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CHAPTER I

PRELIMINARIES

1.1 Introduction

Let G be a complex semisimple algebraic group with the Weyl group W and B a Borel sub-

group of G. G can be expressed as a disjoint union of double cosets of B parameterized by the

elements of W and the decomposition of G =
⊔
w∈W

BwB is called the Bruhat decomposition

of G. For any w ∈ W, the variety

Xw := BwB/B

is called a Schubert variety in the complete flag variety X := G/B. If G = SLn(C), then W is

the symmetric group Sn, and in this case, we write X = Fℓ(n), which is called the complete

flag variety of type A. In 1987, Ryan [18] proved that the smooth Schubert varieties of type

A are iterated fiber bundles of Grassmannian. In 1989, Wolper [22] generalized Rayn’s result

for any algebraically closed field of characteristic zero.

In 1990, Lakshmibai and Sandhya [15] gave a permutation pattern avoidance criterion

to identify a smooth Schubert variety of type A and showed that a Schubert variety Xw

is smooth if and only if w avoids the patterns 3412 and 4231. Since then permutation

pattern avoidance has been used as an important tool to characterize the geometric properties

of Schubert varieties in Fℓ(n). In 1990, by using the fiber bundle structures of smooth

Schubert varieties, Haiman [13] was able to calculate the generating function for the number

of permutations that avoid 3412 and 4231. In 1998, Billey [5] gave a pattern avoidance

criterion for rationally smooth Schubert varieties in types B and C. There are many other

characterizations of (rationally) smooth Schubert varieties. For example, in 1994, Carrell
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and Peterson [9] proved that a Schubert variety Xw is rationally smooth if and only if the

Poincaré polynomial of Xw is palindromic. A survey of these results and more can be found

in [1, 3]. A theorem of Deodhar, Peterson, and Carrel-Kuttler shows that in types A, D, and

E, a Schubert variety Xw is smooth if and only if it is rationally smooth. Recently, Richmond

and Slofstra [16] showed that every rationally smooth Schubert variety in any finite classical

type is an iterated fiber bundle of Grassmannian.

Pattern avoidance criteria also have been used to characterize other geometric properties

of Schubert varieties. In 2013, Úlfarsson and Woo [12] proved that a Schubert variety Xw is

a local complete intersection if and only if w avoids 53241, 52341, 52431, 35142, 42513, and

426153. In 2001, Billey and Warrington [6] showed that the Bott-Samelson resolution of a

Schubert variety Xw is small if and only if w is 321-hexagon-avoiding. In 2002, Gasharov

and Reiner [11] showed that a Schubert variety Xw is defined by inclusions if and only if w

avoids 4231, 35142, 42513, and 351624. In 2005, Woo and Yong [24] gave a pattern avoidance

criterion of the Gorenstein Schubert variety. In 2007, Bousquet-Mélou and Butler [8] showed

that a Schubert variety Xw is factorial if and only if w is 4231 and 3412 avoiding. In 2007,

Tenner [20] showed that the principal order ideal below w in Bruhat order is isomorphic to

a Boolean lattice if and only if w avoids 321 and 3412. This is equivalent to saying that

the Bott-Samelson resolution of Xw is isomorphic to Xw if and only if w is 321 and 3412

avoiding. In 2009, Woo, Billey, and Weed [23] proved that a permutation w is 653421, 632541,

463152, 526413, 546213, and 465132 avoiding and the singular locus of Xw has exactly 1

component if and only if the Kazhdan-Lusztig polynomial Pid,w(1) = 2. More results relating

to permutation pattern avoidance criterion can be found in Tenner’s Database [19].

One of the main goals of this project is to calculate the number of Schubert varieties in

type A which are iterated fiber bundles of Grassmannian Schubert varieties of codimension at

most 1. In [17], Richmond and Slofstra showed that the fibers in the fiber bundle structure

of a Schubert variety can be combinatorially encoded using blocks in a labelled staircase

diagram denoted by (D, λ), where D is the staircase diagram and λ the labelling of D. More
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specifically, each labelled staircase diagram (D, λ) corresponds to a unique permutation

Λ(D, λ). In this context, they showed that the set of “nearly maximally labelled” staircase

diagrams is in bijection with the set of Schubert varieties that are iterated fiber bundles of

Grassmannian Schubert varieties, and the bijection is given by

(D, λ)←→ XΛ(D, λ).

In particular, they showed that XΛ(D,λ) is smooth if and only if λ is the unique “maximal

labelling” of the staircase diagram D of type A. Consequently, by counting the number of

all possible type A staircase diagrams, they reproduced Haiman’s generating function for

counting the number of smooth varieties in type A and computed the smooth and rationally

smooth Schubert varieties in the finite classical types B,C, and D. In Chapter II, we give

a brief overview of staircase diagrams of type A. In Chapter III, we define a particular

labelling called “divisor labelling” of a staircase diagram of type A. We prove that (D, λ) is

a divisor-labelled staircase diagram of type A if and only if Λ(D, λ) avoids the patterns 3412,

52341, 52431, and 53241. We calculate the number of permutations avoiding these patterns

by studying iterated fiber bundle structures on Schubert varieties in Fℓ(n) whose fibers are

Grassmannian Schubert varieties of codimension at most 1. In Chapter IV, we calculate the

generating function of this type of Schubert variety. To state our main result, here we give

a brief overview of Schubert varieties in type A.

Let si denote the simple transposition (i, i + 1) in Sn. It is well known that Sn is

generated by the set S := {s1, s2, · · · , sn−1}. We elaborate this property in Section 2.1. Let

[1, n] := {1, 2, · · · , n}. For any subset a = {a1 < · · · < ak < n} of [1, n], define the partial

flag variety

Fℓ(a, n) := {V a
• := (Va1 ⊂ Va2 ⊂ · · · ⊂ Vak ⊂ Cn) | dim(Vai) = ai}.

In particular, if a = [1, n], then Fℓ(a, n) is the complete flag variety Fℓ(n).

Fix a basis {e1, e2, · · · , en} of Cn. For 1 ≤ i ≤ n, let Ei be the subspace generated by the

set {e1, e2, · · · , ei}. For any subset J ⊂ S, let aJ = {i : si /∈ J}. Then each w ∈ Sn defines
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a Schubert variety XJ
w in the partial flag variety Fℓ(aJ , n), where

XJ
w := {V aJ

• ∈ Fℓ(aJ , n) | dim(Ei ∩ Vj) ≥ rw[i, j]∀ i, j}, where rw[i, j] =
∣∣[1, i] ∩ w([1, j])

∣∣.
In particular, we have the Schubert variety Xw := X∅

w in the complete flag vcariety Fℓ(n).

If a = {r < n}, then Fℓ(a, n) is the Grassmannian Gr(r, n) of r-dimensional subspaces

of Cn. If XJ
w is a Schubert variety in the Grassmannian Gr(r, n), then the permutation w

corresponds to a unique partition λw such that the Young diagram of λw is contained in

an r × (n − r) rectangle. For any such partition λ = (λ1 ≥ λ2 ≥ · · · ), the Grassmannian

Schubert variety Xλ is defined as follows.

Xλ = {V ∈ Gr(r, n) | dim
(
V ∩ Ei+λr+1−i

)
≥ i for all 1 ≤ i ≤ r}.

The dimension of Xλ is given by the number of boxes in the Young diagram of λ. This implies

that Gr(r, n) contains exactly one codimension-1 Schubert subvariety given by the partition

λ = (r, . . . , r, r − 1), where r is repeated n− r − 1 times. We call this Schubert variety the

Schubert divisor of the Grassmannian Gr(r, n). For example,

(4, 4, 3)←→ corresponds to the unique Schubert divisor of the Grassman-

nian Gr(4, 7).

If b ⊆ a ⊆ [1, n], then there is a projection map πa
b : Fℓ(a, n) ↠ Fℓ(b, n) given by

πa
b(V

a
• ) = V b

• .

This map is naturally a fiber bundle on Fℓ(a, n) and hence given any collection of nested

subsets

[1, n] = σn ⊃ · · ·σ2 ⊃ σ1 = {n},

where |σj| = j, there is an iterated fiber bundle structure on the complete flag variety

Fℓ(n)
πσn
σn−1

↠ Fℓ(σn−1, n)
π
σn−1
σn−2

↠ · · ·
π
σ3
σ2

↠ Fℓ(σ2, n)
π
σ2
σ1

↠ Fℓ(σ1, n) ≃ {pt}.

For w ∈ Sn, we say that the Schubert variety Xw has a complete parabolic bundle

structure if there exists a nested collection of subsets [1, n] = σn ⊃ · · · ⊃ σ2 ⊃ σ1 = {n}
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such that the projection maps π
σi+1
σi induce an iterated fiber bundle structure on Xw,

Xw = Xn

πσn
σn−1

↠ Xn−1

π
σn−1
σn−2

↠ · · ·
π
σ3
σ2

↠ X2

π
σ2
σ1

↠ X1, where Xi := π[1,n]
σi

(Xw) ⊂ Fℓ(σi, n).

In this case, the fibers of each induced projection map are isomorphic to Grassmannian

Schubert varieties (see example 3.1.11). It is not true that all Schubert varieties have com-

plete parabolic bundle structures. For example, if w = s2s3s1s2, then Xw does not have a

complete parabolic bundle structure (see Example 4.3 in [2]). In [2], Alland and Richmond

showed that a permutation w ∈ Sn avoids the patterns 3412, 52341, and 635241 if and only

if Xw has a complete parabolic bundle structure. As we mentioned earlier, Ryan showed in

[18] that smooth Schubert varieties are iterated fiber bundles of Grassmanian fibers. The

following theorem is the main result of this thesis:

Theorem 1.1.1 The Schubert variety Xw ⊆ Fℓ(n) has a complete parabolic bundle structure

with fibers isomorphic to Grassmannian or Grassmannian Schubert divisors if and only if w

avoids the patterns 3412, 52341, 52431, and 53241.

Moreover, if Z(x) =
∑
n≥0

znx
n, where zn is the number of w ∈ Sn+1 avoiding such patterns,

then

Z(x) =
−4x6 + 24x5 − 58x4 + 73x3 − 49x2 + 17x− 2− x

√
x4 − 2x3 + 7x2 − 6x+ 1

2(x− 1)(2x6 − 14x5 + 37x4 − 46x3 + 28x2 − 9x+ 1)
.

We know by [10, Theorem IV.7] that the growth of the coefficients of a generating series

is controlled by the singularity of the smallest modulus. For the generating function Z(x) in

Theorem 1.1.1, the singularity with the smallest modulus is α ≈ 0.203086, which is a zero

of the polynomial 2x6 − 14x5 + 37x4 − 46x3 + 28x2 − 9x+ 1 in the denominator of Z(x).

Define the constant Zα by

Zα := lim
x→α

(x− α)Z(x).

The following is an immediate corollary of Theorem 1.1.1.

Corollary 1.1.2 Let zn be the number of w ∈ Sn avoiding the patterns 3412, 52341, 52431,

5



and 53241. Then

zn ∼
Zα

αn+1
,

and in particular, the asymptotic rate at which zn is growing is equal to the limit

lim
n→∞

zn+1

zn
=

1

α
≈ 4.92402.

Note that the asymptotic growth rate of the number of smooth Schubert varieties in Fℓ(n)

is approximately 4.382985 [17]. Here we provide some values of zn.

n 1 2 3 4 5 6 7 8 9

zn 1 2 6 23 100 460 2172 10397 50173

1.2 A summary of the findings in this work

The following is a summary of the findings of this project.

Let Pn be the set of permutations in Sn+1 avoiding the patterns 3412, 52341, 52431, and

53241,

Qn the set of Schubert varieties in Fℓ(n + 1) which are fiber bundles of Grassmannians

or Grassmannian Schubert divisors, and

Rn the set of divisor-labelled staricase diagrams of support contained in [s1, sn].

Then |Pn| = |Qn| = |Rn|. Moreover, |Pn| is the coefficient of xn in the formal power series

expansion of

Z(x) =
−4x6 + 24x5 − 58x4 + 73x3 − 49x2 + 17x− 2− x

√
x4 − 2x3 + 7x2 − 6x+ 1

2(x− 1)(2x6 − 14x5 + 37x4 − 46x3 + 28x2 − 9x+ 1)
.
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CHAPTER II

STAIRCASE DIAGRAM AND SCHUBERT VARIETY

In this chapter, we recall several results from [17] concerning staircase diagrams, labelled

staircase diagrams, and the Schubert variety corresponding to a labelled staircase diagram.

In general, a staircase diagram is a collection of connected subsets (blocks) of vertices of a

graph Γ where the blocks are allowed to overlap each other in a particular way such that D

resembles a staircase with steps of irregular length. If the underlying graph Γ is a simple path,

then we label the blocks of D by elements of Sn and obtain a unique element Λ(D) ∈ Sn

such that the Schubert variety XΛ(D) ∈ Fℓ(n) has iterated fiber bundle structure. In this

case, Γ is called a Dynkin diagram of type A which corresponds to a Coxeter group of type

A. In the following section, we give a brief overview of the Coxeter group of type A.

2.1 Coxeter group in type A

Definition 2.1.1 Let X be a non-empty set. A binary relation ≺ on X is called a partial

order if the following three conditions are satisfied:

1. ≺ is reflexive, i.e. for evry x ∈ X, x ≺ x.

2. ≺ is anti-symmetric, i.e. for all x, y ∈ X if x ≺ y and y ≺ x, then x = y.

3. ≺ is transitive, i.e. for all x, y, z ∈ X, if x ≺ y and y ≺ z, then x ≺ z.

If ≺ is a partial order relation on X, then we call (X,≺) a partially ordered set (poset).

Sometimes we write X instead of (X,≺) when ≺ is clear. If x, y ∈ X such that either

x ≺ y or y ≺ x, then we say that x and y are comparable. If x ∈ X and y ∈ X are not

comparable, then we say that they are incomparable. If x and y are two elements of the
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poset X, then we say that y covers x, if x ≺ y, but there is no z ∈ X \ {x, y} such that

x ≺ z ≺ y. A subset Y of the poset X is called a chain if every pair of elements in Y are

comparable. If Y is a subset of X such that there is no z /∈ Y such that x ≺ z ≺ y whenever

x, y ∈ Y, then Y is called a saturated subset of X.

Definition 2.1.2 Suppose that X = {x1, x2, · · · , xn} is a partially ordered set such that for

all 1 ≤ i < j ≤ n, either xi ≺ xj or they are incomparable. Then x1 ≺ x2 · · · ≺ xn is called

a linear extension of the partial ordering of X. Thus, a linear extension of a partial order

is a total order that is compatible with the partial order.

Definition 2.1.3 A Coxeter group is a group W with a set of generators S = {r1, r2, · · · , rn}

with relations (rirj)
mij = 1, where mii = 1 for all i and mij > 1 whenever i ̸= j. We use

the convention that mij =∞ when there exists no m such that (rirj)
m = 1. The pair (W,S)

is called a Coxeter system. The Coxeter system is associated with the n × n symmetric

matrix (mij) called the Coxeter matrix of (W,S) with the (i, j)-th entry being mij.

Every symmetric matrix (mij) such that mii = 1 for all i and mij ∈ {2, 3, · · · } ∪ {∞}

for all i ̸= j is a Coxeter matrix. It is a fact that up to isomorphism there is a one-to-

one correspondence between Coxeter matrices and Coxeter systems. A Coxeter matrix can

be encoded by a graph called the Coxeter-Dynkin diagram of the Coxeter matrix (or,

equivalently, of the Coxeter system) where the graph satisfies the following conditions:

• The vertices of the graph are labelled by generator subscripts.

• Two vertices i and j are adjacent if and only if mij > 2.

• An edge is labelled with the value of mij whenever mij > 3.

• Two vertices are not connected by an edge if and only if the corresponding generators

commute, i.e. mij = 2.
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If the graph has two or more connected components, then the associated group is the

direct product of the groups associated with the individual components. Thus the disjoint

union of the Coxeter diagrams yields a direct product of Coxeter groups.

Definition 2.1.4 The symmetric group Sn is the set of all bijections from the set [1, n] =

{1, 2, · · · , n} to itself. These bijections are called permutations. The binary group opera-

tion in Sn is the composition of permutations. The compositions of permutations are read

from right to left.

There are several standard notations to represent a permutation. One of them is cycle

notation. For example, the cycle (3, 5, 6) stands for the permutation which sends 3 to 5, 5

to 6, 6 to 3, and keeps all other elements of [1, n] fixed.

It is customary to start with the smallest entry when we write a cycle in Sn. If there

exists no common element in two cycles, then we say that the cycles are disjoint. Any two

disjoint cycles are commutative. Every permutation can be written (uniquely) as a product

(composition) of disjoint cycles.

A permutation w ∈ Sn can also be expressed in one-line notation as

w = w(1)w(2) · · ·w(n),

and in two-line notation as

w =

 1 2 · · · n

w(1) w(2) · · · w(n)

 .

We can also consider the permutation w as a sequence of n distinct numbers in [1, n]. For

0 < t1 < t2 < · · · < tm < n+ 1, we will call

w(t1)w(t2) · · ·w(tm) =

 t1 t2 · · · tm

w(t1) w(t2) · · · w(tm)


a sub-sequence of w. Moreover, if ti+1 = ti + 1 for all 1 < i < m, then we say that the

subsequence is saturated.
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If S = s1s2 · · · sk and T = t1t2 · · · tk are two finite sequences such that for all i, j,

si < sj ⇐⇒ ti < tj,

then we say that S and T are order isomorphic, and we write

S ∼ T.

For example,

2719 ∼ 4628.

Sometimes we call a permutation a pattern when expressed in one-line notation. For

n ≥ m, w ∈ Sn, and p ∈ Sm, we say that w contains the pattern p if w has a subsequence

which is order isomorphic to p. If w does not contain p, then we say that w avoids p.

Example 2.1.5 Let w = 362541 ∈ S6. Observe that

• w contains 132 ∼ 254.

• w contains 231 ∼ 362.

• w avoids 123 since w does not contain an increasing subsequence of more than two

entries.

A cycle of the type (i, j) is called a transposition. Moreover, if j = i + 1, then si :=

(i, i+ 1) is called a simple (elementary) transposition.

If (i, j) is a cycle, then it is easy to see that

sj(i, j)sj = (i, j + 1),

which implies that every cycle can be expressed as a product of simple transpositions. Con-

sequently, we can express a permutation as a product of simple transpositions. Thus we see

that S := {s1, s2, · · · , sn−1} generates the symmetric group Sn.
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Example 2.1.6 Let w = s1s2s4. Then

w(1) = s1s2s4(1) = s1s2(1) = s1(1) = 2,

w(2) = s1s2s4(2) = s1s2(2) = s1(3) = 3,

w(3) = s1s2s4(3) = s1s2(3) = s1(2) = 1,

w(4) = s1s2s4(4) = s1s2(5) = s1(5) = 5,

w(5) = s1s2s4(5) = s1s2(4) = s1(4) = 4,

and

w(k) = s1s2s4(k) = s1s2(k) = s1(k) = k, for k > 5.

Thus in one-line notation w = 23154, in two-line notation w =

1 2 3 4 5

2 3 1 5 4

 , and in

disjoint cycle notations, w = (1, 2, 3)(4, 5).

Notice that for all distinct i and j,

s2i = sisi = 1,

sisj = sjsi ⇐⇒ |i− j| > 1, and

sisi+1si = si+1sisi+1.

It follows that the symmetric group Sn is a Coxeter group with the set of generators S =

{s1, s2, · · · , sn−1} and the Coxeter-Dynkin diagram of Sn is a simple path Γ with n − 1

vertices.

s1 s2
. . .

sn−2 sn−1

The graph Γ is called the Coxeter-Dynkin diagram of type An−1.

Definition 2.1.7 Let (W,S) be a Coxeter system and w ∈ W . The least number of gener-

ators in S needed to express w is called the length of w which we denote by ℓ(w).

Definition 2.1.8 If w = sj1sj2 · · · sjk such that ℓ(w) = k, then we say that sj1sj2 · · · sjk is a

reduced expression for w.
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Example 2.1.9 Let w = s3s2s3s2s1. Then

w = s2s3s2s2s1 = s2s3s1 = s2s1s3,

which implies that ℓ(w) = 3.

Definition 2.1.10 Suppose that (W,S) is a Coxeter system. There is a natural partial order

called Bruhat order on W. The name was given by Verma in [21]. Let u, v ∈ W.

• We say that u ≤ v in (strong) Bruhat order if there exists a reduced expression of u

which is a subsequence of some reduced expressions of v. If u ≤ v in the Bruhat order

and ℓ(v) = 1 + ℓ(u), then we say that v covers u in the Bruhat order.

• If v = su for some s ∈ S and ℓ(v) = 1 + ℓ(u), then we say that v covers u in the weak

left Bruhat order.

• If v = us for some s ∈ S and ℓ(v) = 1 + ℓ(u), then we say that v covers u in the weak

right Bruhat order.

We will denote the strong, weak left, and weak right Bruhat order relations by the symbols

≤, ≤L and ≤R, respectively.

Definition 2.1.11 Suppose that w = st1st2 · · · stℓ is a reduced expression. Let [k, k +m] ⊂

[1, ℓ]. Then w′ = stkstk+1
· · · stk+m

is also a reduced expression. In this case, we call w′ a

factor of w.

Definition 2.1.12 A permutation w is called fully commutative if no reduced expression

of w contains a factor of the type sisi+1si.

Example 2.1.13 w = s1s2s3s5s6 is fully commutative.

Lemma 2.1.14 (Humphreys [14]) There is a unique epimorphism

ϵ : Sn → {−1, 1}
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given by

ϵ(w) = (−1)ℓ(w).

As a result, for any simple transposition s,

ℓ(sw) = ℓ(w)± 1

and

ℓ(ws) = ℓ(w)± 1.

Definition 2.1.15 Let S = {s1, s2, · · · , sn−1} and ℓ : Sn → Z≥0 denote the length function.

Define

DL(w) := {s ∈ S
∣∣ℓ(sw) = ℓ(w)− 1} and

DR(w) := {s ∈ S
∣∣ℓ(ws) = ℓ(w)− 1}.

• DL(w) is called the set of left descents of w.

• DR(w) is called the set of right descents of w.

Remark 2.1.16 It follows that s ∈ DL(w)⇐⇒ some reduced expression of w begins with s.

Similarly, s ∈ DR(w)⇐⇒ some reduced expression of w ends with s.

Definition 2.1.17 For u ∈ Sn, let

Supp(u) := {s ∈ S | s lies in a reduced expression of u}.

Consequently,

Supp(u) = {s ∈ S | s ≤ u in the Bruhat order }.

Example 2.1.18 Let u = s1s2s1. Then Supp(u) = {s1, s2}.

13



2.2 Staircase diagram of type A

As we mentioned in the previous section that if W = Sn and S = {s1, s2, · · · , sn−1}, where

each si is the simple transposition (i, i+1), then (W,S) is a Coxeter system, and the Coxeter-

Dynkin diagram Γ of W is of type An−1 that is a simple path with n− 1 vertices.

s1 s2
. . .

sn−2 sn−1

We call an interval B = [si, sj] := {si, si+1, . . . , sj} in Γ a block, where i ≤ j. In other

words, if B is a block, then the induced subgraph corresponding to B in the Coxeter-Dynkin

diagram Γ is connected. For a block B = [si, sj], we define L(B) = i.

Definition 2.2.1 A staircase diagram of type A is a partially ordered set (D,⪯), where

D = {B1, B2, · · · , Bk} is a set of blocks in Γ such that for all i ̸= j,

1. Bi ̸⊂ Bj,

2. Bi and Bj are comparable whenever Bi ∪Bj is a block,

3. Bi ∪Bj is a block whenever Bi covers Bj, and

4. if Bj1 ≺ Bj2 ≺ · · · ≺ Bjl is a chain in D, then either L(Bj1) < L(Bj2) < · · · < L(Bjl)

or L(Bj1) > L(Bj2) > · · · > L(Bjl).

Note that staircase diagrams can be defined over an arbitrary graph. For a general

definition of a staircase diagram, we refer to [17]. In this project, we restrict to staircase

diagrams of type A as defined above.

Definition 2.2.2 If D is a staircase diagram, then by Supp(D), we denote the support of

D, which is defined as follows:

Supp(D) :=
⋃
B∈D

B.

If Supp(D) is a block, then we say that D is a connected staircase diagram. If D is

a staircase diagram and D′ ⊂ D is a saturated subset, then we call D′ a subdiagram of

14



D. We see that a subdiagram of a staircase diagram is itself a staircase diagram with the

induced partial order. Note that every staircase diagram is a disjoint union of its maximally

connected subdiagrams.

Staircase diagrams can be represented by pictures that resemble staircases with steps of

irregular length as shown in the example below.

Example 2.2.3 The picture

321
876432

9865

represents a connected staircase diagram

D = {[s1, s3] ≺ [s2, s4] ≺ [s5, s6] ≻ [s6, s8] ≺ [s8, s9]}

with support [s1, s9], where for notational simplicity, we pictorially label si by i, and in the

picture the covering relations for D are given by vertical adjacencies.

Example 2.2.4 The support of the staircase diagram

1615876321

1514987543

14131211

is [s1, s9] ⊔ [s11, s16] and the diagram has two connected subdiagrams.

Notice that by flipping a staircase diagram D, we get another staircase diagram with the

reverse partial order which we denote by flip(D).

Example 2.2.5 Suppose that D = {[s1, s4] ≺ [s3, s5] ≺ [s5, s6]}. Then flip(D) = {[s5, s6] ≺

[s3, s5] ≺ [s1, s4]}.

D =
4321

543

65

flip(D) =
65

543

4321
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Example 2.2.6 The following three diagrams are not valid staircase diagrams.

54321

32
21 43

32

43

21

• The first diagram violates the first condition of a staircase diagram.

• The second diagram violates the second condition of a staircase diagram.

• The third diagram violates the fourth condition of a staircase diagram.

2.3 The Schubert variety associated with a labelled staircase diagram

Definition 2.3.1 Given a staircase diagram D, define JR : D → S and JL : D → S by

JR(B) := {s ∈ B | s ∈ B′ for some B′ ∈ D covered by B}

and

JL(B) := {s ∈ B | s ∈ B′ for some B′ ∈ D that covers B}.

Note that if {B1 ≺ B2 ≺ · · · ≺ Bk} is a linear extension of D, then for each i,

JR(Bi) = (B1 ∪ · · · ∪Bi−1) ∩Bi.

Example 2.3.2 In the following staircase diagram

9876321

8765432

JR([s2, s8]) = {s2, s3, s6, s7, s8} ,

JL[s1, s3] = {s2, s3},

JL[s6, s9] = {s6, s7, s8}, and

JL([s2, s8]) = JR([s1, s3]) = JR([s6, s9]) = ∅.
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Definition 2.3.3 For any subset J ⊂ S, let uJ denote the unique maximal element (with

respect to length) in the subgroup generated by J. An element w ∈ Sn is called a maximal

element if w = uSupp(w); otherwise we call w a non-maximal element.

Definition 2.3.4 Suppose that D is a staircase diagram. A labelling of D is a mapping

λ : D → Sn such that

1. JR(B) ⊆ DR(λ(B)),

2. JL(B) ⊆ DL(λ(B)), and

3. Supp(λ(B)uJR(B)) = Supp(uJL(B)λ(B)) = B.

Since the definition of a labelling of a staircase diagram is symmetric, λ : D → Sn is a

labelling of D if and only if λ−1 : flip(D)→ Sn given by

λ−1(B) = (λ(B))−1

is a labelling of flip(D).

For a labelling λ and a linear extension {B1, B2, · · · , Bk} of a staircase diagram D, let

λ(B) := λ(B)uJR(B)

and

Λ(D, λ) := λ(Bk) · · ·λ(B2)λ(B1).

We will write Λ(D) in place of Λ(D, λ) when λ is clear. Moreover, if D′ is a subdiagram of

D, then we will write Λ(D′) in place of Λ(D, λ|D′). If λ is a labelling of a staircase diagram D,

and B and B′ are two incomparable blocks in D, then Supp(λ(B)) = B, Supp(λ(B′)) = B′,

and λ(B) and λ(B′) commute. Thus we see that Λ(D) does not depend on the choice of a

linear extension of D.

Lemma 2.3.5 [17] Let λ be a labelling of a staircase diagram D. Then

(Λ(D, λ))−1 = Λ(flip(D), λ−1).
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Example 2.3.6 Let D be a staircase diagram, and λ : D → Sn a mapping such that

∀B ∈ D, λ(B) = uB. Then λ is a labelling of D and it is called the maximal labelling of

D.

From now on, we will denote the maximal labeling by λmax.

Remark 2.3.7 If D = {[s1, sn]}, then

Λ(D, λmax) =

 1 2 · · · n+ 1

n+ 1 n · · · 1

 = (n+ 1)n · · · 21.

2.4 Billey-Postnikov decomposition

Let W = Sn. For any J ⊂ S, let WJ = ⟨J⟩ denote the subgroup generated by J and W J the

set of minimum length coset representatives of W/WJ . Each element w ∈ W has a unique

parabolic decomposition w = vu, where v ∈ W J and u ∈ WJ [7].

Definition 2.4.1 Let w = vu be the parabolic decomposition of w ∈ Sn with respect to a

subset J ⊂ Sn. Then w = vu is called a Billey-Postnikov (BP) decomposition if

Supp(v) ∩ J ⊂ DL(u).

Furthermore, if |Supp(w)| = |J | + 1, then we say that w = vu is a Grassmannian BP

decomposition with respect to J . For more details, we refer to [16, 4].

Proposition 2.4.2 ([17]) Let {B1, B2, · · ·Bk} be a linear extension of a staircase diagram

D. Consider the subdiagram Di := {B1, B2, · · ·Bi−1}, i ∈ [2, k]. If λ is a labelling of D, then

Λ(Di+1) = λ(Bi).Λ(Di)

is a BP decomposition with respect to Supp(Di) for every i ∈ [2, k].

If w is non-maximal and it has a Grassmannian BP decomposition w = vu such that

Supp(u) ⊂ Supp(v), then w is called a nearly maximal element.
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Definition 2.4.3 A labelling λ of a staircase diagram D is called a nearly maximal

labelling of D, if ∀B ∈ D, λ(B) is either maximal or nearly maximal. For any B ∈ D,

if λ(B) = vu is the Grassmannian BP decomposition with respect to some subset J ∈ Sn

such that Supp(u) ⊂ Supp(v), then we say that λ(B) is a nearly maximal labelling of B with

respect to J.

2.5 Nearly maximal labelling of a block in a staircase diagram

In this section, we will classify the nearly maximal labelling of a staircase diagram D =

{[s1, sn]} consisting of a single block. For any sm ∈ [s1, sn], let um denote the maximal

element of the subgroup generated by Jm := [s1, sn] \ {sm}. For 1 ≤ k ≤ n−m, let

δk :=


sk+1sk+2 · · · sk+m−1 ; if m > 1

e ; otherwise

and

wm :=


δn−mδn−m−1 · · · δ2δ1 ; if m < n

e ; otherwise

Definition 2.5.1 For 1 ≤ m ≤ n, we define

vm :=


(snsn−1 · · · sm+1)(s1s2 · · · sm) ; if m < n

s1s2 · · · sm ; otherwise

∆1 := ∆(1,m,n) = wmvm,

∆2 := ∆(2,m,n) =


u{s1,s2,··· ,sm−1} ; if m ̸= 1

e ; if m = 1

,

∆3 := ∆(3,m,n) =


u{sm+1,sm+2,··· ,sn} ; if m ̸= n

e ; if m = n

, and

∆ := ∆1∆2∆3.
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Lemma 2.5.2 In two-line notation,

∆1 =

 1 2 · · · m m+ 1 m+ 2 · · · n+ 1

n−m+ 2 n−m+ 3 · · · n+ 1 1 2 · · · n−m+ 1


and ∆ is the unique maximal element of Sn+1.

Proof. Let x ∈ {1, 2, · · · , n+ 1}. Now we consider four cases.

Case 1: Let 0 < x < m. We have for all y, r > 0, sy+r(y) = y, sy(y + r + 1) = y + r + 1,

and sy(y) = y + 1. Therefore,

vm(x) = (snsn−1 · · · sm+1)(s1s2 · · · sm)(x)

= (snsn−1 · · · sm+1)(s1s2 · · · sx)(x)

= (snsn−1 · · · sm+1)(x+ 1)

= x+ 1.

Now,

δ1(x+ 1) = s2s3 · · · sm(x+ 1)

= s2s3 · · · sx+1(x+ 1)

= s2s3 · · · sx(x+ 2)

= x+ 2.

Similarly δ2(x+ 2) = x+ 3. In general, for 0 < x < m,

δn−m(x+ n−m) = x+ n−m+ 1.

Therefore, ∆1(x) = x+ n−m+ 1 for 0 < x < m.

Case 2: Let x = m. We have

vm(m) = (snsn−1 · · · sm+1)(s1s2 · · · sm)(m)

= (snsn−1 · · · sm+1)(m+ 1)

= n+ 1.
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Moreover, wm(n+ 1) = n+ 1. Hence ∆1(m) = n+ 1.

Case 3: Let x = m+ 1. Now vm(m+ 1) = (snsn−1 · · · sm+1)(s1s2 · · · sm)(m+ 1) = 1 and

wm(1) = 1. Therefore, ∆1(m+ 1) = 1

Case 4: Let x > m+ 1. Then x = m+ r + 1 for some r > 0. Now

vm(x) = vm(m+ r + 1) = (snsn−1 · · · sm+1)(s1s2 · · · sm)(m+ r + 1) = m+ r.

Moreover,

δr−1δr−2 · · · δ1(m+ r) = m+ r,

δr(m+ r) = r + 1, and

δn−mδn−m−1 · · · δr+1(r + 1) = r + 1.

Thus wm(m+ r) = r + 1. Hence

∆1(m+ r + 1) = r + 1.

Thus, we see that ∆1(x) = x−m, if x > m+ 1. Hence

∆1(x) =


x−m+ (n+ 1) if 1 ≤ x ≤ m

x−m if (m+ 1) ≤ x ≤ (n+ 1)

.

This completes the first part of the proof.

Since ∆2 and ∆3 are maximal elements,

∆2 =

 1 2 · · · m m+ 1 m+ 2 · · · n+ 1

m m− 1 · · · 1 m+ 1 m+ 2 · · · n+ 1


and

∆3 =

1 2 · · · m m+ 1 m+ 2 · · · n+ 1

1 2 · · · m n+ 1 n · · · m+ 1

 .

i.e.,

∆2(x) =


m+ 1− x if x = 1, 2, · · · ,m

x if x = (m+ 1), (m+ 2), · · · , (n+ 1)
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and

∆3(x) =


x if x = 1, 2, · · · ,m

m+ n+ 2− x if x = (m+ 1), (m+ 2), · · · , (n+ 1)

.

Now one can check that if 1 ≤ x ≤ n+ 1, then

∆(x) = ∆1∆2∆3(x) = n+ 2− x.

Hence

∆ =

 1 2 · · · n+ 1

n+ 1 n · · · 1

 .

This completes the proof.

Lemma 2.5.3 λmin defined by

λmin([s1, sn]) = vm(∆2∆3)

is the unique nearly maximal labelling of {[s1, sn]} with respect to Jm := [s1, sn] \ {sm} such

that

ℓ(vm) = n.

Proof. It follows from the definition of nearly maximal labelling that λ defined by the

parabolic decomposition λ([s1, sn]) = vu with respect to Jm is a nearly maximal labelling of

{[s1, sn]} whenever the following three conditions are satisfied:

1. Supp(v) = [s1, sn].

2. u = um.

3. m is the unique right descents in v.

Observe that Supp(vm) = [s1, sn], ∆2∆3 = um and m is the unique right descent in vm.

Moreover, if v′ ∈ Sn+1 such that ℓ(v′) = n, Supp(v′) = [s1, sn], and m is the unique right

descents in v′ then v′ = snsn−1 · · · sm+1s1s2 · · · sm = vm. This completes the proof.
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Remark 2.5.4 If v ∈ Sn+1 such that Supp(v) = [s1, sn] and m is the unique right descent

in v, then vm ≤ v in left weak Bruhat order. Thus if λ is a nearly maximal labelling of

{[s1, sn]} with respect to Jm, then

λmin([s1, sn]) ≤L λ([s1, sn]) ≤L λmax([s1, sn]).

It is easy to see that each δk is fully commutative. In fact, each δk has a unique reduced

expression. Now with the assumption that, in Definition 2.5.1, the expressions used for ∆2

and ∆3 are reduced, the number of generators si used in the expression of ∆ is

= (n−m)(m− 1) + n+
m(m− 1)

2
+

(n−m)(n−m+ 1)

2
=

n(n+ 1)

2
,

which is equal to the length of ∆. Therefore,

(sk+1sk+2 · · · sk+m−1)(sksk+1 · · · sk+m−2) · · · (s2s3 · · · sm)

is a reduced expression of δkδk−1 · · · δ1.

Lemma 2.5.5 δkδk−1 is fully commutative.

Proof. Let w = δkδk−1 = (sk+1sk+2 · · · sk+m−1)(sksk+1 · · · sk+m−2), where each δj has a unique

reduced expression. Also for all i and j, the ith entry of δj is sj+i.

Since si and si+1 do not commute, hence in the expression of w, if we move the ith entry

of δk to the right, then we also have to move the (i+ 1)th entry of δk to the right. Similarly,

if we move the ith entry of δk−1 to the left, then we also have to move the (i− 1)th entry of

δk−1 to the left. Moreover, we cannot move the ith entry (which is sk+i) of δk to the right of

the ith entry (which is sk) of δk−1.

The reduced expression of δk contains exactly one sa = sk+i, which is the ith entry in

δk. Similarly, the reduced expression of δk−1 contains exactly one sb = sk+i, which is the

(i+ 1)th entry in δk−1. Hence, in w, if we move sa to the right and sb to the left so that the

distance between sa and sb is minimum, then we will be ended up with the factor that is

either sk+isk+i+1sk+i−1sk+i or sk+isk+i−1sk+i+1sk+i, each of which is fully commutative. This

completes the proof.
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Repeatedly applying the argument used in Lemma 2.5.5, we can prove the following

corollary.

Corollary 2.5.1 For all k > 0, wm := δkδk−1 · · · δ1 is fully commutative. Moreover, sk+1 is

the unique left descent and m is the unique right descent in δkδk−1 · · · δ1.

We see that we can represent wm by an (n − m) × (m − 1) Young Tableau, where we

use French notation with the diagonal entries being m, the i-th upper diagonals with entries

m − i, and i-th lower diagonals with m + i. For example, if n = 7 and m = 4, then wm is

given by the following tableau.

4 3 2

5 4 3

6 5 4

It follows that λmax defined by λmax([s1, sn]) = ∆ is the maximal labelling of {[s1, sn]}.We

call a nearly maximal labelling λ of {[s1, sn]} non-trivial if λ is neither λmax nor λmin. Note

that λmax([s1, sn]) = λmin([s1, sn]), if m ∈ {s1, sn}. Since every non-trivial nearly maximal

labelling of [s1, sn] can be extended to the maximal labelling of [s1, sn], hence every non-

trivial nearly maximal labelling of {[s1, sn]} is obtained from ∆ by removing some entries

from wm. Moreover from the proof of the previous lemma, we see that the ith entry of δj in

wm can be removed if the following two conditions are met.

1. The kth entry of δj is removed for all k < i.

2. The ith entry of δk is removed for all k > j.

Thus we obtain the following lemma.

Lemma 2.5.6 The permutation λ([s1, sn]) is a nearly maximal labelling of D = {[s1, sn]} if

and only if there exists sm ∈ [s1, sn] and a partition µ whose Young diagram is contained in

a (n−m)× (m− 1) rectangle such that

λ([s1, sn]) = wµ(snsn−1 · · · sm+1)(s1s2 · · · sm)um,

where wµ is defined in the example below.
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Example 2.5.7 Let n = 7, m = 4, and µ = (3, 2, 2). Consider the Young tableaux of µ

given by

4 3 2

5 4

6 5

Here we use French notation with the diagonal entries m = 4, the i-th upper diagonals

with entries m−i, and i-th lower diagonals with m+i. Then wµ is the associated permutation

corresponding to the reverse row word of the tableaux. In this case,

wµ = (s5s6)(s4s5)(s2s3s4)

and

λ([s1, s7]) = wµ(s7s6s5)(s1s2s3s4)u4.

Corollary 2.5.8 If λ is a nearly maximal labelling of D = {[sk, sn]}, then

Λ(D, λ) = λ([sk, sn]) =

1 2 · · · k − 1 k k + 1 · · · n n+ 1

1 2 · · · k − 1 n+ 1 αk+1 · · · αn k

 ,

for some αk+1, αk+2, · · · , αn ∈ [k + 1, n], and

λmax([sk, sn]) =

1 2 · · · k − 1 k k + 1 · · · n n+ 1

1 2 · · · k − 1 n+ 1 n · · · k + 1 k

 ,

where λmax is the maximal labelling.
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CHAPTER III

Divisor-labelled staircase diagram

The goal of this chapter is to provide a pattern avoidance criterion of a permutation w ∈ Sn

such that the corresponding Schubert variety Xw ∈ Fℓ(n) has a complete parabolic bun-

dle structure with fibers that are isomorphic to Grassmannians or Grassmannian Schubert

divisors.

3.1 Fiber bundle structure of a Schubert variety

Definition 3.1.1 A map π : X → Y between algebraic varieties is called a fiber bundle

with fiber F if for each point y ∈ Y, the fiber π−1(y) is isomorphic to F and there is a Zariski

open neighborhood Uof y such that π−1(U) ∼= U × F.

For any subset J ⊂ S = [s1, sn−1], we have the natural projection map

π : Fℓ(n)→ Fℓ(aJ , n).

If w = vu is the parabolic decomposition of w with respect to J, then the restriction of π to

Xw gives the projection

π : Xw → XJ
v .

The following theorem makes the connection between the geometry of Schubert varieties and

BP decompositions.

Theorem 3.1.1 ([16]) The parabolic decomposition w = vu is a BP decomposition if and

only if the restriction π : Xw → XJ
v is a fiber bundle with fibers isomorphic to Xu.
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Definition 3.1.2 ([17]) A complete BP decomposition of an element w ∈ Sn is a

factorization w = vn · · · v2v1 such that vi(vi−1 · · · v2v1) is a Grassmannian BP decomposion

for every i ∈ [2, n].

Lemma 3.1.3 ([17]) An element w ∈ Sn is either maximal or nearly maximal if only if

w has a complete BP decomposition w = vn · · · v2v1 such that Supp(vi−1) ⊂ Supp(vi) for all

i ∈ [2, n].

For every labelled staircase diagram (D, λ), we obtain a unique Schubert variety XΛ(D),

since Λ(D) does not depend on the choice of the linear extension of D. By Proposition 2.4.2,

we see that the blocks of D determine the fibers of the fiber bundle structure of the Schubert

variety XΛ(D) and the partial order in the blocks of D determines the sequence of the fibers.

In [17], Richmond and Slofstra showed that the following three conditions are equivalent.

1. (D, λ) is a nearly maximal labelled staircase diagram.

2. Λ(D) is a maximal or nearly maximal element.

3. The Schubert variety XΛ(D) has a complete parabolic bundle structure.

In [2], Alland and Richmond showed that a permutation w avoids the patterns 3412, 52341,

and 635241 if and only if the Schubert variety Xw has a complete parabolic bundle structure.

Thus we have the following theorem.

Theorem 3.1.4 ([2, 17]) There is a bijection between any two of the following three sets,

1. the set of permutations avoiding the patterns 3412, 52341, and 635241 in Sn,

2. the set of Schubert varieties in Fℓ(n) with complete parabolic bundle structures,

3. the set of nearly maximal labelled staircase diagrams of support contained in [s1, sn−1],

and the bijections are giev by

w ↔ Xw ↔ w = Λ(D, λ).
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Remark 3.1.5 Suppose that k < m < n and D = {B} = {[sk, sn]} is a staircase diagram

consisting of a single block. Let λ be a nearly maximal labelling of B with respect to the set

{[sk, sn]} \ {sm}. Then any sequence

[n] = σn ⊃ · · · ⊃ σ2 ⊃ σ1 = {n},

where |σj| = j and σ2 = {n + k −m, n}, induces a complete parabolic bundle structure on

XΛ(D),

XΛ(D) = Xn

πσn
σn−1

↠ Xn−1

π
σn−1
σn−2

↠ · · ·
π
σ3
σ2

↠ X2

π
σ2
σ1

↠ X1, where

Xi := π[1,n]
σi

(XΛ(D)) ⊂ Fℓ(σi, n).

Remark 3.1.6 Let {B1, B2, · · · , Bℓ} be a linear extension of a staircase diagram D of type

An−1. For i ∈ [2, ℓ], let

Di = {B1, B2, · · · , Bi−1}

and

bi = {j
∣∣ sj ∈ [s1, sn] \ Supp(Di}).

Assume that b1 = [1, n] and bℓ+1 = {n}. Observe that

[1, n] = b1 ⊃ b2 ⊃ · · · ⊃ bℓ+1 = {n}.

By Proposition 2.4.2 and Theorem 3.1.1, the sequence of projection maps

V b1
• ↠V b2

• ↠ · · ·↠ V bℓ
• ↠ (Cn) ∼= {pt} (3.1.1)

induces a sequence of fiber bundle structures on the corresponding sequence of Schubert va-

rieties in the partial flag varieties. Now by Remark 3.1.5 together with the sequence (3.1.1),

we get a sequence of projection maps that induces a complete parabolic bundle structure on

XΛ(D) which is illustrated by the following example.
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Example 3.1.7 Consider the following staircase diagram with the linear extension

D = {{1, 2, 3}, {5, 6, 7}, {3, 4, 5}}.

D =
765321

543

Let λ be a nearly maximal labelling of D such that the restrictions of λ on the blocks [s1, s3]

and [s3, s5] are maximal and the restriction of λ on the block [s5, s7] are non-maximal. Thus

the restriction λ[s5, s7] is a non-maximal nearly maximal labelling of the block [s5, s7] with

respect to {s5, s7}. By (3.1.1), we get the sequence of projection maps

(V1 ⊂ V2 ⊂ · · · ⊂ V8 = C8)↠(V4 ⊂ V5 ⊂ · · · ⊂ C8)↠(V4 ⊂ C8)↠(C8). (3.1.2)

Notice that in the sequence (3.1.2), we started with the complete flag (V1 ⊂ V2 ⊂ · · · ⊂ C8).

Then we ignored all Vi’s such that si belongs to the first block in the linear extension of D.

Then we ignored all Vi’s such that si belongs to the second block. Then we ignored all Vi’s

such that si belongs to the third block.

Now, by Remark 3.1.5, we can reach from (V1 ⊂ V2 ⊂ · · · ⊂ C8) to (V4 ⊂ V5 ⊂ · · · ⊂ C8)

by ignoring one Vi each time from V1, V2, and V3 in that order, since the first block in D

has the maximal labelling. In a similar way, we can reach from (V4 ⊂ V6 ⊂ · · · ⊂ C8) to

(V4 ⊂ C8) by ignoring one Vi each time with the exception that we need to ignore V6 at the

end since the second block has the nearly maximal labelling with respect to the complement

of {s6}. Continuing in this way, we finally get the sequence of projection maps given by

(V1 ⊂ V2 ⊂ · · · ⊂ C8)↠(V2 ⊂ V3 ⊂ · · · ⊂ C8)↠(V3 ⊂ V4 ⊂ · · · ⊂ C8)

↠(V4 ⊂ V5 ⊂ · · · ⊂ C8)↠(V4 ⊂ V6 ⊂ V7 ⊂ C8)↠(V4 ⊂ V6 ⊂ C8)

↠(V4 ⊂ C8)↠(C8),

(3.1.3)

which induces a complete parabolic bundle structure on XΛ(D).

Definition 3.1.8 We call a nearly maximal labelling λ of a staircase diagam D a divisor

labelling of D if for each B ∈ D, ℓ(λ(B)) = ℓ(uB) or ℓ(uB)− 1, where ℓ denotes the length

function.
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The following lemma follows from Lemma 2.5.6.

Lemma 3.1.9 If λ is a divisor labeling of D = {B} = {[sk, sn]}, then

λ(B) = λmax(B)si = sn+k−iλmax(B),

for some i such that k < i < n.

Let (D, λ) be a nearly maximal labelled staircase diagram with support in [s1, sn−1].

Let w = Λ(D). By Lemma 3.1.3, w has a complete BP decomposition w = vn · · · v2v1. For

i ∈ [2, n], let wi = vi−1 · · · v2v1. Then each Xwi
is a Grassmannian Schubert variety. If λ is

the maximal labelling, then each Xwi
is smooth, and so of codimension 0. If λ is a divisor

labelling then each Xwi
is of codimension 0 or 1. Thus we have the following lemma.

Lemma 3.1.10 The following two sets are in bijection,

1. the set of divisor-labelled staircase diagrams of support contained in [s1, sn−1],

2. the set of Schubert varieties in Fℓ(n) having complete parabolic bundle structures with

fibers isomorphic to Grassmannians or Grassmannian Schubert divisors,

and the bijection is given by (D, λ)↔ XΛ(D, λ).

Example 3.1.11 Let D be the staircase diagram

D = 321

consisting of a single block [s1, s3] and λ a non-maximal divisor labelling of D. Then Λ(D) =

4231. Let w = 4231. Fix a complete flag (E1 ⊂ E2 ⊂ E3 ⊂ C4) ∈ Fℓ(4). Now we compute

the Schubert variety

Xw = {(V1 ⊂ V2 ⊂ V3 ⊂ V4 = C4) : dim(Ei ∩ Vj) ≥ rw[i, j]∀ i, j}.

We have

rw[1, 1] = |{1} ∩ {4}| = 0⇒ dim(E1 ∩ V1) ≥ 0,
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rw[1, 2] = |{1} ∩ {4, 2}| = 0⇒ dim(E1 ∩ V2) ≥ 0,

rw[1, 3] = |{1} ∩ {4, 2, 3}| = 0⇒ dim(E1 ∩ V3) ≥ 0,

rw[1, 4] = |{1} ∩ {4, 2, 3, 1}| = 1⇒ dim(E1 ∩ V4) ≥ 1,

rw[2, 1] = |{1, 2} ∩ {4}| = 0⇒ dim(E2 ∩ V1) ≥ 0,

rw[2, 2] = |{1, 2} ∩ {4, 2}| = 1⇒ dim(E2 ∩ V2) ≥ 1,

rw[2, 3] = |{1, 2} ∩ {4, 2, 3}| = 1⇒ dim(E2 ∩ V3) ≥ 1,

rw[2, 4] = |{1, 2} ∩ {4, 2, 3, 1}| = 2⇒ dim(E2 ∩ V4) ≥ 2,

rw[3, 1] = |{1, 2, 3} ∩ {4}| = 0⇒ dim(E3 ∩ V1) ≥ 0,

rw[3, 2] = |{1, 2, 3} ∩ {4, 2}| = 1⇒ dim(E3 ∩ V2) ≥ 1,

rw[3, 3] = |{1, 2, 3} ∩ {4, 2, 3}| = 2⇒ dim(E3 ∩ V3) ≥ 2,

rw[3, 4] = |{1, 2, 3} ∩ {4, 2, 3, 1}| = 3⇒ dim(E3 ∩ V4) ≥ 3,

rw[4, 1] = |{1, 2, 3, 4} ∩ {4}| = 1⇒ dim(E4 ∩ V1) ≥ 1,

rw[4, 2] = |{1, 2, 3, 4} ∩ {4, 2}| = 2⇒ dim(E4 ∩ V2) ≥ 2,

rw[4, 3] = |{1, 2, 3, 4} ∩ {4, 2, 3}| = 3⇒ dim(E4 ∩ V3) ≥ 3, and

rw[4, 4] = |{1, 2, 3, 4} ∩ {4, 2, 3, 1}| = 4⇒ dim(E4 ∩ V4) ≥ 4.

Here all “dim(Ei∩Vj) ≥ rw[i, j]” type conditions are redundant except that dim(E2∩V2) ≥ 1.

Therefore

X4231 = {(V1 ⊂ V2 ⊂ V3 ⊂ V4) : dim(E2 ∩ V2) ≥ 1}.

Now one can check that X4231 has an iterated fiber bundle structure via the following sequence

of projection maps:

(V1 ⊂ V2 ⊂ V3 ⊂ C4)→ (V1 ⊂ V2 ⊂ C4)→ (V2 ⊂ C4)→ (C4),

where the fibers of the first two projection maps are Grassmannians and the fibers of the last

project map are isomorphic to a Grassmannian Schubert divisor.
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3.2 Pattern avoidance and divisor-labelled staircase diagram

We noticed in Section 2.5 that all nearly maximal labellings of [s1, sn] are obtained by

choosing sm ∈ [s1, sn] and a partition µ ⊆ (n −m) × (m − 1). In the following lemmas, it

will be convenient to consider the dual partition to µ in (n −m) × (m − 1) which we will

denote by µ∨.

Let λ(n,m, µ) denote the nearly maximal labelling corresponding to the data m ≤ n and

partition µ. Also, let

Supp(u∨) := {j : sj ∈ Supp
(
λmax([s1, sn])(λ(n,m, µ))−1

)
}.

Example 3.2.1 Let n = 8, m = 4, and µ = (3, 2, 1, 1). Consider the following Young

tableau of µ.

4 3 2

5 4

6

7

Here, µ∨ = (2, 2, 1) and Supp(µ∨) = {3, 4, 5, 6}.

Note that λ(n,m, µ) is a divisor labelling if |Supp(µ∨)| is at most 1. Moreover, if µ∨

is empty, then we obtain the maximal labelling in which case the labelling is given by the

permutation (n+ 1)n · · · 21.

Let p1 = 3412, p2 = 52341, p3 = 52431 p4 = 53241, and p5 = 635241. Notice that the

pattern p5 contains both p3 and p4.

Lemma 3.2.2 Let i > 0, j ≥ 0, and α = si+jsi+j−1 · · · si. Then

α =

1 2 · · · i− 1 i i+ 1 · · · i+ j i+ j + 1

1 2 · · · i− 1 i+ j + 1 i · · · i+ j − 1 i+ j

 .

Proof. We consider three cases.

Case 1: Let x < i. Then α(x) = x, since sk(x) = x for all k > x.

Case 2: Let x = i. Then α(x) = i+ j + 1, since sx(x) = x+ 1.
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Case 3: Let x > i. Then

α(x) = si+jsi+j−1 · · · si(x)

= si+jsi+j−1 · · · sxsx−1(x)

= si+jsi+j−1 · · · sx(x− 1)

= x− 1.

Hence the lemma.

Lemma 3.2.3 Let α∨ = (ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓs) and β∨ = (ℓ2 ≥ ℓ3 ≥ · · · ≥ ℓs). Then for large

enough n, λ(n,m, α) contains λ(n− 1,m, β).

Proof. Consider λ(n,m, µ) and let µ∨ = ℓ1. Suppose that the largest entry in Supp(µ∨) is

v. With the help of Lemma 3.2.2, one can check that λ(n,m, µ) = (n + 1) · · · (v + 1) · · · 1,

where the (m + 1)th entry is v + 1, and all other entries are decreasing. This implies that

λ(n,m, µ) contains the maximal pattern n(n − 1) · · · 1. Consider λ(n − 1,m, β) and notice

that all entries in Supp(β∨) are less than v. Hence λ(n,m, α) is obtained from λ(n,m, µ) =

(n + 1) · · · (v + 1) · · · 1 by a sequence of swaps of the entries in λ(n,m, µ) that are less

than v. By the same sequence of swaps of these entries applied on the maximal pattern

n(n − 1) · · · 1, we get the permutation λ(n − 1,m, β). However, swapping a pair of entries

≤ v in λ(n,m, µ) preserves the position of the entries ≥ v in λ(n,m, µ). Hence, λ(n,m, α)

contains λ(n− 1,m, β).

Lemma 3.2.4 Let λ(n,m, µ) be a nearly maximal labelling of D = {[s1, sn]}. If the size

of the partition |µ∨| > 1 (i.e λ(n,m, µ) is not a divisor labelling), then the permutation

λ(n,m, µ) contains p3 or p4.

Proof. We prove the lemma by the induction on n.

Special Case: Assume that µ∨ is a single row such that |µ∨| > 1. Then

Supp(µ∨) = {n−m+ 1, n−m+ 2, · · · , n−m+ ℓ},
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for some m > 2, ℓ > 1. Let α = sn−m+ℓsn−m+ℓ−1 · · · sn−m+1. Then λ(n,m, µ) = α∆. By

Lemma 3.2.2,

α =

1 · · · n−m n−m+ 1 n−m+ 2 · · · n−m+ ℓ+ 1

1 · · · n−m n−m+ ℓ+ 1 n−m+ 1 · · · n−m+ ℓ

 .

Now

α∆(1) = α(n+ 1) = n+ 1,

α∆(m− 1) = α(n−m+ 3) = n−m+ 2,

α∆(m) = α(n−m+ 2) = n−m+ 1,

α∆(m+ 1) = α(n−m+ 1) = n−m+ ℓ+ 1, and

α∆(n+ 1) = α(1) = 1.

(3.2.1)

Thus we see that λ(n,m, µ) contains a subsequence

(n+ 1)(n−m+ 2)(n−m+ 1)(n−m+ ℓ+ 1)1 ∼ 52431,

and hence, it contains p4. Similarly, we can show that if µ∨ is a single column such that

|µ∨| ≥ 2, then λ(n,m, µ) contains p3 = 52431. Thus we see that the lemma is true for n = 4.

Now for the sake of induction, assume that for any permutation λ(n−1,m, µ), if |µ∨| > 1,

then the permutation λ(n− 1,m, µ) contains p3 or p4. We will show that the same property

holds for λ(n,m, µ), where |µ∨| > 1. Let µ∨ = (ℓ1 ≥ ℓ2 ≥ · · · ≥ ℓs) and β∨ = (ℓ2 ≥ ℓ3 ≥

· · · ≥ ℓs). By the previous lemma, λ(n,m, µ) contains λ(n − 1,m, β). If |β∨| > 1 then, by

the induction hypothesis, λ(n,m, µ) contains p3 or p4,.

Now assume that |β∨| = 1. Then µ∨ is a hook with two parts and m < n − 1. One can

check that the smallest and the largest entries in Supp(µ∨) are sn−m and sn−m+ℓ, respectively,

for some ℓ > 0, and

λ(n,m, µ) = sn−m(sn−m+ℓsn−m+ℓ−1 · · · sn−m+1)∆ = sn−mα∆, where

α = sn−m+ℓsn−m+ℓ−1 · · · sn−m+1.
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Now by Equation (3.2.1),

λ(n,m, µ)(1) = sn−m(n+ 1) = n+ 1,

λ(n,m, µ)(m) = sn−m(n−m+ 1) = n−m,

λ(n,m, µ)(m+ 1) = sn−m(n−m+ ℓ+ 1) = n−m+ ℓ+ 1,

λ(n,m, µ)(m+ 2) = sn−m(n−m) = n−m+ 1, and

λ(n,m, µ)(n+ 1) = sn−m(1) = 1.

The sequence (n+1)(n−m)(n−m+ ℓ+1)(n−m+1)1 is order isomorphic to p3. Therefore,

λ(n,m, µ) contains p3. This completes the proof.

Remark 3.2.5 Let D = {[sk, sn]} be a staircase diagram consisting of a single block. If λ

is a non divisor nearly maximal labelling of D, then

Λ(D) =

1 2 · · · k − 1 k k + 1 · · · n n+ 1

1 2 · · · k − 1 n+ 1 wk+1 · · · wn k



such that the subsequence

 k k + 1 · · · n n+ 1

n+ 1 wk+1 · · · wn k

 contains p3 or p4.

We now show that Lemma 3.2.4 extends to connected staircase diagrams.

Lemma 3.2.6 Let D be a (connected) staircase diagram with support [s1, sn] such that

[sk, sn] ∈ D. If λ is a nearly maximal labelling of D, then the (n + 1)th entry in Λ(D) is at

most k.

Proof. We will prove the lemma by the induction on n. Clearly the lemma is true when D

consists of a single block.

Suppose that the lemma is true for any staircase diagram whose support is a proper

subset of [s1, sn].

Let D′ = D \ {[sk, sn]}, Supp(D′) = [s1, sℓ], and

Λ(D′) =

 1 2 · · · ℓ ℓ+ 1

w1 w2 · · · wℓ wℓ+1.

 .
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Then by our induction hypothesis wℓ+1 < k. Now,

u[sk,sℓ] =

1 · · · k − 1 k k + 1 · · · ℓ ℓ+ 1

1 · · · k − 1 ℓ+ 1 ℓ · · · k + 1 k

 .

By Corollary 2.5.8

λ([sk, sn]) =

1 · · · k − 1 k k + 1 · · · n n+ 1

1 · · · k − 1 n+ 1 ∗ · · · ∗ k

 .

Therefore

λ([sk, sn])u[sk,sℓ] =

 1 2 · · · n n+ 1

η1 η2 · · · ηn k

 ,

for some ηi and

u[sk,sℓ]λ([sk, sn]) =

 1 2 · · · n n+ 1

α1 α2 · · · αn ℓ+ 1


for some αi. Now we consider two cases.

Case 1: Let [sk, sn] is a maximum element of D. In this case,

Λ(D) = λ([sk, sn])u[sk,sl]Λ(D
′)

=

 1 2 · · · n n+ 1

η1 η2 · · · ηn k


 1 2 · · · ℓ ℓ+ 1

w1 w2 · · · wℓ wℓ+1

 .

Case 2: Let [sk, sn] is a minimum element of D. In this case,

Λ(D) = Λ(D′)u[sk,sl]λ([sk, sn])

=

 1 2 · · · ℓ ℓ+ 1

w1 w2 · · · wℓ wℓ+1


 1 2 · · · n n+ 1

α1 α2 · · · αn ℓ+ 1

 .

In both cases, we see that the (n+ 1)-th entry in Λ(D, λ) is atmost k.

Remark 3.2.7 Let λ be a nearly maximal labelling of a staircase diagram D such that

Λ(D, λ) avoids p3 or p4. Then λ−1 is also a nearly maximal labelling of flip(D), and
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Λ(flip(D), λ−1) avoids p3 and p4. To see this, suppose that λ−1 is not a nearly max-

imal labelling of flip(D). Then Λ(flip(D), λ−1) contains 635241. Therefore Λ(D, λ) =

Λ(flip(flip(D)), (λ−1)−1) contains 642531. Hence Λ(D, λ) contains 642531. However 642531

contains p3 and p4, which is a contradiction.

Lemma 3.2.8 Let D be a connected staircase diagram with support [s1, sn], λ a nearly max-

imal labelling of D, and βn the unique block in D containing sn. Suppose that βn is maximal

in D and D′ = D \ {βn}.

1. If λ restricted to βn is a divisor labelling, then Λ(D) contains Λ(D′).

2. If λ restricted to βn is a non-divisor labelling, then Λ(D) contains p3 or p4.

Proof. Let βn = [sk, sn], Supp(D′) = [s1, sℓ], and Λ(D′) = w1w2 · · ·wℓ+1. Now, Λ(D) =

λ(βn)Λ(D′).

Let Sn
k be the subsequence (n+1)n · · · k. Since D is connected, k ≤ ℓ+1. Now we consider

the following two cases.

Case A : k = ℓ+ 1, and so, βn = [sℓ+1, sn].

Case B : k < ℓ+ 1.

Case A : In this case, λmax(βn)Λ(D′) = u[sk, sn] Λ(D′), where

u[sk, sn] =

1 · · · k − 1 k · · · n+ 1

1 · · · k − 1 n+ 1 · · · k

 .

Thus, in one-line notation,

λmax(βn)Λ(D′) = η1η2 · · · ηℓ+1n(n− 1) · · · (ℓ+ 1), where

ηi =


n+ 1 : if wi = ℓ+ 1

wi : otherwise

.
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We see that λmax(βn)Λ(D′) contains the pattern Λ(D′), since ℓ+1 is the largest entry in the

one-line notation of Λ(D′). We also see that sdλmax(βn)Λ(D′) contains the pattern Λ(D′),

if ℓ + 1 < d < n. Thus we see that if λ restricted to βn is a divisor labelling, then Λ(D)

contains Λ(D′).

Case B : In this case, λmax(βn)Λ(D′) = u[sk, sn] u[sk, sℓ] Λ(D′), where

u[sk, sn] =

1 · · · k − 1 k · · · n+ 1

1 · · · k − 1 n+ 1 · · · k

 and

u[sk, sℓ] =

1 · · · k − 1 k · · · ℓ+ 1

1 · · · k − 1 ℓ+ 1 · · · k

 .

Thus, in one-line notation,

λmax(βn)Λ(D′) = η1η2 · · · ηℓwℓ+1(n+ k − ℓ− 1)(n+ k − ℓ− 2) · · · (k + 1)k, where

ηi =


wi : if wi < k

wi + n− ℓ : otherwise

.

Notice that in this case, λmax(βn)Λ(D′) also contains the pattern Λ(D′). Moreover, by the

previous lemma wℓ+1 < k, and so, λmax(βn)Λ(D′) contains the sub-sequence Sn
k . Also since

k < d < n, sdλmax(βn)Λ(D′) contains the pattern Λ(D′) too. This completes the first part

of the proof.

In the previous part, we see that λmax(βn) contains the sub-sequence (n+1)n · · · k. Now

suppose that λ restricted to βn is non-divisor. Then

Λ(D) = sd1sd2 · · · sdtλmax(βn)Λ(D′),

for some di such that

sd1sd2 · · · sdtλmax(βn) =

1 2 · · · k − 1 k k + 1 · · · n n+ 1

1 2 · · · k − 1 n+ 1 ηk+1 · · · ηn k



38



for some ηi such thatsd1sd2 · · · sdtλmax(βn) contains p3 or p4. Cosequently, Λ(D) contains a

subsequence (
n+ 1, ηk+1, · · · , ηn, k

)
,

which contains p3 or p4. This completes the proof.

Lemma 3.2.9 Let D be a connected staircase diagram and λ a non-divisor nearly maximal

labelling of D. Then Λ(D) contains p3 or p4.

Proof. Without any loss of generality, suppose that Supp(D) = [s1, sn]. We will prove the

lemma by the induction on n. The lemma is true for n < 5. Suppose that the lemma is true

for any staircase diagram with |Supp(D)| < n. Let βn be the unique block containing sn in

D. Now by Remark 3.2.7, we can assume without any loss of generality that βn is maximum

in D. Let D′ be the sub-diagram defined in Lemma 3.2.8. Now we consider two cases.

Case 1: Let λ restricted to βn be a divisor labelling. Then by Lemma 3.2.8, Λ(D) contains

Λ(D′). Hence by our induction hypothesis Λ(D) contains p3 or p4.

Case 2: Let λ restricted to βn be a non divisor labelling. Then by 3.2.8, Λ(D) contains

p3 or p4. This completes the proof.

Lemma 3.2.10 Let λ be a divisor labelling of a (connected) staircase diagram D, then the

permutation pattern Λ(D) avoids p3 and p4.

Proof. We will prove the lemma by the induction on the number of blocks in D. First note

that if D = {B} is a single block, then it can be verified that any divisor labelling of D

corresponds to a permutation avoiding p3 and p4. In fact, any such labelling will avoid 132

and 213 all of which are contained in p2 and p3 respectively.

Now let D be a staircase diagram such that |D| ≥ 2. Without any loss of generality,

suppose that Supp(D) = [s1, sn], and as in the previous lemma, let βn = [sk, sn] denote the

unique block containing sn, βn is maximal, D′ = D \ [sk, sn], Supp(D′) = {s1, sℓ}, and

Λ(D′) =

 1 2 · · · ℓ ℓ+ 1

w1 w2 · · · wℓ wℓ+1

 ,
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where wℓ+1 < k. By our induction hypothesis, Λ(D′) avoids p3 and p4. Now we consider two

cases.

Case 1: Let λ|{βn} be maximal. In this case,

Λ(D) =

 1 · · · ℓ ℓ+ 1 ℓ+ 2 ℓ+ 3 · · · n n+ 1

η1 · · · ηℓ wℓ+1 n+ k − ℓ− 1 n+ k − ℓ− 2 · · · k + 1 k

 ,

where

ηi =


wi if wi < k

wi + n− l otherwise

.

Case 2: Let λ|{βn} be divisor but not maximal. In this case, Λ(D) is almost the same as

it is in Case 1, except there is a swap between two consecutive entries that are bigger than

n+ k − ℓ− 1.

In both cases, if Λ(D) contains p3 or p4, then Λ(D′) also contains the same, since wℓ+1 < k.

This completes the proof.

If a staircase diagram has disconnected support, then the permutation corresponding to

any nearly maximal labelling is an element of the parabolic subgroup WJ1 × · · ·WJk where

Ji’s denote the connected components of Supp(D). Hence if the corresponding permutation

contains one of 3412, 52341, 52431, and 53241, it must contain the pattern in one of the

connected components. This leads to the following corollary:

Corollary 3.2.11 There is a bijection between the following sets:

1. The set of permutations of [1, n] avoiding the patterns 3412, 52341, 52431, and 53241,

2. The set of Schubert varieties in Fℓ(n) which have complete parabolic bundle structures

where the fibers are isomorphic to Grassmannians or Grassmannian Schubert divisors,

3. The set of divisor-labelled staircase diagrams of support contained in [s1, sn−1],

and the bijections are given by w ↔ Xw ↔ w = Λ(D,λ), where λ is a divisor labelling of D.

40



Note that if λ is a nearly maximal labelling of D, then λ−1 may or may not be a nearly

maximal labelling of flip(D). Likewise, if w is a nearly maximal element in Sn, then w−1 is

not necessarily a nearly maximal element in Sn. If both w and w−1 are nearly maximal, then

we say that w is almost maximal. It follows from Remark 3.2.7 that λ is a divisor labelling

of D if and only if λ−1 is a divisor labelling of flip(D). Thus if (λ,D) is a divisor-labelled

staircase diagram, then Λ(D,λ) is an almost maximal element in Sn.
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CHAPTER IV

GENERATING FUNCTION

In this chapter, we will find the generating function

Z(x) =
∑
n≥0

znx
n,

where z0 = 1, and for n > 0, zn is the number of divisor-labelled staircase diagrams of support

contained in [s1, sn]. This will in turn give us the number of Schubert varieties in Fℓ(n+ 1)

that are iterated fiber bundles of Grassmannians or Grassmannian Schubert divisors.

Definition 4.0.1 Suppose that D is a set of staircase diagrams, D ∈ D, and B ∈ D. Then

we define the following:

ND = |{(D, λ) : D ∈ D and λ is a divisor labelling of D}|,

ND = N{D}, and

NB = |{(B, λ) : λ is a divisor labelling of B such that λ can be extended to a labelling

of D}|.

If D is a staircase diagram and D is a set of staircase diagrams, then it follows from the

definition that

ND =
∏
Bi∈D

NBi

and

ND =
∑
D∈D

ND.

The following is a technical lemma that describes the values NBi
in a given staircase

diagram.
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Lemma 4.0.2 Let B be a block in a staircase diagram D such that |Supp(B)| = ℓ. Let

k1 = min{|JR(B)|, |JL(B)|} and k2 = max{|JR(B)|, |JL(B)|}. If ℓ = 1, then NB = 1.

Otherwise, we have

(a) NB = ℓ− 1 if k2 = 0,

(b) NB = ℓ− k2 if k1 > 0,

(c) NB = ℓ+ 1− k2 if k1 = 0 and B has overlapping boxes on both sides, and

(d) NB = ℓ− k2 if k1 = 0 and B has overlapping boxes on exactly one side.

Example 4.0.3 Here we list four diagrams where the blocks with support B = [2, 6] have

properties (a), (b), (c), and (d), respectively.

1
65432

321
65432

765

765321
65432

65432
765

Proof. Without any loss of generality, let B = [s1, sℓ]. Note that a non-maximal divisor-

labelling of B is of the form siλmax(B) = λmax(B)sℓ+1−i, for some 1 < i < ℓ. This together

with part (1) of Definition 2.3.4 implies that there are ℓ−2 choices of si in part (a), ℓ−1−k2

choices of si in parts (b) and (d), and ℓ − k2 choices of si in part (c). This completes the

proof.

Example 4.0.4 In the staircase diagram

D =
11109874321

1413121198765

151413

,

N[s1, s4] = 4− 1 = 3,

N[s5, s9] = 5− 3 = 2,

N[s7, s11] = 5 + 1− 4 = 2,
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N[s11, s14] = 4− 2 = 2,

and

N[s13, s15] = 3− 2 = 1.

Hence

ND = (3)(2)(2)(2)(1) = 24.

The following lemma follows immediately from Lemma 4.0.2.

Lemma 4.0.5 Suppose that bn = N[s1, sn], the number of divisor labellings of the staircase

diagram {[s1, sn]}. Then

F0(x) :=
∑
n>0

bnx
n

= x+
∞∑
n=2

(n− 1)xn

= x+
( x

1− x

)2

.

Definition 4.0.6 We call a staircase diagram D strongly connected if D is connected

and for each pair of adjacent blocks B1, B2 in D, |B1 ∩B2| > 0.

Let

C(n) := the set of connected staircase diagrams of support [s1, sn],

SC(n) := {D ∈ C(n) : D is strongly connected}, and

SCI(n) := {D ∈ SC(n) : D is increasing}.

Example 4.0.7 SCI(4) consists of the following five staircase diagrams.

4321 321

43

21

432

321

432

21

32

43

Thus, NSCI(4) = 3 + (2)(1) + (1)(2) + (1)(1) + (1)(1)(1) = 9.
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Observe that a staircase diagram D in SCI(n) corresponds to a unique Dyck path P such

that

1. no valley of P lies on the x-axis,

2. the k-th mount of P corresponds to the k-th block in D, and

3. the length of the left (resp. right) side of a mount in P equals the number of exposed

boxes of the corresponding block from the bottom (resp. top).

2

1
3 41

2
3

4

21

5432 ←→

Definition 4.0.8 If B = [si, sj] is a block, D = {B1 ≺ B2 ≺ · · · ≺ Bk} is an increas-

ing staircase diagram, and D is a set of increasing staircase diagrams, then we define the

following:

B = [si, sj+1],

D = {B1 ≺ B2 ≺ · · · ≺ Bk}, and

D = {D : D ∈ D}.

Remark 4.0.9 It is easy to check that if D is an increasing staircase diagram then so is D.

Moreover, there is a natural bijection between the sets D and D given by D 7→ D.

21

5432 ←→
321

65432

Lemma 4.0.10

NSCI(n) =


NSCI(n) if n = 1

NSCI(n) + 1 if n > 1

.
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Proof. It follows from Lemma 4.0.2 and Remark 4.0.9 that if D is an increasing staircase

diagram, then

ND =


ND + 1 ; if D consists of a single block of length greater than 1

ND ; otherwise

.

Moreover, if n > 1, then SCI(n) contains exactly one staircase diagram consisting of a single

block of length greater than 1. This completes the proof.

Lemma 4.0.11 There is a bijection between SCI(n) and ∪n−1
k=1

(
SCI(k)× SCI(n− k)

)
which

preserves the number of divisor labelling.

Proof. Recall that each diagram in SCI(k) is of the type Dl for some Dl ∈ SCI(k). For

Dl = {B1 ≺ B2 ≺ · · · ≺ Bm} ∈ SCI(k) and Dr = {Bm+1 ≺ Bm+2 ≺ · · · ≺ Bs} ∈ SCI(n− k),

define

Dr
l = {B1 ≺ B2 ≺ · · ·Bm ≺ Bm+1(+k) ≺ Bm+2(+k) ≺ · · · ≺ Bs(+k)} ∈ SCI(n),

where for all j,

Bj(+k) = {si+k | si ∈ Bj}.

For example, let

Dl =
21

5432
and Dr =

321

543
.

Then

Dr
l =

321

65432

876

1098

.

It is easy to see that

(NDℓ
)(NDr) = (NDr

ℓ
).
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Notice that Dr
l is uniquely determined by Dl and Dr. Thus the function

F : ∪n−1
k=1

(
SCI(k)× SCI(n− k)

)
→ SCI(n)

defined by

(
Dl, Dr

)
7→


Dr

l : if |Supp(Dr)| > 1

Dl : if |Supp(Dr)| = 1

is one-one.

Let D = {B1 ≺ B2 ≺ · · ·Bm ≺ Bm+1 ≺ · · · ≺ Bs} ∈ SCI(n) \ SCI(n− 1), where m is the

least positive integer such that

Bm ∩Bm+1 = {sk}

for some k. For each i ≤ m, let B′
i be the block such that

B′
i = Bi,

and for i > m, let B′
i be the block defined by

B′
i = {sj−k+1 | sj ∈ Bi}.

Let Dl = {B′
1 ≺ B′

2 ≺ · · ·B′
m} and Dr = {B′

m+1 ≺ B′
m+2 ≺ · · ·B′

s}. Now one can check that

F (Dl, Dr) = D.

For example, if

D = {B1 = [s1, s3] ≺ B2 = [s2, s6] ≺ B3 = [s6, s8] ≺ B4 = [s8, s10]},

then B′
1 = [s1, s2], B

′
2 = [s2, s5], B

′
3 = [s1, s3], B

′
4 = [s3, s5], Dl = {B′

1 ≺ B′
2}, and Dr =

{B′
3 ≺ B′

4}.

D =

321

65432

876

1098

,
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Dl =
21

5432
and Dr =

321

543
.

Thus we see that F is onto, and hence F is a bijection. Moreover,

(NDl
)(NDr) = NDr

l
.

To visualize the map F, observe that if the first valley of a Dyck path of a staircase

diagram in SCI(n) stays at the position (2k − 1, 1), then the diagram decomposes into two

diagrams; one is in SCI(k), and the other is in SCI(n− k).

321

43

54
←→

Corollary 4.0.12 NSCI(n) satisfies the following Catalan type equation:

NSCI(n) =
n−1∑
k=1

NSCI(k) ×NSCI(n−k).

Lemma 4.0.13 Define the generating series

a(x) :=
∑
n>0

NSCI(n)x
n.

Then

a(x) =
1− x− x2 −

√
x4 − 2x3 + 7x2 − 6x+ 1

2(1− x)
.
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Proof. We have

a(x) =
∑
n>0

NSCI(n)x
n

= x+
∑
n>1

( n−1∑
k=1

NSCI(k) ×NSCI(n−k)

)
xn

= x+
∞∑
k=1

( ∞∑
n=k+1

NSCI(k) ×NSCI(n−k)

)
xn

= x+
∞∑
k=1

( ∞∑
n=1

NSCI(k) ×NSCI(n)

)
xn+k

= x+
( ∞∑

k=1

NSCI(k)x
k
)( ∞∑

n=1

NSCI(n)x
n
)
.

By Lemma 4.0.10,
∞∑
k=1

NSCI(k) x
k =

x2

1− x
+ a(x). Hence,

a(x) = x+
( x2

1− x
+ a(x)

)
a(x),

which is a quadratic equation in a(x). Since the coefficients in the formal power series ex-

pansion of a(x) are positive, a(x) =
1− x− x2 −

√
x4 − 2x3 + 7x2 − 6x+ 1

2(1− x)
.

Let SCI(k, n) ⊂ SCI(n) be the subset of staircase diagrams such that the block containing

s1 of a diagram in SCI(k, n) equals [s1, sk+1] and the covering block contains s2 (i.e. these

two blocks have k overlapping boxes).

Example 4.0.14 The follwing staircase diagram is contained in SCI(2, 7).

321

432

7654

Lemma 4.0.15 Define the generating series

G(x, k) :=
∞∑

n=k+2

NSCI(k,n) x
n.

Suppose that

a := a(x)
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and

d := ax− x2.

Then G(x, k) = dak−1.

Proof. Notice that there is a bijection from SCI(1, n) to SCI(n− 1) given by

D 7→ D \ {[s1, s2]}

and

ND = ND\{[s1,s2]}.

21

5432

654
←→

4321

543

Thus

G(x, 1) =
∞∑
n=3

NSCI(1,n)x
n

=
∞∑
n=3

NSCI(n−1)x
n

=
∞∑
n=2

NSCI(n)x
n+1

= −x2 +
∞∑
n=1

NSCI(n)x
n+1

= −x2 + xa.

Hence

G(x, 1) = d. (4.0.1)

As in Corollary 4.0.12, we can show that if k > 1, then

NSCI(k, n) =
n−1∑

i=k+1

NSCI(k−1, i)NSCI(n−i). (4.0.2)
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Moreover, for k > 1, it follows from the definition of SCI(k − 1, i) that

NSCI(k−1, i) = NSCI(k−1, i). (4.0.3)

Thus, combining Equations (4.0.2) and (4.0.3), we get that if k > 1, then

NSCI(k, n) =
n−1∑

i=k+1

NSCI(k−1, i)NSCI(n−i). (4.0.4)

This implies that if k > 1, then

G(x, k) =
∞∑

n=k+2

NSCI(k,n)x
n

=
( ∞∑
i=k+1

NSCI(k−1,i)x
i
)( ∞∑

n=1

NSCI(n)x
n
)

= G(x, k − 1)a.

(4.0.5)

Now the lemma follows from Equations (4.0.1) and (4.0.5).

Let SCIℓ(k, n) ⊂ SCI(k, n) be the subset of diagrams such that the block containing sn

has ℓ overlapping boxes.

Example 4.0.16 SCI3(2, 9) contains the following diagram.

321

65432

987654

Observe that

SCI(k, n) =
⋃
ℓ>0

SCIℓ(k, n),

and so,

NSCI(k, n) =
∑
ℓ>0

NSCIℓ(k, n).

Let SCI(k, ℓ, n) ⊂ SCI(k, n) denote the subset of diagrams such that the block containing

sn contains ℓ+1 boxes, where ℓ boxes are overlapping. Let L(x, k, ℓ) be the generating series
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of the number of divisor-labelled diagrams of this type. i.e.,

L(x, k, ℓ) =
∑
n>0

NSCI(k,ℓ,n)x
n.

It is clear that

L(x, k, ℓ) = L(x, ℓ, k).

Definition 4.0.17 Let D be a staircase diagram with support [s1, sn]. We define D+m to

be the staircase diagram obtained from D by adding m ≥ 0 boxes to the unique block of D

containing sn. In particular, D+0 = D.

It is easy to see that

ND+m = (m+ 1)ND.

Example 4.0.18

Let D =
321

65432

7654

. Then D+3 =
321

65432

10987654
.

Lemma 4.0.19 For any positive integer k,

G(x, k) =
∑
ℓ>0

L(x, k, ℓ)

(1− x)2
.

Proof. For ℓ > 0 and D ∈ SCIℓ(k, n), if the unique block in D containing sn has m + 1

exposed boxes for some m ≥ 0, then

D = (D′)+m
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for some D′ ∈ SCI(k, ℓ, n−m). Therefore,

∑
n>0

NSCIℓ(k,n)x
n =

∑
n>0

 ∑
D∈SCIℓ(k,n)

ND

xn

=
∑
n>0

n−1∑
m=0

∑
D′∈SCI(k,ℓ,n−m)

(m+ 1)ND′xn−m

xm

=
∑
m≥0

(m+ 1)

∑
n>m

∑
D′∈SCI(k,ℓ,n−m)

ND′xn−m

xm

=
∑
m≥0

(m+ 1)L(x, k, ℓ)xm

=
L(x, k, ℓ)

(1− x)2
,

and so, G(x, k) =
∑
n>0

NSCI(k,n)x
n =

∑
n>0

∑
l>0

NSCIℓ(k,n)x
n =

∞∑
ℓ=1

L(x, k, ℓ)

(1− x)2
.

Definition 4.0.20 Let Tt(ℓ, n) ⊂ SC(n) denote the subset of staircase diagrams such that

1. each diagram in Tt(ℓ, n) has exactly t ≥ 0 local extremas (i.e local maximum or mini-

mum blocks),

2. the block containing sn contains ℓ+ 1 boxes where ℓ boxes are overlapping, and

3. the block containing s1 is a minimum.

Example 4.0.21 T3(1, 16) contains the following staircase diagram.

16158765321

15141110987543

14131211

Here the local extremas of the diagram are [s3, s5], [s5, s8] and [s11, s14].

Let

Turnt(x, k) :=
∑
n>0

NTt(k,n)x
n.
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Definition 4.0.22 If D is a connected staircase diagram, then rev(D) is the diagram ob-

tained from D by filliping D and then re-labelling the boxes in the reverse order.

Example 4.0.23

Let D =
54321

765432

876

. Then rev(D) =
321

765432

87654

.

Lemma 4.0.24 For any positive integer k, Turn0(x, k) = G(x, k).

Proof. Observe that T0(k, n) ⊂ SCI(n) is the subset of staircase diagrams such that the

block containing sn in a staircase diagram in T0(k, n) contains k+1 boxes where k boxes are

overlapping. Thus, the sets T0(k, n) and SCI(k, n) are in bijection and the bijection is given

by

D 7→ rev(D).

Therefore

NT0(k,n) = NSCI(k,n),

and so, ∑
n>0

NT0(k,n) x
n = G(x, k).

Hence Turn0(x, k) = G(x, k).

Let Λtype be the set of staircase diagrams of type {B1 ≺ B2 ≻ B3} or {B1 ≻ B2 ≺ B3}

such that NB1 = 1 = NB3 . Thus if D ∈ Λtype such that D = {B1 ≺ B2 ≻ B3} or {B1 ≻ B2 ≺

B3}, then by Lemma 4.0.2,

ND = 1 + the number of exposed boxes in B2.

Remark 4.0.25 Note that for t > 0, each staircase diagram D ∈ Tt(k, n) decomposes into

three diagrams D1,D2, and D3 such that

ND = ND1ND2ND3 ,
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where

D1 ∈ Tt−1(j,m1),

D2 ∈ Λtype, and

D3 or flip(D3) ∈ SCI(ℓ, k,m3),

for some j, m1, ℓ,m3. Moreover, if m2 is the number of exposed boxes in the local extrema of

D2, then

m1 +m2 +m3 = n+ 2.

Example 4.0.26 The diagram

1211109874321

1413121187654

15141312

∈ T2(3, 15)

decomposes into the following three diagrams:

9874321

87654
∈ T1(2, 9), 121110987

131211876
∈ Λtype, and

321

5432

6543

∈ SCI(2, 3, 6).

Lemma 4.0.27 For any t ≥ 0, Turnt(x, k) = M tG(x, k), where M =
(a− x)(2− x)

1− a
.

Proof. We will prove the lemma by the induction on t. Clearly the lemma is true for t = 0.

Let

Turnt−1(x, k) = M t−1G(x, k).
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If t > 0, then by Remark 4.0.25,

Turnt(x, k) =
∑
n>0

NTt(k,n)x
n

=
∑
n>0

( ∑
m1+m2+m3=n+2

( ∑
j>1, ℓ>1

NTt−1(j,m1)(1 +m2)NSCI(ℓ,k,m3)

))
xn

=
∞∑
j=1

∞∑
ℓ=1

1

x2
Turnt−1(x, j)(2x+ 3x2 + 4x3 + · · · )L(x, ℓ, k)

=
∞∑
j=1

∞∑
ℓ=1

(2− x)

x(1− x)2
Turnt−1(x, j)L(x, ℓ, k)

= M t−1

∞∑
j=1

∞∑
ℓ=1

(2− x)

x(1− x)2
G(x, j)L(x, ℓ, k)

= M t−1

∞∑
j=1

∞∑
ℓ=1

(2− x)

x(1− x)2
daj−1L(x, ℓ, k)

= M t−1(a− x)(2− x)
( ∞∑

j=1

aj−1
)( ∞∑

ℓ=1

L(x, ℓ, k)

(1− x)2

)
Therefore, by Lemma 4.0.19,

Turnt(x, k) = M t−1 (a− x)(2− x)

(1− a)
G(x, k) = M t−1MG(x, k) = M tG(x, k).

Recall that SC(n) is the set of connected staircase diagrams with support [s1, sn], where

the intersection of every pair of adjacent blocks in each staircase diagram is non-empty.

Example 4.0.28 SC(15) contains the diagram

1211109874321

14131287654

1514

but it does not contain the diagram

11109874321

14131287654

1514

.

Lemma 4.0.29 For any positive integer n,

F (x) :=
∞∑
n=1

NSC(n)x
n = F0(x) +

2d

(1−M)(1− a)(1− x)2
.
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Proof. We have ∑
n>0

N[s1, sn]x
n = F0(x).

For t ≥ 0,m > 0, and k > 0, let

A(t,k,m) := {D : D ∈ Tt(k, n) or D = (D′)+m, where D′ ∈ Tt(k, n−m)}

and

flip(A(t,k,m)) := {flip(D) : D ∈ A(t,k,m)}.

Therefore,

∑
n>0

∑
D∈A(t,k,m)

NDx
n =

∑
n>0

n−1∑
m=0

∑
D′∈Tt(k,n−m)

ND′(m+ 1)xn

=
∞∑

m=0

∞∑
n=m+1

∑
D′∈Tt(k,n−m)

ND′(m+ 1)xn−mxm

=
∞∑

m=0

Turnt(x, k)(m+ 1)xm

=
Turnt(x, k)

(1− x)2
.

Observe that if D ∈ C(n) \ {[s1, sn]}, then D ∈ A(t,k,m) ∪ flip(A(t,k,m)), for some (t, k,m).

Moreover, Nflip(A(t,k,m)) = NA(t,k,m)
. Hence,

F (x) = F0(x) + 2
∞∑
k=1

∞∑
t=0

Turnt(x, k)

(1− x)2

= F0(x) +
2

(1− x)2

∞∑
k=1

∞∑
t=0

M tG(x, k)

= F0(x) +
2d

(1−M)(1− a)(1− x)2
,

which completes the proof.

Suppose that tn := NC(n) is the number of divisor-labelled connected staircase diagrams

with support [s1, sn] and zn is the number of divisor-labelled staircase diagrams with support
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contained in [s1, sn]. Then

zn = zn−1 + tn +
n∑

k=2

zn−ktk−1,

since every staircase diagram is a disjoint union of staircase diagrams with connected support.

Let

FT (x) :=
∑
n>0

tnx
n

and

Z(x) :=
∑
n≥0

znx
n.

Therefore,

Z(x) = 1 +
∞∑
n=1

zn−1x
n +

∞∑
n=1

tnx
n +

∞∑
n=2

n∑
k=2

zn−ktk−1x
n

= 1 + xZ(x) + FT (x) + xFT (x)Z(x).

Hence,

Z(x) =
1 + FT (x)

1− x− xFT (x)
.

Observe that if D is a connected staircase diagram having two non-overlapping adjacent

blocks, then D decomposes into two diagrams, say D1 and D2, where D1 ∈ SC(m1) for some

m1 and D2 ∈ C(m2) for some m2. In other words, we obtain D by “gluing” D1 and D2.

Example 4.0.30 By gluing the staircase diagrams

65421

432
and

1098

12111087
,

we obtain the following two diagrams:

109865421

12111087432
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1098

12111087

65421

432

Let fn := NSC(n). Thus we see that

tn = fn + 2
∑
k>0

fn−ktk.

Hence

FT (x) =
∞∑
n=1

tnx
n

=
∞∑
n=1

fnx
n + 2

∞∑
n=1

∞∑
k=1

fn−ktkx
n

= F (x) + 2F (x)FT (x).

Therefore,

FT (x) =
F (x)

1− 2F (x)
,

and so,

Z(x) =
1− F (x)

1− x+ (x− 2)F (x)
.

By simplifying the right-hand side of Z(x), we get the following theorem.

Theorem 4.0.31 Let zn be the number divisor-labelled staircase diagrams of support con-

tained in [s1, sn], z0 = 1, and Z(x) :=
∑
n≥0

znx
n. Then

Z(x) =
−4x6 + 24x5 − 58x4 + 73x3 − 49x2 + 17x− 2− x

√
x4 − 2x3 + 7x2 − 6x+ 1

2(x− 1)(2x6 − 14x5 + 37x4 − 46x3 + 28x2 − 9x+ 1)
.

Now Theorem 1.1.1 follows from Corollary 3.2.11 and Theorem 4.0.31.
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APPENDICES

0.1 Notations

NSCI(n) is the number of divisor-labelled strongly connected increasing staircase diagram

of support [s1, sn].

NSC(n) is the number of divisor-labelled strongly connected staircase diagrams of support

[s1, sn].

NC(n) is the number of divisor-labelled connected staircase diagrams of support [s1, sn].

zn is the number of divisor-labelled staircase diagrams with support contained in [s1, sn],

which is equal to the number of permutations in Sn+1 avoiding 3412, 52341, 52431, and

53241.

0.2 Recursive relations

tn = fn + 2
n−1∑
k=1

fn−ktk

and

zn = zn−1 + tn +
n∑

k=2

zn−ktk−1,

where fn := NSC(n) and tn := NC(n).

0.3 Generating functions

a(x) =
∑
n>0

NSCI(n)x
n =

1− x− x2 −
√
x4 − 2x3 + 7x2 − 6x+ 1

2(1− x)

= x+ x2 + 3x3 + 9x4 + 29x5 + 99x6 + · · · ,

63



where the coefficient of xn is the number of divisor labelled strictly increasing staircase

diagrams of support [s1, sn].

Example 0.3.1 By SCI(n), we denote the the set of strongly connected staircase diagrams

of support [s1, sn]. Note that |SCI(n)| = Cn, the Catalan number. SCI(5) contains the

following 5 staircase diagrams.

4321
321

43

321

432

21

432

21

32

43

The first diagram is a single block of 4 boxes. Therefore the diagram has 4−1 = 3 divisor

labellings.

In the second diagram, the first block [s1, s3] has 3 boxes with 1 overlapping boxes and so,

the block has 3 − 1 = 2 divisor labellings. Similarly, the second block [s3, s4] has 1 divisor

labelling. Thus the second diagram has a total of 2× 1 = 2 divisor labellings.

Similarly, the third digram has 1 divisor labelling, the fourth diagram has 2 divisor la-

bellings and the fifth diagram has 1 divisor labelling.

Therefore NSCI(4) = 3 + 2 + 1 + 2 + 1 = 9, which is the coefficient of x4 is the formal

power series of a(x).

Example 0.3.2 The set of strongly connected staircase diagrams of support [s1, sn] is de-

noted by SC(n). SC(4) consists of 9 staircase diagrams which are listed below.

4321
321

43

321

432

21

432

21

32

43

432

21

432

321

43

321

43

32

21
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Thus NSC(4) = 3 + 2 + 1 + 2 + 1 + 2 + 1 + 2 + 1 = 15, which is the coefficient of x4 in the

formal power series of F (x), where

F (x) =
∑
n>0

NSC(n)x
n = x+

(
x

1− x

)2

+
2xa(x)− 2x2

(1− x)2(1 + 2x− x2 + (x− 3)a(x))

= x+ x2 + 4x3 + 15x4 + 58x5 + 231x6 + 940x7 + · · · .

The number of Schubert varieties in Fℓ(n) having complete fiber bundle structures with

fibers isomorphic to Grassmannians or Grassmannian Schubert divisors is the coefficient of

xn in the formal power series of Z(x), where

Z(x) =
∑
n≥0

znx
n =

1− F (x)

1− x+ (x− 2)F (x)

=
−4x6 + 24x5 − 58x4 + 73x3 − 49x2 + 17x− 2− x

√
x4 − 2x3 + 7x2 − 6x+ 1

2(x− 1)(2x6 − 14x5 + 37x4 − 46x3 + 28x2 − 9x+ 1)

= 1 + 2x+ 6x2 + 23x3 + 100x4 + 460x5 + 2172x6 + 10397x7 + 50173x8 + · · ·

zn is also equal to the number of permutations in Sn+1 avoiding the patterns 3412, 52341,

52431 and 53241.
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0.4 Some computations using Sagemath

Figure 1: Number of permutations avoiding 3412, 52341, 52431, and 53241
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