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Abstract of the disserta on 

A geoscien st yearns to learn more about the subsurface and one way of characterizing 

the subsurface is through ac ve seismic methods which u lize a local source to ini ate a strong 

waveform (e.g., explosives, vibroseis, sledgehammer). However, ac ve sources are generally 

costly to operate, and logis cally complicated since, depending on loca on, they require 

approval from an authorizing body, and are very intrusive and disturbing to the environment. 

Alterna vely, passive seismic methods are preferred due to their low cost, ease of instrument 

deployment, and low environmental impact. Passive seismic is not without its caveats. Passive 

seismic relies on the surrounding ambient seismic noise for measurements, which can be 

influenced by local noise sources (e.g., vehicles, strong wind), effec vely lowering the signal-to-

noise ra o. I will present an array of exci ng results from low-amplitude seismic recordings and 

novel approaches to measuring them to understand the seismic noise environment and 

microseismic events, which have implica ons for the field of seismology. I will show an 

improved analysis of seismogenic poten al from magnitude calibra on, an interpreted resonant 

subsurface boundary determined from resonance frequencies, and a correla on of wind speed 

and seismic recordings. I use an induced seismicity catalog recorded by two nearby boreholes to 

apply a novel workflow of waveform correla on to 2074 earthquakes for magnitude calibra on 

and subsequent evalua on of seismogenic poten al. Waveform correla on reveals sta s cally 

significant differences in b-value and seismogenic poten al a er calibra on and suggests a 

dependence of the earthquake sta s cs upon their op mal or subop mal orienta on to the 

local stress field. In another study, we u lize distributed acous c sensing (DAS) recording, which 
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allows for a high density of receivers with minimal field deployment. The technique leverages 

novel sensors to measure backsca er from a telecommunica on dark fiber, resul ng in a me 

series of strain along the cable, effec vely 100s to 1000s of “seismometers.” Comparison 

between this novel sensing device and tradi onal sensors reveals the higher noise level of DAS. 

However, the higher spa al resolu on of DAS allows for stacking measurements along channels 

and iden fying noise sources that were previously not easily recognizable in tradi onal arrays. 

Recorded measurements are o en subject to increased background noise in an urban or noisy 

environment. From seismic recordings across Oklahoma from dense arrays, I examine the 

effects of wind and wind turbines on recorded seismic noise via single-sta on site response 

techniques to determine site resonance frequencies and noise source origin.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

Chapter 1: 

Introduc on 
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1.1 Introduc on 

In our ever-changing landscape and growing society, it is not uncommon for the general 

popula on to go about their day woefully unaware of the destruc ve force beneath their feet. 

We live in a world that is constantly shi ing and in a state of flux. However, every so o en we 

are reminded of the energy that can be released in the form of an earthquake. Early civiliza on 

socie es postulated the origin of earthquakes (Agnew et al., 2002) such as Aristotle (330BCE) 

a ributed earthquakes to winds blowing in unground caverns (Missiakoulis, 2008), and early 

Japan gave credit to a large subterranean serpent-like ca ish for earthquakes (Severn, 2012). 

Advancements in seismological thinking did not occur un l the Lisbon earthquake of 1755 due 

to its destruc veness and evidence for causing mo on at great distances (Frechet 2008). Public 

interest in destruc ve earthquakes shown in Tan and Maharjan 2018 showed an increased 

interest in earthquakes a er large events and correlated public interest to the destruc veness 

of the earthquake.   

It is commonly known that the destruc veness of earthquakes is directly linked to their 

magnitude (Gutenberg and Richter, 1942) and site-specific shaking intensity (Hartzell, 1992). 

Magnitude es mates have evolved with various techniques in calcula on such as the least 

square technique for es ma ng b-value and maximum likelihood. These varia ons have led to 

prolonged debates about a preferred method for es ma ons. More importantly, the con nued 

interest in geoscience research has aided in the development of recording for longer con nuous 

dura ons for background noise and the detec on of smaller earthquakes. Con nuous ambient 

noise analysis has had a resurgence in recent decades, thanks mainly in part to advancements in 

commercial and personal compu ng where larger datasets may be processed at the same me. 
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One advantage of con nuous data is that mul ple datasets can be compared amongst each 

other. Large dataset recordings from regional networks have helped in monitoring the 

earthquake ac vity in Oklahoma where seismicity increased steadily in the earlier part of the 

millennium due to large-scale fluid injec on as inves gated in many studies (i.e. Rashidi and 

Ghassemieh, 2023). However, current regional networks s ll lack the spa al density to capture 

intersta on lateral heterogenei es in the subsurface. High-density local deployments of seismic 

sensors can resolve the smaller-scale lateral varia ons in the subsurface that regional networks 

cannot capture. 

The overall mo va on for this disserta on is to explore new ways to inves gate ground 

mo on intensity. This is done broadly by first examining the earthquake magnitudes during a 

hydraulic fracturing survey and then with passive seismic techniques to inves gate site response 

and the poten al for ground mo on amplifica on. I present the applica ons of passive seismic 

techniques at local deployments for high-spa al-resolu on surveys of the shallow subsurface. 

Apart from the overall mo va on, each sec on will have its mo va on which will be 

introduced.  The individual sec on mo va on includes the – (i) improvement of magnitudes, (ii) 

resonance of a deep intracon nental basin, and (iii) local region noise sources’ impact on 

acous c seismic recordings.  

1.2 Overview of the Disserta on 

In Chapter 2, I inves gate a classical dataset, the Co on Valley hydraulic fracturing 

survey in Carthage, Texas. I will use waveform correla on to improve magnitudes calibra on 

and apply newly calibrated magnitudes to quan fy the seismogenic poten al. Cross-correla on 
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is used to iden fy individual fracturing clusters for a b-value analysis and subsequently 

seismogenic poten al. I show improvement in magnitude calibra on and seismogenic poten al 

results show a be er correla on with the different fracture sets. 

In Chapter 3, I use data collected from 3 component nodal sensors co-located with 

distributed acous c sensing using a dark fiber array to compare and evaluate the local site 

condi ons for resonance at a high spa al resolu on (kilometer scale). 1-month of con nuous 

passive acous c seismic data was collected. I then compare the results with a velocity model to 

es mate geologic basin structures which show shallow and coherent resonance layers within 

the subsurface.  

In Chapter 4, I collect 1-month of con nuous passive acous c seismic data from two 

loca ons in Northern Oklahoma and compare them with wind speed data. Ambient noise 

processing techniques are used to iden fy and analyze the dominant local noise source, wind 

turbines. I compare the results from the two arrays under similar wind speed condi ons, but 

one lacking in wind turbines. 

1.3 Structure of the Disserta on 

This disserta on consists of 3 chapters, one of which is forma ed in prepara on to be 

submi ed for publishing, and the other two are in prepara on for submission. The chapters are 

as follows: 

 Chapter 2: Waveform correla on improves magnitude calibra on during hydraulic 

fracturing. 

 In prepara on for resubmission to the Bulle n of Seismological Society of America as: 
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Ng,R.,Chen,X.,Nakata,N.,Walter,J.I., (2023). Waveform correla on improves magnitude 

calibra on during hydraulic fracturing. Bulle n of the Seismological Society of America 

 Chapter 3: Site response of ambient seismic noise of Northern Oklahoma from the 

perspec ve of Nodal and DAS arrays. 

 Chapter 4: Wind and wind turbine influence on measurements of seismic noise.  
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2.1 Abstract 

Microseismic monitoring is an important technique to obtain detailed knowledge of in-

situ fracture size and orienta on during ac ve well s mula on to maximize fluid flow 

throughout the rock volume and op mize produc on. Furthermore, considering that the 

frequency of earthquake magnitudes empirically follows a power law (i.e. Gutenberg-Richter), 

the accuracy of microseismic event magnitude distribu ons is poten ally crucial for seismic risk 

management. In this study, we analyze microseismicity observed during four hydraulic fracture 

stages of the legacy Co on Valley experiment in 1997 at the Carthage gas field of East Texas, 

where fractures with significant moment release were ac vated at the base of the sand-shale 

Upper Co on Valley forma on. We perform waveform cross-correla on to detect similar event 

clusters and calibrate event magnitudes based on rela ve amplitudes within those clusters from 

waveform cross-correla on. The calibrated magnitudes significantly reduce the devia ons 

between magnitude differences and rela ve amplitudes of event pairs. This subsequently 

reduces the magnitude differences between clusters located at different depths. Reduc on in 

magnitude differences between clusters suggests that a enua on-related biases could be 

effec vely mi gated with waveform correla on. The maximum likelihood method is applied to 

understand the magnitude frequency distribu ons and quan fy the seismogenic index of the 

geographic clusters. Sta s cal analyses a er magnitude calibra on suggest that fractures that 

are more favorably oriented for shear failure have lower b-value and higher seismogenic index, 

perhaps sugges ng a higher poten al for larger earthquakes, rather than fractures subparallel 

to maximum horizontal principal stress orienta on. 
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2.2 Introduc on 

Microseismicity monitoring has been a useful technique in quality control of the 

opera on during hydraulic fracturing in oil and gas explora on (Albright et al., 1982). Source 

loca on, fracture orienta on, and fracture growth may be determined from microseismic 

monitoring to improve and calibrate treatment designs, as well as iden fy poten al placement 

for addi onal hydraulic fracturing or wastewater injec on wells within the desired unit. In some 

cases, it may be essen al to maximize economical produc on by ensuring the rock volume is 

thoroughly s mulated and creates high permeability for long-term hydrocarbon recovery by 

examining such factors as proper fracture orienta on, size, fractured volume, and hydraulic 

communica on. 

Hydraulic fracturing creates fractures and expands high-permeability fracture pathways for 

effec ve and efficient hydrocarbon extrac on. This process is completed in stages because of 

the large amount of energy required to pump fluids and materials (e.g., sand proppant to hold 

fractures open) for genera ng fractures and is only prac cal to frack for a limited amount of 

me in each segment of the leased rock volume. The behavior of the seismicity that is induced 

during well s mula on is spa ally and temporally controlled by stress relaxa on and pore 

pressure fluctua ons ini ated at the injec on loca on (Shapiro et al., 1997). Hydraulic fractures 

are created through a tensile opening in the direc on of the least principal stress, and the 

expected hydraulic fracture usually aligns with the direc on of maximum principal stress 

(Hubbert and Willis, 1957). While the tensile opening mode is expected for hydraulic fractures, 

shear slip has o en been observed for microseismic events and larger events, which has been 

interpreted to represent an interac on between hydraulic fractures and natural fractures or 
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other sedimentary structures such as bedding planes (Maxwell and Cipolla, 2011; Rutledge et 

al., 2004; Hubbert and Willis, 1957). 

Analyses of characteris cs of event occurrence may provide a glimpse into the state of 

subsurface stress. The power-law distribu on of earthquake occurrence in equa on 2.1, 

commonly referred to as the Gutenberg-Richter (GR) rela onship (Gutenberg and Richter, 

1942), is described as  

log 𝑁 = 𝑎 − 𝑏𝑀, 

(2.1) 

where 𝑁 is the cumula ve number of earthquakes above 𝑀 magnitude, 𝑎 is the 

intercept, and 𝑏 is the slope of the power-law distribu on. However, not all events are detected 

by a network of seismometers. The magnitude of completeness (𝑀 ) describes the magnitude 

threshold, above which all events should be completely detected by the network. The b-value 

has been observed to vary across different tectonic zones, stress regimes, earthquake causal 

condi ons, and even temporally for the same study region (e.g., Ghosh et al., 2008). It has been 

suggested that it may represent a rela ve indicator of stress distribu ons across fault zones 

(Bachmann et al., 2014; Schorlemmer et al., 2005). Bachmann et al. (2012) found that the b-

value decreases with distance from the injec on point, which could indicate reduced fault 

strength due to higher pore pressure near the injec on source. The rela onship between 

injected volume and magnitude evolu on can help us forecast induced seismicity and evaluate 

a poten al maximum magnitude for a fault zone (McGarr, 2014). Shapiro et al. (2010) 

developed the seismogenic index (SI) model to explain the rela onship between injected 
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volume and event number for different magnitudes, where regions with higher seismogenic 

index have a higher probability of larger earthquakes with the same injected volume. The 

seismogenic index is a sta s cal approach to examine the occurrence probability of fluid 

injec on-inducing earthquakes at a given injec on site (Shapiro et al., 2010). 

In this study, we analyze a legacy dataset for four hydraulic fracturing stages of the ght-

gas reservoir within the sand-shale Co on Valley forma on in Carthage, Texas (May – July 1997) 

(Walker, 1997). High-resolu on reloca on and focal mechanism analyses by Rutledge et al. 

(2004) revealed different sets of fractures within the base of the Upper Co on Valley forma on. 

Hydraulic treatments with anomalously high moment releases and a high number of events 

occurred within several dense clusters, which delineate fault bends or jogs that are more 

favorably oriented for shear failure. Our aim in this study is to inves gate whether sta s cal 

analyses can reveal different characteris cs of fractures. We begin by introducing the dataset, 

then perform magnitude calibra on using waveform cross-correla on analysis, followed by a 

detailed magnitude-frequency distribu on and seismogenic index analyses. Finally, we discuss 

the improvements before and a er magnitude calibra ons and the implica ons of the improved 

results.  

2.2.1 Experiment data  

The hydraulic fracturing data used in our study was recorded in 1997 during injec ons at 

depths of 2757-2838 meters and 2615-2696 meters in the Co on Valley Forma on. The 

hydraulic fracturing experiment induced more than 4,000 microseismic events over six 

treatments, which were recorded by two borehole monitoring arrays (Walker, 1997; Walker et 
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al., 1998). Increasing the number of monitoring borehole arrays from one to two in the 

experiment for some treatments improved the ability to dis nguish between coherent noise 

and microseismic events, in addi on to overcoming low signal-to-noise ra o and low resolu on, 

as described by Zinno et al. (1998). 

For our analysis, we only use the available treatments A, B, C, and E as represented in 

Figure 2.1, and follow the same naming conven on as Rutledge et al. (2004), which include 

2547 events from the original Walker (1997) catalog (Table 2.1). Among these events, 2074 has 

available waveforms. The distribu on of catalog events with complete waveforms is shown in 

Figure 2.2, which shows an evenly sampled subset of the original catalog. The rela onship 

between the 2074 microseismic events and injec on rate with me is shown in Figure 2.3 for 

the four treatments analyzed here. 

We observe a good correla on between the onset me of the injec on rate and the 

origin me of the induced seismic events. In treatments A, B, and C the abrupt decrease in 

injec on rate also correlated with the seismicity rate drop (Figure 2.3). However, in treatment E 

there is a rela ve anomalous increase in seismicity rate with injec on. Rutledge et al., (2004) 

a ribute anomalous seismic ac vity to pressurized fracture offsets or orienta on changes that 

concentrated stress and fluid choke off. Typical right lateral movement places the le -stepping 

jog of treatment E in compression, but a right step is hypothesized by Rutledge et al., (2004) as 

a pressure sink which delayed seismicity. Therefore, seismicity increased even a er shut-in, 

which is an industry term that denotes no further fluids were entering or exi ng the wellhead. 
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In this analysis, we only use the 2074 cataloged events with complete waveforms that 

clear P and S-wave arrivals from four stages analyzed in Rutledge and Urbancic, (1999). Seismic 

moments are calculated by Rutledge et al. (2004) using methods described in Andrews (1986), 

which averages the values obtained from P and S phase recordings from several sta ons. The 

seismic moments from Rutledge et al. (2004) used in this study are mostly between the narrow 

range of 0.4 µNm – 8 µNm. The majority of the relocated microseismic events form clouds that 

delineate fractures aligned with the maximum horizontal stress (SH-max at N80E), especially 

during treatments A and C (Figure 2.1). During treatments B and E, microseismicity occurred in 

several clusters we iden fied using cross-correla on with some having anomalous orienta ons 

that are off-axis to fractures aligned with SH-max (Rutledge et al., 2004). As seen in Figure 2.1, 

most sta ons to event hypocenters distances are at similar equidistant ranges between 1km -

2km and at a similar depth. 

2.3 Methods 

In this study, we perform magnitude calibra on based on the rela ve amplitude 

(Cleveland and Ammon, 2015) measured from waveform cross-correla on following Chen et al. 

(2018). Then, we perform magnitude-frequency distribu on analysis to obtain the b-value for 

each treatment with the maximum-likelihood method (referred to as “MLE”) and compare 

results using both the original catalog magnitudes and the calibrated magnitudes. To be er 

understand the improvement of calibrated magnitudes, we compare the frequency-magnitude 

distribu ons (FMD) of the different treatments and subclusters of treatment B. Finally, we link 

magnitudes with injected volume to obtain seismogenic indexes for each treatment following 

Shapiro et al. (2010) using corresponding b-values obtained from MLE. For both the b-value and 
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seismogenic index, we assess the uncertainty through bootstrap resampling. The rela ve 

varia ons of b-value and seismogenic index among treatments and subclusters are interpreted 

as related to the rela ve stress state of different fractures via Mohr circle analysis.  

2.3.1 Magnitude calibra on using cross-correla on 

Precise magnitude es mates may be acquired from the cross-correla on of two 

earthquake waveforms with well-constrained reference event magnitudes (Gibbons and 

Ringdal, 2006; Schaff and Richards, 2014) and can be applied to earthquake clusters with similar 

faul ng geometry and depth (Cleveland and Ammon, 2015). Magnitude calibra on can reduce 

the sca ering between the rela ve amplitude ra os and magnitude differences of event pairs, 

which is important to improve sta s cal analyses related to magnitude distribu ons (Chen et 

al., 2018; Shelly et al., 2015, 2016). 

The dataset includes rotated three-component microseismic event waveforms at each 

geophone with sampling rates of 1000 Hz. For each treatment, only a subset of waveforms is 

available for the cataloged events from Rutledge et al. (2004) (Table 2.1). We first apply a short-

term average/long-term average (STA/LTA) picker using the GISMO (Reyes and West, 2011) 

package to obtain P-wave arrival me on the ver cal channel and S-wave arrival me on 

horizontal and transverse channels. Waveforms with no detectable picks are not used in the 

following analysis. Examina on of waveforms suggests that the transverse component has the 

highest signal-to-noise ra o. Therefore, we use the S-wave from the transverse component for 

magnitude calibra on. 
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We then measure rela ve amplitude using waveform cross-correla on (CC) with the 

following steps for each treatment: 

1. A detailed inspec on shows that many traces have a low signal-to-noise. To improve our 

data visualiza on, we apply a Bu erworth bandpass between 20 Hz and 150 Hz where 

observed amplitudes for microseismic events are the largest. 

2. Extract a 70 ms window around the ini al arrival of the microseismic event (10 ms 

before and 60 ms a er). 

3. Cross-correlate each event pair at each sta on and measure the rela ve amplitude ra o 

using principal component analysis for waveform pairs with a CC coefficient greater than 

0.6 (Wold et al., 1987). An example of rela ve amplitude measurement is shown in 

Figure 2.4. The waveform pairs are me-shi ed based on the lag me, and the rela ve 

amplitude ra o is calculated by taking the maximum eigenvalue of the covariance of the 

shi ed waveform pairs. Only event pairs with amplitude ra o measurements from more 

than 5 receivers are used for magnitude calibra on. 

4. Invert for new magnitudes based on amplitude ra os and cataloged seismic moment 

(Chen et al., 2018; Cleveland and Ammon, 2015; Schaff and Richards, 2014; Shelly et al., 

2015, 2016) based on equa on 2.2, 

⎣
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where the logarithmic amplitude ra o (𝐴𝑅 , ) between events j and k is the averaged amplitude 

ra o from all receivers with CC > 0.6. In the last row of equa on 2.2, N is the total number of 

recorded earthquakes and ∑ log 𝑀  is the summa on of the total seismic moment for 

events included in the calibra on from the ini al catalog, which constrains the summa on of 

the calibrated seismic moment. The calibrated magnitudes are obtained via the moment 

magnitude rela onship (equa on 2.3) from Kanamori, (1977) where the moment (𝑀 ) in dyne-

cm is converted to N-m to obtain moment magnitude (𝑀 ): 

𝑀 = (log 𝑀 − 9.1)/1.5  

(2.3) 

2.3.2 b-value 

Similar to Ibanez et al. (2012), we determine the Mc by maximum curvature method 

(MAXC) (Wyss et al., 2000) from an open-source z-map Matlab toolbox (Wiemer and Malone, 

2001). MAXC determines Mc by the maximum value of the first deriva ve of the frequency-

magnitude curve, the point of maximum curvature. However, a caveat in MAXC is the tendency 

to underes mate Mc in data as explained by Mignan and Woessner (2012). Using events with 

magnitudes above the es mated Mc, the b-values from the Gutenberg-Richter rela onship 

(equa on 2.1) are obtained using the maximum-likelihood method (MLE) (Wiemer and Malone, 

2001).  The es mated b-value is the logarithmic of 𝑒/(𝑀 − 𝑀 ) using the average 

magnitude (𝑀 ) and minimum magnitude (𝑀 ) (both before and a er magnitude 

calibra on) following equa on 2.4 (Aki, 1965): 
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𝑏 = log 𝑒/(𝑀 − 𝑀 )   

(2.4) 

While MLE provides reliable es mates of b-values when the FMD follows a GR 

rela onship (Milojevic, 2010), there is the possibility that MLE tends to bias lower magnitude 

events when Mc is too low and will result in a poor fit to the GR rela onship (Ibanez et al., 

2012). 

To assess the uncertainty in b-values due to possible biases in Mc, we perform bootstrap 

resampling with 100 resampled datasets for each treatment. For each resampled dataset, a new 

Mc and b-value are es mated. Generally, b-values are expected to be ∼1 in large sample sizes 

(Frohlich and Davis, 1993), which is typically observed for tectonic earthquakes (Kagan, 1999), 

but seismicity associated with fluid injec on (Bachmann et al., 2011, 2012, 2014; Lei et al., 

2008) or magma intrusion (Wiemer and McNu , 1997) o en have b-values greater than 1. 

Differences in styles of faul ng also produce varying b-values (Schorlemmer et al., 2005). The 

spa otemporal varia ons of the b-value o en indicate stress distribu ons, with lower b-values 

indica ng higher differen al stress (Schorlemmer et al., 2005) or associated with fault ac va on 

(Shelly et al., 2016; Chen et al., 2018).  

2.3.3 Mohr circle construc on 

A Mohr circle can be used to visualize the subcluster analysis of the treatments with 

clusters not orientated along to SHmax. Developed by Mohr (1900) to inves gate fluid pressure 

and stress-controlling fracture opening, Mohr diagrams provide a useful tool for visualiza on of 

the rela onship between the normal stress ac ng on a fracture surface and the shear stress 
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required to overcome the fric on angle. We can describe the normal stress (𝜎 ) using the 

maximum (𝜎 ) and minimum (𝜎 ) principal stress, and (θ) the angle between the fracture plane 

and maximum principal stress. Mohr-Coulomb failure criterion (Heyman et al., 1971) included a 

failure envelope that is tangen al to the Mohr circle where the apex between the failure 

envelope and the Mohr circle is (𝜎 , 𝜏 ). Normal stress is determined geometrically in equa on 

2.5 using the horizontal component of the Mohr circle normal stress ( cos 2𝜃) and the 

principal average stress ( ). 

𝜎 = + cos 2𝜃  
(2.5) 

Mohr-Coulomb failure criterion failure envelope describes the stress state at failure 

when the ac ng shear stress overcomes the internal fric on angle (φ) and normal stress. The 

geometric rela onship (equa on 2.6) of the shear stress at failure (𝜏 ) to the normal stress and 

material cohesion (c) is given by 

𝜏 = 𝑐 + 𝜎 tan 𝜑  

(2.6) 

 Since we are only interested in the rela ve varia on of the fracture stress states on the 

Mohr circle, we only calculate a schema c Mohr diagram with normalized stress amplitude and 

assume a fric on coefficient of 0.75 for the Coulomb failure envelope.  

2.3.4 Seismogenic Index 

Developed by Shapiro et al. (2010), the seismogenic index ∑ is a derived parameter 

based on the fluid-injec on rate and seismicity rate of induced earthquakes that quan fies the 
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seismotectonic state at an injec on site, originally empirically derived from geothermal case 

studies. The seismogenic index is theore cally independent of injec on me and any injec on 

characteris cs (Shapiro et al., 2010), where the larger the index the larger the probability of a 

significant magnitude event. Shapiro et al. (2010) es mated the seismogenic index for a specific 

injec on loca on using the following: 

∑(𝑡) = log 𝑁 (𝑡) − log 𝑄 (𝑡) + 𝑏𝑀  

(2.7) 

where N is the number of induced events with magnitude ≥ M   larger than (M) as a func on of 

injec on me (t) and the cumula ve injec on fluid volume (𝑄 ). Figure 2.3 depicts the 

rela onship between the injec on rate, me, magnitude, and the number of events which is 

used to determine the seismogenic index values in equa on 2.7. We use the previously 

obtained b-values and Mc to calculate the seismogenic index at each me step of 0.5 hours and 

assume the average as the final index for each treatment. For each treatment, the seismogenic 

index is es mated using the catalog both before and a er magnitude calibra on.  

The uncertainty of the seismogenic index is es mated with the same 100-resampled 

dataset for each treatment used for b-value uncertainty es ma on. Both b-value and 

seismogenic index uncertain es are quan fied with probability density func ons based on 

results from these resampled datasets, where bootstrapped probability histogram results (h) 

are from the ra o of the cumula ve (n) observa ons within a given bin size (k) at (i) bins shown 

in equa on 2.8. 
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ℎ =
∑

  

(2.8) 

2.4 Results 

Out of the 2074 cataloged events with waveforms (see Table 2.1), we obtain calibrated 

magnitudes for 1963 events. We compare the rela onship between magnitude difference and 

measured amplitude ra o to examine the improvement of calibrated magnitude. Then, we 

compare the distribu on for the b-value and seismogenic index from the bootstrap resampling 

to discuss the geomechanical implica ons of those measurements.  

2.4.1 Calibrated magnitude 

For each stage, we use heat maps to examine the rela onship between the logarithm of 

amplitude ra o measured from the waveform and the rela ve magnitude between available 

event pairs. The image resolu on of the heat map is determined by the total number of events 

in each bin of amplitude ra o and rela ve magnitude. Figure 2.5 clearly shows magnitude 

calibra on significantly reduces the sca er for all treatments converging to a slope of 1.5 

between amplitude ra o and rela ve magnitude as expected from equa on 2.3 (the moment 

magnitude rela onship). 

Before magnitude calibra on, different treatments exhibit diverse behaviors. Both 

treatments A and B were conducted in treatment well 21-10 and monitored by wells 21-09 and 

22-09. Both exhibited highly sca ered distribu ons between amplitude ra o and rela ve 

magnitude before magnitude calibra on. Several sub-parallel linear trends can be iden fied 
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with an approximate slope of 1.5 matching that of the inversion in equa on 2.3. These sub-

parallel groups and increased sca er in the uncalibrated data could be due to a enua on from 

different ray paths (see Figure 2.1). Treatments C and E were conducted in treatment well 21-09 

and recorded by well 22-09. These two treatments exhibit ghter distribu ons compared to 

treatments A and B before magnitude calibra on, which could be due to narrower depth 

distribu on since ray paths to the monitoring well are similar (see Figure 2.1). To be er 

understand the cause of the sca ered magnitudes in the original catalog, we examine the FMD 

for similar event clusters during treatment B. We group events based on waveform similarity by 

defining similar event clusters with minimum CC of 0.6 from at least 8 sta ons. Figure 2.6 shows 

events in each cluster confined within similar depth and spa al loca on, which is consistent 

with grouping based on loca on and polarity in Rutledge et al. (2004). These clusters have large 

magnitude differences before calibra on, which decrease a er calibra on (Figure 2.6b and 

2.6d). The measured amplitude ra os are based on filtered waveforms between 20 and 150 Hz, 

which is well below the expected corner frequency for the magnitude range (Urbancic et al., 

1996). By measuring the amplitude ra o between event pairs at similar loca ons, the 

a enua on from the source region and path can be effec vely canceled out as seen in Figure 

2.5.  

2.4.2 Frequency-Magnitude Distribu on and the Seismogenic Index 

Figure 2.7 shows the FMDs of the four treatments before and a er magnitude 

calibra on. Table 2.2 provides the resultant seismogenic index before and a er magnitude 

calibra on as well as the b-value and Mc for each treatment. For all treatments, there exists 

some devia on from the GR rela onship at higher magnitudes. Devia ons from the GR 
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rela onship have been observed for fluid-induced seismicity (Skoumal et al., 2015). This could 

explain the large difference in b-value between the MLE and least squares (LST) methods (see 

supplementary materials). The b-values with the MLE method for treatments A, B, and C are 

systema cally lower than the b-value es mates from Dinske et al., (2013). However, those b-

values from Dinske et al. (2013) agree well with our LST b-values (see supplementary materials), 

sugges ng that the choice of b-value methods strongly influences the results when the FMD 

strongly deviates from the GR rela onship (Skoumal et al., 2015). Despite the large differences 

in absolute b-values, the rela ve differences between b-values using the same method remain 

consistent. Both Dinske et al., (2013) and the MLE es mates here, found treatment B has a 

slightly lower b-value than treatment A and a much higher b-value for treatment C. 

The probability density func ons for the b-value and seismogenic index from the four 

treatments are compared in detail in Figure 2.8. The uncertainty for treatment C is significantly 

reduced a er magnitude calibra on, sugges ng magnitude calibra on improves the stability of 

subsequent calcula ons. The rela ve distribu on of the seismogenic index is consistent before 

and a er calibra on: treatment E has the highest value, followed by treatment B, A, and C. The 

rela ve distribu on of the b-value shows some differences. Before magnitude calibra on, 

treatment B has the lowest b-value, followed by treatments E, A, and C, while a er calibra on, 

treatment E stands out with the lowest b-value, followed by treatments B, A, and C. Treatments 

B and A consistently have similar b-values, and treatment C always has the highest b-value. Both 

the seismogenic index and b-value can be associated with seismic hazard: a higher seismogenic 

index and lower b-value indicate a sta s cal popula on of earthquakes with a distribu on 

composed of larger events within the range of magnitudes observed. In this respect, the rela ve 
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ranking of b-value and seismogenic index a er magnitude calibra on consistently indicates the 

highest seismogenic poten al for treatment E, demonstra ng that magnitude calibra on 

perhaps provides a more coherent hazard assessment using different parameters. 

Figure 2.6 shows that treatment B can be further separated into similar event clusters. A 

principal-component-analysis method is used to es mate the geometry of each cluster 

following Qin et al. (2022). Among all clusters, clusters 1 and 4 show a rela vely larger angle, 

20°, from SHmax orienta on, while the other clusters have a similar orienta on to SHmax. We 

then further assess the distribu on of b-value and seismogenic index for events within clusters 

1 and 4 (referred to as “C1-4”) and the rest of the events (referred to as “others”). C1-4 consists 

of about 40% of all events in treatment B. Figure 2.8 shows that C1-4 has a lower b-value and a 

higher seismogenic index than “others”. The overall b-value of treatment B lies between C1-4 

and “others”. The events that are not within C1-4 have a similar seismogenic index compared to 

treatment A both before and a er magnitude calibra on. This suggests different seismogenic 

poten als for fractures of different orienta ons during the same treatment.  

2.5 Discussion 

Within the scope of this study, we determine seismogenic index values from calibrated 

magnitudes based on a limited range of data. The magnitude calibra on using the full waveform 

provides significantly improved magnitudes, though the sta s cal analysis of the b-value and 

seismogenic index shows some differences. Here, we further discuss the influence of magnitude 

calibra on on sta s cal analyses and the possible physical processes that cause the differences 

among different treatments and different fractures. 
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2.5.1 Factors influencing magnitude measurement 

The significant improvement in agreement between amplitude ra o and magnitude 

difference in Figure 2.5 suggests that analysis of the full waveform is needed for microseismic 

events. Catalog magnitude es ma ons were calculated based on seismic moments measured 

by Urbancic et al. (1996) and the moment magnitude rela onship in equa on 2.3 (Rutledge et 

al., 2004). Influences such as a enua on (quality factor Q) may impact seismic moment 

measurements. Lower quality factors Q (high a enua on) were shown to result in a smaller 

seismic moment and magnitude es ma on than similar earthquakes in higher Q regions (Chung 

and Bernreuter, 1981). Events with highly similar waveforms typically share similar ray paths and 

are closely located (Kane et al., 2013), so the amplitude ra os from full waveform are less 

influenced by a enua on. In other words, a enua on from the source region and path are 

effec vely canceled out. Mi ga ng the influence of a enua on on the original magnitude 

es ma ons leads to significantly improved magnitude es ma ons. Figure 2.6 clearly shows that 

magnitude calibra on reduces the systema c magnitude differences among clusters located at 

different depths. Figure 2.5 shows that the original magnitude difference exhibits a very 

sca ered rela onship with the amplitude ra os. The calibrated magnitudes mi gate the 

a enua on problem and exhibit be er agreement with the amplitude ra os in Figure 2.5. 

Cleveland and Ammon (2015) used a wide aperture of seismic networks for events used 

in amplitude ra o calcula ons. The borehole arrays used here have rela vely limited azimuthal 

coverage and could lead to issues in radia on pa erns. Figure 2.6 shows that events of similar 

waveforms are grouped into compact clusters, which agree with clusters of similar focal 

mechanism solu ons in Rutledge et al. (2004). This suggests that when measuring the ra o 
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between events of similar waveforms, the influence of radia on pa ern would be rela vely 

small, as long as the events have similar focal mechanisms or faul ng styles. 

2.5.2 Uncertain es in sta s cal measurement 

The b-value tends to be approximately ~1 for tectonic earthquakes (Schorlemmer et al., 

2005) and nearly ~1 for intercon nental regions such as Oklahoma (e.g., Walter et al., 2017). 

However, for induced seismicity that is triggered or associated with hydraulic fracturing, the b-

value tends to be higher, which represents a greater quan ty of lower magnitude events to 

larger magnitude events when compared to regions where the b-value tends to be 

approximately 1 (Eaton et al., 2014). Corrected magnitudes that are included in b-value 

es ma on are important when characterizing induced seismicity since there is o en a smaller 

dynamic range of magnitude units as compared to natural earthquakes because the catalogs are 

typically smaller. A rela vely higher b-value implies lower distribu on of larger events, which 

has been interpreted as being consistent with a conceptual model of rela vely lower fault 

strength (Schorlemmer et al., 2005). In such a model, asperi es remain small. On the other 

hand, event number and magnitude may depend on the injec on pressure and, within the 

seismogenic index model, is propor onal to injec on volume (Dinske and Shapiro, 2016; 

Shapiro et al., 2007, 2010). 

The seismogenic index es ma on requires an es ma on of the b-value (equa on 2.5), 

so uncertain es in the b-value would influence seismogenic index es ma ons. The 

uncertain es are assessed via the bootstrap resampling method, and a new Mc is es mated for 

each resampled dataset. This could mi gate the poten al bias due to possible underes ma on 



26 
 

of Mc using the MAXC method (Mignan and Woessner, 2012). Some mes, the FMD can deviate 

from the GR rela onship (Skoumal et al., 2015), especially for earthquake catalogs that consist 

of small numbers of events. Figure 2.7 shows the devia on from the GR rela onship at larger 

magnitudes. This leads to some discrepancies between different methods, for example, LST 

tends to produce steep slopes that fit larger magnitude bins be er. However, LST tends to have 

larger uncertain es using the bootstrap resampling method, and the probability density 

func on features bi-modal distribu on for treatment B (Figure S2.1 in the supplemental 

material). Despite the larger uncertainty, LST shows some consistent rela ve distribu ons with 

MLE es mates: treatment E has a lower b-value and higher seismogenic index than “others” 

(non C1-4) from treatment B, followed by treatment A and C. The rela ve distribu on between 

the whole treatment B (and C1-4) and treatment E shows some inconsistency due to the bi-

modal distribu on of b-values from the bootstrap resampling, sugges ng a possible instability 

with the least-square approach, or some differences in the seismogenic poten al of different 

sets of fractures during treatment B. 

2.5.3 Difference in the seismogenic poten al for different sets of fractures 

The natural fracture system in the Co on Valley forma on is dominated by fractures 

with similar orienta ons to SHmax (Rutledge and Phillips, 2003). As suggested for other areas, 

the shear failure microseismic events represent an interac on between hydraulic fracture and 

natural fracture system (Maxwell and Cipolla, 2011). Treatments A and C involve fractures of 

similar orienta on to SHmax at shallower depth, while treatments B and E involved fractures at 

deeper depth with some anomalous fractures that are more favorably oriented rela ve to the 
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stress field (Rutledge et al., 2004) (Figures 2.2). Rutledge et al. (2004) interpreted those 

anomalous clusters as fault jogs or bends that represent areas of stress concentra on. 

During treatment E, over 80% of events occurred along the fracture that is significantly 

devia ng from SHmax, therefore, we do not separately analyze different event groups in 

treatment E. During treatment B, about 40% of events occurred within clusters 1 and 4 that 

strongly deviate from SHmax, so we separately analyzed different event groups (Figure 2.8 and 

Figure S2.1). The b-value results from MLE show that C1-4 during treatment B behave more 

similarly to treatment E, while the other events occurring fractures aligned with Shmax behave 

more similarly to treatment A (Figure 2.8). 

Based on the rela ve angle between the orienta on of different fracture sets and the 

SHmax, Figure 2.9 displays these fracture sets on a schema c Mohr diagram and a Coulomb 

failure envelope with a fric on coefficient of 0.75. The largest cluster in treatment E and C1-4 in 

treatment B are more op mally oriented than the other fractures. The evolu on of cumula ve 

seismic moment shows that the seismic moment release during treatment B is mainly released 

during C1-4 as exhibited in Figure 2.10. The la er part of C1-4 and treatment E have much 

higher moment release per event than other treatments or event groups. Thus, the improved 

sta s cal measurements using MLE with calibrated magnitude are consistent with the 

geomechanical proper es of different sets of fractures and agree with observed seismic 

moment release history. These observa ons are consistent with larger regional scale-induced 

seismicity observa ons in Oklahoma related to wastewater disposal. Qin et al. (2019) found that 

larger magnitude events in Oklahoma mostly occur along op mally orientated faults, and that 

non-op mally oriented faults with lower shear stress mostly occur within spa al areas of the 
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highest injec on volume of wastewater. The consistency between large-scale observa ons and 

local fracture network suggests self-similarity, in that similar physical processes control the 

seismogenic processes at vastly different spa al scales. 

In addi on to fracture orienta ons, depth may play a role in affec ng different sta s cs 

for different fracture sets. Clusters 1-4 during treatment B and treatment E are located at 

rela vely deeper depths. This observa on is generally in agreement with the decrease in the b-

value with depth observed in Gerstenberger et al. (2001), likely related to increased stress with 

deeper depth. It may be possible the fracture orienta on is depth related. However, Seeburger 

and Zoback (1982) examined 10 wells drilled in grani c rock from 3 different loca ons in North 

America and showed li le depth dependence with fracture orienta on in well fracture analysis. 

2.6 Conclusion 

We propose an addi on to the sta s cal analysis workflow of microseismic events by 

incorpora ng a magnitude calibra on method based on waveform cross-correla on. Using the 

available ini al catalog magnitudes and magnitude calibra on method, we obtain new 

magnitudes from microseismic events during four fracture stages. The observed improvement 

in magnitude difference and amplitude ra os a er calibra on suggests the new magnitudes are 

more accurate. With the new magnitudes, systema c differences in the b-value and 

seismogenic index between different fracture sets are revealed. Clusters 1 and 4 during 

treatment B and treatment E are more op mally oriented based on the schema c Mohr 

diagram, which is consistent with higher seismogenic poten al based on the lower b-value and 

higher seismogenic index from the improved sta s cal analysis. Possible real- me 
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implementa on of magnitude calibra on can significantly improve microseismicity monitoring 

and assessment of seismic hazards and help iden fica on of slip ac va on of op mally oriented 

fractures. However, addi onal comparisons will be required for other hydraulic fracturing 

datasets to support our findings. 

2.7 Data and Resources 

All data used in this paper came from Rutledge et al. (2004) listed in the references. We 

processed the SAC format waveform data using GISMO a MATLAB toolbox for seismic data 

analysis (Thompson, 2017). Supplementary materials contain an analysis of the dataset results 

affected by varying the number of input events. 
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2.10 Tables and Cap ons 

Treatment No. of 
raw 
catalog 
events 

No. of 
common 
events 

Final 
catalog 
events 

P1S3 (A) 628 628 596 
P1S2 (B) 888 644 581 
P2S3 (C) 369 369 368 
P2S1 (E) 662 433 418 
Total events 2547 2074 1963 

Table 2.1: Number of events in the full catalog, full catalog b-value, common events, and the 
final catalog. 
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Figure 2.1: Array Geometry Cap on: Overview of the experiment se ng. The loca on of 
treatment wells 21-10 and 21-09 (stars) are shown by symbols and the thin black line. 21-09 
(recorded treatments A and B) and 22-09 (recorded all four treatments) are monitoring wells. 
Note that well 21-09 is used for both monitoring and treatment. Microseismic events are shown 
by colored dots where cyan represents treatment B, blue represents treatment A, purple 
represents treatment E. and magenta represents treatment C. Maximum horizontal stress 
direc on is illustrated by the black arrow. Injec on interval depth is shown as black rectangles 
and labeled with the treatment interval name. Top le  figure: North-East view. Top right figure: 
North-Depth view. Bo om le : Depth-East view. Ver cal exaggera on is 2:1. 
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Figure 2.2: Distribu on of available common events between catalog and available waveform 
data. Each quarter shows the map view of the spa al variability between catalog events in black 
and available waveform events in green. 
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Figure 2.3: Injec on volumes with common event-calibrated magnitudes are shown. Clockwise 
from the upper le  is treatment A, B, C, and E. Injec on rate is plo ed in orange. Blue dots are 
the distribu on of microseismic events where ver cal placement is the magnitude and 
horizontal posi on is ming rela ve to the start of the hydraulic fracturing. The seismicity rate is 
shown in black by the number of events over me. The magnitude of completeness for each 
treatment is shown as the blue triangle 
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Figure 2.4: A: Comparison of two waveforms contrasted by color with a similarity coefficient of 
0.87. B: the waveform amplitude value comparison between the two dis nct events. Calculated 
amplitude ra os are denoted by the black dots where the principal component amplitude ra o 
is 0.74. 
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Figure 2.5: Principal component analysis for magnitude calibra on of the four fracking stages 
clockwise star ng from the top le  panel: treatment A, B, C, and E. Each quadrant is sub-divided 
into: the main sec on which shows the rela ve magnitude and amplitude ra o before (gray) 
and a er magnitude calibra on (red) distribu on; the upper right subsec on that displays the 
density of the distribu on in the main sec on a er magnitude calibra on as a heat map with 
color bar corresponding to density in log10 scale; lower right subsec on displays the density of 
the distribu on before magnitude calibra on with the same color bar to the upper right 
subsec on. Convergence in the principal component analysis is displayed by the calibrated 
points collapsing on the blue line that follows a slope of 1.5. 
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Figure 2.6: Comparison of the magnitude distribu on for treatment B before and a er 
magnitude calibra on for different similar event clusters. A: map view of the seismicity loca on, 
SHmax is shown as a reference. C: cross-sec on view along EW direc on. B and D show the 
Frequency Magnitude Distribu on for the full sub-catalog of treatment B (grey solid line) and 
sub-clusters before (B) and a er (D) calibra on (solid lines with colors corresponding to legend 
in A). For comparison, the dashed lines show the b-values es mated for the full sub-catalog of 
treatment B. Ver cal exaggera on is 2:1. 
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Figure 2.7: Comparison of Frequency-Magnitude-Distribu on and corresponding b-values for 
treatments before(le ) and a er(right) magnitude calibra on, where b-values are es mated by 
maximum likelihood (MLE). The ver cal axis is the cumula ve number of events and the 
horizontal axes is the event magnitude. Each treatment is color coded the same as in Figure 2.1. 
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Figure 2.8:  Comparison of the probability density func on of b-value es ma ons from MLE (A 
and B), and the seismogenic index (C and D) before (le  panel: A and C) and a er (right panel: B 
and D) magnitude calibra on. For all es mates, 100 bootstrap trials are calculated with MLE 
es mates for the b-value and seismogenic index. 
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Figure 2.9: Comparison of different treatments and subclusters of treatment B as represented 
by a schema c Mohr circle. The dashed line shows the Coulomb Failure Envelope based on a 
fric on coefficient of 0.75. Different symbols represent different clusters. Solid-filled symbols 
represent clusters and treatments with off-SH-max axis orienta on. Non-filled symbols 
represent seismicity groups that are parallel to SH-max. 
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Figure 2.10: Cumula ve moment growth with the increasing number of earthquakes (A and B) 
and me since the start of injec on (C and D) for each treatment before (le  panel: A and C) 
and a er (right panel: B and D) magnitude calibra on. 
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The supplemental materials provided in this sec on aim to enhance the understanding 

of the research presented on hydraulic fracturing magnitude calibra on improvements from 

waveform correla on. We describe in greater depth the b-value es ma on using maximum 

likelihood and robust least square approxima on and magnitude completeness protocols used 

in Matlab’s Z-map for this study.  

 

S2.1 Maximum likelihood B-value es ma on 

To determine the b-value, which describes the frequency-magnitude distribu on of 

earthquakes, seismic studies frequently employ the sta s cal method known as maximum 

likelihood es ma on (MLE). The rela onship between the frequency and size of earthquakes in 

a given area is represented by the b-value es mated in equa on S2.1 based on Utsu’s (1965) 

formula with the ra o of logarithmic Euler’s constant, 𝑒, to the difference of the mean 

magnitude, 𝑀, and half the magnitude binning, ∆𝑀, subtracted from minimum magnitude, 𝑀 . 

The fundamental idea behind MLE is to iden fy the parameter values that maximize the 

probability of seeing the provided data. MLE seeks to iden fy the most likely b-value that best 

fits the observed earthquake data in the context of b-value es ma on, offering important 

insights into the seismicity of a region. 

𝑏 =
log 𝑒

𝑀 − (𝑀 −
∆𝑀

2
)
 

(S2.1) 
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An earthquake magnitude dataset is necessary to apply MLE for b-value es ma on. The 

magnitude range must first be divided into predetermined magnitude bins, ∆𝑀, as the first step. 

The number of earthquakes within each bin is counted, and each bin represents a par cular 

magnitude range. The likelihood func on, which measures the likelihood of observing the given 

dataset for a par cular b-value, is then computed using the observed earthquake frequencies in 

each magnitude bin. The Gutenberg-Richter formula, which denotes the rela onship between 

earthquake magnitudes and frequencies, serves as the founda on for the likelihood func on. 

S2.2 B-VALUE ESTIMATION USING ROBUST LEAST SQUARE 

The seismic analysis code is limited by the number of common events between the listed 

catalog and actual waveform data available. We apply the robust least square (equa on S2.2) 

that reweights based on the residuals (equa on S2.3), where (Han et al., 2015) show 

improvement in the robust least square over tradi onal least square solu ons. Robust linear 

regression uses weights (equa on S2.4) as part of the scaling factor which reduces the 

sensi vity to outliers and improves fit. Weights are automa cally and itera vely determined 

where ini ally, weights are equal and then reweighted in each subsequent itera on, giving 

lower weights to points further from the previously iterated model predic ons (equa on S2.5). 

Itera ons are terminated at the point of convergence between coefficients es mates within a 

given tolerance value. Dumouchel and O’Brien (1989) integrate the bisquare robust regression 

used in the ZMAP MATLAB package ( Wiemer and Malone, 2001) as the func on “robust-fit” ( 

Dumouchel and O’Brien, 1989; Street et al., 1988; Holland and Welsch, 1977; Huber, 1981). This 

func on determines the best fit by itera vely using the robust least squares with the bisquare 

weigh ng func on by the following procedure: 
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1. Equal weight least square regression as expressed in the least square line (equa on 

S2.2), where 𝑥  is the magnitude, 𝑦  , event count, 𝜖 , unobserved errors, and β, is the 

least squares es mate.  

 

𝑦 = 𝑥 𝛽 + 𝜖    𝑖 = 1, … , 𝑛 

 (S2.2) 

2. Compute and adjust residuals, 𝑢 , using Huber’s func on where ℎ  is the leverage that 

reduces weight for high leverage points, 𝛽 , robust regression, S, scale es mate, and c, 

tuning constant of 4.685 for bisquare weigh ng. 

 

𝑢 =
𝑦 − 𝑥 𝛽

𝑐𝑆 1 − ℎ
 

 (S2.3) 

3. Compute bisquare weights, 𝑤 , based on previous itera on residuals. 

𝑤 =
(1 − 𝑢 ) , 𝑖𝑓 |𝑢 | < 1

0, 𝑖𝑓 |𝑢 | ≥ 1
 

 (S2.4) 

4. Update the least square line by performing a weighted least squares regression with the 

weights  
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𝑤 (𝑦 − 𝑥 𝛽 )𝑥     𝑗 = 1, … , 𝑝 

 (S2.5) 

5. Iterate un l convergence. 

S2.3 LST results 

  We also observe the results from using LST in replacement of MLE in Figure S2.1. All 

steps are iden cal to the main text where MLE is used.  
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Figure S2.1: Comparison of probability density func on of b-value es ma ons from LST (A and 

B), and the seismogenic index (C and D) before (le  panel: A and C) and a er (right panel: B and 

D) magnitude calibra on. For all es mates, 100 bootstrap trials are calculated with LST 

es mates for the b-value and seismogenic index. 
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3.1 Abstract 

The increased earthquake risk in a growing society is always prevalent and although 

Oklahoma is not known for large and damaging earthquakes, in the last decade it has 

experienced a more than 100-fold increase in smaller seismicity and the occasional moderate 

magnitude damaging earthquake.  Though the frequent small events present themselves as 

mostly nuisance earthquakes, they are s ll influenced by site response that influences seismic 

damage and loss in urban areas. It is crucial to iden fy site characteris cs like resonance 

frequency in Oklahoma at a high spa al resolu on to account for site response, enhance our 

understanding of the destruc ve ground mo on produced in earthquakes, and develop be er 

seismic hazard assessment and mi ga on in developed areas. We monitored an East-West 

transect near Enid, Oklahoma using two emerging instrument types, nodal sensors and 

distributed acous c sensing for a higher spa al resolu on understanding of site response. We 

compare the two instrument types to iden fy their strengths and weaknesses while in use. 

Finally, we measure site-specific fundamental frequencies where dominant peak fundamental 

frequencies are approximately 1Hz along the transect and es mate resona ng layers using an 

exis ng velocity model. 
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3.2 Introduc on: Environmental and earthquake monitoring 

The high resource demand from a growing society has driven the development of 

infrastructure and residen al buildings to accommodate the increased popula on density in 

many ci es much like those in the state of Oklahoma. In Oklahoma, earthquake hazard is an 

increasing concern linked to the increase in wastewater injec on (Ellsworth, 2013; Keranen et 

al., 2014) with three events larger than M5 occurring within the last decade. Few of these 

occurred on known faults as shown in Figure 3.1. However, most events occur on unmapped 

faults (Schoenball and Ellsworth, 2017a; Qin et al., 2019) which led to deployments of dense 

seismic arrays to monitor and manage the growing earthquake hazard in the region. In some 

cases, dense seismic arrays were deployed to monitor the increasing ac vity. A dense seismic 

array consists of mul ple closely spaced seismic sensors that are strategically placed to monitor 

ground mo on and seismic waves. These typically consist of nodal sensors, a self-contained 

data logger, a ba ery, and a sensor, for wavefield experiments. Examples of high-density arrays 

using nodal sensors for wavefield monitoring include over 1800 nodal sensor LArge-n Seismic 

Survey in Oklahoma (LASSO) array (Dougherty et al., 2019); the IRIS Community Wavefield 

Experiment in Oklahoma (Sweet et al., 2018) using 9 infrasound sensors, 18 broadband sensors, 

and 363 nodal sensors; and the Long Beach Dense array using 5200 nodal sta ons (Li et al., 

2015). High-density arrays such as the ones previously men oned have been increasing in 

occurrence due to their improved imaging resolu on and desire to capture the unaliased spa al 

wavefield from earthquake sources. Amongst other insights, this is useful for earthquake 

monitoring as it allows for precise and accurate detec on, loca on, and characteriza on of 

seismic events that would not otherwise be possible with the exis ng regional network. By 
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having a dense network of sensors, scien sts can obtain high-resolu on earthquake catalogs 

that, in part, provide a be er understanding of the underlying geological structures and 

processes that may trigger earthquakes. 

It is important to understand the local geology in present-day Oklahoma in any seismological 

survey, to make connec ons and bridge the knowledge gap between the convoluted geologic 

and seismo-tectonic history of the region. The Oklahoma crust, much like other areas of the 

North American craton, is the result of mul ple tectonic ac vi es that were especially ac ve 

between the Proterozoic and Cambrian (Whitneyer and Karlstrom, 2007). The loca on of our 

study is east of the southern extent of the Nemaha upli . The Nemaha upli , a narrow paleo 

structural feature that stretches from southeastern Nebraska to Central Oklahoma, is 500 miles 

in length at 80 miles at its widest point. The structural history of the Nemaha upli  has repeated 

periods of regional warping, upli , and erosion separated by periods of marine shelf 

sedimenta on. The Nemaha upli  is a composite of several complex elements and features of 

separate fault blocks. At its surface, it is a gentle an cline plunging towards the south.  The 

forma on of the Nemaha upli  is a ributed to le -lateral wrench fault movement as a crustal 

response to convergence at the con nental margins (Berendsen 1986). Others have suggested 

similar strike-slip movements on the Central Oklahoma fault zone (Amsden, 1980) and upli  to 

ver cal movement on a pre-exis ng Precambrian zone of weakness (Fath, 1920). Present-day 

interest in understanding the structure of the region is driven by hydrocarbon explora on of the 

Cambrian to Permian age rocks. The succession of paleozoic dolomites and limestones with 

subordinate clas cs overlay the Precambrian crystalline basement. In the midcon nent, the 

ascending order of the stra graphic sedimentary units is the Joins, Oil Creek, McLish, Tulip 
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Creek, and the Bromide which are a series of carbonates, shales, and sandstones. This unique 

deposi onal history and upli  create hydrocarbon plays which have been the economical target 

for oil and gas produc on due to the structural traps and reservoir rocks (Dolton and Finn, 

1989).  

While a dense seismic array will typically be u lized for passive detec on of earthquake 

sources or during the acquisi on of ac ve-seismic data, the data can also be u lized for 

environmental monitoring through ambient seismic noise. Ambient noise is caused by natural 

sources such as ocean waves, wind, and atmospheric pressure, as well as cultural sources such 

as traffic and industrial ac vi es. Ambient seismic noise studies have been used for over a 

century and can be traced back to Ernst von Rebeur-Paschwitz observa ons of the first recorded 

teleseismic earthquakes using a horizontal pendulum le  to oscillate freely (Von Rebeur-

Paschwitz, E., 1889).  

In recent years, there is a resurgence in passive noise monitoring due to the greater 

availability of a wide variety of sensors such as the inexpensive Fairfield 3C Zland nodal sensor 

which leverages its compact self-contained size. Smaller inexpensive sensors and ease of 

deployment for passive noise experiments also reduce the requirement for local municipality 

permi ng for ac ve source experiments. By analyzing this ambient noise, valuable insights can 

be gained into various environmental factors such as soil proper es, and groundwater levels 

(Larose et al., 2015). One property we are interested in our high-density observa on of ambient 

seismic noise is the physical phenomenon of resonance. Resonance is a construc ve 

interference event during wave propaga on. In a ground mo on, resonance can result in 

increased shaking intensity by having a larger wave amplitude. We compare different 
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instruments in this study and perform an analysis of the noise signals recorded by each 

instrument type in the me and frequency domain. Furthermore, the dense arrays are 

leveraged in an east-west site response study. 

3.3 Array informa on 

For this study, we deploy instruments along an East to West transect of the en re 

Garfield County in Oklahoma along highway US-412, a 4 lane two-way highway separated by a 

road verge, over three separate occasions in 2020 (EW1-40: June 09, 2020 - July 14, 2020) and 

2021 (EW1-20A/B: April 21, 2021 - May 13, 2021, and EW2: August 1, 2021 – August 31, 2021) 

along the length of highway 412 and minor perpendicular arrays (NS1 and NS2: April 21, 2021 - 

May 13, 2021) in 2021 as shown in Figure 3.2. We perform a mul -deployment of temporary 

high-density nodal sensors that recorded con nuous waveform for a one-month dura on 

during each deployment me. We use the 2nd genera on Fairfield Nodal Z-land sensors which 

are small, self-contained devices that are deployed in seismic explora on to detect and 

con nuously measure con nuous ground vibra ons from anthropogenic sources created by a 

Vibroseis truck or natural sources such as local earthquake events for about a month or un l the 

ba ery is depleted (Figure 3.2). Nodes are easy to deploy and have a low environmental impact. 

However, nodal sensors have limited recording capacity and are prone to signal noise from 

improper isola on during deployment. Nodes are a 5Hz sensor and we set the recording 

sampling rate at 500Hz with a 12-decibel pre-amp gain. The recorded data are downsampled to 

100Hz to conserve storage and improve computa onal resource management. In Figure 3.3, we 

show the day and night noise power distribu on comparison between the two seismic 

instruments, nodal sta on 4013 and the corresponding fiber op c strain rate sensor. Elevated 
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day me noise is observed in both recording types and is likely due to nearby anthropogenic 

sources. We deployed both in 2020 and twice in 2021 in a rolling deployment, details will be 

explained in subsequent subsec ons. For the 2021 deployments, we deploy the nodal sensors 

concurrently with a Distributed Acous c Sensing (DAS) deployment using exis ng fiber op c 

cables from an Oklahoma telecommunica on sub-terranean conduit-lain fiber op c bundle. The 

u liza on of exis ng u lity telecommunica ons cables for other purposes has been called dark 

fiber where Marra et al. (2018) used submarine telecommunica on fiber lain on the seafloor for 

earthquake detec on and loca on. As shown in Figure 3.2, we use the server room housing the 

fiber op c terminal ends at Northwestern Oklahoma State University as a midpoint for the 

arrays. The DAS unit we are using is the Silixa brand iDAS interrogator, a dynamic range sensing 

system that determines strain rate and distance from measuring phase change in the Rayleigh 

sca ering signal. We record DAS measurements at the iDAS’s maximum range of 1 kHz with a 

channel spacing of 2m and we later down-sample our recordings to 50Hz for noise analysis. 

3.3.1 Deployment 1 - EW1-40 (nodal deployment) 

We deploy 124 nodal sensors between June 09, 2020 - July 14, 2020, east of 

Northwestern Oklahoma State University (Figure 3.2). Ini ally, the plan for the deployment is 

about 400m spacing, but actual spacing varies from 300m to 400m spacing on account of GPS 

error and GPS updates when traversing the deployment line during deployment.  
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3.3.2 Deployment 2 - EW1-20A & B (Rolling nodal deployment and concurrent DAS) 

As shown in Figure 3.2, EW1-20A uses 103 sensors on the ini al deployment where 43 

sensors are on the EW line (43km), 38 sensors NS1(23km) on Highway 74, and 22 sensors in NS2 

(14km) on Highway 81. EW line spacing was 1-1.3km spacing, both NW lines were 

approximately 500-700m spacing. We use a rolling deployment, so half of the deployed sensors 

were collected shortly a er the ini al deployment of EW1-20A. All sensors east of NS1 were 

collected and half of both NS lines were collected within 2 weeks of deployment of 103 sensors. 

Exis ng sensors were replaced within 2 weeks of collec on for an extended deployment to be 

co-located with the iDAS array deployment. On the redeployment of the EW1-20B, all sensors in 

NS1 and within the EW line (21.3km) were replaced with recharged sensors. The density in NS2 

remained the same (14km), but NS1 was shortened (10km) and the density in the EW line was 

increased to have a spacing of 500-700m. The DAS system was installed shortly a er the nodal 

deployment and was opera onal between April 21, 2021 - May 13, 2021.  

3.3.3 Deployment 3 - EW2 (nodal deployment and concurrent DAS)) 

A total of 61 sensors are used for deployment 3, where 26 sensors are deployed west of 

sta on 4001 for 22.5km (Figure 3.2). Addi onally, 35 sensors are redeployed on NS2 replacing 

deployed sensors from EW1-20B and extending the North–South deployment line to 23.5km 

between August 1, 2021 – August 31, 2021. The DAS system was installed before the nodal array 

this me on July 19, 2021, un l August 11, 2021. 
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3.4.  Comparison of DAS and Nodal array performance 

Distributed Acous c Sensing (DAS) and Seismic Nodal Sensors are two different types of 

sensors used in seismic surveys to acquire data on subsurface structures. While both 

technologies are used to record seismic waves, there are some significant differences in their 

performance.  

DAS is a type of distributed sensing that uses fiber op c cables to capture seismic waves 

by measuring the backsca er from laser pulses as it travels along the fiber op c cable. Different 

types of backsca ers can be measured by distributed sensing which provides insight into 

different physical characteris cs affec ng the fiber op c cable. Rayleigh, Raman, and Brillouin 

sca ering are all phenomena related to the sca ering of light. These light backsca ers differ in 

terms of the physical mechanism responsible for the sca ering, the wavelengths of light 

involved, and the informa on that can be obtained from the sca ered light. As a laser pulse, 

from the interrogator, propagates through a length of fiber, the individual photons are affected 

by the fiber itself. Rayleigh sca er is when the backsca er frequency is the same as the ini al 

frequency, Raman sca er is when the sca er has increased (an -stokes) or decreased (stokes) 

its energy level from photon interac on with the fiber’s natural molecular vibra on, and 

Brillouin sca er is caused by the physical expansion and contrac on of the fiber from photon 

energy, genera ng an acous c response from the fiber. Phase changes in Rayleigh sca ered 

signal can measure strain rate, backsca er of Raman stokes and an -stokes measures 

temperature (Farahani and Gogolla, 1999), and Brillouin sca ering measures both temperature 

and strain. Stokes and an -stokes differ in terms of wavelength, whereas stokes have a longer 

wavelength than an -stokes (Conway and Mondanos, 2015). Raman sca ering occurs when 
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light interacts with molecules or crystals throughout the core of the fiber over the en re fiber 

length (Conway and Mondanos, 2015) (Raman, 1928). It is analyzed through Raman op cal 

me-domain reflectometry where the backsca er from a short laser pulse contains informa on 

on loss and temperature along the length of the fiber (Farahani and Gogolla, 1999). Brillouin 

sca ering occurs when light interacts with the acous c waves (i.e., sound waves) that propagate 

through a material. The sca ered light undergoes a frequency shi  that corresponds to the 

frequency of the acous c wave, and this shi  can be used to measure the speed of sound in the 

material (Boyd, 2008). The iDAS interrogator from Silixia in our study uses Rayleigh backsca er 

for measuring strain rate along the fiber.  

Tradi onal geophone sensors consist of three orthogonal (perpendicular) sensors that 

measure ground mo on in three direc ons X, Y, and Z (Murphy, 1996) of displacement at their 

loca on. The more recent nodal sensors have been deployed in arrays or clusters across a 

seismic survey area (Li et al., 2018) and are then connected to a central recording system that 

collects and analyzes the data. The sensors are designed to be low-power and low-maintenance, 

and they can be le  in place for extended periods to collect data. The opera on of the Fairfield-

Zland 3C nodal sensor is based on the principles of piezoelectricity. Piezoelectric materials 

generate an electric charge in response to the mechanical displacement of coils within the 

geophone (Fairfield Nodal, 2017). The generated voltage is propor onal to the displacement of 

the moving coils within each geophone. The three aforemen oned geophones are installed 

within each nodal sensor oriented orthogonal to each other, so they can measure ground 

mo on in three direc ons. Voltages are then digitally converted to discrete veloci es 

represen ng ground mo on affec ng the nodal sensor. The data from the geophones are 
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typically processed using digital signal processing techniques to remove noise and interference 

and to extract useful informa on about the seismic signals. This informa on can be used to 

generate images of the subsurface geology, locate oil and gas deposits, and monitor seismic 

ac vity.  

Considering a typical regional network of sparsely spaced broadband seismometers; 

both DAS and nodal arrays are a major improvement on instrumenta on density. A key 

difference between DAS and Seismic Nodal Sensors is their cost. DAS is generally more 

expensive than Seismic Nodal Sensors due to the cost of the fiber op c cables and the 

specialized equipment required to operate the system. Seismic Nodal Sensors, on the other 

hand, are rela vely inexpensive and can be deployed in large numbers to cover a wide area. 

Both DAS and Seismic Nodal Sensors have advantages and disadvantages in seismic surveys. 

DAS offers high-resolu on data over long distances but at a higher cost. Seismic Nodal Sensors 

are inexpensive and easy to deploy, but have limited recording capacity and may suffer from 

signal distor on. The choice of sensor technology depends on the specific needs of the survey 

and the available budget. 

3.4.1 Noise level comparison of DAS and nodal 

We compare the two recorded measurements from both DAS and nodal. For 

computa onal resource management, we resample both datasets to a reasonable 50Hz 

sampling for DAS and 100Hz sampling for nodal. To determine the ini al data quality of the 

recordings, we inves gate the influences on the acous c seismic field from anthropogenic 

sources. Due to the proximity of a town and roadway parallel deployment, we assume that 
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human ac vity will influence the seismic measurements during tradi onal day me business 

hours. We calculate power spectral density for both night and day me hours, stack, and average 

the resultant spectral graphs. Figure 3.4 shows a me-averaged spectrum for DAS channels 

located near a highway overpass and rail crossing, demonstra ng showing how noise levels can 

vary depending on infrastructure. As expected, high amplitude noise levels are observed near 

anthropogenic sights prone to high ac vity and be er ground coupling such as highway 

overpasses and rail crossings. It is observed that day me noise levels are higher than nigh me 

noise even in areas with mostly farmland as shown in Figure 3.2.  

3.4.2 Short-dura on events 

Throughout the recording dura on of the experiment, both ambient noise and transient signals 

were detected. Notably, short-dura on high-amplitude events are recorded, such as passing 

vehicles, and a few local earthquake events (Walter et al., 2020) which are shown in Figure 3.2. 

In Figure 3.5, we observe graphically linear and high-amplitude signals over different channels 

for a period. Observed high-amplitude signals are linear across mul ple channels, coherent, and 

inversely graphically oriented. An approximate velocity of 58 mph may be es mated for the 

high-amplitude signal using the channel spacing of 2 m and arrival me approxima on at each 

channel. Considering the 70 mph speed limit of US-412, we can interpret the traveling signal 

source to likely be a moving vehicle. In addi on, we iden fy an earthquake arrival at 11:18:01 

local me on May 2, 2021, as seen in Figure 3.5 as a high-amplitude signal with similar arrival 

me amongst all channels. In Figure 3.6, both me series and spectra of different sources, 

background noise, moving vehicles, and earthquakes within a 10-minute DAS recording are 

compared. Even though the earthquake and vehicle me series have similar peak amplitude 
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values, their spectra are different in both me dura on and frequency range, where the 

earthquake spectrum occupies lower frequencies, and the moving vehicle spectrum has higher 

frequencies.  

3.4.3 Long-dura on signal 

In addi on, long-dura on signals, such as trains, cross obliquely near the eastern half of 

the deployment close to nodal sta ons 4005 and 4006. The passing train signal does not 

present itself across the en re DAS and is only concentrated near the railroad crossing when 

there is a train present. Loca ng and iden fying the train signal is performed best in the 

frequency domain since the iden fica on of the train signal in the me series waveform is not 

obvious as depicted in Figure 3.7, where we isolate the train signal from other background 

signals by selec ng an average spectral amplitude between 1-8hz. In the frequency domain, we 

average the frequency range 1-8hz together to exploit the broadband nature of the train signal 

against the average background noise. We iden fy high amplitudes in the average frequency 

stack between 1 Hz – 8 Hz by applying the kurtosis method, which is the ra o of a short-window 

average to a long-window average. However, to mi gate the false detec on of trains we iden fy 

trains, with high spectral amplitude in consecu ve periods over 120 seconds over 40 

consecu ve DAS channels. We transform the me series into the frequency domain for train 

detec on to eliminate false detec on created by consecu ve noisy DAS channels or other noise 

sources that may generate signals within a long- me window.  
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3.4.4 Near–surface characteris cs 

Site response at any given site can vary significantly even within Northern Oklahoma as 

shown by the varying noise amplitudes over short distances in Figure 3.3. Determina on of site 

characteris cs, such as fundamental frequency and site amplifica on, is important to 

characterize poten al earthquake hazards related to ground mo on amplifica on in any 

microzona on study. Microzona on is the iden fica on of poten al for earthquake hazards in 

areas with an increased risk for ground mo on amplifica on, liquefac on, and landslides. The 

purpose of microzona on studies is to assess these loca ons of poten al risk and mi gate any 

poten al economic loss such as damage to buildings or other structures (Ansal et al., 2009). The 

earliest microzona on site response study by Imamura (1913) u lized single-sta on 

microtremors following the 1854 Tokyo earthquake, where localized damage pa erns were 

observed from amplified ground mo ons. Subsequent observa ons of large earthquakes have 

also shown localized damage pa erns correla ng to subsurface geologic structures such as 

basins (Frankel et al., 2002; Hall and Beck, 1986; Abbo , 2005; Kagami et al., 1986). 

Understanding this secondary hazard such as resonance has been an important feature in 

earthquake hazard risk reduc on as shown in the well-documented 1985 Michoacan 

earthquake (Hall and Beck, 1986; Flores Estrella et al., 2006) where building structural damage 

was linked to earthquake shaking resonance, the 1987 Whi er earthquake (Hruby and 

Beresnev, 2003; Kawase and Aki, 1990) shown a basin edge effect in ground mo on 

amplifica on, and the 1994 Northridge earthquake (Hruby and Beresnev, 2003; Beresnev et al., 

1998; Hartzell et al., 1996) exhibi ng basin resonance from excited ground mo ons. The 

geologic medium can influence the rela ve seismic acous c wave amplitude which translates to 
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stronger or weaker shaking (Nakamura, 2000). Nakamura (1989) determined the cause of 

stronger localized shaking during a strong mo on event is due to the harmonic wave 

construc vely interfering through resonance. 

 There are several methods used to characterize the site response. Geotechnical 

inves ga ons such as Cone Penetra on Test (CPT), Standard Cone Penetra on TEST (SPT), and 

soil borings are used in engineering applica ons for site characteriza on (Schmertmann, 1978). 

Informa on about the local surface geology is also important to consider as it can highly 

correlate with the observed seismic intensi es (Wills et al., 2000). However, geotechnical 

inves ga ons are o en expensive, invasive, nega vely affect the environment, and are not 

available for all loca ons. These methods are also focused on the determina on of site 

amplifica on and do not consider the effects of resonance. In this study, we use the Horizontal-

to-Ver cal-Spectral-Ra o (HVSR) approach to ambient noise recorded on a high-density linear 

nodal array deployed in Enid, Oklahoma to es mate fundamental frequencies. It is known that 

deep sedimentary soil columns in basins can amplify earthquake ground mo on and cause 

significant damage to buildings built on their surface. The extent of the damage is related to the 

building’s specific height and soil site resonance frequency, fundamental frequency. We use the 

fundamental frequencies to es mate a geologic structure shape and determine subsurface 

sedimentary column resonance.   

3.5 Method and Background for HVSR 

The HVSR approach is used for site response inves ga ons due to its ease of use, low 

cost, and flexibility in the use of data that is not dependent on strong ground mo on or an 
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ac ve source. Ambient noise HVSR studies have been conducted extensively and compared for 

reliability against other methods, as discussed by Bard et al. (2004) and Bard et al. (2005). 

Nakamura (1989) showed that the HVSR spectral peak frequency represents the fundamental 

frequency of the site soil column. This has been confirmed by later studies which tested the 

accuracy and reliability of the HVSR approach, as described in papers such as Cara et al. (2010), 

Guillier et al. (2007), and Parolai et al. (2004). Further inves ga on by Bard et al. (2004) in the 

Site Effects Assessment Using Ambient Excita on project (SESAME) compared the ambient noise 

HVSR results with those from earthquake-based HVSR analysis, and these results were further 

verified in Bard et al. (2004) and Bard et al. (2005). The primary objec ves of the SESAME 

project were to be er understand the physical basis of the HVSR approach, determine its 

purpose in site response, and propose guidelines for correct analysis. The SESAME project 

demonstrated a strong linear correla on between the spectral peak frequency determined 

through ambient noise HVSR and those determined at the same site through Standard Spectral 

Ra o (SSR) measurements from earthquake data (Bard et al., 2004). This result demonstrates 

that the peak frequency from the ambient noise HVSR may be interpreted as the expected peak 

frequency of earthquake-related ground mo on. Based on this SESAME frequency comparison 

and inves ga ons men oned earlier, we will refer to the peak frequency measured from the 

HVSR graph as the site’s fundamental frequency. The amplitude of the spectral ra o has been 

used by some authors as a representa on of amplifica on rela ve to hard rock sites (e.g., 

Nakamura, 1989; Bard et al., 2004). The SESAME project also inves gated the HVSR amplitude 

by comparison of peak amplitudes as determined by the HVSR and SSR methods. Although the 

HVSR and SSR peak amplitudes are not linearly related the HVSR peak amplitude can be 
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considered as a lower bound for site amplifica on (Bard et al., 2004). Thus, the HVSR method is 

a simple and effec ve technique for determining the first fundamental frequency of soil 

resonance. However, Bonnefoy-Claudet (2009) suggests the HVSR approach is inadequate for 

determining higher resonance modes, contrary to other asser ons (Lermo et al., 1994). 

In HVSR, the two horizontal components are combined using geometric mean in the 

numerator and the denominator is the ver cal spectral component as exampled in equa on 3.1.  

𝐻/𝑉(𝑓) =
𝐻 ∗ 𝐻

2𝑉
 

(3.1) 

where the root geometric mean square ra o of the two horizontal spectra, 𝐻, is taken over twice 

the ver cal spectra, 𝑉. 

One popular tool for HVSR is the open-source so ware, Geopsy (Wathelet et al., 2010). It 

is a user-friendly graphical user interface and has been well-tested by many. However, to improve 

on computa onal cost and speed we use the open-source Python HVSR so ware HVSRpy 

(Vantassel, 2020) which is comparable to the open-source Geopsy so ware (Wathelet et al., 

2010) but accounts for azimuthal variability by using a frequency domain window rejec on 

algorithm (Vantassel, 2020 and Cox et al., 2020). HVSRpy performs the rejec on window by 

selec ng unbiased spa al sta s cs, Voronoi tessella on, for fundamental site frequency. (Cheng 

et al., 2021). We observed the rejec on of outlier spectral curves exampled in Figure 3.8 and note 

the improved standard devia on of the es mated peak fundamental frequency. 
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3.5.1 Example data analysis 

We determine the HVSR curve for each sta on and analyze the results per the SESAME 

guidelines in Chatelain et al. (2008) and Albarello et al. (2011) to implement the HVSR approach, 

which has three condi ons for curve reliability, 𝐻/𝑉(𝑓), and five criteria for iden fica on of a 

peak frequency, f0, as a clear peak.  

We use a 90-second me window, 30 Hz low-frequency passband, Konno and Ohmachi 

smoothing constant of 40, and a maximum of 50 itera ons for spectral rejec on in our 

calcula ons. The HVSR spectral curve in Figure 3.8 shows a recording of the 11th hour on May 

2nd calculated for HVSR using the aforemen oned parameters.  

3.5.2 HVSR varia on along the array and interpreta on 

We use the HVSR spectral curve results in Figure 3.9 and compare the coherent spectral 

peak frequencies with a 1D velocity profile to es mate depths of poten al acous c impedance. 

We use the 1D shallow velocity and forward model with spectral peak frequencies based on the 

quarter wavelength func on of harmonics (Figure 3.10). The primary so ware iden fied a clear 

and reliable peak frequency of about 10 Hz, which is related to a depth layer at approximately 

30 meters. Secondary HVSR peaks are interpreted to the geologic structure shown in Figure 

3.10, which agrees with Caylor (1958) where nearby well correla ons result in a basin structure 

that is shallower towards the East. On a local scale, Cary (1955) depicts a complex an clinal 

structure along our deployment area which does support our interpreted structures at deeper 

depths.  
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A velocity model is created through passive processing of nodal seismic data as outlined 

in Behm et al. (2019) and Cheng et al. (2022), where noise cross-correla on is computed for all 

possible sta on pairs. Cross correla ons are then applied to the mul channel analysis of surface 

waves (MASW) method (Park et al., 1998; Xia et al., 1999) for surface wave measurements from 

nodal data. Finally, frequency- me analysis (FTAN) (Bensen et al., 2007; Levshin et al., 1989; 

Hannermann et al., 2014) is applied to the recorded data. To obtain a velocity profile, we 

calculated dispersion curves from the interferometrically retrieved surface waves. Dispersion 

curves are then inverted to obtain a 1d velocity model, using a phase shi  method (Xia et al., 

1999). Dispersion curves are selected from energy trends and subsequently inverted for the 1D 

Vs model with Geopsy which follows a hybrid neighborhood algorithm (Wathelet et al., 2004). 

Dense deployments are typically a dras c improvement over single-sta on observa ons. 

We increase the observa on resolu on significantly using nodal sta ons. However, even with 

nodal sta on density, details in recorded waveforms such as passing vehicles or trains would be 

easily overlooked when analyzing the recordings. Using very simple methods such as 

transforming data from me series into the frequency domain we can improve our observa ons 

and iden fica on of anthropogenic noise sources such as moving vehicles and trains since they 

appear differently on the power spectrum (Figure 3.6). We can also compare our nodal results 

with those of DAS. Although DAS is recorded in strain rate, much of the processing and 

interpreta on is iden cal to that of tradi onal acous c seismic waveform measurements. With 

DAS, we can observe spa al temporal changes in the waveform stacks indica ng features such 

as vehicles traveling in opposite direc ons as well as using kurtosis to iden fy a train passage. 
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However, with improvements in seismological sensing equipment, new logis cal issues 

do appear that were not present prior in tradi onal single-sta on deployments. When using 

nodal sta ons, a crew of individuals is now required to effec vely deploy each sensor. Adequate 

training for each individual, as well as systema c errors in each individual’s deployment 

technique, may introduce unwanted devia on in recorded waveform. This issue and process are 

eliminated with DAS deployment where the primary setup is in the interrogator, but fiber cable 

installa on and ground coupling may influence data quality. 

In our DAS deployment, we are using dark fiber, which has poten ally inconsistent coupling 

with the subsurface and inadequate fiber termina on that introduced a significant amount of 

noise. Installing new fiber op c cables with good ground coupling may increase signal quality. 

3.6 Conclusion 

DAS applica on using dark fiber is an emerging technique in observa onal seismology. 

Observa ons of different sources such as trains, cars, and noise are recorded and compared 

between nodal sta ons and DAS channels. It is important to characterize the response and 

improve our understanding of dark fiber DAS and compare the measurements to tradi onal 

recording instrument types. In our observa ons, nodal sta ons do have stronger signal-to-noise 

ra os than DAS, likely due to ground coupling differences caused by the deployment of fiber 

op c cables and nodes. There is an inherent risk of data noise contamina on from these surface 

effects due to the deployment methods. The high spa al density of sta ons allows for improved 

intersta on resolu on, which aids in providing informa on on slight varia ons in the wavefield 

between local sites.  
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We can see from the various HVSR spectral curves es mated from different recording mes 

that the HVSR technique is rather stable and provides a good indica on of the fundamental 

frequency of the subsurface. Comparing both the ambient noise HVSR and earthquake HVSR, 

we can see both are similar except for amplitude differences. This may be due to a lack of 

waveform recording length with earthquakes compared with the hundreds of hours of ambient 

noise. However, differences in HVSR amplitude between ambient noise and earthquake 

recordings are jus fied, also seen in Bard et al. (2004) where both earthquake HVSR and 

ambient noise HVSR are compared. 

Using a velocity model, it is possible to determine a depth to acous c impedance layer for 

the HVSR fundamental frequency measurements. Although primary HVSR studies focus on the 

prominent peak, it should be noted that coherent secondary peaks should not be ignored. In 

the forward model, we can interpret the assumed sedimentary layers on the western side of the 

Nemaha Ridge. We should not expect significant varia ons in the sedimentary structure of the 

adjacent Nemaha Ridge, but some varia on in slope may be present. 

Applica on of HVSR to telecommunica on dark fiber DAS data is typically plagued with 

sensi vity issues due to poor ground coupling as well as a lack of instrument response that 

would allow for the conversion of the signal to scien fic units of ground mo on. This would 

allow for a more direct comparison with nodal measurements. However, the ability to 

successfully use an exis ng telecommunica ons fiber op c cable as a remote sensing network is 

significant to both research and commercial applica ons. To improve on and advance the 

method of dark fiber DAS, the instrument response of DAS must be resolved to easily compare 
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measurements to other instrument types. The popularity of using dark fiber for DAS is 

increasing and will become significant in the future as more studies include its deployment. 
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Figure 3.1: A map of Oklahoma with fault lines. The red box is the array location. Roads are 

shown as blue lines and railway tracks are green lines. 

 

Figure 3.2 Experiment location from the red box in Figure 1. Local events are in dots where they 

are color coded for each array and magnitude would depict circle size. Nodal stations for each 

segment of the deployment are shown by the colored triangles where blue is EW1-40, green is 

EW1-20, and red is EW2. 
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Figure 3.3 Day and nighttime noise for node station 4013 and corresponding DAS channel up to 

the Nyquist frequency of the down-sampled DAS and node time series. 
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Figure 3.4 Deployment duration average noise spectrum of the DAS array for the first 3000 

channels and an example 10-minute RMS time series capturing the 2.3 local magnitude 

earthquake on May 2, 2021. 
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Figure 3.5 RMS of DAS data. Passing vehicles, ambient noise, and a local event are highlighted. 
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Figure 3.6 A waveform comparison of DAS and nodal station 4006. The top is stack DAS, single 

DAS, and Node. The bottom left is a car signal, the bottom middle is an earthquake, and the 

bottom right is averaged and smoothed signal spectrum.  
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Figure 3.7 A train detection sparse array highlighting sections of both consecutive triggered DAS 

channels and consecutive time windows with large amplitude signals. An example time series is 

shown to illustrate a single-channel train signal. 
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Figure 3.8 Example HVSRpy output for station 4006 where time series components and 

resultant HVSR curve are displayed. Spectral rejection (blue line) is shown here with 

improvement to standard deviation. 
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Figure 3.9 Compilation of HVSR curves for all deployments between 2020 and 2021 as defined 

by color. 
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Figure 3.10 Interpreted geologic structure layers from forward modeling of the HVSR curves 

using an estimated velocity model to determine depth. The estimated fundamental frequency 

interpreted depth is shown as a green line and secondary frequency peaks are used to generate 

deeper interpreted structures (black lines).   
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Chapter 4:  

Wind and wind turbine 
influence on measurements of 

seismic noise 
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4.1 Abstract 

Renewable wind energy is a growing global industry that has led to the construc on of 

wind farms across the United States, especially in midcon nent regions such as Oklahoma. 

Seismic noise generated adjacent to wind turbines includes both natural wind source coupling 

and resonance of the turbine blades and towers that are transmi ed through the subsurface. 

We conducted a pilot study to characterize and classify such noise that could lead to the 

development of be er techniques in ambient-noise seismology, noise suppression, 

iden fica on of near-surface resonance, and improvement to signal-to-noise ra o. We 

inves gate the wind and wind turbine-generated noise within the seismic field through the 

applica on of the power density func on on 3-component waveforms collected from two 

temporary arrays of 5 Hz geophone sensors. The temporary array consists of 8 Fairfield nodes 

that were ac ve for one month with varying distances (10 meters – 2000 meters) from wind 

turbine towers located in Grant County, Oklahoma. The second array is located approximately 

50km northwest of those wind turbines. The spectral amplitudes and peak frequencies of the 

power spectrum show unique spa al-temporal varia ons in noise levels for the loca on of the 

wind turbine towers. Noise amplitude decreases exponen ally with distance from the wind 

turbine, and wind speed correlates with power spectrum peak frequencies. We iden fy 

mechanical signal sources at 0.17 Hz, 0.29 Hz, 0.51 Hz, 0.87 Hz, 14.5 Hz, 24.83 Hz, and 27.82 Hz, 

and the resonant frequency of the wind turbine tower at 0.37 Hz. We compare the es mated 

fundamental frequencies of both arrays. The direc vity of the seismic noise is characterized 

using a cross-correla on func on. We observe the wind turbines to be a very clear source of 
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seismic noise with exponen al power degrading at increasing distances. Closer examina on 

shows wind, ground, and wind turbine coupling to be a complex field.  
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4.2 Introduc on 

The seismic wavefield has long been recorded and analyzed by researchers and 

professionals.  Signals from both natural and anthropogenic sources such as earthquakes or 

hydrocarbon explora on propagate through the subsurface and are recorded by receivers. 

However, it is quite o en that these signals are contaminated and distorted by acous c seismic 

noise which can obscure important signals. Several noise types may exist, including, wind, ocean 

waves, and anthropogenic noise. To improve on the advancement of signal analysis it is 

important to delineate noise sources such as wind and wind turbines and characterize their 

influence on the acous c seismic field.  

Wind energy has been a global growing industry in recent years increasing its global 

power capacity exponen ally from 2000-present. Growth in each wind turbine genera on has 

also led to greater power outputs with an increase in rotor size (EWEA, 2012). Meo (2006) 

summarizes, in-depth, Oklahoma’s expansion into wind energy due to partnerships, policies, 

infrastructure, economics, environmental, and community impact. These factors contribute to 

the overall growth of the wind energy industry in the state (Righter, 1996). Man-made 

structures, machinery, human ac vity, and natural surface forces such as wind and temperature 

may generate noise that is coupled and transmi ed to the earth and subsequently recorded by 

seismographs, that detect ground mo on small enough to be impercep ble to humans (Wilson, 

1953 and Withers et al., 1996). As an example, structures such as wind turbines house complex 

vibra on-inducing drive sha s and gears within the nacelle (Hemami, 2012) which may transmit 

vibra ons into the subsurface. Less well known is the extent of the magnitude of source and 
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coupling and how it varies with distance as the energy propagates through the surface since 

source signals are unique to each source and are modified by the path and site effects.  

Seismic noise generated by wind turbines poses a scenario where both natural wind 

source coupling and resonance frequencies of the turbine blades and towers are transmi ed 

through the subsurface. Resonance from harmonic waves for much larger sources can amplify 

earthquake waves and cause structural damage, such as was observed during the 1987 Whi er 

earthquake (Vidale et al., 1991), where basin resonance caused significant localized damage to 

buildings. Resonance is primarily from earthquake shaking in the fundamental frequency but 

can occur from overtones (Rial et al., 1992). Previous studies in wind varia ons have shown a 

general increase in seismic noise with the wind with no apparent fundamental frequency at 

which the wind was observed (Muccaiarelli et al., 2005). However, other studies have suggested 

wind energy to be observed at higher frequency bands (Wilson, 1953; Withers et al., 1996; 

Young et al., 1996; and Teanby et al., 2016), though the measured source frequency bands vary 

between these studies. To improve our understanding of seismic signal sources such as 

earthquake or wind turbine fundamental frequencies, we must understand the characteris cs 

of the noise as an essen al first step before a desired signal can be isolated.   

4.3 Data acquisi on and processing 

For this study, we select a high-noise environment of wind turbines to observe wind 

turbine-influenced signals. We compare our findings with measurements from a loca on of 

lesser noise and without wind turbines to determine the effects wind turbines have on the local 

acous c seismic wavefield. Seismic data is acquired from a small temporary geophone (Fairfield 
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Zland 3T) array of 8 three-component sensors for a dura on of 1 month from December 2017 – 

January 2018 (Figure 4.1) in Grant County, Oklahoma. A second temporary array of 65 

addi onal Fairfield Zland 3T sensors were also deployed between November 2017 – December 

2017 with 30 overlapping days in Alfalfa County, approximately 50 km northwest of the Grant 

County array. The nodes were recorded at the frequency of 500Hz and later down-sampled to 

100Hz. An example of the con nuous waveform recordings from both arrays is shown in Figure 

4.2 showing a transient low-magnitude earthquake and background noise. It shows varia ons in 

waveform amplitude between the two loca ons. At both array loca ons, the nodes are buried 

one inch below the ground surface in a rela vely homogenous surface soil. Surface soil 

condi ons at Grant County are varying degrees of silt loam whereas Alfalfa County’s array is 

predominately on fine sandy loam north of Great Salt Plains Lake (Soil Survey Staff, 2018), with a 

shallow ground water table of approximately 3 m (USGS, 2016) for both loca ons. Ground-level 

weather condi ons such as wind speed, direc on, and temperature are measured by the 

Oklahoma Mesonet weather network and are publicly available (Brock et al., 1995; McPherson 

et al., 2007), with a sampling rate of 300 seconds. The nearest Mesonet sta on, Medford 

(MEDF), is 25 km to the northwest of Grant County. We compare the recordings to a concurrent 

array located 50 km to the northwest in Alfalfa County where wind turbines are absent. The 

wind turbines in Grant County are classified as monopole-horizontal-axis wind turbines used in 

electricity produc on by transforming slow turbine blade rota on to a high-speed rota on for a 

generator axle through gear ra os, similar to the transmission in an automobile.  The monopole 

wind turbines in Grant County have a blade length of 41.25 m, a total height of 121.25 m, and 

an average rota on of 12 to 14 revolu ons per minute. The me series measurements as 
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exampled in Figure 4.2 from the nodal arrays, 𝑓(𝑡), are transformed using the fast Fourier 

transform, 𝐹(𝜔), in equa on 4.1 such as in Figure 4.3, and later compared with local weather 

condi ons in Figure 4.4. 

𝐹(𝜔) =
1

2𝜋
𝑓(𝑡)𝑒 𝑑𝑡  

(4.1) 

Where T is the length of the me series, we use 300 seconds for each component, and 𝜔 is 

frequency. A noise-corrected power spectrum (Cooley and Turkey, 1965), 𝑃(𝜔), is computed by 

calcula ng the base-10 logarithm of the moving mean and mean spectrum ra o in equa on 4.2. 

 

 

𝑃(𝜔) = 10 log(
(
1
𝑘

∑ 𝐹(𝜔) ) + 𝜖 

 𝐹(𝜔)
𝑛

) 

 

(4.2) 

 

The power spectrum is used to evaluate a broad range of noise at a given sta on and 

enhances the rela ve varia ons in seismic power, allowing the signal to be be er-dis nguished 

rela ve to background noise levels. We apply a moving average window, k=5, to a frequency 

spectrum array with respect to me, n, and divide by the average frequency spectrum for each 
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me series window, T. Adding epsilon, 𝜖, to the numerator ensures that the division does not 

result in an undefined or infinite value, providing a small posi ve value that avoids numerical 

errors. We use spectra to observe differences between different condi ons throughout the 

deployment dura on such as day and nigh me hours and low and high wind condi ons (Figure 

4.5). Day hours, loosely defined as 8 am – 5 pm, are considered for their propensity for elevated 

noise levels when compared with night hours, 10 pm – 4 am. We define wind speeds up to 3 

m/s as low-speed wind and above 5 m/s as high-speed wind since wind turbines are designed to 

turn on close to the low wind speed cut-off speed. Signal spectra are subsequently used to 

es mate site condi ons and noise source loca on through methods such as HVSR for single-

sta on site response and cross-coherence for tracking signal propaga on.  

4.3.1 Horizontal to Ver cal Spectral Ra o 

Horizontal to Ver cal Spectral Ra o (HVSR) (Nakamura 1989) is o en used in 

microzona on studies to quan fy site effects in terms of resonance frequency, geologic surface 

condi ons, and site amplifica on factor. Generally, it is recommended to use transient signal-

free and calm environment recordings for ambient noise HVSR to analyze the background noise 

wavefield for interpreta on of the subsurface structure through fundamental resonant 

frequencies. The HVSR technique is a commonly used method in geophysics and earthquake 

engineering to es mate the resonant frequency from the ra o of the spectral ra os of 

horizontal and ver cal components, 𝐻/𝑉(𝑓), of ground mo on recorded at a site as expressed 

in equa on 4.3. Where the root geometric mean square ra o of the two horizontal spectra, 𝐻, 

is taken over twice the ver cal spectra. The resonant frequency is an important parameter for 
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seismic hazard assessment, as it determines the level of amplifica on of ground mo on that 

occurs at a site during an earthquake.  

The method can be applied to different types of data, such as seismic, acous c, or 

ambient vibra on data, and can be used to study a wide range of phenomena, including the 

effects of geologic and structural features on ground mo on, the characteriza on of soil and 

rock proper es, and the evalua on of the vulnerability of structures to earthquake damage. 

We determine the HVSR curve for each sta on and analyze the results in accordance 

with the Site Effects Assessment Using Ambient Excita ons (SESAME) guidelines Chatelain et al. 

(2008). These guidelines, which are empirically derived, provide an es mate of site 

amplifica on and meaning to the HVSR. Albarello et al. (2011) implemented the HVSR approach 

to have three condi ons for curve reliability and five criteria for the iden fica on of a peak 

fundamental frequency, 𝑓 , as a clear peak. We use 30-second-long windows for our HVSR 

calcula ons with the open-source so ware HVSRpy (Vantassel, 2020). 

𝐻/𝑉(𝑓) =
𝐻 ∗ 𝐻

2𝑉
 

(4.3) 

4.3.2 Cross Coherence 

Cross coherence is a method in signal processing and vibra on analysis to quan fy the 

rela onship between two signals. The method is based on compu ng the coherence func on 

between two signals, which measures the degree of similarity between them in the frequency 

domain. It is calculated by taking the cross-power spectral density of the two signals and 
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dividing it by the product of their individual power spectral densi es. The cross-coherence 

func on can provide valuable informa on on the frequency-dependent rela onship between 

two signals, including the presence of common frequency components and the phase difference 

between them. One of the key advantages of the cross-coherence method is its ability to 

iden fy and quan fy the coupling between two signals. The cross-coherence method can help 

to iden fy the frequency ranges and the degree of coupling between two systems, which is 

useful for understanding the underlying physical processes and designing appropriate control 

strategies. 

We use cross coherence between sta on pairs A and B to determine the direc on of 

travel for our noise source in the frequency domain (w) as described in (Nakata, 2013) and 

shown in equa on 4.4 below. We reject any transient signals and use rotated component 40-

second overlapping me series windows from each sta on for the cross-coherence calcula on. 

𝐶(𝐵, 𝐴, 𝑤) =
𝑢 (𝐵, 𝑤)𝑢∗(𝐴, 𝑤)

|𝑢 (𝐵, 𝑤)||𝑢 (𝐴, 𝑤)| + 𝑒 < |𝑢 (𝐴, 𝑤)||𝑢 (𝐵, 𝑤)| >
 

(4.4) 

With ambient noise recording at sta on A at me t, with complex conjugate denoted with *, e 

regulariza on, <…> represen ng the ensemble. Nakata (2011) shows the importance of power 

normaliza on for obtaining propaga ng waves between two sta ons where amplitude 

varia ons may be too great using other cross-correla on or deconvolu on methods. In cross 

coherence with power normaliza on, the amplitude informa on is preserved and thus suitable 

for noisy data with varying amplitudes among traces. 
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4.4 Results 

The me series in Figure 4.2 exhibits an example of the Grant County and Alfalfa County 

array’s recorded passive ground mo on amplitudes under different condi ons. Recordings from 

Grant County display greater amplitudes than Alfalfa County during and off business hours (11 

pm - 4 am local me) with high and low wind condi ons. This is also true in the frequency 

domain where we observe rela vely greater noise in the averaged sta ons in both arrays in 

Figure 4.5. We show sta on 1001 for Grant County and 3003 for Alfalfa County where noise 

levels are separated by windy/nonwind condi ons, day/night hours, and overall averaged power 

spectrums. Day me noise is greater than nigh me noise, with higher noise amplitudes during 

high wind periods when compared with low wind periods. We observe li le separa on of day 

and nigh me intervals as shown in Figure 4.5 which would suggest no significant 

anthropogenic noise caused by humans during working hours. Power spectrum observa ons 

show an increase in wind speed correlates to an increase in the overall ambient noise 

amplitude. As a result, we apply our analysis to our complete data set. We exclude the la er 

half of data from sta on 1008 due to an unexplained amplitude varia on that is not observed 

on other sta ons. We suspect an undetermined so ware logic malfunc on associated with the 

node itself, perhaps during signal digi za on, to be the cause of the data anomaly.  

At near-field sta ons 1001 and 1002, we observe the North component average power 

spectrums with narrow peak low frequencies approximately at 0.37 Hz, 0.5 Hz, and 0.8 Hz 

shown in Figure 4.3. Overtones of these signals are observed as well at far-field sta ons star ng 

at 0.87 Hz which are mul ples of the narrow peak frequencies. Significant power spectrum peak 

amplitudes are observed on all sta ons at 2.607 Hz, 7.823 Hz, and 14.5 Hz. Secondary smaller 
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peak amplitudes are observed in the range of 2 – 35 Hz as shown in the example power 

spectrum in Figure 4.2. The frequency band 0 Hz – 10 Hz is highlighted to show both lower 

frequency dependency and independence on wind energy.  

Seismic power compared with atmospheric condi ons suggests a posi ve correla on 

between frequency and wind speed using data from Oklahoma Mesonet sta on MEDF in Figure 

4.4. As highlighted before, wind speed, azimuthal direc on, and temperature are recorded at 

300 seconds sampling rate.  Wind speed, azimuthal direc on, and temperature are compared 

with lower frequency bands in the power spectrum 0.32 – 0.64 Hz, 0.64 – 1.28 Hz, 1.28 – 2.56 

Hz, and 2.56 – 5.12 Hz. No correla on is shown between temperature and noise power log 

amplitude. Wind azimuthal direc on and strength shows varying posi ve correla on with the 

power spectrum (Figure 4.3). Stable power log amplitudes are observed between 0.32Hz and 

2.56Hz and power log amplitudes increase at a higher frequency band of 2.56 Hz and 5.12 Hz. 

Contrary to other studies (Schofield, 2001) we do not observe a significant shi  in frequency 

between windy and non-windy periods. We do observe stronger and weaker signals between 

the two condi ons. Comparing Grant County’s waveform spectral to atmospheric pa erns we 

see a correla on between windspeed and spectral amplitude with respect to me. We only see 

a correla on with windspeed while there appears to be a lack of correla on with other weather 

condi ons (Figure 4.4). We average power spectrums based on a range of wind speeds and 

show the gradual increase in average noise spectral amplitudes with an increase in wind speed. 

Median noise amplitude between sta ons at Grant County posi oned at varying distances 

rela ve to wind turbine towers, Figure 4.6, shows the amplitude decay with distance from a 

wind turbine source fi ng with a squared polynomial decay. 
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We observe the spectral curves and peak frequencies by applying the HVSR method in 

HVSRpy, as shown in Figure 4.7. Fourier transform of the three component waveform data is 

used for equa on 4.3 to generate HVSR curves which are then corrected through spectral curve 

rejec on, based on unbiased spa al sta s cs, Voronoi tessella on (Cheng et al., 2021). 

Common HVSR peak frequencies are approximately 7 Hz and 10.5 Hz. However, HVSR curves 

from sta ons near wind turbines appear to have a significant 10.5 Hz peak frequency when 

compared to other sta ons. The measurements show the HVSR method is successful in 

examining the ambient seismic background without being influenced by atmospheric condi ons 

and local noise sources. As shown in Figure 4.8, at broad frequency bands, we observe energy 

propaga on through the array loca on. west to east. We determine our array loca on’s 

wavefield source and sink direc ons by measuring sta on pair me lag from ambient noise 

cross coherence in equa on 4.4. 

4.5 Discussion 

Wind-dependent frequencies have the highest amplitude at sta ons 1001 and 1002 and 

decrease in rela ve amplitude with sta ons further away from the wind turbine as shown with 

the average power spectrum in Figure 4.3. As in Saccoro  et al. (2011) revealed frequency 

ranges between 1-5 Hz noise were increased in wind farm opera ons and wind speed, which is 

similar to our findings. Significant peaks seen in Figure 4.5 that show wind dependency are 

greatest in the range of frequencies from 1 Hz – 35 Hz. Sta ons 1001 and 1002 have an increase 

in rela ve noise level due to their proximity to the wind turbine tower compared with other far-

field sta ons, Figure 4.6. Significant frequency peaks at 2.7 Hz, 7.8 Hz, 14.5 Hz, 24.83 Hz, and 

27.82 Hz are observed strongest near-field, next to a wind turbine, and observed on all sta ons.  
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Addi onal frequencies between 25 Hz and 30 Hz show a decrease in amplitude with an increase 

in sta on distance to the wind turbine tower and is a ributed to the energy propaga on of the 

wind turbine and wind coupling, Figure 4.6. We iden fy a low-frequency peak of 0.29 Hz in the 

power spectrum on near-field sta ons only and a strong 0.87 Hz frequency with higher order 

modes on all other sta ons with decreasing amplitude with distance. We a ribute 0.29 Hz to 

the low-speed sha  axial rota on within the nacelle and the third harmonic 0.87 Hz to the wind 

turbine’s three-bladed sweep signal at 12-14 rpm which translates to an approximately 0.2Hz 

blade sweep frequency. Based on the assump on of narrow sharp peaks in the power spectrum 

are a ributed to mechanical wind turbine noise; we also consider 14.5 Hz, 24.83 Hz, and 27.82 

Hz to be a ributed to the mul -stage sha  revolu on of the high-speed generator axle.  

The HVSR results show no clear dis nc on between day and nigh me periods with 

some power offset between windy and non-windy periods in Figure 4.9. This suggests that the 

HVSR method is well-suited for the analysis of the seismic background of both windy and non-

windy periods. The HVSR curves are analyzed in accordance with the SESAME guidelines for 

ambient excita ons where the spectral ra o curve is tested for reliability and clear peaks (Bard 

et al., 2005). All selected peaks pass the reliable curve criterion. However, some of the selected 

peaks fail the test for clear peaks due to insufficient amplitude difference in defining a peak. We 

a ribute this to an excessively noisy environment of near-field sta ons next to a wind turbine 

tower. It is suggested in HVSR studies to avoid ambient vibra ons in areas of heavy machinery 

and/or high anthropogenic noise sources to avoid including transient ground mo on (Koller et 

al., 2004). Therefore, we compare the HVSR curve results based on the recordings near wind 

turbines to the second array in Alfalfa County. We observe a clear and dis nct peak frequency 



105 
 

common to all sta ons located in Alfalfa County in the frequency band 3 Hz – 5 Hz. Lesser 

amplitude and clear peaks are also visible at 10-12 Hz for some sta ons. Grant County sta ons 

show consistent frequencies at approximately 0.37 Hz, 0.8 Hz, 2.7 Hz, 5.1 Hz, 7.8 Hz, and 10.5 

Hz.  

For further inves ga on, we compare the low wind environment power amplitude 

spectrum with HVSR and no ce a stronger 0.51 Hz peak in the power spectrum. Higher modes 

of 0.51 Hz are also significant in non-windy condi ons similar to higher modes of 0.8 Hz in 

windy condi ons. We a ribute 0.51 Hz to the corresponding speed of the wind turbine blade 

sweep.  

In the HVSR curve, we observe a broad frequency peak at 0.8 Hz. A simple 

approxima on for poten al building resonance (Taranath, 2016) is provided by equa on 4.5 

𝐹 =
10

𝑁
 

(4.5) 

Where 𝐹  is the resonance frequency in hertz and 𝑁  is the height of the structure in units 

of floors. We apply this approxima on to es mate the 80-meter-tall wind turbine monopole 

tower resonance frequency to be 0.37 Hz. We observe the natural frequency of 0.37 Hz at all 

sta ons located near the wind turbine towers, except sta on 1008, which is independent of 

wind forces that we can consider as the wind turbine monopole tower resonance frequency. 

Back of the envelope calcula on with the observed frequency, we es mate the tower height to 
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be 84 meters, which is an adequate approxima on given the significant figures that are 

overlooked in the conversion of stories to meters.  

From ambient noise correla on, we determine the propaga on direc on of seismic 

wave energy at specific frequency bands. Intui vely, it would be assumed that noise frequencies 

would show propaga on away from sta ons posi oned near a wind turbine tower which 

suggests significant seismic noise caused by a direct effect of the wind turbine tower and wind 

interac on with the monopole. However, analysis of the noise coherence shows a general West 

to East trend for wave energy at all frequency bands. Wave energy propaga ng from West to 

East suggests signals are independent of any immediate local effects of atmospheric condi ons 

and structures. This analysis is not sensi ve to the narrow band frequencies previously 

iden fied as wind turbine mechanical noise. One hypothesis is that the low frequencies are 

energy from long-period waves generated by severe winter storms along the Western coastline. 

However, con nental sta ons in Bromirski et al. (2005) did not observe any mid-ocean double-

frequency microseisms when observing mid-ocean storm swells. Low, broad peak frequencies 

could be a ributed to a deep structure causing harmonic resonance since observa ons are 

consistent with the HVSR results. The West to East propaga on trend could be a ributed to a 

near-surface broad frequency source such as the other wind turbines to the south-southwest of 

the array as shown in Figure 4.1. Finally, the noise in this frequency band could have another 

underdetermined source rela vely closer to the Alfalfa array. 
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4.6 Conclusion 

To improve our understanding of the ambient seismic field, the power density func on is 

applied to the dataset recorded by the temporary array of 3 component sensors to highlight 

fundamental frequencies. Based on the results obtained from the power spectrum and 

Mesonet dataset comparison we can conclude the broad amplitude increase in power spectrum 

are likely due to the wind coupling with the ground based on power spectrum amplitude 

comparisons between sta ons and weather condi ons, sharp narrow frequency peaks are due 

to the wind turbine mechanical noise coupling directly with the ground, and the wind turbine 

monopole natural frequency is 0.3 Hz. We assume that (1) the wind turbine tower radiates a 

constant amount of energy at each spin level, (2) All nearby wind turbines are always at the 

same spin level, (3) a simple laterally homogenous subsurface, and (4) wind turbine energy 

sums construc vely. We conclude 0.3 Hz is related to the low-speed sha  axial rota on within 

the nacelle of the wind turbine at two different speeds. The third harmonic of these two signals 

at 0.51 Hz and 0.87 Hz are related to the wind turbine blade beats at the different 

corresponding wind turbine opera ng speeds. High frequency and larger amplitude peaks are 

corresponding to the frequency band of the wind construc vely summing with the preexis ng 

frequencies related to the wind turbine.  

Alfalfa County sta on HVSR results show both common peaks between all sta ons at 3 

Hz – 5 Hz and varying spectral curve peaks over a short spa al distance. We averaged all sta on 

HVSR curves between each array to account for any varia ons in instrument and lateral 

heterogeneity in site effects. The average HVSR curves are both stable in different me windows 

as well as between all sta ons. Therefore, differences between Alfalfa County and Grant 
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County’s HVSR curves can most likely be a ributed to differences in site loca on where the 

obvious difference is the existence of wind turbines. It is perplexing as to how Alfalfa County 

exhibits a greater HVSR amplitude and significant peak whereas, the Grant County HVSR curves 

are rela vely flat in comparison. HVSR interpreta on is commonly used to infer or otherwise 

deduce a subsurface geologic layer of high impedance. Therefore, it may be likely that the 

significant peak observed in Alfalfa County could be caused by a very shallow subsurface layer, 

whereas the Grant County array exhibits a subsurface layer of lesser acous c impedance. 

Certainly, the two loca ons exhibit dras cally different subsurface features as highlighted by the 

HVSR results. An alterna ve hypothesis is that other noise sources are not otherwise 

characterized by this study which is focused on wind turbine seismic noise. Nonetheless, these 

observa onal differences further support the importance of microzona on studies.  

The direc vity of seismic energy between sta ons is determined based on the cross-

correla on approach where me lag indicates the energy transfer direc on. There is direc vity 

across all frequency bands. However, it is counter-intui ve the source of the noise is not coming 

from sta ons next to wind turbines. It may be likely that the primary noise for the region is the 

collec ve wind turbines for the wind farm.  

4.7 Acknowledgement 

We would like to acknowledge the kind Oklahoma landowner who permi ed us to 

access his field to deploy our sensors and fellow graduate students at the University of 

Oklahoma who par cipated in deployment and sensor retrieval. Without their help, this project 



109 
 

would not have been able to be performed. To OSCER, for their con nued support and 

assistance in troubleshoo ng regarding supercompu ng. 

 

 

 

 



110 
 

 

 

Figure 4.11: Local map in Grant County Oklahoma, Alfalfa County, and overview map showing 

the area of interest. geometry and individual sta ons are with triangles, neighboring wind 
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turbine loca ons are depicted with red dots, and roads are shown in green lines.

 

Figure 4.12: A 10-second time series window of the Z component for Stations 1001 from the 

Grant County array and Station 2012 from the Alfalfa County array. Two time periods are 

shown where Day time hours start at 7 pm and nighttime starts at 2 am CST. Note the different 

y-axis in the bottom left figure. 



112 
 

  

Figure 4.13: North component power spectrum of each nodal station in Grant County. 

Significant peak frequencies of interest are identified. Nodal station 1008 is furthest from the 

cluster of turbines. 
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Figure 4.4: Correlation plots of Station 1001 according to pass band frequencies expressed in 

power log amplitudes. Mesonet station MEDF temperature, wind direction, and wind speed data 

are used for this comparison. The top row is temperature, the center row is Wind direction with 

color showing wind speed, and the bottom row is wind speed with color showing wind direction. 

Color bars on the right show wind speed and wind direction. 
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Figure 4.5: Average power spectrum of each component for all stations in both arrays. Spectral 

curves show differences in day, night, windy, non-windy, and total average. 
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Figure 4.6: Amplitude spectrum median average noise per station listed by distance from the 

nearest wind turbine. A squared polynomial best-fit line is used to approximate a spatial signal 

strength decay.  
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Figure 4.14: HVSR results for day 353 at hour 12 from using HVSRpy. Spectral rejection is shown 

to improve HVSR peak frequency selection and standard deviation. 
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Figure 4.8: Ambient seismic wave propagation directivity from frequency bands within 0 - 50 Hz 

and broadband cross coherence for station pairs. The seismic wave source is shown in yellow 

compared to the direction of travel increasing in green tint. 
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Figure 4.9: Average HVSR spectral curve between both Grant County and Alfalfa County. 

Differences in day, night, low wind, and high wind periods are insignificant for the HVSR method. 
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In the pursuit of expanding our understanding in the field of geosciences through 

inves ga ng recorded waveforms, I can defini vely state that there is much more to learn and 

uncover. Although it is quite popular to analyze large events when they happen due to the 

a en on large-magnitude earthquakes can a ract, these events are infrequent. A subs tu on 

of small events and passive seismic ideal since they can provide a proxy for large events. Passive 

seismic methods techniques do not require an ac ve source where ming and posi oning are 

known. Economically, passive seismic analysis is low-cost and simpler to logis cally carry out. 

I have a empted to raise issues and address the shortcomings of tradi onal studies of 

large earthquakes. In one of our studies, I analyzed a limited dataset from a classical hydraulic 

fracturing experiment to improve magnitude es ma ons and quan fy the seismogenic state. I 

found an improvement in magnitude es ma on through waveform cross-correla on and 

subsequent seismogenic index. In addi on, the improved magnitudes and seismogenic index 

revealed subclusters that are orientated in a way where they are more prone to failure.  

For our passive seismic experiments, I compared two newly developed seismic sensing 

instrument types and performed a local site analysis. DAS using dark fiber’s recent introduc on 

to seismic sensing has generated significant interest in its capabili es especially when paired 

with nodal sensors. I examine the noise level differences between the two sensor types and 

follow up with a site characteriza on of the array length to es mate fundamental frequencies 

for shallow subsurface interpreta on of geologic structures.  

Finally, I compare what is considered to be a high noise level environment with wind 

turbines to a low noise level environment without wind turbines and observe how seismic 
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recordings are affected in nodal data. Intui vely, I observe noise levels drop exponen ally 

further away from a wind turbine. However, the cross-coherence of sta on pairs shows a 

general West to East wave propaga on direc on.  

5.1 Summary of Results 

Some key results are as follows: 

(i) I use waveform cross-correla on to iden fy different fracture sets for b-value 

es mates and subsequent seismogenic index calcula on.  

(ii) In Enid (Oklahoma, US) I use both DAS and nodal array to inves gate a long (20km) 

east-west transect. Recordings for both instruments are compared, and site response 

is es mated using the nodal data. Using a velocity model, I es mate the resonant 

subsurface layer. 

(iii) In my wind turbine analysis, I compare nodal data with wind speed data to analyze 

the influence a wind turbine generator may have on the acous c seismic field.  

5.2 Future work 

The feasibility of microseismic and passive seismic analysis is described here for the 

small case studies in Oklahoma. However, the applica on and possibili es reach beyond the 

scope of this disserta on. The magnitude calibra on and subsequent seismogenic index 

approxima on may have applica ons in other cases outside of hydraulic fracturing. Current 

research in the space of carbon sequestra on and geothermal energy may be dependent on 

accurately tracking fracture networks to facilitate proper opera on without the risk of an 
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anomalous fracture network that may have a nega ve impact. Extrapola on of our novel 

approach in microseismicity analysis can improve fracture monitoring.  

DAS is developing into an interes ng monitoring system capable of being successful in 

many environments. It has evolved significantly since its early applica ons in boreholes and 

ocean bo oms. However, noisy environments such as within ci es or roadside s ll pose a 

challenge to DAS. One of the biggest challenges that became apparent with this study is the 

coupling of the fiber op c cable when using a dark fiber array. One way I a empted to 

overcome this is by normalizing the noise level for each channel.   

 


