
AN EXPERIMENTALLY VALIDATED HEAT EXCHANGER REFRIGERANT

CHARGE MODEL AND OPTIMIZATION OF REFRIGERANT CHARGE FOR

A HEAT PUMP

By

ABRAHAM JUSEOK LEE

Bachelor of Science in Mechanical Engineering
Korea University

Seoul, South Korea
2008

Master of Science in Mechanical Engineering
Korea University

Seoul, South Korea
2010

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTOR OF PHILOSOPHY

May, 2023



AN EXPERIMENTALLY VALIDATED HEAT EXCHANGER REFRIGERANT

CHARGE MODEL AND OPTIMIZATION OF REFRIGERANT CHARGE FOR

A HEAT PUMP

Dissertation Approved:

Dr. Craig R. Bradshaw

Dissertation Adviser

Dr. Christian K. Bach

Dr. He Bai

Dr. Aaron Alexander

ii



ACKNOWLEDGMENTS

First and foremost, I would like to extend my deepest gratitude to Jesus who

saved my life and led me to Stillwater (Psalm 23:2 in KJV).

I would like to thank my wife, Seulgi, and my two daughters, Sarang and Eunhye,

and my parents for their support and encouragement throughout my academic pur-

suits. Your patience, understanding, and sacrifice have been the driving force behind

my success.

To my advisors, Dr. Christian Bach and Dr. Craig Bradshaw, thank you for

your guidance, mentorship, and unwavering support. Your expertise, constructive

criticism, and encouragement have helped me to shape my research and achieve my

academic goals.

To my committee members, Dr. Aaron Alexander and Dr. He Bai, thank you for

your valuable insights, feedback, and supports.

I would also like to acknowledge my labmates and friends at OSU, who have made

my academic journey more enjoyable and meaningful. Your support and friendship

have made a significant impact on me, and I am grateful for your presence in my life.

Finally, I would like to express my appreciation to all those who have supported

me directly or indirectly. Your contributions have been invaluable, and I am grateful

for your impact on my academic journey.

Acknowledgments reflect the views of the author and are not endorsed by
committee members or Oklahoma State University.

iii



Name: ABRAHAM JUSEOK LEE

Date of Degree: MAY, 2023

Title of Study: AN EXPERIMENTALLY VALIDATED HEAT EXCHANGER RE-
FRIGERANT CHARGE MODEL AND OPTIMIZATION OF RE-
FRIGERANT CHARGE FOR A HEAT PUMP

Major Field: MECHANICAL AND AEROSPACE ENGINEERING

Abstract: Refrigerant charge affects the efficiency, capacity, and reliability of a heat
pump, and incorrect charge can lead to increased energy consumption and decreased
performance as well as potential damage to the system. Furthermore, refrigerant
charge has an environmental impact, with high Global Warming Potential (GWP)
refrigerants contributing to climate change. The HVAC&R society is adopting low-
GWP refrigerants to alleviate the concern. For these reasons, accurate prediction of
refrigerant charge is vital in designing heat pumps, particularly for low-GWP refrig-
erants; this charge prediction is done by charge models.

Meanwhile, existing charge models are limited in their charge prediction accuracy due
to uncertainty in void-fraction models the charge models rely on for charge prediction.
Experimental charge validation data can improve the accuracy of the charge model,
but such data for low-GWP refrigerant charge is rare in the open literature.

The goal of this study is to address the issue by improving the accuracy of charge
prediction; that is done by creating a high-accuracy charge model that is verified by
experimental charge validation data. To gather this experimental charge data, a novel
charge measurement method and charge measurement facility for measuring charge
is created, resulting in high-fidelity experimental charge data for heat exchangers
across various operating conditions of heat pumps. This database includes multiple
refrigerants, including low-GWP refrigerants, R1234yf and R468C, and additional
R410A as a reference. Employing this experimental data, a high-accuracy charge
model is developed and validated, which is used to optimize the charge and cooling
capacity of a heat pump simultaneously on a developed multi-objective optimization
framework.
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CHAPTER I

INTRODUCTION

1.1 Overview

The demand for energy-efficient and environmentally-favorable Heating, Ventilation,

and Air Conditioning (HVAC) systems has been growing over the past decades (Chua

et al., 2013). Heat pumps are one of the most efficient HVAC systems that satisfies the

needs. The heat pumps can support both cooling and heating and provide a couple

of advantages, for instance, low-carbon foot prints, cost-effective running costs, and

less maintenance (Chua et al., 2010).

The heat pumps are greatly affected by the refrigerant charge, which is the amount

of refrigerant in the system. In other words, incorrect refrigerant charge can yield low

efficiency and decreased capacity of a heat pump. An undercharged or overcharged

system can cause suboptimal operation and increased energy consumption (Proctor,

1997; Goswami et al., 2001).

In addition to the performance of heat pumps, reliability of heat pumps is also

affected by the refrigerant charge. When a heat pump switches the mode between

cooling and heating, improper charge in the heat pump can result in a damage of the

system by a charge migration (Eom et al., 2019). Another issue owing to the charge

migration is a compressor failure during the off-cycle. Some refrigerant can be drawn

to the compressor then saturate the oil; therefore, the compressor loses a capability of

lubrication of its moving components, thus requiring an oil sump heater (Scire, 1968).

Moreover, if the refrigerant charge is excessive, it can bring about an overloading of
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the compressor and other components, thus causing potential damage to the system

(Poggi et al., 2008). These factors demonstrate the importance of refrigerant charge

in a heat pump operation.

Refrigerant charge in heat pumps is also significant in environmental impact, par-

ticularly in terms of their Global Warming Potential (GWP) (Heath, 2017). The

GWP indicates the relative impact of a refrigerant to global warming compared to

carbon dioxide, which has a GWP of 1. High-GWP refrigerants such as HydroFlu-

oroCarbons (HFCs) are potent greenhouse gases, with a GWP up to thousands of

times greater than carbon dioxide; therefore their contribution to climate change has

become a notable concern (McLinden et al., 2017).

Historically, the Montreal Protocol, an international agreement signed in 1987,

targeted to decrease the production and consumption of ozone-depleting substances,

including some high-GWP refrigerants. Meanwhile, as HFCs became a common re-

placement for ozone-depleting refrigerant, it became obvious that their high-GWP

properties needed to be addressed as well. The Kigali Amendment to the Montreal

Protocol, agreed upon in 2016, summarizes a plan to phase out the use of HFCs

and replace them with low-GWP refrigerants (Heath, 2017). To keep up with the

regulation, the Heating, Ventilation, Air-conditioning, and Refrigeration (HVAC&R)

society has been rapidly adopting low-GWP refrigerants (Wu et al., 2021).

Because of the significance of refrigerant charge, it has become essential to accu-

rately predict refrigerant charge in a heat pump. However, due to the limitations of

experimental evaluations of refrigerant charge in heat pumps, refrigerant charge anal-

ysis heavily relies on charge modeling tools (Ding et al., 2009). In other words, accu-

rately predicting an optimal refrigerant charge in a heat pump needs a high-accuracy

refrigerant charge model. For a counter example, non-optimal charge determined by

the inaccurate charge model could result in degradation of performance and Coeffi-

cient of Performance (COP) of a vapor-compression system: an undercharge of 20%
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from the optimal charge causes COP reduction of 8.2% and cooling capacity degrada-

tion of 14.2% in an automotive air conditioning system (Yin et al., 2021); and, Kim

and Braun (2012) presented 25% of charge deficiency leads to a capacity reduction

of 20% in a heat pump. In consequence, the accuracy of the charge model affects

the capacity, efficiency, and reliability of a heat pump, thus resulting in demand of a

development of a high-accuracy refrigerant charge model; particularly for low-GWP

refrigerants.

Meanwhile, current refrigerant charge models are limited in their charge prediction

accuracy while predicting charge inside heat exchangers due to the uncertainty of void

fraction in the two-phase (Harms et al., 2003). For these reasons, the charge models

lean on void-fraction models to estimate the charge in the two-phase refrigerant.

Yet, the majority of the void-fraction models were developed without considering the

actual operating condition of heat exchangers; for instance, some void-fraction models

utilized straight tube configuration with water or steam as the working fluids. Some

of them were developed even under adiabatic condition. As a result, the existing

void-fraction models might not always produce good charge prediction in heat pump

applications (Shen et al., 2006).

In that regard, an experimental charge validation data can provide sufficient in-

formation to improve an accuracy of the charge models. Meanwhile, there are few

experimental charge validation data available in the open literature, see Section 2.1,

thus challenging in developing a high-accuracy refrigerant charge model. Accordingly,

there is a need to conduct comprehensive experimental studies to obtain high-fidelity

refrigerant charge validation data.

Furthermore, while several low-GWP refrigerants have been proposed, their charge

validation data is very limited in the open literature, see Section 3.1. Hence, experi-

mental charge validation data for low-GWP refrigerants can significantly contribute

to improving the charge model as well as enabling effective and reliable design of heat
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pumps given the influence of charge in heat pumps, which will facilitate adoption of

low-GWP refrigerants.

In conclusion, the literature review implies that refrigerant charge in a heat pump

can be optimized based on the improved charge model by the experimental charge

data, thus leading to optimal performance and efficiency of a heat pump. In addition,

the proper refrigerant charge results in reducing the risk of system failure and energy

consumption, and lowering operating costs while increasing system reliability.

1.2 Research Objectives

The previous literature review criticized the insufficient accuracy of charge models

given the significance of refrigerant charge in heat pumps. This research targets with

the following objectives:

• Developing high-fidelity charge measurement method and facility

• Providing high-quality experimental charge validation data

• Evaluating and improving a charge model

• Developing a framework for optimization of charge for a heat pump

1.3 Outline

The research objectives are concretized in this dissertation. A summary of outline of

each of the following chapters are as follows:

• Chapter 2 details a novel charge measurement method and an associated high-

reliability charge measurement facility as well as an obtained experimental

charge validation data for R410A refrigerant

4



• Chapter 3 presents an experimental charge validation data for low-GWP refrig-

erants, R1234yf and R468C, and a high-accuracy tuned charge model by the

obtained high-fidelity experimental data.

• Chapter 4 describes a development of multi-objective optimization framework

to optimize charge and cooling capacity of a heat pump simultaneously.

• Chapter 5 explains a dissertation summary and overall conclusions as well as

future work.
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CHAPTER II

EXPERIMENTAL VALIDATION OF REFRIGERANT CHARGE

MODELS IN ROUND-TUBE-PLATE-FIN HEAT EXCHANGERS

Abstract

Charge modeling tools require high-fidelity experimental validation data to tune their

predictions. The presented study provides a set of, high-quality, R410A experimental

charge data to address this need. The experimental data includes a total of 42 tests

of refrigerant charge for a residential Round-Tube-Plate-Fin (RTPF) heat exchanger,

operating in both evaporator and condenser mode. The validated differential mass

evacuation sampling method results in 0.1% of relative uncertainty with respect to

measured charge and 1.3% of charge measurement repeatability. Additionally, charge

sensitivity to independent variables was analyzed; in evaporator mode, charge is most

sensitive to refrigerant inlet quality followed by outlet superheat. In condenser mode,

subcooling followed by refrigerant mass flow rate is strongly correlated with charge.

Although this study has been developed for the purpose of measuring refrigerant

charge, it is universally applicable to studies to measure mass changes in a sample.

A part of this chapter, Section 2.2 and 2.3, are published in the Science and

Technology for the Built Environment in 2020 (Lee et al., 2020). The rest of the

chapter will be submitted for publication in the International Journal of Refrigeration.
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2.1 Introduction

A literature review on experimental validation of refrigerant and oil charge models

was carried out and it shows the validation is done by comparing the measured charge

masses with those predicted by the simulation. Charge measurement techniques can

be divided into two classes. The first is the sampling measurement technique (SM),

which isolates the charge of a sample (e.g. heat exchanger) within very short period of

time followed by determination of the charge in the sample through differential weigh-

ing or similar technique. The second technique is the online measurement technique

(OM), where the charge is directly measured in situ either indirectly by transient

measurement and integration of inlet and outlet mass flows or directly by weighing

the change of mass of a system or component(s).

Therefore, the importance of validation data has been widely emphasized. Ma

et al. (2009) proposed an experimentally validated void fraction model by using the

quasi online measurement technique (Ding et al., 2009). This model combined existing

void fraction correlations based on the flow pattern for the heat exchanger of the

R410A air conditioner/heat pump with 7.1 kW cooling capacity. They recommended

the best combination of void fraction correlations for their evaporator in cooling-

mode, which is Taitel and Barnea (1990a) for intermittent flow and Premoli et al.

(1971) for annular flow, respectively. The combined model resulted in 2.5% mean

deviation from the measured mass.

Jin and Hrnjak (2016) reported experimentally validated refrigerant and oil charge

model for microchannel condenser and plate-and-fin evaporator of an 4 kW automo-

tive air conditioning system. They employed Peuker (2010)’s sampling measurement

technique to obtain experimental charge data, and the validated model predicted the

refrigerant mass in both heat exchangers within 20%. The oil model predicted the oil

mass within 15% for condenser and 20% for evaporator respectively.

Since the two-phase flow inside heat exchangers is strongly affected by mass flux,
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configuration, and flow regime, it is crucial to use experimentally validated void frac-

tion correlations in environments where simulations will be used in practice. In this

respect, very few studies investigated the validation of charge models for unitary split

systems. This led to the development of ASHRAE TRP-1785, which has the objective

of collecting high-fidelity experimental data for R410A split systems to validate these

charge models. Specifically this validation experiments aim to round-tube-plate-fin

heat exchangers for 3 ton (10.5 kW) capacity split systems.

Björk (2005) introduced the SM based on the p–v–T relationship for a superheated

refrigerant vapor. The refrigerant is entrapped by quick-closing valves and then ex-

panded into an evacuated tank into superheated state. The volume of the tank is

known, so the mass is calculated by the p–v–T relationship of the refrigerant. His

method is quite simple and fast for small (35 g of charge) refrigerant charge systems,

but it is not deemed suitable for larger charge systems since it requires a substantially

larger tank to accommodate large volumes of superheated refrigerant vapor.

Peuker (2010) proposed the SM utilizing an evacuated sampling cylinder, a flush-

ing technique, and a mix-and-sample method. The oil and refrigerant charge in the

system are recovered by employing an evacuated sampling cylinder placed in liquid

nitrogen as a recovery pump. The refrigerant and oil charge are determined respec-

tively by removing the refrigerant and weighing the cylinder. The flushing technique

and the mix-and-sample method are employed for determining oil charge. His flush-

ing technique utilizes a solvent to flush and remove oil from the test section. This

technique has an accuracy of 1.4 g (1.4% of the 100 g of oil charge) with multiple

consecutive flushes. The mix-and-sample method is to fill refrigerant and circulate it

inside the section in which oil remains to remove the oil from the section. The mass of

oil is calculated by measuring the well-mixed oil concentration. The accuracy of this

method is 0.1 g (0.6% of the 22 g oil of charge). Even though this method requires

at least 12 hours of testing time per data point, overall it has an excellent accuracy,
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0.3% (4.2 g) of the 1245 g charge.

An early example for an online measurement (OM) method, Miller (1985) experi-

mentally investigated charge migration of an outdoor unit of a heat pump by using a

dedicated differential mass measurement scale. This OM method used a tare weight

to compensate for the weight of the unit leaving only the refrigerant charge as the

residual force. Charge migration was then measured by a load cell while the unit was

operated in heating mode. Miller (1985) achieved ±50 g (0.1 lb) of accuracy in the

charge mass measurement for a 3-ton (10.5 kW) outdoor unit. This method allows

measurement in (almost) unmodified equipment but has over an order of magnitude

less accuracy compared to Peuker (2010)’s method.

Saad Yatim et al. (2017) proposed a transient/integration OM technique. That

OM technique utilizes the difference between the integrated mass of oil injection and

total extracted oil mass from the setup. This approach does not require sampling

related procedures such as disassembling test section and recovery of refrigerant, and

thus makes it much cost and time effective. However, it is difficult to validate the

accuracy of their method and no comparison to other techniques was found in open

literature.

Ding et al. (2009) suggested a quasi OM technique. A refrigerant charge is moved

to a connected sampling cylinder, and the cylinder is weighed to determine charge.

In contrast to Peuker (2010), the measured refrigerant is re-used by the refrigeration

system. This process decreases measurement time and saves refrigerant. While the

quasi OM has a good accuracy (0.64%), refrigerant and oil charge cannot be measured

separately by this method. In addition to that, Ding et al. (2009) compared both OM

and SM techniques: the SM needs more time (300 min) than the OM, and has higher

accuracy with order of 0.11% of measured charge by the SM; on the other hand, the

OM is instantaneous and convenient method but has low accuracy with order of 10%

of measured charge.
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In summary, the SM techniques are accurate but slow while the OM techniques

are fast but have limited accuracy. A better compromise between accuracy and speed

of the measurement technique is needed to determine refrigerant and oil charge cost-

effectively. This study presents a novel measurement method, called differential mass

evacuation sampling method, to obtain separate refrigerant and oil charge in heat

exchangers with an accuracy similar to the SM techniques that can be collected fast

enough to accommodate the development of a large experimental validation database

for charge simulation of 3 ton (10.5 kW) capacity split systems.

The differential mass evacuation sampling method and its prime testing appara-

tuses are published in Lee et al. (2020) and later the method is validated and evaluated

in terms of accuracy and precision in Lee et al. (2022).

2.2 Overall Measurement Process

This section presents the developed method that determines the charge in a sample

heat exchanger by measuring the difference to the dry heat exchanger weight with a

specially designed Differential Mass Measurement Scale (DMMS). The method can

provide the benefits of both, the OM and SM techniques by isolating and quickly

separating the heat exchanger in steady-state operation to be measured using the

DMMS. Additionally, this method measures refrigerant and oil charge in the heat

exchanger quasi using a multi-step evacuation process to determine both, the oil and

refrigerant masses. Furthermore, it does not require usage of liquid nitrogen and

does not include multiple and complicated mixing steps which could decrease actual

accuracy, reduce repeatability, and result in long measurement times.

The first step is to measure the internal volume of the heat exchanger under

test. Then as shown in Figure 3.1, (1) the heat exchanger under test is mounted in a

Removable Heat Exchanger Test Module (RHXCT) and the tare weight is collected by

the DMMS. The RHXCT is subsequently, (2), mounted in a test section and operated
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to the steady-state operating condition given in the test plan. Once acquisition of

steady state performance data is complete, (3) two Rapid Shut-off Valves (RSVs)

at the inlet and outlet of the RHXCT are closed simultaneously to trap the charge.

Then, (4) the charge of refrigerant and oil is determined by measuring differential

mass of the RHXCT in a multi-step process as described in the next section.

(2) Operating Mode (steady-state)

(3) Charge Sampling Mode

RHXCT

RHXCT

Psychrometric

Chamber

(1) Tare-weight Measuring Mode 

(4) Charge Measuring Mode

Air

Load cell

RHXCTCounter weights

Load cell

RHXCTCounter weights

DMMS

DMMS

△mTW

△mCW

MDA

MDA

Refrigerant 
loop

Refrigerant 
loop

RSV

RSV

Figure 2.1: Schematic diagram of the charge measurement process for pure refrigerant
(modified from Lee et al. (2020))

2.2.1 Test Procedure for Pure Refrigerant Charge

Simplified operation steps of the differential mass evacuation sampling technique for

pure refrigerant (oil-free) are described:

1. Prior to weighing the RHXCT, the RHXCT is evacuated and weighed by the

DMMS. This process gives the initial differential mass of the RHXCT, ∆mdry,
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which is the tare weight: the difference between a counterweight and mass of

the RHXCT.

2. A developed modular duct assembly (MDA) is prepared in a psychrometric

chamber. The MDA can deliver desired flow rate, temperature, and humidity

of air inside a psychrometric chamber. The RHXCT is connected to the MDA

and operated at a designed condition to allow refrigerant and oil flow rates

to stabilize. Once a desired test condition is reached and steady-state data

acquisition is complete, the refrigerant charge in the heat exchanger is sampled

by simultaneously closing the RSVs on the RHXCT’s inlet and outlet.

3. The RHXCT is disconnected from the MDA. Subsequently, the separated RHXCT

is weighed again using the DMMS, after any condensate on the surface has evap-

orated. The measured differential mass is ∆mstart. By subtracting ∆mdry from

∆mstart, the total mass of refrigerant, mref enclosed between the two RSVs can

be obtained. This can be expressed as

mref = ∆mstart −∆mdry (2.1)

2.2.2 Test Procedure for Refrigerant and Oil Charge

Detailed operation steps of the differential mass evacuation sampling technique for

refrigerant and oil charge are as follows:

1. Prior to weighing the RHXCT, oil in the separator is drained and the RHXCT is

flushed with two phase pure refrigerant to remove any residual oil from previous

experiments. Then, in order to measure the exact amount of refrigerant charge

and oil retention in a heat exchanger, the RHXCT is evacuated and weighed by

the DMMS. This process eliminates the effect of remaining oil residue on the
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tare differential weight of the RHXCT, and gives the initial differential mass of

the RHXCT, ∆mdry.

2. The RHXCT is connected to the MDA and operated at a designed condition to

allow refrigerant and oil flow rates to stabilize. Once a desired test condition

is reached and steady-state data acquisition is complete, the refrigerant charge

and oil retention in the heat exchanger is sampled by simultaneously closing the

RSVs on the RHXCT’s inlet and outlet.

3. The RHXCT is disconnected from the test section by disconnecting the refrig-

erant and electrical connections and unclamping the RHXCT from the MDA.

4. The separated RHXCT from the test section is weighed again using the DMMS,

after any condensate on the surface has evaporated. The measured differential

mass is ∆mstart. By subtracting ∆mdry from ∆mstart, the total mass of refriger-

ant and oil, ∆mref&oil,tot,start, enclosed between the two RSVs can be obtained.

This can be expressed as

mref&oil,tot,start = ∆mstart −∆mdry (2.2)

5. The refrigerant is recovered by connecting a recovery machine, leaving only the

oil mass in the RHXCT. The refrigerant-oil mixture passes through a coalescent

oil separator inside the RHXCT to ensure that only pure refrigerant is recov-

ered. Thereafter, the RHXCT is evacuated by using a vacuum pump. Minimum

pressure at the end of the evacuation process is set higher than the vapor pres-

sure of the oil; the exact value will be determined based on the oil which will be

used in the test. This will ensure that all oil remains in the RHXCT. During the

evacuation process, water condensate might be generated on the surface of the

RHXCT; therefore fans are utilized to blow air toward the RHXCT to reduce
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condensate generation and evaporate any condensate prior to the next step.

6. After completing the refrigerant recovery, the DMMS is utilized to measure

∆mend. By subtracting ∆mdry from ∆mend, the mass of oil, the refrigerant

that is dissolved in the oil, and the residual refrigerant in the vapor state are

determined as

mref&oil,tot,end = ∆mend −∆mdry (2.3)

7. mref&oil,tot,end contains the actual oil mass, the mass of refrigerant dissolved in

the oil,mref,solub, and the mass of refrigerant within the test sectionmref,sh(Vtot, T, P )

at the given total volume of all components of the test section as well as given

pressure and temperature. Thus the actual oil mass can be expressed as

moil = mref&oil,tot,end −mref,solub −mref,sh(Vtot, T, P ) (2.4)

In this study, we anticipate that mref,solub, mref,sh(Vtot, T, P ) are neglected due

to the negligible solubility of refrigerant in oil at low evacuation pressure and

negligible mass of superheated refrigerant. Therefore, actual oil mass can be

simplified as follows:

moil ≈ mref&oil,tot,end (2.5)

8. Refrigerant mass is determined by subtracting the oil mass, moil from the total

initial mass of refrigerant and oil, mref&oil,tot,start:

mref = mref&oil,tot,start −moil (2.6)
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2.3 Supporting Test Apparatus

The experimental apparatus used for this test method is classified into three types.

The first are devices for providing test conditions such as a fluid conditioning loop

and an air-side apparatus. The second are devices for obtaining charge samples, the

RHXCT, and the third is a DMMS for determining the charge in the heat exchanger.

The following subsections provide descriptions of the design and operation of the

RHXCT and air and refrigerant conditioning apparatus.

2.3.1 Removable Heat Exchanger Charge Test Module (RHXCT)

The RHXCT is a paramount piece of infrastructure that requires precise instrumen-

tation of the refrigerant and air-side of the heat exchanger to determine the thermo-

dynamic performance at a given operating condition with enough control to ensure

a useful test. Additionally, to supplement the charge information, accurate internal

volume of the RHXCT is required to ensure the mass data is of maximum utility

from the experiments. The following section outlines how the design of the RHXCT

supports these objectives and how accurate volume measurements are obtained.

To focus on investigating the charge, simplified Round Tube Plate Fin Heat Ex-

changers (RTPF) have been designed with face-split four circuits having uniform cir-

cuit length, which minimize internal heat transfer: Indoor Coil 1 (IC1) and Outdoor

Coil 1 (OC1) as shown in Table 2.1 and Figure 2.2.

The inlet and outlet of the RHXCT each have one refrigerant distributor. A

schematic diagram and picture of the RHXCT for IC1 and OC1 are displayed in

Figure 2.3, Figure 2.4, and Figure 2.5.

They show the overall concept of the RHXCT: first to be equipped with neces-

sary measurement devices such as the upstream temperature and pressure sensor for

determining the liquid temperature, the downstream temperature and pressure sen-

sor for determining the outlet superheat, and the pressure sensor after the electronic

15



Refrigerant

Air

Refrigerant

Figure 2.2: Schematic circuit diagram of the RTPFs: (left) IC1, (right) OC1

expansion valves for determining the evaporation pressure of the refrigerant; and sec-

ond to be removable using a combination of rapid shut-off valves, Rotolock valves,

and electrical disconnects; and third to be controlling refrigerant flow rate of indi-

vidual circuits of the heat exchanger to ensure equal exit superheats for evaporator

tests by using individual circuits’ electronic expansion valves and differential pressure

transducers.
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Multiway valve

Rapid actuated Shut-off Valves (RSV)
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Figure 2.3: Schematic diagram of the RHXCT that is the unit to be weighed: (left)
the RHXCT for IC1, (right) the RHXCT for OC1

Electronic expansion valve

Differential pressure transducer

Rapid shut-off valves

(RSV)

Inlet pipe
Outlet pipe

IC1

Figure 2.4: 3D model of the RHXCT for IC1

The most significant components in the RHXCT are the RSVs at the inlet and

outlet pipes. The synchronized RSVs allow to sample charge accurately. The RSVs

use a plug valve (Swagelok P6T) due to its low friction, low mass inertia, high working

pressure, and easy maintenance.
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Table 2.1: Geometrical parameters of the RTPFs: Indoor Coil1 (IC1) and Outdoor
Coil1 (OC1)

IC1 OC1
Number of tubes per bank 16 30
Number of bank 3 2
Number of circuits 4 3
Length of tubes 0.445 m 1.219 m
Outer diameter of tube 0.0095 m 0.0095 m
Inner diameter of tube 0.0089 m 0.0085 m
Tube spacing in air flow direction 0.0219 m 0.0191 m
Tube spacing orthogonal to air flow direction 0.0254 m 0.0254 m
Number of fins per inch 14 20
Amplitude of wavy fin 0.001 m 0.001 m
Half period of wavy fin 0.001 m 0.001 m
Fin thickness 0.0001 m 0.0001 m
Fin type Sine wave fins Sine wave fins
Internal tube type Smooth Smooth

To control refrigerant flow rate of individual circuit, electronic expansion valves

(Danfoss ETS6-10 for IC1 and ETS6-14 for OC1) are installed at the entrance to each

circuit. The expansion valve openings are adjusted to obtain an equal circuit-exit su-

perheat, by checking temperature of surface mounted thermocouples and differential

pressure on each individual circuit. In oil measurement mode, a coalescent oil sepa-

rator (Temprite Model320) is installed inside the RHXCT to separate oil from the oil

and refrigerant mixture for measuring charge respectively.

2.3.1.1 Instrumentation and Uncertainty of the RHXCT

To minimize oil entrapment and retention inside the RHXCT, the module is designed

to minimize the number of inlet and outlet pipe’s bends. In this regard, the oil injec-

tion point to the RHXCT is at top of the module, and the inlet and outlet pipes of

the RHXCT are vertical and straight. In addition, 90◦ bent resistance temperature

detectors (RTDs) have been custom made and inserted in the both vertical inlet and

outlet pipes without sacrificing RTD’s flow contact area and direction; furthermore

this vertical design of pipes promotes uniform refrigerant distribution by reducing
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Figure 2.5: RHXCT for OC1 with the DMMS

interference to flow through the refrigerant distributor. The RTDs have been cal-

ibrated in house, and have an accuracy within 0.04 ◦F (0.02 ◦C) of the reference

thermometer’s reading. Thermocouples have been calibrated in house, and have an

accuracy within 0.4 ◦F (0.22 ◦C) of reference thermometer’s reading. The accuracy

of the calibration reference thermometer (Thermoprobe, TL1A) is 0.1 ◦F (0.06 ◦C).

The RHXCTs require all connections to be disconnected for each charge measure-

ment. Therefore, all sensors, controllers, and pipes have quick-disconnects. Thermo-

couples are grouped on Omega SMTC series D-SUB style disconnects, which each

accommodate 25 thermocouples. The differential pressure transducers were installed

on each individual circuit to check pressure drop across the circuit. They have been

calibrated in house and have an accuracy within 0.055 psig (0.38 kPa) of the reference

pressure sensor’s reading. The accuracy of the calibration reference pressure sensor

(GE, Druck DPI 612) is 0.0075 psig (0.05 kPa).

Two pressure sensors have been installed to before and after the refrigerant dis-

tributor in the inlet pipe, having a rated accuracy of 0.25 psig (1.72 kPa) with NIST

traceable calibration. The outlet pipe has an in-house calibrated pressure sensor,

with accuracy within 0.3 psig (2.07 kPa) of the reference pressure sensor’s reading.

The accuracy of the reference pressure sensor utilized in the calibration is 0.375 psig
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(2.59 kPa).

2.3.1.2 Volume Measurement of the RHXCT

Charge-prediction models utilizing void fraction are significantly affected by volume;

according to Jin and Hrnjak (2016), volume data containing charge is needed to

calculate charge inventory of refrigerant and oil. Hence, highly accurate volume data

is needed in order to achieve high fidelity charge prediction. A Volume-Measurement

Device (VMD) has been developed for accurate volume measurement, and its principle

is shown in Figure 2.6. The operation steps of the VMD are as follows:

PT

Reference

Volume

Test

Volume

P1, T1, V1, m1

PT

Reference

Volume

Test

Volume

P3, T3, V3, m3

P2, T2, V2, m2

Valve

Open

Valve

Closed

STEP 1

STEP 2

Figure 2.6: Principle and operating process of the Volume-Measurement Device
(VMD)

1. Two volume tanks are connected via a ball valve: one tank is a test-volume-tank

whose volume to be measured, and another is a reference-volume-tank utilized to

calculate volume of the test-volume-tank. A thermometer (ThermoProbe Inc.,

TL1-A) having an accuracy of ±0.1 ◦F (±0.06 ◦C) and pressure sensor (GE,

Druck DPI 612) having an accuracy of ±0.0075 psig (0.05 kPa) are installed at

the connection between the two tanks as illustrated in Figure 2.6.
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2. The two tanks are placed at equilibrium by opening the valve; then temperature

and pressure are measured. The pressure and the temperature are P2 , T 2

respectively. After that the valve is closed, and the isolated volume and the

mass in the test volume are V2, m2 respectively.

3. Inert gas (e.g. Nitrogen) is injected into the reference volume, which increases

the pressure. Once equilibrium is reached, the pressure (P1 ) and the temper-

ature (T 1 ) are measured. The isolated volume and the mass in the reference-

volume are V1, m1 respectively.

4. The valve is opened to re-join the reference and test volumes. After equilibrium

is reached, the pressure (P3 ) and the temperature (T 3 ) of the combined volume

are measured. The total volume and mass in the combined volume are V 3 , m3

respectively.

5. The test volume to be known is calculated by using ideal-gas equations described

in the next paragraphs.

By employing the ideal gas equation of state to each state and volume we obtain:

P1V 1= m1RT 1 , P2V 2= m2RT 2, P3V 3= m3RT 3 , and P3V 3= (m1+m2 )RT 3 .

By substituting m1 , m2 , and rearranging, the previous equation becomes:

P3 (V1 + V2) =
P1V1T3

T1

+
P2V2T3

T2

(2.7)

To obtain V2 (volume to be known), rearranging Equation 2.7 then:

Test volume = V2 =

[(
P1T3

T1
− P3

)
· V1

]
P3 − P2T3

T2

(2.8)

As described in Equation 2.8, V2 (volume to be known) can be calculated if the

volume of the reference tank, all the temperatures, and the pressures are known.
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The target charge uncertainty for this test method is 1 g, which requires a heat

exchanger volume measurement accuracy smaller than the volume corresponding to

this charge value. For this reason, the target uncertainty of volume measurement

was reversely calculated from the accuracy of the charge to determine the maximum

uncertainty of volume measurement allowed to ensure the total charge uncertain

would not exceed the target of 1 g.

The approximate volume of the RHXCT for IC1 was calculated by measuring

internal dimensions of the RHXCT, which is 2181.1 ml. Using R410A as the working

fluid, it was assumed that it has constant quality (0.5) and evaporating temperature

(50 ◦F (10 ◦C)), thus resulting in 176.3 g estimated charge. Then the target accuracy

of charge, 1 g, was added to the estimated charge, leading to an updated charge esti-

mation, 177.3 g. As a result, the updated charge estimation yields a revised volume,

2193.0 ml. Therefore, the volume difference between the original estimated volume

and the revised volume becomes the target accuracy of the VMD at evaporating mode

which is 12.4 ml, accounting for 1 g of the charge accuracy.

In the same manner, the target accuracy of volume for condenser test was ob-

tained. Using R410A as the working fluid again, it is assumed that it has a constant

quality (0.5) across the heat exchanger and constant condensing temperature (110 ◦F

(43.3 ◦C)), thus resulting in 445.2 g estimated charge. Then the target accuracy of

charge, 1 g, is added to the value: 446.2 g. Therefore the charge yields a revised vol-

ume, 2186.0 ml. The volume difference between the original volume and the revised

volume becomes the target accuracy of the VMD, 4.9 ml, accounting for 1 g of the

charge accuracy. As a result, the final target accuracy of the VMD becomes 4.9 ml,

and the target percentage error of the accuracy for the volume measurement becomes

0.2 %: e.g. 4.9 ml is divided by 2181.1 ml and multiplied by 100%.

The VMD’s accuracy was validated using comparison to a water-filling-method.

First, all the volumes inside the RHXCT, as shown in Figure 2.7, were determined
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by filling water carefully and measuring the water with graduated cylinders. As a

result of the water-filling-method, the test volume measured 1079.4 ml as a mean

value with ±0.8 ml total uncertainty as shown in Figure 2.8 (left). Second, the test

volume was calculated by the VMD as described in the aforementioned procedure.

The result of the validation is described in Figure 2.8 (right): the test volume by

the VMD measured 1079.2 ml as a mean value with ±2.5 ml uncertainty. The mean

value’s difference between the water-filling-method and the VMD yields 0.2 ml, and

the percentage error is 0.02%. Accordingly, it was verified that the accuracy of the

VMD is within the target accuracy (4.9 ml) as illustrated in Figure 2.8 (right). Low

pressure, under 30 psig, was used in the VMD to minimize the effect of temperature

change on the measurement outcome. It was observed that maximum temperature

change was 0.6◦F in the five attempts of the VMD. The high accuracy (±0.0075 psig

(±0.052 kPa)) of the pressure sensor additionally contributes to the VMD’s volume

measurement accuracy.

Figure 2.7: Test setup used for validation of the VMD. The thermometer is not shown
in this figure
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Figure 2.8: Validation result of the VMD: the test volume by the water-filling method
as a baseline (left), the test volume by the VMD (right) shown with the target accu-
racy of the volume.

Using the developed VMD, the internal volume of the RHXCT’s subcomponents

was determined as shown in Figure A.1-A.4 in Appendix.

The uncertainty propagated from measurement as specified in ASME-PTC-19.1

(2013) was calculated using Engineering Equation Solver (EES; (Klein and Alvarado,

1992)) for the VMD in IC1: ±5.4 ml uncertainty, which is equivalent to ±2 g of mass-

accuracy, reversely calculated in the same way as the target accuracy of the VMD

was analyzed in the condenser test mode. This measured volume of the RHXCT can

be used to predict charge by charge simulation programs.

2.3.2 Refrigerant and Oil-Side Experimental Apparatus

The RHXCT was connected to a refrigerant-side conditioning apparatus developed

by Saleem et al. (2020). The refrigerant-side apparatus capacity is 5 tons (17.52

kW); a variable speed refrigerant gear pump allows to change the refrigerant mass

flow rate, a tank-less water heater was installed inside the hot water loop to control

inlet conditions of test section, and a Coriolis-type mass flow meter was connected to

the liquid line to measure the refrigerant flow rate. Two heat pumps act as coolers

or heaters depending on the test requirements. Additional detail of the refrigerant

conditioning system for pure refrigerant tests (oil free) can be found in Saleem et al.
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(2020).

An integrated data acquisition software, shown in Figure 2.9, was developed in

LabVIEW for the accurate control of the experimental setup. This software covers

collection and display of raw and processed data, controlling the testing apparatuses,

reducing and analyzing data, and saving data.

(a) testing apparatuses control

(b) data monitoring/saving

Figure 2.9: Screen captures of the integrated data software based on LabVIEW

For oil and refrigerant mixture tests, Figure 2.10 illustrates a pumped oil condi-

tioning loop and a superheating and oil separation system, which enable controlling
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oil and refrigerant flowrate independently to obtain oil circulation ratios between

0-5% by mass.
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Figure 2.10: Schematic diagram of the overall fluid (refrigerant and oil mixture) side’s
experimental setup, modified from Saleem et al. (2020)

2.3.3 Air-Side Experimental Apparatus

The RHXCT is assembled with the MDA inside a psychrometric chamber as shown in

Figure 2.11. A simplified diagram of the air circulation of the psychrometric chamber

used for this study is detailed in Figure 2.11. Air enters the MDA that includes the

RTPF under test through the inlet duct (Figure 2.11, left). The flow then passes by

the heat exchanger under test and the flow measurement bay (Figure 2.11, right).
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The flow measurement bay is located in between the two conditioning bays. The

air that goes through the flow measurement bay is then divided to flow through two

conditioning bays. The conditioned air is then returned to the room through the

chamber’s perforated floor. Some of the air re-enters the modular duct assembly, the

remainder rises to the ceiling and is brought back to the conditioning bays through

the ceiling plenum.

Modular duct assembly

Psychrometric chamber

Humidifier

Cooling Coils Cooling Coils

Blower Blower

Control damper Control damper

Heater

Nozzle

Heater

Humidifier

Flow measurement

Conditioning loop

Ceiling plenum

Test section
Inlet

duct

Floor plenum (perforated)

Figure 2.11: Air circulation within the psychrometric chamber used for this study;
cross-section of psychrometric room along duct flow direction. Note that the chamber
has a perforated floor and ceiling (left) and perpendicular to duct flow direction (right)

The air that goes through the ceiling is merged with the air that goes through

the flow measurement bay, and the air circulation process mentioned above is re-

peated during the psychrometric chamber operation. Full details of these chambers’

operation can be found in Lifferth (2009) and Worthington (2011).

It is essential for the MDA to have a uniform airflow since it is the basis for accurate

charge measurements. As part of a preliminary analysis presented in Lee et al. (2018),

an analysis of how to obtain comparatively uniform airflow on a large outdoor heat

exchanger was performed using CFD as shown in Figure 2.12. Heat exchanger inlet air
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velocity distribution for the duct inside the psychrometric chamber was investigated.

The first heat exchanger under test, IC1, is a single-slab of a representative indoor

A-coil for a 3 ton (10.55 kW) heat pump with details provided in Table 2.1.

Figure 2.12: CFD case study by Lee et al. (2018): Velocity contour, (Left) Front view
on the heat exchanger (A-A), (Right) Side view at the center of the heat exchanger
(B-B). The dotted line represents the positions of the cross-sectional areas of each
other. (1.60 m/s = 314.96 fpm, 3.30 m/s = 649.61 fpm)
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Using the results from the aforementioned CFD analysis, the duct design for IC1

was developed as shown in Figure 2.13. The completed MDA is shown in Figure

2.13 and Figure 2.14. It is noted that the duct assembly is modular to allow for the

easy change of heat exchanger adaption duct sections, and a flexible tube with 20 in

(0.508 m) diameter was used to connect the duct to the code tester/nozzle box. As a

result, the position of the duct can be freely changed. For example, the height of the

duct and the distance between the inlet duct and the wall can be adjusted to acquire

uniform air flow.

Air

Window

Mesh

Flexible

Tube

StraightenerTest CoilTurning vane

Mesh

24”

50”

The perforated floor of 

the chamber
The wall of  the chamber

Figure 2.13: Schematic design for the MDA as informed by the CFD analysis (50 in
= 1.270 m, 24 in = 0.610 m)

Inlet/Outlet 

refrigerant pipes
Test section

Figure 2.14: Picture of the completed MDA for the IC1. The duct insulations are
not shown in this figure.

Since the MDA and the flexible tube are connected at right angles, turning vanes
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are used to reduce air pressure losses. A psychrometer was installed next to the duct,

and an air sampler tree was inserted inside the duct to sample downstream air. Three

settling means were installed inside the duct with 58% open area, 0.25 in (0.006 m)

hole size, staggered pattern, and 0.0291 in (0.739 mm) thickness: two were located

upstream of the RHXCT and another was located downstream of the RHXCT. The

pressure class of the duct is 2 in w.g. (497.68 Pa).

The test section was connected using the upstream duct and the downstream duct

by flanges with clamps so that the duct assembly can be easily separated. Approx-

imately 2,000 thin walled polymer tubes (8.3 in (0.211 m) long, 3/8 in (0.010 m)

outside diameter, 0.37 in (0.009 m) inside diameter) inside the duct were used as air-

flow straightener. In order to prove uniform air flow, the MDA—shown in Figure 2.15

—has been tested: the uniformity of the air velocity was within ASHRAE standard

33’s 20% limit, and similarly the uniformity of the air temperature was within the

standard’s 0.56 K (1.0 R) limit, thus yielding the verification of air uniformity of the

duct. A more detailed description of the uniformity tests previously is presented in

Lee et al. (2019).

Air

RHXCT

Air
Outlet 

Refrigerant
pipe

Inlet 
Refrigerant

pipe

Rapid
shut-off
valves

Figure 2.15: Picture of the completed MDA for the OC1

30



2.3.4 Differential Mass Measurement Scale (DMMS)

Drawing inspiration from Miller (1985)’s differential mass measurement scale, an im-

proved DMMS is presented and shown in Figure 2.16.

RHXCT

Counter

weight

Load cell

Overload 

protector

Center pivot

Horizontal 

beam

Webcam

Leveling 

marker

Figure 2.16: Picture of the DMMS with the RHXCT

First, the refrigerant hoses and electrical lines are removed from the updated

DMMS during the charge measurement process to improve the accuracy. This sep-

aration removes any line and instrumentation weight biases from the measurement.

Second, as the length of the horizontal beam is increased, the torque applied to the

center pivot increases, which reduces the measurement error caused by the friction

force of the center pivot. Accordingly, the DMMS utilizes a horizontal beam of a

length maximized for the given apparatus space size. The apparatus space is de-

signed to protect from uncontrolled airflow due to HVAC systems and/or personnel.
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The center pivot is further improved by using four low-friction, self-aligning pillow

block bearings that enable a rotating shaft, reducing hysteresis. Structurally, the four

bearings connect the horizontal beam and the support frame which can hold up to

280 kg; and a 12.7 mm shaft connects the four concentric bearings as exhibited Figure

2.17. Third, Miller (1985) used a load cell with an accuracy of 50 g; this study employs

a high accuracy load cell (HBM-S2M-10N) with a maximum capacity of 1,000 g, with

a 0.02% full scale accuracy, translating to an accuracy of 0.2 g. Fourth, the load

cell includes an internal mechanical overload protection mechanism to prevent loss

of calibration. Additionally, a mechanical overload protector, two in-line permanent

magnet disks holding up to 1 kg before separation, are used between the load cell and

the horizontal beam to protect the load cell as displayed in Figure 2.17. Lastly, the

output signals of the load cell are amplified and converted to digital signals using an

HX711 amplifier and an analogue to digital converter and then are sent to a LabVIEW

program which saves and displays data. The load cell and signal processing units are

calibrated in-situ.

Load cell

(Inbuilt 

overload 

protection)

Permanent 

magnet disks

Horizontal beam

Self-aligning bearing 

(support-side)

Shaft

Self-aligning bearing 

(beam-side)

Figure 2.17: Mechanical overload protector (left) and center pivot (right) of the
DMMS

The accuracy of the DMMS was validated by a series of measurements with a

standard mass. Figure 2.18 describes the process to acquire the accuracy of the
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DMMS as follows:

(3) Unloading

(1) Calibration of the load cell

(4) Charge measuring mode

Load cell

49.9 kg in weight

Load cell

RHXCT49.9 kg counter weight

△m2

49.9 kg in weight

Standard mass

200g 

(2) Tare weight measuring mode 

Load cell

RHXCT49.9 kg counter weight

△m1

Load cell

Standard mass

200g 

Figure 2.18: Schematic diagram of the measurement process to determine the accu-
racy of the DMMS. The movement of the horizontal beam is exaggerated for illustra-
tion purposes.

(1) Two weights were suspended from each side of the DMMS, and 200 g of the

standard mass was added onto the weight on the load cell side. The calibration

of the load cell was performed with the 200 g of the standard mass in-situ.

(2) With the RHXCT and a counterweight suspended from the DMMS, a tare weight

(∆m1 ) was measured by the load cell after the horizontal beam was leveled.

(3) Thereafter, to simulate the real charge measurement process, the RHXCT was

unloaded from the DMMS and re-loaded to the DMMS

(4) Subsequently the standard mass (200 g) was added onto the RHXCT to simulate a

charge weight. The charge weight including the tare weight (∆m2 ) was measured
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by the load cell after the beam was leveled. The final charge (e.g. change of mass)

was then calculated by subtracting the measured ∆m1 from the measured ∆m2 .

(5) The process from (2) to (4) was repeated 7 times, and the comparison between

the standard mass (200g) and the measured change of mass is demonstrated in

Figure 2.19.

Figure 2.19 describes the comparison result between the standard mass and the

7 measurements by the DMMS; the mean value of the DMMS’s reading to the 200

g of standard mass was recorded as 200.6 ± 1.4 g with a 95% confidence interval

of calculated using a student-t distribution. The maximum absolute error of the

DMMS was 3.2 g (1.6% of the relative error with 200 g of the known standard mass),

translating to a 0.006% of relative accuracy of 49.9 kg tare weight of the RHXCT.

In addition, a threshold of less than 1 g of random error is used as criteria before

saving data, indicating that periodic fluctuations of the measured data, caused by

any residual movement, are sufficiently small. The random errors are obtained from a

standard deviation of measurements; it is estimated as twice of the standard deviation

of the readings at 95% confidence interval.
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Figure 2.19: Measurements of the DMMS with the added known mass (200 g) after
reloading the RHXCT

Along with accuracy, a precision of the DMMS was assessed by repeatability of
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weighing the same tare weight of the RHXCT repeatedly. The weighing process by

the DMMS was repeated four times, and the relative deviations for the first measured

weight are plotted in Figure 2.20. The maximum absolute deviation among the four

measurements was 1.6 g which is equivalent to 0.003% of repeatability relative to

our 49.9 kg tare weight of the RHXCT for IC1. Consequently, the developed DMMS

allows acquiring high-quality experimental charge validation data for a variety of

testing conditions in an RTPF.
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Figure 2.20: Deviations of the dry-weight measurement of the RHXCT by the DMMS:
the first attempt (i.e. Test number 1) is the baseline for others in terms of the indi-
cated deviations. The error bars indicate the uncertainties of the DMMS measure-
ments.
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2.4 Validation of Charge Measurement Method

A validation of the differential mass evacuation sampling method was carried out by

measuring the same amount of refrigerant on a commercial refrigerant scale (TIF9020A)

and the DMMS respectively and comparing each measurement with the other. The

whole charge measurement processes and comparisons were repeated four times to

ensure credibility of the validation. The validation results are given in Figure 2.21.
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Figure 2.21: Validation result of the charge-measurement method. The error bars
indicate the measurement uncertainties.
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The mean difference between the measurements of the DMMS and the refrigerant

scale was calculated using student-t distribution, the continuous probability distri-

bution obtained from Excel’s built-in TINV function; it was 2.7 ± 1.7 g at 95%

confidence interval with respect to 119 g of the mean measured charge by the re-

frigerant scale. For further explanation, the DMMS has some advantages over the

refrigerant scale; the DMMS can weigh up to 280kg while the refrigerant scale weigh

up to 100 kg. Moreover, the DMMS has higher accuracy; Lee, Bach and Bradshaw

(2021) reported the DMMS’s accuracy of 0.006% with 49.9 kg load, whereas the re-

frigerant scale has 0.5% of accuracy of reading. In this study, the validated charge

measurement method is applied to measure charge of R410A refrigerant.

2.5 Experiment Description

2.5.1 Test Matrix

Utilizing this validated test method, experimental charge measurement tests were ex-

ecuted for both IC1 and OC1 in both evaporator and condenser mode. Table 2.2 and

2.3 show the test matrix using R410A refrigerant. In evaporator mode, refrigerant

mass flow rate, ṁref and outlet superheat, ∆Tsh,out were selected as independent vari-

ables. To avoid undesirable charge errors by water condensation, all evaporator tests

were conducted under dry conditions, cooling conditions without dehumidification

(e.g. without condensation on the fins). The condenser tests use a Box-Behnken de-

sign of experiments, where refrigerant mass flow rate, ṁref , inlet superheat, ∆Tsh,in,

and outlet subcooling, ∆Tsc,out were chosen as independent variables at three equally

spaced levels (-1, 0, +1). It consists of basic tests designed by Box-Behnken and

additional random tests. The combination of indoor and outdoor RTPFs in the test

matrix implies operations of both a heat pump and air-conditioner. Accordingly air

inlet temperatures are maintained at 21.1℃ dry bulb and 15.4℃ wet bulb temper-

ature in condenser mode for IC1 and 8.3∼13.3 ℃ dry bulb temperature for OC1 in
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evaporator mode, representing heat pump operations. Likewise, air inlet tempera-

tures are controlled at 35.0℃ dry bulb and 23.9℃ wet bulb temperature for OC1

in condenser mode and 26.7 ℃ dry bulb temperature for IC1 in evaporator mode,

referring to air-conditioner operations.

Table 2.2: Test matrix for IC1

Test number Test mode
ṁref ∆Tsh ∆Tsc Note

level (kg/h) level (K) level (K)
IC1-1

Evaporator

-1 34.0 0 2.8 - -
IC1-2 -1 34.0 +1 11.1 - -
IC1-3 0 79.4 0 2.8 - -
IC1-4 0 79.4 +1 11.1 - -
IC1-5 +1 113.4 0 2.8 - -
IC1-6 +1 113.4 +1 11.1 - -
IC1-7

Condenser

-1 22.7 -1 16.7 0 6.9

Box-Behnken
Design of

Experiment

IC1-8 -1 22.7 +1 33.3 0 6.9
IC1-9 -1 22.7 0 25.0 -1 2.8
IC1-10 +1 90.7 0 25.0 -1 2.8
IC1-11 +1 90.7 -1 16.7 0 6.9
IC1-12 +1 90.7 +1 33.3 0 6.9
IC1-13 -1 22.7 0 25.0 +1 11.1
IC1-14 +1 90.7 0 25.0 +1 11.1
IC1-15 0 56.7 -1 16.7 -1 2.8
IC1-16 0 56.7 -1 16.7 +1 11.1
IC1-17 0 56.7 +1 33.3 -1 2.8
IC1-18 0 56.7 +1 33.3 +1 11.1
IC1-19 0 56.7 0 25.0 0 6.9
IC1-20 59.4 17.8 5.6

Random PointsIC1-21 77.1 18.9 2.8
IC1-22 52.6 26.7 9.4
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Table 2.3: Test matrix for OC1

Test number Test mode
ṁref ∆Tsh ∆Tsc Note

level (kg/h) level (K) level (K)
OC1-1

Evaporator

-1 45.4 0 2.8 - -
OC1-2 -1 45.4 +1 11.1 - -
OC1-3 0 136.1 0 2.8 - -
OC1-4 0 136.1 +1 11.1 - -
OC1-5 +1 181.4 0 2.8 - -
OC1-6 +1 181.4 +1 11.1 - -
OC1-7

Condenser

-1 68.0 -1 16.7 0 6.9

Box-Behnken
Design of

Experiment

OC1-8 -1 68.0 +1 33.3 0 6.9
OC1-9 -1 68.0 0 25.0 -1 2.8
OC1-10 +1 226.8 0 25.0 -1 2.8
OC1-11 +1 226.8 -1 16.7 0 6.9
OC1-12 +1 226.8 +1 33.3 0 6.9
OC1-13 -1 68.0 0 25.0 +1 11.1
OC1-14 +1 226.8 0 25.0 +1 11.1
OC1-15 0 147.4 -1 16.7 -1 2.8
OC1-16 0 147.4 -1 16.7 +1 11.1
OC1-17 0 147.4 +1 33.3 -1 2.8
OC1-18 0 147.4 +1 33.3 +1 11.1
OC1-19 0 147.4 0 25.0 0 6.9
OC1-20 135.7 27.4 9.3 Random Point

2.5.2 Data Reduction

This section introduces the data reduction processes for determining the charge of

the RTPF, uncertainties associated with it, and other variables of interest. The

paramount quantity of interest is the charge in an RTPF, mRTPF ; it is calculated as

mRTPF = mRHXCT −mAUX (2.9)

where mRHXCT is the charge inside the RHXCT and mAUX is the charge inside

the RHXCT excluding the charge mRTPF in the RTPF.

Depending on charge weight, mRHXCT is defined differently to allow extending

the range of the DMMS’s load cell.

In the simplest case, when the charge is expected within the load cell’s limit (1,000
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g), mRHXCT is given as

mRHXCT = ∆mCW −∆mTW (2.10)

where ∆mCW is the measured differential mass of charge sampled RHXCT’s weight

by DMMS and ∆mTW is the tare weight of the measured differential mass of RHXCT

by the DMMS.

When the expected charge exceeds the load cell’s limit (1,000 g), mRHXCT is given

as

mRHXCT = ∆mCW +moff −∆mTW (2.11)

where moff is an offset weight, a standard mass, to offset the counter weight

allowing an increase in measured charge range. Figure 2.22 depicts the measurement

process of ∆mCW and ∆mTW depending on charge weight, and Table A.6-A.8 in

Appendix list the refrigerant charge in the RTPF, RHXCT, intermediate charges,

and the associated uncertainties in both evaporator and condenser mode.

The DMMS determines the differences between mass (∆m); thus mRHXCT is

obtained by the difference between the two differential mass measurements as shown

in Equation 2.10 or 2.11. Note that, with the same mRHXCT , ∆mCW and ∆mTW

can change depending on the counter weight (e.g. if instrumentation or other mass

is added to the RHXCT between tests).

Next, mAUX comprises the sum of multiple charges according to each refrigerant

state as listed in Table A.5-A.8 in Appendix; and they are defined as the product of

each density and volume, given in Figure A.1-A.4 in Appendix. The internal volumes

are obtained from the validated volume measurement method.

For evaporator mode, mAUX is calculated as

mAUX = mvap +mvap,cap +mliq +mtp (2.12)
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while for condenser mode, mAUX is calculated as

mAUX = mvap +mliq +mliq,cap (2.13)

wheremvap is the charge in superheated vapor state, m liq is the charge in subcooled

liquid state, m tp is the charge in two-phase state, and mvap,cap and m liq,cap are the

charges inside capillary pipes in vapor and liquid state respectively.

(a) Charge within the load cell’s limit

moff

Load cell (1,000 g limit)

RHXCT

including

chargeCounter weight

△mCW

RHXCT

evaucated

△mTW

DMMS

RHXCT

including

charge

△mCW

RHXCT

evaucated

△mTW

(b) Charge out of the load cell’s limit

Figure 2.22: Schematic diagram of ∆mCW and ∆mTW measurement depending on
charge weight

The capillary pipe charges are estimated as single phase (e.g. superheated or

subcooled) because of the temperature relative to the ambient air temperature. The

small internal volume of the capillary pipe leads to an estimated mass of less than

0.2% in evaporator mode (e.g. IC-1) and less than 1.1% in condenser mode (e.g.

IC-13), relative to mRTPF .
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The uncertainties associated with the RTPF charge, umRTPF
are defined as follows:

umRTPF
=

√
(umRHXCT

)2 + (umAUX
)2. (2.14)

where umRHXCT
, umAUX

are the uncertainties associated with mRHXCT and mAUX

respectively.

The uncertainty of mRHXCT ,umRHXCT
, is expressed as

umRHXCT
=

√
(u∆mTW

)2 + (u∆mCW
)2 + (umRSV

)2 (2.15)

The uncertainty of the charge inside the RHXCT, umRHXCT
, results from the mea-

surement of the tare weight and charge sampled weight and the RSV. The resulting

charge uncertainty caused by actuation of the RSV, umRSV
, is calculated by multiply-

ing the refrigerant flow rate and a mean closing time difference between the two RSVs.

To estimate this time difference, slow motion video of repeated manual closing of the

two RSVs was recorded. It was found that the mean closing time difference between

the two RSVs was 0.02 seconds; this value is applied to calculate the umRSV
. The

uncertainty of the measured differential mass of RHXCT’s tare weight by DMMS,

u∆mTW
, is determined by a root sum squared of the measurement’s random uncer-

tainty and the maximum absolute error of the DMMS which was found in validation

process of the DMMS. Similarly, the uncertainty of the measured differential mass

of charge sampled RHXCT’s weight by DMMS, u∆mCW
, is also determined the same

way as u∆mTW
.

umAUX
is determined depending on testing mode. For the evaporator mode, umAUX

is calculated as

umAUX
=

√
(umvap)

2 + (umliq
)2 + (umtp)

2 (2.16)
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For the condenser mode, umAUX
is calculated as

umAUX
=

√
(umvap)

2 + (umr,liq
)2 (2.17)

Uncertainties in each refrigerant phase are given using a relative uncertainty of

each volume corresponding to each refrigerant state, and the following is an example

for umvap :

umvap =
uVvap

Vvap

· mvap (2.18)

where uVvap is the measurement uncertainty of the volume occupied by the vapor

refrigerant in mAUX , Vvap is the volume occupied by the vapor refrigerant in mAUX ,

and mvap is the vapor-refrigerant mass in mAUX .

Uncertainties of charge inside the capillary pipes are neglected due to their small

amount: ±0.002 g in evaporator mode, ±0.04 g in condenser mode, applying average

relative uncertainty of the RHXCT volume to the capillary charge.

Vital heat exchanger testing variables are presented: the refrigerant side capacity,

Q̇ref , air side capacity, Q̇air, outlet superheat, SH out , inlet superheat, SH in , outlet

subcooling, SC out , are expressed as

Q̇ref = ṁref · (hr,o − hr,i) (2.19)

Q̇air = ṁair · cp · (Tdb,i − Tdb,o) (2.20)

∆Tsh,out = Tr,o − Tr,sat,o (2.21)

∆Tsh,in = Tr,i − Tr,sat,o (2.22)

43



∆Tsc,out = Tr,sat,o − Tr,o (2.23)

where ṁref is the refrigerant flow rate, hr,o is the refrigerant enthalpy at the RTPF

outlet, hr,i is the refrigerant enthalpy at the RTPF inlet, ṁair is the air flow rate,

cp is the specific heat at constant pressure of air-water vapor mixture, T db,i is the

inlet air dry-bulb temperature, T db,o is the outlet air dry-bulb temperature, T ref,o

is the refrigerant temperature at the RTPF outlet, T r,sat,o the saturated refrigerant

temperature at the RTPF outlet, and T ref,i the refrigerant temperature at the RTPF

inlet.

The developed charge measurement method is validated and sufficiently reliable

to produce experimental charge validation data repeatedly. The following chapters

present experimental results obtained using this method.
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2.6 Experimental Test Results

The validated differential mass evacuation sampling method was used to produce

experimental charge validation data. The refrigerant and air side test results and the

corresponding RTPF charges are presented in Tables A.9-A.12. They were reduced in

accordance with the predefined data reduction method. Figures 2.23 and 2.24 display

the measured charges of IC1 and OC1 RTPF, respectively.
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Figure 2.23: Measured IC1 RTPF charges: (a) evaporator mode, (b) condenser mode.
Error bars are similar to marker size, zoom in for detail
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Figure 2.24: Measured OC1 RTPF charges: (a) evaporator mode, (b) condenser
mode. Error bars are similar to marker size, zoom in for detail
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2.6.1 Energy Balance and Uncertainties

All the conducted tests fulfill the 5% energy balance requirement of ASHRAE Stan-

dard 33 (ASHRAE, 2016) as presented in Figure 2.25. Table 2.4 presents the obtained

uncertainties of all test data; and the uncertainties of air mass flowrate and refrigerant

and air capacity are calculated by a Python code which is developed by Saleem et al.

(2020) based on ASME PTC 19.1 (ASME-PTC-19.1, 2013).
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Figure 2.25: Measured capacities. The error bars and the dotted lines indicate mea-
surement uncertainties and 5% energy balance limit, respectively.

Table 2.4: Maximum uncertainties of the experimental tests

Parameter Symbol Uncertainty
Pressure P ±1.7 kPa
Temperature T ±0.06 °C
Refrigerant mass flow rate ṁref ±0.05% of measured
Air mass flow rate ṁair ±2.0% of measured

Refrigerant capacity Q̇ref ±0.73 (kW)

Air capacity Q̇air ±0.43 (kW)
Evaporator RTPF charge um,RTPF,eva ±6.6 (g)
Condenser RTPF charge um,RTPF,cnd ±6.9 (g)

An uncertainty of charge in an RTPF, um,RTPF (g) is determined by the predefined

method in section 2.5.2. The result discloses that 0.01% of relative uncertainty with
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respect to the OC1 RHXCT weight (68.0 kg), 0.2% of relative uncertainty with respect

to the measured charge of OC1 found in Table A.4, and 2.0% of maximum relative

uncertainty with respect to the measured RTPF charge of IC1, shown in Table A.1,

which is considered sufficiently accurate for model validation purposes by the author.

Further details on the uncertainties of air mass flowrate, refrigerant, and air capacity

are previously presented in Saleem et al. (2020).

2.6.2 Repeatability of Charge Measurement

Repeatability (i.e. precision) is a significant measure for experiment capability of

reproducing data under the same testing condition; a repeatability of charge mea-

surement is calculated as

Repeatability = 100× abs(mRHXCT−1st −mRHXCT−2nd)

mean(mRHXCT−1st,mRHXCT−2nd)
(%) (2.24)

where mRHXCT−1st is the first measurement of mRHXCT ; likewise mRHXCT−2nd is

the second measurement of mRHXCT for the same test point.

A low repeatability indicates high precision of experimental charge validation data.

Repeatability of charge measurement in both condenser and evaporator mode were

evaluated by repeatedly testing the same test points, including an entire testing-

sampling-measurement process.

The results are tabulated in Tables 2.5∼ 2.8 for both testing mode and RTPFs; the

results prove high-quality of experimental data, producing up to 1.3% of repeatability.

In general, condenser tests tend to has better repeatability compared to evaporator

tests since charges in condenser are greater than that in evaporator. Besides, IC1

tests’ repeatability shows better precision than that of OC1 tests; it is deemed that

the repeatability of IC1 is improved because IC1 RHXCT is lighter than OC1 RHXCT

(i.e. 49.9 kg of IC1 RHXCT and 68.0kg of OC1 RHXCT).
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Table 2.5: Repeatability of charge measurement for IC1 in evaporator mode

Variable Unit IC1-4
Repeated test

on IC1-4
Absolute
difference

Repeatability
(%)

ṁref kg/hr 75.8 75.8 0 -
ṁair kg/s 0.437 0.435 0 -

Q̇ref kW 3.56 3.56 0 -

Q̇air kW 3.58 3.45 0.1 -
∆Tsh,out K 11 11 0 -
mRHXCT g 355 345 11 2.9

Table 2.6: Repeatability of charge measurement for IC1 in condenser mode

Variable Unit IC1-19
Repeated test
on IC1-19

Absolute
difference

Repeatability
(%)

ṁref kg/hr 56.6 56.6 0 -
ṁair kg/s 0.31 0.311 0 -

Q̇ref kW 3.4 3.4 0 -

Q̇air kW 3.28 3.29 0 -
∆Tsh,in K 25.5 25.5 0 -
∆Tsc,out K 6.7 6.8 0.1 -
mRHXCT g 971 984 13 1.3

Table 2.7: Repeatability of charge measurement for OC1 in evaporator mode

Variable Unit OC1-1
Repeated test

on OC1-1
Absolute
difference

Repeatability
(%)

ṁref kg/hr 58.5 58.7 0.2 -
ṁair kg/s 0.816 0.818 0 -

Q̇ref kW 2.64 2.61 0 -

Q̇air kW 2.71 2.61 0.1 -
∆Tsh,out K 3.9 3.1 0.8 -
mRHXCT g 509 572 63 11.7

48



Table 2.8: Repeatability of charge measurement for OC1 in condenser mode

Variable Unit OC1-19
Repeated test
on OC1-19

Absolute
difference

Repeatability
(%)

ṁref kg/hr 147.4 147.9 0.5 -
ṁair kg/s 0.962 0.962 0 -

Q̇ref kW 8.17 8.19 0 -

Q̇air kW 7.89 7.95 0.1 -
∆Tsh,in K 25.6 25.4 0.2 -
∆Tsc,out K 7.4 7.5 0.1 -
mRHXCT g 3501 3550 49 1.4

2.6.3 Charge Sensitivity

Charge sensitivity on refrigerant charge was investigated from experimental data. The

Pearson correlation coefficient is applied to analyze inter-relation strength between

charge and variables. According to Meng-ting et al. (2019), the Pearson correlation

coefficient, also known as r value, indicates correlation intensity; it is expressed as

r =

∑
(x− x) (y − y)√∑

(x− x)2
∑

(y − y)2
(2.25)

Where X i and Y i are i-th sample of variable X and Y, X and Y are averages

for X and Y, respectively. The minimum value of Pearson correlation coefficient is

-1 and represents a complete negative correlation; inversely, the maximum value of

Pearson correlation coefficient is 1 and denotes a complete positive correlation; when

the value is 0, there is no correlation between the two variables (i.e. the variables

vary in a random manner with respect to each other).
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2.6.3.1 IC1 in Evaporator Mode

Figure 2.26 shows the result of charge sensitivity on ∆Tsh,out and ṁref as well as

Xin from IC1 evaporator tests. According to the result, the IC charge, mRTPF has a

strong correlation to both Xin and ∆Tsh,out as presented in Figure 2.27.
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Figure 2.26: Absolute Pearson correlation coefficients for mRTPF from the IC1 test
results in the evaporator mode

In contrast, ṁref has a weak correlation to the IC charge, mRTPF ; to be specific,

Figure 2.28 demonstrates an intensive correlation between ṁref and Xin regardless

of variations of ṁref .
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As a result, it is found that increase in ∆Tsh,out and Xin yields charge reduction.

This effect on charge can be explained considering contraction of two-phase region

in an evaporator since two-phase region has higher density than that of superheated

region (Hervas-Blasco et al., 2018).
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Figure 2.27: IC1 mRTPF variations to variables in evaporator mode of pure R410A
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Figure 2.28: IC1 mRTPF and ṁref with respect to Xin in evaporator mode of pure
R410A

2.6.3.2 IC1 in Condenser Mode

For IC1 condenser tests, Figure 2.29 presents a charge sensitivity result about effects

of ∆Tsh,in, ∆Tsc,out, and ṁref on charge.
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Figure 2.29: Absolute Pearson correlation coefficients for mRTPF from the IC1 test
results in the condenser mode

It is observed that the IC1 charge, mRTPF has a strong positive correlation to

∆Tsc,out and ṁref and a weak correlation to ∆Tsh,in, as indicated in Figure 2.30. In

accordance with the calculated Pearson correlation coefficients, ∆Tsc,out is a dominant
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factor to dictate charge in condenser mode; it is known that higher ∆Tsc,out induces

larger subcooled region, thus leading a higher charge (Li et al., 2020).

Besides, the charge is influenced by ṁref as well. Pereira et al. (2019) also reported

a lower charge trend along with higher ṁref in a coaxial tube condenser. According

to their claim, this trend could be led by a flow-pattern change since higher ṁref

promote a transition of flow pattern to an annular flow which has higher void fraction

(Wojtan et al., 2005). Therefore, it can be seen that the high ṁref leads to low charge.
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Figure 2.30: IC1 mRTPF variations to variables in condenser mode of pure R410A
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2.6.3.3 OC1 in Evaporator Mode

As with the IC1 evaporator test results, the OC1 evaporator tests confirm that the

most charge-correlated variable is a refrigerant inlet quality, Xin followed by refriger-

ant mass flow rate, ṁref and outlet superheat, ∆Tsh,out as shown in Figure 2.31 and

2.32.
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Figure 2.31: OC1 mRTPF variations to variables in evaporator mode of pure R410A
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Figure 2.32: Absolute Pearson correlation coefficients for mRTPF from the OC1 test
results in the evaporator mode

2.6.3.4 OC1 in Condenser Mode

The charge sensitivity on the variables for IC1 condenser tests continues to OC1

condenser test results as depicted in Figure 2.33 and 2.34.
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Figure 2.33: Absolute Pearson correlation coefficients for mRTPF from the OC1 test
results in the condenser mode

55



As the calculated Pearson correlation coefficients indicate, ∆Tsc,out is a main factor

with strong positive correlation, followed by ṁref with negative correlation. ∆Tsh,in

has a weak correlation to the charge.
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Figure 2.34: OC1 mRTPF variations to variables in condenser mode of pure R410A

The obtained high-fidelity charge data for the RTPFs is crucial to improve accu-

racy of charge model that will be addressed in the following sections; moreover, the

charge validation data is a stepping stone to further investigate charge prediction and

optimization.
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2.7 Conclusion

A differential mass evacuation sampling method is developed that can quickly (i.e.

within an hour) capture high-fidelity charge measurements for experimental validation

of the charge simulation. This method embraces the advantages of the existing charge

measurement methods (OM and SM) such as independent charge determination of

refrigerant and oil and simple/fast measurement to accommodate large number of

data points. Main testing apparatuses were developed: the RHXCT to enable rapid

charge sampling, individual circuit control, repetitive weighing, and oil separation,

the MDA to generate a uniform airflow, and the DMMS for accurate measurement

of weight. A validation of the differential mass evacuation sampling method was

performed and it disclosed an error of 2.7 ± 1.7 g at 95% confidence interval with

respect to 119 g of the mean measured charge by a refrigerant scale. Using the

validated method, a total of 42 experimental charge tests were carried out according

to the test matrix using R410A refrigerant, producing up to a 0.01% of relative

uncertainty with respect to the OC1 RHXCT weight, 0.1% of relative uncertainty with

respect to measured charge of OC1, and 1.3% of charge measurement repeatability

with respect to measured charge of IC1; it is considered sufficiently accurate for charge

validation purposes by the author.

The conducted charge sensitivity study reveals correlation intensities between

charge and variables in different operating mode; Xin is strongly correlated with

charge in evaporator mode. In condenser mode, ∆Tsc,out followed by ṁref are main

factors to affect charge. The collected experimental charge validation data addresses

the need, lack of charge validation data; and leads to a development of an experimen-

tally validated charge model.
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CHAPTER III

AN EXPERIMENTAL DATA-DRIVEN CHARGE MODEL FOR

ROUND-TUBE-PLATE-FIN HEAT EXCHANGERS USING

LOW-GWP REFRIGERANTS

Abstract

Heat pumps can be switched between cooling and heating mode, requiring accurate

charge modelling capabilities to enable design of heat exchangers for near optimum

efficiency in both operating modes. The charge modeling tools also require high-

fidelity experimental validation data to tune their predictions. However, very few

experimental charge validation data are available in the open literature. This study

addresses this need by providing complete and high-fidelity experimental charge data

of Round Tube Plate Fin Heat Exchangers (RTPF) with ±2.2% of relative-charge

measurement uncertainty of measured and 0.8% of charge-measurement repeatabil-

ity. Especially, in addition to R410A data, two low-Global Warming Potential (GWP)

refrigerants charge data are collected such as R1234yf and R468C. Furthermore, an

accurate data-driven charge model is developed, tuned by the high-fidelity experi-

mental charge data with 12.3%, 12.8%, and 12.9% of the Mean Absolute Percentage

Error (MAPE) based on the Taitel-Barnea, the Zivi, and the Baroczy void-fraction

model, respectively. This experimentally validated charge model can contribute to

enable effective designs of heat pumps with high-accuracy charge predictions.

This chapter will be submitted for publication in the International Journal of

Refrigeration.
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3.1 Introduction

Refrigerant charge plays a significant role in air-conditioning and refrigeration sys-

tems directly affecting efficiency and capacity of the systems (Poggi et al., 2008). A

considerable of studies reported changes in capacity and efficiency affected by charge.

20% of capacity reduction and 15% of efficiency degradation led by 25% of charge

deficiency in a heat pump were reported (Kim and Braun, 2012). It was found that

optimizing refrigerant charge can reduce energy consumption in cooling mode by 5

to 11% for packaged rooftop air conditioning units installed in California (Cowan

et al., 2004). Also, heat pumps can be utilized for both space heating and cooling by

switching the mode; in the meantime, maintaining proper charge in the heat pump is

crucial for capacity and efficiency as well as reliability of the heat pump (Eom et al.,

2019).

Furthermore, current refrigerants have high-Global Warming Potential (GWP)

such as 2088 of R410A. As a result, worldwide effort has been made to reduce carbon

footprint with respect to refrigerants; Kigali Amendment to the Montreal Protocol

includes the common Hydrofluorocarbon (HFC) refrigerants to progressively lower

their production and consumption (Heath, 2017). To keep pace with this, the Heat-

ing, Ventilation, Air-conditioning, and Refrigeration (HVAC&R) society is rapidly

adopting low-GWP refrigerants. For these reasons, accurate prediction of charge is

vital for air-conditioning and refrigeration systems (Poggi et al., 2008). The refriger-

ant charge in an air-conditioning and refrigeration system can be predicted by charge

modeling tools (Harms, 2002; Ding et al., 2009; Jin and Hrnjak, 2016).

Major difficulties in charge predictions are uncertainties of the ratio of vapor to

liquid in two-phase flow, e.g. void fraction (Harms et al., 2003). To account for

the void fraction, early charge models assumed equal liquid and vapor velocities, i.e.

a slip ratio of 1, also known as the homogeneous void-fraction model (MacArthur,

1984). Subsequently, researchers introduced a wide variety of slip ratios using either
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empirical or analytical derivations to deal with the void fraction (Abdelaziz et al.,

2008); yet the majority of them were developed by water and steam flow; some of

them are developed even under adiabatic conditions, thus they might not be always

proper for refrigerants (Shen et al., 2006).

Meanwhile, before 1980s, system performance was the prime factor of interest in

the HVAC&R society; and there is little attention to refrigerant charge inventory. Rice

(1987)’s study is one of the early studies to draw attention of HVAC&R society to the

experimentally validated charge model. Through the study (Rice, 1987), importance

of the void-fraction model was recognized and then Hughmark (Hughmark et al.,

1962), Premoli (Premoli et al., 1971), Tandon (Tandon et al., 1985), and Baroczy

(Baroczy, 1963) model were recommended for their good agreement with measured

charge.

Followed by Rice (1987), extensive void-fraction models were experimentally eval-

uated in various test conditions and capacity for an accurate charge model used in

unitary air-conditioners with R22 and R407C (Harms et al., 2003). This investigation

on void-fraction models presented that underprediction of charge by the homogeneous

slip ratio model and overprediction of charge by the Hughmark model as well as the

best agreement with measured charge of the Baroczy void-fraction model. In addi-

tion, the simple Zivi void-fraction model (Zivi, 1964) was recommended for its easy

implementation and acceptable accuracy of 10% with measured data (Harms et al.,

2003).

A charge tuning method assisted by charge measurements to reduce dependency

of void-fraction models was developed (Shen et al., 2006); it is a practical two-point

charge tuning method to utilize two measurements at two operating conditions, along

with a development of charge-tuning coefficients. The two-point tuning method was

validated against experimental charge data obtained from a series of test conditions

with two different unitary equipment, revealing excellent charge errors within 1%
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regardless of void-fraction models. Once a charge model is tuned by this method, the

charge model behaves nearly independent of the selected void-fraction model, whereas

this two-point tuning method requires experimental charge data and calculations of

the charge-tuning coefficients.

Recent charge studies investigated charge distributions in a vapor compression

system and developed experimentally validated charge models (Jin and Hrnjak, 2016;

Li and Hrnjak, 2021). Jin and Hrnjak (2016) reported that a developed charge model

for an air-conditioner using R1234yf and R134a, and presented the error of the re-

frigerant charge model is reduced from 20% to 15% by accounting for the observed

liquid channels in the microchannel heat exchanger and applying a constant correc-

tion factor to the Zivi model (Zivi, 1964). Followed by Jin and Hrnjak (2016), R134a

refrigerant distributions in a residential heat pump were analyzed by employing the

Coddington and Macian (Coddington and Macian, 2002) and the Woldesemayat and

Ghajar (Woldesemayat and Ghajar, 2007) void-fraction models (Li and Hrnjak, 2021).

It was observed that the heat exchangers hold most of the charge in the heat pump.

The study presented 9.1% of charge prediction error evaluated by the experimental

charge in the evaporator.

The aforementioned charge studies in HVAC&R are listed in Table 3.1. In sum-

mary, the literature review suggests unlike rapid adoption of low-GWP refrigerants

by HVAC&R society, experimentally validated charge models are insufficient, partic-

ularly on low-GWP refrigerants.

Table 3.1: Selected charge studies in HVAC&R

Rice (1987) Harms et al. (2003) Jin and Hrnjak (2016) Li and Hrnjak (2021)

Recommended
void-fraction models

(Hughmark et al., 1962)
(Premoli et al., 1971)
(Tandon et al., 1985)
(Baroczy, 1963)

(Baroczy, 1963)

(Zivi, 1964)

(Jassim et al., 2006)

(Zivi, 1964)

(Coddington and Macian, 2002)
(Woldesemayat and Ghajar, 2007)

Achieved charge
prediction error

19% 10% 15% 9.1%

Discussed refrigerant R12, R22 R407C, R22 R134a, R1234yf R134a

The proposed study fills this gap by providing experimental charge validation data
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and an experimentally validated charge model on the low-GWP refrigerants, R468C

and R1234yf. The charge model is not only validated, but also provides comparison

of void-fraction models. The charge model is tuned by the high-fidelity experimental

data-informed tuning methods in which the accuracy of the charge model is apprecia-

bly improved by a combination of crucial dimensionless numbers and the data-driven

method adaptable to various conditions to be simulated.

An additional unique contribution of this investigation is the novel charge data

of R468C. Any charge validation data of R468C has not been reported in the open

literature to the best of the author’s knowledge. R468C is a significantly promising

alternative to R410A due to the fact that R468C has similar thermodynamic and

transport properties to those of R410A as well as notably low-GWP (285), 13.6% of

R410A GWP as indicated in Table 3.2 (Ghadiri et al., 2022).

Table 3.2: Comparison of characteristics of selected refrigerants

Refrigerant GWP Normalized GWP ASHRAE safety class Composition
R1234yf 4 0.2% A2L -
R468C 285 13.6% A2L 6% R1132a/42% R32/ 52% R1234yf
R410A 2088 100% A1 50% R32/ 50% R125

3.2 Experimental Methodology

The differential mass evacuation sampling method (Lee et al., 2020) is applied to

obtain experimental charge validation data; the method determines the charge in

a Round Tube Plate Fin Heat Exchangers (RTPF) by measuring the difference to

the dry RTPF weight with a custom designed Differential Mass Measurement Scale

(DMMS). The overall measurement process is illustrated in Figure 3.1.
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The following sections detail the related testing apparatus and testing procedure

of the method, followed by the test matrix and data reduction. Further details on

the methodology of the differential mass evacuation sampling method was previously

presented in (Lee et al., 2020, 2022) .

(2) Operating Mode (steady-state)

(3) Charge Sampling Mode

RHXCT

RHXCT

Psychrometric

Chamber

(1) Tare-weight Measuring Mode 

(4) Charge Measuring Mode

Air

Load cell

RHXCTCounter weights

Load cell

RHXCTCounter weights

DMMS

DMMS

△mTW

△mCW

MDA

MDA

Refrigerant 
loop

Refrigerant 
loop

RSV

RSV

(5) Calculation of charge inside the RHXCT

𝑚𝑅𝐻𝑋𝐶𝑇 = ∆𝑚𝐶𝑊 − ∆𝑚𝑇𝑊

Figure 3.1: Schematic diagram of the overall measurement process (modified from
Lee et al. (2020))

3.2.1 Experimental Testing Apparatus

The experimental testing apparatus is divided into three main parts. The first are

devices for supplying test conditions such as an air-side conditioning apparatus and

a pumped-refrigerant loop. The second is a device for acquiring charge samples and
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the third is a scale to determine charge measurements. A schematic diagram of the

pumped-refrigerant loop is depicted in Figure 3.2. The refrigerant condition to the

inlet of the test section is controlled by the pumped-refrigerant loop equipped with

a variable speed diaphragm pump with 7.7 l/m flow capacity at 172 bar, 21.1 kW of

heat pumps, and a 18 kW of variable-capacity water heater. These are developed by

Saleem et al. (2020).

Water heater

Heat

pumps

T P

T
P

T
P

Mass-flow 

meter

Diaphragm

Pump

Test section

Filter-drier

Accumulator

Psychrometric chamber

Figure 3.2: Schematic diagram of the pumped-refrigerant loop (modified from Saleem
et al. (2020))

The air-side condition is controlled by a psychrometric chamber (Lifferth, 2009),

allowing precise control of humidity and temperature of air as well as air flowrate.

The conditioned air flowrate is delivered through a Modular Duct Assembly (MDA)

— modified from Saleem et al. (2020) — to the Removable Heat Exchanger Charge
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Test Module (RHXCT), the test section, as shown in Figure 3.1 and 3.3.

Air

RHXCT

Air
Outlet 

Refrigerant
pipe

Inlet 
Refrigerant

pipe

Rapid
shut-off
valves

Figure 3.3: Modular Duct Assembly (MDA) combined with the Removable Heat
eXchanger Charge Test module (RHXCT) inside a psychrometric chamber

The Removable Heat Exchanger Charge Test Module (RHXCT) that includes

the RTPF under test is the principal device to sample charges; it is equipped with

pressure and temperature sensors, electronic expansion valves, Rapid Shut-off Valves

(RSVs) on both inlet and outlet refrigerant pipes in the RHXCT for quick charge

sampling. Figure 3.4 shows a simplified schematic diagram of the RHXCT.

Figure 3.4: Simplified schematic diagram of the removable heat exchanger charge test
module (RHXCT)

Detailed information of the RTPF are presented: itemized specifications in Table
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3.3 and a schematic diagram of the circuits in Figure 3.5.

Table 3.3: The Round-Tube-Plate-Fin Heat Exchanger (RTPF) specifications

Number of tubes per bank 30
Number of bank 2
Number of circuits 3
Length of tubes 1.219 m
Outer diameter of tube 0.0095 m
Inner diameter of tube 0.0085 m
Tube spacing in air flow direction 0.0191 m
Tube spacing orthogonal to air flow direction 0.0254 m
Number of fins per inch 20
Amplitude of wavy fin 0.001 m
Half period of wavy fin 0.001 m
Fin thickness 0.0001 m
Fin type Sine wave fins
Internal tube type Smooth
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The sampled charge inside the RHXCT is measured by the Differential Mass

Measurement Scale (DMMS) exhibited in Figure 3.6. A high-accuracy load cell with

a maximum capacity of 1,000 g and a 0.02% full scale accuracy is employed for

the DMMS. As a result, the high-fidelity DMMS produces continual accurate charge

measurements with a 3 g of error for the 49.9 kg tare weight of the RHXCT (Lee,

Bach and Bradshaw, 2021).

(a) Schematic diagram of the RTPF (b) Circuit information

Figure 3.5: Round-Tube-Plate-Fin Heat Exchanger (RTPF)
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Figure 3.6: Differential Mass Measurement Scale (DMMS) with the Removable Heat
Exchanger Charge Test module (RHXCT)

3.2.2 Testing Procedure

The overall operation steps of the differential mass evacuation sampling method (Lee

et al., 2020) are illustrated in Figure 3.1; and the details are as follows:

1. Prior to weighing the RHXCT, the RHXCT is evacuated and weighed by the

DMMS. This process gives an initial differential weight of the RHXCT, which is

the Tare Weight (∆mTW ): the difference between a counter weight and weight

of the RHXCT.

2. The Modular Duct Assembly (MDA) is prepared in a psychrometric chamber.

The MDA can deliver desired flow rate, temperature, and humidity of air to the

RHXCT. The RHXCT is connected to the MDA and operated at a steady state

condition to allow refrigerant flow rates to stabilize. Once a desired test con-

dition is reached and steady-state data acquisition is complete, the refrigerant

charge in the RHXCT is sampled by simultaneously closing two Rapid Shut-off

Valves (RSVs) on the RHXCT’s inlet and outlet.

3. The RHXCT is disconnected from the MDA. Subsequently, the separated RHXCT
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is weighed again using the DMMS, after any condensate on the surface has evap-

orated. The measured differential mass of the RHXCT in this step, is termed

Charge-Sampled Weight (∆mCW ). The total charge in the RHXCT, enclosed

between the two RSVs, is determined by the difference between the ∆mCW and

∆mTW . The charge in the RTPF of interest (e.g. heat exchanger tubes and

return bends) is acquired by removing auxiliary charge inside RHXCT from the

total charge in the RHXCT.

3.2.3 Experimental Test Matrix

An experimental test matrix is tabulated in Table 3.4. Two charge-sensitive param-

eters (Mei et al., 2005) are selected for developing an efficient test matrix: an outlet

superheat, ∆Tsh and inlet liquid-line temperature of refrigerant, Tliquid. The exper-

imental tests are carried out on the test matrix in evaporator mode under dry con-

dition. The working fluids include two Low-GWP refrigerants, R1234yf and R468C,

as well as R410A for reference. In air-side conditions, air inlet temperatures are

maintained at 26.7 ◦C of dry-bulb and 15.0 ◦C of wet-bulb temperature. To evaluate

precision of charge measurements, repeat tests are performed for both refrigerants as

indicated in Table 3.4. The R410A test-condition range is given separately in Table

E.4.
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Table 3.4: Test matrix

Refrigerant Test ID ∆Tsh (K) Tliquid (◦C) Note

R1234yf

yf-1 4.4 32.2
yf-2 4.4 43.3
yf-3 10 32.2
yf-4 10 43.3
yf-5 7.2 37.8 Repeat test

R468C

c-1 4.4 32.2
c-2 4.4 43.3
c-3 10 32.2
c-4 10 43.3
c-5 7.2 37.8 Repeat test

R410A

a-1

2.4 ∼ 7.4 32.2 ∼ 39.1

a-2
a-3
a-4
a-5
a-6

3.2.4 Experimental Data Reduction

In this section, experimental data reduction is introduced. The charge of interest

inside the RTPF, mRTPF is calculated as

mRTPF = mRHXCT −mAUX (3.1)

wheremRHXCT is the measured charge inside the RHXCT, andmAUX is the separately

calculated charge, given in Equation E.3, inside the RHXCT excluding mRTPF . As

demonstrated in Figure 3.1, mRHXCT is measured as follows:

mRHXCT = ∆mCW −∆mTW (3.2)

where ∆mCW is the measured differential mass of charge-sampled RHXCT weight by

the DMMS and ∆mTW is the measured differential mass of RHXCT tare weight by

the DMMS. Those intermediate terms to obtain mRTPF are detailed in Appendix E.

Primary heat exchanger testing variables are presented; the refrigerant-side capac-
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ity, Q̇ref , air-side capacity Q̇air, and outlet superheat of evaporator, ∆Tsh are defined

as

Q̇ref = ṁref · (hr,o − hr,i) (3.3)

Q̇air = ṁair · cp · (Tdb,i − Tdb,o) (3.4)

∆Tsh = Tr,o − Tr,sat,o (3.5)

where ṁref is the refrigerant flow rate, hr,o is the refrigerant enthalpy at the RTPF

outlet, hr,i is the refrigerant enthalpy at the RTPF inlet, ṁair is the air mass flow

rate, cp is the specific heat at constant pressure of air-water vapor mixture, T db,i is

the inlet air dry-bulb temperature, T db,o is the outlet air dry-bulb temperature, T r,o

is the refrigerant temperature at the RTPF outlet, T r,sat,o the saturated refrigerant

temperature at the RTPF outlet. To avoid undesirable charge errors by water con-

densation, all tests were carried out under dry conditions without dehumidification,

i.e. without condensation on the fins.
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3.3 Experimental Results

3.3.1 Measured Charge

The experimental charge validation data was collected according to the test matrix

given in Table 3.4. All tests were conducted under 5% limit of energy balance between

refrigerant-side and air-side (ASHRAE, 2016). In addition, the collected data are

high-fidelity charge measurements along with low uncertainty, umRTPF
, up to ±2.2%

relative uncertainty of measured, um,relRTPF
as indicated Table 3.5.

Table 3.5: Refrigerant charge information in mRTPF and the associated uncertainties

Test ID
mRTPF umRTPF

um,relRTPF
∆Tsh Tliquid

(g) ±(g) ±(%) (K) (◦C)
yf-1 1072 4.3 0.4 3.4 31.5
yf-2 733 4.2 0.6 5.1 43.0
yf-3 484 5.7 1.2 10.1 31.5
yf-4 341 6.9 2.0 9.7 42.8
yf-5 372 6.6 1.8 7.3 37.5
c-1 605 4.5 0.7 4.2 32.4
c-2 480 5.1 1.1 4.8 42.7
c-3 338 4.1 1.2 10.0 32.3
c-4 353 4.1 1.2 8.9 42.0
c-5 419 4.5 1.1 7.6 37.8
a-1 441 6.6 1.5

2.4 ∼7.4 32.2 ∼39.1

a-2 299 6.6 2.2
a-3 785 5.3 0.7
a-4 432 4.6 1.1
a-5 843 5.4 0.6
a-6 619 4.3 0.7

3.3.2 Repeatability

Additional repeat tests provide confidence on the collected charge measurements in

terms of precision. Each repeat test was conducted on the same test point repeatedly

as indicated in Table 3.4 and Figure 3.7. These repeat tests confirmed high-accuracy

charge measurements consecutively, producing repeatability of 0.8% on R468C and
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4.0% on R1234yf. It is noted that the repeat test includes entire measurement process

such as acquiring steady condition - sampling - measurement process.

yf-5(1st) yf-5(2nd) c-5(1st) c-5(2nd)
Test ID

0

100

200

300

400

500
m

RH
XC

T (
g)

Repeatability, R = ( abs(mRHXCT, 1st mRHXCT, 2nd)
mean(mRHXCT, 1st mRHXCT, 2nd) ) 100(%)

R1234yf, R=4.0%
R468C, R=0.8%

Figure 3.7: Repeatabilities of charge measurement in RHXCT, mRHXCT on both test
points, yf-5 and c-5.

3.3.3 Uncertainty Limit

Uncertainties of measurements are evaluated and enumerated in Table 3.6. The max-

imum uncertainties of charge inside the RTPF, umRTPF
is ±6.9 g as displayed in

Table 3.5. The detailed process to calculate umRTPF
are separately described in Ap-

pendix E. In the Table 3.6, the uncertainties of calculated variables such as air-mass

flowrate and capacities in both refrigerant and air sides are estimated according to

the uncertainty propagation analysis (ASME-PTC-19.1, 2013; Saleem et al., 2020).

Table 3.6: Uncertainty limits of all the experimental tests

Parameter Symbol Uncertainty
Pressure P ±3.8% of measured

Temperature T ±0.33 °C
Refrigerant mass flow rate ṁr ±0.05% of measured

Air mass flow rate ṁair ±2.0% of measured

Refrigerant capacity Q̇r ±1.2% of measured

Air capacity Q̇air ±5.3% of measured
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3.4 Charge Model

A detailed segment-by-segment heat exchanger model (Xfin) including a charge model

was developed using void-fraction correlations (Sarfraz et al., 2019). The following

sections explain descriptions and validations of the charge model.

3.4.1 Model Description

In the Xfin model, the mass of refrigerant in single phase is given as a product of

density and volume. The density in single phase is retrieved from the property data;

and the volume information used in the study is shown in Figure E.1. In two-phase,

the separate masses of refrigerant in each vapor and liquid phase are calculated using

the mean void fraction in a segment of interest, which is expressed in Equation 3.6

and 3.7:

mv = ρv · α · V (3.6)

ml = ρl · (1− α) · V (3.7)

where mg and mf are the masses of refrigerant in vapor and liquid phase, respec-

tively, ρg and ρf are the densities of refrigerant in vapor and liquid phase, respectively,

α is the mean void fraction in a segment, V is the segment volume.

As can be seen in Equation 3.6 and 3.7, the void fraction is significant to determine

charge inside the RTPF. Accordingly the void fraction is of interest to be corrected

in this study to improve accuracy of the charge prediction.

Along with charge calculations, heat transfer and pressure drop in each segment

are calculated. Also, phase change of refrigerant in a segment is captured by a moving

boundary method (Sarfraz et al., 2018). Assumptions applied to the Xfin model are

as follows:
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1. Uniform distribution of air flow

2. Uniform distribution of refrigerant flow

3. Steady state flow

4. Uniform fluid property in each segment

5. Neglected tube to tube conduction through fins

Refrigerant properties are updated by employing REFPROP (Lemmon et al.,

2018), while CoolProp (Bell et al., 2014) is used to calculate humid-air properties.

When the property is retrieved, a lookup table of refrigerant is generated and then

used for saving time of retrieving property (Sarfraz, 2020).

The heat transfers on the refrigerant, Q̇ref and airside, Q̇air are estimated by

applying ε-NTU method in each segment on a lumped basis. They are defined as

Q̇air=ηf · εair · ṁair · cp,air · (Tair,i−Tw) , (3.8)

Q̇ref=εref · ṁref · cp,ref · (Tref,i−Tw) , (3.9)

where ṁ is the mass flow rate, ε is the effectiveness, cp is the heat capacity, and

Tw is the segment wall temperature (Sarfraz, 2020). The correlations employed in the

ε-NTU method are provided in Table 4.2.

Table 3.7: Correlations used in the Xfin model

Fluids Correlations References

Air
Heat transfer Wavy fin correlations (Wang et al., 1997)
Pressure drop Wavy fin correlations (Wang et al., 1997)

Refrigerant

Heat transfer in single phase Gnielinski (Gnielinski, 1976)
Heat transfer in two-phase Shah (Shah, 1982)

Pressure drop in single phase Blasius (Blasius, 1913)
Pressure drop in two-phase Lockhart-Martinelli (Lockhart and Martinelli, 1949)
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3.5 Experimental Validation of the Xfin Model

Prior to tuning the Xfin model, it was experimentally validated against the obtained

high-fidelity experimental validation data.

3.5.1 Evaluation of the Xfin Model

The prediction capability of the Xfin model in terms of Q̇ and mRTPF is evaluated

against all the obtained experimental data given in Table 3.5 by a Mean Absolute

Percentage Error (MAPE) expressed as

MAPE =
n∑

i=1

∣∣∣∣∣Yi − Ŷi

Yi

∣∣∣∣∣ · 100(%)

n
(3.10)

where n is the number of data, i is an index of the data, Y denotes the measured

data, Q̇ or mRTPF , and Ŷ is the predicted data.

For charge prediction, a variety type of void-fraction models were employed;

Zivi (Zivi, 1964), Lockhart-Martinelli(L-M) (Lockhart and Martinelli, 1949), Baroczy

(Baroczy, 1963), Thom (Thom, 1964), and Taitel-Barnea (T-B) (Taitel and Barnea,

1990b) are recommended by previous charge studies in the literature with good agree-

ment against experimental data (Harms, 2002; Ma et al., 2009; Abdelaziz et al., 2008).

In addition, the Homogeneous model (Harms et al., 2003) was included for compari-

son. These void-fraction models are classified in sub-categories (Shen et al., 2006) as

the mass-flux-dependent-mechanistic model (T-B), the slip-ratio-based model (Zivi,

Thom, Homogeneous), and the Lockhart-Martinelli-parameter-based model (Baroczy,

L-M). Those void-fraction models are defined as

Homogeneous : α =
1

1 +
(
1−x
x

) (
ρv
ρl

) (3.11)
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Zivi : α = C · 1

1 +
(
1−x
x

) (
ρv
ρl

) 2
3

(3.12)

Thom : α =
1

1 +
(
1−x
x

) (
ρv
ρl

)0.89 (
µl

µv

)0.18 (3.13)

L−M : α =
1

1 + 0.28
(
1−x
x

)0.64 (ρv
ρl

)0.36 (
µl

µv

)0.07 (3.14)

Baroczy : α = C · 1

1 +
(
1−x
x

)0.74 (ρv
ρl

)0.65 (
µl

µv

)0.13 (3.15)

T −B : α = C · 1

1.2 + 1.2
(
1−x
x

) (
ρv
ρl

)
+ 0.35

(
ρv(gDi)

0.5

xG

) (3.16)

where C is the correction factor, x is the quality given as ṁv/ṁ, α is the void

fraction, Di is the inner diameter, g is the acceleration of the gravity, and G is the

massflux.
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Figure 3.8 shows the result of the predictions on both Q̇ and mRTPF without cor-

rection. The predicted capacities are well agreed with the measured data with 0.85%

of MAPE; meanwhile, the predicted charges are fairly deviated from the measured

charges.
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Figure 3.8: Comparison of prediction results with experimental data: (a) Cooling
capacity, Q̇ (b) Charge inside the RTPF, mRTPF ; the six void-fraction models are
illustrated in different colors and the corresponding MAPEs are given in the paren-
theses.

Among the void-fraction models used, the Baroczy model provides the best capa-
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bility of charge prediction with 17.3% of MAPE, followed by the Zivi, the L-M, the

Thom, the Homogeneous, and the T-B void-fraction model.

Accordingly, the following section introduces a tuning method for charge predic-

tion to improve the accuracy.

3.6 Tuning of the Charge Model

This section details the approach of tuning the charge model to improve accuracy

of the charge model. Basically, the charge model is tuned by applying a correction

factor to a void-fraction model. The correction factor is derived from the obtained

experimental charge data through a constant correction factor method or a data-

driven method by either a polynomial regression equation or Artificial Neural Network

(ANN).

To generate the correction factor, initially charge predictions are carried out on

each test point in the test matrix given in Table 3.4, while iteratively solving the

charge model to have the charge model predict the same charge as the measured

charge, mRTPF corresponding to each test point as listed in Table 3.5. During this

process, an original correction factor, Coriginal for each test point is acquired; in other

words, if the obtained original correction factor is multiplied to the void fraction, then

the charge model that utilizes the void-fraction model can produce charge prediction

without an error with respect to a corresponding measured charge. As a result, a

Coriginal is estimated according to each test point as summarized in Table 3.8 using

the Zivi, the Baroczy, and the T-B model representing each mechanism of void fraction

model.
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Table 3.8: Estimated original correction factors, Coriginal

Test ID Zivi Baroczy T-B
yf-1 0.963 0.986 1.062
yf-2 0.978 1.012 1.120
yf-3 0.959 0.986 1.097
yf-4 0.902 0.931 1.068
yf-5 0.974 1.005 1.141
c-1 0.895 0.927 1.040
c-2 0.905 0.939 1.064
c-3 0.928 0.959 1.085
c-4 0.895 0.927 1.052
c-5 0.903 0.935 1.058
a-1 1.010 1.044 1.215
a-2 0.930 0.957 1.124
a-3 0.991 1.021 1.118
a-4 1.025 1.058 1.202
a-5 0.982 1.013 1.106
a-6 0.998 1.032 1.139

3.6.1 Constant Correction Factor

A constant correction factor, Cconst is suggested as the most simple correction method

in this study by simply averaging the Coriginal to acquire Cconst. The Zivi model

is taken into account to evaluate the capability of this constant-correction-factor

method. Therefore 0.952 is selected as the Cconst by averaging Coriginal of the Zivi

model as listed in Table 3.8; in other words, C inside Equation 3.12 is replaced with

0.952 of Cconst for tuning the charge model.

Charge predictions are conducted using the constant-correction-factor method on

the whole test points and they are compared with the experimental charge data.

Figure 3.9 shows the result of the constant-correction-factor method; the un-corrected

model struggles to predict charge in some low-charge points with over 20% errors.
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Through the constant-correction-factor method, the errors are improved; however

some outliers are generated and there is no significant improvement found in terms

of the MAPE, an improvement of 0.1% point of MAPE compared to the result of the

un-corrected model.
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Figure 3.9: Effect of the correction method by Cconst on the Zivi model. The uncer-
tainties are separately given in Table 3.5.

Therefore this method might not be sufficient to improve accuracy of the charge

model, thus leading to a development of data-driven-correction method introduced in

the following section for further improvement of the charge model.
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3.6.2 Regression Equation Correction Factor

As stated previously, improvement of charge-prediction accuracy by the Cconst is lim-

ited to address diverse conditions, given it is a fixed value. This results in a devel-

opment of an adjusted correction factor that is estimated by one of our experimental

data-driven method, a polynomial regression equation.

A polynomial regression equation is proposed for producing a correction factor

to improve an adaptability of the correction factor in various simulation conditions

such as various evaporating temperatures and outlet superheats. Specifically, the

correction factor to be implemented in Equation 3.12, 3.15, and 3.16 is estimated as

an output of the polynomial regression equation.

In the similar way as the Cconst is calculated, the correction factor from the poly-

nomial regression equation, Cregress also requires the Coriginal — presented in Table

3.8 — as the response variable to be modeled in the regression equation.

The next step is to choose crucial input parameter for the polynomial regression

equation. The previous literature review on void-fraction models suggests a couple

of charge-sensitive dimensionless numbers found in widely used void-fraction models

in a vapor-compression cycle (Harms et al., 2003; Cioncolini and Thome, 2012; Jin

and Hrnjak, 2016), which includes a saturated vapor to liquid density ratio, ρv/ρl,

a saturated vapor to liquid viscosity ratio, µv/µl as well as liquid Reynolds number,

Rel and liquid Weber number, Wel expressed as

Rel =
GDi

µl

(3.17)

Wel =
G2Di

σρl
(3.18)

where G is the massflux, Di is the inner diameter, µl, ρl, and σ are the dynamic

viscosity, density, and surface tension of the liquid refrigerant, respectively, defined

at the suction pressure.
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Accordingly, these dimensionless numbers are taken into account as the candidate

input parameters of the polynomial regression equation. Those values are tabulated

in Table 3.9 along with the Coriginal according to the corresponding experiment test

point.

Table 3.9: Candidate input parameters and the response variable (Coriginal), developed
on each void-fraction models used, for the polynomial regression equation according
to each test point

Test ID Coriginal,Zivi Coriginal,Baroczy Coriginal,T−B ρv/ρl µv/µl Rel Wel
yf-1 0.963 0.986 1.062 0.0269 0.0657 11300 52.7
yf-2 0.978 1.012 1.120 0.0287 0.0679 9588 37.8
yf-3 0.959 0.986 1.097 0.0237 0.0618 10390 45.0
yf-4 0.902 0.931 1.068 0.0243 0.0625 6436 17.2
yf-5 0.974 1.005 1.141 0.0268 0.0656 6724 18.7
c-1 0.895 0.927 1.040 0.0408 0.0889 11152 29.6
c-2 0.905 0.939 1.064 0.0402 0.0883 10839 28.0
c-3 0.928 0.959 1.085 0.0308 0.0778 9808 23.4
c-4 0.895 0.927 1.052 0.0332 0.0806 10055 24.4
c-5 0.903 0.935 1.058 0.0346 0.0822 10748 27.8
a-1 1.010 1.044 1.215 0.0289 0.0791 5188 7.8
a-2 0.930 0.957 1.124 0.0237 0.0725 4272 5.4
a-3 0.991 1.021 1.118 0.0242 0.0731 11823 41.4
a-4 1.025 1.058 1.202 0.0243 0.0732 7528 16.8
a-5 0.982 1.013 1.106 0.0265 0.0761 15618 71.6
a-6 0.998 1.032 1.139 0.0252 0.0744 14163 59.2

Subsequently the input parameters of the polynomial regression equation are se-

lected among the candidates by evaluating correlation strength with Coriginal for each

void-fraction model. For this purpose, a sensitivity analysis for each Coriginal is con-

ducted with the Pearson correlation coefficient, r known for choosing significant pa-

rameters among variables by evaluations of linear correlation strength between vari-

ables (Meng-ting et al., 2019; Kim et al., 2020). The r is defined as

r =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y )2
(3.19)

where X and Y are variables, n is the number of data, i is an index of the data, and
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X and Y indicate the mean value of X and Y, respectively. The r varies between -1

and 1, indicating negative and positive perfect linear correlation, respectively. When

r is 0, it represents no correlation between the two variables.

On the basis of Table 3.9, a r of each candidate input parameter for each Coriginal

is calculated according to Equation 3.19 as summarized in Table 3.10. The result of

the sensitivity analysis presents a strong correlation strength of the ρv/ρl for both Zivi

and Baroczy model, followed by µv/µl. Accordingly, the ρv/ρl and µv/µl are selected

as the input parameters for both Zivi and Baroczy model. Similarly, the ρv/ρl and

ReL are chosen as the input parameter of the polynomial regression equation for the

correction factor of the T-B void-fraction model.

Table 3.10: Absolute Pearson correlation coefficients (r)

ρg/ρf µg/µf ReL WeL
Coriginal,Zivi 0.623 0.367 0.035 0.242

Coriginal,Baroczy 0.588 0.324 0.041 0.230
Coriginal,T−B 0.532 0.223 0.381 0.233

With the selected input parameters and the response value, Coriginal, a polynomial

regression equation is built to generate a correction factor for each corresponding

void-fraction model. The general formulation of the polynomial regression equation is

originated from a multiple-linear regression format with an addition of one interaction

for the input parameters, which is expressed as

Y = β1X1 + β2X2 + β3X1X2 (3.20)

where Y denotes the Cregress, X represents the input parameters, β represents an

estimated coefficient.

The Ordinary Least Squares (OLS) solver built in Minitab program (Minitab,

2021) applies to the Equation 3.20 in order to obtain the coefficients; specifically,

an estimated equation is calculated by determining the equation that minimizes the
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sum of the squared errors between the data points and the values estimated by the

equation, thus resulting in the βs. This process is carried out under the k-fold cross-

validation method with 8-folds data set to decrease overfits.

The fitted polynomial regression equations for the Zivi, the Baroczy, and the T-B

model are given as, respectively,

Cregress,Zivi = 29.28(ρv/ρl) + 14.43(µv/µl)− 442.30(ρv/ρl)(µv/µl) (3.21)

Cregress,Baroczy = 29.76(ρv/ρl) + 14.85(µv/µl)− 449.0(ρv/ρl)(µv/µl) (3.22)

Cregress,T−B = 45.07(ρv/ρl) + 0.000115(Rel)− 0.00463(ρv/ρl)(Rel) (3.23)

The polynomial regression equations produce Cregress for each corresponding void-

fraction model as tabulated in Table 3.11.
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Table 3.11: Calculated Cregress for each test point according to each void-fraction
model used

Test ID Cregress,Zivi Cregress,Baroczy Cregress,T−B

yf-1 0.954 0.983 1.105
yf-2 0.958 0.988 1.122
yf-3 0.938 0.965 1.123
yf-4 0.942 0.970 1.111
yf-5 0.954 0.982 1.146
c-1 0.874 0.906 1.015
c-2 0.881 0.914 1.041
c-3 0.965 0.996 1.117
c-4 0.951 0.983 1.107
c-5 0.941 0.974 1.074
a-1 0.977 1.009 1.204
a-2 0.980 1.010 1.091
a-3 0.981 1.012 1.125
a-4 0.981 1.012 1.114
a-5 0.982 1.013 1.074
a-6 0.982 1.013 1.113

Thereafter, the Zivi, Baroczy, and T-B model are corrected by replacing the C

inside Equation 3.12, 3.15, and 3.16 with the corresponding Cregress. The effect of the

correction by Cregress is evaluated by comparing the measured charge and the charge

prediction of the tuned charge model for all the test points.
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Figure 3.10, 3.11, and 3.12 present the results of the tuned Zivi, Baroczy, and T-B

void-fraction model, respectively.
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(a) Un-corrected model
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(b) Corrected model

Figure 3.10: Effect of the correction method by Cregress on the Zivi model. The
uncertainties are separately given in Table 3.5
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Each void-fraction model is significantly improved by the Cregress as indicated in

Table3.12. In terms of the MAPE, the errors are reduced regardless of the type of

the void-fraction model: from 19.3% to 12.8% for the Zivi, from 17.3% to 12.9% for

the Baroczy, and from 49.5% to 12.3% for the T-B void-fraction model.
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(b) Corrected model

Figure 3.11: Effect of the correction method by Cregress on the Baroczy model. The
uncertainties are separately given in Table 3.5.

Likewise, for all the void-fraction models used, the charge-prediction errors are
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also diminished with respect to the Root Mean Square Errors (RMSE) defined as

RMSE =

√√√√ n∑
i=1

(Ŷi − Yi)2

n
(3.24)

where Yi is an experimental validation data, Ŷi is a predicted value and n is the

number of test points used in the evaluation.
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(a) Un-corrected model
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(b) Corrected model

Figure 3.12: Effect of the correction method by Cregress on the T-B model. The
uncertainties are separately given in Table 3.5.

Besides, the tuned charge models agree fairly well with the measured data in terms
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of the goodness of fit, showing improvement of the Coefficient of Determination, r2

for all the void-fraction models used as demonstrated in Table3.12.

Table 3.12: Improvement of accuracy by Cregress

Un-corrected model Corrected model
Zivi Baroczy T-B Zivi Baroczy T-B

MAPE (%) 19.3 17.3 49.5 12.8 12.9 12.3
RMSE (g) 100.8 97.2 333.5 69.7 71.2 94.8
r2 0.90 0.85 0.63 0.93 0.92 0.82

The T-B void-fraction model improved the most in accuracy of all the void-fraction

models used. For further improvement of the T-B model, another data-driven method,

the ANN, is applied to develop the correction factor, described in the next section.

3.6.3 ANN Correction Factor

The other type of the data-driven tuning method is to use the ANN, thus estimating

the correction factor in the similar manner as the regression equation does. The ρv/ρl

and ReL as well as the Coriginal,T−B are selected as the input parameters and the out-

put variable of the ANN model for tuning the T-B model, respectively, following the

same selection process given in the previous section. A feed-forward back-propagation

neural network (Mousavi et al., 2013) is used for developing the correction factor for

the T-B void-fraction model, CANN,T−B.

Prior to setting up the ANN model, the data set including ρv/ρl, ReL, and

Coriginal,T−B given in Table 3.9 is normalized for improving the speed and convergence

of the ANN as suggested by (Ma et al., 2020). The normalized each input parameter

is fed into each neuron in the input layer, whereas the neuron in the output layer

produces the normalized correction factor, CANN,T−B to be estimated. While train-

ing the ANN model on the whole experimental test points, the weights and biases of

the ANN model are updated by the Adam optimization algorithm (Kingma and Ba,

2014).
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The hyperparameters of the ANNmodel are obtained by the K-fold cross-validation

method (Pedregosa et al., 2011) to reduce overfitting given the size of data. The se-

lected hyperparameters and architecture of the ANN model are presented in Table

E.5 and E.6. Once the CANN,T−B is obtained, the T-B model is tuned by replacing

the C inside Equation 3.16 with the CANN,T−B.

For evaluation of the tuned T-B model, the measured charges are compared with

the predictions of the tuned T-B model. Figure 3.13 displays the comparison result.
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Figure 3.13: Effect of the correction method by CANN on the T-B void-fraction model.
The uncertainties are separately given in Table 3.5.
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The CANN also proves the capability of improvement in the charge-prediction

accuracy. In most cases, the tuned charge model predicts reasonably well within 20%

of error compared to the measured charge. However, there are more outliers than the

Cregress, and as a result, it shows lower prediction capability than the Cregress in all

of the accuracy indicators as presented in Table 3.13.

Table 3.13: Effect of CANN and Cregress on the T-B void-fraction model

Un-corrected Corrected by Cregress Corrected by CANN

MAPE (%) 49.5 12.3 17.0
RMSE (g) 333.5 94.8 130.7
r2 0.63 0.82 0.70

3.7 Conclusions

This study presents high-fidelity and high-precision experimental charge data of the

RTPF along with 0.8% of charge-measurement repeatability and ±2.2% of relative-

charge measurement uncertainty of measured. Particularly the charge data includes

two Low-GWP refrigerants of interest, R1234yf and R468C, in addition to R410A

refrigerant for reference.

This high-quality database for experimental charge validation contributes to eval-

uate and tune the charge model.

The accuracy of the charge model was evaluated with a total of six different void-

fraction models. The Baroczy model shows the best agreement with the measured

charge data with 17.3% of the MAPE, followed by Zivi, L-M, Thom, Homogeneous,

and T-B void-fraction model. In fact, none of the void-fraction models are sufficiently

accurate for the charge estimation. It is found that all of the void-fraction models

need a correction for accurate charge prediction.

To improve the accuarcy of the charge prediction, an accurate tuned charge model

is developed. This tuning process is done by applying a correction factor to each

selected void-fraction model. Unlike the constant correction factor, the adjusted cor-
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rection factor generated by the data-driven method including the regression equation

and the ANN proves notable improvement of the charge prediction accuracy with

respect to all the used criteria in MAPE, RMSE, and r2.

In terms of the MAPE, the tuned T-B model by the Cregress shows the best

agreement with the experimental validation data with 12.3% of MAPE, followed by

the Zivi with 12.8% of MAPE and the Baroczy with 12.9% of MAPE.

In conclusion, the developed tuned charge model is validated with the high-fidelity

experimental charge data using Low-GWP refrigerants and confirms the improved

charge-prediction accuracy. This allows an effective design of heat exchangers and

heat pumps with confident prediction of charge.

Future work will include taking into account flow patterns of refrigerant flow in

two-phase and geometrical effects as well as other promising Low-GWP refrigerants

for further improvement of charge prediction.
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CHAPTER IV

DEVELOPMENT OF MULTI-OBJECTIVE OPTIMIZATION

FRAMEWORK FOR REDUCING REFRIGERANT CHARGE AND

INCREASING COOLING CAPACITY OF A HEAT PUMP

Abstract

A validated optimization framework is developed to satisfy multiple objectives simul-

taneously with multi-input variables and provide optimal solutions. The developed

framework addresses two objectives, minimizing refrigerant charge and maximizing

cooling capacity of a heat pump, and two input variables of the heat pump, subcooling

in a condenser and superheat in an evaporator playing a decisive role in performance

and charge of a heat pump. Reducing the refrigerant charge, not to mention maxi-

mizing cooling capacity, is an issue that must be addressed in terms of environment,

safety, and economy when designing heat pumps.

The best solution is selected based on the Coefficient of Performance (COP) after

selecting a set of optimal solutions by the Non-Dominated Sorting Genetic Algorithm

(NSGA-II). The cooling capacity and the refrigerant charge are predicted by the Air

Conditioning Heat Pump (ACHP) model. Through the Radial Basis Function (RBF)

surrogate model, the cooling capacity and charge become possible to be estimated in

a given design space, which allows the NSGA-II to choose the optimal solutions by

numerous evaluations. The selected best solution attained 10.9% and 21.6% of Q̇eva

and COP improvement, respectively, while minimizing 7.4% of mr,sys.

This chapter will be submitted for publication in the International Journal of
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Refrigeration.

4.1 Introduction

A number of studies have been carried out to optimize charge in a heat pump; yet

most studies placed weight on improvement of system performance through charge op-

timization rather than reduction of charge. Often optimal charge refers to the charge

to maximize system performance (Poggi et al., 2008). Charge-optimization studies

have focused on determination optimal charge with respect to maximizing system

performance (Kim and Braun, 2012; Yin et al., 2021; Li et al., 2020; Prabakaran and

Mohan Lal, 2018; Hu et al., 2018; Lee, Lee, Cho and Kim, 2021; He et al., 2020).

In the past, a few studies investigated charge reduction without compromising sys-

tem performance. Goswami et al. (2001) experimentally studied and reported 10%

of charge reduction allowing 2% increase in COP . Lately, several studies emphasized

charge reduction and performance improvement with the advent of low-GWP refrig-

erants. Saravanan et al. (2017) used capillary tubes and condenser tubes for charge

reduction while maximizing performance. Cho et al. (2020) reduced refrigerant charge

of R600 in a domestic refrigerator-freezer by optimizing condenser geometry, minimiz-

ing energy consumption and charge. Hermes (2015) accomplished charge reduction in

vapor compression refrigeration cycles via liquid-to-suction heat exchange. Ghoubali

et al. (2017) experimentally studied charge reduction and capacity improvements in

propane heat pump water heaters by evaluating three different types of condensers

including a tank-wrapped D-tube, a roll-bond, and a microchannel heat exchanger.

Jiang (2015) presented charge reduction in small commercial refrigeration systems

by using a flattened-finless-round-tube heat exchanger without compromising system

performance.

Although these studies dealt with both charge reduction and performance im-

provement, they focused on device modifications.
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There are few studies on simultaneous optimization of both charge and capacity

of a heat pump by optimizing the vapor-compression cycle in the open literature. A

step toward investigation between input (design) variables and objective functions

such as cooling capacity and charge would improve system performance and charge

reduction.

Two input variables, ∆Tsc and ∆Tsh, are suggested for this optimization study to

design the vapor compression system since they are critical to both Q̇eva and mr,sys.

For instance, ∆Tsc and ∆Tsh are both charge indicators (Mei et al., 2005), Q̇eva is

significantly affected by controlling of ∆Tsh (Rasmussen and Larsen, 2009), and ∆Tsc

is one of the prime factors to affect Q̇eva (Cho et al., 2020).

In a heat pump, the improvement of cooling capacity and charge reduction are

conflicting each other; in other words, they are trade-off. For instance, high ∆Tsh and

low ∆Tsc result in charge reduction in a heat pump (Hu et al., 2018), whereas Q̇eva

tends to decrease in the combination of high ∆Tsh and low ∆Tsc (Liu and Cai, 2021;

Qureshi et al., 2013).

Hence, it is challenging to find a single solution for satisfying the multiple tar-

gets, objective functions that include Q̇eva and mr,sys in the trade-off problem (Juan

and Qin, 2014; do Nascimento et al., 2020). To deal with this trade-off, a multi-

objective optimization is proposed. The multi-objective optimization is generally

used in engineering, economics, computer science, logistics, and many other fields to

solve trade-off problems.

In recent studies related to both a multi-objective optimization and a heat pump,

Li et al. (2021) employed the multi-objective optimization to maximize an energy-

efficiency ratio and minimize flammability of low-GWP refrigerant in a system, mod-

ifying a refrigerant mixture composition and heat exchanger circuitry configuration.

They reported an enhancement of 5.9% in cycle efficiency and a 48.6% reduction in

refrigerant flammability with a GWP of 268.
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Bahman et al. (2022) took advantages of concurrent-optimization capability of

multi-objective optimization framework, assisted by the Non-dominated Sorting Ge-

netic Algorithm-II (NSGA-II), to propose optimal solutions for solving a trade-off

between a heating coefficient of performance and unit cost of heat in a cold-climate

two-stage economized heat pump for residential heating applications. In the multi-

objective problem, the ∆Tsc and the ∆Tsh were included as input variables for a heat

pump. Bahman et al. (2022) presented that the optimization framework lead to an

improvement of heating performance and energy consumption of a heat pump using

R290 refrigerant.

In short, to the authors’ best knowledge, there are few investigations to explain

a method optimizing cooling capacity and refrigerant charge concurrently in a heat

pump by modifying the vapor-compression cycle; for this reason, this study fills the

gap by introducing a novel multi-objective optimization framework.

To start with, the history of the evolving multi-objective optimization methods

are summarized in Cui et al. (2017). According to Cui et al. (2017), in the past,

multi-objective optimization problems were solved by converting a multi-objective

problem into single objective problems and utilizing conventional optimization al-

gorithms along with pre-defined importance degree of each objective to deal with a

trade-off between objectives, which is known as an a priori method. In the last 30

years, intelligent algorithms have been dominating the multi-objective optimization

methods due to the fact that they are flexible, robust, and well-converged compared

to the classical a priori method. The intelligent algorithms include swarm-based and

evolution-based algorithms. The swarm-based algorithms mimic collective behavior

of populations, e.g. bird flocks and honey bees, that the swarm individual collaborates

each other to find optimal solutions.

The evolution-based algorithms represented by popular Genetic Algorithms (GA)

are stochastic search method inspired from survival in natural ecosystems. The GA for
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multi-objective optimization was introduced by Goldberg David and Henry (1988). In

other words, it is a nature-inspired optimization algorithm to imitate natural selection

and evolutionary processes for selecting optimal solutions (Juan and Qin, 2014).

The GA generates a population of candidate solutions that advances from gen-

eration to generation. Superior candidate solutions are stochastically chosen from

the population in terms of fitness to objective functions for each generation. Subse-

quently, the chosen candidate solutions produce a new generation of the candidate

solutions by mutation and crossover. This evolving process is repeated till either

reaching maximum resources or achieving target fitness (Shojaeefard et al., 2017).

The Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is an advanced ver-

sion of the GA to search global optimal solutions with high fidelity, in addition to the

basic GA capability, by fast non-dominated sorting and crowded sorting (Deb et al.,

2002). The fast non-dominated sorting method yields an individual candidate solu-

tion that is not dominated by any other candidates in terms of an objective function;

besides, the crowded sorting method determines crowding distance of each candidate

solution by estimating distances between neighboring solutions in an objective space,

thus leading to a good spreading of solutions. This whole process makes certain

that superior capability of global search to find optimal solutions in a multi-objective

optimization (Deng et al., 2020; Blank and Deb, 2020).

Common optimization algorithms include the NSGA-II, the Particle Swarm and

the Grey Wolf (Mirjalili et al., 2014). Among them, the NSGA-II is distinguished

as an attractive optimization tool owing to its performance recognized by plentiful

studies over wide range of area (Safikhani, 2016; Damavandi et al., 2017; Shojaeefard

and Zare, 2018; Deng et al., 2020; Dong et al., 2021).

The intelligent algorithms require numerous evaluations of objective functions in

a design space to ensure their high fidelity and random search capability (Dong et al.,

2021).
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To address this need, a surrogate model method along with effective data sampling

has become a widely used workhorse for the optimization algorithms owing to their

capability of approximation or interpolation of the objective functions, thus leading

to computationally effective evaluations of objective functions (Kyprioti et al., 2020;

Jiang et al., 2018; Zhou et al., 2017).

The surrogate model is a method to produce approximation of an objective func-

tion. In the surrogate model, observed design variables and a corresponding objective

function are formulated with a mathematical expression, thus yielding rapid evalua-

tions of the approximated objective function (Dong et al., 2021); to put it another way,

the surrogate model is a method of building a computationally efficient mathematical

model through approximation of data (Tyan and Lee, 2019). Popular surrogate mod-

els, also known as metamodels, include support vector regression (Xiao et al., 2015),

Kriging model (Kyprioti et al., 2020), polynomial response surface model (Eddy et al.,

2015), and Radial Basis Function (RBF) model (Qasem et al., 2012; Zhou et al., 2017;

Cai et al., 2017).

Advantages of multi-objective optimization accompanied with a surrogate model

have been recognized in a great deal of studies: Deng et al. (2020) argued compu-

tational efficiency in use of surrogate model since it enables NSGA-II to compute

evaluations within milliseconds rather than days of a CFD simulation. Damavandi

et al. (2017) claimed that a surrogate model coupled with NSGA-II makes fast cal-

culation and consumes fewer computation resources. Peng and Ling (2008) asserted

that direct evaluations by simulation is time consuming and low-efficient, whereas a

surrogate model can effectively solve it.

Aute et al. (2013) maintained that a surrogate model can reduce computational effort

for multi-objective genetic algorithm on trade-off between airside-pressure drop and

volume of a novel air-to-water heat exchanger. Often the intelligent algorithms de-

mand thousands evaluations of objective functions; however in some application area,

99



those evaluations take enormous computation time. The surrogate model method al-

lows efficient evaluations of objective functions with less data calling/calculations

(Tyan and Lee, 2019; Dong et al., 2021).

Among the various surrogate models, the RBF surrogate model has been utilized in

diverse research fields due to its efficiency and accuracy (Jin et al., 2001; Holmström,

2008; Cai et al., 2017): for instance, compressor blades (Liu et al., 2016), pressure

vessels and airfoils (Zhou et al., 2017), as well as propellers (Cai et al., 2017). The

RBF surrogate model comprises linear combinations of a radially symmetric function

to approximate an objective function (Jin et al., 2001).

Owing to its symmetry and linearity, the RBF surrogate model has advantages

such as simplicity and ease of implementation in multivariate data (Hardy, 1971),

capability to accommodate on higher dimensions with scarce data (Rocha, 2009), and

good fitting performance and robust for non-linear problems. These advantages of the

RBF surrogate model lead to an adoption to this optimization study to approximate

both cooling capacity and refrigerant charge.

In summary, the literature review results in this development of the multi-objective

optimization framework to attain both maximizing cooling capacity and minimizing

charge in a heat pump, supported by the NSGA-II and the surrogate model as well

as a vapor-compression system model—the Air Conditioning Heat Pump (ACHP)

model (Bell, 2015; Bahman et al., 2018).

This paper is organized as follows. Section 4.2 introduces an overall method-

ology including the ACHP model and the surrogate model as well as the NSGA-II.

Subsequently Section 4.3 presents the outcomes of the optimization such as the devel-

oped surrogate model and the optimal solutions as well as the selected best solution.

Finally, this study is concluded with final remarks in Section 4.4.
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4.2 Methodology

4.2.1 Overall Method

The trade-off between cooling capacity, Q̇eva and refrigerant charge in a heat pump,

mr,sys is converted into a multi-objective optimization problem that is solved by the

NSGA-II. Q̇eva andmr,sys are treated as objective functions to be maximized and min-

imized, respectively as given in Equation 4.1. The input variables include subcooling

in a condenser, ∆Tsc and superheat in an evaporator, ∆Tsh. Figure 4.1 presents the

overall method used for the multi-objective optimization.

A validated ACHP model will provide both cooling capacity and charge predic-

tions. The objective functions are mapped on the design space, covered by the ∆Tsc

and ∆Tsh, for enabling many evaluations of objective functions instantly, which is

done by the proposed surrogate model method. Based on the generated surrogate

models, the NSGA-II genetically produces a set of optimal solutions, and the best

solution is selected among them by comparing COPs with each other.

The multi-objective optimization to be carried out is expressed mathematically in

the following form:

Objective− 1 : Maximize, Q̇eva = f1 (∆Tsc,∆Tsh)

Objective− 2 : Minimize, mr,sys = f2 (∆Tsc,∆Tsh)

Subject to : ∆Tsc,min ≤ ∆Tsc ≤ ∆Tsc,max ∩ ∆Tsh,min ≤ ∆Tsh ≤ ∆Tsh,max.

(4.1)

A range of the input variables are given in Table 4.7.
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Figure 4.1: Flowchart for the proposed multi-objective optimization approach

Specifically, the scope of this work focuses on an air-source-split heat pump with

3-ton capacity, whose experimental validation data is available by Alabdulkarem et al.

(2013), under the ASHRAE standard 116’s A condition (ASHRAE, 1995) in cooling

mode using R410A refrigerant.

4.2.2 ACHP Model Description

A validated vapor-compression system model, the Air Conditioning Heat Pump (ACHP)

model (Bell, 2015; Bahman et al., 2018), is adopted in this study to simulate a heat

pump. The ACHP model employs the ε − NTU method and the moving boundary

method on both refrigerant and airside to predict performance of a heat exchanger

(Bell, 2015; Sarfraz et al., 2018). The next sections briefly introduce the configuration

of the ACHP model.
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4.2.2.1 Assumptions

The assumptions of the ACHP model are listed as follows.

• Isenthalpic process through the expansion device

• Uniform distribution on both air and refrigerant side

• Lumped approach on each refrigerant phase

4.2.2.2 Compressor Model

The 10-coefficient AHRI compressor map is applied to the compressor model (AHRI,

2015). The coefficients and equation are expressed in Table 4.1, respectively where X

denotes the power input in Watt or refrigerant mass flow rate in lbm/hr, Ts and Td

are the suction and discharge dew point temperatures in degrees Fahrenheit, respec-

tively, and C1-C10 are coefficients acquired from least squares regression (AHRI, 2015)

given in Table B.2. In the ACHP model, the map prediction is used after superheat

correction (Dabiri and Rice, 1981) for universal use.

Table 4.1: AHRI 10-coefficient model (AHRI, 2015)

AHRI Formulation

X = C1 + C2Ts + C3Td + C4T
2
s + C5TsTd + C6T

2
d + C7T

3
s + C8T

2
s Td + C9TsT

2
d + C10T

3
d

4.2.2.3 Heat Exchanger Model

The heat exchanger type is a Round-Tube-Plate-Fin Heat Exchanger (RTPF). The

Moving boundary method is used to precisely predict performance of heat exchangers,

accounting for phase change of fluids. The divided sections of a heat exchanger by
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the moving boundary method are solved by applying the ε−NTU method and em-

pirical correlations summarized in Table 4.2, thus leading to computationally efficient

calculations and satisfactory predictions.

Table 4.2: Correlations used in the model

Fluids Correlations References

Air
Heat transfer Wang et al. (1998)
Pressure drop Wang et al. (1998)
Fin efficiency Perrotin and Clodic (2003)

Refrigerant
Heat transfer in single phase Gnielinski (1976)
Evaporation heat transfer in two-phase Shah (1976)
Condensation heat transfer in two-phase Shah (1979)
Pressure drop in single phase Churchill (1977)
Pressure drop in two-phase Lockhart and Martinelli (1949)
Void fraction in two-phase Zivi (1964)

4.2.2.4 Charge Model

The ACHP model determines charge as the product of density and volume. Particu-

larly in two-phase, the average density is defined as

ρ̄ = ρgᾱ + ρf (1− ᾱ), (4.2)

where ρg and ρf are refrigerant densities in vapor and liquid phase, respectively,

and ᾱ is the average void fraction between inlet and outlet qualities. The Zivi void

fraction model (Zivi, 1964) is used to estimate the void fraction in two-phase.

4.2.2.5 Cycle Solver Model

The direct-expansion-cycle solver is employed for the study. Two independent vari-

ables of the cycle solvers are refrigerant dew temperatures for evaporation, Teva and

condensation, Tcnd, respectively. The cycle solver adopts initial guess values of those

dew temperatures to enable robust and efficient cycle calculation. The guess values
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are obtained by solving a preconditioner using simple component models and two en-

ergy balances such as refrigerant to air and condenser heat transfer to a combination

of compressor power and evaporator heat transfer.

Additionally, the main solver entails the two inputs, ∆Tsc and ∆Tsh. Based on

the acquired dew temperatures and inputs, the solver calculation begins along the

refrigerant flow from the evaporator model, followed by the compressor, condenser,

expansion valve, and evaporator model. The cycle is updated for solving those in-

dependent variables, Teva and Tcnd, by applying two constraints, an energy balance

over the cycle and charge balance for the input subcooling (Bell, 2015). The ACHP

model produces main output variables such as Q̇eva andmr,sys as well as COP. Further

details of the ACHP model are presented in Bell (2015).

4.2.3 ACHP Validation

This section confirms validations of the ACHP model in terms of Q̇eva and mr,sys as

well as COP. The prediction performance of the ACHP model in cooling mode was

validated by an experimental data of an air source heat pump reported by Alabdulka-

rem et al. (2013). They presented experimental data of a 3-ton capacity split heat

pump tested in accordance with ASHRAE standard 116 (ASHRAE, 1995). Detailed

descriptions of the heat pump used in this validation are presented in Appendix B

along with Tables B.1—B.4. The COP and Q̇eva were evaluated by the ACHP model

on ASHRAE standard cooling conditions (ASHRAE, 1995) as listed in Table 4.3 along

with R410A as a working fluid; the corresponding experimental validation data set

used in this validation are also presented in Table 4.4.
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Table 4.3: Test matrix (Alabdulkarem et al., 2013)

Test classification
Indoor Outdoor

DB (◦C) WB (◦C) DB (◦C)
A 26.7 19.4 35.0
B 26.7 19.4 27.8
C 26.7 13.9 27.8

Extended condition 26.7 19.4 46.1

Table 4.4: Experimental test conditions (Alabdulkarem et al., 2013) for validation of
cooling capacity and COP

Test ID A B C Extended
∆Tsc (K) 2.79 3.06 2.93 2.38
∆Tsh,out (K) 2.05 2.04 0.65 2.09
Qair,cnd (m3/s) 1.570 1.570 1.570 1.405
Tair,db,in of condenser (◦C) 34.7 27.1 26.9 46.8
RHin of condenser 0.44 0.53 0.52 0.60
Qair,eva (m3/s) 0.566 0.585 0.562 0.570
Tair,db,in of evaporator (◦C) 26.4 26.4 26.4 26.4
RHin of evaporator 0.51 0.51 0.10 0.51

In addition, the validation of charge prediction by the ACHP model was performed

on the standard A cooling condition (ASHRAE, 1995) as listed in Table 4.5 with

variations of ∆Tsc and ∆Tsh.

Table 4.5: Experimental test conditions for validation of charge

Test ID A-0 A-1 A-2 A-3 A-4
∆Tsc (K) 2.8 0.7 2.9 3.4 4.4
∆Tsh,out (K) 2.0 6.7 6.5 6.2 6.0
Qair,cnd (m3/s) 1.570 1.570 1.570 1.570 1.570
Tair,db,in of condenser (◦C) 34.7 34.7 34.7 34.7 34.7
RHin of condenser 0.44 0.44 0.44 0.44 0.44
Qair,eva (m3/s) 0.566 0.566 0.566 0.566 0.566
Tair,db,in of evaporator (◦C) 26.4 26.4 26.4 26.4 26.4
RHin of evaporator 0.51 0.51 0.51 0.51 0.51

The MAPE is employed to evaluate the prediction performance of the ACHP

model. The MAPE is defined as

106



MAPE =
n∑

i=1

∣∣∣∣∣Yi − Ŷi

Yi

∣∣∣∣∣ · 100(%)

n
(4.3)

where Yi is an experimental validation data, Ŷi is a predicted value and n is the

number of test points used in the validation.

The validation results are presented in Figure 4.2 with prediction performance of

the ACHP model; the MAPEs of Q̇eva, COP, and mr,sys are 4.5%, 2.5%, and 39.2%,

respectively.

Systematic biases between the experimental data and predictions were observed,

particularly showing underestimations of charge with a 39.2% MAPE. The systematic

biases of the Q̇eva and the COP were addressed by applying a tuning multiplier to

the predicted value. The tuning multipliers are presented in Table 4.6.

Table 4.6: Tuning multipliers for the ACHP model

Q̇eva (kW) 0.96
COP (-) 0.98
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The charge of the heat exchangers in the mr,sys is tuned separately by using the

Cregress,Zivi introduced in Equation 3.21.
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Figure 4.2: Comparison of prediction of the ACHP model with experimental data
(Alabdulkarem et al., 2013)

As a result, the tuned ACHP model can provide sufficiently accurate predictions

with 0.8%, 1.2%, and 19.5% of MAPE in terms of the Q̇eva, the COP, and the mr,sys,

respectively as demonstrated in Figure 4.2. In the following sections, the proposed

multi-objective optimization takes advantage of the tuned ACHP model.
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4.2.4 Surrogate Model Description

Surrogate models have been used to produce approximation of objective functions.

The RBF surrogate model is one of the popular surrogate models. It was initially in-

troduced by Hardy (1971) to interpolate irregular topographic contour of geographical

data.

According to Hardy (1971) and Rocha (2009), the RBF surrogate model is de-

scribed as follows; f̂(X) approximates an original objective function for point X,

f(X) by a linear combination of radial basis function with coefficients expressed as

f̂(X) =
N∑
j=1

αjφ
(∥∥X−Xj

∥∥) , (4.4)

where X is the input variable (∆Tsc, ∆Tsh) in a vector form, Xj are the N sampled

points, j=1,...,N, αj are coefficients to be determined, and φ(·) represents a radial

basis function.

The Thin-plate spline function is used as radial basis function defined as φ(r)=r2log(r);

∥X−Xj∥ denotes the Euclidean distance between X and Xj expressed as

∥∥X−Xj
∥∥ =

√√√√ n∑
p=1

(
Xp −Xj

p

)2
(4.5)

where p represents n-dimensional space. The Euclidean distance refers to the ”nor-

mal” distance; for instance, it is the actual distance between two points in 2-D or 3-D

space (Patel and Upadhyay, 2020; Song et al., 2022).

In Equation 4.4, αj is the only-unknown coefficients to be solved. It can be

obtained by solving the following linear system of interpolation equations along with

the given objective function:

N∑
j=1

αjφ
(∥∥Xk −Xj

∥∥) = f(Xk), for k = 1, ..., N (4.6)
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where f(Xk) is the given k -th objective function of X.

In other words, Equation 4.6 can be rewritten in a matrix form as

Φ



α1

α2

...

αN


=



f(X1)

f(X2)

...

f(XN)


(4.7)

where Φ is the interpolation matrix expressed as

Φ =



φ (∥X1 −X1∥) φ (∥X1 −X2∥) · · · φ
(∥∥X1 −XN

∥∥)
φ (∥X2 −X1∥) φ (∥X2 −X2∥) · · · φ

(∥∥X2 −XN
∥∥)

...
...

. . .
...

φ
(∥∥XN −X1

∥∥) φ
(∥∥XN −X2

∥∥) · · · φ
(∥∥XN −XN

∥∥)


. (4.8)

In short, αj are the only unknowns. Accordingly, once αj is numerically calculated

from the matrix, f̂(X) at any arbitrary X in the design space can be estimated by

Equation 4.4. The obtained αj are presented in Table C.2 and C.3.

The RBF surrogate model is constructed via the SciPy package in Python (Vir-

tanen et al., 2020) for each Q̇eva and mr,sys to facilitate the NSGA-II.

4.2.5 Active-Learning Data Sampling

The surrogate model needs to be accompanied by an effective data sampling, evalu-

ations for Q̇eva and mr,sys by the ACHP, since the accuracy of a surrogate model is

influenced by a data sampling method (Gopakumar et al., 2018; Zhang et al., 2020).

Conventional design of experiments such as the Box-Behnken or the factorial de-

signs are limited in this application due to their lack of iterative adaptation for data

sampling; for this reason, an adaptive design of experiment, also known as active-
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learning data sampling (Arboretti et al., 2022), is utilized to improve the global

accuracy of the surrogate model by Zhou et al. (2017).

The active-learning data sampling based on the Space-Filling Cross-Validation

Tradeoff (SFCVT) method (Aute et al., 2013) assists the surrogate model. This

outperforms conventional data sampling methods due to their gradual adaptation

along with their global search and excellent local refinement capabilities. Details of

the active-learning data sampling are provided in Appendix D.

4.2.6 Non-dominated Sorting Genetic Algorithm (NSGA)-II

The optimal solutions to minimize mr,sys and maximize Q̇eva simultaneously are se-

lected through a myriad of heuristic search and evaluations of the objective functions

that imitates the evolution and natural selection. In other words, the NSGA-II is

accompanied with a host of evaluations of objective functions: for instance, Bahman

et al. (2022) utilized a total of 10,000 different cases for choosing optimal solutions in

their investigation. The numerous calculations of the NSGA-II can be burdensome

in terms of time and resources; however, thanks to the surrogate model developed

earlier, even countless calculations of the NSGA-II can be performed quickly and ef-

ficiently since the surrogate model provides an estimation of an objective function as

a functional form such as Equation 4.4 rather than direct simulations by the ACHP

model.
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The main steps of the NSGA-II algorithm (Deb et al., 2002) to solve the opti-

mization problem are presented in Figure 4.3 and below:

Generate randomly 

initial parent 

population, P0

Non-dominated 

sorting on Rt

Crowding distance 

sorting on Rt

Step 1 Step 2, 3 Step 4 Step 5

Start with 

the surrogate 

models

Satisfy the 

stopping

criterion?

Pareto optimal 

solutions

Y

N

Genetically 

creates offspring, 

Qt+1

Combine the new 

parent and 

offspring 

population,

Rt+1=Pt+1+Qt+1

Generation = Generation+1

The next parent 

population, Pt+1

Genetically 

creates offspring 

population, Q0

Combine the 

parent and 

offspring 

population,

Rt=P0+Q0

The final best 

solution by COP

Figure 4.3: Flowchart of the NSGA-II for the current work

Step 1: A random parent population, P0 is generated; then evaluations of objective

function on the population is conducted by using the developed surrogate mod-

els.

Step 2: An offspring population, Q0 is created from the parent population by genetic

selection, crossover and mutation.

Step 3: P0 and Q0 are combined to form a combined population, Rt.

Step 4: The non-dominated sorting is performed on Rt by filtering the population ac-
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cording to fitness with respect to the goal of the objective function. Subse-

quently, the crowding distance sorting is applied to Rt by estimating distances

between neighboring populations, thus resulting in the next parent population,

Pt+1 that is genetically superior and well-scattered population.

Step 5: Again Pt+1 yields the next offspring, Qt+1 by mutation and crossover, and then

the next combined population, Rt+1 is created by combining Pt+1 and Qt+1.

Step 6: Steps 4 and 5 are repeated until a maximum iteration count is satisfied.

Step 7: Lastly, the NSGA-II yields a set of optimal solutions, also known as the Pareto

front, in which all the optimal solutions are non-dominated each other with

respect to the objective functions. Inside the Pareto front, the solution to have

the highest COP is selected as the best solution.

4.3 Result

4.3.1 Development of Surrogate Model for Cooling Capacity and Charge

A surrogate model is constructed according to the previously described method from

Sections 4.2.4 and 4.2.5 for each Q̇eva and mr,sys. The surrogate model identifies

the relationship between the objective function and the input variables for the 3-ton

capacity heat pump described in Appendix B, particularly operating on the ASHRAE

A condition (ASHRAE, 1995), shown earlier in Table 4.3.

While developing the surrogate models, the tuned ACHP model provides predic-

tion of Q̇eva and mr,sys as well as COP as a data sample with respect to ∆Tsc and

∆Tsh. The two input variables are bounded for keeping numerical stability, see Table

4.7.

Table 4.7: Range of input variables

∆Tsc,min ∆Tsc,max ∆Tsh,min ∆Tsh,max

1 K 10 K 2 K 20 K
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The active-learning data sampling leads the development of the surrogate models

along with 4 random initial samples and 15 random validation samples. In the end,

the development of the surrogate models is terminated once a desirable accuracy of

each surrogate model is achieved. The Root-Mean-Square Error (RMSE) is used for

the stopping criterion along with the MAPE; the errors are evaluated on the random

validation samples. The desirable RMSEs for each Q̇eva and mr,sys are determined as

0.08 kW and 0.06 kg, the maximum experimental uncertainty (Alabdulkarem et al.,

2013). Figure 4.4 verifies the sufficient accuracy, under the desirable RMSE, of the

developed surrogate models at the 20 samples (Xj), X1 · · ·X20 in Equation 4.4. The

samples are presented in Table C.1.

Consequently, the trend of the accuracy along the number of samples, evaluations

by ACHP, implies that the Q̇eva and themr,sys vary quite linearly without considerable

non-linearity on the design space as demonstrated in Figure 4.5, thus resulting in the

acquisition of the desirable accuracy of the surrogate model in the early stage of

sampling data as shown Figure 4.4.
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Figure 4.4: Accuracy trend of the surrogate models according to the change in the
number of samples acquired from ACHP. The experimental uncertainties are given as
0.08 kW and 0.06 kg for Q̇eva and mr,sys, respectively (Alabdulkarem et al., 2013).

Furthermore, the greatest merit of the surrogate model is to enable predictions

of Q̇eva and mr,sys at any point within the design space, a covered space by the
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input variables. As a result, the estimated values of Q̇eva and mr,sys by the surrogate

models can be mapped on each contour plot as depicted in Figure 4.5. This fulfills

the requirement of the NSGA-II to evaluate countless solutions instantaneously for

solving the multi-objective optimization problem efficiently.
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Figure 4.5: Contour plot of the predictions for each Q̇eva and mr,sys by the developed
surrogate models with 20 evaluations of ACHP

4.3.2 Trade-off between Cooling Capacity and Charge

Through the developed surrogate models, the trade-off between Q̇eva and mr,sys can

be seen clearly as shown in Figure 4.6. High ∆Tsc and low ∆Tsh are advantageous to

Q̇eva. However this is not the case for mr,sys; charge reduction can occur conversely in

low ∆Tsc and high ∆Tsh as can be seen in Figure 4.6. These contrasting results give

rise to a trade-off between Q̇eva and mr,sys. It is difficult to satisfy both objectives

simultaneously; therefore the following multi-objective genetic algorithm is needed to

solve this trade-off problem.
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Figure 4.6: Overlapped contour plot of the surrogate models

4.3.3 Pareto Front

It is all set to have the NSGA-II run its algorithm to produce optimal solutions,

non-dominated each other in terms of the objective functions. The optimization

process is carried out over 100 generations with 100 offspring in each generation with

a probability of 90% and 20% for crossover and mutation, respectively, through a

total of 10,000 evaluations. This huge number of evaluations is challenging in case

of using individual evaluation by the ACHP, while the surrogate model allows quick

evaluations within a second, 10,000,000 times faster than the ACHP as indicated in

Table 4.8.

The surrogate model assists the NSGA-II to create a set of optimal solutions, also

known as Pareto front, presented in Figure 4.7; in addition, selected optimal solutions

are depicted for illustration purposes.

Table 4.8: Calculation time for the 10,000 evaluations by a PC equipped with Xeon
CPU 3.70GHz with RAM 16GB

ACHP Surrogate model
Estimated absolute calculation time 27.8 hr 0.01 s
Relative calculation time 100% 0.00001%

It is noted that the optimal solutions in the Pareto front are the prime solutions

that can be obtained within the simulation conditions; however they are not supe-
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rior to each other in terms of objective functions. In other words, the evidence is

insufficient to find the best solution among them given in Figure 4.7. In the follow-

ing section, the additional decision making process is described for selecting the best

solution.
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Figure 4.7: Pareto front with selected optimal solutions in the objective-function
space

4.3.4 Decision Making for the Best Solution

Figure 4.8 presents the objective-function space including optimal solutions and ref-

erence point as well as the best solution. First of all, some distinct optimal solutions

among the Pareto front are chosen as representatives for illustration purposes; the

representative optimal solutions A and B are depicted in Figure 4.8 and Table 4.9

along with a reference point as a baseline having the maximum of ∆Tsc and ∆Tsh.

The solution A represents a maximum charge reduction with a minimal improve-

ment of cooling capacity; on the contrary to this, the solution B represents a maximum

improvement of cooling capacity with a marginal charge reduction; in other words,
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they stand for each solution focused on charge-reduction and capacity-enhancement,

respectively.

Other remaining optimal solutions are placed between the two solutions with

respect to the objective functions. In order to pick the best solution among the

Pareto front, the COP is adopted as a decision variable. Higher COP is beneficial;

thus COPs are evaluated on the selected optimal solutions as exhibited in Figure 4.8;

those are also listed in Table 4.9 for the representative solutions. Consequently, an

optimal solution in the Pareto front having the highest COP is selected as the best

solution of this multi-objective optimization on the trade-off between cooling capacity

improvement and refrigerant charge reduction in a heat pump.
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Figure 4.8: Selection of the best solution
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Table 4.9: Representative optimal solutions and the reference

∆Tsc [K] ∆Tsh [K] Q̇eva [kW] mr,sys [kg] COP [-]
Reference 10.0 20.0 8.89 4.75 3.85

Best solution 4.3 2.1 9.86 4.40 4.68
Solution A 1.1 17.1 8.92 3.65 4.23
Solution B 7.9 2.7 10.06 4.72 4.60

The best solution achieves an improvement with 10.9% and 21.6% of Q̇eva and

COP, respectively, while reducing mr,sys by 7.4% as summarized in Table 4.10. The

best solution created by the NSGA-II along with the surrogate model is validated by

comparison with a separate evaluation by the ACHP model as listed in Table 4.11;

both deviations of Q̇eva and mr,sys against the predictions of the ACHP fall under

the accuracy of the tuned ACHP model presented in Section 4.2.3; accordingly this

confirms validity of the best solution.

Table 4.10: Improvement of representative optimal solutions based on the reference

Q̇eva mr,sys COP
Best solution 10.9% 7.4% 21.6%
Solution A 0.3% 23.2% 9.9%
Solution B 13.2% 0.6% 19.5%

Table 4.11: Verification of the best solution predicted by the surrogate models against
the prediction of the ACHP

Predicted value Error

Q̇eva by the surrogate model 9.86 kW
0.1%

Q̇eva by the ACHP 9.85 kW
mr,sys by the surrogate model 4.40 kg

0.7%
mr,sys by the ACHP 4.37 kg

The optimal solutions are explained on the design space including the ∆Tsc and

∆Tsh as shown in Figure 4.9.

Figure 4.9 shows, in overall, the Q̇eva is more sensitive to the ∆Tsh than the ∆Tsc;

on the other hand, mr,sys is more sensitive to the ∆Tsc than the ∆Tsh or impact of

each input variable to mr,sys is relatively similar. It seems that the trend of Q̇eva

119



0 2 4 6 8 10
Tsc [K]

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
T s

h [
K]

Best Solution

A

B

8.75 9.00

9.25
9.50

9.75

10.00

3.60

3.80

4.00

4.2
0 4.4

0
4.6

0

4.8
0

Reference solution
Optimal solutions
Capacity [kW]
Charge [kg]

4.2

4.3

4.4

4.5

4.6

4.7
COP

Figure 4.9: Optimal solutions on the design space along with the contour plot of Q̇eva

and mr,sys

and mr,sys pushes the optimal solutions onto the boundary of the design space to be

non-dominated by other solutions.

That is, the charge-reduction-focused solution, the solution A, is located in the

low ∆Tsc region since the mr,sys is considerably affected by the ∆Tsc (Mei et al.,

2005; Alabdulkarem et al., 2013); whereas, the cooling capacity-improvement-focused

solution, the solution B, is placed in the low ∆Tsh. This might be due to the fact that

the performance of the evaporator improves when ∆Tsh is kept as low as possible,

thus yielding an increased two-phase refrigerant region in the evaporator (Rasmussen

and Larsen, 2009).

In practice, the minimum ∆Tsh is dictated by many factors including non-linearity

due to the point of operation, the evaporator design, and the characteristic of the

expansion valve; moreover the minimum ∆Tsh is also affected by a safety margin to

avoid two-phase suction of a compressor for a certain type of compressor.

In consequence, the best solution is located between the two extreme solutions,

the solution A and B, while minimizing ∆Tsh and adjusting ∆Tsc, which is determined
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by the maximum COP.

4.4 Conclusion

Refrigerant charge in a heat pump is highly correlated with cooling capacity of a heat

pump in the trade-off relationship. This study developed a framework to optimize

simultaneously both cooling capacity and charge in a heat pump in cooling mode by

changing the ∆Tsc and ∆Tsh.

For predicting Q̇eva and mr,sys, the experimentally validated ACHP model is em-

ployed. Using the ACHP model, each surrogate model for each Q̇eva and mr,sys is

created and validated against the prediction of ACHP model.

The validated surrogate models enable sufficient evaluations (10,000) of objec-

tive functions almost instantaneously, thus assisting the NSGA-II to sufficiently and

effectively evaluate the candidate solutions. With the aid of the surrogate models,

the NSGA-II selects globally optimal solutions on the basis of the genetic algorithm

combining the two criteria, non-dominated sorting and crowding distance sorting.

Among the optimal solutions, the best solution is chosen by considering COP, thus

resulting in the best solution to maximize Q̇eva and COP while minimizing mr,sys in

the heat pump. Then, a separate evaluation by the ACHP confirms the best solution,

although there is an underlying uncertainty in the charge prediction of the ACHP

with an MAPE of 19.5% against the experimental data (Alabdulkarem et al., 2013),

as stated in the validation of the ACHP.

In addition, the developed surrogate models allow estimation of both Q̇eva and

mr,sys in a heat pump throughout the entire design space, including ∆Tsc and ∆Tsh.

The developed surrogate models for Q̇eva andmr,sys demonstrate that the best solution

can be acquired by minimizing ∆Tsh and adjusting ∆Tsc according to the sensitivity

of the objective functions to the input variables, for the specific heat pump used in

this study.
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Furthermore, the developed surrogate models allow one to design or operate a

system on not only the best point but also other optimal points with respect to Q̇eva

and mr,sys as well as other criteria, assisted by this validated framework.

In conclusion, the experimentally validated multi-objective optimization frame-

work is developed for increasing Q̇eva and reducing mr,sys without compromising

COP. This validated framework also can be applied to many other multi-objective-

multivariate engineering problems.

Future work will include conducting an experimental test on the obtained best

solution to evaluate the performance of the optimization framework and provide feed-

back to the initial stage of the framework, extending the boundary of the design space

for investigation of further improvement of the solutions, finding an optimal evapo-

rator inlet quality, and developing a scalable multi-objective optimization framework

to accommodate more objective functions and input variables.

Additionally, the sensitivity of the surrogate model was not analyzed in this work.

The common surrogate models include support vector regression (Xiao et al., 2015),

Kriging model (Kyprioti et al., 2020), polynomial response surface model (Eddy et al.,

2015), and Radial Basis Function (RBF) model (Qasem et al., 2012; Zhou et al., 2017;

Cai et al., 2017). The effects of the surrogate model on accuracy, numerical stability,

and Pareto front will be investigated.

Likewise, future work will focus on explaining the sensitivity of the void-fraction

model. Only the Zivi model was employed in this optimization work. Various void-

fraction models will be used to discuss the effect of the void-fraction model on the

Pareto front of the optimization framework.
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CHAPTER V

CONCLUSIONS

5.1 Summary

This dissertation presented the experimentally validated refrigerant charge model for

the RTPF heat exchanger and the experimental charge validation data as well as the

optimization of refrigerant charge and cooling capacity in a heat pump.

Chapter 1 explains the result of literature review and niche the study tries to

fill. Thus the research objectives are developed and stated. Subsequently, Chapter 2

provides a set of, high-quality, R410A experimental charge data. This experimental

data includes a total of 42 tests of refrigerant charge for the RTPF heat exchanger,

operating in both evaporator and condenser mode. The validated differential mass

evacuation sampling method results in 0.1% of relative uncertainty with respect to

measured charge and 1.3% of charge measurement repeatability. Additionally, charge

sensitivity to independent variables was analyzed; in evaporator mode, charge is most

sensitive to refrigerant inlet quality followed by outlet superheat. In condenser mode,

subcooling followed by refrigerant mass flow rate is strongly correlated with charge.

Chapter 3 adds the high-accuarcy refrigerant charge model tuned by high-fidelity

experimental charge data for low-GWP refrigerants, R1234yf and R468C in addition

to R410A as a reference. The complete and high-fidelity experimental charge data of

the RTPF is first presented with ±2.2% of relative-charge measurement uncertainty

of measured and 0.8% of charge-measurement repeatability. Thereafter, the accurate

charge model is developed, tuned by the high-fidelity experimental charge data with
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12.3%, 12.8%, and 12.9% of MAPE based on the Taitel-Barnea, the Zivi, and the

Baroczy void-fraction model, respectively.

This experimentally validated and high-fidelity tuned charge model supports charge

prediction of the optimization of refrigerant charge in a heat pump in Chapter 4.

The developed framework solves concurrently two objectives, minimizing refrigerant

charge and maximizing cooling capacity in a heat pump, and two input variables of

the heat pump, subcooling in a condenser and superheat in an evaporator playing

a determining role in performance and charge of a heat pump. The best solution is

picked based on the COP after selecting a set of optimal solutions using the NSGA-II.

The ACHP model allows predicting the cooling capacity and the refrigerant charge

in a heat pump on various operating conditions, thus enabling the development of

the surrogate model to expedite the algorithm of the NSGA-II. As a result, a set of

optimal solutions are generated by the NSGA-II through 10,000 evaluations. Sub-

sequently the best solution is selected by considering COP of the heat pump. The

selected best solution obtains the improvement of 11.3% and 21.0% of Q̇eva and COP,

respectively, while reducing 17.2% of mr,sys from the reference point.

5.2 Conclusions

This research was initiated to fill the research gap found from the literature review:

an insufficient charge-prediction accuracy of charge models and lack of experimental

charge validation data for heat pumps in both evaporator and condenser mode and

both indoor and outdoor RTPF heat exchangers to improve the accuracy of the charge

models.

To acquire the experimental charge data, the study developed a novel charge

measurement method, a differential mass evacuation sampling method. The method

allows rapid and accurate charge measurements. The charge measurement facility

was developed to execute the method. Prior to performing experimental campaign,
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the charge measurement method was validated by comparison with a commercial

refrigerant scale, thus yielding an error of 2.7 ± 1.7 g at 95% confidence interval with

respect to 119 g of the mean measured charge by a refrigerant scale.

With this validated method and charge measurement facility, the experimental

campaign was executed, producing a total of 52 test points including both evaporator

and condenser mode, two RTPFs, and R410A refrigerant as well as low-GWP refrig-

erants, R1234yf and R468C. The repeatability and uncertainty of the charge mea-

surement data verifies its high-fidelity and high-precision with a charge-measurement

repeatability of 0.8% and a relative-charge measurement uncertainty of ±2.2%.

This high-quality database evaluated the existing charge model with six different

void-fraction models. The result demonstrates that the Baroczy model shows the

best agreement with the MAPE of 17.3%. Meanwhile, all of the void-fraction models

require a correction for accurate charge prediction. Accordingly the high-fideliy charge

data was used to tune the charge model. The adjusted correction factor was proposed

for the tuning method; the correction factor is generated by a data-driven method

that includes a regression equation and the ANN. As a result, the tuned T-B model

shows the best agreement with the experimental data with the MAPE of 12.3%.

Finally, the developed high-fidelity charge model assists identifying an optimal

charge by taking into account maximizing cooling capacity and COP of a heat pump

on the developed multi-objective optimization framework, by changing the ∆Tsc and

∆Tsh according to the NSGA-II. As a result, it creates the globally best solution in

the design space.

5.3 Future Work

Future work can focus on further improvement of accuracy of charge prediction for

promising new low-GWP refrigerants. In addition, other factors for accurate charge

prediction can be considered such as geometrical effects with additional heat ex-
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changer tests and evaluating additional void-fraction models as well as investigat-

ing return bend and flow pattern effect. Moreover, the multi-objective optimization

framework can be extended to accommodate generic engineering problems with many

objective functions and input variables.
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APPENDICES

APPENDIX A

EXPERIMENTAL CHARGE VALIDATION DATA FOR R410A
REFRIGERANT

The appendices serves as valuable resources for further exploration and in-depth
analysis of the research conducted. It offers a repository of supplementary mate-
rials, including raw data, extended tables, and additional figures, which enrich the
understanding of this refrigerant charge study.

Table A.1: IC1 charge information in evaporator mode

mRTPF um,RTPF um,rel,RTPF mRHXCT um,RHXCT um,RSV ∆mTW u∆mTW
∆mCW u∆mCW

g g % g g g g g g g
IC1-1 401 ±4.8 1.2 529.5 ±4.7 ±0.3 311.5 ±3.4 841.0 ±3.2
IC1-2 238 ±4.8 2.0 344.6 ±4.7 ±0.2 309.7 ±3.4 654.3 ±3.3
IC1-3 371 ±4.9 1.3 492.5 ±4.8 ±0.4 311.5 ±3.4 804.0 ±3.4
IC1-4 251 ±4.8 1.9 355.5 ±4.8 ±0.4 311.6 ±3.3 667.1 ±3.4
IC1-5 364 ±4.8 1.3 476.7 ±4.7 ±0.6 308.9 ±3.3 785.6 ±3.3
IC1-6 272 ±4.7 1.7 376.5 ±4.6 ±0.6 324.5 ±3.2 701.0 ±3.3

Table A.2: IC1 charge information in condenser mode

mRTPF um,RTPF um,rel,RTPF mRHXCT um,RHXCT um,RSV ∆mTW u∆mTW
∆mCW u∆mCW

moff

g g % g g g g g g g g
IC1-7 1165 ±5.4 0.5 1456.9 ±4.6 ±0.1 472.3 ±3.2 929.2 ±3.3 1000
IC1-8 1124 ±5.5 0.5 1414.2 ±4.7 ±0.1 579.8 ±3.4 994 ±3.3 1000
IC1-9 637 ±5.4 0.9 923.4 ±4.7 ±0.1 584.9 ±3.3 508.3 ±3.3 1000
IC1-10 505 ±5.4 1.1 787.8 ±4.7 ±0.5 584.9 ±3.3 372.7 ±3.3 1000
IC1-11 731 ±5.4 0.7 1021.3 ±4.7 ±0.5 344.1 ±3.2 365.4 ±3.4 1000
IC1-12 769 ±5.5 0.7 1057.4 ±4.8 ±0.5 579.8 ±3.4 637.2 ±3.3 1000
IC1-13 1504 ±5.5 0.4 1797.7 ±4.7 ±0.1 506.5 ±3.3 804.2 ±3.3 1500
IC1-14 942 ±5.5 0.6 1235.4 ±4.7 ±0.5 579.8 ±3.4 815.2 ±3.2 1000
IC1-15 497 ±5.5 1.1 780.1 ±4.7 ±0.3 589.8 ±3.3 369.9 ±3.4 1000
IC1-16 1080 ±5.5 0.5 1372.4 ±4.7 ±0.3 584.9 ±3.3 957.3 ±3.3 1000
IC1-17 514 ±5.3 1 797.1 ±4.5 ±0.3 566.5 ±3.2 363.6 ±3.2 1000
IC1-18 1037 ±5.5 0.5 1327.7 ±4.7 ±0.3 566.5 ±3.2 894.2 ±3.4 1000
IC1-19 684 ±5.4 0.8 970.8 ±4.6 ±0.3 588.3 ±3.3 559.1 ±3.2 1000
IC1-20 638 ±5.5 0.9 923 ±4.8 ±0.3 579.8 ±3.4 502.8 ±3.4 1000
IC1-21 581 ±5.4 0.9 862.9 ±4.7 ±0.4 567.8 ±3.2 430.7 ±3.4 1000
IC1-22 955 ±5.4 0.6 1246.1 ±4.6 ±0.3 566.5 ±3.2 812.6 ±3.3 1000
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OC1 charge information

Table A.3: OC1 charge information in evaporator mode

mRTPF um,RTPF um,rel,RTPF mRHXCT um,RHXCT um,RSV ∆mTW u∆mTW
∆mCW u∆mCW

moff

g g % g g g g g g g g
OC1-1 441 ±6.6 1.5 508.5 ±6.6 ±0.3 462.6 ±5.2 471.1 ±4.1 500
OC1-2 299 ±6.6 2.2 363.7 ±6.6 ±0.3 462.6 ±5.2 326.3 ±4.0 500
OC1-3 785 ±5.3 0.7 854.9 ±5.3 ±0.8 649.4 ±3.2 504.3 ±4.2 1000
OC1-4 432 ±4.6 1.1 498.1 ±4.6 ±0.5 729.7 ±3.5 727.8 ±3.0 500
OC1-5 843 ±5.4 0.6 913.4 ±5.4 ±1.0 652.7 ±4.0 566.1 ±3.5 1000
OC1-6 619 ±4.3 0.7 687.0 ±4.3 ±0.9 729.0 ±3.0 916.0 ±3.0 500

Table A.4: OC1 charge information in condenser mode

mRTPF um,RTPF um,rel,RTPF mRHXCT um,RHXCT um,RSV ∆mTW u∆mTW
∆mCW u∆mCW

moff

g g % g g g g g g g g
OC1-7 4380 ±5.3 0.1 4549 ±5.2 ±0.4 754.2 ±3.7 302.7 ±3.7 5000
OC1-8 4346 ±4.3 0.1 4513 ±4.3 ±0.4 459.5 ±3.0 472 ±3.0 4500
OC1-9 2965 ±4.5 0.2 3131 ±4.5 ±0.4 608.5 ±3.2 739.2 ±3.1 3000
OC1-10 1809 ±4.4 0.2 1971 ±4.4 ±1.2 811.9 ±3.1 783.2 ±2.9 2000
OC1-11 2302 ±4.3 0.2 2469 ±4.3 ±1.2 807.4 ±2.8 276.5 ±3.0 3000
OC1-12 2341 ±4.8 0.2 2506 ±4.8 ±1.3 806.5 ±3.2 312 ±3.4 3000
OC1-13 4741 ±4.1 0.1 4910 ±4.1 ±0.4 751.1 ±2.9 661.2 ±2.9 5000
OC1-14 3586 ±5.1 0.1 3755 ±5.0 ±1.3 806 ±3.5 560.9 ±3.4 4000
OC1-15 1935 ±4.1 0.2 2100 ±4.1 ±0.8 646.6 ±2.8 246.9 ±2.9 2500
OC1-16 4142 ±4.9 0.1 4312 ±4.9 ±0.8 637.2 ±3.9 449 ±2.9 4500
OC1-17 2330 ±6.9 0.3 2493 ±6.9 ±0.8 648.6 ±5.8 641.9 ±3.7 2500
OC1-18 4032 ±4.8 0.1 4199 ±4.7 ±0.8 634.3 ±3.5 333.2 ±3.1 4500
OC1-19 3334 ±5.6 0.2 3501 ±5.6 ±0.8 529.4 ±4.5 530.5 ±3.2 3500
OC1-20 3942 ±4.7 0.1 4110 ±4.7 ±0.8 799.8 ±3.6 909.5 ±2.9 4000

Table A.5: Auxiliary charge information in the IC1 RHXCT in evaporator mode

mAUX umAUX
mvap,cap mliq umliq

mvap umvap mtp umtp

g g g g g g g g g
IC1-1 128.8 ±1.0 0.9 64.4 ±0.8 12.4 ±0.1 51.1 ±0.5
IC1-2 106.9 ±0.9 0.8 61.7 ±0.8 10.7 ±0.1 33.7 ±0.4
IC1-3 121.2 ±0.9 0.8 64.8 ±0.8 11 ±0.1 44.6 ±0.5
IC1-4 104.6 ±0.9 0.7 62.8 ±0.8 9.7 ±0.1 31.3 ±0.3
IC1-5 112.3 ±0.9 0.8 64 ±0.8 10.4 ±0.1 37.2 ±0.4
IC1-6 104.1 ±0.9 0.7 64 ±0.8 9 ±0.1 30.5 ±0.3
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Auxiliary charge information

Table A.6: Auxiliary charge information in the IC1 RHXCT in condenser mode

mAUX umAUX
mliq,cap mliq umliq

mvap umvap

g g g g g g g
IC1-7 291.7 ±2.8 17.2 256.8 ±2.8 17.7 ±0.2
IC1-8 289.7 ±2.8 17.3 256.8 ±2.8 15.6 ±0.1
IC1-9 286.6 ±2.8 17.4 253.4 ±2.8 15.8 ±0.1
IC1-10 282.4 ±2.7 16.7 243.7 ±2.7 22 ±0.2
IC1-11 289.8 ±2.8 16.7 250.1 ±2.8 23 ±0.2
IC1-12 287.9 ±2.8 16.8 250.1 ±2.8 21 ±0.2
IC1-13 293.7 ±2.9 16.9 258.6 ±2.8 18.3 ±0.2
IC1-14 293.9 ±2.8 16.6 255.1 ±2.8 22.1 ±0.2
IC1-15 282.7 ±2.7 16.8 245.3 ±2.7 20.6 ±0.2
IC1-16 292.6 ±2.8 16.7 255.1 ±2.8 20.8 ±0.2
IC1-17 283 ±2.7 17 248.5 ±2.7 17.5 ±0.2
IC1-18 291 ±2.8 16.7 255.1 ±2.8 19.2 ±0.2
IC1-19 286.4 ±2.8 16.7 250.1 ±2.8 19.6 ±0.2
IC1-20 284.7 ±2.7 16.7 246.9 ±2.7 21.1 ±0.2
IC1-21 281.8 ±2.7 16.6 242.2 ±2.7 23 ±0.2
IC1-22 290.7 ±2.8 16.9 255.1 ±2.8 18.7 ±0.2

Table A.7: Auxiliary charge information in the OC1 RHXCT in evaporator mode

mAUX umAUX
mvap,cap mliq umliq

mvap umvap mtp umtp

g g g g g g g g g
OC1-1 67.1 ±0.1 0.3 47.9 ±0.1 4.7 ±0.01 14.2 ±0.03
OC1-2 64.2 ±0.1 0.2 48.5 ±0.1 3.9 ±0.01 11.7 ±0.03
OC1-3 70.2 ±0.1 0.3 49.9 ±0.1 4 ±0.01 16 ±0.04
OC1-4 66.2 ±0.1 0.2 48.8 ±0.1 4 ±0.01 13.1 ±0.03
OC1-5 70 ±0.1 0.3 48.9 ±0.1 4.4 ±0.01 16.4 ±0.04
OC1-6 68.4 ±0.1 0.3 48.7 ±0.1 4.1 ±0.01 15.3 ±0.04
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Auxiliary charge information

Table A.8: Auxiliary charge information in the OC1 RHXCT in condenser mode

mAUX umAUX
mliq,cap mliq umliq

mvap umvap

g g g g g g g
OC1-7 169 ±0.3 7.5 144.2 ±0.3 17 ±0.04
OC1-8 166 ±0.3 7.5 143.9 ±0.3 15.1 ±0.04
OC1-9 166 ±0.3 7.8 144.3 ±0.3 14 ±0.03
OC1-10 162 ±0.3 7.4 137.7 ±0.3 17 ±0.04
OC1-11 167 ±0.3 7.3 141.5 ±0.3 18.6 ±0.04
OC1-12 165 ±0.3 7.3 140.9 ±0.3 16.8 ±0.04
OC1-13 169 ±0.3 7.2 143.9 ±0.3 18.3 ±0.04
OC1-14 169 ±0.3 7.1 142.7 ±0.3 19 ±0.04
OC1-15 166 ±0.3 7.6 141.4 ±0.3 16.5 ±0.04
OC1-16 170 ±0.3 7.2 143.2 ±0.3 19.8 ±0.05
OC1-17 163 ±0.3 7.6 140.8 ±0.3 14.6 ±0.03
OC1-18 167 ±0.3 7.2 142.7 ±0.3 17.3 ±0.04
OC1-19 167 ±0.3 7.5 143.4 ±0.3 16.3 ±0.04
OC1-20 168 ±0.3 7.3 143.2 ±0.3 17.1 ±0.04

Table A.9: Test result of IC1 in evaporator mode

Patm Tdb,i Twb,i ṁair ṁr xin Pr,i Pr,o Tr,o ∆Tsh,o Tr,sat,o Q̇r Q̇a mRTPF

kPa ◦C ◦C kg/s kg/h - kPa kPa ◦C K ◦C kW kW g
IC1-1 98 26.7 11.4 0.462 46.3 0.16 1394 1385 23.7 5.1 18.6 2.21 2.13 401
IC1-2 98 26.7 11.6 0.48 44.7 0.24 1253 1249 25.6 10.7 14.9 2.05 2 238
IC1-3 98 26.7 11 0.48 77.3 0.17 1252 1243 20.7 5.9 14.8 3.73 3.56 371
IC1-4 98 26.7 14.1 0.437 75.8 0.24 1155 1144 22.9 11 11.9 3.56 3.58 251
IC1-5 98 26.7 14.3 0.533 108.4 0.2 1181 1163 16.7 4.3 12.5 5.06 4.84 364
IC1-6 98 26.7 13.3 0.523 107.5 0.23 1080 1062 21.6 12.2 9.4 5.24 4.99 272
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Test result

Table A.10: Test result of IC1 in condenser mode

Patm Tdb,i Twb,i ṁair ṁr Tr,i Pr,i Pr,o Tr,o ∆Tsh,i ∆Tsc Tr,sat,o Q̇r Q̇a mRTPF

kPa ◦C ◦C kg/s kg/h ◦C kPa kPa ◦C K K ◦C kW kW g
IC1-7 97.2 21.1 14.8 0.27 24.2 46.7 1848 1847 22.6 17.4 6.7 29.3 1.44 1.43 1165
IC1-8 97.3 21.1 14 0.464 25 59.7 1796 1796 22.1 31.4 6.2 28.3 1.6 1.65 1124
IC1-9 97.6 21.1 15.4 0.284 22.7 52.4 1757 1755 24.4 25 3 27.4 1.38 1.38 637
IC1-10 97.3 21.1 15.4 0.569 91.4 60 2147 2147 32.6 24.8 2.7 35.2 5.27 5.27 505
IC1-11 98 21.1 15.3 0.609 89 51.3 2143 2141 28.5 16.2 6.6 35.1 5.04 5 731
IC1-12 96.7 21.1 15.4 0.835 84.1 64.7 2084 2082 27.4 30.7 6.6 34 5.21 5.07 769
IC1-13 98 21.1 15.4 0.283 22.7 57.8 2025 2023 21.8 25 11.1 32.9 1.42 1.43 1504
IC1-14 98 21.1 15.3 0.852 89.8 60.9 2181 2180 24.8 25 11.1 35.8 5.53 5.43 942
IC1-15 96.8 21.1 15.2 0.277 56.5 51.5 2099 2095 31.7 17.2 2.5 34.3 3.13 3.02 497
IC1-16 97.7 21.1 15.4 0.463 56.5 51.8 2121 2119 23.6 17.1 11.2 34.7 3.35 3.38 1080
IC1-17 97.7 21.1 15.4 0.459 56.9 65.2 1974 1971 28.8 33.4 3 31.9 3.52 3.55 514
IC1-18 98 21.1 15.4 0.46 56.7 69.1 2167 2165 24.1 33.6 11.5 35.6 3.67 3.62 1037
IC1-19 98 20.8 15.4 0.31 56.6 60.1 2115 2113 27.9 25.5 6.7 34.6 3.4 3.28 684
IC1-20 98.1 21.1 15.4 0.274 59.5 53.3 2158 2156 30 17.9 5.4 35.4 3.37 3.29 638
IC1-21 98 21.1 15.4 0.368 76.7 55.4 2210 2208 33.6 19 2.7 36.3 4.24 4.28 581
IC1-22 98 21.1 15.3 0.46 52.6 59.6 2045 2044 23.8 26.4 9.5 33.3 3.27 3.29 955

Table A.11: Test result of OC1 in evaporator mode

Patm Tdb,i Twb,i ṁair ṁr xin Pr,i Pr,o Tr,o ∆Tsh,o Tr,sat,o Q̇r Q̇a mRTPF

kPa ◦C ◦C kg/s kg/h - kPa kPa ◦C K ◦C kW kW g
OC1-1 96.3 8.5 4.3 0.816 58.5 0.27 889 872 6.9 3.9 3 2.63 2.71 441
OC1-2 96.7 8.3 3.4 0.823 51.5 0.28 747 732 5.4 7.9 -2.5 2.4 2.38 299
OC1-3 96.7 9 4.8 0.865 141.5 0.22 832 746 2.1 4.4 -1.9 6.8 6.56 785
OC1-4 97.2 8.4 4.8 0.665 90 0.26 788 748 4.5 6.3 -1.8 4.22 4.11 432
OC1-5 97.7 13.3 7.2 0.941 181.4 0.24 928 808 2.9 2.4 0.5 8.33 8.1 843
OC1-6 97.9 11.5 6.6 1.075 167.4 0.25 896 772 6.5 7.4 -0.9 7.88 7.63 619
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Test result

Table A.12: Test result of OC1 in condenser mode

Patm Tdb,i Twb,i ṁair ṁr Tr,i Pr,i Pr,o Tr,o ∆Tsh,i ∆Tsc Tr,sat,o Q̇r Q̇a mRTPF

kPa ◦C ◦C kg/s kg/h ◦C kPa kPa ◦C K K ◦C kW kW g
OC1-7 98.1 35 23.6 1.017 68.1 61.5 2739 2735 38 16.3 7.2 45.2 3.57 3.63 4380
OC1-8 98 35 23.6 1.015 68 79.6 2781 2775 38.4 33.8 7.4 45.8 3.99 4.03 4346
OC1-9 97.4 35 23.7 1.004 67.7 64.6 2439 2432 37.1 24.3 3.2 40.3 3.76 3.64 2965
OC1-10 98 35 23.6 1.017 224.9 73.4 2937 2888 44.6 25.9 2.9 47.5 11.8 11.35 1809
OC1-11 97.4 35 23.7 1.007 223.3 65.3 2971 2929 41.2 17.2 6.9 48.1 11.4 10.88 2302
OC1-12 98.1 35 23.7 1.021 226.3 82.1 3045 3002 41.9 32.9 7.2 49.2 12.83 12.25 2341
OC1-13 97.3 35 23.7 1.003 68 75.8 3133 3126 39.2 24.9 11.8 50.9 3.77 3.95 4741
OC1-14 98.1 34.7 23.3 1.014 228.1 77.2 3243 3211 40.6 25.1 11.5 52.1 12.49 12.02 3586
OC1-15 98 35 23.5 1.014 147.4 60 2666 2641 40.5 16.3 3.2 43.7 7.51 7.32 1935
OC1-16 98 35 23.7 1.016 148.2 67.6 3146 3135 39.9 16.6 11.2 51.1 7.67 7.65 4142
OC1-17 97.2 35 23.7 1.004 146.7 78.5 2693 2671 41.1 34.3 3.1 44.2 8.39 8.02 2330
OC1-18 98.1 35 23.6 1.024 145.7 84.7 3153 3143 40.4 33.5 10.8 51.2 8.46 8.24 4032
OC1-19 98 35 23.6 0.962 147.2 71.9 2823 2809 39 25.6 7.4 46.3 8.17 7.89 3334
OC1-20 98.1 35 16.1 1.028 135.7 76.3 3000 2985 39.6 27.4 9.3 48.9 7.6 7.57 3942
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Internal volume information

△P

△P

△P

△P

P

P

T

P

T

Electronic expansion valve

5-way valve

Rapid actuated shut-off valves (RSV)

Inlet pipe

Outlet pipe

RTPF

Color 

icon

Description 

of volume 

Volume 

(ml)

Fractions

(-)

Uncertainty 

(ml)
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Vapor superheated 238.9 0.11 2.63

Vapor superheated
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Total 2181.1 1.00 5.39

Figure A.1: Internal volume information of the IC1-RHXCT according to each refrig-
erant state in evaporator mode
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Figure A.2: Internal volume information of the IC1-RHXCT according to each refrig-
erant state in condenser mode
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Internal volume information
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Figure A.3: Internal volume information of the OC1-RHXCT according to each re-
frigerant state in evaporator mode
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Figure A.4: Internal volume information of the OC1-RHXCT according to each re-
frigerant state in condenser mode
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APPENDIX B

INFORMATION OF ACHP VALIDATION

Detailed information of the ACHP’s performance validation is presented based on
Alabdulkarem et al. (2013)’s published data. The COP is defined as a ratio of cooling
capacity to a compressor input power (Alabdulkarem et al., 2013).

Table B.1: Heat pump specifications

Heat pump manufacturer Goodman
Heat exchangers type Round tube plate fin
Outdoor unit model number SSZ140361BA
Indoor unit model number ARUF374316
Compressor manufacturer Copeland
Compressor type Single speed 3-ton scroll
Compressor model number ZP29K5EPFV130
Working fluid R410A
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Table B.2: 10-coefficient AHRI compressor map for ZP29K5EPFV130

Coefficients Power (W) Mass Flow (lbm/hr)
C1 -605.268 198.5648982
C2 -16.7291 4.4706942
C3 47.34564 -0.3769426
C4 -0.1313 0.0331605
C5 0.368906 -0.0080514
C6 -0.43604 0.0056885
C7 0.000798 0.0001354
C8 0.000529 0.0000227
C9 -0.00213 0.0000370
C10 0.002256 -0.0000393

Table B.3: Condenser specifications

Number of tubes per bank 38
Number of bank 1
Number of circuits 4
Length of tubes 2.286 m
Outer diameter of tube 0.00913 m
Inner diameter of tube 0.00849 m
Tube spacing in air flow direction 0.0191 m
Tube spacing orthogonal to air flow direction 0.0254 m
Number of fins per inch 20
Amplitude of wavy fin 0.001 m
Half period of wavy fin 0.001 m
Fin thickness 0.00011 m
Fin type Wavy louvered fins

Table B.4: Evaporator specifications

Number of tubes per bank 44
Number of bank 2
Number of circuits 5
Length of tubes 0.51 m
Outer diameter of tube 0.00913 m
Inner diameter of tube 0.00849 m
Tube spacing in air flow direction 0.0191 m
Tube spacing orthogonal to air flow direction 0.0254 m
Number of fins per inch 14
Amplitude of wavy fin 0.001 m
Half period of wavy fin 0.001 m
Fin thickness 0.00011 m
Fin type Wavy louvered fins
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APPENDIX C

SURROGATE MODEL

The unknown coefficients of the surrogate model, αj are calculated by solving the fol-
lowing matrix using the RBF interpolator solver in SciPy package on Python platform
(Virtanen et al., 2020).

αj =


α1

α2
...

αN

 = Φ−1


f(X1)
f(X2)

...
f(XN)

 (C.1)

where X is the input variable (∆Tsc, ∆Tsh), Φ−1 is the inverse matrix of the
interpolation matrix given in Equation 4.8 and the f(Xk) is the given k -th each
objective function of X.
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Table C.1: Used 20 ACHP samples for developing the surrogate models

∆Tsc ∆Tsh Q̇eva mr,sys

7.0 19.0 9.02 4.22
8.5 18.0 9.20 4.50
7.8 17.6 9.24 4.39
8.0 17.0 9.32 4.44
1.3 2.0 9.63 4.15
1.0 2.0 9.61 4.13
1.6 2.0 9.66 4.17
1.0 2.6 9.61 4.12
9.7 20.0 8.89 4.70
10.0 20.0 8.89 4.75
10.0 19.4 8.99 4.76
9.4 20.0 8.89 4.64
1.7 7.0 9.61 4.04
1.9 7.5 9.61 4.04
1.9 7.0 9.62 4.06
1.6 7.6 9.59 4.02
1.0 18.8 8.70 3.59
1.3 20.0 8.54 3.57
1.0 20.0 8.52 3.55
1.0 19.4 8.61 3.57

The following Tables list the obtained coefficients for each objective function. A
linearly combined the product of the coefficients and the radial basis function forms an
RBF metamodel to produce approximate value of each objective function according
to Equation 4.4.
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Table C.2: The coefficients of the surrogate model for the Q̇eva

α1 -0.06
α2 1.84
α3 -2.03
α4 0.36
α5 -6.54
α6 7.84
α7 2.80
α8 -3.47
α9 -38.19
α10 25.17
α11 -3.61
α12 16.94
α13 13.78
α14 10.73
α15 -13.09
α16 -11.44
α17 2.54
α18 -4.45
α19 9.96
α20 -7.50

Table C.3: The coefficients of the surrogate model for the mr,sys

α1 0.207216
α2 -0.12595
α3 0.125146
α4 -0.17253
α5 -25.5596
α6 15.64098
α7 12.32413
α8 -1.92107
α9 -9.62314
α10 5.447272
α11 -0.94204
α12 5.144594
α13 2.022233
α14 0.696467
α15 -1.81746
α16 -0.90305
α17 2.565754
α18 -2.36178
α19 6.946469
α20 -6.67869
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APPENDIX D

ACTIVE-LEARNING DATA SAMPLING

This section details the active-learning data sampling; it refers to a data sampling
method which gradually develop and adapt to improve a global accuracy of a sur-
rogate model. It performs an initial sampling (pre-sampling) and then iteratively
updating the surrogate model with more sampling points according to two crucial
criteria , ‘exploration’ and ‘exploitation’ (Mackman et al., 2013; Long et al., 2015;
Dong et al., 2021), and it is repeated until either termination of simulation resources
or achievement of sufficient accuracy of the surrogate model (Gopakumar et al., 2018).

The ‘exploration’ criterion of the active-learning data sampling ensures spreading
out sampling points throughout a design space for global-search capability, which is
also known as space-filling sampling. Meanwhile, the ‘exploitation’ criterion, also
known as refinement, of the active-learning data sampling focuses on improving local
accuracy of a surrogate model by sampling (Crombecq et al., 2011).

In the open literature, the common exploration methods include the maximum
entropy (Liu et al., 2016), the Voronoi partition (Cai et al., 2017), the Kriging variance
(Kyprioti et al., 2020), and the Euclidean distance (Zhou et al., 2017; Eddy et al.,
2015; Aute et al., 2013).

Meanwhile, the prevalent exploitation methods cover the maximum gradient (Yao
et al., 2009), the maximum standard deviation and averaged squared errors (Gramacy
and Lee, 2009), the estimation of non-linearity around data points (Crombecq et al.,
2011), and the Leave-One-Out (LOO) errors in the cross-validation, eLOO (Li et al.,
2010; Aute et al., 2013; Liu et al., 2016; Cai et al., 2017; Kyprioti et al., 2020).

The inherent characteristic of the exploration and exploitation yields a trade-off
between the exploration of ‘global’ samples and the exploitation of ‘local’ samples
(Gopakumar et al., 2018; Zhang et al., 2020). Aute et al. (2013) well combined
the two criteria in an optimization formulation and proposed an active-learning data
sampling, called Space-Filling Cross-Validation Tradeoff (SFCVT). The SFCVT was
then employed to construct surrogate models for both heat transfer coefficient and
pressure drop of air to solve a problem for novel fin-and-tube heat exchanger design
optimization (Aute et al., 2013). In a validation process of the optimization problem,
the SFCVT produced high-fidelity surrogate models within 10% error, given 10-15%
of experimental error (Aute et al., 2013).

Based on the verified SFCVT sampling, the proposed study developed a modified
active-learning data sampling by adding adaptability to the exploration criterion for
stable accommodation of various engineering problems. This approach is summarized
in Figure D.1. It utilizes the Euclidean method as the exploration and eLOO as the
exploitation of data sampling.
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According to the SFCVT method, a sample is optimally updated by finding the
highest eLOO

i while keeping a certain distance between the new sampling point and
the existing points by the Euclidean distance method. The Euclidean method al-
lows avoiding clustered sampling, finding candidate sample points while maintaining
enough Euclidean distance from the existing points to the new sample points. More-
over it is easy to implement and numerically stable as well as the independence in
type of surrogate model (Zhou et al., 2017; Eddy et al., 2015; Aute et al., 2013).
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Figure D.1: Flowchart of the active-learning data sampling

The SFCVT method disclosed that it has better performance for 20 test problems
compared to other design of experiments such as maximum entropy design and maxi-
min scaled distance method (Aute et al., 2013).

In addition to the SFCVT, the proposed active-learning data sampling in this
study adds adaptability to the exploration criterion by using a distance factor δ
which can be adjusted according to a problem to be solved.

First of all, for efficient computation of the Euclidean method, points are created
on a hypothetical-evaluation grid on the design space (Mackman et al., 2013). Then,
all minimum distances from an existing point to all the grid points on the evaluation
grid are calculated, averaged, and multiplied by a distance factor, δ to obtain a space-
filling metric, S.

This process is carried out for each existing sample points. Finally the grid points
on the evaluation grid that satisfies the space-filling metric, S are chosen for xcandidate

and ready to be combined with the exploitation criteria, eLOO to select the next
sampling points.

This exploration process is mathematically expressed as
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ds(xi) = min(∥xi − xgrid,i∥), ∀ xi ∈ D , ∀ xgrid,i ∈ G

S = δ ·mean(ds(xi)), ∀ xi ∈ D

∥xi − xcandidate,i∥ ≥ S, ∀ xi ∈ D , ∀ xcandidate,i ∈ G

(D.1)

where xi is the existing sample points, xgrid,i is the grid point on the evaluation
grid, D is the design space, G is the evaluation grid, S is the space-filling metric, δ is
the distance factor to be optimally determined along with G depending on a problem
to be solved, and xcandidate,i is the candidate sample point on the evaluation grid to
fulfill S.

Eventually this process ensures all the selected candidate points are sufficiently
far away from the existing sample points to avoid clustered sampling.

Separately, the LOO error in cross-validation, eLOO
i is an error of the surrogate

model prediction for an unsampled point in the Leave-One-Out Cross-Validation
manner, indicating points of the surrogate model need to be improved by the cross-
validation method. A large eLOO

i at point X i implies that the prediction of the
surrogate model at the point is less-reliable; accordingly, more sampling points are
needed to the region for improving accuracy (Liu et al., 2016).

In other words, the eLOO
i is capable of capturing non-linear region, thus yielding a

superior performance than the other design of experiments such as maximum entropy
design method and maximum scaled distance method, for nine different test problems
(Cai et al., 2017; Li et al., 2010).

Aute et al. (2013) defined the eLOO
i expressed as

eLOO
i =

∣∣∣∣y(xi)− ŷD/xi
(xi)

y(xi)

∣∣∣∣ ; xi ∈ D (D.2)

where y (xi) is the true evaluation of objective function at point xi , ŷD/xi
(xi)

indicates the predicted objective value by the constructed RBF surrogate model using
the whole sample points but xi. Two different set of eLOO

i are obtained on the sample
points for each objective function.

Next, to merged with the exploration criteria, it is essential to predict eLOO
i for

any point in the design space in order for selecting the next sampling point.
Accordingly, each eLOO

i for each objective function is mapped on the design space
by using a separate RBF surrogate model. It is noteworthy that the RBF surrogate
model used for approximating eLOO

i is different from the RBF surrogate model to
construct the objective function. For the sake of distinction, eLOO

i , eLOO, êLOO
i , êLOO

represent the LOO error at one sample point by the main RBF surrogate model, the
collective expression of LOO error on the whole design space by the main RBF surro-
gate model, the LOO error at one sample point predicted by the separate surrogate
model, and the collective expression of LOO error on the whole design space predicted
by the separate surrogate model, respectively.

With the two criteria, eLOO and S, the active-learning data sampling is carried
out. The detailed steps of the procedure are presented in the following section. As
an example, Figure D.2 shows the original test functions (Currin et al., 1988) to
be constructed by the active-learning data sampling along with the RBF surrogate
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model, also given in Equation D.3.

(a) (b)

Figure D.2: The original-test functions to be constructed by the active-learning data
sampling along with the RBF surrogate model: (a) the first original test function, y1
(b) the second original test function, y2

y1 =

(
1− exp

(
−1

2x2

))
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20
; x1, x2 ∈ [0, 1]

y2 =
sin (3 (x2

1 + x2
2))

3
; x1, x2 ∈ [0, 1].

(D.3)

Step 1: Initial Sampling to Construct Each Initial RBF surrogate model
for Each Objective Function

Sample initial points arbitrarily in the design space and obtain each objective
function value, y1 and y2 using Equation D.3 at the initial sample points. The
RBF surrogate models are constructed based on the initial sample points as
depicted in Figure D.3.

(a) (b) (c)

Figure D.3: (a) the initial sample points (b) Initial RBF surrogate model for y1 (c)
Initial RBF surrogate model for y2
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Step 2: Exploitation

Each eLOO
i is evaluated on each sample point by Equation D.2. Then eLOO

i is
approximated on the entire design space by using a separate RBF surrogate
model. The approximated values on the design space are the êLOO. This
allows evaluations of eLOO

i at any point in the design space, thus facilitating
combination with the exploration for selecting the next sample points. Each
êLOO for each objective function is calculated as exhibited in Figure D.4.
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Figure D.4: Exploitation result of the initial sample points: (a) êLOO for y1 over the
design space (b) êLOO for y2 over the design space
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Step 3: Exploration

The exploration process produces the xcandidate according to Equation D.1
to be combined with the exploitation criteria for selecting the next sample
points. Figure D.5 demonstrates the exploration process.
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Figure D.5: Exploration result with the initial sample points: (a) xgrid without ap-
plying S (b) xcandidate with applying S
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Step 4: Determination of Next Sampling to Improve the Surrogate Model

Using the developed exploitation and exploration criteria, the next sample
points are determined; the largest êLOO for each objective function is chosen
among the candidate sample points that fulfill the exploration criteria, thus
resulting in improvement of the surrogate model.

This step is illustrated in Figure D.6 and mathematically expressed as

xn+1 = arg max
xcandidate

êLOO

Subject to ||xi − xcandidate,i|| ≥ S,∀xi ∈ D, ∀xcandidate,i ∈ G.
(D.4)
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Figure D.6: Next sample points by the exploration and the exploitation criteria from
the initial sample points: (a) the next sample point for y1 (b) the next sample point
for y2
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Step 5: Updates of the Surrogate Model

Update each RBF surrogate model by evaluating each objective function on
the updated sample points using Equation D.3. Figure D.7 describes the total
sample points and the developed RBF surrogate model for each objective
function after 40 evaluations.
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Figure D.7: The developed surrogate models by a total 40 evaluations of objective
functions: (a) the total sample points used for developing the surrogate model (b)
the developed surrogate model for y1 (c) the developed surrogate model for y2

Step 6: Check the Stopping Criteria

Stop developing surrogate models once the number of iteration reaches to the
maximum iteration number determined by computer resources or a desirable
accuracy of the surrogate model is achieved. The developed surrogate models
are ready to be used for the multi-objective optimization utilizing the genetic
algorithm.
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APPENDIX E

EXPERIMENTAL CHARGE VALIDATION DATA FOR LOW-GWP
REFRIGERANTS

This section details the charge calculation process and associated uncertainties. In
order to calculate the final charge inside the RTPF, mRTPF of interest, mRHXCT is
calculated differently depending on estimated mRHXCT to account for the capacity of
the load cell on the DMMS. When mRHXCT is expected within the half of the limit
of the load cell (1,000 g), mRHXCT is given as Equation 3.2; whereas if the estimated
mRHXCT exceeds the half of the limit of the load cell, mRHXCT is expressed as

mRHXCT = ∆mCW +moff −∆mTW (E.1)

where ∆mCW is a charge sampled weight of the RHXCT, ∆mTW is a tare weight
of the RHXCT, and moff is an offset weight, a standard mass, to offset the counter
weight allowing an increase in measured charge range. Figure 2.22 illustrates the
measurement process of ∆mCW and ∆mTW depending on the estimated charge weight
to protect the load cell. The tests given in the test matrix employ Equation E.1 to
calculate mRHXCT , for initially those mRHXCT were expected over the half of the limit
of the load cell.

In either case, the counter weight should remain the same while measuring the
∆mCW and ∆mTW for obtaining the valid differential weights, ∆mCW and ∆mTW .

Separately, it is noted that, with the same charge inside the RHXCT mRHXCT ,
∆mCW and ∆mTW can change depending on the counter weight (e.g. if instrumen-
tation or other mass is added to the RHXCT between tests). Table E.1 enumerates
mRHXCT , ∆mCW , ∆mTW , and other intermediate charge information as well as as-
sociated uncertainties.
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Table E.1: Refrigerant charge data in the intermediate terms and the associated
uncertainties

Test
ID

mRHXCT um,RHXCT ∆mCW u∆mCW
∆mTW u∆mTW

moff um,RSV

(g) ±(g) (g) ±(g) (g) ±(g) (g) ±(g)
yf-1 1162 4.3 797 3.1 635 2.9 1000.0 0.8
yf-2 807 4.1 920 2.9 613 2.9 500.0 0.6
yf-3 567 5.7 678 2.9 611 4.8 500.0 0.7
yf-4 408 6.9 318 3.6 411 5.9 500.0 0.4
yf-5 448 6.6 358 3.0 411 5.9 500.0 0.5
c-1 682 4.5 794 3.1 612 3.2 500.0 0.6
c-2 547 5.1 659 3.9 612 3.2 500.0 0.6
c-3 405 4.1 518 2.9 613 2.9 500.0 0.6
c-4 416 4.1 528 2.9 613 2.9 500.0 0.6
c-5 486 4.5 596 3.3 610 3.0 500.0 0.6

Uncertainty of mRHXCT , um,RHXCT is affected by the two charge measurements,
∆mCW and ∆mTW , as well as the uncertainty resulted from the actuation of RSVs,
um,RSV ; thus um,RHXCT is given as

um,RHXCT =
√

(u∆mTW
)2 + (u∆mCW

)2 + (um,RSV )2 (E.2)

where um,RSV is estimated by multiplying the refrigerant flow rate and a mean closing
time difference, 0.02 sec, between the two RSVs; u∆mTW

is the uncertainty of ∆mTW

and u∆mCW
is the uncertainty of ∆mCW . u∆mTW

is determined by a root sum squared
of the measurement’s random uncertainty and the maximum absolute error of the
DMMS, 3.2 g (Lee, Bach and Bradshaw, 2021). u∆mCW

is also determined the same
way as the u∆mTW

. The uncertainty of moff is ignored because of the negligible error
of moff, ±0.003 g the manufacturer reported.
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mAUX comprises a summation of multiple charges inside the RHXCT excluding
mRTPF according to each refrigerant state as presented in Figure E.1 and Equation
E.3.

P
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Rapid actuated shut-off valves (RSV)

Inlet pipe
Outlet pipe

RTPF

Color 

icon

Description 

of volume 

Volume 

(ml)

Relative 

volume (-)

Uncertainty 

(ml)

Subcooled liquid 48.8 0.01 0.1

RTPF 4901 0.94 10.2

Superheated vapor 145.4 0.03 0.3

Superheated vapor

in capillary pipe
8.0 0.00 -

Two-phase 123.1 0.02 0.3

Total 5226 1.00 10.2
Electronic expansion valve

Figure E.1: Internal-volume information of the RHXCT according to each refrigerant
state

Figure E.1 contains the measurement information of the internal volume inside
the RHXCT according to each refrigerant state.

mAUX = mr,vap +mr,vap,cap +mr,liq +mr,tp (E.3)

where mr,vap is the charge in superheated vapor state, mr,liq is the charge in subcooled
liquid state, mr,tp is the charge in two-phase state, and mr,vap,cap is the charge inside
capillary pipes assumed to be a saturated-vapor state. Those charges are estimated
as the product of each density and volume: e.g. mr,tp is evaluated by using xin, Pr,in,
and the associated volume information given in Figure E.1. Those charges related in
mAUX and associated uncertainties are listed in Table E.2.
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Table E.2: Refrigerant charge information in mAUX and the associated uncertainties

Test
ID

mAUX umAUX
mr,vap,cap mr,liq umr,liq

mr,vap umr,vap mr,tp umr,tp

(g) ±(g) (g) (g) ±(g) (g) ±(g) (g) ±(g)
yf-1 90 0.1 0.2 52.1 0.1 4.3 0.01 33.7 0.08
yf-2 73 0.1 0.3 49.9 0.1 4.5 0.01 18.8 0.05
yf-3 83 0.1 0.2 52.1 0.1 3.7 0.01 26.8 0.07
yf-4 67 0.1 0.2 49.9 0.1 3.8 0.01 13.3 0.03
yf-5 75 0.1 0.2 51.0 0.1 4.2 0.01 20.0 0.05
c-1 77 0.1 0.4 46.4 0.1 6.0 0.01 24.4 0.06
c-2 67 0.1 0.4 43.8 0.1 5.9 0.01 16.8 0.04
c-3 67 0.1 0.3 46.4 0.1 4.5 0.01 15.8 0.04
c-4 62 0.1 0.3 44.0 0.1 4.9 0.01 13.2 0.03
c-5 66 0.1 0.3 45.1 0.1 5.1 0.01 15.7 0.04

Uncertainty of mAUX , um,AUX is given as

um,AUX =
√

(umr,vap)
2 + (umr,liq

)2 + (umr,tp)
2 (E.4)

where the uncertainties of each state of refrigerant, umr,vap ,umr,liq
, and umr,tp , are given

using a relative measurement uncertainty of each volume corresponding to each state
of refrigerant presented in Figure E.1. The following is an example for the uncertainty
of vapor-refrigerant mass in the auxiliary charge inside RHXCT, umr,vap :

umr,vap =
uVvap

Vvap

· mr,vap (E.5)

where uVvap is the measurement uncertainty of the volume occupied by the vapor
refrigerant in mAUX , Vvap is the volume occupied by the vapor refrigerant in mAUX ,
and mr,vap is the vapor-refrigerant mass in mAUX . Given the small amount of mass
inside mr,vap,cap, the uncertainty of vapor charge inside the capillary pipe, umr,vap,cap

is neglected.
Based on the obtained intermediate charge information, mRTPF is calculated ac-

cording to Equation 3.1. The uncertainty of mRTPF , umRTPF
is defined as

um,RTPF =
√
(umRHXCT

)2 + (umAUX
)2. (E.6)

Table 3.5 also presentsmRTPF , umRTPF
, and um,relRTPF

, relative uncertainty ofmRTPF .
This section presents the complete information of the experimental data as sum-

marized in Table E.3.
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Table E.3: Experimental information of R1234yf and R468C tests

Test ID
Patm Tdb,i Twb,i ṁair ṁr xin Pr,i Pr,o Tr,o ∆Tsh Tr,sat,o Q̇r Q̇a mRTPF

kPa ◦C ◦C kg/s kg/h - kPa kPa ◦C K ◦C kW kW g
yf-1 97.5 26.5 14.8 0.971 136.9 0.096 611 543 20.7 3.4 17.3 5.14 4.89 1072
yf-2 97.7 26.6 14.6 0.976 113.5 0.202 627 577 24.4 5.1 19.3 3.82 3.71 733
yf-3 97.6 26.7 14.4 0.974 131.7 0.119 565 484 23.6 10.1 13.5 5.09 5.22 484
yf-4 97.9 26.7 15.0 0.964 80.8 0.248 522 496 23.9 9.7 14.3 2.76 2.68 341
yf-5 98.0 26.7 14.7 0.961 81.6 0.172 573 541 24.5 7.3 17.2 2.95 2.96 372
c-1 97.9 26.7 14.5 0.652 109.9 0.167 1156 1119 22.1 4.2 18.0 5.40 5.14 605
c-2 97.8 26.7 15.2 0.650 107.4 0.258 1151 1105 22.3 4.8 17.5 4.74 4.57 480
c-3 97.9 26.7 14.5 0.652 107.1 0.216 926 879 19.8 10.0 9.8 5.37 5.38 338
c-4 98.0 26.7 15.3 0.655 106.8 0.285 983 939 20.8 8.9 12.0 4.83 4.84 353
c-5 97.8 26.7 14.6 0.650 112.6 0.242 1020 972 20.8 7.6 13.2 5.29 5.40 419

Table E.4: Experimental information of R410A tests

Variable Unit Minimum value Maximum value
Patm kPa 96.3 97.9
Tdb,i

◦C 8.3 13.3
Twb,i

◦C 3.4 7.2
ṁair kg/s 0.665 1.075
ṁr kg/h 51.5 181.4
xin - 0.225 0.284
Pr,i kPa 747 928
Pr,o kPa 732 872
Tr,o

◦C 2.1 6.9
∆Tsh K 2.4 7.4
Tr,sat,o

◦C -2.5 3.0

Q̇r kW 2.40 8.33

Q̇air kW 2.38 8.10
mRTPF g 299 843
Tliquid

◦C 32.2 39.1

The descriptions of the ANN is presented in Table E.5.
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Table E.5: ANN information

Number of neurons per each hidden layer 3
Number of hidden layers 3
Activation function Tanh
Number of epochs 200
Batch size 6
Learning rate 0.09
Stochastic optimizer Adam (Kingma and Ba, 2014)
ANN library Keras (Chollet et al., 2015)

Table E.6: ANN weights(w) and biases(b)

Neuron unit (j) w1j w2j w3j b

1st layer
1 -0.8445 -1.2958 - 1.1731
2 -1.6871 -0.3943 - 1.0525
3 -0.3633 -0.8196 - 0.7088

2nd layer
1 0.0733 0.6806 0.1089 0.3877
2 -0.0919 0.1306 0.1545 0.1026
3 1.0094 0.8801 0.7267 0.2087

3rd layer
1 -0.1094 0.1294 0.0685 0.0005
2 0.2906 0.0331 0.6901 0.1189
3 -0.3133 -0.2543 -0.1037 -0.2106

4th layer 1 -0.0270 0.0848 -0.1806 0.2731
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