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Abstract of the dissertation

A geoscientist yearns to learn more about the subsurface and one way of characterizing
the subsurface is through active seismic methods which utilize a local source to initiate a strong
waveform (e.g., explosives, vibroseis, sledgehammer). However, active sources are generally
costly to operate, and logistically complicated since, depending on location, they require
approval from an authorizing body, and are very intrusive and disturbing to the environment.
Alternatively, passive seismic methods are preferred due to their low cost, ease of instrument
deployment, and low environmental impact. Passive seismic is not without its caveats. Passive
seismic relies on the surrounding ambient seismic noise for measurements, which can be
influenced by local noise sources (e.g., vehicles, strong wind), effectively lowering the signal-to-
noise ratio. | will present an array of exciting results from low-amplitude seismic recordings and
novel approaches to measuring them to understand the seismic noise environment and
microseismic events, which have implications for the field of seismology. | will show an
improved analysis of seismogenic potential from magnitude calibration, an interpreted resonant
subsurface boundary determined from resonance frequencies, and a correlation of wind speed
and seismic recordings. | use an induced seismicity catalog recorded by two nearby boreholes to
apply a novel workflow of waveform correlation to 2074 earthquakes for magnitude calibration
and subsequent evaluation of seismogenic potential. Waveform correlation reveals statistically
significant differences in b-value and seismogenic potential after calibration and suggests a
dependence of the earthquake statistics upon their optimal or suboptimal orientation to the

local stress field. In another study, we utilize distributed acoustic sensing (DAS) recording, which
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allows for a high density of receivers with minimal field deployment. The technique leverages
novel sensors to measure backscatter from a telecommunication dark fiber, resulting in a time
series of strain along the cable, effectively 100s to 1000s of “seismometers.” Comparison
between this novel sensing device and traditional sensors reveals the higher noise level of DAS.
However, the higher spatial resolution of DAS allows for stacking measurements along channels
and identifying noise sources that were previously not easily recognizable in traditional arrays.
Recorded measurements are often subject to increased background noise in an urban or noisy
environment. From seismic recordings across Oklahoma from dense arrays, | examine the
effects of wind and wind turbines on recorded seismic noise via single-station site response

techniques to determine site resonance frequencies and noise source origin.
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Chapter 1:

Introduction



1.1 Introduction

In our ever-changing landscape and growing society, it is not uncommon for the general
population to go about their day woefully unaware of the destructive force beneath their feet.
We live in a world that is constantly shifting and in a state of flux. However, every so often we
are reminded of the energy that can be released in the form of an earthquake. Early civilization
societies postulated the origin of earthquakes (Agnew et al., 2002) such as Aristotle (330BCE)
attributed earthquakes to winds blowing in unground caverns (Missiakoulis, 2008), and early
Japan gave credit to a large subterranean serpent-like catfish for earthquakes (Severn, 2012).
Advancements in seismological thinking did not occur until the Lisbon earthquake of 1755 due
to its destructiveness and evidence for causing motion at great distances (Frechet 2008). Public
interest in destructive earthquakes shown in Tan and Maharjan 2018 showed an increased
interest in earthquakes after large events and correlated public interest to the destructiveness

of the earthquake.

It is commonly known that the destructiveness of earthquakes is directly linked to their
magnitude (Gutenberg and Richter, 1942) and site-specific shaking intensity (Hartzell, 1992).
Magnitude estimates have evolved with various techniques in calculation such as the least
square technique for estimating b-value and maximum likelihood. These variations have led to
prolonged debates about a preferred method for estimations. More importantly, the continued
interest in geoscience research has aided in the development of recording for longer continuous
durations for background noise and the detection of smaller earthquakes. Continuous ambient
noise analysis has had a resurgence in recent decades, thanks mainly in part to advancements in

commercial and personal computing where larger datasets may be processed at the same time.
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One advantage of continuous data is that multiple datasets can be compared amongst each
other. Large dataset recordings from regional networks have helped in monitoring the
earthquake activity in Oklahoma where seismicity increased steadily in the earlier part of the
millennium due to large-scale fluid injection as investigated in many studies (i.e. Rashidi and
Ghassemieh, 2023). However, current regional networks still lack the spatial density to capture
interstation lateral heterogeneities in the subsurface. High-density local deployments of seismic
sensors can resolve the smaller-scale lateral variations in the subsurface that regional networks

cannot capture.

The overall motivation for this dissertation is to explore new ways to investigate ground
motion intensity. This is done broadly by first examining the earthquake magnitudes during a
hydraulic fracturing survey and then with passive seismic techniques to investigate site response
and the potential for ground motion amplification. | present the applications of passive seismic
techniques at local deployments for high-spatial-resolution surveys of the shallow subsurface.
Apart from the overall motivation, each section will have its motivation which will be
introduced. The individual section motivation includes the — (i) improvement of magnitudes, (ii)
resonance of a deep intracontinental basin, and (iii) local region noise sources’ impact on

acoustic seismic recordings.

1.2 Overview of the Dissertation

In Chapter 2, | investigate a classical dataset, the Cotton Valley hydraulic fracturing
survey in Carthage, Texas. | will use waveform correlation to improve magnitudes calibration

and apply newly calibrated magnitudes to quantify the seismogenic potential. Cross-correlation



is used to identify individual fracturing clusters for a b-value analysis and subsequently
seismogenic potential. | show improvement in magnitude calibration and seismogenic potential

results show a better correlation with the different fracture sets.

In Chapter 3, | use data collected from 3 component nodal sensors co-located with
distributed acoustic sensing using a dark fiber array to compare and evaluate the local site
conditions for resonance at a high spatial resolution (kilometer scale). 1-month of continuous
passive acoustic seismic data was collected. | then compare the results with a velocity model to
estimate geologic basin structures which show shallow and coherent resonance layers within

the subsurface.

In Chapter 4, | collect 1-month of continuous passive acoustic seismic data from two
locations in Northern Oklahoma and compare them with wind speed data. Ambient noise
processing techniques are used to identify and analyze the dominant local noise source, wind
turbines. | compare the results from the two arrays under similar wind speed conditions, but

one lacking in wind turbines.

1.3 Structure of the Dissertation

This dissertation consists of 3 chapters, one of which is formatted in preparation to be
submitted for publishing, and the other two are in preparation for submission. The chapters are

as follows:

e Chapter 2: Waveform correlation improves magnitude calibration during hydraulic
fracturing.

e In preparation for resubmission to the Bulletin of Seismological Society of America as:



Ng,R.,Chen,X.,Nakata,N. Walter,J.l., (2023). Waveform correlation improves magnitude
calibration during hydraulic fracturing. Bulletin of the Seismological Society of America

e Chapter 3: Site response of ambient seismic noise of Northern Oklahoma from the
perspective of Nodal and DAS arrays.

e Chapter 4: Wind and wind turbine influence on measurements of seismic noise.
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Chapter 2:

Waveform correlation
improves magnitude
calibration during hydraulic
fracturing



2.1 Abstract

Microseismic monitoring is an important technique to obtain detailed knowledge of in-
situ fracture size and orientation during active well stimulation to maximize fluid flow
throughout the rock volume and optimize production. Furthermore, considering that the
frequency of earthquake magnitudes empirically follows a power law (i.e. Gutenberg-Richter),
the accuracy of microseismic event magnitude distributions is potentially crucial for seismic risk
management. In this study, we analyze microseismicity observed during four hydraulic fracture
stages of the legacy Cotton Valley experiment in 1997 at the Carthage gas field of East Texas,
where fractures with significant moment release were activated at the base of the sand-shale
Upper Cotton Valley formation. We perform waveform cross-correlation to detect similar event
clusters and calibrate event magnitudes based on relative amplitudes within those clusters from
waveform cross-correlation. The calibrated magnitudes significantly reduce the deviations
between magnitude differences and relative amplitudes of event pairs. This subsequently
reduces the magnitude differences between clusters located at different depths. Reduction in
magnitude differences between clusters suggests that attenuation-related biases could be
effectively mitigated with waveform correlation. The maximum likelihood method is applied to
understand the magnitude frequency distributions and quantify the seismogenic index of the
geographic clusters. Statistical analyses after magnitude calibration suggest that fractures that
are more favorably oriented for shear failure have lower b-value and higher seismogenic index,
perhaps suggesting a higher potential for larger earthquakes, rather than fractures subparallel

to maximum horizontal principal stress orientation.



2.2 Introduction

Microseismicity monitoring has been a useful technique in quality control of the
operation during hydraulic fracturing in oil and gas exploration (Albright et al., 1982). Source
location, fracture orientation, and fracture growth may be determined from microseismic
monitoring to improve and calibrate treatment designs, as well as identify potential placement
for additional hydraulic fracturing or wastewater injection wells within the desired unit. In some
cases, it may be essential to maximize economical production by ensuring the rock volume is
thoroughly stimulated and creates high permeability for long-term hydrocarbon recovery by
examining such factors as proper fracture orientation, size, fractured volume, and hydraulic

communication.

Hydraulic fracturing creates fractures and expands high-permeability fracture pathways for
effective and efficient hydrocarbon extraction. This process is completed in stages because of
the large amount of energy required to pump fluids and materials (e.g., sand proppant to hold
fractures open) for generating fractures and is only practical to frack for a limited amount of
time in each segment of the leased rock volume. The behavior of the seismicity that is induced
during well stimulation is spatially and temporally controlled by stress relaxation and pore
pressure fluctuations initiated at the injection location (Shapiro et al., 1997). Hydraulic fractures
are created through a tensile opening in the direction of the least principal stress, and the
expected hydraulic fracture usually aligns with the direction of maximum principal stress
(Hubbert and Willis, 1957). While the tensile opening mode is expected for hydraulic fractures,
shear slip has often been observed for microseismic events and larger events, which has been

interpreted to represent an interaction between hydraulic fractures and natural fractures or
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other sedimentary structures such as bedding planes (Maxwell and Cipolla, 2011; Rutledge et

al., 2004; Hubbert and Willis, 1957).

Analyses of characteristics of event occurrence may provide a glimpse into the state of
subsurface stress. The power-law distribution of earthquake occurrence in equation 2.1,
commonly referred to as the Gutenberg-Richter (GR) relationship (Gutenberg and Richter,

1942), is described as

log;o N = a— bM,

(2.1)

where N is the cumulative number of earthquakes above M magnitude, a is the
intercept, and b is the slope of the power-law distribution. However, not all events are detected
by a network of seismometers. The magnitude of completeness (M,) describes the magnitude
threshold, above which all events should be completely detected by the network. The b-value
has been observed to vary across different tectonic zones, stress regimes, earthquake causal
conditions, and even temporally for the same study region (e.g., Ghosh et al., 2008). It has been
suggested that it may represent a relative indicator of stress distributions across fault zones
(Bachmann et al., 2014; Schorlemmer et al., 2005). Bachmann et al. (2012) found that the b-
value decreases with distance from the injection point, which could indicate reduced fault
strength due to higher pore pressure near the injection source. The relationship between
injected volume and magnitude evolution can help us forecast induced seismicity and evaluate
a potential maximum magnitude for a fault zone (McGarr, 2014). Shapiro et al. (2010)

developed the seismogenic index (SI) model to explain the relationship between injected
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volume and event number for different magnitudes, where regions with higher seismogenic
index have a higher probability of larger earthquakes with the same injected volume. The
seismogenic index is a statistical approach to examine the occurrence probability of fluid

injection-inducing earthquakes at a given injection site (Shapiro et al., 2010).

In this study, we analyze a legacy dataset for four hydraulic fracturing stages of the tight-
gas reservoir within the sand-shale Cotton Valley formation in Carthage, Texas (May — July 1997)
(Walker, 1997). High-resolution relocation and focal mechanism analyses by Rutledge et al.
(2004) revealed different sets of fractures within the base of the Upper Cotton Valley formation.
Hydraulic treatments with anomalously high moment releases and a high number of events
occurred within several dense clusters, which delineate fault bends or jogs that are more
favorably oriented for shear failure. Our aim in this study is to investigate whether statistical
analyses can reveal different characteristics of fractures. We begin by introducing the dataset,
then perform magnitude calibration using waveform cross-correlation analysis, followed by a
detailed magnitude-frequency distribution and seismogenic index analyses. Finally, we discuss
the improvements before and after magnitude calibrations and the implications of the improved

results.

2.2.1 Experiment data

The hydraulic fracturing data used in our study was recorded in 1997 during injections at
depths of 2757-2838 meters and 2615-2696 meters in the Cotton Valley Formation. The
hydraulic fracturing experiment induced more than 4,000 microseismic events over six

treatments, which were recorded by two borehole monitoring arrays (Walker, 1997; Walker et
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al., 1998). Increasing the number of monitoring borehole arrays from one to two in the
experiment for some treatments improved the ability to distinguish between coherent noise
and microseismic events, in addition to overcoming low signal-to-noise ratio and low resolution,

as described by Zinno et al. (1998).

For our analysis, we only use the available treatments A, B, C, and E as represented in
Figure 2.1, and follow the same naming convention as Rutledge et al. (2004), which include
2547 events from the original Walker (1997) catalog (Table 2.1). Among these events, 2074 has
available waveforms. The distribution of catalog events with complete waveforms is shown in
Figure 2.2, which shows an evenly sampled subset of the original catalog. The relationship
between the 2074 microseismic events and injection rate with time is shown in Figure 2.3 for

the four treatments analyzed here.

We observe a good correlation between the onset time of the injection rate and the
origin time of the induced seismic events. In treatments A, B, and C the abrupt decrease in
injection rate also correlated with the seismicity rate drop (Figure 2.3). However, in treatment E
there is a relative anomalous increase in seismicity rate with injection. Rutledge et al., (2004)
attribute anomalous seismic activity to pressurized fracture offsets or orientation changes that
concentrated stress and fluid choke off. Typical right lateral movement places the left-stepping
jog of treatment E in compression, but a right step is hypothesized by Rutledge et al., (2004) as
a pressure sink which delayed seismicity. Therefore, seismicity increased even after shut-in,

which is an industry term that denotes no further fluids were entering or exiting the wellhead.
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In this analysis, we only use the 2074 cataloged events with complete waveforms that
clear P and S-wave arrivals from four stages analyzed in Rutledge and Urbancic, (1999). Seismic
moments are calculated by Rutledge et al. (2004) using methods described in Andrews (1986),
which averages the values obtained from P and S phase recordings from several stations. The
seismic moments from Rutledge et al. (2004) used in this study are mostly between the narrow
range of 0.4 uNm — 8 uNm. The majority of the relocated microseismic events form clouds that
delineate fractures aligned with the maximum horizontal stress (SH-max at N8OE), especially
during treatments A and C (Figure 2.1). During treatments B and E, microseismicity occurred in
several clusters we identified using cross-correlation with some having anomalous orientations
that are off-axis to fractures aligned with SH-max (Rutledge et al., 2004). As seen in Figure 2.1,
most stations to event hypocenters distances are at similar equidistant ranges between 1km -

2km and at a similar depth.

2.3 Methods

In this study, we perform magnitude calibration based on the relative amplitude
(Cleveland and Ammon, 2015) measured from waveform cross-correlation following Chen et al.
(2018). Then, we perform magnitude-frequency distribution analysis to obtain the b-value for
each treatment with the maximume-likelihood method (referred to as “MLE”) and compare
results using both the original catalog magnitudes and the calibrated magnitudes. To better
understand the improvement of calibrated magnitudes, we compare the frequency-magnitude
distributions (FMD) of the different treatments and subclusters of treatment B. Finally, we link
magnitudes with injected volume to obtain seismogenic indexes for each treatment following

Shapiro et al. (2010) using corresponding b-values obtained from MLE. For both the b-value and
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seismogenic index, we assess the uncertainty through bootstrap resampling. The relative
variations of b-value and seismogenic index among treatments and subclusters are interpreted

as related to the relative stress state of different fractures via Mohr circle analysis.

2.3.1 Magnitude calibration using cross-correlation

Precise magnitude estimates may be acquired from the cross-correlation of two
earthquake waveforms with well-constrained reference event magnitudes (Gibbons and
Ringdal, 2006; Schaff and Richards, 2014) and can be applied to earthquake clusters with similar
faulting geometry and depth (Cleveland and Ammon, 2015). Magnitude calibration can reduce
the scattering between the relative amplitude ratios and magnitude differences of event pairs,
which is important to improve statistical analyses related to magnitude distributions (Chen et

al., 2018; Shelly et al., 2015, 2016).

The dataset includes rotated three-component microseismic event waveforms at each
geophone with sampling rates of 1000 Hz. For each treatment, only a subset of waveforms is
available for the cataloged events from Rutledge et al. (2004) (Table 2.1). We first apply a short-
term average/long-term average (STA/LTA) picker using the GISMO (Reyes and West, 2011)
package to obtain P-wave arrival time on the vertical channel and S-wave arrival time on
horizontal and transverse channels. Waveforms with no detectable picks are not used in the
following analysis. Examination of waveforms suggests that the transverse component has the
highest signal-to-noise ratio. Therefore, we use the S-wave from the transverse component for

magnitude calibration.

14



We then measure relative amplitude using waveform cross-correlation (CC) with the

following steps for each treatment:

1. A detailed inspection shows that many traces have a low signal-to-noise. To improve our
data visualization, we apply a Butterworth bandpass between 20 Hz and 150 Hz where
observed amplitudes for microseismic events are the largest.

2. Extract a 70 ms window around the initial arrival of the microseismic event (10 ms
before and 60 ms after).

3. Cross-correlate each event pair at each station and measure the relative amplitude ratio
using principal component analysis for waveform pairs with a CC coefficient greater than
0.6 (Wold et al., 1987). An example of relative amplitude measurement is shown in
Figure 2.4. The waveform pairs are time-shifted based on the lag time, and the relative
amplitude ratio is calculated by taking the maximum eigenvalue of the covariance of the
shifted waveform pairs. Only event pairs with amplitude ratio measurements from more
than 5 receivers are used for magnitude calibration.

4. Invert for new magnitudes based on amplitude ratios and cataloged seismic moment
(Chen et al., 2018; Cleveland and Ammon, 2015; Schaff and Richards, 2014; Shelly et al.,

2015, 2016) based on equation 2.2,

[ logig ARy ] -1 1 0 0 [ logio Mg ]|
log, AR1,3 [_1 0 1 S | ] log1o Mg
logigAR1s [_[-1 0 0 1 -+ 0 |x]| logyoM§

logi0 ARy_1 N o -« = 0 -1 1 log,o MY ™1

SV logyo Mi | 1 1 1 -« - 1 | logy, MY |

(2.2)
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where the logarithmic amplitude ratio (AR; ;) between events j and k is the averaged amplitude
ratio from all receivers with CC > 0.6. In the last row of equation 2.2, N is the total number of
recorded earthquakes and Y, log;, M is the summation of the total seismic moment for
events included in the calibration from the initial catalog, which constrains the summation of
the calibrated seismic moment. The calibrated magnitudes are obtained via the moment
magnitude relationship (equation 2.3) from Kanamori, (1977) where the moment (M,) in dyne-

cm is converted to N-m to obtain moment magnitude (M,,):
M,, = (log1o My —9.1)/1.5
(2.3)
2.3.2 b-value

Similar to Ibanez et al. (2012), we determine the Mc by maximum curvature method
(MAXC) (Wyss et al., 2000) from an open-source z-map Matlab toolbox (Wiemer and Malone,
2001). MAXC determines Mc by the maximum value of the first derivative of the frequency-
magnitude curve, the point of maximum curvature. However, a caveat in MAXC is the tendency
to underestimate Mc in data as explained by Mignan and Woessner (2012). Using events with
magnitudes above the estimated Mc, the b-values from the Gutenberg-Richter relationship
(equation 2.1) are obtained using the maximume-likelihood method (MLE) (Wiemer and Malone,
2001). The estimated b-value is the logarithmic of e/(M,,, — M,,,;,,) using the average
magnitude (M,,) and minimum magnitude (M,,;,,) (both before and after magnitude

calibration) following equation 2.4 (Aki, 1965):
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b = 10g10 e/(Mav - Mmin)

(2.4)

While MLE provides reliable estimates of b-values when the FMD follows a GR
relationship (Milojevic, 2010), there is the possibility that MLE tends to bias lower magnitude
events when Mc is too low and will result in a poor fit to the GR relationship (Ibanez et al.,

2012).

To assess the uncertainty in b-values due to possible biases in Mc, we perform bootstrap
resampling with 100 resampled datasets for each treatment. For each resampled dataset, a new
Mc and b-value are estimated. Generally, b-values are expected to be ~1 in large sample sizes
(Frohlich and Davis, 1993), which is typically observed for tectonic earthquakes (Kagan, 1999),
but seismicity associated with fluid injection (Bachmann et al., 2011, 2012, 2014; Lei et al.,
2008) or magma intrusion (Wiemer and McNutt, 1997) often have b-values greater than 1.
Differences in styles of faulting also produce varying b-values (Schorlemmer et al., 2005). The
spatiotemporal variations of the b-value often indicate stress distributions, with lower b-values
indicating higher differential stress (Schorlemmer et al., 2005) or associated with fault activation

(Shelly et al., 2016; Chen et al., 2018).

2.3.3 Mohr circle construction

A Mohr circle can be used to visualize the subcluster analysis of the treatments with
clusters not orientated along to SHmax. Developed by Mohr (1900) to investigate fluid pressure
and stress-controlling fracture opening, Mohr diagrams provide a useful tool for visualization of

the relationship between the normal stress acting on a fracture surface and the shear stress

17



required to overcome the friction angle. We can describe the normal stress (a,,) using the
maximum (a;) and minimum (a3) principal stress, and () the angle between the fracture plane
and maximum principal stress. Mohr-Coulomb failure criterion (Heyman et al., 1971) included a
failure envelope that is tangential to the Mohr circle where the apex between the failure
envelope and the Mohr circle is (g, 7). Normal stress is determined geometrically in equation

2.5 using the horizontal component of the Mohr circle normal stress (% cos 26) and the

. . o1t0
principal average stress (%).

o1t0 01—0:;
Op =%+%00529

(2.5)
Mohr-Coulomb failure criterion failure envelope describes the stress state at failure

when the acting shear stress overcomes the internal friction angle (¢) and normal stress. The

geometric relationship (equation 2.6) of the shear stress at failure (z5) to the normal stress and

material cohesion (c) is given by
T = Cc+ optang
(2.6)

Since we are only interested in the relative variation of the fracture stress states on the
Mohr circle, we only calculate a schematic Mohr diagram with normalized stress amplitude and

assume a friction coefficient of 0.75 for the Coulomb failure envelope.
2.3.4 Seismogenic Index

Developed by Shapiro et al. (2010), the seismogenic index ¥ is a derived parameter

based on the fluid-injection rate and seismicity rate of induced earthquakes that quantifies the
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seismotectonic state at an injection site, originally empirically derived from geothermal case
studies. The seismogenic index is theoretically independent of injection time and any injection
characteristics (Shapiro et al., 2010), where the larger the index the larger the probability of a
significant magnitude event. Shapiro et al. (2010) estimated the seismogenic index for a specific

injection location using the following:

X(t) =logyg Noy(t) —logqo Qc(t) + M
(2.7)

where N is the number of induced events with magnitude > M larger than (M) as a function of
injection time (t) and the cumulative injection fluid volume (Q.). Figure 2.3 depicts the
relationship between the injection rate, time, magnitude, and the number of events which is
used to determine the seismogenic index values in equation 2.7. We use the previously
obtained b-values and Mc to calculate the seismogenic index at each time step of 0.5 hours and
assume the average as the final index for each treatment. For each treatment, the seismogenic

index is estimated using the catalog both before and after magnitude calibration.

The uncertainty of the seismogenic index is estimated with the same 100-resampled
dataset for each treatment used for b-value uncertainty estimation. Both b-value and
seismogenic index uncertainties are quantified with probability density functions based on
results from these resampled datasets, where bootstrapped probability histogram results (h)
are from the ratio of the cumulative (n) observations within a given bin size (k) at (i) bins shown

in equation 2.8.
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h — Z%‘:l Tli

(2.8)
2.4 Results

Out of the 2074 cataloged events with waveforms (see Table 2.1), we obtain calibrated
magnitudes for 1963 events. We compare the relationship between magnitude difference and
measured amplitude ratio to examine the improvement of calibrated magnitude. Then, we
compare the distribution for the b-value and seismogenic index from the bootstrap resampling

to discuss the geomechanical implications of those measurements.
2.4.1 Calibrated magnitude

For each stage, we use heat maps to examine the relationship between the logarithm of
amplitude ratio measured from the waveform and the relative magnitude between available
event pairs. The image resolution of the heat map is determined by the total number of events
in each bin of amplitude ratio and relative magnitude. Figure 2.5 clearly shows magnitude
calibration significantly reduces the scatter for all treatments converging to a slope of 1.5
between amplitude ratio and relative magnitude as expected from equation 2.3 (the moment

magnitude relationship).

Before magnitude calibration, different treatments exhibit diverse behaviors. Both
treatments A and B were conducted in treatment well 21-10 and monitored by wells 21-09 and
22-09. Both exhibited highly scattered distributions between amplitude ratio and relative

magnitude before magnitude calibration. Several sub-parallel linear trends can be identified
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with an approximate slope of 1.5 matching that of the inversion in equation 2.3. These sub-
parallel groups and increased scatter in the uncalibrated data could be due to attenuation from
different ray paths (see Figure 2.1). Treatments C and E were conducted in treatment well 21-09
and recorded by well 22-09. These two treatments exhibit tighter distributions compared to
treatments A and B before magnitude calibration, which could be due to narrower depth
distribution since ray paths to the monitoring well are similar (see Figure 2.1). To better
understand the cause of the scattered magnitudes in the original catalog, we examine the FMD
for similar event clusters during treatment B. We group events based on waveform similarity by
defining similar event clusters with minimum CC of 0.6 from at least 8 stations. Figure 2.6 shows
events in each cluster confined within similar depth and spatial location, which is consistent
with grouping based on location and polarity in Rutledge et al. (2004). These clusters have large
magnitude differences before calibration, which decrease after calibration (Figure 2.6b and
2.6d). The measured amplitude ratios are based on filtered waveforms between 20 and 150 Hz,
which is well below the expected corner frequency for the magnitude range (Urbancic et al.,
1996). By measuring the amplitude ratio between event pairs at similar locations, the
attenuation from the source region and path can be effectively canceled out as seen in Figure

2.5.

2.4.2 Frequency-Magnitude Distribution and the Seismogenic Index

Figure 2.7 shows the FMDs of the four treatments before and after magnitude
calibration. Table 2.2 provides the resultant seismogenic index before and after magnitude
calibration as well as the b-value and Mc for each treatment. For all treatments, there exists

some deviation from the GR relationship at higher magnitudes. Deviations from the GR
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relationship have been observed for fluid-induced seismicity (Skoumal et al., 2015). This could
explain the large difference in b-value between the MLE and least squares (LST) methods (see
supplementary materials). The b-values with the MLE method for treatments A, B, and C are
systematically lower than the b-value estimates from Dinske et al., (2013). However, those b-
values from Dinske et al. (2013) agree well with our LST b-values (see supplementary materials),
suggesting that the choice of b-value methods strongly influences the results when the FMD
strongly deviates from the GR relationship (Skoumal et al., 2015). Despite the large differences
in absolute b-values, the relative differences between b-values using the same method remain
consistent. Both Dinske et al., (2013) and the MLE estimates here, found treatment B has a

slightly lower b-value than treatment A and a much higher b-value for treatment C.

The probability density functions for the b-value and seismogenic index from the four
treatments are compared in detail in Figure 2.8. The uncertainty for treatment C is significantly
reduced after magnitude calibration, suggesting magnitude calibration improves the stability of
subsequent calculations. The relative distribution of the seismogenic index is consistent before
and after calibration: treatment E has the highest value, followed by treatment B, A, and C. The
relative distribution of the b-value shows some differences. Before magnitude calibration,
treatment B has the lowest b-value, followed by treatments E, A, and C, while after calibration,
treatment E stands out with the lowest b-value, followed by treatments B, A, and C. Treatments
B and A consistently have similar b-values, and treatment C always has the highest b-value. Both
the seismogenic index and b-value can be associated with seismic hazard: a higher seismogenic
index and lower b-value indicate a statistical population of earthquakes with a distribution

composed of larger events within the range of magnitudes observed. In this respect, the relative
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ranking of b-value and seismogenic index after magnitude calibration consistently indicates the
highest seismogenic potential for treatment E, demonstrating that magnitude calibration

perhaps provides a more coherent hazard assessment using different parameters.

Figure 2.6 shows that treatment B can be further separated into similar event clusters. A
principal-component-analysis method is used to estimate the geometry of each cluster
following Qin et al. (2022). Among all clusters, clusters 1 and 4 show a relatively larger angle,
20°, from SHmax orientation, while the other clusters have a similar orientation to SHmax. We
then further assess the distribution of b-value and seismogenic index for events within clusters
1 and 4 (referred to as “C1-4”) and the rest of the events (referred to as “others”). C1-4 consists
of about 40% of all events in treatment B. Figure 2.8 shows that C1-4 has a lower b-value and a
higher seismogenic index than “others”. The overall b-value of treatment B lies between C1-4
and “others”. The events that are not within C1-4 have a similar seismogenic index compared to
treatment A both before and after magnitude calibration. This suggests different seismogenic

potentials for fractures of different orientations during the same treatment.

2.5 Discussion

Within the scope of this study, we determine seismogenic index values from calibrated
magnitudes based on a limited range of data. The magnitude calibration using the full waveform
provides significantly improved magnitudes, though the statistical analysis of the b-value and
seismogenic index shows some differences. Here, we further discuss the influence of magnitude
calibration on statistical analyses and the possible physical processes that cause the differences

among different treatments and different fractures.
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2.5.1 Factors influencing magnitude measurement

The significant improvement in agreement between amplitude ratio and magnitude
difference in Figure 2.5 suggests that analysis of the full waveform is needed for microseismic
events. Catalog magnitude estimations were calculated based on seismic moments measured
by Urbancic et al. (1996) and the moment magnitude relationship in equation 2.3 (Rutledge et
al., 2004). Influences such as attenuation (quality factor Q) may impact seismic moment
measurements. Lower quality factors Q (high attenuation) were shown to result in a smaller
seismic moment and magnitude estimation than similar earthquakes in higher Q regions (Chung
and Bernreuter, 1981). Events with highly similar waveforms typically share similar ray paths and
are closely located (Kane et al., 2013), so the amplitude ratios from full waveform are less
influenced by attenuation. In other words, attenuation from the source region and path are
effectively canceled out. Mitigating the influence of attenuation on the original magnitude
estimations leads to significantly improved magnitude estimations. Figure 2.6 clearly shows that
magnitude calibration reduces the systematic magnitude differences among clusters located at
different depths. Figure 2.5 shows that the original magnitude difference exhibits a very
scattered relationship with the amplitude ratios. The calibrated magnitudes mitigate the

attenuation problem and exhibit better agreement with the amplitude ratios in Figure 2.5.

Cleveland and Ammon (2015) used a wide aperture of seismic networks for events used
in amplitude ratio calculations. The borehole arrays used here have relatively limited azimuthal
coverage and could lead to issues in radiation patterns. Figure 2.6 shows that events of similar
waveforms are grouped into compact clusters, which agree with clusters of similar focal

mechanism solutions in Rutledge et al. (2004). This suggests that when measuring the ratio
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between events of similar waveforms, the influence of radiation pattern would be relatively

small, as long as the events have similar focal mechanisms or faulting styles.

2.5.2 Uncertainties in statistical measurement

The b-value tends to be approximately ~1 for tectonic earthquakes (Schorlemmer et al.,
2005) and nearly ~1 for intercontinental regions such as Oklahoma (e.g., Walter et al., 2017).
However, for induced seismicity that is triggered or associated with hydraulic fracturing, the b-
value tends to be higher, which represents a greater quantity of lower magnitude events to
larger magnitude events when compared to regions where the b-value tends to be
approximately 1 (Eaton et al., 2014). Corrected magnitudes that are included in b-value
estimation are important when characterizing induced seismicity since there is often a smaller
dynamic range of magnitude units as compared to natural earthquakes because the catalogs are
typically smaller. A relatively higher b-value implies lower distribution of larger events, which
has been interpreted as being consistent with a conceptual model of relatively lower fault
strength (Schorlemmer et al., 2005). In such a model, asperities remain small. On the other
hand, event number and magnitude may depend on the injection pressure and, within the
seismogenic index model, is proportional to injection volume (Dinske and Shapiro, 2016;

Shapiro et al., 2007, 2010).

The seismogenic index estimation requires an estimation of the b-value (equation 2.5),
so uncertainties in the b-value would influence seismogenic index estimations. The
uncertainties are assessed via the bootstrap resampling method, and a new Mc is estimated for

each resampled dataset. This could mitigate the potential bias due to possible underestimation
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of Mc using the MAXC method (Mignan and Woessner, 2012). Sometimes, the FMD can deviate
from the GR relationship (Skoumal et al., 2015), especially for earthquake catalogs that consist
of small numbers of events. Figure 2.7 shows the deviation from the GR relationship at larger
magnitudes. This leads to some discrepancies between different methods, for example, LST
tends to produce steep slopes that fit larger magnitude bins better. However, LST tends to have
larger uncertainties using the bootstrap resampling method, and the probability density
function features bi-modal distribution for treatment B (Figure S2.1 in the supplemental
material). Despite the larger uncertainty, LST shows some consistent relative distributions with
MLE estimates: treatment E has a lower b-value and higher seismogenic index than “others”
(non C1-4) from treatment B, followed by treatment A and C. The relative distribution between
the whole treatment B (and C1-4) and treatment E shows some inconsistency due to the bi-
modal distribution of b-values from the bootstrap resampling, suggesting a possible instability
with the least-square approach, or some differences in the seismogenic potential of different

sets of fractures during treatment B.

2.5.3 Difference in the seismogenic potential for different sets of fractures

The natural fracture system in the Cotton Valley formation is dominated by fractures
with similar orientations to SHmax (Rutledge and Phillips, 2003). As suggested for other areas,
the shear failure microseismic events represent an interaction between hydraulic fracture and
natural fracture system (Maxwell and Cipolla, 2011). Treatments A and C involve fractures of
similar orientation to SHmax at shallower depth, while treatments B and E involved fractures at

deeper depth with some anomalous fractures that are more favorably oriented relative to the
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stress field (Rutledge et al., 2004) (Figures 2.2). Rutledge et al. (2004) interpreted those

anomalous clusters as fault jogs or bends that represent areas of stress concentration.

During treatment E, over 80% of events occurred along the fracture that is significantly
deviating from SHmax, therefore, we do not separately analyze different event groups in
treatment E. During treatment B, about 40% of events occurred within clusters 1 and 4 that
strongly deviate from SHmax, so we separately analyzed different event groups (Figure 2.8 and
Figure S2.1). The b-value results from MLE show that C1-4 during treatment B behave more
similarly to treatment E, while the other events occurring fractures aligned with Shmax behave

more similarly to treatment A (Figure 2.8).

Based on the relative angle between the orientation of different fracture sets and the
SHmax, Figure 2.9 displays these fracture sets on a schematic Mohr diagram and a Coulomb
failure envelope with a friction coefficient of 0.75. The largest cluster in treatment E and C1-4 in
treatment B are more optimally oriented than the other fractures. The evolution of cumulative
seismic moment shows that the seismic moment release during treatment B is mainly released
during C1-4 as exhibited in Figure 2.10. The latter part of C1-4 and treatment E have much
higher moment release per event than other treatments or event groups. Thus, the improved
statistical measurements using MLE with calibrated magnitude are consistent with the
geomechanical properties of different sets of fractures and agree with observed seismic
moment release history. These observations are consistent with larger regional scale-induced
seismicity observations in Oklahoma related to wastewater disposal. Qin et al. (2019) found that
larger magnitude events in Oklahoma mostly occur along optimally orientated faults, and that

non-optimally oriented faults with lower shear stress mostly occur within spatial areas of the
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highest injection volume of wastewater. The consistency between large-scale observations and
local fracture network suggests self-similarity, in that similar physical processes control the

seismogenic processes at vastly different spatial scales.

In addition to fracture orientations, depth may play a role in affecting different statistics
for different fracture sets. Clusters 1-4 during treatment B and treatment E are located at
relatively deeper depths. This observation is generally in agreement with the decrease in the b-
value with depth observed in Gerstenberger et al. (2001), likely related to increased stress with
deeper depth. It may be possible the fracture orientation is depth related. However, Seeburger
and Zoback (1982) examined 10 wells drilled in granitic rock from 3 different locations in North

America and showed little depth dependence with fracture orientation in well fracture analysis.

2.6 Conclusion

We propose an addition to the statistical analysis workflow of microseismic events by
incorporating a magnitude calibration method based on waveform cross-correlation. Using the
available initial catalog magnitudes and magnitude calibration method, we obtain new
magnitudes from microseismic events during four fracture stages. The observed improvement
in magnitude difference and amplitude ratios after calibration suggests the new magnitudes are
more accurate. With the new magnitudes, systematic differences in the b-value and
seismogenic index between different fracture sets are revealed. Clusters 1 and 4 during
treatment B and treatment E are more optimally oriented based on the schematic Mohr
diagram, which is consistent with higher seismogenic potential based on the lower b-value and

higher seismogenic index from the improved statistical analysis. Possible real-time
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implementation of magnitude calibration can significantly improve microseismicity monitoring
and assessment of seismic hazards and help identification of slip activation of optimally oriented
fractures. However, additional comparisons will be required for other hydraulic fracturing

datasets to support our findings.

2.7 Data and Resources

All data used in this paper came from Rutledge et al. (2004) listed in the references. We
processed the SAC format waveform data using GISMO a MATLAB toolbox for seismic data
analysis (Thompson, 2017). Supplementary materials contain an analysis of the dataset results

affected by varying the number of input events.
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2.10 Tables and Captions

Treatment No. of No. of Final
raw common catalog
catalog events events
events

P1S3 (A) 628 628 596

P1S2 (B) 888 644 581

P2S3 (C) 369 369 368

P2S1 (E) 662 433 418

Total events | 2547 2074 1963

Table 2.1: Number of events in the full catalog, full catalog b-value, common events, and the
final catalog.
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Figure 2.1: Array Geometry Caption: Overview of the experiment setting. The location of
treatment wells 21-10 and 21-09 (stars) are shown by symbols and the thin black line. 21-09
(recorded treatments A and B) and 22-09 (recorded all four treatments) are monitoring wells.
Note that well 21-09 is used for both monitoring and treatment. Microseismic events are shown
by colored dots where cyan represents treatment B, blue represents treatment A, purple
represents treatment E. and magenta represents treatment C. Maximum horizontal stress
direction is illustrated by the black arrow. Injection interval depth is shown as black rectangles
and labeled with the treatment interval name. Top left figure: North-East view. Top right figure:
North-Depth view. Bottom left: Depth-East view. Vertical exaggeration is 2:1.
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Figure 2.2: Distribution of available common events between catalog and available waveform
data. Each quarter shows the map view of the spatial variability between catalog events in black

and available waveform events in green.
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The supplemental materials provided in this section aim to enhance the understanding
of the research presented on hydraulic fracturing magnitude calibration improvements from
waveform correlation. We describe in greater depth the b-value estimation using maximum
likelihood and robust least square approximation and magnitude completeness protocols used

in Matlab’s Z-map for this study.

S$2.1 Maximum likelihood B-value estimation

To determine the b-value, which describes the frequency-magnitude distribution of
earthquakes, seismic studies frequently employ the statistical method known as maximum
likelihood estimation (MLE). The relationship between the frequency and size of earthquakes in
a given area is represented by the b-value estimated in equation $2.1 based on Utsu’s (1965)
formula with the ratio of logarithmic Euler’s constant, e, to the difference of the mean
magnitude, M, and half the magnitude binning, AM, subtracted from minimum magnitude, M;.
The fundamental idea behind MLE is to identify the parameter values that maximize the
probability of seeing the provided data. MLE seeks to identify the most likely b-value that best
fits the observed earthquake data in the context of b-value estimation, offering important
insights into the seismicity of a region.

log,, €

= AM
M- M, ——)

b=

(52.1)
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An earthquake magnitude dataset is necessary to apply MLE for b-value estimation. The
magnitude range must first be divided into predetermined magnitude bins, AM, as the first step.
The number of earthquakes within each bin is counted, and each bin represents a particular
magnitude range. The likelihood function, which measures the likelihood of observing the given
dataset for a particular b-value, is then computed using the observed earthquake frequencies in
each magnitude bin. The Gutenberg-Richter formula, which denotes the relationship between

earthquake magnitudes and frequencies, serves as the foundation for the likelihood function.

$2.2 B-VALUE ESTIMATION USING ROBUST LEAST SQUARE

The seismic analysis code is limited by the number of common events between the listed
catalog and actual waveform data available. We apply the robust least square (equation S2.2)
that reweights based on the residuals (equation S2.3), where (Han et al., 2015) show
improvement in the robust least square over traditional least square solutions. Robust linear
regression uses weights (equation $2.4) as part of the scaling factor which reduces the
sensitivity to outliers and improves fit. Weights are automatically and iteratively determined
where initially, weights are equal and then reweighted in each subsequent iteration, giving
lower weights to points further from the previously iterated model predictions (equation S2.5).
Iterations are terminated at the point of convergence between coefficients estimates within a
given tolerance value. Dumouchel and O’Brien (1989) integrate the bisquare robust regression
used in the ZMAP MATLAB package ( Wiemer and Malone, 2001) as the function “robust-fit” (
Dumouchel and O’Brien, 1989; Street et al., 1988; Holland and Welsch, 1977; Huber, 1981). This
function determines the best fit by iteratively using the robust least squares with the bisquare

weighting function by the following procedure:
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1. Equal weight least square regression as expressed in the least square line (equation
$2.2), where x; is the magnitude, y; , event count, €;, unobserved errors, and B, is the

least squares estimate.

(52.2)

2. Compute and adjust residuals, u;, using Huber’s function where h; is the leverage that
reduces weight for high leverage points, S, robust regression, S, scale estimate, and c,

tuning constant of 4.685 for bisquare weighting.

Vi~ XiPr
U = ———
cS\1— h'i
(52.3)
3. Compute bisquare weights, w;, based on previous iteration residuals.
{(1 —uf)?  if lwl <1
w = .
(52.4)

4. Update the least square line by performing a weighted least squares regression with the

weights
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n
Zwi(Yi —xiBr)xij j=1,..,p
i=1

(52.5)
5. Iterate until convergence.
$2.3 LST results

We also observe the results from using LST in replacement of MLE in Figure S2.1. All

steps are identical to the main text where MLE is used.
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Figure S2.1: Comparison of probability density function of b-value estimations from LST (A and
B), and the seismogenic index (C and D) before (left panel: A and C) and after (right panel: B and
D) magnitude calibration. For all estimates, 100 bootstrap trials are calculated with LST

estimates for the b-value and seismogenic index.
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Chapter 3:

Site response of ambient
seismic noise of Northern
Oklahoma from the
perspective of Nodal and DAS
arrays
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3.1 Abstract

The increased earthquake risk in a growing society is always prevalent and although
Oklahoma is not known for large and damaging earthquakes, in the last decade it has
experienced a more than 100-fold increase in smaller seismicity and the occasional moderate
magnitude damaging earthquake. Though the frequent small events present themselves as
mostly nuisance earthquakes, they are still influenced by site response that influences seismic
damage and loss in urban areas. It is crucial to identify site characteristics like resonance
frequency in Oklahoma at a high spatial resolution to account for site response, enhance our
understanding of the destructive ground motion produced in earthquakes, and develop better
seismic hazard assessment and mitigation in developed areas. We monitored an East-West
transect near Enid, Oklahoma using two emerging instrument types, nodal sensors and
distributed acoustic sensing for a higher spatial resolution understanding of site response. We
compare the two instrument types to identify their strengths and weaknesses while in use.
Finally, we measure site-specific fundamental frequencies where dominant peak fundamental
frequencies are approximately 1Hz along the transect and estimate resonating layers using an

existing velocity model.
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3.2 Introduction: Environmental and earthquake monitoring

The high resource demand from a growing society has driven the development of
infrastructure and residential buildings to accommodate the increased population density in
many cities much like those in the state of Oklahoma. In Oklahoma, earthquake hazard is an
increasing concern linked to the increase in wastewater injection (Ellsworth, 2013; Keranen et
al., 2014) with three events larger than M5 occurring within the last decade. Few of these
occurred on known faults as shown in Figure 3.1. However, most events occur on unmapped
faults (Schoenball and Ellsworth, 2017a; Qin et al., 2019) which led to deployments of dense
seismic arrays to monitor and manage the growing earthquake hazard in the region. In some
cases, dense seismic arrays were deployed to monitor the increasing activity. A dense seismic
array consists of multiple closely spaced seismic sensors that are strategically placed to monitor
ground motion and seismic waves. These typically consist of nodal sensors, a self-contained
data logger, a battery, and a sensor, for wavefield experiments. Examples of high-density arrays
using nodal sensors for wavefield monitoring include over 1800 nodal sensor LArge-n Seismic
Survey in Oklahoma (LASSO) array (Dougherty et al., 2019); the IRIS Community Wavefield
Experiment in Oklahoma (Sweet et al., 2018) using 9 infrasound sensors, 18 broadband sensors,
and 363 nodal sensors; and the Long Beach Dense array using 5200 nodal stations (Li et al.,
2015). High-density arrays such as the ones previously mentioned have been increasing in
occurrence due to their improved imaging resolution and desire to capture the unaliased spatial
wavefield from earthquake sources. Amongst other insights, this is useful for earthquake
monitoring as it allows for precise and accurate detection, location, and characterization of

seismic events that would not otherwise be possible with the existing regional network. By
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having a dense network of sensors, scientists can obtain high-resolution earthquake catalogs
that, in part, provide a better understanding of the underlying geological structures and

processes that may trigger earthquakes.

It is important to understand the local geology in present-day Oklahoma in any seismological
survey, to make connections and bridge the knowledge gap between the convoluted geologic
and seismo-tectonic history of the region. The Oklahoma crust, much like other areas of the
North American craton, is the result of multiple tectonic activities that were especially active
between the Proterozoic and Cambrian (Whitneyer and Karlstrom, 2007). The location of our
study is east of the southern extent of the Nemaha uplift. The Nemaha uplift, a narrow paleo
structural feature that stretches from southeastern Nebraska to Central Oklahoma, is 500 miles
in length at 80 miles at its widest point. The structural history of the Nemaha uplift has repeated
periods of regional warping, uplift, and erosion separated by periods of marine shelf
sedimentation. The Nemaha uplift is a composite of several complex elements and features of
separate fault blocks. At its surface, it is a gentle anticline plunging towards the south. The
formation of the Nemaha uplift is attributed to left-lateral wrench fault movement as a crustal
response to convergence at the continental margins (Berendsen 1986). Others have suggested
similar strike-slip movements on the Central Oklahoma fault zone (Amsden, 1980) and uplift to
vertical movement on a pre-existing Precambrian zone of weakness (Fath, 1920). Present-day
interest in understanding the structure of the region is driven by hydrocarbon exploration of the
Cambrian to Permian age rocks. The succession of paleozoic dolomites and limestones with
subordinate clastics overlay the Precambrian crystalline basement. In the midcontinent, the

ascending order of the stratigraphic sedimentary units is the Joins, Qil Creek, McLish, Tulip
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Creek, and the Bromide which are a series of carbonates, shales, and sandstones. This unique
depositional history and uplift create hydrocarbon plays which have been the economical target
for oil and gas production due to the structural traps and reservoir rocks (Dolton and Finn,

1989).

While a dense seismic array will typically be utilized for passive detection of earthquake
sources or during the acquisition of active-seismic data, the data can also be utilized for
environmental monitoring through ambient seismic noise. Ambient noise is caused by natural
sources such as ocean waves, wind, and atmospheric pressure, as well as cultural sources such
as traffic and industrial activities. Ambient seismic noise studies have been used for over a
century and can be traced back to Ernst von Rebeur-Paschwitz observations of the first recorded
teleseismic earthquakes using a horizontal pendulum left to oscillate freely (Von Rebeur-

Paschwitz, E., 1889).

In recent years, there is a resurgence in passive noise monitoring due to the greater
availability of a wide variety of sensors such as the inexpensive Fairfield 3C Zland nodal sensor
which leverages its compact self-contained size. Smaller inexpensive sensors and ease of
deployment for passive noise experiments also reduce the requirement for local municipality
permitting for active source experiments. By analyzing this ambient noise, valuable insights can
be gained into various environmental factors such as soil properties, and groundwater levels
(Larose et al., 2015). One property we are interested in our high-density observation of ambient
seismic noise is the physical phenomenon of resonance. Resonance is a constructive
interference event during wave propagation. In a ground motion, resonance can result in

increased shaking intensity by having a larger wave amplitude. We compare different

57



instruments in this study and perform an analysis of the noise signals recorded by each
instrument type in the time and frequency domain. Furthermore, the dense arrays are

leveraged in an east-west site response study.

3.3 Array information

For this study, we deploy instruments along an East to West transect of the entire
Garfield County in Oklahoma along highway US-412, a 4 lane two-way highway separated by a
road verge, over three separate occasions in 2020 (EW1-40: June 09, 2020 - July 14, 2020) and
2021 (EW1-20A/B: April 21, 2021 - May 13, 2021, and EW2: August 1, 2021 — August 31, 2021)
along the length of highway 412 and minor perpendicular arrays (NS1 and NS2: April 21, 2021 -
May 13, 2021) in 2021 as shown in Figure 3.2. We perform a multi-deployment of temporary
high-density nodal sensors that recorded continuous waveform for a one-month duration
during each deployment time. We use the 2nd generation Fairfield Nodal Z-land sensors which
are small, self-contained devices that are deployed in seismic exploration to detect and
continuously measure continuous ground vibrations from anthropogenic sources created by a
Vibroseis truck or natural sources such as local earthquake events for about a month or until the
battery is depleted (Figure 3.2). Nodes are easy to deploy and have a low environmental impact.
However, nodal sensors have limited recording capacity and are prone to signal noise from
improper isolation during deployment. Nodes are a 5Hz sensor and we set the recording
sampling rate at 500Hz with a 12-decibel pre-amp gain. The recorded data are downsampled to
100Hz to conserve storage and improve computational resource management. In Figure 3.3, we
show the day and night noise power distribution comparison between the two seismic

instruments, nodal station 4013 and the corresponding fiber optic strain rate sensor. Elevated
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daytime noise is observed in both recording types and is likely due to nearby anthropogenic
sources. We deployed both in 2020 and twice in 2021 in a rolling deployment, details will be
explained in subsequent subsections. For the 2021 deployments, we deploy the nodal sensors
concurrently with a Distributed Acoustic Sensing (DAS) deployment using existing fiber optic
cables from an Oklahoma telecommunication sub-terranean conduit-lain fiber optic bundle. The
utilization of existing utility telecommunications cables for other purposes has been called dark
fiber where Marra et al. (2018) used submarine telecommunication fiber lain on the seafloor for
earthquake detection and location. As shown in Figure 3.2, we use the server room housing the
fiber optic terminal ends at Northwestern Oklahoma State University as a midpoint for the
arrays. The DAS unit we are using is the Silixa brand iDAS interrogator, a dynamic range sensing
system that determines strain rate and distance from measuring phase change in the Rayleigh
scattering signal. We record DAS measurements at the iDAS’s maximum range of 1 kHz with a

channel spacing of 2m and we later down-sample our recordings to 50Hz for noise analysis.

3.3.1 Deployment 1 - EW1-40 (nodal deployment)

We deploy 124 nodal sensors between June 09, 2020 - July 14, 2020, east of
Northwestern Oklahoma State University (Figure 3.2). Initially, the plan for the deployment is
about 400m spacing, but actual spacing varies from 300m to 400m spacing on account of GPS

error and GPS updates when traversing the deployment line during deployment.
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3.3.2 Deployment 2 - EW1-20A & B (Rolling nodal deployment and concurrent DAS)

As shown in Figure 3.2, EW1-20A uses 103 sensors on the initial deployment where 43
sensors are on the EW line (43km), 38 sensors NS1(23km) on Highway 74, and 22 sensors in NS2
(14km) on Highway 81. EW line spacing was 1-1.3km spacing, both NW lines were
approximately 500-700m spacing. We use a rolling deployment, so half of the deployed sensors
were collected shortly after the initial deployment of EW1-20A. All sensors east of NS1 were
collected and half of both NS lines were collected within 2 weeks of deployment of 103 sensors.
Existing sensors were replaced within 2 weeks of collection for an extended deployment to be
co-located with the iDAS array deployment. On the redeployment of the EW1-20B, all sensors in
NS1 and within the EW line (21.3km) were replaced with recharged sensors. The density in NS2
remained the same (14km), but NS1 was shortened (10km) and the density in the EW line was
increased to have a spacing of 500-700m. The DAS system was installed shortly after the nodal

deployment and was operational between April 21, 2021 - May 13, 2021.

3.3.3 Deployment 3 - EW2 (nodal deployment and concurrent DAS))

A total of 61 sensors are used for deployment 3, where 26 sensors are deployed west of
station 4001 for 22.5km (Figure 3.2). Additionally, 35 sensors are redeployed on NS2 replacing
deployed sensors from EW1-20B and extending the North—South deployment line to 23.5km
between August 1, 2021 — August 31, 2021. The DAS system was installed before the nodal array

this time on July 19, 2021, until August 11, 2021.
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3.4. Comparison of DAS and Nodal array performance

Distributed Acoustic Sensing (DAS) and Seismic Nodal Sensors are two different types of
sensors used in seismic surveys to acquire data on subsurface structures. While both
technologies are used to record seismic waves, there are some significant differences in their

performance.

DAS is a type of distributed sensing that uses fiber optic cables to capture seismic waves
by measuring the backscatter from laser pulses as it travels along the fiber optic cable. Different
types of backscatters can be measured by distributed sensing which provides insight into
different physical characteristics affecting the fiber optic cable. Rayleigh, Raman, and Brillouin
scattering are all phenomena related to the scattering of light. These light backscatters differ in
terms of the physical mechanism responsible for the scattering, the wavelengths of light
involved, and the information that can be obtained from the scattered light. As a laser pulse,
from the interrogator, propagates through a length of fiber, the individual photons are affected
by the fiber itself. Rayleigh scatter is when the backscatter frequency is the same as the initial
frequency, Raman scatter is when the scatter has increased (anti-stokes) or decreased (stokes)
its energy level from photon interaction with the fiber’s natural molecular vibration, and
Brillouin scatter is caused by the physical expansion and contraction of the fiber from photon
energy, generating an acoustic response from the fiber. Phase changes in Rayleigh scattered
signal can measure strain rate, backscatter of Raman stokes and anti-stokes measures
temperature (Farahani and Gogolla, 1999), and Brillouin scattering measures both temperature
and strain. Stokes and anti-stokes differ in terms of wavelength, whereas stokes have a longer

wavelength than anti-stokes (Conway and Mondanos, 2015). Raman scattering occurs when
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light interacts with molecules or crystals throughout the core of the fiber over the entire fiber
length (Conway and Mondanos, 2015) (Raman, 1928). It is analyzed through Raman optical
time-domain reflectometry where the backscatter from a short laser pulse contains information
on loss and temperature along the length of the fiber (Farahani and Gogolla, 1999). Brillouin
scattering occurs when light interacts with the acoustic waves (i.e., sound waves) that propagate
through a material. The scattered light undergoes a frequency shift that corresponds to the
frequency of the acoustic wave, and this shift can be used to measure the speed of sound in the
material (Boyd, 2008). The iDAS interrogator from Silixia in our study uses Rayleigh backscatter

for measuring strain rate along the fiber.

Traditional geophone sensors consist of three orthogonal (perpendicular) sensors that
measure ground motion in three directions X, Y, and Z (Murphy, 1996) of displacement at their
location. The more recent nodal sensors have been deployed in arrays or clusters across a
seismic survey area (Li et al., 2018) and are then connected to a central recording system that
collects and analyzes the data. The sensors are designed to be low-power and low-maintenance,
and they can be left in place for extended periods to collect data. The operation of the Fairfield-
Zland 3C nodal sensor is based on the principles of piezoelectricity. Piezoelectric materials
generate an electric charge in response to the mechanical displacement of coils within the
geophone (Fairfield Nodal, 2017). The generated voltage is proportional to the displacement of
the moving coils within each geophone. The three aforementioned geophones are installed
within each nodal sensor oriented orthogonal to each other, so they can measure ground
motion in three directions. Voltages are then digitally converted to discrete velocities

representing ground motion affecting the nodal sensor. The data from the geophones are
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typically processed using digital signal processing techniques to remove noise and interference
and to extract useful information about the seismic signals. This information can be used to
generate images of the subsurface geology, locate oil and gas deposits, and monitor seismic

activity.

Considering a typical regional network of sparsely spaced broadband seismometers;
both DAS and nodal arrays are a major improvement on instrumentation density. A key
difference between DAS and Seismic Nodal Sensors is their cost. DAS is generally more
expensive than Seismic Nodal Sensors due to the cost of the fiber optic cables and the
specialized equipment required to operate the system. Seismic Nodal Sensors, on the other
hand, are relatively inexpensive and can be deployed in large numbers to cover a wide area.
Both DAS and Seismic Nodal Sensors have advantages and disadvantages in seismic surveys.
DAS offers high-resolution data over long distances but at a higher cost. Seismic Nodal Sensors
are inexpensive and easy to deploy, but have limited recording capacity and may suffer from
signal distortion. The choice of sensor technology depends on the specific needs of the survey

and the available budget.

3.4.1 Noise level comparison of DAS and nodal

We compare the two recorded measurements from both DAS and nodal. For
computational resource management, we resample both datasets to a reasonable 50Hz
sampling for DAS and 100Hz sampling for nodal. To determine the initial data quality of the
recordings, we investigate the influences on the acoustic seismic field from anthropogenic

sources. Due to the proximity of a town and roadway parallel deployment, we assume that

63



human activity will influence the seismic measurements during traditional daytime business
hours. We calculate power spectral density for both night and daytime hours, stack, and average
the resultant spectral graphs. Figure 3.4 shows a time-averaged spectrum for DAS channels
located near a highway overpass and rail crossing, demonstrating showing how noise levels can
vary depending on infrastructure. As expected, high amplitude noise levels are observed near
anthropogenic sights prone to high activity and better ground coupling such as highway
overpasses and rail crossings. It is observed that daytime noise levels are higher than nighttime

noise even in areas with mostly farmland as shown in Figure 3.2.

3.4.2 Short-duration events

Throughout the recording duration of the experiment, both ambient noise and transient signals
were detected. Notably, short-duration high-amplitude events are recorded, such as passing
vehicles, and a few local earthquake events (Walter et al., 2020) which are shown in Figure 3.2.
In Figure 3.5, we observe graphically linear and high-amplitude signals over different channels
for a period. Observed high-amplitude signals are linear across multiple channels, coherent, and
inversely graphically oriented. An approximate velocity of 58 mph may be estimated for the
high-amplitude signal using the channel spacing of 2 m and arrival time approximation at each
channel. Considering the 70 mph speed limit of US-412, we can interpret the traveling signal
source to likely be a moving vehicle. In addition, we identify an earthquake arrival at 11:18:01
local time on May 2, 2021, as seen in Figure 3.5 as a high-amplitude signal with similar arrival
time amongst all channels. In Figure 3.6, both time series and spectra of different sources,
background noise, moving vehicles, and earthquakes within a 10-minute DAS recording are

compared. Even though the earthquake and vehicle time series have similar peak amplitude
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values, their spectra are different in both time duration and frequency range, where the
earthquake spectrum occupies lower frequencies, and the moving vehicle spectrum has higher

frequencies.

3.4.3 Long-duration signal

In addition, long-duration signals, such as trains, cross obliquely near the eastern half of
the deployment close to nodal stations 4005 and 4006. The passing train signal does not
present itself across the entire DAS and is only concentrated near the railroad crossing when
there is a train present. Locating and identifying the train signal is performed best in the
frequency domain since the identification of the train signal in the time series waveform is not
obvious as depicted in Figure 3.7, where we isolate the train signal from other background
signals by selecting an average spectral amplitude between 1-8hz. In the frequency domain, we
average the frequency range 1-8hz together to exploit the broadband nature of the train signal
against the average background noise. We identify high amplitudes in the average frequency
stack between 1 Hz — 8 Hz by applying the kurtosis method, which is the ratio of a short-window
average to a long-window average. However, to mitigate the false detection of trains we identify
trains, with high spectral amplitude in consecutive periods over 120 seconds over 40
consecutive DAS channels. We transform the time series into the frequency domain for train
detection to eliminate false detection created by consecutive noisy DAS channels or other noise

sources that may generate signals within a long-time window.
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3.4.4 Near-surface characteristics

Site response at any given site can vary significantly even within Northern Oklahoma as
shown by the varying noise amplitudes over short distances in Figure 3.3. Determination of site
characteristics, such as fundamental frequency and site amplification, is important to
characterize potential earthquake hazards related to ground motion amplification in any
microzonation study. Microzonation is the identification of potential for earthquake hazards in
areas with an increased risk for ground motion amplification, liquefaction, and landslides. The
purpose of microzonation studies is to assess these locations of potential risk and mitigate any
potential economic loss such as damage to buildings or other structures (Ansal et al., 2009). The
earliest microzonation site response study by Imamura (1913) utilized single-station
microtremors following the 1854 Tokyo earthquake, where localized damage patterns were
observed from amplified ground motions. Subsequent observations of large earthquakes have
also shown localized damage patterns correlating to subsurface geologic structures such as
basins (Frankel et al., 2002; Hall and Beck, 1986; Abbott, 2005; Kagami et al., 1986).
Understanding this secondary hazard such as resonance has been an important feature in
earthquake hazard risk reduction as shown in the well-documented 1985 Michoacan
earthquake (Hall and Beck, 1986; Flores Estrella et al., 2006) where building structural damage
was linked to earthquake shaking resonance, the 1987 Whittier earthquake (Hruby and
Beresnev, 2003; Kawase and Aki, 1990) shown a basin edge effect in ground motion
amplification, and the 1994 Northridge earthquake (Hruby and Beresnev, 2003; Beresnev et al.,
1998; Hartzell et al., 1996) exhibiting basin resonance from excited ground motions. The

geologic medium can influence the relative seismic acoustic wave amplitude which translates to
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stronger or weaker shaking (Nakamura, 2000). Nakamura (1989) determined the cause of
stronger localized shaking during a strong motion event is due to the harmonic wave

constructively interfering through resonance.

There are several methods used to characterize the site response. Geotechnical
investigations such as Cone Penetration Test (CPT), Standard Cone Penetration TEST (SPT), and
soil borings are used in engineering applications for site characterization (Schmertmann, 1978).
Information about the local surface geology is also important to consider as it can highly
correlate with the observed seismic intensities (Wills et al., 2000). However, geotechnical
investigations are often expensive, invasive, negatively affect the environment, and are not
available for all locations. These methods are also focused on the determination of site
amplification and do not consider the effects of resonance. In this study, we use the Horizontal-
to-Vertical-Spectral-Ratio (HVSR) approach to ambient noise recorded on a high-density linear
nodal array deployed in Enid, Oklahoma to estimate fundamental frequencies. It is known that
deep sedimentary soil columns in basins can amplify earthquake ground motion and cause
significant damage to buildings built on their surface. The extent of the damage is related to the
building’s specific height and soil site resonance frequency, fundamental frequency. We use the
fundamental frequencies to estimate a geologic structure shape and determine subsurface

sedimentary column resonance.

3.5 Method and Background for HVSR

The HVSR approach is used for site response investigations due to its ease of use, low

cost, and flexibility in the use of data that is not dependent on strong ground motion or an
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active source. Ambient noise HVSR studies have been conducted extensively and compared for
reliability against other methods, as discussed by Bard et al. (2004) and Bard et al. (2005).
Nakamura (1989) showed that the HVSR spectral peak frequency represents the fundamental
frequency of the site soil column. This has been confirmed by later studies which tested the
accuracy and reliability of the HVSR approach, as described in papers such as Cara et al. (2010),
Guillier et al. (2007), and Parolai et al. (2004). Further investigation by Bard et al. (2004) in the
Site Effects Assessment Using Ambient Excitation project (SESAME) compared the ambient noise
HVSR results with those from earthquake-based HVSR analysis, and these results were further
verified in Bard et al. (2004) and Bard et al. (2005). The primary objectives of the SESAME
project were to better understand the physical basis of the HVSR approach, determine its
purpose in site response, and propose guidelines for correct analysis. The SESAME project
demonstrated a strong linear correlation between the spectral peak frequency determined
through ambient noise HVSR and those determined at the same site through Standard Spectral
Ratio (SSR) measurements from earthquake data (Bard et al., 2004). This result demonstrates
that the peak frequency from the ambient noise HVSR may be interpreted as the expected peak
frequency of earthquake-related ground motion. Based on this SESAME frequency comparison
and investigations mentioned earlier, we will refer to the peak frequency measured from the
HVSR graph as the site’s fundamental frequency. The amplitude of the spectral ratio has been
used by some authors as a representation of amplification relative to hard rock sites (e.g.,
Nakamura, 1989; Bard et al., 2004). The SESAME project also investigated the HVSR amplitude
by comparison of peak amplitudes as determined by the HVSR and SSR methods. Although the

HVSR and SSR peak amplitudes are not linearly related the HVSR peak amplitude can be
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considered as a lower bound for site amplification (Bard et al., 2004). Thus, the HVSR method is
a simple and effective technique for determining the first fundamental frequency of soil
resonance. However, Bonnefoy-Claudet (2009) suggests the HVSR approach is inadequate for

determining higher resonance modes, contrary to other assertions (Lermo et al., 1994).
In HVSR, the two horizontal components are combined using geometric mean in the
numerator and the denominator is the vertical spectral component as exampled in equation 3.1.

HTZ % HRZ

HIV(P) = | =55

(3.1)

where the root geometric mean square ratio of the two horizontal spectra, H, is taken over twice

the vertical spectra, V.

One popular tool for HVSR is the open-source software, Geopsy (Wathelet et al., 2010). It
is a user-friendly graphical user interface and has been well-tested by many. However, to improve
on computational cost and speed we use the open-source Python HVSR software HVSRpy
(Vantassel, 2020) which is comparable to the open-source Geopsy software (Wathelet et al.,
2010) but accounts for azimuthal variability by using a frequency domain window rejection
algorithm (Vantassel, 2020 and Cox et al., 2020). HVSRpy performs the rejection window by
selecting unbiased spatial statistics, Voronoi tessellation, for fundamental site frequency. (Cheng
etal., 2021). We observed the rejection of outlier spectral curves exampled in Figure 3.8 and note

the improved standard deviation of the estimated peak fundamental frequency.

69



3.5.1 Example data analysis

We determine the HVSR curve for each station and analyze the results per the SESAME
guidelines in Chatelain et al. (2008) and Albarello et al. (2011) to implement the HVSR approach,
which has three conditions for curve reliability, H/V (f), and five criteria for identification of a

peak frequency, f0, as a clear peak.

We use a 90-second time window, 30 Hz low-frequency passband, Konno and Ohmachi
smoothing constant of 40, and a maximum of 50 iterations for spectral rejection in our
calculations. The HVSR spectral curve in Figure 3.8 shows a recording of the 11* hour on May

2" calculated for HVSR using the aforementioned parameters.

3.5.2 HVSR variation along the array and interpretation

We use the HVSR spectral curve results in Figure 3.9 and compare the coherent spectral
peak frequencies with a 1D velocity profile to estimate depths of potential acoustic impedance.
We use the 1D shallow velocity and forward model with spectral peak frequencies based on the
qguarter wavelength function of harmonics (Figure 3.10). The primary software identified a clear
and reliable peak frequency of about 10 Hz, which is related to a depth layer at approximately
30 meters. Secondary HVSR peaks are interpreted to the geologic structure shown in Figure
3.10, which agrees with Caylor (1958) where nearby well correlations result in a basin structure
that is shallower towards the East. On a local scale, Cary (1955) depicts a complex anticlinal
structure along our deployment area which does support our interpreted structures at deeper

depths.
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A velocity model is created through passive processing of nodal seismic data as outlined
in Behm et al. (2019) and Cheng et al. (2022), where noise cross-correlation is computed for all
possible station pairs. Cross correlations are then applied to the multichannel analysis of surface
waves (MASW) method (Park et al., 1998; Xia et al., 1999) for surface wave measurements from
nodal data. Finally, frequency-time analysis (FTAN) (Bensen et al., 2007; Levshin et al., 1989;
Hannermann et al., 2014) is applied to the recorded data. To obtain a velocity profile, we
calculated dispersion curves from the interferometrically retrieved surface waves. Dispersion
curves are then inverted to obtain a 1d velocity model, using a phase shift method (Xia et al.,
1999). Dispersion curves are selected from energy trends and subsequently inverted for the 1D

Vs model with Geopsy which follows a hybrid neighborhood algorithm (Wathelet et al., 2004).

Dense deployments are typically a drastic improvement over single-station observations.
We increase the observation resolution significantly using nodal stations. However, even with
nodal station density, details in recorded waveforms such as passing vehicles or trains would be
easily overlooked when analyzing the recordings. Using very simple methods such as
transforming data from time series into the frequency domain we can improve our observations
and identification of anthropogenic noise sources such as moving vehicles and trains since they
appear differently on the power spectrum (Figure 3.6). We can also compare our nodal results
with those of DAS. Although DAS is recorded in strain rate, much of the processing and
interpretation is identical to that of traditional acoustic seismic waveform measurements. With
DAS, we can observe spatial temporal changes in the waveform stacks indicating features such

as vehicles traveling in opposite directions as well as using kurtosis to identify a train passage.
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However, with improvements in seismological sensing equipment, new logistical issues
do appear that were not present prior in traditional single-station deployments. When using
nodal stations, a crew of individuals is now required to effectively deploy each sensor. Adequate
training for each individual, as well as systematic errors in each individual’s deployment
technique, may introduce unwanted deviation in recorded waveform. This issue and process are
eliminated with DAS deployment where the primary setup is in the interrogator, but fiber cable

installation and ground coupling may influence data quality.

In our DAS deployment, we are using dark fiber, which has potentially inconsistent coupling
with the subsurface and inadequate fiber termination that introduced a significant amount of

noise. Installing new fiber optic cables with good ground coupling may increase signal quality.

3.6 Conclusion

DAS application using dark fiber is an emerging technique in observational seismology.
Observations of different sources such as trains, cars, and noise are recorded and compared
between nodal stations and DAS channels. It is important to characterize the response and
improve our understanding of dark fiber DAS and compare the measurements to traditional
recording instrument types. In our observations, nodal stations do have stronger signal-to-noise
ratios than DAS, likely due to ground coupling differences caused by the deployment of fiber
optic cables and nodes. There is an inherent risk of data noise contamination from these surface
effects due to the deployment methods. The high spatial density of stations allows for improved
interstation resolution, which aids in providing information on slight variations in the wavefield

between local sites.
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We can see from the various HVSR spectral curves estimated from different recording times
that the HVSR technique is rather stable and provides a good indication of the fundamental
frequency of the subsurface. Comparing both the ambient noise HVSR and earthquake HVSR,
we can see both are similar except for amplitude differences. This may be due to a lack of
waveform recording length with earthquakes compared with the hundreds of hours of ambient
noise. However, differences in HVSR amplitude between ambient noise and earthquake
recordings are justified, also seen in Bard et al. (2004) where both earthquake HVSR and

ambient noise HVSR are compared.

Using a velocity model, it is possible to determine a depth to acoustic impedance layer for
the HVSR fundamental frequency measurements. Although primary HVSR studies focus on the
prominent peak, it should be noted that coherent secondary peaks should not be ignored. In
the forward model, we can interpret the assumed sedimentary layers on the western side of the
Nemaha Ridge. We should not expect significant variations in the sedimentary structure of the

adjacent Nemaha Ridge, but some variation in slope may be present.

Application of HVSR to telecommunication dark fiber DAS data is typically plagued with
sensitivity issues due to poor ground coupling as well as a lack of instrument response that
would allow for the conversion of the signal to scientific units of ground motion. This would
allow for a more direct comparison with nodal measurements. However, the ability to
successfully use an existing telecommunications fiber optic cable as a remote sensing network is
significant to both research and commercial applications. To improve on and advance the

method of dark fiber DAS, the instrument response of DAS must be resolved to easily compare
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measurements to other instrument types. The popularity of using dark fiber for DAS is

increasing and will become significant in the future as more studies include its deployment.
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Figure 3.1: A map of Oklahoma with fault lines. The red box is the array location. Roads are

shown as blue lines and railway tracks are green lines.
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Figure 3.2 Experiment location from the red box in Figure 1. Local events are in dots where they

are color coded for each array and magnitude would depict circle size. Nodal stations for each

segment of the deployment are shown by the colored triangles where blue is EW1-40, green is

EW1-20, and red is EW2.
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Figure 3.3 Day and nighttime noise for node station 4013 and corresponding DAS channel up to
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Figure 3.6 A waveform comparison of DAS and nodal station 4006. The top is stack DAS, single
DAS, and Node. The bottom left is a car signal, the bottom middle is an earthquake, and the

bottom right is averaged and smoothed signal spectrum.
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Chapter 4:

Wind and wind turbine
influence on measurements of
seismic noise
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4.1 Abstract

Renewable wind energy is a growing global industry that has led to the construction of
wind farms across the United States, especially in midcontinent regions such as Oklahoma.
Seismic noise generated adjacent to wind turbines includes both natural wind source coupling
and resonance of the turbine blades and towers that are transmitted through the subsurface.
We conducted a pilot study to characterize and classify such noise that could lead to the
development of better techniques in ambient-noise seismology, noise suppression,
identification of near-surface resonance, and improvement to signal-to-noise ratio. We
investigate the wind and wind turbine-generated noise within the seismic field through the
application of the power density function on 3-component waveforms collected from two
temporary arrays of 5 Hz geophone sensors. The temporary array consists of 8 Fairfield nodes
that were active for one month with varying distances (10 meters — 2000 meters) from wind
turbine towers located in Grant County, Oklahoma. The second array is located approximately
50km northwest of those wind turbines. The spectral amplitudes and peak frequencies of the
power spectrum show unique spatial-temporal variations in noise levels for the location of the
wind turbine towers. Noise amplitude decreases exponentially with distance from the wind
turbine, and wind speed correlates with power spectrum peak frequencies. We identify
mechanical signal sources at 0.17 Hz, 0.29 Hz, 0.51 Hz, 0.87 Hz, 14.5 Hz, 24.83 Hz, and 27.82 Hz,
and the resonant frequency of the wind turbine tower at 0.37 Hz. We compare the estimated
fundamental frequencies of both arrays. The directivity of the seismic noise is characterized

using a cross-correlation function. We observe the wind turbines to be a very clear source of
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seismic noise with exponential power degrading at increasing distances. Closer examination

shows wind, ground, and wind turbine coupling to be a complex field.
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4.2 Introduction

The seismic wavefield has long been recorded and analyzed by researchers and
professionals. Signals from both natural and anthropogenic sources such as earthquakes or
hydrocarbon exploration propagate through the subsurface and are recorded by receivers.
However, it is quite often that these signals are contaminated and distorted by acoustic seismic
noise which can obscure important signals. Several noise types may exist, including, wind, ocean
waves, and anthropogenic noise. To improve on the advancement of signal analysis it is
important to delineate noise sources such as wind and wind turbines and characterize their

influence on the acoustic seismic field.

Wind energy has been a global growing industry in recent years increasing its global
power capacity exponentially from 2000-present. Growth in each wind turbine generation has
also led to greater power outputs with an increase in rotor size (EWEA, 2012). Meo (2006)
summarizes, in-depth, Oklahoma’s expansion into wind energy due to partnerships, policies,
infrastructure, economics, environmental, and community impact. These factors contribute to
the overall growth of the wind energy industry in the state (Righter, 1996). Man-made
structures, machinery, human activity, and natural surface forces such as wind and temperature
may generate noise that is coupled and transmitted to the earth and subsequently recorded by
seismographs, that detect ground motion small enough to be imperceptible to humans (Wilson,
1953 and Withers et al., 1996). As an example, structures such as wind turbines house complex
vibration-inducing drive shafts and gears within the nacelle (Hemami, 2012) which may transmit

vibrations into the subsurface. Less well known is the extent of the magnitude of source and
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coupling and how it varies with distance as the energy propagates through the surface since

source signals are unique to each source and are modified by the path and site effects.

Seismic noise generated by wind turbines poses a scenario where both natural wind
source coupling and resonance frequencies of the turbine blades and towers are transmitted
through the subsurface. Resonance from harmonic waves for much larger sources can amplify
earthquake waves and cause structural damage, such as was observed during the 1987 Whittier
earthquake (Vidale et al., 1991), where basin resonance caused significant localized damage to
buildings. Resonance is primarily from earthquake shaking in the fundamental frequency but
can occur from overtones (Rial et al., 1992). Previous studies in wind variations have shown a
general increase in seismic noise with the wind with no apparent fundamental frequency at
which the wind was observed (Muccaiarelli et al., 2005). However, other studies have suggested
wind energy to be observed at higher frequency bands (Wilson, 1953; Withers et al., 1996;
Young et al., 1996; and Teanby et al., 2016), though the measured source frequency bands vary
between these studies. To improve our understanding of seismic signal sources such as
earthquake or wind turbine fundamental frequencies, we must understand the characteristics

of the noise as an essential first step before a desired signal can be isolated.

4.3 Data acquisition and processing

For this study, we select a high-noise environment of wind turbines to observe wind
turbine-influenced signals. We compare our findings with measurements from a location of
lesser noise and without wind turbines to determine the effects wind turbines have on the local

acoustic seismic wavefield. Seismic data is acquired from a small temporary geophone (Fairfield
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Zland 3T) array of 8 three-component sensors for a duration of 1 month from December 2017 —
January 2018 (Figure 4.1) in Grant County, Oklahoma. A second temporary array of 65
additional Fairfield Zland 3T sensors were also deployed between November 2017 — December
2017 with 30 overlapping days in Alfalfa County, approximately 50 km northwest of the Grant
County array. The nodes were recorded at the frequency of 500Hz and later down-sampled to
100Hz. An example of the continuous waveform recordings from both arrays is shown in Figure
4.2 showing a transient low-magnitude earthquake and background noise. It shows variations in
waveform amplitude between the two locations. At both array locations, the nodes are buried
one inch below the ground surface in a relatively homogenous surface soil. Surface soil
conditions at Grant County are varying degrees of silt loam whereas Alfalfa County’s array is
predominately on fine sandy loam north of Great Salt Plains Lake (Soil Survey Staff, 2018), with a
shallow ground water table of approximately 3 m (USGS, 2016) for both locations. Ground-level
weather conditions such as wind speed, direction, and temperature are measured by the
Oklahoma Mesonet weather network and are publicly available (Brock et al., 1995; McPherson
et al., 2007), with a sampling rate of 300 seconds. The nearest Mesonet station, Medford
(MEDF), is 25 km to the northwest of Grant County. We compare the recordings to a concurrent
array located 50 km to the northwest in Alfalfa County where wind turbines are absent. The
wind turbines in Grant County are classified as monopole-horizontal-axis wind turbines used in
electricity production by transforming slow turbine blade rotation to a high-speed rotation for a
generator axle through gear ratios, similar to the transmission in an automobile. The monopole
wind turbines in Grant County have a blade length of 41.25 m, a total height of 121.25 m, and

an average rotation of 12 to 14 revolutions per minute. The time series measurements as
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exampled in Figure 4.2 from the nodal arrays, f(t), are transformed using the fast Fourier
transform, F(w), in equation 4.1 such as in Figure 4.3, and later compared with local weather

conditions in Figure 4.4.

1 (T )
F(w) = %J- f()etdt
0

(4.1)

Where T is the length of the time series, we use 300 seconds for each component, and w is
frequency. A noise-corrected power spectrum (Cooley and Turkey, 1965), P(w), is computed by

calculating the base-10 logarithm of the moving mean and mean spectrum ratio in equation 4.2.

1
(E tksr F(w)) + €

F(w)
n

P(w) = 101log(

(4.2)

The power spectrum is used to evaluate a broad range of noise at a given station and
enhances the relative variations in seismic power, allowing the signal to be better-distinguished
relative to background noise levels. We apply a moving average window, k=5, to a frequency

spectrum array with respect to time, n, and divide by the average frequency spectrum for each
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time series window, T. Adding epsilon, €, to the numerator ensures that the division does not
result in an undefined or infinite value, providing a small positive value that avoids numerical
errors. We use spectra to observe differences between different conditions throughout the
deployment duration such as day and nighttime hours and low and high wind conditions (Figure
4.5). Day hours, loosely defined as 8 am — 5 pm, are considered for their propensity for elevated
noise levels when compared with night hours, 10 pm —4 am. We define wind speeds up to 3
m/s as low-speed wind and above 5 m/s as high-speed wind since wind turbines are designed to
turn on close to the low wind speed cut-off speed. Signal spectra are subsequently used to
estimate site conditions and noise source location through methods such as HVSR for single-

station site response and cross-coherence for tracking signal propagation.

4.3.1 Horizontal to Vertical Spectral Ratio

Horizontal to Vertical Spectral Ratio (HVSR) (Nakamura 1989) is often used in
microzonation studies to quantify site effects in terms of resonance frequency, geologic surface
conditions, and site amplification factor. Generally, it is recommended to use transient signal-
free and calm environment recordings for ambient noise HVSR to analyze the background noise
wavefield for interpretation of the subsurface structure through fundamental resonant
frequencies. The HVSR technique is a commonly used method in geophysics and earthquake
engineering to estimate the resonant frequency from the ratio of the spectral ratios of
horizontal and vertical components, H/V (f), of ground motion recorded at a site as expressed
in equation 4.3. Where the root geometric mean square ratio of the two horizontal spectra, H,

is taken over twice the vertical spectra. The resonant frequency is an important parameter for
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seismic hazard assessment, as it determines the level of amplification of ground motion that

occurs at a site during an earthquake.

The method can be applied to different types of data, such as seismic, acoustic, or
ambient vibration data, and can be used to study a wide range of phenomena, including the
effects of geologic and structural features on ground motion, the characterization of soil and

rock properties, and the evaluation of the vulnerability of structures to earthquake damage.

We determine the HVSR curve for each station and analyze the results in accordance
with the Site Effects Assessment Using Ambient Excitations (SESAME) guidelines Chatelain et al.
(2008). These guidelines, which are empirically derived, provide an estimate of site
amplification and meaning to the HVSR. Albarello et al. (2011) implemented the HVSR approach
to have three conditions for curve reliability and five criteria for the identification of a peak
fundamental frequency, f,, as a clear peak. We use 30-second-long windows for our HVSR
calculations with the open-source software HVSRpy (Vantassel, 2020).

HTZ % HRZ

HIV(P) = | =55

(4.3)
4.3.2 Cross Coherence

Cross coherence is a method in signal processing and vibration analysis to quantify the
relationship between two signals. The method is based on computing the coherence function
between two signals, which measures the degree of similarity between them in the frequency

domain. It is calculated by taking the cross-power spectral density of the two signals and
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dividing it by the product of their individual power spectral densities. The cross-coherence
function can provide valuable information on the frequency-dependent relationship between
two signals, including the presence of common frequency components and the phase difference
between them. One of the key advantages of the cross-coherence method is its ability to
identify and quantify the coupling between two signals. The cross-coherence method can help
to identify the frequency ranges and the degree of coupling between two systems, which is
useful for understanding the underlying physical processes and designing appropriate control

strategies.

We use cross coherence between station pairs A and B to determine the direction of
travel for our noise source in the frequency domain (w) as described in (Nakata, 2013) and
shown in equation 4.4 below. We reject any transient signals and use rotated component 40-

second overlapping time series windows from each station for the cross-coherence calculation.

u(B,w)ui(4,w)

C(B,A,w) =
BAW) = ) B e + e < T G, w)l T (B, w)] >

(4.4)

With ambient noise recording at station A at time t, with complex conjugate denoted with *, e
regularization, <...> representing the ensemble. Nakata (2011) shows the importance of power
normalization for obtaining propagating waves between two stations where amplitude
variations may be too great using other cross-correlation or deconvolution methods. In cross
coherence with power normalization, the amplitude information is preserved and thus suitable

for noisy data with varying amplitudes among traces.

100



4.4 Results

The time series in Figure 4.2 exhibits an example of the Grant County and Alfalfa County
array’s recorded passive ground motion amplitudes under different conditions. Recordings from
Grant County display greater amplitudes than Alfalfa County during and off business hours (11
pm - 4 am local time) with high and low wind conditions. This is also true in the frequency
domain where we observe relatively greater noise in the averaged stations in both arrays in
Figure 4.5. We show station 1001 for Grant County and 3003 for Alfalfa County where noise
levels are separated by windy/nonwind conditions, day/night hours, and overall averaged power
spectrums. Daytime noise is greater than nighttime noise, with higher noise amplitudes during
high wind periods when compared with low wind periods. We observe little separation of day
and nighttime intervals as shown in Figure 4.5 which would suggest no significant
anthropogenic noise caused by humans during working hours. Power spectrum observations
show an increase in wind speed correlates to an increase in the overall ambient noise
amplitude. As a result, we apply our analysis to our complete data set. We exclude the latter
half of data from station 1008 due to an unexplained amplitude variation that is not observed
on other stations. We suspect an undetermined software logic malfunction associated with the

node itself, perhaps during signal digitization, to be the cause of the data anomaly.

At near-field stations 1001 and 1002, we observe the North component average power
spectrums with narrow peak low frequencies approximately at 0.37 Hz, 0.5 Hz, and 0.8 Hz
shown in Figure 4.3. Overtones of these signals are observed as well at far-field stations starting
at 0.87 Hz which are multiples of the narrow peak frequencies. Significant power spectrum peak

amplitudes are observed on all stations at 2.607 Hz, 7.823 Hz, and 14.5 Hz. Secondary smaller
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peak amplitudes are observed in the range of 2 — 35 Hz as shown in the example power
spectrum in Figure 4.2. The frequency band 0 Hz — 10 Hz is highlighted to show both lower

frequency dependency and independence on wind energy.

Seismic power compared with atmospheric conditions suggests a positive correlation
between frequency and wind speed using data from Oklahoma Mesonet station MEDF in Figure
4.4. As highlighted before, wind speed, azimuthal direction, and temperature are recorded at
300 seconds sampling rate. Wind speed, azimuthal direction, and temperature are compared
with lower frequency bands in the power spectrum 0.32 — 0.64 Hz, 0.64 —1.28 Hz, 1.28 — 2.56
Hz, and 2.56 —5.12 Hz. No correlation is shown between temperature and noise power log
amplitude. Wind azimuthal direction and strength shows varying positive correlation with the
power spectrum (Figure 4.3). Stable power log amplitudes are observed between 0.32Hz and
2.56Hz and power log amplitudes increase at a higher frequency band of 2.56 Hz and 5.12 Hz.
Contrary to other studies (Schofield, 2001) we do not observe a significant shift in frequency
between windy and non-windy periods. We do observe stronger and weaker signals between
the two conditions. Comparing Grant County’s waveform spectral to atmospheric patterns we
see a correlation between windspeed and spectral amplitude with respect to time. We only see
a correlation with windspeed while there appears to be a lack of correlation with other weather
conditions (Figure 4.4). We average power spectrums based on a range of wind speeds and
show the gradual increase in average noise spectral amplitudes with an increase in wind speed.
Median noise amplitude between stations at Grant County positioned at varying distances
relative to wind turbine towers, Figure 4.6, shows the amplitude decay with distance from a

wind turbine source fitting with a squared polynomial decay.
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We observe the spectral curves and peak frequencies by applying the HVSR method in
HVSRpy, as shown in Figure 4.7. Fourier transform of the three component waveform data is
used for equation 4.3 to generate HVSR curves which are then corrected through spectral curve
rejection, based on unbiased spatial statistics, Voronoi tessellation (Cheng et al., 2021).
Common HVSR peak frequencies are approximately 7 Hz and 10.5 Hz. However, HVSR curves
from stations near wind turbines appear to have a significant 10.5 Hz peak frequency when
compared to other stations. The measurements show the HVSR method is successful in
examining the ambient seismic background without being influenced by atmospheric conditions
and local noise sources. As shown in Figure 4.8, at broad frequency bands, we observe energy
propagation through the array location. west to east. We determine our array location’s
wavefield source and sink directions by measuring station pair time lag from ambient noise

cross coherence in equation 4.4.

4.5 Discussion

Wind-dependent frequencies have the highest amplitude at stations 1001 and 1002 and
decrease in relative amplitude with stations further away from the wind turbine as shown with
the average power spectrum in Figure 4.3. As in Saccorotti et al. (2011) revealed frequency
ranges between 1-5 Hz noise were increased in wind farm operations and wind speed, which is
similar to our findings. Significant peaks seen in Figure 4.5 that show wind dependency are
greatest in the range of frequencies from 1 Hz — 35 Hz. Stations 1001 and 1002 have an increase
in relative noise level due to their proximity to the wind turbine tower compared with other far-
field stations, Figure 4.6. Significant frequency peaks at 2.7 Hz, 7.8 Hz, 14.5 Hz, 24.83 Hz, and

27.82 Hz are observed strongest near-field, next to a wind turbine, and observed on all stations.
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Additional frequencies between 25 Hz and 30 Hz show a decrease in amplitude with an increase
in station distance to the wind turbine tower and is attributed to the energy propagation of the
wind turbine and wind coupling, Figure 4.6. We identify a low-frequency peak of 0.29 Hz in the
power spectrum on near-field stations only and a strong 0.87 Hz frequency with higher order
modes on all other stations with decreasing amplitude with distance. We attribute 0.29 Hz to
the low-speed shaft axial rotation within the nacelle and the third harmonic 0.87 Hz to the wind
turbine’s three-bladed sweep signal at 12-14 rpm which translates to an approximately 0.2Hz
blade sweep frequency. Based on the assumption of narrow sharp peaks in the power spectrum
are attributed to mechanical wind turbine noise; we also consider 14.5 Hz, 24.83 Hz, and 27.82

Hz to be attributed to the multi-stage shaft revolution of the high-speed generator axle.

The HVSR results show no clear distinction between day and nighttime periods with
some power offset between windy and non-windy periods in Figure 4.9. This suggests that the
HVSR method is well-suited for the analysis of the seismic background of both windy and non-
windy periods. The HVSR curves are analyzed in accordance with the SESAME guidelines for
ambient excitations where the spectral ratio curve is tested for reliability and clear peaks (Bard
et al., 2005). All selected peaks pass the reliable curve criterion. However, some of the selected
peaks fail the test for clear peaks due to insufficient amplitude difference in defining a peak. We
attribute this to an excessively noisy environment of near-field stations next to a wind turbine
tower. It is suggested in HVSR studies to avoid ambient vibrations in areas of heavy machinery
and/or high anthropogenic noise sources to avoid including transient ground motion (Koller et
al., 2004). Therefore, we compare the HVSR curve results based on the recordings near wind

turbines to the second array in Alfalfa County. We observe a clear and distinct peak frequency
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common to all stations located in Alfalfa County in the frequency band 3 Hz — 5 Hz. Lesser
amplitude and clear peaks are also visible at 10-12 Hz for some stations. Grant County stations
show consistent frequencies at approximately 0.37 Hz, 0.8 Hz, 2.7 Hz, 5.1 Hz, 7.8 Hz, and 10.5

Hz.

For further investigation, we compare the low wind environment power amplitude
spectrum with HVSR and notice a stronger 0.51 Hz peak in the power spectrum. Higher modes
of 0.51 Hz are also significant in non-windy conditions similar to higher modes of 0.8 Hz in
windy conditions. We attribute 0.51 Hz to the corresponding speed of the wind turbine blade

sweep.

In the HVSR curve, we observe a broad frequency peak at 0.8 Hz. A simple

approximation for potential building resonance (Taranath, 2016) is provided by equation 4.5

10

Fb:

Nstories

(4.5)

Where Fj, is the resonance frequency in hertz and Ny es is the height of the structure in units
of floors. We apply this approximation to estimate the 80-meter-tall wind turbine monopole
tower resonance frequency to be 0.37 Hz. We observe the natural frequency of 0.37 Hz at all
stations located near the wind turbine towers, except station 1008, which is independent of
wind forces that we can consider as the wind turbine monopole tower resonance frequency.

Back of the envelope calculation with the observed frequency, we estimate the tower height to
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be 84 meters, which is an adequate approximation given the significant figures that are

overlooked in the conversion of stories to meters.

From ambient noise correlation, we determine the propagation direction of seismic
wave energy at specific frequency bands. Intuitively, it would be assumed that noise frequencies
would show propagation away from stations positioned near a wind turbine tower which
suggests significant seismic noise caused by a direct effect of the wind turbine tower and wind
interaction with the monopole. However, analysis of the noise coherence shows a general West
to East trend for wave energy at all frequency bands. Wave energy propagating from West to
East suggests signals are independent of any immediate local effects of atmospheric conditions
and structures. This analysis is not sensitive to the narrow band frequencies previously
identified as wind turbine mechanical noise. One hypothesis is that the low frequencies are
energy from long-period waves generated by severe winter storms along the Western coastline.
However, continental stations in Bromirski et al. (2005) did not observe any mid-ocean double-
frequency microseisms when observing mid-ocean storm swells. Low, broad peak frequencies
could be attributed to a deep structure causing harmonic resonance since observations are
consistent with the HVSR results. The West to East propagation trend could be attributed to a
near-surface broad frequency source such as the other wind turbines to the south-southwest of
the array as shown in Figure 4.1. Finally, the noise in this frequency band could have another

underdetermined source relatively closer to the Alfalfa array.
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4.6 Conclusion

To improve our understanding of the ambient seismic field, the power density function is
applied to the dataset recorded by the temporary array of 3 component sensors to highlight
fundamental frequencies. Based on the results obtained from the power spectrum and
Mesonet dataset comparison we can conclude the broad amplitude increase in power spectrum
are likely due to the wind coupling with the ground based on power spectrum amplitude
comparisons between stations and weather conditions, sharp narrow frequency peaks are due
to the wind turbine mechanical noise coupling directly with the ground, and the wind turbine
monopole natural frequency is 0.3 Hz. We assume that (1) the wind turbine tower radiates a
constant amount of energy at each spin level, (2) All nearby wind turbines are always at the
same spin level, (3) a simple laterally homogenous subsurface, and (4) wind turbine energy
sums constructively. We conclude 0.3 Hz is related to the low-speed shaft axial rotation within
the nacelle of the wind turbine at two different speeds. The third harmonic of these two signals
at 0.51 Hz and 0.87 Hz are related to the wind turbine blade beats at the different
corresponding wind turbine operating speeds. High frequency and larger amplitude peaks are
corresponding to the frequency band of the wind constructively summing with the preexisting

frequencies related to the wind turbine.

Alfalfa County station HVSR results show both common peaks between all stations at 3
Hz — 5 Hz and varying spectral curve peaks over a short spatial distance. We averaged all station
HVSR curves between each array to account for any variations in instrument and lateral
heterogeneity in site effects. The average HVSR curves are both stable in different time windows

as well as between all stations. Therefore, differences between Alfalfa County and Grant
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County’s HVSR curves can most likely be attributed to differences in site location where the
obvious difference is the existence of wind turbines. It is perplexing as to how Alfalfa County
exhibits a greater HVSR amplitude and significant peak whereas, the Grant County HVSR curves
are relatively flat in comparison. HVSR interpretation is commonly used to infer or otherwise
deduce a subsurface geologic layer of high impedance. Therefore, it may be likely that the
significant peak observed in Alfalfa County could be caused by a very shallow subsurface layer,
whereas the Grant County array exhibits a subsurface layer of lesser acoustic impedance.
Certainly, the two locations exhibit drastically different subsurface features as highlighted by the
HVSR results. An alternative hypothesis is that other noise sources are not otherwise
characterized by this study which is focused on wind turbine seismic noise. Nonetheless, these

observational differences further support the importance of microzonation studies.

The directivity of seismic energy between stations is determined based on the cross-
correlation approach where time lag indicates the energy transfer direction. There is directivity
across all frequency bands. However, it is counter-intuitive the source of the noise is not coming
from stations next to wind turbines. It may be likely that the primary noise for the region is the

collective wind turbines for the wind farm.
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Figure 4.11: Local map in Grant County Oklahoma, Alfalfa County, and overview map showing

the area of interest. geometry and individual stations are with triangles, neighboring wind
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turbine locations are depicted with red dots, and roads are shown in green lines.
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Figure 4.12: A 10-second time series window of the Z component for Stations 1001 from the
Grant County array and Station 2012 from the Alfalfa County array. Two time periods are
shown where Day time hours start at 7 pm and nighttime starts at 2 am CST. Note the different

y-axis in the bottom left figure.
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strength decay.
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Chapter 5:

Conclusion
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In the pursuit of expanding our understanding in the field of geosciences through
investigating recorded waveforms, | can definitively state that there is much more to learn and
uncover. Although it is quite popular to analyze large events when they happen due to the
attention large-magnitude earthquakes can attract, these events are infrequent. A substitution
of small events and passive seismic ideal since they can provide a proxy for large events. Passive
seismic methods techniques do not require an active source where timing and positioning are

known. Economically, passive seismic analysis is low-cost and simpler to logistically carry out.

| have attempted to raise issues and address the shortcomings of traditional studies of
large earthquakes. In one of our studies, | analyzed a limited dataset from a classical hydraulic
fracturing experiment to improve magnitude estimations and quantify the seismogenic state. |
found an improvement in magnitude estimation through waveform cross-correlation and
subsequent seismogenic index. In addition, the improved magnitudes and seismogenic index

revealed subclusters that are orientated in a way where they are more prone to failure.

For our passive seismic experiments, | compared two newly developed seismic sensing
instrument types and performed a local site analysis. DAS using dark fiber’s recent introduction
to seismic sensing has generated significant interest in its capabilities especially when paired
with nodal sensors. | examine the noise level differences between the two sensor types and
follow up with a site characterization of the array length to estimate fundamental frequencies

for shallow subsurface interpretation of geologic structures.

Finally, | compare what is considered to be a high noise level environment with wind

turbines to a low noise level environment without wind turbines and observe how seismic
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recordings are affected in nodal data. Intuitively, | observe noise levels drop exponentially
further away from a wind turbine. However, the cross-coherence of station pairs shows a

general West to East wave propagation direction.

5.1 Summary of Results

Some key results are as follows:

(i) | use waveform cross-correlation to identify different fracture sets for b-value
estimates and subsequent seismogenic index calculation.

(ii) In Enid (Oklahoma, US) | use both DAS and nodal array to investigate a long (20km)
east-west transect. Recordings for both instruments are compared, and site response
is estimated using the nodal data. Using a velocity model, | estimate the resonant
subsurface layer.

(iii) In my wind turbine analysis, | compare nodal data with wind speed data to analyze

the influence a wind turbine generator may have on the acoustic seismic field.

5.2 Future work

The feasibility of microseismic and passive seismic analysis is described here for the
small case studies in Oklahoma. However, the application and possibilities reach beyond the
scope of this dissertation. The magnitude calibration and subsequent seismogenic index
approximation may have applications in other cases outside of hydraulic fracturing. Current
research in the space of carbon sequestration and geothermal energy may be dependent on

accurately tracking fracture networks to facilitate proper operation without the risk of an
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anomalous fracture network that may have a negative impact. Extrapolation of our novel

approach in microseismicity analysis can improve fracture monitoring.

DAS is developing into an interesting monitoring system capable of being successful in
many environments. It has evolved significantly since its early applications in boreholes and
ocean bottoms. However, noisy environments such as within cities or roadside still pose a
challenge to DAS. One of the biggest challenges that became apparent with this study is the
coupling of the fiber optic cable when using a dark fiber array. One way | attempted to

overcome this is by normalizing the noise level for each channel.
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