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The non-equilibrium dynamics of domain wall initial states in a classical anisotropic Heisenberg
chain exhibits a striking coexistence of apparently linear and non-linear behaviours: the propagation
and spreading of the domain wall can be captured quantitatively by linear, i.e. non-interacting,
spin wave theory absent its usual justifications; while, simultaneously, for a wide range of easy-
plane anisotropies, emission can take place of stable topological solitons—a process and objects
intrinsically associated with interactions and non-linearities. The easy-axis domain wall only has
transient dynamics, the isotropic one broadens diffusively, while the easy-plane one yields a pair of
ballistically counter-propagating domain walls which, unusually, broaden subdiffusively, their width
scaling as t1/3.

Introduction— A prototypical setting for non-
equilibrium dynamics is an initial state with two neigh-
bouring regions in different stationary states of the same
Hamiltonian. A single sharp domain wall between dis-
tinct stationary states can move and spread, carrying
energy – and, possibly, other conserved quantities. This
type of dynamics has been studied in many contexts, in-
cluding the spin-1/2 quantum XXZ chain [1–33], other
quantum spin chains [30, 34–38], quantum field theories
[39–41], the continuum Landau-Lifshitz model of classical
spin densities [30, 42], two-dimensional quantum systems
[43, 44], and the simple exclusion process [45].

Here, we examine this setting in a classical one-
dimensional anisotropic (XXZ) Heisenberg chain. This
is, arguably, the simplest incarnation of this problem. As
we show below, it is highly tractable, and opens a comple-
mentary perspective on the much studied related prob-
lems of quantum Heisenberg chains, where signatures of
interesting phenomena such as KPZ scaling [25, 46] have
been experimentally observed [47, 48].

One surprising finding is that we can describe the do-
main wall dynamics quantitatively using linear spin wave
theory across a wide range of parameters. At the same
time, we also find emission of (possibly multiple) topolog-
ical solitons, which can only be generated by non-linear
scattering processes, and which must be stabilised by
non-linear interactions.

We find qualitatively distinct behaviour in the easy-
axis, isotropic, and easy-plane cases. Our results and set-
up are summarised in Fig. 1. For easy-plane anisotropy,
the domain wall splits into two ballistically counter-
propagating ones (Fig. 1(c)). Since the Hamiltonian is
non-integrable and intrinsically non-linear, and since the
propagating domain walls have high energy compared to
the background, they can, in principle, emit or decay
into other excitations — giving the non-equilibrium set-
up an inherent non-linear flavour. It is therefore all the
more surprising that, over the entire range of easy-plane

anisotropy ∆ ∈ [0, 1), domain walls propagate ballisti-
cally. This is reminiscent of the behaviour of quasiparti-
cles in integrable systems [14, 30, 49–59], or that of opera-
tor spreading [60–62]. For the latter, ballistic behaviour
is accompanied by diffusive broadening [60–62]. More
generally, broadening in interacting many-body systems
is typically diffusive, with exceptions usually associated
with integrability or a lack of interactions.

In sharp contrast to this expectation, we show that
the propagating domain walls broaden subdiffusively, as
∼ t1/3, in the entire easy-plane regime ∆ ∈ [0, 1). We find
that the propagation speed, profile, and t1/3 scaling can
be quantitatively obtained from linear spin wave theory.
At the same time, above a critical angle φc(∆) between
the domains separated by the propagating domain wall
(Fig. 1(b)), the linear behaviour of the propagating do-
main walls coexists with the aforementioned, inherently
non-linear feature of the emission of topological solitons.
We provide a heuristic picture for all of these processes.

At the isotropic Heisenberg point ∆ = 1, the do-
main walls can no longer propagate, and the subdiffusive
spreading gives way to a diffusive melting of the origi-
nal domain wall (Fig. 1(c)). Nor can the domain walls
propagate in the easy-axis case (∆ > 1), where the melt-
ing is fully arrested and a static soliton is approached
asymptotically (Fig. 1(c)).

The behaviour for ∆ ≥ 1 is analogous to that known
for quantum spin- 12 chains [3, 42] – a classical-quantum
analogy which is, in itself, remarkable. By contrast, the
t1/3 broadening we find over the entire range 0 ≤ ∆ < 1
appears, in the quantum spin- 12 case, only at the ∆ = 0
point [2, 9, 10, 12], being associated with the non-
interacting (free-fermion) nature of this case. The ex-
istence and emission of the solitons have, to the best
of our knowledge, not been previously observed – either
in the quantum model or in a corresponding continuum
Landau-Lifshitz model.

In the following, we provide details for these claims,
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FIG. 1. (a) Schematic of the initial conditions (3), in the xy-plane, shown for φ = π/2. (b) Boundaries between the different
dynamical regimes as a function of the anisotropy ∆ and amplitude φ. I.A and I.B are the two linear regimes (distinguished by
whether the oscillations are behind or ahead of the counter-propagating domain walls, respectively), where all of the dynamical
features are well-described by linear spin wave theory; II is the easy-plane non-linear regime, where topological solitons coexist
with the spreading domain walls. III is the easy-axis regime, with a single, static domain wall. The isotropic point ∆ = 1
corresponds to the transition between I.B and III, and is well-described by linear spin wave theory with a single, diffusively
broadening domain wall. The vertical bars denote the uncertainty in determining the transition between I.B and II from the
simulations. (c) Overview of the domain wall dynamics shown for the easy-plane ∆ = 0.3, the isotropic point ∆ = 1, and
the easy-axis ∆ = 1.2, respectively. Note the different ranges of the time axis. φ = π/2 for the easy-plane and the isotropic
case, where Sy is plotted. Sz is plotted for the easy-axis case, with φ = π. Ballistic counter-propagation is observed in the
easy-plane, diffusive melting of the original domain wall is seen at the isotropic point, whilst the easy-axis approaches a very
narrow static soliton.

and conclude with a discussion of the broader import of
this work.

Model— We consider the classical XYZ spin chain,

H = −
∑
i

(
JxS

x
i S

x
i+1 + JyS

y
i S

y
i+1 + JzS

z
i S

z
i+1

)
. (1)

where the Si ∈ S2 are classical O(3) vectors at sites i of
a chain. We assume the coupling constants Jµ ≥ 0 are
all ferromagnetic. The dynamics is given by the classical
equations of motion,

Ṡµ
i = −ϵµνλJν(S

ν
i+1 + Sν

i−1)S
λ
i , (2)

which follow from the fundamental Poisson brackets
{Sµ

i , S
ν
j } = δijϵ

µνλSλ
j .

We set Jx = Jy = 1 (which implicitly defines all units),
and 0 ≤ Jz = ∆. The XY-point ∆ = 0 corresponds to
the free-fermion limit of the quantum spin- 12 chain, but
is, in the classical case, an interacting model.

Easy-plane, ∆ < 1— We consider a sharp domain wall
in the in-plane components as the initial condition,

Si = cos(φ/2)x̂+ sgn(i) sin(φ/2)ŷ (3)

for some amplitude φ that sets the magnetisation jump
across the domain wall as illustrated in Fig. 1(a). The
O(2) isotropy implies that any choice of φ connects two
easy-plane ground states. We set the spin at i = 0 to lie
halfway between the two domains, Si=0 = x̂, to ensure
that there is some dynamical evolution, even if φ = π.

Numerically integrating the equations of motion (2)
with initial conditions (3) and open boundaries reveals
that two counter-propagating domain walls immediately
emerge from i = 0: a left-moving one connecting the (−)-
domain to the expanding x̂-domain; and a right-moving
one connecting the x̂-domain to the (+)-domain as seen
in Fig. 1(c).
The size of the x̂-domain grows linearly with time, im-

plying ballistic domain wall motion. The underlying ve-
locity c =

√
2(1−∆) does not differ measurably from the

group velocity of long-wavelength spin waves, despite the
non-linearity of the equations of motion.
To investigate the long-time dynamics of the domain

wall numerically, we switch to its co-moving frame [63].
We then find, numerically, that this easy-plane dynamics
exhibits three qualitatively distinct regimes, cf. Fig. 1(b):
two linear regimes, I.A and I.B, so-called because they
are well-described by linear spin wave theory in their
entirety; and a non-linear regime II characterised by an
instability to the emission of topological solitons.
Within the linear regime we find, in addition to the bal-

listic motion of the domain walls, a sub-diffusive spread-
ing, with their width scaling as t1/3. We demonstrate
this scaling collapse of the full domain wall profiles in
Fig. 2(a,b). In the non-linear regime we observe the emis-
sion of a soliton during domain wall propagation shown
in Fig. 2(c) which moves ballistically at a slower speed
than the domain wall. We show with a purely ballistic
scaling collapse in Fig. 2(d) that, indeed, this soliton does
not disperse.
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FIG. 2. Dynamics in the easy-plane case. Dotted lines show
spin wave predictions, where relevant. Only the left-moving
domain walls are shown. (a) Linear regime I.A (∆ = 0,
φ = π/2), showing the ballistic propagation and subdiffusive
spreading of the domain wall, with the oscillations trailing.
(b) Linear regime I.B (∆ = 0.3, φ = 3π/10), where the os-
cillations are now ahead of the domain wall. (c) Nonlinear
regime II (∆ = 0.25, φ = π/2), showing that the domain wall
decays by emitting a topological soliton, though its speed and
width-scaling are unaffected. (d) Same parameters and times
as (c), but in the co-moving frame of the soliton.

Spin-wave theory— We next demonstrate that the
spin-wave description of the easy-plane dynamics, re-
markably, captures all of the relevant features in what
we call the linear regimes, and correctly predicts velocity
and width-scaling of the domain walls even in the non-
linear regime.

We expand each spin about the x̂-domain,

Si = x̂
√
1− l2i + li, (4)

and retain only terms linear in li in the equations of
motion (which is, a priori, not controlled, as φ is large!).
The analytical solution of the resulting problem is

presented in the Suppl. Mat.[63]. The central asymp-
totic result is readily stated: at long times, the left-
moving domain wall is a function D of the variable
(j + ct)/(3αt)1/3:

Sy
j (t) ∼ sin

(φ
2

)
D
(

j + ct

(3αt)1/3

)
. (5)

The linear spin wave calculation thus correctly predicts,
asymptotically, two ballistically counter-propagating do-
main walls, each with a width scaling as w(t) ∝ t1/3. We
also observe good quantitative agreement of the spin-
wave prediction (dotted) with the profiles obtained in
the full numerical simulation (solid curves) in Fig. 2(a,b).
The integral form is different from that appearing in the
quantum free-fermion case [1, 12] but is similar to those
appearing in recent studies of caustics and catastrophes
at light-cones [64–66].
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FIG. 3. Soliton emission in the easy-plane dynamics. (a), (b)
Dependence of the soliton energy ES and soliton amplitude
φS , respectively, on the initial amplitude φ. We observe that
the amplitude of the emitted solitons is almost constant. (c),
(d) Two- and three-soliton emission, respectively, when φ >>
φS .

Soliton emission in the non-linear regime— We next
discuss the emission of topological solitons in the easy-
plane regime. As observed in Fig. 2(c, d) the moving do-
main wall can emit a stable (non-dispersing) ballistically-
propagating soliton connecting two ground states. We
find that this emission only takes place above a criti-
cal, anisotropy-dependent amplitude φc(∆), and, in par-
ticular, only in the regime 1/7 < ∆ < 1, as shown in
Fig. 1(b). The energy carried by these solitons is seen to
depend both on the anisotropy ∆ and the initial ampli-
tude of the domain wall φ. Importantly, we observe that,
at fixed ∆, the angular amplitude φS of the emitted soli-
ton (the in-plane angle between the two ground states the
soliton connects) does not depend on φ (see Fig. 3(b)),
and, in fact, is equal to the critical value φc = φS . Fi-
nally, we observe n-soliton emission if φ > (2n − 1)φS ,
as shown in Figs. 3(c) & 3(d).

To explain this phenomenology we begin with an ob-
servation on the kinematics of magnons. When ∆ < 1/7,
the spin-wave dispersion has negative curvature at small
q; this ensures that two-magnon scattering is elastic. In
contrast, inelastic scattering is possible for ∆ > 1/7, al-
lowing the dynamic instability towards soliton emission
[63]. Taking, for now, the fixed soliton amplitude as
given, we provide an energetic argument for the stability
regions. The domain wall energy depends monotonically
on its amplitude, which must, therefore, decrease if soli-
ton emission is to occur. The initial amplitude of the
domain wall is φ/2, and after the emission the new am-
plitude is |φS − φ/2|. Thus, φc = φS . This also shows
that n-soliton emission is possible if φ > (2n − 1)φS , as
observed in Figs. 3(c) & 3(d).

To explain the uniqueness of the created solitons we
propose the following heuristic model of soliton pro-
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FIG. 4. Dynamics (a) at the isotropic point, and (b) in the
easy-axis regime (∆ = 1.2). There are no propagating domain
walls in either case: the initial state spreads diffusively at the
isotropic point, whilst it approaches the static soliton in the
easy-axis case.

duction. We assume that the model supports a two-
parameter family of soliton solutions characterised by
their energy ES and amplitude φS , which determine the
other physical properties—in particular, their speed and
width. As the interactions are local, and the soliton is
observed to be created at the ballistically-moving centre
of the domain wall over an extended time, the speed of
the soliton must initially be matched to the ∆-dependent
domain wall speed so that energy can be efficiently trans-
ferred. Further, since the soliton is seeded by the do-
main wall, it must begin with zero energy. The condition
that the velocities match, combined with the restriction
to low-energy solitons ES → 0, selects a unique soliton
from the two-parameter family, with some fixed ampli-
tude φS(∆). As the dynamics proceeds, energy is trans-
ferred from the domain wall to the soliton, slowing down
the latter and leading to its separation from the domain
wall. The amplitude φS , however, is topological (the soli-
ton connects different boundary conditions), and cannot
be changed by local processes.

Easy-axis and isotropic dynamics— We briefly remark
on the domain wall dynamics at the isotropic point
(∆ = 1) and in the easy-axis case (∆ > 1).

At the isotropic point, there can be no propagating
domain walls, because all components of the magnetisa-
tion are conserved; instead, we observe that the initially
sharp domain wall spreads diffusively (Fig. 4(a)). This
can be understood within the linear spin-wave picture.
At ∆ = 1, the dispersion switches from an odd-power
expansion to the even expansion [63]

ωq = 2(1− cos(q)) ∼ q2 + ..., q ∼ 0. (6)

There are no linear (dispersionless) terms—so the centre
of the domain wall does not move—and the width is now
controlled by the quadratic, not cubic, term. Details of
the calculation are presented in [63]. The final, asymp-
totic answer can be conveniently expressed in terms of
the normalised Fresnel integrals,

Sy
j (t) ∼ sin

(φ
2

)[
C
(

j√
2πt

)
+ S

(
j√
2πt

)]
, (7)

which shows good quantitative agreement with the full
solution as seen in Fig. 4(a).
For the easy-axis, we change the initial conditions so

that the domain wall occurs in the z-components, ensur-
ing that the state has finite energy. Specifically,

Si<0 = −ẑ, Si=0 = x̂, Si>0 = +ẑ. (8)

Now, since the z-magnetisation is conserved, there can
be no propagating domain wall solutions; some dissipa-
tive spin-wave radiation escapes, before the state settles
down, in an oscillatory manner (Fig. 4(b)), to the static
soliton

Sz
j = tanh(j cosh−1(∆)). (9)

Conclusions and outlook— We have investigated the
non-equilibrium dynamics of a classical anisotropic spin
chain with a sharp domain wall as the initial conditions,
revealing a phenomenology which is both remarkably rich
—particularly in the easy-plane case, with its ballistic
propagation and subdiffusive spreading of the domain
wall, alongside the existence and emission of solitons—
and remarkably tractable, as we have shown that many
of these features can be understood within the framework
of linear spin-wave theory.
This work thus sheds some light on the question of

when, and to what extent, classical treatments can ac-
count for a priori complex quantum dynamics, by pro-
viding closely related instances of where this appears to
be (im)possible: while the ∆ ≥ 1 regimes and the XY
point (∆ = 0) appear to be entirely analogous both clas-
sically and quantum-mechanically [15, 22, 32, 33, 42], the
0 < ∆ < 1 regime is qualitatively distinct in the classi-
cal case. While reflecting some properties of the quan-
tum ∆ = 0 case [9, 10], it exhibits an entirely new phe-
nomenon of soliton emission not found in previous stud-
ies of either the S = 1/2 quantum case or the continuum
Landau-Lifshitz model.
This makes a connection to the broader question of un-

der what conditions non-linear settings – e.g. a priori be-
yond the linear response regime – may still be described
by simplified linear theories. This issue has appeared
prominently in the study of KPZ dynamics [47, 48, 59]
expected for small jumps in the initial condition, but in
fact observed for larger ones. How a description of the
‘doubly non-linear’ phenomenon of the emission of (single
or even multiple) stable solitons can co-exist with a lin-
ear description of the propagation of the emitting domain
wall is a tantalising open question for future theoretical
work.
Overall, it has become clear that spin chains, not just

quantum but also classical, host many unexplored fea-
tures. The dynamics of the classical Heisenberg spin
chain (1) is now being examined from various perspec-
tives [67–79], and is presumably good for many surprises
in future studies.
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Supplementary Material

In the Supplementary Material, we describe in more detail the numerical procedure for switching to the co-moving
frame of the ballistically propagating domain walls in the easy-plane dynamics; give an expanded account of the
spin-wave calculations for the easy-plane and isotropic domain walls; and expatiate on the kinematics of two-magnon
scattering and the implications regarding topological soliton emission.

S-I. CO-MOVING FRAME

In this section we describe the precise numerical procedure for switching to the co-moving frame of the (left-moving)
domain wall in the easy-plane, which allows us to investigate the dynamics to much longer times than could be achieved
on a fixed finite-size system.

We begin with the sharp domain wall initial conditions (3) on a finite chain of length L (with sites i ∈ [−L
2 ,

L
2 )∩Z)

and open boundaries. After a reset time tR = L/4c (i.e., the time at which the left domain wall reaches site i = −L/4,
where c is the domain wall speed), we shift the state rightward by L/4, i.e., we map Si 7→ Si−L/4, the rightmost
quarter of the state is discarded, and the leftmost quarter is reset to the (−)-domain. We store a snapshot of this
reset state, and then continue with the numerical time evolution, resetting periodically.

Clearly, resetting the state in this manner induces extra sources of error, viz., any information in the rightmost
quarter is lost, and any information which reaches the finite left-boundary will be reflected. The (approximate) locality
of the domain walls, however, ameliorates any potential problems here—since their width w ∼ t1/3 scales slowly with
time, only modest system sizes L ∼ 104 are needed to reach long times t = 106.

S-II. SPIN-WAVE CALCULATION IN THE EASY-PLANE CASE

Let us now present the spin-wave calculation for the easy-plane domain wall dynamics in more detail.
To ensure that the Fourier-modes are well-defined, we will work, as an intermediate step, with periodic boundary

conditions for a system of size L, and initial conditions

Si=0 = x̂

Si=1,...,L/2−1 = cos(φ/2)x̂+ sin(φ/2)ŷ

Si=L/2 = x̂

SL/2+1,...L−1 = cos(φ/2)x̂− sin(φ/2)ŷ. (S1)

We will take the thermodynamic limit when it is explicitly safe to do so. Now, following the usual procedure of
classical spin wave theory, we expand each spin about the x̂-domain,

Si = x̂
√
1− l2i + li, (S2)

and retain only terms linear in li in the equations of motion (2). We obtain

l̇xi = 0,

l̇yi = 2Jxl
z
i − Jz(l

z
i+1 + lzi−1),

l̇zi = −2Jxl
y
i + Jy(l

y
i+1 + lyi−1). (S3)

These equations are readily solved by Fourier transformation. Since lzq(0) = 0, we have

lyq (t) = Sy
q (t) = cos(ωqt)S

y
q (0), (S4)

where the dispersion is given by

ωq = 2
√

(1− cos q)(1−∆cos q). (S5)

The procedure now is to Fourier transform the initial conditions, apply the time-evolution to each q-mode, and
then invert the transform. After some algebra, we obtain

Sy
j (t) =

−2i

L

L−1∑
n=1,3,...

e2πinj/L cot
(nπ
L

)
cos(ωqt), (S6)
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where q = 2πn/L. We may now safely pass to the thermodynamic limit L → ∞, which yields

Sy
j (t) = −2i sin

(φ
2

)∫ π

−π

dq

4π
eiqj cos(ωqt) cot

q

2
. (S7)

To make further analytic progress, we expand the dispersion in powers of q:

ωq ∼ c|q| − α|q|3 + γ|q|5 + ..., |q| ∼ 0, (S8)

where the coefficients are given as functions of ∆ by

c =
√
2(1−∆), α =

1− 7∆

12c
, γ =

1− 62∆ +∆2

960(1−∆)c
. (S9)

Let us assume, for now, that α > 0 (i.e., 0 < ∆ < 1/7). We insert the expansion of the dispersion at this order,
and note that the modulus signs can be ignored because the cosine is even. Then, splitting the cosine to make clear
how this separates into left- and right-moving domain walls, we have

Sy
j (t) ∼ −2i sin

(φ
2

) ∑
σ=±

∫ π

−π

dq

8π
eiq(j+σct)−iσαq3t cot

q

2
. (S10)

We make the substitution

k3 = 3αq3t ⇒ q =
k

(3αt)1/3
, (S11)

whereupon the integral becomes

Sy
j (t) ∼

∑
σ=±

∫ (3αt)1/3π

−(3αt)1/3π

dk

4π
exp

(
ik

j + σct

(3αt)1/3

)[
−2i sin

(
φ
2

)
e−iσk3/3

2(3αt)1/3
cot

(
k

2(3αt)1/3

)]
. (S12)

We now consider the t → ∞ asymptotics. We send the limits of the integrals to ±∞, and use the asymptotic
equivalence

1

X
cot

(
k

X

)
∼ 1

k
, X → ∞, (S13)

which yields

Sy
j (t) ∼ sin

(φ
2

) ∑
σ=±

F−1
[fσ ]

(
j + σct

(3αt)1/3

)
, (S14)

where

F−1
[f ] (X) :=

∫
R

dk

2π
eikXf(k), fσ(k) =

−ie−iσk3/3

k
. (S15)

We note that this integral has been previously considered in the context of undular tidal bores [64], and more
generally in the context of catastrophes in waves at horizons [66], and related integrals generically describe light cones
in quenches in quantum spin chains [65, 66].

The calculation is the same for α < 0 (∆ > 1/7), except that an overall minus sign is attached to Eq. (S14), since
we have to flip over the integration limits in Eq. (S12). The functions F−1

[fσ]
can be explicitly evaluated in terms

of the generalised hypergeometric functions pFq, though the full expressions are somewhat unwieldy; it is apparent,
however, that the spin-wave calculation correctly predicts two ballistically counter-propagating domain walls which
broaden subdiffusively, and, as shown in Fig. 2 of the main text, reproduces the full profile reasonably well. The spin
wave calculation, cannot, of course, predict the emission of topological solitons, since they are intrinsically non-linear
objects.

Precisely at the point ∆ = 1/7, the cubic term vanishes and an analogous calculation would predict that the width
should scale as t1/5. We do not observe this in the numerical simulations (which use the full equations of motion),
which may be due to non-linear interactions between the spin wave modes renormalising the dispersion.
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S-III. SPIN-WAVE CALCULATION AT THE ISOTROPIC POINT

The spin-wave calculation at the isotropic point proceeds with exactly the same steps (initial conditions, equations
of motion, Fourier transform, and thermodynamic limit) as the easy-plane case—up to the insertion of the dispersion
relation,

ωq = 2(1− cos(q)) ∼ q2 + ..., q ∼ 0, (S16)

into Eq. (S7). From this point, we have

Sy
j (t) = −2i sin

(φ
2

)∫ π

−π

dq

4π
eiqj cos(q2t) cot

q

2
, (S17)

and we now use the substitution

k2 = 2q2t, ⇒ q =
k

(2t)1/2
. (S18)

Together with the asymptotic relation (S13), this yields

Sy
j (t) = sin

(φ
2

)
F−1

[g]

(
j

(2t)1/2

)
, (S19)

in the notation of Eq. (S15), with

g(k) =
−2i

k
cos

(
k2

2

)
; (S20)

or, in terms of the normalised Fresnel integrals,

Sy
j (t) = sin

(φ
2

)[
C
(

j√
2πt

)
+ S

(
j√
2πt

)]
. (S21)

S-IV. MAGNON KINEMATICS

We close with some observations on the kinematics of two-magnon scattering, and the implications for soliton
emission observed numerically. We consider two-magnon scattering, since these are the lowest-order processes which
could lead to some dynamic instability.

For two magnons with momenta q1, q2, which scatter to two magnons with momenta q3, q4, conservation of
momentum implies that we may write these as:

q1 = p q2 = p′

q3 = p′ − q q4 = p+ q (S22)

for some momentum transfer q. On the other hand, energy conservation imposes a further constraint:

ωp+q + ωp′−q = ωp′ + ωp. (S23)

Let us assume that all of the magnon momenta have the same sign; for soliton formation we do not consider
back-scattering, since any scattering processes must be local, and left and right-movers quickly separate in the sharp
domain wall set-up we consider, and would therefore not contribute to the dynamical formation of a soliton.

Now, we use the fifth-order expansion of ωq,

ωq ∼ cq − αq3 + γq5. (S24)

Inserting this into Eq. (S23) yields a quartic equation for the allowed momentum transfers q in terms of p, p′, α, and
γ (the latter two being functions of ∆). There are two trivial (elastic) solutions,

q = 0, q = p′ − p, (S25)
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and two non-trivial, but potentially complex solutions,

q =
p′ − p

2
±

√
5
√
12αγ − 5γ2 (3p2 + 2pp′ + 3p′2)

10γ
. (S26)

However, since we are assuming that p, p′ have the same sign, these inelastic solutions are never real for ∆ < 1/7,
where α > 0, γ < 0. For ∆ > 1/7 (α < 0, γ < 0), however, there is a range of momenta for which inelastic scattering
is possible, given by the condition

12

5

|α|
|γ|

> 3p2 + 2pp′ + 3p′2. (S27)

We conjecture that the fact that two-magnon scattering is always elastic for ∆ < 1/7 explains why regime I.A
(cf. Fig. 1(b)) is never observed to emit solitons, for any initial domain wall amplitude φ, since the main dynamical
processes that would manifest such an instability are forbidden.
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