from identical populations. The statistic assumed a 

value of 62.747 for in-sample and 31.205 for out-of-sample validation and each is 

significant at all conventional levels. 
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The WGH and multinomial logit contingency tables are presented below: The 

in-saniple results for the WGH and multinorriial logit models are presented in Tables 

5.18 and 5.19, respectively. The out~of-sample results for the WGH and multinomial 

logit models are presented in Tables 5.20 and 5.21, respectively. 

Table 5.18: In-Sample Predicted versus Actual Destina­
tion-~ WGH Model. 

Actual Destination 
Predicted Continue Dropout Transfer Total 

Continue 675 267 33 975 
Dropout 40 189 17 246 
Transfer 0 1 0 1 

Total 715 457 50 ·1222 

Table 5.19: In-Sample Predicted versus Actual Destina­
tion - Multinomial Logit Model.. 

Predicted 
Continue 
Dropout 
Transfer 

Total 

Actual Destination 
Continue Dropout · Transfer 

636 147 17 
79 310 33 
0 0 0 

715 457 50 

Total 
800 
422 

0 
1222 

Table 5.20: Out-of-Sample Predicted versus Actual Des­
tination -·WGH Model. · 

Actual Destination 
Predicted Contiriue Dropout Trani:ifer · Total 

Continue 308 147 23 478 
_Dropout 20 87 8 115 
Transfer 0 0 0 0 

Total 328 234 31 593 
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Tabl~ 5.21: Out-of-Sample Predicted versus Actual Des­
tination - Multinomial Logit Model. 

Actual Destination 
Predicted Continue Dropout Transfer Total 

Continue 300 83 10 393 
Dropout 28 151 21 200 
Trans:fer 0 0 0 0 

Total 328 234 31 593 

T;tble 5.22 presents the chi.:.square, conditional entropy, and hit rate statistics for 

.both in-sample and out-of-sample data sets. . 

Table 5.22: lri- and Out-of-Sample Test and Association 
R:esults for WGH; OLS, and Ordered Logit Models . 

Statistic 
Chi-Square 

Entropy 
Hit Rate 

WGH 
230.3 
0.120 
0.707 

In-Sample 
Multinomial Logit 

420.5 
0.222 
0.774 

Out-of-Sample 
WGH Multinomial Logit 
85.3 208.5 

. 0.077 0.222 
0.666 0.761 

Based on the chi-square results, there is a significant relationship between the 

predicted and actual destinations for both models, in both in-sample and out-of­

sample validation. The conditional entropy statistic suggests that more uncertainty 

in the actual destination.sis predicted by the rimltinomial predictions than the WGH 

predictions. Also, the multinomial model has a higher hit rate than WGH. This is 

the case in both in-sample and out-of-sample data. These results do not support the 

hypothesis that the WGH model is a better predictor of.departure destination. 

5.1.9 Other Results 

A number of variables were included in the analysis for purposes of control. The vari-

ables are ACTCOMP, ENGINEER, FINAID, NONWHITE, PREPROF, PROBENR, 
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RANKPCTL, RESCODE, and SEXCODE. According to the persistence literature, 

the variables ACTCOMP and RANKPCTL reflect the student's pre-college schooling 

performance and skills. In previous studies, these have been found to be of secondary 

importance in predicting persistence, especially when various aspects of the fresh­

man year experience . ate considered. Each are expected to be directly related to 

persistence. ENGINEER indicates that a student is an engineering major. Get­

ting into the engineering program is a competitive,· selective process, and this would 

reflect a commitment to persistence. PREPROF indicates the student is enrolled 

in a pre-professional program and is included to account for ~xit rates between the 

third and sixth .semesters. While pre-professional indicates a certain commitment, 

the impact on persistence is expected to be negative becaus~, upon completing the 

required course-work, the student usually transfers to anotlier institution to com­

plete their training. In this study, this should occur sometime prior to the censoring 

date. NONWHITE is a composite ethnicity indkator and SEXCODE indicates the 

student is female, both of which have been fou~d to be negatively related to persis­

tence. PROBENR indicates the student is a problem-enrollment in that he or she 

is under academic notice or probation, and it is expected to be negatively related to 

· .persistence. FIN AID indicates the student is receiving financial aid. This indicates 

a willingness to enter into a financial contract for education and should be positively 

related to persistence. Finally, RESCODE indicates the student is not a resident. 

This is a proxy for long distance from home and has been found in other studies to 

be negatively related to persistence. 

Using a standard level of significance of·o.10 in the single-stage model, the only 

significant variables from the list above are ACTCOMP, ENGINEER, PREPROF, 

PROBENR, RANKPCTL, RESCODE, and SEXCODE. None of these variables were 

significant in the transition intensity model. With the exception of ACTCOMP, each 

had the expected signs. The marginal impacts of these variables are presented in 
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Tables 5.23, 5.24, 5.25, 5.26, 5.27, 5.28, and 5.29, respectively. 

SD Unit 
-3 
-2 
-1 
0 
1 
2 
3 

MeanX 
Std Dev X 

l\.fean T 

Table 5.23: Marginal Impact of ACTCOMP on· Enrollment Dura­
tion. 

Average· 
a Duration · TD Ratio 

0:7037 0.2293 
0.4550 0.2322 
0.2207 0.2352 
0.0000 0.2383 

-0.2079 0.2415 
-0.4038 0.2448 
-0.5883 0.2482 

2.4036 
0.3821 
3.5874 

a Duration 
0.8259· 
0.5340 
0.2590 
0;0000 

-0.2440 
-0.4739 
-0.6905 

TD·Ratio 
OA232· 
0.4288 
0.4346 
0.4406 
0.4467 
0.4531 
0.4596 

Challenged 
a Duration TD Ratio 

0.5996 0.1244 
0.3877 0.1258 
0.1880 0.1274 
0.0000 0.1290 

-0.1771 0.1306 
-0.3440 0.1323 
'-0.5012 0.1341 

A clear negative relationship is exhibited between ACTCOMP and enrollment 

duration across all duration models . For exceptional students (3 standard deviations 

above the mean) expected enrollment duration drops by half a semester. The TD 

ratios indicate that students are more likely to depart the system than to transfer 

within the system. This result runs counter to intuition; however, it does suggest 

that admitting bright students does not guarantee persistence. This also suggests 

that raising admissions standards via the ACT scores may not improve persistence. 

Indicator 
0 
1 

Mean X 
Std Dev X 

Mean T 

Table 5.24: Marginal Impact of ENGINEER on Enrollment Dura­
tion. 

Average 
· a Duration TD Ratio 

0.0000 0;1731 
1.0144 0.1873 

0.1163 
0.3206 
3.4824 

a Duration 
0;0000 
1.0566 
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TD Ratio 
0.2896 
0.3111 

Challenged 
a Duration TD Ratio 

0.0000 0;1034 
0.9739 0.1127 



Engineering majors exhibit a stronger propensity to persist than the average stu­

dent by about a semester. Again, should departure occur, it appears more likely the 

student will drop out of the system than transfer. 

Indicator 
0 
1 

MeanX 
Std Dev X 

Mean T 

Table 5.25: Marginal Impact of PREPROF cin Enrollment Dura­
tion. 

Average 
A Duration TD Ratio 

0;0000 0.16.98. 
-1.0757 0.1951 

0;0460 
0.2095 
3.6456 · 

A Duration 
0.0000 

-1.1204 

TD Ratio 
0.2841 
0.3270 

Challenged 
A Duration TD Ratio 

0.0000 0.1014 
-1.0328 0.1164 

Students enrolled in pre-professional fields are less likely to persist and when 

departure occurs, they are more likely to drop out of the system than to transfer. 

Indicator 
0 
1 

MeanX 
Std Dev X 

ly:[ean T 

Table 5.26: Marginal Impact of PROBENR on Enrollment Dura­
tion. 

Average 
A Duration TD Ratio 

0;0000 0.1622 
-0.9852 0.1488 

0.0449. 
0.2071 
3.6387 

A Duration 
0.0000 

-1.0262 

TD Ratio 
0.2714 
0.2501 

Challenged 
A D\lration TD Ratio 

0.0000 0.0969 
-0.9459 0.0885 

Students who are placed on academic notice or probation are expected to withdraw 

about one semester sooner than the average student, and according to the TD ratios, 

are more likely to drop out of the system than transfer. 
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SD Unit 
-3 
-2 
-1 
0 
1 

Mean X 
Std Dev X 

Mean T 

Table 5.27: Marginal Impact of RANKPCTL on Enrollment Du­
ration. 

Average 
a Duration TD Ratio 

-0. 7661 0;0431 
-0.5309 0.0407 
.,.0.2761 0.0384 
0.0000 · 0.0364 
0.2991 0.0346 

7.8221 
1.8634 
3.5874 

a Duration 
-0.6799 
-0.4711 
-0.2450 
0.0000 
0.2654 

TD Ratio 
0.0395 
0.0374 
0.0354 
0;0336 
·0.0319 

Challenged 
a Duration TD Ratio 

-0.8632 0.0471 
-0.5982 0.0443 
-0.3111 0.0418 
0.0000 0;0395 
0.3370 0.0375 

Students graduating in the top of their high school class are more likely to persist 

than the average student. This is indicated by a one-standard deviation increase in 

RANKPCTL and adds nearly a third of a semester to expected enrollment duration. 

Indicator 
0 
1 

Mean X 
Std Dev X 

Mean T 

Table 5.28: Marginal Impact of RESCODE on Enrollment Dura­
tion. 

Average 
a Duration TD Ratio 

0.0000· 0:1964 
-0.7426 0.2600 

0.1237 
0.3292 
3.6886 

a Duration 
0;0000 

-0.7735 

TD Ratio 
_0;3·285 
0.4321 

Challenged 
a Duration TD Ratio 

0.0000 0.1173 
-0;7130 0.1562 

Nonresident students are expected to persist about 0. 75 semesters less than the 

average, and the TD ratios indicate they are more likely to drop out of the system 

than to transfer. 
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Table 5.29: Marginal Impact of SEXCODE on Enrollment Dura­
tion. 

Indicator 
0 
1 

Mean X 
Std Dev X 

Mean T 

Average 
A Duration TD Ratio 

0:0000 0.1731 
-0.4722 0.2300 

0.5077 
0.5000 
3.8349 

A Duration 
0:0000 

-0.4918 

TD Ratio 
0.2896 
0.3826 

Challenged 
A Duration TD Ratio 

0.0000 0.1033 
~0.4533 0.1381 

The marginal impact of being a female student reduces expected enrollment dura­

tion by nearly half a semester relative to the average male student. Similar to other 

results, female student are more likely to dropout of the system than to transfer. 

5.2 Chapter Summary 

This chapter presented the analysis and empirical evidence used to test the four main 

hypotheses of this study. A summary of the findings follows: 

• Hypothesis 1 that relative rank was quadratically related· to persistence was 

supported by the evidence. When no distinction is made regarding where the 

student exits to, the hypothesis was supported. The signs of RELRNK2 in each 

model were negative; however, the coefficient in the transfer intensity was not 

statistically significant. In terms of marginal impact on enrollment duration, 

relative rank is the single most influential variable examined . 

. ' 

• Hypothesis 2 regarding the.behavior of dropouts and tnmsfers was supported. 

Dropouts and transfers are behaviorally distinct. 

• Hypothesis 3 regarding the relationship between class size and persistence was 

not supported. Statistical significance was lacking to support the notion that 
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larger class sizes were an impediment to academic integration and persistence. 

The marginal impact on enrollment duration was also weak. 

• Hypothesis 4 regarding the relationship between classroom staffing and persis­

tence was strongly supported, both within the hazard models considered and in 

competitor models as well. The hypothesis states that the likelihood of persis­

tenc~ is lower the higher the proportion of graduate student teaching assistants 

in a student's portfolio. Marginal anaJysis also shows changes in PCTGRAD 

to be moderately influential to changes in enrollment duration; adding a third 

teaching assistant by substituting for a faculty. member in a six-course portfolio 

car:i. potentially reduce the average student's persistence by half a semester. 

• Hypothesis 5 regarding the relationship between summer enrollment and persis­

tence was generally supported. Students who take summer courses are at least 

as likely or more likely to persist as those who clon't (by about 0. 75 semesters 

according to marginal analysis). 

• Hypothesis 6 of the relationship between unobserved student heterogeneity and 

the observed pattern of departure was supported. The shape parameter esti­

mate suggests that the enrollment duration hazard exhibits positive duration 

dependence, and unmeasured heterogeneity, as parameterized in the model, was 

found to be a significant contributor of the observed negative duration depen­

dence. Thus, unmeasured personal differences 1n ~reference for persistence are 

primarily responsible for the.observed pattern of stµq.ent.departure. 

• The hypotheses regarding the predictive performance of the WGH model were 

inconclusive. The WGH model could not beat OLS or ordered logit in predict­

ing enrollment duration according to goodness-of-fit tests; however, the WGH 

model had a much higher hit rate. Multinomial logit performed better than 
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WGH in predicting departure destination based on goodness-of-fit tests and hit 

rates. 

• Seven control variables were found to be significant: ACTCOMP, ENGINEER, 

PREPROF, PROBENR, RANKPCTL, RESGODE, and SEXCODE. None of 

these variables were significant in the transition intensity model. With the 

exception of ACTCOMP, each had the expected signs. However, ACTCOMP's 

marginal impact was not particularly large. 

The following chapter discusses sorne of the other findings in the analysis as well 

as offers concluding remarks. 
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. CHAPTER6 

SUMMARY, DISCUSSION, AND CONCLUSION 

The eJI).ph-asis of-this study was to specify and -estimate-statistical modd.s appropriate 

for pr~dicting undergraduate enrollment durations. Known as failure-time or duration 

models, these methods offer elegant ways to account for two types of information 

available in persistence data; namely, the time-to-exit and the type or characteristics 

of exit, This approach. is well suited for longitudinal enrollment data where a cohort 

of students are followed over time. 

A hazard regression model wasspecified assuming that enrollment durations were 

distributed as Weibull random variables, that observable student characteristics in­

fluence the scale of the distribution, and that 11Ilobservable -student characteristics 

influemce the shape of the distribution. In particular, these unobservable characteris­

tics were assumed to enter the hazard model multiplicatively as Gamma distributed 

· random variables with unit mean and constant, variance. This type of model has 

become known in the econometri~ literature as a WeibuH hazard model with·-Gamma · 

heterogeneity. Two specifications were estimat_ed: a ,single-stage model of non-specific 

student departure, and multiple destination transition intensity models where transfer 

and system dropout are made distinct. The sample was right-censored; any student 

not departing by the sixth semester (Fall 1996) had covariate observations up to that 

point. Whether-they departed- in the future was not known; The- J?arameters of the 

model were estimated using maximum likelihood. 
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The .data used in this -study ·con1Si-sted of-records on :l ,832 Fall 1993 entering-fresh­

man at Oklahoma State University. Of these, 799 ( 43.6 percent) voluntarily departed 

by the Fall 1996 semester. Various background characteristics as well as semester 

course data were used to estimate the models. Background information included the 

student '-s high school rank as a percentage of the graduating class size, ihe composite 

ACT score, the student's sex and ethnicity; and the residency status of the student. 

Longitudinal data included the relative rank of the student within the current port­

folio of courses taken, the average number of students in the portfolio; the proportion 

of instruction cond-ucted by-graduate student -tea-ching assistants, -finaneial aid, sum­

mer e:p.rollment, problematic enrollment (i.e., academic notice or probation), and 

pre-professional and engineering major indicators. The dependent variables measure 

the number of semesters of continuous enrollment and whether the student, immedi-

ately °;J>Oil departure, transferred to another institution or -dropped out of-the system. 

These data were randomly assigned to two samples: two-thirds of the data were used 

to estimate the models and one-third were used to provide out-of-sample predictive 

validation. 

Thi~ -study ·contains a number of hypotheses -about how various observable char­

acteristics affect persistence. The relationship of how unmeasured characteristics 

influences observed exit rates is also considered. Finally, the predictive performance 
', . ·. . . . . 

of the proposed. models :relative to competitors is evaluated. 

As ~t-ed, · it was found ·that the behav-wr -of-dropou:t1S is differ-ent than fa·ans­

fers. This result is consistent with. Tinto (1993) and the empirical literature where 

the distinction was made (Horn, 1998). The coefficients from eath specification were 

individually tested and jointly tested under the null hypothesis that they were the 

same. ,Five of ihe 14 independent variables had parameter ·estimates that were not 

statisticallydifferent:- ACTCOMP, ENGINEER, PCTGRAD:, PROBENR, and SEX­

CODE. A joint test of all 14 variables found transfers and dropouts to be statistically 
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different. 

Of those factors affecting persistence, Tinto (1975) and later in Tinto (1993) 

claimed that academic and social integration were especially important in a stu­

dent's persistence-departure decision. There is general agreement that the current 

academic performance i-s a -good indieator of aca<lemic integration, an-d that student­

facult1 interaction is an important component of social integration (Terenzini and 

Pascarella (1980), Pascarella (1980), Bean (1982), Pascarella and Terenzini (1983), 

Stage (1988), Stage (1989), Bean and Metzner (1985), Eaton and Bean (1995), and 

Pascarella, Edison, Hagedorn, Nora, and Terenzini {1996)). It has been consistently 

found that these integration measures are directly related to persistence. The mea­

sure of academic integration used in this study is called relative rank and it measures 

the average grade performance of the individual student relative to the class over the 

portfolio -of courses -taken per semester. This variable -allows for -the hypothesis th-at 

a studr:mt performing as well as his or her classmates is more likely to persist than a 

student performing well below or above the rest of class, especially if this performance 

is consistent across the portfolio of courses taken. The intuitive reason to expect this 

for hig4 performing-stu-dent-s is that -they will likely move on -to better alternatives in 

terms of prestige and expected income upon graduating (see Frank (1985) and Heath 

(1993)). The results of this study support this hypothesis, though it was found that 

only the extremely high performing students (i.e., at least three standard deviations 

above the mean) -exhibit ilecreasing persistence. FDr the vast majority of -students, 

the hi~her one's performance is relative to one's peers, the higher the likelihood of 

persistence. 

This result has as much to say about the character of the institution as it does 

about the -student. For example, this hypothesis is not likely -to hold at an elite 

private institution, i-f for no other reason than there are- very few better alterna-tives­

for high performing students. The evidence supported the hypothesis for dropouts 
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but not for transfers. Th-at is,·· high performing students are more likely to persist 

or dropout than transfer. This implies two things; first, because high performing 

students are less likely to transfer to other institutions in the state system, Oklahoma 

State University is a relatively high ranking institution within the system. Second, 

while hjgh performers are more lik-elyto <lrop out -of the -system, this does not imply 

they clrre dropping out of higher education altogether. Data were not available on 

students who transfer out-of-state. These considerations suggest that the predictions 

involving relative rank for high performing students be interpreted with caution. 

Another key-finding was the relationship between persistence andth-e instructionai 

.composition of a student's course portfolio. In particular, a consistent finding in the 

proposed and competitor models alike is a negative relationship between persistence 

and the proportion of instruction conducted by graduate student assistants. It does 

not appear that any previous study has considered this; however, by reinterpreting 

Tinto'~ social integration framework, this result is plausible. This is because graduate 

teaching assistants are not conside.red to be regular university faculty by anyone 

involved, with the possible exception of the graduate students themselves. As a result, 

if more instruction is conducted by graduate students, there will necessarily be less 

opportunity for students to interact with the faculty. Furthermore, Pascarella and 

Terenzini (1983) found that low faculty interaction resulted in lower social integration 

and persistence. The immediate policy implication, then, is that as part of a retention 

progralll, instruction conducted by graduate students should. be limited. 

This conclusion is not warranted. First, the evidence presented here does not pro­

vide a complete picture of the complexity surrounding graduate students as instruc­

tors. For instance, data were not available or in reliable form to determine whether 

student -evaluations or graduate instructor -ethnicity played a part in lower persis­

tence. Additionally, nothing is known about the- level of teaching experience of the 

graduate instructor. Also, low performing students may simply use graduate teaching 
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assistants as convenient scapegoa-ts for their poor academic performance. Second, an 

institution would need to consider the expected benefits of increased undergraduate 

retention against the expected costs of achieving it. Such costs could include, for 

example, reduced grant money and research production from faculty, higher faculty 

and grg,d_ua-te-stu-dent attri-tion, and general loss of academic prestige because of lower 

volum~ or quality of research. On the other hand, it may be possible to shift many of 

the research responsibilities to graduate students, minimizing the impact on research 

production and freeing faculty to undertake more instruction. Whether this strategy 

does a disservice to ~ra-dua-te students in -terms oftheir career development would also 

need tp be considered. In short, the complexityof graduate students as instructors 

is an area that deserves careful attention and research, and the results of such an 

undertaking should be a part of an informed retention policy. 

Other -si~nificant findings include whether -the -student enrolls in summer -school, 

and wp_ether the student is or is not a state resident. Each can be considered proxies 

of commitment in Tinto's framework; the first is expected to be directly related and 

the second negatively related to persistence. These effects were supported by the 

empiric,al -evidence. A literal interpretation of Tinto's framework would not have 

a pro9lem with the first result. Higher levels of commitment are indicated by a 

willingness to enroll in summer courses since summer enrollment is not required to 

maintain full-time-student status or to earn a degree within four years. The second 

is less 9bvious. Non-residents face a tough decision; an example might be whether 

to att~nd an in-state institution of lesser prestige, but also relatively inexpensive and 

closer to home, or attend a more expensive and prestigious out-of-state institution 

further from home. However, distance and prestige constant, out-of-state students 

should exhibit lower commitment than in--state -students based on the cost differential 

alone: Out-of-state, nofflegacy undergraduates paid an additional $115.50-tuition per 

credit hour during the 1997 academic year. A legacy student is an out-of-state student, 
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but treated as in-state by virtue of their alumni parents. Unfortunately, data were not 

available on whether a student is legacy or not. Furthermore, a key requirement for 

establishing residency is that the student relocate to Oklahoma for at least one year 

not for the sole purpose of education. This is usually accomplished through full-time 

employment. Obviously, ifthis is attempted while maintaining enrollment, -there will 

necessri,rily be less time available for academic studies, all else constant. Indeed, the 

average relative rank for in-state students was 1.12 compared to 1.07 for out-of-state 

students. Not only do out~of-state students have higher tuition expenses, they also 

pay a·hjgh price for establishing residency. Unfortunately, employment data were not 

availal:,le to formally test this notion. 

The pattern of exit was found to be influenced by unobservable characteristics of 

the students or unmeasured heterogeneity. It was shown in Chapter 3 that unmea­

sured heterogeneity biased the hazard function toward negative duration iiependence, 

where the probability of exit decreases over time. This study allowed for heterogeneity 

through a parametric specification of its distribution; more specifically, unmeasured 

heterogeneity was assumed to be. a random variable from· a Gamma distribution with 

unit m~n and -constant variance. When combined with a parametrically specified 

hazarq function, the size and significance of the Gamma variance indicates hetero­

geneity is affecting observed exit rates. A positive, significant estimate suggests that 

observed negative duration dependence is attributable to unobserved differences be­

tween i;1dividu-als -and not to state iiepen<lence. Intuitively, the mobility prone stu­

dents 11re the first to leave, and increasingly the persisters are composed of students 

with lower and lower chances of departure: 

From a practical standpoint, these results suggest that policies intended to improve 

retentiqn in the first year may not work a"S well a"S -expecti'Xi. Tinto (1993, pp. 145-

53) provides some guidelines or- "principles of effective retention," one- of which is 

to "front-load" retention efforts during the first year. The economic rationale is 
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straightforward; given a -fixed budget and resourceforretention purposes, they-should 

he expended where they are likely to have the most impact. The implicit assumption is 

that they will have a lasting impact, that is, if students can make it over the first year 

hump, their proba-bilit-y of persisting improves. This has been echoed in the recent 

attritipn literature (e,g., (Berkner, Alamin, McCormick, & Bobbitt, 1996) and (Horn, 

1998)). Such policies may have the effect of reducing attrition in the first year, and 

it may be tempting to take this as a sign of a successful policy. Based on the results 

in this study, such a -conclusion may -be -premature: On -the one hand, a necessary 

conditjon for reducing overall· attrition is· to reduce it during the first year. After all, 

students cannot persist to the third year if they don't persist through the first and 

second. On the other hand, fr011t-loading may only increase the chances a student 

persist;:;~ the po1icy may be postponing the mobility-prone student's departures to 

later s~mesters where less is invested in retention. 

One potential limitation of these results. is that the unm.easured heterogeneity 

could be due to limited data on social integration. Granted, student-faculty formal 

and inform-al int-eraciions -are an import-ant ·component of -social {and a-cademic) in­

tegrat~on; however, there are other dimensions as well. The frequency and quality of 

peer group interactions and "buy-in" to the institution's culture via school apparel 

and novelties are just two examples. Thes~ data are unavailable in this study and 

are gen~rally -difficult and costly to -obtain'. ·Most empirical sfu-di~s have used survey 

instru1111e1;1ts designed to measure the differing _dimensions of social integration, repeat­

edly administering them to a given cohort over time. The administrative logistics of 

this process make it difficult to capture and maintaina reliable source of data,. and 

not surprisingly, relatively few institutions invest·in this process. 

Otp.er control variables were considered as well. Six were found to be statistically 

significant at the 0.10 level in the single-stage model. These were the student's ACT 

composite score, engineering major, pre-professional degree, problematic enrollment, 
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high schooi rank, -and female student. The composite ACT score was negatively re­

lated to persistence in the WGH, OLS, and ordered logit models. Based on marginal 

analysis, small differences in this score may not be important. Everything else con­

stant, a student scoring· three standard deviations above the mean ( a nearly perfect 

score) is-expected io persist half a -semester less than -the average student. Further­

more, they appear destined to drop out of the system rather than transfer. Based 

on earlier discussions, this may be reasonable. ACT scores are a key admissions. 

component in most universities, and students with high ACT scores may be treating 

Oklaho.ina ·St~e University as an. intermediate step -to a -better -out~of~st-ate alter­

native1 Again, data were not available to test this. assertion. It also suggests that 

admitting bright students does not guarantee persistence. Furthermore, raising ad-
. . 

mission standards via higher ACT requirements will not likely have the expected 

impact .on retention. 

Th~ other results were in li1Je vvith expectations, and based.·on marginal analysis, 

some had particularly strong effects. For example, average engineers are expected 

to persist about one semester longer than an equivalent non-engineer. On the other 

hand, those in pre-prof-essionai degrees {e.g., veterinary medicine) are likelyio stay 

one sepiester less than the average student. Likewise, students on academic notice or 

probation are likely to (voluntarily) stay one semester less that the average student. 
. . 

Female students are likely to persist 1/2 a semester less than the average male. This 

last res:ult is also supported in -the literature. Pascarella and Terenzini ·(1-983} f-ottnd 

that persistence between males and females differed grea;tly. They attributed the 

difference primarily to the differences betwee~- social a~d academic integration, aca-

demic integration affecting males more strongly, and social integration more strongly 

affecting females. As mentioned -earlier, mea-sures of 1'1ocia-l int-egration were not ·read­

ily avai1able in this- study and- this may be influencing the impact of being a female 

student on persistence. 
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The models in this study were also evaluated in terms of predictive performance 

compared to competing models on a hold-out sample. The results were inconclusive. 

In both in- and out-of-sample validation, the Weibull model could not beat OLS in 

predicting enrollment duration based· on goodness-of-fit tests; however, WGH had 

a much higher hit rate. The WGH model was much more successful in predicting 

persisting students. This result implies that even though the WGH model may not 

predict the exact departure time very well, it is able to identify the persisters better 

than OLS or ordered logit. On the other hand, the WGH model is not as well suited 

as multinomial logit for identifying where students are likely to go once they leave. 

The WGH model could not beat multinomial logit in predicting departure destination 

according to goodness-of-fit tests or hit rates. 

Throughout this study, Tinto's theoretical framework was taken as given. Tinto's 

theory of student attrition is first and foremost a sociological one. In particular, 

Durkheim's theory of suicide is used as a basis for understanding the dropout process 

where students dropout primarily because they are unable to integrate into the social 

and academic systems of college. For Durkheim, these forms are egoistic and anomic 

suicide, where the social part of an individual's nature is insufficiently developed or 

the social setting lacks the needed rules to constrain individuals by integrating them 

into the collective whole. These forms of suicide were thought to be most prevalent in 

the transition period to modern society (Ashley & Orenstein, 1985). The transition 

from high school to college, the institutional structures, and the relative normlessness 

a student typically experiences are seen as the primary drivers of student departure. 

The process flow by which a student integrates into the social and academic systems 

has been depicted by Tinto in his well-known diagram of the longitudinal process of 

student departure (see Figure 2.1 on page 9). 

Clearly, student departure does not have the same consequence as suicide; oth­

erwise, dropout would be a rare event. The fact that student attrition is a sizable 
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phenomenon suggests that the suicide model is not entirely adequate for explaining 

dropout. A serious weakness of linking suicide to student departure is that it frames 

such departure in terms ofself-destructive behavior. Tinto (1993, pp. 1, 37-45) read­

ily points out that students who attend college and fail to obtain a degree may well 

receive some benefits from the experience and that attending college is as much about 

personal discovery as earning a degree. Even so, the general theme of his work is aptly 

expressed in the title of his 1993 .book, "Le'aving College: Rethinking the Causes and 

Cures of Student Attrition," where half of the book diagnoses the student depar­

ture problem and the remaining third of the book prescribes the treatments available 

to institutions for reducing or. containing attrition. Student departure is seen as a 

treatable condition. 
. - . . 

A different perspective would be to assume that a student's decision to persist or 

withdraw arises from rational choice. That is, a student will persist at an institution 

if the present value of expected net benefits is nonnegative. Once negative, a depar­

ture occurs. Whether or not a student continues at a different institution depends 

on the opportunities and constraints the student faces. Students continually evaluate 

the net benefit condition based on the arrival of new information, thus preserving the 

longitudinal character of departure. Students are at once producers and consumers 

of their educational experience. They combine pre:-college skills and experiences as 

well as background characteristics and current experiences to produce educational 

outcomes. These outcomes enter ~s argµments in the utility function for persistence. 

To the extent academic and social integration are important in the decision process, 

the factors affecting either wiil enter intothe student's utility function as welL In 

this framework, it is possible that a student's willingness to trade social integration 

for academic integration is feasible, thus leaving the persistence decision unchanged 

(assuming the student maintains the minimum standards on academic performance). 

Institutional factors affecting social integration, such as policies to increase student-
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faculty interaction, can leave academic integration constant and retain more students · 

by virtue of lowering the relative price of social integration; In this way, the dimen-

sions and extent of institutional actions regarding student departure are seen in terms 

of responding to demand and not in terms of treating a condition. An implication 

here is that institutions will vary in their level of concern over student. attrition. Two 

institutions with the same attrition rates can vary greatly in how attrition is viewed; 

one can view it as a condition to be treated and the other can view it as a marketing 

tool to attract (the best) students. The variance depends on the goals and objectives 

of the institution. 

Because attrition is ultimately about· choice, it seems that economics would have 

a great deal to offer in~titutional researchers. Tinto's work has been extremely impor­

tant in aligning institutional.research around.~ common model of student departure. 

What it lacks, and what economics can provide, is an analytical theory capable of 

mathematically specifying structural relationships in the dropout decision process. 

The literature on optimal job search, matching, and turnover in the labor market 

is a promising starting point for developing a theoretical model of the student de­

parture decisions (in particular, see Mortensen (1986), Mortensen (1988), Jovanovic 

(1979), and Jovanovic (1984)}. Such a theoretical model can aid in the specification of 

the duration model, potentially improving the precision of the estimated parameters 

and improving its predictions. Unfortunately, these theories are very complex and 

extremely difficult to estimate empirically ... · 

Two variables that were especially important in predicting persistence were the 
. . 

relative rank of the student and the classroom staffing composition of the student's 

course portfolio. Relative rank should prove especially useful for evaluating the impact 

of "learning communities" Tinto (1993). Learning communities are an integrated 

approach for placing small cohorts of students in the same courses with the same 

instructors. These "teams of learners" presumably benefit from the shared experience 

117 



and find the systems of college less alienating. When evaluating the effectiveness of 

learning communities on persistence, a student's relative rank should prove more 

useful than overall grade point average, since relative rank will measure a student's 

performance relative to his or her teammates. Future studies may also benefit in 

accounting for classroom staffing, especially when classes are staffed with regular full­

time faculty, temporary faculty, and ·graduate teaching assistants. Temporary faculty 

include professionals who teach a dass on the side, full..,time visiting, or part-time 

instructors. The classroom staffing question offers several inte.resting area for further 

research; for example, (1) whether graduate teaching assistants have a different impact 
' . 

on persistence than part~time instructors,· or (2) whether, at four-year institutions, 
. ' 

students from feeder schools staffed with part~time instructors ~re less likely to persist 

than students froin feeder school staffed predominantly with full-time staff. 
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