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Abstract: Moisture movement in pavements and road embankments is receiving more 

attention in pavement and geotechnical engineering. Water from rainfall is the primary 

source of moisture in soils. Following a rainstorm event, large quantities of moisture can 

be absorbed by the soil when the water migrates into the soil mass. The passage of 

moisture has an impact on the mechanical performance and functionality of the pavement 

infrastructure. When the pavement infrastructure is built on expansive soils, water flow 

can cause damage to pavements due to the swelling and shrinking of expansive soils 

through adsorption and desorption of moisture. Such damage can result in severe 

financial loss; in fact, the estimated yearly cost of damage from expanding soil problems 

is $2.3 billion in the United States. Oklahoma contains large expanses of medium to 

highly expansive clays. The state's largest cities are located in these areas, and significant 

and costly highway systems have been built to support the population density. These 

areas have relatively high average annual precipitation, which worsens the expansive clay 

problems. The swelling or shrinking of expansive clays causes distortion and cracking in 

pavements, reducing pavement service life. Thus, it is critical to understand how water 

moves in road embankments of expansive soils subjected to seasonal rainfall and to 

predict the vertical movement of pavements built on expansive soils. This study used 

Oklahoma Mesonet measurements to develop a data-driven statistical model for 

estimating soil diffusivity and soil suction in order to predict the movement of expansive 

soils over time. The first component of the study used unsupervised learning and a 

nonlinear least squares model to estimate soil diffusivity. The second component of the 

study presents a numerical model for predicting equilibrium suction that considers the 

diffusion coefficient's effects and uses surface field suction measurements. The final 

component of the study utilized Interferometric Synthetic Aperture Radar (InSAR) 

technique for effective displacement monitoring using time series of SAR data. The study 

investigated the performance of moisture barriers on two state highways in Oklahoma, 

where expansive soils are a major problem.  

 



v 

 

TABLE OF CONTENTS 

 

Chapter          Page 

 

I. INTRODUCTION, RESEARCH NOVELTY, AND OBJECTIVES ........................1 

 1.1 Introduction ........................................................................................................1 

 1.2 Research Objectives ...........................................................................................3 

 1.3 Technical Contributions of The Research ..........................................................3 

 

II. ESTIMATING VAN GENUCHTEN DIFFUSIVITY PARAMETER OF 

UNDISTURBED SOILS IN OKLAHOMA ............................................................5 

  

 2.1 Abstract ..............................................................................................................5 

 2.2 Introduction ........................................................................................................6 

 2.3 Method and Data Analysis ...............................................................................12 

  2.3.1. Sample Size and Data Processing ..........................................................13 

  2.3.2. Develop a Diffusivity Prediction Model ................................................15 

  2.3.3. Cluster Analysis .....................................................................................16 

  2.3.4. Non-Linear Model .................................................................................20 

  2.3.5 Accuracy Assessment .............................................................................21 

 2.3.6 Cross-Validation .....................................................................................21 

 2.4 Results ..............................................................................................................22 

 2.5 Conclusion .......................................................................................................28 

  

III. EQUILIBRIUM SUCTION PREDICTION MODEL FOR SUBGRADE SOILS IN 

OKLAHOMA… ....................................................................................................29 

 

 3.1 Abstract ............................................................................................................29 

 3.2 Introduction ......................................................................................................30 

 3.3 Development of A GIS-Based Contour Map of TMI ......................................33 

 3.4 A Numerical Model to Determine Equilibrium Suction ..................................38 

  3.4.1 Calculation of the Diffusion Coefficient.................................................40 

  3.4.2 Calculation of the Matric Suction in Subgrade Soil ...............................41 

  3.4.3 Calculation of the Equilibrium Suction ..................................................42 

 3.5 Development of Prediction Models for Equilibrium Suction ..........................46 

  3.5.1 Estimating the Accuracy of the Prediction Model ..................................49 

  3.5.2 Ridge Regression ....................................................................................50 

 3.6 Conclusions  .....................................................................................................52 

  



vi 

 

 

 

Chapter          Page 

 

IV. MONITORING THE PERFORMANCE OF HORIZONTAL MOISTURE 

BARRIERS AT TWO PAVEMENT SECTIONS IN OKLAHOMA, USING SAR 

INTERFEROMETRY............................................................................................54 

 

 4.1 Abstract ............................................................................................................54 

 4.2 Introduction ......................................................................................................55 

 4.3 Method and Data Analysis ...............................................................................60 

  4.3.1 Remote Sensing Data ..............................................................................61 

  4.3.2 PSI Processing ........................................................................................63 

  4.3.3 Time Series Analysis ..............................................................................66 

  4.3.4 Time Series Properties ............................................................................66 

  4.3.5 Fitting an ARIMA Model .......................................................................68 

  4.3.6 Anomaly Detection in Time Series .........................................................69 

  4.3.7 Time Series Correlation ..........................................................................70 

 4.4 Results ..............................................................................................................71 

 4.5 Field Validation ...............................................................................................79 

 4.6 Conclusions ......................................................................................................79 

 

V.  CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK ..........81 

 

 Conclusions ............................................................................................................81 

 Recommendations For Future Work ......................................................................84 

 

REFERENCES ............................................................................................................85 

 



vii 

 

LIST OF TABLES 

 

 

Table           Page 

 

   Table 2.1. First 15 rows of test data ..........................................................................14 

   Table 2.2. Descriptive statistics of clay content and Ks by cluster...........................24 

   Table 2.3. nonlinear least-squares models fit summary ............................................25 

   Table 2.4. Characteristics of soil (Parker et al. 1985) ...............................................27 

   Table 2.5. Soil properties used on numerical simulation (Ma et al. 2009) ...............28 

   Table 2.6. Comparison of estimated diffusivity and improved method ...................28 

   Table 3.1. Analysis of Variance table .......................................................................49 

   Table 3.2. AIC value and test MSE for two GLM models .......................................49 

   Table 3.3. The comparison of estimates for coefficient standard errors ...................50 

   Table 3.4. Comparison between regression models..................................................52 

   Table 4.1. Research data from Sentinel-1A ..............................................................62 

   Table 4.2. Main characteristics of the selected Sentinel-1A master scene ...............62 

   Table 4.3. Augmented Dickey-Fuller test results for two monitoring locations ......76 



viii 

 

LIST OF FIGURES 

 

Figure           Page 

 

   Figure 2.1. Mean monthly matric suction at 5 cm depth in FAIR station, Major County, 

Oklahoma (2019) .........................................................................................................13 

   Figure 2.2. Measured diffusivity versus measured suction in training data .............15 

   Figure 2.3. Ks versus clay content in training data ...................................................15 

   Figure 2.4. The total within-cluster variation for k clusters .....................................23 

   Figure 2.5. The AIC for k clusters ............................................................................23 

   Figure 2.6. Optimal k clusters selection using 10-fold cross validation ...................24 

   Figure 2.7. Predicted nonlinear models by cluster ....................................................25 

   Figure 2.8. Comparison of measured diffusivity (Parker et al. 1985) and predicted 

diffusivity using the nonlinear model ..........................................................................27 

   Figure 3.1. GIS map of the average annual precipitation in 2019 ............................36 

   Figure 3.2. GIS map of the temperature for 2019 .....................................................36 

   Figure 3.3. GIS map of the average annual potential evapotranspiration (2019) .....37 

   Figure 3.4. TMI contour map of Oklahoma (2019) ..................................................37 

   Figure 3.5. Histogram of the standard deviation of annual TMI in Oklahoma ........38 

   Figure 3.6. Mean monthly matric suction at 5 cm depth in FAIR station, Major County, 

Oklahoma (2019) .........................................................................................................42 

   Figure 3.7. Suction distribution profile for measured suction at 5 cm depth at FAIR 

station, Major County, Oklahoma (2019) ....................................................................43 

   Figure 3.8. GIS-based contour map of equilibrium suction in Oklahoma 2016 .......44 

   Figure 3.9. GIS-based contour map of equilibrium suction in Oklahoma 2017 .......44 

   Figure 3.10. GIS-based contour map of equilibrium suction in Oklahoma 2018 .....45 

   Figure 3.11. GIS-based contour map of equilibrium suction in Oklahoma 2019 .....45 

   Figure 3.12. 10-fold cross-validation for polynomial relative humidity ..................48 

   Figure 4.1. DInSAR deformation measurement scheme (Crosetto et al. 2016) .......58 

   Figure 4.2. Study locations coordinates and area of interest for Sentinel-1 ascending 

track..............................................................................................................................62 

   Figure 4.3. Workflows (i) and (ii) for Sentinel-1 data (Cian et al. 2019) .................64 

   Figure 4.4. Workflow (iii): analyze deformation maps and create plots (Cian et al. 

2019) ............................................................................................................................66 

   Figure 4.5. Standard deviation of deformation velocity map over the monitoring period 

(a) Madill (b) Hugo ......................................................................................................72 

   Figure 4.6. LOS deformation velocity map over the monitoring period (a) Madill (b) 

Huge .............................................................................................................................73 

   Figure 4.7. Mean vertical displacement velocity at Madill Jan. 2018–Dec. 2019 ....73 

   Figure 4.8. Mean vertical displacement velocity at Hugo Apr. 2018–Apr. 2020 .....74 



ix 

 

Figure           Page 
 

   Figure 4.9. Sentinel-1 displacement time series at Madill for Jan. 2018–Dec. 2019 (A) 

control section; (B) moisture barrier left section; (C) moisture barrier right section ..74 

   Figure 4.10. Sentinel-1 displacement time series at Hugo for Apr. 2018–Apr. 2020 (A) 

control section; (B) moisture barrier left section; (C) moisture barrier right section ..75 

   Figure 4.11. Best subset ARIMA models selection based on BIC with the maximum 

AR and MA orders of 4 for Madill time series ............................................................77 

   Figure 4.12. Best subset ARIMA models selection based on BIC with the maximum 

AR and MA orders of 4 for Hugo time series ..............................................................77 

   Figure 4.13. Sample CCF of pre-whitened time series at Madill (A) control section vs. 

moist. section (left); (B) control section vs. moist. section (right); (C) moist. section (left) 

vs. moist. section (right)...............................................................................................78 

   Figure 4.14. Sample CCF of pre-whitened time series at Hugo (A) control section vs. 

moist. section (left); (B) control section vs. moist. section (right); (C) moist. section (left) 

vs. moist. section (right)...............................................................................................79 



1 

 

CHAPTER I 
 

 

INTRODUCTION, RESEARCH NOVELTY, AND OBJECTIVES 

 

1.1 INTRODUCTION 

This research focuses on three major topics: estimating van Genuchten soil-water diffusivity of 

undisturbed soils in Oklahoma, predicting equilibrium soil suction within the vadose zone, and 

monitoring and assessing vertical ground and pavement surface movements using SAR 

Interferometry. These three topics encompass the behavior of unsaturated expansive soils within the 

vadose zone with respect to moisture flow, moisture equilibrium, and vertical swelling and shrinkage.  

The objective of the first topic is to establish a well-documented foundation for assessing soil suction 

variations within the so-called moisture active zone or vadose zone. Soil diffusivity controls the rate 

of suction (moisture) changes in unsaturated soils. For establishing suction envelopes and predicting 

swelling and shrinkage in expansive soils, it is vital that a realistic estimation of unsaturated 

diffusivity be made. The topic utilizes a numerical solution for estimating the soil diffusivity using 

the Oklahoma Mesonet matric suction measurements five centimeters below the ground surface. This 

study's statistical model is based on the van Genuchten (1980) approach to estimating transient 

changes in suction beneath an uncovered surface. The predicted diffusivity parameters are validated 

against laboratory measurements. 
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Equilibrium soil suction establishes the depth of the moisture active zone. Currently utilized 

computational approaches frequently fail to appropriately account for the effects of climate and soil 

properties for establishing equilibrium suction values. The objective of the second topic is to develop 

a prediction model of equilibrium suction that takes into account various climatic parameters and soil 

properties. Under this topic, a statistical model is presented to predict equilibrium suction by 

considering the effects of the diffusion coefficient and utilizing the Oklahoma Mesonet field suction 

measurements at five centimeters below the ground surface. The predicted equilibrium suction values 

are compared with the measured equilibrium suctions in the field. 

Interferometric Synthetic Aperture Radar (InSAR) is a particularly intriguing method for analyzing 

ground surface deformations. By exploiting existing SAR data, it is possible to provide regional-scale 

monitoring as well as a historical assessment of deformations. The third topic in the dissertation aims 

to use InSAR to monitor and assess vertical ground and pavement surface movements for swelling 

and shrinking soils. The study evaluated the effectiveness of horizontal moisture barriers in reducing 

subgrade swelling and shrinkage by processing SAR satellite data. The observed vertical soil surface 

deformations are further assessed using time series analysis and visual investigation. 

This dissertation discusses available literature, provides solutions, and presents results related to the 

identified knowledge gaps in the following chapters: 

Chapter 2. Estimating Van Genuchten Diffusivity Parameter of Undisturbed Soils in Oklahoma  

Chapter 3. Equilibrium Suction Prediction Model for Subgrade Soils in Oklahoma  

Chapter 4. Monitoring The Performance of Horizontal Moisture Barriers at Two Pavement Sections 

in Oklahoma, Using SAR Interferometry 
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1.2 RESEARCH OBJECTIVES 

The primary purpose of this dissertation is to develop data-driven statistics for estimating soil 

diffusivity, soil equilibrium suction, and the performance of moisture barriers under gradual and 

abrupt changes in moisture effects. In particular, the research aims at solving the following research 

problems: 

• Developing an efficient approach for establishing soil diffusivity using a supervised learning 

method. 

• Incorporating climate change effects and soil parameters in equilibrium suction estimation. 

• Evaluating equilibrium suction for statewide Mesonet stations in Oklahoma. 

• Utilizing a non-destructive displacement monitoring for highways and infrastructure using 

the InSAR technique. 

• Quantifying the reliability of horizontal moisture barriers using a time series analysis. 

Chapter II to Chapter IV of this dissertation aims to provide solutions for these objectives. 

1.3 TECHNICAL CONTRIBUTIONS OF THE RESEARCH 

• Developing the statistical model for assessing soil diffusivity within the so-called moisture 

active zone. Current methods to estimate soil diffusivity are complex, time-consuming, and 

require quite expensive instruments. For this reason, the determination of diffusivity has 

seldom been carried out. The present approach estimates diffusivity for various Oklahoma 

soils using nonlinear least square models based on the clustering of soil parameters. Thus, the 

statistical model could provide a reasonable estimate of diffusivity in situations where limited 

resources are available to collect test samples from the field. Employing a numerical model 

based on mechanics principles is presented to improve the estimate of the equilibrium suction 

in subgrade soils. The model in this analysis approach will allow for a more reliable 
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prediction of soil parameters dependent on suction within the unsaturated zone, such as 

resilient modulus, soil movement, unsaturated permeability coefficient (of diffusivity), shear 

strength, and shear wave velocity. Compared with the existing methods, the advantage of the 

new approach lies in the effect of the diffusion coefficient considered in the development of 

the model. 

• Developing equilibrium suction prediction models from readily available climatic parameters 

(i.e., relative humidity and TMI) and soil parameters. The framework uses the Oklahoma 

Mesonet data and soil physical property database for the Oklahoma Mesonet to evaluate the 

uncertainties associated with different parameters that may affect the equilibrium suction. 

The presented framework uses ridge regression to reduce the effects of sampling variation. 

• Employing satellite remote sensing technology, specifically SAR for ground monitoring, to 

assess the effectiveness of horizontal moisture barriers in controlling subgrade deformation. 

The presented framework combines the persistent scatterers interferometry (PSI) method and 

time series analysis for effective displacement monitoring of time series of SAR data. The 

framework employs a processing chain for monitoring ground displacement using the 

European Space Agency's SentiNel Application Platform and the Stanford Method for 

Persistent Scatterers (StaMPS).
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CHAPTER II 
 

 

ESTIMATING VAN GENUCHTEN DIFFUSIVITY PARAMETER OF UNDISTURBED 

SOILS IN OKLAHOMA 

 

2.1 ABSTRACT 

Accurate estimations of soil water diffusivity are required for defining and forecasting water 

movement in unsaturated soils. Moisture movement through unsaturated soils is controlled by the 

total suction gradient within the soil profile, with moisture migrating from regions of low total 

suctions to regions of high total suctions. Because soil water diffusivity is a fundamental soil 

hydraulic factor, it is critical to accurately measure and parameterize it in order to understand soil 

moisture dynamics and hydrology. 

The study's objective is to establish a well-documented foundation for assessing soil 

suction variations within the so-called moisture active zone or vadose zone. The study utilized a 

supervised method for estimating soil diffusivity five centimeters below the ground surface using 

Oklahoma Mesonet matric suction measurements. The study presents a set of equations for 

estimating van Genuchten diffusivity in Oklahoma soils. The study's findings show that the 

prediction model produced results comparable to those obtained by the one-step pressure outflow 

procedure.



6 

 

2.2 INTRODUCTION 

Reliable estimates of soil water diffusivity are critical for describing and predicting water 

movement in unsaturated soils. Moisture diffusion through unsaturated soils is governed by the 

total suction gradient within the soil profile, with moisture moving from low to high suctions 

(Mitchell 1980). Therefore, soil water diffusivity is regarded as one of the most fundamental soil 

hydraulic parameters (Assouline et al., 1998), and accurate acquisition and parameterization of 

diffusivity are essential for comprehending soil moisture dynamics and soil hydrology (Jarvis et 

al. 1991). 

The Richards Equation (Richards 1931) is widely used to describe fluid flow in 

unsaturated porous media (Hertaeg et al. 2020). By simplifying the Richards Equation in terms of 

the volumetric moisture content (θ) for spontaneous capillary flow become 

𝜕𝜃

𝜕𝑡
= ∇. (𝐷(𝜃)∇𝜃)     (2.1) 

The moisture diffusivity equation and the moisture diffusivity function D(θ) are critical for the 

success of this equation as a viable model for soil moisture flow (Bear and Cheng 2010). 

There are two main approaches to obtaining soil water diffusivity: the first is 

experimental determination, and the second is a derivation from an analytical approach. The 

pressure plate method proposed by (Gardner 1956) and the horizontal infiltration method 

proposed by Bruce and Klute (1963) is the two methods most commonly used in laboratories to 

determine soil water diffusivity properties. These methods rely on measurements of water 

content. Gardner's approach is based on measuring the outflow of water over time from a soil 

specimen subjected to matriculation changes. In the Bruce-Klute method, water is introduced at 

one end of a horizontal soil column, and measurements of water content distribution along a 
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horizontal soil column are taken. These methods are beset by costly, difficult, and/or time-

consuming laboratory procedures and calculations. 

Gardner (1962) 

Gardner (1962) approximate solution to Richards' (1931) equation is the foundation for 

the one-step outflow concept. Assuming that (i) plate and boundary impedance are negligible and 

(ii) water content does not vary significantly with sample depth at any given time during the 

outflow process. Gardner (1962) showed that diffusivity could be calculated directly from the 

instantaneous flow rate, average water content, and dimensions of the sample with the expression. 

𝐷 = −
4𝐿2

𝜋2(�̅�−𝜃𝑓)

𝑑�̅�

𝑑𝑡
     (2.2) 

where D is soil water diffusivity; L is sample length; �̅� is average volumetric water content, 

which is obtained by gravimetric means; and 
𝑑�̅�

𝑑𝑡
 instantaneous outflow rate plotted and evaluated. 

Passioura (1977) 

Passioura (1977) proposed a new method for calculating diffusivity from one-step 

outflow data that can be used in the laboratory on a regular basis. The method of Passioura is 

based on the assumption that the water content change rate is uniform throughout the draining 

column of soil at any given time. Passioura’s procedure determines soil water diffusivity as a 

function of soil water content at position z = L, which is the top end of the soil column. 

𝐷(𝜃𝐿) ≅
𝐿2

2

𝑑𝐹

𝑑𝑊
     (2.3) 

Where 𝐷(𝜃𝐿) is soil water diffusivity at a water content 𝜃𝐿 (i.e., θ at z = L) and L is sample 

length; F is the rate of outflow, and W is the amount of water remaining in the soil at any time. 
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Although the experimental approach is time-consuming and expensive, it is 

unquestionably more exact and dependable for the diffusivity of specific soils. An assortment of 

empirical or semi-empirical models have been developed and revised to fit the discrete measured 

data (Assouline et al. 1998; Hallema et al. 2015). Among them, several models (for example, van 

Genuchten, Brooks and Corey) have clear physical importance and demonstrated their practicality 

for a wide range of soils (Ghanbarian-Alavijeh et al. 2010; Nasta et al. 2013; Sommer and Stöckle 

2010). 

van Genuchten (1980) 

The van Genuchten (1980) equation presented the unique water retention curve for each 

site and depth. 

Θ = [
1

1+(𝛼𝜓)𝑛]
𝑚

    (2.4) 

The parameters include θr (cm3 cm-3), which is the residual volumetric water content (at matric 

potentials ≪ 0); θs (cm3 cm-3), which is the saturated volumetric water content; and α, n, and m, 

which are fitting parameters. α is the inverse of the air-entry value (or bubbling pressure), and n is 

a pore-size distribution index. A typical simplification followed in this study is setting 𝑚 = 1 −
1

𝑛
 

(Schaap et al. 1998). Estimates of four van Genuchten parameters (θs, θr, α, and n) are thus 

required to calculate Θ given matric potential, 𝜓, measured by the heat dissipation sensors. 

van Genuchten describes the diffusivity expression to estimate diffusivity as shown 

below. 

𝐷(Θ) =
𝐾𝑠(1−𝑚)

𝛼𝑚(𝜃𝑠−𝜃𝑟)
Θ(

1

2
−

1

𝑚
) [(1 − Θ

1

𝑚)
−𝑚

+ (1 − Θ
1

𝑚)
𝑚

− 2]  (2.5) 



9 

 

van Genuchten’s expression for diffusivity contains six parameters α, m, n, θs, θr, and Ks. where Θ 

is the normalized water content obtained from the van Genuchten equation, and Ks is the saturated 

hydraulic conductivity. 

Parker et al. (1985) 

Parker et al. (1985) studied the numerical inversion of lab pressure outflow data to learn 

more about the hydraulic behavior during monotonic drying. To more accurately predict transient 

hydraulic behavior, it will be necessary to take wetting phenomena caused by hysteresis in soil 

hydraulic properties. Parker et al. (1985) have compared three sums of squared deviations 

objective functions for parameter estimation using observed data. These observed data include 

(Method I) cumulative outflow with time from initial saturation following a one-step pneumatic 

head increment of 10 m, (Method II) cumulative outflow data supplemented by the measured 

water content at h = -150 m, and (Method III) equilibrium 𝜃(ℎ) data only without transient flow 

measurements. The method I produces satisfactory results in the range of water contents seen in 

the transient experiment. Still, it cannot be reliably extrapolated to lower water contents, 

especially for fine-textured soils. With only minor effects on the predictions at high 𝜃, Method II 

increases the range of validity of predicted properties to low 𝜃. Compared to Methods I and II, 

Method III produces a more accurate description of 𝜃(ℎ), but occasionally at the expense of 

accuracy in K(h) and predictions of transient flow, reflecting the biases present in the various 

objective functions used. 

Wang et al. (2004) 

Wang et al. (2004) developed a diffusivity expression based on hydraulic expressions 

provided by Brooks and Corey (1964) and the assumption of constant water flux proposed by 

Parlange (1971). Wang et al. 2004 used the expression: to estimate the soil water diffusivities 
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using observed data of cumulative infiltration versus time, changes in infiltration rate, and 

wetting front distance with time. 

𝐷 =
𝑘𝑠ℎ𝑑

𝑛(𝜃𝑠−𝜃𝑖)
(

𝜃−𝜃𝑖

𝜃𝑠−𝜃𝑟
)

𝑚−𝑛−1

𝑛
    (2.6) 

where D is soil water diffusivity; ks is the saturated coefficient of permeability; hd is air-entry 

suction; 𝜃𝑠 is saturated water content; 𝜃𝑟 is residual soil water content; 𝜃𝑖 is initial water content; 

m and n are fitting parameters. 

Aubeny and Lytton (2004) 

The soil moisture diffusivity can be calculated indirectly by measuring suction changes in 

a soil column at various locations. The relationship can be used to test the method's accuracy 

(Aubeny and Lytton 2004). 

𝐷 =
𝑘0ℎ0𝛾𝑤

𝑐𝛾𝑑
     (2.7) 

where 𝑘0 is the saturated permeability of the soil, ℎ0 is the suction at which the soil saturates 

(roughly given by the air-entry value), 𝛾𝑤 is the unit weight of water, 𝛾𝑑 is the dry unit weight of 

soil, and 𝑐 is the slope of the suction (in pF) versus the gravimetric water content curve. 

Quan-Jiu et al. (2006) 

Quan-Jiu et al. (2006) devised a simple approach for calculating sorptivity using 

hydraulic diffusivity. Water absorption experiments were performed in a one-dimensional 

horizontal soil column to confirm the relationship between diffusivity and sorptivity. A regression 

of cumulative infiltration against time from water absorption tests was performed on three 

different soils to test the hypothesized function between sorptivity and diffusivity. The theoretical 

relationship for estimating diffusivity and sorptivity (S) is shown in Equation 2.8. 
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𝑆 = 𝑙𝑛
√2

√𝛼+2
+

1

2
𝑙𝑛𝐷𝑠 +

𝛼+2

2
𝑙𝑛𝜃𝑠    (2.8) 

where 𝐷𝑠 is diffusivity constant, and 𝛼 is an empirical parameter. 

Ma et al. (2009) 

Ma et al. (2009) presented an analytical technique based on the assumption of 

exponential flux distribution. They used numerical soils in a wider range of textures to improve 

Wang et al. (2004)'s method. The horizontal absorption equation was determined from the shape 

coefficient of the normalized water content profile using the assumption of exponential flux 

distribution. So Brooks–Corey model parameters were computed from the shape coefficient of 

the normalized water content profile. Soil water diffusivity can be obtained from the soil water 

retention curve and the unsaturated hydraulic conductivity curve. 

𝐷(𝑆) = 𝐷𝑠𝑆𝐿     (2.9) 

where S is effective water saturation distribution using Equation 2.10: 

𝑆 =
𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
     (2.10) 

𝐷𝑠 is saturated soil water diffusivity. Details about this model can be found in the original work 

cited here. 

In this work, a statistical model was proposed to predict D(θ) for representing soils in 

Oklahoma. First, careful data mining exploration was conducted. The primary goal of this level of 

research is to identify any non-random patterns or structures that need to be investigated further. 

Clustering analysis was undertaken to organize the dataset with respect to two significantly 

correlated parameters in the van Genuchten diffusivity equation. Then, a nonlinear least-squares 

analysis was used to fit to train datasets. The accuracy of models was assessed graphically and by 

calculating the root mean square error of test datasets. Additionally, experimental data are 
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presented and compared with the D(θ) function obtained for each model, providing more 

information about the suitability of the methods for the whole range of soil and the correctness of 

the assumptions made. 

2.3 METHOD AND DATA ANALYSIS 

This study collected and evaluated the data obtained from Oklahoma Mesonet from 2000 to 2019. 

The dataset was a massive collection of climate data to assess and analyze. The Oklahoma 

Mesonet system is preferred in this study because the climate data is rigorously monitored and 

controlled. More importantly, the 121 weather stations across the state provide uniformly 

distributed data over short distances. These features allow the Mesonet data to be used, making it 

an ideal platform for developing a predictive model for moisture variations in subgrade soils. 

The Oklahoma Mesonet weather stations are equipped with CSI 229-L heat dissipation 

sensors at depths of 5 cm. The sensors can indirectly measure the matric suctions via heat 

transfer, characterized by measuring the temperature difference. The temperature difference is 

converted into an estimate of the ceramic and soil matric suction using an empirical calibration 

Equation 2.11. The matric suction calibration equation is given by the following equation (Zhang 

et al. 2019). 

|Ψ| =
2083

1+𝑒
−3.35(∆𝑇𝑟𝑒𝑓−3.17)      (2.11) 

 

Where Ψ is soil matric suction (kPa) and  ∆𝑇𝑟𝑒𝑓 is reference temperature differential (°C). 

Equation 2.11 was used in this study to determine surface matric suction at 5 cm depth 

for temperature references obtained from Mesonet Stations. Figure 2.1 shows the mean monthly 

matric suctions for the FAIR station, Major County, Oklahoma, during 2019. 
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Figure 2.1. Mean monthly matric suction at 5 cm depth in FAIR station, Major County, 

Oklahoma (2019) 

The Oklahoma Mesonet soil property database (MesoSoil) includes 13 soil properties 

determined using replicated samples from 545 sites and depth combinations representing 121 

Oklahoma Mesonet stations (Scott et al. 2013). The database contains the percent of sand, silt, 

and clay; the bulk density; the volumetric water content at −33 and −1500 kPa; the van 

Genuchten parameters of residual volumetric water content θr; saturated volumetric water 

content θs (cm3 cm−3), alpha α (kPa−1), and n (unitless); the saturated hydraulic 

conductivity Ks (cm day−1); as well as the matching point conductivity K0 (cm day−1) and the 

empirical parameter L (unitless). This study used the MesoSoil database in the development 

process of a prediction model to estimate the diffusion coefficient (Scott et al. 2013). 

2.3.1. Sample Size and Data Processing 

Oklahoma Mesonet started to collect heat dissipation data at the beginning of 2000, and during 

the past 20 years, more stations have been equipped with these sensors. This study utilized 20 

years of the Mesonet dataset from 2000 to 2019 to calculate soil matric suction. Diffusivity at 

each station was estimated from van Genuchten’s expression using van Genuchten parameters 
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from the Mesosoil dataset and matric suction from an earlier calculation. MATLAB was used to 

calculate the matric suction and diffusivity in this process. Finally, data pooling was conducted to 

have all the results in a single dataset. The number of rows of the pooled dataset was 697,230. 

Table 2.1 summaries of the first 15 rows of the test data. Figure 2.2 demonstrates the measured 

diffusivity versus measured suctions in training data. Figure 2.3 shows the Ks versus clay content 

in the training data. 

Table 2.1. First 15 rows of test data 

Year Theta (predictor) Clay (predictor) Ks (predictor) Diffusivity (response) 

2016 0.001797123 15.3 53 1.5093 

2016 0.001762528 15.3 53 1.5145 

2018 0.001669934 15.3 53 1.5288 

2018 0.001602878 15.3 53 1.5396 

2018 0.001601559 15.3 53 1.5398 

2018 0.001593419 15.3 53 1.5412 

2018 0.001552607 15.3 53 1.5480 

2018 0.00154707 15.3 53 1.5490 

2018 0.001533344 15.3 53 1.5513 

2018 0.000231341 24.1 26.8 1.5523 

2018 0.000229094 24.1 26.8 1.5550 

2018 0.00022881 24.1 26.8 1.5553 

2018 0.000226882 24.1 26.8 1.5577 

2018 0.000225594 24.1 26.8 1.5593 

2018 0.000224462 24.1 26.8 1.5607 
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Figure 2.2. Measured diffusivity versus measured suction in training data 

 

Figure 2.3. Ks versus clay content in training data 

2.3.2. Develop a Diffusivity Prediction Model 

The prediction model was developed to estimate the diffusivity from measured surface suction 

and soil properties. The following predictors were considered in this analysis: 
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• Mean daily measured surface suction (pF) 

• Clay content (%) 

• Ks (cm/s) 

The analysis consists of three steps. First, a clustering analysis was conducted to define a 

group based on clay content and Ks. Clustering of clay and Ks simplify statistical model 

complexity. The second step was to develop a nonlinear model using the clustered training 

dataset to estimate diffusivity. Finally, the prediction error was estimated using the test dataset. 

2.3.3. Cluster Analysis 

Clustering is the most fundamental unsupervised learning problem. It seeks to uncover a structure 

(intrinsic grouping) in a collection of unlabeled data, as do all other issues of this type. Therefore, 

a cluster is a collection of objects that are 'similar' to one another but 'dissimilar' to objects in 

other clusters (Madhulatha 2012). Four representatives of the clustering algorithms are the 

centroid-based cluster analysis (k-means, k-medoid, etc.), connectivity-based clustering 

(hierarchical clustering), distribution-based clustering (Gaussian mixture models), and density-

based clustering (DBSCAN, OPTICS). K-Centroids clustering provides a significant advantage 

over hierarchical cluster clustering. In contrast to hierarchical clustering, centroid-based 

clustering arranges data into non-hierarchical groupings. In K-Centroids clustering, we can 

constrain the algorithm to provide different centroid (similarity) measures (Euclidean, Manhattan, 

Jaccard, and Angle). In return, these different centroid measures allow control of clusters' shape; 

hence, sub-populations can be detected in data with distinctive characteristics. 

The Euclidean measure is rather straightforward as the distance is calculated from the 

cartesian coordinates of the points using the Pythagorean theorem. Equation 2.12 shows 

Euclidean distance.  
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𝐷(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1     (2.12) 

Manhattan distance refers to the distance between two vectors if they can only move at 

right angles. There is no diagonal movement involved in calculating the distance. Equation 2.13 

demonstrates the Manhattan distance. 

𝐷(𝑥, 𝑦) = ∑ |𝑥𝑖 − 𝑦𝑖|𝑘
𝑖=1     (2.13) 

Pearson correlation is a metric used to calculate the similarity and diversity of sample 

sets. The metric measures how highly correlated two variables are and is measured from -1 to +1. 

Similar to the modified Euclidean Distance, a Pearson Correlation Coefficient of 1 indicates that 

the data objects are perfectly correlated. In this case, a score of -1 means that the data objects are 

not correlated. Equation 2.14 shows Pearson correlation distance. 

𝐷(𝑥, 𝑦) =
∑ (𝑥𝑖

𝑛
𝑖=1 −�̅�)(𝑦𝑖−�̅�)

√∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1 √∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1

    (2.14) 

The k-medoids algorithm (Kaufman, L., and P. Rousseeuw, 1987) is a clustering 

technique similar to the k-means and medoid shift algorithms. The k-means and k-medoids 

methods are both partitional, attempting to reduce the distance between points labeled as 

belonging to a cluster and a point designated as the cluster's center. Unlike the k-means 

algorithm, k-medoids select data points as centers (medoids) and work with any distance metrics 

between data points. A silhouette width is a convenient tool for calculating k. K-medoids are 

more resistant to noise and outliers than k-means because they minimize a sum of pairwise 

dissimilarities rather than the sum of squared Euclidean distances. A medoid is an object in a 

cluster whose average dissimilarity to all the objects in the cluster is minimized, i.e., it is the 

cluster's most centrally located point. 
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The Partitioning Around Medoids (PAM) technique is the most frequent implementation 

of k-medoid clustering. PAM is divided into two stages: BUILD and SWAP. The algorithm seeks 

a good set of initial medoids during the BUILD phase, and during the SWAP phase, all possible 

swaps between the BUILD-medoids and the observations take place to ensure that the objective is 

not reduced further (Struyf et al. 1997). 

The fundamental concept of PAM includes: 

1. Find a set of k Medoids (k refers to the number of clusters, and M is a collection of 

medoids) from the data points of size n (n being the number of records). 

2. Using any distance metric (e.g., Euclidean, Manhattan, etc.), try and locate Medoids that 

minimize the overall distance of data points to their closest Medoid. 

3. Finally, swap Medoid and non-Medoid pairs that reduce the loss function L among all 

possible k(n-k) pairs. The loss function is defined as: 

𝐿(𝑀) = ∑ 𝑚𝑖𝑛𝑚∈𝑀𝑑(𝑚, 𝑥𝑖)𝑛
𝑖=1     (2.15) 

Gaussian Mixture Models are probabilistic models used to represent normally distributed 

subpopulations within a larger population. Two types of values are used to parameterize a 

Gaussian mixture model: the mixture component weights and the component means and 

covariances (for the multivariate case). If the number of components is known, expectation 

maximization (EM) is the most widely used strategy to estimate the parameters of the mixture 

model. 

The EM algorithm consists of two steps, an E-step or Expectation step and an M-step or 

Maximization step. Let’s say we have some latent variables 𝛾 (which are unobserved and denoted 

by the vector Z below) and our data points X. Our goal is to maximize the marginal likelihood of 

X given our parameters (denoted by the vector θ).  
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The E-Step: Gaussian Mixture distribution as a combination of Gaussians with weights equal to 

π as below. Where K is the number of Gaussians we want to model. 

𝑝(𝑥) = ∑ 𝜋𝑘𝑁(𝑥|𝜇𝑘 , Σ𝑘)𝐾
𝑘=1     (2.16) 

We can calculate the posterior distribution using the formula below. Equation 2.17 is the 

Bayes rule, where π is the prior weights, and the likelihood is normal. 

Υ(𝑧𝑛𝑘) =
𝜋𝑘𝑁(𝑥𝑛|𝜇𝑘,Σ𝑘)

∑ 𝜋𝑗𝑁(𝑥𝑛|𝜇𝑗,Σ𝑗)𝐾
𝑗=1

    (2.17) 

The M-Step: After obtaining our posterior, we estimate the parameters of each Gaussian given 

by the equations below and then evaluate the log-likelihood. This process is then repeated until 

convergence is reached. Equations 2.8 through 2.9 are the mean of the Gaussians, the covariance 

of the Gaussians, weights, the sum of responsibilities in each Gaussian k, and marginal 

likelihood. 

𝜇𝑘
𝑛𝑒𝑤 =

1

𝑁𝑘
∑ Υ𝑁

𝑛=1 (𝑧𝑛𝑘)𝑥𝑛     (2.18) 

∑ =𝑛𝑒𝑤
𝑘

1

𝑁𝑘
∑ Υ𝑁

𝑛=1 (𝑧𝑛𝑘)(𝑥𝑛 − 𝜇𝑘
𝑛𝑒𝑤)(𝑥𝑛 − 𝜇𝑘

𝑛𝑒𝑤)𝑇   (2.19) 

𝜋𝑘
𝑛𝑒𝑤 =

𝑁𝑘

𝑁
      (2.20) 

𝑁𝑘 = ∑ Υ(𝑧𝑛𝑘)𝑁
𝑛=1      (2.21) 

ln 𝑝(𝑋|𝜇, Σ, 𝜋) = ∑ ln{∑ 𝜋𝑘𝑁(𝑥𝑛|𝜇𝑘, Σ𝑘
𝐾
𝑘=1 }𝑁

𝑛=1     (2.22) 

The DBSCAN algorithm views clusters as areas of high density separated by low-density 

areas. DBSCAN identifies clusters of any shape instead of k-means, which assumes clusters are 

convex in shape. The concept of core samples, which are samples that are in high-density areas, is 

essential to the DBSCAN. A cluster is thus a collection of core samples that are close to one 
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another (as measured by some distance measure) and a set of non-core samples that are close to a 

core sample (but are not themselves core samples). 

2.3.4. Non-Linear Model 

A nonlinear model is any model of the basic form. 

𝑌 = 𝑓(𝑋; 𝛽) + 𝜖    (2.23) 

where 𝜖 is residual with zero mean error and 𝑓(𝑋; 𝑝) = 𝐸(𝑦|𝑥) is non-linear with regard to the 

unknown parameters, β = (β0, β1, ..., βp). 

For each cluster G, the following nonlinear model was fitted to the current dataset: 

𝑓(𝑥) = 𝑒𝛽0+𝛽1𝑥     (2.24) 

with 𝛽0 and 𝛽1 being parameters, X is theta, and y is diffusivity. 

Non-linear least squares problems are generally solved by the Gauss-Newton algorithm 

under the assumption that the solution is unique, equivalent to minimizing the sum of squared. 

Defined 

𝑆𝑆𝐸(𝛽0, 𝛽1) = ∑ (
𝑖

𝑦𝑖 − 𝑒𝛽0+𝛽1𝑥𝑖)2 

However, a simpler approach is to focus on the fact that. 

𝐸(log(𝑦|𝑥)) = 𝛽0 + 𝛽1𝑥 

and estimate 𝛽0 and 𝛽1 by minimizing. 

∑ (log 𝑦𝑖 − (
𝑖

𝛽0 + 𝛽1𝑥𝑖))2 
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If 𝑉𝑎𝑟(𝜖) is small, both approaches will yield similar estimates. Further, least squares estimates 

are simpler and avoid an iterative procedure. Because our methodology is already complex and 

results indicate the variance is indeed small, we utilize these simpler estimates in this study. 

2.3.5 Accuracy Assessment 

The reliability of the fitting technique was assessed graphically and using the Root Mean Square 

Error (RMSE). RMSE is computed as follows: 

𝑅𝑀𝑆𝐸 = √
(𝑦𝑖−𝑦�̂�)2

𝑛𝑡𝑜𝑡
    (2.26) 

Where ntot is the number of observations, �̂�𝑖 and 𝑦𝑖 are the estimated and measured diffusivity, 

respectively. 

2.3.6 Cross-Validation 

First, we divide the data set into training data and validation data. Here 70% of the data is 

training, and 30% is validation. 10-fold cross-validation is used to identify the optimal number of 

clusters using the training data. That is, we divide the training data into 10 datasets. 

For 𝑘 = 1, 2, 3, … , 𝐾 clusters, 𝛽0 and 𝛽1 are estimated for each cluster sing 9 of the folds. 

Y is then predicted for the 10th fold, and the test means the squared error is computed. This 

process is repeated 10 times, once for each fold, and the MSEs are averaged. Finally, for a given 

clustering method, k can be chosen to minimize this cross-validation estimate of the prediction 

error. A model (�̂�) is then validated by predicting the validation set and computing the RMSE. 
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2.4 RESULTS 

First, A cluster partitioning method's primary goal is to construct clusters in such a way that the 

total intra-cluster variance (also known as a total within-cluster variation or total within-cluster 

sum of squares) is minimized. By reducing the total within-cluster variance, observations are 

partitioned into k clusters. The kth cluster's within-cluster variation is the sum of all pairwise 

squared Euclidean distances between observations in the kth cluster divided by the total number 

of observations in the kth cluster (James et al. 2013). Figure 2.4 depicts the change in total 

between-cluster and total within-cluster ratios for various k clusters. Figure 2.5 shows AIC 

statistics for different k clusters. The result of variance is explained, and AIC suggests that k 

between 5 and 8 is a reasonable candidate. To further verify the optimal k and the clustering 

method for this study, a cross-validation approach was used to find the k. 

Recall that six clustering techniques were considered the cross-validation RMSEs for the 

nonlinear model, with k ranging from 3 to 16 clusters, which was computed. Figure 2.6 

summarizes the results. Observe that DBSCAN and Kmean clustering at seven clusters provide 

the least test RMSEs when compared to the other four clustering methods. It should be noted that 

Kangle and Kmedoid had comparable test RMSEs when k was 16; however, since the goal was to 

select a reasonably parsimonies model, these models were not considered further. This study used 

Kmean with seven clusters for developing a prediction model. Table 2.2 shows the statistics for 

clay content and Ks by cluster. 
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Figure 2.4. The total within-cluster variation for k clusters 

 

Figure 2.5. The AIC for k clusters 
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Figure 2.6. Optimal k clusters selection using 10-fold cross-validation 

Table 2.2. Descriptive statistics of clay content and Ks by cluster 

Class N clay content (%) Ks (cm day-1) 

  Min Max Mean SD Min Max Mean SD 

G1 79,061 31 49 37 5 3 111 35 37 

G2 8,049 24 34 25 3 225 323 238 33 

G3 24,526 6 17 13 3 356 495 408 54 

G4 234,229 20 30 24 3 4 78 23 16 

G5 233,506 8 20 16 3 2 94 27 21 

G6 113,833 3 16 11 3 22 219 117 51 

G7 4,026 8 8 8 0 765 765 765 0 

 

A nonlinear model was fitted to each class in the training set. The training set and test set, 

and predictive residual mean squared error were calculated. The cross-validation and test RMSEs 

established how well a given statistical learning procedure could be predicted to perform on 
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independent data. Table 2.3 summarizes the fit statistics, cross-validation RMSE, and test RMSE 

for different classes. Figure 2.7 visualizes the predicted lines for different clusters. The fit 

summary statistics show that the nonlinear model fits optimally on the train and test dataset. The 

low test RMSEs demonstrate that the nonlinear model established a reasonable relationship 

between predictor and response variables. 

Table 2.3. nonlinear least-squares models fit summary 

Class Coefficients CV RMSE Test RMSE 

  a b     

G1 0.063936 0.0264150 1.06633 1.06343 

G2 0.052633 0.0263530 0.11528 0.11750 

G3 0.063840 0.0119470 1.70692 1.69251 

G4 0.224140 0.0202910 0.88986 0.89628 

G5 0.848200 0.0147300 1.12876 1.12861 

G6 0.063808 0.0233430 1.00101 1.00223 

G7 0.069184 0.0083189 0.00687 0.00686 

 

Figure 2.7. Predicted nonlinear models by cluster 
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Recall that a nonlinear model was fitted to each cluster in the training sets. These models 

were used to predict the holdout data and get each cluster's predictive residual mean squared 

error. Table 2.3 summarizes fit statistics, training RMSE, and holdout RMSE for different classes. 

Figure 2.7 visualizes the predicted lines for different clusters. The fit summary statistics show that 

the holdout RMSEs is reasonable. Especially for some clusters. It is not more than 1.7 and is as 

small as 0.006. We also see that the training and test RMSE are nearly identical. That is, 

overfitting is not occurring. 

A comparison was made between an independent dataset from the experimental study 

(Parker et al. 1985). Table 2.4 summarizes the soil properties of the four samples. Comparisons of 

diffusivity measured by one-step pressure outflow tests with those derived from estimated 

parameters using the nonlinear least-squares model are shown in Figure 2.8. There is good 

agreement between calculated and measured diffusivity values for Clay and Silt loam soils. A 

slight difference was observed between predicted and measured diffusivity for Sandy clay loam at 

low matric suction (< 2.5 pF). The 1:1 scale plot also showed that calculated and measured 

diffusivity followed similar trends with no noticeable bias Figure 2.8. 

The proposed statistical model was compared with the analytical model developed by Ma 

et al. (2009) based on the numerical simulation using HYDRUS-1D. Table 2.5 shows soil 

properties used in the numerical simulation study (Ma et al. 2009). Table 2.6 summarizes the 

comparison between the current study, HYDRUS, and the Ma et al. (2009) model. The results 

indicated that the analytical method predicted greater diffusivity than HYDRUS, and the 

prediction model has better agreement with HYDRUS. 
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Table 2.4. Characteristics of soil (Parker et al. 1985) 

Soil Particle size distribution 
 

Fitting parameters* 
 

Sand Silt Clay 
 

Ks α n θr θs 

Sandy 

loam 

61 24 15 
 

7.0 × 10-5 1.3 1.51 0.18 0.36 

Silt loam 28 56 15 
 

1.5 × 10-3 3.4 1.39 0.16 0.39 

Sandy 

clay loam 

56 18 26 
 

1.1 × 10-4 2.2 1.22 0.2 0.4 

Clay 21 31 48 
 

2.2 × 10-7 0.2 1.49 0.4 0.59 

* Units of Ks in cm s-1, α in m-1, θs and θr in m3 m-3, n dimensionless. 

 

 

Figure 2.8. Comparison of measured diffusivity (Parker et al. 1985) and predicted 

diffusivity using the nonlinear model 
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Table 2.5. Soil properties used in the numerical simulation (Ma et al. 2009) 

Soil Fitting parameters* 

# Ks L n θr θs 

2 1.69 × 10-3 4.11 0.474 0.035 0.401 

4 3.67 × 10-4 6.55 0.22 0.027 0.434 

9 4.67 × 10-5 8.62 0.151 0.04 0.432 

* Units of Ks in cm s-1, θs and θr in m3 m-3, n dimensionless. 

 

Table 2.6. Comparison of estimated diffusivity and improved method 

Soil 
HYDRUS-1D 

  
Estimated parameters 

  
Estimated parameters 

Ma et al. (2009) Ma et al. (2009) (Current study) 

  Matric Potential Diffusivity   Diffusivity   Diffusivity 

 pF cm2 s-1  cm2 s-1  cm2 s-1 

2 1.669 3.21 × 10-3  9.71 × 10-6  3.78 × 10-3 

4 2.736 1.68 × 10-4  3.73 × 10-3  2.43 × 10-4 

9 4.090 1.01 × 10-5   4.48 × 10-4   8.56 × 10-6 

 

2.5 CONCLUSION 

The most extensively used soil-water diffusivity model is the van Genuchten model. This study 

proposes a set of equations for estimating the van Genuchten diffusivity for representing soils in 

Oklahoma. Clustering is a flexible, continuous, and automatic way to group key parameters, clay 

content, and saturated permeability coefficient. The nonlinear model technique produced findings 

comparable to those obtained by the one-step pressure outflow procedure. Determining the 

diffusivity by the nonlinear least-squares method is simple and relatively quick and can be carried 

out much easier for practitioners. It is theoretically sound and provides reasonable results with an 

acceptable degree of certainty and robustness. 
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CHAPTER III 
 

 

EQUILIBRIUM SUCTION PREDICTION MODEL FOR SUBGRADE SOILS IN 

OKLAHOMA 

 

3.1 ABSTRACT 

A rational method for estimating soil suction variations within the so-called moisture active or 

vadose zone is required. Within the unsaturated zone, a soil suction envelope is defined by the 

maximum and minimum suctions at the ground surface (i.e., the suction amplitude), equilibrium 

suction, and depth to the equilibrium (or constant) suction. This paper presents a numerical model 

for predicting equilibrium suction that considers the diffusion coefficient's effects and uses 

surface field suction measurements. The rational attenuation function in this study represents the 

rate of suction change within the unsaturated zone. The model can predict the equilibrium suction 

in response to changes in the subgrade moisture regime. The geographic information system 

(GIS) platform was used to create contour maps of Oklahoma's equilibrium suction values. In 

addition, the paper presents a reliable statistical-based equilibrium suction prediction model based 

on readily available parameters such as Thornthwaite moisture index (TMI), clay content, and 

relative humidity. 
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3.2 INTRODUCTION 

Seasonal variations in environmental factors, such as moisture content, can significantly impact 

subgrade performance. More than any other environmental factor, Moisture directly affects 

subgrade hydromechanical properties (Bulut et al. 2013; Perera et al. 2004; Puppala et al. 2009; 

Zapata et al. 2007). For instance, variations in moisture content have a significant impact on the 

state of stress and, as a result, the modulus of the subgrade (Gu et al. 2014; Khoury and Zaman 

2004; Liang et al. 2008; Luo et al. 2017; Oloo 1998; Wolfe and Butalia 2004; Zhang et al. 2019), 

permeability (Huang et al. 1998; Mabirizi and Bulut 2011), volume change (Adem and Vanapalli 

2015; Fredlund and Houston 2013), shear strength (Vanapalli et al. 1996), and shear wave 

velocity (Dong and Lu 2016; Ngoc et al. 2020). Compacted soils' hydraulic and mechanical 

behavior should also be interpreted in unsaturated soil mechanics, with suction serving as the 

primary stress-state variable (Banerjee et al. 2020; Han et al. 2017). As a result, determining the 

long-term hydromechanical properties of subgrade soils requires a realistic estimate of suction 

distribution beneath lightweight structures such as pavements. 

The Enhanced Integrated Climatic Model (EICM), a component of the current 

AASHTOWare Pavement ME, is critical in defining the short and long-term pavement material 

properties used in the design guide. Water and heat flow through pavement layers as a result of 

climatic and moisture boundary conditions above and below the ground surface in pavement 

structures are analyzed by the EICM. Hourly climate data is one of the most critical inputs to the 

EICM. These are used to forecast temperature and moisture distribution in the pavement over 

time and depth. However, in most cases, these climate data are limited in number and region 

within each state and thus cannot represent site-specific climate information (Breakah et al. 2011; 

Bulut and Javid 2019). 
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Furthermore, EICM relies extensively on the ambient climatic condition (i.e., 

groundwater table depth) to determine the subgrade's moisture content and related suction. If the 

water table data is unavailable or the depth of the water table exceeds 7 m, this model will 

provide erroneous suction estimates (Saha et al. 2019). Previous studies have indicated that, in 

addition to the groundwater table, other critical components (e.g., precipitation, 

evapotranspiration, field capacity, and so on) influence the suction profile (Coleman 1965; 

Guymon et al. 1993; Russam and Coleman 1961). 

Suction is composed of two components: matric and osmotic pressures. Matric or 

capillary suction is caused by the capillary phenomenon, which is caused by the surface tension 

of water. Osmotic suction occurs when there are dissolved salts in water. The matric suction in 

the subgrade soil reaches an equilibrium condition at a specific depth after a certain period of 

time following construction (i.e., active moisture zone) (Aitchison 1965; Basma and Al-Suleiman 

1991). 

Despite the universal acceptance of the importance of past development history on future 

wetting-induced soil movements, computational approaches usually fail to fully account for the 

effects of development on the soil's equilibrium (final) stress states (change in stress state). 

Incorrect assessment of the impacts of boundary conditions on equilibrium suction leads to 

erroneous predictions of soil heave or collapse, as well as substantial variability in heave or 

collapse estimates among engineering firms/geotechnical professionals (Vann 2019). 

A climatic index is determined by rainfall and evapotranspiration frequency analysis and 

is related to the soil environment. Thornthwaite Moisture Index (TMI) (Thornthwaite 1948) and 

Penman Index (Penman 1963) are two climatic indices created to correlate with different yearly 

moisture balance indicators. These indices were discovered to be connected to the depth of the 

active moisture zone as well as the equilibrium suction. Gay (1995) used meteorological data 
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from 12 Texas sites to create a predictive model between TMI values and mean moisture depth. 

The Post Tensioning Institute (PTI 2004) and the Australian standard AS2870 (2011) developed a 

correlation between subgrade equilibrium suction and TMI (AustralianStandard 2011). 

There are three approaches to estimating soil suction based on the results of conventional 

and widely used testing procedures. The first method is associated with soil suction "sign-posts," 

which assess soil suction based on varying water contents and their variance from conventional 

index tests. The second approach is directly related to SWCC fitting curve correlations. Much 

effort has been expended on SWCC fitting parameters to arrive at relevant relationships that can 

be utilized to estimate soil suction (Pasha et al. 2016). Recently, Pasha et al. (2017) presented a 

model that captures the WRC volume change dependency without incorporating new soil 

parameters. While "fitting parameter" methods have great analytical merits, they are highly 

complicated and, as a result, are not used in practice. The third approach is known as statistical 

relationships. Statistical relationships include, but are not limited to, relations between suction, 

TMI, commonly completed index property tests, gradation to a certain extent, and any 

combination of such values (Vann 2019). 

Witczak et al. (2006) proposed a statistical model based on P200 and wPI to predict the 

equilibrium suction of subgrade soil, where the first predictor is the material passing through no. 

200, and the second term is the interaction between P200 and the plasticity index (PI). The model 

was developed using a sample size of highly variable parameters, yet, not large enough to predict 

the equilibrium suction accurately. Vann and Houston (2021) used measured data from over 40 

geotechnical studies to develop an improved second-order polynomial regression model between 

the 30-year TMI and equilibrium soil suction. However, the high standard error and the relative 

flatness of the curve relating equilibrium suction to TMI indicate a relatively weak relationship 

(Vann and Houston 2021). These studies found an association between equilibrium soil suction 

and Thornthwaite's moisture index (TMI); however, these suction correlations are highly variable. 
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The purpose of this study is to build a prediction model of equilibrium suction that takes 

into account a range of influence parameters such as TMI, clay content, and relative humidity. 

The primary goal of this paper is to present a statistical model for estimating equilibrium suction 

based on TMI and climatic variables. To generate equilibrium suction contour maps for 

Oklahoma, a numerical approach is used. The sections that follow explains how the TMI contour 

map is created using a GIS platform. This contour map provides the necessary input data for 

calculating the equilibrium suction of subgrade soil. A generalized linear model (GLM) and ridge 

regression were created and tested using a validation-based method. The bootstrap method was 

also used to validate the model's prediction accuracy. Finally, a ridge regression model was 

developed to further shrinks all regression coefficients of the GLM model. In terms of fit and test 

MSE, the results show that the ridge regression model outperforms the generalized linear model. 

3.3 DEVELOPMENT OF A GIS-BASED CONTOUR MAP OF TMI 

The TMI is a relative measure of the moisture level of a region that Thornthwaite initially 

introduced in 1948. The entire procedure is computationally demanding and necessitates soil and 

moisture storage information that may not be readily available in many locations. Many 

additional approaches for calculating TMI values have been proposed over the years. 

Thornthwaite and Mather (1955) modified the original TMI method and used a reasonably simple 

model to calculate adjusted potential evapotranspiration. Due to its simplicity, the technique has 

been widely used (Bhagat 2014; Fityus et al. 1998; Karunarathne et al. 2016; Legates and 

Junghenn 2018; McKeen and Johnson 1990; Sun et al. 2017; Yue and Bulut 2014). 

 Witczak et al. (2006) proposed a revised TMI equation based on the simplified 

Thornthwaite and Mather (1955) technique for use in the Mechanistic-Empirical Pavement 

Design Guide (MEPDG). Olaiz et al. (2018) recently conducted a comparison study between the 

four different TMI calculation processes developed from 1948 to 2006, Thornthwaite and Mather 



34 

 

(1955); Thornthwaite (1948); Willmott and Feddema (1992); and Witczak et al. (2006) and 

discovered that the model developed by Witczak et al. (2006) is comparable to the original TMI 

calculation process. As a result, this study used Witczak's model to calculate the TMI for 

Oklahoma. The following section provides a complete overview of the method for creating the 

TMI map on the GIS platform. 

 The GIS-based TMI contour map used in this study was created using the Oklahoma 

Mesonet dataset's precipitation and monthly average temperature. The Oklahoma Mesonet is a 

network of around 121 automated meteorological stations that send current weather and soil 

moisture conditions to a centralized computer facility every 5 minutes (Oklahoma Climatological 

Survey, climate.ok.gov). In the United States, no comparable network collects climatic data 

across small distances (Illston et al. 2008). One of the critical goals of the Mesonet network was 

to guarantee that each station location represented as much of the county as feasible. As a result, 

Mesonet station site sites must meet several common requirements for meteorological and 

environmental purposes. Figures 3.1 and 3.2 depict the annual average precipitation (P) and 

temperature contour map of Oklahoma in the GIS platform for 2019. 

Using Equation 3.1, the adjusted potential evapotranspiration 𝑃𝐸𝑇𝑖 for the month, i is 

calculated. 

𝑃𝐸𝑇𝑖 = 𝑒𝑖(
𝐷𝑖𝑁𝑖

30
)     (3.1) 

where 𝐷𝑖 is McKeen and Johnson's (1990) day length correction factor for a month i; 𝑁𝑖 is the 

number of days in the month i and 𝑒𝑖  is the uncorrected potential evapotranspiration (cm) for the 

month i calculated as 

𝑒𝑖 = 1.6(
10𝑡𝑖

𝐻𝑦
)𝑎      (3.2) 
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where 𝑡𝑖 denotes the average monthly temperature in degrees Celsius, and 𝐻𝑦 denotes the annual 

heat index, calculated by adding the 12 monthly heat index values. Each month's heat index is 

calculated as follows. 

ℎ𝑖 = (0.2𝑡𝑖)1.514     (3.3) 

where 𝑎 is a coefficient calculated as follows 

𝑎 = 6.75 × 10−7𝐻𝑦
3 − 7.71 × 10−5𝐻𝑦

2 + 0.017921𝐻𝑦 + 0.49239  (3.4) 

The average annual potential evapotranspiration (PE) was calculated by 𝑃𝐸𝑇𝑖 summing over 12 

months, as shown below. The unit of PE is centimeters. 

𝑃𝐸𝑇𝑖 summing over 12 months yielded the average yearly potential evapotranspiration (PE), as 

shown in Equation 3.5. 

𝑃𝐸 = ∑ 𝑃𝐸𝑇𝑖
12
𝑖=1      (3.5) 

Figure 3.3 depicts the calculated PE map of Oklahoma on the GIS platform for 2019. 

Finally, the TMI value is calculated using Witczak et al. (2006) equation given as 

𝑇𝑀𝐼 = 75 (
𝑃

𝑃𝐸
− 1) + 10     (3.6) 

The contour map created using the Witczak et al. (2006) method is shown in Figure 3.4. 
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Figure 3.1. GIS map of the average annual precipitation in 2019 

 

Figure 3.2. GIS map of the temperature for 2019 
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Figure 3.3. GIS map of the average annual potential evapotranspiration (2019) 

 

Figure 3.4. TMI contour map of Oklahoma (2019) 
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It is common practice to report the mean TMI based on 20 years or more extended 

periods. During this study project, the annual TMI was computed for 116 stations between 1997 

and 2019, and univariate analysis was carried out on a sample size of 2784 observations. The 

histogram for the standard deviation of annual TMI for each station is presented in Figure 3.5. 

The histogram shows the high variability of annual TMI from year to year. In this dataset, the 

mean, standard deviation was 31, which indicates the average distance between the annual TMI 

and mean annual TMI for each station. Therefore, this study adopted the annual TMI for the 

correlation analysis between the TMI and equilibrium suction. The following section discusses a 

numerical approach to determining the soil's equilibrium suction. 

 

Figure 3.5. Histogram of the standard deviation of annual TMI in Oklahoma 

3.4 A Numerical Model To Determine Equilibrium Suction 

A Numerical Model was built to predict equilibrium suction using Mitchell's (1980) diffusion 

equation and a numerical solution presented by Javid and Bulut to estimate the diffusion 

coefficient. According to Mitchell, suction change related to climate, drainage, and site cover is a 
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periodic function of time. It can be calculated by solving the diffusion equation for this boundary 

condition. At any depth y, the suction can be expressed as 

𝑢(𝑦, 𝑡) =  𝑈𝑒 + 𝑈𝑜𝑒
−√

𝑛𝜋

𝛼
𝑦

cos (2𝜋𝑛𝑡 − √
𝑛𝜋

𝛼
𝑦)    (3.7) 

Where 𝑈𝑒 represents equilibrium suction below the moisture active zone depth [pF (log kPa)], 𝑈𝑜 

represents suction variation amplitude, and n represents the number of suction cycles per second 

(1 year = 365×24×60×60 seconds). Equation 3.7 is a function of the diffusion coefficient; α and 

the suction reduce exponentially as depth increases. 

The influence of climate change can be depicted by imposing a random suction state. A 

Fourier series can be computed for any arbitrary state of suction as a function of time 𝑢(𝑜, 𝑡) and 

for any periodic function with period 2𝑝 =
1

𝑛
. As a result, the total effect of 𝑢(𝑦, 𝑡) equals the 

sum of all partial wave effects. 

𝑢(𝑦, 𝑡) =  
𝑈𝑜

2
+ 𝑈1 e−𝑦√𝑛𝜋

𝛼⁄  cos (𝑛2𝜋𝑡 − 𝑦√𝑛𝜋
𝛼⁄ ) 

+𝑈2 e
−𝑦√2𝑛𝜋

𝛼⁄
 cos (2𝑛2𝜋𝑡 − 𝑦√2𝑛𝜋

𝛼⁄ ) + ⋯ 𝑒𝑡𝑐. (3.8) 

Where y is the measured suction depth and 𝑈0, 𝑈1, 𝑈2 … . 𝑒𝑡𝑐. are the Fourier coefficients 

calculated using Equation 3.9. In this study, an eight terms Fourier series was fitted to time series 

data. 

𝑈𝑚 =
2

𝑃
∫ 𝑢(𝑜, 𝑡) cos (

2𝑚𝜋𝑡

𝑝
) 𝑑𝑡, 𝑚 = 0, 1, 2 … , 8

𝑝

0
   (3.9) 

Fourier coefficients can therefore be represented over a period of 12 months as 

𝑈𝑚 =  
2

12
[∫ 𝑆1 𝑐𝑜𝑠

𝑚𝜋𝑡

6
𝑑𝑡 + ∫ 𝑆2 𝑐𝑜𝑠

𝑚𝜋𝑡

6
𝑑𝑡 + ⋯ + ∫ 𝑆12 𝑐𝑜𝑠

𝑚𝜋𝑡

6
𝑑𝑡

12

11

2

1

1

0
]  (3.10) 
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Where monthly averages of the surface suction are 𝑆1, 𝑆2, … , 𝑆12. 

The Mitchell (1980) formulation for estimating suction profiles was utilized in this 

research to estimate soil suction. Mitchell made several assumptions in simplifying Richards' 

equation for unsaturated flow. Mitchell, in particular, assumed that the soil's hydraulic 

conductivity decreased linearly with the log of suction (pF) and that the soil-water characteristic 

curve (SWCC) varied linearly with the log of suction. These two simplifying assumptions imply 

that volume change dependency of suction is not taken into account, and the diffusion coefficient 

(a function of both the slope of the SWCC and the soil vs. log suction) remains constant. 

According to research studies, Mitchell's solutions appear comparable with the gathered field data 

(Lytton 1994; Vann 2019). 

3.4.1 Calculation of the Diffusion Coefficient 

The diffusion coefficient (α) in unsaturated soils governs the depth of the active moisture zone 

(i.e., the depth of substantial seasonal moisture changes) (Aubeny et al. 2003; Mabirizi and Bulut 

2010); thus, it is an essential factor in determining. In this study, a grid search method was 

deployed to estimate the diffusion coefficient that represented the actual field behavior of the 

soils by using the in-situ surface suction measurement. In the back-calculating process, a grid of 

diffusion coefficients ranging from 2×10-3 to 10-5 cm2/s was created, representing the minimum 

and maximum nominal values for the diffusion coefficient from previous studies (Lambe and 

Whitman 1991; Lytton 1994; McKeen and Johnson 1990). The maximum iteration number k was 

19901. The precision criteria were the absolute difference between a fitted surface suction from 

Equation 3.8 and a measured suction at the same depth was less than 0.001pF. 

The procedure is repeated for the next value of the diffusion coefficient. This iterative 

procedure was repeated for all possible diffusion coefficient values. Finally, the suction profiles 

for each site and month could be calculated using monthly surface suction measurements and 



41 

 

diffusion coefficient values. Because diffusion is a time-dependent phenomenon and diffusion 

coefficient is a site-dependent parameter (McKeen and Johnson 1990), the numerical modeling 

was found to be a reasonable representative estimate of the diffusion coefficient at any specified 

time for which the surface suction was measured (Javid and Bulut 2019). 

3.4.2 Calculation of the Matric Suction in Subgrade Soil 

The Oklahoma Mesonet meteorological stations have CSI 229-L heat dissipation sensors at 

depths of 5 cm, 25 cm, and 60 cm. The sensors can indirectly measure matric suctions by 

detecting temperature variations, described as heat transfer. Only 70 Oklahoma Mesonet stations 

are equipped with CSI 229-L at depths of 25 cm and 60 cm, and there are several missing 

measurements at depths of 25 cm and 60 cm throughout the year. As a result, this study did not 

include measures of suctions at these depths. The temperature difference is used to calculate the 

ceramic and soil matric suction using an empirical calibration equation. The following equation 

(Zhang et al. 2019) gives the matric suction calibration Equation 3.11 

|ψ| =
2083

1+𝑒
−3.35(∆𝑇𝑟𝑒𝑓−3.17)     (3.11) 

Where ∆𝑇𝑟𝑒𝑓  is the reference temperature differential (°C), and 𝜓 is the soil matric suction (kPa). 

For temperature references acquired from Mesonet Stations, Equation 3.11 was utilized 

to calculate surface matric suction at 5 cm depth. Figure 3.6 shows the mean monthly matric 

suction for the FAIR station in Major County, Oklahoma, in 2019. 
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Figure 3.6. Mean monthly matric suction at 5 cm depth in FAIR station, Major County, 

Oklahoma (2019) 

3.4.3 Calculation of the Equilibrium Suction 

The equilibrium suction at any Mesonet station can be determined by inspecting the suction 

profile. The suction profile was calculated using a Mitchell model. The suction at a convergence 

depth was used to determine the equilibrium suction for a specific site. The convergence, defined 

as the absolute difference between wet and dry envelopes, was less than 0.01 pF. Figure 3.7 

depicts suction profiles at the FAIR station for surface suction measurement at 5 cm from March 

to October 2019. The equilibrium suction at the FAIR station in 2019 was found to be 2.25 pF. 
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Figure 3.7. Suction distribution profile for measured suction at 5 cm depth at FAIR station, Major 

County, Oklahoma (2019) 

The numerical model facilitates the calculation of the equilibrium suction for all counties 

in Oklahoma. The geographic information system (GIS) platform was used to create contour 

maps of the equilibrium suction values for Oklahoma from 2011 to 2019. Because of space 

limitations, only contour maps from 2016 to 2019 are shown in Figures 3.8 to 3.11. Two 

statistical models were developed to estimate the equilibrium suction from meteorological factors 

and soil types and simplify the calculation process. The following section discusses this 

relationship and its evolution. 
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Figure 3.8. GIS-based contour map of equilibrium suction in Oklahoma 2016 

 

Figure 3.9. GIS-based contour map of equilibrium suction in Oklahoma 2017 
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Figure 3.10. GIS-based contour map of equilibrium suction in Oklahoma 2018 

 

Figure 3.11. GIS-based contour map of equilibrium suction in Oklahoma 2019 
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3.5 DEVELOPMENT OF PREDICTION MODELS FOR EQUILIBRIUM SUCTION 

A GLM and ridge regression models were built to estimate the equilibrium suction in the 

subgrade soil using climate factors and soil properties. In this analysis, the following predictors 

were taken into account. 

• Mean annual relative humidity, 

• Mean annual temperature, 

• Annual rainfall, 

• Mean annual percent sunshine, 

• Clay content (%) at 5cm depth, 

• Annual TMI 

The climatic data for this study were gathered from the Oklahoma Mesonet stations. The 

clay contents were obtained using the published data (Scott et al. 2013). As stated in the previous 

section, the equilibrium suction dataset utilized in the correlations was obtained from the 

mechanical-numerical model. The annual TMIs from 1994 to 2019 were calculated, as explained 

in the previous section. This study has a sample size of n = 2096 after removing missing values 

and the data cleaning process. 

In the correlation process, a partial correlation coefficient was calculated for each 

variable to prevent the effects of confounding variables. The matric suction, for example, 

decreased when the annual mean relative humidity increased. Suction is directly proportional to 

clay content (CC), and as clay content rises, matric suction also increases. This study evaluated 

the correlation between the equilibrium suction and clay content at 5 cm depth. The current 

research reveals that relative humidity (RH), clay content at 5 cm, and TMI are statistically 

significant variables that influence equilibrium suction (pF). 
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The data in this study were fitted with a generalized linear regression model (GLM). The 

GLM relies on large-sample approximations since it utilizes maximum likelihood estimation 

(MLE) instead of ordinary least squares (OLS) to estimate the parameters. Errors in the GLM 

must be independent, but they do not have to be normally distributed. Finally, the independent 

(explanatory) variables could be the original independent variables' power terms or other 

nonlinear transformations. K-fold cross-validation was carried out to get an accurate estimate of 

the MSE test, which was done to determine how well a particular statistical learning method is 

likely to perform when applied to independent results. This method randomly divides the set of 

observations into k groups, or folds, of roughly equal size (James et al. 2013). The first fold is 

treated as a validation set, and the method fits on the remaining k − 1 folds. The mean squared 

error, MSE1, is determined by the observations in the held-out fold. This technique is repeated k 

times, with a different group of observations serving as a validation set each time. This procedure 

yields k estimates of the test error, denoted by MSE1, MSE2, ..., MSEk. Averaging those values 

yields the k-fold CV estimate (James et al. 2013). 

𝐶𝑉(𝑘) =
1

𝑘
∑ 𝑀𝑆𝐸𝑖

𝑘
𝑖=1      (3.12) 

Several generalized linear models with a different polynomial order were developed for 

each predictor to find the degree of correlation between predictors and the response variable. 

After calculating the test MSE for each model, the model with the smallest test MSE was selected 

for each predictor. This iterative procedure was repeated for increasingly complex polynomial fits 

with a 10-fold cross-validation estimate for different GLMs. In this study, the associated cross-

validation error was computed for the iteratively fits of the polynomial regressions of order i = 1 

to i = 5. The procedure revealed that TMI and clay contents had linear relations with the response 

variable. However, the quadratic relative humidity fit has a lower MSE than the linear fit. The 

estimated test MSE is sharply reduced between the linear and quadratic fits, as shown in Figure 

3.12; there is no significant improvement when higher-order polynomials are used. 
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Figure 3.12. 10-fold cross-validation for polynomial relative humidity 

Two different models were fitted to the data and compared against each other to select a model 

with better prediction accuracy and interpretability. Model 1 has three predictors, clay content, 

relative humidity, and TMI. 

𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑆𝑢𝑐𝑡𝑖𝑜𝑛 = 𝛽0 + 𝛽1 (𝐶𝐶) + 𝛽2 (𝑅𝐻) + 𝛽3 (𝑇𝑀𝐼)  (3.13) 

Model 2 consists of four predictors, including three predictors similar to model 1 and a second-

degree relative humidity term. 

𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑆𝑢𝑐𝑡𝑖𝑜𝑛 = 𝛽0 + 𝛽1 (𝐶𝐶) + 𝛽2 (𝑅𝐻) + 𝛽3 (𝑇𝑀𝐼) + 𝛽4 (𝑅𝐻2) (3.14) 

An analysis of variance (ANOVA, using an F-test) was used in this study to compare the 

null hypothesis that Model 1 is sufficient to explain the data to the alternative hypothesis that a 

more complex Model 2 is required. Model 1 and Model 2 must be nestled to use the ANOVA. 

That is, predictors in Model 1 must subset of predictors in Model 2. In this case, two different 

models were fitted, and the simpler model was sequentially compared to the more complex model 

(Table 3.1). 
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Table 3.1. Analysis of Variance table 

 Residual Df RSS Df Sum of Square F P-Value 

Model 1 2092 143.85     

Model 2 2091 142.91 1 0.9421 13.784 2.104 × 10-4 

 

The p-value, which compares linear Model 1 to quadratic Model 2 (2.104 × 10-4), 

indicates that a linear fit is insufficient. The overall fit of models was also ranked according to 

their Akaike Information Criterion (AIC) value and test MSE to select the best model further. 

Table 3.2 summarizes the AIC values for the two GLM models. Model 2, with four predictors, 

has the lowest AIC and test MSE and is a better predictive model. 

Table 3.2. AIC value and test MSE for two GLM models 

 AIC Test MSE 

Model 1 169.39 0.0753 

Model 2 161.55 0.0737 

 

3.5.1 Estimating the Accuracy of the Prediction Model 

Bootstrap is a versatile and effective statistical tool for quantifying the uncertainty associated 

with a particular estimator or statistical learning procedure. Efron (1992) was the first to present 

the bootstrap methodology in can be obtained by Efron and Tibshirani (1994). The nonparametric 

and parametric bootstrap approaches are the most common. The nonparametric bootstrap makes 

no assumptions about the population distribution and generates a sample of size n replacement 

from the original sample. The bootstrap sample is then used to evaluate the estimates' variability. 
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This procedure is then performed several times, yielding B bootstrap estimates. The bootstrap 

estimates are then used to calculate the estimated bias and standard error. 

This study utilized the nonparametric bootstrap to determine the uncertainty of the 

coefficient estimates and predictions from a statistical learning method. In this analysis, the 

bootstrap sample was used to assess the variability of the estimates for β0, β1, β2, β3, and β4, the 

intercept and coefficient terms for the quadratic model (James et al. 2013). The simulation 

process for 1,000 paired observations was repeated 100,000 times to estimate the standard error 

of coefficients, i.e., the intercept and slope terms. Table 3.3 shows estimates of the standard 

intercept error and the bootstrap coefficient terms relative to those obtained from the GLM 

model. The results show that the quadratic GLM fit coefficients standard errors and the bootstrap 

estimates are very similar. 

Table 3.3. The comparison of estimates for coefficient standard errors 

 Coef. Estimate GLM Std. Error Bootstrap Std. Error 

Intercept 4.8863 0.13540 0.15309 

Clay content (CC) 0.0082 0.00087 0.00067 

Relative Humidity -0.0278 0.00209 0.00177 

TMI 0.0051 0.00234 0.00183 

Relative Humidity^2 -0.0001 0.00003 0.00002 

 

3.5.2 Ridge Regression 

Ridge regression is a shrinkage method that limits or regularizes coefficient estimates. Shrinking 

the estimates of the coefficient could substantially reduce their variance and improve the fit. 

Ridge regression, like least-squares, seeks coefficient estimates that fit the data well by making 
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the RSS small. Especially the estimates of the ridge regression coefficient are the values that 

minimize the penalized sum of squares (James et al. 2013). 

∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1 )

2
+ 𝜆 ∑ 𝛽𝑗

2𝑝
𝑗=1

𝑛
𝑖=1 = 𝑅𝑆𝑆 + 𝜆 ∑ 𝛽𝑗

2𝑝
𝑗=1    (3.15) 

Where λ ≥ 0 is a tuning parameter. The second term,  𝜆 ∑ 𝛽𝑗
2𝑝

𝑗=1 , which is called a shrinkage 

penalty, is small if β1, …, βp are close to zero and therefore have the effect of shrinking the 

estimates of βj towards zero. It is important to note that the shrinkage penalty does not apply to 

intercept, which is simply a measure of the mean response value when all predictors are set to 

zero. The tuning parameter λ controls the relative impact of these two terms on the regression 

coefficient estimations (James et al. 2013). 

The ridge regression was used for this analysis to improve the quadratic fit to the dataset. 

The validation set and cross-validation approaches were used to provide reliable estimates of the 

ridge regression test error. The observations are divided into a training set and a test set in the 

first step. The training sample was chosen randomly from 70 percent of the total data set in this 

analysis, and the test observations were selected from the remaining 30 percent of the dataset. 

The best value for the tuning parameter λ was selected using the cross-validation on the 

training set. We have chosen to implement a grid of λ values ranging from 10-2 to 1010, covering 

mainly the full range of scenarios from the null model containing only the intercept to the full 

model and calculating the cross-validation error for each value of λ. The value of the tuning 

parameter with the minimum cross-validation error was chosen. Finally, the model was re-fitted 

using all of the available observations, and the tuning parameter value was determined via cross-

validation. 

Table 3.4 summarizes the results of the ridge regression. In ridge regression, each least 

squares coefficient estimate is shrunk by the same proportion. The performance of the developed 
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regression model in this study was compared with those proposed by Cuzme (2018), Saha et al. 

(2019), and Vann and Houston (2021). The test MSE and AIC for all models were calculated and 

summarized in Table 3. The results showed that the ridge regression model with an optimum 

choice of λ had outperformed the regression model developed by Cuzme (2018), Saha et al. 

(2019), and Vann and Houston (2021) with lower AIC and test MSE. 

Table 3.4. Comparison between regression models 

Coef. 

Estimate 

Ridge regression 

model  

(current study) 

Regression model 

(Cuzme 2018) 

Regression 

model (Saha et 

al. 2019) 

Regression model 

(Vann and 

Houston 2021) 

Test MSE 0.0726 0.1142 0.0792 0.0864 

AIC 93.36 572.96 265.39 339.94 

 

The derived ridge regression equation for equilibrium suction is written as follows. 

𝑈𝑒 = 4.6499 + 0.0071 (𝐶𝐶) − 0.0236 (𝑅𝐻) − 0.0014 (𝑇𝑀𝐼) − 0.00002 (𝑅𝐻 × 𝑇𝑀𝐼) (3.16) 

3.6 CONCLUSIONS 

An improved prediction model based on mechanics principles is proposed to improve the 

estimate of the equilibrium suction in subgrade soils. The model used in this analysis approach 

will allow for a more accurate prediction of suction-dependent soil parameters within the 

unsaturated zone, such as resilient modulus, soil movement, unsaturated permeability coefficient 

(of diffusivity), shear strength, and shear wave velocity. 

Compared with the existing methods, the advantage of the new method lies in three 

categories. First, the effect of the diffusion coefficient is considered in the development of the 

Mitchell model to calculate equilibrium suction. Furthermore, a large cluster of raw climate and 

soil moisture data was obtained from the Oklahoma Mesonet for evaluation. Finally, the new 
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method can be conveniently programmed into computer codes using the formulation presented. 

The following is a list of the study's important contributions. 

• Oklahoma's GSI-based TMI contour maps were created using precipitation and 

temperature data from Oklahoma Mesonet. 

• A numerical model was used to estimate equilibrium suction based on Mitchell's steady-

state diffusion equation and the diffusion coefficient calculated from recorded soil 

moisture data. 

• A GSI-based equilibrium suction contour map of Oklahoma was created by estimating 

values for 116 representative Mesonet stations in Oklahoma. As a result, the contour map 

can be used to determine the equilibrium suction value. 

• A ridge regression model was developed to predict equilibrium suction based on readily 

available climatic variables (i.e., relative humidity and TMI) and clay content. 

It should also be emphasized that the equilibrium suction prediction model is based on 

Mesonet meteorological data collected at specific locations in Oklahoma under specified weather 

and drainage conditions. Changes in drainage (i.e., ponding) or soil fabric (i.e., deeper fissures) 

are predicted to result in different predictions. More field observations and research are required 

to expand the database to include additional climates, drainage conditions, and soil fabrics. 
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CHAPTER IV 
 

 

MONITORING THE PERFORMANCE OF HORIZONTAL MOISTURE BARRIERS AT TWO 

PAVEMENT SECTIONS IN OKLAHOMA USING SAR INTERFEROMETRY 

 

4.1 ABSTRACT 

This study will look into the capability of remote sensing satellite data, including Synthetic 

Aperture Radar (SAR) satellite data, to monitor the performance of horizontal moisture barriers. 

SAR is a tangible advancement in remote sensing technology that enables millimetric accuracy in 

assessing pavement deformations at single points. Recent advances in remote sensing satellite 

systems and the availability of high-resolution SAR systems have created an opportunity for 

SAR-based pavement and infrastructure management monitoring. The Sentinel-1 satellite 

constellation has globally and freely provided frequent and abundant SAR data and enabled 

nationwide deformation monitoring through InSAR time series analysis. 

The study was carried out on two state highways in Oklahoma, where the amount of deformation 

was determined and calculated using the Persistent Scatterer InSAR method. Displacement values 

were estimated by reducing error sources related to temporal and geometrical decorrelation and 

atmospheric phase delay. Based on vertical deformation data, a detailed time series analysis was 

performed. The time series analysis results revealed that the moisture barriers section is not 

different from the controlling section at two research sites during the monitoring period. A field 

investigation was conducted and further validated the findings of this study. 
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4.2 INTRODUCTION 

Persistent Scatterer Interferometry (PSI) is a powerful remote sensing technique that can measure 

surface displacements on the Ground (Crosetto et al. 2016). The terms displacement and 

deformation are used interchangeably in this work. As it is later described in greater detail, PSI is 

a subclass of Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques. These 

methods make use of the information contained in the radar phase of at least two complexes of 

SAR images acquired at different times over the same area and used to form an interferometric 

pair. 

The DInSAR principle is summarized below. Taking into account a single pixel footprint 

on the ground P, the sensor obtains the first SAR image from a satellite position M, measuring a 

phase 𝜑𝑀 

𝜑𝑀 = 𝜑𝑔𝑒𝑜𝑚−𝑀 + 𝜑𝑠𝑐𝑎𝑡𝑡−𝑀 =
4.𝜋.𝑀𝑃

𝜆
+ 𝜑𝑠𝑐𝑎𝑡𝑡−𝑀  (4.1) 

where MP is the sensor to target distance, 𝜑𝑠𝑐𝑎𝑡𝑡 is the phase shift generated during the 

interaction between the microwaves and the target P, 𝜆 is the radar wavelength, and factor 4𝜋 is 

related to the two-way path, radar-target-radar. Assuming that the sensor acquires a second image 

from a satellite position S, measuring the phase 𝜑𝑆 over the same pixel footprint P, then 

𝜑𝑆 = 𝜑𝑔𝑒𝑜𝑚−𝑆 + 𝜑𝑠𝑐𝑎𝑡𝑡−𝑆 =
4.𝜋.𝑆𝑃

𝜆
+ 𝜑𝑠𝑐𝑎𝑡𝑡−𝑆   (4.2) 

The Interferometric SAR (InSAR) technique exploits the phase difference 𝜑𝑆 − 𝜑𝑀 

Δ𝜑𝐼𝑛𝑡 = 𝜑𝑆 − 𝜑𝑀 =
𝑆𝑃−𝑀𝑃

𝜆

4.𝜋

+ 𝜑𝑠𝑐𝑎𝑡𝑡−𝑆 − 𝜑𝑠𝑐𝑎𝑡𝑡−𝑀   (4.3) 

This phase is known as the interferometric phase. It is related to the distance difference 

𝑆𝑃 − 𝑀𝑃, which is essential for the generation of Digital Elevation Models (DEMs), i.e., 
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estimating the topography of the observed scene see (Bamler and Hartl 1998) and (Rosen et al. 

2000). The satellite baseline SM determines the sensitivity of InSAR to topography. More 

specifically, the projection of SM in the direction perpendicular to the SAR Line-Of-Sight (LOS) 

is known as a perpendicular baseline. In the case of DInSAR deformation measurement, a phase 

𝜑𝑀 is measured using a single-pixel footprint P and a first acquisition from the satellite position 

M (see Figure 4.1). Then, assuming that the target moves from P to P’ and that the sensor then 

acquires a second image from the satellite position S, 𝜑𝑆 is calculated as follows. 

𝜑𝑆 = 𝜑𝑔𝑒𝑜𝑚−𝑆 + 𝜑𝑠𝑐𝑎𝑡𝑡−𝑆 =
4.𝜋.𝑆𝑃′

𝜆
+ 𝜑𝑠𝑐𝑎𝑡𝑡−𝑆    (4.4) 

The interferometric phase Δ𝜑𝐼𝑛𝑡 in this case, is given by 

Δ𝜑𝐼𝑛𝑡 = 𝜑𝑆 − 𝜑𝑀 =
𝑆𝑃′−𝑀𝑃

𝜆

4.𝜋

+ 𝜑𝑠𝑐𝑎𝑡𝑡−𝑆 − 𝜑𝑠𝑐𝑎𝑡𝑡−𝑀   (4.5) 

The following equation is generated by adding and subtracting the expression 
𝑆𝑃

𝜆

4.𝜋

 

Δ𝜑𝐼𝑛𝑡 = 𝜑𝑆 − 𝜑𝑀 =
𝑆𝑃−𝑀𝑃

𝜆

4.𝜋

+
𝑆𝑃′−𝑆𝑃

𝜆

4.𝜋

+ 𝜑𝑠𝑐𝑎𝑡𝑡−𝑆 − 𝜑𝑠𝑐𝑎𝑡𝑡−𝑀   (4.6) 

where the first term is the topographic phase component 𝜑𝑇𝑜𝑝𝑜, which includes the reference 

ellipsoidal phase component, and the second term is the displacement phase component 𝜑𝐷𝑖𝑠𝑝𝑙, 

which is connected to the LOS displacement d illustrated in Figure 4.1. If a DEM of the imaged 

scene is available, 𝜑𝑇𝑜𝑝𝑜 can be simulated and subtracted from Δ𝜑𝐼𝑛𝑡 (this is the inverse 

procedure performed in InSAR DEM production), yielding the so-called DInSAR phase Δ𝜑𝐷−𝐼𝑛𝑡 

Δ𝜑𝐷−𝐼𝑛𝑡 = Δ𝜑𝐼𝑛𝑡 − 𝜑𝑇𝑜𝑝𝑜−𝑠𝑖𝑚𝑢 = 𝜑𝐷𝑖𝑠𝑝𝑙   (4.7) 

where 𝜑𝑇𝑜𝑝𝑜−𝑠𝑖𝑚𝑢 is the simulated topographic component, which includes the flat-earth phase 

component implicitly. It should be noted that orbital errors have an effect on this simulated 

topography component even if the flattening operation is not explicitly performed. 
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This principle has been widely applied over the last 25 years, yielding significant results 

in the fields of seismology (Dalla Via et al. 2012; Massonnet et al. 1993; Peltzer and Rosen 

1995), vulcanology (Antonielli et al. 2014; Massonnet et al. 1995; Massonnet and Sigmundsson 

2000), glaciology (Goldstein et al. 1993; Rignot et al. 1997), landslides (Carnec et al. 1996; 

García-Davalillo et al. 2014), ground subsidence and uplift (Amelung et al. 1999; Galloway et al. 

1998). Massonnet and Feigl (1998) and Hanssen (2001) provide comprehensive studies of several 

DInSAR applications. The DInSAR working concept is summarized in the following equation, 

which enables the displacements of the imaged scene to be determined from two complex SAR 

images.  

Δ𝜑𝐷−𝐼𝑛𝑡 = Δ𝜑𝐼𝑛𝑡 − 𝜑𝑇𝑜𝑝𝑜−𝑠𝑖𝑚𝑢 = 𝜑𝐷𝑖𝑠𝑝𝑙 + 𝜑𝑇𝑜𝑝𝑜𝑟𝑒𝑠
+ 𝜑𝐴𝑡𝑚𝑆

− 𝜑𝐴𝑡𝑚𝑀
 

+𝜑𝑂𝑟𝑏_𝑆 − 𝜑𝑂𝑟𝑏_𝑀 + 𝜑𝑁𝑜𝑖𝑠𝑒 + 2. 𝐾. 𝜋 (4.8) 

where 𝜑𝑇𝑜𝑝𝑜_𝑟𝑒𝑠 is the residual topographic error (RTE) component, 𝜑𝐴𝑡𝑚 is the atmospheric 

phase component at the time of image acquisition, 𝜑𝑂𝑟𝑏 is the orbital error component of each 

image (errors that impact the position of M and S in Figure 4.1), and 𝜑𝑁𝑜𝑖𝑠𝑒 is the phase noise. 

The final component, 2. 𝐾. 𝜋, where k is an integer number known as phase ambiguity, arises 

from the wrapped nature of Δ𝜑𝐷−𝐼𝑛𝑡, i.e., the fact that the DInSAR phases are bounded in the 

range (−𝜋, 𝜋]. 
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Figure 4.1. DInSAR deformation measurement scheme (Crosetto et al. 2016) 

The purpose of any DInSAR approach is to obtain 𝜑𝐷𝑖𝑠𝑝𝑙 from Δ𝜑𝐷−𝐼𝑛𝑡. This 

necessitates the separation of 𝜑𝐷𝑖𝑠𝑝𝑙 from the other phase components of the last equation. An 

essential condition for achieving this separation is to examine pixels with low 𝜑𝑁𝑜𝑖𝑠𝑒, which are 

typically associated with one of two types of reflectors: those where the response to the radar is 

dominated by a strong reflecting object and is constant over time (Permanent Scatterer, PS) and 

those where the response is constant over time but due to different small scattering objects 

(Distributed Scatterers, DS). The main constraints of DInSAR are: (i) temporal and geometric 

decorrelations that affect the 𝜑𝑁𝑜𝑖𝑠𝑒 component (Hanssen 2001); (ii) phase unwrapping that 

affects the estimation of k (Ghiglia and Pritt 1998); and (iii) the atmospheric component (Zebker 

et al. 1997). DInSAR stacking strategies (Sandwell and Price 1998; Wright et al. 2001; Zebker et 

al. 1997) employ various methods for reducing atmospheric influences by averaging several 

interferograms. 

PSI is a DInSAR technique that uses several SAR images obtained over the same area, as 

well as proper data processing and analysis procedures, to extract 𝜑𝐷𝑖𝑠𝑝𝑙 from the other phase 



59 

 

components described in the last equation. The deformation time series and deformation velocity 

estimated over the examined PSs or DSs are the major outcomes of a PSI study. Hereafter, the 

term PSs will refer to both PSs and DSs. Another outcome of a PSI analysis is the RTE, which is 

the difference between the true height of the scattering phase center of a specific PS and the 

height of the DEM at this point. The RTE is a critical component in achieving accurate PS 

geocoding. 

Hooper et al. (2004) made a significant PSI contribution. They suggested a novel PS 

selection method based on phase characteristics suited for identifying low-amplitude natural 

targets with phase stability that are not discovered by amplitude-based methods. One significant 

advantage is that it does not necessitate using a prior deformation model. StaMPS, one of the 

most frequently used PSI software packages, arose from this study (Hooper 2008; Hooper and 

Zebker 2007). 

Differential SAR Interferometry (DInSAR) and advanced methods such as permanent 

scatterers interferometry (PSInSAR) can measure even minor deformations and determine 

deformation velocities across a set of images (Delgado Blasco et al. 2019; Hooper et al. 2012; 

Mikhailov et al. 2014). Furthermore, high-resolution SAR images may improve end-product 

quality and level of detail. As a result, this newly emerging SAR-based monitoring has proven 

useful for monitoring the nation's deteriorating roadway infrastructure elements such as bridge 

settlements and displacements, roadway surface deformations, geohazard, sinkhole detection, etc. 

This study used Copernicus Sentinel-1 SAR images and open-source tools to study the 

characteristics of ground deformation of two state highways in Marshall and Choctaw counties in 

Oklahoma. These study areas were part of the reconstruction two bridges in State Highway 32 in 

Kingstone and State Highway 109 in Grant, Oklahoma. A previous investigation by the 

Oklahoma department of transportation revealed that the soil subgrade has suffered from high 
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volume changes due to expansive soil in the area. Thus, these projects utilized the horizontal 

moisture barrier to control the subgrade volume change as part of rehabilitation. 

This research used a processing chain for ground deformation monitoring using the 

European Space Agency (ESA) SentiNel Application Platform (SNAP) (Veci et al. 2014) and 

Stanford Method for Persistent Scatterers (StaMPS) (Hooper 2008). The processing chain was 

applied to more than 100 Sentinel-1A images taken over orbits to depict the Line-Of-Sight 

ground deformation rates primarily. The geometry result was then adjusted using a corrected 

incidence angle to calculate the vertical motion component, resulting in over 2 million points 

targets over their common area. The study assessed the effectiveness of horizontal moisture 

barriers in controlling subgrade deformation using satellite remote sensing technology, 

specifically SAR, for ground monitoring. It was found that remote sensing techniques, 

specifically InSAR with Sentinel-1 data, show great potential within land deformation and 

surface pavement monitoring. Significant surface pavement deformation can easily be exposed 

for further analysis or risk reduction measures. 

4.3 METHOD AND DATA ANALYSIS 

The study is focused on State Highway 32 in Kingstone County and State Highway 109 in Grant 

County in Oklahoma. This study names these sites after their cities, Madill and Hugo. The 

principal criteria for selecting these sites were the history of expansive soil problems and the wide 

range of climatic variations. The Madill project, which included the replacement of an existing 

bridge crossing Buncombe Creek on State Highway 32 with a new one, was finished in December 

2017. The approach pavements were rebuilt across 256 meters (840 feet) in this project. A 160-

meter (528 ft) stretch of road on both sides of the bridge was selected to install a moisture barrier. 

The moisture barrier was constructed using a heavy prime coat with separator fabric per section 

408 of the ODOT specification book. The prime coat was applied at 0.5 gal/sy minimum across 
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the grading section over 18 m (60 ft) and covered by separator fabric on the fresh prime coat. It 

was ensured that the separator was uniformly saturated with the prime coat. After hardening, the 

second prime coat was applied on top of the fabric. The prime coat was allowed to harden before 

the aggregate base was laid over it. These moisture barriers have very low hydraulic conductivity, 

usually less than 10-10 cm/s if constructed properly (Asphalt Institute). 

Similarly, an existing bridge across Horse Creek was replaced as part of the Hugo 

project. The moisture barrier was constructed on a 160-meter (528-foot) portion of state highway 

109 in March 2018. In this project, the pavements were replaced across 256 meters (840 feet). 

The Intertape Polymer Group (IPG) geomembrane product "NovaLiner 24" with a covered length 

of 24 m (80 ft), was used as a moisture barrier. The hydraulic conductivity of the NovaLiner 24 is 

1.77 x 10-12 cm/s (Geomembrane Solutions). 

4.3.1 Remote Sensing Data 

Sentinel-1A, launched by the European Space Agency (ESA) in April 2014, is an earth 

observation satellite for the Copernicus Initiative. Copernicus, formerly known as global 

monitoring for environment and security (GMES), is a European program for developing 

environmental and security-related information services. This satellite's equatorial revisit time is 

12 days. The Sentinel-1A satellite operates in the C-band (central frequency = 5.404 GHz), with 

VH and VV polarizations and a range and azimuth spatial resolution of 5 m by 20 m. 

Sentinel-1A data was collected in this investigation using the interferometric wide swath 

(IW) collecting mode with a sweep width of 250 km. Furthermore, data utilized level-1 single 

look complex (SLC) format (https://sentinel.esa.int/). Sentinel-1A IW level-1 SLC data with VV 

polarizations and ascending orbit modes was obtained from https://search.asf.alaska.edu/#/. In 

addition, these acquired Sentinel-1A data are freely available on the internet. Table 4.1 shows 

each dataset's first and last image, orbit pass, track, and the number of acquisitions. Table 4.2 
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displays the complete acquisition dates and characteristics of Sentinel-1A research data. Figure 

4.2 illustrates study locations coordinates and areas of interest (AOI) on Sentinel-1 ascending 

(A34) orbit. 

 

Figure 4.2. Study locations coordinates and area of interest for Sentinel-1 ascending track 

Table 4.1. Research data from Sentinel-1A 

Site Satellite First Image Last Image Orbit Pass Track N Acquisitions 

Madill S1A 2018/01/08 2019/12/29 Ascending 34 51 

Hugo S1A 2018/04/21 2020/04/22 Ascending 34 51 

 

Table 4.2. Main characteristics of the selected Sentinel-1A master scene 

Site Acquisition 

Date 

Mean Inc. Angle 

(rad/degrees) 

Sub-

Swath 

Polarization Initial Burst Last Burst 

Madill 2018/01/08 0.63/36.22 IW2 VV 7 9 

Hugo 2018/04/21 0.72/41.54 IW3 VV 5 6 
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4.3.2 PSI Processing 

This section explains the main foundations for SAR interferometry and the workflow adopted to 

process the S1 SAR images. PSI chooses one of the available (n+1) images as the master image. 

Interferograms are created between the master and the n available slave images acquired at 

various times. Each one is distinguished by a distinct perpendicular baseline or the perpendicular 

distance between the two satellite sites. Knowing the satellite's precise position on the two 

acquisition dates allows us to eliminate the components linked to the perpendicular baseline (flat 

earth and topographic components) from the interferogram phase. Man-made structures show 

persistent scatterers (PSs) in urban environments because they reflect the majority of the energy 

transmitted by the SAR directly backward or in a double-bounce process (i.e., from the ground to 

a perpendicular structure) back to the sensor). 

PSI separates the deformation phase from the ambient phase and noise through time and 

spatial filtering. In reality, deformation is time-dependent, whereas atmospheric impacts are 

spatially but not temporally associated (i.e., they are visible in a single interferogram but not in 

other interferograms because the atmosphere varies randomly from date to date) (Cian et al. 

2019). Finally, noise is spatially and temporally uncorrelated. 

PSI can connect deformation with a specific scatterer, enabling very high-resolution 

infrastructure monitoring. As illustrated in Figure 4.3, the first step was to create a subset of the n 

available S1 images. The S1 pictures were subdivided into three sub-swaths. The city of interest 

was usually housed inside a single sub-swath. Each sub-swath is made up of numerous bursts (a 

longitudinal portion of the image). In order to construct the subset, we selected the sub-swath 

containing the area of interest and the bursts encompassing the area of interest exactly (Yagüe-

Martnez et al., 2016). This enabled us to decrease the data size and accelerate processing. 
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The second step was to generate individual interferograms by merging the master image 

with the remaining n slave images. The open-source software SNAP was used to compute the 

subset and interferogram. The stack of n unique interferograms was used as input for the PSI 

analysis (third step), which identifies and analyzes PSs. This step was carried out using the 

StaMPS open-source toolbox (Hooper et al. 2018; Hooper and Zebker 2007) for MATLAB. The 

toolbox generates a map displaying the mean velocity of deformation for all PSs in the study area, 

their deformation on each observation date, and the mean standard deviation of deformation 

velocity over the entire time series. In addition, for atmospheric phase reduction, we used the 

Toolbox for Reducing Atmospheric InSAR Noise (TRAIN) (Bekaert et al. 2015) and the linear 

technique (phase versus elevation).  

 

Figure 4.3. Workflows (i) and (ii) for Sentinel-1 data (Cian et al. 2019) 

A set of scripts called "snap2stamps" was used to automate the process of interferogram 

formation. These scripts automatically compute interferograms based on the setting of a few 

parameters (sub-swath of S1 images to be processed, the bounding box of the area of interest, 

path to the data folder, path and name of the master image, parameters regarding the 

computational resources to employ, etc.). These programs are Python wrappers that use SNAP as 

the InSAR processor and produce PSI analysis output compatible with StaMPS. Open-source 

scripts of this type are available (Delgado Blasco and Foumelis). The overall analysis consisted of 

three main workflows: (i) single master interferogram processing using SNAP, (ii) PSI processing 

using StaMPS, and (iii) results from analysis in a geographic information system (GSI). 
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Following that, the area of interest (AOI) within the master image must be identified and 

used to split the master image using the SNAP graphical user interface (GUI). In this context, a 

single image swath is chosen, along with the bursts required to cover the AOI. This operation 

reduces data volume while optimizing processing time and resources. At this point, we can use 

the snap2stamps scripts to prepare the slave images and compute the interferograms. The scripts 

sort the slave images by acquisition date, divide them into subsets based on the master extent, co-

register each of them with the master image, and compute the interferograms, which are then 

exported for analysis in StaMPS. 

The first step in workflow (ii) is to use the mt prep snap script to prepare the exported 

data for analysis in StaMPS. Then, within MATLAB, StaMPS can be run from steps 1 to 7 as 

described in the StaMPS user manual (Hooper et al. 2018), using TRAIN for APS mitigation and 

the aps_linear approach to perform the PS analysis. The result is a map representing land 

deformation values throughout the time series. 

The land deformation maps are loaded into a GIS in workflow (iii) (Figure 4.4), and 

points with deformation greater than or equal to 2 mm/year are selected and analyzed. For each 

area of interest (AOI), three plots are generated: (i) a plot showing the distribution of the velocity 

of deformation values for all analyzed points, (ii) a plot showing the distribution of the velocity of 

deformation standard deviation values for all analyzed points, and (iii) a plot showing the 

deformation trend of each point measured at each time step of the time series. The plots enable us 

to comprehend the average behavior of the points within the AOI. The first plot depicts the 

moderate deformation (subsidence, uplift, or stability), the second illustrates the stability of 

velocity of deformation values, and the third shows the deformation trend over time. 



66 

 

 

Figure 4.4. Workflow (iii): analyze deformation maps and create plots (Cian et al. 2019) 

4.3.3 Time series Analysis 

Time series analysis examines the attributes of the independent variable, the response variable, 

with regard to time. This study uses time series analysis to understand the underlying causes of 

trends or systemic patterns over time (Cryer and Chan 2008). The following steps have been 

taken to conduct the time series analysis. 

In the first step, an autoregressive integrated moving average (ARIMA) model was fitted 

to the dataset. Outliers analysis was performed in the second step to detect errors or abrupt short-

term changes. The correlation was done to relate a time series with other covariate time series in 

the final step. The outcome of the time series analysis answers a critical question, whether fitted 

time series are related. The findings are expanded to discuss whether moisture barriers 

successfully control ground settlement/heave during the monitoring period at two research sites. 

4.3.4 Time series Properties 

A time series is a chronologically ordered sequence of data points at equally spaced intervals in 

time. Non-stationarity, autocorrelation, and seasonality are common characteristics of time series. 

The time series must be stationary in order to be used in ARIMA modeling. A stationary series 

has three characteristics: a constant mean, a constant variance, and a constant covariance 

dependent only on the time interval between values. Because it can be modeled with fewer 

parameters, a stationary series (also known as a "white noise process") is easier to analyze. While 
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it fluctuates, it always returns to a constant mean and is thus easier to predict. The first is 

changing variance over time (heteroscedasticity), which can often be addressed by applying a log 

transformation; the second is an increasing or decreasing trend, which can often be eliminated by 

taking the first difference (i.e., 𝑌𝑡 − 𝑌𝑡−1). A second differencing may be required to achieve 

stationary on rare occasions, but third-order differencing and above is uncommon (Hyndman and 

Athanasopoulos 2018). The Augmented Dickey-Fuller (ADF) (Cao et al. 2013) unit-root test can 

be used to determine whether a time series is stationary. 

Time series observations are frequently correlated with observations from previous time 

points and thus are not distributed independently. This type of correlation is known as 

autocorrelation or serial correlation. Autocorrelation in time series does not satisfy standard 

regression analysis assumptions. Due to the fact that autocorrelated data are rarely stationary, 

differencing the data is often sufficient to eliminate autocorrelation; therefore, any necessary data 

transformations should be performed prior to testing for autocorrelation. 

Stationery and autocorrelation can be checked using autocorrelation functions (ACFs). 

An ACF depicts the correlation between each observation and previous values at different lags, 

where a lag is the number of time points between two observations. The partial ACF (PACF), 

which is the correlation between an observation and historical values that are not explained by 

correlations at lower order lags, complements the ACF. For example, after adjusting for the 

correlation between 𝑌𝑡 and 𝑌𝑡−3, 𝑌𝑡−2, and 𝑌𝑡−1, the PACF value at lag 4 is the correlation 

between an observation (𝑌𝑡) and the prior observation at lag 4 (𝑌𝑡−4). 

ARIMA models have a single dependent variable (𝑌𝑡), a function of previous Y values 

and the error term (ϵt). ARIMA models may accommodate any continuous result (such as rates or 

means) as well as high counts that are not bounded by zero because they assume errors are 

normally distributed. ARIMA components are: 
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1. Autoregressive (AR) model: 𝑌𝑡 is predicted by one or more lagged values of 𝑌𝑡. This 

is expressed by the equation below, where c is a constant, is the magnitude of the 

autocorrelation, p is the number of delays, and t is the error. 

𝑌𝑡 = 𝑐 + 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝 + 𝜖𝑡 

2. Moving average (MA) model: 𝑌𝑡 is predicted by one or more lagged error values (t). 

This is not to be confused with moving average smoothing. The equation below is the 

value of the autocorrelation of the mistakes, and q is the number of delays. 

𝑌𝑡 = 𝑐 + 𝜃1𝜖𝑡−1 + 𝜃2𝜖𝑡−2 + ⋯ + 𝜃𝑞𝜖𝑡−𝑞 

3. Differencing (Integration): To generate meaningful predictions from an ARIMA 

model, the time series being modeled must be stationary. Stationary is achieved 

through differencing, which is the process of determining the difference between 

adjacent data points. 

𝑌𝑡
′ = 𝑌𝑡 − 𝑌𝑡−1 

An ARIMA model is a mix of AR, MA, and differencing models (Integration). The notation for 

describing an ARIMA model is (p, d, q), where p, d, and q are positive integers: 

• p = the order of the AR part of the model; 

• d = the degree of non-seasonal differencing; and 

• q = the order of the MA part of the model. 

4.3.5 Fitting an ARIMA Model 

The ARIMA model's parameters are determined using the Box-Jenkins technique. The Box-

Jenkins technique is a popular strategy that involves model identification and selection, parameter 
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estimates, and model validation (Box et al. 2015). The method for determining the best-fitting 

ARIMA model is based on reducing the information criteria (AIC, BIC). ARIMA model fitting 

processes are: 

1. Plot data to understand patterns 

2. Transform data to stabilize variance (if necessary) 

3. Determine differencing order to induce stationarity 

4. Plot the ACF, PACF, and extended autocorrelation function (EACF) of stationarity 

data to determine potential AR/MA orders 

5. Estimate the model and use information criteria to find the best model 

4.3.6 Anomaly Detection in Time Series 

Outliers are abnormal observations that can occur due to measurement and/or copying mistakes 

or as a result of sudden, short-term changes in the underlying process. Outliers in time series may 

be classified into additive outliers and innovative outliers. (Fox 1972) proposed the innovative 

outlier (IO), in which the value of the 'innovation' or noise is excessive. This impacts not just the 

initial observation but also subsequent observations. In contrast, the additive outlier (AO) behaves 

like an error of observation that occurs just at that point in time and has no effect on following 

observations since it does not enter the structure of the series. 

Fox (1972) recommended using likelihood ratio test statistics to test for outliers in 

autoregressive models. Tsay (1986) suggested an iterative approach for detecting outliers, 

removing their impacts, and determining a preliminary model for the underlying process. (Chang 

et al. 1988) provided an iterative approach for estimating the time series parameters in ARIMA 

models and derived likelihood ratio criteria for assessing the existence of both types of outliers as 
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well as criteria for discriminating between them. Chang et al. (1988) developed a method for 

detecting outliers based on computing the likelihood ratio test statistics for all of the series' data 

under the null hypothesis that there are no outliers. 

4.3.7 Time Series Correlation 

The last step was to conduct a spurious correlation test between pairs of ARIMA models. The 

spurious association is considered to have occurred when statistical summaries show that two 

variables are correlated when there is no theoretical relationship between the two variables. In 

this case, the theoretical CCF is nonzero only at lag −d, reflecting that X is “leading” Y by d units 

of time. The CCF can be estimated by the sample cross-correlation function (sample CCF) 

defined by 

𝑟𝑘(𝑋, 𝑌) =
∑(𝑋𝑡−�̅�)(𝑌𝑡−𝑘−�̅�)

√∑(𝑋𝑡−�̅�)2√∑(𝑌𝑡−�̅�)2
     (4.9) 

One difficulty in calculating cross-correlation is that the CCF is affected by the time 

series structure of the x-variable and any “in common” trends the x and y series may have over 

time. One strategy for dealing with this difficulty is called “pre-whitening.” Pre-whitening is the 

technique of removing or decreasing short-term stochastic persistence to detect deterministic 

change. Pre-whitening steps are followed: 

1. Determine a time series model for the x-variable and store the residuals from this model. 

2. Filter the y-variable series using the x-variable model (using the estimated coefficients 

from step one). This step finds differences between observed y-values and “estimated” y-

values based on the x-variable model. 

3. Examine the CCF between the residuals from Step one and the filtered y-values from 

Step two. This CCF can be used to identify the possible terms for a lagged regression. 



71 

 

4.4 RESULTS 

The results from Sentinel-1A data (12-day repeat cycle) are presented for both case studies (Table 

4.1). In addition, the GACOS atmospheric correction data (Yu et al. 2018) was used to mitigate 

topography-correlated atmospheric effects, which was sufficient given the magnitude of ground 

displacements expected and the availability of a large number of acquisitions over the area of 

interest. 

The results show maps of land deformation velocity in mm/year for the PSs found in each 

time series across the observation period. Deformation velocity can be negative, indicating land 

subsidence, or positive, indicating land uplift. The deformation values pertain to the satellite's line 

of sight (LOS) and can have a vertical as well as a horizontal component. Given that the 

incidence angle for all of the acquisitions used in the study is less than 45 degrees, the vertical 

component is more likely to be the dominant component, which was considered noise to highlight 

substantial deformations. The vertical component for each Persistent Scatter (PS) point is 

calculated to discriminate the two components. Using the following equation, we can calculate 

𝑑𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙  , which is the projection of vertical displacement in ascending azimuth-look direction. 

𝑑𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 = 𝑑𝐿𝑂𝑆. cos (𝜃𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡)    (4.10) 

 

For each case study, three plots were created: (i) the distribution of deformation velocity 

values, (ii) the distribution of deformation velocity standard deviation values, and (iii) the trend of 

deformation for each point analyzed over the entire time series, which also shows the overall 

mean velocity of deformation, that is, the mean of the mean velocity of deformation of each PS 

within the AOI, and its standard deviation, that is, the standard deviation of the mean velocity of 

deformation. The plots help us comprehend the amount (velocity) of the deformation, as well as 

its consistency (standard deviation) and evolution over time (trend). Figure 4.5 shows the velocity 
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of deformation standard deviation. Areas with larger standard deviation indicate more significant 

errors (due perhaps to atmosphere or unwrapping errors). Figure 4.6 depicts the deformation 

velocity obtained for ascending tracks in Madill and Hugo. The majority of these PSs exhibit 

subsidence greater than 2 mm/year, and thousands exhibit subsidence greater than 5 mm/year. 

These figures appear credible given the low standard deviation (the majority of which is less than 

1 mm/year). 

 

Figure 4.5. Standard deviation of deformation velocity map over the monitoring period 

(a) Madill (b) Hugo 

(a) (b) 
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Figure 4.6. LOS deformation velocity map over the monitoring period (a) Madill (b) Hugo 

The average vertical displacement velocity was computed for two study areas. The results 

at Madill revealed that the average displacement velocity on the moisture barrier section on the 

left side was 12.71 mm/year and on the right side of the bridge was 9.1 mm/year. In contrast, the 

control section has a -6.1 mm/year displacement velocity. Figure 4.7 shows the average vertical 

displacement velocity for the Madill. 

 

Figure 4.7. Mean vertical displacement velocity at Madill Jan. 2018–Dec. 2019 

The results at Hugo revealed that the average displacement velocity on the moisture 

barrier section was -7.07 mm/year on the left side, and the right side of the bridge was -3.4 

mm/year. In comparison, the control section has a displacement velocity of -4.47 mm/year. 

(a) (b) 
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Figure 4.7 shows the average displacement velocity for the Hugo study area. Figures 4.9 and 4.10 

illustrate The vertical displacement time series for each section of the Madill and Hugo study 

areas during the monitoring period. 

 

Figure 4.8. Mean vertical displacement velocity at Hugo Apr. 2018–Apr. 2020 

 

Figure 4.9. Sentinel-1 displacement time series at Madill for Jan. 2018–Dec. 2019 (A) 

control section; (B) moisture barrier left section; (C) moisture barrier right section 
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Figure 4.10. Sentinel-1 displacement time series at Hugo for Apr. 2018–Apr. 2020 (A) 

control section; (B) moisture barrier left section; (C) moisture barrier right section 

The time series analysis was carried out in detail based on vertical deformation data.  In 

the first step, the ADF test was conducted to determine whether time series were nonstationary. 

Table 4.3 summarizes the results of the ADF test. The ADF test results for the Madill time series 

have relatively small p-values and are close to a significant alpha of 0.05 and indicate that data 

are, in fact, nonstationary. The ADF test results for the Hugo time series have p-values greater 

than a significant alpha of 0.05 and show that data are, in fact, stationary. 
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Table 4.3. Augmented Dickey-Fuller test results for two monitoring locations 

Site Location Statistics Lag order p-value 

Madill control section -3.4923 3 0.05182 

 moisture barrier section (left) -3.6278 3 0.03975 

 moisture barrier section (right) -3.4038 3 0.06557 

Hugo control section -3.2892 3 0.08385 

 moisture barrier section (left) -3.1191 3 0.1263 

 moisture barrier section (right) -2.7663 3 0.2675 

 

The ACF and PACF of the differenced Madill dataset were plotted. The ACF and PACF 

plots indicate that ARIMA (1,1,1) is a good candidate. In the model selection process, the EACF 

chart was computed, and the best subset analysis based on BIC was conducted. The results 

revealed that ARIMA (1,1,1) with the lowest BIC is a good prediction model for the Madill time 

series dataset. Figure 4.11 shows the computed various subset ARIMA models for the Madill 

time series.  

ACF and PACF were plotted for the Hugo dataset, which revealed ARMA (1,1) is a good 

candidate. Further assessment was made to select the best model. The EACF chart and best subset 

analysis revealed that ARMA (1,1) has the lowest BIC and is a good prediction model for the 

Hugo time series. Figure 4.12 demonstrates the computed various subset ARMA models for the 

Hugo time series. 

Outlier detection was done as part of the time series analysis to identify anomalies. This 

study utilized test statistics for outlier detection proposed by Chang et al. (1988). The test 

statistics, λ2, t were not significantly large for both case studies' time series, and there is no 

evidence of AO and AI. 
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Figure 4.11. Best subset ARIMA models selection based on BIC with the maximum AR 

and MA orders of 4 for Madill time series

 

Figure 4.12. Best subset ARIMA models’ selection based on BIC with the maximum AR 

and MA orders of 4 for Hugo time series 

For displacement time series in Madill, sample CCF for all paired displacement time 

series combinations were examined. The CCF of the pre-whitened bivariate series is then 

computed and plotted. Figure 4.13 shows plotted CCF for all possible Madill time series ARIMA 

model combinations. The sample CCF is significant at lag 0, suggesting a positive 

contemporaneous correlation between control and moisture barrier sections. Figure 4.14 shows 
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the plotted CCF for all plausible combinations of Hugo time series ARIMA models. At lag 0, the 

sample CCF is significant, indicating a positive cross-correlation between the control and 

moisture barrier sections. 

By looking at these results, we can conclude that Sentinel-1 data allows deformation 

detection with good coherence throughout the whole time series. The big advantage brought by 

Sentinel-1 is the frequency of acquisition, which increases the ability to detect PSs and the 

precision of measuring their velocity of deformation. The time series analysis reveals insufficient 

evidence to suggest a significant difference between the moisture barrier and the control section 

time series. 

 

 

Figure 4.13. Sample CCF of pre-whitened time series at Madill (A) control section vs. moist. 

section (left); (B) control section vs. moist. section (right); (C) moist. section (left) vs. moist. 

section (right) 

A B 

C 
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Figure 4.14. Sample CCF of pre-whitened time series at Hugo (A) control section vs. moist. 

section (left); (B) control section vs. moist. section (right); (C) moist. section (left) vs. moist. 

section (right) 

4.5 FIELD VALIDATION 

Oklahoma Department of Transportation (ODOT) is responsible for collecting and processing 

data from more than 300 highways across the state in urban and suburban areas. Oklahoma 

Department of Transportation Materials Division / Geotechnical Branch assessed the pavement 

for roughness and distress on two monitoring sites in November 2022. ODOT concluded that is 

virtually no distress in either section with and without membrane on both sites. 

4.6 CONCLUSIONS 

Maintaining a high level of service (LOS) on roadways is one of the primary advantages of 

satellite remote sensing technology. This is possible because early detection of problems can lead 

A B 

C 
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to significant rehabilitation/maintenance issues, resulting in time, energy, and financial loss. In 

light of current pavement monitoring practices, this study aims to detect various types of ground 

deformation by processing freely available Sentinel-1 spaceborne radar data. Sentinel-1 data 

appear to be a perfect compromise given the level of detail they can provide and the reliability of 

the measurements, and they are publicly available. Assessing the surface deformation of 

pavement was accomplished through a remote sensing method based on the combined application 

of SNAP and StaMPS. The methodology has proven simple, thorough, and dependable in 

producing InSAR time series analysis from large datasets, such as the long Sentinel-1 time series. 

The performance of horizontal moisture barriers on two Oklahoma state highways was evaluated 

using time series analysis. 
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CHAPTER V 
 

 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 

 

5.1 CONCLUSIONS 

This dissertation presented statistical and numerical approaches that employ machine learning 

and statistical modeling techniques in unsaturated soil diffusivity and suction estimate and 

performance assessment of civil infrastructure. The presented research can help predict the 

diffusivity and suction under the effect of a rainstorm event or large quantities of moisture while 

considering future climate variability. The developed approaches were formulated to consider the 

various sources of uncertainty associated with soil mechanical parameters. Statistical modeling 

and numerical simulation techniques are used to accelerate mechanistic simulations and the 

model's prediction accuracy. The dissertation discusses an interferometric synthetic aperture radar 

(InSAR) method to monitor and assess vertical ground and pavement surface movements for 

swelling and shrinking soils. InSAR (synthetic aperture radar interferometry) is a particularly 

intriguing method for analyzing ground surface deformations. Using existing SAR data, it is 

possible to provide regional-scale monitoring as well as a historical assessment of displacement. 

Based on the presented research, the following conclusions are drawn: 



82 

 

• The goal is to find hidden patterns or subgroups in data that have not been explicitly 

labeled. The analysis is simplified by clustering continuous predictors into discrete ones. 

Three well-known clustering algorithms and four distance metrics were examined and 

compared for this study. The results of the study show that DBSCAN and Kmean 

clustering are both effective methods for dividing soils into groups based on their 

physical characteristics. 

• Nonlinear least squares regression extends linear least squares regression to a much larger 

and more general class of functions. A nonlinear regression model can incorporate almost 

any function written in closed form. In contrast to linear regression, there are few 

constraints on how parameters can be used in the functional part of a nonlinear regression 

model. The greatest advantage of nonlinear least squares regression over many other 

techniques is the wide range of functions that can be fit. 

• The proposed nonlinear model yielded results comparable to the one-step pressure 

outflow procedure. The nonlinear least-squares model for determining diffusivity is 

simple and quick, making it much simpler for practitioners to perform. It is theoretically 

sound and yields reasonable results with a reasonable level of certainty and robustness. 

• An improved statistical model based on mechanics principles is proposed to improve the 

estimate of the equilibrium suction in subgrade soils. The model used in this analysis 

approach allows for a more accurate prediction of suction-dependent soil parameters 

within the unsaturated zone, such as resilient modulus, soil movement, unsaturated 

permeability coefficient (of diffusivity), shear strength, and shear wave velocity. 

• A ridge regression model was developed to predict equilibrium suction based on readily 

available climatic variables (i.e., relative humidity and TMI) and clay content. The ridge 

regression model surpassed the regression models developed by previous studies. The 

main advantage of ridge regression is that it can be used on datasets with a large number 
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of correlated features. Another benefit of ridge regression is that it can be used when 

there are more features than observations. The L2 penalty introduced for ridge regression 

models will continue to be effective at minimizing overfitting. This is due to the fact that 

the penalty reduces the number of close-to-zero coefficients and, consequently, the 

model's complexity. 

• Sentinel-1 data appears to be a particularly good compromise given the level of detail and 

measurement reliability, and they are publicly available. Pavement surface deformation 

was evaluated using a method based on the integration of SNAP and StaMPS. In 

producing InSAR time series analysis from large datasets, such as the long Sentinel-1 

time series, the methodology has proven simple, thorough, and dependable. Based on the 

validation procedure, the workflow enables the generation of decomposed velocity maps 

with an accuracy of 2 mm/yr and expected uncertainty levels of less than 2 mm/yr. 

• The incorporation of time series analysis in infrastructure monitoring has the potential to 

significantly improve the current state of the art in risk and reliability assessment, as well 

as damage identification. The main advantage of time series analysis is that it aids in 

understanding the underlying causes of trends or systemic patterns over time. Non-

stationary time series or outliers, on the other hand, can have an impact on the analysis, 

and appropriate action must be taken to address the concerns. 
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5.2 RECOMMENDATIONS FOR FUTURE WORK 

• The presented research in Chapter II focused on estimating van Genuchten diffusivity 

parameters for Oklahoma Mesonet soil under various moisture conditions.  However, the 

statistical model is based on Mesonet meteorological data collected at specific locations 

in Oklahoma under specified weather. Accordingly, future efforts should aim at more 

field observations to expand the database to include additional climates and soil fabrics. 

• The presented research in Chapter III focused on developing a statistical model to 

estimate equilibrium suction using Oklahoma Mesonet climate data and the Mesosoil 

database.  However, changes in drainage (i.e., ponding) or soil fabric (i.e., deeper 

fissures) are predicted to result in different predictions. Consequently, future efforts 

should focus on increasing field observations, and research is required to expand the 

database to include more climates, drainage conditions, and soil types. 

• Sentinel-1 SAR C-band images with high temporal resolution (6–12 days) and moderate 

spatial resolution (5 m × 20 m) can provide ground deformation maps. High-resolution 

SAR, such as CSK satellites, use X-band with a revisit interval of 16 days and are well 

suited for pavement monitoring.  

• The PSI has been demonstrated to be a dependable tool for S1 data processing. However, 

new approaches have been introduced in recent years. When compared to PSI, these 

techniques improved interferogram coherence. Future efforts are required to implement 

the new method to assess pavement deformation and infrastructure monitoring better.
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