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Exchange-antisymmetric pair wavefunctions in fermionic systems can give rise to unconventional
superconductors and superfluids with non-trivial transport properties [1–4]. The realisation of these
states in controllable quantum systems, such as ultracold gases, could enable new types of quantum
simulations [5–8], topological quantum gates [9–11], and exotic few-body states [12–15]. However,
p-wave and other antisymmetric interactions are weak in naturally occurring systems [16–18], and
their enhancement via Feshbach resonances in ultracold systems [19, 20] has been limited by three-
body loss [21–26]. In this work, we create isolated pairs of spin-polarised fermionic atoms in a
multi-orbital three-dimensional optical lattice. We spectroscopically measure elastic p-wave inter-
action energies of strongly interacting pairs of atoms near a magnetic Feshbach resonance, and find
pair lifetimes to be up to fifty times larger than in free space. We demonstrate that on-site inter-
action strengths can be widely tuned by the magnetic field and confinement strength, but collapse
onto a universal single-parameter curve when rescaled by the harmonic energy and length scales
of a single lattice site. Since three-body processes are absent within our approach, we are able
to observe elastic unitary p-wave interactions for the first time. We take the first steps towards
coherent temporal control via Rabi oscillations between free-atom and interacting-pair states. All
experimental observations are compared both to an exact solution for two harmonically confined
atoms interacting via a p-wave pseudopotential, and to numerical solutions using an ab-initio inter-
action potential. The understanding and control of on-site p-wave interactions provides a necessary
component for the assembly of multi-orbital lattice models [27, 28], and a starting point for investi-
gations of how to protect such a system from three-body recombination even in the presence of weak
tunnelling, for instance using Pauli blocking and lattice engineering. This combination will open
a path for the exploration of new states of matter and many-body phenomena enabled by elastic
p-wave interactions [3, 5–7, 11].

The emergent behaviour of a quantum many-body sys-
tem is fundamentally tied to the quantum statistics of its
constituents. For pairs of identical fermions, the wave-
function must be exchange antisymmetric, which is found
only in odd-L pairwise collision channels, where L is
orbital angular momentum. Despite a well understood
connection between odd-L interactions and topological
properties [3, 5–7, 9, 11, 29], liquid 3He remains the only
laboratory example of well established p-wave (L = 1) in-
teractions. The discovery of tunable p-wave interactions
in ultracold atoms [19, 20] was promising, but experimen-
tal efforts have so far been severely limited by enhanced
three-body recombination, a process where three atoms
collide to form a diatomic molecule, releasing enough ki-
netic energy to make all products escape confinement
[21–26]. The essential challenge for L > 0 systems is
that wavefunction amplitude at short inter-nuclear sepa-
ration, where recombination processes are strong, is en-
hanced by centrifugal kinetics. Progress has been made
in understanding few-body correlations [8, 12–15] and de-
veloping proposals towards overcoming this obstacle via
wavefunction engineering [30], including low-dimensional
confinement [31, 32]. Still, p-wave interaction energies
between free atoms have yet to be measured directly or
compared to predictions of any theory. Even at the level
of two particles, the description of p-wave interactions

by a Feshbach-tuned, energy-dependent scattering vol-
ume v(E) [33, 34], has yet to be tested experimentally.

In this article, we report the first direct measure-
ment and coherent control of the elastic p-wave inter-
action between two identical fermions in a multi-orbital
lattice. Central to this advance is the use of strong
three-dimensional (3D) confinement to modify the wave-
function and to suppress three-body processes. Interac-
tions are tuned using the magnetic Feshbach coupling
[7] between free-atom pairs and a molecular dimer chan-
nel. Our spectral resolution and orbital control allow us
to transfer pairs of weakly interacting 40K atoms into
strongly interacting two-atom complexes whose energies
and wavefunctions separate them into repulsive and at-
tractive branches. Within the two lowest branches we
are able to reach the unitary limit, where v(E) diverges.
We demonstrate the coherence of the conversion process
between non-interacting and strongly interacting atomic
pairs by measuring Rabi oscillations between them, and
find an oscillation frequency consistent with theory. Fi-
nally, we demonstrate that losses in the upper branch
are limited by the intrinsic lifetime of the 40K molecu-
lar dimer, and we observe lifetimes that are fifty times
larger than observed previously for weakly confined p-
wave dimers of 40K.

Our optical lattice system realises an array of isotropic
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FIG. 1. Spectroscopy of p-wave interactions between spin-polarised fermions. a, Atoms with ↑ or ↓ spin are
loaded into a harmonic trap array formed by a deep 3D optical lattice. The double-struck parabola represents the two-atom
nrel motional degree of freedom. Pairs of atoms are shown in the non-interacting ground (nrel = nCM = 0) or first excited
(nrel = 1, nCM = 0) motional mode. An applied magnetic field (B0ẑ) creates the Feshbach coupling between ↑ atoms. b,
Measurement protocol. An optical Raman π pulse converts singlet |S, ↑↓〉 pairs in the ground motional state into |T, ↓↓〉
with a motional excitation nrel = 1. A radio-frequency sweep, centred at fRF, then transfers some pairs to the interacting
|T, ↑↑〉 state through a two-RF-photon process. The off-resonant intermediate state |T, ↑↓〉 is shown in the dashed box. c, The
measured magnetisation (here, at magnetic field 200.00(1) G and trap angular frequency ω = 2π × 129(2) kHz) exhibits three
distinct spectroscopic features for varying RF centre frequency. The left-most and right-most peaks correspond to transitions

to interacting states in the BR(0) and BR(1) branches, with interaction energies U
(0)
p and U

(1)
p , as labelled. The solid line is a

best-fit spectral function. d, The spectrum of interacting |T, ↑↑〉 pairs reflects mixing of the odd-nrel harmonic states with a
magnetic dimer state. Squares correspond to the spectral peak locations from c, and stars indicate points with unitary p-wave
interactions.

harmonic traps, each occupied by a pair of atoms with
spin and orbital degrees of freedom (Fig. 1a). The spin
state of a pair is |S,MS〉, where S = {S,T} indicates ei-
ther singlet or triplet spin symmetry, MS = {↑↑, ↓↓, ↑↓}
are projections on the magnetic field axis, and ↑ and ↓
are the lowest hyperfine states of 40K. Tunable enhance-
ment of p-wave interactions is provided by a Feshbach
resonance for spin-symmetric pairs |T, ↑↑〉 (Methods).
The motional state of a pair is described by the rela-
tive and centre-of-mass mode numbers nrel = {0, 1, . . . }
and nCM = {0, 1, . . . } respectively. The centre of mass
decouples from the collisional interactions and remains
in its motional ground state, nCM = 0. The relative
mode number is nrel = 2N + L, where N is the conven-
tional radial excitation number for a spherical harmonic
oscillator. Since the overall pair state must have odd ex-
change symmetry and the interacting spin state |T, ↑↑〉 is
even, the motional state must have odd L, which implies
nrel = 1, 3, . . . for L = 1 (p-wave). This is in contrast
to s-wave-interacting spin singlet states which can inter-
act when prepared in the least energetic motional mode
(nrel = nCM = 0) [35, 36].

The magnetic-field-dependent eigenstates of a |T, ↑↑〉
pair can be understood as the coupling of the odd-nrel

motional modes to a molecular state. We sketch the
spectrum of the interacting pair in Fig. 1d. For fields
far below the Feshbach resonance, the spectrum is given
by a ladder with harmonic spacing 2~ω (corresponding
to nrel = 1, 3, . . . ), where ω is the trap angular frequency,
and a molecular dimer state whose energy depends lin-
early on magnetic field. As each motional mode becomes
near resonant with this dimer, the Feshbach coupling im-
parts a p-wave interaction energy shift and mixes the har-
monic states. We label the resulting eigenstates of the

interacting pair as branches {BR(0),BR(1),BR(2) . . . } in
order of increasing energy E(i). In this work, we probe

the lowest energy branches, BR(0) and BR(1). Since they
are both adiabatically connected to the nrel = 1 mode,
we use it as a common reference to define the on-site
interaction energies U

(i)
p , i.e., E(0) = U

(0)
p + 5

2~ω and

E(1) = U
(1)
p + 5

2~ω.

We assemble the desired pair states by orbital excita-
tion of a low-entropy spin mixture. First, |S, ↑↓〉 pairs in
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FIG. 2. Characterisation of unitary and elastic p-wave interactions. a-c, The measured interaction energies (points)
are shown versus magnetic field at three different trap frequencies. Vertical error bars are FWHM values from the best-fit
spectral function. Solid lines are the pseudopotential predictions for angular momentum projections ML = −1, 0, 1, including
anharmonic corrections (Methods). d, When scaled by the harmonic oscillator angular frequency, the measured energies collapse
onto a single universal curve as a function of inverse scattering volume, in units of the oscillator length aho. The black solid line
is the harmonic pseudopotential energy, and the coloured solid lines include anharmonic corrections. e-g, Spatial wavefunctions
of the interacting pairs for various scattering volumes. The solid blue lines are obtained from the pseudopotential (PsP), and
the red dashed lines from an ab-initio (AbI) calculation (see Methods). The short-range divergence of the PsP wavefunction
requires a cutoff in order to be normalisable. Since e and g are in the non-interacting limit with nrel = 3 and nrel = 1 motional
quanta respectively, the corresponding oscillator states are shown as black dotted lines. Panel f corresponds to the unitary
limit, where for comparison, a non-interacting bosonic pair wavefunction in the nrel = 2 state is shown with a black dotted
trace.

the lowest motional mode (nrel = nCM = 0) are created
by loading a spin-balanced degenerate Fermi gas into a
3D optical lattice of moderate depth (Methods). The lat-
tice depth is then rapidly increased, which isolates atom
pairs and prevents undesired three-body processes. Or-
bital excitation and triplet spin symmetry is created by a
π-pulse from optical Raman beams, whose detuning from
the electronic excited state is chosen to minimise photoas-
sociative loss of pairs (Methods). The pulse transforms
|S, ↑↓〉 pairs into the spin-symmetric state |T, ↓↓〉 with a
relative orbital excitation nrel = 1 (see Fig. 1b).

Having engineered the required spin symmetry and or-
bital excitation, we can create and measure strong p-wave
interactions via radio-frequency (RF) manipulation. The
double-spin-flip resonance condition between |T, ↑↑〉 and

|T, ↓↓〉 is 2fRF = 2fZS + U
(i)
p /h, where fRF is the centre

frequency of the RF pulse, fZS is the Zeeman splitting
of ↑ and ↓ spins, and h is Planck’s constant. At reso-
nance, the pulse transfers |T, ↓↓〉 pairs to |T, ↑↑〉 through
a second-order process via the virtual state |T, ↑↓〉 (see
Fig. 1b). Spin flips induced by the RF pulse are de-
tected as changes in the ensemble magnetisation obtained
via time-of-flight imaging (Methods). Figure 1c shows
repeated measurements with variable fRF and features
three distinct spin-resonance peaks. The central fea-
ture corresponds to flipping an isolated (and thus non-
interacting) spin and is used to calibrate the magnetic-
field strength. The two side features indicate successful
transfers of |T, ↓↓〉 pairs to interacting |T, ↑↑〉 pair states

in BR(0) and BR(1) with interaction energies U
(0)
p and
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FIG. 3. Coherent manipulation of p-wave interacting pairs. a, Temporal oscillations in the magnetisation are observed
when applying an RF drive resonant with the two-photon |T, ↓↓〉 to |T, ↑↑〉 transition. Here, the trap angular frequency
is ω = 2π × 129(2) kHz, and the magnetic field is 200.00(1) G. A boxcar average with a 50 µs window is applied to the
data for times less than 200 µs for visual clarity. Error bars are the standard deviation of repeated data points. A two-

frequency fit finds Ω̃1 = 2π × 22.7(4) kHz and Ω̃2 = 2π × 2.15(4) kHz, which we identify as one- and two-atom processes,
respectively. b, Rabi oscillations caused by off-resonant coupling of single spins should occur with generalised Rabi frequency

Ω̃1 = {Ω2
1 + [U

(1)
p /(2~)]2}1/2. An independent calibration gives the single-particle Rabi frequency Ω1 = 2π × 8.83(2) kHz. c,

Rabi oscillations caused by on-resonant two-photon coupling of |T, ↓↓〉 to |T, ↑↑〉 occur with frequency Ω̃2 (Methods). The
coupling strength between |T, ↓↓〉 and |T, ↓↑〉 is

√
2Ω1, and the coupling strength between |T, ↓↑〉 and |T, ↑↑〉 is η

√
2Ω1. d, The

measured pair oscillation frequency Ω̃2 varies with inverse scattering volume. Error bars are the fit uncertainty of the oscillation
frequency. The solid and dashed lines are the predictions based on the AbI and PsP calculations respectively (Methods). e,
The wavefunction overlap η as a function of inverse scattering volume, inferred from the measured two-photon Rabi frequency
of d. Error bars are the estimated statistical uncertainty of all experimental parameters combined with the fit uncertainty of

Ω̃2. The solid and dashed lines are the overlap calculated using AbI and PsP wavefunctions respectively (Methods).

U
(1)
p respectively. The observed spectra, such as Fig. 1c,

constitute the first direct measurements of the elastic p-
wave interaction energy.

We probe the eigenspectrum of interacting p-wave
atoms through RF spectroscopic scans at variable trap
frequency and magnetic fields. The measured energies
test the validity of an analytical treatment that uses the
p-wave pseudopotential [33, 34] (PsP) to calculate the
interaction energy as a function of the energy-dependent
scattering volume, v(E) (Methods). At unitarity, v(E)
diverges but the interaction energy remains finite with

U
(0)
p = −~ω and U

(1)
p = +~ω. This resonant behaviour

is universal, independent of any microscopic details of
the atomic collisions. In Figs. 2a-c we compare the mea-
sured interaction energy to the PsP prediction, includ-
ing a leading-order anharmonic correction (Methods).
In both branches, we observe agreement across a wide
range of interaction strengths – including in the unitary
limit. Figure 2d collects all data as E/~ω versus v(E)/a3

ho,

where aho =
√
~/µω is the harmonic oscillator length

and µ = m/2 is the reduced mass. The data collapse
demonstrates the exclusive dependence of p-wave inter-
action energies on a single parameter, which implies the
the universal applicability of this result to any p-wave



5

a

b c d

199.2 G

199.8 G
199.2 G

199.8 G

f

e

tRF RFwait

FIG. 4. Lifetime of p-wave interacting pairs. a, The lifetime of an interacting 40K p-wave pair is limited by dipolar
relaxation of the metastable dimer at short range. The Born-Oppenheimer potential energy (green) has a short range interaction

component and a long range component due to harmonic confinement (not to scale). b, The lifetime of BR(1) pairs is measured
as the 1/e decay time of the magnetisation for the experimental sequence described in the text (inset). Data is shown for trap
angular frequency ω = 2π× 129(2) kHz at magnetic fields 199.20(1) G (red) and 199.80(1) G (blue) with lifetimes 51(9) ms and
13(2) ms respectively. Error bars show the standard deviation of repeated measurements. c, The probability density r2|ψ|2
exhibits distinct short- and long-range components. Coloured solid lines correspond to ab-initio wavefunctions for experimental
conditions in panel b; the vertical dashed line indicates the distance up to which the short-range probability χ is calculated (see
Supplements). d, Probability densities of c with linear scaling in interatomic distance. The black dotted wavefunctions give
the non-interacting nrel = 1 oscillator state for comparison. e, The measured lifetime decreases for magnetic fields closer to
the unitary limit. Shown are data for harmonic trap angular frequencies ω = 2π× 90(2) kHz (yellow) and ω = 2π× 129(2) kHz
(pink). The square and diamond markers correspond to the temporal data shown in b. Error bars are the fit uncertainty of the
1/e decay time. The lines are theory predictions based on the AbI wavefunctions (solid) and PsP wavefunctions (dashed). f,
The variation of the measured short-range probability χ with inverse scattering volume. Solid and dashed lines are predictions
from AbI and PsP calculations respectively where χ attains a maximum value at the unitary point (Methods).

interacting system in the tight-binding limit.

Further insight is provided by comparing the wavefunc-
tions of the PsP theory to those obtained numerically
from an ab-initio (AbI) interaction potential specific to
40K (see Figs. 2e,f,g). At short length scales, r . 0.1aho,
the PsP diverges while the AbI does not. However as de-
scribed in Supplements, after regularisation with a short-
range cutoff (at the van der Waals length), the PsP wave-
function is normalisable and accurately predicts the long-
range wavefunction. Far from resonance, both the PsP
and AbI wavefunctions match the non-interacting oscil-
lator states (nrel = 1 in Fig. 2g and nrel = 3 in 2e).
At unitarity (Fig. 2f), the wavefunction asymptotically
resembles that of a non-interacting bosonic pair in the
nrel = 2 motional state, since an exchange-odd wavefunc-
tion with an additional π/2 scattering phase imitates a
non-interacting exchange-even wavefunction.

Next, we demonstrate coherent manipulation of p-
wave interacting pairs, which also probes the interact-
ing wavefunctions. As shown in Fig. 3a, application of

RF radiation under the two-photon resonance condition

for the BR(1) branch results in an oscillating ensemble
magnetisation with a two-tone frequency character. The
faster oscillation evident at short times corresponds to
(off-resonant) ↑-to-↓ Rabi oscillations of single spins; the
slower oscillation persisting for longer time corresponds
to resonant Rabi oscillations of pairs between |T, ↓↓〉 and
|T, ↑↑〉. The oscillation frequency of the pairs is sensi-
tive to the wavefunction overlap η between the interact-
ing and non-interacting states (Methods). The two-atom

RF Rabi frequency also has a
√

2 enhancement above
the single-atom coupling Ω1 due to constructive inter-
ference among pure spin-triplet states. In Fig. 3d, we
compare the observed pair Rabi frequency to theoretical
predictions for a range of inverse scattering volumes, and
find excellent agreement. This measurement allows us
to directly extract η, as shown in Fig. 3e. The observed
agreement between theory and experiment demonstrates
coherent control of the system and success of both the
AbI and regularised PsP to predict the interacting wave-
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function.

A final experiment probes the lifetime of the p-wave
interacting pairs. In the absence of three-body recom-
bination, the lifetimes are limited for 40K by inelastic
two-body collisions of pairs of atoms at short interatomic
separation (see Fig. 4a), with a characteristic lifetime
τd ≈ 3.4 ms [37, 38] (Methods). The pair lifetime is mea-
sured with a double-pulse sequence (see inset of Fig. 4b)
in which |T, ↑↑〉 pairs are created, held for a variable hold
time, and transferred back to |T, ↓↓〉. The survival life-
time is extracted from the exponential decay of the en-
semble magnetisation, as shown in Fig. 4b for two differ-
ent magnetic fields. Even though the strong lattice con-
finement has increased atomic density, we find lifetimes
in excess of 50 ms, which is fifty times longer than previ-
ously observed for free-space dimers [25]. The relatively
long lifetime of the 199.2 G condition can be understood
by its reduced probability (χ) for small inter-nuclear sep-
aration r, where relaxation processes are strongest (see
Figs. 4c,d). Both AbI and regularized PsP wavefunctions
allow us to calculate χ; as shown in Fig. 4e, these show
excellent agreement with measured lifetimes using the
simple relation τ = τd/χ. The observed agreement across
all interaction energies, demonstrates the full suppression
of three-body recombination, the absence of band relax-
ation, the validity of both the ab-initio and PsP wave-
functions, and the calculation of τd. Figure 4f plots χ ver-
sus a3

ho/v(E), which emphasises the applicability of the
wavefunctions to any p-wave system, even those (such as
6Li [20, 22, 24, 26, 39–42]) without the dipolar relaxation
channel present in 40K |T, ↑↑〉 pairs [37].

The observation, control, and comprehensive under-
standing of strong p-wave interactions demonstrated here
illuminates a path towards the assembly of new many-
body states of matter. In a full lattice model, the mea-

sured U
(i)
p calibrates the on-site interaction, while lattice

depth controls tunnelling between sites. For sufficiently

small tunnelling strength, losses might continue to be
suppressed either through the quantum Zeno effect [30] or
by the energetic gaps to triple on-site occupation. In two

dimensions, the U
(0)
p < 0 interactions observed here in

BR(0) in the |ML| = 1 channel are the pre-cursors of p+ip
superfluidity [2, 4, 5, 43], which features non-trivial topo-
logical properties, as well as gapless chiral edge modes,
or “Majorana zero modes” in vortex cores [11, 29]. These
are non-abelian anyons that are predicted to offer unique
opportunities for topological quantum computation and
robust quantum memories [3, 11, 29]. Even a metastable
many-body state would allow for the study of topolog-
ical states in a quenched p-wave superfluid [44]. The

U
(1)
p > 0 interactions observed here are the pre-cursors

of orbital magnetism known from transition metal oxides
[45], as well as orbitally ordered Mott insulators [46, 47]
in a multi-band Fermi-Hubbard model [48]. Strong or-
bital interactions demonstrated in this work can also be
used to engineer low-entropy states in a multi-band lat-
tice system [49] and a full gate-based control of entangled
many-body states [50]. Finally, the universal nature of
the observed interaction energies indicates that it would
be reproduced in other ultracold p-wave systems such as
6Li [20, 22, 26, 39–42] and ultracold fermionic molecules
[51–53].

ACKNOWLEDGMENTS

We acknowledge insightful discussions with Frédéric
Chevy and Shizhong Zhang, and helpful manuscript com-
ments from John Bohn, Adam Kaufman, and Robyn
Learn. This work is supported by the AFOSR grants
FA9550-19-1-0275, FA9550-19-1-7044, and FA9550-19-1-
0365, by ARO W911NF-15-1-0603, by the NSF’s JILA-
PFC PHY-1734006 and PHY-2012125 grants, by NIST,
and by NSERC.

∗ These authors contributed equally to the work.
† cora.fujiwara@utoronto.ca
‡ arey@jilau1.colorado.edu
§ joseph.thywissen@utoronto.ca

[1] R. Huebener, N. Schopohl, and G. Volovik, Vor-
tices in Unconventional Superconductors and Superfluids
(Springer Berlin Heidelberg, 2002).

[2] G. Volovik, The Universe in a Helium Droplet , Interna-
tional Series of Monographs on Physics (Clarendon Press,
2003).

[3] D. A. Ivanov, Non-abelian statistics of half-quantum vor-
tices in p-wave superconductors, Phys. Rev. Lett. 86, 268
(2001).

[4] T. Mizushima, Y. Tsutsumi, T. Kawakami, M. Sato,
M. Ichioka, and K. Machida, Symmetry-protected topo-
logical superfluids and superconductors: From the basics
to 3He, J. Phys. Soc. Japan 85, 022001 (2016).

[5] S. S. Botelho and C. A. R. Sá de Melo, Quantum phase
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Appendix A: Methods

Spin and motional wavefunctions. The single-atom
spin states ↑ and ↓ used in the experiment are the
mf = −9/2 and mf = −7/2 spin states of the ground
hyperfine manifold of 40K with total spin f = 9/2.
The pair spin wavefunctions are given by |S, ↑↓〉 =

(|↓, ↑〉 − |↑, ↓〉) /
√

2, |T, ↑↑〉 = |↑, ↑〉, |T, ↓↓〉 = |↓, ↓〉, and

|T, ↑↓〉 = (|↓, ↑〉+ |↑, ↓〉) /
√

2. The motional states of the
pair are defined in terms of spherical harmonic oscilla-
tor eigenstates for the relative atomic separation r (see
Supplements),

|E〉 = |N , L,ML〉 ,

E = ~ω
(

2N + L+
3

2

)
.

(A1)

Here N ∈ {0, 1, 2, . . . } is the radial excitation number,
L ∈ {0, 1, 2, . . . } is the relative angular momentum, and
ML ∈ {−L, . . . , L} the angular momentum projection
along the magnetic field axis. The total number of mo-
tional excitations can also be characterised by a single
quantum number nrel = 2N + L = 1, 3, . . . , since L = 1
for p-wave interactions.

State preparation and readout. The degenerate
Fermi gas is a balanced spin mixture of 40K in its lowest
two hyperfine spin states created via sympathetic optical
evaporation with 87Rb in a crossed optical dipole trap
[54, 55]. After evaporation, the gas typically contains
2 × 105 atoms with temperature 0.1TF , where TF is the
Fermi temperature.

The optical lattice potential is formed by orthogonal
retro-reflected laser beams of wavelengths λxy = 1054 nm
in the xy plane and λz = 1064 nm along the z-axis with
beam waists (wx, wy, wz) = (60, 60, 85)µm. The poten-
tial depth of the lattice is parameterised in terms of the
recoil energy of the xy lattice beams ER = ~2k2

L/2m,
where kL = 2π/λxy and m is the mass of a 40K atom.
The harmonic trap angular frequency of a lattice site ω
is given by ~ω = ER

√
4VL/ER where VL is the lattice

depth. The lattice depths are regulated to be isotropic
and are verified by comparing amplitude-modulation
spectroscopy to band structure. We estimate the lattice
anisotropy to be less than 2%.

Isolated pairs of atoms in the |S, ↑↓〉 |0〉rel state are cre-
ated by ramping the lattice depth to 10ER in 150 ms,
waiting for 50 ms, and then suppressing tunnelling with
a fast ramp to 60ER in 250µs. In-situ fluorescence imag-
ing with a quantum gas microscope verifies that approxi-
mately 10% of the sites are doubly occupied. The lattice
depth is then ramped to 200ER in 100 ms, and the mag-
netic field along the z lattice direction is ramped to 197 G
in 150 ms. Atom pairs in the |S, ↑↓〉 |0〉rel state are trans-
ferred to the |T, ↓↓〉 |1〉rel state by a 65 µs Raman π-pulse
which is detuned from the Zeeman splitting by a motional
quanta and the on-site s-wave interaction energy of the
|S, ↑↓〉 |0〉rel state.

To perform state readout, the magnetic field is first
ramped (in 50 ms) to 195 G where the atom pairs are
weakly interacting. The resultant absolute spin popula-
tions of the ↑ and ↓ states are measured via absorption
imaging after band mapping and a 15 ms time of flight. A
double shutter imaging technique enables measurement
of both spin populations in a single experimental realisa-
tion.

Raman excitation. The Raman coupling is generated
by two linearly polarised beams in the xy plane whose
propagation directions are oriented at 30◦ and 60◦ respec-
tively with the x and y lattice directions. A small angular
deviation from the xy plane allows excitations along the
z motional degree of freedom, and thus ML = 0 features
are present in the spectra. The single-photon detuning of
each Raman laser beam is stabilised to −50.1 GHz from
the D2 transition and is chosen to avoid undesired photo-
association of pairs of 40K atoms [56] at a single site.

RF spectroscopy. After preparing the non-interacting
|T, ↓↓〉 |1〉rel pair state, the lattice depth and magnetic
field are ramped sequentially in 50 ms to their operat-
ing values as indicated in the main text. The radio-
frequency spectroscopy implements the hyperbolic secant
(HS1) pulse shape which is defined by the following time-
dependent detuning δ(t) about the central frequency fRF,
and Rabi frequency Ω(t):

Ω(t) = Ω0 sech

(
2β

t

Tp

)
(A2)

δ(t) = δc + δm tanh

(
2β

t

Tp

)
. (A3)

Here, Ω0 is the peak Rabi frequency at resonance, which
is essentially the single-particle Rabi frequency Ω1. Note
that in the Rabi-oscillation measurements, the Rabi fre-
quency is fixed as a constant of Ω(t) = Ω1. In the ex-
pression of the detuning above, δm is the maximum ab-
solute detuning with respect to the central detuning of
δc/(2π) = fRF − fZS, and Tp is the characteristic pulse
time. The dimensionless tuning parameter β sets the
relative sharpness of the sweep. Typical experimental
parameters are δm = 2π × 2.5 kHz, Ω0 = 2π × 8.8 kHz,
β = 0.05, and Tp = 2 ms.

Feshbach resonance. In free space, |T, ↑↑〉 pairs of
atoms have a p-wave magnetic Feshbach resonance at
198.30 G for ML = ±1, and 198.80 G for ML = 0. In
the effective range approximation, the energy dependent
scattering volume v(E) for each collisional channel is
given by

v(E) ≈

 1

vbg

(
1− ∆

B−B0

) +
µE

~2R(B)

−1

, (A4)

where vbg is the background scattering volume, ∆ is the
resonance width, B0 is the resonant magnetic field, B is
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the applied magnetic field, µ = m/2 is the reduced mass,
and R(B) is the field dependent effective range given by
the linear expression R(B) = R0[1 + (B −B0)/∆r]. The
resonance parameters for ML = 0 are vbg = −(108.0a0)3,
∆ = −19.89 G, R0 = 49.4a0, and ∆r = 21.1 G. The res-
onance parameters for ML = ±1 are vbg = −(107.35a0)3,
∆ = −19.54 G, R0 = 48.9a0, and ∆r = 21.7 G [38].

Pseudopotential. The p-wave interaction between two
identical atoms can be computed via a regularised pseu-
dopotential [33, 34, 57] given by

Vp(r) =
12π~2v(E)

m

←−
∇rδ

(3)(r)
−→
∇r

1

2

∂2

∂r2
r2, (A5)

where r is the relative position of the atoms and r = |r|
their separation, δ(3) is the 3D Dirac delta function, and←−
∇r,

−→
∇r are left-, right-acting gradients respectively. In

principle, the energy-dependent scattering volume v(E) is
different for the ML = ±1 and ML = 0 channels due to
dipolar interactions. Thus, the pseudopotential should
be separated into terms with spatial derivatives acting
in the x − y plane and z direction (since the magnetic
field points along z) with different scattering volumes.
However, this does not lead to coupling between the ML

channels. Therefore, the energies of the different channels

are simply given by the solution of the isotropic case with
the appropriate scattering volume.

An isotropic scattering volume permits an analytic
solution for the energy E , which is given implicitly by
[33, 34]

− a3
ho

v(E)
= 8

Γ
(

5
4 −

E
2~ω
)

Γ
(
− 1

4 −
E

2~ω
) (A6)

where Γ(z) is the Gamma function. The corresponding
spatial wavefunction can be written as [34]

ψint(r) =

A r
aho

e
− r2

2a2
ho U

(
− E

2~ω + 5
4 ,

5
2 ,

r2

a2ho

)
r > rcut

0 r ≤ rcut

(A7)
where A is a normalisation constant, U(a, b, z) is the con-
fluent hypergeometric function of the second kind, and
rcut = 50a0 is a cutoff used to treat the divergence as
r → 0, obtained by comparing directly to ab-initio wave-
function calculations (see Supplements).

Anharmonic corrections. The anharmonic correc-
tion to the pseudopotential energy is approximated using
first-order perturbation theory. We compute the expec-
tation value of fourth-order Taylor expansion terms of
the lattice trapping potential about the center of a lat-
tice site (see Supplements). The resulting correction is

∆Eanharmonic = −ER
(

1

10a4
ho

∫ ∞
0

dr r6|ψint(r)|2 +
1

2a2
ho

∫ ∞
0

dr r4|ψint(r)|2 −
17

8

)
. (A8)

Pair Rabi oscillations. The Rabi oscillation spin dy-
namics of an interacting pair is captured by the following
three-level model (see Supplementary),

Ĥpair =


0 ~Ω1√

2
0

~Ω1√
2
−U

(1)
p

2
~Ω1√

2
η

0 ~Ω1√
2
η 0

 , (A9)

written in the basis of {|T, ↓↓〉 |1〉rel, |T, ↑↓〉 |1〉rel,
|T, ↑↑〉 |ψint〉rel}. Here Ω1 is the single-photon Rabi fre-
quency of the RF drive, while η is a spatial wavefunc-
tion overlap between the non-interacting and interacting
states (see Supplements),

η = rel〈ψint| 1〉rel =

∫ ∞
0

dr r2ψ∗int(r)ψ
(nrel=1)
rel (r),

where

ψ
(nrel=1)
rel (r) =

(
8

3π1/2a3
ho

)1/2
r

aho
exp

(
− r2

2a2
ho

)
.

(A10)

In the limit of U
(1)
p � ~Ω1, dynamics under this Hamil-

tonian is characterised by a single frequency

Ω̃2 =

√(
U

(1)
p /~

)2

+ 8(1 + η2)Ω2
1 − U

(1)
p /~

4
. (A11)

Experimental measurements extract η from the above
equation, since all other parameters are independently
measured.

Lifetime prediction. The lifetime τ of the interacting
state is limited by inelastic decay due to dissociation of
the pair into unbound atoms. Dipolar interactions couple
the interacting state |T, ↑↑〉 |1〉rel |0〉CM to a lossy dimer
state at short interatomic separation, which undergoes
dissociation with a characteristic lifetime τd. The dimer
lifetime for ML = +1 and ML = −1 is τ+1 = 8.7 ms
and τ−1 = 2.1 ms respectively [38]. Our motional exci-
tation is predominantly along a single Cartesian lattice
direction in the x̂-ŷ plane, which corresponds to an equal
superposition of ML = +1,−1; the characteristic lifetime
is thus τ−1

d = (τ−1
+1 + τ−1

−1 )/2, such that τd = 3.4 ms. The
actual lifetime further depends on the short-range wave-
function probability χ. We theoretically predict χ from
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the interacting wavefunctions by computing the overall
probability up to a characteristic threshold (see Supple-
ments). At all probed magnetic fields, we see a clear
distinction between short- and long-range components,
such as in Fig. 4c. The threshold is chosen to capture
the short-range portion of the wavefunction only.

Appendix B: Supplemental Information

Interacting wavefunction calculations. The spatial
wavefunction |N , L,ML〉 for a non-interacting spherical
harmonic oscillator state is

ψN ,L,ML
(r) =A0

(
r

aho

)L
e
− r2

2a2
ho L(L+1/2)

N

(
r2

a2
ho

)
× YL,ML

(θr, φr),

(B1)

whereA0 is a normalisation constant, L(L+1/2)
N is the gen-

eralised Laguerre polynomial, and YL,ML
is the spherical

harmonic function. Here (r, θr, φr) ≡ ~r is the relative
separation of the atoms in spherical coordinates, with
~r = ~r1 − ~r2 for individual atom positions ~r1, ~r2. There
is a corresponding center-of-mass position (R, θR, φR) ≡
~R = (~r1 + ~r2)/2, although this is unaffected by interac-
tions and decouples.

The total number of motional excitations can also be
characterised by a single quantum number nrel = 2N +L
which we use in the main text. There is a corresponding
center-of-mass overall excitation number nCM, which we
assume to be constant and set to nCM = 0 throughout.
Since we study identical fermions, the relative wavefunc-
tion has odd parity under particle exchange. This pre-
vents s-wave (L = 0) collisions and fixes L to be odd to
have overall exchange antisymmetry (since odd-L spatial
wavefunctions have odd parity). This restriction in turn
mandates that the overall motional excitation number is
odd, nrel = 1, 3, . . . . We must thus inject a motional
quanta into the state prepared in the ground state of the
system to study the p-wave interactions. This is done by
our Raman pulse, which creates a single excitation along
a Cartesian direction of the lattice. The angular momen-
tum is L = 1 (p-wave interactions) and the projection can
be ML = ±1 (for an excitation along x̂ − ŷ) or ML = 0
(for an excitation along ẑ). The non-interacting oscilla-
tor energy of the relative coordinate is initially E = 5

2~ω;
all interaction energy shifts are measured relative to this
initial value.

Turning to the interacting pair, the wavefunction for
two identical fermionic atoms in a harmonic trap inter-
acting via the p-wave pseudopotential can be written an-
alytically as [34]

ψpseudo(r) = A r

aho
e
− r2

2a2
ho U

(
− E

2~ω
+

5

4
,

5

2
,
r2

a2
ho

)
,

(B2)

Channel σ Spin basis state |φσ〉
bb

∣∣ 9
2
,− 7

2

〉
1

∣∣ 9
2
,− 7

2

〉
2

ac 1√
2

(∣∣ 9
2
,− 5

2

〉
1

∣∣ 9
2
,− 9

2

〉
2

+
∣∣ 9
2
,− 9

2

〉
1

∣∣ 9
2
,− 5

2

〉
2

)
aq 1√

2

(∣∣ 9
2
,− 9

2

〉
1

∣∣ 7
2
,− 5

2

〉
2

+
∣∣ 7
2
,− 5

2

〉
1

∣∣ 9
2
,− 9

2

〉
2

)
br 1√

2

(∣∣ 9
2
,− 7

2

〉
1

∣∣ 7
2
,− 7

2

〉
2

+
∣∣ 7
2
,− 7

2

〉
1

∣∣ 9
2
,− 7

2

〉
2

)
rr 1√

2

(∣∣ 7
2
,− 7

2

〉
1

∣∣ 7
2
,− 7

2

〉
2

+
∣∣ 7
2
,− 7

2

〉
1

∣∣ 7
2
,− 7

2

〉
2

)
TABLE I. Collisional channels σ and corresponding symmet-
ric spin basis states |φσ〉. Here |f,mf 〉α is the state of atom
α ∈ 1, 2 with total spin f and spin projection mf .

where E is the energy of the system (including the inter-
action energy and harmonic trap energy of the relative
coordinate), while U(a, b, z) is the confluent hypergeo-
metric function of the second kind. Unlike the s-wave
case [58], this wavefunction is not normalisable due to
its ∼ 1/r2 divergence as r → 0. However, we find that
the wavefunction can still accurately reproduce the long-
range physics of the problem when a short-range cutoff
rcut is imposed. Specifically, we define

ψint(r) =

{
ψpseudo(r) for r > rcut

0 for r ≤ rcut
(B3)

With this cutoff, the normalisation constant can be nu-
merically computed via

A−2 =

∫ ∞
rcut

dr r2

[
r

aho
e
− r2

2a2
ho U

(
− E

2~ω
+

5

4
,

5

2
,
r2

a2
ho

)]2

.

(B4)
The overall amplitude of the wavefunction (and thus

the long-range properties) depends strongly on the cho-
sen cutoff rcut. To determine the correct value of rcut

that captures the physics seen in the experiment and test
the validity of the pseudopotential, we numerically com-
pute wavefunctions for the same problem using ab-initio
molecular calculations.

Our ab-initio calculations [59], which neglect the
magnetic-dipole interaction, assume that the two collid-
ing 40K atoms have total spin projection MF = −7. The
total wavefunction is expressed in a basis of symmetric
hyperfine spin states {|φσ〉} corresponding to different
collisional channels σ. Table I shows the channel la-
bels and corresponding spin states, with |f,mf 〉α being
the spin state of atom α ∈ 1, 2 with atomic hyperfine
spin f and projection mf . Our calculations consist of a
fully coupled channel approach [59] where realistic singlet
and triplet Born-Oppenheimer potentials [60] are used
along with a harmonic trap. The full problem is diag-
onalised to find the lowest eigenvalues and eigenstates
for trap depths and magnetic field values as used in the
experiment. Since our model neglects magnetic dipole
interactions, we cannot directly distinguish between the
|ML| = 1 and ML = 0 components, whose free-space
Feshbach resonance positions differ by ≈ 0.5 G. For that
reason, we apply an overall magnetic field shift to align
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the lowest resulting branch BR(0) with the corresponding
branch of the pseudopotential.

For each branch BR(i), the output of these calculations
is a wavefunction of the form

|ψab−initio〉 =
∑
σ

ψσ(r) |φσ〉 , (B5)

where ψσ(r) is the spatial wavefunction for spin channel
σ. The wavefunction is normalised via∑

σ

∫ ∞
0

dr r2[ψσ(r)]2 = 1. (B6)

Only the ψbb(r) component has non-negligible amplitude
at long range r & aho. This component adiabatically
maps to the nrel = 1, 3, . . . non-interacting oscillator
states that the system resides in when far from Feshbach
resonance, and corresponds to both atoms being in the
↑ spin state. The pseudopotential wavefunction should
thus match the bb component in the long range regime,

ψint(r) ≈ ψbb(r) for r & aho. (B7)

By comparing the wavefunctions for different values of
magnetic field and thus energy E , we empirically find
that a cutoff of

rcut = 50a0, (B8)

with a0 the Bohr radius results in good agreement be-
tween the wavefunctions. The insets of Fig. 2d com-
pare the pseudopotential, ab-initio and non-interacting
wavefunctions for the BR1 branch at three characteris-
tic points at E ≈ 5

2~ω (Fig. 2e, close to non-interacting

oscillator state |1〉rel), E ≈
7
2~ω (Fig. 2f, at unitarity)

and E ≈ 9
2~ω (Fig. 2g, close to non-interacting oscilla-

tor state |3〉rel). The cutoff works well for all energies E
and all trap depths explored in the experiment. We note
that the chosen rcut is close to the near-resonant effec-
tive range R0 and also close to the characteristic van der
Waals length rVdW = 65a0 for ground-state 40K atoms.
Similar techniques were applied in Ref. [38], and found
analogous short-range thresholds.

Calculations that only require the long-range compo-
nent of the interacting wavefunction use the pseudopo-
tential result ψint(r) with the cutoff rcut = 50a0 unless
otherwise specified. This wavefunction represents the bb
channel only; in the main text we denote the interacting
state as |T, ↑↑〉 for notational simplicity, but generically
it is a superposition of multiple spin channels.

Anharmonicity corrections. The spectra probed in
the experiment are modified due to anharmonicity in-
duced by the lattice potential. The full potential is given
by

Ĥtrap = VL

∑
α=1,2

∑
i=x,y,z

sin2

(
πx̂i,α
a

)
, (B9)

where VL is the lattice depth and a the lattice spacing.
We write this potential in spherical relative and center-of-
mass coordinates (r, θr, φr) and (R, θR, φR). We assume
that the atoms are at close distances (r � a) and near the
center of the lattice site (R� a). Under this assumption

we Taylor expand Ĥtrap to fourth order in r and R,

Ĥtrap = Ĥ
(2)
trap + Ĥ

(4)
trap +O(r6, r4R2, r2R4, R6). (B10)

The second-order term is given by

Ĥ
(2)
trap = VL

π2

a2

(
1

2
r2 + 2R2

)
, (B11)

and gives the effective trapping frequency

ω =

√
2VLπ2

a2m
, (B12)

before any anharmonic corrections are included. The
fourth-order term is

Ĥ
(4)
trap = −V π

4

a4
[α(θr, φr)r

4 + β(θr, φr, θR, φR)r2R2

+ γ(θR, φR)R4],
(B13)

where the angular functions are given by

α(θr,φr) =
4 cos4θr + sin4θr[3 + cos(4φr)]

96
,

β(θr,φr, θR, φR) = cos2θr cos2θR

+
1

2
sin2θR sin2θR[1 + cos(2φr) cos(2φR)],

γ(θR,φR) =
4 cos4θR + sin4θR [3 + cos(4φR)]

6
.

(B14)

The lowest-order anharmonic correction to the spectrum
can be estimated as the expectation value of the perturb-

ing term Ĥ
(4)
trap.

The full spatial wavefunction of the initial state in our
spectroscopy including angular components and center-
of-mass motion can be written, assuming a Cartesian ex-
citation along the x̂ direction (although the results are
identical for any single excitation in the x̂-ŷ plane), as

ψinitial =ψ
(nrel=1)
rel (r)

Y1,1(θr, φr) + Y1,−1(θr, φr)√
2

× ψ
(nCM=0)
CM (R)Y0,0(θR, φR),

(B15)

where the radial wavefunctions ψ
(nrel=1)
rel (r) and

ψ
(nCM=0)
CM (R) are given explicitly by

ψ
(nrel=1)
rel (r) =

√
8

3
√
πa3

ho

r

aho
e
− r2

2a2
ho ,

ψ
(nCM=0)
CM (R) =

√
32√
πa3

ho

e
− 2R2

a2
ho .

(B16)



13

Since the interactions only depend on r, if we assume
that coupling between relative and center-of-mass motion
induced by the lattice anharmonicity is negligible, the p-
wave interacting state will have the same wavefunction
for all coordinates except r:

ψfinal = ψint(r)
Y1,1(θr, φr) + Y1,−1(θr, φr)√

2

× ψ(nCM=0)
CM (R)Y0,0(θR, φR),

(B17)

where ψint(r) is the interacting wavefunction from

Eq. (B3). The correction to the energy values obtained
by spectroscopy is then given by the difference of the
anharmonic corrections between these two states,

∆Eanharmonic = 〈ψfinal| Ĥ(4)
trap |ψfinal〉

− 〈ψinitial| Ĥ(4)
trap |ψinitial〉 .

(B18)

This yields

∆Eanharmonic = −V π
4

a4

[
1

40

∫ ∞
0

dr r6[ψint(r)]
2 +

1

4
a2

ho

∫ ∞
0

dr r4[ψint(r)]
2 − 17

8
a4

ho

]
= −ER

[
1

10a4
ho

∫ ∞
0

dr r6[ψint(r)]
2 +

1

2a2
ho

∫ ∞
0

dr r4[ψint(r)]
2 − 17

8

]
.

(B19)

Rabi oscillations. The coherent oscillation of atomic
population between the spin states ↓, ↑ under the RF
drive has contributions from single-particle and pair dy-
namics. The single-particle Hamiltonian is given by
Ĥsing = 1

2~Ω1(e−i2πfRFtσ̂+ + h.c.) + 1
2hfZSσ̂

z, where
σ̂+, σ̂z are standard Pauli operators, Ω1 is the single-
photon Rabi frequency, fRF is the RF frequency and
hfZS is the Zeeman splitting. The Rabi frequency is as-
sumed to be independent of fRF as the variation of the
laser wavevector 2π/fRF is negligible across the length
of a lattice site. We apply the usual unitary trans-
formation Ûsing = exp[−it(2πfRF)σ̂z/2] which yields

Ĥsing → Û†singĤsingÛsing + i~Ûsing
d
dt Û

†
sing, then set the

RF frequency to δ/2π = fRF − fZS with δ the detuning.
The resulting Hamiltonian matrix is

Ĥsing =
~
2

(
δ Ω1

Ω1 −δ

)
(B20)

in the basis of single-atom spin states {|↓〉 , |↑〉}. For an

initial state |↓〉 the number of excited atoms N↑sing =

|↑〉 〈↑| is given by

N↑sing(t) =
Ω2

1

Ω2
1 + δ2

sin2

(√
Ω2

1 + δ2

2
t

)
. (B21)

The generalised singlon Rabi frequency is thus set by

Ω̃1 =
√

Ω2
1 + δ2.

For a pair, we write the Hamiltonian as

Ĥdoub =
~Ω1

2

∑
α

(
e−i2πfRFtσ̂+

α + h.c.
)

+
hfZS

2

∑
α

σ̂zα ,

(B22)
where σ̂+

α and σ̂zα are Pauli operators acting on atom
α ∈ {1, 2}. We make the same unitary transforma-

tion Ûdoub = exp(−it2π fRF

2

∑
α σ̂

z
α) yielding Ĥdoub →

Û†doubĤdoubÛdoub + i~Ûdoub
d
dt Û

†
doub. The result is

Ĥdoub = 1
2~Ω1

∑
α σ̂

x
α − 1

2~δ
∑
α σ̂

z
α. We next rewrite

the Hamiltonian in the basis of the singlet and triplet
states {|T, ↓↓〉 , |T, ↑↓〉 , |T, ↑↑〉 , |S, ↑↓〉}. The latter sin-
glet state decouples and can be dropped from the calcu-
lations. The Hamiltonian for the remaining triplet states,

including the interaction term U
(1)
p |T, ↑↑〉 〈T, ↑↑| for the

branch probed in the experiment, is

Ĥdoub =
~
2

 2δ
√

2Ω1 0√
2Ω1 0

√
2Ω1η

0
√

2Ω1η U
(1)
p /~− 2δ

 . (B23)

The basis for this model including the relative motional
excitations is {|T, ↓↓〉 |1〉rel, |T, ↑↓〉 |1〉rel, |T, ↑↑〉 |ψint〉rel},
where |ψint〉rel is the spatial wavefunction of the inter-
acting state in the relative coordinate r. We write this
basis as {|↓↓〉 , |↑↓〉 , |↑↑〉} hereafter for brevity. Note that
the single-photon Rabi frequencies in this Hamiltonian
are larger than the corresponding singlon frequency by a
factor of

√
2 due to constructive interference. The param-

eter η is the spatial wavefunction overlap in the relative
coordinate between the interacting and non-interacting
states,

η = rel〈ψint|1〉rel =

∫ ∞
0

dr r2ψ∗int(r)ψ
(nrel=1)
rel (r). (B24)

The two-photon detuning is chosen to match the in-

teraction energy U
(1)
p of the p-wave interacting state in

the BR1 branch, in order to maximise the amplitude of
the Rabi oscillations between |↓↓〉 and |↑↑〉. In this case
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(~δ = U
(1)
p /2), the spin-triplet hamiltonian becomes

Ĥdoub =
~
2

 0
√

2Ω1 0√
2Ω1 −U (1)

p /~
√

2Ω1η

0
√

2Ω1η 0

+ Const.

(B25)

When starting from |↓↓〉, the time-dependent excited

state fraction N↑doub = |↑↓〉 〈↑↓| + 2 |↑↑〉 〈↑↑| for this
Hamiltonian is given by

N↑doub(t) =
η2Ω2

1

(1 + η2)ν2

[
1− η2

η2
sin2

(ν
2
t
)

+
8ν

2ν − U (1)
p /~

sin2

(
2ν − U (1)

p /~
8

t

)
+

8ν

2ν + U
(1)
p /~

sin2

(
2ν + U

(1)
p /~

8
t

)]
,

ν =
1

2

√
(U

(1)
p /~)2 + 8(1 + η2)Ω2

1 .

(B26)

In the limit of weak single-photon Rabi coupling U
(1)
p �

~Ω1 (for positive U
(1)
p > 0) this expression simplifies to

N↑doublon(t) =
8η2

(1 + η2)2
sin2

(
2ν − U (1)

p /~
8

t

)

+O

(
~2Ω2

1

(U
(1)
p )2

)
.

(B27)

The oscillations of the pairs are characterised by a single
frequency

Ω̃2 =
2ν − U (1)

p /~
4

=

√
(U

(1)
p /~)2 + 8(1 + η2)Ω2

1 − U
(1)
p /~

4
.

(B28)

This is the pair Rabi oscillation frequency observed in the
oscillation of magnetisation. Since all quantities apart
from the wavefunction overlap η are known or measured

independently, the experimentally measured Ω̃2 directly
translates into an extracted η, which results in the ex-
perimental points shown in Fig. 3e.

The theoretical prediction obtains η by directly com-
puting a wavefunction overlap using either the pseudopo-
tential wavefunction [via Eq. (B24)] or the ab-initio wave-
functions,

η ≈
∫ ∞

0

dr r2ψ∗bb(r)ψ
(nrel=1)
rel (r). (B29)

For the ab-initio case we only use the bb channel because
it is the only spin channel with non-negligible wavefunc-
tion amplitude at long range r & aho. Other spin chan-
nels would have additional prefactors in the single-photon
coupling matrix element caused by Clebsch-Gordan co-
efficients, but their overlap with the oscillator state is
negligible (even if their overall probability is not).

Lifetime of the interacting state. The lifetime of
the pairs depends on the short range state fraction χ.

To estimate χ we use the ab-initio calculations together
with a coarse-grained approach that treats all short-range
wavefunction population, independent of spin channel,
as a lossy state fraction responsible for decay. Fig-
ure 4c shows the total wavefunction probability density
summed over all channels from the ab-initio calculation
r2|ψ(r)|2 = r2

∑
σ |ψσ(r)|2. For all magnetic field val-

ues there is a clear distinction between a short range
component with amplitude at r < aho and a long-range
component with amplitude at r & aho, with negligible
population between the two regimes. We estimate the
lossy fraction by establishing an empirical threshold,

χ =
∑
σ

∫ rshort

0

dr r2|ψσ(r)|2. (B30)

The threshold separation rshort is chosen to capture all
of the wavefunction norm of the short range part only.
A value of rshort = 325a0 captures the short-range frac-
tion for the field values and trap depths probed in the
lifetime measurements, allowing for the good agreement
with the measurements. We emphasise however that this
approach is not strongly sensitive to the particular choice
of rshort: as the threshold separation rshort is increased to
capture most of the short-range probability, the theory
prediction saturates to the solid curves shown in Figs. 4e-
f.

This coarse-grained approach treating all spin channels
σ on equal footing works well because at short range,
the spatial wavefunctions ψσ(r) have approximately the
same functional form (up to overall prefactors) since the
dipolar interactions are dominant in that regime. The
coupling of each spin channel wavefunction to the lossy
dimer state is then approximately the same. Further-
more, while the dimer state itself is not fully equivalent
to the free-space state for which the τd = 3.4 ms was
calculated in Ref. [38] due to the trap, we can still use
that lifetime because the additional energy imparted by
the trap is negligible compared to the short-range inter-
action scales.

One can also use this approach to obtain χ from the
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pseudopotential wavefunction,

χ =

∫ rshort

0

dr r2|ψint(r)|2, (B31)

which leads to the dashed curves in Figs. 4e-f showing
similar agreement for the same threshold.
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