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Abstract of the dissertaƟon 

A geoscienƟst yearns to learn more about the subsurface and one way of characterizing 

the subsurface is through acƟve seismic methods which uƟlize a local source to iniƟate a strong 

waveform (e.g., explosives, vibroseis, sledgehammer). However, acƟve sources are generally 

costly to operate, and logisƟcally complicated since, depending on locaƟon, they require 

approval from an authorizing body, and are very intrusive and disturbing to the environment. 

AlternaƟvely, passive seismic methods are preferred due to their low cost, ease of instrument 

deployment, and low environmental impact. Passive seismic is not without its caveats. Passive 

seismic relies on the surrounding ambient seismic noise for measurements, which can be 

influenced by local noise sources (e.g., vehicles, strong wind), effecƟvely lowering the signal-to-

noise raƟo. I will present an array of exciƟng results from low-amplitude seismic recordings and 

novel approaches to measuring them to understand the seismic noise environment and 

microseismic events, which have implicaƟons for the field of seismology. I will show an 

improved analysis of seismogenic potenƟal from magnitude calibraƟon, an interpreted resonant 

subsurface boundary determined from resonance frequencies, and a correlaƟon of wind speed 

and seismic recordings. I use an induced seismicity catalog recorded by two nearby boreholes to 

apply a novel workflow of waveform correlaƟon to 2074 earthquakes for magnitude calibraƟon 

and subsequent evaluaƟon of seismogenic potenƟal. Waveform correlaƟon reveals staƟsƟcally 

significant differences in b-value and seismogenic potenƟal aŌer calibraƟon and suggests a 

dependence of the earthquake staƟsƟcs upon their opƟmal or subopƟmal orientaƟon to the 

local stress field. In another study, we uƟlize distributed acousƟc sensing (DAS) recording, which 



xv 
 

allows for a high density of receivers with minimal field deployment. The technique leverages 

novel sensors to measure backscaƩer from a telecommunicaƟon dark fiber, resulƟng in a Ɵme 

series of strain along the cable, effecƟvely 100s to 1000s of “seismometers.” Comparison 

between this novel sensing device and tradiƟonal sensors reveals the higher noise level of DAS. 

However, the higher spaƟal resoluƟon of DAS allows for stacking measurements along channels 

and idenƟfying noise sources that were previously not easily recognizable in tradiƟonal arrays. 

Recorded measurements are oŌen subject to increased background noise in an urban or noisy 

environment. From seismic recordings across Oklahoma from dense arrays, I examine the 

effects of wind and wind turbines on recorded seismic noise via single-staƟon site response 

techniques to determine site resonance frequencies and noise source origin.  
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Chapter 1: 

IntroducƟon 
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1.1 IntroducƟon 

In our ever-changing landscape and growing society, it is not uncommon for the general 

populaƟon to go about their day woefully unaware of the destrucƟve force beneath their feet. 

We live in a world that is constantly shiŌing and in a state of flux. However, every so oŌen we 

are reminded of the energy that can be released in the form of an earthquake. Early civilizaƟon 

socieƟes postulated the origin of earthquakes (Agnew et al., 2002) such as Aristotle (330BCE) 

aƩributed earthquakes to winds blowing in unground caverns (Missiakoulis, 2008), and early 

Japan gave credit to a large subterranean serpent-like caƞish for earthquakes (Severn, 2012). 

Advancements in seismological thinking did not occur unƟl the Lisbon earthquake of 1755 due 

to its destrucƟveness and evidence for causing moƟon at great distances (Frechet 2008). Public 

interest in destrucƟve earthquakes shown in Tan and Maharjan 2018 showed an increased 

interest in earthquakes aŌer large events and correlated public interest to the destrucƟveness 

of the earthquake.   

It is commonly known that the destrucƟveness of earthquakes is directly linked to their 

magnitude (Gutenberg and Richter, 1942) and site-specific shaking intensity (Hartzell, 1992). 

Magnitude esƟmates have evolved with various techniques in calculaƟon such as the least 

square technique for esƟmaƟng b-value and maximum likelihood. These variaƟons have led to 

prolonged debates about a preferred method for esƟmaƟons. More importantly, the conƟnued 

interest in geoscience research has aided in the development of recording for longer conƟnuous 

duraƟons for background noise and the detecƟon of smaller earthquakes. ConƟnuous ambient 

noise analysis has had a resurgence in recent decades, thanks mainly in part to advancements in 

commercial and personal compuƟng where larger datasets may be processed at the same Ɵme. 
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One advantage of conƟnuous data is that mulƟple datasets can be compared amongst each 

other. Large dataset recordings from regional networks have helped in monitoring the 

earthquake acƟvity in Oklahoma where seismicity increased steadily in the earlier part of the 

millennium due to large-scale fluid injecƟon as invesƟgated in many studies (i.e. Rashidi and 

Ghassemieh, 2023). However, current regional networks sƟll lack the spaƟal density to capture 

interstaƟon lateral heterogeneiƟes in the subsurface. High-density local deployments of seismic 

sensors can resolve the smaller-scale lateral variaƟons in the subsurface that regional networks 

cannot capture. 

The overall moƟvaƟon for this dissertaƟon is to explore new ways to invesƟgate ground 

moƟon intensity. This is done broadly by first examining the earthquake magnitudes during a 

hydraulic fracturing survey and then with passive seismic techniques to invesƟgate site response 

and the potenƟal for ground moƟon amplificaƟon. I present the applicaƟons of passive seismic 

techniques at local deployments for high-spaƟal-resoluƟon surveys of the shallow subsurface. 

Apart from the overall moƟvaƟon, each secƟon will have its moƟvaƟon which will be 

introduced.  The individual secƟon moƟvaƟon includes the – (i) improvement of magnitudes, (ii) 

resonance of a deep intraconƟnental basin, and (iii) local region noise sources’ impact on 

acousƟc seismic recordings.  

1.2 Overview of the DissertaƟon 

In Chapter 2, I invesƟgate a classical dataset, the CoƩon Valley hydraulic fracturing 

survey in Carthage, Texas. I will use waveform correlaƟon to improve magnitudes calibraƟon 

and apply newly calibrated magnitudes to quanƟfy the seismogenic potenƟal. Cross-correlaƟon 
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is used to idenƟfy individual fracturing clusters for a b-value analysis and subsequently 

seismogenic potenƟal. I show improvement in magnitude calibraƟon and seismogenic potenƟal 

results show a beƩer correlaƟon with the different fracture sets. 

In Chapter 3, I use data collected from 3 component nodal sensors co-located with 

distributed acousƟc sensing using a dark fiber array to compare and evaluate the local site 

condiƟons for resonance at a high spaƟal resoluƟon (kilometer scale). 1-month of conƟnuous 

passive acousƟc seismic data was collected. I then compare the results with a velocity model to 

esƟmate geologic basin structures which show shallow and coherent resonance layers within 

the subsurface.  

In Chapter 4, I collect 1-month of conƟnuous passive acousƟc seismic data from two 

locaƟons in Northern Oklahoma and compare them with wind speed data. Ambient noise 

processing techniques are used to idenƟfy and analyze the dominant local noise source, wind 

turbines. I compare the results from the two arrays under similar wind speed condiƟons, but 

one lacking in wind turbines. 

1.3 Structure of the DissertaƟon 

This dissertaƟon consists of 3 chapters, one of which is formaƩed in preparaƟon to be 

submiƩed for publishing, and the other two are in preparaƟon for submission. The chapters are 

as follows: 

 Chapter 2: Waveform correlaƟon improves magnitude calibraƟon during hydraulic 

fracturing. 

 In preparaƟon for resubmission to the BulleƟn of Seismological Society of America as: 
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Ng,R.,Chen,X.,Nakata,N.,Walter,J.I., (2023). Waveform correlaƟon improves magnitude 

calibraƟon during hydraulic fracturing. BulleƟn of the Seismological Society of America 

 Chapter 3: Site response of ambient seismic noise of Northern Oklahoma from the 

perspecƟve of Nodal and DAS arrays. 

 Chapter 4: Wind and wind turbine influence on measurements of seismic noise.  
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2.1 Abstract 

Microseismic monitoring is an important technique to obtain detailed knowledge of in-

situ fracture size and orientaƟon during acƟve well sƟmulaƟon to maximize fluid flow 

throughout the rock volume and opƟmize producƟon. Furthermore, considering that the 

frequency of earthquake magnitudes empirically follows a power law (i.e. Gutenberg-Richter), 

the accuracy of microseismic event magnitude distribuƟons is potenƟally crucial for seismic risk 

management. In this study, we analyze microseismicity observed during four hydraulic fracture 

stages of the legacy CoƩon Valley experiment in 1997 at the Carthage gas field of East Texas, 

where fractures with significant moment release were acƟvated at the base of the sand-shale 

Upper CoƩon Valley formaƟon. We perform waveform cross-correlaƟon to detect similar event 

clusters and calibrate event magnitudes based on relaƟve amplitudes within those clusters from 

waveform cross-correlaƟon. The calibrated magnitudes significantly reduce the deviaƟons 

between magnitude differences and relaƟve amplitudes of event pairs. This subsequently 

reduces the magnitude differences between clusters located at different depths. ReducƟon in 

magnitude differences between clusters suggests that aƩenuaƟon-related biases could be 

effecƟvely miƟgated with waveform correlaƟon. The maximum likelihood method is applied to 

understand the magnitude frequency distribuƟons and quanƟfy the seismogenic index of the 

geographic clusters. StaƟsƟcal analyses aŌer magnitude calibraƟon suggest that fractures that 

are more favorably oriented for shear failure have lower b-value and higher seismogenic index, 

perhaps suggesƟng a higher potenƟal for larger earthquakes, rather than fractures subparallel 

to maximum horizontal principal stress orientaƟon. 
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2.2 IntroducƟon 

Microseismicity monitoring has been a useful technique in quality control of the 

operaƟon during hydraulic fracturing in oil and gas exploraƟon (Albright et al., 1982). Source 

locaƟon, fracture orientaƟon, and fracture growth may be determined from microseismic 

monitoring to improve and calibrate treatment designs, as well as idenƟfy potenƟal placement 

for addiƟonal hydraulic fracturing or wastewater injecƟon wells within the desired unit. In some 

cases, it may be essenƟal to maximize economical producƟon by ensuring the rock volume is 

thoroughly sƟmulated and creates high permeability for long-term hydrocarbon recovery by 

examining such factors as proper fracture orientaƟon, size, fractured volume, and hydraulic 

communicaƟon. 

Hydraulic fracturing creates fractures and expands high-permeability fracture pathways for 

effecƟve and efficient hydrocarbon extracƟon. This process is completed in stages because of 

the large amount of energy required to pump fluids and materials (e.g., sand proppant to hold 

fractures open) for generaƟng fractures and is only pracƟcal to frack for a limited amount of 

Ɵme in each segment of the leased rock volume. The behavior of the seismicity that is induced 

during well sƟmulaƟon is spaƟally and temporally controlled by stress relaxaƟon and pore 

pressure fluctuaƟons iniƟated at the injecƟon locaƟon (Shapiro et al., 1997). Hydraulic fractures 

are created through a tensile opening in the direcƟon of the least principal stress, and the 

expected hydraulic fracture usually aligns with the direcƟon of maximum principal stress 

(Hubbert and Willis, 1957). While the tensile opening mode is expected for hydraulic fractures, 

shear slip has oŌen been observed for microseismic events and larger events, which has been 

interpreted to represent an interacƟon between hydraulic fractures and natural fractures or 
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other sedimentary structures such as bedding planes (Maxwell and Cipolla, 2011; Rutledge et 

al., 2004; Hubbert and Willis, 1957). 

Analyses of characterisƟcs of event occurrence may provide a glimpse into the state of 

subsurface stress. The power-law distribuƟon of earthquake occurrence in equaƟon 2.1, 

commonly referred to as the Gutenberg-Richter (GR) relaƟonship (Gutenberg and Richter, 

1942), is described as  

logଵ଴ 𝑁 = 𝑎 − 𝑏𝑀, 

(2.1) 

where 𝑁 is the cumulaƟve number of earthquakes above 𝑀 magnitude, 𝑎 is the 

intercept, and 𝑏 is the slope of the power-law distribuƟon. However, not all events are detected 

by a network of seismometers. The magnitude of completeness (𝑀௖) describes the magnitude 

threshold, above which all events should be completely detected by the network. The b-value 

has been observed to vary across different tectonic zones, stress regimes, earthquake causal 

condiƟons, and even temporally for the same study region (e.g., Ghosh et al., 2008). It has been 

suggested that it may represent a relaƟve indicator of stress distribuƟons across fault zones 

(Bachmann et al., 2014; Schorlemmer et al., 2005). Bachmann et al. (2012) found that the b-

value decreases with distance from the injecƟon point, which could indicate reduced fault 

strength due to higher pore pressure near the injecƟon source. The relaƟonship between 

injected volume and magnitude evoluƟon can help us forecast induced seismicity and evaluate 

a potenƟal maximum magnitude for a fault zone (McGarr, 2014). Shapiro et al. (2010) 

developed the seismogenic index (SI) model to explain the relaƟonship between injected 
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volume and event number for different magnitudes, where regions with higher seismogenic 

index have a higher probability of larger earthquakes with the same injected volume. The 

seismogenic index is a staƟsƟcal approach to examine the occurrence probability of fluid 

injecƟon-inducing earthquakes at a given injecƟon site (Shapiro et al., 2010). 

In this study, we analyze a legacy dataset for four hydraulic fracturing stages of the Ɵght-

gas reservoir within the sand-shale CoƩon Valley formaƟon in Carthage, Texas (May – July 1997) 

(Walker, 1997). High-resoluƟon relocaƟon and focal mechanism analyses by Rutledge et al. 

(2004) revealed different sets of fractures within the base of the Upper CoƩon Valley formaƟon. 

Hydraulic treatments with anomalously high moment releases and a high number of events 

occurred within several dense clusters, which delineate fault bends or jogs that are more 

favorably oriented for shear failure. Our aim in this study is to invesƟgate whether staƟsƟcal 

analyses can reveal different characterisƟcs of fractures. We begin by introducing the dataset, 

then perform magnitude calibraƟon using waveform cross-correlaƟon analysis, followed by a 

detailed magnitude-frequency distribuƟon and seismogenic index analyses. Finally, we discuss 

the improvements before and aŌer magnitude calibraƟons and the implicaƟons of the improved 

results.  

2.2.1 Experiment data  

The hydraulic fracturing data used in our study was recorded in 1997 during injecƟons at 

depths of 2757-2838 meters and 2615-2696 meters in the CoƩon Valley FormaƟon. The 

hydraulic fracturing experiment induced more than 4,000 microseismic events over six 

treatments, which were recorded by two borehole monitoring arrays (Walker, 1997; Walker et 
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al., 1998). Increasing the number of monitoring borehole arrays from one to two in the 

experiment for some treatments improved the ability to disƟnguish between coherent noise 

and microseismic events, in addiƟon to overcoming low signal-to-noise raƟo and low resoluƟon, 

as described by Zinno et al. (1998). 

For our analysis, we only use the available treatments A, B, C, and E as represented in 

Figure 2.1, and follow the same naming convenƟon as Rutledge et al. (2004), which include 

2547 events from the original Walker (1997) catalog (Table 2.1). Among these events, 2074 has 

available waveforms. The distribuƟon of catalog events with complete waveforms is shown in 

Figure 2.2, which shows an evenly sampled subset of the original catalog. The relaƟonship 

between the 2074 microseismic events and injecƟon rate with Ɵme is shown in Figure 2.3 for 

the four treatments analyzed here. 

We observe a good correlaƟon between the onset Ɵme of the injecƟon rate and the 

origin Ɵme of the induced seismic events. In treatments A, B, and C the abrupt decrease in 

injecƟon rate also correlated with the seismicity rate drop (Figure 2.3). However, in treatment E 

there is a relaƟve anomalous increase in seismicity rate with injecƟon. Rutledge et al., (2004) 

aƩribute anomalous seismic acƟvity to pressurized fracture offsets or orientaƟon changes that 

concentrated stress and fluid choke off. Typical right lateral movement places the leŌ-stepping 

jog of treatment E in compression, but a right step is hypothesized by Rutledge et al., (2004) as 

a pressure sink which delayed seismicity. Therefore, seismicity increased even aŌer shut-in, 

which is an industry term that denotes no further fluids were entering or exiƟng the wellhead. 
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In this analysis, we only use the 2074 cataloged events with complete waveforms that 

clear P and S-wave arrivals from four stages analyzed in Rutledge and Urbancic, (1999). Seismic 

moments are calculated by Rutledge et al. (2004) using methods described in Andrews (1986), 

which averages the values obtained from P and S phase recordings from several staƟons. The 

seismic moments from Rutledge et al. (2004) used in this study are mostly between the narrow 

range of 0.4 µNm – 8 µNm. The majority of the relocated microseismic events form clouds that 

delineate fractures aligned with the maximum horizontal stress (SH-max at N80E), especially 

during treatments A and C (Figure 2.1). During treatments B and E, microseismicity occurred in 

several clusters we idenƟfied using cross-correlaƟon with some having anomalous orientaƟons 

that are off-axis to fractures aligned with SH-max (Rutledge et al., 2004). As seen in Figure 2.1, 

most staƟons to event hypocenters distances are at similar equidistant ranges between 1km -

2km and at a similar depth. 

2.3 Methods 

In this study, we perform magnitude calibraƟon based on the relaƟve amplitude 

(Cleveland and Ammon, 2015) measured from waveform cross-correlaƟon following Chen et al. 

(2018). Then, we perform magnitude-frequency distribuƟon analysis to obtain the b-value for 

each treatment with the maximum-likelihood method (referred to as “MLE”) and compare 

results using both the original catalog magnitudes and the calibrated magnitudes. To beƩer 

understand the improvement of calibrated magnitudes, we compare the frequency-magnitude 

distribuƟons (FMD) of the different treatments and subclusters of treatment B. Finally, we link 

magnitudes with injected volume to obtain seismogenic indexes for each treatment following 

Shapiro et al. (2010) using corresponding b-values obtained from MLE. For both the b-value and 
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seismogenic index, we assess the uncertainty through bootstrap resampling. The relaƟve 

variaƟons of b-value and seismogenic index among treatments and subclusters are interpreted 

as related to the relaƟve stress state of different fractures via Mohr circle analysis.  

2.3.1 Magnitude calibraƟon using cross-correlaƟon 

Precise magnitude esƟmates may be acquired from the cross-correlaƟon of two 

earthquake waveforms with well-constrained reference event magnitudes (Gibbons and 

Ringdal, 2006; Schaff and Richards, 2014) and can be applied to earthquake clusters with similar 

faulƟng geometry and depth (Cleveland and Ammon, 2015). Magnitude calibraƟon can reduce 

the scaƩering between the relaƟve amplitude raƟos and magnitude differences of event pairs, 

which is important to improve staƟsƟcal analyses related to magnitude distribuƟons (Chen et 

al., 2018; Shelly et al., 2015, 2016). 

The dataset includes rotated three-component microseismic event waveforms at each 

geophone with sampling rates of 1000 Hz. For each treatment, only a subset of waveforms is 

available for the cataloged events from Rutledge et al. (2004) (Table 2.1). We first apply a short-

term average/long-term average (STA/LTA) picker using the GISMO (Reyes and West, 2011) 

package to obtain P-wave arrival Ɵme on the verƟcal channel and S-wave arrival Ɵme on 

horizontal and transverse channels. Waveforms with no detectable picks are not used in the 

following analysis. ExaminaƟon of waveforms suggests that the transverse component has the 

highest signal-to-noise raƟo. Therefore, we use the S-wave from the transverse component for 

magnitude calibraƟon. 
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We then measure relaƟve amplitude using waveform cross-correlaƟon (CC) with the 

following steps for each treatment: 

1. A detailed inspecƟon shows that many traces have a low signal-to-noise. To improve our 

data visualizaƟon, we apply a BuƩerworth bandpass between 20 Hz and 150 Hz where 

observed amplitudes for microseismic events are the largest. 

2. Extract a 70 ms window around the iniƟal arrival of the microseismic event (10 ms 

before and 60 ms aŌer). 

3. Cross-correlate each event pair at each staƟon and measure the relaƟve amplitude raƟo 

using principal component analysis for waveform pairs with a CC coefficient greater than 

0.6 (Wold et al., 1987). An example of relaƟve amplitude measurement is shown in 

Figure 2.4. The waveform pairs are Ɵme-shiŌed based on the lag Ɵme, and the relaƟve 

amplitude raƟo is calculated by taking the maximum eigenvalue of the covariance of the 

shiŌed waveform pairs. Only event pairs with amplitude raƟo measurements from more 

than 5 receivers are used for magnitude calibraƟon. 

4. Invert for new magnitudes based on amplitude raƟos and cataloged seismic moment 

(Chen et al., 2018; Cleveland and Ammon, 2015; Schaff and Richards, 2014; Shelly et al., 

2015, 2016) based on equaƟon 2.2, 

⎣
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where the logarithmic amplitude raƟo (𝐴𝑅௝,௞) between events j and k is the averaged amplitude 

raƟo from all receivers with CC > 0.6. In the last row of equaƟon 2.2, N is the total number of 

recorded earthquakes and ∑ logଵ଴ 𝑀଴
௜ே

௜ୀଵ  is the summaƟon of the total seismic moment for 

events included in the calibraƟon from the iniƟal catalog, which constrains the summaƟon of 

the calibrated seismic moment. The calibrated magnitudes are obtained via the moment 

magnitude relaƟonship (equaƟon 2.3) from Kanamori, (1977) where the moment (𝑀଴) in dyne-

cm is converted to N-m to obtain moment magnitude (𝑀௪): 

𝑀௪ = (logଵ଴ 𝑀଴ − 9.1)/1.5  

(2.3) 

2.3.2 b-value 

Similar to Ibanez et al. (2012), we determine the Mc by maximum curvature method 

(MAXC) (Wyss et al., 2000) from an open-source z-map Matlab toolbox (Wiemer and Malone, 

2001). MAXC determines Mc by the maximum value of the first derivaƟve of the frequency-

magnitude curve, the point of maximum curvature. However, a caveat in MAXC is the tendency 

to underesƟmate Mc in data as explained by Mignan and Woessner (2012). Using events with 

magnitudes above the esƟmated Mc, the b-values from the Gutenberg-Richter relaƟonship 

(equaƟon 2.1) are obtained using the maximum-likelihood method (MLE) (Wiemer and Malone, 

2001).  The esƟmated b-value is the logarithmic of 𝑒/(𝑀௔௩ − 𝑀௠௜௡) using the average 

magnitude (𝑀௔௩) and minimum magnitude (𝑀௠௜௡) (both before and aŌer magnitude 

calibraƟon) following equaƟon 2.4 (Aki, 1965): 
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𝑏 = logଵ଴ 𝑒/(𝑀௔௩ − 𝑀௠௜௡)   

(2.4) 

While MLE provides reliable esƟmates of b-values when the FMD follows a GR 

relaƟonship (Milojevic, 2010), there is the possibility that MLE tends to bias lower magnitude 

events when Mc is too low and will result in a poor fit to the GR relaƟonship (Ibanez et al., 

2012). 

To assess the uncertainty in b-values due to possible biases in Mc, we perform bootstrap 

resampling with 100 resampled datasets for each treatment. For each resampled dataset, a new 

Mc and b-value are esƟmated. Generally, b-values are expected to be ∼1 in large sample sizes 

(Frohlich and Davis, 1993), which is typically observed for tectonic earthquakes (Kagan, 1999), 

but seismicity associated with fluid injecƟon (Bachmann et al., 2011, 2012, 2014; Lei et al., 

2008) or magma intrusion (Wiemer and McNuƩ, 1997) oŌen have b-values greater than 1. 

Differences in styles of faulƟng also produce varying b-values (Schorlemmer et al., 2005). The 

spaƟotemporal variaƟons of the b-value oŌen indicate stress distribuƟons, with lower b-values 

indicaƟng higher differenƟal stress (Schorlemmer et al., 2005) or associated with fault acƟvaƟon 

(Shelly et al., 2016; Chen et al., 2018).  

2.3.3 Mohr circle construcƟon 

A Mohr circle can be used to visualize the subcluster analysis of the treatments with 

clusters not orientated along to SHmax. Developed by Mohr (1900) to invesƟgate fluid pressure 

and stress-controlling fracture opening, Mohr diagrams provide a useful tool for visualizaƟon of 

the relaƟonship between the normal stress acƟng on a fracture surface and the shear stress 
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required to overcome the fricƟon angle. We can describe the normal stress (𝜎௡) using the 

maximum (𝜎ଵ) and minimum (𝜎ଷ) principal stress, and (θ) the angle between the fracture plane 

and maximum principal stress. Mohr-Coulomb failure criterion (Heyman et al., 1971) included a 

failure envelope that is tangenƟal to the Mohr circle where the apex between the failure 

envelope and the Mohr circle is (𝜎௡, 𝜏௙). Normal stress is determined geometrically in equaƟon 

2.5 using the horizontal component of the Mohr circle normal stress (ఙభିఙయ

ଶ
cos 2𝜃) and the 

principal average stress (ఙభାఙయ

ଶ
). 

𝜎௡ =
ఙభାఙయ

ଶ
+

ఙభିఙయ

ଶ
cos 2𝜃  

(2.5) 
Mohr-Coulomb failure criterion failure envelope describes the stress state at failure 

when the acƟng shear stress overcomes the internal fricƟon angle (φ) and normal stress. The 

geometric relaƟonship (equaƟon 2.6) of the shear stress at failure (𝜏௙) to the normal stress and 

material cohesion (c) is given by 

𝜏௙ = 𝑐 + 𝜎௡ tan 𝜑  

(2.6) 

 Since we are only interested in the relaƟve variaƟon of the fracture stress states on the 

Mohr circle, we only calculate a schemaƟc Mohr diagram with normalized stress amplitude and 

assume a fricƟon coefficient of 0.75 for the Coulomb failure envelope.  

2.3.4 Seismogenic Index 

Developed by Shapiro et al. (2010), the seismogenic index ∑ is a derived parameter 

based on the fluid-injecƟon rate and seismicity rate of induced earthquakes that quanƟfies the 
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seismotectonic state at an injecƟon site, originally empirically derived from geothermal case 

studies. The seismogenic index is theoreƟcally independent of injecƟon Ɵme and any injecƟon 

characterisƟcs (Shapiro et al., 2010), where the larger the index the larger the probability of a 

significant magnitude event. Shapiro et al. (2010) esƟmated the seismogenic index for a specific 

injecƟon locaƟon using the following: 

∑(𝑡) = logଵ଴ 𝑁ஹெ(𝑡) − logଵ଴ 𝑄௖(𝑡) + 𝑏𝑀  

(2.7) 

where N is the number of induced events with magnitude ≥ M   larger than (M) as a funcƟon of 

injecƟon Ɵme (t) and the cumulaƟve injecƟon fluid volume (𝑄௖). Figure 2.3 depicts the 

relaƟonship between the injecƟon rate, Ɵme, magnitude, and the number of events which is 

used to determine the seismogenic index values in equaƟon 2.7. We use the previously 

obtained b-values and Mc to calculate the seismogenic index at each Ɵme step of 0.5 hours and 

assume the average as the final index for each treatment. For each treatment, the seismogenic 

index is esƟmated using the catalog both before and aŌer magnitude calibraƟon.  

The uncertainty of the seismogenic index is esƟmated with the same 100-resampled 

dataset for each treatment used for b-value uncertainty esƟmaƟon. Both b-value and 

seismogenic index uncertainƟes are quanƟfied with probability density funcƟons based on 

results from these resampled datasets, where bootstrapped probability histogram results (h) 

are from the raƟo of the cumulaƟve (n) observaƟons within a given bin size (k) at (i) bins shown 

in equaƟon 2.8. 
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ℎ =
∑ ௡೔

ೖ
೔సభ

௞
  

(2.8) 

2.4 Results 

Out of the 2074 cataloged events with waveforms (see Table 2.1), we obtain calibrated 

magnitudes for 1963 events. We compare the relaƟonship between magnitude difference and 

measured amplitude raƟo to examine the improvement of calibrated magnitude. Then, we 

compare the distribuƟon for the b-value and seismogenic index from the bootstrap resampling 

to discuss the geomechanical implicaƟons of those measurements.  

2.4.1 Calibrated magnitude 

For each stage, we use heat maps to examine the relaƟonship between the logarithm of 

amplitude raƟo measured from the waveform and the relaƟve magnitude between available 

event pairs. The image resoluƟon of the heat map is determined by the total number of events 

in each bin of amplitude raƟo and relaƟve magnitude. Figure 2.5 clearly shows magnitude 

calibraƟon significantly reduces the scaƩer for all treatments converging to a slope of 1.5 

between amplitude raƟo and relaƟve magnitude as expected from equaƟon 2.3 (the moment 

magnitude relaƟonship). 

Before magnitude calibraƟon, different treatments exhibit diverse behaviors. Both 

treatments A and B were conducted in treatment well 21-10 and monitored by wells 21-09 and 

22-09. Both exhibited highly scaƩered distribuƟons between amplitude raƟo and relaƟve 

magnitude before magnitude calibraƟon. Several sub-parallel linear trends can be idenƟfied 
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with an approximate slope of 1.5 matching that of the inversion in equaƟon 2.3. These sub-

parallel groups and increased scaƩer in the uncalibrated data could be due to aƩenuaƟon from 

different ray paths (see Figure 2.1). Treatments C and E were conducted in treatment well 21-09 

and recorded by well 22-09. These two treatments exhibit Ɵghter distribuƟons compared to 

treatments A and B before magnitude calibraƟon, which could be due to narrower depth 

distribuƟon since ray paths to the monitoring well are similar (see Figure 2.1). To beƩer 

understand the cause of the scaƩered magnitudes in the original catalog, we examine the FMD 

for similar event clusters during treatment B. We group events based on waveform similarity by 

defining similar event clusters with minimum CC of 0.6 from at least 8 staƟons. Figure 2.6 shows 

events in each cluster confined within similar depth and spaƟal locaƟon, which is consistent 

with grouping based on locaƟon and polarity in Rutledge et al. (2004). These clusters have large 

magnitude differences before calibraƟon, which decrease aŌer calibraƟon (Figure 2.6b and 

2.6d). The measured amplitude raƟos are based on filtered waveforms between 20 and 150 Hz, 

which is well below the expected corner frequency for the magnitude range (Urbancic et al., 

1996). By measuring the amplitude raƟo between event pairs at similar locaƟons, the 

aƩenuaƟon from the source region and path can be effecƟvely canceled out as seen in Figure 

2.5.  

2.4.2 Frequency-Magnitude DistribuƟon and the Seismogenic Index 

Figure 2.7 shows the FMDs of the four treatments before and aŌer magnitude 

calibraƟon. Table 2.2 provides the resultant seismogenic index before and aŌer magnitude 

calibraƟon as well as the b-value and Mc for each treatment. For all treatments, there exists 

some deviaƟon from the GR relaƟonship at higher magnitudes. DeviaƟons from the GR 
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relaƟonship have been observed for fluid-induced seismicity (Skoumal et al., 2015). This could 

explain the large difference in b-value between the MLE and least squares (LST) methods (see 

supplementary materials). The b-values with the MLE method for treatments A, B, and C are 

systemaƟcally lower than the b-value esƟmates from Dinske et al., (2013). However, those b-

values from Dinske et al. (2013) agree well with our LST b-values (see supplementary materials), 

suggesƟng that the choice of b-value methods strongly influences the results when the FMD 

strongly deviates from the GR relaƟonship (Skoumal et al., 2015). Despite the large differences 

in absolute b-values, the relaƟve differences between b-values using the same method remain 

consistent. Both Dinske et al., (2013) and the MLE esƟmates here, found treatment B has a 

slightly lower b-value than treatment A and a much higher b-value for treatment C. 

The probability density funcƟons for the b-value and seismogenic index from the four 

treatments are compared in detail in Figure 2.8. The uncertainty for treatment C is significantly 

reduced aŌer magnitude calibraƟon, suggesƟng magnitude calibraƟon improves the stability of 

subsequent calculaƟons. The relaƟve distribuƟon of the seismogenic index is consistent before 

and aŌer calibraƟon: treatment E has the highest value, followed by treatment B, A, and C. The 

relaƟve distribuƟon of the b-value shows some differences. Before magnitude calibraƟon, 

treatment B has the lowest b-value, followed by treatments E, A, and C, while aŌer calibraƟon, 

treatment E stands out with the lowest b-value, followed by treatments B, A, and C. Treatments 

B and A consistently have similar b-values, and treatment C always has the highest b-value. Both 

the seismogenic index and b-value can be associated with seismic hazard: a higher seismogenic 

index and lower b-value indicate a staƟsƟcal populaƟon of earthquakes with a distribuƟon 

composed of larger events within the range of magnitudes observed. In this respect, the relaƟve 
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ranking of b-value and seismogenic index aŌer magnitude calibraƟon consistently indicates the 

highest seismogenic potenƟal for treatment E, demonstraƟng that magnitude calibraƟon 

perhaps provides a more coherent hazard assessment using different parameters. 

Figure 2.6 shows that treatment B can be further separated into similar event clusters. A 

principal-component-analysis method is used to esƟmate the geometry of each cluster 

following Qin et al. (2022). Among all clusters, clusters 1 and 4 show a relaƟvely larger angle, 

20°, from SHmax orientaƟon, while the other clusters have a similar orientaƟon to SHmax. We 

then further assess the distribuƟon of b-value and seismogenic index for events within clusters 

1 and 4 (referred to as “C1-4”) and the rest of the events (referred to as “others”). C1-4 consists 

of about 40% of all events in treatment B. Figure 2.8 shows that C1-4 has a lower b-value and a 

higher seismogenic index than “others”. The overall b-value of treatment B lies between C1-4 

and “others”. The events that are not within C1-4 have a similar seismogenic index compared to 

treatment A both before and aŌer magnitude calibraƟon. This suggests different seismogenic 

potenƟals for fractures of different orientaƟons during the same treatment.  

2.5 Discussion 

Within the scope of this study, we determine seismogenic index values from calibrated 

magnitudes based on a limited range of data. The magnitude calibraƟon using the full waveform 

provides significantly improved magnitudes, though the staƟsƟcal analysis of the b-value and 

seismogenic index shows some differences. Here, we further discuss the influence of magnitude 

calibraƟon on staƟsƟcal analyses and the possible physical processes that cause the differences 

among different treatments and different fractures. 
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2.5.1 Factors influencing magnitude measurement 

The significant improvement in agreement between amplitude raƟo and magnitude 

difference in Figure 2.5 suggests that analysis of the full waveform is needed for microseismic 

events. Catalog magnitude esƟmaƟons were calculated based on seismic moments measured 

by Urbancic et al. (1996) and the moment magnitude relaƟonship in equaƟon 2.3 (Rutledge et 

al., 2004). Influences such as aƩenuaƟon (quality factor Q) may impact seismic moment 

measurements. Lower quality factors Q (high aƩenuaƟon) were shown to result in a smaller 

seismic moment and magnitude esƟmaƟon than similar earthquakes in higher Q regions (Chung 

and Bernreuter, 1981). Events with highly similar waveforms typically share similar ray paths and 

are closely located (Kane et al., 2013), so the amplitude raƟos from full waveform are less 

influenced by aƩenuaƟon. In other words, aƩenuaƟon from the source region and path are 

effecƟvely canceled out. MiƟgaƟng the influence of aƩenuaƟon on the original magnitude 

esƟmaƟons leads to significantly improved magnitude esƟmaƟons. Figure 2.6 clearly shows that 

magnitude calibraƟon reduces the systemaƟc magnitude differences among clusters located at 

different depths. Figure 2.5 shows that the original magnitude difference exhibits a very 

scaƩered relaƟonship with the amplitude raƟos. The calibrated magnitudes miƟgate the 

aƩenuaƟon problem and exhibit beƩer agreement with the amplitude raƟos in Figure 2.5. 

Cleveland and Ammon (2015) used a wide aperture of seismic networks for events used 

in amplitude raƟo calculaƟons. The borehole arrays used here have relaƟvely limited azimuthal 

coverage and could lead to issues in radiaƟon paƩerns. Figure 2.6 shows that events of similar 

waveforms are grouped into compact clusters, which agree with clusters of similar focal 

mechanism soluƟons in Rutledge et al. (2004). This suggests that when measuring the raƟo 
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between events of similar waveforms, the influence of radiaƟon paƩern would be relaƟvely 

small, as long as the events have similar focal mechanisms or faulƟng styles. 

2.5.2 UncertainƟes in staƟsƟcal measurement 

The b-value tends to be approximately ~1 for tectonic earthquakes (Schorlemmer et al., 

2005) and nearly ~1 for interconƟnental regions such as Oklahoma (e.g., Walter et al., 2017). 

However, for induced seismicity that is triggered or associated with hydraulic fracturing, the b-

value tends to be higher, which represents a greater quanƟty of lower magnitude events to 

larger magnitude events when compared to regions where the b-value tends to be 

approximately 1 (Eaton et al., 2014). Corrected magnitudes that are included in b-value 

esƟmaƟon are important when characterizing induced seismicity since there is oŌen a smaller 

dynamic range of magnitude units as compared to natural earthquakes because the catalogs are 

typically smaller. A relaƟvely higher b-value implies lower distribuƟon of larger events, which 

has been interpreted as being consistent with a conceptual model of relaƟvely lower fault 

strength (Schorlemmer et al., 2005). In such a model, asperiƟes remain small. On the other 

hand, event number and magnitude may depend on the injecƟon pressure and, within the 

seismogenic index model, is proporƟonal to injecƟon volume (Dinske and Shapiro, 2016; 

Shapiro et al., 2007, 2010). 

The seismogenic index esƟmaƟon requires an esƟmaƟon of the b-value (equaƟon 2.5), 

so uncertainƟes in the b-value would influence seismogenic index esƟmaƟons. The 

uncertainƟes are assessed via the bootstrap resampling method, and a new Mc is esƟmated for 

each resampled dataset. This could miƟgate the potenƟal bias due to possible underesƟmaƟon 
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of Mc using the MAXC method (Mignan and Woessner, 2012). SomeƟmes, the FMD can deviate 

from the GR relaƟonship (Skoumal et al., 2015), especially for earthquake catalogs that consist 

of small numbers of events. Figure 2.7 shows the deviaƟon from the GR relaƟonship at larger 

magnitudes. This leads to some discrepancies between different methods, for example, LST 

tends to produce steep slopes that fit larger magnitude bins beƩer. However, LST tends to have 

larger uncertainƟes using the bootstrap resampling method, and the probability density 

funcƟon features bi-modal distribuƟon for treatment B (Figure S2.1 in the supplemental 

material). Despite the larger uncertainty, LST shows some consistent relaƟve distribuƟons with 

MLE esƟmates: treatment E has a lower b-value and higher seismogenic index than “others” 

(non C1-4) from treatment B, followed by treatment A and C. The relaƟve distribuƟon between 

the whole treatment B (and C1-4) and treatment E shows some inconsistency due to the bi-

modal distribuƟon of b-values from the bootstrap resampling, suggesƟng a possible instability 

with the least-square approach, or some differences in the seismogenic potenƟal of different 

sets of fractures during treatment B. 

2.5.3 Difference in the seismogenic potenƟal for different sets of fractures 

The natural fracture system in the CoƩon Valley formaƟon is dominated by fractures 

with similar orientaƟons to SHmax (Rutledge and Phillips, 2003). As suggested for other areas, 

the shear failure microseismic events represent an interacƟon between hydraulic fracture and 

natural fracture system (Maxwell and Cipolla, 2011). Treatments A and C involve fractures of 

similar orientaƟon to SHmax at shallower depth, while treatments B and E involved fractures at 

deeper depth with some anomalous fractures that are more favorably oriented relaƟve to the 
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stress field (Rutledge et al., 2004) (Figures 2.2). Rutledge et al. (2004) interpreted those 

anomalous clusters as fault jogs or bends that represent areas of stress concentraƟon. 

During treatment E, over 80% of events occurred along the fracture that is significantly 

deviaƟng from SHmax, therefore, we do not separately analyze different event groups in 

treatment E. During treatment B, about 40% of events occurred within clusters 1 and 4 that 

strongly deviate from SHmax, so we separately analyzed different event groups (Figure 2.8 and 

Figure S2.1). The b-value results from MLE show that C1-4 during treatment B behave more 

similarly to treatment E, while the other events occurring fractures aligned with Shmax behave 

more similarly to treatment A (Figure 2.8). 

Based on the relaƟve angle between the orientaƟon of different fracture sets and the 

SHmax, Figure 2.9 displays these fracture sets on a schemaƟc Mohr diagram and a Coulomb 

failure envelope with a fricƟon coefficient of 0.75. The largest cluster in treatment E and C1-4 in 

treatment B are more opƟmally oriented than the other fractures. The evoluƟon of cumulaƟve 

seismic moment shows that the seismic moment release during treatment B is mainly released 

during C1-4 as exhibited in Figure 2.10. The laƩer part of C1-4 and treatment E have much 

higher moment release per event than other treatments or event groups. Thus, the improved 

staƟsƟcal measurements using MLE with calibrated magnitude are consistent with the 

geomechanical properƟes of different sets of fractures and agree with observed seismic 

moment release history. These observaƟons are consistent with larger regional scale-induced 

seismicity observaƟons in Oklahoma related to wastewater disposal. Qin et al. (2019) found that 

larger magnitude events in Oklahoma mostly occur along opƟmally orientated faults, and that 

non-opƟmally oriented faults with lower shear stress mostly occur within spaƟal areas of the 
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highest injecƟon volume of wastewater. The consistency between large-scale observaƟons and 

local fracture network suggests self-similarity, in that similar physical processes control the 

seismogenic processes at vastly different spaƟal scales. 

In addiƟon to fracture orientaƟons, depth may play a role in affecƟng different staƟsƟcs 

for different fracture sets. Clusters 1-4 during treatment B and treatment E are located at 

relaƟvely deeper depths. This observaƟon is generally in agreement with the decrease in the b-

value with depth observed in Gerstenberger et al. (2001), likely related to increased stress with 

deeper depth. It may be possible the fracture orientaƟon is depth related. However, Seeburger 

and Zoback (1982) examined 10 wells drilled in graniƟc rock from 3 different locaƟons in North 

America and showed liƩle depth dependence with fracture orientaƟon in well fracture analysis. 

2.6 Conclusion 

We propose an addiƟon to the staƟsƟcal analysis workflow of microseismic events by 

incorporaƟng a magnitude calibraƟon method based on waveform cross-correlaƟon. Using the 

available iniƟal catalog magnitudes and magnitude calibraƟon method, we obtain new 

magnitudes from microseismic events during four fracture stages. The observed improvement 

in magnitude difference and amplitude raƟos aŌer calibraƟon suggests the new magnitudes are 

more accurate. With the new magnitudes, systemaƟc differences in the b-value and 

seismogenic index between different fracture sets are revealed. Clusters 1 and 4 during 

treatment B and treatment E are more opƟmally oriented based on the schemaƟc Mohr 

diagram, which is consistent with higher seismogenic potenƟal based on the lower b-value and 

higher seismogenic index from the improved staƟsƟcal analysis. Possible real-Ɵme 
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implementaƟon of magnitude calibraƟon can significantly improve microseismicity monitoring 

and assessment of seismic hazards and help idenƟficaƟon of slip acƟvaƟon of opƟmally oriented 

fractures. However, addiƟonal comparisons will be required for other hydraulic fracturing 

datasets to support our findings. 

2.7 Data and Resources 

All data used in this paper came from Rutledge et al. (2004) listed in the references. We 

processed the SAC format waveform data using GISMO a MATLAB toolbox for seismic data 

analysis (Thompson, 2017). Supplementary materials contain an analysis of the dataset results 

affected by varying the number of input events. 
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2.10 Tables and CapƟons 

Treatment No. of 
raw 
catalog 
events 

No. of 
common 
events 

Final 
catalog 
events 

P1S3 (A) 628 628 596 
P1S2 (B) 888 644 581 
P2S3 (C) 369 369 368 
P2S1 (E) 662 433 418 
Total events 2547 2074 1963 

Table 2.1: Number of events in the full catalog, full catalog b-value, common events, and the 
final catalog. 
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Figure 2.1: Array Geometry CapƟon: Overview of the experiment seƫng. The locaƟon of 
treatment wells 21-10 and 21-09 (stars) are shown by symbols and the thin black line. 21-09 
(recorded treatments A and B) and 22-09 (recorded all four treatments) are monitoring wells. 
Note that well 21-09 is used for both monitoring and treatment. Microseismic events are shown 
by colored dots where cyan represents treatment B, blue represents treatment A, purple 
represents treatment E. and magenta represents treatment C. Maximum horizontal stress 
direcƟon is illustrated by the black arrow. InjecƟon interval depth is shown as black rectangles 
and labeled with the treatment interval name. Top leŌ figure: North-East view. Top right figure: 
North-Depth view. BoƩom leŌ: Depth-East view. VerƟcal exaggeraƟon is 2:1. 
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Figure 2.2: DistribuƟon of available common events between catalog and available waveform 
data. Each quarter shows the map view of the spaƟal variability between catalog events in black 
and available waveform events in green. 
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Figure 2.3: InjecƟon volumes with common event-calibrated magnitudes are shown. Clockwise 
from the upper leŌ is treatment A, B, C, and E. InjecƟon rate is ploƩed in orange. Blue dots are 
the distribuƟon of microseismic events where verƟcal placement is the magnitude and 
horizontal posiƟon is Ɵming relaƟve to the start of the hydraulic fracturing. The seismicity rate is 
shown in black by the number of events over Ɵme. The magnitude of completeness for each 
treatment is shown as the blue triangle 
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Figure 2.4: A: Comparison of two waveforms contrasted by color with a similarity coefficient of 
0.87. B: the waveform amplitude value comparison between the two disƟnct events. Calculated 
amplitude raƟos are denoted by the black dots where the principal component amplitude raƟo 
is 0.74. 
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Figure 2.5: Principal component analysis for magnitude calibraƟon of the four fracking stages 
clockwise starƟng from the top leŌ panel: treatment A, B, C, and E. Each quadrant is sub-divided 
into: the main secƟon which shows the relaƟve magnitude and amplitude raƟo before (gray) 
and aŌer magnitude calibraƟon (red) distribuƟon; the upper right subsecƟon that displays the 
density of the distribuƟon in the main secƟon aŌer magnitude calibraƟon as a heat map with 
color bar corresponding to density in log10 scale; lower right subsecƟon displays the density of 
the distribuƟon before magnitude calibraƟon with the same color bar to the upper right 
subsecƟon. Convergence in the principal component analysis is displayed by the calibrated 
points collapsing on the blue line that follows a slope of 1.5. 
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Figure 2.6: Comparison of the magnitude distribuƟon for treatment B before and aŌer 
magnitude calibraƟon for different similar event clusters. A: map view of the seismicity locaƟon, 
SHmax is shown as a reference. C: cross-secƟon view along EW direcƟon. B and D show the 
Frequency Magnitude DistribuƟon for the full sub-catalog of treatment B (grey solid line) and 
sub-clusters before (B) and aŌer (D) calibraƟon (solid lines with colors corresponding to legend 
in A). For comparison, the dashed lines show the b-values esƟmated for the full sub-catalog of 
treatment B. VerƟcal exaggeraƟon is 2:1. 
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Figure 2.7: Comparison of Frequency-Magnitude-DistribuƟon and corresponding b-values for 
treatments before(leŌ) and aŌer(right) magnitude calibraƟon, where b-values are esƟmated by 
maximum likelihood (MLE). The verƟcal axis is the cumulaƟve number of events and the 
horizontal axes is the event magnitude. Each treatment is color coded the same as in Figure 2.1. 
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Figure 2.8:  Comparison of the probability density funcƟon of b-value esƟmaƟons from MLE (A 
and B), and the seismogenic index (C and D) before (leŌ panel: A and C) and aŌer (right panel: B 
and D) magnitude calibraƟon. For all esƟmates, 100 bootstrap trials are calculated with MLE 
esƟmates for the b-value and seismogenic index. 
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Figure 2.9: Comparison of different treatments and subclusters of treatment B as represented 
by a schemaƟc Mohr circle. The dashed line shows the Coulomb Failure Envelope based on a 
fricƟon coefficient of 0.75. Different symbols represent different clusters. Solid-filled symbols 
represent clusters and treatments with off-SH-max axis orientaƟon. Non-filled symbols 
represent seismicity groups that are parallel to SH-max. 
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Figure 2.10: CumulaƟve moment growth with the increasing number of earthquakes (A and B) 
and Ɵme since the start of injecƟon (C and D) for each treatment before (leŌ panel: A and C) 
and aŌer (right panel: B and D) magnitude calibraƟon. 
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The supplemental materials provided in this secƟon aim to enhance the understanding 

of the research presented on hydraulic fracturing magnitude calibraƟon improvements from 

waveform correlaƟon. We describe in greater depth the b-value esƟmaƟon using maximum 

likelihood and robust least square approximaƟon and magnitude completeness protocols used 

in Matlab’s Z-map for this study.  

 

S2.1 Maximum likelihood B-value esƟmaƟon 

To determine the b-value, which describes the frequency-magnitude distribuƟon of 

earthquakes, seismic studies frequently employ the staƟsƟcal method known as maximum 

likelihood esƟmaƟon (MLE). The relaƟonship between the frequency and size of earthquakes in 

a given area is represented by the b-value esƟmated in equaƟon S2.1 based on Utsu’s (1965) 

formula with the raƟo of logarithmic Euler’s constant, 𝑒, to the difference of the mean 

magnitude, 𝑀ഥ , and half the magnitude binning, ∆𝑀, subtracted from minimum magnitude, 𝑀ଵ. 

The fundamental idea behind MLE is to idenƟfy the parameter values that maximize the 

probability of seeing the provided data. MLE seeks to idenƟfy the most likely b-value that best 

fits the observed earthquake data in the context of b-value esƟmaƟon, offering important 

insights into the seismicity of a region. 

𝑏 =
logଵ଴ 𝑒

𝑀ഥ − (𝑀ଵ −
∆𝑀

2
)
 

(S2.1) 
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An earthquake magnitude dataset is necessary to apply MLE for b-value esƟmaƟon. The 

magnitude range must first be divided into predetermined magnitude bins, ∆𝑀, as the first step. 

The number of earthquakes within each bin is counted, and each bin represents a parƟcular 

magnitude range. The likelihood funcƟon, which measures the likelihood of observing the given 

dataset for a parƟcular b-value, is then computed using the observed earthquake frequencies in 

each magnitude bin. The Gutenberg-Richter formula, which denotes the relaƟonship between 

earthquake magnitudes and frequencies, serves as the foundaƟon for the likelihood funcƟon. 

S2.2 B-VALUE ESTIMATION USING ROBUST LEAST SQUARE 

The seismic analysis code is limited by the number of common events between the listed 

catalog and actual waveform data available. We apply the robust least square (equaƟon S2.2) 

that reweights based on the residuals (equaƟon S2.3), where (Han et al., 2015) show 

improvement in the robust least square over tradiƟonal least square soluƟons. Robust linear 

regression uses weights (equaƟon S2.4) as part of the scaling factor which reduces the 

sensiƟvity to outliers and improves fit. Weights are automaƟcally and iteraƟvely determined 

where iniƟally, weights are equal and then reweighted in each subsequent iteraƟon, giving 

lower weights to points further from the previously iterated model predicƟons (equaƟon S2.5). 

IteraƟons are terminated at the point of convergence between coefficients esƟmates within a 

given tolerance value. Dumouchel and O’Brien (1989) integrate the bisquare robust regression 

used in the ZMAP MATLAB package ( Wiemer and Malone, 2001) as the funcƟon “robust-fit” ( 

Dumouchel and O’Brien, 1989; Street et al., 1988; Holland and Welsch, 1977; Huber, 1981). This 

funcƟon determines the best fit by iteraƟvely using the robust least squares with the bisquare 

weighƟng funcƟon by the following procedure: 
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1. Equal weight least square regression as expressed in the least square line (equaƟon 

S2.2), where 𝑥௜  is the magnitude, 𝑦௜ , event count, 𝜖௜, unobserved errors, and β, is the 

least squares esƟmate.  

 

𝑦௜ = 𝑥௜𝛽 + 𝜖௜   𝑖 = 1, … , 𝑛 

 (S2.2) 

2. Compute and adjust residuals, 𝑢௜, using Huber’s funcƟon where ℎ௜  is the leverage that 

reduces weight for high leverage points, 𝛽ோ, robust regression, S, scale esƟmate, and c, 

tuning constant of 4.685 for bisquare weighƟng. 

 

𝑢௜ =
𝑦௜ − 𝑥௜𝛽ோ

෢

𝑐𝑆ඥ1 − ℎ௜

 

 (S2.3) 

3. Compute bisquare weights, 𝑤௜, based on previous iteraƟon residuals. 

𝑤 = ൜
(1 − 𝑢௜

ଶ)ଶ, 𝑖𝑓 |𝑢௜| < 1

0, 𝑖𝑓 |𝑢௜| ≥ 1
 

 (S2.4) 

4. Update the least square line by performing a weighted least squares regression with the 

weights  
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෍ 𝑤௜(𝑦௜ − 𝑥௜𝛽መோ

௡

௜ୀଵ

)𝑥௜௝    𝑗 = 1, … , 𝑝 

 (S2.5) 

5. Iterate unƟl convergence. 

S2.3 LST results 

  We also observe the results from using LST in replacement of MLE in Figure S2.1. All 

steps are idenƟcal to the main text where MLE is used.  
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Figure S2.1: Comparison of probability density funcƟon of b-value esƟmaƟons from LST (A and 

B), and the seismogenic index (C and D) before (leŌ panel: A and C) and aŌer (right panel: B and 

D) magnitude calibraƟon. For all esƟmates, 100 bootstrap trials are calculated with LST 

esƟmates for the b-value and seismogenic index. 
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3.1 Abstract 

The increased earthquake risk in a growing society is always prevalent and although 

Oklahoma is not known for large and damaging earthquakes, in the last decade it has 

experienced a more than 100-fold increase in smaller seismicity and the occasional moderate 

magnitude damaging earthquake.  Though the frequent small events present themselves as 

mostly nuisance earthquakes, they are sƟll influenced by site response that influences seismic 

damage and loss in urban areas. It is crucial to idenƟfy site characterisƟcs like resonance 

frequency in Oklahoma at a high spaƟal resoluƟon to account for site response, enhance our 

understanding of the destrucƟve ground moƟon produced in earthquakes, and develop beƩer 

seismic hazard assessment and miƟgaƟon in developed areas. We monitored an East-West 

transect near Enid, Oklahoma using two emerging instrument types, nodal sensors and 

distributed acousƟc sensing for a higher spaƟal resoluƟon understanding of site response. We 

compare the two instrument types to idenƟfy their strengths and weaknesses while in use. 

Finally, we measure site-specific fundamental frequencies where dominant peak fundamental 

frequencies are approximately 1Hz along the transect and esƟmate resonaƟng layers using an 

exisƟng velocity model. 
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3.2 IntroducƟon: Environmental and earthquake monitoring 

The high resource demand from a growing society has driven the development of 

infrastructure and residenƟal buildings to accommodate the increased populaƟon density in 

many ciƟes much like those in the state of Oklahoma. In Oklahoma, earthquake hazard is an 

increasing concern linked to the increase in wastewater injecƟon (Ellsworth, 2013; Keranen et 

al., 2014) with three events larger than M5 occurring within the last decade. Few of these 

occurred on known faults as shown in Figure 3.1. However, most events occur on unmapped 

faults (Schoenball and Ellsworth, 2017a; Qin et al., 2019) which led to deployments of dense 

seismic arrays to monitor and manage the growing earthquake hazard in the region. In some 

cases, dense seismic arrays were deployed to monitor the increasing acƟvity. A dense seismic 

array consists of mulƟple closely spaced seismic sensors that are strategically placed to monitor 

ground moƟon and seismic waves. These typically consist of nodal sensors, a self-contained 

data logger, a baƩery, and a sensor, for wavefield experiments. Examples of high-density arrays 

using nodal sensors for wavefield monitoring include over 1800 nodal sensor LArge-n Seismic 

Survey in Oklahoma (LASSO) array (Dougherty et al., 2019); the IRIS Community Wavefield 

Experiment in Oklahoma (Sweet et al., 2018) using 9 infrasound sensors, 18 broadband sensors, 

and 363 nodal sensors; and the Long Beach Dense array using 5200 nodal staƟons (Li et al., 

2015). High-density arrays such as the ones previously menƟoned have been increasing in 

occurrence due to their improved imaging resoluƟon and desire to capture the unaliased spaƟal 

wavefield from earthquake sources. Amongst other insights, this is useful for earthquake 

monitoring as it allows for precise and accurate detecƟon, locaƟon, and characterizaƟon of 

seismic events that would not otherwise be possible with the exisƟng regional network. By 
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having a dense network of sensors, scienƟsts can obtain high-resoluƟon earthquake catalogs 

that, in part, provide a beƩer understanding of the underlying geological structures and 

processes that may trigger earthquakes. 

It is important to understand the local geology in present-day Oklahoma in any seismological 

survey, to make connecƟons and bridge the knowledge gap between the convoluted geologic 

and seismo-tectonic history of the region. The Oklahoma crust, much like other areas of the 

North American craton, is the result of mulƟple tectonic acƟviƟes that were especially acƟve 

between the Proterozoic and Cambrian (Whitneyer and Karlstrom, 2007). The locaƟon of our 

study is east of the southern extent of the Nemaha upliŌ. The Nemaha upliŌ, a narrow paleo 

structural feature that stretches from southeastern Nebraska to Central Oklahoma, is 500 miles 

in length at 80 miles at its widest point. The structural history of the Nemaha upliŌ has repeated 

periods of regional warping, upliŌ, and erosion separated by periods of marine shelf 

sedimentaƟon. The Nemaha upliŌ is a composite of several complex elements and features of 

separate fault blocks. At its surface, it is a gentle anƟcline plunging towards the south.  The 

formaƟon of the Nemaha upliŌ is aƩributed to leŌ-lateral wrench fault movement as a crustal 

response to convergence at the conƟnental margins (Berendsen 1986). Others have suggested 

similar strike-slip movements on the Central Oklahoma fault zone (Amsden, 1980) and upliŌ to 

verƟcal movement on a pre-exisƟng Precambrian zone of weakness (Fath, 1920). Present-day 

interest in understanding the structure of the region is driven by hydrocarbon exploraƟon of the 

Cambrian to Permian age rocks. The succession of paleozoic dolomites and limestones with 

subordinate clasƟcs overlay the Precambrian crystalline basement. In the midconƟnent, the 

ascending order of the straƟgraphic sedimentary units is the Joins, Oil Creek, McLish, Tulip 
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Creek, and the Bromide which are a series of carbonates, shales, and sandstones. This unique 

deposiƟonal history and upliŌ create hydrocarbon plays which have been the economical target 

for oil and gas producƟon due to the structural traps and reservoir rocks (Dolton and Finn, 

1989).  

While a dense seismic array will typically be uƟlized for passive detecƟon of earthquake 

sources or during the acquisiƟon of acƟve-seismic data, the data can also be uƟlized for 

environmental monitoring through ambient seismic noise. Ambient noise is caused by natural 

sources such as ocean waves, wind, and atmospheric pressure, as well as cultural sources such 

as traffic and industrial acƟviƟes. Ambient seismic noise studies have been used for over a 

century and can be traced back to Ernst von Rebeur-Paschwitz observaƟons of the first recorded 

teleseismic earthquakes using a horizontal pendulum leŌ to oscillate freely (Von Rebeur-

Paschwitz, E., 1889).  

In recent years, there is a resurgence in passive noise monitoring due to the greater 

availability of a wide variety of sensors such as the inexpensive Fairfield 3C Zland nodal sensor 

which leverages its compact self-contained size. Smaller inexpensive sensors and ease of 

deployment for passive noise experiments also reduce the requirement for local municipality 

permiƫng for acƟve source experiments. By analyzing this ambient noise, valuable insights can 

be gained into various environmental factors such as soil properƟes, and groundwater levels 

(Larose et al., 2015). One property we are interested in our high-density observaƟon of ambient 

seismic noise is the physical phenomenon of resonance. Resonance is a construcƟve 

interference event during wave propagaƟon. In a ground moƟon, resonance can result in 

increased shaking intensity by having a larger wave amplitude. We compare different 
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instruments in this study and perform an analysis of the noise signals recorded by each 

instrument type in the Ɵme and frequency domain. Furthermore, the dense arrays are 

leveraged in an east-west site response study. 

3.3 Array informaƟon 

For this study, we deploy instruments along an East to West transect of the enƟre 

Garfield County in Oklahoma along highway US-412, a 4 lane two-way highway separated by a 

road verge, over three separate occasions in 2020 (EW1-40: June 09, 2020 - July 14, 2020) and 

2021 (EW1-20A/B: April 21, 2021 - May 13, 2021, and EW2: August 1, 2021 – August 31, 2021) 

along the length of highway 412 and minor perpendicular arrays (NS1 and NS2: April 21, 2021 - 

May 13, 2021) in 2021 as shown in Figure 3.2. We perform a mulƟ-deployment of temporary 

high-density nodal sensors that recorded conƟnuous waveform for a one-month duraƟon 

during each deployment Ɵme. We use the 2nd generaƟon Fairfield Nodal Z-land sensors which 

are small, self-contained devices that are deployed in seismic exploraƟon to detect and 

conƟnuously measure conƟnuous ground vibraƟons from anthropogenic sources created by a 

Vibroseis truck or natural sources such as local earthquake events for about a month or unƟl the 

baƩery is depleted (Figure 3.2). Nodes are easy to deploy and have a low environmental impact. 

However, nodal sensors have limited recording capacity and are prone to signal noise from 

improper isolaƟon during deployment. Nodes are a 5Hz sensor and we set the recording 

sampling rate at 500Hz with a 12-decibel pre-amp gain. The recorded data are downsampled to 

100Hz to conserve storage and improve computaƟonal resource management. In Figure 3.3, we 

show the day and night noise power distribuƟon comparison between the two seismic 

instruments, nodal staƟon 4013 and the corresponding fiber opƟc strain rate sensor. Elevated 
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dayƟme noise is observed in both recording types and is likely due to nearby anthropogenic 

sources. We deployed both in 2020 and twice in 2021 in a rolling deployment, details will be 

explained in subsequent subsecƟons. For the 2021 deployments, we deploy the nodal sensors 

concurrently with a Distributed AcousƟc Sensing (DAS) deployment using exisƟng fiber opƟc 

cables from an Oklahoma telecommunicaƟon sub-terranean conduit-lain fiber opƟc bundle. The 

uƟlizaƟon of exisƟng uƟlity telecommunicaƟons cables for other purposes has been called dark 

fiber where Marra et al. (2018) used submarine telecommunicaƟon fiber lain on the seafloor for 

earthquake detecƟon and locaƟon. As shown in Figure 3.2, we use the server room housing the 

fiber opƟc terminal ends at Northwestern Oklahoma State University as a midpoint for the 

arrays. The DAS unit we are using is the Silixa brand iDAS interrogator, a dynamic range sensing 

system that determines strain rate and distance from measuring phase change in the Rayleigh 

scaƩering signal. We record DAS measurements at the iDAS’s maximum range of 1 kHz with a 

channel spacing of 2m and we later down-sample our recordings to 50Hz for noise analysis. 

3.3.1 Deployment 1 - EW1-40 (nodal deployment) 

We deploy 124 nodal sensors between June 09, 2020 - July 14, 2020, east of 

Northwestern Oklahoma State University (Figure 3.2). IniƟally, the plan for the deployment is 

about 400m spacing, but actual spacing varies from 300m to 400m spacing on account of GPS 

error and GPS updates when traversing the deployment line during deployment.  
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3.3.2 Deployment 2 - EW1-20A & B (Rolling nodal deployment and concurrent DAS) 

As shown in Figure 3.2, EW1-20A uses 103 sensors on the iniƟal deployment where 43 

sensors are on the EW line (43km), 38 sensors NS1(23km) on Highway 74, and 22 sensors in NS2 

(14km) on Highway 81. EW line spacing was 1-1.3km spacing, both NW lines were 

approximately 500-700m spacing. We use a rolling deployment, so half of the deployed sensors 

were collected shortly aŌer the iniƟal deployment of EW1-20A. All sensors east of NS1 were 

collected and half of both NS lines were collected within 2 weeks of deployment of 103 sensors. 

ExisƟng sensors were replaced within 2 weeks of collecƟon for an extended deployment to be 

co-located with the iDAS array deployment. On the redeployment of the EW1-20B, all sensors in 

NS1 and within the EW line (21.3km) were replaced with recharged sensors. The density in NS2 

remained the same (14km), but NS1 was shortened (10km) and the density in the EW line was 

increased to have a spacing of 500-700m. The DAS system was installed shortly aŌer the nodal 

deployment and was operaƟonal between April 21, 2021 - May 13, 2021.  

3.3.3 Deployment 3 - EW2 (nodal deployment and concurrent DAS)) 

A total of 61 sensors are used for deployment 3, where 26 sensors are deployed west of 

staƟon 4001 for 22.5km (Figure 3.2). AddiƟonally, 35 sensors are redeployed on NS2 replacing 

deployed sensors from EW1-20B and extending the North–South deployment line to 23.5km 

between August 1, 2021 – August 31, 2021. The DAS system was installed before the nodal array 

this Ɵme on July 19, 2021, unƟl August 11, 2021. 
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3.4.  Comparison of DAS and Nodal array performance 

Distributed AcousƟc Sensing (DAS) and Seismic Nodal Sensors are two different types of 

sensors used in seismic surveys to acquire data on subsurface structures. While both 

technologies are used to record seismic waves, there are some significant differences in their 

performance.  

DAS is a type of distributed sensing that uses fiber opƟc cables to capture seismic waves 

by measuring the backscaƩer from laser pulses as it travels along the fiber opƟc cable. Different 

types of backscaƩers can be measured by distributed sensing which provides insight into 

different physical characterisƟcs affecƟng the fiber opƟc cable. Rayleigh, Raman, and Brillouin 

scaƩering are all phenomena related to the scaƩering of light. These light backscaƩers differ in 

terms of the physical mechanism responsible for the scaƩering, the wavelengths of light 

involved, and the informaƟon that can be obtained from the scaƩered light. As a laser pulse, 

from the interrogator, propagates through a length of fiber, the individual photons are affected 

by the fiber itself. Rayleigh scaƩer is when the backscaƩer frequency is the same as the iniƟal 

frequency, Raman scaƩer is when the scaƩer has increased (anƟ-stokes) or decreased (stokes) 

its energy level from photon interacƟon with the fiber’s natural molecular vibraƟon, and 

Brillouin scaƩer is caused by the physical expansion and contracƟon of the fiber from photon 

energy, generaƟng an acousƟc response from the fiber. Phase changes in Rayleigh scaƩered 

signal can measure strain rate, backscaƩer of Raman stokes and anƟ-stokes measures 

temperature (Farahani and Gogolla, 1999), and Brillouin scaƩering measures both temperature 

and strain. Stokes and anƟ-stokes differ in terms of wavelength, whereas stokes have a longer 

wavelength than anƟ-stokes (Conway and Mondanos, 2015). Raman scaƩering occurs when 
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light interacts with molecules or crystals throughout the core of the fiber over the enƟre fiber 

length (Conway and Mondanos, 2015) (Raman, 1928). It is analyzed through Raman opƟcal 

Ɵme-domain reflectometry where the backscaƩer from a short laser pulse contains informaƟon 

on loss and temperature along the length of the fiber (Farahani and Gogolla, 1999). Brillouin 

scaƩering occurs when light interacts with the acousƟc waves (i.e., sound waves) that propagate 

through a material. The scaƩered light undergoes a frequency shiŌ that corresponds to the 

frequency of the acousƟc wave, and this shiŌ can be used to measure the speed of sound in the 

material (Boyd, 2008). The iDAS interrogator from Silixia in our study uses Rayleigh backscaƩer 

for measuring strain rate along the fiber.  

TradiƟonal geophone sensors consist of three orthogonal (perpendicular) sensors that 

measure ground moƟon in three direcƟons X, Y, and Z (Murphy, 1996) of displacement at their 

locaƟon. The more recent nodal sensors have been deployed in arrays or clusters across a 

seismic survey area (Li et al., 2018) and are then connected to a central recording system that 

collects and analyzes the data. The sensors are designed to be low-power and low-maintenance, 

and they can be leŌ in place for extended periods to collect data. The operaƟon of the Fairfield-

Zland 3C nodal sensor is based on the principles of piezoelectricity. Piezoelectric materials 

generate an electric charge in response to the mechanical displacement of coils within the 

geophone (Fairfield Nodal, 2017). The generated voltage is proporƟonal to the displacement of 

the moving coils within each geophone. The three aforemenƟoned geophones are installed 

within each nodal sensor oriented orthogonal to each other, so they can measure ground 

moƟon in three direcƟons. Voltages are then digitally converted to discrete velociƟes 

represenƟng ground moƟon affecƟng the nodal sensor. The data from the geophones are 
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typically processed using digital signal processing techniques to remove noise and interference 

and to extract useful informaƟon about the seismic signals. This informaƟon can be used to 

generate images of the subsurface geology, locate oil and gas deposits, and monitor seismic 

acƟvity.  

Considering a typical regional network of sparsely spaced broadband seismometers; 

both DAS and nodal arrays are a major improvement on instrumentaƟon density. A key 

difference between DAS and Seismic Nodal Sensors is their cost. DAS is generally more 

expensive than Seismic Nodal Sensors due to the cost of the fiber opƟc cables and the 

specialized equipment required to operate the system. Seismic Nodal Sensors, on the other 

hand, are relaƟvely inexpensive and can be deployed in large numbers to cover a wide area. 

Both DAS and Seismic Nodal Sensors have advantages and disadvantages in seismic surveys. 

DAS offers high-resoluƟon data over long distances but at a higher cost. Seismic Nodal Sensors 

are inexpensive and easy to deploy, but have limited recording capacity and may suffer from 

signal distorƟon. The choice of sensor technology depends on the specific needs of the survey 

and the available budget. 

3.4.1 Noise level comparison of DAS and nodal 

We compare the two recorded measurements from both DAS and nodal. For 

computaƟonal resource management, we resample both datasets to a reasonable 50Hz 

sampling for DAS and 100Hz sampling for nodal. To determine the iniƟal data quality of the 

recordings, we invesƟgate the influences on the acousƟc seismic field from anthropogenic 

sources. Due to the proximity of a town and roadway parallel deployment, we assume that 
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human acƟvity will influence the seismic measurements during tradiƟonal dayƟme business 

hours. We calculate power spectral density for both night and dayƟme hours, stack, and average 

the resultant spectral graphs. Figure 3.4 shows a Ɵme-averaged spectrum for DAS channels 

located near a highway overpass and rail crossing, demonstraƟng showing how noise levels can 

vary depending on infrastructure. As expected, high amplitude noise levels are observed near 

anthropogenic sights prone to high acƟvity and beƩer ground coupling such as highway 

overpasses and rail crossings. It is observed that dayƟme noise levels are higher than nighƫme 

noise even in areas with mostly farmland as shown in Figure 3.2.  

3.4.2 Short-duraƟon events 

Throughout the recording duraƟon of the experiment, both ambient noise and transient signals 

were detected. Notably, short-duraƟon high-amplitude events are recorded, such as passing 

vehicles, and a few local earthquake events (Walter et al., 2020) which are shown in Figure 3.2. 

In Figure 3.5, we observe graphically linear and high-amplitude signals over different channels 

for a period. Observed high-amplitude signals are linear across mulƟple channels, coherent, and 

inversely graphically oriented. An approximate velocity of 58 mph may be esƟmated for the 

high-amplitude signal using the channel spacing of 2 m and arrival Ɵme approximaƟon at each 

channel. Considering the 70 mph speed limit of US-412, we can interpret the traveling signal 

source to likely be a moving vehicle. In addiƟon, we idenƟfy an earthquake arrival at 11:18:01 

local Ɵme on May 2, 2021, as seen in Figure 3.5 as a high-amplitude signal with similar arrival 

Ɵme amongst all channels. In Figure 3.6, both Ɵme series and spectra of different sources, 

background noise, moving vehicles, and earthquakes within a 10-minute DAS recording are 

compared. Even though the earthquake and vehicle Ɵme series have similar peak amplitude 
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values, their spectra are different in both Ɵme duraƟon and frequency range, where the 

earthquake spectrum occupies lower frequencies, and the moving vehicle spectrum has higher 

frequencies.  

3.4.3 Long-duraƟon signal 

In addiƟon, long-duraƟon signals, such as trains, cross obliquely near the eastern half of 

the deployment close to nodal staƟons 4005 and 4006. The passing train signal does not 

present itself across the enƟre DAS and is only concentrated near the railroad crossing when 

there is a train present. LocaƟng and idenƟfying the train signal is performed best in the 

frequency domain since the idenƟficaƟon of the train signal in the Ɵme series waveform is not 

obvious as depicted in Figure 3.7, where we isolate the train signal from other background 

signals by selecƟng an average spectral amplitude between 1-8hz. In the frequency domain, we 

average the frequency range 1-8hz together to exploit the broadband nature of the train signal 

against the average background noise. We idenƟfy high amplitudes in the average frequency 

stack between 1 Hz – 8 Hz by applying the kurtosis method, which is the raƟo of a short-window 

average to a long-window average. However, to miƟgate the false detecƟon of trains we idenƟfy 

trains, with high spectral amplitude in consecuƟve periods over 120 seconds over 40 

consecuƟve DAS channels. We transform the Ɵme series into the frequency domain for train 

detecƟon to eliminate false detecƟon created by consecuƟve noisy DAS channels or other noise 

sources that may generate signals within a long-Ɵme window.  
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3.4.4 Near–surface characterisƟcs 

Site response at any given site can vary significantly even within Northern Oklahoma as 

shown by the varying noise amplitudes over short distances in Figure 3.3. DeterminaƟon of site 

characterisƟcs, such as fundamental frequency and site amplificaƟon, is important to 

characterize potenƟal earthquake hazards related to ground moƟon amplificaƟon in any 

microzonaƟon study. MicrozonaƟon is the idenƟficaƟon of potenƟal for earthquake hazards in 

areas with an increased risk for ground moƟon amplificaƟon, liquefacƟon, and landslides. The 

purpose of microzonaƟon studies is to assess these locaƟons of potenƟal risk and miƟgate any 

potenƟal economic loss such as damage to buildings or other structures (Ansal et al., 2009). The 

earliest microzonaƟon site response study by Imamura (1913) uƟlized single-staƟon 

microtremors following the 1854 Tokyo earthquake, where localized damage paƩerns were 

observed from amplified ground moƟons. Subsequent observaƟons of large earthquakes have 

also shown localized damage paƩerns correlaƟng to subsurface geologic structures such as 

basins (Frankel et al., 2002; Hall and Beck, 1986; AbboƩ, 2005; Kagami et al., 1986). 

Understanding this secondary hazard such as resonance has been an important feature in 

earthquake hazard risk reducƟon as shown in the well-documented 1985 Michoacan 

earthquake (Hall and Beck, 1986; Flores Estrella et al., 2006) where building structural damage 

was linked to earthquake shaking resonance, the 1987 Whiƫer earthquake (Hruby and 

Beresnev, 2003; Kawase and Aki, 1990) shown a basin edge effect in ground moƟon 

amplificaƟon, and the 1994 Northridge earthquake (Hruby and Beresnev, 2003; Beresnev et al., 

1998; Hartzell et al., 1996) exhibiƟng basin resonance from excited ground moƟons. The 

geologic medium can influence the relaƟve seismic acousƟc wave amplitude which translates to 
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stronger or weaker shaking (Nakamura, 2000). Nakamura (1989) determined the cause of 

stronger localized shaking during a strong moƟon event is due to the harmonic wave 

construcƟvely interfering through resonance. 

 There are several methods used to characterize the site response. Geotechnical 

invesƟgaƟons such as Cone PenetraƟon Test (CPT), Standard Cone PenetraƟon TEST (SPT), and 

soil borings are used in engineering applicaƟons for site characterizaƟon (Schmertmann, 1978). 

InformaƟon about the local surface geology is also important to consider as it can highly 

correlate with the observed seismic intensiƟes (Wills et al., 2000). However, geotechnical 

invesƟgaƟons are oŌen expensive, invasive, negaƟvely affect the environment, and are not 

available for all locaƟons. These methods are also focused on the determinaƟon of site 

amplificaƟon and do not consider the effects of resonance. In this study, we use the Horizontal-

to-VerƟcal-Spectral-RaƟo (HVSR) approach to ambient noise recorded on a high-density linear 

nodal array deployed in Enid, Oklahoma to esƟmate fundamental frequencies. It is known that 

deep sedimentary soil columns in basins can amplify earthquake ground moƟon and cause 

significant damage to buildings built on their surface. The extent of the damage is related to the 

building’s specific height and soil site resonance frequency, fundamental frequency. We use the 

fundamental frequencies to esƟmate a geologic structure shape and determine subsurface 

sedimentary column resonance.   

3.5 Method and Background for HVSR 

The HVSR approach is used for site response invesƟgaƟons due to its ease of use, low 

cost, and flexibility in the use of data that is not dependent on strong ground moƟon or an 
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acƟve source. Ambient noise HVSR studies have been conducted extensively and compared for 

reliability against other methods, as discussed by Bard et al. (2004) and Bard et al. (2005). 

Nakamura (1989) showed that the HVSR spectral peak frequency represents the fundamental 

frequency of the site soil column. This has been confirmed by later studies which tested the 

accuracy and reliability of the HVSR approach, as described in papers such as Cara et al. (2010), 

Guillier et al. (2007), and Parolai et al. (2004). Further invesƟgaƟon by Bard et al. (2004) in the 

Site Effects Assessment Using Ambient ExcitaƟon project (SESAME) compared the ambient noise 

HVSR results with those from earthquake-based HVSR analysis, and these results were further 

verified in Bard et al. (2004) and Bard et al. (2005). The primary objecƟves of the SESAME 

project were to beƩer understand the physical basis of the HVSR approach, determine its 

purpose in site response, and propose guidelines for correct analysis. The SESAME project 

demonstrated a strong linear correlaƟon between the spectral peak frequency determined 

through ambient noise HVSR and those determined at the same site through Standard Spectral 

RaƟo (SSR) measurements from earthquake data (Bard et al., 2004). This result demonstrates 

that the peak frequency from the ambient noise HVSR may be interpreted as the expected peak 

frequency of earthquake-related ground moƟon. Based on this SESAME frequency comparison 

and invesƟgaƟons menƟoned earlier, we will refer to the peak frequency measured from the 

HVSR graph as the site’s fundamental frequency. The amplitude of the spectral raƟo has been 

used by some authors as a representaƟon of amplificaƟon relaƟve to hard rock sites (e.g., 

Nakamura, 1989; Bard et al., 2004). The SESAME project also invesƟgated the HVSR amplitude 

by comparison of peak amplitudes as determined by the HVSR and SSR methods. Although the 

HVSR and SSR peak amplitudes are not linearly related the HVSR peak amplitude can be 
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considered as a lower bound for site amplificaƟon (Bard et al., 2004). Thus, the HVSR method is 

a simple and effecƟve technique for determining the first fundamental frequency of soil 

resonance. However, Bonnefoy-Claudet (2009) suggests the HVSR approach is inadequate for 

determining higher resonance modes, contrary to other asserƟons (Lermo et al., 1994). 

In HVSR, the two horizontal components are combined using geometric mean in the 

numerator and the denominator is the verƟcal spectral component as exampled in equaƟon 3.1.  

𝐻/𝑉(𝑓) = ඨ
𝐻்

ଶ ∗ 𝐻ோ
ଶ

2𝑉ଶ
 

(3.1) 

where the root geometric mean square raƟo of the two horizontal spectra, 𝐻, is taken over twice 

the verƟcal spectra, 𝑉. 

One popular tool for HVSR is the open-source soŌware, Geopsy (Wathelet et al., 2010). It 

is a user-friendly graphical user interface and has been well-tested by many. However, to improve 

on computaƟonal cost and speed we use the open-source Python HVSR soŌware HVSRpy 

(Vantassel, 2020) which is comparable to the open-source Geopsy soŌware (Wathelet et al., 

2010) but accounts for azimuthal variability by using a frequency domain window rejecƟon 

algorithm (Vantassel, 2020 and Cox et al., 2020). HVSRpy performs the rejecƟon window by 

selecƟng unbiased spaƟal staƟsƟcs, Voronoi tessellaƟon, for fundamental site frequency. (Cheng 

et al., 2021). We observed the rejecƟon of outlier spectral curves exampled in Figure 3.8 and note 

the improved standard deviaƟon of the esƟmated peak fundamental frequency. 
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3.5.1 Example data analysis 

We determine the HVSR curve for each staƟon and analyze the results per the SESAME 

guidelines in Chatelain et al. (2008) and Albarello et al. (2011) to implement the HVSR approach, 

which has three condiƟons for curve reliability, 𝐻/𝑉(𝑓), and five criteria for idenƟficaƟon of a 

peak frequency, f0, as a clear peak.  

We use a 90-second Ɵme window, 30 Hz low-frequency passband, Konno and Ohmachi 

smoothing constant of 40, and a maximum of 50 iteraƟons for spectral rejecƟon in our 

calculaƟons. The HVSR spectral curve in Figure 3.8 shows a recording of the 11th hour on May 

2nd calculated for HVSR using the aforemenƟoned parameters.  

3.5.2 HVSR variaƟon along the array and interpretaƟon 

We use the HVSR spectral curve results in Figure 3.9 and compare the coherent spectral 

peak frequencies with a 1D velocity profile to esƟmate depths of potenƟal acousƟc impedance. 

We use the 1D shallow velocity and forward model with spectral peak frequencies based on the 

quarter wavelength funcƟon of harmonics (Figure 3.10). The primary soŌware idenƟfied a clear 

and reliable peak frequency of about 10 Hz, which is related to a depth layer at approximately 

30 meters. Secondary HVSR peaks are interpreted to the geologic structure shown in Figure 

3.10, which agrees with Caylor (1958) where nearby well correlaƟons result in a basin structure 

that is shallower towards the East. On a local scale, Cary (1955) depicts a complex anƟclinal 

structure along our deployment area which does support our interpreted structures at deeper 

depths.  
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A velocity model is created through passive processing of nodal seismic data as outlined 

in Behm et al. (2019) and Cheng et al. (2022), where noise cross-correlaƟon is computed for all 

possible staƟon pairs. Cross correlaƟons are then applied to the mulƟchannel analysis of surface 

waves (MASW) method (Park et al., 1998; Xia et al., 1999) for surface wave measurements from 

nodal data. Finally, frequency-Ɵme analysis (FTAN) (Bensen et al., 2007; Levshin et al., 1989; 

Hannermann et al., 2014) is applied to the recorded data. To obtain a velocity profile, we 

calculated dispersion curves from the interferometrically retrieved surface waves. Dispersion 

curves are then inverted to obtain a 1d velocity model, using a phase shiŌ method (Xia et al., 

1999). Dispersion curves are selected from energy trends and subsequently inverted for the 1D 

Vs model with Geopsy which follows a hybrid neighborhood algorithm (Wathelet et al., 2004). 

Dense deployments are typically a drasƟc improvement over single-staƟon observaƟons. 

We increase the observaƟon resoluƟon significantly using nodal staƟons. However, even with 

nodal staƟon density, details in recorded waveforms such as passing vehicles or trains would be 

easily overlooked when analyzing the recordings. Using very simple methods such as 

transforming data from Ɵme series into the frequency domain we can improve our observaƟons 

and idenƟficaƟon of anthropogenic noise sources such as moving vehicles and trains since they 

appear differently on the power spectrum (Figure 3.6). We can also compare our nodal results 

with those of DAS. Although DAS is recorded in strain rate, much of the processing and 

interpretaƟon is idenƟcal to that of tradiƟonal acousƟc seismic waveform measurements. With 

DAS, we can observe spaƟal temporal changes in the waveform stacks indicaƟng features such 

as vehicles traveling in opposite direcƟons as well as using kurtosis to idenƟfy a train passage. 
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However, with improvements in seismological sensing equipment, new logisƟcal issues 

do appear that were not present prior in tradiƟonal single-staƟon deployments. When using 

nodal staƟons, a crew of individuals is now required to effecƟvely deploy each sensor. Adequate 

training for each individual, as well as systemaƟc errors in each individual’s deployment 

technique, may introduce unwanted deviaƟon in recorded waveform. This issue and process are 

eliminated with DAS deployment where the primary setup is in the interrogator, but fiber cable 

installaƟon and ground coupling may influence data quality. 

In our DAS deployment, we are using dark fiber, which has potenƟally inconsistent coupling 

with the subsurface and inadequate fiber terminaƟon that introduced a significant amount of 

noise. Installing new fiber opƟc cables with good ground coupling may increase signal quality. 

3.6 Conclusion 

DAS applicaƟon using dark fiber is an emerging technique in observaƟonal seismology. 

ObservaƟons of different sources such as trains, cars, and noise are recorded and compared 

between nodal staƟons and DAS channels. It is important to characterize the response and 

improve our understanding of dark fiber DAS and compare the measurements to tradiƟonal 

recording instrument types. In our observaƟons, nodal staƟons do have stronger signal-to-noise 

raƟos than DAS, likely due to ground coupling differences caused by the deployment of fiber 

opƟc cables and nodes. There is an inherent risk of data noise contaminaƟon from these surface 

effects due to the deployment methods. The high spaƟal density of staƟons allows for improved 

interstaƟon resoluƟon, which aids in providing informaƟon on slight variaƟons in the wavefield 

between local sites.  
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We can see from the various HVSR spectral curves esƟmated from different recording Ɵmes 

that the HVSR technique is rather stable and provides a good indicaƟon of the fundamental 

frequency of the subsurface. Comparing both the ambient noise HVSR and earthquake HVSR, 

we can see both are similar except for amplitude differences. This may be due to a lack of 

waveform recording length with earthquakes compared with the hundreds of hours of ambient 

noise. However, differences in HVSR amplitude between ambient noise and earthquake 

recordings are jusƟfied, also seen in Bard et al. (2004) where both earthquake HVSR and 

ambient noise HVSR are compared. 

Using a velocity model, it is possible to determine a depth to acousƟc impedance layer for 

the HVSR fundamental frequency measurements. Although primary HVSR studies focus on the 

prominent peak, it should be noted that coherent secondary peaks should not be ignored. In 

the forward model, we can interpret the assumed sedimentary layers on the western side of the 

Nemaha Ridge. We should not expect significant variaƟons in the sedimentary structure of the 

adjacent Nemaha Ridge, but some variaƟon in slope may be present. 

ApplicaƟon of HVSR to telecommunicaƟon dark fiber DAS data is typically plagued with 

sensiƟvity issues due to poor ground coupling as well as a lack of instrument response that 

would allow for the conversion of the signal to scienƟfic units of ground moƟon. This would 

allow for a more direct comparison with nodal measurements. However, the ability to 

successfully use an exisƟng telecommunicaƟons fiber opƟc cable as a remote sensing network is 

significant to both research and commercial applicaƟons. To improve on and advance the 

method of dark fiber DAS, the instrument response of DAS must be resolved to easily compare 
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measurements to other instrument types. The popularity of using dark fiber for DAS is 

increasing and will become significant in the future as more studies include its deployment. 
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Figure 3.1: A map of Oklahoma with fault lines. The red box is the array location. Roads are 

shown as blue lines and railway tracks are green lines. 

 

Figure 3.2 Experiment location from the red box in Figure 1. Local events are in dots where they 

are color coded for each array and magnitude would depict circle size. Nodal stations for each 

segment of the deployment are shown by the colored triangles where blue is EW1-40, green is 

EW1-20, and red is EW2. 
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Figure 3.3 Day and nighttime noise for node station 4013 and corresponding DAS channel up to 

the Nyquist frequency of the down-sampled DAS and node time series. 
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Figure 3.4 Deployment duration average noise spectrum of the DAS array for the first 3000 

channels and an example 10-minute RMS time series capturing the 2.3 local magnitude 

earthquake on May 2, 2021. 
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Figure 3.5 RMS of DAS data. Passing vehicles, ambient noise, and a local event are highlighted. 
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Figure 3.6 A waveform comparison of DAS and nodal station 4006. The top is stack DAS, single 

DAS, and Node. The bottom left is a car signal, the bottom middle is an earthquake, and the 

bottom right is averaged and smoothed signal spectrum.  
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Figure 3.7 A train detection sparse array highlighting sections of both consecutive triggered DAS 

channels and consecutive time windows with large amplitude signals. An example time series is 

shown to illustrate a single-channel train signal. 
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Figure 3.8 Example HVSRpy output for station 4006 where time series components and 

resultant HVSR curve are displayed. Spectral rejection (blue line) is shown here with 

improvement to standard deviation. 
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Figure 3.9 Compilation of HVSR curves for all deployments between 2020 and 2021 as defined 

by color. 
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Figure 3.10 Interpreted geologic structure layers from forward modeling of the HVSR curves 

using an estimated velocity model to determine depth. The estimated fundamental frequency 

interpreted depth is shown as a green line and secondary frequency peaks are used to generate 

deeper interpreted structures (black lines).   
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4.1 Abstract 

Renewable wind energy is a growing global industry that has led to the construcƟon of 

wind farms across the United States, especially in midconƟnent regions such as Oklahoma. 

Seismic noise generated adjacent to wind turbines includes both natural wind source coupling 

and resonance of the turbine blades and towers that are transmiƩed through the subsurface. 

We conducted a pilot study to characterize and classify such noise that could lead to the 

development of beƩer techniques in ambient-noise seismology, noise suppression, 

idenƟficaƟon of near-surface resonance, and improvement to signal-to-noise raƟo. We 

invesƟgate the wind and wind turbine-generated noise within the seismic field through the 

applicaƟon of the power density funcƟon on 3-component waveforms collected from two 

temporary arrays of 5 Hz geophone sensors. The temporary array consists of 8 Fairfield nodes 

that were acƟve for one month with varying distances (10 meters – 2000 meters) from wind 

turbine towers located in Grant County, Oklahoma. The second array is located approximately 

50km northwest of those wind turbines. The spectral amplitudes and peak frequencies of the 

power spectrum show unique spaƟal-temporal variaƟons in noise levels for the locaƟon of the 

wind turbine towers. Noise amplitude decreases exponenƟally with distance from the wind 

turbine, and wind speed correlates with power spectrum peak frequencies. We idenƟfy 

mechanical signal sources at 0.17 Hz, 0.29 Hz, 0.51 Hz, 0.87 Hz, 14.5 Hz, 24.83 Hz, and 27.82 Hz, 

and the resonant frequency of the wind turbine tower at 0.37 Hz. We compare the esƟmated 

fundamental frequencies of both arrays. The direcƟvity of the seismic noise is characterized 

using a cross-correlaƟon funcƟon. We observe the wind turbines to be a very clear source of 



93 
 

seismic noise with exponenƟal power degrading at increasing distances. Closer examinaƟon 

shows wind, ground, and wind turbine coupling to be a complex field.  
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4.2 IntroducƟon 

The seismic wavefield has long been recorded and analyzed by researchers and 

professionals.  Signals from both natural and anthropogenic sources such as earthquakes or 

hydrocarbon exploraƟon propagate through the subsurface and are recorded by receivers. 

However, it is quite oŌen that these signals are contaminated and distorted by acousƟc seismic 

noise which can obscure important signals. Several noise types may exist, including, wind, ocean 

waves, and anthropogenic noise. To improve on the advancement of signal analysis it is 

important to delineate noise sources such as wind and wind turbines and characterize their 

influence on the acousƟc seismic field.  

Wind energy has been a global growing industry in recent years increasing its global 

power capacity exponenƟally from 2000-present. Growth in each wind turbine generaƟon has 

also led to greater power outputs with an increase in rotor size (EWEA, 2012). Meo (2006) 

summarizes, in-depth, Oklahoma’s expansion into wind energy due to partnerships, policies, 

infrastructure, economics, environmental, and community impact. These factors contribute to 

the overall growth of the wind energy industry in the state (Righter, 1996). Man-made 

structures, machinery, human acƟvity, and natural surface forces such as wind and temperature 

may generate noise that is coupled and transmiƩed to the earth and subsequently recorded by 

seismographs, that detect ground moƟon small enough to be impercepƟble to humans (Wilson, 

1953 and Withers et al., 1996). As an example, structures such as wind turbines house complex 

vibraƟon-inducing drive shaŌs and gears within the nacelle (Hemami, 2012) which may transmit 

vibraƟons into the subsurface. Less well known is the extent of the magnitude of source and 
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coupling and how it varies with distance as the energy propagates through the surface since 

source signals are unique to each source and are modified by the path and site effects.  

Seismic noise generated by wind turbines poses a scenario where both natural wind 

source coupling and resonance frequencies of the turbine blades and towers are transmiƩed 

through the subsurface. Resonance from harmonic waves for much larger sources can amplify 

earthquake waves and cause structural damage, such as was observed during the 1987 Whiƫer 

earthquake (Vidale et al., 1991), where basin resonance caused significant localized damage to 

buildings. Resonance is primarily from earthquake shaking in the fundamental frequency but 

can occur from overtones (Rial et al., 1992). Previous studies in wind variaƟons have shown a 

general increase in seismic noise with the wind with no apparent fundamental frequency at 

which the wind was observed (Muccaiarelli et al., 2005). However, other studies have suggested 

wind energy to be observed at higher frequency bands (Wilson, 1953; Withers et al., 1996; 

Young et al., 1996; and Teanby et al., 2016), though the measured source frequency bands vary 

between these studies. To improve our understanding of seismic signal sources such as 

earthquake or wind turbine fundamental frequencies, we must understand the characterisƟcs 

of the noise as an essenƟal first step before a desired signal can be isolated.   

4.3 Data acquisiƟon and processing 

For this study, we select a high-noise environment of wind turbines to observe wind 

turbine-influenced signals. We compare our findings with measurements from a locaƟon of 

lesser noise and without wind turbines to determine the effects wind turbines have on the local 

acousƟc seismic wavefield. Seismic data is acquired from a small temporary geophone (Fairfield 
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Zland 3T) array of 8 three-component sensors for a duraƟon of 1 month from December 2017 – 

January 2018 (Figure 4.1) in Grant County, Oklahoma. A second temporary array of 65 

addiƟonal Fairfield Zland 3T sensors were also deployed between November 2017 – December 

2017 with 30 overlapping days in Alfalfa County, approximately 50 km northwest of the Grant 

County array. The nodes were recorded at the frequency of 500Hz and later down-sampled to 

100Hz. An example of the conƟnuous waveform recordings from both arrays is shown in Figure 

4.2 showing a transient low-magnitude earthquake and background noise. It shows variaƟons in 

waveform amplitude between the two locaƟons. At both array locaƟons, the nodes are buried 

one inch below the ground surface in a relaƟvely homogenous surface soil. Surface soil 

condiƟons at Grant County are varying degrees of silt loam whereas Alfalfa County’s array is 

predominately on fine sandy loam north of Great Salt Plains Lake (Soil Survey Staff, 2018), with a 

shallow ground water table of approximately 3 m (USGS, 2016) for both locaƟons. Ground-level 

weather condiƟons such as wind speed, direcƟon, and temperature are measured by the 

Oklahoma Mesonet weather network and are publicly available (Brock et al., 1995; McPherson 

et al., 2007), with a sampling rate of 300 seconds. The nearest Mesonet staƟon, Medford 

(MEDF), is 25 km to the northwest of Grant County. We compare the recordings to a concurrent 

array located 50 km to the northwest in Alfalfa County where wind turbines are absent. The 

wind turbines in Grant County are classified as monopole-horizontal-axis wind turbines used in 

electricity producƟon by transforming slow turbine blade rotaƟon to a high-speed rotaƟon for a 

generator axle through gear raƟos, similar to the transmission in an automobile.  The monopole 

wind turbines in Grant County have a blade length of 41.25 m, a total height of 121.25 m, and 

an average rotaƟon of 12 to 14 revoluƟons per minute. The Ɵme series measurements as 



97 
 

exampled in Figure 4.2 from the nodal arrays, 𝑓(𝑡), are transformed using the fast Fourier 

transform, 𝐹(𝜔), in equaƟon 4.1 such as in Figure 4.3, and later compared with local weather 

condiƟons in Figure 4.4. 

𝐹(𝜔) =
1

2𝜋
න 𝑓(𝑡)𝑒௜ఠ௧𝑑𝑡

்

଴

 

(4.1) 

Where T is the length of the Ɵme series, we use 300 seconds for each component, and 𝜔 is 

frequency. A noise-corrected power spectrum (Cooley and Turkey, 1965), 𝑃(𝜔), is computed by 

calculaƟng the base-10 logarithm of the moving mean and mean spectrum raƟo in equaƟon 4.2. 

 

 

𝑃(𝜔) = 10 log(
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1
𝑘
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𝑛

) 

 

(4.2) 

 

The power spectrum is used to evaluate a broad range of noise at a given staƟon and 

enhances the relaƟve variaƟons in seismic power, allowing the signal to be beƩer-disƟnguished 

relaƟve to background noise levels. We apply a moving average window, k=5, to a frequency 

spectrum array with respect to Ɵme, n, and divide by the average frequency spectrum for each 
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Ɵme series window, T. Adding epsilon, 𝜖, to the numerator ensures that the division does not 

result in an undefined or infinite value, providing a small posiƟve value that avoids numerical 

errors. We use spectra to observe differences between different condiƟons throughout the 

deployment duraƟon such as day and nighƫme hours and low and high wind condiƟons (Figure 

4.5). Day hours, loosely defined as 8 am – 5 pm, are considered for their propensity for elevated 

noise levels when compared with night hours, 10 pm – 4 am. We define wind speeds up to 3 

m/s as low-speed wind and above 5 m/s as high-speed wind since wind turbines are designed to 

turn on close to the low wind speed cut-off speed. Signal spectra are subsequently used to 

esƟmate site condiƟons and noise source locaƟon through methods such as HVSR for single-

staƟon site response and cross-coherence for tracking signal propagaƟon.  

4.3.1 Horizontal to VerƟcal Spectral RaƟo 

Horizontal to VerƟcal Spectral RaƟo (HVSR) (Nakamura 1989) is oŌen used in 

microzonaƟon studies to quanƟfy site effects in terms of resonance frequency, geologic surface 

condiƟons, and site amplificaƟon factor. Generally, it is recommended to use transient signal-

free and calm environment recordings for ambient noise HVSR to analyze the background noise 

wavefield for interpretaƟon of the subsurface structure through fundamental resonant 

frequencies. The HVSR technique is a commonly used method in geophysics and earthquake 

engineering to esƟmate the resonant frequency from the raƟo of the spectral raƟos of 

horizontal and verƟcal components, 𝐻/𝑉(𝑓), of ground moƟon recorded at a site as expressed 

in equaƟon 4.3. Where the root geometric mean square raƟo of the two horizontal spectra, 𝐻, 

is taken over twice the verƟcal spectra. The resonant frequency is an important parameter for 
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seismic hazard assessment, as it determines the level of amplificaƟon of ground moƟon that 

occurs at a site during an earthquake.  

The method can be applied to different types of data, such as seismic, acousƟc, or 

ambient vibraƟon data, and can be used to study a wide range of phenomena, including the 

effects of geologic and structural features on ground moƟon, the characterizaƟon of soil and 

rock properƟes, and the evaluaƟon of the vulnerability of structures to earthquake damage. 

We determine the HVSR curve for each staƟon and analyze the results in accordance 

with the Site Effects Assessment Using Ambient ExcitaƟons (SESAME) guidelines Chatelain et al. 

(2008). These guidelines, which are empirically derived, provide an esƟmate of site 

amplificaƟon and meaning to the HVSR. Albarello et al. (2011) implemented the HVSR approach 

to have three condiƟons for curve reliability and five criteria for the idenƟficaƟon of a peak 

fundamental frequency, 𝑓଴, as a clear peak. We use 30-second-long windows for our HVSR 

calculaƟons with the open-source soŌware HVSRpy (Vantassel, 2020). 

𝐻/𝑉(𝑓) = ඨ
𝐻்

ଶ ∗ 𝐻ோ
ଶ

2𝑉ଶ
 

(4.3) 

4.3.2 Cross Coherence 

Cross coherence is a method in signal processing and vibraƟon analysis to quanƟfy the 

relaƟonship between two signals. The method is based on compuƟng the coherence funcƟon 

between two signals, which measures the degree of similarity between them in the frequency 

domain. It is calculated by taking the cross-power spectral density of the two signals and 
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dividing it by the product of their individual power spectral densiƟes. The cross-coherence 

funcƟon can provide valuable informaƟon on the frequency-dependent relaƟonship between 

two signals, including the presence of common frequency components and the phase difference 

between them. One of the key advantages of the cross-coherence method is its ability to 

idenƟfy and quanƟfy the coupling between two signals. The cross-coherence method can help 

to idenƟfy the frequency ranges and the degree of coupling between two systems, which is 

useful for understanding the underlying physical processes and designing appropriate control 

strategies. 

We use cross coherence between staƟon pairs A and B to determine the direcƟon of 

travel for our noise source in the frequency domain (w) as described in (Nakata, 2013) and 

shown in equaƟon 4.4 below. We reject any transient signals and use rotated component 40-

second overlapping Ɵme series windows from each staƟon for the cross-coherence calculaƟon. 

𝐶(𝐵, 𝐴, 𝑤) = ෍
𝑢௧(𝐵, 𝑤)𝑢௧

∗(𝐴, 𝑤)

|𝑢௧(𝐵, 𝑤)||𝑢௧(𝐴, 𝑤)| + 𝑒 < |𝑢௧(𝐴, 𝑤)||𝑢௧(𝐵, 𝑤)| >
௧

 

(4.4) 

With ambient noise recording at staƟon A at Ɵme t, with complex conjugate denoted with *, e 

regularizaƟon, <…> represenƟng the ensemble. Nakata (2011) shows the importance of power 

normalizaƟon for obtaining propagaƟng waves between two staƟons where amplitude 

variaƟons may be too great using other cross-correlaƟon or deconvoluƟon methods. In cross 

coherence with power normalizaƟon, the amplitude informaƟon is preserved and thus suitable 

for noisy data with varying amplitudes among traces. 
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4.4 Results 

The Ɵme series in Figure 4.2 exhibits an example of the Grant County and Alfalfa County 

array’s recorded passive ground moƟon amplitudes under different condiƟons. Recordings from 

Grant County display greater amplitudes than Alfalfa County during and off business hours (11 

pm - 4 am local Ɵme) with high and low wind condiƟons. This is also true in the frequency 

domain where we observe relaƟvely greater noise in the averaged staƟons in both arrays in 

Figure 4.5. We show staƟon 1001 for Grant County and 3003 for Alfalfa County where noise 

levels are separated by windy/nonwind condiƟons, day/night hours, and overall averaged power 

spectrums. DayƟme noise is greater than nighƫme noise, with higher noise amplitudes during 

high wind periods when compared with low wind periods. We observe liƩle separaƟon of day 

and nighƫme intervals as shown in Figure 4.5 which would suggest no significant 

anthropogenic noise caused by humans during working hours. Power spectrum observaƟons 

show an increase in wind speed correlates to an increase in the overall ambient noise 

amplitude. As a result, we apply our analysis to our complete data set. We exclude the laƩer 

half of data from staƟon 1008 due to an unexplained amplitude variaƟon that is not observed 

on other staƟons. We suspect an undetermined soŌware logic malfuncƟon associated with the 

node itself, perhaps during signal digiƟzaƟon, to be the cause of the data anomaly.  

At near-field staƟons 1001 and 1002, we observe the North component average power 

spectrums with narrow peak low frequencies approximately at 0.37 Hz, 0.5 Hz, and 0.8 Hz 

shown in Figure 4.3. Overtones of these signals are observed as well at far-field staƟons starƟng 

at 0.87 Hz which are mulƟples of the narrow peak frequencies. Significant power spectrum peak 

amplitudes are observed on all staƟons at 2.607 Hz, 7.823 Hz, and 14.5 Hz. Secondary smaller 
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peak amplitudes are observed in the range of 2 – 35 Hz as shown in the example power 

spectrum in Figure 4.2. The frequency band 0 Hz – 10 Hz is highlighted to show both lower 

frequency dependency and independence on wind energy.  

Seismic power compared with atmospheric condiƟons suggests a posiƟve correlaƟon 

between frequency and wind speed using data from Oklahoma Mesonet staƟon MEDF in Figure 

4.4. As highlighted before, wind speed, azimuthal direcƟon, and temperature are recorded at 

300 seconds sampling rate.  Wind speed, azimuthal direcƟon, and temperature are compared 

with lower frequency bands in the power spectrum 0.32 – 0.64 Hz, 0.64 – 1.28 Hz, 1.28 – 2.56 

Hz, and 2.56 – 5.12 Hz. No correlaƟon is shown between temperature and noise power log 

amplitude. Wind azimuthal direcƟon and strength shows varying posiƟve correlaƟon with the 

power spectrum (Figure 4.3). Stable power log amplitudes are observed between 0.32Hz and 

2.56Hz and power log amplitudes increase at a higher frequency band of 2.56 Hz and 5.12 Hz. 

Contrary to other studies (Schofield, 2001) we do not observe a significant shiŌ in frequency 

between windy and non-windy periods. We do observe stronger and weaker signals between 

the two condiƟons. Comparing Grant County’s waveform spectral to atmospheric paƩerns we 

see a correlaƟon between windspeed and spectral amplitude with respect to Ɵme. We only see 

a correlaƟon with windspeed while there appears to be a lack of correlaƟon with other weather 

condiƟons (Figure 4.4). We average power spectrums based on a range of wind speeds and 

show the gradual increase in average noise spectral amplitudes with an increase in wind speed. 

Median noise amplitude between staƟons at Grant County posiƟoned at varying distances 

relaƟve to wind turbine towers, Figure 4.6, shows the amplitude decay with distance from a 

wind turbine source fiƫng with a squared polynomial decay. 
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We observe the spectral curves and peak frequencies by applying the HVSR method in 

HVSRpy, as shown in Figure 4.7. Fourier transform of the three component waveform data is 

used for equaƟon 4.3 to generate HVSR curves which are then corrected through spectral curve 

rejecƟon, based on unbiased spaƟal staƟsƟcs, Voronoi tessellaƟon (Cheng et al., 2021). 

Common HVSR peak frequencies are approximately 7 Hz and 10.5 Hz. However, HVSR curves 

from staƟons near wind turbines appear to have a significant 10.5 Hz peak frequency when 

compared to other staƟons. The measurements show the HVSR method is successful in 

examining the ambient seismic background without being influenced by atmospheric condiƟons 

and local noise sources. As shown in Figure 4.8, at broad frequency bands, we observe energy 

propagaƟon through the array locaƟon. west to east. We determine our array locaƟon’s 

wavefield source and sink direcƟons by measuring staƟon pair Ɵme lag from ambient noise 

cross coherence in equaƟon 4.4. 

4.5 Discussion 

Wind-dependent frequencies have the highest amplitude at staƟons 1001 and 1002 and 

decrease in relaƟve amplitude with staƟons further away from the wind turbine as shown with 

the average power spectrum in Figure 4.3. As in Saccoroƫ et al. (2011) revealed frequency 

ranges between 1-5 Hz noise were increased in wind farm operaƟons and wind speed, which is 

similar to our findings. Significant peaks seen in Figure 4.5 that show wind dependency are 

greatest in the range of frequencies from 1 Hz – 35 Hz. StaƟons 1001 and 1002 have an increase 

in relaƟve noise level due to their proximity to the wind turbine tower compared with other far-

field staƟons, Figure 4.6. Significant frequency peaks at 2.7 Hz, 7.8 Hz, 14.5 Hz, 24.83 Hz, and 

27.82 Hz are observed strongest near-field, next to a wind turbine, and observed on all staƟons.  
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AddiƟonal frequencies between 25 Hz and 30 Hz show a decrease in amplitude with an increase 

in staƟon distance to the wind turbine tower and is aƩributed to the energy propagaƟon of the 

wind turbine and wind coupling, Figure 4.6. We idenƟfy a low-frequency peak of 0.29 Hz in the 

power spectrum on near-field staƟons only and a strong 0.87 Hz frequency with higher order 

modes on all other staƟons with decreasing amplitude with distance. We aƩribute 0.29 Hz to 

the low-speed shaŌ axial rotaƟon within the nacelle and the third harmonic 0.87 Hz to the wind 

turbine’s three-bladed sweep signal at 12-14 rpm which translates to an approximately 0.2Hz 

blade sweep frequency. Based on the assumpƟon of narrow sharp peaks in the power spectrum 

are aƩributed to mechanical wind turbine noise; we also consider 14.5 Hz, 24.83 Hz, and 27.82 

Hz to be aƩributed to the mulƟ-stage shaŌ revoluƟon of the high-speed generator axle.  

The HVSR results show no clear disƟncƟon between day and nighƫme periods with 

some power offset between windy and non-windy periods in Figure 4.9. This suggests that the 

HVSR method is well-suited for the analysis of the seismic background of both windy and non-

windy periods. The HVSR curves are analyzed in accordance with the SESAME guidelines for 

ambient excitaƟons where the spectral raƟo curve is tested for reliability and clear peaks (Bard 

et al., 2005). All selected peaks pass the reliable curve criterion. However, some of the selected 

peaks fail the test for clear peaks due to insufficient amplitude difference in defining a peak. We 

aƩribute this to an excessively noisy environment of near-field staƟons next to a wind turbine 

tower. It is suggested in HVSR studies to avoid ambient vibraƟons in areas of heavy machinery 

and/or high anthropogenic noise sources to avoid including transient ground moƟon (Koller et 

al., 2004). Therefore, we compare the HVSR curve results based on the recordings near wind 

turbines to the second array in Alfalfa County. We observe a clear and disƟnct peak frequency 
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common to all staƟons located in Alfalfa County in the frequency band 3 Hz – 5 Hz. Lesser 

amplitude and clear peaks are also visible at 10-12 Hz for some staƟons. Grant County staƟons 

show consistent frequencies at approximately 0.37 Hz, 0.8 Hz, 2.7 Hz, 5.1 Hz, 7.8 Hz, and 10.5 

Hz.  

For further invesƟgaƟon, we compare the low wind environment power amplitude 

spectrum with HVSR and noƟce a stronger 0.51 Hz peak in the power spectrum. Higher modes 

of 0.51 Hz are also significant in non-windy condiƟons similar to higher modes of 0.8 Hz in 

windy condiƟons. We aƩribute 0.51 Hz to the corresponding speed of the wind turbine blade 

sweep.  

In the HVSR curve, we observe a broad frequency peak at 0.8 Hz. A simple 

approximaƟon for potenƟal building resonance (Taranath, 2016) is provided by equaƟon 4.5 

𝐹௕ =
10

𝑁௦௧௢௥௜௘௦
 

(4.5) 

Where 𝐹௕ is the resonance frequency in hertz and 𝑁௦௧௢௥௜௘௦ is the height of the structure in units 

of floors. We apply this approximaƟon to esƟmate the 80-meter-tall wind turbine monopole 

tower resonance frequency to be 0.37 Hz. We observe the natural frequency of 0.37 Hz at all 

staƟons located near the wind turbine towers, except staƟon 1008, which is independent of 

wind forces that we can consider as the wind turbine monopole tower resonance frequency. 

Back of the envelope calculaƟon with the observed frequency, we esƟmate the tower height to 
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be 84 meters, which is an adequate approximaƟon given the significant figures that are 

overlooked in the conversion of stories to meters.  

From ambient noise correlaƟon, we determine the propagaƟon direcƟon of seismic 

wave energy at specific frequency bands. IntuiƟvely, it would be assumed that noise frequencies 

would show propagaƟon away from staƟons posiƟoned near a wind turbine tower which 

suggests significant seismic noise caused by a direct effect of the wind turbine tower and wind 

interacƟon with the monopole. However, analysis of the noise coherence shows a general West 

to East trend for wave energy at all frequency bands. Wave energy propagaƟng from West to 

East suggests signals are independent of any immediate local effects of atmospheric condiƟons 

and structures. This analysis is not sensiƟve to the narrow band frequencies previously 

idenƟfied as wind turbine mechanical noise. One hypothesis is that the low frequencies are 

energy from long-period waves generated by severe winter storms along the Western coastline. 

However, conƟnental staƟons in Bromirski et al. (2005) did not observe any mid-ocean double-

frequency microseisms when observing mid-ocean storm swells. Low, broad peak frequencies 

could be aƩributed to a deep structure causing harmonic resonance since observaƟons are 

consistent with the HVSR results. The West to East propagaƟon trend could be aƩributed to a 

near-surface broad frequency source such as the other wind turbines to the south-southwest of 

the array as shown in Figure 4.1. Finally, the noise in this frequency band could have another 

underdetermined source relaƟvely closer to the Alfalfa array. 
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4.6 Conclusion 

To improve our understanding of the ambient seismic field, the power density funcƟon is 

applied to the dataset recorded by the temporary array of 3 component sensors to highlight 

fundamental frequencies. Based on the results obtained from the power spectrum and 

Mesonet dataset comparison we can conclude the broad amplitude increase in power spectrum 

are likely due to the wind coupling with the ground based on power spectrum amplitude 

comparisons between staƟons and weather condiƟons, sharp narrow frequency peaks are due 

to the wind turbine mechanical noise coupling directly with the ground, and the wind turbine 

monopole natural frequency is 0.3 Hz. We assume that (1) the wind turbine tower radiates a 

constant amount of energy at each spin level, (2) All nearby wind turbines are always at the 

same spin level, (3) a simple laterally homogenous subsurface, and (4) wind turbine energy 

sums construcƟvely. We conclude 0.3 Hz is related to the low-speed shaŌ axial rotaƟon within 

the nacelle of the wind turbine at two different speeds. The third harmonic of these two signals 

at 0.51 Hz and 0.87 Hz are related to the wind turbine blade beats at the different 

corresponding wind turbine operaƟng speeds. High frequency and larger amplitude peaks are 

corresponding to the frequency band of the wind construcƟvely summing with the preexisƟng 

frequencies related to the wind turbine.  

Alfalfa County staƟon HVSR results show both common peaks between all staƟons at 3 

Hz – 5 Hz and varying spectral curve peaks over a short spaƟal distance. We averaged all staƟon 

HVSR curves between each array to account for any variaƟons in instrument and lateral 

heterogeneity in site effects. The average HVSR curves are both stable in different Ɵme windows 

as well as between all staƟons. Therefore, differences between Alfalfa County and Grant 
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County’s HVSR curves can most likely be aƩributed to differences in site locaƟon where the 

obvious difference is the existence of wind turbines. It is perplexing as to how Alfalfa County 

exhibits a greater HVSR amplitude and significant peak whereas, the Grant County HVSR curves 

are relaƟvely flat in comparison. HVSR interpretaƟon is commonly used to infer or otherwise 

deduce a subsurface geologic layer of high impedance. Therefore, it may be likely that the 

significant peak observed in Alfalfa County could be caused by a very shallow subsurface layer, 

whereas the Grant County array exhibits a subsurface layer of lesser acousƟc impedance. 

Certainly, the two locaƟons exhibit drasƟcally different subsurface features as highlighted by the 

HVSR results. An alternaƟve hypothesis is that other noise sources are not otherwise 

characterized by this study which is focused on wind turbine seismic noise. Nonetheless, these 

observaƟonal differences further support the importance of microzonaƟon studies.  

The direcƟvity of seismic energy between staƟons is determined based on the cross-

correlaƟon approach where Ɵme lag indicates the energy transfer direcƟon. There is direcƟvity 

across all frequency bands. However, it is counter-intuiƟve the source of the noise is not coming 

from staƟons next to wind turbines. It may be likely that the primary noise for the region is the 

collecƟve wind turbines for the wind farm.  
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Figure 4.11: Local map in Grant County Oklahoma, Alfalfa County, and overview map showing 

the area of interest. geometry and individual staƟons are with triangles, neighboring wind 
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turbine locaƟons are depicted with red dots, and roads are shown in green lines.

 

Figure 4.12: A 10-second time series window of the Z component for Stations 1001 from the 

Grant County array and Station 2012 from the Alfalfa County array. Two time periods are 

shown where Day time hours start at 7 pm and nighttime starts at 2 am CST. Note the different 

y-axis in the bottom left figure. 
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Figure 4.13: North component power spectrum of each nodal station in Grant County. 

Significant peak frequencies of interest are identified. Nodal station 1008 is furthest from the 

cluster of turbines. 
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Figure 4.4: Correlation plots of Station 1001 according to pass band frequencies expressed in 

power log amplitudes. Mesonet station MEDF temperature, wind direction, and wind speed data 

are used for this comparison. The top row is temperature, the center row is Wind direction with 

color showing wind speed, and the bottom row is wind speed with color showing wind direction. 

Color bars on the right show wind speed and wind direction. 
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Figure 4.5: Average power spectrum of each component for all stations in both arrays. Spectral 

curves show differences in day, night, windy, non-windy, and total average. 
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Figure 4.6: Amplitude spectrum median average noise per station listed by distance from the 

nearest wind turbine. A squared polynomial best-fit line is used to approximate a spatial signal 

strength decay.  
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Figure 4.14: HVSR results for day 353 at hour 12 from using HVSRpy. Spectral rejection is shown 

to improve HVSR peak frequency selection and standard deviation. 
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Figure 4.8: Ambient seismic wave propagation directivity from frequency bands within 0 - 50 Hz 

and broadband cross coherence for station pairs. The seismic wave source is shown in yellow 

compared to the direction of travel increasing in green tint. 
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Figure 4.9: Average HVSR spectral curve between both Grant County and Alfalfa County. 

Differences in day, night, low wind, and high wind periods are insignificant for the HVSR method. 
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Chapter 5: 

Conclusion 
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In the pursuit of expanding our understanding in the field of geosciences through 

invesƟgaƟng recorded waveforms, I can definiƟvely state that there is much more to learn and 

uncover. Although it is quite popular to analyze large events when they happen due to the 

aƩenƟon large-magnitude earthquakes can aƩract, these events are infrequent. A subsƟtuƟon 

of small events and passive seismic ideal since they can provide a proxy for large events. Passive 

seismic methods techniques do not require an acƟve source where Ɵming and posiƟoning are 

known. Economically, passive seismic analysis is low-cost and simpler to logisƟcally carry out. 

I have aƩempted to raise issues and address the shortcomings of tradiƟonal studies of 

large earthquakes. In one of our studies, I analyzed a limited dataset from a classical hydraulic 

fracturing experiment to improve magnitude esƟmaƟons and quanƟfy the seismogenic state. I 

found an improvement in magnitude esƟmaƟon through waveform cross-correlaƟon and 

subsequent seismogenic index. In addiƟon, the improved magnitudes and seismogenic index 

revealed subclusters that are orientated in a way where they are more prone to failure.  

For our passive seismic experiments, I compared two newly developed seismic sensing 

instrument types and performed a local site analysis. DAS using dark fiber’s recent introducƟon 

to seismic sensing has generated significant interest in its capabiliƟes especially when paired 

with nodal sensors. I examine the noise level differences between the two sensor types and 

follow up with a site characterizaƟon of the array length to esƟmate fundamental frequencies 

for shallow subsurface interpretaƟon of geologic structures.  

Finally, I compare what is considered to be a high noise level environment with wind 

turbines to a low noise level environment without wind turbines and observe how seismic 
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recordings are affected in nodal data. IntuiƟvely, I observe noise levels drop exponenƟally 

further away from a wind turbine. However, the cross-coherence of staƟon pairs shows a 

general West to East wave propagaƟon direcƟon.  

5.1 Summary of Results 

Some key results are as follows: 

(i) I use waveform cross-correlaƟon to idenƟfy different fracture sets for b-value 

esƟmates and subsequent seismogenic index calculaƟon.  

(ii) In Enid (Oklahoma, US) I use both DAS and nodal array to invesƟgate a long (20km) 

east-west transect. Recordings for both instruments are compared, and site response 

is esƟmated using the nodal data. Using a velocity model, I esƟmate the resonant 

subsurface layer. 

(iii) In my wind turbine analysis, I compare nodal data with wind speed data to analyze 

the influence a wind turbine generator may have on the acousƟc seismic field.  

5.2 Future work 

The feasibility of microseismic and passive seismic analysis is described here for the 

small case studies in Oklahoma. However, the applicaƟon and possibiliƟes reach beyond the 

scope of this dissertaƟon. The magnitude calibraƟon and subsequent seismogenic index 

approximaƟon may have applicaƟons in other cases outside of hydraulic fracturing. Current 

research in the space of carbon sequestraƟon and geothermal energy may be dependent on 

accurately tracking fracture networks to facilitate proper operaƟon without the risk of an 
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anomalous fracture network that may have a negaƟve impact. ExtrapolaƟon of our novel 

approach in microseismicity analysis can improve fracture monitoring.  

DAS is developing into an interesƟng monitoring system capable of being successful in 

many environments. It has evolved significantly since its early applicaƟons in boreholes and 

ocean boƩoms. However, noisy environments such as within ciƟes or roadside sƟll pose a 

challenge to DAS. One of the biggest challenges that became apparent with this study is the 

coupling of the fiber opƟc cable when using a dark fiber array. One way I aƩempted to 

overcome this is by normalizing the noise level for each channel.   

 


