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Abstract: The technique of inflating ideal triangulations developed by Jaco and Rubinstein
in [7] gives a procedure starting with an ideal triangulation T ∗ of the interior of a compact
3-manifoldM , that constructs a triangulation TΛ ofM with real boundary components. This
construction is carried out in such a way that combinatorial information from T ∗ persists in
TΛ. Viewed as an inverse operation, crushing TΛ along the boundary of M recovers exactly
T ∗.

We present results from joint work with Jaco and Rubinstein showing, for T ∗ and TΛ, there
is a bijection between the closed normal surfaces of T ∗ and the closed normal surfaces of
TΛ. Further corresponding surfaces are homeomorphic. Given the previous relationship for
closed normal surfaces, it is natural to inquire about surfaces with boundary. That is, if
a surface is normal in TΛ, is there a corresponding spun-normal surface in T ∗? In general
the answer is no. However, we show that an affirmative answer can be given if the normal
surface in TΛ is in ‘C-position.’

In [5], Cooper Tillmann and Worden pose the question For a fibered knot complement or
fibered once-cusped 3-manifold M , is there always some ideal triangulation of M such that
the fiber is realized as an embedded spun-normal surface. We present an algorithm that will
construct an inflated triangulation TΛ in which the fiber is a normal surface in C-position,
thus in the underlying ideal triangulation the fiber is realized as a spun-normal surface;
answering the question in the affirmative. Further the algorithm will find the spun-normal
representation of the fiber.
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CHAPTER I

INTRODUCTION

This thesis studies the combinatorics of properly embedded surfaces in compact 3-mani-

folds. We view these surfaces through the lens of Normal Surface Theory developed by Kneser

[12] in 1929 and expanded upon by Haken [17] in 1961. The theory of normal surfaces was

developed to identify incompressible, ∂-incompressible surfaces in a compact 3-manifold. We

are then interested in realizing incompressible, ∂-incompressible surfaces with boundary as

spun-normal surfaces in ideal triangulations.

In [18] Walsh showed that for a cusped finite volume hyperbolic 3-manifold M with ideal

triangulation T ∗, any incompressible surface S can be realized as a spun-normal surface in T ∗

so long as all edges of T ∗ are essential and S is not a virtual fiber. For compact 3-manifolds

with boundary which are surface bundles, examples of ideal triangulations with essential

edges in which a fiber is not realized as a spun-normal surface are readily constructed. In

[5], authors Cooper, Tillmann, and Worden ask the question directly: For a fibered knot

complement or fibered once-cusped 3-manifold M , is there always some ideal triangulation

of M such that the fiber is realized as an embedded spun-normal surface?

As the normalization of surfaces in triangulations with real boundary is well understood,

we would like to establish a connection between properly embedded surfaces with boundary

in such triangulations, and the spun-normal surfaces in ideal triangulations. In [7], Jaco

and Rubinstein develop inflations of ideal triangulations. The process of inflating an ideal

triangulation, T ∗ of the interior of a 3-manifold M allows one to procedurally build a trian-

gulation TΛ of M with real boundary that preserves the combinatorics of T ∗. By crushing

[7] TΛ along the boundary of M we can fully recover T ∗.
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We identify three primary purposes for this thesis. First, discussing joint work with Jaco

and Rubinstein [2] that establishes the connection between closed normal surfaces in an ideal

triangulation T ∗ with the closed normal surfaces in TΛ, an inflation of T ∗. Secondly, we will

show when an analogous connection can be made for normal surfaces with boundary. Lastly,

we will use the previous point to give an affirmative answer to the question posed by Cooper,

Tillmann, and Worden and an extension to link manifolds. That is, we construct an ideal

triangulation of a fibered link manifold in which a fiber is realized as a spun-normal surface.

In the case of a knot manifold, we give an algorithm to construct the ideal triangulation and

detect the spun-normal fiber.

In Chapter 2, we lay the background. Relevant definitions and results found in the

literature appear here. In Section 2.1, we define triangulations, ideal triangulations, and

framed triangulations. Triangulations give us the combinatorial framework in which all

further work is described. In Section 2.2, we define normal and spun-normal surfaces. As

all subsequent sections rely entirely on (spun-)normal surfaces, we have made this section

as detailed as possible. In Section 2.3, we give definitions and results surrounding and

using efficient triangulations. Our purposes for efficient triangulations is to show we can

find desired normal surfaces within a finite collection. In Sections 2.4 and 2.5, we describe

the processes of crushing and inflating triangulations. These are the tools with which we

build our algorithm in Chapter 4. Section 2.5 contains original procedural methods for

constructing frames and for inflating that differ from the source material. The procedure

given for inflation has the distinction in that for a given frame, the inflation is uniquely

determined, whereas, in [7] there is a choice when inflating a face more than once.

In Chapter 3, we present results coming from work joint with Jaco and Rubinstein com-

pletely determining the relationship between closed normal surfaces in ideal triangulations

with the closed normal surfaces in inflated triangulations. In particular:

Theorem 3.0.1 (B-Jaco-Rubinstein) Let M be a compact 3-manifold with nonempty

boundary no component of which is a 2-sphere. Suppose (T ∗,Λ) is a framed triangulation
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of M̊ , and Tξ is the inflation of T ∗ for some frame ξ ∈ Λ. The combinatorial crushing

map determined by crushing Tξ along ∂M induces a bijection between the closed normal

surfaces in Tξ and the closed normal surfaces in T ∗; furthermore, corresponding surfaces are

homeomorphic.

We end the chapter with a result about efficiency of inflated triangulations. It is the work

found here that inspired the results of Chapter 4.

In Chapter 4, we work towards answering the question stated in the abstract of Cooper,

Tillmann, and Worden. In Section 4.1, we discuss the effects of Pachner moves on inflated tri-

angulations. In Section 4.2, we give a sufficient condition for a normal surface in an inflation

triangulation to determine a spun-normal surface in the corresponding ideal triangulation.

This correspondence is not a bijection as with results from Chapter 3. We finish Section 4.3

with the main theorems:

Theorem 4.3.2 Let K be a compact, irreducible, ∂-irreducible, atoroidal 3-manifold with

nonempty connected boundary a torus. Further suppose that K is an orientable S1 bundle

over an essential fiber F . There is an algorithm to build an ideal triangulation of the interior

K in which F spun-normalizes. The algorithm finds the spun-normal surface.

This answers Cooper, Tillmann, and Worden in the affirmative. We then have the most

generalized result of our work, constructing an ideal triangulation for a link manifold that is

a surface bundle in which a fiber of the bundle structure is realized as a spun-normal surface.

This gives a partial answer to a question of Walsh [18].

Theorem 4.3.4 Let L be a compact, irreducible, ∂-irreducible, atoroidal 3-manifold with

nonempty boundary, each component of which is a torus. Further, suppose that L is an

orientable S1-bundle over an essential fiber F . There is an algorithm to build an ideal

triangulation of the interior of L in which F spun-normalizes. The algorithm finds the

spun-normal surface.

3



CHAPTER II

BACKGROUND

2.1 Triangulations

An n-manifold (with boundary), M , is defined as any Hausdorff space with a countable basis

in which every point has an open neighborhood homeomorphic to open ball (or half-ball) in

Rn (or Hn the upper half space of Rn). We restrict M to be compact and to have nonempty

boundary, no component of which is a 2-sphere.

Let ∆ be a finite collection of pairwise disjoint oriented tetrahedra, ∆̃i together with a

collection Φ of homeomorphisms (orientation reversing) from one 2-cell, σ̃j, of ∆̃i to a 2-cell,

σ̃m, of some ∆̃k (possibly i = k). We give ∆ the weak topology induced by Φ. If X = ∆/Φ

is homeomorphic to a 3-manifold M , we denote the collection of tetrahedra together with

the face pairings as T and say that T is a triangulation of M . If at each vertex, vi, X is

not a manifold point we say that vi is an ideal vertex and classify vi by the boundary of

its regular neighborhood. In this case X\{vertices} is the interior of a compact 3-manifold

with boundary, M . We denote the collection of tetrahedra and the face pairings as T ∗ and

say that T ∗ is an ideal triangulation of the interior of M . We denote the image of ∆̃i as ∆i

and call ∆̃i the lift of ∆i.

The above notation will be used throughout the paper to refer to non-specific n-cells

of the tetrahedra. In order to facilitate the reader in following and working examples for

themselves, we translate to the notation of REGINA[4]. In this regard tetrahedra are simply

referred to by a number ∆i → i, faces denoted (i)(abc) where i represents the tetrahedron

and a, b, c ∈ {0, 1, 2, 3} refers to the vertices present; edges (i)(ab), a, b again referring to the
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vertices. It is sometimes convenient when the tetrahedron index is understood to drop the

preceding (i), thus we see edge (03) in tetrahedron 5 say. Likewise if the tetrahedron has a

specific name say, ∆i = P , we may denote a face as (P)(012).

More generally we can construct cellulations. Beginning with a set of discrete points,

X0 we inductively create Xn by attaching n-balls, eni , via boundary homeomorphisms ϕi :

Sn−1 → Xn−1. As with triangulations above Xn is given the weak topology relative to the

collection of all maps ϕi and if M ∼ Xn then we say that Xn is a cell structure of M . Each

X i is the i-skeleton of Xn. We are particularly interested in cell structures on 2-manifolds

composed of triangles and quadrilaterals.

A spine, ξ, of a triangulated surface, S, is a graph in the 1-skeleton such that each

component of its complement in S is a disc. We say that ξ is a frame if the complement

in S is a single disc. A vertex of ξ is called a branch point if it has index larger than 2. A

maximal path in ξ containing no interior vertices a branchpoint is called a branch.

For a triangulation with an ideal vertex v, the intersection of the boundary of a small

regular neighborhood, S of v with the tetrahedra of T ∗ gives a triangulation of S (discussed

further in Section 2.2). Each vertex of S then corresponds to one end of an edge in T ∗, and

an edge, e, meets the collection of vertex-linking surfaces in two points. We denote these

two points as e+ and e−. By our naming convention we have determined an orientation on e,

directed from e− to e+. Suppose that D+
e and D−

e are small regular neighborhoods of e+ and

e− respectively, in the vertex-linking surfaces. The triangulation of the vertex-links induce

a cellulation of D+
e , D

−
e . If σ is a face in T ∗ having e as an edge, there are unique edges, one

in D+
e and one in D−

e , lying in σ, meeting e. We say that one edge is above the other relative

to the orientation on e. Let xi, xi+1, yj, yj+1 be edges in the frame ξ, with xi, xi+1 ⊂ D+
e and

yj, yj+1 ⊂ D−
e . Denote by ỹj, ỹj+1 the edges above yj, yj+1 in D+

e . If the path in D+
e formed

by the edges xi, xi+1 crosses the path formed by ỹj, ỹj+1 (illustrated in Figure 1) we say that

ξ has a crossing at e.
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Figure 1: A crossing of xi, xi+1 and ỹj, ỹj+1.

Definition 2.1.1 Let ξ be a frame for a triangulated surface S. Let ϵ be the number of edges

in ξ and c be the number of crossings. Define the length by len(ξ) = e + 2c; similarly the

complexity is defined by C(ξ) = e+ c+ 4g − 2, where g is the genus of S.

Let Λ = {ξi} be a collection of frames. We extend the notions of length and complexity to

the collection Λ:

len(Λ) =
∑
i

len(ξ)

C(Λ) =
∑
i

C(ξ)

Definition 2.1.2 A framed triangulation (T ∗,Λ) consists of a triangulation with ideal

vertices and a collection of Λ = {ξi} of frames such that for each ideal vertex vi of T ∗ we

have a corresponding frame ξi.

For a framed triangulation (T ∗,Λ) for which all vertices are ideal, T ∗ agrees with the

usual definition of an ideal triangulation. We say that (T ∗,Λ) is a framed triangulation for

a compact 3-manifold with boundary M if the interior of the topological space given by T ∗

is homeomorphic to the interior of M . We will restrict to the case where T ∗ is a minimal

vertex triangulation. This implies that each vertex, either ideal or real, corresponds to a

boundary component of M .

6



Figure 2: The three normal arc types.

2.2 Normal surfaces

Normal surface theory has been used to great effect in algorithmic analysis of 3-manifolds.

Though treated slightly different than in the modern theory, Haken [17] used normal surfaces

to algorithmically detect the unknot. Recently, joint with Jaco and Rubinstein [2], we used

the theory to simplify the combinatorial structure of triangulated 3-manifolds so that it

better captures the geometry of said manifold.

What follows is a brief review of the theory of normal surfaces. It is foundational to the

works of this thesis, thus we will attempt to be robust.

Definition 2.2.1 If ∆̃ is a compact, convex, linear cell and σ̃ is a face of ∆̃, an arc in σ̃ is

a normal arc if its endpoints lie in the interior of separate edges of σ̃.

For the triangular faces of a 3-manifold triangulation, we have three distinct normal arcs

illustrated in Figure 2. Normal arcs, though in one dimension lower, are paramount in this

theory. The connection is illustrated in the following definition.

Definition 2.2.2 Let ∆̃ be a compact, convex linear cell. A normal disc, D in ∆̃ is a

properly embedded disc whose interior lies in the interior of ∆̃ and whose boundary consists

of normal arcs in faces σ̃ of ∆̃, no face having more than one normal arc type belonging to

D.

A normal isotopy is an isotopy invariant on each simplex of ∆̃. The normal isotopy class

of a normal disc is the disc type. For a tetrahedron ∆̃i in the triangulation T of 3-manifold

7



Figure 3: Four normal triangle and three normal quad types.

M , we thus have seven distinct normal discs types, three normal quadrilateral types and

four normal triangular types as illustrated in Figure 3.

Definition 2.2.3 Let M be a compact 3-manifold with triangulation T . Let S be a properly

embedded surface in M transverse to the 2-skeleton of T . Suppose that ∆i is a tetrahedron

of T and let c be a cell of S induced by T . Then c is the image of the lift c̃ in ∆̃i. If all such

cells c constructed this way are normal discs, then S is a normal surface relative to T .

We extend the above definition to framed triangulations and as a result to ideal triangu-

lations.

Definition 2.2.4 Let M be a compact 3-manifold with framed triangulation (T ∗,Λ). Let

S be an embedded surface in M transverse to the 2-skeleton of T ∗. Suppose that ∆i is a

tetrahedron of T ∗ and let c be a cell of S induced by T ∗. Then c is the image of the lift c̃ in

∆̃i. If all such cells c constructed this way are normal discs, and

1. the number of such normal discs is finite, then S is a again a normal surface relative

to T ∗.

2. the number of normal quadrilaterals is finite and the number of normal triangles is

infinite, then S is a spun-normal surface relative to T ∗.

The collection of infinitely many normal triangles in the above definition forms infinitely

long annuli, Ai spinning toward the ideal boundary components Bi. Here ‘infinitely long’

refers the homeomorphism Ai
∼= S1×[0,∞). For a subcomplex ST of the spun-normal surface

S we say that ST is a tail if its interior is connected and the interior of the complement

8



SC = S\ST is homeomorphic to the interior of S. We say that SC is a core of S. Note this

definition of core is more general than commonly found in the literature [10].

Definition 2.2.5 Given a normal arc γ in a face σ̃, γ is isotopic to the boundary of a regular

neighborhood of the lift of some vertex v in σ̃. We say that γ links the vertex v. Similarly

given a normal triangle, c, in a tetrahedron ∆̃i, c is isotopic to the boundary of a regular

neighborhood of the lift of some distinct vertex v in ∆̃i. We say that c links the vertex v.

At times we will alternate in saying that a normal surface S is normal in M and normal

in T to emphasize one construct over the other. Now that we have defined normal surfaces

it is natural to ask if any exist for an arbitrary triangulation.

Definition 2.2.6 The collection of all normal triangles linking a distinct vertex v, is called

a vertex-linking surface, Sv.

We then have a first statement about the existence of a normal surface:

Proposition 2.2.1 Let M be a compact 3-manifold with framed triangulation (T ∗,Λ). Let

v be a vertex in T ∗. The vertex-linking surface Sv is a normal surface in T .

The following definition can be found in [2] and will be used extensively from Section 2.4

onwards.

Definition 2.2.7 (B-Jaco-Rubinstein) Let M be a 3-manifold with nonempty boundary,

T a triangulation (or (T ∗,Λ) a framed triangulation) with real boundary component B. That

is T (T ∗) has unglued faces of tetrahedra given a triangulation of B. If the boundary of a

small regular neighborhood of B is normally isotopic to a normal surface, then we say that

M has normal boundary at B and we call this surface the boundary-linking surface.

It is not necessary in general that a boundary-linking surface exists for all components

∂M . For example a 0-efficient (see Section 2.3) triangulation of a 3-cell has no normal

2-spheres and thus no normal boundary [2]. A second example can be found in minimal

9



layered-triangulations of solid tori. The boundary torus is not normal as a minimal layered-

triangulation of a solid torus has no normal tori [9].

We also have classic existence theorems dating back to the foundational works of Kneser

and Haken [12, 17].

Theorem 2.2.1 (Kneser) Let M be a 3-manifold. If M has an essential, properly embed-

ded disc, then for any triangulation T of M there is a properly embedded essential normal

disc in T .

Theorem 2.2.2 (Kneser) Let M be a 3-manifold. If M has an essential, properly embed-

ded 2-sphere, then for any triangulation T of M there is an essential, properly embedded

normal 2-sphere in T .

Given an embedding of a surface S in a 3-manifold M it is natural to ask, “What if

the given embedding is not normal?” What can be done with S (or T ) to obtain a normal

surface? We say that S is realized as a (spun-)normal surface if S is isotopic (not necessarily

normal isotopic) to a normal surface. We call this normal surface a normal representative

of S and when no confusion would arise, simply denote the normal representative by S.

We must point out that a normal representative is not necessarily unique. An example of

non-uniqueness can be seen in the proof of Proposition 3.0.1. To reflect the language used

commonly in the literature, we simply say that S (spun-)normalizes if S is realized as a

(spun-)normal surface.

Theorem 2.2.3 (Haken) Let M be a 3-manifold with triangulation T (with no ideal ver-

tices), S an incompressible, ∂-incompressible properly embedded surface in M transverse to

the 2-skeleton of T . Then S normalizes in T .

So by Theorem 2.2.3 an incompressible, ∂-incompressible properly embedded surface, S

shrinks to a normal surface that is homeomorphic to S. We can thus expect to find many

normal surfaces in a given triangulation. It would therefore be expedient to be able to

parameterize all normal surfaces.
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If T is a triangulation, there are 7n distinct normal disc types in T where n = |T | is the

number of tetrahedra in T . Then a normal surface in S can be a assigned a vector v ∈ R7n.

Definition 2.2.8 Let M be a 3-manifold with triangulation (or ideal triangulation) T , with

n = |T |. Let S be a normal surface in T . We parameterize S with the vector represen-

tation S⃗ ∈ Z7n
≥0 with vector coordinates:

S⃗ = (x00, x01, x02, x03, y01, y02, y03, ..., xn0, xn1, xn2, xn3, yn1, yn2, yn3) ∈ Z7n
≥0 (2.2.1)

where the entry xij corresponds to the number of normal triangles in tetrahedra i of type tij

linking the lift of the vertex j. The entry yij corresponds to the number of normal quadrilat-

erals in tetrahedron i of type qij linking the edge (0j).

The vector representation S⃗ for a normal surface S is further constrained by a system of

linear equations. Given a normal arc type γ in the 2-skeleton, γ lifts to two distinct normal

arc types γ̃ and γ̃′ in tetrahedra ∆̃i, ∆̃j (possibly i = j). In each respective tetrahedron

there are exactly two normal disc types (a triangle and a quadrilateral) whose boundaries

contain normal arcs of the respective type. Let these types correspond to the disc types

tir, qis, tjr′ , qjs
′. Then the number of normal arcs of type γ̃ must be given by xir + yis,

likewise the number of normal arcs of type γ̃′ is given by xjr′ + yjs′ . Thus if the normal

surface S intersects the 2-skeleton with normal arc type γ, we have the linear equation

xni
+ ymi

= xnj
+ ymj

(2.2.2)

Equation 2.2.2 is a so called matching equation. Thus v is a solution to a system of

6n−3b/2 linear equations (three for each face gluing in T ) where b is the number of unglued

faces. We have an even stronger relation between the normal surfaces and the matching

equations [17]:

Theorem 2.2.4 Let T be a triangulation with t tetrahedra. Let v be a vector in the positive

orthant of R7t with coordinates corresponding to normal disc types as in Definition 2.1.6.
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There is a normal surface S (possibly disconnected) in T with vector representation v if and

only if v satisfies the system of linear equations described by Equation 2.1.1. Further S is

embedded if and only if for each triplet at most one of yi0, yi1, yi2 is nonzero.

In the case that at most one of yi0, yi1, yi2 is nonzero, we say that S⃗ is admissible and this

constraint is referred to as the Quadrilateral Condition. We will prove only the latter claim.

Proof. Examining normal quadrilaterals in a tetrahedron ∆̃i, we see that if two or more

types are present that they will have nonempty intersection. Thus S was not embedded.

If on the contrary, only one of yi0, yi1, yi2 is nonzero, then the normal discs represented

by the coordinates xi0, xi1, xi2, xi3, yi0, yi1, yi2, can be arranged in ∆̃i so as to have empty

intersection. Hence, we have an embedding on the interior of ∆̃i. Combining this embedding

with the embedding induced on the 2-skeleton and 1-skeleton by the matching equations, we

conclude that S is embedded.

Thus the appropriate parameterization of normal surfaces in T is by the following:

Definition 2.2.9 Normal surfaces S with vector representations S⃗ are non-negative integral

solutions to the system of linear equations described in Equation 2.2.2 thus we obtain a convex

cone in R7t consisting of all vector representations v called the solution cone S(M, T ).

Definition 2.2.10 If in addition to the constraints defining S(M, T ), we require
∑

i ti +∑
j qj = 1 then we obtain a compact convex linear cell, the rational points of which represent

projective classes of normal surfaces. We denote this compact convex linear cell, P(M, T ),

the projective solution space of S(M, T ). We denote the projective class of S by S̄.

Definition 2.2.11 The carrier of a normal surface S is the unique minimal face of P(M, T )

containing S̄.

With this parameterization we can define a binary relation on the set of normal surfaces

as follows:
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Figure 4: Exchange at normal arcs in the 2-skeleton.

Figure 5: Exchange along the exchange band Cγ.

Definition 2.2.12 Given normal surfaces S0, S1 with respective vector representations S⃗0, S⃗1,

we define the normal sum S0 + S1 = S to be the resulting normal surface (likely not em-

bedded) given by the vector representation of the vector sum S⃗0 + S⃗1 = S⃗. If S is properly

embedded, then we say that S0 and S1 are compatible.

We call S = S0 + S1 a Haken decomposition of S. It is of course possible for S to

have numerous distinct Haken decompositions. There is a geometric interpretation of the

normal sum given by a cutting argument along the arcs and curves in S0 ∩ S1. The cutting

is completely determined by the intersection of normal arcs in the 2-skeleton of T . This

operation is an exchange illustrated in Figures 4 and 5. The band Cγ = γ × [0, 1] in Figure

5, is called the exchange band ; the normal sum S0+S1 is obtained by cutting each exchange

band Cγ for all components γ of S0 ∩ S1.

Definition 2.2.13 A normal surface S is a fundamental surface if it cannot be written

as a sum S = S0 + S1 for any nonempty S0, S1. S is said to be a vertex surface if kS

cannot be written kS = nS0 + mS1 for any non-negative integers k, n,m and nonempty
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surfaces S0, S1 that are not normal isotopic to S.

An equivalent definition for a vertex solution is a surface S such that the projective class

S̄ lies at a vertex of P(M, T ). Fundamental and vertex solutions have been seminal in normal

surface theory. It is often the case (as it will be later in this work) that when searching for

a normal representative for a given surface, that we need look no further than these special

solutions. In a worse (yet not catastrophic) case one is likely to be able to construct the

desired surface from vertex solutions, hopefully in some linear (or bounded) number of steps.

In Chapter 4, we will find obstructions to spun-normalization in the form of normal

quadrilaterals. One then wonders, are the normal triangles necessary in identifying these

obstructing normal quadrilaterals? In [16], Tollefson showed the normal quadrilateral types

are sufficient to identify all normal and spun-normal surfaces. We will summarize these

results here. From 2.2.1 we take the yij entries to form the normal Q-coordinates of S

S⃗Q = (y01, y02, y03, ...yn1, yn2, yn3) ∈ Z3n
≥0.

Like the normal coordinates in Equation 2.2.1 the normal Q-coordinates are a solution to

a linear system of equations. Consider an edge ek = (ab) in a tetrahedron t with positive

orientation from a to b and assume a right hand twist around e. There are exactly two

normal quadrilateral types incident to e, call them qi, qj (ql being non-incident to ek). Each

disc of type qi and qj has within its boundary, a normal arc linking vertex a in a face of t

containing e and a normal arc linking vertex b in the other face containing ek. If for the

disc type qi a right handed twist around ek moves from the face containing the normal arc

of qi linking b to the face containing the normal arc linking a, we define the sense of qi to

be ϵk,i = +1. For the disc type qj, ql we set ϵk,j = −1, ϵk,l = 0 (illustrated in Figure 6).

Consider for a normal surface S, all normal quadrilateral types incident to some edge

ek in triangulation T . The number of normal quadrilateral types of positive sense must be

equal to the number of negative sense. Thus the vector S⃗Q is a solution to the linear system

of equations, the Q-matching equations :
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Figure 6: The sense of each qi respective to the edge ek.

{ 3n∑
i=1

ϵk,iyi = 0

}
k

(2.2.3)

We then have form [16]:

Theorem 2.2.5 (Tollefson) Let M be a compact 3-manifold with a fixed (ideal)triangulation.

If S is a (spun-)normal surface in M then the Q-coordinates S⃗Q give an admissible solu-

tion to the Q-matching equations. Moreover if v⃗ is a nonzero admissible solution to the

Q-matching, equations then there is a unique (spun-)normal surface S in M with no trivial

components such that S⃗Q = v⃗.

All notions of the solution space, fundamental and vertex solutions derived from the

matching equations carry over to the Q-matching equations. Likewise a Haken sum translates

to vector addition in normal Q-coordinates.

2.3 Efficient Triangulations

If M is an orientable 3-manifold and T ∗ is a (framed) triangulation of M , we say that T ∗

is 0-efficient if the only normal 2-spheres are vertex-linking and the only normal discs (i.e.

a 2-cell) are vertex-linking. For an orientable triangulation, T , (with no ideal vertices) T

is 0-efficient and the only normal tori are boundary-linking, we say that T is 1-efficient.

Similarly, for a 0-efficient framed triangulation (T ∗,Λ) if the only normal tori are either

vertex-linking or boundary-linking, then T ∗ is again said to be 1-efficient.

Efficiencies are combinatorial restrictions on (ideal-)triangulations that allow one to make

statements about what essential surfaces can be properly embedded in the associated man-
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ifold. The usual method as we see later in this section, is to use efficiency to argue that an

essential surface can be found amongst the fundamental surfaces of the triangulation [8, 14].

A closely related notion to efficiency, is that of angle structures. Angle structures are in con-

trast a geometric restriction on ideal triangulations. Angle structures allow one to associate

the ideal tetrahedra with ideal hyperbolic simplices. We will focus on a generalization of

angle structures and use the definition described in [10]. Lackenby uses an equivalent defini-

tion in [13], but the following defintion by Kang and Rubinstein from [10] is more applicable

here.

Definition 2.3.1 (Kang-Rubinstein) Given an ideal triangulation T ∗ of the interior of

a 3-manifold M , a taut angle structure is an assignment of angles 0 or π to the dihedral

angles between faces in each tetrahedron of T ∗ satisfying the following criteria:

1. For each tetrahedron ∆ there are four angles of measure 0 and two of measure π. The

two π angles are assigned to opposite edges of ∆.

2. For every edge e of T ∗, the sum of all angles at e is 2π.

If T ∗ admits a taut angle structure then we say that T ∗ is a taut ideal triangulation. We

specifically choose to use taut angle structures in this work for the application of the following

theorem that follows from work by Lackenby [13]:

Theorem 2.3.1 (Lackenby) Let M be a compact, orientable, irreducible, ∂-irreducible,

atoroidal, annanular 3-manifold with boundary. There is an algorithm to construct a taut

ideal triangulation of M̊ .

The connection between taut angle structures and efficiency can be seen in the following

weaker version of Theorem 2.6 of [10]:

Proposition 2.3.1 Let M be an atoroidal 3-manifold with nonempty boundary and T ∗ an

ideal triangulation of M̊ . If T ∗ admits a taut angle structure then T ∗ is 1-efficient.
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Our use of efficiency, in particular 0-efficiency will be to find normalizations of fibers of

surface bundles. Let us first define surface bundles and then discuss how to find the desired

normalizations.

Definition 2.3.2 Let F be a compact orientable surface and let h : F → F be a homeomor-

phism. The mapping torus h is the space F × I/ ∼ with the given equivalence relation

(x, 1) ∼ (h(x), 0).

Definition 2.3.3 Let M be a 3-manifold. A surface bundle structure on M is a pair

(h, ϕ) where h is a homeomorphism of F and ϕ is a homeomorphism between the mapping

torus of h and M .

The following Theorem 2.3.2 from [14] needs a great deal of machinery to prove. As

we will not need the machinery for the main results of this work we shall omit most of the

proofs referring again to [14]. The problem however is the that theorem applies to closed

3-manifolds and we would like to make an analogous statement about manifolds with torus

boundary. We will present the required lemmas and the proof of Theorem 2.3.2 translated

from how they appear in [14] with only additional background definitions presented. While

the lemmas are due to Thompson, the versions stated in [14] are more relevant for this work.

We turn our attention to the intersections of normal surfaces.

Definition 2.3.4 (Schleimer) Suppose that H is a normal surface in T , H = F + G a

Haken decomposition of H. We say that H is neat if F and G

1. intersect transversely,

2. F ∩G intersects the 2-skeleton of T transversely, and

3. G minimizes the lexicographic complexity

(|F ∩G′|, |(F ∩G′)\T 2|)

among all G′ normally isotopic to G such that F and G′ satisfy the first two conditions.
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Definition 2.3.5 (Schleimer) Given an annulus A properly embedded in a 3-manifold M ,

we say that A is a tent if ∂A bounds an annulus B in ∂M , A ∪ B bounds a “cube with a

knotted hole” inside of M and a component of the boundary of A, ∂+A bounds a disc in ∂M .

Recall the definition of exchange bands from Section 2.2. Exchange bands must be either

discs, annuli or Mobius bands. Exchange annuli being tents is bothersome. There may be

elements of π1((M\H)\A) that are not in π1(M\H).

Lemma 2.3.1 (Thompson) Suppose that

1. M is an orientable 3-manifold not homeomorphic to S3 with 0-efficient triangulation

T ,

2. Let H be a normal surface or almost normal surface with exceptional piece a single

octagon, and

3. H is two sided.

Then no neat Haken decompositon of H admits an excange annulus which is a tent in

M\H.

Lemma 2.3.2 (Thompson) Suppose that

1. M is an orientable 3-manifold with connected boundary component a torus with 0-

efficient triangulation T ,

2. H is a closed, connected, two-sided surface embedded in M which is not a 2-sphere or

a disc,

3. H is normal or almost normal, and

4. H = F +G is a neat Haken decomposition with all exchange annuli trivial

It follows that there is a Haken decomposition H = H ′ +G′ of H where G′ is nonempty and

H ′ is isotopic to H.
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Proof. For an exchange annulus A (that is, we have a curve of intersection in F ∩ G away

from ∂M) the proof of Lemma 2.3.2 follows exactly that of Lemma 5.1.8 in. [14]. For an

exchange disc A, the proof follows analogously to the case when the exchange annulus is a

tube.

We again stress the following corollary and proof are as found in [14] with theorem and

lemma references pointing to the respective statements found herein.

Corollary 2.3.1 (Schleimer) All acylidrical surfaces in M are isotopic to fundamental

normal surfaces.

An embedded surface, H in M is acylindrical if H is two-sided, incompressible and M\H

admits no essential annuli.

Proof. Fix an acylindrical surface H. By Thoerem 2.2.3 isotope H to be normal. Pick a

least weight such normal surface, which we will again call H. Suppose that this surface is

not fundamental.

Let H = F +G be a neat Haken decomposition for H. Note that, as H is acylindrical, all

exchange bands must be trivial. If there is an exchange band which is a Mobius strip, then

H is either the boudnary of a solid torus or M is homeomorphic to RP3, both contradictions.

It follows that all exchange bands are annuli. By Lemma 2.3.1 none of these are tents.

If there are any tubes or tunnels then by Lemma 2.3.2 there is a surface H ′ isotopic to H of

lesser weight. But this a contradiction. We conclude that there are no exchange annuli at

all, i.e. H is fundamental.

Finally we have the theorem to be used in Chapter 4 following from the above results,

stated as Corollary 5.2.4 in [14]

Theorem 2.3.2 (Schleimer) Let M be a closed orientable surface bundle which is irre-

ducible. Let T be a 0-efficient triangulation of M . Then M has only finitely many surface

bundle structures with strongly irreducible monodromy and for any of these a fiber can be

found among the fundamental surfaces of T .
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Proof. The argument is identical to that of Corollary 2.3.1 with a slight exception: Note

that M\H is homeomorphic to H × I and all essential annuli are thus vertical. It follows

that no exchange annulus, A can be essential. This is because ∂+A and ∂−A are disjoint

curves on H.

To reiterate, Theorem 2.3.2 applies to closed orientable 3-manifolds, but our needs require

an analogous result where M has nonempty boundary. We are able to extend the result when

M has a single torus boundary component.

Theorem 2.3.3 Let M be a compact orientable irreducible 3-manifold with connected bound-

ary component a torus. Suppose M is a surface bundle. Let T be a 0-efficient triangulation

of M . Then a fiber for the bundle structure can be found among the fundamental surfaces of

T .

We now sketch a proof of Theorem 2.3.3.

Proof. The proof follows that of Theorem 2.3.2. Pick a least weight representative of H.

For H = F + G, any intersection curve of F ∩ G away from the boundary of M gives an

exchange annuli which must not be essential for the same reasons as given above. Then by

Lemma 2.3.2, H is not least weight, a contradiction.

The specification in Theorem 2.3.3 that M has a single boundary component is necessary.

Given multiple boundary components, exchange bands can stretch from one component to

another building an annulus that may be essential.

2.4 Crushing normal surfaces

Crushing a triangulation was first introduced by Jaco and Rubinstein [7]. The technique

initially focused on crushing normal 2-spheres bounding a 3-cell to simplify a triangulation.

This led immediately to the first practical implementation of 3-sphere recognition. Varying

treatments have been described in the proceeding years. Our treatment will follow the
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classic one as first developed by Jaco and Rubinstein. The full implementation works to

crush normal surfaces other than normal 2-spheres. In fact we will be crushing normal tori,

but this still will be a very special case. One that is purposefully built to be incredibly nice.

The following results and discussion closely mirror [7] with only a slight translation to our

notation.

Suppose T is a triangulation of a closed, orientable 3-manifold or a framed triangulation

of the interior a compact, orientable 3-manifold M . Let S be a properly embedded normal

surface in T and let X be the closure of a component of M\S not containing any vertices of

T . The technique of crushing gives sufficient conditions for constructing a nice ideal triangu-

lation of the interior X̊. For our use of crushing, we start with a 3-manifold with boundary,

and crush the boundary link arriving at an ideal triangulation with X̊ homeomorphic to M̊ .

The union of S and T induces a cell decomposition, C on X. Because we required no

vertex of T to be in X, there are induced cells of four types:

Definition 2.4.1 (Jaco-Rubinstein) The four cell types in the induced cell decomposition

C of X are: truncated tetrahedra denoted cells of type I; truncated prisms denoted cells

of type II; triangular prisms denoted cells of type III; quadrilateral prisms denoted cells

of type IV. See Figure 7.

The identifications under crushing are suggested in Figure 7 and for our purposes they

will work exactly as described, but care needs to be taken around the latter three cell types.

Additionally we would like to use some of the language associated to crushing these types.

Definition 2.4.2 (Jaco-Rubinstein) Four sided faces in C that are not in S are called

trapezoidal faces.

The above definition is to avoid confusion with the normal quadrilateral discs.

Definition 2.4.3 (Jaco-Rubinstein) Define the product region of C as

P(C) = {edges in C not in S} ∪ {all trapezoids of C} ∪ {all cells of types III and IV of C}.
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Figure 7: The four cell types before and after crushing [7].

We will later show, with our construction, that P(C) ̸= X and each component Pi of P(C) is

a product I-bundle. Further, set Pi = Ki × [0, 1], where Ki is isomorphic to a subcomplex

S. Let Kϵ
i = Ki×{0}∪{1}. We claim that each Kϵ

i is simply connected (in our special case

specifically).

Definition 2.4.4 (Jaco-Rubinstein) Let P(C) be the product region of C. If for each

component written Pi = Ki × [0, 1] as above, Kϵ
i is simply connected then we say that P(C)

is a trivial product region.

Each cell of type II has two hexagonal faces. It is clear from the cell decomposition of

X that such a hexagonal face must be either identified to a cell of type I or another cell of

type II.

Definition 2.4.5 (Jaco-Rubinstein) Through these identifications of hexagonal faces we

can trace a path of truncated prisms, called a chain. If the chain ends in a cell of type I,

we say the chain terminates; otherwise we say the chain is a cycle.

In our construction, we will see that there are no cycles of truncated prisms.

Collecting our assumptions we have: X ̸= P(C), implying there are cells of type I; P(C)

is a trivial product region; there are no cycles of truncated prisms. The implementation of
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crushing under these assumptions will follow. Let the collection of truncated tetrahedra in

X be given by {∆0, . . . ,∆n−1}. A face, σi of a truncated tetrahedron is either identified to

another truncated tetrahedron or to a hexagonal face of a truncated prism. In the latter case

we follow a finite length chain (in our case of length ≤ 3) of truncated prisms terminating

in a truncated tetrahedron ∆j’s hexagonal face σj. We then have a natural identification

σi → σj. Note, it is possible ∆i = ∆j but this causes no issues as the faces σi, σj must be

distinct. We thus have induced a face pairing on {∆0, . . . ,∆n−1}. The triangular faces of a

type I cell lie in the normal surface S. We identify each such triangular face to a distinct

point, yielding a tetrahedron ∆̃∗
i , denote the face σ̃i to be the face induced from σi. We

then have a collection ∆∗ = {∆̃∗
0, . . . , ∆̃

∗
n−1} with orientation induced by T and a family Φ∗

or orientation reversing homeomorphisms defined by the above induced face pairings. We

therefore have a triangulation T ∗ as described in Section 1.1.

Definition 2.4.6 (Jaco-Rubinstein) The constructed triangulation T ∗ is said to be the

crushing of T along S.

We refer to the function of crushing as the crushing map with the association T → T ∗.

The following theorem from [7] shows the existence of crushing maps.

Theorem 2.4.1 (Jaco-Rubinstein) Suppose T is a triangulation of a closed, orientable

3-manifold or an ideal triangulation of the interior of a compact orientable 3-manifold M .

Suppose S is a normal surface in T and X the closure of a component of the complement

M\S not containing any vertices of T , C the induced cell decomposition of X. Suppose P(C)

is a trivial product region. If X ̸= P(C) and there are no cycles of truncated prisms, then T

can be crushed along S to a triangulation T ∗ of X̊.

In the above case we say that T admits a combinatorial crushing along S. The importance

this construction has for our work lies in the existence of a one-to-one correspondance between

the tetrahedra of T ∗ and the type I cells of CX .
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2.5 Inflations

2.5.1 Frames

We now discuss a simple (if inefficient) method of constructing a frame for a triangulated

torus. We also give further details regarding frames.

To build a frame, we begin with a triangulated torus S with triangulation T . We then

consider the dual 1-skeleton of the triangulation, G. Because G is dual to a triangulation, G

is a trivalent graph. Beginning with a vertex v in G, we perform a breadth first search until

we arrive at a shortest cycle based at v, call it branch B′
0. The breadth first search method

gives an orientation to B′
0, by orienting each edge added away from the previously found

edge. The complement A = S\B′
0 is homeomorphic to an annulus. Let G′ be obtained from

(S,G) by doubling and cutting B′
0, allowing an embedding of G′ in A with the two copies of

B′
0 lying in the boundary components of A. We orient A by the induced orientation of the

two copies of B′
0 making a right hand twist around A, thus there is an upper B′

0
+ and lower

B′
0
− labeling of ∂A and two copies v+ and v− of v.

Because G and thus G′ is trivalent, one of v+, v− will be of index 3, the other index 2.

Assuming v− is of index 2, beginning at v−, move in accordance to the orientation along edge

e′ of B′
0
− to an adjacent vertex and perform a breadth first search to reach v+ while avoiding

B′
0
+. Similarly if v− is of index 3, we perform a breadth first search to find, not v+ but the

adjacent vertex contrary to the orientation of B′
0
+; we then add the edge, e′′ connecting v+,

creating B∗
1 . We always avoid B′

0
− and B′

0
+ except with the previously described edges. We

can thus identify B′
0
− → B′

0
+, thus identifying the endpoints of B′

1
∗ creating a cycle B′

1 in

G sharing a single edge, e the lift of e′ or e′′, with B′
0.

The constructions B′
0, B

′
1 do create a cut set for S, however they are not in the 1-skeleton

of T rather they lie in G. To remedy this we overlay T with B′
0 and B′

1. Viewed as curves in

S, B′
0, B

′
1 meet the triangles of T in normal arcs. We can thus label the triangles of T with

an s for short side at the vertex linked by an arc in B′
i, and similarly label l for the opposing
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Figure 8: Labeling for projection of B′
0.

side (see Figure 8). We can then project B′
i onto the 1-skeleton of T , creating Bi as follows:

1. Using the orientation of B′
i, place a transverse ν vector to B′

i on S.

2. Following the orientation of B′
i, either exclusively in the positive or negative direction

of ν, use the labelings s, l to project with the following instructions:

(a) If the region is labeled s, the arc is identified with the linked vertex.

(b) If the region is labeled l, the arc is identified with the opposite edge.

Notice that in step 2 above, either direction is allowed. The length of the two projections

will differ by the magnitude |s − l|, thus whichever direction has the most s labels should

always be preferred.

We now have branches B0, B1 which will be a frame proper. However, there is still a

question about the intersection after the projection. This question is trivial away from edge

e = B′
0∩B′

1. It is easy to illustrate the projection of, e as seen in Figure 8, but more precisely,

the projection moves full arcs over regions labeled l to edges in T . Because e is only half

a normal arc, and together with B′
0, B

′
1, e creates different respective normal arcs in both

triangles of T it intersects, B′
0, B

′
1 cannot have the same labelings in a respective triangle

near e. Thus B0 ∩ B1 is a single vertex of T , meaning we have a branch point of index 4 in

our frame (which is preferred for our procedure in the next section).

The triangulations of surfaces we apply this technique to arise as vertex-linking surfaces

in ideal triangulations. For an ideal triangulation with n tetrahedra there are at most 2n

ideal vertices. Then for compact 3-manifold with torus boundary components, we can find

the maximal length of such a constructed frame.
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Remark 2.5.1 Let (T ∗,Λ) be a framed triangulation such that every vertex of T ∗ is ideal.

If |T ∗| = n then len(Λ) < 8n and C(Λ) < 8n+ 2n = 10n.

As each edge of ξ is a normal arc in the 2-skeleton of T ∗, there are 6n possible arcs.

Additionally there are n edges at which there could be crossings. The bounds in Remark

2.5.1 are (gross) overestimates if any care is taken choosing a frame. Nevertheless the bounds

are linear in terms of the number of tetrahedra in T ∗.

2.5.2 Inflating

We would like to describe an inverse of the crushing map. To that end an intuitive definition

arises [7].

Definition 2.5.1 (Jaco-Rubinstein) If T ∗ is an ideal triangulation of the interior of a

compact 3-manifold M , an inflation of T ∗ is a minimal vertex triangulation T of M

with normal boundary that admits a combinatorial crushing along ∂M for which the ideal

triangulation obtained by crushing T along ∂M is the ideal triangulation T ∗ of M̊ .

In the above definition, it is meant to inflate all boundary components of T ∗. We can

extend this definition to inflate only one boundary and be compatible with our notion of

framed triangulations.

Definition 2.5.2 Given a triangulation Tξ with underlying topological space X where the

interior of X is homeomorphic to the interior of a compact 3-manifold M . If Tξ has real

boundary, then we say that Tξ is a combinatorial inflation if the boundary of M is normal

in Tξ and Tξ admits a combinatorial crushing along ∂M yielding an ideal triangulation of

the interior of M .

Given a framed triangulation (T ∗,Λ) with ξ ∈ Λ a frame in Svi the vertex-link of ideal

vertex vi, Tξ is the inflation occurring only at the ideal vertex Svi . The inflation triangulation

TΛ will then mean the triangulation obtained by inflating T ∗ at every ideal vertex with

instructions given by Λ.
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When we want to emphasize the underlying framed triangulation T ∗ we say that Tξ is

an inflation of T ∗. Otherwise we will say that Tξ is an inflation triangulation. By the above

definition, given a triangulation Tξ it can be decided if Tξ is a combinatorial inflation. First,

each component of the boundary of a regular neighborhood of ∂M must be a normal surface

(a boundary-link). The admission of a combinatorial crushing can be seen by Proposition

2.5.1:

Proposition 2.5.1 Let Tξ be a combinatorial inflation. For each ideal vertex, vi of Tξ let

Svi represent the vertex-link of vi and for every real boundary component Bj let SBj
represent

the boundary-link of Bj. Let S =
∑

i Svi +
∑

j SBj
be a normal sum. The surfaces {Bj} are

compatible thus S is well defined. Let X be the complement of S not containing any vertex

of Tξ. Every tetrahedron of Tξ contains exactly one cell of the induced cellulation of X.

An inflation of an ideal triangulation T ∗ includes all of the tetrahedra of T ∗ then, as described

below, tetrahedra are added based on information incoded in the frame Λ to arrive at a

minimal vertex triangulation TΛ. To reiterate Definition 2.5.1, TΛ will have normal boundary

that admits a combinatorial crushing, mapping back exactly to T ∗. This relationship between

crushing and inflation is illustrated in Figure 9. Although we will be focusing on inflating

torus boundary, the notion of inflation does extend for any boundary component that is not

a 2-sphere or RP2.

For inflations, a tetrahedron contains exactly one cell of X, the complement of S as in

Proposition 2.5.1. We can then identify tetrahedra of Tξ by the cell type of X found within.

Definition 2.5.3 Let ∆i be a tetrahedra of Tξ, S,X defined as above. If ∆i contains a cell

of type I, we say that ∆i is a type I tetrahedra. If ∆i contains a cell of type II, we say

that ∆i is a type II tetrahedra. If ∆i contains a cell of type III, we say that ∆i is a type

III tetrahedra. If ∆i contains a cell of type IV, we say that ∆i is a type IV tetrahedra.

For each inflated boundary componentBi of Tξ, there are exactly 4g−2 type III tetrahedra

where g is the genus of Bi. The chains of type II tetrahedra following the discussions in
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Figure 9: The inverse relationship between inflating and crushing the boundary [2].

Section 2.3 are at most length 3. We go into further detail regarding the classification of

tetrahedra in inflation triangulations in Chapter 4.

Given the combinatorial definition of inflations we now present a procedure to construct

an inflation given a framed triangulation. Our method for inflating ideal triangulations

follows [7] except in those places where one is free to choose how to triangulate certain 3-

cells as noted in the Introduction. The presentation is stated in a way to be compatible

with REGINA[4]. We take as input an isomorphism signature as recognized by the low

dimensional topology suite REGINA, which perfectly encodes the gluing information of an

ideal triangulation of a cusped 3-manifold, M . See Burton [3] for more information on the

isomorphism signature of a triangulation. We then require the triangulation to be oriented.

We call the oriented triangulation complete with all gluing data T ∗. Where presenting gluing

data, we use the notation from REGINA. We construct the vertex linking normal surface,

L, oriented so that a positive normal vector to L points towards the ideal vertex(s) of M

as in. From the edges of L we construct the frame, ξ as in Subsection 2.6.1. Give the

branches orientations, and order them with a right hand rule such that if the fingers point in

the direction of the orientation or branch 1 and thumb points in the direction of a positive

normal vector to L, then the fingers curl in the direction of the orientation of branch 2.

We can list the edges in order following the orientations of the branch. Each edge, E, in a
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branch represents a normal arc in some pair of faces in T ∗. We choose the tetrahedron, ∆i,

with a left hand rule such that with fingers pointing in the direction of E and thumb in the

direction of a positive normal vector to L, the fingers curl to point at ∆i. We now represent

E by a list [∆i, fk, vj] where ∆i is the corresponding tetrahedron, vj the vertex of ∆i linked

by E, and fk the face of ∆i containing E. Each branch B is represented as a list of edges e

starting at the branchpoint and having order inherited by the branch.

It is here we first diverge (slightly) from the procedure in [7]. Before we begin inflating

T ∗ we need to identify if the frame has any crossings. For each edge class, e in T ∗, give an

orientation to e. Now sweep through the book of faces incident to e. As we sweep we create

a ‘word’ of symbols; if a face contains a normal arc linking to vertex at the positive end of

e add a ‘+’, if a face contains a normal arc linking the negative end of e add a ‘−’. We now

append the word to itself and call the result the edge-word. If no branchpoint of ξ is on e,

then we say that there is a crossing at e if and only if the edge-word contains the pattern

‘+−+’. If e has a branchpoint, then orient e so that the branchpoint is at the positive end

of e. We say that there is a branch crossing at e if the edge-word contains a ‘−’ and does

not contain the pattern ‘−−’.

We can now begin inflating the faces of T ∗. For each edge e in each branch B we have

the corresponding list [∆i, fk, vj], where vj is labeled a, fk labeled (abc). In T ∗ there is a

corresponding tetrahedron ∆′
i such that ∆i is glued to ∆′

i through face fk, using the notation

of REGINA, (∆i)(abc) → (t′i)(a
′b′c′). We now add a new tetrahedron ∆e so that a right

hand twist around edge (01) sweeps from vertex 3 to 2. We remove the gluing (∆i)(abc) →

(∆′
i)(a

′b′c′) and insert ∆e with gluings (∆e)(123) → (∆i)(acb) and (∆e)(023) → (∆′
i)(a

′c′b′).

For those edge classes e in T ∗ that meet ξ yet do not present a crossing, e meets ξ in a

valence 2 vertex, meeting edges ei, ei+1, we simply glue ∆ei ,∆ei+1
with the map (∆ei)(013) →

(∆ei+1
)(012).

For a crossing c, we have four edges ei, ei+1, ej, ej+1 from ξ incident to an edge e in

T ∗. After inflating the faces containing ei, ei+1 we add an edge to the branch containing
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ej, ej+1 → ej, ej′ , ej+1 where ej′ is the normal arc in the face shared by ei, ei+1 linking the

same vertex as linked by ei, ei+1.

At the branchpoint we add tetrahedra ∆b1 ,∆b2 and create a branch pyramid with the

gluing (∆b1(023) → (∆b2)(013). We then make the identifications from the branches. Sup-

pose that e0, ei are the first and last edges of branch 1 respectively and ei+1, en are the first

and last edges of branch 2. We then make the following identifications

(∆e0)(012) → (∆b1)(213)

(∆ei)(013) → (∆b2)(203)

(∆ei+1
)(012) → (∆b2)(213)

(∆en)(013) → (∆b1)(013)

If there is a branch crossing, suppose that edges ej, ej+1 ∈ ξ are the edges contributing the

‘−’ symbols in the edge-word. Then there is a face in the branch pyramid above with normal

arc γ such that adding the arc as ej′ as in the case of a crossing above and inflating the edge

will yield a branch crossing as in [7].

The above construction is specific in the sense that the branchpoint is always assumed to

be of valence 4 as the frame is to be constructed by the means of Subsection 2.5.1. Further

the analysis of edge-words is specific to the boundary link being a torus. That is, for non-

toric boundary components the edge-word analysis must be modified. For the full treatment

of inflating non-toric boundary see [7]. This construction does however have the benefit of

being procedural enough to be given to REGINA to compute.

We notice that we can construct an inflation in linear time:

Remark 2.5.2 Let (T ∗,Λ) be a framed triangulation of M . Suppose |T ∗| = n. Then the

complexity of the inflation |TΛ| = n+ C(Λ) < 11n for sufficiently large n.
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Figure 10: The vertex linking torus and chosen frame of ‘fLAPcbbceeeemkjnb’.

2.5.3 Inflation examples

An annanas [6] refers to a subcomplex of an ideal triangulation consisting of two tetrahedra

identified in such a way to be homeomorphic to T2×[0, 1)\(point). This isolates a single ideal

vertex va where the vertex-link consists of only two normal triangles. An example of such a

triangulation TA, from isomorphism signature ‘fLAPcbbceeeemkjnb’ having five tetrahedra

(gluings shown below) and two ideal vertices, the interesting vertex being 3(2), 4(3) after

orientation (this orientation is given by REGINA’s orient command for reproducibility).

tet (012) (013) (023) (123)

(0) (1)(301) (1)(023) (2)(032) (1)(132)

(1) (2)(123) (0)(120) (0)(013) (0)(132)

(2) (3)(013) (4)(012) (0)(032) (1)(012)

(3) (4)(013) (2)(012) (4)(231) (4)(230)

(4) (2)(013) (3)(012) (3)(312) (3)(302)

Table 1: Ideal triangulation of ‘fLAPcbbceeeemkjnb’ (the annanas being tetrahedra 3 and

4.

We now triangulate the vertex linking torus of 3(2), 4(3) and create the frame ξ as in

Figure 10. The arrows represent the gluings of the torus as well as the orientation of our two

branches. So branch 1 is given by [[3, 3, 2]] and branch 2 by [[3, 1, 2]]. We then analyse the

edge classes that meet ξ, in this case a singular edge labeled E4 in Figure 10. We now inflate
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the faces of TA according to the two edges in ξ creating tetrahedra (5), (6) in REGINA[4]

with gluing data:

tet (012) (013) (023) (123)

(0) (1)(301) (1)(023) (2)(032) (1)(132)

(1) (2)(123) (0)(120) (0)(013) (0)(132)

(2) (3)(013) (4)(012) (0)(032) (1)(012)

(3) (5)(231) (2)(012) (6)(312) (4)(230)

(4) (2)(013) (5)(230) (3)(312) (6)(230)

(5) (4)(301) (3)(201)

(6) (4)(312) (3)(230)

Table 2: Inflating the edges.

Now we create the pyramid over the branchpoint with new tetrahedra ∆b1 ,∆b2 labeled

in Table 3 as (7), (8) with gluing (7)(013) → (8)(023). The final step is to glue tetrahedra

(5), (6) (as they arrive from face inflation) to the pyramid:

tet (012) (013) (023) (123)

(0) (1)(301) (1)(023) (2)(032) (1)(132)

(1) (2)(123) (0)(120) (0)(013) (0)(132)

(2) (3)(013) (4)(012) (0)(032) (1)(012)

(3) (5)(231) (2)(012) (6)(312) (4)(230)

(4) (2)(013) (5)(230) (3)(312) (6)(230)

(5) (7)(123) (8)(103) (4)(301) (3)(201)

(6) (8)(123) (7)(023) (4)(312) (3)(230)

(7) (8)(023) (6)(013) (5)(012)

(8) (5)(103) (7)(013) (6)(012)

Table 3: The inflation of ‘fLAPcbbceeeemkjnb’.

We now have a triangulation with one real boundary component (that we inflated) and
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one ideal vertex. If we gave a frame for the ideal vertex we have a perfect example of a

framed triangulation. The number of tetrahedra in the resulting triangulation is 9, the five

original, one from each frame edge, and two from the branchpoint. This particular inflation

is what we call in Chapter 4 a short inflation, where the number of tetrahedra corresponding

to frame edges is two. We will see this is a best case scenario.

In the next example, we look at the Figure-8 knot complement. We begin by giving

REGINA the isomorphism signature ‘cPcbbbiht’ and orient (in this case it is already ori-

ented) to create our triangluation T .

tet (012) (013) (023) (123)

(0) (1)(203) (1)(103) (1)(102) (1)(132)

(1) (0)(203) (0)(103) (0)(102) (0)(132)

Table 4: Initial ideal triangulation of ‘cPcbbbiht’.

We then triangulate the vertex linking torus and create the frame ξ with branch 1 given

by [[0, 1, 0], [0, 3, 1], [0, 3, 2], [0, 1, 3]] and branch 2 by [[0, 3, 0]]. We then analyze the two edge

classes of T labeled by their ends in Figure 2.1 by E0, E1. With the crossing data in hand we

now inflate along the faces of T according to our five edges in F creating tetrahedra labeled

in REGINA as ∆2,∆3,∆4,∆5,∆6 after which the gluing data is given by:

tet (012) (013) (023) (123)

(0) (6)(123) (1)(103) (5)(231) (1)(132)

(1) (2)(203) (0)(103) (3)(032) (0)(132)

(2) (1)(102) (5)(230)

(3) (1)(032) (4)(302)

(4) (3)(231) (6)(302)

(5) (2)(312) (0)(302)

(6) (4)(231) (0)(012)

Table 5: Inflating the edges.
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The branchpoint lies on edge E0, as there are no crossings at E1 we simply glue ∆e1 → ∆e2

and ∆e3 → ∆e4 as above.

tet (012) (013) (023) (123)

(0) (6)(123) (1)(103) (5)(231) (1)(132)

(1) (2)(203) (0)(103) (3)(032) (0)(132)

(2) (3)(012) (1)(102) (5)(230)

(3) (2)(013) (1)(032) (4)(302)

(4) (5)(012) (3)(231) (6)(302)

(5) (4)(013) (2)(312) (0)(302)

(6) (4)(231) (0)(012)

Table 6: Connecting the branches.

We then build the branch pyramid creating tetrahedra ∆b1 ,∆b2 labeled in REGINA

(7), (8). And as there is a branch crossing of type II we add ∆b′ labeled (9).

tet (012) (013) (023) (123)

(0) (6)(123) (1)(103) (5)(231) (1)(132)

(1) (2)(203) (0)(103) (3)(032) (0)(132)

(2) (3)(012) (1)(102) (5)(230)

(3) (2)(013) (1)(032) (4)(302)

(4) (5)(012) (3)(231) (6)(302)

(5) (4)(013) (2)(312) (0)(302)

(6) (4)(231) (0)(012)

(7) (8)(023)

(8) (9)(321) (7)(013)

(9) (8)(310)

Table 7: Adding the branch pyramid (tets 7 and 8) and crossing.

And finally glue the ∆ei to the inflated pyramid in order the frame edges ei meet edge
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E0:

tet (012) (013) (023) (123)

(0) (6)(123) (1)(103) (5)(231) (1)(132)

(1) (2)(203) (0)(103) (3)(032) (0)(132)

(2) (7)(123) (3)(012) (1)(102) (5)(230)

(3) (2)(013) (9)(012) (1)(032) (4)(302)

(4) (9)(013) (5)(012) (3)(231) (6)(302)

(5) (4)(013) (9)(230) (2)(312) (0)(302)

(6) (8)(123) (7)(023) (4)(231) (0)(012)

(7) (8)(023) (6)(013) (2)(012)

(8) (9)(321) (7)(013) (6)(012)

(9) (3)(013) (4)(012) (5)(301) (8)(310)

Table 8: The inflation of ‘cPcbbbiht’.

This gives us a triangulation of the knot exterior for the figure 8 knot with ten tetrahedra,

two from the original triangulation, one from each of the five edges of F , two for the branch

pyramid and one from the branch crossing. This is a minimal triangulation of the knot

exterior, but is not the unique inflation with ten tetrahedra.
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CHAPTER III

CLOSED NORMAL SURFACES AND INFLATIONS

In this chapter. we discuss the results of Efficient triangulations and boundary slopes

[2], work joint with Jaco and Rubinstein. We extract only those results pertaining to

closed normal surfaces in inflation triangulations. There are further results in [2] regarding

annular-efficiency, end-efficiency and the finite-ness of boundary slopes supporting surfaces

of bounded Euler characteristic. The reader is encouraged to find the paper as cited in the

bibliography.

The following theorems completely describe the relationship between an ideal triangula-

tion and its inflations with regards to closed normal surfaces. It is precisely because of this

concise relationship demonstrated in Theorem 3.0.1 that inflations are used in the algorithms

of [7] to modify a given ideal triangulation into a boundary-efficient triangulation. It is with

this motivation and the same spirit that the work of Chapter 4 was carried out.

Lemma 3.0.1 (B-Jaco-Rubinstein) Let M be a compact 3-manifold with nonempty bound-

ary and T a triangulation of M with normal boundary. An embedded surface in T that

contains all the quad types of a boundary-linking surface has that boundary linking surface

as a component.

Proof. Let B be a boundary linking surface, and let S be an embedded normal surface in T

such that all quad types of B are present in S. Then the vector representatives S⃗, B⃗ are in

the carrier of S. Since B has no more quad types than S, there is a normal surface R such

that kS = nR + mB for some positive integers k, n,m. Because B is a boundary link, we

can move B by a normal isotopy so that it does not intersect R. Thus B is a component of

kS, and therefore a component of S.
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Lemma 3.0.2 (B-Jaco-Rubinstein) Let M be a compact 3-manifold with nonempty bound-

ary, no component of which is a 2-sphere. Suppose (T ∗,Λ) is a framed triangulation of M̊ ,

and Tξ is an inflation of T ∗ along a frame ξ in Λ. The combinatorial crushing map deter-

mined by crushing Tξ along ∂M takes a closed normal surface S in Tξ to a closed normal

surface S∗ in T ∗; furthermore S and S∗ are homeomorphic.

Proof. Let X denote the component of the complement of the boundary linking surfaces

that does not meet ∂M . Then X contains no vertices of Tξ and has a cell-decomposition C.

By construction, this cell-decomposition combinatorially crushes along the boundary-linking

surfaces to the framed triangulation (T ∗,Λ).

Let S be some closed normal surface in Tξ. Because S is closed, we can move S via a

normal isotopy so that it does not intersect the boundary-linking surfaces. Thus S ⊂ X.

If a normal quad or normal triangle of S is in a type I cell of C, the crushing map takes

the type I cell to an ideal tetrahedron of T ∗, and the normal cells of S in the type I cell

are taken to normal cells in T ∗. See Figure 11. If a normal quad or normal triangle of S

is in a type II cell, the crushing map takes the type II cell to a face in T ∗ and the normal

cells are crushed to normal arcs in said face. The normal arcs in the hexagonal faces of the

type II cells corresponds to where S meets these hexagonal faces and are matched under the

crushing map from the various chains of type II cells. Arcs in the trapezoidal faces of the

type II cells crush to points in the edges of the face to which the type II cells crush. See

Figure 11. Lastly the normal cells of S in type III, IV cells of C must normal triangles and

normal quads respectively. The crushing map takes each to a point in an edge of T ∗. It

follows that the image of S under the crushing map is formed from a collection of normal

triangles and normal quads of S that are in type I cells of C, glued by identifications along

their edges and gives a normal surface S∗ in T ∗.

To see that S and S∗ are homeomorphic, we observe that the inverse image (rel. the

crushing map) of a point in the interior of a normal quad or normal triangle in S∗ is a point

in the interior of a normal quad or normal triangle in S. The inverse image of a point in
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Figure 11: (A) Normal discs in a type I cell map to normal discs. (B) Normal discs in a

type II cell map to normal arcs in a face. (C) Normal discs in type III and IV cells map to

points on an edge [2].

an edge of S∗ is either a point in an edge of S or a sequence of arcs in normal quads or

normal triangles of S; due to C giving a combinatorial crushing there are no cycles of type

II cells and so no cycles of cells of S in type II cells. The inverse image of a vertex of S∗ is

a horizontal cross section Ki × t in one of the component product pieces Pi = Ki × I of the

combinatorial product P(CX). Hence Ki is a contractible planar complex. Therefore, the

inverse image of each point of S∗ is a contractible planar complex and so the combinatorial

crushing map gives a cell-like map from S to S∗ and by a 2-dimensional version of [1, 15] S

and S∗ are homeomorphic.

Notice that the argument using the inverse images of points in S∗ also shows that S∗ is

an embedded normal surface. The following theorem and its corollary are the main results

for this chapter. They can be found as Theorem 3.5 and Corollary 3.6 in [2] respectively.
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Theorem 3.0.1 (B-Jaco-Rubinstein) Let M be a compact 3-manifold with nonempty

boundary no component of which is a 2-sphere. Suppose (T ∗,Λ) is a framed triangula-

tion of M̊ , and Tξ is the inflation of T ∗ over some frame in Λ. The combinatorial crushing

map determined by crushing Tξ along ∂M induces a bijection between the closed normal sur-

faces in Tξ and the closed normal surfaces in T ∗; furthermore, corresponding surfaces are

homeomorphic.

Proof. By Lemma 3.0.2 we only need to show that the combinatorial crushing induces a

bijection between the closed normal surfaces of Tξ and of T ∗.

We start with injectivity. Suppose S1 and S2 are distinct closed normal surfaces in Tξ.

Since both are closed, we may assume that they do not meet any boundary-linking surface in

Tξ. Let X denote the component of the complement of the boundary-linking normal surfaces

in Tξ, which does not meet ∂M and let CX denote the cell decomposition on X induced by

Tξ. Then S1 and S2 are distinct normal surfaces in CX and hence, have distinct normal

coordinates. By Lemma 3.0.2 the combinatorial crushing map of Tξ to T ∗ takes S1 and S2 to

closed normal surfaces S∗
1 and S∗

2 , respectively. We must show that S∗
1 and S∗

2 have distinct

normal coordinates.

Case 1 : If S1 and S2 have distinct sets of normal disks in a type I cell of CX , then S∗
1 and

S∗
2 have distinct normal discs in a tetrahedron of T ∗ and we are done.

Case 2 : If S1 and S2 have distinct normal discs in a type II cell, say π, then they have

distinct sets of normal arcs in a hexagonal face of π, which extend to distinct sets of normal

arcs on all hexagonal faces of the type II cells in in the respective chain including π. This

leads to a distinct set of normal discs in a type I cell in which the chain terminates and we

have reduced to Case 1.

Case 3 : If S1 and S2 have a distinct number of normal quads or triangles in a type III or

IV cell, then S1 and S2 meet an entire product component Ki × I in a distinct number of

horizontal slices. The vertical frontier of a product region Ki×I is made of trapezoidal faces

which are paired with trapezoidal faces of type II cells. Thus we have that S1 and S2 must
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meet a type II cell in distinct normal discs reducing to Case 2. Thus we have S∗
1 and S∗

2 are

distinct and the correspondence is injective.

We now consider surjectivity. Suppose that S∗ is a closed normal surface in T ∗. Consider

how S∗ meets a tetrahedron of T ∗. Each tetrahedron of T ∗ is the image of a single type I

cell of CX under the crushing map. So, there is a unique choice of normal cells in these type

I cells mapping to normal cells of S∗. If σ∗ is a face of a tetrahedron of T ∗ and σ∗ meets S∗,

then σ∗ lifts to either a single face between two type I cells of CX , or a chain of type II cells

between two type I cells. If there is a chain of type II cells, then of the three normal arcs in

σ∗, each may correspond to only one normal quad type in any one type II cell in the chain.

This determines a unique way to fill in normal discs extending the normal discs in type I

cells. Finally, for each product component Ki × I there is a unique number of horizontal

slices determined to complete a normal surface S in Tξ that crushes to S∗.

In the supposition of Theorem 3.0.1 we have a framed triangulation with a framing Λ.

For a given ideal triangulation there are many choices of framing giving distinct inflations Tξ.

As the proof does not rely on the choice of Λ, for all inflations of (T ∗,Λ) we have isomorphic

sets of closed normal surfaces which are again isomorphic to the closed normal surfaces of T ∗.

One sees immediately that analogous statements regarding normal surfaces with boundary

can not be true. For instance, let M be a 3-manifold with one boundary component (not

homeomorphic to a 2-sphere), T ∗ an ideal triangulation of M̊ with two frames Λ1,Λ2 such

that the inflations Tξ1 , Tξ2 have a different number of internal edges (occurring when the

lengths of ξ1, ξ2 differ). For each internal edge, there is a normal thin edge-linking once

punctured torus. Further these surfaces do not correspond to any spun-normal surface in

T ∗. What analogies can be made are covered in Chapter 4. We end the chapter with results

regarding efficiency of inflation triangulations.

Corollary 3.0.1 (B-Jaco-Rubinstein) Suppose that M ̸= B3 is a compact, irreducible

and ∂-irreducible 3-manifold with nonempty boundary. Suppose that T ∗ is an ideal triangu-

lation of M̊ with framing Λ, and TΛ is an inflation of T ∗. Then there is a closed normal
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surface in TΛ isotopic into ∂M but not normally isotopic into ∂M if and only if there is a

closed normal surface in T ∗ that is isotopic into a vertex linking surface but is not normally

isotopic into a vertex-linking surface.

Proof. Suppose that S and S∗ are closed normal surfaces in Tξ and T ∗ respectively. Then

the closure of the components of the complement of S have a correspondence under the

combinatorial crushing map and corresponding components are homeomorphic. Further, we

have that the crushing map takes boundary-linking normal surfaces in Tξ to vertex-linking

surfaces in T ∗. Thus, if S is isotopic into ∂M , S is isotopic into a boundary-linking surface.

Hence, S∗ is isotopic to a vertex-linking surface in T ∗. Likewise if S∗ is isotopic to a vertex-

linking surface, through the homeomorphic components of the complements we have S is

isotopic into a boundary-linking surface.

The following proposition does not appear in Efficient triangulations and boundary slopes

though a portion of the proof is very similar to Proposition 4.5 therein.

Proposition 3.0.1 Let M a compact, orientable 3-manifold with boundary, each component

of which is a torus. Suppose that M is irreducible and ∂-irreducible. Let T ∗ be a triangulation

of M̊ with ideal vertices. If T ∗ has a taut angle structure, then for any framing Λ the inflation

Tξ is 1-efficient and hence 0-efficient.

Proof. By Proposition 2.3.1 T ∗ is 1-efficient. That is the only normal tori in T ∗ are vertex-

linking and there are no normal 2-spheres. Then by Corollary 3.0.1 the only normal tori

in Tξ are boundary-linking. It is left to show Tξ is 0-efficient. Suppose that S is a normal

2-sphere is Tξ. By Theorem 3.0.1 there is a corresponding normal 2-sphere S∗ in T ∗ which

is a contradiction to 1-efficiency. Likewise suppose that there is a normal disc D in Tξ that

is not vertex-linking. As M is ∂-irreducible D is isotopic into ∂M . A regular neighborhood

of D ∪ ∂M then has two boundary components, a 2-sphere bounding a 3-cell and a torus T

isotopic into ∂M . As D ∪ M forms a barrier, T shrinks to a normal torus that is isotopic
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into ∂M but not normally isotopic, contradicting Corollary 3.0.1. Thus Tξ is 0-efficient and

1-efficient.

The specificity of Proposition 3.0.1 regarding a taut triangulation is not needed, only

that T ∗ is 1-efficient. This wording makes the proposition more directly applicable in the

next chapter.
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CHAPTER IV

FIBERS AS SPUN NORMAL SURFACES

4.1 2-3 Pachner moves

First we discuss the effects of “2-3” moves, with regards to the boundary linking surfaces.

We will also mention the effects the moves may have on framings.

Definition 4.1.1 Let T be a triangulation with two distinct tetrahedra ∆i,∆j glued together

at face σ. A 2-3 move is an operation on ∆i,∆j at σ removing the face σ and the two

tetrahedra and replacing them three tetrahedra ∆m,∆n,∆l arranged around a new edge having

endpoints the vertices of ∆i,∆j not contained in σ.

The benefits of 2-3 moves are two-fold. First:

Remark 4.1.1 If S (spun-)normalizes in a (ideal) triangulation, then after a 2-3 move, S

(spun-)normalizes in the resulting (ideal) triangulation. Abusing the name of the surface we

call both normalizations of S simply S.

We can easily verify this fact. Suppose that we wish to perform a 2-3 move at a face of

the bipyramid formed by ∆i,∆j. If S meets this bipyramid in a collection of normal discs,

then S meets the resultant triangulation of the bipyramid by ∆m,∆n,∆l in a collection of

normal discs. This is illustrated in Figures 14-13. The second benefit being that the 2-3

move introduces new normal surfaces when compared to the pre-move triangulation. It is this

addition that allows Theorem 3.0.1 and others to work. However it also allows for additional

normal surfaces to arise, including for example a normal 2-sphere. Thus, we cannot say that

after a 2-3 move whether or not the resulting triangulation is 0 or 1-efficient.
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Let L be a link manifold with framed triangulation (T ∗,Λ) and let TΛ be an inflation of

T ∗. As mentioned earlier, there is a natural identification of tetrahedra in T ∗ with tetrahedra

in TΛ. This identification is most easily made through the cell decomposition of TΛ induced

by the union of all vertex linking tori. If |T ∗| = n then there is an ordering of tetrahedra

∆ = {∆i}0≤i<n. Then |TΛ| = n+C where C is the complexity of the inflated frames; we can

order the tetrahedra of TΛ as the union of type I tetrahedra with the appropriate ordering

inherited from T ∗, ∆∗ = {∆i}0≤i<n, and the tetrahedra of types II, III and IV grouped

together giving ∆Λ = {∆i}n≤i<n+C corresponding to the inflated boundary. We see that

∆Λ has a distinct structure. Below the minimal triangulation of a component of ∂M lies

two tetrahedra of type III, we call this the branch pyramid. The tetrahedra of type II are

glued in such a way that in the trapezoidal faces, the normal arcs belonging to the normal

quadrilateral are always glued. The effect is that the boundary linking surface has bands

of quadrilaterals carried by the type II cells and type IV cells; type four cells give a place

for the bands to cross over each other. We will see in Proposition 4.1.1 below that we can

assume there are no crossings, hence we call the collection of type II cells carrying a band

of quadrilaterals itself a band.

In this chapter we concern ourselves only with 2-3 moves taken where ∆i,∆j ∈ ∆Λ. We

say that these 2-3 moves are congruent.

Proposition 4.1.1 Let L be a 3-manifold with nonempty boundary each component of which

is a torus with framed triangulation (T ∗,Λ) and let Tξ be an inflation of T ∗ of a boundary

component of L. A congruent 2-3 move on Tξ produces a triangulation Tξ′ that is a combi-

natorial inflation.

Proof. The proof of Proposition 4.1.1 relies entirely on Figures 14, 13, and 12. To show that

these figures suffice, we notice that in Figure 14 we replace two band tetrahedra with one,

preserving the existence of a band of quadrilaterals; this move reduces the length of a band

by one. In Figure 12, we remove the crossing tetrahedra (with a type IV cell) and replace it

with three band tetrahedra, one in the orientation of the type II tetrahedron we applied the
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Figure 12: A 2-3 move at a crossing at face (c)(023) → (3)(201). Gluings are found in Tables

10 and 11. Shown is the boundary-linking surface.

2-3 move at, and the other two in the orientation of the other crossing quad band; this move

eliminates crossings. Finally, in Figure 13, we remove a type II tetrahedron, shift the branch

and add one type II tetrahedron to the other two bands (recall there can be three branches for

a frame and hence three bands in Tξ). Thus, by tracking the boundary-link after a congruent

2-3 move, the resulting triangulation is a combinatorial inflation. To recover the frame in

the idealtriangulation,T ∗
B , obtained by crushing the boundary, we can mark the normal arcs

in all hexagonal faces carrying a band quadrilateral. It remains to show the effect of a 2-3

move at a site where there is a combinatorial crossing of two frames belonging to different

boundary components. Notice had we inflated both frames, we would have had a site at
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Figure 13: A 2-3 move between a type IV and type II tetrahedra at face (P1)(123) →

(B1)(102). The resulting gluings are given in Figure 12.

which we could perform a 2-3 move illustrated in Figure 12. Thus we expect to add two

edges to our un-inflated frame; these two edges are illustrated by the normal arcs belonging

to the quadrilaterals on faces (c′′)(013) and (c′′′)(012) in Figure 12. Giving the inflation Tξ′

of the framed triangulation (T ∗
B ,Λ) with ξ′ ∈ Λ (T ∗

B is not the framed triangulation T ∗ we

started with).

tet (012) (013) (023) (123)

(0) (1)(013) (2)(012)

(1) (0)(023) (2)(132)

(2) (0)(123) (1)(132)

Table 9: Gluings after a 2-3 move between type II tetrahedra.

As a result of Proposition 4.1.1, we can reduce an inflation of one torus boundary com-

ponent so that it has two bands, each consisting of one type II tetrahedron.
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Figure 14: A 2-3 move at face (0)(012) → (1)(013) yields a single type II tetrahedron, ∆0,

and two type I tetrahedra, ∆1,∆2. The resulting gluings are given in Table 9. Shown is the

boundary-linking surface.

tet (012) (013) (023) (123)

(0) (c)(231)

(1) (c)(012)

(2) (c)(013)

(3) (c)(230)

(c) (1)(013) (2)(012) (3)(201) (0)(301)

Table 10: Gluings before a 2-3 move at crossing.

tet (012) (013) (023) (123)

(0) (c′)(231)

(1) (c′′)(210)

(2) (c′′′)(310)

(c′) (0)(013) (c′′)(013) (c′′′)(012)

(c′′) (1)(310) (c′)(023) (c′′′)(132)

(c′′′) (c′)(123) (2)(210) (c′′)(132)

Table 11: Gluings after a 2-3 move at crossing.

We have then for a torus boundary component a standard picture of a short inflation,

shown in Figure 15.
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tet (012) (013) (023) (123)

(P ′
1) (B′

2)(013) (B′
1)(012))

(B′
1) (P1)(023) (B′

2)(032)

(B′
2) (P ′

1)(013) (B′
1)(032)

Table 12: Gluings after a 2-3 move at a branch.

tet (012) (013) (023) (123)

(P1) (B2)(013) (P2)(013)) (B1)(102)

(P2) (P1)(023)) (B1)(103) (B2)(102)

(B1) (P1)(213) (P2)(203)

(B2) (P2)(213) (P1)(013)

Table 13: Gluings of the standard image of a short inflation.

Definition 4.1.2 A short inflation, is an inflation triangulation having for each branch

of inflated frame ξ a single type II tetrahedron.

4.2 C-position

With this convention of ∆∗ and ∆Λ the normal coordinates in TΛ coming from normal discs

lifting to ∆∗ correspond to normal coordinates in T ∗, likewise for Q-coordinates. That is for

a normal surface S in TΛ, if xi is the Q-coordinate representing a class of normal quads in

a tetrahedron ∆j ∈ ∆∗ there is a corresponding Q-coordinate representing the appropriate

class of normal quads in ∆m ∈ ∆. We have chosen the naming convention so that m = j

and xi is now the appropriate Q-coordinate in T ∗.

In the same vein let ek be an edge in TΛ. Then we rewrite the Q-mathcing equation

corresponding to ek as

3n+3C∑
i=1

ϵk,ixi = L∗(ek) + LΛ(ek) = 0.
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Figure 15: The standard inflated boundary in a short inflation. Gluings are given in Table

13.

Where

L∗(ek) =
∑

xi⊂∆∈∆∗

ϵk,ixi

LΛ(ek) =
∑

yj⊂∆∈∆Λ

ϵk,jyj.

Hence we write the vector representation of S as S⃗Q = (x1, x2, · · · , x3n, y1, · · · , y3C).

Let B be a boundary component of M , and TΛ and inflated triangulation of M . Let

(T ,Λ′) be a triangulation obtained from TΛ by crushing the boundary link of B. We say

that a normal surface S in TΛ is compatible with crushing (wrt B) if there is a (spun-)normal

surface S ′ in T where the Q-coordinates S⃗ ′
Q = (x1, x2, · · · , x3n) where xi is exactly the

entry from S⃗Q = (x1, x2, · · · , x3n, y1, · · · , y3C). We say that S survives crushing if S ′ is

homeomorphic to S.
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Definition 4.2.1 Let Σ be the boundary-linking surface normal isotopic into B. If the

normal surface S does not contain a normal quadrilateral type incompatible with Σ, then S

is said to be in C-position at Σ or simply in C-position when the boundary component is

understood.

Lemma 4.2.1 Let L be a 3-manifold with nonempty boundary, each component of which is a

torus. Let (T ∗,Λ) be a framed triangulation of the interior of L and let TΛ be an inflation of

T ∗. Let S be a normal surface in TΛ, with boundary no component of which is nullhomotopic

in ∂L. Let Σ be some boundary linking torus normal isotopic into boundary component B.

If S is in C-position at Σ, then S survives crushing along Σ.

Proof. Given S a normal surface in TΛ, we write S⃗Q = (x1, x2, · · · , x3n, y1, · · · , y3C). Define

v = (x1, x2, · · · , x3n), we wish to show v is the vector representation of some normal surface

S ′ in T ∗. Let ek be an edge in T ∗ and {êik} the lifts of ek in TΛ w.r.t the crushing map.

The crushing map removes tetrahedra in ∆Λ and identifies faces of ∆i ∈ ∆∗ incident to êik

forming ek. The result on the Q-matching equations of ek is

3n∑
j=1

ϵk,jxj =
∑
êik

L∗(êik) = −
∑
êik

LΛ(êik) (4.2.1)

That is if

∑
êik

LΛ(êik) =
∑
êik

∑
yj⊂∆∈∆Λ

ϵ̂ik,jyj = 0 (4.2.2)

then the conclusion will hold. In the case that ek lifts to a unique edge êk not contained any

∆ ∈ ∆Λ, Equation 4.2.2 holds as each ϵ̂k,j = 0. Otherwise ek lifts to a collection (possibly

unique) êk incident to tetrahedron(a) in ∆Λ. We will show for each appropriate quadrilateral

in each tetrahedra in ∆Λ the net sum for each corresponding ϵ̂ik,j = 0 implying Equation

4.2.2. In Figure 16 we see a compatible normal quadrilateral and the two possible liftings of

ek.
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Figure 16: Two possible liftings of ek in a type II tetrahedra with compatible and incompat-

ible quads.

Figure 17: Compatible and incompatible quad in a type IV tetrahedra.

In a type IV tetrahedron there is in only one possible scenario for the lifts of ek shown

in Figure 17 below.

Finally in a type III tetrahedron there is only one possible case for the lifts of ek shown in

Figure 18. All quadrilateral types are compatible with Σ and the equations are symmetric.

Thus for each tetrahedron in∆Λ corresponding to the inflation of B, a compatible quadri-

lateral type nets zero to the sum

∑
êik

∑
yj⊂∆∈∆Λ

ϵ̂ik,jyj

hence Equation 3.2.1 holds. Thus we have the coordinates of v satisfying the collection of

Q-matching equations in T ∗ implying there is a (spun-)normal surface S ′ with v a Q-vector

representation. We now have S ′ is compatible with crushing, it remains to show S ′ ∼= S.

As the boundary component B has been crushed to a point, we have an ideal vertex and

S ′ spins to B at said ideal vertex. Create S− from S by removing all normal discs that

are incident to B. This leaves the normal discs in ∆∗ and those in ∆Λ at other irrelevant
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Figure 18: Normal quadrilateral in a type III tetrahedra.

boundary components. The normal quads in S− correspond bijectively to the normal quads

of S ′. The collection of normal discs removed from S deformation retract to components

of ∂S, hence we have removed a regular neighborhood of the self same components of ∂S.

Thus S− ∼= S. But S− is precisely what is left over from S after crushing B, thus S− is a

core of S ′. Hence S− ∼= S ′ completing the proof.

Notice that for a closed normal surface S in an inflation Tξ, S is necessarily in C-position,

thus agreeing with the results of Theorem 3.0.1.

4.3 Main Results

Before proving the main theorems, we give some final required lemmas. These lemmas

are included in this section as their own proofs match the flavor of the proofs of the main

theorems.

First we step back to normal arcs on a 2-manifold. The proof of the following lemma

relies solely on knowledge of slopes on a torus.

Lemma 4.3.1 (Torus Arc Lemma) Let T be the triangulation of a the torus T2 consisting

of two triangles. Let s be a connected simple closed curve on T2 that is not nullhomoptic.
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Figure 19: Normal arc classes on the minimal vertex triangulation of the torus.

Then s normalizes such that one of the pairs (α, α′), (β, β′), (γ, γ′) of normal arcs as shown

in Figure 19 is (0, 0).

Proof. A slope on T2 can be identified by a triplet (p, q, r) representing intersection numbers

of the curve s with the edges A,B,C in Figure 19. Since s is assumed to not be nullhomotopic

we can assume up to a homeomorphisim of T2 to itself that

p < q < r

r = p+ q

gcd(p, q) = 1.

The last line of the above equation follows from s being connected. If all three pairs are

nonzero this gcd argument is violated. It is possible that two pairs, say (β, β′) = (γ, γ′) =

(0, 0). Then (α, α′) = (1, 1), also following from the gcd agrument.

It follows from Lemma 4.3.1 that a normal curve in the two triangle triangulation of T2

can be determined by a triplet (α, β, γ) where one of α, β, γ must be zero if the curve is

not boundary linking. If one of p, q, r is zero we must have a triplet of the form (1, 1, 0)

up to permutation and the curve is homotopic to an edge A,B,C. With respect to the

standard representation of a short inflation, we will always mean edge C to be the edge in

the boundary of the branch pyramid having order 2, while edges A,B are the same up to

symmetry.
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Our final lemma is the first to yield a surface in C-position. It is in this same vein of

observing the quadrilaterals in a short inflation in C-position that we will also prove the

main theorems.

Lemma 4.3.2 Let L be a 3-manifold with nonempty boundary, each component of which is

a torus. Let T ∗ be an ideal triangulation of the interior of L. Let Λ be a collection of frames

such that for some frame ξ ∈ Λ at boundary cusp B, the inflation Tξ is a short inflation. Let

S be a normal surface (perhaps spinning around boundary components other than B) that

meets B in a single simple closed curve that is not nullhomotopic. If S has an incompatible

quad type with respect to the boundary link Σ in one band tetrahedra at B, then it must have

an incompatible quad type in both bands.

Proof. The following is a proof by contradiction. Using the naming conventions of Figure

15, assume that there is an incompatible quad type in B2. First we assume that B1 has no

normal disk types incident to B the component of ∂L. Then by the intersection numbers

on the triangulation of the boundary torus, the boundary slope of S, s, must be homotopic

to either A or B, and we can determine there is no combination of normal discs in the

complex P1 ∪ P2 that is carried by this slope as shown in Figure 20 (the arcs on faces

(P1)(013) and (P2)(123) are determined by the quad in B2). Now we assume B1 has some

normal triangle types (possibly both) incident to the boundary B. If there are no normal

quadrilaterals in P1 or P2, we have arcs of type γ′, α′, and β, contradicting the Torus Arc

Lemma. Without loss of generality, assume the normal quadrilateral type in B2 separates

edges (03) and (12). Let yB2 represent the number of quadrilaterals of this type. Let xi,Bj

represent the number of normal triangles in Bj linking vertex i. Finally let xθ, yθ represent

the number of normal triangles and normal quadrilaterals respectively having normal arc

type θ ∈ {α, α′, β, β′, γ, γ′} as implied by Figures 15 and 19. We then have the following

system of linear equations arising from the gluings of normal discs incident to the boundary
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B:

x0,B2 + yB2 = xγ′ + yα′

x1,B2 + yB2 = xγ + yα

x1,B2 = xα′ + yγ′

x0,B2 = xα + yγ

x0,B1 = xβ + yγ

x0,B1 = xγ′ + yβ′

x1,B1 = xγ + yβ

x1,B1 = xβ′ + yγ′

xα + yβ = xβ′ + yα′

xβ + yα = xα′ + yβ′

(4.3.1)

The Torus Arc Lemma gives three additional equations:

xα + yα = xα′ + yα′

xβ + yβ = xβ′ + yβ′

xγ + yγ = xγ′ + yγ′

(4.3.2)

The assumption that the boundary curve of S is connected and not nullhomotopic means

that exactly one of the equations from 4.3.2 is equal to zero. As the solution each of xi, yj

must be nonnegative integers, this implies for example xα = yα = xα′ = yα′ = 0. Under

these constraints (even ignoring the Quadrilateral Condition on P1,P2) the system given in

4.3.1 has a solution (even amongst the Reals) only when yB2 = 0, a contradiction.

The statement of Lemma 4.3.2 has been made cumbersome to deal with the extra com-

plexity added by referring to manifolds with multiple torus boundary components. When

the boundary is connected, the statement is much clearer and follows as a corollary:

55



Figure 20: The boundary slope carrying no solution of normal discs when constrained by

the normal arcs on (P1)(013) and (P2)(012).

Corollary 4.3.1 Let K be a 3-manifold with nonempty connected boundary a torus. Let

T ∗ be an ideal triangulation of the interior of K. Let ξ be a frame such that Tξ is a short

inflation. Let S be a normal surface that meets B in a single simple closed curve. If for one

of the bands of Tξ, S has no incompatible quads, then S is in C-position.

We now have the tools to prove the first of the main results. We deal specifically with

embedded surfaces in which ∂S is connected.

Theorem 4.3.1 Given a 3-manifold M with connected boundary a torus, let S be a properly

embedded incompressible, ∂-incompressible surface in M with one boundary component. If

∂S is not nullhomotopic, then there exists an ideal triangulation of the interior of M in

which S spun-normalizes.

Proof. Let a framed triangulation (T ∗, ξ) of the interior of M be given. We first construct

the inflation Tξ. By Proposition 4.1.1 we may assume that Tξ is a short inflation. As

S is incompressible and ∂-incompressible, by Theorem 2.2.3 it normalizes in Tξ. If the
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Figure 21: The normal triangle in P2 is forced by the normal arc in (B1)(013). Thus γ
′, β, α′

are present.

normalization of S is in C-position we are done. Otherwise by Corollary 4.3.1 we can

assume for both bands in the short inflation Tξ, S have an incompatible quad type. Up to

symmetry we can assume the incompatible quad type found in B1 separates the edges (02)

and (13) and the icompatible quad type in B2 separates the edges (03) and (12). Referring

to the naming convention in Figure 19 we break the proof into cases based on which of the

arcs α, β, γ carry normal quads in the branch pyramid (due to reflection symmetry, this will

cover the possibilities for α′, β′, γ′ carrying normal quads) and finally the case when there

are no normal quads in the branch pyramid.

Case 1 : We first consider the case when the normal arc class β carries normal quadrilaterals.

Due to rotational symmetry this also covers the case of α carrying normal quads. We further

break this case into subcases based on which of α′, β′, γ′ carry quads in P2.

Subcase 1 : When β and α′ carry normal quad types, the incompatible quad type in B1

marks P2 in such a way that forces a normal triangle with arc γ′. This contradicts the Torus

Arc Lemma. This is illustrated in Figure 21.
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Subcase 2 : When β and γ′ carry normal quad types, we have markings on B1,B2 that

must be pushed to the boundary as normal triangle types which then mark all side faces of

P1,P2 with normal arcs. As a normal quad type has been selected for P1,P2, these normal

arcs must carry normal triangles having arc types of α′. This contradicts the Torus Arc

Lemma.

Subcase 3 : For the final subcase we will include both when β′ carries a normal quad

and when there are no normal quad types in P2. An example is shown in Figure 22. It is

important to note the number of quads s in B1 must be greater than the number r in P1,

otherwise the push off of the boundary curve into the normal discs would not be compact, a

contradiction. Both instances can give an admissible normal surface and both are handled

the same way. Dependent on the incompatible quad type found in B1 and B2, a 2-3 move

between B1 and P1 or P2, or between B2 and P2 or P1 will (using Figure 13 as guide) make

an additional type II tetrahedron in the band corresponding to B2 with an incompatible

quad and a new band without an incompatible quad. An example is shown in Figure 22.

Now by Proposition 4.1.1 we can perform a 2-3 move between the type II tetrahedra in the

band of length 2 to arrive at a short inflation. As the 2-3 move was local, the other band

still has no incompatible quads, so by Corollary 4.3.1 S must be in C-position.

tet (012) (013) (023) (123)

(P1) (B2)(013) (B′
1)(012) (P ′

2)(023)

(P ′
2) (B′

1)(013) (P1)(123) (B′
2)(102)

(B′
1) (P1)(023) (P ′

2)(013) (B′
2)(132)

(B2) (B2′)(013) (P1)(013)

(B′
2) (P ′

2)(213) (B2)(012) (B′
1)(132)

Table 14: Gluings after the 2-3 move in Figure 22

Case 2 : We now consider when γ carries a normal quad. When β′ or α′ also carries a quad,

we reduce the problem to Case 1: Subcase 2. We then only need to consider when γ′ carries
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Figure 22: A 2-3 at (B1)(013) → (P2)(203). The gluings on the left are given in Table 13

and those on the right given in Table 14

a normal quad type or when P2 has no normal quad types.

Subcase 1 : When γ′ carries a normal quad we can again have an admissible normal

surface. This however is more constrained than Case 1: Subcase 3. By adding any normal

triangle type incident to the boundary in either P1 or P2, we mark additional edges on B1 or

B2 that push up to arcs β, α′ contradicting the Torus Arc Lemma. Thus we can only have the

normal arcs γ, γ′ present on the boundary and we have exactly the configuration shown in

Figure 23. All 2-3 moves at the branch pyramid yield the same result up to symmetry (shown

in Figure 23, the new band B′
1 has no incompatible quadrilateral type and the additional

type II tet added to the other band has an incompatible quad type; Thus after a 2-3 move

shortening the band of length 2, by Corollary 4.3.1 S is in C-position.

Subcase 2 : When P2 has no normal quad types, we again arrive at a contradiction

by pushing down the normal arc and building necessary normal triangles incident to the

boundary we require normal arcs α and β′ contradicting the Torus Arc Lemma.

Case 3 : Finally we must treat the case in which the branch pyramid has no normal quad
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Figure 23: Arcs γ and γ′ carrying normal quads and the 2-3 move to collect normal quads

in band 2. The gluings after the 2-3 move are given in Table 15.

tet (012) (013) (023) (123)

(P ′
1) (B′

2)(013) (B′
1)(012) (P2)(023)

(P2) (B′
1)(013) (P ′

1)(123) (B2)(102)

(B′
1) (P1)(023) (P2)(013) (B′

2)(032)

(B2) (P2)(213) (B′
2)(012)

(B′
2) (P ′

1)(013) (B2)(013) (B′
1)(032)

Table 15: Gluings after the 2-3 move in Figure 23

types present. By the Torus Arc Lemma, we must have either the arcs γ, γ′ or the collection

α, β′, α′, β. Both instances give admissible normal surface solutions and the process works

exactly as illustrated in Figure 22. The appropriate 2-3 move collects all incompatible quads

in a single band and after shortening we apply Corollary 4.3.1. Thus we complete the

proof.

To summarize the observations found in the subcases of the previous proof, in a short

inflation, only one pair of (α, α′), (β, β′), (γ, γ′) can carry normal quads for the surface S to
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be a properly embedded normal surface. There is an alternate proof of Theorem 4.3.1 using

the gluing equations coming from the subcomplex ∆ξ similiar to that found in the proof of

Lemma 4.3.2. The cases in Theorem 4.3.1 are analogous to the various constraints placed

by the Quadrilateral Condition. It is necessary to include condition that the boundary of

M be homeomorphic to a torus as opposed to allowing Klein bottles. In particular Lemma

4.3.2 does not hold.

We now build upon Theorem 4.3.1 to produce an algorithm to build an ideal triangulation

in which a fiber of a bundle structure spun-normalizes. This algorithm yields a bounded

subset of the solution space of normal surfaces in which to find said spun-normal fiber.

Theorem 4.3.2 Let K be a compact, irreducible, ∂-irreducible, atoroidal 3-manifold with

nonempty, connected boundary a torus. Further suppose that K is an orientable S1-bundle

over an essential fiber F . There is an algorithm to build an ideal triangulation of the interior

of K in which F spun-normalizes. The algorithm finds the spun-normal surface.

Proof. Let K be a compact, irreducible, ∂-irreducible, atoroidal 3-manifold with nonempty,

connected boundary a torus. By Theorem 2.3.1 (Lackenby) there is an algorithm to con-

struct a taut ideal triangulation, T ∗, of K. Our algorithm takes as input this taut ideal

triangulation, T ∗. By Proposition 2.3.1, T ∗ is 1-efficient. Suppose that |T ∗| = n. We can

construct a frame ξ for T ∗. By Proposition 3.0.1 the inflation triangulation Tξ is 0-efficient.

By Theorem 2.3.3 (Schleimer) a fiber F for the bundle structure can be found amongst

the fundamental surfaces of Tξ. If F is in C-position we are done by Lemma 4.2.1 (due to

the correspondence of Q-coordinates). Suppose F is not in C-position, and let µ = ||F⃗Q||

be the number of normal quadrilaterals of F . By Theorem 4.3.1 and Remark 2.5.1 we

can modify Tξ to a short inflation triangulation T ′
ξ in which F ′ ∼= F is in C-position with

#(2-3 moves) ≤ len(ξ) + 4 < 8n+4. While it is not necessary that T ′
ξ be 0-efficient, we can

find F ′ within the bounds ||F⃗ ′
Q|| < µ+ µ(8n+ 4) = µ(8n+ 5). Let T C be the ideal triangu-

lation obtained from T ′
ξ by crushing ∂K. As F ′ is in C-position, F spun-normalizes in T C .
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It follows the spun-normalization can be found within the same bounds ||F⃗Q|| < µ(8n + 5)

in T C .

Theorem 4.3.1 answers Cooper, Tillmann, and Worden affirmatively. The following the-

orems, extending Theorem 4.3.1 to manifolds with multiple torus boundary components,

give partial answers to a question of Walsh. We note that Walsh poses the question of spun-

normalizing fibers for a fixed ideal triangulation. We show that there is an ideal triangulation

in which the fiber can be realized as a spun-normal surface.

Theorem 4.3.3 Given a 3-manifold M with boundary each component of which is a torus.

Let S be a properly embedded incompressible, ∂-incompressible surface in M with non empty

boundary, such that for each component Bi of ∂M , ∂S ∩ Bi is a single curve which is not

nullhomotopic in Bi. Then there exists an ideal triangulation of the interior of M in which

S spun-normalizes.

Proof. Suppose that M has n boundary components. Let {Bi}i≤n be an ordering of the

boundary components of M . Let (T ∗,Λ) be a framed triangulation of M , each vertex of

which is ideal. Let TΛ be the inflation of T ∗ with respect to Λ. By Theorem 2.2.3 (Haken), S

is realized as a normal surface S ′ in TΛ. Consider a component B0 of ∂M , Σ0 the boundary

link of B0. We have two cases.

Case 1 : If S ′ is in C-position with respect to Σ0, crush TΛ along Σ0 to the framed

triangulation (T ∗
0 ,Λ0). There is then a spun-normal representative S0 of S that spins around

the cusp at the ideal vertex representing B0 in T ∗
0 .

Case 2 : If S ′ is not in C-position with respect to Σ0, crush TΛ to T ′
Λ at all boundary

components other than B0. By Proposition 4.1.1 we can shorten T ′
Λ to a short inflation at

B0. Applying the techniques of Theorem 4.3.1, we can arrive at an inflation triangulation in

which F is in C-position with respect to B0. Crush T ′
Λ along the normalization of a pushoff

of B0. Inflate all boundary components other than B0, call this the framed triangulation

(T ∗
0 ,Λ0). Again there is a spun-normal representative S0 of S that spins around the cusp at
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the ideal vertex represent B0 in T ∗
0 .

Notice in the above cases, T ∗
0 has only one ideal vertex. Iterating this process over each

boundary component Bi, if Si−1 is in C-position with respect to Σi, crush T ∗
i−1 along Σi.

Otherwise crush all boundary components other than Bi to (T ∗
i−1)

′. As in Case 2 we can

shorten (T ∗
i−1)

′ to a short inflation at Bi. We can again arrive at an inflation triangulation in

which Si−1 is in C-position with respect to Bi. Crush (T ∗
i−1)

′ along the normalization of Bi

and inflate all boundary components Bj with j > i. Call the resulting framed triangulation

(T ∗
i ,Λi). There is a spun-normal representative Si of S that spins around the cusp at the

ideal vertex representing Bi in T ∗
i . By Remark 4.1.1 Si also spins around each cusp at the

ideal vertices representing {Bj} for j < i.

Finally we have the ideal triangulation T ∗
n in which S is realized as the spun-normal

surface Sn, completing the proof.

We now present an extension to Theorem 4.3.3, analogous to Theorem 4.3.2, giving an

algorithm to build an ideal triangulation for a 3-manifold with multiple torus boundary

components in which a fiber of a bundle structure spun-normalizes. As with in Theorem

4.3.2, the algorithm finds the spun-normal surface amongst the solutions to the Q-matching

equations.

Theorem 4.3.4 Let L be a compact, irreducible, ∂-irreducible, atoroidal 3-manifold with

nonempty boundary, each component of which is a torus. Further suppose that L is an

orientable S1-bundle over an essential fiber F . There is an algorithm to build an ideal

triangulation of the interior of L in which F spun-normalizes. The algorithm finds the

spun-normal surface.

Proof. Let L be a compact, irreducible, ∂-irreducible, atoroidal 3-manifold with nonempty

boundary, each component of which is a torus. The algorithm takes as input an ideal

triangulation, T ∗, of the interior of L. Suppose that |T ∗| = n. We can construct a framing

Λ for T ∗. By Theorem 2.2.3 (Haken) a fiber F for the bundle structure must be amongst
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the normal surfaces of TΛ. We can find F by enumerating the fundamental surfaces of TΛ. If

F is not found amongst the fundamental surfaces, we take finite linear combinations of non-

negative integral multiples of fundamental surfaces until F is identified. If F is in C-position,

by Lemma 4.2.1 (due to the correspondence of Q-coordinates), we are done. Suppose F is

not in C-position, and let µ = ||F⃗Q|| be the number of normal quadrilaterals of F . By

Theorem 4.3.3 and Remark 2.5.1, we can modify TΛ to a short inflation triangulation T ′
Λ

in which F ′ ∼= F is in C-position with #(2-3 moves) ≤ len(Λ) + 4m < 8n + 4m, where m

is the number of boundary components of L. We can find F ′ within the bounds ||F⃗ ′
Q|| <

µ + µ(8n + 4m) = µ(8n + 4m + 1). Let T C be the ideal triangulation obtained from T ′
Λ by

crushing ∂L, and FC the image of F ′ under the crushing map. As F ′ is in C-position, FC

spun-normalizes in T C .

As F ′ can be found within the bounds ||F⃗ ′
Q|| < µ+µ(8n+4m) = µ(8n+4m+1), it follows

that the spun-normalization can be found within the same bounds ||F⃗Q|| < µ(8n+4m+1) in

T C . It was important in the proof of Theorem 4.3.3 to crush all boundary components other

than the one being shortened. This is due to the potential of crossings at branch points.

Proposition 4.1.1 does not handle such cases.

Theorem 2.3.1 due to Lackenby [13] has an associated algorithm that begins with a taut

sutured manifold hierarchy [13] on L (or K) and constructs a taut ideal triangulation. Our

algorithms in both Theorems 4.3.2 and 4.3.4 can take as input this taut ideal triangulation.

This appears as a natural starting position for our use. However, one can start with any

1-efficient ideal triangulation. We also point out that our final ideal triangulation T C is

not necessarily 1-efficient. Hence, recent results of Kang and Rubinstein [11] relating to

spun-normalization of fibers are not applicable here. Further, our methods produce an ideal

triangulation in which a surface spun-normalizes. The work of Kang and Rubinstein produces

spun-normal surfaces given conditions on a triangulation.

The primary difference between the algorithms found in Theorems 4.3.2 and 4.3.4, is the

use of Theorem 2.3.3 (Schleimer). Because we can identify the fiber amongst the fundamental
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surfaces when K has one torus boundary component, starting from a 1-efficient ideal trian-

gulation we are able to build T C and identify the spun-normalization of F in bounded time.

In contrast, we currently can only say the fiber exists as a normal surface in the triangulation

TΛ, and can give no bounds on the time it takes to find this normal representative. That is,

the algorithm presented in Theorem 4.3.4 comes with no time complexity bounds. We do

still include efficiency in the proof of Theorem 4.3.4, as this seems the natural requirement

leading to the identification of FC in the shortest time.
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[17] W. v. Haken, Über das homöomorphieproblem der 3-mannigfaltigkeiten. i, Mathematis-

che Zeitschrift 80 (1961), 89–120.

[18] Genevieve S. Walsh, Incompressible surfaces and spunnormal form, Geometriae Dedi-

cata 151 (2011), 221–231.

67



VITA

Birch Bryant

Candidate for the Degree of

Doctor of Philosophy

Dissertation: FIBERS AS NORMAL AND SPUN-NORMAL SURFACES IN LINK MAN-
IFOLDS

Major Field: Mathematics

Biographical:

Education:

Completed the requirements for the Doctor of Philosophy in Mathematics at Okla-
homa State University, Stillwater, Oklahoma in May, 2023.

Completed the requirements for the Bachelor of Science in Mathematics at South-
eastern Oklahoma State University, Durant, Oklahoma in 2016.

Professional Memberships:

American Mathematical Society


