
SEQUENTIAL ROOT ESTIMATION FOR THE 

BETA-BINOMIAL DISTRIBUTION 

By 

LAURA PRICE COOMBS 

Bachelor of Science 
Florida Southern College 

Lakeland, Florida 
1987 

Master of Statistics 
University of Florida 
Gainesville, Florida 

1989 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfillment of 
the requirements for 

the Degree of 
DOCTOR OF PHILOSOPHY 

May, 1999 



SEQUENTIAL ROOT ESTIMATION FOR THE 

BETA-BINOMIAL DISTRIBUTION 

Thesis Approved: 

a}~ ~e ez&ollege 

ii 



ACKNOWLEDGEMENTS 

First and foremost, I would like to express my heartfelt thanks to my advisor, 

Dr. Moser, for providing support, guidance, encouragement, and :friendship during 

these last four years. It would be impossible to overstate his contributions to 

both my professional and personal development. Dr. Moser epitomizes, in theory 

and practice, the ideals of scholarship, teaching, mentoring, and integrity. 

Second, I would like to thank the members of my committee for reviewing my 

work and providing many helpful, constructive comments. In addition to their 

roles as academic jurors, I additionally wish to thank Dr. McCann for helping me 

with Fortran programming, Dr. Payton for convincing me I could succeed when I 

didn't believe I would, and Dr. Fuqua for personal counsel and fellowship. 

Third, I would like to thank my close friend and fellow student, Jim Blum, 

for being my personal tutor, sounding board, and companion. I could have 

survived neither advanced calculus nor real analysis without his instruction and 

wit . 

. Finally, lwould like to thank my family. That my parents would move to 

Stillwater to care for my children so that I could concentrate on my studies 

involves such a degree of personal sacrifice that any form of thank you seems 

grossly inadequate. That I am not surprised, but still overwhelmed, by their 

generosity speaks to their history as parents. It is my singular good fortune 

iii 



to have been so blessed. My children, Tommy, Billy, and Rachel have provided me 

with the opportunity to relive my childhood, to recognize the values I cherish, and 

to identify what really is important. My husband, Tom, has sacrificed his 

freedom and sanity and yet still has managed to provide me with the laughter, 

affection, and love that I needed to make this possible. 

IV 



TABLE OF CONTENTS 

Chapter Page 

1. INTRODUCTION AND LITERATURE REVIEW ...................... 1 

2. SAM PROCEDURE FOR BETA-BINOMIAL DATA ..................... 9 

2.1 Notation and Updating Rule for SAM .............................. 9 

2.2 Example .................................................... 12 

3. ASYMPTOTIC RESULTS ......................................... 15 

4. SIMULATION STUDY. ........................................... 31 

3.1 The Setup ................................................... 31 

3.2 .Results ..................................................... 32 

5. CONCLUSION .................................................. .41 

BIBLIOGRAPHY ....................................................... 42 

APPENDIXES .......................................................... 43 

APPENDIX A - PROOF OF LEMMA 1 ............................... 43 

APPENDIX B - PROOF OF LEMMA 2 ............................... 50 

APPENDIX C - FORTRAN PROGRAM .............................. 54 

V 



LIST OF TABLES 

Table Page 

1. Example Data ...................................................... 14 

2. MSEs for Estimating Lp (Logit, Starting Values L.20 and L.so) . ................ 35 

3. MSEs for Estimating Lp (Logit, Starting Values L.1s and L.95) . ................ 36 

4. MSEs for Estimating Lp (Log-log, Starting Values L.20 and L.so) . .............. 37 

5. MSEs for Estimating Lp (Log-log, Starting Values L.1s and L.95) . .............. 38 

vi 



LIST OF FIGURES 

Figure Page 

1. MSEs for Estimating L.so when µ(x) is the LogitModel 
Starting values L.1s and L.95 .......................................... 39 

2. MSEs for Estimating L.50 when µ(x) is the Complementary Log-log Model 
Starting values L.1s and L.95 .......................................... 40 

vii 



CHAPTER 1. 

INTRODUCTION AND LITERATURE REVIEW 

Let Y(x) be a random variable representing the results of an experiment whose 

outcomes are dichotomous, response or no response. Letµ (x) be the expectation of Y(x), 

the probability of response at a given design point, x. Consider the problem of estimating 

the roots ofµ (x). Define the root, Lp, to be the value of x whereµ (x) = p. For example, 

in drug testing, L.5 is the dose level at which the drug produces toxicity in 50% of the 

subjects. 

Various procedures for finding roots ofµ (x) by sequentially selecting values of 

the design point x have been developed. One such sequential approximation method 

called the Up and Down Method was developed by Dixon and Mood (1948). After n 

updates of the process, the response at the current design point, Xn, is used to determine 

the next design point, Xn+I, using a predetermined constant step size. Specifically, on the 

nth update if Yn=O represents "no response" and Yn= 1 represents "response" then the next 

design point is determined by: 

xn+I = Xn +Ll if Yn = Q and 

Xn+I = Xn -Ll if Yn =l 

where Ll is the step size. This and other Up and Down methods described by Storer 

(1989) have the undesirable property of being "memoryless" in that information that has 

accrued prior to the current design point is not used in determining the next design point. 

Another undesirable property of these types of procedures is thatXn does not converge to 
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In 1951, Robbins and Monro introduced a procedure for estimatingLp known as 

stochastic approximation. They suggested using the following rule to determine 

successive design points for estimating Lp: 

where an is a fixed sequence of positive constants and Yn is the response associated with 

Xn. Like the Up and Down Method, the Robbins-Monro procedure generates Xn+ 1 as a 

linear function of Xn. However, instead of using a single, constant step size, the step size 

is allowed to vary from update to update. For estimating a single root, Lp, Robbins and 

Monro demonstrated that Xn converges to Lp in L 2 under the following conditions: 

a) 0 < '°' 00 an2 < 00 and '°' 00 an. = 00. 
~n=I ~n=I 

b) There exists a positive constant c such that P( I Y(x) I~ c) = [c 8F(y Ix)= 1 for all x 

where F(ylx) is the cumulative distribution function of Y(x). 

c) µ (x) is nondecreasing,µ (Lp) = p and µ'(Lp) > 0. 

Blum (1954) showed thatXn converges toLp almost surely assuming that 

conditions a) and c) above hold plus the following conditions on the Lebesgue-

measurable functionµ (x): 

a) I µ(x) I~ c +d Ix I c,d~O 

c) µ (x) is bounded away from p outside every neighborhood of X=Lp. 
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Using an= a/n where a is a positive constant, Chung (1954) showed that 

J;;(Xn -LP) is asymptotically normal with mean zero and variance 

where cr2 is assumed to be a constant which does not depend on x 

and ·µ'(L ) = Bµ(x) The following conditions were required for the proof: 
P 8(x) x-L 

- p 

a)µ '(Lp) > O 

b) µ (x) is bounded away fromp outside every neighborhood ofx=Lp 

c) µ (x) is bounded on any finite interval ofx. 

d) E[(Y(x)- µ(x)Y] < oo for every integer p>l. 

Thus when an = [nµ'(LP )r1 , the Robbins-Monro process is optimal (i.e., the asymptotic · 

variance is minimized). 

The optimal Robbins-Monro procedure requires knowledge of the derivative of 

the true response curve, µ'(x). Since µ (x) and µ'(x) are not usually known, Anbar (1978) 

suggested replacing µ'(x) with a strongly consistent estimator, namely the slope of the 

least squares line: 

b* = "~ (X. -X)(Y,. -Y) /"n (X. -X)2 
n "-'•=I 1 1 "-'•=I 1 

The next design points are determined by the rule 

(1) 
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where 

Anbar proved that Xn converges to Lp almost surely and bn converges to µ'(Lp) almost 

surely. He also proved that ..{,;(Xn -LP) has the same asymptotic distribution as the 

optimal Robbins-Monro process. 

Wu (1985) suggested estimating the rootLp from an estimate of the entire 

response curve, µ (x). He used a parametric form, H(xl 0) where fJ=( 81, ... , BJc), to represent 

the expectation of Y. The updating rule is described below: 

1) Find an efficient estimate (} n for () based on the n pairs of observations [ (x1y1), 

2) Define the estimated response curve Hn(x) = H(x I (}n)and choose Xn+I so that 

Using maximum likelihood estimators (MLEs) as the efficient estimators and using a 

one-parameter logit model for H(xl 0), Wu demonstrated that his procedure is equivalent 

to a Robbins-Monro procedure and hence Xn converges to Lp almost surely regardless of 

whether H(xl O)=µ (x). He was unable, however, to show consistency when using a two-

parameter lo git model for H(xl 0). 
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Shen and O'Quigley{l996) used a procedure similar to Wu's called the continual 

reassessment method (CRM) to estimate target dose levels in dose finding studies. This 

method uses a one-parameter model, lfl(x, 8) to representµ (x) whereµ (x) is considered 

unknown. The difference between CRM and Wu1s procedure is that CRM limits its 

design points to a small panel of discrete dose levels. Shen and O 'Quigley established 

consistency. and asymptotic normality of the MLEs under model misspecification and 

proved that the dose level will converge to the closest discrete dose level to Lp under the 

following conditions: 

1) a) For each B, 'fl(., 8) is strictly increasing. 

b) The function lfl(x, . ) is continuous and is strictly monotone in {) in the same direction 

for all .x. 

2) For each O<t<l and each x, the function 

, , 
s(t,x,B)=tL_(x,B)+(l-t)-lf/ (x,B) 

1-lf/ 1-lf/ 

is continuous and strictly increasing in B. 

3) The parameter {) belongs to the finite interval [A, B]. 

4) The target dose level is Lp, that isµ (Lp)=p. 

5) The probabilities of toxicity at X1,.:. ,Xm satisfy O< µ (x1)< ... <µ (xm)<I. 

6) For i=I, ... ,m, O; ES where the O; are such that lfl(x, O;)= µ (x;) and the set Sis defined 

as: 
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Moser and Faries (1996) developed the Sequential Approximation Method (SAM) 

which provides a method for estimating any number of roots Lp using a parametric model 

to representµ (x) whereµ (x) is assumed unknown .. On each update of the two parameter 

version of SAM, observations are taken at two different x values, Xn1 and Xn2, The 

procedure searches for two roots, LPi and LP2 • Moser and Faries extended the rei t:ilt:; of 

Shen and O'Quigley for the discrete set of x values to the two-parameter logit model, 

G(x, 81, 82) proving convergence provided G(x, 81, 82) is sufficiently close to the true 

- -
modelµ (x). In particular, let et and et be solutions to 

I~ C e1 , e 2 ) = o and Yn2 C e1 , e 2 ) = o where Jn1 and Yn2 are the expected value of the derivative 

of the likelihood function withµ (x) replaced by G(x,81/h). Let (01° ,ei) be the value of 

S(8~ ,8~) = 

Then the (xn1, Xn2) converge to the target dose levels (LPi ,Lp2 ) and the MLEs 

In all of the procedures mentioned to this point, the observed design points have 

been dependent from one update to the next, but the responses at a given design point on 

the same update have been assumed to be conditionally independent. There are 

experimental situations, however, where the responses at a given dose level are not 

independent. For example, suppose the response curveµ (x) represents the proportion of 

subjects that have a toxic response to a drug at dose level x. Now suppose pregnant 
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animals are administered a drug and each individual fetus within a litter is exami1:1ed for a 

response. Responses among fetuses within a litter are expected to be more similar than 

responses across litters. Piegorsch (1993) discusses different ways of adjusting for this 

intralitter correlation. One possibility is to assume that responses within a litter at a 

particular dose level follow a beta-binomial distribution (Williams, 1975; Haseman and 

Kupper, 1979). Kupper et al. (1986) examined the influence of "litter effect" for beta

binomial data at fixed dose levels using a simulation study. 

In comparing Kupper et al. to Moser and Faries note that both sets of authors 

introduce the complexities of dependent observations into their studies; however, these 

complexities materialize in different ways. Kupper et al. examine dependent ( or 

correlated) observations at fixed dose levels using the beta-binomial distribution but 

assume that observations from one fixed dose level to the next are independent. Moser 

and Faries examine observations that are independent at given dose levels, but consider a 

sequential process that produces dependent observations from update to update. 

The objective of this thesis is to estimate dose levels where toxicity occurs in 

specified proportions of subjects when the observed responses within a litter follow a 

beta-binomial distribution. This is done by combining the more complicated dependent 

aspects of Kupper et al.' s beta-binomial distribution with the complex dependent portions 

of Moser and Faries's sequential process. Specifically, the two-parameter logit SAM 

procedure is used to estimate dose levels. By applying a sequential process to beta

binomial data, dependencies within a litter as well as dependencies between observations 

from update to update are incurred. In this more complicated context, the following 

theoretical results are derived: 
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a) consistency of the MLEs, 

b) asymptotic normality of the MLEs, and 

c) consistency of the observed dose levels to the true dose level or to the closest 

value to the true dose level in the discrete set. 

In Chapter 2 of this thesis the details for using the two parameter lo git SAM 

procedure when the responses follow a beta-binomial distribution are given, followed by 

an example. The proofs of the asymptotic results are given in the Chapter 3. Chapter 4 

describes the simulation results on the performance of the SAM procedur.e for small and 

medium samples. Conclusions are given in Chapter 5. 
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CHAPTER2 

SAM PROCEDURE FOR BETA-BINOMI~ DATA 

2.1 Notation and Updating Rule for SAM 

In a general context, consider a random variable Y whose expectation is a 1:. 

increasing function of a variable x. The exact form of the expectation of Y given x is 

unknown but can be denoted by the function.µ (x). The objective is to sequentially 

observe values of Y at selected values ofx and use the (x, y) pairs to estimate roots of µ(x) 

(a root ofµ (x) is a value of x whereµ (x) equals a specified constant). 

In the specific context of a toxicity study, x is a dose level and Y is a binary 

response that takes on the value 1 if a fetus is malformed and O otherwise. The 

expectation of Y given x, µ (x) = P(Y=llx), equals the probability of a malformed fetus at 

dose level x. The objective is to sequentially observe (x, y) pairs to estimate dose levels 

where pre-specified proportions of fetuses are malformed. To this end specific notation 

is established to identify the fetus, the litter, and the dose at a particular update of the 

sequential process. 

Let p1 and p2 be two pre-specified proportions O<p1< p2<l. Let L Pj be the value 

of x (the dose level) whereµ (x)=A for j=l, 2. At the i11 update of the SAM process, 

observations are taken at dose levels Xij for i = 1, ... , n;j = 1, 2. Suppose miJ· pregnant 

animals are tested at dose level xi/, and each pregnant animal produces a litter of size riJk 

for k=l, .. . miJ. Further, suppose that the binary random variabler:jkt takes the value 1 if 

the £th fetus within the kth litter in the iJ4II dose group gives a positive response (e.g., is 
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malformed) and takes the value O otherwise, for i!. =l, ... ,rijk, k=l, ... mij. Hence, the random 

riJk 

variable YiJk= L ~Jkf · is the number of positive responses within the kth litter in the ijth 
C=l 

dose group. 

Williams (1975) and Haseman and Kupper (1979) suggest introducing the 

intralitter correlation by using the beta-binomial for the distribution of YiJk given xu : 

for Yijk=O,l, ... , riJk· Under (1), 

and 

1 if i = i', j = j',k = k', l = I' 

r 11 
corr(Y!Jkl, ~'.f'k'Z') = 

1 + r !I 
if i = i' 1· = 1·1 k = k' l -:t. l' 

' ' ' 

0 otherwise 

(1) 

for y!i>O whereµ (xij)=µif is the expected probability of a positive response at dose xu and 

r if /(1 + rif) is the intralitter correlation in the tl dose group. The forms 

µ (xij) and µiJ will be used interchangeably in this paper, with the former used to stress 

that the expectation of the beta-binomial is a function of the dose level. Piegorsch (1993) 
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refers to 'YiJ as an overdispersion parameter measuring departure from binomial sampling. 

At r if /(I+ r if) =O, Y!ik lx!i simplifies to a Binomial(rifk, µ (xiJ)) random variable. At 

r if /(I+ r if )=I, r;-;,}~1k I x;1 simpifies to a Bernoulli(µ (xii)) random variable. At present 

time Y!i will be restricted to a fixed unknown value, y. In the appendix, the theoretical 

results will be extended, allowing this overdispersion parameter to vary across dose 

levels as Y!i· 

The two-parameter logit model, n(_xij, 81, Bi)=[l + exp{-(81 + 82Xij)} r 1' will be 

used to represent the expected proportion of positive responses (the dose-response curve). 

However,µ (xiJ) does not have to equal 1t(xij, 81, Bi). Rather, 1t(xiJ, 81, Bi) is introduced 

only so that SAM can utilize the maximum likelihood method to estimate the roots of 

µ(x). 

The log-likelihood function whereµ (xii) is replaced by ,r(xij, Bi, 82 ) is given by 

tti {I1n[,r(r,Jli,O,)+sr) + ·~~~[(1-,r(r,,e,,e,l}+srJ-I' 1n(1 +sr)}, (2) 

where terms not involving ,r(x!i,Bi,82 ) and yhave been ignored. Note that (2) is a 

function of 81, 82, and y. 

The updating rule for the two-parameter logit model SAM procedure when the 

responses within a litter follow a beta-binomial distribution is: 
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n 2 mu 
1. Based on the L L Lr iJk observations, calculate the values of B1, Bi and y that 

i=;l j=lk=l 

maximize equation (2). Denote these MLEs by (Bt, e;, rn). 

2. Define the estimated expectation µn(x) = n(x I Bt ,B;) = [l + exp{-(Bt + e;x)}r1and 

choose the next two dose levels, Xn+1,1, Xn+1,2 so that fan (xn+I,J )= p 1 for j=l, 2. That 

lS, 

and 

-et) + ln(____f!l:__J 
1- P2 

xn+l,2 = ---().,-A (-n) __ _ 

2 

(3) 

After the nth update, Xn+Ii provides an estimate of L PJ for j=l, 2. 

2.2Example 

The following numerical example is used to demonstrate how SAM' s root estimators 

are generated using the updating rule described above. · Suppose that we are interested in 

finding the roots L.2 and L.8 when the responses, YiJk, have a beta-binomial distribution 

with y = 1 and µ(xu) set equal to the logit model with 01=-5.386 and Bi=l.00, i.e., 

L.2=4.00 and L.8=6. 77. Our initial estimates of L.2, L.8, and y/(1 +y) are 4, 6, and 

1/(1 + 1 )=.5, respectively. That is, x1,1=4, x1,2=6, and the starting value of y=l. 
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Two litters at each of the initial dose levels are observed, and the proportions of 

malformed fetuses for the four litters are recorded. The resulting set of observations is 

given below: 

( Yl11) ( 0) ( Y112) ( 2) ( Y121) ( 5 ) ( Y122) ( 10) X11 ,- = 4,- , Xll,-- = 4,- , X12 ,- = 6,- , X12,-- = 6,- . 
r111 15 r112 12 r121 10 r122 . 10 

From (2), the MLEs based on these observations are Bi°)= -8.944, Bi1)=1.716, and 

yCI)=.341. Thus, from (3), the next two estimated dose levels are 

Responses for two more litters are now observed at both of these dose levels, and the 

MLEs e?), e?) y<2) are generated based on all eight pairs of observations. The dose 

levels X3,1 and X3,2 are then calculated from (3). The process continues in this manner. 

The results after 10 updates of the process are presented in Table 1. The final estimates 

of L.2 and L.& are provided by xll,1=4.35 and xll,2=6.64, respectively. The estimator of 

any other root Lp* is the solution top*= [l + exp -(Bt + e;Lp*)r1 . That is, 

L~2 = {ln[p * /(1- p*)]- et>} Io?>. For example, the final estimates of L.s and L.7s are 

i~0> = 5.49 and fe~~> = 6.40. 

13 



Table 1. Example Data* 

Litter 1 Litter 2 Litter 1 Litter 2 

Update at Xi1: at Xi1: at Xi2: at Xi2: 

i xil Yilllrill Yi12lri12 Xi2 yi21/ri21 yi22/ri22 g(i) g(i) ~ (i) 
1 2 r 

.............................................................................................. u .................................................................................................................................................... 

1 4.00 0/15 2/12 6.00 5/10 10/10 -8.94 1.72 .34 

2 4.40 0/16 3/10 6.02 12/12 12/12 -11.71 2.35 .48 

3 4.40 2/13 6/14 5.58 0/17 9/10 -8.07 1.59 .84 

4 4.21 0/11 4/11 5.96 14/19 3/9 -7.39 1.41 .65 

5 4.27 10/10 1/8 6.24 15/15 9/12 -5.92 1.16 .86 

6 3.90 1/14 1/14 6.28 2/10 3/15 -4.67 .89 .82 

7 3.71 0/10 0/16 6.83 11/11 15/15 -6.06 1.16 .85 

8 4.03 0/8 0/17 6.41 0/18 13/14 -5.64 1.04 1.07 

9 4.08 0/13 0/15 6.73 16/17 · 10/15 -5.94 1.07 .98 

10 4.24 0/7 0/13 6.82 9/9 18/18 -6.65 1.21 1.02 

L~~O) = i~t) = 

4.35 6.64 

L.2= L_g= 81= 82= y= 

4.00 6.77 -5.386 1.00 1.00 

* All observations YiJk are generated using a beta-binomial(rifk, µ (xy), y= 1) where 

µ(xy)=[l + exp -(Ot + e;xii )r1 with 01=-5.386 and {h=l.00, i.e., L.2=4.00 and L_g=6.77. 

14 



CHAPTER3 

ASYMPTOTIC RESULTS 

Let x1, ... , Xd bed positive values where the xjj's can be observed. After the nth 

update, the dose level Xn+1,1 and the dose level Xn+i,2 will be selected from a discrete list 

x1, ... ,xd, such that Xn+1,1 < Xn+1,2. Note that there are t=d(d-1)/2 possible pairs of dose 

levels such that Xn+1,1 < Xn+1,2. A modified SAM procedure is used to generate new dose 

levels. This selection process is the same as that used in the appendix of Moser and 

Faries (1996) .. Specifically, after the nth update, the procedure is defined as follows: 

(a) Let Xn+l,l be the value of X that minimizes I 1r(xij,Bt ,e;)- P1 I and let Xn+l,2 be 

the value of X that minimizes I ,r( xij' Bt' e;) - Pz I where minimization is performed over 

all x= X1, ... ,Xd. The function 7(X;j,B1,(h.) is the two-parameter logit model and (Bt ,e; ,fn) 

are the maximum likelihood estimates calculated by maximizing (2) with respect to Bi, 

(h. and y. 

(b) lf Xn+l,1 ~ Xn+I,2 from part (a), then reset Xn+l,1 = Xn,I and Xn+l,2 = Xn,2-

Note, the consistency and asymptotic normality proofs below do not formally 

distinguish between rule (a) and rule (b) above. However, if convergence is to be 

attained then, asymptotically, Xn+1,1 and Xn+1,2 must take on unique values such that 

Xn+1,1< Xn+1,2. We have therefore included rule (b), which insures that Xn+1,1< Xn+1,2 for all 

n. 

The first objective is to prove that xn+I I ~ xf and xn+I 2 ~ x~ almost surely as n , ' 

~ oo for the procedure defined in (a)-(b), where we initially assume that xf and xg E 
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x1, ... ,xd are LPi and LP2 , the values ofx such that µ(LPj) = p1 for j = 1, 2. At the end of 

the consistency proof, we will broaden this definition of xf and xg slightly. 

The following definitions and equations are required for the consistency proof 

(81° ,ei) depend on µ(x) and are therefore unknown parameters, Let r 0 be the true value 

ofy. 

After n updates of the (a), (b) process, the partial derivatives of the log-likelihood 

n 2 mu 

with respect to B1 , Bi and y ( divided by K = L L L riik ) are 
i=l j=l k=l 

r' t t. ~ x,,r( x,, II,, 11, )[! - ,r( x, ,0., II,) f ~' [,r ( x, A, II,) + sr f' 

and 
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(6) 

The following three equations are the expectation of Il, f}: and ff where the 

observed YiJk' s are replaced by the random variable It1k. 

_ ,-~-I ~l-,r(x,,11,,e,J + sr )-'} (8) 
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riik-l S } 
-L-

s=o 1 + sr 
(9) 

Denote (if.. \Bt /f n) as the solution to the equations lJ (Bi,B2 ,r) = l} (Bi,B2 ,r) = 

Equations (7), (8) and (9) can be rewritten as 

(10) 
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'url s } -L-
s=o 1 +sr 

(12) 

where J is the relative frequency of quadruplets (xil, mil, Xi2, mi2) after the first n updates 

(miJ < oo). 

In order to establish consistency, µ(x) cannot differ too much from n(x, B1, Bi). To 

characterize their difference, define the set 

(13) 

The following condition, which is required for the consistency proof, dictates how close 

µ(x) is to n(x, Bi, Bi). 

Condition C.1. For n > N, (B/, Bt) E S(B1°, Bt) where N is a finite positive value. 

The following two lemmas will be needed in the proof of Theorem 1: 

Lemma 1. Let Y -Beta-binomial(p,r,r). Then 

E L =E L . (Y-1 1 J (r-Y-1 1 J 
s=O p + sy s=O 1 - p + sy 
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The proof of Lemma 1 is given in Appendix A. 

Lemma 2. Let Y-Beta-binomial(p,r,r). Then 

(
Y-1 s r-Y-1 s J r-1 s 

EL + L = L--. 
s=Op+sy s=O l-p+sy s=Ol+sy 

The proof of Lemma 2 is given in Appendix B. 

Theorem 1. Assume that condition C.1 is satisfied. Let (et ,e; ,fn) be the 

maximum likelihood estimators of(B1, B2,Y) and let (Xn+1,1, Xn+1,2) be the selected dose 

levels after the nth update of the procedure; then almost surely,(xn+J,J, Xn+1,2) -+ 

are defined in part a) of the procedure. 

Proof. First, observe that for each dose level xu, the functions 

and 

are uniformly continuous in ()1 and Bi. over the finite rectangle [A, B] x [C, D]. Then for 

any e > 0 and for each xu, there exists a partition A= t0 < t1 < ... < tp = B and 

C= s0 < s1 < ... < Sq = D such that for any ( B1, Bi.) E [ A, B] x [C, D] there exists a 

(t Po, sq) E [A, B] x [C, D] such that 
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and 

Because there are only d possible dose levels and because YiJk is a discrete random 

variable with only (rifk + 1) possible values, the partition may be chosen so that 

restrictions (14) and (15) are valid for all xu, y;1k pairs. 

Next, separate I~ (81 , 82 ,Y )-l; (81 , 82 ,y) into the sum of three pieces: 

!~1 (8i,82 ,y), li 2 , l~i8i,82 ,y), where 

-'"':f ((1-1r(x,1 , 111,112 ))+ sr )-1} 
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and 
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From (14) and (15) it follows that for any sequenceyiJk, i=l, ... ,n;j=l,2; k=l, ... ,miJ, 

combination of I~1 (8i, 8 2 ) evaluated over all possible sequences of Y111, ... ,Yn2mn2 ; 

therefore, 

Now it must be shown that for each ~ Po ,sq0 ), 112 tends to zero almost surely. Let 

The expected value of g(YiJk) is: 
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n Z mii 
where Tn =LL LZiJk . Then 

i=l j=lk=l 

. z mn+l,J ( ) 

= Tn + L L E Zn+l,j,k 
j=l k=l 

(since E(z n+l,J,k )= 0 

for allj=l,2; k=l, ... ,miJ) 

So Tn forms a martingale for fixed (t Po , s qo) . Note that the terms in the summation in 

!Jez are bounded. The limit theorem for martingales (Corollary 2 in Section 7.3 of 

Shiryayev 1984) implies that !Jez converges to zero almost surely. 

We have now established that 

Using a similar argument we can also conclude that 
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and 

(18) 

Since (Bt ,e; ,fn) is the solution to (4), (5), and (6), Condition C.l, (16), (17) and (18) 

insure that almost surely, (Bt, e;) E S(B1°, ei) eventually. Hence, (Bt, e;) satisfies 

Thus, for large enough n, (xn+i i, xn+I 2 ) = (x~, xg) . 

To establish the consistency of (Bt ,e; ,fn), observe that as n tends to infinity all 

the } 's in (10), (11) and (12) tend to zero, except for the one corresponding to (x1°, xg), 

the sum of which tends to 1. Thus, (0./ JJ2n ,yn), the solution to l~ (81,82 ,y) = 

(19) 

(20) 

and 
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By Lemma 1, 

for)'=l,2 since Yuk - BB(u(xJ),y 0 ,ruk) for any i=l, .. n and any k=l, ... ,mu. In addition, 

by Lemma 2, 

Since .n-{xJ ,Bi° ,eg )= µ(xJ ), the solution to (19), (20), and (21) is (e1° ,e~ ,r0 ). 

Applying (16), (17), and (18) we obtain the consistency of (et ,e; ,fn ). This finishes the 

proof 

Remark on the value of x~ : The proof of Theorem 1 does not depend on the 

assumption thatµ( xJ) = Pi for j=l,2. Therefore, (xn1, Xn2) converges to (x~, x~) almost 

surely as long asµ( xJ) is closest to p1 among all possible x1, ... ,xd for j=l,2. 
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Remark on Condition C.1. Suppose that the true model is the logit model. Therefore, 

n{xy,Bi° ,eg )= µ(xif), and the solution to (7), (8), (9) is (e1° ,eg ,r0 ) for all n. That is, 

for j=l,2 and any XiJ * L PJ . Therefore, when the true model is the logit model, 

(e/, if2n) E s(ei°, eg) for any n and condition C.1 holds. 

Theorem 2. Suppose the conditions of Theorem 1 are satisfied Then 

{r-e 0 
1 1 

asymptotically o; -eg 
,pn -ro 

where I is the information matrix. Define 7rJ = 1r(xJ, Bi°, eg). Then 
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-L LLE L · 
n 2 ln;j {rijk-YiJk-1[,rJ (l-,r j) (1-,r j ·+ sy0) + 7r j (I- 7rj ) 2 (1-,r j + sy0) + 1rJ (I- 7r j ) 2 J} 

i=l J=lk=l s=O . (1 - 7r J + sy O ) 

- f ff E{'lik-fr1 (xJ r[1r} (l-1r1) (l-1r1 + syo) + ,rJ(l- ,r J )2 (~ -1r1 + syo) + ,rJ (1- ,r J )2 J} 
i=l j=lk=l s=O (1 - ,r j + sy O) 
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and i33 = f 
i=l 

Proof. From Theorem 1, (xn+l,I, Xn+ 1,2) tends to (x~ ,xg) almost surely. Since there are 

only t possible pairs of design points, it follows that (xn+I,1, Xn+1,2) =(x~, xg) for large 

enough n. Therefore, asymptotically, the distribution of (et, e;, f n )is the same as the 

distribution of the solution to 

x• 
I 

and 
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Since (x? ,Yiu) (x~ ,Yi21 ) ••• , {xf ,YnimnJ (x~ ,Yn2mnJ are independently distributed 

samples, the asymptotic normality of (et' e;' r n )follows the standard maximum 

likelihood estimator approach. The covariance·matrix is the inverse of the information 

matrix and takes the form given in (22). This completes the proof 

Remark on y: The proof of Theorem 1 assumes that y is a fixed value for all dose levels. 

However, suppose y is allowed to take on g :::; d different values over the range of 

possible dose levels. The proof of Theorem 1 remains substantially unchanged except 

that instead of having three partial derivatives of the log-likelihood function (one with 

respect to each parameter: ( B1,B2 and y), 2+g partial derivatives are required (one for 81, 

one for 82 and g for 'Y1, ... yg ). Since (xn,I, Xn-,2) ~ (x?, x~) for all g, asymptotically at 

most 4 parameters will remain: B1, B2 , y;, and 'YJ-
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4 .1 The Setup 

CHAPTER4 

SIMULATION STUDY 

A simulation study was performed to examine the effect of intralitter correlation 

on the root estimates from the SAM procedure. Since SAM requires the existence of 

MLEs at each update, some other initial procedure is required to start SAM. The Moser

Fei (1991) procedure was used to generate the initial dose levels until the MLEs existed. 

Even when the MLEs exist, for small n, the estimates of et) and et) can be 

unreasonably small or large, causing unnecessarily large steps to be taken early in the 

procedure. When this happens, the procedure may not recover if the total number of 

updates is small. To avoid this problem, bounds have been set on et) and et). When 

the MLEs do not exist, the Moser-Fei procedure is used to obtain the next dose levels 

instead of SAM. Typically, Moser-Fei is used for the first one or two updates, and then 

SAM is used for the remaining updates. However, on occasion, the Moser-Fei procedure 

is used for all n updates. The average number of updates after which only SAM is used 

(i.e., Moser-Fei is no longer used), and the percentage oftimes that the Moser-Fei 

procedure is used for all n updates have been reported. 

Ten thousand simulation runs were performed for each of the 80 combinations of 

the following factors: 

a) true model µ(xif): logit or complementary log-log, 

b) starting values: (L.2, L.8) or (L.1s, L.9s), 

c) number oflitters per dose group: mif= 2 or mif= 5, 
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d) number of updates: 10 or 20, and 

e) intralitter correlation: .1, .3, .5, .7, or .9. 

The specific form of the two models in a) are: the logit, [l + exp-(81 + B2x;,, )r1 , 

with B1=0 and Oi=l; and the complementary log-log, {1- exp[-:-exp(81 +82x!I )]} , with 

B1=-.51 and Oi=.71. Regardless of the true model, µ(xu), the MLEs were calculated using 

the two-parameter logit model. 

To begin each simulation run, two initial dose levels, xu and x21 had to be 

selected. From b) note that these starting values were set at either 1) xu= L.2 and X21= L.s 

or 2) x11= L.1s and X21= L.9. The numerical values of L.2, L.s, L.1s, and L.9 depend on which 

model was used in a). 

The litter size, riJk, is a random value from a truncated Poisson distribution with 

mean 12 and sample space { 1, ... , 20}. According to Kupper et al. (1986), this 

distribution of litter sizes is generally representative of that encountered in some actual 

experimental situations. 

After completion of the 10,000 runs for each of the 80 combinations of factors, 

estimates of L.1o, L.2s, L.so, L.1s, and L.9o and mean square errors (MSEs) were calculated. 

4.2 Results 

The results of the simulation are presented in Tables 2-5. Tables 2 and 3 display 

MSEs for estimates of L.10, L.2s, L.so, L.1s, and L_90 when the true model is the logit. 

Starting values of L.20 and L.so were used to obtain the values in Table 2, while starting 

values of L.75 and L.95 were used in Table 3. Tables 4 and 5 display the corresponding 

results when the true model is the complementary log-log. 
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For all of the tables (2-5), the following effects are noticed: 

a) For a fixed number oflitters per dose and a fixed number of updates, the MSEs 

increase as the intralitter correlation increases. 

b) For a fixed number of litters per dose and a fixed correlation value, the MSEs 

decrease as the number of updates increase. 

c) For a fixed number of updates and a fixed correlation value, the MSEs decrease as the 

number of litters per dose increase. 

d) The MSEs tend to be smaller for the logit model than for the complementary log-log. 

Result a) is expected. Note that Var(YiJklxi1)=[1 + {(n- I)y /(1 + y)} ]nµil (1- µii) which is 

an increasing function of the correlation, y/(1 +y). Now if asymptotically the variance of 

A A 

L p* for this SAM procedure operates like the variance of L p* for the optimal two 

dimensional Robbins-Monro procedure, then 

Var(Lp* )=Var(kLPJ + (I-k) LP2 ) 

where 

where k and c1 do not depend on Var(YiJklxiJ), Therefore, as the variance of Y;Jk given xi/ 

A A 

increases, the variance of LP* increases for O<p*<I; as the variance of LP* increases, the 

MSE increases since the MSE(Lp*)=Var(Lp*) +[Bias(Lp*)]2. Thus, asymptotically it is 

expected that the MSE increases linearly as a function of the intralitter correlation. It is 

not surprising, therefore, that the effect is evident for smaller n. Figures I and 2 display 
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evidence of the linear increase in the MSEs of L.so and as a function of the correlation for 

both the logit and the complementary log-log when n=lO and n=20. Similar patterns are 

evident for the MSEs of L.10, L.2s, L.1s, and L.90. 

The reason the MSEs decrease in b) and c) is that more data is being used to 

predict the roots. Effect d) occurs because the logit model is being used to calcirfot~ the 

MLEs. Therefore, when the true model is the logit model, the bias in the MSEs is zc;1~-,. 

When the true model is actually the complementary log-log, the squared bias in the MSEs 

is non-zero, resulting in larger MSEs for the log-log relative to the logit. 

For a starting set of values ofL.20 and L.so, the average number of updates for the 

SAM procedure to take over the Moser-Pei procedure was between 1 and 3.5. For a 

starting set of values of L.1s and L.95, the average number of updates before the SAM 

procedure took over was slightly larger (between 1 and 5.4). Moser-Pei is used for more 

updates when the starting values are high because for high dose levels all of the responses 

tend to be positive, and the MLEs do not exist until some of the responses are not 

positive. 

The number of times that Moser-Pei was used for all n updates is less than 1 % in 

all but one case. The exception waswhen the correlation was .9, the number of updates 

was 10, and the starting values were L.1s and L_95. In this worst-case scenario 

(correlation=.9, number ofupdates=lO and starting values of L.1s and L_9s), the procedure 

stayed in the Moser-Pei procedure for all 10 updates 7.34% and 5.67% of the time for the 

logit and complementary log-log model, respectively. The percentages were higher for 

this set of conditions because when the correlation is close to one, the response for a 

given litter tends to be either zero or rijk· Since the MLEs could not be calculated until at 
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least one of the responses was equal to a value other than zero or rifk, the Moser-Fei 

procedure was used for relatively more updates. 

Table 2 

Summa2 o[ simulations f!!r the Logj_t Model with startin[ values L.20 and L.80 

% 
times 

Avg Moser 
starting -Fei is 
update used 

#of MSE MSE MSE MSE MSE number for all 
# of Up- corre- for for for for for for n up-

litters dates lation L.10 L.2s L.so L.1s L.9o SAM dates 
2 10 .1 .10158 .04603 .02707 .04470 .09891 1.08 0.00 

.3 .20263 .08908 .05059 .08716 .19879 1.31 0.00 

.5 .29106 .12747 .07152 .12322 .28255 1.63 0.00 

.7 .39695 .17241 .09938 .17785 .40784 2.08 0.00 

.9 .56539 .25129 .15076 .26380 .59040 3.23 2.23 
2 20 .1 .04883 .02206 .01317 .02214 .04898 1.08 0.00 

.3 .09949 .04363 .02505 .04375 .09973 1.31 0.00 

.5 .14664 .06339 .03529 .06235 .14457 1.64 0.00 

.7 .19332 .08413 .04828 .08579 .19665 2.10 0.00 

.9 .26593 .11673 .06715 .11719 .26685 3.49 0.50 
5 10 .1 .04063 .01832 .01067 .01766 .03932 1.00 0.00 

.3 .07803 .03407 .01942 .03407 .07802 1.01 0.00 

.5 .11508 .04979 .02748 .04815 .11181 1.09 0.00 

.7 .15148 .06688 .03847 .06625 .15021 1.25 0.00 

.9 .20451 .09168 .05329 .08934 .19984 1.85 0.10 
5 20 .1 .01976 .00884 .00522 .00888 .01984 1.00 0.00 

.3 .03899 .01713 .00976 .01689 .03851 1.02 0.00 

.5 .05549 .02377 .01335 .02425 .05647 1.08 0.00 

.7 .07691 .03349 .01868 .03246 .07485 1.26 0.00 

.9 .09818 .04332 .02529 .04411 .09975 1.88 0.00 
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Table 3 

Summary__ o[_ simulations[gr the Logp Model with starting_ values L.7s and L.95 
% 

times 
Avg Moser 

starting -Fei is 
update used 

# of MSE MSE MSE MSE MSE number for all 
# of Up- corre- for for for for for for n up-

litters dates lation L.10 L.2s L.so L.7s L.90 SAM dates 
·····························-················································································································································································································ 

2 10 .1 .12598 .05907 .03015 .03924 .08633 1.81 0.00 
.3 .26276 .12279 .05959 .07315 .16347 2.51 0.00 
.5 .41802 .19711 .09164 .10159 .22699 3.13 0.03 
.7 .62643 .29987 .13724 .13855 .30378 3.74 0.39 
.9 1.11743 .56059 .26764 .23858 .47341 4.54 7.34 

2 20 .1 .05355 .02476 .01375 .02050 .04501 1.83 0.00 
.3 .10763 .04836 .02532 .03851 .08792 2.48 0.00 
.5 .16167 .07290 .03691 .05372 .12332 · 3.11 0.00 
.7 .22893 .10414 .05286 .07507 .17079 3.81 0.00 
.9 .33502 .15464 .07454 .09473 .21520 5.34 0.28 

5 10 .1 .04620 .02124 .01126 .01626 .03625 1.17 0.00 
.3 .08864 .04031 .02094 .03055 .06913 1.46 0.00 
.5 .13740 .06303 .03126 .04209 .09551 1.83 0.00 
.7 .20396 .09565 .04662 .05685 .12636 2.37 0.00 
.9 .29832 .14140 .06708 .07534 .16619 3.24 0.16 

5 20 .1 .02091 .00948 .00535 .00852 .01899 1.16 0.00 
.3 .04038 .01823 .01006 .01586 .03562 1.46 0.00 
.5 .05926 .02629 .01392 .02214 .05095 1.81 0.00 
.7 .08160 .03670 .01920 .02913 .06647 2.33 0.00 
.9 .11578 .05300 .02710 .03806 .08590 3.29 0.00 
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Table 4 

Summary of simulations for the Complementary Log-log Model 
. with startin[I, values L.20 and L.so 

% 
times 

Avg Moser 
starting -Fei is 
upd:11:e csed 

#of MSE MSE MSE MSE MSE numl ur for all 
#of Up- corre- for for for for for for • : '.Jf!·· 

litters dates lation L.10 L.2s L.so L.1s L.9o SAM dates 
........................................ u ................................................................................................................................................................................................ 

2 10 . 1 .22755 .06862 .06842 .03566 .13384 1.08 0.00 
.3 .37015 .12084 .08986 .06396 .17828 1.32 0.00 
.5 .50783 .17329 .11256 .09115 .21715 1.65 0.00 
.7 .65154 .22893 .13688 .12545 .28276 2.10 0.00 
.9 .85867 .32230 .18383 .18759 .41223 3.22 2.46 

2 20 .1 .14972 .03596 .05286 .01971 .11283 1.08 0.00 
.3 .22957 .06675 .06513 .03305 .13287 1.31 0.00 
.5 .30708 .09333 .07501 .04572 .14842 1.64 0.00 
.7 .38842 .12240 .08600 .06076 .17393 2.09 0.00 
.9 .47959 .16120 .10352 .08109 .21108 3.48 0.80 

5 10 .1 .12651 ,03044 .05210 .01728 .11155 1.00 0.00 
.3. .18853 .05111 .05987 .02779 .12359 1.02 0.00 
.5 .25186 .07297 .06730 .03818 .14103 1.08 0.00 
.7 .31056 .09455 .07621 .04790 .15085 1.25 0.00 
.9 .37228 .12669 .09295 .06376 .18136 1.85 0.20 

5 20 .1 .09496 .01757 .04676 .01165 .10232 1.00 0.00 
.3 .12801 .02892 .05082 .01662 .10809 1.01 0.00 
.5 .16055 .03906 .05367 .02104 .11416 1.08 0.00 
.7 .19088 .05257 .05943 .02607 .12299 1.25 0.00 

.. 9 .23380 .06694 ;06558 .03451 .13113 1.86 0.00 
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Table 5 

Summary of simulations for the Complementary Log-log Model 
with starting values L. 75 and L.95 

% 
times 

Avg Moser 
starting -Fei is 
update used 

# of MSE MSE MSE MSE MSE number for all 
# of Up- corre- for for for for for for n up-

... ..Ji~~~E~ .......... dates ....... .J.~~i!?.~ ................. L.10 ............. L.2s .............. L.so ............. L.1s ............. L.9o ............. ~.AM. .......... ~!:I:~~.~ .. . 
2 10 .1 . .35804 .09710 .06676 .03543 .10971 1.81 0.00 

.3 .60300 .19088 .10068 .06470 .14298 2.52 0.00 

.5 .86060 .29544 .13644 .08809 .17308 3.13 0.00 

.7 1.14512 .41607 .17820 ,11392 .21516 3.77 0.40 

.9 1.66031 .67960 .30557 .21032 .37166 4.71 5.67 
2 20 .1 .19100 .04345 .05227 .02060 .10251 1.83 0.00 

.3 .29416 .07994 .06639 .03518 .11304 2.50 0.00 

.5 .39974 .11339 .07634 .04752 .12288 3.12 0.00 

.7 .52118 .16380 .09389 .06030 .14596 3.81 0.00 

.9 .68405 .23054 .11684 .07684 .17252 5.35 0.13 
5 10 .1 .19220 .03558 .04554 .01739 .09297 1.17 0.00 

.3 .28947 .06742 .05533 .02832 .10176 1.46 0.00 

.5 .38012 .10333 .06912 .03964 .11384 1.83 0.00 

.7 .48544 .14587 .08446 .05131 .12967 2.36 0.00 

.9 .64651 .21302 .10790 .06461 .14341 3.25 0.10 
5 20 .1 .12017 .01714 .04236 .01152 .09476 1.16 0.00 

.3 .16474 .03103 .04666 .01706 .09862 1.45 0.00 

.5 .20097 .04402 .05176 .02204 .10191 1.81 0.00 

.7 .24670 .06052 .05837 .02838 .10524 2.35 0.00 

.9 .30735 .08443 .06701 .03514 .11255 3.27 0.00 
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MSEs for Estimating L.so when µ(x) is the Logit Model 
Starting values L.1s and L.95 
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CHAPTERS 

CONCLUSION 

If the SAM procedure for the two-parameter logit model is used to estimate dose 

levels when the responses within a litter follow a beta-binomial distribution, the MLEs of 

the three parameters (81, 82, and y) are consistent and asymptotically normal. The 

observed dose levels are consistent for a discrete set of dose levels. Furthermore, as noted 

in the appendix, the results can be extended to situations in which the overdispersion 

parameter is allowed to vary across dose levels. The simulation results support the 

asymptotic results, indicating that the effective amount of information decreases (i.e., the 

MSE increases) as the correlation within a litter increases. 

Since the assumption that the responses within a litter follow a beta-binomial 

distribution may not be appropriate, further research should be directed at examining a 

broader class of distributions to model the response variable. Possible alternatives include 

the Probit-normal-binomial and the Logistic-normal-binomial. 
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APPENDIX A 

Lemma 1. lfY-BB(r,p,r) then 

E L =E L . (
Y-1 1 J (r-Y-1 } J 
s=O p + sy s=O 1-p + sy 

Proof. 

Prove E L = L-- by induction. (
Y-1 1 J r-1 } 

s=OP + sr s=Ol + sr 

a) Show for r=2. 

( Y-1 1 J ( 1 J ( 1 1 J E L = - P(Y=ljr=2)+ -+- P(Y=2jr=2) 
s=O p + SY p p p + Y 

= 2(1 - p) + 2 p + r = 2 + r = 1 + _!_ 
I+r I+r I+r r 

2-1 1 
=L-

s=ol+sr 

(
Y-1 1 J r-1 1 

b) Assume E L = L-- when Y-BB(r,p,r). 
s=OP + sr s=Ol + sr 
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(
Y-1 I ) r I 

c).Show E L = L-- when Y-BB(r+I,p,r). 
s=op+sr s=ol+sr 

l-p 
r-y+--

First note that P(Y = ylr + I, p, r) = --1-=--r- P(Y = yir,p,y) 
r+-

wherey=O, ... r. 

r 

= {1 + y(l-y)- p(l+r)}P(Y = yir,p,y) 
(1 + ry )(r + 1 - y) 

So for Y-BB(r+ l,p,r) 

( y -1 1 ) ( I ) ( 1 1 ) E L = - P(Y=Ijr+I,p,y)+ -+-- P(Y=2lr+l,p,y)+ 
s=op+sr p p p+y 

( 1 I 1 ) -+--+ P(Y=3jr+l,p,y)+ ... + 
p p+r p+2r 

( 1 I 1 I ) -+--+ +···+ P(Y=rlr+l,p,y)+ 
p p+y p+2y · p+(r-I)y . 

-+--+ +···+ P(Y=r+llr+I,p,y) ( 1 1 1 1 ) 
p p+r p+2y p+rr 
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= _!_{1 + (1-(- p1 + r)}P(Y = llr,p,y) + 
p 1 + ry rr 

( _!_ +-l-J{1 + (2(1-y )- p(l + r)}P(Y = 2lr,p,y) + 
p p+y (l+ryX,--1) 

( 1 1 1 1 J{i· (3{1-y)-p(l+r)}P(Y- 31 ) -+--+ + + - r pr +···+ 
p p + y p + 2y p + 3y (1 + ry Xr - 2) ' ' 

( _!_+_1 _+··· + 1 J{l+ (r(l-y )- p(l +r)}P(Y = rlr,p,y) + 
p p+y p+(r-l)y (l+ry) 

( 1 1 1 J -+--+···+ P(Y=r+llr+l,p,y). 
p p+y p+rr 

from b) 

= f-1-+(-1-J[_!_{(l-y- p(l+r)}P(Y = llr,p,y)+ 
s=O 1 + SY 1 + ry p T 

(_!_+_l_J{(2(1-t )(l+r)}P(Y = 2lr,p,y)+ 
p p+y r~l 

( 1 1 .1 1 J{(3{1-y)-p(l+r)}P(Y- 3I ) -+--+ +--- - r pr +···+ 
p p+y p+2y p+3y (r-2) ' ' 

( 1 1 1 J{ (r(l - r )- p(l + r )}P(Y _ I ) -+--+···+ -rr,p,y + 
p p+y p+(r-l)y 1 

( 1 1 1 J (p + ry )(p + (r - 1 )r )· · · p J ( 1) 
p + p+y +···+ p+rr (l+(r-l)rXl+(r-2)y)-··(l+r). 

It remains to show that the term in square brackets is equal to one. To this end, we will 

first prove the following: 

P(Y=sir)= l { ± [y(l-y)-p(l+r)P(Y=ylr,p,r)]+(p+sy)P(Y=rlr,p,y)}. 
p + sy y=s+I 1 + r - y 

(2) 

The term on the right hand side can be rewritten in the following way: 
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1 { f [y(l-y)- p(I + r) P(Y = yjr,p,r)] + (p +sy)P(Y = rjr,p,r)} 
p + sr y=s+l 1 + r - y 

= 1 { i [y(I-r)- p(I + r) P(Y = yjr,p,r)] + r(I- p)P(Y = rjr, p,r)} 
p + sr y=s+l 1 + r - y 

=. 1 { r,£1 [c1+rr)(P(Y=yjr+I,p,y)-P(Y=yjr,p,y))]+r(I-p)P(Y=rlr,p,y)} 
p +sr y=s+l 

= I+ ry {1-[ ± (P(Y = yjr +I)+ P(Y = rjr +I)+ P(Y = r + Iir + 1) )l-
p +sy y=O j 

[1-[ ± P(Y = yjr) + P(Y = rlr)]] + r(I- p) P(Y = rjr,p,r)} 
y=O 1 +ry 

- ± (P(Y = yir + 1)- P(Y = rjr + 1)- P(Y = r + Ijr + 1)) 
y=O I+ry 

+ ± P(Y = ylr) + P(Y = rir)[l + r(I- p)] 
~ 1+7 

= 
p+sr 

- ± [P(Y = yjr)(l + y(I-r)- p(I + r)J]-P(Y = rir)(l + r(I-r)- p(I + r)J 
I+ ry y=O (1 + r - y XI+ rr) (1 + rr) 

=--

p +sr -P(Y = rjr)(P +rr)J + ± P(Y = yjr) + P(Y = rjr)[l + r(I- p)] 
1 + ry y=O 1 + ry 

= I+ry {-±P(Y=yjr)y(I-y)-p(I+r)} 
p + sr y=O (1 + r - y XI + rr) 

= I {- ± P(Y = yjr)y(l-r)- p(l+r)} 
p + sy y=O (1 + r - y) 

Induction will be used to show that the last term is equal to P(Y=slr). That is, we will 

prove that: 

I {- ± P(Y = yjr) y(I-y)- p(I + r)} = P(Y = sjr). 
p + sy y=O (I + r - y) 
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i) Show for s=O. 

_!_(- ±P(Y = yjr) y(l- r)- p(l + r)J 
p y=O (r + 1-Y) 
= 1 P(Y = oJr)p(l + r) 

P r+l 

= P(Y = oJr) 

ii) Assume 1 {- ± P(Y = yjr) y(l-r)- p(l + r)} I 
p+sr y=o (l+r-y) =P(Y=sr). 

iii) Show . ( 1 )r {- ! P(Y = yjr) y(l - r) - p(l + r )}- _ p+ s+l y=o (l+r-y) -P(Y-s+ljr). 

1 { s+I . (1 ) } 
( )r - I: P(Y = yjr)Y -r - p(l+r) 

p + S + 1 y=O (1 + r - y) 

by ii) is equal to 
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(r J(~)r(P + sJr(r _ s + l -PJr(!J 
s+l r-s r r r ( ) 

I r(: )r(l~p )r(r+ n p+sr -
=---

p +(s+ l)y (r • Jr(P +s +1Jr(r-(s+ 1) + l-PJr(!J s+l r r r (s+l)(l-r)- p(l+r) 

r(: )r('~P ){< J 
r-s 

1 
=---

p+(s+l)y ( 1 pJ ( p J r-(s+l)+7 (p+sr)(s+l) y+:; (r-s)[p+(s+l)y] 

r-s r-s 

1 
=---

(f +s},-s)[p +(s+ l)r] 

p +(s+ l)y r-s 

=P(Y = s + 11 r). 

This proves (2). Applying this equality to (1) results in the following equation: 

(
Y-1 1 J r-1 1 ( 1 J r 

EL =L-+ - LP(Y=slr) 
s=O p + SY s=O 1 + SY 1 + ry s=O 
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r-1 1 ( · 1 ) (r+l)-1 1 
=L-+-=L-· 

s=O 1 + sy 1 + ry s=O 1 + SY 

(
Y-1 1 ) r-1 1 

.Therefore, by induction, E L = L-- whenY-BB(r,p,r). NowletZ=r-Y. 
s=OP + sr s=Ol + sr 

(
Z-1 1 ) r-1 1 

ThenZ-BB(r,1-p,r) and EL = L--. 
s=O 1 - p + Sy s=O 1 + Sy 
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APPENDIXB 

Lemma 2. JJY-BB(r,p,r) then 

(
Y-1 s r-Y-1 s ) r-1 s 

EL + L - = L--. 
s=Op+sy s=O 1- p+sy s=Ol+sy 

Proof. 

By induction: 

a) Show for r=2. 

E L = O · P(Y = 11 r = 2) + (0 + --)P(Y = 21 r = 2) ( ~ s ) 1 
~p+q p+y 

=-l-((p+y)p) 
p+y l+y 

=_p_ 
l+y 

(
r-Y-1 S ) 1 

E L = (0 + )P(Y = O I r = 2) + 0 · P(Y = 1 I r = 2) 
s=O 1- p + sy 1- p + Y 

_ 1 ( (1- p + r )(l - p)) 
1- p+y l+y 

_1-p 
---

l+y 

so EL + L =--+----=--= L--. (
Y-1 S r-Y-1 s ) p l- p _ 1 2-1 s 

s=Op+sy s=O l-p+sy l+y l+y l+y s=ol+sy 

(
Y-1 s r-Y-1 s ) r-1 s 

b) Assume E L + L = L-- when Y-BB(r,p,r). 
s=Op+sy s=O 1- p+sy s=Ol+sy 

(
Y-1 s r-Y s ) r s 

c) Show E L + L = L-- when Y-BB(r+l,p,r). 
s=Op+sy s=O 1- p+sy s=ol+sy 
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1-p 
r-y+--

Firstnotethat P(Y=ylr+l,p,y)= 1 r P(Y=ylr,p,y) 
r+-

y 

= {1 + y(l-y)- p(l + r)}P(Y = y/r,p,y) 
(1 + ry )(r + 1 - y) 

wherey=O, ... r. 

So for Y-BB(r+ 1,p,r) 

= + +···+ P(Y=Olr+l,p,y) ( 1 2 r J 
1- p+y 1- p+2y 1- p+ry 

+ + + .. ·+ P(Y=llr+l,p,y) ( 1 2 r-1 J 
1- p + r 1- p + 2y 1- p + (r - l)y 

+ --+ + .. ·+ P(Y = 21 r + 1,p,y) ( 1 1 r-2 J 
p + r I - p + r 1- p + (r - 2)y 

( 1 r-2 1 J + --+···+ + P(Y=r-llr+l,p,y) 
p+y p+(r-2)y 1-p+y 

( 1 r-1 J + --+···+ P(Y = r Ir+ 1,p,y) 
p + r p + (r - l)y 

+(-1-+···+ r JP(Y=r+llr+l,p,y) 
p+y p+ry 

= · + +···+ 1+ P(Y=Olr,p,y) ( 1 2 r J( -p(l + r) J 
1-p+y 1-p+2y 1-p+ry (l+ry)(r+l) 

( 1 2 . r -1 J(1 (1-y)-p(l + r)JP(Y I I ) + + +···+ + = r pr 
1- p+y 1-p+2y 1-p+(r-l)y (l+ry)r ' ' 

( 1 I r -2 J(i 2(1-y)- p(l + r)JP(Y 21 ) + --+ +···+ + = r pr 
p + y 1- p + y 1- p + (r - 2)y (1 + ry )(r + 1- 2) ' ' 

( I r - 2 1 J(i (r-1)(1-y)- p(l + r)JP(Y ~ l I ) + --+···+ + + -r- r pr 
p + y p + (r - 2)y 1- p + y (1 + ry )2 ' ' 
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( 1 . r - l J(l r(l- r)- p(l + r)JP(Y _ I ) + --+···+ + -r r,p,r 
p + y p + (r -1 )r 1 + rr 

+(-1-+-··+ r · JP(Y=r+l\r+l,p,y). 
p+r p+rr 

By the induction assumption the above term is equal to 

L--+-- P(Y=O\r,p,y) -- +···+ P(Y=r-l\r,p,y) --r-1 s r [ r (l+rr) 1 (l+ry) 
s=ol+sr l+rr 1- p+rr r l-p+r r 

( 1 2 r J(- p) + + +···+ - P(Y=Olr,p,y) 
l-p+r l-p+2r 1-p+rr r 

( 1 2 r-l J((l-y)-p(l+r))P(Y ll ) + + +···+ = r pr 
1- p + r l- p + 2y 1- p + (r - l)y r 2 ' , 

( 1 1 r-2 J(2(1-y)-p(l+r)JP(Y 21 ) + --+ +···+ = r pr 
p+y l-p+y l-p+(r-2)y (r-l)r ' ' 

( 1 r-2 1 )((r-l)(l-y)-p(l+r))P(Y ll ) + --+···+ + =r- r pr 
p + y p + (r - 2)y 1- p + y r2 ' ' 

( 1 r-1 J(r(l-y)-p(l+r))P(Y I ) + --+···+ =r r,p,y 
p + r p + (r - l)y r 

( 1 r Jp+ry J + --+···+ P(Y=r\r,p,y) . 
p+y p+rr r 

(1) 

It remains to show that the term in square brackets is equal to one. To show this we will 
first prove that 

P(Y=s\r)= . s~"· ( i y(l-y)-p(l+r)P(Y=y\r,p,y)+p+ryP(Y=r\r,p,y)J 
p + sy y=s+I (1 + r - y )r r 

r - s ( s y(l - r) - p(l + r) 1 + ry J + L P(Y=y\r,p,y)+--P(Y=s\r,p,y. 
1- p + (r - S )y y=O (1 + r - y )r r 

From 2) and 3) in Lemma 1, the above equality is equivalent to: 

P(Y = s I r) = s (- ± y(l - r) - p(l + r )P(Y = y I r' p' r) ) 
p+sy y=O (l+r-y)r 
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· r - s ( s y(l - r) - p(l + r) 1 + rr ) + L P(Y = y I r,p,r)+--P(Y = s I r,p,y . 
1- p + (r - s )r y=o (1 + r - y )r r 

Combining terms appropriately, the above equality is equivalent to: 

P(Y =sir)= 1 {""" f P(Y = ylr)y(l-y)- p(l+r)}· 
p + sy y=O (1 + r - y) 

But this equality was proven by induction in Lemma 1. Applying this equality to (1) 
results in the following equation: 

(
Y-1 s r-Y s J r-1 s ( r ) r 

E L + L =L--+ -· - LP(Y=slr) 
s=op+sr s=O 1-p+sr s=ol+sr l+rr s=O 

=L--+ --r-1 s . ( r J 
s=ol + sr 1 + rr 

(r+l)-1 S 

= L -· 
s=O l+sy 

Therefore, by induction, 

(
Y-1 s r-Y-1 s J r-1 s 

EL + L = L--. 
s=O p + Sy s=O 1- p + SY s=O 1 + sy 
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APPENDIXC 

FORTRAN PROGRAM 

use msimsl 
use portlib 
integer up, m, np, dim, it 
integer iparam(7), stayatmf 
real lambda, phi 
parameter (it=lOOOO) 
parameter (np=3) 
parameter ( dim=2 l O) 
data up/10/ 
data m/2/ 
data phi/.3/ 
data lambda/12/ 
data iseed/478387/ 
double precision x ( dim) 
double precision u(dim) 
double precision uu(dim) 
double precision rchy(21) 
double precision py(21) 
double precision cy(21) 
double precision betaa(2 l ), betaad, alpha, delta 
double precision poi(20) 
double precision cpoi(20) 
double precision thetal 
double precision theta2 
double precision gamhat 
double precision t(np ),tguess(np ),tlb(np ),tub(np) 
double precision tscale(np ),fscale,rparam(7),fvalue 
double precision g( np ), h( 1 : 3, 1 : 3 ), lkhd 
double precision xOmin, xOmax, xrmin, xrmax 
double precision q 1 
double precision llOhat, 125hat, 150hat, 175hat, l90hat 
double precision mselO, mse25, mse50, mse75, mse90 
double precision ml 0, rn25, m50, m75, m90 

integer y(dim), r(dim) 
integer n, strt, chk 
integer count, hitbnd, stybnd, xbnd 
integer iseed 
integer toty 1, toty2, totr 1, totr2 

logical flag, flag2, flag3 
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common y,r,x,m,n 

external likelhd, grad, hess 

open (unit=2, access='append', file='d:\thesis\simulations\loglogl .txt') 
open ( unit=4, access='append', file='d:\thesis\simulations\xbndlglg. txt') 
call mset (iseed) 

stayatmf=O 
hitbnd=O 
stybnd=O 
xbnd=O 
do 400 1=1,it 
flag2=.true. 
flag3=.false. 
n=l 
strt=O 
count=O 
x=OdO 
y=OdO 
r=OdO 
u=OdO 
uu=OdO 
thetal=ODO 
theta2=0D0 
garnhat=ODO 
tlb(l)=-5d0 
tub(1)=5d0 
tlb(2)=.2d0 
tub(2)=5d0 
tlb(3)=0d0 
tub(3)=9999d0 
fscale=ldO 
tscale(l )=1 dO 
tscale(2)=1d0 
tscale(3)=1d0 

SET STARTING VALUES 

do 12 i=l,m 
x(i)=-1.3 86D0 
x(m+i)=l.386D0 

12 continue 
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GENERATE UNIFORM RANDOM VARIABLES FOR DETERMINING LITTER 
SIZES AND RESPONSES (Y'S) 

do 13 i=l,2*m*up 
u(i)=dmunf() 
uu(i)=dmunf() 

GENERATE LITTER SIZES 

13 continue 
do 15 j=l, 2*m*up 

do 14 i= 1, 20 
poi(i)=(poidf(i,lambda)-poidf(i-1,lambda))/.98840 

cpoi(l )=poi(l) 
if (i .ne. 1) then 

cpoi(i)=cpoi(i-1 )+poi(i) 
endif 
if (uuG) .It. cpoi(i) .and. rG) .eq. 0) then 

rG)=i 
endif 
if (i .eq. 20 .and. rG) .eq. 0) then 

rG)=20 
endif 

14 continue 
15 continue 

GENERATE Y'S 

140 do 100 i=l, 2*m 
count=count+ 1 
delta=(ldO-phi)/phi*( exp(-exp(-.51 +. 71 *x( count)))) 
alpha=(ldO-phi)/phi*(ldO-exp(-exp(-.51 +. 71 *x( count)))) 
betaad=dgamma(alpha)*dgamma(delta)/dgamma(alpha+delta) 
cy=OdO 
do 110 j=O, r(count) 

rchyG+ 1 )=fac( r( count))/( facG)*fac(r( count )-j)) 
betaaG+ 1 )=dgamma( alpha+j)* dgamma( r( count )+delta-j) 

I dgamma( alpha+r( count )+delta) 
pyG+l )=rchyG+ 1) *betaaG+ 1 )/betaad 
cy( 1 )=py( 1) 

if G .ne. 0) then 
cyG+ 1 )=cyG)+pyG+ 1) 

endif 
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if(u(count) .It. cyG+l)) then 
y(count)=j 
goto 100 

endif 
110 continue 
100 continue 

CHECK EXISTENCE OF MLE'S 

chk=O 
xOmin=lOOO 
xrmin=lOOO 
xOmax=-1000 
xrmax=-1000 
do 120 i=l, 2*n 

do 121 j=l,m 
if (y(m*(i-l)+j) .ne. 0) then 

if (x(m*(i-l)+j) .It. xOmin) then 
xOmin=x(m*(i-1 )+j) 

endif 
if (x(m*(i-l)+j) .gt. xOmax) then 

xOmax=x( m *(i-1 )+j) 
endif 

endif 
121 continue 

do 122j=l,m 
if (y(m*(i-l)+j) .ne. r(m*(i-l)+j)) then 

if (x(m*(i-l)+j) .gt. xrmax) then 
xrmax=x(m*(i-1 )+j) 

endif 
if (x(m*(i-l)+j) .It. xrmin) then 

xrmin=x(m*(i-l)+j) 
endif 

endif 
122 continue 
120 continue 

if (xOmin .It. xOmax .and. xrmax .gt. xrmin .and. xOmin .It. xrmax) then 
chk=l 

endif 
if(xOmin .eq. xOmax .and. xrmin .It. xOmin .and. xrmax .gt. xOmax) then 

chk=l 
endif 
if (xrmin .eq. xrmax .and. xOmin .It. xrmin .and. xOmax .gt. xrmax) then 

chk=l 
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endif 
flag=.false. 
do 123 i=l,2*m*n 
if (y(i) .ne. 0 .and. y(i) .ne. r(i)) then 

flag=.true. 
goto 124 

endif 
123 continue 
124 if (chk .eq. 1 .and. flag) then 

strt=n 
goto 200 

end if 

MOSER-FBI PROCEDURE (MLE'S DO NOT EXIST) 

totyl=O 
toty2=0 
totrl=O 
totr2=0 
do 130 i=l,m 
totyl =totyl +y(2*m*n-2*m+i) 
totrl =totrl +r(2*m*n-2*m+i) 
toty2=toty2+y(2*m*n-m+i) 
totr2=totr2+r(2 *m *n-m+i) 

13 0 continue 
q 1 =(1/dble(n))*((l/(.022*totrl ))*(totyl-totrl * .2)) 
q2=((1/dble(n))*((l/(.022*totr2))*(toty2-totr2*.8))) 
x(2 *m *n+ 1 )=x(2 *m *n-2 *m+ 1 )-q 1 
x(2 *m*n+m+ 1 )=x(2 *m*n-m+ 1 )-q2 
if(x(2*m*n+l) .lt. -4.0 .or. x(2*m*n+m+l) .lt. -4.0) then 

x(2*m*n+ l)=x(l) 
x(2 *m*n+m+ 1 )=x(m+ 1) 

endif 
if(x(2*m*n+m+l) .gt. 4.0 .or. x(2*m*n+l) .gt. 4.0) then 

x(2*m*n+ l)=x(l) 
x(2 *m*n+m+ 1 )=x(m+ 1) 

endif 
if (x(2*m*n+ 1)-x(2*m*n-2*m+ 1) .gt. 5.0) then 

x(2*m*n+ l)=x(2*m*n-2*m+ 1)+5.0 
endif 
if(x(2*m*n+l)-x(2*m*n-2*m+l) .lt. -5.0) then 

x(2*m*n+l)=x(2*m*n-2*m+l)-5.0 
endif 
if(x(2*m*n+m+l)-x(2*m*n-m+l) .gt. 5.0) then 

x(2*m*n+m+l)=x(2*m*n-m+1)+5.0 
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then 

endif 
if(x(2*m*n+m+l)-x(2*m*n-m+l) .lt. -5.0) then 

x(2*m*n+m+ l)=x(2*m*n-m+ 1)-5.0 
endif 
if(x(2*m*n+l) .gt. x(2*m*n+m+l) .and. x(2*m*n+l) .gt. x(2*m*(n-1)+1)) then 

x(2*m*n+ l)=x(2*m*(n-1)+ l)+.25*(x(2*m*(n-l)+m+ 1 )-x(2*m*(n-1)+ 1)) 
endif 
if (x(2*m*n+ 1) .gt. x(2*m*n+m+ 1) .and. x(2*m*n+m+ 1) .lt. x(2*m*(n-l)+m+ 1)) 

x(2*m*n+m+ l)=x(2*m*(n-l)+m+ 1)-.25*(x(2*m*(n-l)+m+ 1)-x(2*m*(n-1)+ 1)) 
endif 
do 131 i=2,m 

x(2*m*n+i)=x(2*m*n+ 1) 
x(2 *m *n+m+i)=x(2 *m *n+m+ 1) 

13 1 continue 
n=n+l 
if (n .eq. up) then 

stayatmf=stayatmf+ 1 
ml O=(-log(l .0/4.0)+log(9.0))/(-log(l .0/4.0)+log( 4.0)) 
rn25=(-log(l. 0/4. O)+log(3. 0))/(-log(l .0/4. O)+log( 4.0)) 
rn50=(-log(l .0/4.0))/(-log(l .0/4.0)+log( 4.0)) 
rn75=(-log(l .0/4.0)+log(l .0/3 .O))/(-log(l .0/4.0)+log(4.0)) 
rn90=(-log(l .0/4.0)+log(l .0/9.0))/(-log(l .0/4.0)+log( 4.0)) 
11 Ohat=rnl O*x(2*m*(up-l )+ 1) + (1-rnlO)*x(2 *m*(up-1 )+m+ 1) 
125hat=rn25*x(2*m*(up-1)+ 1) + (1-rn25)*x(2*m*(up-l)+m+ 1) 
l50hat=rn50*x(2*m*(up-1)+ 1) + (l-rn50)*x(2*m*(up-l)+m+ 1) 
l75hat=rn75*x(2*m*(up-1)+ 1) + (1-m75)*x(2*m*(up-l)+m+ 1) 
l90hat=rn90*x(2*m*(up-1)+ 1) + (1-rn90)*x(2*m*(up-l)+m+ 1) 
goto 390 

endif 
goto 140 

CALCULATE MLE'S 

GENERATE Y'S 

200 do 220 i= 1, ( up-strt+ 1) 
if (n .gt. strt) then 

do 230 k=l, 2*m 
count=count+ 1 
delta=(ldO-phi)/phi*( exp(-exp(-.51 +. 71 *x( count)))) 
alpha=(ldO-phi)/phi*(ldO-exp(-exp(-.51 +. 71 *x( count)))) 
if (delta .lt. .OOOldO .or. alpha .It. .OOOldO) then 

write (4, *) alpha, delta, x(count), I, strt, n, count 
endif 
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betaad=dgamma(alpha)*dgamma(delta)/dgamma(alpha+delta) 
cy=OdO 

do 240 j=O, r(count) 
rchyG+ 1 )=fac( r( count) )/(facG) *fac( r( count )-j)) 
betaaG+ 1 )=dgamma(alpha+j)*dgamma(r( count)+delta-j) 

I dgamma( alpha+r( count )+delta) 
pyG+ 1 )=rchyG+ 1 )*betaaG+ 1 )/betaad 
cy( 1 )=py(l) 

if G .ne. 0) then 
cyG+ 1 )=cyG)+pyG+ 1) 

endif 
if ( u( count) .lt. cyG+ 1)) then 

y(count)=j 
goto 230 

endif 
240 continue 
23 0 continue 

end if 
tguess( 1 )=theta 1 
tguess(2)=theta2 
tguess(3 )=garnhat 
iparam( 1 )=O 

CALL IM.SL SUBROUTINE TO CALCULATE MLE'S 

call dbcoah (likelhd,grad,hess,np, tguess, 0, tlb, tub, tscale,fscale, 
iparam,rparam, t,fvalue) 

if ((t(l) .eq. -SdO .or. t(l) .eq. SdO .or. t(2) .eq .. 2d0 .or. t(2) .eq. 5d0 .or. t(3) 
.eq. OdO .or. t(3) .eq. 9999d0) .and. flag2) then 

hitbnd=hitbnd+ 1 
flag2=.false. 

end if 
if ((t(l) .eq. -5d0 .or. t(l) .eq. SdO .or. t(2) .eq .. 2d0 .or. t(2) .eq. SdO .or. t(3) 
.eq. OdO .or. t(3) .eq. 9999d0) .and. n .eq. 10) then 

stybnd=stybnd+ 1 
write (3, *) n,stybnd,1,t 

end if 
thetal =t(l) 
theta2=t(2) 
garnhat=t(3) 

CALCULATE NEXT X'S 

x(2*m*n+ 1 )=(log(.25)-thetal )/theta2 
x(2 *m *n+m+ 1 )=(log( 4. 0)-theta 1 )/theta2 
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if(x(2*m*n+l) .lt. -5d0) then 
x(2*m*n+l)=-5d0 
flag3=.true. 

endif 
if(x(2*m*n+l) .gt. 5d0) then 

x(2*m*n+1)=5d0 
flag3=.true. 

endif 
if (x(2*m*n+m+ 1) .lt. -5d0) then 

x(2*m*n+m+l)=-5d0 
flag3=.true. 

endif. 
if(x(2*m*n+m+l) .gt. 5d0) then 

x(2 *m*n+m+ 1 )=5d0 
flag3=.true. 

endif 
if(n.eq. 10.and.flag3)then 

xbnd=xbnd+l 
endif 
do 250 ii=2, m · 

x(2*m*n+ii)=x(2*m*n+ 1) 
x(2*m*n+m+ii)=x(2*m*n+m+ 1) 

250 continue 
n=n+l 

220 continue 
11 Ohat=(-thetal +log(l .0/9 .O))/theta2 
125hat=(-thetal +log(l .0/3.0))/theta2 
150hat=(-thetal )/theta2 
175hat=(-thetal +log(3.0))/theta2 
l90hat=(-thetal +log(9.0))/theta2 
avgstrt=avgstrt+strt 

390 mse10=mse10+(110hat-(log(log(10d0/9d0))/.71 +.51/. 71))**2 
mse25=mse25+(125hat-(log(log(4d0/3d0))/.71+.51/.71))**2 
mse50=mse50+(150hat-(log(log(2d0))/. 71 +.51/. 71 ))**2 
mse75=mse75+(175hat-(log(log( 4d0))/. 71 +.51/. 71 ))**2 
mse90=inse90+(190hat-(log(log(10d0))/. 71 +.51/. 71))**2 
biasl O=biasl 0+(11 Ohat-(log(log(l Od0/9d0))/. 71 +.51/. 71 )) 
bias25=bias25+(125hat-(log(log( 4d0/3d0))/. 71 +.51/. 71)) 
bias50=bias50+(150hat-(log(log(2d0))/. 71 +.51/. 71 )) 
bias75=bias75+(175hat-(log(log(4d0))/. 71 +.51/. 71)) 
bias90=bias90+(190hat-(log(log(l OdO))/. 71 +.51/. 71 )) 
avgl 1O=avgl10+11 Ohat 
avgl25=avgl25+125hat 
avgl50=avgl50+150hat 
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~vgl75=avgl75+175hat 
avgl90=avgl90+l90hat 

400 continue 
mse 1O=mse10/(1-1) 
mse25=mse25/(l-1) 
mse50=mse50/(l-1) 
mse75=mse75/(l-1) 
mse90=mse90/(l-1) 
bias 1O=bias10/(1-1) 
bias25=bias25/(l-1) 
bias50=bias50/(l-1) 
bias75=bias75/(l-1) 
bias90=bias90/(l-1) 
avgl 1O=avgl10/(1-1) 
avgl25=avgl25/(l-1) 
avgl50=avgl50/(l-1) 
avgl75=avgl75/(l-1) 
avgl90=avgl90/(l-1) 
avgstrt=avgstrt/(l-1) 
write(2, *)iseed,phi,m, up,x( 1),avgstrt,stayatmf,hitbnd,stybnd,mse10,mse25 ,mse50, 

mse75,mse90,bias10,bias25,bias50,bias75,bias90,avgll0,avgl25,avgl50, 
avgl75,avgl90 

write(4, *) iseed,phi,m,up,x(l),xbnd 
300 end 

SUBROUTINE TO CALCULATE GRADIENT 

subroutine grad (np,t,g) 

integer k,np,m,n 
integer y(210), r(210) 

reals 

double precision thetal, theta2, gamhat 
double precision suml, sum2, pred 
double precision suma, sumb, sumc 
double precision g(np), t(np), x(210) 

common y,r,x,m,n 

thetal =t(l) 
theta2=t(2) 
gamhat=t(3) 
g(l)=OdO 
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21 

22 

g(2)=0d0 
g(3)=0d0 
suml=OdO 
sum2=0d0 
sum3=0d0 
suma=OdO 
sumb=OdO 
sumc=OdO 
do 20 k=l,2*m*n 

pred=l dO/(ldO+dexp(-(thetal +theta2*x(k)))) 
suml=OdO 
suma=OdO 
if (y(k)-1 .ge. 0) then 

do 21 s=O, y(k)-1 
suml =suml + 1/(pred+s*gamhat) 
suma=suma+s/(pred+s*gamhat) 

continue 
endif 
sum2=0d0 
sumb=OdO 
if (r(k)-y(k)-1 .ge. 0) then 

do 22 s=O, r(k)-y(k)-1 
sum2=sum2+ 1/(1-pred+s*gamhat) 
sumb=sumb+s/(1-pred+s * gamhat) 

continue 
endif 
sumc=OdO 
do 23 s=O, r(k)-1 

sumc=sumc+s/(1 +s*gamhat) 
23 continue 

g(l)=g(l)+pred*(l-pred)*(suml-sum2) 
g(2)=g(2)+x(k)*pred *( 1-pred)*( sum 1-sum2) 
g(3 )=g(3)+suma+sumb-sumc 

20 continue 
g(l)=-ldO*g(l) 
g(2)=-ldO*g(2) 
g(3)=-ldO*g(3) 
return 
end 

SUBROUTINE TO CALCULATE LIKELIHOOD FUNCTION 

subroutine likelhd (np,t,lkhd) 

integer k,np,m,n 
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17 

18 

19 

integer y(210), r(210) 

double precision s 

double precision theta 1, theta2, gamhat 
double precision suml, sum2, sum3, pred 
double precision lkhd, t(np), x(210) 

common.y,r,x,m,n 

theta 1 =t( 1) 
theta2=t(2) 
gamhat=t(3) 
lkhd=OdO 
suml=OdO 
sum2=0d0 
sum3=0d0 
do 16 k=l,2*m*n 

pred=ldO/(ldO+dexp(-(thetal +theta2*x(k)))) 
if (y(k)-1 .ge. 0) then 

do 17 s=O, y(k)-1 
suml =sum 1 +dlog(pred+s*gamhat) 

continue 
endif 
if (r(k)-y(k)-1 .ge. 0) then 

do 18 s=O, r(k)-y(k)-1 
sum2=sum2+dlog(l-pred+s*gamhat) 

continue 
endif 
do 19 s=O, r(k)-1 

sum3=sum3+dlog(l+s*gamhat) 
continue 
lkhd=lkhd+suml +sum2-sum3 
suml=OdO 
sum2=0d0 
sum3=0d0 

16 continue 
lkhd=-1 dO*lkhd 
return 
end 

SUBROUTINE TO CALCUL TE HESSIAN 

subroutine hess (np,t,h,ldh) 
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integer k,np,m,n 
integer y(210), r(210) 

reals 

double precision thetal, theta2, gamhat 
double precision suml, sum2, pred 
double precision pc 1, pc2, pc3 
double precision sum3a, sum3b 
double precision sumc 1, sumc2, sumc3 
double precision t(np), x(210), h(l:3,1:3) 
common y,r,x,m,n 

thetal =t(l) 
theta2=t(2) 
gamhat=t(3) 
h(l,l)=OdO 
h(l,2)=0d0 
h(l,3)=0d0 
h(2,l)=Od0 
h(2,2)=0d0 
h(2,3)=0d0 
h(3,l)=Od0 
h(3,2)=0d0 
h(3,3)=0d0 
suml=OdO 
sum2=0d0 
sum3a=Od0 
sum3b=Od0 
sumcl=OdO 
sumc2=0d0 
sumc3=0d0 
do 24 k=l,2*m*n 

pred=ldO/(ldO+dexp(-(thetal +theta2*x(k)))) 
suml=OdO 
pcl=OdO 
pc2=0d0 
pc3=0d0 
sum3a=Od0 
sumcl=OdO 
if (y(k)-1 .ge. 0) then 

do 25 s=O, y(k)-1 
pcl=((pred**2)*(1-pred)*(pred+s*gamhat)/(pred+s*gamhat)**2) 
pc2=(pred*(l-pred)**2*(pred+s*gamhat)/(pred+s*gamhat)**2) 
pc3=((pred**2)*(1-pred)**2/(pred+s*gamhat)**2) 
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sum 1 =sum 1-pc 1 +pc2-pc3 
sum3a=sum3a-s/(pred+s*gamhat)**2 
sumcl=sumcl-s**2/(pred+s*gamhat)**2 

25 continue 
endif 
sum2=0d0 
sum3b=Od0 
sumc2=0d0 
pcl=OdO 
pc2=0d0 
pc3=0d0 
if (r(k)-y(k)-1 .ge. 0) then 

do 26 s=O, r(k)-y(k)-1 
pcl =((pred**2)*(1-pred)*(l-pred+s*gamhat)/ 

(1-pred+s*gamhat )* *2) 
pc2=(pred*(l-pred)**2*(1-pred+s*gamhat)/ 

(l-pred+s*gamhat)**2) 
pc3=((pred**2)*(1-pred)**2/(1-pred+s*gamhat)**2) 
sum2=sum2-pc 1 +pc2+pc3 
sum3b=sum3b+s/( 1-pred+s * gamhat )* *2 
sumc2=sumc2-s**2/((1-pred)+s*gamhat)**2 

26 continue 
endif 
sumc3=0d0 
do 27 s=O, r(k)-1 

sumc3=sumc3+s**2/(1 +s*gamhat)**2 
27 continue 

h(l, 1 )=h(l, 1 )+(suml-sum2) 
h(l,2)=h(l ,2)+x(k)*(suml-sum2) 
h(2,2)=h(2,2)+x(k)* *2 *(suml-sum2) 
h(l,3)=h(l,3)+pred*(l-pred)*(sum3 a+sum3b) 
h(2,3)=h(2,3)+x(k)*pred *( 1-pred)*(sum3a+sum3b) 
h(3,3)=h(3,3)+(sumcl+sumc2+sumc3) 

24 continue 
h(l, l)=-ldO*h(l, 1) 
h(l,2)=-ldO*h(l,2) 
h(l,3)=-ldO*h(l,3) 
h(2,2)=-l dO*h(2,2) 
h(2,3)=-ldO*h(2,3) 
h(3,3)=-ldO*h(3,3) 
h(2, l)=h(l,2) 
h(3, l)=h(l,3) 
h(3,2)=h(2,3) 
return 
end 
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