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and decision-makers have to solve optimization models under uncertainty. In this study, we
address two specific classes of problems with uncertain parameters and we are interested
in solutions that are robust under any realization of uncertainty. The first one is a class of
minimum-cost flow problems where the arcs are subject to multiple ripple-effect disruptions
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CHAPTER I

INTRODUCTION

Robust optimization is a field of study that has attracted significant interest in recent years

because of its numerous practical applications in real-world decision-making problems under

uncertainty such as finance, transportation, energy, and healthcare. Due to lack of historical

data, data inaccuracies, and model errors resulting in insufficient knowledge about systems

with uncertain behaviors, decision-makers are often required to make critical choices based

on uncertain data. The need to optimize the performance of a system while considering the

unpredictability of the parameters involved makes robust optimization an essential tool for

decision-making.

Robust optimization methodology offers a promising avenue to tackle uncertainty that

cannot be adequately modeled using probabilistic methods, often due to a scarcity of

historical data or the unpredictable behavior of complex systems. Compared to methodologies

like stochastic optimization or simulation, robust optimization adopts a more conservative

approach to studying such systems. In particular, robust optimization is concerned with

finding optimal solutions that are insensitive to changes in uncertain parameters, ensuring

that the solution remains feasible under all potential scenarios. To this end, a decision-maker

must identify the worst realization of uncertain parameters to find robust optimal solutions

to the problem. In other words, she/he ensures that there does not exist a realization of

uncertain parameters that gives a result worse than the robust optimal value.

This dissertation explores the application of robust optimization models to identify resilient
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strategies for coping with unpredictable and rare adversarial disruptions such as natural

disasters. The lack of adequate data for mathematical modeling of these events makes them

challenging to address. Our proposed approach is to use robust optimization to create effective

and efficient preparation, response, and resource allocation strategies before the occurrence

of uncertainty. By doing so, we aim to provide practical solutions that help communities

and individuals manage uncertainties and strengthen their resilience against these types of

disruptions.

This study is motivated by two specific classes of problems. The first one is a class of

adversarial minimum-cost flow problems where the arcs are subject to multiple ripple effect

disruptions that increase their usage cost. The locations of the disruptions’ epicenters are

uncertain and the decision-maker seeks a flow that minimizes cost assuming the worst-case

realization of the disruptions. This class of minimum-cost flow problems under uncertainty has

a broad range of applications in military, telecommunication, and transportation problems.

These minimum-cost flow problems can be studied as single-stage robust optimization

problems since the decision-maker determine the flow through each arc before the realization

of uncertainty, and there is a lack of historical data to reliably estimate probability distributions

for the location of the epicenters.

The second class of problems of interest relates to identifying effective mitigation strategies

for tornado hazards, in order to minimize their impact on the well-being of communities.

Specifically, consider a decision-maker (a government agency or a public-private consortium)

who seeks to minimize the social vulnerability after the occurrence of an uncertain tornado.

Prior to a tornado, the decision-maker has the option to allocate resources toward retrofitting

buildings in order to minimize potential damage. Moreover, after a tornado strikes, the

decision-maker must decide whether to prioritize immediate recovery efforts for some affected

buildings. This problem can be seen as a two-stage robust optimization problem in which

the decision maker is allowed to wait and determine some part of decision variables after
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the realization of uncertainty. Since many regions prone to tornadoes lack sufficient reliable

historical data to apply probabilistic models that can forecast tornado paths, the decision-

maker has to account for the worst-case scenario when making decisions related to tornado

mitigation strategies.

The vast majority of the studies in the literature on robust optimization rely on the

convexity assumption of uncertainty sets. However, for certain applications, such as those

considered in this research, the uncertainty is better modeled by a non-convex set that

contains possible realizations of uncertain parameters. Given the limitations of existing

methods, the primary objective of this research is to develop a mathematical framework for

efficiently modeling and solving this specific class of problems with mixed-integer uncertainty

sets. We will explore the scarce existing research in this area by reviewing literature in

Chapter II.

In this particular area of research, we focus on tackling min-max problems that involve

decision-makers seeking to minimize an objective function whose parameters are part of

a mixed-integer set. The min-max problem cannot be solved using conventional methods

because the standard approach, which requires using duality assumptions, is not applicable

for mixed-integer formulations in the inner problem. We, first, reformulate the min-max

problem to a one-level problem using an epigraphic reformulation of the lower-level problem.

However, this one-level reformulation can result in an exponential number of constraints

regarding the number of scenarios present in the uncertainty set. To address this challenge,

we employ decomposition algorithms that iteratively solves a relaxed version of the problem

in the master problem. In each iteration of the algorithms, a subproblem must be solved to

generate a new scenario in the uncertain set and accordingly add a new constraint in the

next iteration to the master problem.

The performance of decomposition algorithms depends on the effectiveness of the solution

approach for their subproblem. Therefore, this dissertation places significant emphasis on
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studying the structure of the mixed-integer optimization model in the subproblem, with

the goal of presenting efficient solution approaches. To achieve this objective, we propose

alternative representations of the uncertainty sets for both classes that leverage valid cuts to

enhance the quality of the mixed-integer subproblem. These representations enable us to

obtain exact solutions for relatively large-scale settings of subproblems in every iteration of

the decomposition algorithms.

1.1 Problem statement

We consider non-convex uncertainty sets in our study, in particular those that are formulated

with mixed-integer programming (MIP). Consider the general optimization model z∗ =

min{c⊤x : x ∈ X}, where x is the decision vector and X represents the set of feasible

solutions. Suppose the parameter c in the objective function is uncertain and belongs to

a non-convex set U . We are interested in the robust solution of the problem when the

worst realization of vector c ∈ U is revealed. So, we propose the following class of robust

optimization problem

z∗ = min
{
max{c⊤x : c ∈ U} : x ∈ X

}
. (1.1)

Problem (1.1) gives the robust optimal value z∗ when the worst scenario of c ∈ U happens.

We formulate and solve robust optimization problem (1.1) for special classes of MIP

uncertainty sets arising from the “Robust Minimum-Cost Flow Problems Under Multiple

Ripple Effect Disruptions” (RMCFP-RED). The uncertainty set U determines cost functions

that calculate parameter c with MIP formulations. We develop a cutting-generation algorithm

to solve the extended formulation of optimization problem (1.1) and enhance its performance

with a strong reformulation of the subproblem. We identify the computational complexity of

the problem for different structures of the uncertainty set.

Furthermore, we extend the methods solving (1.1) to address the two-stage version of
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robust optimization problems. In two-stage robust optimization models, the decision-maker

can determine part of the decision variables before the realization of uncertainty while the

other part of variables are determined when uncertain parameters are revealed. In general,

the two-stage robust optimization models are formulated as

w∗ = min
{
c⊤x+max

{
min{b⊤y : y ∈ F (x, u)} : u ∈ U

}
: x ∈ X

}
, (1.2)

where x ∈ X is the first stage decision variable, y ∈ F (x, y) is the second stage decision

variable that belongs to the feasible set defined by x and the uncertain variable u ∈ U .

We study an optimization problem of the form (1.2) to address “Two-Stage Robust

Optimization Approach for Enhanced Community Resilience under Tornado Hazards”. We

represent the uncertainty set U with a non-linear MIP formulation. We modify the column-

and-constraint generation algorithm in the literature to solve a one-level reformulation of

the problem (1.2). We analyze the resulting non-convex uncertainty set and develop a

decomposition branch-and-cut algorithm to solve the corresponding subproblem. We also

improve the performance of the solution approach by proposing valid cuts to the uncertainty

set.

The remainder of this dissertation is presented as follows. Chapter II reviews the literature

of robust optimization, bilevel programming, and our problems of interest. Chapter III studies

the robust minimum-cost flow problems under multiple ripple effect disruptions. Chapter

IV presents the two-stage robust optimization approach for enhanced community resilience

under tornado hazards. Ultimately, ChapterV concludes this dissertation and discusses future

extensions.
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CHAPTER II

LITERATURE REVIEW

Over the past two decades, robust optimization has garnered extensive attention in the

literature to study systems under uncertainty. The fundamental assumptions of robust

optimization methods can be classified into three categories (Ben-Tal et al., 2009):

1. Decision variables reflect “here-and-now” and they are determined by solving a problem

before obtaining real data in practical scenarios.

2. The decision-maker is entirely responsible for the outcomes of their decisions, with the

exception of instances where uncertain parameters deviate from the assumed level of

uncertainty after they are revealed.

3. Values within the uncertainty set are subject to the “hard constraints” defined in the

model, which they must not breach.

These fundamental assumptions underscore the critical role of robust optimization in providing

robust solutions that can withstand uncertainties and guarantee the feasibility of decision-

making processes.

Soyster (1973) developed one of the first robust optimization models. Despite the

approach’s ability to ensure the robustness of solutions for all possible realizations of uncertain

parameters, it may be overly conservative and might lead to outcomes that deviate significantly

from nominal values. To tackle this concern, more recent works have proposed less conservative
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approaches (Ben-Tal and Nemirovski, 1999; Bertsimas and Sim, 2004; Jalilvand-Nejad et al.,

2016; Bertsimas et al., 2018).

Standard robust optimization models assume that the uncertain parameters belong to

a convex set (Ben-Tal and Nemirovski, 1998, 1999, 2000, 2002; Bertsimas and Sim, 2004;

Ben-Tal et al., 2006; Ben-Tal and Nemirovski, 2008; Bertsimas and Brown, 2009; Li et al.,

2011; Bertsimas et al., 2016), which have many applications in scheduling (Lin et al., 2004),

supply chain (Ben-Tal et al., 2005, 2011), inventory (Bertsimas and Thiele, 2006; Gorissen

et al., 2015), portfolio optimization (Natarajan et al., 2009; Gregory et al., 2011; Moon and

Yao, 2011), transportation (Yao et al., 2009), and power system problems (Xiong et al., 2017).

Robust optimization problems where the uncertainty set depends on the decision-maker

actions have also been studied, see Poss (2014); Nohadani and Sharma (2018).

Fewer works have considered mixed-integer uncertainty sets as the one that arises in this

study. Bertsimas and Sim (2004) consider a class of problems where at most k out of n

columns of a linear program are subjected to interval uncertainty and show that the problem

can be reformulated as a linear program. Exact approaches for more general mixed-integer

uncertainty sets can be seen as an extension of the integer L-shaped method (Laporte and

Louveaux, 1993), in which a master problem solves a relaxation of the problem that considers

a small subset of possible realizations of the uncertainty, while a subproblem (also referred

to as a pessimization oracle) finds a worst-case realization of the uncertainty for the fixed

solution vector obtained from the master problem (Mutapcic and Boyd, 2009; Ben-Tal et al.,

2015; Ho-Nguyen and Kılınç-Karzan, 2018). When applied to our problem setting, each call

to the subproblem requires solving a MIP, which imposes a heavy computational burden

on this type of methods. Borrero and Lozano (2020) proposed an enhanced cutting-plane

algorithm that considerably reduces the number of subproblems solved to optimality during

the execution of the algorithm via a sampling mechanism and cut reoptimization.
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2.1 Bilevel programming

Bilevel optimization can be adapted to formulate a robust optimization problem. A typical

bilevel optimization problem involves upper- and lower-level of optimization problems where

a leader and a follower solve sequential interdependent problems. Accordingly, there are

two classes of decision vectors representing the leader’s and follower’s actions. Only optimal

solutions of the lower-level problem that satisfies the upper-level constraints, are considered

feasible to the leader problem. Two positions are commonly considered for the follower in

bilevel problems; optimistic (weak), where the leader expects the follower to cooperate toward

the best objective value in the upper-level, and pessimistic (strong), where the follower selects

solutions for the worst-case realization of objective value in the leader problem. We refer the

reader to Dempe et al. (2015) and Sinha et al. (2017) for details on bilevel programming.

Our problem setting could be seen as a special case of a bilevel mixed-integer program

(BMIP) because they involve integer variables either at the upper- or lower-level. The

main approaches for general BMIP are methods based on branching (DeNegre and Ralphs,

2009; Xu and Wang, 2014; Fischetti et al., 2017; Tahernejad et al., 2020) or cutting-plane

algorithms based on an optimal-value-function reformulation of the follower’s problem (Mitsos,

2010; Lozano and Smith, 2017a). In general, the bilevel optimization problem is NP-hard

optimization problem, but some conditions can be considered to guarantee polynomial time

complexity to verify the optimality of a solution (Hansen et al., 1992; Vicente et al., 1994).

2.2 Hedging against rippled disruptions

We review the existing studies associated with minimum-cost flow problems under ripple

effect disruptions. The problem encompasses a wide array of applications stemming from

different fields as communications, defense, transportation, among others.

The problem of finding an optimal set of disruptions for a given flow plan is related to the
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maximal covering location problem (MCLP), which seeks to locate a series of facilities over

a collection of sites to maximize the coverage of a weighted demand (Church and ReVelle,

1974; Church, 1984; Chazelle and Lee, 1986). Berman et al. (2010) showed that a one-facility

planar version of MCLP can be solved in polynomial time by framing the problem in terms of

a discrete location model. Berman and Krass (2002) consider problems with gradual covering

where partial coverage of demands is given by a step function; non-increasing continuous

gradual covering functions are studied in Berman et al. (2003). Some applications of gradual

coverage include radio, TV, and cellular coverage, as well as emergency care facilities (Drezner

et al., 2004). Berman et al. (2009) consider problems in which several facilities can cooperate

to cover any given demand and Álvarez-Miranda and Sinnl (2019) propose MIP formulations

for cooperative covering problems with gradual covering. In addition, the combination of two

relaxations for continuous gradual maximal covering location problems have been recently

discussed by Bagherinejad et al. (2018), Berman et al. (2019), Karatas and Dasci (2020). In

Section 3.4 we present a strong formulation for the problem of finding an optimal set of disrup-

tions for a given flow plan, which can be used to solve cooperative and planar gradual MCLPs.

Robust minimum-cost flow problems under multiple ripple effect disruptions, in this

dissertation, could be seen as a special case of a general bilevel mixed-integer program

(BMIP), in which a leader and a follower solve sequential interdependent optimization

problems. Several studies have used interdiction techniques and bilevel programming to

model and solve the problems where networks are subjected to disruptions that can impact

the follower’s objective, feasible region, or both (Israeli and Wood, 2002; Royset and Wood,

2007; Borrero et al., 2016; Lozano and Smith, 2017a; Borrero and Lozano, 2020). However,

to the best of our knowledge, the minimum-cost flow problems under ripple effect disruptions

have not been studied with robust optimization assumptions.
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2.3 Tornado hazard mitigation under uncertainty

The determination of retrofitting and recovery strategies for tornado hazards, particularly

using optimization, is a relatively new topic in the literature. Wen (2021) proposes a multi-

objective optimization model to retrofit against tornado hazards. Their model, however, is

single-stage, does not considers recovery, does not consider uncertain tornado paths, and

aggregates all of the uncertainty of the problem into the parameters of the deterministic model.

Simulation, on the other hand, is more commonly used to study the behavior of tornadoes,

particularly to evaluate the impact of retrofitting strategies, see for example Strader et al.

(2016); Wang et al. (2017); Masoomi and van de Lindt (2018); Fan and Pang (2019); Wang

et al. (2021); Stoner and Pang (2021). These works, however, do not explicitly consider the

decision problem of allocating resources in two stages of retrofitting and recovery.

Ben-Tal et al. (2004) extend the scope of standard single-stage robust optimization

problems by introducing the adjustable robust optimization methodology, where a part of

decision variables must be determined before the realization of the uncertainty set. The

rest of the decision variables are chosen when the uncertain parameters are revealed. The

two-stage approach provides a less conservative framework to deal with the uncertainty and

it can model a broad range of applications in different areas such as transportation (Gabrel

et al., 2014; Pu and Zhan, 2021; Rahmati et al., 2022), networks (Atamtürk and Zhang, 2007;

Nguyen et al., 2021), investment (Takeda et al., 2008), and power systems problems (Zhao

and Zeng, 2012; Jiang et al., 2012; Bertsimas et al., 2012; Shams et al., 2021; Li et al., 2021).

The closest models in the literature to the present work are two-stage robust optimization

models for (general) disaster planning, see Yuan et al. (2016); Ma et al. (2018); Matthews

et al. (2019); Velasquez et al. (2020); Cheng et al. (2021). These models, however, are geared

towards supply and distribution problems in networks and do not capture the specific patterns

of the disasters (such as, e.g., paths or ripple effects). Consequently, these models cannot be
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adapted to deal with tornadoes and the specific retrofitting and recovery setting we study

here.

In general, two-stage robust optimization problems are computationally expensive. To

efficiently solve them, decomposition methods are widely employed, under the assumption

that the second-stage problem is a linear programming problem (Thiele et al., 2009; Zhao

and Zeng, 2012; Jiang et al., 2012; Gabrel et al., 2014). Zeng and Zhao (2013) presents the

column and constraint generation method (C&CG) as an alternative to address this class

of robust problems. They showed the C&CG can outperform previous decomposition for

many problem settings. The C&CG approach has become a popular tool to solve two-stage

robust optimization in the past decade (An et al., 2014; An and Zeng, 2015; Jabr et al., 2015;

Neyshabouri and Berg, 2017; Ding et al., 2017; Yuan et al., 2016; Matthews et al., 2019;

Velasquez et al., 2020; Cheng et al., 2021). An important feature of existing applications of the

C&CG method is that the second-stage optimization problem is convex. In contrast, in our

problem the second-stage problem is an IP problem and the uncertainty set is mixed-integer

non-linear. Therefore, the standard ‘dualize and combine’ approach that is used in the

literature to solve the subproblem in the C&CG does not apply to our case.
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CHAPTER III

ROBUST MINIMUM-COST FLOW PROBLEMS UNDER MULTIPLE

RIPPLE EFFECT DISRUPTIONS

3.1 Motivation

We study a class of robust minimum-cost flow problems, in which a decision maker, which we

refer to as the defender, moves commodities between supply and demand nodes of a network.

The geographical region where the network is located is vulnerable to a series of uncertain

disruptions that affect the arcs of the network, increasing their cost. We consider disruptions

that create a ripple effect for which arcs located closer to the epicenter of the disruption

suffer a greater increase in their cost.

The defender’s objective is to move flow between the supply and demand nodes at

minimum cost and to decide the operation before the realization of the disruptions. Since

the locations of the disruptions’ epicenters are uncertain, the defender seeks to find a robust

optimal solution. That is, for each possible flow solution, the defender assumes that the

worst-case realization of the disruptions is going to happen, and he/she hedges against

uncertainty by finding a flow such that its worst-case cost after the disruptions is minimized.

Formally, we consider a directed network G = (N,A) located in a 2-dimensional space,

where N is the set of nodes and A ⊆ N × N is the set of arcs. Let b = (bi : i ∈ N) be a

vector representing the supply/demand of each node in the network, where
∑

i∈N bi = 0.

Let B ∈ {−1, 0, 1}|N |×|A| denote the node-arc adjacency matrix of the network, and let

Parts of this document are reprinted with permission from Ansari et al. (2023).
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f = (fa : a ∈ A) be a nonnegative vector representing the flow capacity of arcs. We define

the robust minimum-cost flow problem under ripple effect disruptions (RMCFP-RED) as the

following optimization problem:

z∗ = min
{
max{c⊤y : c ∈ U} : By = b, y ≤ f , y ∈ R|A|

+

}
, (3.1)

where y = (ya : a ∈ A) represents the amount of flow through each arc and c = (ca : a ∈ A) is

the vector of costs resulting after the realization of the disruptions. We model the ripple effect

disruptions by ensuring that c belongs to an uncertainty set U ⊂ R|A| that contains all the

possible cost vectors resulting from the realization of m ≥ 1 uncertain disruptions. We assume

that disruption j induces rj ≥ 1 ripples, denoted by Rjk ⊂ R2, for j ∈ [m] = {1, . . . ,m},

k ∈ [rj] = {1, . . . , rj}. An arc a ∈ A belongs to ripple Rjk (which with a slight abuse of

notation we denote by a ∈ Rjk) if the distance between the midpoint of the arc and the

epicenter of disruption j is between qj,k−1 and qjk, where 0 = qj0 ≤ qj1 < . . . < qjrj are given

and known for all j ∈ [m]. For simplicity, we focus on the induced ℓ1-norm distance on the

plane, and include remarks about the ℓ2 and ℓ∞ norms as needed.

We assume that there is an initial cost of moving flow thru arc a ∈ A, denoted by c0a,

and for any arc a ∈ Rjk, there is a corresponding cost increase djk, where dj1 > . . . > djrj are

given and known for any j ∈ [m]. Also, assume that the defender knows the values of rj , qjk,

and djk with certainty. This assumption is justified because the defender can know their value

with precision from previous analysis, e.g., in the case of an earthquake of a given magnitude

it is possible to have a reliable estimate on its effects on the ground; or in case of a bomb

or explosion, it is possible to reliably estimate its damage on its surroundings. Note that

even if the defender only has incomplete information about these values, for instance, interval

estimates, the robust approach allows us to interpret rj, qjk, and djk as the largest possible

number of ripples, ripple sizes, and cost increases, respectively, across all possible values.
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We analyze two alternative cost functions to compute the effect of multiple disruptions on

a given arc. The first cost function, referred to hereafter as the linear model, assumes that the

damage of different disruptions on a single arc is cumulative. Thus, after the realization of

the disruptions, the initial cost of arc a ∈ A is increased by
∑

(j,k) : a∈Rjk
djk. The second cost

function, referred to hereafter as the maximum model, assumes that the damage of different

disruptions on a single arc is given by the maximum damage among the disruption affecting

the arc, i.e., the initial cost of arc a ∈ A is increased by max(j,k) : a∈Rjk
{djk}.

Figure 3.1 illustrates our problem setting with an example having two disruptions. The

left disruption consists of three ripples, while the right disruption consists of two ripples. Arc

(1,2) is closer to the epicenter of the left disruption than arcs (s, 1) and (s, 2), resulting in a

greater increase to its cost.

Figure 3.1: Illustrative example of a network subject to two disruptions under the ℓ1 norm.
The first one generates r1 = 3 ripples and the second one generates r2 = 2 ripples.

Our problem setting encompasses a wide array of applications stemming from different

fields such as communications, defense, and transportation, among others. We motivate our

study by presenting two examples of such problems below.

Supply operations in hostile territory. A military operation requires moving flow

in a network located in enemy territory. The physical infrastructure is susceptible to

bombs/artillery attacks from an adversary, which disrupt the arcs of the network following
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a ripple effect, e.g., if the adversary air-drops 50-pound bombs the blast creates at least

four ripples with decreasing effects of destruction (see for instance Cross et al. (2016)). The

damage inflicted on the physical infrastructure is modeled by an increased cost of traversing

the arcs in the network. Consider for example that the cost of an arc is proportional to the

time it takes to traverse it. The flow is moved using all terrain vehicles that are capable of

navigating over obstacles and rubble; however, traversing a heavily damaged road takes more

time than traversing a slightly damaged road. The combined effect of multiple disruptions is

adequately captured by our linear model which provides a worst-case cost analysis for the

operation.

Supply operations after a disaster. A decision-maker seeks to move commodities

in a network after a major disaster has caused leaks of hazardous materials (e.g., natural

gas, carbon dioxide, biological agents, see Sengul et al. (2012)) at unknown locations, i.e.,

the leak locations might not be known when emergency supply plans are made. As a result,

the operating crew is prepared with an assortment of protective equipment that ranges from

light protective gear (e.g., a face mask) to heavy protective gear (e.g., a hazmat suit). Before

traversing each arc, the crew measures the risk of exposure to hazardous material for the

specific arc and uses appropriate protective gear while traversing the arc. The risk level

follows a ripple effect, where arcs located closer to the epicenter of the spill are considered

riskier and require stricter safety protocols thus increasing the transportation cost, which is

assumed to be proportional to the traveling time over the arcs (Patel and Horowitz, 1994;

Zhang et al., 2000; Verma and Verter, 2007). The effect of the interaction between hazardous

materials is unlikely to be additive (e.g., a combination of hydrogen sulfide and carbon dioxide

–both toxic gases in confined spaces– in the same area does not result in a more dangerous

chemical hazard). As a result, our maximum model is better suited than the linear model to

represent this problem and provides a worst-case cost analysis for the operation.

Borrero and Lozano (2020) studied a special case of RMCFP-RED in which there is a
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single disruption under the linear cost model. They propose an exact cutting-plane algorithm

akin to the integer L-shaped method (Laporte and Louveaux, 1993), in which the uncertainty

set is modeled by a Mixed-Integer Program (MIP) via a big-M formulation. We continue this

line of research and make the following contributions:

• We tackle a more general problem setting, which considers multiple disruptions with

different number of ripples as well as two alternative cost functions to account for the

interactions between the disruptions.

• We show that for the linear model, the problem of finding an optimal set of disruptions

(worst-case disruptions) for a given flow plan can be solved to optimality by sequentially

solving a series of problems considering a single disruption, resulting in a polynomial-

time exact algorithm.

• We show that for the maximum model, the problem of finding an optimal set of

disruptions (worst-case disruptions) for a given flow plan is NP-hard and, in contrast

to the linear case, cannot be decomposed in terms of single disruptions.

• We propose an alternative representation of the uncertainty set using binary variables

that does not include any big-M constants. We adapt it to solve the problem of finding

an optimal set of disruptions (worst-case disruptions) for a given flow plan considering

both the linear and maximum models.

• We connect our findings with the facility location literature and show that our binary

formulation solves a planar case of the generalized maximal covering location problem.

Previous works from the literature do not solve the planar case directly and instead

solve these problems by using more challenging formulations built for more general

discrete location problems.
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• We extend both the linear and the maximum models to account for settings where

at most Λ ≤ m of the disruptions can occur. The parameter Λ adjusts the level of

conservativeness, thus less conservative uncertainty sets can be considered. We show

that the properties of the basic linear and maximum models extend to this case as well.

• We provide computational experiments on test instances from the literature, which

show that embedding our proposed approaches into a cutting-plane algorithm for

RMCFP-RED leads to considerable reductions in running times compared to using

previous big-M formulations from the literature.

The remainder of this chapter is organized as follows. Section 3.2 describes the cutting-

plane framework used for solving RMCFP-RED to optimality. Section 3.3 presents our

proposed approach for the linear model while Section 3.4 discusses the case for the maximum

model. Section 3.5 introduces formulations for the adversary problems in which the level of

uncertainty can be adjusted by the decision maker. Section 3.6 presents our computational

experiments. Finally, Section 3.7 concludes this chapter.

3.2 A solution approach for RMCFP-RED

We present a general solution framework for RMCFP-RED. Section 3.2.1 presents a cutting-

plane method that solves both the linear and maximum versions of the problem, while Sections

3.2.2 and 3.2.3 present our MIP representations for the uncertainty sets of both models.

3.2.1 A cutting-plane algorithm for the robust problem

A standard approach to solve RMCFP-RED (Mutapcic and Boyd, 2009; Borrero and Lozano,

2020) is a cutting-plane algorithm that reformulates the min-max problem (3.1) as the

17



following semi-infinite linear programming problem:

z∗ = min{w : w − c⊤y ≥ 0 ∀c ∈ U ,By = b, y ≤ f , y ∈ R|A|
+ , w ∈ R}. (3.2)

Formulation (3.2) has (potentially) infinitely many constraints, which prevents directly using

an LP solver. Nevertheless, it suggests a constraint generation approach as the one shown in

Algorithm 1, which iteratively explores realizations of the uncertainty to refine upper and

lower bounds on z∗.

Algorithm 1: A cutting-plane algorithm for RMCFP-RED

Data: Set U , matrix B, vectors b and f

Result: yℓ, wℓ, and cℓ

1 Set ℓ = 0, define set U0 = {c0}, where c0 ∈ U , w0 = −∞, v0 = ∞;

2 while vℓ − wℓ > 0 do

3 Set ℓ = ℓ+ 1 ;

4 Solve the LP

wℓ = min
{
w : w − c⊤y ≥ 0 ∀c ∈ U ℓ−1,By = b, y ≤ f , y ∈ R|A|

+ , w ∈ R
}
and let

(wℓ, yℓ) be an optimal solution;

5 Solve the MIP vℓ = max{c⊤yℓ : c ∈ U} and let cℓ be an optimal solution;

6 Update U ℓ = U ℓ−1 ∪
{
cℓ
}
;

At iteration ℓ, the algorithm solves a relaxation of problem (3.2) using a subset U ℓ−1 ⊆ U

instead of U , to obtain a lower bound on z∗ given by wℓ. Denote by yℓ the optimal flow plan

obtained from the relaxation of (3.2). Then, the algorithm proceeds to solve the so-called

pessimization problem, which is a MIP given by vℓ = max{c⊤yℓ : c ∈ U}, establishing an

upper bound on z∗ given by vℓ. If vℓ − wℓ > 0, then the algorithm continues for another

iteration by considering an additional realization of the uncertainty (cost vector) in set U ℓ.

Otherwise, the algorithm terminates with an optimal solution of (3.1) given by yℓ. Since the

set conv.hull(U) is a bounded polyhedron (because U is a finite set of uncertain scenarios,
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see Sections 3.2.2 and 3.2.3), Algorithm 1 converges in a finite number of iterations, see

Proposition 1.

Proposition 1. If U is bounded then Algorithm 1 converges in a finite number of iterations.

Proof. Consider iteration ℓ of the algorithm and recall that the optimal solution of vℓ is

denoted by cℓ+1. For any cj ∈ U ℓ+1 let ĉji , i = 1, . . . ,mj be the extreme points of conv.hull(U)

that appear with a positive coefficient in the convex decomposition of cj, that is

cj =
mj∑
i=1

γj
i ĉ

j
i ,

where
∑mj

i=1 γ
j
i = 1 and γj

i > 0 for all i ∈ [mj]. Let Ej = {ĉji : i ∈ [mj]}.

We claim that if Eℓ+1 = Ej for some j ∈ [ℓ] then vℓ = wℓ. Indeed, note that the optimality

of cℓ+1 in vℓ and the fact that vℓ = max{c⊤yℓ : c ∈ U} = max{c⊤yℓ : c ∈ conv.hull(U)}

imply that (ĉℓ+1
i )⊤yℓ = vℓ for all i ∈ [mℓ+1]. Therefore, (cj)⊤yℓ =

∑
i∈[mj ] γ

j
i (ĉ

j
i )

⊤yℓ =∑
i∈[mℓ] γ

j
i (ĉ

ℓ
i)

⊤yℓ = vℓ
∑

i∈[mj ] γ
j
i = vℓ because

∑
i∈[mj ] γ

j
i = 1. Now, by feasibility in the

master relaxation problem we have that wℓ ≥ c⊤yℓ for all c ∈ U ℓ and thus wℓ ≥ (cj)⊤yℓ, that

is, wℓ ≥ vℓ and we can conclude that vℓ = wℓ, as desired.

The above claim implies that if at iteration ℓ there is no convergence then Eℓ+1 ̸= Ej

for all j ∈ [ℓ]. Since 2ext(conv.hull(U)) (the set of all subsets of extreme points of conv.hull(U))

is a finite set, then it must be the case that the algorithm satisfies that vℓ = wℓ in finite

iterations, as desired.

We remark that the only difference between solving the linear and the maximum versions

of the problems with the cutting-plane algorithm, relates to the definition of the uncertainty

set. We present MIP representations for both uncertainty sets in the subsections below.
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3.2.2 Mixed-integer formulation for the uncertainty set in the linear model

For any flow plan y ∈ R|A|
+ , let vL(y) be the worst-case total cost corresponding to y after the

disruptions happen under the linear model, that is

vL(y) = max{c⊤y : c ∈ UL}, (3.3)

where UL denotes the set of possible cost vectors after the disruptions happen in the linear

model. In order to define MIP formulation of vL(y), let α
(1)
j and α

(2)
j be continuous decision

variables representing the x- and y-coordinates of the epicenter of disruption j ∈ [m],

respectively. For any arc a ∈ A, disruption j ∈ [m], and ripple k ∈ [rj], let λajk be a binary

decision variable defined as

λajk =


1 if arc a belongs to ripple Rjk

0 otherwise.

(3.4)

We assume (without loss of generality) that the epicenters of the disruptions are located within

a sufficiently large rectangle [L(1), U (1)]× [L(2), U (2)], in which the network is contained. We

define D(pa, αj) as the distance (measured by any ℓp-norm) between the midpoint of an arc

a ∈ A, given by pa = (p
(1)
a , p

(2)
a ), and the epicenter of disruption j, denoted by αj = (α

(1)
j , α

(2)
j ).
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We formulate problem (3.3) as the following MIP:

vL(y) =max c⊤y (3.5a)

s.t. ca = c0a +
∑
j∈[m]

∑
k∈[rj ]

djkλajk ∀a ∈ A (3.5b)

∑
k∈[rj ]

λajk ≤ 1 ∀a ∈ A, j ∈ [m] (3.5c)

D(pa, αj)−Ma(1− λajk) ≤ qjk ∀a ∈ A, j ∈ [m], k ∈ [rj] (3.5d)

L(i) ≤ α
(i)
j ≤ U (i) ∀j ∈ [m], i = 1, 2 (3.5e)

αj ∈ R2 ∀j ∈ [m] (3.5f)

λajk ∈ {0, 1} ∀a ∈ A, j ∈ [m], k ∈ [rj] (3.5g)

ca ≥ 0 ∀a ∈ A. (3.5h)

Constraints (3.5b) define the cost of each arc a ∈ A after the disruptions, which is equal

to the initial cost c0a increased by the cumulative amount of damages generated by all the

disruptions. Constraints (3.5c) ensure that arcs are assigned to at most one ripple from

each disruption. Constraints (3.5d) define the λ-variables by ensuring that if λajk = 1, then

D(pa, αj) ≤ qjk, where Ma is a sufficiently large value that makes the constraint trivially

satisfied if λajk = 0. We note that tight values for these big-M constants can be computed

efficiently in our problem (for instance, Ma can be set to be the largest possible distance

between pa and any point in [L(1), U (1)]× [L(2), U (2)]).

The algebraic representation of constraints (3.5d) depends on the specific distance function

used. For the ℓ1-norm, ripples have a diamond-shaped geometry as shown in Figure 3.1. In this

case, constraints (3.5d) consider the “Manhattan” distance from arcs to epicenters given by:

|p(1)a − α
(1)
j |+ |p(2)a − α

(2)
j | −Ma(1− λajk) ≤ qjk ∀a ∈ A, k ∈ [rj], j ∈ [m]. (3.6)
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We linearize (3.6) by adding auxiliary decision variables β+
1aj, β

−
1aj, β

+
2aj, β

−
2aj ∈ R+ and formu-

late constraints (3.5d) under the ℓ1-norm as:

p(1)a − α
(1)
j = β+

1aj − β−
1aj ∀a ∈ A, j ∈ [m] (3.7a)

p(2)a − α
(2)
j = β+

2aj − β−
2aj ∀a ∈ A, j ∈ [m] (3.7b)

β+
1aj + β−

1aj + β+
2aj + β−

2aj −Ma(1− λajk) ≤ qjk ∀a ∈ A, k ∈ [rj], j ∈ [m] (3.7c)

β+
1aj, β

−
1aj, β

+
2aj, β

−
2aj ≥ 0 ∀a ∈ A, j ∈ [m], (3.7d)

noting that optimization ensures that in an optimal solution β+
1aj + β−

1aj + β+
2aj + β−

2aj =

|p(1)a − α
(1)
j |+ |p(2)a − α

(2)
j |. Similar formulations for the ℓ∞ and ℓ2 norms are in Appendix 6.1.

3.2.3 Mixed-integer formulation for the uncertainty set in the maximum model

Similar to the linear model, we define for any flow plan y ∈ R|A|
+ its corresponding worst-case

cost vM(y) as

vM(y) = max{c⊤y : c ∈ UM} (3.8)
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where UM denotes the set of possible cost vectors after the realization of the disruptions in

the maximum model. Defining the same decision variables as before, vM(y) is given by:

vM(y) =max c⊤y (3.9a)

s.t. ca = c0a +
∑
j∈[m]

∑
k∈[rj ]

djkλajk ∀a ∈ A (3.9b)

∑
j∈[m]

∑
k∈[rj ]

λajk ≤ 1 ∀a ∈ A (3.9c)

D(pa, αj)−Ma(1− λajk) ≤ qjk ∀a ∈ A, j ∈ [m], k ∈ [rj] (3.9d)

L(i) ≤ α
(i)
j ≤ U (i) ∀j ∈ [m], i = 1, 2 (3.9e)

αj ∈ R2 ∀j ∈ [m] (3.9f)

λajk ∈ {0, 1} ∀a ∈ A, j ∈ [m], k ∈ [rj] (3.9g)

ca ∈ R ∀a ∈ A. (3.9h)

Constraints (3.9c) now require that for each arc at most one disruption can be active.

As a result, optimization ensures that at any optimal solution
∑

j∈[m]

∑
k∈[rj ] djkλajk =

max(j,k) : a∈Rjk
{djk} in constraints (3.9b), as desired.

Interestingly, even though the formulations for vL(y) and vM(y) are almost identical (the

only difference being constraints (3.5c) and (3.9c)), the feasible region of vL(y) decomposes

while the feasible region of vM(y) does not, as shown in the coming sections. This fact has

important consequences on the computational complexity of both problems and on the speed

at which both problems can be solved.

3.3 Solution of the MIP vL(y) for the linear model

Algorithm 1 requires solving a challenging MIP (at line 5) in each iteration. We show that this

issue can be alleviated by decomposing the extended MIP into m different single disruption
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problems, which can be solved in polynomial time. As a result, the decomposition implies

that vL(y) is polynomially solvable. Moreover, we show that under additional homogeneity

conditions on the parameters of the disruptions, the multiple disruption problem can be

further reduced to a single disruption problem with aggregated costs. We note that the

results of this section do not depend on the distance metric and therefore we use the general

formulation (3.5) throughout rather than the formulation based on the ℓ1-norm.

3.3.1 A decomposition for the formulation of vL(y)

For a flow vector y ∈ R|A|
+ , consider the problem of finding the worst-case jth disruption, for

a fixed sequence of disruptions u ∈ [j − 1], represented by their epicenters, ᾱu, and their

λ-values, λ̄u
ak. We formulate this problem as the following MIP (from here on we use both

notations λj
ak and λajk to refer to the binary λ-variables interchangeably depending on the

context for clarity):

v
(j)
L (y) = max c⊤y (3.10a)

s.t. ca = c0a +
∑

u∈[j−1]

∑
k∈[ru]

dukλ̄
u
ak +

∑
k∈[rj ]

djkλ
j
ak ∀a ∈ A (3.10b)

∑
k∈[rj ]

λj
ak ≤ 1 ∀a ∈ A (3.10c)

D(pa, α
j)−Ma(1− λj

ak) ≤ qjk ∀a ∈ A, k ∈ [rj] (3.10d)

L(i) ≤ α
(i)
j ≤ U (i) i = 1, 2 (3.10e)

λj
ak ∈ {0, 1} ∀a ∈ A, k ∈ [rj] (3.10f)

ca ∈ R ∀a ∈ A. (3.10g)

Intuitively, if constraints (3.5b) are removed and substituted in the objective function, then

vL(y) can be solved by sequentially solving v
(1)
L (y), . . ., v

(m)
L (y), see Proposition 2.
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Proposition 2. For any given number of disruptions m ≥ 1 and a flow y ∈ R|A|
+ , it follows

that vL(y) = v
(m)
L (y), where v

(m)
L (y) is obtained by sequentially solving v

(1)
L (y), v

(2)
L (y), . . .,

v
(m)
L (y) and fixing the disruptions found at each step.

Proof. Let L denote the set of λ-feasible solutions to (3.5) without including constraint (3.5b),

that is,

L =

{
λ ∈ Λ : ∃αj ∈ [L(1), U (1)]× [L(2), U (2)] ∀j ∈ [m] s.t.

∑
k∈[rj ]

λajk ≤ 1, ∀a ∈ A, j ∈ [m];

D(pa, αj)−Ma(1− λajk) ≤ qjk, ∀a ∈ A, k ∈ [rj], j ∈ [m]

}
, (3.11)

where Λ = {0, 1}|A|×
∑

j∈[m] rj and similarly for j ∈ [m], let Lj denote the set of λj-feasible

solutions to (3.10) without including constraint (3.10b), that is

Lj =

{
λj ∈ {0, 1}|A|×rj : ∃αj ∈ [L(1), U (1)]× [L(2), U (2)] s.t.

∑
k∈[rj ]

λj
ak ≤ 1 ∀a ∈ A; D(pa, α

j)−Ma(1− λj
ak) ≤ qjk ∀a ∈ A, k ∈ [rj]

}
. (3.12)

Note that L = L1 × · · · × Lm. In order to prove Proposition 2 we now show that

v
(m)
L (y) ≤ vL(y) and v

(m)
L (y) ≥ vL(y):

(1) v
(m)
L (y) ≤ vL(y): Consider the optimal value of v

(m)
L (y) given by

∑
a∈A c̄aya where

c̄a = c0a +
∑

u∈[m−1]

∑
k∈[ru]

dukλ̄
u
ak +

∑
k∈[rm]

dmkλ̄
m
ak ∀a ∈ A. (3.13)

Because λ̄u ∈ Lu for all u ∈ [m] and L = L1 × · · · × Lm, it follows that (c̄, ᾱ, λ̄) is a

feasible solution to problem (3.5), where c̄ is given by (3.13), ᾱ = (ᾱu : u ∈ [m]), and

λ̄ = (λ̄u
ak : a ∈ A, u ∈ [m], k ∈ [ru]). Hence, v

(m)
L (y) ≤ vL(y) as desired.
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(2) v
(m)
L (y) ≥ vL(y): Let λ∗ = (λ∗

1, . . . , λ
∗
m) ∈ L be a λ-optimal solution associated with

vL(y), where λ∗
j = (λ∗

ajk : a ∈ A, k ∈ [rj]) for any j ∈ [m]. Because λ∗
j ∈ Lj for any

j ∈ [m], from the definition of λ̄j it follows that:

∑
a∈A

∑
k∈[rj ]

djkλ
∗
ajkya ≤

∑
a∈A

∑
k∈[rj ]

djkλ̄
j
akya ∀j ∈ [m]. (3.14)

By using (3.14) and adding across all j ∈ [m] we conclude that

vL(y) =
∑
a∈A

c0a +
∑
j∈[m]

∑
k∈[rj ]

djkλ
∗
ajk

 ya ≤
∑
a∈A

c0a +
∑
j∈[m]

∑
k∈[rj ]

djkλ̄
j
ak

 ya = v
(m)
L (y),

(3.15)

as desired.

We now consider the case where allm disruptions are homogeneous. That is, all disruptions

have the same number of ripples rj = r, the same values for the distances qjk = qk defining

the ripples, and the same values for the damages djk = dk for all j ∈ [m]. In this case, the

set of feasible solutions of λajk for all disruptions j are the same. For any y ∈ R|A|
+ consider

the following MIP:

vH(y) = max c⊤y (3.16a)

s.t. ca = c0a +m
∑
k∈[r]

dkλak ∀a ∈ A (3.16b)

∑
k∈[r]

λak ≤ 1 ∀a ∈ A (3.16c)

D(pa, α)−Ma(1− λak) ≤ qk ∀a ∈ A, k ∈ [r] (3.16d)

L(i) ≤ α(i) ≤ U (i) i = 1, 2 (3.16e)

λak ∈ {0, 1} ∀a ∈ A, k ∈ [r] (3.16f)

ca ∈ R ∀a ∈ A. (3.16g)
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Observe that (3.16) is the MIP of a single disruption problem with r ripples, damages given

by mdk, and distances given by qk, k ∈ [r]. A direct consequence of the decomposition

approach discussed in Proposition 2 is that vL(y) = vH(y), see Proposition 3.

Proposition 3. Let a flow y ∈ R|A|
+ be given. If the disruptions are homogeneous then

vL(y) = vH(y).

Proof. Suppose that λH ∈ LH is the λ-optimal solution of vH(y) and let λ∗ = (λ∗
1, . . . , λ

∗
m) ∈

(LH)
m be the λ-optimal solution of vL(y). Define λ̄ as m copies of λH one after the other,

λ̄ = (λH , . . . , λH) and observe that λ̄ ∈ (LH)
m. From the optimality and feasibility of λ∗ and

λ̄ in vL(y), respectively, it follows that

vL(y) =
∑
a∈A

c0a +
∑
k∈[r]

dk
∑
j∈[m]

λ∗
ajk

 ya ≥
∑
a∈A

c0a +m
∑
k∈[r]

dkλ
H
ak

 ya = vH(y). (3.17)

On the other hand, from the optimality of λH and feasibility of λ∗
j , j ∈ [m] in vH(y), it

follows that

vH(y) =
∑
a∈A

c0a +m
∑
k∈[r]

dkλ
H
ak

 ya ≥
∑
a∈A

c0a +m
∑
k∈[r]

dkλ
∗
ajk

 ya ∀j ∈ [m]. (3.18)

The aggregation of (3.18) over all j ∈ [m] gives

m
∑
a∈A

c0a +m
∑
k∈[r]

dkλ
H
ak

 ya ≥
∑
a∈A

mc0a +m
∑
j∈[m]

∑
k∈[r]

dkλ
∗
ajk

 ya

= m
∑
a∈A

c0a +
∑
j∈[m]

∑
k∈[r]

dkλ
∗
ajk

 ya. (3.19)

Inequality (3.19) implies that vH(y) ≥ vL(y) and therefore vH(y) = vL(y), as desired.

Remark 1. If the disruptions have different ripple radii or yield different damage amounts
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then the locations of their epicenters are not necessarily the same and the multiple disruptions

problem cannot be reduced to a single disruption ripple effect problem. To this end, consider

first two disruptions with the same number of ripples and the same radii but with different dam-

age values, see Figure 3.2a. Suppose two arcs whose midpoints are located on the coordinates

pa1 = (0, 0) and pa2 = (4, 0), assume radii of q11 = q21 = 1 and q12 = q22 = 2, and different

damage values given by d11 = d21 = 3, d12 = 2, and d22 = 1. Observe that it is necessary for

an optimal solution to have the first disruption centered at (2, 0) because it covers both arcs

with the second ripple and gives a cost increase of 4 units. However, it is not optimal to have

the epicenter of the second disruption at (2, 0) because having the first ripple of the second

disruption covering just one arc yields more damage (3 units) than covering both arcs (2 units).

Second, consider two disruptions with different radii and the same damage values, see

Figure 3.2b. Here q11 = 1, q12 = 2, q21 = 0.5, q22 = 1, d11 = d21 = 3 and d12 = d22 = 2. As

before, in this case it is necessary for an optimal solution to locate the epicenter of the first

disruption at (2, 0). It is clear, however, that having the epicenter of the second disruption

at (2, 0) is not optimal because it does not damage any arc.

(a) The disruptions have different damage
values. (b) The disruptions have different radii.

Figure 3.2: Two problem instances having non-homogeneous disruptions.
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3.3.2 A polynomial time algorithm for vL(y)

Proposition 2 shows that for any given flow y, vL(y) can be decomposed by solving m

single disruption problems. We now show that single disruption problems can be solved in

polynomial time following arguments used in the literature of maximal covering location

problems (Church, 1984; Berman and Krass, 2002; Berman et al., 2010). Let r be the number

of ripples for the disruption under consideration and let qk, k ∈ [r] be the radii of the ripples.

Assume that the distances are measured using the ℓ1-induced norm (the argument for ℓ2 and

ℓ∞ norms is similar). For a given arc a ∈ A, let Bk(a) and Qk(a) be the (solid) diamond and

the border of the diamond of center pa and radius qk in the plane:

Bk(a) = {x ∈ R2 : ||pa − x||1 ≤ qk} and Qk(a) = {x ∈ R2 : ||pa − x||1 = qk}, (3.20)

and for any a, b ∈ A and k, ℓ ∈ [r] consider the intersection Qk(a) ∩Qℓ(b). To compute the

elements of Qk(a) ∩ Qℓ(b), we first determine the intersections of the entire lines induced

by the diamond’s borders. If an intersection point x also lies in Qk(a) and Qℓ(b), then x is

added to the set of intersections. Besides being empty, there are only three possibilities for

the number of elements of this intersection: it can consist of only one point if Qk(a) and

Qℓ(b) meet at a corner; it can consist of infinitely many points if Qk(a) and Qℓ(b) overlap

at one of the sides; or else, it consists of two points. Define Ikℓab as

Ikℓab =


Qk(a) ∩Qℓ(b), if |Qk(a) ∩Qℓ(b)| ≤ 2

an arbitrary x ∈ Qk(a) ∩Qℓ(b), if |Qk(a) ∩Qℓ(b)| = ∞,

(3.21)

and let I be the set of all intersection points

I =
⋃

k,ℓ∈[r],a,b∈A

Ikℓab . (3.22)

29



In total, there are O(|A|2r2) pairs of diamonds that must be evaluated for their intersections.

It is worth mentioning that the case for the ℓ∞ norm has the same number of intersection

points as the ℓ1 norm, while for the ℓ2 norm there are at most two intersection points. Notice

that for the ℓ2 norm, finding intersection points of the ‘circle versions’ of Qk(a) and Qℓ(b)

simplifies to solving a quadratic equation.

Finally, define P = {x ∈ R2 : x = pa for some a ∈ A}, hence P is the set of locations of

the arcs of the network. We have Proposition 4 that mentions the optimal epicenter can be

found in (I ∪ P ). In order to prove Proposition 4, we first have the following lemma.

Lemma 1. Let A = {1, 2, . . . , n} and define Bi = {x ∈ R2 : ||pi − x||1 ≤ vi} where pi ∈ R2

and vi > 0 for each i ∈ A and Qi = {x ∈ R2 : ||pi − x||1 = vi}. For any i, j ∈ A define Iij in

an analogous way to Equation (3.21) and let I =
⋃

i,j∈A Iij. Define B =
⋂

i∈A Bi. If B ̸= ∅ and

Q =
⋂

i∈A Qi ̸= ∅ then: ( i) B is either a solid rectangle shifted 45 degrees; a line segment; a set

of two points; or a single point. If it is a rectangle, then each side is a subset of a side of a Qk

for some k ∈ A; if it is a line segment then B is a subset of a side of a Qk for some k ∈ A, if

B has two or one points, then these points belong to some Qk, k ∈ A. ( ii) I ∩B is non-empty.

Proof. The proof is by induction on the number of elements of A. For the base case suppose

n = 2. Consider the possible scenarios for the intersection B1 ∩ B2 assuming that it is

non-empty, see Figure 3.3.

(a) Shifted rectangle,
I12 = {i1, i2} (b) Line segment, I12 = {i} (c) Single point, I12 = {i}

Figure 3.3: Possible intersection of two diamonds.
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Observe that B1 ∩B2 its either a (shifted) rectangle, whose sides are subsets of the sides

of Q1 and Q2, a line segment that is a subset of a side of each Q1 and Q2, or a single point

in I. In either case, note that I ∩ (Q1 ∩Q2) ̸= ∅.

(a) Two points, I12 = {i1, i2} (b) Single point, I12 = {i} (c) Line segment, I12 = {i}

Figure 3.4: Possible intersection of diamond with a segment.

For the inductive step, we assume the result holds true for n and show it for n+ 1. Let

Bn =
⋂

i∈[n] Bi, then by the inductive hypothesis Bn satisfies (i) and (ii) of the statement

of the lemma. Suppose that Bn is a solid rectangle. Then B = Bn ∩Bn+1 is analyzed in the

same way as in the base case and the result follows. Suppose that Bn is a line segment. In

this case Bn ∩Bn+1 consists of either two points, one point, or a line segment that is a subset

of Bn, see examples in Figure 3.4. If it is a line segment, then clearly B is a subset of a side of

Bn+1. Moreover, note that independent of the case I ∩B ̸= ∅ because Bn is a subset of a side

of some Qk. If Bn consist of either two points or a single point, then clearly B can be either

a set with two points or a set with a single point and its also evident that I ∩ B ̸= ∅.

Proposition 4. Assume that m = 1, let a flow y ∈ R|A|
+ be given, and let E be the set of

optimal epicenters of vL(y). Then (I ∪ P ) ∩ E ̸= ∅.

Proof. By the proof of Theorem 1 in Church (1984), it can be assumed that the optimal

epicenter of the disruption is in the interior of the non-empty set

B̃ =
⋂
k∈[r]

⋂
a∈Ãk

Bk(a) (3.23)

where Ãk is the set of arcs that are between a distance of qk−1 and qk of the epicenter of the
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disruption and where Q̃ =
⋂

k∈[r]
⋂

a∈Ãk
Qk(a) ̸= ∅. Note that the epicenter can be moved to

any point of B̃ without affecting the value of the disruptions of any of the arcs of the network.

Now, observe that B̃ is a set of the form B given in Lemma 1. In particular, this Lemma

implies that I ∩ B̃ ≠ ∅, where I is given by Equation (3.22). Thus, it can be concluded that

the epicenter of the disruption can be moved to a point of I without changing the value of

the objective function, which gives the desired result.

We note that the analogous version of Proposition 4 for the ℓ∞ norm follows the same

arguments of the ℓ1 case. The proof of the ℓ2 case follow from mimicking the proof of Theorem

1 of Church (1984).

As a consequence, single disruption problems can be solved by the following Discrete

Location Algorithm (DLA): (i) find all the O(|A|2r2) locations in I ∪P and then (ii) evaluate

the damage of the disruption in each of the locations in I ∪ P ; the one that attains the

maximum value is an optimal epicenter for the disruption. DLA runs in polynomial time

because evaluating the effect of a disruption takes at most O(|A|r) time, which implies that

even a naive implementation of DLA takes O(|A|3r3) time.

For m ≥ 1, vL(y) can be solved in O(m|A|3r3) time by following a Multiple Disruptions

Discrete Location Algorithm (MDDLA). MDDLA loops over all disruptions, j = 1, . . . ,m,

fixing the c-optimal solution of v
(j−1)
L (y) as the initial cost vector in v

(j)
L (y) and solving the

single disruption problem v
(j)
L (y) using the DLA (we make the convention that the c-optimal

solution of v
(0)
L (y) is c0). After the loop is done, MDDLA outputs the value of v

(m)
L (y), which

by Proposition 2, equals the optimal value of vL(y).

3.4 Solution of the MIP vM(y) for the maximum model

In contrast to the linear case, we show that decomposing vM (y) as single disruption problems

is not possible in general and that in fact, finding an optimal solution to vM(y) is NP-hard.
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We propose a reformulation for vM (y) that does not use big-M constants and is theoretically

better than formulation (3.9). Moreover, our proposed reformulation also works for the

linear model and surprisingly its computational performance is equivalent or better than

the performance of the polynomial time algorithm proposed, as we show in the numerical

experiments in Section 3.6. Finally, our reformulation also allows us to connect the disruption

problems with maximum clique problems in intersection graphs.

3.4.1 Problem vM(y) is NP-hard

First, we show with a counter example that problem vM(y) cannot be decomposed into

simpler single disruption problems in general.

Remark 2. Suppose that the network consists of six arcs with coordinates pa1 = (0, 0),

pa2 = (2, 0), pa3 = (3, 0), pa4 = (4, 0), pa5 = (5, 0), and pa6 = (7, 0). Assume that there are

two homogeneous disruptions with a single ripple characterized by qj = 1.5 and dj = 1 for

j = 1, 2. Decompose vM(y) as two successive disruptions by adapting Proposition 2. Here,

instead of using
∑

u∈[j−1]

∑
k∈[ru] dukλ̄auk +

∑
k∈[rj ] djkλajk to evaluate the effect generated by

disruption j on arc a, we use the maximum between max{
∑

k∈[ru] dukλ̄auk : u ∈ [j − 1]} and∑
k∈[rj ] djkλajk. This decomposition results in locations for the disruptions given by α1 =

(3.5, 0) and α2 = (5.5, 0) with an objective value of v =
∑

i∈[6] c
0
ai
+5, see Figure 3.5a. Observe

that this is not an optimal solution for vM(y) because locating one disruption at α1 = (1.5, 0)

and another one at α2 = (5.5, 0) results in an objective value of
∑

i∈[6] c
0
ai
+6, see Figure 3.5b.

We prove that vM(y) is NP-hard by a reduction from the BOX COVER problem stated

as follows.

BOX COVER problem: We are given a collection of m ≥ 1 squares (or boxes) in R2 of

identical size and a finite set of points S in R2. All point coordinates and the length of all box
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(a) Decomposition solution (b) Optimal solution

Figure 3.5: Counter example that illustrates that problem vM (y) cannot be decomposed into
sequential single-disruptions problems.

sides are assumed to be integer. The answer of the problem is YES if and only if a subset of the

squares, placed with their sides parallel to the axis of the plane, can cover all the points in S.

The BOX COVER problem is NP-complete and the disc version, where instead of boxes

one has m identical circles, is also NP-complete, see Theorems 1 and 4 in Fowler et al. (1981).

Proposition 5. Problem vM(y) is NP-hard under either the ℓ1, ℓ2, or the ℓ∞ induced norm.

Proof. We consider an arbitrary instance of BOX COVER with locations S ̸= ∅ and m > 1

identical boxes of side q > 0. We construct a network G and a flow y such that the answer of

BOX COVER is yes if and only if vM (y) ≥ |S|. Create a network G = (V,E) with a single path

as follows. Let (xi, yi) be the integer-valued coordinates of point i ∈ S, and assume without loss

of generality that xi < xi+1; if xi = xi+1, then assume yi ≤ yi+1. Consider a graph G = (V,E)

with V = {1, . . . , |S|+1}, E initially empty, and denote the coordinates of vertex i as (p
(1)
i , p

(2)
i ).

Suppose first that x1 < x2 (the other case is similar). Then, define (p
(1)
1 , p

(2)
1 ) = (x1, y1 − 1)

and (p
(1)
2 , p

(2)
2 ) = (x1, y1 + 1) and add edge (1,2) into E. Note that the midpoint of (1,2) is

precisely (x1, y1). Now, for i = 2, . . . , |S|, let δ(1)i = xi − p
(1)
i and δ

(2)
i = yi − p

(2)
i and define

p
(1)
i+1 = xi+δ

(1)
i and p

(2)
i+1 = yi+δ

(2)
i . Add (i, i+1) to E and note that (xi, yi) is the midpoint of

edge (i, i+1). In this way, graph G consists of a single path with source at node 1 and sink at

node |S|+ 1 whose arcs’ midpoints are the points in S, see Figure 3.6. Now, assume that the

minimum cost flow problem is the shortest path problem where the source is 1 and the sink is
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Figure 3.6: Example of the graph construction with |S| = 5. The black lines are the graph’s
edges, the intersections of the lines of the grid represent integer coordinates.

|S|+ 1 (thus ya = 1 for all a ∈ A), and let m be the number of disruptions. Let c0a = 0 for all

arcs a ∈ A, assume only one ripple rj = 1 for all disruptions j ∈ [m], set dj = 1, and qj = q/2.

For the ℓ∞ norm, the optimal value of vM(y) on this instance is less than |S| if and only

if the solution of BOX COVER is NO. Otherwise, if vM(y) ≥ |S| then the answer to BOX

COVER is YES. As a result, problem vM(y) is NP-hard under the ℓ∞ norm.

The proof for the ℓ1 norm follows by rotating everything 45 degrees and changing qj

accordingly. The proof for the ℓ2 norm is a consequence of the same arguments but assuming

discs instead of boxes.

3.4.2 An improved reformulation for vM(y)

It is well-known that big-M formulations such as (3.9) can lead to weak LP relaxations which,

in turn, impair the performance of the branch-and-cut methods that are typically employed
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to solve MIPs. We introduce a set of valid constraints for vM (y) and propose a reformulation

that does not rely on big-M coefficients. We show that our reformulation is stronger than the

big-M formulation (3.9) under suitable assumptions on the big-M coefficients and remark the

relationship between our reformulation and maximum clique problems in intersection graphs.

As before, for any disruption j ∈ [m] define vector λj = (λajk : a ∈ A, k ∈ [rj ]) and binary

set Mj as

Mj =
{
λj ∈ {0, 1}|A|×rj : ∃αj ∈ [L(1), U (1)]× [L(2), U (2)] s.t.

D(pa, αj)−Ma(1− λj
ak) ≤ qjk ∀a ∈ A, k ∈ [rj]

}
. (3.24)

Let us denote by C the set of binary points that satisfy the coupling constraint (3.9c), that is

C =
{
λ ∈ {0, 1}|A|×

∑
j∈[m] rj :

∑
j∈[m]

∑
k∈[rj ]

λajk ≤ 1 ∀a ∈ A
}
. (3.25)

In terms of these new sets, the uncertainty set described by formulation (3.9) can be written as:

U =
{
c ∈ R|A|

+ : ∃λ ∈ C ∩
∏
j∈[m]

Mj s.t. ca = c0a +
∑
j∈[m]

∑
k∈[rj ]

djkλajk ∀a ∈ A
}
. (3.26)

Our proposed reformulations describe sets Mj without using big-M constants. The con-

straints defining these sets are derived from the following lemma, which states that two arcs can-

not be in two different ripples of one disruption if the distance between them is sufficiently large.

Lemma 2. Let disruption j ∈ [m], ripples k1, k2 ∈ [rj], and arcs a, b ∈ A be given. If

D(pa, pb) > qjk1 + qjk2 then a ̸∈ Rjk1 or b ̸∈ Rjk2.

Proof. The proof follows from the contrapositive. We claim that if a ∈ Rjk1 and b ∈ Rjk2
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then D(pa, pb) ≤ qjk1 + qjk2 . Indeed, we have that

D(pa, pb) ≤ D(pa, αj) +D(pb, αj) ≤ qjk1 + qjk2, (3.27)

where the first inequality follows from the triangle inequality of distance functions and the

second inequality because a ∈ Rjk1 and b ∈ Rjk2 .

Following Lemma 2, we define the set of infeasible pairwise combinations of ripples for

disruption j ∈ [m] given any two arcs a, b ∈ A, a ̸= b, as follows:

Γj
a,b =

{
(k1, k2) ∈ [rj]× [rj] : D(pa, pb) > qjk1 + qjk2

}
, (3.28)

and define the binary set Bj as

Bj =
{
λj ∈ {0, 1}|A|×rj : λj

ak1
+ λj

bk2
≤ 1 ∀ (k1, k2) ∈ Γj

a,b, a, b ∈ A, a ̸= b.
}
. (3.29)

We have that the elements of Mj satisfy the conflict constraints defining Bj . This statement

is formalized in the next result.

Proposition 6. For any given disruption j ∈ [m] and a distance measure given by an ℓp-norm

it follows that Mj ⊆ Bj.

Proof. Let λj ∈ Mj. Note that for any given arcs a, b ∈ A and ripples k1, k2 ∈ [rj] it follows

that:

D(pa, αj)−Ma(1− λj
ak1

) ≤ qjk1 , (3.30a)

D(pb, αj)−Mb(1− λj
bk2

) ≤ qjk2 . (3.30b)
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Adding constraints (3.30a) and (3.30b) gives

D(pa, αj) +D(pb, αj)−Ma(1− λj
ak1

)−Mb(1− λj
bk2

) ≤ qjk1 + qjk2 . (3.31)

By the triangle inequality, we have

D(pa, αj) +D(pb, αj) ≥ D(pa, pb) (3.32)

Let M = max{Ma,Mb}, then we obtain the following from (3.31):

D(pa, pb)−M(2− λj
ak1

− λj
bk2

) ≤ qjk1 + qjk2 . (3.33)

Note that if D(pa, pb) > qjk1 + qjk2 , i.e., (k1, k2) ∈ Γj
a,b, then (3.33) holds if and only if

λj
ak1

+ λj
bk2

≤ 1, (3.34)

and therefore constraint λj
ak1

+ λj
bk2

≤ 1 is satisfied by any pair of arcs a, b ∈ A over all

(k1, k2) ∈ Γj
a,b, i.e., λ

j ∈ Bj.

The converse of Proposition 6 is also valid under the distances induced by the ℓ1 and ℓ∞

norms, under the assumption that the coupling constraints in C are satisfied, as shown next.

Proposition 7. For a disruption j ∈ [m] under the distance measure induced by the ℓ1 norm,

if λ = (λ1, . . . , λm) ∈ C and λj ∈ Bj, then λj ∈ Mj.

Proof. For a given a ∈ A, if λj
ak = 0 for all k ∈ [rj], then the constraints in Mj are trivially

satisfied for arc a. Henceforth, we consider the set of arcs Aj ⊆ A such that λj
ak = 1 for some

k ∈ [rj]. Since λ ∈ C, then for each arc a ∈ Aj there is exactly one ripple, denoted by ka,

for which λj
aka

= 1 and we have that λj
ak = 0 for all k ∈ [rj], k ̸= ka.

Constraints in Mj for arc a and ripple k ̸= ka are trivially satisfied since λj
ak = 0. We
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show that constraints in Mj hold for any arc a ∈ Aj and k = ka as there exists a location

αj ∈ [L(1), U (1)]× [L(2), U (2)] such that

|p(1)a − α
(1)
j |+ |p(2)a − α

(2)
j | ≤ qjka ∀a ∈ Aj. (3.35)

Observe that (3.35) is equivalent to

− qjka + (p(1)a + p(2)a ) ≤ α
(1)
j + α

(2)
j ≤ qjka + (p(1)a + p(2)a ) ∀a ∈ Aj (3.36a)

− qjka + (p(1)a − p(2)a ) ≤ α
(1)
j − α

(2)
j ≤ qjka + (p(1)a − p(2)a ) ∀a ∈ Aj. (3.36b)

In turn, (3.36) holds if and only if

max
a∈Aj

{−qjka + (p(1)a + p(2)a )} ≤ min
a∈Aj

{qjka + (p(1)a + p(2)a )} (3.37a)

max
a∈Aj

{−qjka + (p(1)a − p(2)a )} ≤ min
a∈Aj

{qjka + (p(1)a − p(2)a )}. (3.37b)

To see why the equivalence is true, first observe that constraints (3.36) imply that (3.37) hold.

Now, assume that (3.37) hold and denote by M1 and M2 the values of the minima in (3.37)

and by m1 and m2 the value of the maxima, thus (3.37) is equivalently written as m1 ≤ M1

and m2 ≤ M2. Define α
(1)
j = (m1+m2)/2 and α

(2)
j = (m1−m2)/2. Then α

(1)
j +α

(2)
j = m1 and

α
(1)
j − α

(2)
j = m2 and therefore m1 ≤ α

(1)
j + α

(2)
j ≤ M1 and m2 ≤ α

(1)
j − α

(2)
j ≤ M2, as desired.

Let maxa∈Aj
{−qjka + (p

(1)
a + p

(2)
a )} = −qjke + (p

(1)
e + p

(2)
e ), mina∈Aj

{qjka + (p
(1)
a + p

(2)
a )} =

qjkf + (p
(1)
f + p

(2)
f ), maxa∈Aj

{−qjka + (p
(1)
a − p

(2)
a )} = −qjkg + (p

(1)
g − p

(2)
g ), and mina∈Aj

{qjka +
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(p
(1)
a −p

(2)
a )} = qjkh +(p

(1)
h −p

(2)
h ). So, (3.37) holds if and only if the following inequalities hold:

(p(1)e − p
(1)
f ) + (p(2)e − p

(2)
f ) ≤ qjke + qjkf (3.38a)

(p(1)g − p
(1)
h ) + (p

(2)
h − p(2)g ) ≤ qjkg + qjkh . (3.38b)

For inequality (3.38a) there are two cases to consider: If e = f then the inequality is trivially

satisfied. If e ̸= f , then (e, f) ̸∈ Γj
e,f because λ

j ∈ Bj and λj
eke

= λj
fkf

= 1. Therefore, it follows

that ||pe− pf ||1 ≤ qjke + qjkf , which implies that (3.38a) is satisfied, as desired. An analogous

argument shows that inequality (3.38b) is also satisfied, which gives the desired result.

Proposition 7 also holds for the ℓ∞ norm (see Appendix 6.2). By combining propositions 6

and 7 with Equation (3.26) we get the following result.

Corollary 1. Under the distance measure induced by the ℓ1 or ℓ∞ norm and for a flow

y ∈ R|A|
+ , a reformulation of problem vM(y) is given by the following MIP:

vM(y) =max c⊤y (3.39a)

s.t. ca = c0a +
∑
j∈[m]

∑
k∈[rj ]

djkλajk ∀a ∈ A (3.39b)

∑
j∈[m]

∑
k∈[rj ]

λajk ≤ 1 ∀a ∈ A (3.39c)

λajk1 + λbjk2 ≤ 1 ∀(k1, k2) ∈ Γj
a,b, a, b ∈ A, a ̸= b, j ∈ [m] (3.39d)

λajk ∈ {0, 1} ∀a ∈ A, j ∈ [m], k ∈ [rj] (3.39e)

ca ∈ R ∀a ∈ A. (3.39f)

As a consequence of Corollary 1, under the distances induced by the ℓ1 or ℓ∞ norm, we

can replace the big-M formulation (3.9) by formulation (3.39), which does not use any big-M

constants. We remark that Proposition 7, and thus Corollary 1, do not hold for the ℓ2 norm.
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Remark 3. As a counter example showing that Bj might not be contained in Mj even if

λ ∈ C, for the distance induced by the ℓ2 norm, consider an instance with one disruption

denoted by j1, one ripple denoted by k1, and three arcs moving flow a, b, c ∈ A. Suppose that

the locations of the arcs are given by pa = (p
(1)
a , p

(2)
a ) = (0, 0), pb = (p

(1)
b , p

(2)
b ) = (2, 0), and

pc = (p
(1)
c , p

(2)
c ) = (1, 1 + ϵ) for some value 0 < ϵ ≤

√
3− 1 and assume that the radius of the

disruption is qj1k1 = 1, see Figure 3.7. Note that (k1, k1) /∈ Γj1
a,b, (k1, k1) /∈ Γj1

b,c, and (k1, k1) /∈

Γj1
a,c. Therefore, if λ̂aj1k1 = λ̂bj1k1 = λ̂cj1k1 = 1 then λ̂ = (λ̂aj1k1 , λ̂bj1k1 , λ̂cj1k1) ∈ Bj1 and λ̂ ∈ C.

However, there does not exist α
(1)
j1

and α
(2)
j2

that satisfies (3.10d) for λ̂, i.e., λ̂ ̸∈ Mj1. Indeed,

there is no circle of radius one in Figure 3.7 that can cover pa, pb, and pc simultaneously.

The underlying geometric reason for Proposition 7 to hold for the ℓ1 and ℓ∞ case and not

for the ℓ2 case is that rectangles satisfy the Helly property (Dourado et al., 2012), i.e., every

family of pairwise intersecting rectangles has a non-empty intersection, while circles do not.

Nevertheless, for the ℓ2 norm the constraints in Bj remain valid, i.e., Mj ⊆ Bj.

Figure 3.7: A counter example to Proposition 7 under the ℓ2 norm. Each circle represents
the locations for the epicenter of a disruption having one ripple of radius 1, for which the
corresponding arc would be damaged.

Interestingly, formulation (3.39) does not include variables for the locations of the epi-

centers of the disruptions, which, however, are implicitly given by the λ-variables. Let λ∗ be

an optimal solution of (3.39), fix j ∈ [m], define Aj = {a ∈ A : ∃k ∈ [rj] such that λ∗
ajk = 1}
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and for each a ∈ A define kaj = argmax{λ∗
ajk : k ∈ [rj]}. Let

m∗
1j = max

a∈Aj

{−qjkaj + (p(1)a + p(2)a )}, M∗
1j = min

a∈Aj

{qjkaj + (p(1)a + p(2)a )}

m∗
2j = max

a∈Aj

{−qjkaj + (p(1)a − p(2)a )}, M∗
2j = min

a∈Aj

{qjkaj + (p(1)a − p(2)a )}.

Then, from the proof of Proposition 7, it follows that any point that belongs to the segment

Sj is an optimal epicenter for disruption j corresponding to λ∗, where

Sj =
{
(x, y) ∈ R2 : ∃γ ∈ [0, 1] s.t. (x, y) = γ

(m∗
1j +m∗

2j

2
,
m∗

1j −m∗
2j

2

)
+ (1− γ)

(M∗
1j +M∗

2j

2
,
M∗

1j −M∗
2j

2

)}
. (3.40)

A similar result holds for the ℓ∞ norm (see Appendix 6.2).

We now show that under appropriate assumptions on the big-M constants, formula-

tion (3.39) is stronger than formulation (3.9).

Proposition 8. Suppose that the distance measure is induced by the ℓ1 norm. Let polyhedrons

P and P̂ be the LP relaxations of formulations (3.9) and (3.39), respectively:

i. For any a ∈ A, if the corresponding big-M coefficient Ma satisfies that

Ma ≥ max
p∈[L(1),U(1)]×[L(2),U(2)],j∈[m]

(∥pa − p∥1 − qj1) , (3.41)

then P̂ ⊆ P.

ii. In addition, if there is a disruption j ∈ [m] for which there exist arcs b, c ∈ A such that

Γj
b,c ̸= ∅ and such that for any a ∈ A the coefficient Ma also satisfies that

Ma > 2

(
max

p∈[L(1),U(1)]×[L(2),U(2)],j′∈[m],k∈[rj′ ]
|∥pa − p∥1 − qj′k|

)
, (3.42)
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then P̂ ⊊ P.

Proof. First, we show part (ii) by showing that there exist feasible solutions in P that are

not feasible for P̂ . Assume, without loss of generality, that for any disruption all arcs belong

to at least one ripple (which can be ensured by including an artificially large ripple with a

damage increase of zero).

Let (λ∗, α∗) be an optimal solution to problem (3.9). For any arc a ∈ A let ja be the

disruption that is active at arc a and let ka be the ripple of disruption ja to where a belongs in

the optimal solution. On the other hand, pick two ripples k1 and k2 such that (k1, k2) ∈ Γj
b,c

(notice that these ripples exist because we assume that Γj
b,c ̸= ∅). Note that λ∗

bjk1
+ λ∗

cjk2
≤ 1

and consider the following two cases:

Case 1. λ∗
bjk1

= 1, λ∗
cjk2

= 0: Because λ∗
cjckc

= 1, define a new feasible λ̃ as λ∗ but set

λ̃cjckc = 1− ϵ, and λ̃cjk2 = ϵ where

ϵ = 1− |∥pc − αj∥ − qjk2|
Mc

From our assumptions on Mc in (3.42) it follows that λ̃ ∈ P. Moreover, in this case,

λ̃bjk1 + λ̃cjk2 > 1, which violates (3.39d) and thus λ̃ ̸∈ P̂ .

Case 2. λ∗
bjk1

= λ∗
cjk2

= 0: Recall that λ∗
bjbkb

= λ∗
cjckc

= 1 and define a new solution λ̃ as λ∗

but change λ̃bjbkb = 1− ϵb, λ̃bjk1 = ϵb, λ̃cjckc = 1− ϵc, and λ̃cjk2 = ϵc where

ϵb = 1− |∥pb − αj∥ − qjk1|
Mb

ϵc = 1− |∥pc − αj∥ − qjk2|
Mc

From our assumption in (3.42) it follows that λ̃ ∈ P . Moreover, it is concluded that ϵb > 1/2

and ϵc > 1/2 which implies that λ̃bjk1 + λ̃cjk2 > 1 violating (3.39d). So, λ̃ ̸∈ P̂ .

Now, we prove (i), i.e., that any feasible solution λ̂ in P̂ satisfies the constraints in (3.9).
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Similar to Proposition 7, we must show that for any disruption j ∈ [m] there exist α
(1)
j and

α
(2)
j that make the constraints hold. In other words, we aim to prove that there exist α

(1)
j

and α
(2)
j such Equations (3.43) hold:

−qjk −Ma(1− λ̂ajk)+(p(1)a + p(2)a ) ≤ α
(1)
j + α

(2)
j

≤ qjk +Ma(1− λ̂ajk) + (p(1)a + p(2)a ) ∀a ∈ A, k ∈ [rj] (3.43a)

−qjk −Ma(1− λ̂ajk)+(p(1)a − p(2)a ) ≤ α
(1)
j − α

(2)
j

≤ qjk +Ma(1− λ̂ajk) + (p(1)a − p(2)a ) ∀a ∈ A, k ∈ [rj]. (3.43b)

To this end, let maxa∈A,k∈[rj ]{−qjk −Ma(1− λ̂ajk) + (p
(1)
a + p

(2)
a )} = −qjke −Me(1− λ̂ejke) +

(p
(1)
e +p

(2)
e ), mina∈A,k∈[rj ]{qjk+Ma(1− λ̂ajk)+(p

(1)
a +p

(2)
a )} = qjkf +Mf (1− λ̂fjk)+(p

(1)
f +p

(2)
f ),

maxa∈A,k∈[rj ]{−qjk − Ma(1 − λ̂ajk) + (p
(1)
a − p

(2)
a )} = −qjkg − Mg(1 − λ̂gjkg) + (p

(1)
g − p

(2)
g ),

and mina∈A,k∈[rj ]{qjk +Ma(1 − λ̂ajk) + (p
(1)
a − p

(2)
a )} = qjkh +Mh(1 − λ̂hjkh) + (p

(1)
h − p

(2)
h ).

Therefore, Equations (3.43) hold if and only if Equations (3.44) hold:

(p(1)e − p
(1)
f ) + (p(2)e − p

(2)
f )−Me(1− λ̂ejke)−Mf (1− λ̂fjkf ) ≤ qjke + qjkf (3.44a)

(p(1)g − p
(1)
h ) + (p

(2)
h − p(2)g )−Mg(1− λ̂gjkg)−Mh(1− λ̂hjkh) ≤ qjkg + qjkh . (3.44b)

If (ke, kf) /∈ Γj
e,f , then (3.44a) holds from the definition of Γj

e,f . Otherwise, suppose that

(ke, kf ) ∈ Γj
e,f , which implies that λ̂ejke + λ̂fjkf ≤ 1. Let M = min{Me,Mf}, then we have

(p(1)e − p
(1)
f ) + (p(2)e − p

(2)
f )−Me(1− λ̂ejke)−Mf (1− λ̂fjkf ) (3.45)

≤ (p(1)e − p
(1)
f ) + (p(2)e − p

(2)
f )−M(2− λ̂ejke − λ̂fjkf ) (3.46)

≤ (p(1)e − p
(1)
f ) + (p(2)e − p

(2)
f )−M ≤ 0 ≤ qjke + qjkf . (3.47)

Hence, the inequality (3.44a) holds from the assumptions on the ‘big-M’ in Equation (3.41).
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Similar arguments as above give the result for (3.44b).

Proposition 8 also holds for the ℓ∞ norm (see Appendix 6.2). We close this subsection by

noting that all the results presented for vM(y) also hold true for vL(y) (see Appendix 6.3).

3.4.3 The multiple disruption problems and maximum cliques

A direct consequence of our proposed reformulations is that both vM(y) and vL(y) can be

framed as weighted maximum clique problems in auxiliary graphs. This equivalence allows

the use of graph algorithms to solve the MIPs. Importantly, it implies that if the disruptions

only have one ripple, then vL(y) can be found by solving a sequence of polynomially solvable

maximum clique problems in intersection graphs.

Consider the auxiliary undirected graph GM = (VM , EM), where the vertex set is

VM =
{
(a, j, k) : a ∈ A, k ∈ [rj], j ∈ [m]

}
, (3.48)

and the edge set is

EM = E0
M ∪

⋃
j∈[m]

Ej
M , (3.49)

where for each j ∈ [m]:

Ej
M =

{{
(a, j, k), (b, j, ℓ)

}
: a, b ∈ A, a ̸= b, (k, ℓ) ̸∈ Γj

a,b

}
, (3.50)

with

E0
M =

{{
(a, j, k), (b, i, ℓ)

}
: a, b ∈ A, a ̸= b, (k, ℓ) ∈ [rj]× [ri], i, j ∈ [m], i ̸= j

}
. (3.51)
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Assume that GM has vertex weights that depend of the flow y and are given by

w(a,j,k) = djkya for all a ∈ A, k ∈ [rj], j ∈ [m]. (3.52)

Let ωM(y) be the value of the weighted maximum clique problem in GM using the flow

vector y in the definition of the weights. Using the integer programming formulation for the

maximum clique problem (Bomze et al., 1999), where γajk = 1 if and only if vertex (a, j, k)

is in the clique and zero otherwise, we have that

ωM(y) = max
∑
a∈A

∑
j∈[m]

∑
k∈[rj ]

djkyaγajk (3.53a)

s.t. γajk + γaiℓ ≤ 1 ∀a ∈ A, (k, ℓ) ∈ [rj]× [ri], j, i ∈ [m], (j, k) ̸= (i, ℓ) (3.53b)

γajk + γbjℓ ≤ 1 ∀(k, ℓ) ∈ Γj
a,b, j ∈ [m], a, b ∈ A, a ̸= b (3.53c)

γajk ∈ {0, 1} ∀a ∈ A, k ∈ [rj], j ∈ [m]. (3.53d)

Observe that the constraints in (3.53b) are equivalent to the constraints in (3.39c), therefore

we have proven the following result.

Proposition 9. Let a flow y ∈ R|A|
+ be given. If the distance measure is induced by the ℓ1

or ℓ∞ norm then vM(y) = ωM(y) + (c0)⊤y.

An analogous result holds for vL(y); here the auxiliary graph GL = (VL, EL) has more

edges than GM . Specifically, we have VL = VM and EL = E0
L ∪

⋃
j∈[m]E

j
L, where Ej

L = Ej
M

for any j ∈ [m] and

E0
L =

{{
(a, j, k), (b, i, ℓ)

}
: a, b ∈ A, (k, ℓ) ∈ [rj]× [ri], i, j ∈ [m], i ̸= j

}
. (3.54)

Notice that EL has more edges than EM because in EL edges of the form {(a, k, j), (a, ℓ, i)},
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with i ≠ j, are allowed. Let ωL(y) be the value of the maximum weighted clique in GL, where

the weights are defined as in Equation (3.52). Then we have the following result:

Proposition 10. Let a flow y ∈ R|A|
+ be given. If the distance measure is induced by the ℓ1

or ℓ∞ norm then vL(y) = ωL(y) + (c0)⊤y.

Of particular interest is the application of Proposition 10 for single-disruption prob-

lems. In this case, for a fixed j, VL and EL simplify to VL = {(a, k) : a ∈ A, k ∈ [rj]}

and EL =
{
{(a, k), (b, ℓ)} : (k, ℓ) ̸∈ Γj

a,b, a, b ∈ A, a ≠ b
}
. This graph looks ‘almost’ like an

intersection graph and its single-ripple version is, in fact, an intersection graph. Indeed, given

a collection of subsets S = {S1, . . . , Si}, i ≥ 1, in R2, its (undirected) intersection graph

IS = (S, ES) has a vertex for each element of S and has an edge between two subsets S, S ′ ∈ S

if and only if their intersection is non-empty, i.e., ES = {(S, S ′) ∈ S ×S : S ≠ S ′, S ∩S ′ ̸= ∅}.

Assume that disruption j has only one ripple and for any a ∈ A and s ≥ 1 let Basj be the

ball in R2 centered at pa with radius qj using the distance induced by the ℓs-norm. That

is, Basj = {p ∈ R2 : ||pa − p||s ≤ qj}. Then, from the definitions of GL and Γj
a,b, it is readily

checked that if rj = 1 then GL = ISsj
, where Ssj = {Basj : a ∈ A}.

The importance of the above discussion is that there are fast polynomial time algorithms to

find weighted maximum cliques in intersection graphs of balls based on the distance induced by

the ℓ1 and ℓ∞ norms (Imai and Asano, 1983). When applied to ISsj
these methods yield a solu-

tion algorithm for vL(y) for a single disruption and a single ripple in O
(
|A| log(|A|)

)
time. For

the distance induced by the ℓ2 norm, similar results are also available, via slightly different tech-

niques. Indeed, in this case vL(y) = (c0)⊤y+ ω̃L(y) where ω̃L(y) is the value of the maximum

weighted geometric clique in ISsj
(De et al., 2014). It turns out that finding such maximum

weighted geometric cliques in ISsj
can be done in O(|A|2) time (Chazelle and Lee, 1986).
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3.5 Adjustable uncertainty sets

Our proposed models, with uncertainty sets UL and UM , assume that all m disruptions occur

at the same time. This assumption might be too conservative for some real-world applications.

Hence, we introduce extensions of our formulations that consider a budget constraint to

adjust the level of conservativeness for the models. Particularly, the budget constraint limits

the number of disruptions (out of m possible disruptions) that can occur to be less than or

equal to a budget parameter.

Let Λ ≤ m be the budget parameter and let binary decision variables ρj,∀j ∈ [m], take

a value of 1 if disruption j occurs. Our adjustable uncertainty sets UΛ
L and UΛ

M are defined

exactly as before with the addition of the following constraints:

∑
j∈[m]

ρj ≤ Λ (3.55)

∑
k∈[rj ]

λajk ≤ rjρj ∀a ∈ A, j ∈ [m]. (3.56)

Constraint (3.55) ensures that at most Λ out of m disruptions occur, while constraints (3.56)

enforce that λ-variables can only take a value of 1 if their corresponding disruption j ∈ [m]

is active.

Our adjustable uncertainty sets follow the budgeted uncertainty discussed in detail by

Bertsimas and Sim (2004). The case Λ = m corresponds to the most conservative approach

that implies all m disruptions contribute to changing the nominal values in cost vector c

(which we analyzed in previous sections). This scenario follows the conservative modeling

of robust optimization by Soyster (1973). On the other hand, Λ = 0 results in the nominal

minimum–cost flow problem since no disruption affects the nominal cost values and thus c = c0.
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3.5.1 Adjustable uncertainty set for the linear model

We define the adjustable uncertainty set for the linear model as UΛ
L = {c ∈ R|A|

+ : ∃αj ∈

R2, ∀j ∈ [m]; λajk ∈ {0, 1}, ∀a ∈ A, j ∈ [m], k ∈ [rj ]; ρj ∈ {0, 1}, ∀j ∈ [m] s.t. Eqs. (3.57a)-

(3.57e) hold}, where

ca = c0a +
∑
j∈[m]

∑
k∈[rj ]

djkλajk ∀a ∈ A (3.57a)

∑
k∈[rj ]

λajk ≤ ρj ∀a ∈ A, j ∈ [m] (3.57b)

∑
j∈[m]

ρj ≤ Λ (3.57c)

D(pa, αj)−Ma(1− λajk) ≤ qjk ∀a ∈ A, j ∈ [m], k ∈ [rj] (3.57d)

L(i) ≤ α
(i)
j ≤ U (i) ∀j ∈ [m], i = 1, 2. (3.57e)

Note that constraints (3.5c) and (3.56) are reduced to constraint (3.57b), that UΛ
L ⊆ UL, and

if Λ = m, then UΛ
L = UL.

Consider the adversarial attacker problem over adjustable uncertainty set UΛ
L given by

vΛL(y) = max{c⊤y : c ∈ UΛ
L }. (3.58)

In Section 3.3, we showed that the adversarial attacker problem defined over uncertainty set

UL (without the budget constraint) could be solved in polynomial time by MDDLA. Here,

we propose a similar approach to address adversarial problem vΛL(y) that solves the problem

in polynomial time as well.

For a given flow vector y ∈ R|A|
+ , define the problem of finding the worst-case location for
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the jth disruption (ignoring the effects of all the other disruptions) as follows:

u(j)(y) =max
∑
a∈A

ya

∑
k∈[rj ]

djkλ
j
ak

 (3.59a)

s.t.
∑
k∈[rj ]

λj
ak ≤ 1 ∀a ∈ A (3.59b)

D(pa, αj)−Ma(1− λj
ak) ≤ qjk ∀a ∈ A, k ∈ [rj] (3.59c)

L(i) ≤ α
(i)
j ≤ U (i) i = 1, 2 (3.59d)

λj
ak ∈ {0, 1} ∀a ∈ A, k ∈ [rj]. (3.59e)

Problem (3.59) is a Single Disruption Problem, which can be solved in O(|A|3r3) time as

discussed in Section 3.3.2.

We propose a Sorting Multiple Disruptions Discrete Location Algorithm, that solves prob-

lem (3.59) m times, once for each possible disruption, to obtain a sequence of optimal values

u(1)(y), u(2)(y), . . . , u(m)(y). Our approach then sorts the sequence of values in a descending

order and records the largest Λ values in the sequence and their corresponding optimal

solutions. Proposition 11 shows that this provides an optimal solution for vΛL(y).

Proposition 11. Let u(1)(y), u(2)(y), . . . , u(Λ)(y) be the largest Λ values of the sorted sequence

described above. Then,

vΛL(y) = c⊤0 y +
∑
j∈[Λ]

u(j)(y). (3.60)

Proof. Let (λ∗, ρ∗) = (λ∗
1, . . . , λ

∗
m, ρ

∗
1, . . . , ρ

∗
m) be an optimal solution to problem (3.58), where

λ∗
j = (λ∗

ajk : a ∈ A, k ∈ [rj]) is the corresponding λ-vector for disruption j ∈ [m]. Since λ∗
j

is a feasible solution to problem u(j)(y) for all j ∈ [m], we obtain that

∑
a∈A

ya

∑
k∈[rj ]

djkλ
∗
ajk

 ≤
∑
a∈A

ya

∑
k∈[rj ]

djkλ̃
j
ak

 ∀j ∈ [m], (3.61)
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where λ̃j
ak denotes an optimal solution to problem u(j)(y). Constraint (3.57c) ensures that

at most Λ variables ρ∗j are different from zero. Let M ⊆ [m] be the index set of disruptions

associated with non-zero ρ∗j variables. Therefore, from (3.61) we have that

∑
j∈M

∑
a∈A

ya

∑
k∈[rj ]

djkλ
∗
ajk

 ≤
∑
j∈M

∑
a∈A

ya

∑
k∈[rj ]

djkλ̃
j
ak

 , (3.62)

and by adding constant c⊤0 y to both sides we obtain

vΛL(y) ≤ c⊤0 y +
∑
j∈M

∑
a∈A

ya

∑
k∈[rj ]

djkλ̃
j
ak

 . (3.63)

Now consider a vector λ̃ = (λ̃1, . . . , λ̃Λ,0, . . . ,0), i.e., the first Λ positions correspond

to optimal solutions associated with u(1)(y), u(2)(y), . . . , u(Λ)(y) in the ordered sequence

(reordering the indexes if necessary). Also consider a vector ρ̃ = (1, . . . , 1, 0, . . . , 0) in which

the first Λ positions are equal to 1 and the remaining positions are equal to 0. Since (λ̃, ρ̃)

is a feasible solution to problem vΛL(y), it follows that

c⊤0 y +
∑
j∈[Λ]

∑
a∈A

ya

∑
k∈[rj ]

djkλ̃
j
ak

 ≤ vΛL(y). (3.64)

From (3.63) and (3.64), we conclude that

c⊤0 y +
∑
j∈[Λ]

∑
a∈A

ya

∑
k∈[rj ]

djkλ̃
j
ak

 ≤ vΛL(y) ≤ c⊤0 y +
∑
j∈M

∑
a∈A

ya

∑
k∈[rj ]

djkλ̃
j
ak

 . (3.65)

Now we show that

c⊤0 y +
∑
j∈[Λ]

∑
a∈A

ya

∑
k∈[rj ]

djkλ̃
j
ak

 = c⊤0 y +
∑
j∈M

∑
a∈A

ya

∑
k∈[rj ]

djkλ̃
j
ak

 . (3.66)
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Suppose by contradiction that

∑
j∈[Λ]

∑
a∈A

ya

∑
k∈[rj ]

djkλ̃
j
ak

 <
∑
j∈M

∑
a∈A

ya

∑
k∈[rj ]

djkλ̃
j
ak

 , (3.67)

Since
∑

a∈A ya

(∑
k∈[rj ] djkλ̃ajk

)
≥ 0 for all j ∈ [m], then there must exist at least one

j′ ∈ M \ [Λ] and j′′ ∈ [Λ] such that

∑
a∈A

ya

 ∑
k∈[rj′′ ]

dj′′kλ̃
j′′

ak

 <
∑
a∈A

ya

∑
k∈[rj′ ]

dj′kλ̃
j′

ak

 , (3.68)

which implies that u(j′′)(y) < u(j′)(y) and contradicts the assumption that the u(j)(y) values

are sorted in a descending order. We conclude that

vΛL(y) = c⊤0 y +
∑
j∈[Λ]

∑
a∈A

ya

∑
k∈[rj ]

djkλ̃
j
ak

 = c⊤0 y +
∑
j∈[Λ]

u(j)(y), (3.69)

as desired.

For any a ∈ A, the corresponding optimal cost obtained by our proposed approach is

c∗a = c0a +
∑
j∈[Λ]

∑
k∈[rj ]

djkλ̃
j
ak, (3.70)

where the j indexes are reordered according to the ordered sequence of optimal values discussed

above. Our approach solves m single disruption problems, each one takes O(|A|3r3) time, and

performs a sorting procedure in O(m logm) time, resulting in a total of O(m|A|3r3+m logm)

time, which is polynomial.
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3.5.2 Adjustable uncertainty set for the maximum model

We define the adjustable uncertainty set for the maximum model as UΛ
M = {c ∈ R|A|

+ :

∃αj ∈ R2, ∀j ∈ [m]; λajk ∈ {0, 1}, ∀a ∈ A, j ∈ [m], k ∈ [rj]; ρj ∈ {0, 1}, ∀j ∈ [m] s.t.

Eqs. (3.71a)- (3.71f) hold}, where

ca = c0a +
∑
j∈[m]

∑
k∈[rj ]

djkλajk ∀a ∈ A (3.71a)

∑
j∈[m]

∑
k∈[rj ]

λajk ≤ 1 ∀a ∈ A (3.71b)

∑
k∈[rj ]

λajk ≤ ρj ∀a ∈ A, j ∈ [m] (3.71c)

∑
j∈[m]

ρj ≤ Λ (3.71d)

D(pa, αj)−Ma(1− λajk) ≤ qjk ∀a ∈ A, j ∈ [m], k ∈ [rj] (3.71e)

L(i) ≤ α
(i)
j ≤ U (i) ∀j ∈ [m], i = 1, 2. (3.71f)

The corresponding adversarial problem for the budgeted uncertainty set is given by

vΛM(y) = max{c⊤y : c ∈ UΛ
M}. (3.72)

Similarly to the adversarial problem for the maximum model without the budget constraint,

problem vΛM (y) is NP-Hard (as vM (y) is a special case with Λ = m). Our big-M free reformula-

tion (3.39) is still valid for problem vΛM (y) after adding constraints (3.55) and (3.56), and the

results presented in propositions (6) to (8) are still valid following some minor modifications

to the arguments.
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3.6 Numerical experiments

We study the computational performance of Algorithm 1 using the different approaches pro-

posed to solve vL(y) and vM (y). We generate a testbed of 80 problem instances based on a grid

network structure commonly used in the literature (Israeli and Wood, 2002; Cappanera and

Scaparra, 2011; Lozano and Smith, 2017b; Borrero and Lozano, 2020) and we also consider real

road networks taken from Karduni et al. (2016). Section 3.6.2 contains details about the selec-

tion of parameters and instance generation. For the grid networks (Tables 3.1 and 3.2), we con-

sider problems havingm = 3 ℓ1-shaped disruptions with r1 = 5, r2 = 7, and r3 = 9 ripples. Ad-

ditionally, we perform sensitivity analysis to evaluate the effect of varying the number of disrup-

tions and ripples on the computational performance of the algorithm and how this affects the

robust costs (Table 3.3). For the real road networks (Table 3.4), we consider problems having

m = 2 disruptions with r1 = 3 and r2 = 5 ripples. Moreover, we compare the solution quality

for our proposed linear model with two other approaches via a simulation study in Section 3.6.7.

All algorithms are coded in C++ and solved using ILOG CPLEX 12.10.0 on a 164 node

server, each with an Intel Skylake 6130 CPU and 96 GB of RAM under a time limit of 1

hour (3600s). All source code and datasets are publicly available in Ansari et al. (2022).

Before going through the results of our experiments, we introduce a preprocessing tech-

nique that removes arcs from the network, improving the computation of vL(y) and vM(y)

for all the methods considered.

3.6.1 Removing inactive arcs

The number of variables and constraints in all the proposed formulations increases with the

number of arcs in the network, thus the size of the problem can be significantly reduced by

only considering a set of active arcs A′(y) = {a ∈ A : ya > 0} instead of the complete set

of arcs A. Recall that Algoritm 1 solves problem vℓ = max{c⊤yℓ : c ∈ U} at iteration ℓ for a
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given flow vector yℓ. Note that the coefficient in the objective function for any arc a ̸∈ A′(y)

equals 0 and thus

c⊤yℓ =
∑

a∈A′(yℓ)

yℓaca +
∑

a∈A\A′(yℓ)

0 · ca =
∑

a∈A′(yℓ)

yℓaca. (3.73)

As a result, we remove from our formulations all variables and constraints associated with

arcs that do not belong to A′(y), without changing the value of vℓ. Then, we compute the

cost after disruption of all the inactive arcs a ∈ A \ A′(y) by considering the epicenter of

each disruption j ∈ [m] and adding the corresponding damage(s) to the initial cost of the

arc according to the linear or maximum assumptions.

3.6.2 Selection of parameter setting

Here, we determine the common parameters in all experiments:

• Initial cost c0a is set by the Euclidean distance between nodes that are incident with

arc a ∈ A.

• The location pa is assumed to be the midpoint coordinates of arc a ∈ A, i.e., the

average of coordinates of nodes that are incident with a.

• The damage djk is computed by the formula djk =
D

(1.5)k
for one disruption j ∈ [m]

and ripple k ∈ [rj], where we set D = 40.

• The region qjk is computed by the formula qjk =
kQ
rj

for one disruption j ∈ [m] and

ripple k ∈ [rj] where Q is a constant which determines the largest ripple and other

smaller ripples are a portion of this constant. The parameter Q is set to a value that

the largest ripple covers all engaged arcs between the source and sink.

• Big value Ma is defined as the distance from the furthest point of midpoint of arc a in

the area [L(1), U (1)]× [L(2), U (2)] to this arc (see (3.41)). The reason of this definition is
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that disruptions do not happen out of the network area and we would prefer to define

the value Ma as small as the problem remains feasible.

• A tolerance value ϵ is set 0.1 for all experiments. As a result, we stop the cutting-

plane algorithm whenever the absolute difference between the upper and lower bound

is less than 0.1.

• A time limit of one hour is set for running each algorithm on datasets. If the solver does

not find an ϵ-optimal solution to the problem within one hour, the problem is unsolved

and the gap between the last optimal values of master and subproblem is reported.

• Optimal epicenters are obtained by the following feasible values (recall the inequalities

of (3.36) and (3.37)):

α
(1)
j =

maxa∈A{−qjka + (p
(1)
a + p

(2)
a )}+maxa∈A{−qjka + (p

(1)
a − p

(2)
a )}

2
(3.74a)

α
(2)
j =

maxa∈A{−qjka + (p
(1)
a + p

(2)
a )} −maxa∈A{−qjka + (p

(1)
a − p

(2)
a )}

2
. (3.74b)

• The grid network structure in Sections 3.6.3 and 3.6.4 was introduced by Israeli and

Wood (2002). The grid network G = (N,A) has these characteristics (see Figure 3.8):

1. Two nodes s and t are generated as source and sink at left and right of the area,

respectively.

2. L ≥ 1 layers and H ≥ 1 nodes per layer, determine the structure of G.

3. Locations of all L×H “transshipment nodes”, source s, and sink t are randomly

generated by uniform distributions on [L(1), U (1)] and [L(2), U (2)] for x-coordinate

and y-coordinate, respectively.

4. There are H arcs from the source node s to all nodes in the first layer. Also, there

are H arcs head to the sink node t from all nodes in the last layer.
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5. There are arcs from the node in grid position (l, h) to the nodes in grid positions

(l, h− 1), (l, h+ 1), (l + 1, h− 1), (l + 1, h), and (l + 1, h+ 1) if a node exists in

these positions.

Thus, we have: |N | = LH + 2 and |A| = 5LH − 4L−H + 2.

s

1,1

1,2

1,3

2,1

2,2

2,3

3,1

3,2

3,3

t

Figure 3.8: The topology of 3× 3 grid network

In addition, we consider the following assumptions for our experiments over the real road

network dataset:

• We set the node with the maximum degree as source node.

• We apply a breadth-first search algorithm to find the furthest node from the source

node and select it as sink.

• We set the value of parameter Q (the radius of the largest ripple) equal to the ℓ1-norm

distance between source and sink.

3.6.3 Linear model for multiple ripple effect disruptions over grid networks

We compare four different methods for solving subproblem vL(y) for a given flow vector

y ∈ R|A|
+ :

1. EF: Extended MIP formulation (section 3.2.2),
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2. DF: Decomposed MIP formulations (section 3.3.1),

3. PA: Polynomial Time Algorithm (section 3.3.2),

4. BR: Binary MIP Reformulation (section 3.4.2)

Table 3.1 compares the performance of each method in terms of the solution times,

optimality gaps, number of iterations, and number of instances solved within the time limit.

The first column presents the configuration of the grid. Columns 2 and 3 show the number

of nodes and arcs in the network, respectively. Columns 4–7 present the average CPU time

in seconds for each method, computed across 5 randomly generated instances having the

same configuration. Columns 8–9 compare the average time required to solve one adversarial

problem via EF and BR, respectively. Columns 10–13 show the average number of iterations.

Columns 14–17 present the number of instances solved to optimality within the time limit

and in parenthesis the average optimality gap across the instances not solved to optimality.

Columns 18–20 compare the average optimality gap at the root node of the adversarial

problems for EF and BR, computed based on the linear relaxation without including any

cuts or preprocessing techniques. In many cases, the cutting-plane algorithm exceeds the

time limit while solving a MIP subproblem. In that case, we wait until the MIP subproblem

finishes its execution before terminating the algorithm, which results in some computational

times reported being larger than the 1 hour time limit.

Table 3.1 shows that DF solves 39 out of 80 instances within the time limit while EF

only solves 22. The average solution times for DF are also slightly better than the solution

times for EF, showing that the decomposition approach results in a moderate improvement

in computational performance when compared to the extended formulation. On the other

hand, PA and BR greatly outperform EF and DF, solving every single instance within the

time limit and reducing the computation times by an order of magnitude in most cases.

The average time to solve the adversarial problems shows that BR solves the reformulated
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Network Nodes Arcs
Solution Time (s) Adv. Time (s) # Iterations # Solved (gap %) Root Gap %

EF DF PA BR EF BR EF DF PA BR EF DF PA BR EF BR
5× 5 27 102 85 20 2 2 2.9 0.1 29 29 35 33 5 5 5 5 27.33% 0.04%
5× 10 52 222 623 405 4 6 14.8 0.1 42 42 36 43 5 5 5 5 36.70% 0.13%
5× 15 77 342 2921 1657 16 19 68.2 0.3 43 54 57 57 2 (0.34) 5 5 5 40.69% 0.22%
5× 20 102 462 3298 2228 19 22 92.1 0.4 36 56 59 57 1 (0.34) 4 (0.05) 5 5 41.84% 0.34%
10× 5 52 207 776 379 10 5 21.0 0.1 37 39 42 41 5 5 5 5 33.20% 0.05%
10× 10 102 452 3622 2328 23 17 127.5 0.4 28 45 52 44 1 (0.69) 4 (0.04) 5 5 46.19% 0.18%
10× 15 152 697 3959 2991 35 20 164.9 0.4 24 49 60 46 0 (0.56) 3 (0.07) 5 5 46.97% 0.18%
10× 20 202 942 3934 3638 116 99 207.0 1.4 19 39 71 70 0 (0.82) 0 (0.28) 5 5 45.94% 0.20%
15× 5 77 312 2627 1931 17 8 97.3 0.2 27 37 39 34 3 (0.71) 5 5 5 40.43% 0.06%
15× 10 152 682 3765 3576 102 70 257.8 1.1 15 38 63 61 0 (1.42) 1 (0.22) 5 5 45.23% 0.11%
15× 15 227 1052 3819 3737 162 147 289.2 2.0 13 31 76 72 0 (1.58) 0 (0.40) 5 5 45.21% 0.21%
15× 20 302 1422 3948 3766 459 418 340.2 4.4 12 25 97 93 0 (2.19) 0 (0.71) 5 5 45.44% 0.21%
20× 5 102 417 3771 3316 41 22 232.7 0.5 16 40 46 44 0 (0.59) 2 (0.05) 5 5 39.97% 0.11%
20× 10 202 912 4019 3724 95 109 352.4 1.7 11 30 56 65 0 (1.35) 0 (0.32) 5 5 43.66% 0.20%
20× 15 302 1407 3768 3820 277 240 384.2 3.3 10 25 74 72 0 (2.04) 0 (0.53) 5 5 43.15% 0.19%
20× 20 402 1902 3855 3755 789 562 385.2 5.7 10 21 103 98 0 (2.24) 0 (1.07) 5 5 45.59% 0.29%

Table 3.1: Comparing 4 different methods for the linear model

MIP subproblems dramatically faster than EF, which solves the original big-M formulation.

The average root gaps also showcase the strength of the big-M free reformulation, which in

many cases solves the subproblem to optimality at the root node of the branch-and-bound

tree. Finally, we find that over all the instances in the dataset, the number of active arcs

is consistently lower than roughly 10% of the total number of arcs.

3.6.4 Maximum model for multiple ripple effect disruptions over grid networks

Since for the maximum model the decomposition approaches are not applicable, we consider

only the extended MIP formulation, EF (section 3.2.3), and the binary MIP reformulation,

BR (section 3.4.2), for solving subproblems vM (y) for a given flow vector y ∈ R|A|
+ . Table 3.2

shows the results of our experiments. Columns are defined in the same way as before. The

average solution times and the number of instances solved by both methods suggest that

the maximum model instances are considerably more difficult to solve than the linear model

instances. EF only solves 30 out of 80 instances while BR solves 53. The optimality gap for

the instances not solved is considerably better for BR than for EF, for example over instances

15× 10 the average optimality gap for EF is 2.01% while for BR is only 0.12%. Overall, BR

is considerably faster than EF, achieving speedups of up to an order of magnitude (e.g., over

instances 20× 5 BR is roughly 27 times faster than EF) and obtaining roughly an order of
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Network Nodes Arcs
Solution Time (s) Adv. Time (s) # Iterations # Solved (gap %) Root Gap %
EF BR EF BR EF BR EF BR EF BR

5× 5 27 102 2 1 0.2 0.0 11 14 5 5 0.62% 0.13%
5× 10 52 222 140 4 5.0 0.1 28 27 5 5 2.62% 0.48%
5× 15 77 342 401 11 15.7 0.4 26 27 5 5 2.45% 0.51%
5× 20 102 462 1640 131 39.6 2.4 41 55 4 (0.48) 5 2.89% 1.01%
10× 5 52 207 56 3 2.7 0.2 21 22 5 5 1.20% 0.41%
10× 10 102 452 3728 210 83.6 3.3 45 64 0 (0.27) 5 6.47% 1.79%
10× 15 152 697 3751 1522 117.9 15.2 32 100 0 (1.02) 5 7.14% 2.48%
10× 20 202 942 3893 3653 157.0 36.8 25 99 0 (2.10) 0 (0.27) 7.05% 1.95%
15× 5 77 312 1373 39 35.7 0.9 38 43 5 5 4.39% 1.08%
15× 10 152 682 3778 2515 162.8 24.7 23 102 0 (2.01) 4 (0.12) 7.31% 2.59%
15× 15 227 1052 3788 3367 197.3 42.5 19 79 0 (2.75) 1 (0.34) 7.79% 1.87%
15× 20 302 1422 3808 3667 232.2 51.9 16 71 0 (3.52) 0 (0.46) 7.49% 1.66%
20× 5 102 417 3521 126 92.6 2.5 38 50 1 (0.21) 5 5.16% 1.41%
20× 10 202 912 3840 2864 199.9 31.1 19 92 0 (2.13) 3 (0.15) 6.95% 2.13%
20× 15 302 1407 4014 3676 254.0 54.2 16 68 0 (2.74) 0 (0.44) 7.56% 1.66%
20× 20 402 1902 3889 3692 270.0 69.9 14 53 0 (3.99) 0 (0.94) 7.72% 1.52%

Table 3.2: Comparing two solution approaches for the maximum model

magnitude gap reductions for those instances not solved within an hour.

3.6.5 Sensitivity analysis on the number of disruptions and ripples

We study the effects of changing the number of disruptions and ripples on the performance

of the maximum model (which results in the most time-consuming instances as shown above).

We conduct additional experiments on a set of 30 randomly generated 10 × 10 instances

and test our binary MIP reformulation (BR) varying the number of disruptions in {2, 3, 4, 5}

and the number of ripples in {1, 2, 4, 6}. We consider homogeneous disruptions (i.e., each

disruption has the same number of ripples) for which their impact areas are expanded by

increasing the number of ripples (i.e., as the number of ripples is higher, each disruption deals

damage to larger areas). Table 3.3 presents the result for this experiment where reported

values are computed as the average of the corresponding outputs across all 30 instances.

The average nominal cost (without any disruptions) of moving flow from source to sink in

our data set is 84.3. As expected, increasing the number of disruptions and ripples increases

the robust cost (after disruptions). As the number of ripples increases there is a point where

adding additional ripples no longer increases the robust cost since there is a maximum damage

to be achieved for a fixed flow and number of disruptions (e.g., the robust cost for problems

60



# Disruptions # Ripples Robust Cost Time (s) Iterations Constraints Adv. Time (s)

2

1 246.8 25 67 2519 0.4
2 337.1 11 42 2608 0.3
4 342.7 15 39 3013 0.4
6 342.7 17 39 3088 0.4

3

1 309.5 232 90 4377 2.6
2 367.9 119 57 5428 2.1
4 368.3 108 52 5551 2.1
6 368.3 111 53 5568 2.1

4

1 361.4 461 94 5712 4.9
2 377.9 62 27 3065 2.3
4 377.9 84 30 3435 2.8
6 377.9 70 28 3221 2.5

5

1 378.0 359 82 5172 4.4
2 378.2 3 20 2522 0.1
4 378.2 2 16 2366 0.1
6 378.2 1 14 1956 0.1

Table 3.3: Sensitivity analysis for the maximum model

with 4 disruptions is 377.9 for 2, 4, and 6 ripples).

Regarding computational times, all problems are solved within the one-hour time limit

except one problem having 5 disruptions and 1 ripple. The average CPU time to solve prob-

lems with 3 disruptions is roughly an order of magnitude larger than the time required for 2

disruptions. For problems with 4 disruptions, there is an increase in CPU time for 1 ripple and

a considerable decrease in CPU time for 2 ripples or more. We observe the same behavior for

problems having 5 disruptions. These results suggest that for problems having a large number

of disruptions and ripples it is easier to achieve the maximum damage for a fixed flow. Simi-

larly, problems with few ripples and disruptions are also easy because of the fewer number of

variables and conflict constraints. The most challenging problems seem to be the ones having

either an intermediate number of disruptions and ripples or a combination of large number of

disruptions with only one ripple. In this regard, we suspect that problems with one ripple are

harder because each disruption covers less space. The less space the disruptions cover, the more

challenging is the problem of deciding an optimal (worst case) placement of disruptions. This

observations is supported by the fact that more iterations are needed and solving each adversar-

ial problem takes more time on average as evidenced in Table 3.3. Finally, we observe that there
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is a direct relationship between running times and the number of conflict constraints generated.

3.6.6 Ripple effect disruptions over real road networks

We conduct additional experiments to assess the scalability of our approach over large real

road networks. For these experiments, we only consider method BR as it is the best performer

among all the methods evaluated before. Table 3.4 shows the total CPU time required to

prove optimality, the average time to solve one adversarial problem, the number of iterations,

and the number of active arcs for both the linear and maximum models over each of the 12

real road networks considered.

Dataset Nodes Arcs
CPU Time (s) Adv. Time (s) # Iterations # Active Arcs

Linear Maximum Linear Maximum Linear Maximum Linear Maximum
Paris 1,290,375 1,291,464 838 1186 3 6 9 3 277 353
Houston 1,264,561 1,261,792 1470 820 37 63 5 2 734 869
San Francisco 1,171,685 1,169,300 1523 644 102 101 7 2 608 629
Chicago 1,127,987 1,121,620 689 556 8 14 7 3 541 584
Los Angeles 1,105,378 1,103,138 959 836 12 59 4 4 519 527
Tokyo 1,031,624 1,035,446 693 622 20 49 5 4 719 918
Madrid 1,023,814 1,023,406 942 887 13 27 6 5 659 693
London 752,871 753,958 613 913 15 38 6 7 527 662
Bogota 399,686 400,696 145 110 12 14 7 4 472 558
Tehran 294,826 295,274 41 35 1 2 3 2 291 345
Shangai 213,734 215,070 23 26 1 3 4 3 238 241
Delhi 152,472 152,726 20 21 1 1 8 7 173 200

Table 3.4: Solving RMCFP under 2 disruptions with 3 and 5 ripples on real road networks

Although these real road networks are considerably larger than the grid networks in terms

of the number of arcs and nodes, BR is able to solve every problem to optimality in less than

30 minutes. In contrast to the grid networks, it would seem that the maximum model is

slightly easier to solve than the linear model over the real road networks. We conjecture that

the problem difficulty is highly dependent on the density of the graph and the number of

paths between the source and sink nodes.

The preprocessing technique is critical in the performance of the algorithm for these

large networks. On average we were able to remove roughly 99 percent of the total arcs at

each iteration of the cutting-plane algorithm. Additionally, the solver is able to solve the
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subproblem to optimality at the root node of the branch-and-bound tree for most of our test

problems, due to the stronger representation provided by our proposed binary reformulation.

3.6.7 Simulation study

We perform a simulation study to compare the performance of our proposed model, of the

budgeted uncertainty model (B Model), and of a nominal solution that ignores the disruptions

altogether. The study is based on a hypothetical situation where the decision-maker (DM)

does not know the parameters characterizing the disruptions, and thus seeks to select one of

the three models to decide. We assume, however, that the DM can make a reasonable guess

of the ranges of the parameters (e.g., she estimates that there are going to be between 2 to 5

disruptions, see details in Section I below). Based on this limited knowledge, the DM considers

different combinations of parameters for the proposed model and for the B model, and runs

them to obtain flow solutions. The performance of each flow solution is then evaluated by using

simulations. Each replication of the simulation randomly generates a number of disruptions,

disruptions’ locations, ripples, and damage costs, which yield a post-disruptions cost vector.

The flow solutions from the three different approaches (our model, the B model, and the nomi-

nal min cost flow solution that assumes no disruptions happen) are then evaluated using the re-

sulting post-disruption cost vectors. We report the average, minimum and maximum cost, the

standard deviation of the costs, and the optimal robust optimization costs, obtained by the two

robust models. The results show that our model outperforms the B model in terms of solution

quality, measured by the worst-cost realization from the simulation, while providing a less con-

servative estimation of the worst-case cost, given by the optimal objective value of the models.

More specifically, assume we are given a fixed nominal network G = (N,A) with a fixed

cost vector c0. We randomly generated R = 1000 different scenarios for the disruptions. The

disruptions increase the nominal costs following the linear model of damage (see Section 3.3).

The resulting post-disruption cost vector in simulation r is denoted by cr. On the other hand,
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let P1 denote the collection of parameter values for the proposed model and P2 denote the

collection of parameter values for the B model (see details in Sections II and III below). For

each π ∈ P1 we solved the proposed model assuming the parameters are given by π (i.e., we

solve problem (3.1) assuming that U = UL) and obtain an optimal flow vector that is denoted

by yπ. Similarly, for each ρ ∈ P2 we solved the B model assuming that the parameters are given

by ρ (i.e., we solve problem (3.1) assuming that U is given by UB, see Section III below) and

obtain an optimal flow vector which is denoted by yρ. Then, for each replication r ∈ [1000] we

compute zr,π = (cr)⊤yπ and zr,ρ = (cr)⊤yρ, for all π ∈ P1 and ρ ∈ P2. In addition, we compute

the min-cost flow solution yn over G under vector c0, which is hereafter referred as the nominal

(flow) solution, and let zr,n = (cr)⊤yn be the cost of using the nominal solution in scenario r.

I. Random generation of instances. For each replication the number of disruptions is

generated at random from a uniform discrete distribution between 2 and 5. The number

of ripples is generated at random from a uniform discrete distribution between 5 and 9,

independently of the number of disruptions. To compute the size of the ripples we first find Q,

which is the radius of a ripple that can cover all the arcs in the network. Then, we define the

radius of the largest ripple as 0.1Q and the radius of ripple i by 0.1iQ/r, where r is the number

of ripples. The damages are computed by first generating a uniform discrete number δ between

20 and 60, and then using δ/1.5i−1 for the damage of the i-th ripple. Finally, the epicenters

of the disruptions are generated uniformly (continuous) at random in the rectangular region

where the network is located. In order to reduce variation in our experiment, we assume that

all disruptions are homogeneous, meaning they have the same number of ripples, and that the

sizes and damages of the ripples are defined in the same way for all disruptions. We remark that

we assume that the DM has no knowledge of all the parameters above, but only a reasonable

guess about the range for the number of disruptions, the number of ripples, and the value of δ.
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II. Parameters for the proposed model. For our study, we select variations of three

parameters: the number of disruptions m, the number of ripples per disruption r (which

is the same for all disruptions), and the value D defining the damages (where the damage

of the i-th ripple is given by D/1.5i−1). For simplicity, we assume that the radii of the

ripples are the same as those of the simulations. For the experiments we take m ∈ {2, 3, 4, 5},

(r,D) ∈ {(5, 20), (7, 40), (9, 60)}. All the possible combinations between these sets give that

there are 12 different values for π = (m, r,D) in P1.

III. Parameters for the B model. The following interpretation of the B model assumes

that at most Γ > 0 of the entries of the post-disruption cost vector are subject to uncertainty

(Γ being an user-defined parameter). If the entry corresponding to arc a ∈ A is subject to

uncertainty, then it can take values in the interval [c0a, c
0
a +D], where D > 0 is a parameter.

Thus, the uncertainty set has the following mixed-integer representation

UB =
{
c ∈ R|A|

+ : ∃γ ∈ {0, 1}|A| s.t. c0a ≤ ca ≤ c0a + γaD ∀a ∈ A,
∑
a∈A

γa ≤ Γ
}
. (3.75)

For the experiments, we let Γ ∈ {0.1|A|, 0.3|A|, 0.6|A|, 0.9|A|} and D ∈ {20, 40, 60}. We

consider all the possible combinations across these two sets, which results in 12 different

parameter values ρ = (Γ, D) in P2.

IV. Results and analysis. Following the previous computational experiments, we con-

sider two grid networks G of sizes 5×10 and 10×10. Table 3.5 presents the results for the

proposed model and Table 3.6 presents the results for the B model. The information for the

nominal solution is presented at the bottom of each table (note that the nominal solution

does not depend on the model, we repeat the results in each table for convenience). In

each table the column “Parameters” describes the parameter used by the respective model;

“Robust” shows the optimal objective value of the corresponding robust optimization problem;
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“Mean” has the sample mean of the simulated objectives, i.e., z̄π = (1/1000)
∑1000

r=1 zr,π and

z̄ρ = (1/1000)
∑1000

r=1 zr,ρ, respectively. “SD” has the corresponding sample standard deviation;

“Min” has the minimum simulated value across all 1000 replications; and “Max” has the

maximum (worst-case) simulated value across all replications. For instances not solved to

optimality within the time limit, we report a dash in the “Robust” column and use the best

solution found within the time limit to compute the values for the remaining columns. (We

do not report confidence intervals for the sample means, but note that the half-widths of the

intervals are of the order of 10−2 at a confidence of 95%, which suggest that any difference

of sample means of one or more is statistically significant).

Parameters (m, r,D) ∈ P1

5x10 (one network) 10x10 (one network)
Robust Mean (z̄π) SD Min Max Robust Mean (z̄π) SD Min Max

(2,5,20) 102 104 11 88 146 119 128 17 101 227
(2,7,40) 112 106 10 92 143 130 129 16 102 229
(2,9,60) 119 109 9 95 147 137 134 16 107 222
(3,5,20) 109 104 10 89 144 128 129 16 102 223
(3,7,40) 122 109 9 96 144 143 133 16 105 222
(3,9,60) 131 109 9 95 149 152 138 17 110 218
(4,5,20) 116 105 10 90 143 137 130 16 103 220
(4,7,40) 132 110 9 96 144 155 138 16 111 217
(4,9,60) 143 112 9 98 152 165 141 16 114 217
(5,5,20) 123 106 10 90 143 145 133 16 105 213
(5,7,40) 141 110 9 96 144 165 138 16 111 217
(5,9,60) 155 112 9 99 152 - 144 16 117 218

Nominal 79 95 16 79 183 97 123 26 97 264

Table 3.5: Simulation results for the proposed model. The results for the nominal case are
shown in the last row. Instances not solved to optimality within the 1-hour time limit are
denoted by a dash in the “Robust” column.

The results show that when considering worst-case performance (the columns “Max” in

the tables) the B model solutions are on average 19.15% and 11.60% more expensive than

those of the proposed model for the 5× 10 and 10× 10 networks, respectively, and that the

nominal solution is on average 25.42% and 19.90% more expensive than the proposed model

solutions for the 5 × 10 and 10 × 10 networks, respectively. In other words, the solutions

yield by our proposed model perform better against the worst-case scenario on average. The
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Parameters (Γ, D) ∈ P2

5x10 (one network) 10x10 (one network)
Robust Mean (z̄ρ) SD Min Max Robust Mean (z̄ρ) SD Min Max

(0.1|A|,20) 139 111 11 96 168 186 149 17 121 247
(0.1|A|,40) 182 113 10 99 167 251 154 17 126 248
(0.1|A|,60) 224 113 10 99 167 313 159 17 131 245
(0.3|A|,20) 181 120 10 106 164 264 167 17 139 246
(0.3|A|,40) 254 124 9 110 162 386 171 17 143 246
(0.3|A|,60) 327 124 9 110 162 509 171 17 143 246
(0.6|A|,20) 199 95 16 79 183 317 123 26 97 264
(0.6|A|,40) 319 95 16 79 183 - 140 18 113 234
(0.6|A|,60) 439 95 16 79 183 - 151 18 123 236
(0.9|A|,20) 199 95 16 79 183 317 123 26 97 264
(0.9|A|,40) 319 95 16 79 183 - 142 17 114 233
(0.9|A|,60) 439 95 16 79 183 - 152 17 124 239

Nominal 79 95 16 79 183 97 123 26 97 264

Table 3.6: Simulation results for the B model. The results for the nominal case are shown in
the last row. Instances not solved to optimality within the 1-hour time limit are denoted by
a dash in the “Robust” column.

results also show that both robust models are considerably better in terms of worst-case

performance than the nominal solution. Given the set-up of the experiment, this behavior

is expected as the robust models are designed to optimize worst-case performance.

Regarding mean performance, we have that the B model solutions are on average 1.75%

cheaper and 11.66% more expensive than those of our proposed model for the 5× 10 and

10× 10 networks, respectively, and that the nominal solution is on average 12.08% and 8.54%

cheaper than our proposed model for the 5× 10 and 10× 10 networks, respectively. In other

words, the nominal solution is cheaper to use on average than the solutions of the robust

models, while on average the solutions of both robust models do not provide a definitive

insight into which can might be better in terms of average performance. Observe that this

type of behavior is reasonable, as the robust models are not geared towards optimizing average

performance but rather worst-case performance. On the other hand, it is to be expected that

the nominal minimum cost flow is not going to be subjected to disruptions in many realizations

(that is why the nominal solutions’ values and their corresponding minimum values coincide),

which can explain why on average the nominal solution has a better performance.
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Regarding the value of the robust optimization problems, we can observe that the B model

provides robust costs that are 214% and 290% more expensive than our proposed model, on

average. From a pure decision-making point of view, this is rather significant. It means that

the B model greatly overestimates the worst-case costs compared to our proposed model. In

other words, the B model is far more conservative than the proposed model, which tends

to underestimate the worst-case cost in our experiment. Note, of course, that this behavior

is expected, as our model specifically addresses how the costs change due to the realization

of the uncertain events, while the B model can be though as providing an “educated over

conservative guess” of how the uncertainty actually affects the costs. It is important to

note that the performance of the B model would be improved by decreasing the values of

D; however, it is not clear a priori how to calibrate this parameter, even in settings where

the actual values defining the disruptions are known.

Finally, consider a decision-maker faced with determining the parameters to use in the

proposed model (i.e., the problem of calibrating the parameters of our proposed model in case

that their actual values are not known in advance). The results in Table 3.5 show that the aver-

age worst-case performance improves as the parameters take larger values for the 10×10 case,

while for the 5×5 case they are almost constant. The mean performance tends to be slightly

worse as the parameters increase for both cases, while the optimal robust cost increases as

the parameters increase (which is of course expected). In general, these results do not provide

a clear cut pattern that can be used as a rule-of-thumb; however, the 10×10 results suggest

that larger values decrease the actual worst-case performance of the cost and also provide a

better estimation of the “real” worst-case cost (in our case, the one obtained via simulation).

3.7 Conclusion

We study a challenging class of robust minimum-cost flow problems in which a decision maker

seeks to move flow through a network that is susceptible to disruptions, which increase the
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cost of the arcs following a ripple effect. We consider two variants of the problem, the first

one assumes that the damage of different disruptions on an arc is cumulative (linear model),

while the second one assumes that the damage of different disruptions on a single arc is given

by the maximum damage among the disruptions affecting the arc (maximum model).

A standard approach to solve our problem is a cutting-plane algorithm that requires

solving a MIP subproblem at each iteration, resulting in poor computational performance.

We contribute theoretical results that support the design of a polynomial-time algorithm for

solving the subproblems for the linear model. We then provide complexity results that show

that the subproblem for the maximum model is NP-hard. Additionally, we propose a reformu-

lation of the subproblem that does not require big-M constants, which are commonly used by

previous works from the literature. We show that (under mild assumptions) our reformulation

is stronger than the standard big-M formulations. From a computational perspective, our

proposed methods achieve compelling improvements in terms of both the average CPU time

and the number of problem instances solved to optimality within a time limit.
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CHAPTER IV

TWO-STAGE ROBUST OPTIMIZATION APPROACH FOR

ENHANCED COMMUNITY RESILIENCE UNDER TORNADO HAZARDS

4.1 Motivation

Tornadoes are vertical columns of rotating air that are spawned from supercell thunderstorms

caused by rotating updrafts that form because of the shear in the environmental wind field

(NOAA, 2022d). Catastrophic tornadoes are common natural disasters that happen in many

populated regions around the world and are particularly concerning in dense high-risk urban

areas. On average, more than 1200 tornadoes happen in the US annually which cause around

60 fatalities (NOAA, 2022a). Tornadoes have caused damage costs in a range between $183

million to $9.493 billion per year in the US within the past two decades (NOAA, 2022e). The

intensity of tornadoes is usually measured by the Enhanced Fujita (EF) scale which ranks

a tornado from 0 (weakest) through 5 (most violent) based on an estimation of their average

wind speed. The average wind speed, in turn, is estimated by comparing observed tornado

damages with a list of Damage Indicators and Degrees of Damage (NOAA, 2022f).

Fatalities and injuries from tornadoes have decreased in the past few decades thanks to

weather forecast-based warning systems (Standohar-Alfano et al., 2017; Koliou and van de

Lindt, 2020). For example, the Storm Prediction Center at the National Weather Service

keeps a Day 1-8 Convective Outlook for all the US and issues watches or warnings based on

the possibility or observation of tornadoes (NOAA, 2022b). Tornado warnings are issued as

Parts of this document are reprinted with permission from submitted paper to Operations Research.

70



soon as a rotating supercell has been identified by a weather radar; these warnings instruct

people in the affected area to take shelter immediately. Even though the warning systems have

caused a great reduction in fatalities (FEMA, 2022a), their short lead time (of the order of

minutes) do not allow to prevent physical structures from possible destruction. This is further

aggravated by the fact that more than 80% of building stocks in the US are wood-frame

buildings that are highly vulnerable to wind damage (van de Lindt and Dao, 2009).

Besides weather forecasting, there are other alternatives that can be employed to reduce

the impact of tornadoes. In the past decade, several studies have shown that retrofitting

strategies with simple and inexpensive actions, e.g., improving the roof cover or enhancing

the roof sheathing nailing pattern of a house, can improve building codes to make wood-frame

buildings more resistant to tornado damage, particularly from damaging tornadoes of EF2

intensity or less (Simmons et al., 2015; Ripberger et al., 2018; Masoomi et al., 2018; Koliou

and van de Lindt, 2020; Wang et al., 2021). In particular, Ripberger et al. (2018) shows that a

30% or more reduction in lifetime damage can be expected by enhancing existing wood frame

buildings with simple retrofitting actions. Similarly, recovery strategies can be employed

after a tornado has hit. Recent research has considered different restoration strategies and

have shown that such strategies have the potential to significantly improve the restoration

time and reduce population dislocation. (Masoomi and van de Lindt, 2018; Farokhnia et al.,

2020; Koliou and van de Lindt, 2020)

At US federal level, the use of retrofitting has been identified as a valuable strategy to

reduce the impact of natural disasters (FEMA, 2021, 2022b; The White House, 2022). At the

local level, however, such strategies have not been implemented yet. In fact, there are federal

programs that provide general guidelines for local administrators (e.g., the emergency manage-

ment agencies of cities and towns) to design and fund retrofitting plans FEMA (2021). In this

sense, the main goal of the study is to present a model to enhance community resilience in an

urban area subject to tornado hazards. Here, community resilience is defined as “the ability
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to prepare for anticipated hazards, adapt to changing conditions, and withstand and recover

rapidly from disruptions” (McAllister et al., 2015). In our model, resilience is enhanced by ef-

ficiently allocating resources to retrofit physical structures before a tornado, and by allocating

resources to improve the recovery rate of the damaged structure after a tornado disaster.

Specifically, in this study, we assume that there is a decision-maker (a government agency

or a public-private consortium; for instance the emergency management department of a

city and home insurance companies) that can invest a limited budget in retrofitting and

recovering structures across a geographical area of interest (e.g., a city). The objective of the

decision-maker is to allocate the resources in order to maximize the community resilience of an

urban area due to an uncertain tornado. We model this decision problem as a two-stage robust

optimization model. The first-stage decisions are made before the realization of a tornado

and determine what structures have to be retrofitted and to what extent. The second-stage

decisions determine recovery strategies for the locations that are damaged by the tornado.

Without loss of generality, in this study we consider total population dislocation, which is the

involuntary movement of people from their residential sites after a severe tornado, as a metric

for community resilience to be minimized (therefore, maximizing community resilience would

be equivalent to minimizing population dislocation). Our proposed formulation, however,

allows for other metrics that assess community resilience.

We formulate the first- and second- stage problems as integer programming problems (IP)

whose decision variables select retrofitting strategies and recovery strategies, respectively, for

each location. Both stages share the same budget, which models that, at least a priori, the

decision-maker does not know what proportion of the budget should be spent on retrofitting

and what proportion on recovery. On the other hand, as an accurate prediction of the

location/time where a tornado forms, the motion direction, and its magnitude, is out of

reach of the current technology (NOAA, 2022c), we approach the uncertainty using a robust

lens. That is, we assume that given any retrofitting plan, the corresponding worst-case
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tornado damage happens. We model tornado paths as line segments and represent the

possible tornado damage with a mixed-integer non-linear uncertainty set. Consequently, the

decision-maker’s optimization problem is framed as a two-stage robust optimization problem

with a mixed-integer non-linear uncertainty set.

In order to solve the problem, we employ an exact column-and-constraint generation

(C&CG) algorithm based on the method discussed by Zeng and Zhao (2013). Here, at each

iteration a master problem solves a relaxation of the original problem over a subset of possible

tornado scenarios. New scenarios are iteratively generated in a subproblem and added to the

master until the remaining tornado scenarios do not change the latest robust optimal value.

In contrast with the classical setting of the C&CG algorithm, our subproblem is a challenging

max-min non-linear integer problem, which we solve by using another decomposition algorithm.

Particularly, we derive valid linear constraints for the uncertainty set, which are used as the

initial constraints of the subproblem master relaxation. The feasibility of master solutions is

checked using a stabbing line algorithm and a continuous non-convex optimization problem,

as needed, and canonical conflict constraints are added to separate infeasible solutions.

Using geographical and population data from IN-CORE (2022), we use the proposed

model to determine optimal retrofitting and recovery actions in Joplin, MO. In this case

study, the results show that retrofitting actions should be performed in most locations in the

geographical center of the city, which are also the locations with higher population density.

They also show that spending budget in retrofitting is prioritized over recovery, and that

only when a “critical” set of locations in the center of the city are retrofitted, there should be

expenditures in recovery. By performing simulations we also show that the proposed model can

significantly outperform other retrofitting policies that make retrofitting decisions at random

and that the model is not over-conservative: the optimal worst-case population dislocation

can be within 10% of the maximum population dislocation observed in the simulations.

To summarize, in this chapter we make the following contributions:
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• We propose a novel two-stage optimization model under uncertainty to aid decision-

makers in the allocation of resources to retrofit and recover residential wood-frame

buildings in tornado-prone regions.

• We explicitly model tornado paths as arbitrary line segments on the plane and formulate

the problem as a two-stage robust optimization problem with integrality requirements

in the first and second stages and in the uncertainty set.

• We develop an exact algorithm that embeds a decomposition branch-and-cut algorithm

within a column-and-constraint generation method. By exploiting the geometric prop-

erties of line segments, we develop initialization and separation procedures to effectively

implement the embedded decomposition branch-and-cut algorithm.

• Using real data we provide optimal retrofitting and recovery strategies for Joplin, MO.

The results show that there can be up to 20% reductions in worst-case population

dislocation by investing $15 million; that our approach outperforms other retrofitting

policies, and that the model does not suffer from over-conservativeness.

The remainder of this chapter is organized as follows. Section 4.2 describes the two-stage

robust optimization problem. Section 4.3 presents a customized version of the C&CG al-

gorithm. We suggest a decomposition branch-and-cut method to solve the subproblem in

C&CG algorithm in Section 4.4. In Section 4.5, we conduct the numerical experiments on

Joplin data as our case study. Lastly, Section 4.6 concludes this chapter.

4.2 Model formulation

Next, we define the two-stage robust optimization model to minimize the total population

dislocation under an uncertain tornado and formulate the problem using mixed-integer

programming.
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4.2.1 Two-stage robust optimization formulation

Recall that the first stage decisions seek to determine what locations to retrofit before the real-

ization of a tornado. The second stage decisions, which happen after the uncertainty is revealed,

select what recovery strategies should be implemented in the locations affected by the tornado.

Formally, suppose S denotes the set of retrofitting strategies and P denotes the set of

recovery plans. We consider a set of locations of interest L, hereafter referred to as locations

for simplicity, which are placed in a 2-dimensional plane. Let wℓs be the population dislocation

estimation pre-tornado at location ℓ ∈ L under retrofitting strategy s ∈ S (in most cases

wℓs = 0) and let gℓsp be the population dislocation post-tornado at location ℓ ∈ L assuming

that the retrofitting strategy s ∈ S is used and that the recovery plan is p ∈ P .

We assume that the decision-maker has a limited budget of A ≥ 0 to invest on the

retrofitting and recovery plans. Let dℓs be the retrofitting cost of all the buildings in location

ℓ ∈ L under strategy s ∈ S, and let cℓsp denote the cost of using recovery plan p ∈ P on the

buildings in location ℓ ∈ L if the retrofitting strategy s ∈ S is applied. Define the decision

variables fℓs and rℓsp as

fℓs =


1, if the buildings in location ℓ ∈ L are retrofitted using strategy s ∈ S

0, otherwise,

rℓsp =


1, if the buildings in ℓ ∈ L are retrofitted with strategy s ∈ S

and recovered with plan p ∈ P

0, otherwise,

and let zℓ, ℓ ∈ L, be the binary variables that represent the coverage of a tornado across the
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locations, that is:

zℓ =


1 if location ℓ ∈ L is affected by the tornado

0 otherwise.

Then, the two-stage robust optimization model is defined as follows

v = min
∑
ℓ∈L

∑
s∈S

wℓsfℓs +max
z∈U

Q(z, f) (4.1a)

s.t.
∑
s∈S

fℓs = 1 ∀ℓ ∈ L (4.1b)

f ∈ {0, 1}|L||S|, (4.1c)

where the second stage problem Q(z, f) for given z = (zℓ : ℓ ∈ L) and f = (fℓs : ℓ ∈ L, s ∈ S)

is

Q(z, f) = min
∑
ℓ∈L

zℓ
∑
s∈S

∑
p∈P

gℓsprℓsp (4.2a)

s.t.
∑
ℓ∈L

∑
s∈S

∑
p∈P

cℓsprℓsp ≤ A−
∑
ℓ∈L

∑
s∈S

dℓsfℓs (4.2b)

∑
p∈P

rℓsp = fℓs ∀ℓ ∈ L, s ∈ S (4.2c)

r ∈ {0, 1}|L||S||P |. (4.2d)

The first term of the objective function (4.1a) measures the pre-tornado dislocation across

all locations due to implementing the retrofitting strategies. The second term measures the

population dislocation after the worst-case tornado with respect to the retrofitting strategies

selected at the first stage. Constraint (4.1b) ensures that each location picks exactly one

retrofitting strategy. We make the assumption that there is a “do-nothing” strategy in S
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with zero cost.

The second stage optimization problem (4.2) selects the recovery plans that minimize the

population dislocation given a retrofitting strategy vector f and the tornado coverage vector

z. Budget constraint (4.2b) ensures that the overall cost for the execution of recovery and

retrofitting strategies is A. Constraint (4.2c) also forces each location to pick exactly one

recovery strategy corresponding to the selected retrofitting strategy. Likewise, we assume

the “do-nothing” strategy in P with zero cost.

In the next section, we model tornado paths by ensuring that the decision vector z belongs

to the uncertainty set U ⊆ {0, 1}|L| which contains all feasible tornado damages over locations

in L.

4.2.2 Uncertainty set formulation

We make assumptions in the following to model a tornado path based on observed characteris-

tics of the recorded tornadoes in historical data. For example, Figure 4.1 represents the map of

Oklahoma county tornadoes within 70 years in which tornado paths can be fairly seen as line

segments on the map. More related data can be found in NWC (2023) where the coverage of

tornadoes is characterized by the length and width of segments. Accordingly, we assume that

Figure 4.1: Map of Oklahoma county tornadoes between 1950-2020 (NWC, 2023).

a tornado path is specified by a line segment q on a plane and a location ℓ ∈ L is covered if it
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is within a distance ∆ to some point on q. We assume that the length of tornado q is at most

a given parameter E, and that the two endpoints of q are located within a sufficiently large

rectangle R = [R
(1)
L , R

(1)
U ]×[R

(2)
L , R

(2)
U ], in which all locations are located. Let e0 = (ex0 , e

y
0) ∈ R

and e1 = (ex1 , e
y
1) ∈ R be the endpoints of line segment q (see Figure 4.2). The uncertainty set

U can be defined by the following mixed-integer nonlinear programming (MINLP) formulation

U =

{
z ∈ {0, 1}|L| : ∃e0, e1 ∈ R, t ∈ R|L|, (4.3a)

∥e0 + tℓ(e1 − e0)− (xℓ, yℓ)∥ ≤ ∆+Mℓ(1− zℓ), ∀ℓ ∈ L, (4.3b)

0 ≤ tℓ ≤ 1, ∀ℓ ∈ L, (4.3c)

∥e0 − e1∥ ≤ E

}
, (4.3d)

where ∥.∥ calculates the Euclidean distance between the vector coordinates and where (xℓ, yℓ)

denote the coordinates of location ℓ ∈ L on the plane.

The value of ∥e0 + tℓ(e1 − e0) − (xℓ, yℓ)∥ in Constraint (4.3b) calculates the distance

between a point e0 + tℓ(e1 − e0) on the line segment q and location ℓ. This constraint defines

z-variables such that if zℓ = 1 for some ℓ ∈ L, then the location ℓ is covered by tornado

since ∥e0 + tℓ(e1 − e0) − (xℓ, yℓ)∥ ≤ ∆. The value of Mℓ is sufficiently large to ensure the

constraint is trivially satisfied if zℓ = 0 (the value of Mℓ is set to be the largest value among

the Euclidean distances from location ℓ ∈ L to the corners of rectangle R). Constraint (4.3c)

enforces the range of continuous variable tℓ to be between 0 and 1, which indicates that q

is a finite segment and not an infinite line. Constraint (4.3d) also ensures that the length

of a tornado, which is the Euclidean distance between the two endpoints, does not exceed E.

Note that the problem maximizes over the z-variables and that all of them have non-negative

coefficients in the objective function. This observation and Constraint (4.3b) imply that

zℓ = 1 if and only if location ℓ ∈ L is covered by the tornado path.
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Figure 4.2: The line segment q represents a tornado central line. Locations within ∆ distance
of the line segment (stars) are covered by the tornado.

4.2.3 Computational complexity

We show that the robust optimization (4.1) belongs to the class of NP-hard problems, even

if there is only one tornado scenario in U . We prove the NP-hardness of the problem by a re-

duction from the well-known knapsack problem in Proposition 12. The decision version of the

knapsack problem is stated that “given N items with weight bi,∀i ∈ N , values qi,∀i ∈ N , ca-

pacity B, and value Q, is there a subset N∗ ⊆ N such that
∑

i∈N∗ bi ≤ B and
∑

i∈N∗ qi ≥ Q?”.

The knapsack problem is known in the class of NP-complete problems (Kellerer et al., 2004).

Proposition 12. The optimization problem (4.1) is NP-hard.

Proof. Consider an arbitrary instance of the knapsack problem with N items, weights

bi, ∀i ∈ N , values qi,∀i ∈ N , capacity B, and value Q. We build an instance of problem

(4.1) that is equivalent to the knapsack problem. Consider an instance of problem (4.1) with

|S| = 1 and |P | = 2. Observe that because |S| = 1, f has to be equal to a vector of ones.

Suppose that the coordinates of the locations and the values of E and ∆ are such that zℓ = 1

for all ℓ ∈ L is feasible in U . For simplicity, we drop index s from the notation. Also, note

that rℓ2 can be replaced by 1 − rℓ1 for all ℓ ∈ L because only two recovery strategies are
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assumed. The specific case of the problem can be rewritten as

v = min
∑
ℓ∈L

(gℓ1 − gℓ2)rℓ1 +
∑
ℓ∈L

(wℓ + gℓ2) (4.4a)

s.t.
∑
ℓ∈L

(cℓ1 − cℓ2)rℓ1 ≤ A−
∑
ℓ∈L

(dℓ + cℓ2) (4.4b)

rℓ1 ∈ {0, 1}|L|. (4.4c)

Consider the example of problem (4.4) where L = N , cℓ1 − cℓ2 = bℓ and gℓ2 − gℓ1 = qℓ for

each item ℓ ∈ L, and A −
∑

ℓ∈L(dℓ + cℓ2) = B. The answer of knapsack problem for some

instance L∗ ⊆ N is YES (i.e.,
∑

i∈L∗ qi ≥ Q), if and only if v ≤
∑

ℓ∈L(wℓ + gℓ2)−Q.

4.3 A solution method based on the C&CG framework

We present a method to solve the two-stage robust optimization problem (4.1), based on the

C&CG algorithm in Zeng and Zhao (2013). First, we provide a linear one-level reformulation

of problem (4.1) by means of an epigraphic reformulation of the worst-case second-stage

objective. To this end, note that U is a finite set and write it as U = {z1, . . . , zn}, where n ≥ 1

is the cardinality of U and suppose ri is the vector of second-stage variables corresponding to
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scenario zi. The one-level linear mixed-integer programming (MIP) reformulation of (4.1) is:

v = min
∑
ℓ∈L

∑
s∈S

wℓsfℓs + θ (4.5a)

s.t.
∑
s∈S

fℓs = 1 ∀ℓ ∈ L (4.5b)

θ ≥
∑
ℓ∈L

ziℓ
∑
s∈S

∑
p∈P

gℓspr
i
ℓsp ∀i ∈ I (4.5c)

∑
ℓ∈L

∑
s∈S

∑
p∈P

cℓspr
i
ℓsp +

∑
ℓ∈L

∑
s∈S

dℓsfℓs ≤ A ∀i ∈ I (4.5d)

∑
p∈P

riℓsp = fℓs ∀ℓ ∈ L, s ∈ S, i ∈ I (4.5e)

f ∈ {0, 1}|L||S| (4.5f)

ri ∈ {0, 1}|L||S||P | ∀i ∈ I, (4.5g)

where I = [n] := {1, . . . , n}. Constraint (4.5c) implies that the minimum value of θ is equal

to the maximum population dislocation among all tornadoes in U . Constraint (4.5d) and

(4.5e) ensure that the recourse vectors ri corresponding to each scenario, meet the constraints

in the second stage problem.

Remark 4. Solving problem (4.5) directly is not practical in general because the uncertainty set

U might have exponentially many scenarios in terms of the number of locations. If E = ∞, that

is, if the tornado path is a line and not a segment, there is a polynomial number of scenarios in

U which can be constructed based on the stabbing line algorithm in Section 4.4.3 (in this case,

nevertheless, using (4.5) to directly solve the problem remains impractical because there would

be at least a quadratic number of scenarios in terms of the number of locations). If E < ∞, it

remains an open question to determine whether there are polynomially many scenarios in U .

We employ a modified version of the C&CG to solve formulation (4.5). The algorithm

is set to iteratively solve a relaxation of (4.5) over a subset Ik ⊆ I of scenarios at iteration
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k to obtain an optimal solution (θk, fk). If given fk, there exists a tornado path zik ∈ U that

produces a dislocation greater than θk, then we add scenario zik to the master problem at

the next iteration. Scenario ik is found by solving the following subproblem, evaluated at fk:

Φ(f) = max
z∈U

min

{∑
ℓ∈L

zℓ
∑
s∈S

∑
p∈P

gℓsprℓsp : r ∈ R(f)

}
, (4.6)

where R(f) is the set of feasible solutions of problem Q(z, f); see constraints (4.2b)–(4.2d).

Specifically, if the optimal solution is such that Φ(fk) > θk, then zik is the tornado path z

that attains Φ(fk). Note that when the variables and constraints associated with scenario ik

are added at iteration k+1, the solution (θk, fk) is no longer feasible in the master relaxation.

Let vk be the value of the master problem at iteration k, that is, problem (4.5) with

I replaced by Ik, with Ik = {i0, i1, . . . , ik−1} and let Φ(fk) be the subproblem for the

retrofitting strategy fk found at iteration k of the algorithm. The C&CG method is presented

in Algorithm 2.

Algorithm 2: C&CG algorithm to solve v
Data: Set U , L, S, and P

Result: fk

1 Set k = 0, I1 = {i0} ⊆ U , LB = −∞, and UB = ∞;

2 while UB − LB > 0 do

3 Set k = k + 1 ;

4 Solve the master MIP vk and let fk be the optimal retrofitting strategy. Update LB = vk;

5 Solve the subproblem Φ(fk) and let ik be the index of the z-optimal solution in I. Update

UB = min{UB,
∑

ℓ∈L

∑
s∈S wℓsf

k
ℓs +Φ(fk)} and Ik+1 = Ik ∪ {ik};

Algorithm 2 begins with an arbitrary feasible scenario i0 ∈ I. In each iteration k, the

relaxed MIP problem vk is solved. The value of vk then provides a lower bound for the value

of v. We note that the values of vk, k ≥ 0, are non-decreasing in k. Then, the subproblem

Φ(fk) generates a new feasible scenario ik for the next iteration and updates the upper bound.

The algorithm terminates when the subproblem does not find a scenario that violates the

82



lower bound value, which implies the upper bound is equal to the lower bound. Zeng and

Zhao (2013) prove that the C&CG algorithm converges in finite time.

Note that Step 5 in Algorithm 2 is very expensive computationally because it requires

solving the MINLP problem Φ(f) in (4.6). The approach to solve the subproblem in stan-

dard applications of the C&CG relies on using duality or the Karush Kuhn Tucker (KKT)

conditions on the second-stage problem (Zeng and Zhao, 2013). Notice that Φ(f) is a bilevel

problem with integrality requirements at both levels. Therefore, we cannot use either of these

approaches. Alternatively, we propose a decomposition branch-and-cut (DBC) method in

the next section to solve Φ(f).

4.4 Decomposition branch-and-cut algorithm to solve Φ(f)

The DBC method is based on a one-level reformulation of Φ(f). Here, we replace the min

in the objective by its epigraphic reformulation and replace the uncertainty set requirements

in terms of linear (although potentially exponentially many in the worst-case) constraints.

Next, we discuss how to initialize the constraints in the master problem and how to perform

the “two types” of separations.
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4.4.1 Overview of the DBC algorithm

Suppose C is the set of combinations of locations that cannot be covered by a tornado path.

A one-level linear reformulation of Φ(f) is given by:

Φ(f) = max η (4.7a)

s.t. η ≤
∑
ℓ∈L

zℓ
∑
s∈S

∑
p∈P

gℓsprℓsp ∀r ∈ R(f) (4.7b)

∑
ℓ∈C

zℓ ≤ |C| − 1 ∀C ∈ C (4.7c)

z ∈ {0, 1}|L|. (4.7d)

The correctness of the reformulation follows from the maximization sense in (4.7).

Observe that R(f) and C are finite sets with potentially exponentially many elements,

thus Φ(f) cannot be solved directly by a commercial solver. The DBC starts with a relaxation

of Φ(f) by replacing R(f) and C with subsets R0(f) and C0, respectively. The resulting

problem is referred as the master relaxation. The standard branch-and-cut (BC) algorithm

then starts solving the master and prunes nodes by bound and infeasibility. When at some

node h an integral solution zh is found (i.e., a solution that is feasible in the master), its

feasibility with respect to the original formulation in (4.7) must be verified.

To this end, Algorithm 3 takes the master feasible solution (ηh, zh) at node h of the BC

tree and verifies its feasibility: first, it checks whether zh satisfies all C-constraints (4.7c), i.e.,

it checks whether zh ∈ U . If zh does not pass the first check, define Ch = {ℓ ∈ L : zhℓ = 1}

as the active locations in zh. Observe that Ch is a combination of locations that cannot be

covered by a tornado path, thus a cut (4.7c) with C = Ch is added on the fly. If zh passes the

first check, then the algorithm checks whether zh satisfies all R(f)-constraints (4.7b). If zh

also passes the second check, then zh is feasible in Φ(f); if not, then a cut (4.7b) with r = rh

is added on the fly, rh being the optimal solution of the second-stage problem associated
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with f and zh. The performance of Algorithm 3 depends on the quality of C0 and R0(f) and

on having fast separation routines. We discuss these issues next.

Algorithm 3: Separation Procedure

Data: Master feasible solution (ηh, zh)

Result: Generating cuts on the fly, if (ηh, zh) is infeasible

1 if zh /∈ U then

2 Define Ch = {ℓ ∈ L : zhℓ = 1};

3 Add constraint (4.7c) with C = Ch on the fly;

4 else if ηh > Q(zh, f) then

5 Define rh = argmin{
∑

ℓ∈L zhℓ
∑

s∈S

∑
p∈P gℓsprℓsp : r ∈ R(f)};

6 Add constraint (4.7b) with r = rh on the fly;

7 else

8 (ηh, zh) is feasible.

4.4.2 Definition of C0

The set C0 is constructed by identifying pairs and triples of locations that cannot be covered

by a single tornado path. It is worth mentioning that the valid constraints associated with

these infeasible cases can also be used to tighten the relaxation of U by the elimination of

potentially many infeasible fractional solutions for z-variables; we evaluate the performance

of DBC with U enhanced by these valid cuts in Section 4.5.2.

Cuts from infeasible pairs:

Because the length of a tornado is at most E and only locations within a distance of ∆ from

a tornado line segment are covered, a tornado cannot cover two locations ℓ1, ℓ2 ∈ L if they

are at a distance of more than E + 2∆. Consequently we have the following result:

Proposition 13. Let Ω = {(ℓ1, ℓ2) ∈ L2 : ∥(xℓ1 , yℓ1)− (xℓ2 , yℓ2)∥ > 2∆ + E} be the set of
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infeasible pairs. Then any z ∈ U satisfies that

zℓ1 + zℓ2 ≤ 1 ∀(ℓ1, ℓ2) ∈ Ω. (4.8)

Proof. Suppose (ℓ1, ℓ2) ∈ Ω, and for the sake of contradiction that zℓ1 = zℓ2 = 1. For the

constraint in (4.3b), we have

∥(1− tℓ1)e0 + tℓ1e1 − (xℓ1 , yℓ1)∥ ≤ ∆ (4.9a)

∥(1− tℓ2)e0 + tℓ2e1 − (xℓ2 , yℓ2)∥ ≤ ∆. (4.9b)

The sum of two above inequalities results

∥(1− tℓ1)e0 + tℓ1e1 − (xℓ1 , yℓ1)∥+ ∥(xℓ2 , yℓ2)− (1− tℓ2)e0 − tℓ2e1∥ ≤ 2∆, (4.10)

and by applying the triangle inequality ∥X + Y ∥ ≤ ∥X∥+ ∥Y ∥, we conclude that

∥(xℓ2 − xℓ1 , yℓ2 − yℓ1) + (tℓ2 − tℓ1)(e0 − e1)∥ ≤ 2∆. (4.11)

Finally, we employ the fact that ∥X∥ − ∥Y ∥ ≤ ∥X − Y ∥ to reach

∥(xℓ2 − xℓ1 , yℓ2 − yℓ1)∥ − ∥(tℓ1 − tℓ2)(e0 − e1)∥ ≤ 2∆. (4.12)

Now, we show (4.12) cannot be true because (ℓ1, ℓ2) ∈ Ω, i.e.,

∥(xℓ2 − xℓ1 , yℓ2 − yℓ1)∥ > 2∆ + E. (4.13)
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By constraint (4.3d) and using ∥aY ∥ = |a|∥Y ∥, we have

∥(tℓ1 − tℓ2)(e0 − e1)∥ = |tℓ1 − tℓ2|∥e0 − e1∥ ≤ |t1 − t2|E ≤ E. (4.14)

Note that |t1 − t2| ≤ 1. So, the two above inequalities imply that


∥(xℓ2 − xℓ1 , yℓ2 − yℓ1)∥ > 2∆ + E

−∥(t1 − t2)(e0 − e1)∥1 ≥ −E

=⇒ ∥(xℓ2 − xℓ1 , yℓ2 − yℓ1)∥ − ∥(tℓ1 − tℓ2)(e0 − e1)∥ > 2∆.

(4.15)

Observe that (4.12) violates the true inequality (4.15). Therefore, the cut zℓ1 + zℓ2 ≤ 1 is

valid because zℓ1 = zℓ2 = 1 is an infeasible solution under the assumption (ℓ1, ℓ2) ∈ Ω.

Infeasible triple cuts:

We also identify infeasible triples of locations that cannot be covered by a tornado path. To

introduce the infeasible set of triples, we assume E = ∞ which implies a line representation

for a tornado path. Observe that if a line does not cover a subset of locations Z ⊆ L, then

there is no segment of the line to cover the locations in Z either. For any locations ℓ1 and

ℓ2, the analysis below partitions the plane (R2) in two regions, denoted by R′
ℓ1,ℓ2

and R′′
ℓ1,ℓ2

.

Region R′
ℓ1,ℓ2

is the set of points ℓ ∈ R2 for which there exist a line that covers ℓ1, ℓ2 and ℓ,

and R′′
ℓ1,ℓ2

= R2 \R′
ℓ1,ℓ2

. For simplicity, in the next discussion we interchangeably refer to a

point in R2 by its name, as ℓ ∈ R2, or by its two-dimensional coordinates, as in (xℓ, yℓ) ∈ R2.

Observe that a line λ ⊂ R2 covers both ℓ1 and ℓ2 if and only if λ∩B1 ̸= ∅ and λ∩B2 ̸= ∅,

where Bi is the ball with center ℓi and radius ∆, i = 1, 2. Let Lℓ1,ℓ2 be the collection of these

lines, and let Pℓ1,ℓ2 be the set of points that belong to any such line:

Pℓ1,ℓ2 = {ℓ ∈ R2 : ∃λ ∈ Lℓ1,ℓ2 s.t. ℓ ∈ λ}. (4.16)
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For any set T ⊆ R2 let T (∆) be the set of points that are at a distance at most ∆ from T , that is

T (∆) = {(xℓ, yℓ) ∈ R2 : ∃(xt, yt) ∈ T s.t. ||(xℓ, yℓ)− (xt, yt)|| ≤ ∆}. (4.17)

It is readily seen that R′
ℓ1,ℓ2

= Pℓ1,ℓ2(∆).

Now, the set Pℓ1,ℓ2 can be characterized by the four lines τ1, τ2, σ1 and σ2 that are tangent

to both C1 and C2, where C1 and C2 are the circles enclosing B1 and B2, see Figure 4.3a.

Specifically, let P̃ℓ1,ℓ2 be the set enclosed by these tangents, see Figure 4.3b, we next show

that P̃ℓ1,ℓ2 = Pℓ1,ℓ2 .

l1

l2

τ1

τ2

σ1

σ2

C1

C2

(a) C1 and C2 are circles centered at ℓ1 and
ℓ2, respectively, with radius ∆; τ1, τ2, σ1, and
σ2 are the (only) lines that are tangent to
both C1 and C2.

(b) The region P̃ℓ1,ℓ2 is enclosed by the orange
lines.

Figure 4.3: Tangent lines to circles centered at ℓ1 and ℓ2 with radius ∆

Indeed, let λ0 be the line that passes through ℓ1 and ℓ2 and suppose that a point ℓ is in

between τ1 and τ2. Then, the line λ that passes through ℓ and is parallel to λ0 intersects bothB1

and B2. Suppose that ℓ belongs to the region left of ℓ1 between τ2 and σ2. Then, the line λ that

passes through ℓ and the point σ2∩C2 intersects bothB1 andB2. Notice that this argument can

be repeated for the remaining regions of P̃ℓ1,ℓ2 , and thus we can conclude that P̃ℓ1,ℓ2 ⊆ Pℓ1,ℓ2 .

Conversely, let ℓ ∈ Pℓ1,ℓ2 and let λ ∈ Lℓ1,ℓ2 be the line intersecting B1 and B2 such that ℓ ∈
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λ. If λ is one of the tangents, then it is clear that λ ⊆ P̃ℓ1,ℓ2 and it follows that ℓ ∈ P̃ℓ1,ℓ2 . Thus,

assume that λ is not one of the tangents and let p1 and p2 be two arbitrary elements of λ∩B1

and λ∩B2. Observe that the segment s of λ between p1 and p2 must be completely contained

in between τ1 and τ2. Moreover, as λ is not one of the tangents, s intersects both σ1 and σ2.

Because two straight lines can intersect at most once, the previous observations imply that

the λ cannot intersect σ1 nor σ2 at any point left of p1 and right of p2; in other words, it must

be the case that λ is completely contained in P̃ℓ1,ℓ2 , which implies that ℓ ∈ P̃ℓ1,ℓ2 , as desired.

Given the previous considerations, in order to characterize R′
ℓ1,ℓ2

it is necessary to charac-

terize P̃ℓ1,ℓ2(∆). From the shape of P̃ℓ1,ℓ2 , it is clear that P̃ℓ1,ℓ2(∆) looks very similar to P̃ℓ1,ℓ2 ,

with the difference that its border starts ∆ units up and ∆ units down, see Figure 4.4a

l 1

l 2

C1

D1

C2 D2
σ1

τ1

τ2

σ2

(a) The region P̃ℓ1,ℓ2(∆) is enclosed by the
orange lines. The tangents τ1, τ2, σ1, and σ2,
as well as the circles C1 and C2 are shown in
dashed lines. The circles D1 and D2 centered
at ℓ1 and ℓ2, respectively, have radius 2∆.

l 1

l 2

λ1

λ2

λ3

λ4

λ5

λ6

λ0

(b) The lines λi, i = 0, . . . , 6, that define the
region P̃ℓ1,ℓ2(∆). The smaller circles are C1

and C2, the larger circles are D1 and D2.

Figure 4.4: The region P̃ℓ1,ℓ2(∆).

Next, we use geometric facts to derive an explicit equation for lines defining the boundaries

of P̃ℓ1,ℓ2(∆) for a given ℓ1 and ℓ2. For ease of exposition hereafter we assume that xℓ1 ≤ xℓ2

and yℓ1 ≤ yℓ2 . Define θ = arctan
yℓ2−yℓ1
xℓ2

−xℓ1
to be the angle of slope of the line λ0 which connects
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ℓ1 and ℓ2 with respect to the horizontal axis and let α = arcsin 2∆
D(ℓ1,ℓ2)

, where D(ℓ1, ℓ2) is

the Euclidean distance between ℓ1 and ℓ2. Then we have that P̃ℓ1,ℓ2(∆) = {(x, y) ∈ R2 :

Eqs (4.18a)–(4.18f) hold}, where

y ≤ tan θ · (x− xℓ1) + yℓ1 +
2∆

cos θ
(λ1) (4.18a)

y ≥ tan θ · (x− xℓ1) + yℓ1 −
2∆

cos θ
(λ2) (4.18b)

y ≤ tan (θ + α) · (x− xℓ1) + yℓ1 (λ3) (4.18c)

y ≥ tan (θ + α) · (x− xℓ2) + yℓ2 (λ4) (4.18d)

y ≤ tan (θ − α) · (x− xℓ2) + yℓ2 (λ5) (4.18e)

y ≥ tan (θ − α) · (x− xℓ1) + yℓ1 (λ6). (4.18f)

The lines λi, i = 0, . . . , 6 defined in Equations (4.18a)– (4.18f) are depicted graphically in

Figure 4.4b.

Lemma 3. Lines λ1, . . . , λ6 in (4.18a)-(4.18f) determine boundaries of P̃ℓ1,ℓ2(∆).

Proof. We find feasible slope m and y-intercept q of lines in the form of y = mx + q with

a distance ∆ from both locations ℓ1 and ℓ2 which means the following equalities must

simultaneously hold,

|yℓ1 −mxℓ1 − q|√
1 +m2

= ∆, (4.19a)

|yℓ2 −mxℓ2 − q|√
1 +m2

= ∆. (4.19b)
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The above equalities imply two possible cases:

|yℓ1 −mxℓ1 − q|√
1 +m2

=
|yℓ2 −mxℓ2 − q|√

1 +m2

=⇒


yℓ1 −mxℓ1 = yℓ2 −mxℓ2 (Case 1)

yℓ1 −mxℓ1 − q = mxℓ2 + q − yℓ2 (Case 2)

.

(4.20)

Case 1.

m =
yℓ2 − yℓ1
xℓ2 − xℓ1

= tan(θ) (by the definition). (4.21)

By replacing m = tan(θ) in (4.19a), we will have

|yℓ1 − tan(θ)xℓ1 − q|√
1 + tan2(θ)

= ∆ (4.22a)

=⇒ |yℓ1 − tan(θ)xℓ1 − q|| cos(θ)| = ∆ (
√

1 + tan2(θ) =
1

| cos(θ)|
) (4.22b)

=⇒ |yℓ1 − tan(θ)xℓ1 − q| = ∆

cos(θ)
(xℓ1 ≤ xℓ2 =⇒ cos(θ) ≥ 0) (4.22c)

=⇒


q′ = yℓ1 − tan(θ)xℓ1 − ∆

cos(θ)

q′′ = yℓ1 − tan(θ)xℓ1 +
∆

cos(θ)

(4.22d)

So, the lines with formulations

y = tan(θ)(x− xℓ1) + yℓ1 −
∆

cos(θ)
(line τ2), (4.23a)

y = tan(θ)(x− xℓ1) + yℓ1 +
∆

cos(θ)
(line τ1), (4.23b)

are two boundaries for P̃ℓ1,ℓ2 that cover both locations (observe that any other q between

q′ and q′′ (q′ ≤ q ≤ q′′) corresponding to the slope m = tan θ forms a line path that

has a distance at most ∆ to the locations ℓ1 and ℓ2). The line in (4.23a) covers all lo-

cations in distance ∆ between the lines y = tan θ(x − xℓ1) + yℓ1 − 2∆
cos θ

(see (4.18b) for
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line λ2) and y = tan θ(x − xℓ1) + yℓ1 . Similarly, the line (4.23b) covers all points between

y = tan θ(x− xℓ1) + yℓ1 and y = tan θ(x− xℓ1) + yℓ1 +
2∆
cos θ

(see (4.18a) for line λ1).

Replacing m = tan θ in (4.19b) will give the same boundaries as (4.19a).

Case 2.

q =
yℓ1 + yℓ2 −m(xℓ1 + xℓ2)

2
. (4.24)

By replacing q =
yℓ1+yℓ2−m(xℓ1

+xℓ2
)

2
in (4.19a), we have

|yℓ1 −mxℓ1 −
yℓ1+yℓ2−m(xℓ1

+xℓ2
)

2
|

√
1 +m2

= ∆

=⇒ |yℓ2 − yℓ1 −m(xℓ2 − xℓ1)|√
1 +m2

= 2∆

(4.25)

Instead of solving (4.25) for m which leads to a complicated quadratic equation, we exploit the

form of equality to compute possible values of m. Observe that (4.25) can be interpreted as a

line passing through the origin and has a distance 2∆ from the point (xℓ2 − xℓ1 , yℓ2 − yℓ1) (see

Figure 4.5). Now, we discuss that the angles corresponding to the possible slopes of m must be

Figure 4.5: Two lines passing the origin and have a distance 2∆ from the point (xℓ2−xℓ1 , yℓ2−
yℓ1)
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m′ = tan

(
arctan

yℓ2 − yℓ1
xℓ2 − xℓ1

+ arcsin
2∆

d

)
, (4.26)

m′′ = tan

(
arctan

yℓ2 − yℓ1
xℓ2 − xℓ1

− arcsin
2∆

d

)
, (4.27)

where arctan
yℓ2−yℓ1
xℓ2

−xℓ1
= θ and arcsin 2∆

D(ℓ1,ℓ2)
= α by the definition. Therefore,

m′ = tan (θ + α), (4.28)

m′′ = tan (θ − α). (4.29)

So, the resulting lines are

y = tan(θ + α)x+
yℓ1 + yℓ2 − tan(θ + α)(xℓ1 + xℓ2)

2

= tan(θ + α)(x− xℓ1 + xℓ2

2
) +

yℓ1 + yℓ2
2

(line σ2),

(4.30)

y = tan(θ − α)x+
yℓ1 + yℓ2 − tan(θ − α)(xℓ1 + xℓ2)

2

= tan(θ − α)(x− xℓ1 + xℓ2

2
) +

yℓ1 + yℓ2
2

(line σ1),

(4.31)

Observe that these lines pass through the midpoint (
xℓ1

+xℓ2

2
,
yℓ1+yℓ2

2
), see Figure 4.4a. So,

two edges of the line in (4.30) with distance ∆ will be y = tan(θ + α)(x − xℓ1) + yℓ1 and

y = tan(θ + α)(x− xℓ2) + yℓ2 (see lines λ3 and λ4 in (4.18c) and (4.18d)). Likewise, the ∆

edges of (4.31) are y = tan(θ − α)(x− xℓ1) + yℓ1 and y = tan(θ − α)(x− xℓ2) + yℓ2 (see lines

λ5 and λ6 in (4.18e) and (4.18f)).

Note that replacing q in (4.19b) leads to the same equality in (4.25), and so the same

conclusions.

Now, let

Γℓ1,ℓ2 =
{
ℓ ∈ L \ {ℓ1, ℓ2} : (xℓ, yℓ) ∈ R2 \ P̃ℓ1,ℓ2(∆)

}
. (4.32)
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The previous discussion is summarized in the following result, which states that if a location

belongs to the infeasible set Γℓ1,ℓ2 then at most two locations among ℓ1, ℓ2, and ℓ3 can be

chosen to be covered by a tornado.

Proposition 14. Let ℓ1 and ℓ2 be two elements of L and suppose that D(ℓ1, ℓ2) > 2∆. Then

any z ∈ U satisfies that

zℓ1 + zℓ2 + zℓ ≤ 2 ∀ℓ ∈ Γℓ1,ℓ2 . (4.33)

Proof. We are interested to identify the division of space R into feasible (R′
ℓ1,ℓ2

) and infea-

sible (R′′
ℓ1,ℓ2

) subspaces for two locations ℓ1 and ℓ2 with coordinates (xℓ1 , yℓ1) and (xℓ2 , yℓ2),

respectively. For the sake of simplicity, we assume that xℓ1 ≤ xℓ2 throughout the proof; the

results of the following mathematical work can be easily extended to the case xℓ1 > xℓ2 .

In the following, we determine the feasible pair (β, q(β)) for the line y = tan(β)x+ q(β)

to cover both locations ℓ1 and ℓ2 within the distance ∆, where β = arctan(m) is the angle

of the slope of the line and q(β) is the y-intercept of the line given angle β. It can be shown

that any feasible slope angle β must be inside the interval [θ − α, θ + α] as follows.

|yℓ1 − tan(β)xℓ1 − q(β)|√
1 + tan2 β

≤ ∆, (4.34a)

|yℓ2 − tan(β)xℓ2 − q(β)|√
1 + tan2 β

≤ ∆. (4.34b)

The summation of (4.34a) and (4.34b) results in

| − yℓ1 + tan(β)xℓ1 + q(β)|+ |yℓ2 − tan(β)xℓ2 − q(β)|√
1 + tan2 β

≤ 2∆ (4.35)

By the triangle inequality ∥X + Y ∥ ≤ ∥X∥+ ∥Y ∥, we conclude

|yℓ2 − yℓ1 − tan(β)(xℓ2 − xℓ1)|√
1 + tan2 β

≤ 2∆. (4.36)
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Based on Case 2 in the proof of Lemma 3, (4.36) implies that β ∈ [θ − α, θ + α].

Now, we compute the feasible q(β) for given β ∈ [θ− α, θ+ α]. From (4.34a) and (4.34b),

we have

yℓ1 − tan(β)xℓ1 −
∆

| cos(β)|
≤ q(β) ≤ yℓ1 − tan(β)xℓ1 +

∆

| cos(β)|
(4.37a)

yℓ2 − tan(β)xℓ2 −
∆

| cos(β)|
≤ q(β) ≤ yℓ2 − tan(β)xℓ2 +

∆

| cos(β)|
. (4.37b)

Note that
√

1 + tan2 β = 1/| cos(β)|. For the sake of simplicity, we assume hereafter that

θ + α < π/2 and θ − α > −π/2 (which implies cos(β) > 0) and then discuss two cases for

a feasible q(β) followed by the inequalities (4.37a) and (4.37b):

1. θ ≤ β ≤ θ + α =⇒ tan(θ) ≤ tan(β) =⇒ yℓ2−yℓ1
xℓ2

−xℓ1
≤ tan(β):

yℓ1 − tan(β)xℓ1 −
∆

cos(β)
≤ q(β) ≤ yℓ2 − tan(β)xℓ2 +

∆

cos(β)
. (4.38)

2. θ − α ≤ β ≤ θ =⇒ tan(θ) ≥ tan(β) =⇒ yℓ2−yℓ1
xℓ2

−xℓ1
≥ tan(β):

yℓ2 − tan(β)xℓ2 −
∆

cos(β)
≤ q(β) ≤ yℓ1 − tan(β)xℓ1 +

∆

cos(β)
. (4.39)

Figure 4.6 visualizes an example of the feasible ranges (4.38) and (4.39) for q(β) given angle

β ∈ [θ − α, θ + α].

Inequalities (4.38) and (4.39) imply line y = tan(β)x+ q(β) for given β ∈ [θ− α, θ+ α] is

feasible (covers ℓ1 and ℓ2 within a distance of ∆), if and only if a point (x̄, ȳ) on the line meets


β ∈ [θ, θ + α] : ȳ ∈ [tan(β)(x̄− xℓ1) + yℓ1 − ∆

cos(β)
, tan(β)(x̄− xℓ2) + yℓ2 +

∆
cos(β)

],

β ∈ [θ − α, θ] : ȳ ∈ [tan(β)(x̄− xℓ2) + yℓ2 − ∆
cos(β)

, tan(β)(x̄− xℓ1) + yℓ1 +
∆

cos(β)
].

(4.40)
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Figure 4.6: The admissible y-intercept q(β) according to slope angle β for two locations
located at (1, 1) and (5, 4) with given ∆ = 1. Note that θ = arctan(3/4) and α = arcsin(2/5).

Remark 5. Given the angle β ∈ [θ − α, θ + α], a feasible line y = tan(β)x+ q(β) covers a

point (x0, y0) within the distance ∆, if and only if


β ∈ [θ, θ + α] : y0 ∈ [tan(β)(x0 − xℓ1) + yℓ1 − 2∆

cos(β)
, tan(β)(x0 − xℓ2) + yℓ2 +

2∆
cos(β)

],

β ∈ [θ − α, θ] : y0 ∈ [tan(β)(x0 − xℓ2) + yℓ2 − 2∆
cos(β)

, tan(β)(x0 − xℓ1) + yℓ1 +
2∆

cos(β)
].

(4.41)

Regarding Remark 5, to obtain an inclusive set of feasible coverage for any line y =

tan(β)x+ q(β) where β ∈ [θ − α, θ + α], define

I(x) =
⋃

θ≤β≤θ+α

[tan(β)(x− xℓ1) + yℓ1 −
2∆

cos(β)
, tan(β)(x− xℓ2) + yℓ2 +

2∆

cos(β)
],

and

J(x) =
⋃

θ−α≤β≤θ

[tan(β)(x− xℓ2) + yℓ2 −
2∆

cos(β)
, tan(β)(x− xℓ1) + yℓ1 +

2∆

cos(β)
].

A point (x, y) is covered within distance ∆ of some feasible line if and only if y ∈ I(x)∪ J(x).
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In the following, we find the upper and lower bounds of the set I(x) ∪ J(x) to create the

set of infeasible Γℓ1,ℓ2 for some location b3 ∈ L which yb3 /∈ I(xb3)∪ J(xb3),∀β ∈ [θ−α, θ+α].

First, the upper bound of set I(x) is discussed as follows.

Define

xI
u = xℓ2 − 2∆

(√
1 + tan2(θ + α)−

√
1 + tan2(θ)

tan(θ + α)− tan(θ)

)
,

which is the intersection of two extreme lines λ1 and λ3 (see Lemma 3 and note that y =

tan θ(x−xℓ2)+yℓ2+
2∆
cos θ

and y = tan(θ+α)(x−xℓ2)+yℓ2+
2∆

cos(θ+α)
are other representations of λ1

and λ3). We claim that line λ1 for x ≤ xI
u and line λ3 for x ≥ xI

u are the upper bounds of I(x).

Lemma 4. Function f(z) =
√
1+tan2 z−

√
1+tan2 a

tan z−tan a
is strictly increasing.

Proof. We show the derivative of f(z) is strictly positive:

f ′(z) =

tan z sec2 z√
1+tan2 z

(tan z − tan a)− sec2 z(
√
1 + tan2 z −

√
1 + tan2 a)

(tan z − tan a)2

=
sec2 z

(
√
1 + tan2 z)(tan z − tan a)2

× (tan2 z − tan z tan a− 1− tan2 z +
√
1 + tan2 z + tan2 a+ tan2 z tan2 a)

=
sec2 z

(
√
1 + tan2 z)(tan z − tan a)2

× (
√
(1 + tan z tan a)2 + tan2 z + tan2 a− 2 tan z tan a− tan z tan a− 1)

=
sec2 z

(
√
1 + tan2 z)(tan z − tan a)2

× (
√
(1 + tan z tan a)2 + (tan z − tan a)2 − (tan z tan a+ 1)) > 0.

(4.42)
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Using Lemma 4, we conclude:

1. x ≤ xI
u:

x ≤ xℓ2 − 2∆

(√
1 + tan2(θ + α)−

√
1 + tan2(θ)

tan(θ + α)− tan(θ)

)

≤ xℓ2 − 2∆

(√
1 + tan2(β)−

√
1 + tan2(θ)

tan(β)− tan(θ)

)
∀β ∈ [θ, θ + α]

=⇒ tan(θ)(x− xℓ2) + yℓ2 +
2∆

cos(θ)
≥ tan(β)(x− xℓ2) + yℓ2 +

2∆

cos(β)
∀β ∈ [θ, θ + α]

(4.43)

2. x ≥ xI
u:

x ≥ xℓ2 − 2∆

(√
1 + tan2(θ + α)−

√
1 + tan2(θ)

tan(θ + α)− tan(θ)

)

≥ xℓ2 − 2∆

(√
1 + tan2(θ + α)−

√
1 + tan2(β)

tan(θ + α)− tan(β)

)
∀β ∈ [θ, θ + α]

=⇒ tan(θ + α)(x− xℓ2) + yℓ2 +
2∆

cos(θ + α)
≥ tan(β)(x− xℓ2) + yℓ2 +

2∆

cos(β)
∀β ∈ [θ, θ + α]

(4.44)

Hence, the upper bound of I(x) will be (see Figure 4.7)


tan(θ)(x− xℓ2) + yℓ2 +

2∆
cos(θ)

(line λ1) x ≤ xI
u

tan(θ + α)(x− xℓ2) + yℓ2 +
2∆

cos(θ+α)
(line λ3) x ≥ xI

u

(4.45)

Likewise, upper bound of J(x) can be determined by defining:

xJ
u = xℓ1 − 2∆

(√
1 + tan2(θ)−

√
1 + tan2(θ − α)

tan(θ)− tan(θ − α)

)
,

as the intersection of lines λ1 and λ5. Employing Lemma 4, similarly it is concluded that
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Figure 4.7: For x ≤ xI
u, the boundary line λ1 and for x ≤ xI

u, the boundary line λ3 restrict
any given line tan(β)(x− xℓ2) + yℓ2 +

2∆
cos(β)

,∀β ∈ [θ − α, θ + α].

the upper bound of J(x) will be


tan(θ)(x− xℓ1) + yℓ1 +

2∆
cos(θ)

(line λ1) x ≥ xJ
u

tan(θ − α)(x− xℓ1) + yℓ1 +
2∆

cos(θ−α)
(line λ5) x ≤ xJ

u

(4.46)

The lower bounds of I(x) and J(x) can be determined with a similar approach. Define

xI
l = xℓ1 + 2∆

(√
1 + tan2(θ + α)−

√
1 + tan2(θ)

tan(θ + α)− tan(θ)

)
,

and

xJ
l = xℓ2 + 2∆

(√
1 + tan2(θ)−

√
1 + tan2(θ − α)

tan(θ)− tan(θ − α)

)
.

Then, the lower bound of I(x) will be


tan(θ)(x− xℓ1) + yℓ1 − 2∆

cos(θ)
(line λ2) x ≥ xI

l

tan(θ + α)(x− xℓ1) + yℓ1 − 2∆
cos(θ+α)

(line λ4) x ≤ xI
l ,

(4.47)
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and for the lower bound of J(x), we have


tan(θ)(x− xℓ2) + yℓ2 − 2∆

cos(θ)
(line λ2) x ≤ xJ

l

tan(θ − α)(x− xℓ2) + yℓ2 − 2∆
cos(θ−α)

(line λ6) x ≥ xJ
l .

(4.48)

In conclusion, for given location (xb3 , yb3) if it is located above the upper bounds in (4.45)

and (4.46) which means


yb3 > tan(θ)(xb3 − xℓ1) + yℓ1 +

2∆
cos(θ)

(= tan(θ)(xb3 − xℓ2) + yℓ2 +
2∆

cos(θ)
),

yb3 > tan(θ + α)(xb3 − xℓ2) + yℓ2 +
2∆

cos(θ+α)
(= tan(θ + α)(xb3 − xℓ1) + yℓ1),

yb3 > tan(θ − α)(xb3 − xℓ1) + yℓ1 +
2∆

cos(θ−α)
(= tan(θ − α)(xb3 − xℓ2) + yℓ2),

(4.49)

OR below the lower bounds in (4.47) and (4.48) which implies


yb3 < tan(θ)(xb3 − xℓ1) + yℓ1 − 2∆

cos(θ)
(= tan(θ)(xb3 − xℓ2) + yℓ2 − 2∆

cos(θ)
),

yb3 < tan(θ + α)(xb3 − xℓ1) + yℓ1 − 2∆
cos(θ+α)

(= tan(θ + α)(xb3 − xℓ2) + yℓ2),

yb3 < tan(θ − α)(xb3 − xℓ2) + yℓ2 +
2∆

cos(θ−α)
(= tan(θ − α)(xb3 − xℓ1) + yℓ1),

(4.50)

then yb3 /∈ I(x) ∪ J(x). The set of infeasible locations for ℓ1 and ℓ2, Γℓ1,ℓ2 , includes locations

in L that meet (4.49) or (4.50), i.e.,

Γℓ1,ℓ2 = {bi ∈ L \ {ℓ1, ℓ2} : ybi /∈ I(xbi) ∪ J(xbj)}

= {bi ∈ L \ {ℓ1, ℓ2} : (xbi , ybi) ∈ R′′
ℓ1,ℓ2

}.
(4.51)

Therefore, locations in Γℓ1,ℓ2 cannot be covered by a line that has a distance at most ∆ from

two locations ℓ1 and ℓ2, and so zℓ1 + zℓ2 + zb3 ≤ 1 for b3 ∈ Γℓ1,ℓ2 is a valid cut.
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Remark 6. The boundaries of the cases θ+α ≥ π/2 or θ−α ≤ −π/2 can be easily obtained

by rotating coordinates to get θ′ such that θ′ + α < π/2 and θ′ − α > −π/2 the same as the

assumptions in the proof.

It is worth mentioning that we do not need to consider all possible combinations of

locations to construct the infeasible triple cuts because if ℓ3 ∈ Γℓ1,ℓ2 , then ℓ1 ∈ Γℓ2,ℓ3 and

ℓ2 ∈ Γℓ1,ℓ3 . Also, we note that the pair-wise and triple valid constraints introduced so far

do not completely characterize U , as shown in the next remark. However, they can be used

to define the initial subset C0 ⊆ C of the master relaxation in the DBC as follows:

C0 =
{
(ℓ1, ℓ2) ∈ Ω

}
∪
{
(ℓ1, ℓ2, ℓ3) : ℓ3 ∈ Γℓ1,ℓ2 , ℓ1, ℓ2 ∈ L,D(ℓ1, ℓ2) > 2∆

}
. (4.52)

Remark 7. Define V = {z ∈ {0, 1}|L| :
∑

ℓ∈C zℓ ≤ |C| − 1, ∀C ∈ C0}. The set V does not

necessarily determine all the feasible solutions in the uncertainty set U ; specifically U ⊂ V

and in general there exist points in V that do not belong to U . For example, consider a case

of three locations ℓ1, ℓ2, and ℓ3 with coordinates (0, 0), (4, 0), and (2, 1.1) on a plane under

a tornado with the maximum length of E = 2 and the width of ∆ = 1 (See Figure 4.8). It

can be easily observed that there exists no tornado path that covers all three locations because

the only tornado path covering ℓ1 and ℓ2 is the line segment with endpoints (1, 0) and (3, 0).

Obviously, the location (2, 1.1) is not covered by this path. However, zℓ1 = zℓ2 = zℓ3 = 1 is

a feasible solution in V because it satisfies both the infeasible pair and triple cuts.

4.4.3 Feasibility check in C

Next, we present a method to determine whether a master feasible solution zh belongs to

U . We start our analysis for the case when E = ∞ and then present a method for the case

when E < ∞.
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Figure 4.8: The only possible tornado path covering buildings (0, 0) and (4, 0).

Feasibility check for E = ∞ using the SLA:

The stabbing line problem consists of a collection of (disjoint) circles O = {O1, O2, . . . , On}

and the objective is to find the line on the plane that intersects the most circles. The SLA

is an algorithm that solves this problem and reports c(O): the maximum number of circles

in O that can be intersected with a line. Consider the collection of circles Oh with centers

at the locations in Ch and radius ∆. Observe that a tornado path with E = ∞ covers all

locations in Ch if and only if the c(Oh) = |Ch| (see Figure 4.9). Therefore, if c(Oh) < |Ch|,

then zh ̸∈ U whereas if c(Oh) = |Ch| then zh ∈ U .

Figure 4.9: Finding the locations that are covered by a tornado within distance ∆ is equivalent
to finding a line that stabs the circles centered at the locations with radius ∆.

We explain next the SLA following Saba (2013). Assume first a set of disjoint circles

O = {O1, O2, . . . , On}. Given any two disjoint circles Oa and Ob, find the two external and

two internal tangent lines to each pair of circles (Oa, Ob) and record the intersection points

on both circles; see Figure 4.10. Let pEab, q
E
ab and pIab, q

I
ab be the intersection points of these

102



external and internal tangent lines, respectively, with Oa. Note that a tangent line to Oa

that touches any point p in the arc [pEab, p
I
ab] (or [q

I
ab, q

E
ab]) intersects Ob, see Figure 4.10.

Figure 4.10: Four tangent lines and the intersection points for a pair of circles (Oa, Ob) are
shown. A tangent line at any point p on the arc [pEab, p

I
ab] also intersects Ob.

Given Oa, the SLA computes the arc-intervals [pEab, p
I
ab] and [qIab, q

E
ab] for all b ̸= a; note

there exist exactly 2(n − 1) such intervals for Oa. Let πa be an endpoint of any such arc-

intervals that belong to the maximum amount of arc-intervals. Then, the tangent line that

touches Oa at πa is a line intersecting Oa that intersects the most circles in O. Iterating this

process starting from each a = 1, . . . , n, will determine a line that intersects the most circles.

The SLA can be implemented O(n2 log n) time; see Saba (2013) for further details on the

proof of correctness and complexity of the algorithm.

Note that in our case the circles in Oh might be non-intersecting, as the locations in Ch

might be at a distance less than 2∆. We thus adapt the SLA, noting that if Oa ∩ Ob ̸= ∅

then internal tangents are not necessary and that doing the analysis with the arc-interval

[pEab, q
E
ab] is sufficient for this case.

Feasibility check if E < ∞:

In this case, if c(Oh) < |Ch|, then we can again conclude that there is no finite line segment

that covers Ch and thus zh ̸∈ U . Otherwise, if c(Oh) = |Ch|, then there is an infinite line that

covers all locations in Ch, but there is no guarantee that a line segment of length at most E

covers all locations of Ch. Thus, we complete the feasibility check in two steps: first, we use the
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line resulting from the SLA and projection ideas in the following Lemmas 5 and 6 to determine

whether the line can be trimmed to be of length E without compromising its coverage. If

even after this step the feasibility of zh cannot be guaranteed, then we check the feasibility of

zh algebraically using a simplified version of U . Specifically, consider the set Ũh defined as

Ũh =

{
(e0, e1) ∈R2 : ∃t ∈ [0, 1]|C

h|, ∥e0 − e1∥ ≤ E (4.53a)

∥e0 + tℓ(e1 − e0)− (xℓ, yℓ)∥ ≤ ∆, ∀ℓ ∈ Ch

}
. (4.53b)

Observe that zh ∈ U if and only if Ũh ̸= ∅ and that (4.53) is far simpler than U because it has

fewer variables and does not involve binary variables nor ‘big-M’ values. Checking whether

Ũh is non-empty can be done using a quadratic (non-convex) continuous optimization solver.

To elaborate on the feasibility check procedure in case E < ∞, we first provide the

following definitions. Let C ⊆ L be a subset of locations in L and let λ be a line in R2. We

say that λ is a covering line for C if the distance from λ to any ℓ ∈ C is at most ∆. Similarly,

we will refer to a finite segment ξ that covers all locations in C a covering segment for C;

the length of segment ξ will be denoted by uξ. For any a, b ∈ L, let λa and λb the projections

of a and b in λ, respectively.

Lemma 5. Let C ⊆ L be given and let λ be a covering line for C. If D(λa, λb) ≤ E for all

a, b ∈ C, then there exists a covering segment ξ of C such that uξ ≤ E.

Proof. Let w,w′ ∈ argmax{D(v, v′) : v = λa, v
′ = λb, a, b ∈ C}. That is, w and w′ are the

projections of the points in C on λ that attain the maximum distance. If ξ = [w,w′], then

clearly ξ covers C and uξ ≤ E.

Let C ⊆ L be given and let λ be a covering line of C. We denote by Cλ,E ⊆ C the set
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of building pairs in C whose projections in λ are at a distance of more than E, i.e.,

Cλ,E =
{
(a, b) ∈ C × C : D(λa, λb) > E

}
. (4.54)

For any ℓ ∈ L let δℓ = D(ℓ, λℓ) and let ξℓ =
√
∆2 − δℓ. For any (a, b) ∈ Cλ,E let

λ′
a = λa + ξa(λb − λa) and λ′

b = λb + ξb(λa − λb). Note that both λ′
a and λ′

b are points in λ.

Lemma 6. Let C ⊆ B be given and let λ be a covering line for C. If D(λ′
a, λ

′
b) ≤ E for all

a, b ∈ Cλ,E then there exist a covering segment ξ of C such that uξ ≤ E.

Proof. By construction, for any (a, b) ∈ Cλ,E, both λ′
a and λ′

b are elements of λ and

D(λ′
a, a) = D(λ′

b, b) = ∆, thus the segment [λ′
a, λ

′
b] covers both a and b. Let w,w′ ∈

argmax{D(λ′
a, λ

′
b) : a, b ∈ Cλ,E}, then by definition D(λ′

a, λ
′
b) ≤ D(w,w′) for all a, b ∈ Cλ,E

and, moreover, [w,w′] covers C. Because D(w,w′) ≤ E then ξ = [w,w′] is a covering segment

of C with uξ ≤ E.

Step 1 in Algorithm 3 which checks the feasibility of solution zh in U , can be reframed

as finding two endpoints e0 and e1 of some covering segment ξ for Ch with uξ ≤ E. To

accelerate the search for two endpoints in step 1, we implement SLA for Ch along with two

lemmas 5 and 6 as shown in Algorithm 4.

Algorithm 4 executes SLA for the set of circles with centers in Ch and radius ∆ (step 2).

If the maximal stabbing line λMAX does not cover locations in Ch, then no segment produces

the exiting solution which means zh is infeasible. Else, using the discussion in Lemmas 5

and 6, we check whether the shortest covering segment of λMAX , denoted as ξMAX , has a

length at most E (step 4). If so, we recognize zh feasible by ξMAX . If the length of the

segment is greater than E, we directly place zh in U that gives set Ũh. We solve the quadratic

set Ũh for a pair (e0, e1). If set Ũh is not empty, then there are feasible endpoints for a segment

covering Ch (step 7). Furthermore, we enhance the performance of step 7 by restricting the
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Algorithm 4: Feasibility check for solution zh

Data: Set Ũh, Ch, E
Result: feasible

1 set feasible = FALSE;
2 run SLA for locations in Ch. Let λMAX be the line intersecting maximal number of

circles and ξMAX be the shortest covering segment;
3 if maximum coverage with λMAX = |Ch| then
4 if uξMAX

≤ E then
5 feasible = TRUE

6 else

7 if Ũh ̸= ∅ then
8 feasible = TRUE

searching ranges for feasible endpoints as follows.

Let ℓi and ℓj be two extreme locations that have the maximum distance among all pairs

of locations in Ch. Then, the endpoints of the line segment e0 and e1 must be within distance

∆ from each ℓi and ℓj. Particularly, points e0 and e1 should satisfy that (see Figure 4.11):

xℓi −∆ ≤ ex0 ≤ xℓi +∆ (4.55a)

yℓi −∆ ≤ ey0 ≤ yℓi +∆ (4.55b)

xℓj −∆ ≤ ex1 ≤ xℓj +∆ (4.55c)

yℓj −∆ ≤ ey1 ≤ yℓj +∆. (4.55d)

4.4.4 Definition of R0(f) and feasibility check for R(f)

To initialize the master problem we assume that R0(f) = {r0} where r0 is an optimal solution

for the second-stage problem Q(z, f) assuming no location is hit, i.e., r0 is a solution of

Q(0, f). On the other hand, once it has been checked that zh ∈ U , we check that zh satisfies

all R(f)-constraints in (4.7b) by solving the second-stage problem evaluated at zh, i.e., by
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Figure 4.11: Two endpoints e0 and e1 are within circles centered at locations ℓi and ℓj with
radius ∆. These two circles are inside squares which are added to restrict the search ranges
for endpoints by linear constraints.

solving Q(zh, f). Let rh be an optimal solution of Q(zh, f). If ηh > Q(zh, f) then (ηh, zh) is

not feasible in (4.7b) and we add the constraint η ≤
∑

ℓ∈L zℓ
∑

s∈S
∑

p∈P gℓspr
h
ℓsp at all active

nodes of the BC tree. Conversely, if ηh ≤ Q(zf , f), then (ηh, zh) is a feasible solution of (4.7)

and node h is pruned by feasibility after updating the lower bound of the BC. Observe that

the initialization and separation procedure involve solving the NP -hard problem Q(z, f);

however, this problem is relatively simple and can be solved quickly using commercial MIP

solvers, see our computational results in Section 4.5.

4.5 Case study: retrofitting/recovery residential buildings in Joplin, MO

Next, we perform several numerical experiments with the proposed model. All algorithms are

coded in Python 3.9 and solved using Gurobi Optimizer 9.1.1 on a 64-bit Windows operating

system with Intel(R) Core(TM) i7-8550U CPU and 8.00 GB of RAM under a time limit of 3600

seconds. Our objectives are to study the performance of the two-stage optimization problem,

to analyze how the optimal solutions change with key parameters, to gather high-level insights

into the optimal retrofitting and recovery activities, and to compare the optimal policies with

other benchmark policies. The experiments are based on location and cost data from Joplin,

MO. Joplin was the location of one of the most severe tornadoes in US history that occurred
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on May 22, 2011. The tornado was rated EF-5 with an average speed of more than 200 mph

and crossed 22.1 miles on the ground with a width of one mile. This catastrophe caused the

loss of 161 lives and more than a thousand injuries. The total damage was approximated at 3

billion dollars as around 7500 residential structures were destroyed (Kuligowski et al., 2014).

4.5.1 Definition of parameters

The geographic and demographic data are based on information from Joplin and extracted from

the online platform IN-CORE (2022). Particularly, this dataset divides buildings in about 1500

“block IDs” (which are contiguous blocks of the city) and includes over 20,000 buildings. For our

experiments, we use only the single or multi-story residential wood-frame building archetypes.

We assume an EF-2 tornado with a wind speed of 134 mph, a width of 0.75 miles (thus

∆=0.75/2), and a length of 5 miles. We assume that the first stage population dislocation

parameter is zero for all locations and strategies, that is, wℓs = 0 for all ℓ ∈ L, s ∈ S.

Following Wang et al. (2021), we consider the retrofitting strategies presented in Table 4.1.

Masoomi et al. (2018) analyze the effect of the strategies in Table 4.1 on the component

fragility of wood-frame residential building archetypes.

Strategy s Description
R1 Roof covering with asphalt shingles, using 8d nails to attach roof

deck sheathing panel to rafters spaced at 6/12 inch, and the
selection of two 16d toenails for roof-to-wall

R2 Roof covering with asphalt shingles, using 8d nails to attach roof
deck sheathing panel to rafters spaced at 6/6 inch, and the selection
of two H2.5 clips for roof-to-wall

R3 Roof covering with clay tiles, using 8d nails to attach roof deck
sheathing panel to rafters spaced at 6/6 inch, and the selection of
two H2.5 clips for roof-to-wall.

Table 4.1: Retrofitting strategies for the experiments.

The cost of implementing these strategies was computed from the data of IN-CORE

(2022). As mentioned in Section 4.2, a ‘do-nothing’ strategy with zero cost is also included

in the retrofitting strategy set S, that is, S={do-nothing, R1, R2, R3}. On the other hand,
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only two recovery strategies are assumed in our experiment, namely, recover (p = 1) and

do-nothing (p = 0); thus P = {0, 1}.

The second stage population dislocation parameters, gℓsp, are defined as the expected

population dislocation at location ℓ ∈ L, 60 days after the tornado. The value of gℓs1 is

evaluated based on the state of damage d ∈ D immediately after the tornado hits, where D is

the set of damage states. Let Xℓ be the random variable denoting the functionality of ℓ after

60 days; where Xℓ = 0, only if ℓ reaches 100% functionality after 60 days (no dislocation)

and Xℓ = 1 otherwise (dislocation). Also, let Yℓ ∈ D be the random variable representing

the damage at ℓ immediately after the tornado, and let σℓ denote the retrofitting strategy.

Then, the expected population dislocation after recovery is

gℓs1 = Nℓ × E[Xℓ|σℓ = s], (4.56)

where Nℓ is the population of location ℓ ∈ L. Since the value of Xℓ depends on Yℓ, using

conditional probability and the (reasonable) assumption that Xℓ is independent of σℓ given

the knowledge of Yℓ, we have that

E[Xℓ|σℓ = s] =
∑
d∈D

P [Xℓ = 1|Yℓ = d]P [Yℓ = d|σℓ = s]. (4.57)

Following Koliou and van de Lindt (2020), the damage states are given by D = {Minor,

Moderate, Extensive, Complete}. We compute P [Xℓ = u|Yℓ = d] using the repair time distri-

butions described in Hazus (2003). These distributions are lognormal and their parameters

can be found in Koliou and van de Lindt (2020). The probabilities P [Yℓ = d|σℓ = s] are

computed from the building-level tornado fragility-curves for wood-frame residential buildings

in Masoomi et al. (2018); Koliou and van de Lindt (2020); Wen et al. (2021).

The cost of recovery cℓs1 is also the expected percentage of the total location replace-
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ment cost: Suppose Rℓ is the area of location ℓ ∈ L and α is the cost of replacement per

m2. For the wood residential archetype, we set α = $862.0/m2 and, the percentage of the

location replacement cost to be rminor = 0.5%, rmoderate = 2.3%, rextensive = 11.7%, and

rcomplete = 23.4%, see Koliou and van de Lindt (2020). The following formula is used to

compute the cost of recovery for location ℓ if it is retrofitted by strategy s:

cℓs1 = α×Rℓ ×
∑
d∈D

rdP [Y = d|σ = s]. (4.58)

We assume the decision-maker takes charge of all recovery expenses.

On the other hand, if a location does not receive resources from the decision-maker, then

the population dislocation will be higher and depends on the resident’s actions. We assume

the population dislocation for the do-nothing strategy is a factor of the population dislocation

resulting from the recovery actions of the decision-maker, i.e.,

gℓs0 = µℓsgℓs1 ∀ℓ ∈ L, s ∈ S. (4.59)

The factor µℓs can vary in a range such that gℓs0 ∈ [gℓs1, Nℓ]: gℓs0 = gℓs1 implies that the

residents pay a full amount of expenses by themselves to recover their buildings as quick as

the decision-maker, and gℓs0 = Nℓ means that the residents take no recovery action on their

own and therefore the whole population is dislocated from location ℓ. For our experiments,

we fix gℓs0 = (gℓs1 + Nℓ)/2 which is the midpoint in the range. Note that the cost of the

do-nothing strategy is cℓs0 = 0,∀ℓ ∈ L, s ∈ S from the decision-maker’s point of view.

4.5.2 Performance of subproblem methods

We compare three different methods to address the one-level subproblem Φ(f) in Algorithm 1:

1. ORG: solves the subproblem with original set U (instead of using (4.7c)) by DBC and
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only updates R(f) on the fly,

2. AVC: adds valid cuts for infeasible combinations in C0 to U to enhance ORG performance

while updates R(f) on the fly,

3. DEC: replace U by conflict constraints (4.7c) and update C and R(f) on the fly as

described in Section 4.4.1.

Table 4.2 compares the three approaches in terms of optimality gap, solution time, number of

iterations, subproblem run time, and its callback function run time. We generate a testbed of

5 sample problems in which 10 blocks in Joplin are randomly selected as locations. Column 2

shows the method that is implemented to solve the subproblem. Columns 3, 4, and 5 present

the best objective value (expected population dislocation), the best lower bound, and the

optimality gap found within the time limit of one hour, respectively. Columns 6 and 7 show

the CPU run time of C&CG Algorithm 1 in seconds and its number of iterations, respectively.

Column 8 compares the CPU run time of the DBC method in seconds for each selection of

subproblems. Column 9 also presents the total amount of time that the DBC spends in the

callback function to generate cuts on the fly with Algorithm 3; note that the callback run

time for ORG and AVC methods does not include the time of checking feasibility in U as

we directly use the original feasible solution.

Sample # Subproblem method Best objective Best bound Gap CCG run time (sec.) CCG iteration DBC run time (sec.) Callbacks run time (sec.)

1
ORG 365 - - 3600 1 3600 42
AVC 185 185 0% 6 3 6 0
DEC 185 185 0% 1 3 1 1

2
ORG 161 153 5% 4012 2 4012 1
AVC 153 153 0% 26 3 26 1
DEC 153 153 0% 1 3 1 0

3
ORG 178 178 0% 4484 3 4484 1
AVC 178 178 0% 9 3 9 0
DEC 178 178 0% 2 3 1 1

4
ORG 56 - - 3600 1 3600 0
AVC 75 75 0% 3549 3 3549 1
DEC 75 75 0% 1 3 1 1

5
ORG 103 - - 3600 1 3600 0
AVC 65 65 0% 36 3 36 1
DEC 65 65 0% 1 3 1 0

Table 4.2: Comparing C&CG performance for 3 different methods to solve the subproblem

The results in Table 4.2 show that the ORG method is not able to solve any sample with
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only 10 locations within the one-hour time limit. Also, based on the results, solving the master

problem and the second stage recovery problem in the callback function is very fast and almost

all the run time in ORG is spent on solving the MINLP subproblem (4.6). For samples 1, 4, and

5 the subproblem was not solved to optimality in one hour. For some samples, the ORGmethod

exceeds the time limit while solving the MINLP subproblem. In these cases, we wait until the

subproblem finishes its execution before terminating the algorithm, which results in some com-

putational times reported being larger than the one-hour time limit (italic values in the table).

Adding infeasible pairs and triples cuts in AVC significantly reduces the computation

times by as much as two orders of magnitude, resulting in all the samples being solved in

less than one hour. However, AVC can be potentially time-consuming for problems such as

sample 4 in the experiment. The DEC method greatly outperforms the other two methods

as it solved all samples within a few seconds. The subproblem runtime for DEC shows how

fast the subproblem can lead to finding optimal tornado paths. The callbacks’ runtime also

emphasizes that the feasibility check with Algorithm 4 in Section 4.4.3 which is equipped

with the polynomial stabbing line algorithm is a quick task.

4.5.3 Robust retrofitting and recovery strategies in Joplin, MO

We implement the proposed two-stage optimization model to find robust retrofitting and

recovery strategies for locations in Joplin. We use Algorithm 2, along with the DBC method

described in Section 4.4 with the DEC setup that yields the best performance regarding

comparative experiments in Table 4.2.

In order to define the locations in L, we group Joplin “block IDs” in 100 center locations

using the k-means method (MacQueen, 1967) and aggregate the data accordingly. Particularly,

we assume that when the tornado hits a location then all of its buildings are hit, and that the

tornado hits a location only if the location’s centroid is within ∆ units of the path. Table 4.3

compares the population dislocation for when the tornado length is E = 5 miles or ∞ and the
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budgets are A = 0, 15, 30 million USD. Columns 1 and 2 in Table 4.3 show E and A. Column 3

has the optimal population dislocation under the worst-case tornado for each set of parameters.

Columns 4 and 5 report the CPU run time of C&CG Algorithm 2 in seconds and its number

of iterations, respectively. Column 6 shows the CPU runtime of the DBC method in seconds

to solve subproblem Φ(f). Column 7 compares the CPU time that the DBC algorithm spends

in a callback function to verify the feasibility of integral solutions. Column 8 shows the

total CPU time to investigate set Ũh for a feasible solution. Columns 9 and 10 present the

proportion of the total budget that is spent for retrofitting and recovery purposes, respectively.

Length Budget Population CCG CCG DBC Callback Ũh feasibility Retrofitting cost Recovery cost
($) dislocation run time (sec.) iteration run time (sec.) run time (sec.) run time (sec.) /budget /budget

5
0 M 16318 127 2 126 3 1 - -
15 M 13408 307 3 306 11 6 0.6 0.4
30 M 13091 300 3 300 11 5 0.3 0.7

∞
0 M 17293 568 2 568 3 0 - -
15 M 14236 716 2 716 5 0 0.6 0.4
30 M 13839 986 3 985 5 0 0.4 0.6

Table 4.3: Solving the two-stage robust optimization model with different parameters of
tornado length and available budget for 100 locations group in Joplin, MO.

Figure 4.12: Maps of 100 locations and their retrofitting and recovery strategies under the
worst-case tornado scenario for six parameter settings in Table 4.3.

Table 4.3 shows that the solver is able to find optimal solutions for every experiment in
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at most 986 seconds. It turns out that solving the subproblem with DBC method is the

most time-consuming step. In general, the algorithm solves the subproblem for 5 miles line

segment faster than the infinite line; this fact can be justified by the effect of the conflict

constraints (4.8) which are not present when E = ∞. In addition, for all experiments, the

callback function performs very fast in checking the feasibility and solving the second stage

problem on the fly. As expected, for the infinite line, the results show zero seconds to check

the feasibility directly using Ũh, because in this case, the SLA alone can verify the feasibility.

For both tornado lengths, there are decreases in population dislocation by increasing the

amount of available budget because decision-makers are able to retrofit and recover more

locations. For example, increasing the budget from $0 to $15 million results in around 3000

fewer dislocations in damaged neighborhoods. However, adding another $15 million will

reduce dislocations only by around 500 people because of the great cost of recovery. Note that

this translates in reductions of around 20% in population dislocation for both tornado lengths.

More details on the optimal strategies can be found in Figure 4.12, which maps the

locations, their optimal strategies, and the worst-case tornado scenarios for various budgets.

It shows that in all experiments the decision-maker uses the extra amount of budget from

$15M to $30M to recover a few locations rather than in retrofit locations that are not in the

path of the worst-case tornado. Notice that recovery costs are generally more expensive than

retrofitting costs. For example, the recovered location in the ∞-$15M map in Figure 4.12 has

470 residents; 382 of which are estimated to be dislocated by spending $194K for retrofitting.

However, the decision-maker has to spend $5.5M in recovery to further reduce the estimated

dislocation to 295 people for this location. Columns 9-10 in Table 4.3 show that the proportion

of the budget that is assigned to recovery increases by having more amount of the budget.

In addition, we can observe in Figure 4.12 that the path of worst-case tornadoes does not

change by much in different experiments, suggesting that the location of the tornado path

is largely driven by the population density in the city center area.
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4.5.4 Advantages of robust retrofitting

In this section we compare the optimal two-stage robust retrofitting and recovery strategies

against a policy that makes retrofitting and recovery decisions at random. We assume a E = 5

miles tornado path and a total budget of A =$15 million. The decision-maker is allowed

to spend $0, $3, $9, and $15 million of the budget in each experiment to randomly retrofit

locations with random selections in set S; the remaining budget is reserved for the recovery

actions. Once a retrofitting strategy f is determined, then the corresponding worst-case

second-stage happens (i.e., the value of Φ(f) is determined, see Equation (4.6)). Table 4.4

compares the average, maximum, minimum, and standard deviation of population dislocation

for 10 random replications. Note that for the $0M case, we do not need multiple replications.

Budget to randomly retrofit
Population Dislocation

Average Maximum Minimum Standard deviation
$0M (0%) 16318 -
$3M (20%) 16057 16263 15717 163
$9M (60%) 15596 15905 15306 196

$15M (100%) 15143 15451 14764 189
Robust optimal retrofitting 13408 -

Table 4.4: Comparison of population dislocation statistics for 10 random retrofitting plans
with spending a certain amount of budget out of a total $15M.

Figure 4.13: Box and Whisker plots for Table 4.4 experiments. It shows the reduction trend
for population dislocation by considering more budget for retrofitting.
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The results in Table 4.4 show that with random policies the average, maximum, and

minimum dislocation after the corresponding worst-case tornado decrease with the percentage

of the budget spent in retrofitting. These results are depicted graphically in the Box plots in

Figure 4.13. Note that the proposed robust optimization model results in 13408 dislocations,

which is noticeable better than the random policies. To further emphasize the value of opti-

mization, recall that the optimal solution with our proposed method in Table 4.3 spends $9M

out of $15M (60% of budget) in retrofitting. By contrast, even the minimum population dislo-

cation with random retrofitting using the same budget proportion is 15306 (a 14% increase).

We conduct additional simulations to randomly retrofit locations with the full amount of

$15M and $30M budget as before, but this time the worst-case tornado found in Section 4.5.3

is used. The results across 10 replications are shown in Table 4.5, which shows that for

both cases the robust optimal population dislocation is significantly less than the minimum

of population dislocation with random retrofitting. The plot in Figure 4.14 provides a

visualization of the significant gap between robust optimal value (stars) and the distribution

of values for random retrofitting plans. We can also observe that population dislocation

reduces by increasing the amount of budget.

Budget
Population dislocation

Robust optimal retrofitting Average Maximum Minimum Standard deviation
$15M 13408 15314 15941 14545 331
$30M 13091 14795 15248 14145 294

Table 4.5: Comparison of population dislocation statistics using ten different random
retrofitting plans and budgets of $15M and $30M.

The results of this section show that deciding using the proposed two-stage robust method

yields significant reductions in population dislocation against random policies when evaluating

in terms of worst-case outcomes. In the next section we complement these experiments by

analyzing how the optimal policy behaves when random tornadoes, instead of the worst-case

scenario, happen.
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Figure 4.14: Box and Whisker plots for Table 4.5 experiments. It shows the gap between
the robust optimal plan (stars) and the population dislocation of the random retrofitting
strategies for the base worst-case tornado.

4.5.5 Robust strategies in random scenarios

In this section we fix the optimal retrofitting-recovery plan and compare the robust population

dislocation values resulting from having 10 simulated 5-miles tornadoes, see Table 4.6 and

Figure 4.15.

Budget
Population dislocation

Worst-case tornado Average Maximum Minimum Standard deviation
$0M 16318 10324 13201 5233 2835
$15M 13408 9634 12720 5031 2679
$30M 13091 9416 12480 4900 2607

Table 4.6: Comparison of population dislocation statistics for the worst-case tornado and
simulated tornadoes by using the optimal retrofitting plan

The results for $0M in Table 4.6 and Figure 4.15 show that there is a large gap between

the worst-case tornado 16318 (blue star) and the maximum value among simulation results

which is 13201. As expected, by having more budget, the average population dislocations

in the simulations reduce from 10324 to 9643 for $15M and to 9416 for $30M. In addition,

the gap between the robust and maximum simulation values for $15 and $30M are noticeable

smaller than the gap for no-budget experiment.

The observations in this section show a few things about the optimal retrofitting-recovery
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Figure 4.15: Box and Whisker plots for Table 4.6 experiments. It shows the distribution of
dislocation values for simulated tornadoes and the gap to the worst-case tornado.

policy: first, that there can be a large variability for population dislocation assuming any

tornado is possible. Second, that the variability seems to decrease as more budget is avail-

able, and third, that the worst-case scenario is not that far way from simulated scenarios,

particularly when there are investments in retrofitting and recovery. This last point is further

emphasized by the fact that only 10 tornadoes are simulated; one should expect that with

more simulated tornadoes the gap between the worst-case and the maximum dislocation

observed reduces even more. Further, this last point also shows that the worst-case is not as

rare as one might anticipate, and thus that the proposed robust optimization model does not

suffer from ‘over-conservatism’, which is a common drawback of deciding in a robust manner.

4.6 Conclusion

We consider a two-stage robust optimization model to determine retrofitting and recovery

strategies before and after the realization of an uncertain tornado disaster. We assume that

the decision-maker (a combination of public-private agencies) has to allocate a budget in

retrofitting and recovery actions, to minimize population dislocation. We propose a two-stage

optimization model where the first-stage variables determine the retrofitting strategies and

the second-stage variables determine the recovery strategy, assuming that for any retrofitting
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action, the corresponding worst-case tornado happens. Given that the uncertainty corre-

sponds to the possible tornado paths, the resulting problem is a two-stage mixed-integer

robust optimization problem with a mixed-integer non-linear uncertainty set.

We show that the proposed problem setting is NP-hard. A standard approach to solve

the problem is a column-and-constraint generation algorithm that needs to solve a max-min

subproblem at each iteration. We embed a decomposition branch-and-cut algorithm in the

column-and-constraint solution method to address the non-convex structure of the bilevel

subproblem. We propose two sets of valid inequalities and a high-performance separation

procedure to implement the decomposition branch-and-cut algorithm. Using data from

INCORE, we use our model to provide the optimal retrofitting and recovery strategies for

the city of Joplin, Missouri against the worst-case scenario.
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CHAPTER V

CONCLUSION AND FUTURE WORK

In this dissertation, we studied optimization models under uncertainty, with a focus on finding

robust optimal solutions that are effective under any selection of uncertain parameters within

a mixed-integer set. We have focused on two specific classes of robust optimization problems

in which the uncertainty can be represented using mixed-integer sets. In this section, we

summarize our contributions and identify possible future works.

5.1 Contributions

We first explored a class of adversarial minimum-cost flow problems that are subject to

multiple ripple effect disruptions that increase arc usage cost. We have addressed the challenge

of the uncertain locations of the disruptions’ epicenters by seeking a flow that minimizes cost

assuming the worst-case realization of the disruptions. We evaluate the damage to each arc

using a linear model, where the damage is the cumulative damage of all disruptions affecting

the arc; and a maximum model, where the damage is given by the most destructive disruption

affecting the arc. For both models, the arcs’ costs post-disruptions are represented with a

mixed-integer feasible region, resulting in a robust optimization problem with a mixed-integer

uncertainty set. We have shown that the subproblem evaluating the worst-case cost for

a given flow plan is polynomial-time solvable for the linear model, but NP-hard for the

maximum model. To effectively solve the mixed-integer subproblem, we have proposed a

big-M free binary reformulation of the uncertainty set based on conflict constraints, resulting
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in a significantly tighter linear programming relaxation. We have also extended our models

to consider a less conservative approach where only a subset of the disruptions can occur,

and shown that the properties of the linear and maximum models also hold in this case.

Our proposed approaches have been tested on real road networks and synthetic instances,

showing orders of magnitude improvements over a standard approach from the literature.

These findings contribute to the development of efficient and effective solutions for adversarial

minimum-cost flow problems with uncertain ripple effect disruptions.

Furthermore, this dissertation proposes a novel problem that addresses the critical issue of

mitigating the effects of catastrophic tornadoes on human well-being by efficiently allocating

resources in retrofitting and recovery strategies. We use a two-stage robust optimization

approach with a mixed-integer nonlinear uncertainty set that models tornado damage and

explicitly represents tornado paths as line segments. Our proposed algorithm utilizes the

column-and-constraint generation method from existing literature, equipped with a decom-

position branch-and-cut algorithm. With this approach, we can effectively solve two-stage

optimization problems with mixed-integer formulations in both stages. To demonstrate

the applicability of our approach, we present numerical results for a case study based on

Joplin, Missouri. Our results show that by investing $15 million in retrofitting and recovery,

up to 20% reductions in worst-case population dislocation can be achieved. Moreover, our

approach outperforms other retrofitting policies by margins close to 20%, while avoiding over-

conservativeness. Our proposed methodology can serve as a valuable tool for decision-makers,

such as government agencies and public-private consortia, to allocate resources effectively

in minimizing population dislocation due to uncertain tornadoes.
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5.2 Future work

5.2.1 Hedging against rippled disruptions

For robust minimum-cost flow problems, future work includes considering more broad ef-

fects of the disruptions not only on the cost of the arcs but also on their capacity and the

demand/supply at the nodes. One important aspect to consider is the potential for a ripple

to cause leakage of flow at the nodes it covers. It is reasonable to assume that nodes closer

to the epicenter of a disruption may experience more leakage of flow than nodes farther away.

To address this, we propose defining a dummy sink that can account for this leakage. The

dummy sink would have ingoing arcs from the nodes, which would be activated based on

the extent of the ripple damage, thereby reducing the amount of flow delivered to the actual

sink. In this setting, one important consideration is the desire to minimize the amount of

leakage. By incorporating this objective into the model, decision-makers could take a more

comprehensive approach to managing the impact of ripple effect disruptions.

Also, alternative modeling approaches for the interactions between the disruptions can be

considered for further study. To elaborate on this, one possible approach is to use continuous

models to compute the damage caused by disruptions in a location. In this approach, the

exact distance between the location and the epicenters of the disruptions is taken into account

to evaluate the damage. It is worth noting that even with this continuous modeling approach,

the linear and maximum cost functions described in the current work can still be applied.

Another line of future research may study combinatorial network problems (e.g., traveling

salesman problem, vehicle routing, network design) subject to ripple effect disruptions, which

we anticipate to be even more challenging than minimum-cost flow problems and could span

an even wider array of applications. The vehicle routing problem, for example, involves

determining the optimal routes for a fleet of vehicles to deliver goods or services to various

locations. Disruptions can impact the capacity of the vehicles and the demand/supply at the

122



delivery locations, and a robust optimal strategy could prevent further expenses to constantly

re-optimize the routes in real-time.

Moreover, future research may consider more flexible models in which the flow plans could

be (partially) updated after observing the realization of the uncertainty. The latter work

could be analyzed using the framework of two-stage robust problems, which was introduced in

Chapter IV. For example, the decision-maker can reserve a portion of flow to release after ob-

serving the cost vector following a disruption. It is possible to analyze the additional cost that

the decision-maker must pay to reserve a portion of flow versus the amount of budget saved by

observing the disruption locations. This analysis can provide valuable insights into the effec-

tiveness of this approach and can help the decision-maker to make less conservative decisions.

5.2.2 Tornado preparedness

As a future direction for the study of retrofitting and recovery planning in tornado-prone

areas, it would be beneficial to investigate modeling tornado damages under the assumption

that there could be multiple levels of disruptions. This would involve considering ripple effect

disruptions, as described in Chapter III. Specifically, it could be assumed that locations

closer to the central line of a tornado would experience greater damage compared to areas

farther away. Additionally, the direction and intensity of a tornado could be assumed to

change over time, which would allow for a more accurate representation of its behavior.

To achieve this, it would be necessary to define time periods (T ) in which the motion of

the tornado changes to result in worst-case levels of damage. This would provide a more

comprehensive understanding of the potential impact of tornadoes on different areas and

enable more effective planning for retrofitting and recovery efforts.

Another promising avenue of research could involve applying our proposed framework to

investigate community resilience under other natural disasters, such as hurricanes. This could

be achieved with minor modifications to the uncertainty model and the set of retrofitting
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and recovery strategies. Overall, this approach would provide a robust tool for improving

community resilience under a range of natural disasters.
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CHAPTER VI

APPENDIX

6.1 MIP formulations for the ℓ∞ and ℓ2 norms

In this appendix, we present the basic MIP formulations for the uncertainty sets if the

distances are induced by the ℓ∞ and ℓ2 norm, see Figure 6.1.

(a) ℓ∞-norm (b) ℓ2-norm

Figure 6.1: Disruption shapes under the ℓ∞ and the ℓ2 norm.

• ℓ∞-norm: The ripples have a square shaped geometry, see Figure 6.1a. Constraint (3.5d)

determines the following distance from arcs to epicenters:

max
{
|p(1)a − α

(1)
j |, |p(2)a − α

(2)
j |
}
−Ma(1− λajk) ≤ qjk ∀a ∈ A, k ∈ [rj], j ∈ [m].

(6.1)

In this case, the maximum in (6.1) can be rewritten as two constraints such that the

maximum value of its elements determines the lower bound of the inequality. Hence, we
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can replace constraint (3.5d) by the following constraints to obtain a linear formulation

for the ℓ∞-norm:

p(1)a − α
(1)
j = β+

1aj − β−
1aj ∀a ∈ A, j ∈ [m] (6.2a)

p(2)a − α
(2)
j = β+

2aj − β−
2aj ∀a ∈ A, j ∈ [m] (6.2b)

β+
1aj + β−

1aj −Ma(1− λajk) ≤ qjk ∀a ∈ A, k ∈ [rj] j ∈ [m] (6.2c)

β+
2aj + β−

2aj −Ma(1− λajk) ≤ qjk ∀a ∈ A, k ∈ [rj] j ∈ [m] (6.2d)

β+
1aj, β

−
1aj, β

+
2aj, β

−
2aj ∈ R+ ∀a ∈ A, j ∈ [m]. (6.2e)

• ℓ2-norm: The ripples have a circle shaped geometry, see Figure 6.1b. Constraint (3.5d)

determines the Euclidean distance from arcs to epicenters:

√
(p

(1)
a − α

(1)
j )2 + (p

(2)
a − α

(2)
j )2 −Ma(1− λajk) ≤ qjk ∀a ∈ A, k ∈ [rj], j ∈ [m].

(6.3)

Even though constraint (6.3) cannot be written as a linear function, it can be replaced

by the following convex quadratic constraint:

(p(1)a −α
(1)
j )2+(p(2)a −α

(2)
j )2−M

′

a(1−λajk) ≤ q2jk ∀a ∈ A, k ∈ [rj], j ∈ [m]. (6.4)

where M ′
a plays a similar role as Ma but with respect to the squared distance.

The sizes of the MIP formulations for the ℓ1, ℓ2, and ℓ∞ induced norms are shown in

Table 6.1. Observe that the ℓ1-norm and ℓ∞-norm have 4|A|m more variables than the

ℓ2-norm because of the variables added to linearize the formulations. However, as seen in

the second row, the total number of integer variables for all cases is the same. The ℓ∞-norm

formulation has |A|
∑

j∈[m] rj more constraints than the ℓ1-norm formulation because the

linearization of the max function requires constraints for both the horizontal and the vertical
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# ℓ1-norm ℓ∞-norm ℓ2-norm

Variables |A|(1 +
∑

j∈[m] rj + 4m) + 2m |A|(1 +
∑

j∈[m] rj + 4m) + 2m |A|(1 +
∑

j∈[m] rj) + 2m

Integer variables |A|
∑

j∈[m] rj |A|
∑

j∈[m] rj |A|
∑

j∈[m] rj

Constraints |A|(1 + 3m+
∑

j∈[m] rj) |A|(1 + 3m+ 2
∑

j∈[m] rj) |A|(1 +m+
∑

j∈[m] rj)

Nonzeros |A|(1 + 7
∑

j∈[m] rj + 6m) |A|(1 + 8
∑

j∈[m] rj + 6m) -

Table 6.1: Sizes of the formulations for the different notions of distance.

coordinates. Also, the ℓ2-norm formulation has the fewest number of constraints because the

constraint (6.3) has been transformed to (6.4) without any additional variable or constraint.

Finally, the total number of nonzero elements in the coefficient matrices of formulations are

also shown in the table. Because the formulation for the ℓ2-norm is quadratic and not directly

comparable, its column has been left empty.

6.2 Results for the ℓ∞ norm

In this appendix, we show that the results that hold for the ℓ1 norm also hold true for the

ℓ∞ norm.

Proposition 15. For a disruption j ∈ [m] under the distance measure induced by the ℓ∞

norm, if λ = (λ1, . . . , λm) ∈ C and λj ∈ Bj, then λj ∈ Mj.

Proof. Using the terminology of the proof of Proposition 7, we must show there exist

αj ∈ [L(1), U (1)]× [L(2), U (2)] such that

max
{
|p(1)a − α

(1)
j |, |p(2)a − α

(2)
j |
}
≤ qjka ∀a ∈ Aj. (6.5a)

Observe that (6.5a) holds if and only if the following holds:

−qjka + p(1)a ≤ α
(1)
j ≤ qjka + p(1)a ∀a ∈ Aj (6.6a)

−qjka + p(2)a ≤ α
(2)
j ≤ qjka + p(2)a ∀a ∈ Aj. (6.6b)
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Equations (6.6) hold if and only if the following holds:

max
a∈Aj

{−qjka + p(1)a } ≤ min
a∈Aj

{qjka + p(1)a } (6.7a)

max
a∈Aj

{−qjka + p(2)a } ≤ min
a∈Aj

{qjka + p(2)a }. (6.7b)

To see why, note that its clear that (6.6) implies that (6.7) holds. On the other hand, suppose

that (6.7) holds. Define α
(1)
j = maxa∈Aj

{−qjka +p
(1)
a } and α

(2)
j = maxa∈Aj

{−qjka +p
(2)
a }, then

it is clear that (6.6) holds.

Let maxa∈Aj
{−qjka+p

(1)
a } = −qjke+p

(1)
e , mina∈Aj

{qjka+p
(1)
a } = qjkf+p

(1)
f , maxa∈Aj

{−qjka+

p
(2)
a } = −qjkg + p

(2)
g , and mina∈Aj

{qjka + p
(2)
a }. So, we rewrite (6.7a) and (6.7b) as follows

p(1)e − p
(1)
f ≤ qjke + qjkf (6.8a)

p(2)g − p
(2)
h ≤ qjkg + qjkh . (6.8b)

Since (ke, kf ) /∈ Γj
e,f and (kg, kh) /∈ Γj

g,h, then the inequalities (6.8a) and (6.8b) hold.

Now we show to obtain the epicenters of the disruptions for the ℓ∞ case once formula-

tion (3.39) is solved. Define

m∗
1 = max

a∈Aj

{−qjkaj + p(1)a }, M∗
1 = min

a∈Aj

{qjkaj + p(1)a }

m∗
2 = max

a∈Aj

{−qjkaj + p(2)a }, M∗
2 = min

a∈Aj

{qjkaj + p(2)a }.

In this case, it follows from the proof of Proposition 15 that any point that belongs to the

segment Sj, where

Sj =
{
(x, y) ∈ R2 : ∃t ∈ [0, 1] s.t. (x, y) = t(m1,m2) + (1− t)(M1,M2)

}
, (6.9)
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yields an optimal epicenter for disruption j in vM(y).

Proposition 16. Suppose that the distance measure is induced by the ℓ∞ norm. Let poly-

hedrons P and P̂ be the LP relaxations of formulations (3.9) and (3.39), respectively:

i. For any a ∈ A, if the corresponding big-M coefficient Ma satisfies that

Ma ≥ max
p∈[L(1),U(1)]×[L(2),U(2)],j∈[m]

(∥pa − p∥∞ − qj1), (6.10)

then P̂ ⊆ P.

ii. In addition, if there is a disruption j ∈ [m] for which there exist arcs b, c ∈ A such that

Γj
b,c ̸= ∅ and such that for any a ∈ A the coefficient Ma also satisfies that

Ma > 2

(
max

p∈[L(1),U(1)]×[L(2),U(2)],j′∈[m],k∈[rj′ ]

∣∣∣∥pa − p∥∞ − qj′k

∣∣∣) , (6.11)

then P̂ ⊊ P.

Proof. The proof of part (ii) is the same as the proof of part (ii) of Proposition 8. On the

other hand, for part (i) let λ̂ ∈ P̂ . We seek to find α
(1)
j and α

(2)
j such that

− qjka −Ma(1− λ̂ajka) + p(1)a ≤ α
(1)
j ≤ qjka +Ma(1− λ̂ajka) + p(1)a ∀a ∈ A (6.12a)

− qjka −Ma(1− λ̂ajka) + p(2)a ≤ α
(2)
j ≤ qjka +Ma(1− λ̂ajka) + p(2)a ∀a ∈ A. (6.12b)

Let maxa∈A{−qjka − Ma(1 − λ̂ajka) + p
(1)
a } = −qjke − Me(1 − λ̂ejke) + p

(1)
e , mina∈A{qjka +

Ma(1− λ̂ajka) + p
(1)
a } = qjkf +Mf (1− λ̂fjkf ) + p

(1)
f , maxa∈A{−qjka −Ma(1− λ̂ajka) + p

(2)
a } =

−qjkg−Mg(1−λ̂gjkg)+p
(2)
g , and mina∈A{qjka+Ma(1−λ̂ajka)+p

(2)
a } = qjkh+Mh(1−λ̂hjkh)+p

(2)
h .
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Therefore, we must have

(p(1)e − p
(1)
f )−Me(1− λ̂ejke)−Mf (1− λ̂fjkf ) ≤ qjke + qjkf (6.13a)

(p
(2)
h − p(2)g )−Mg(1− λ̂gjkg)−Mh(1− λ̂hjkh) ≤ qjkg + qjkh . (6.13b)

If (ke, kf ) /∈ Γj
e,f and (kg, kh) /∈ Γj

g,h, then (6.13a) and (6.13b) trivially hold. Otherwise, sup-

pose that (ke, kf ) ∈ Γj
e,f and thus that λ̂ejke+λ̂fjkf ≤ 1. Let M = min{Me,Mf}, then we have

(p(1)e − p
(1)
f )−Me(1− λ̂ejke)−Mf (1− λ̂fjkf ) ≤ (p(1)e − p

(1)
f )−M(2− λ̂ejke − λ̂fjkf ) (6.14)

≤ (p(1)e − p
(1)
f )−M ≤ 0 ≤ qjke + qjkf . (6.15)

where the second to last inequality holds from Equation (6.10). Thus, the inequality (6.13a)

is true; the validity of (6.13b) follows by similar arguments assuming (kg, kh) ∈ Γj
g,h.

6.3 Strong formulation for the linear model

Here we show that an analogous version of the strong formulation for vM(y) is equivalent

to vL(y). This assertion follows by noting that the only difference between the formulations

of vM(y) and vL(y) is that the coupling constraints (3.9c) are more restrictive in the max-

imum model than constraints (3.5c) in the linear model. This difference, however, does not

invalidate the proofs of any of the results that were discussed in Section 3.4. For convenience,

we summarize this observation in the following proposition.
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Proposition 17. Let a flow y ∈ R|A|
+ and a disruption j ∈ [m] be given. If the distance measure

is induced by the ℓ1 or ℓ∞ norm then vL(y) can be computed by solving the following MIP:

vL(y) =max c⊤y (6.16a)

s.t. ca = c0a +
∑
j∈[m]

∑
k∈[rj ]

djkλajk ∀a ∈ A (6.16b)

∑
k∈[rj ]

λajk ≤ 1 ∀a ∈ A, j ∈ [m] (6.16c)

λajk1 + λbjk2 ≤ 1 ∀(k1, k2) ∈ Γj
a,b, a, b ∈ A, a ̸= b, j ∈ [m] (6.16d)

λajk ∈ {0, 1} ∀a ∈ A, j ∈ [m], k ∈ [rj] (6.16e)

ca ∈ R ∀a ∈ A. (6.16f)

Moreover, under the assumptions in equations (3.41) and (3.42) for the ℓ1-induced distance

(or equations (6.10) and (6.11) for the ℓ∞-induced distance), formulation (6.16) is stronger

and strictly stronger, respectively, than formulation (3.5).

Clearly, formulation (6.16) is also valid with only one disruption, which means that the

decomposition method to solve vL(y) can solve MIP (6.16) for each disruption rather than

the polynomial time algorithm. In our numerical experiments we show that this approach

can sometimes be slightly faster than the polynomial time algorithm.
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