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Abstract: Labs in which unmanned composite aircraft are produced by Oklahoma State
University currently lack the capability to adequately analyze wing structural designs
computationally. This is especially true regarding the design of the main composite wing
spar. Within these labs, utilization of SolidWorks for modeling and CFD analysis of
designs to be built is commonplace. It would be advantageous to capitalize on this
familiarity with SolidWorks to extend pre-prototype analysis capabilities by utilizing the
SolidWorks FEA package to analyze wing spars designed for both graduate level and
undergraduate capstone projects. Proof of good correlation between experimental 3-Point
Bending testing and FEA results for these composite spars would allow for further pre-
prototype structural refinement, thus reducing the man hours and material costs
associated with the prototyping phase. To this end, this research endeavor seeks to
determine the feasibility of various Finite Element Modeling techniques through direct
comparison of FEA results with both experimentation and existing Beam Theory
methods. Initial baseline testing of isotropic aluminum beams established the proper
procedures for boundary and loading condition application as well as for model meshing.
Results from these baseline tests further established that SolidWorks FEA is capable of
predicting deflection, bending stress, and shear stress to within ~16%, ~8%, and ~13% on
average, respectively. Main testing of the composite I-beams revealed that both fully
orthotropic FEA models and existing Beam Theory models struggled to correctly predict
experimental deflection of the I-beams, with percent errors of ~81% and ~89%,
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solution at an average error of ~8% with experimentation. Prediction of bending and
shear stresses with this idealizing method were consistent with the performance of
existing Beam Theory analysis tools.
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CHAPTER |

INTRODUCTION

At Oklahoma State University, development and testing of a wide variety of Unmanned
Aerial Systems (UAS) constitute a major portion of the research focus for multiple Aerospace
Engineering professors as well as undergraduate and graduate level students. In particular, the
research lab operated by Dr. Arena specializes in design, fabrication, integration, and flight
testing of composite UAVs which are intended for a whole host of missions. In addition, this lab
also provides undergraduate seniors in Aerospace Engineering a unigue opportunity to participate
in a hands-on design contract competition for their final semester capstone project. As part of this
capstone, two teams are provided with a statement of work detailing the design requirements for
that year. They are then given only a few months to develop a feasible design as well as produce
working prototypes for competition with other entries at the annual Speedfest event. Just as is the
case for these seniors, many contracts taken on by the graduate students have stringent timetables
and budgets with which to produce and deliver a functioning airframe. In either case, working
efficiently and effectively is a necessity.

To this end, considerable effort has been made towards shortening the pre-prototyping phase
for these aircraft. This effort has yielded positive results for many of the initial design analysis
requirements associated with development of a UAS platform. As an example, the areas of

vehicle propulsion and aircraft aerodynamics have at their disposal a combination of quite



effective analysis tools that greatly expedite pre-prototype iteration of proposed designs. In the
case of the latter, aerodynamics and stability and control analysis tools developed by Dr. Arena
greatly assist in rapid development of a working design. Moreover, finalized designs can be
further refined through the use of Computational Fluid Dynamics (CFD) simulations conducted
through SolidWorks, which has been found by the lab to produce reliable results when set up
properly.

The one area that is lacking in such an abundance of pre-prototyping analysis tools is the
design of the airframe structure. Until recently, most structural engineering for airframes
produced by this lab consisted of sizing the structure based on intuition and, if time allowed,
manufacturing a test bed with which to validate said intuition. Especially in the case of Speedfest,
there is often not enough time for the structures sub-teams to simultaneously manufacture aircraft
molds, airframes, and test articles. Therefore, these structural designs are typically first put to the
test during maiden flights. This is also the case at times for designs produced at the graduate
level. If and when the aircraft fails structurally, the typical procedure is to just add more
reinforcement so as to prevent the observed failure mode from reoccurring. Where this design
loop is most prevalent is in the proper sizing of the main wing spars, which are often times the
main load-bearing component of the entire airframe.

Within the last few years, effort has been made to better develop structural analysis capability
as it relates to these wing spars, which are typically composite 1-beams consisting of
unidirectional carbon fiber spar caps and balsa wood shear webs. Much graduate level research
has been invested in exploring the properties of these materials as well as expanding static testing
capabilities of the lab specifically for testing wing structure. Despite this, there currently exists
only one spar design analysis tool to assist in initially sizing this component to withstand
expected flight loads. While this tool has greatly aided in reducing the amount of time spent on
wing structural iteration and validation, the solutions resulting from it are still considered, at best,
reasonable approximations. As such, the “guess-and-check™ approach still prevails.
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The research presented in this thesis aims to further expand the pre-prototype structural
analysis capabilities of Dr. Arena’s research lab through the utilization of Finite Element
Modeling and Analysis (FEM/FEA). Specifically, it would be advantageous to capitalize on the
lab’s familiarity with SolidWorks, which contains an FEA package, to both design and analyze
these orthotropic composite I-beam wing spars. With this in mind, this research endeavor will
seek to validate the solving and modeling capabilities of this SolidWorks Simulation FEA
package. This will be accomplished through direct comparison of FEA results with the results of
experimentation as well as with the results from the existing spar analysis tool. Ultimately, proof
of good correlation will allow for the expansion of wing structural analysis capabilities through

the addition of SolidWorks FEA into the lab’s analysis tool repertoire.

A. Research Goals and Objectives

The overarching goal of this thesis is to characterize the modeling and solving capabilities of
the SolidWorks FEA package, especially as this relates to its ability to handle both the orthotropic
and composite nature of these I-beam wing spars. In pursuit of this goal, the following list of

objectives has been formulated:

1) Conduct an extensive review of existing literature pertaining to the following:
a. Fundamentals of Finite Element Analysis
b. Orthotropic Mechanical Properties of Carbon Fiber and Balsa Wood
c. Existing work regarding modeling of orthotropic/composite components

d. Practical methods of acquiring experimental data for comparison and validation

2) Develop proper experimental testing capabilities so that important parameters,
such as beam deflection, bending stress, and shear stress, can be obtained from

the physical beams.

3) Simulate a simplistic bending load, such as a point load, on a beam (or beams) of
simpler construction and material composition in order to establish a baseline for
the capabilities of the SolidWorks FEA package.
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4)

5)

6)

7)

a. Compare these FEA results to experimentation as well as to models
developed from theory.

b. Utilize this baseline test case to establish proper procedure for the
application of boundary conditions, loading conditions, model meshing,
and other modeling constraints and parameters as needed.

Manufacture wing spars for experimental testing, ensuring that the materials and
construction techniques utilized for these spars on the UAVs are replicated as

accurately as possible.

Explore methods of modeling the orthotropic and composite nature of these I-

beam spars to determine the best FEA modeling approach.

For the models developed as a result of Objective 5, simulate a simplistic load,
such as a point load, and compare the results with experimentation as well as

with the existing spar analysis tool.

Based on the findings in Objective 6, determine the overall feasibility of utilizing
the SolidWorks FEA package to model the behavior of these composite I-beams

effectively and reliably under load.



CHAPTER II

REVIEW OF LITERATURE

A. Fundamentals of Finite Element Analysis (FEA)

Finite Element Analysis has become an essential and effective analytical technigque across
most engineering disciplines. Aerospace and other structurally oriented industries utilize this
approach to model complex components and understand how they respond to expected applied
loads without first having to physically create and test said components. Because the purpose of
this research is to apply these Finite Element Methods to a more irregular beam composition, it is
necessary to gain a basic understanding of the inner workings of FEA. As such, the remainder of
this section provides insight into aspects of FEA, such as general calculation steps and
derivations, as well as several types of mesh element geometries and their
advantages/disadvantages.

The simple answer to how Finite Element Analysis works is that it is an analytical method
that “takes a complex region defining a continuum [and discretizes it] into simple geometric
shapes” [1]. These simpler shapes, called elements, are easier to mathematically model the effects
of an applied load than would be the case for the initial complex region that these shapes
comprise. The standard element shapes that are typically utilized for this discretization are
composed of either triangles or rectangles (known as shells for 2D analyses) and tetrahedrons
(known as solids for 3D analyses). For simplicity, only the 2D shell geometries will be discussed

in detail in the remainder of this section.



2D FEA Using TRI Shell Elements

In two dimensions, the overarching idealization of plane stress or plane strain must be applied
due to the elements not having a defined thickness. Instead, the thickness of the modeled
component at each element is factored into the calculations as a constant across that element, as
will be seen later in this section. For triangular elements, the most basic iteration is known as a
six degree-of-freedom (D.O.F.) constant strain triangle (CST). This name is earned due to the key
assumption that all strains in these elements are considered constant across each element [1], [2].
This type of element can be observed in Figure 1 below. In this figure, the element is defined by

three nodes with corresponding (x, y) coordinate pairs. At each of these nodes, there are two

T

Figure 1: 6-D.O.F. Constant Strain Triangle Element [1]

possible degrees of freedom with which the node is allowed to translate in order to deform the
element under applied load. These displacement directions are denoted by the variable g, in the
figure, where subscript ‘n’ is the D.O.F number for that displacement. The total displacement of
the element in the x and y directions, meanwhile, is denoted by the variables ‘U’ and ‘Vv’,
respectively.

The end goal is to obtain these g, D.O.F. displacements. This starts by defining a series of
piecewise functions, known as shape functions, between each node. These shape functions
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require a coordinate transformation to occur from cartesian to an intrinsic/natural coordinate
system typically defined by the variable & [1]. Between any two pairs of nodes on the element, the
shape functions are derived in such a way that at the starting value of § N = 1, and at the ending
value of & N = 0. Here N is the variable representation of the shape function, and the starting and
ending values of & correspond to the start and end nodes in the pair [1], [4]. For the constant strain
triangle, these shape functions are linear in nature and are defined as shown mathematically in
Equations 1-3 [1], [4] as well as pictorially in Figure 2, where 1 is just another natural coordinate

variable.

Ny =¢§ 1)
N, =7 (2)
Ny=1-¢—-1 3

Figure 2: Linear Shape Functions for Constant Strain Triangle Element [1]



With these shape functions, relationships between the total u and v displacements, x and y
coordinates, and the & and 1 natural coordinates can be made, resulting in the Jacobian matrix (J)
as shown below [1], [4]. In this matrix, upon taking the partial derivative with respect to the
natural coordinates, the values simply become the difference between x and y coordinate values

between two pairs of nodes on the element.

ox 9y

_ |9 a&] _ [*13 V13 _

]= ox dy _[x23 yZB],wherexij—xi—xj @
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From here, the area of the element (A¢) can be determined by calculating half of the determinant
of the Jacobian. Additionally, the element strain-displacement matrix (B) can be determined with
the determinant of the Jacobian. Both of these are shown below as they appear in [1], [4]. The last

matrix required is the material matrix (D) for the element, which has two forms depending on

det
4, =121 )

Yoz 0 y33 0 y;, O
Xz2 0 x3 0 xpy (6)
X32 Y23 X13 Y31 X21 Y12

_ 1
" det]

whether the element is modeled under plane stress or plane strain assumptions [1]. Both forms of
this matrix are shown below, with the plane stress version shown first. Since this element is two-
dimensional and under plane stress/strain assumptions, it is worth noting that the only stresses

and strains calculable are in the x, y, and xy directions. This explains why this material matrix is

only a 3 x 3in size.

1 v 0
__Elv 1 o0
D=, o Y]
1—v v 0
- E | v 1—-v 0
D= (1+v)(1-2v) 1-v (8)



Through application of the total strain energy of the element, which is itself derived from the
application of total potential energy for the element, the stiffness matrix of this constant strain
triangle element (ke) as well as the final matrix equation needed to solve for the displacements
(Q) can be determined [1]. Since this element has six degrees of freedom, the resulting stiffness
matrix will be a 6 x 6 matrix wherein rows and columns 1 — 6 correspond directly to degrees of
freedom 1 — 6. Additionally, as mentioned earlier in this section, the constant elemental thickness
(te) is also utilized in the calculation of this stiffness matrix in order to make up for the fact that
the element is not three-dimensional. The stiffness matrix equation and FEA displacement
equation are shown below [1]. In the displacement equation, the force matrix (F) is simply a6 x 1

k., =t,A.B"DB 9)

Q = inv(ke) *F (10)
matrix that contains the applied force components that act on each D.O.F. of the element.
Importantly, the displacements can be solved only if the boundary conditions on the element are
properly accounted for within the matrices in Equation 10. There are several methods of
appropriately accounting for these boundary conditions at the element nodes, with one of the
simpler approaches being elimination of the rows and columns corresponding to a D.O.F. where a
boundary condition exists from the k. and F matrices (implying that the deflection g, for that
D.O.F. is zero or some known quantity) [1], [2], [4].

Having solved for the displacements, the strains and stresses acting on this triangular shell
element can then be found. Equation 11 shows the formulation necessary to find elemental strains
while Equation 12 shows the calculation required for elemental stresses [1], [4]. In the strain
equation, the distinction between the Q and g displacement matrices is that the g matrix

gx
€=14% } = Bq (11)
Yxy

Ox
0’={0-y = De = DBq (12)



re-includes those known deflections at the boundary condition degrees of freedom. Additionally,
expanding the above process to multiple connected elements, all one has to do is determine the
stiffness matrix for each element. At common nodes shared between elements, the D.O.F. number
assignments are the same. Therefore, the full stiffness matrix is a combination of all elemental

stiffness matrices, with elemental stiffnesses summed together at common D.O.F. points.

2D FEA Using QUAD Shell Elements

Rectangular shell elements have their nodal displacements solved in a fashion similar to the
constant strain triangle. However, there are some more complexities that must be accounted for.
The simplest form of the rectangular shell element to model is the eight-D.O.F. QUAD element.
This element, being a quadrilateral, has one more node than the triangular elements (thus the
reason for the additional degrees of freedom), and it is defined with a fixed horizontal length ‘a’
and height/width of ‘b’ [2]. This element is shown in Figure 3 below as it is defined in both
cartesian and natural coordinate spaces. The shape functions that are formulated for this type of
element are similarly linear. Since there are four nodes, however, there will also be four shape
functions. Due to the fact that this element is defined with fixed dimensions, the shape functions

can easily be written using cartesian coordinates, as can be seen in Equations 13-16 [1], [2].
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Figure 3: 8-D.0.F. Rectangular Element in Cartesian (Left) [2] and Natural (Right) Coordinates [1]
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Observation of these shape functions reveals a major difference from those defined for the
constant strain triangle elements. The shape functions are no longer defined only at the nodes of
the element but rather can have a finite linear value assigned at any point between any pair of
nodes. This is the case because these QUAD elements are no longer bound by the constant
elemental strain assumption, but rather, strain varies linearly between any two nodes while also
being independent of the specified (X, y) coordinate [2]. Since strains are no longer constant
across the element, each node will have its own strain and stress solutions. Using the cartesian
form of these shape functions, the element strain-displacement matrix (B) can be directly

assembled [2].

0-) 0 M) 0 Lo d 9

I I T BRI () [
1 X y 1

S6- 160D -3 D E F 300 -3

Before nodal displacements can be calculated, the element stiffness matrix (ke) must be
assembled. The stiffness matrix equation is again derived from the application of total strain
energy on the element. Despite this, actual assembly of this matrix is made much more complex
since the strain varies linearly between nodes and is no longer constant. Instead of a
straightforward multiplication of matrices, the added step of performing integration across the
elemental area is required. After this integration is performed, the total stiffness matrix will be a
matrix of size 8 x 8 that consists of a symmetric ordering of stiffness coefficients that require only

the material Poisson ratio, Elastic Modulus, element thickness, element length, and element
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width/height to be known [2]. Equations 18-27 below show this process [1], [2]. It is worth noting
that the material matrix (D) is constant and has the same form as those shown in Equations 7 and
8 for the constant strain triangle elements. Once this stiffness matrix is assembled, the nodal
displacements of the element and the strains and stresses at each node can be determined using
the same approach as described for the constant strain triangle elements (Equations 9-12). Keep
in mind that the stress and strain equations must be used four times for each of the element nodes,
updating the x and y coordinates in the element strain-displacement matrix accordingly each time.
Additionally, the concept of summing common stiffness coefficients for common D.O.F. from
two or more elements to form the total stiffness matrix still applies.

K. = t, 6 BTDB = det] d€ dn = t, §f BTDB dx dy (18)

¢, € € Cs —05¢ —C, €, —Cs 1
C; —Cs C; —C, —05C; C5 Cg
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_ Ete (D a(1-v)
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Pros and Cons to TRI3 and QUAD4 Shell Elements

When it comes to choosing between the two above element types for meshing of the finite
element model, one finds that both have advantages and disadvantages. The obvious disadvantage
of the triangular elements is that they have a constant strain across the element due to how the
linear shape functions are defined [5]. This restriction causes these shell elements to become
stiffer, resisting deformation from an applied load more than would actually be the case [2], [3].
This problem can persist when using four-node tetrahedron elements in 3D analyses as well [5].
With this in mind, a resulting shell mesh consisting of CST elements will be much finer than a
shell mesh consisting of QUAD elements in order to get the same displacement, strain, and stress
FEA solution. The more elements in a mesh, the more computing time and power are required to
reach a solution, which is also not ideal. That being said, the advantage of triangular elements is
that they are much easier both to model and analyze, especially if one is trying to implement this
shell type into an auto-meshing routine or utilize them on a simple FEA problem [3], [5].

QUAD elements have the exact opposite attributes in that they are less stiff due to the lack of
constant strain assumptions, but they are more difficult to model and analyze. The requirement to
perform strain and stress calculations once for all four nodes creates a much more complicated
FEA solving routine that requires keeping track of each element’s nodal stresses, strains, and
displacements and then combining these appropriately across common nodes between two or
more QUAD elements. Because these elements are not as stiff as CST elements, however, a much
coarser mesh can be generated to reach the correct FEA solution, which translates to faster
computing times. Of course, some of the shortfalls among these elements can be negated by
introducing extra nodes along the element edges between the corner nodes, thereby defining the
shape functions in such a way that they are second order or higher [1] — [5]. In addition, adding
extra nodes will increase the D.O.F. of the element while also allowing it to be contorted so that it

can better conform to curved surfaces, circular edges, or other complex geometries on the part.

13



3D FEA Using TET Solid Elements

Finite Element Analysis can become even further detailed by extending the analysis bounds
to all three dimensions. Instead of objects being idealized into infinitesimally thin shell elements,
3D FEA directly accounts for the object’s thickness and volume within the model. Thus, it makes
sense, then, that the previous assumptions of Plane Stress/Strain no longer apply since there is
now the possibility of deformation, stress, and strain in all three cartesian directions. One of the
more common solid element types utilized for 3D analysis is the tetrahedral element. The
simplest form of this element consists of four nodes, each with three possible degrees of freedom,
assembled in such a way that the element looks like a triangular pyramid. Since this solid has four
nodes, similar to the 2D QUAD elements, there are similarly four shape functions that can be
defined for the natural coordinate system transformations. This element in the natural coordinate
system can be viewed below. The typical shape function variables & and 1 are again utilized.
However, the extra dimension requires a third shape function variable to be defined, C.
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Figure 4: 3D Solid Tetrahedron Element [1]

Solving finite element analysis around this element type follows similar steps as previously
discussed for the shell elements, just with an added dimension. The shape functions and their

relationships between u, v, and w displacements and X, y, and z coordinates allow for the
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generation of a 3 x 3 Jacobian matrix (J). This matrix is similar to that of Equation 4 but with
extra indices for the extra dimension and fourth node. The elemental volume can be found by
multiplying the determinant of the Jacobian by the volumetric integral of the element. Taking the
inverse of the Jacobian allows for the assembly of the element strain-displacement matrix (B),
which will be a 6 x 12 matrix [1]. The stiffness matrix (ke) can then be assembled similarly to
those equations derived for the shell elements, with the exception that the constant element
thickness, te, and element area, A, are replaced by the elemental volume [1]. The resulting
stiffness matrix for one tetrahedral solid element will be 12 x 12. The FEA displacement solution
will similarly yield 12 solutions, corresponding to each of the four nodes being allowed to deform
in three directions. When it comes to meshing these solid elements, it is best to first divide the
object into cubes and from there, sub-divide each cube into five or six tetrahedral elements, which
share common nodes at the cube’s corners [1]. This subdivision is shown in Figure 5 below for a
six-tetrahedral element cube. The same rules for assembly of the total stiffness matrix for this
combination of solid elements still applies: any common nodes shared by two or more elements

will have their corresponding stiffnesses at proper D.O.F. summed together.

Figure 5: Sub-Division of Solid Cube into Six Tetrahedral Elements [1]
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B. Carbon Fiber Material Properties

Of foremost importance to Finite Element Analysis is the understanding of how the various
materials of the modeled component behave under load. To this end, the mechanical properties
must be known for all materials in a model so that the most accurate FEA solution can be
achieved. For the Unmanned Aerial Vehicles (UAV’s) produced at Oklahoma State University’s
Design and Manufacturing Lab (DML), the wing spars on these aircraft are composed of two
primary materials: unidirectional carbon tape and balsa wood, which are combined to form a
composite I-beam structure. This I-beam structure can be observed in Figure 6, which depicts an
instructional wing structure mock-up used by the lab, and in Figure 7, which shows a wing spar
being fitted into the wing of a Speedfest capstone aircraft from 2021. The first of these two
materials will be further discussed in this current section while the latter will be addressed in the

following section.

Figure 6: Wing Structure Instructional Mock-up
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Figure 7: Composite I-beam Spar from a 2021 Speedfest Aircraft

Unidirectional Carbon Fiber Material Characterization

Fabric composites are a family of strong, flexible, and light-weight alternative materials that
can easily be formed into complex contoured shapes. These types of materials can also have their
properties specially altered for desired loading applications through the use of certain fiber
weaves, fiber materials, and ply orientation patterns. Despite the many types of composite fabrics
available on the market, the focus of this research effort is solely on the properties of
unidirectional carbon fiber tape. This material is utilized by the DML as the spar caps for the
composite I-beams constructed in the wings of most UAV’s produced by the lab, as Figures 6 and
7 have shown. This material is excellent for this role due to its ability to resist large loads in
bending as well as because it is thin and light, which are desirable characteristics for the kind of
aircraft produced by the University. Each layer of this unidirectional tape is approximately 0.005
inches thick and weighs 3.70 oz/yd? after the curing cycle [11]. For Finite Element Analysis, the
mechanical properties of this composite material are desired; however, certain aspects of
composite terminology and laminate theory must be explored and understood before these

properties can be determined.
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Composites are typically created through the combination of some woven fabric material,
such as fiberglass, carbon fiber, Kevlar, or others, with a bonding epoxy. When separated, the two
materials may not necessarily be strong or stiff enough for most applications. However, when
combined, along with the appropriate curing cycle, this material can yield remarkably strong,
flexible, and lightweight parts. It is important to understand that the mechanical properties of
composite materials are derived from this combination of both fabric and epoxy, which is
achieved through what is referred to as the Law of Mixtures [8], [9]. Figure 8 below shows this
combination of materials under a microscope while Equation 28 [8] shows an example of the Law
of Mixtures for determination of the composite’s longitudinal Elastic Modulus. In this figure and
equation, the matrix is representative of the epoxy while the fibers are the composite fabric
material. Various combinations of the fabric and epoxy properties and the area fraction of
composition for each in the composite can yield all the necessary mechanical properties, such as
Elastic Moduli, Poisson’s ratios, and Shear Moduli in all key directions. Due to these
combinations of fibers and epoxy into a laminate, composites are generally known as orthotropic
materials, meaning that the mechanical properties of the material are dissimilar across the three

possible planes of elastic symmetry [9].

Eiog = Er (-2) + En (32) (28)

Atotal

Figure 8: Unidirectional Composite Cross-Section Showing Fibers and Epoxy Matrix [6]
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The term unidirectional carbon fiber tape aptly describes this material in that the fabric fibers

run only in one direction on the tape. Accordingly, the principal material axes for unidirectional

carbon fiber are shown below. In this figure, axis one is equivalently the longitudinal axis while

axes two and three are equivalently the transverse axes. Regardless of the material orientation on

the part, these principal axes remain fixed with the shown composite orientation. The resulting

mechanical properties in these principal directions for the particular unidirectional carbon fiber

utilized by the DML can be pulled from manufacturer-provided datasheets and are summarized in

Table 1. Missing from this table are both the properties in the third axis direction as well as any
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Figure 9: Principal Material Axes for Unidirectional Carbon Fiber [6]

Table 1: Unidirectional Carbon Fiber Properties [10], [11]

Unidirectional Carbon Fiber
Mechanical Properties
E, 19580 ksi
E, 1450 ksi
Gy 725 ksi
va | o [

Oyt 1,1 218 ksi

Oyt c,1 174 ksi

Oyt 1,2 7 ksi

Oyt ¢,z 36 ksi

Tuk, 12 10 ksi
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information on the yield limits of the composite. The former is missing due to assumptions of
transverse isotropy and plane stress on this material. Due to the uniformity of the carbon fiber,
with the fibers all running the same direction, transverse isotropy applies since both principal
directions two and three act perpendicular to the fibers, thereby implying that the material
properties in the two and three axis directions are the same [6]. As for the plane stress
assumption, this is valid due to the small per layer thickness of the carbon tape. Essentially, the
minimal thickness can allow for the three axis properties to be assumed negligible, which is
advantageous for further design and analysis of composite structures [6] — [9]. Finally, the lack of
yield stress information is due in large part to the fact that composites typically behave like a
hybrid between a brittle and ductile material. Under excessive load, the fibers and epoxy will
simultaneously experience elastic and plastic deformation, with the epoxy entering plastic first
due to its higher ductility [12]. Counteracting this is the fabric material, which is less ductile but
stronger. Therefore, typical signs of total yield into plasticity for composites are not readily
observable. Instead, composites typically behave similarly until the ultimate stress limits are
exceeded, whereby total and abrupt failure of the composite will occur. As such, yield strength of

composites is not a commonly defined property.

Directionality of Unidirectional Carbon Fiber Laminates

As mentioned previously, composite fabrics can be manipulated in such a way as to achieve
suitable mechanical properties under specified loading conditions. This is largely achieved
through utilization of rotating successive fabric layers such that the weave of each layer is
oriented in pre-determined directions. Figure 10 provides a visual of such rotated layering. This
layering is done in order to resist expected shear, tensile, and torsional loads exerted on the
component, combinations of which a single fabric weave orientation alone may not be able to
sufficiently handle. Conventional composite fabrics typically are composed of a weave pattern in

which fibers are interwoven in two directions at 90 degrees to one another. Depending on the
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fiber volume in each direction, the properties in these directions can be similar or one direction
can be stronger than the other, which would make the fabric more suited to handle a particular
load condition under specific orientations. Despite this, producing a laminate composed of many
layers of this fabric (with each layer oriented such that the stronger fabric direction is dominate in
the directions of expected load) will result in a specially made composite material that is pre-

designed to handle loadings both on and off conventionally defined axes for the component.

Ply 1: 0°
Ply 2: 90°
Ply 3: 0°
Ply 4: 90°

Ply 5: 90°

Figure 10: Unidirectional Carbon Fiber Laminate (0° / 90° Orientation Pattern) [6]

This directionality of composite fabric materials can best be determined once the mechanical
properties in the principal axis directions, such as those listed in Table 1, are known. With these
properties defined, it is possible to determine the mechanical properties at any fabric orientation
using Basic Lamination Theory [7] — [9]. The first step required is to compute and assemble the
components of the composite’s compliance matrix. The only inputs required to conduct this
computation are those mechanical properties listed in Table 1. Once this matrix is complete, the
Si1, S12, S22, and Ss3 components are utilized in conjunction with the angle between the ply one
principal axis and the fixed x-axis to determine a polar plot of the properties at all possible
orientation angles [7] — [9]. Based on the rotation angle, the resulting lamina properties will be
projected back to the fixed coordinate system to determine the rotated lamina’s new x, y, and xy
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diagonal properties. This plot will map the change in mechanical properties of the composite as

its one principal axis is rotated away from the global x-axis direction. Equations 29 — 36 [7], [9]

show the process required to develop these polar plot equations for a lamina. It is worth noting

here that there is a distinction between a lamina and a laminate. A lamina is a singular layer of

composite fabric material (otherwise known as a ply) while a laminate is the resulting composite,

which is composed of multiple laminae [9]. The equations shown below are applicable only for a

singular lamina. Mechanical properties for common ply orientation angles, those being 0, £45,

and 90-degrees, can easily be determined using these equations. The properties of unidirectional

carbon at these angles are tabulated in Table 2 below. In addition, Figures 11 and 12 show the full

Elastic and Shear Moduli polar plots for unidirectional carbon.

Su=g
S12 = —%2
S22 =4
S33 =5

E, = [S;1c05*(8) + (S33 + 25;1,)c0s%(8)sin?(8) + S,,sin*(8)]71

E, = [S115in*(0) + (S33 + 2515)cos*(8)sin*(6) + Sycos*(0)]

Gry = [2(2511 + 2S5 — 415 — S33)cos?(0)sin? () + Saz(sin*(0) + cos*(9))]

Vay = Ex[=S12(sin*(0) + cos*(0)) — (S11 + S22 — S33)cos?(0)sin?(6)]

Table 2: Mechanical Properties for Unidirectional Carbon Tape at Common Ply Angles

Rotated Unidirectional Carbon Mechancial Properties
0° +45° -45° 90° Units

E 19580 1315 1915 1450 ksi
E, 1450 1915 1915 19580 ksi
Gyy 725 1350 1350 725 ksi
Viy 0.320 0.32 0.32 0.02 -

(29)

(30)

(1)

(32)
(33)
(34)
(35)

(36)
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Figure 11: Polar Plot of Ex and E, Elastic Moduli for Rotated Unidirectional Carbon Lamina

{+) Ply Angle {-) Ply Angle

+ x-axis
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+ y-axis

Figure 12: Polar Plot of Gy, Shear Modulus for Rotated Unidirectional Carbon Lamina
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Finding the resulting composite laminate mechanical properties requires more calculations to
be performed as well as a predetermined laminae stack and orientation sequence. While the
details of these calculations will not be explored in full (see [7], [9]), knowledge of the general
process follows. First, the transformed stiffness matrix Q must be computed for each lamina layer
in the laminate. This matrix is derived from the inverse of the S compliance matrix previously
discussed and is transformed by the ply angle similarly to that shown in Equations 33 — 36. A
resulting force/moment matrix can then be compiled that will allow for the transformation of
measured strains and curvatures on the laminate into Ny, Ny, and Nyy tractions as well as My, My,
and M,y moments. To assemble this matrix, A, B, and D component matrices must be compiled
through a process of summing individual lamina Q matrices multiplied by a function that

accounts for the distance of each lamina from the laminate’s cross-sectional centerline. From this
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Figure 13: Constitutive Relationship for a Composite Laminate [7], [9]

force/moment matrix (see Figure 13), the A matrix portion can be utilized to find the resulting
laminate mechanical properties, which are an average of the mechanical properties of each rotated
lamina within the composite [9]. If all laminae within the laminate are oriented to the same ply
angle, the resulting laminate mechanical properties will be the same as a single lamina within the
stack. Since the unidirectional carbon spar caps manufactured at the DML are all composed of
laminae at the same ply orientation, the mechanical properties shown in Table 2 and Figures 11-

12 can therefore be extend to the resulting unidirectional laminate as a whole.
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C. Balsa Wood Material Properties

The second material incorporated in these composite I-beam spars is balsa wood.
Characterization of balsa wood material properties and behavior under load has been the subject
of both past and ongoing research at the DML under Dr. Andy Arena, with the goal of better
understanding the material as it applies to its structural application on aircraft produced by the lab
[13]. Particularly, balsa wood is used on the composite I-beam spars as the shear web between the
unidirectional carbon tape spar caps. Just as the carbon fiber tape is utilized for its tensile and
compressive strength (making it suitable for use as spar caps on an I-beam), balsa wood is
similarly utilized for its shear properties (making it suitable for use as the shear web material on
an I-beam). Additionally, as was the case for the discussion of carbon fiber, it is necessary to gain
an understanding of balsa wood as a material before its mechanical properties can be

characterized.

Balsa Wood Material Characterization

Wood is another material that is orthotropic in its composition. However, the organic nature
of this material lends its orthotropy to be unique compared to fabricated materials. This is due in
large part to the cellular makeup of the material, which is specifically tailored to support the
needs of the tree from both a sustainment and structural standpoint. In particular, balsa wood is
made up of a microstructure containing three main cellular structures: tracheids, vessels, and rays
[14]. Tracheids are long cylindrically shaped structures oriented axially within balsa wood and
are typically 600 um in length with a hexagonal cross-section of 30-40 um in diameter [14].
These cellular structures are primarily utilized to support the weight of the balsa tree. Similarly,
vessels are cellular structures oriented axially within the wood and are otherwise known as sap
channels. They are typically the larger structure within the material at a diameter of 150-250 pum
[14]. Despite this, their primary function is to assist in the transfer of vital fluids vertically from

the roots to the rest of the tree. Rays, however, are structures that are oriented radially within the

25



wood. These structures are ~30 um in length by 20-50 um in diameter and are primarily utilized
to store carbohydrates within the wood, facilitate transfer of fluids from the sap channels radially,
as well as provide increased radial structural support for the tree [13], [14]. Overall, a typical
balsa wood specimen has a composition of 80-90% tracheids, 8-15% rays, and 2-5% vessels by

volume [14]. Figure 14 displays this microstructure within balsa wood.

Sap Channels

Figure 14: Microstructure of Balsa Wood [14]
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The tracheids can further be described as the grain of the wood. When wood is harvested, the
resulting lumber is cut such that the lengthwise direction of the lumber is parallel to the wood
grain (see Figure 15) [15]. This is advantageous for wood utilized in construction or load-bearing
roles since the tracheids are the primary load-bearing component within the wood. Balsa wood
also possesses a trait that helps to determine the desired grain orientation relative to an applied
loading. Balsa is much easier to cut or otherwise pull apart parallel to the grain than it is to do so
perpendicular to the grain. In the context of applied bending loads on a composite I-beam spar,
where balsa comprises the shear web, it is especially important to properly orient the grain
direction so as to account for this fact since shear is the primary loading of concern for this
material. In bending, when a load is applied vertically to an object, the resulting shear loading is
applied horizontally across the component. With this in mind, orienting the balsa wood so that the
grain direction is parallel to the applied load (known as cross-grain or end-grain balsa) will yield
higher shear strength properties [13]. Therefore, higher bending loads can be achieved on these
composite I-beams before the end-grain balsa experiences the required shear load to shear the
wood perpendicular to the grain in the spanwise direction. On the other hand, orienting the balsa
so that the grain is perpendicular to the applied load (known as with-grain balsa) will yield lower
shear strength properties due to the grain running parallel to the applied shear load in the beam
[13]. As a result, the material will more easily shear apart along the grain in the spanwise

direction at lower bending loads, which is not desirable.
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Figure 15: Principal Axes for Balsa Wood [14], [15]
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Balsa Wood Properties

Being an orthotropic material, balsa wood has different mechanical properties depending on
the material principal axis. Similar to the unidirectional carbon fiber tape, this is because the
microstructure in the wood is directionally oriented. Since the tracheids are the main structural
component in balsa wood and they grow in the longitudinal direction, the expectation is that the
material would have higher stiffness as well as higher stress limits in this direction. The rays also
provide some structural support in balsa wood, though not as much as the tracheids. One would
therefore expect that the radial axis would have the second highest stiffness and stress limits out
of the three material axes.

Despite these expectations, it is more difficult to characterize balsa wood’s mechanical
properties due to the varying inhomogeneity of the material. This lack of uniformity in material
composition best exhibits itself in the form of varying density [13] — [16]. Due to the organic
nature of the material, no one balsa sample will have the same microstructural composition, and
the resulting wood density will depend on the varied volumetric percentage of tracheids, rays, and
sap channels [13] - [16]. Extensive research into this topic has shown that this varied density has
a direct impact on the mechanical properties of the material, an example of which Figure 16

shows. Further still, past research by colleagues at Oklahoma State University has found that the
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Figure 16: Dependence of Radial Elastic Modulus on Balsa Wood Density [14]
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mechanical properties of balsa wood are also dependent on the thickness of the sample (see
Figure 17) [13]. The trend identified here is that as the balsa sample gets thicker, the shear stress
limit drops. Admittedly, the trend identified in Figure 17 was the result of a small sample size in
terms of balsa density classification (mostly light and extra light) [13]. More extensive
investigation of balsa properties for a larger range of densities in [57] concluded that this
dependence on thickness only occurs at and above densities classified as ‘heavy’ (> 14 1b/ft?).
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Figure 17: Dependence of With-Grain Ultimate Shear Strength on Balsa Thickness [13]

Even though this dependence on density causes the properties of balsa wood to vary,
sufficient research has been conducted on the material to gain a reliable average of the Elastic and
Shear Moduli as well as the Poisson ratios in all axes (see Table 3) [15], [16]. The first quantity to
know for balsa wood is the Elastic Modulus in bending. Once this is known, the longitudinal
Elastic Modulus can be determined by computing 110% of the Bending Elastic Modulus. From
there, the remaining moduli can be determined through a series of ratios between the longitudinal
modulus and the modulus of interest [15], [16]. These ratios are also shown in Table 3.
Unfortunately, the stress limits for balsa wood, especially in tension and for cross-grain, are not

as well understood. However, the most important properties for the purposes of this research, are
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Table 3: Balsa Wood Moduli Ratios and Average Mechanical Properties [15], [16]

Balsa Wood Avg. Balsa Wood Avg. Balsa Wood
Moduli Ratios Elastic and Shear Moduli Poisson Ratios
E, / Egeng | 110.00% Eeenging | 493.13 ksi VT 0.49
E./E | 1.50% E, 542.44 ksi Ve 0.23
E./E | 4.60% E; 8.14 ksi Ver 0.67
G /E | 5.40% Ex 24.95 ksi Vo, 0.01
G /E | 3.70% G 20.07 ksi Vg, 0.02
Ggr [E | 0.50% Gr 29.29 ksi Vg 0.23
Ggr 2.71 ksi

the cross-grain shear strength and the ultimate tensile and compressive strengths of the material
since these are the limits of interest in bending. Research at the DML has indicated that cross-
grain ultimate shear strength can vary anywhere from 230 psi to 430 psi (on a range of 4 — 10
Ib/ft3), depending on density [13]. The average cross-grain shear strength from this dataset is
~323 psi. As for tensile and compressive strengths, neither is well nor fully defined. The
exception is the compressive strength parallel to the grain, which is 2,161 psi [13], [15], [16]. The
most well-defined limit, however, is the average Rupture Modulus for balsa wood — 3,132.8 psi
[13], [15], [16]. This modulus relates the dimensions of the sample to the maximum bending
force that can be applied to it before failure occurs. As such, this limit will assist in determining

the proper bending load to apply to the I-beams in order to avoid a balsa wood failure.

D. Previous Work on Composite Beam Analytical Modeling

Due to the specialized nature of the I-beam spars produced at Oklahoma State University,
finding pre-existing research or studies into the efficacy of modeling such composite beams using
FEA proved to be difficult. In fact, no previous studies matching this present research endeavor
were found. Despite this, some academic works which focused on modeling other types of
composite beams in bending using FEA techniques were found to be closely related enough to the
present research focus to be worth mentioning. Lastly, it is worth noting that none of the findings

presented in this section utilized SolidWorks as the Finite Element Modeling and Analysis
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software. Instead, programs such as Abaqus were utilized, and based on the literature found that
utilized FEA modeling, such programs appear to be the preferred standard. With this in mind, it is
likely that the results and modeling techniques used in these studies will not completely translate
to SolidWorks, especially since Abaqus is an FEA specialized program that may have more

functionality for these analyses than SolidWorks.

Composite Reinforced Timber I-Beams

The focus of this research out of Australia was to investigate the bending behavior of
lightweight composite timber I-beams being utilized for building construction as well as how
certain reinforcement methods improved their load-bearing capacity [17]. As part of this
investigation, an experimental component and an analytical component using Abagus FEA were
employed. The unmodified I-beams, as acquired from the manufacturer, consisted of laminated
veneer lumber caps and a shear web composed of oriented strand board [17]. Several
reinforcement techniques were devised, ranging from wrapping the timber beams in carbon fiber
to applying angled shear web stiffeners (see Figure 18). Acquisition of the desired experimental
data for these modified beams utilized a large 3-point bending apparatus called the Meccano
testing machine, which simulates a simply supported beam with two roller supports and one

applied load acting on the beam. It can be viewed in Figure 19.

Figure 18: Composite Timber I-beam Reinforcement Techniques [17]
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Figure 19: Meccano Hydraulic 3-Point Bending Apparatus [17]

All timber beams from this study were loaded until failure using the Meccano 3-point bender.
The main parameters tracked for each beam were the deflection versus the applied load on the
beam. The primary mode of failure for each beam varied slightly depending on the reinforcement
technique; however, all failures consistently occurred in and around the shear webs [17]. With
this in mind, the resulting Abaqus FEA models were primarily focused on tracking the deflection
versus the applied load as well as the stress distributions in the shear webs. These models were
developed using solid 8-node block elements (C3D8R) from the Abaqus element library [17]. An
example of the resulting FEM solution is shown in Figure 20. Overall, these results correlated

well to the failure modes observed from the experimental testing, with a computed difference of

Figure 20: Abaqus Results for SDV15 Damage Index and Sy, Stress Tensor [17]
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11% between experimental data and the FEA solutions [17]. In addition, comparison of the load
versus displacement data between these FEA models and the experimental data yielded similarly
well-correlated results. Admittedly, some of the FEM solutions deviate from what was actually
measured, especially as the load approached the failure limit (see Figure 21). Despite this, the

general trend in the load versus displacement as well as the load at which failure occurred

remained quite similar.
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Figure 21: Abaqus FEA Solutions versus Corresponding Experimental Measurements [17]

This study into the bearing capacity of various structurally modified timber I-beams is
relevant to this present research endeavor for two primary reasons. The first is that this study
utilized an experimental loading technique to validate the FEA results that is simple to set up,
easily repeatable, and readily available at the DML. Secondly, this study demonstrated that it is
possible to generate reliable FEA models of multi-material composite I-beams as long as the
proper meshing techniques and boundary conditions are applied. As such, some of the FEM

techniques discussed in this study may become useful when developing the SolidWorks models.
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Multilayer Composite Beams in Bending

Similar research from Poland has also attempted to further explore and understand the
behavior of multilayered laminated composite beams for use in building construction via the use
of finite element models and analysis. The goal of their research was ultimately to provide a
viable FEA model with which civil and mechanical engineers could utilize to apply standard
design procedures for such beam compositions [18]. As part of this study, three types of
laminated beams were tested and modeled. The first beam was composed of two panels of PA-38
aluminum bonded together with a 0.5 mm thick layer of Sika®PSM polyurethane resin [18]. This
beam was aptly named the ‘3-layer aluminum beam’. The other two beams were considered 5-
layer beams. One was composed of two outer spruce wood panels with the fibers oriented
lengthwise along the beam bonded to a middle layer of glued wooden panels with fibers oriented
transversely [18]. The other beam was composed of three bonded layers of general plywood [18].
The layers of the two 5-layer beams were bonded using Sika®PS and Sika®PST adhesive,
respectively [18]. Unfortunately, no pictures of the beams themselves were provided.

The experimental setup consisted of two separate tests, one used for the 3-layer beam and the
other used for the 5-layer beams. For the aluminum beam, a similar approach to the Meccano
apparatus was utilized. The three-point bending for this beam similarly involved two simple
supports restricting vertical displacement and one applied load between these supports. Resulting
displacements both vertically and horizontally were measured at the indicated positions in the

diagram shown in Figure 22, where all dimensions listed are in millimeters. As for the 5-layer
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Figure 22: 3-Layer Aluminum Laminated Beam 3-Point Bending Setup [18]
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Figure 23: 5-Layer Composite Timber Beam 4-Point Bending Setup [18]

beams, a four-point bending test was devised with the same general setup as the three-point test
applied. However, the beam is loaded at two locations between the supports, with each load
approximating half of the total load applied to the beam. This setup is shown in Figure 23. It is
unclear why different experimental bending techniques were utilized as no justification for it is
provided in the documentation.

All FEA models were again developed using Abaqus, with the preferred solid mesh element
this time being hexahedral brick elements [18]. An example of the resulting model for the 5-layer
spruce beam is shown in Figure 24. Likewise, the resulting comparison between FEM, theory,
and experiment for the vertical deflection of the 3-layer beam are shown in Figure 25. Of key
interest from these results is how well not only the FEM solution matched experimental data but
also how well the theoretical predictions matched. Similar to the results from the previous sub-
section, this again demonstrates that it is possible to accurately model such complex composition

beams using FEA techniques as long as proper meshing and boundary conditions are applied.

OD8: CLT.odb Abaqus/Standard 3DEXPERIENCE R2019x

Step: Step-1
P A Increment 1: Step Time = 1.000

Figure 24: Abaqus FEA Model for 1/4 Length of Spruce 5-Layer Beam [18]
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Figure 25: Deflection Solutions Derived from Theory and FEA Compared to Experimental Data [18]

Further still, the FEA models not only accounted for the properties of the panels but also the
properties of the bonding adhesive between each panel [18]. This shows that as long as the
adhesive layer thickness and properties are known, its impact on the beam can be properly
accounted for using FEA. Despite this, a conclusion reached from this study stated that theoretical
assumptions regarding the bond layer can remain applicable provided that the beam is slender
with thin bond layers [18]. This could be interpreted to mean that the bond layers can be ignored
if they are thin enough, and the only parameter to track at the bond line is the resulting shear
relative to the ultimate shear load rating for the adhesive. These findings regarding bond line FEA

modeling will be considered when developing the SolidWorks models.

E. Experimental Stress Measurement and Instrumentation

One of the better methods for validating finite element models is to compare the FEM
solution to actual experimental data. While theoretical approximations may come close,
experimental results will provide the de facto benchmark with which all FEA configurations must
match since experimental testing will not fall victim to underlying assumptions as theory does.
With this in mind, the most effective measurement tools for stress analysis are strain gages. These

instruments allow for strain measurements to be taken straight from the surface of a loaded
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component and, depending on gage orientation, the strain due to load in virtually any direction on
that component can be obtained. Because strain gages are such effective tools for FEA validation,
the remainder of this section will focus on what strain gages are and how they can be used for

bending loads.

Strain Gage Basics

Strain gages are especially sensitive instruments that can record changes in resistance due to
loading on a component, which can then be transformed into the equivalent strain experienced by
the gage. These instruments consist of a thin wafer backing known as the carrier [19]. On the
carrier is a metallic grid pattern composed of either fine wire or, equivalently, a thin metallic foil
[19]. The start and end of this metallic grid terminates at copper solder pads, which is the point
where lead wires can be attached to the gage for signal output to an appropriate data acquisition
device. On the fringes of the carrier, markings to assist with alignment of the gage can be found.
There are usually at least four triangles/arrows at 90-degrees from each other, and sometimes
there are four rectangular tick marks also situated perpendicular to each other but rotated 45-
degrees from the triangular markings. A basic linear strain gage can be viewed in Figure 26,
which shows the above-mentioned components and aligning marks. In Figure 26, the rounded

triangles in the corners of the gage are not part of the alignment marking system.

Carrier Test specimen

Metallic grid pattern Leads

Figure 26: Linear Strain Gage Main Components (Left) [19] and Actual Example (Right) [20]
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As mentioned previously, strain gages work by detecting changes in resistance due to an
applied load on the component to which the gage is bonded. In much the same way that wire
resistance is proportional to the length of the wire, changes in the metallic grid length due to
stretching or compressing of the surface it is bonded to will change the overall resistance of the
gage itself. Typically, these grid pattern length changes are small, and the best method of
detecting this miniscule change in resistance is through the utilization of a Wheatstone bridge. A
Wheatstone bridge consists of four bridge arms, each with a resistor. Half of the bridge requires
two of the arms to be connected in series, which is then connected in parallel with the other half
of the bridge containing the other two arms, also connected in series [21]. The start and end
junctions of the parallel wiring connection for this bridge are connected to a common power
supply. Likewise, between the arms connected in series is the junction utilized to measure the
resulting output voltage from the bridge [21]. See Figure 27 for a pictorial reference for a general

Wheatstone bridge as described.

Figure 27: Basic Wheatstone Bridge Configuration [21]

This bridge formation is sensitive to slight changes in resistance across any one of the bridge
arms, and any resistance imbalance across the bridge arms in series will generate an output
voltage. The relationship between the input voltage, E, and the output voltage, e, is shown in
Equation 37 [22]. If the resistances in each pair of series bridge arms are equivalent, the

Wheatstone bridge will be balanced, and the resulting output voltage will be zero [22]. If resistor
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eo = E [ — | (37)

Vr - (eE_o)strained B (eE_o)no strain (38)
g = %IZV) [1 + ’;—Lcl] (39)

Figure 28: Three-Wire Quarter-Bridge Strain Gage to Wheatstone Bridge Hookup [21]

R1 is replaced with a three-wire linear strain gage of nominal unstrained resistance Rg, as is the
case in Figure 28, then changes in the gage resistance due to applied loads will unbalance the
Wheatstone bridge and cause a non-zero output voltage. Equations 38 and 39 show the process
required to relate this unbalanced bridge voltage to equivalent measures of strain [22]. In
Equation 39, GF refers to gage factor, which is a constant value assigned to the strain gage based
on its nominal resistance and properties of the metallic grid [19]. Likewise, Ry1 is the resistance
of the lead wire that is in series with the strain gage on the same bridge arm. Lead wire resistance
Ry is considered in series with resistor R4 and apart of R4’s bridge arm [21]. On the other hand,
lead wire resistance Rys is a voltage-sensing wire only and is not considered part of any of the
Wheatstone bridge arms [21]. It is worth noting that for significantly long lengths of lead wire, it
is important to account for the resistance of the wire itself because the large wire resistance can
effectively negate the resistance changes from the strain gage [22]. Known as lead wire
desensitization, it can cause large errors in strain measurements, especially when the lead wire

resistance exceeds 0.1% of the nominal gage resistance [22].
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Strain Gage Configurations for Beams in Bending

When it comes to experimentally measuring these strains on a loaded specimen, there are a
few options regarding the gage orientation and even the type of gage that can be used. Strain
gages can be arranged on a test specimen in one of three possible configurations: quarter-bridge,
half-bridge, and full-bridge, which correspond to the number of bridge arms in the Wheatstone
bridge that are taken up by active strain gages. An example of a quarter-bridge strain gage
connection can be viewed in Figure 28. Each of these three options has its advantages as well as
its disadvantages. In the case of the quarter-bridge, only one active strain gage is required in the
circuit; however, sensitivity to the voltage changes and compensation for strain due to thermal
changes is reduced or non-existent [23]. For half-bridges, two active strain gages are required,
which then requires more time devoted to bonding and wiring the gages to the specimen. The
upside, though, is that the overall bridge sensitivity is double that of a quarter-bridge [23].
Finally, full-bridges require the most prep time because they utilize four active strain gages,
meaning that all four bridge arm resistors in the Wheatstone bridge are replaced. Despite this
additional prep time, this configuration has the highest bridge sensitivity, which is four times the
sensitivity of a quarter-bridge [23]. Table 4 displays the necessary data, such as that discussed
above, for all gage types and desired strain measurement cases.

For the purposes of this research endeavor, there are two strains (and by extension, stresses)
that are of primary interest to compare with the finite element models: bending strain and shear
strain. In the case of acquiring bending strain, the configuration of strain gages is straightforward,
as Figure 29 shows. All gages must be bonded to the surface(s) which are perpendicular to the
applied bending load. In addition, the preferred strain gage of choice for this measurement is the
linear strain gage (such as the one shown in Figure 26). In Figure 29, the bending strain gage
orientation is restricted to the gages being bonded in the spanwise direction along the specimen.
While this is typical, the second and fourth axial strain options in Table 4 can also measure

bending strain (called a type 1 half-bridge and type 2 full-bridge, respectively) [19].
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Table 4: Strain Gage Configuration Requirements and Expected Performance Parameters [23]

POSITION  SENSITIVITY OUTPUT PER

BRIDGE OF GAGES mV/V @ pE€ @1V TEMP  SUPERIMPOSED
STRAIN TYPE FIG. C-F 1000 L € EXCITATION COMP. STRAIN COMPENSATED
¥ 1 0.5 5 p.wp,e Mo None
Full All 20 20 Ve Yes Axial
% 1 0.5 5 p.wp,e Mo MNone
b4 1,2 0.65 6.5 pVpe Yes None
AXIAL % 1,3 1.0 10 pWpe No Bending
Full All 1.3 13 p.wp.e Yes Bending
% 1,2 1.0 10 Ve Yes Axial and Bending
SHEAR @ 45°F
AND . .
Full All 2.0 20 Ve Yes Axial and Bending
TORSIONAL @ 45°F

Figure D - Axial Strain

Figure F - Torslonal Strain

Figure 29: Strain Gage Orientations for Various Desired Strain Measurements [23]

Experimental measurement of shear strain in bending has more leeway in terms of possible
gage types and configurations. This type of strain can be acquired directly using linear strain

gages oriented on the side surface(s) of the specimen as shown in Figure 29. When utilizing this
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approach, the strain measured at 45-degrees is not the true shear strain, but rather only half.
Therefore, shear strain is found by multiplying the measured strain from these gages by two [23].
The alternative method for measuring shear strain is a more direct or indirect approach,
depending on personal interpretation. For this method, a type of strain gage known as a strain
rosette can be utilized, which is typically composed of two to four individual linear gage grid
patterns rotated either 90, 45, or 60-degrees apart from each other. For the purposes of this
discussion, a 45-degree, three grid rectangular strain rosette will be considered since these are
readily available at the DML. These gages are bonded in similar fashion to the side surface(s) of
the specimen, and each of the rosette grids records a corresponding principal strain (e1, €2, and €3)
[24]. As long as the principal axes of the loaded specimen and the rosette’s orientation relative to
these axes are known, the total shear strain can be found to be the vector sum of the two shear

bisectors (va and yg) between the rosette grids [24]. This fact, along with an example image of a

45-degree rosette gage, is shown in Figure 30 and is represented mathematically by Equation 40.

Ymax = \/i\/(fl — )% + (g5 — £3)? (40)

| wle

Figure 30: 45-Degree Rectangular Rosette Strain Gage [20], [24]
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CHAPTER IlI

METHODS OF VALIDATION REVIEW

A. Empirical Data Measurement

As discussed in the previous chapter, the best approach to validating a finite element model is
to directly compare the model’s predicted solution to that of actual experimentation. This section
will seek to provide an overview of all of the required testing equipment, programs, and methods
of measurement utilized to collect the data for FEM comparison. The content of this section will
not focus on the specifics of experimental testing procedures conducted. This is due to the
varying nature of tests performed using this testing setup. These details can be found in the
subsequent chapters, wherein discussion of each experiment performed for this research endeavor

occurs.

Vernier Structures and Materials Tester

The Vernier Structures and Materials Tester is a versatile platform that allows the user to
perform a variety of tests for the purposes of evaluating a structure or the behavior of a material.
One of the key uses of this platform at the DML has been to perform tensile tests on balsa
samples for the purposes of material characterization [13]. While this has been most useful for
research regarding balsa wood or other materials, the tensile test configuration for this platform is
not optimal for testing the behavior of beams subjected to bending loads. It is instead more

advantageous for the purposes of this research to utilize this tester as a three-point bending
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apparatus in much the same way that the Meccano three-point bender from the literature review
was utilized. Figure 31 below shows the assembled Vernier Structures and Materials Tester as

well as its three-point bending configuration.
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Figure 31: Vernier Structures and Materials Tester [25]

This testing platform is primarily composed of 80/20 aluminum slotted framing and comes
equipped with both a displacement and a force sensor. The displacement sensor operates by
correlating the number of revolutions completed by the hand crank displacement wheel to vertical
displacement of the threaded loading rod. This sensor is capable of taking only one displacement
measurement with this displacement being that experienced by the structure at the point of the
applied load. In addition, the tester is capable of displacing a structure up to 2.75 inches vertically
and has a measuring resolution slightly above 1/32" of an inch (this resolution corresponds to
22.5 degrees of rotation on the hand crank displacement wheel) [25]. The force sensor rests atop
the threaded load rod and has an eyelet connection for the attachment of chain links and the U-
bolt load strap. This sensor is a typical load cell that is optimized for measuring applied tensile
loading as the hand crank slowly pulls downward on the sensor and increases the tensile load in
the chain links connected to the test specimen. This force sensor has an operational limit of up to
224.8 b of applied load with a working resolution of 0.225 Ib [25]. Damage to this sensor will
occur if the applied load exceeds 292.3 Ib [25]. Both of these sensors can have their output data
directly compiled and displayed using a Vernier LabPro Data Acquisition Interface (see figure

below), which is connected to a laptop with the proper version of Logger Pro 3 installed.
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Figure 32: Vernier LabPro Data Acquisition Interface

For the purposes of three-point bending, the stock structures tester has a slide rail upon which
two crossbars are attached via bolts with t-nuts inserted in the slot on the top of the slide rail.
These crossbars are 1” x 17 in cross-section and have a length of 8.0625” (which is also the
distance between the front and rear slide rails). They act as the beam supports for the three-point
bending configuration, and they can be positioned symmetrically or asymmetrically up to 7.875
inches from the applied load via the load U-bolt [25]. Despite this, the utilization of 80/20 slotted
framing allows this testing platform to be quite modular. Therefore, it is not difficult to modify
the original platform construction such that longer beams and a larger span between the crossbhar
supports can be achieved. For the purposes of this research, such modifications were deemed

necessary and are documented in the following sub-section.

Bending Deflection Measurement

As was mentioned in the previous sub-section, the Vernier Structures and Materials Tester is
capable of capturing only one deflection measurement at the point of the applied load. This
limitation would only allow for comparison between FEA and experimental maximum deflection

values. While the maximum deflection values might match well, it is possible that properties in
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the physical beam specimen could cause the deflection curve across the beam span to vary from
that found through FEA. As a result, it was more desirable to devise a method of obtaining
deflection measurements at multiple set points along the beam length in order to capture these
possible spanwise discrepancies.

Given how cramped the tester is below the slide rails due to the sensors, hand crank
mechanism, and support structure, the best method of obtaining these multiple deflection
measurements was from above the beams. Such measurements could be taken from above at a
predetermined height above the bent beams, and this, in turn, would require the development of a
platform modification to the original tester platform structure. A survey of measuring equipment
was conducted using the following criteria: must have a high measurement fidelity, must be
reliable, must be reasonably compact, and measurements taken with the instrument should be
easily repeatable. Using these criteria, a few options presented themselves as contenders.
Ultimately, however, a depth gauge, more specifically a Fowler Electronic Depth Micrometer,
was selected as the measuring instrument most capable for the required task.

This gauge has a maximum dimension of four inches on the measurement interface and is
capable of taking depth measurements between 0-6 inches in increments of 0.00005” + 0.0001”
[26]. Due to the instrument’s compactness, this measuring capability is further divided between
six measuring rods, each capable of measuring a one-inch increment (07-17, 17-2”, etc.) [26].
This presents a downside to the use of this instrument in that if a deflection exceeds an inch (plus
the height to the reference datum), then the next highest rod increment must be installed and the
measurement taken again. Despite this, the three-point bending experiments can be designed in
such a way that the applied load does not deflect the beams beyond this threshold. Therefore, the
same measuring rod can be installed for the duration of the testing. This depth gauge can be

viewed in Figure 33 below.
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Figure 33: Fowler Electronic Depth Micrometer

With the measuring device selected, the proper modifications to the Vernier Structures and
Materials Tester were developed. Ideally, this depth gauge should straddle the gap between the
slide rails (just as the crossbar supports do) so its measuring rod can be lowered to the point of
interest on the beam’s upper surface. The reference datum platform it rests on needs to be smooth
and as level as possible to allow this gauge to be moved along the span of the beam in order to
take measurements at multiple spanwise locations. In addition, this modification must be
implemented without interfering with the tester’s sensors or the bending behavior of the beam
under load so as not to skew the experimental results. Under these requirements, the following
modification to the structures tester using 80/20 slotted aluminum depicted in Figures 34-35 was
devised and implemented. In these figures, components shaded red are original to the stock
structures tester while all other components are part of the modified addition. The decision to
replace the stock slide rails for longer ones was based purely on the desire to accommodate longer
beams and a larger separation distance of the support crossbars from the load point.

This modification to the structures tester allows the depth gauge to sit atop a level platform
with approximately a two-inch gap for the measuring rods to be extended to the beam’s surface.
In addition, this platform allows as many deflection measurements as is required along a two-foot
span of the beam, which is an improvement over the original tester’s deflection measuring
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Figure 34: CAD Rendering of Modification to Vernier Structures Tester

Figure 35: Modified Vernier Structures Tester Dimensions

capabilities. The platform itself is height adjustable but it is designed to remain within five inches
of the top face of the crossbars so that the six-inch measuring limit of the depth gauge is not
exceeded. It can be raised to a maximum of four inches above the crossbars and lowered until it
touches the upper surface of the crossbars. Utilization of half-inch slotted rails for the platform

vertical supports allows sufficient free space around most beams, thereby reducing the risk of
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interfering with the three-point bending results. Lastly, as mentioned previously, the addition of
the longer slide rails is intended to accommodate longer beams and larger crossbar support
separation. Since the load capacity of the structures tester is only 224.8 Ib, having larger support
separation will assist in achieving greater beam deflections for beams composed of
stiffer/stronger materials. Figure 36 shows an example of beam deflection being measured

utilizing this modification to the Vernier structures tester.
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Figure 36: Beam Deflection Measurement Technique Using Depth Gauge

Beam Stress Measurement

Another desired parameter to compare with FEA predictions is the bending stresses in the
beams as they are subjected to a three-point bending load. As discussed in the literature review,
the best tool for capturing stresses in a loaded object is through the use of strain gages. Similar to

how the structures tester requires a data acquisition interface for the force and displacement
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instruments, strain gages require such an interface in order to relay their strain measurements to
the user. The selected instrumentation for this requirement is the National Instruments NI cDAQ-
9185 chassis with NI1-9237 + NI1-9923 add-ons (both with DSUB pinouts). The cDAQ-9185
chassis is a modular data acquisition platform capable of supporting several types of data
measurement. Its four-slot capacity allows for support of multiple modular specialized
instrumentation add-ons [27]. The complete cDAQ chassis with the above-mentioned add-ons can

be viewed in Figure 37.

Ethernet Data
Cable to Laptop

Figure 37: NI cDAQ-9185 Chassis with NI1-9237 + NI-9923 (w/ DSUB) Strain Instrumentation

The NI-9237 add-on is an instrument that acts as the completion Wheatstone bridge for strain
gages. The DSUB pinout port on top of the NI-9237 has markings to indicate what each pin
connects to in the internal bridge. This instrument is capable of handling up to four separate strain
gage connections at once, and as such, the DSUB pinout is divided into four separate channels

(see Figure 38). These channels are denoted by a number between 0 and 3 after each pin
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description on the unit. The limitation of this completion bridge is that it is capable of internally
completing only half and full-bridge gage configurations [28]. If a quarter-bridge setup is utilized,
the strain gage must be connected in series with either a dummy resistor or additional unstrained
gage of the same nominal resistance, thus completing half of the Wheatstone bridge externally
from the unit [28]. Lastly, the power limitation for this instrument is 150 mW, meaning that the
input excitation voltage is dependent on external bridge gage resistance [28]. For example,
simultaneous measurement from four 120 Q half-bridges is limited to an EX-input of 2.5 volts
[28]. Likewise, simultaneous operation of four 350 Q full-bridges is limited to an EX-input of 3.3

volts [28].
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Figure 38: NI1-9237 Completion Bridge and Accompanying Pinout Guide [28]

The final add-on for this instrumentation is the NI1-9923 screw terminal to DSUB pinout.
Attaching this terminal to the DSUB pinout port of the NI-9237 unit allows for ease of connection
of the strain gage lead wires to the cDAQ. Each terminal has the corresponding DSUB pinout
number it is tied to which, in turn, can indicate which wire should be connected by cross-

referencing the terminal number with the pinout map from Figure 38. This screw terminal unit, as
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well as an example of lead wires connected to the fully assembled cDAQ chassis, are shown in
the following figures. This fully connected cDAQ unit, shown in Figures 37 and 40, can transmit
the measured output signal from the NI-9237 completion bridge and external strain gages to a
LabVIEW readout program to be properly compiled and displayed. This readout program will be

discussed in the following sub-section.
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Figure 40: Four Half-Bridge Strain Gage Configurations Connected to NI cDAQ-9185 Chassis

LabVIEW Strain Readout Program

In order to properly view and process the analog output signals from channels A0-A3 from
the cDAQ-9185, a LabVIEW visual instrument file (V1) had to be developed. Interfacing a VI

with a cDAQ device requires certain specific drivers to be installed in addition to the base
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LabVIEW software. Chief among these additional drivers is the NI-DAQmx series. Once
installed, these drivers allow the cDAQ instrumentation to communicate directly with VI’s
developed in LabVIEW through the addition of specialized program blocks, which will be
discussed later in this sub-section. The remainder of this sub-section focuses on the functionality
of the LabVIEW programs developed to read strain measurements taken using the cDAQ-9185.
Lastly, the base structure of the VI to be discussed draws heavily from the strain V1 tutorial
covered in [29].

The front panel of the strain readout VI developed for this research is shown in Figure 41.
This front panel contains many useful sources of data output as well as data measurement
parameters. An example of this is a plot that can simultaneously display the time history of a
measured strain signal from each of the four available cDAQ channels. As will be discussed later,
the data presented by this plot is the raw strain signal output from each channel. Below the plot
are indicator displays that take the raw strain signal from each analog channel and average it over
a set time interval as well as compute the standard deviation of the strain signal over this same
time interval. Above the plot, there are two signal measurement parameters: sampling rate and
number of samples to be taken per time interval. Trial and error upon initial development and
testing of this VI found that a sampling rate of 1000 Hz paired with 250 samples taken per time
interval produced the best output signal data free from aliasing or other prominent sources of
noise. In addition, to the right of what is shown in the figure, there is a control interface to
command the VI to write all data collected to an output file. The operation of this interface is self-
explanatory and requires that only one button be toggled either ON or OFF. There is also a STOP
button that, when pressed, will terminate the operation of the VI.

The details of how this VI operates to display data in the front panel is best understood by
examining the block diagram. The following discussion focuses on the two main sections of the
block diagram, with the first being the processing and display of the strain data read into the VI
from the cDAQ. Shown in Figure 42, this portion of the block diagram can further be sub-divided
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Figure 41: Example Front Panel Strain Data Readout (75 Ib Load in 3-Point Bending Config.)

into four main components. The first component, denoted by the red numerical indicator in the
figure, is the specialized program block mentioned previously, which is known as the ‘DAQ
Assistant’ block. Adding this block and then double clicking it when the cDAQ is powered and
connected will then open the interface window shown in Figure 43. This is the main window
through which control over the cDAQ from LabVIEW occurs. There are a few steps omitted
regarding the initial setup and pairing of this block with the cDAQ. However, [29] does an
excellent job of explaining these steps. Within this interface, the user can toggle between all four

analog channels from the cDAQ and update the proper strain gage parameter based on gage type
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Figure 42: Strain Data Processing and Display Portion of VI Block Diagram
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Figure 43: DAQ Assistant Block Main Interface Window
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and configuration connected to each respective channel. These fields include the gage factor,
gage resistance, Vex voltage, strain configuration, and lead resistance. All other fields should
display as shown in Figure 43 (initial voltage will vary, however). Once this data is properly
entered, clicking the ‘Device’ tab and then the ‘Strain Calibration’ button will allow the user to
zero the strain signal measured from the gages. This process is also well covered by [29]. Once
all channels are updated and calibrated, clicking the ‘OK” button in the bottom right of the
interface window will apply these parameter settings to the remainder of the VI.

The second component of importance is an indexing array. This block takes the combined
output signal from the ‘DAQ Assistant” block and divides the data into four separate signals (one
for each analog channel from the cDAQ). This then allows the ‘standard deviation and variance’
blocks, the third component of interest, to average as well as compute the standard deviation of
the strain data for each channel. Additionally, the raw signal data is sent to a graph block, which
generates the strain data plot shown in the front panel. The resulting average strains and their
accompanying standard deviations for each analog channel are then concatenated into one signal
using a ‘merge signals’ block (the fourth component of interest). This recombined signal is then
sent to the second half of the VI.

The second half of the VI focuses on generating an output .txt file containing the mean strain
and standard deviation of this mean for each of the active analog channels from the cDAQ. The
recombined signal from the ‘merge signals’ block is subsequently passed through a series of ‘set
dynamic data attributes’ blocks. These blocks allow the user to assign meaningful titles to each
individual signal, as well as specify which signal that title is assigned to. The numbering system
for these signals starts at zero, which is counted from the first signal input at the top of the ‘merge
signals’ block. There are as many ‘set dynamic data attributes’ blocks as there are combined
signals. In this case there are four mean strain signals and four standard deviation signals, thus
requiring eight ‘set dynamic data attributes’ blocks. Once all signals have been assigned an
appropriate name, the merged signal is then passed to the ‘write to measurement file’ block.
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differences between the two.

: Write-to-File Portion of VI Block Diagram

B. Euler-Bernoulli Beam Theory
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One major difference between the VI developed in [29] and this version is that this version
allows continuous strain measurement to occur. This is accomplished by enclosing the block
diagram in a while loop structure (the gray outline in the figures). Due to this while loop, strain
measurements with this VI will only stop once the VI is terminated. Lastly, for the purposes of
this research two versions of this VI were created. The version shown in Figures 42 and 44 is
configured for normal strain due to bending while the other version handles shear strain due to

bending. Both strain readout VI’s maintain the same core bock structure, and there are only minor

In addition to experimental testing, other methods of theoretical evaluation can be utilized for
comparison to the finite element model solutions. The three-point bending configuration of the

Vernier Structures and Materials Tester can be idealized to a simply supported beam with a center




loading condition. Due to this idealization, less rigorous theoretical evaluations than FEA can be
computed on such bending configurations with reasonable success. For the purposes of this
research, the theoretical methodology utilized for an additional point of comparison with the FEA
results is Euler-Bernoulli Beam Theory. The remainder of this section will focus on the

application of this theory to the idealized simply supported three-point bending model.

Single Material Composition Beams

Before application of this theory can occur, the idealized model previously mentioned must
be defined. The Vernier Structures and Materials Tester can be simplified to the basic case of a
simply supported beam with a center load. Since this is a popular loading condition, mathematical
representations of the bending loads and displacements are well defined and readily accessible
[30]. In the case of the structures tester, the simple support model of the three-point bending
configuration can be defined as shown in Figure 45. In this figure, the 80/20 crossbars from the

structures tester are reduced to the simple triangular supports. These supports restrict the vertical

Figure 45: Idealized Beam Theory Model for Beams in Three-Point Bending Apparatus

displacement of the beam but do not hinder any lateral movement when under load. Likewise, the
load U-bolt is reduced to a simple point load, P, which acts at the center of the beam’s length.
While most three-point bending tests apply the load in the center of the beam’s length and
equidistant from the beam supports, this idealized Beam Theory model is defined such that
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asymmetrical support or load application positioning can be easily accounted for through changes
in distances a-e. Additionally, this model is designed to consider a known amount of excess beam
overhang, distances a and d, on either side of the supports. If no overhang is present,a=d =0in
the following equations.

Knowing the Beam Theory model, mathematical equations can be developed through the use
of Singularity Functions to define the shear force, bending moment, deflection, bending stress,
and transverse shear stress distribution across the beam’s length [30]. These functions operate by
dividing the beam into specified sections, with transitions between consecutive sections occurring
at locations of applied loads or reaction forces imparted by the supports. In the case of this model,
there are four unique sections: segment a, segment b, segment ¢, and segment d. The
corresponding Singularity Functions that define the shear force, bending moment, and bending
deflection across each of these segments (including calculation of necessary constants) are
defined in Equations 41-46 below. In this model, x is positive from left to right with the origin
located at the left end of the beam. These functions work by requiring any term in the angled
brackets to be positive and greater than zero. Therefore, the x distance must be greater than the
constant value subtracted from it for that term to contribute. Lastly, each equation from 42-44 is
an integral of the previous equation, with the equation of the beam curvature (the integral of the

bending moment equation) omitted.

Ry == Ry =" (41)

V(x) = Ri{x —a)® — P(x — e)° + Ry(x — g)° (42)

M(x) = Ry{x — a)! — P(x — e)! + Ry(x — g)* (43)

(0 = 5|2 r —a) —£(x =€) + 2 (x = g)* + kyx + ko (44)
k= (%) [0 — o -2 g - @7 (45)

ko= (5)[E9 - -2 (g -] (46)
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The resulting bending stress and transverse shear stress can then be calculated once the
spanwise distribution of shear force and bending moment are known for the beam. For bending
stress, this idealized model assumes uniaxial loading of the beam, meaning that there is only one
applied load, and that load is applied in one specified direction. The resulting bending stress can
be calculated using Equation 47. In this equation, the bending stress is dependent on two
parameters: the spanwise bending moment distribution along the beam and the vertical distance
from the neutral axis of the beam. The neutral axis parameter will influence whether the bending
stress is zero, tensile, or compressive. Likewise, for transverse shear stress, dependency on the
spanwise shear force distribution along the beam as well as vertical distance from the neutral axis
of the beam are necessary. Under the uniaxial loading assumption and these dependencies,
transverse shear stress can be computed using Equation 48. In this equation, Q is the first moment
of the area (which accounts for the vertical position relative to the neutral axis) while w is the
width of the cross-section at the vertical position from the neutral axis. Regarding the
experimental and FEA results, it is usually standard to compare the strains instead of the stresses,
especially for more complex materials or load cases. Conversion to bending and transverse shear
strain is accomplished using the Beam Theory assumption that all materials involved are linearly
elastic. Therefore, in conjunction with the uniaxial loading assumption, the relationship between

stress and strain follows the simplified form of Hooke’s Law: ¢ = Ee and T = Gy.

M (x)*
OBend = Ijz Y (47)
V()+Q
T= ,:7 (48)

Multi-Material Composition Beams

As discussed in the previous sub-section, the model applies only to beams composed of one
singular homogenous material. In the case of the composite 1-beams utilized by the DML, this

Beam Theory model is inadequate for capturing the deflection and stresses in the beams. This
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inadequacy can be rectified through the application of the transformed area method to the beam
cross-section. This transformation method will transform the cross-section of the beam to an
equivalent representation composed of the material with the higher Elastic Modulus. This is
accomplished by modifying the less stiff material’s cross-sectional width such that the original
composite beam’s bending stiffness is preserved [31]. This modification of the beam cross-
section requires the calculation of the transformation factor, n, which is simply a ratio of the less
stiff material’s Elastic Modulus to the stiffer material’s Elastic Modulus. In the case of this

research, n is defined by Equation 49.

n= EBaisa (49)

Ecarbon

The thickness of the balsa shear web is then multiplied by this factor to transform its cross-
section to an equivalent composition of carbon fiber. From this point, utilization of the previous
sub-section’s mathematical equations is valid. The only exception is that the Elastic Modulus
utilized for the deflection calculations will be that of the carbon fiber (the stiffer material).
Additionally, the moment of inertia will be that of the transformed material beam due to the fact
that modifying the balsa shear web width by the transformation factor will modify the overall
beam moment of inertia. The resulting bending stresses computed will be for the transformed
beam. These stresses will be accurate only where carbon fiber exists on the original beam. To get
the stresses in the balsa shear web, the transformed bending stress in this region must be
multiplied by the transformation factor [31]. Shear stress will not be influenced by multi-material
beam cross-sections. Therefore, the original moment of inertia and cross-sectional dimensions

can be utilized in this calculation.

C. OSU Wing Spar Mathcad Analysis Tool
The final method of validation to be utilized for this research is the DML’s proprietary Wing

Spar Mathcad analysis tool. This tool was developed by Dr. Arena mainly to assist undergraduate
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Aerospace students participating in the annual Speedfest design/build/fly capstone, though it is
also utilized by graduate students conducting research for Dr. Arena. Currently, this spar analysis
program is the sole pre-prototype design tool available to initially size one of the more
structurally significant components of UAVs being built at the DML. Ultimately, successful
development of a method for modeling and analysis of these composite wing spars using
SolidWorks FEA would pave the way for this Wing Spar program’s eventual retirement from use.
At the very least, however, complimenting the design and analysis capabilities of this program

with a viable FEA model would serve to greatly expand the lab’s structural analysis resources.

Program Functionality and Applicability

This program operates by first requiring the user to input information regarding the proposed
wing geometry and airfoil cross-section along with an expected worse case flight condition. This
information is then passed into a vortex lattice routine which, among other parameters, computes
the expected lift distribution along the wing. The remaining information to enter into this program
is the desired spar geometrical dimensions and mechanical properties of the spar cap and shear
web materials. Following what can sometimes be a lengthy iteration process, a final composite |-
beam spar geometry can be sized for the expected flight loads of the UAV wing design. In the
structural analysis routines of this program, deflections and stresses are computed using the same
Beam Theory approach as discussed in the previous section, though this program ignores the
possibility of beam overhang beyond the supports (causing the Singularity Functions to be
slightly different). What makes this current version of the program unsuitable for 3-point bending
analysis, however, is the fact that it analyses the wing spars under a more realistic spanwise
distributed lifting load instead of a point load at the wing root. With this in mind, this version of
the Wing Spar analysis tool required modification in order to be compatible.

Fortunately, all of the necessary modifications required to make this analysis tool suitable for

3-point bending were already completed during research conducted by [13]. While a copy of this

62



modified Wing Spar program no longer exists, enough detail regarding its structure and logic was
included in this Thesis such that it was easily replicated for this research endeavor. In summary,
the portion of the program that linked the beam bending load to the calculated aerodynamic lift
distribution was removed and replaced with a user input variable for the point load at the wing
root. The Beam Theory calculations still utilize the transformed area method for dealing with
composite sections, with the only required mechanical properties being the carbon fiber E;
modulus and ultimate load limits as well as balsa wood cross-grain modulus (Er) and cross-grain
ultimate shear limit. The remaining program inputs such as beam length and cross-sectional
dimensions remained unchanged. An example of the inputs provided to this program can be

viewed in the figure below.

A
=
Y

Mcutral
Axis

SPAR GEOMETRY INPUTS:

hy = 120005 =006  Top spar cap thickness [in] (each uni-carbon layer approx. 0.005" thick)
hy = 1118 Balsa shear web height [in]

hy = 12-0.003 = 0.06 Bottom spar cap thickness [in] (each uni-carbon layer approx. 0.005" thick)

b, = 1217 Spar cap widths [in]
by, = 0.123 Balsa shear web width [in]
Epaleq = 7614 Balsa Elastic Modulus [psi] (perpindicular to grain)

ECarbon = 1000-19580.1 = 1.958 x 10'  UniCarbon Elastic Modulus [psi] (parallel to fibers)

g ¢ = 1000-17403 = 1.74 % 10’ Uni-Carbon Ult. Compressive Strength [psi]
o ¢ = 100021756 = 2176 x IDS Uni-Carbon Ult. Tensile Strength [psi]
Tt = 32320 Balsa Avg. Ult. Shear Strength [psi] (perpindicular to
grain)
Ry =-14096 Point load input [Ib]
L=20 |-Beam Length [in]
B
Ry= Support Reaction force calculation [Ib]

Figure 46: Example Wing Spar Mathcad Inputs

63



Similar to the independently developed Beam Theory analysis tool, which utilizes the
Singularity Functions from the previous section, this Wing Spar program outputs important
structural parameters such as shear and moment diagrams, beam deflection, and maximum tensile
and compressive bending stress as a function of beam length. Where this program differs in
outputs is that, instead of calculating the cross-sectional shear stress distribution in the beam, only
the maximum shear stress in the balsa shear web as well as the shear stress at the balsa-carbon
bond line are determined and output to the user. For all stress plots generated, the ultimate limits
for the materials in bending and shear are concurrently plotted in order to indicate to the user
when the design iteration is approaching failure limits. A beam status output is also generated to
provide further feedback on the beam condition and to identify the likely failure mode it will
experience. In addition, the Wing Spar program also generates cross-sectional profiles of the I-

beam geometry before and after the Area Transformation Method is applied to the beam. An
example of this output can be viewed below. In order to adequately compare the results from this
program with the Beam Theory from the previous section as well as to experimentation, the beam

length input into the Wing Spar program will be the equivalent length of the beam between the

supports.
Real Spar Cross-Section Transformed Spar Cross-Section
15 T T 15 T T
0
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Figure 47: Wing Spar Area Transformation to Equivalent Cross-Section Composed of Carbon Fiber
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CHAPTER IV

ISOTROPIC BEAM TESTING, MODELING, AND RESULTS

A. Testing and Modeling Objectives

Before moving forward with testing and modeling of the composite I-beam spars, it was first
prudent to establish a baseline test case with a simpler beam composition. Thus, this first
experiment utilized two metal test specimens (described in the following section) whose
mechanical properties allowed them to be classified as isotropic materials. These simpler beam
geometries and properties would be quite useful for establishing the capabilities and functionality
of the SolidWorks FEA solver program, especially since not much was known about its
capabilities at the outset of this research. Furthermore, this test case would also be useful in
establishing the proper experimental testing procedure regarding bending of the test specimens in
the Vernier Structures and Materials Tester in a 3-point bending configuration. The main
emphasis here would be on the correct application, arrangement, and measurement of strain gages
and the resulting strain data. The procedures for this portion of structures testing were not well
established within the DML at Oklahoma State University at the time of this writing. The results
of the SolidWorks FEA predictions compared to empirical data for these beams, whose properties
also readily allow for satisfactory prediction of deflections and stresses via Beam Theory, will
provide insight into the expected performance of this FEA program for the more complex

composite I-beams.
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The objectives and subsequent focus for testing and modeling of these isotropic metal beams

are summarized as follows:

8) Establish proper experimental testing procedure for beams in 3-point bending

configuration with an emphasis on procedures/recommendations for strain gages.

9) Explore methods to properly generate FEA models within SolidWorks, especially
as it relates to application of loading conditions, boundary conditions, and model

meshing.

10) Establish a baseline for the capabilities of the FEA solver in SolidWorks for both
2D and 3D FEA models of the isotropic metal beam test specimens so that
expectations for its solving capabilities on the composite 1-beams can be

hypothesized.

B. Beam Experimental Setup

Much of the instrumentation and equipment required to perform a 3-point bending test are
covered in Chapter 111, Section A. All documentation discussed there represents the finalized
experimental equipment and programming needs for the testing performed for this current
chapter. Not covered in Chapter 111, however, was the choice and arrangement of strain gages on
the test specimens for strain measurements as well as the specifics of both metal test specimens
utilized for this experiment. Both of these previously omitted topics are covered in detail in the
following sub-sections. The end goal for the empirical data gathered from bending these metal
beams is to compare the true beam deflections, normal strains, and transverse shear strains to
those obtained from a SolidWorks FEA model approximating the experimental testing conditions.
The following sub-sections, coupled with the discussion from Chapter 111, Section A describe
these experimental testing conditions and procedures.
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Square Beam Cross-Section

The first of the two test specimens utilized was a square cross-section Al 6061-T651 metal
beam. The supplier rated this beam to have a cross-sectional width and height of 0.75 + 0.014”
and a length of 24” (accompanied by a length tolerance listing of ‘plus’) [32]. Verifying
measurements performed on the acquired beam revealed the height and width measurements to be
outside of the stated tolerance range while the beam length specifications listed were within
tolerance. With the true dimensions of the beam known, all necessary beam cross-sectional
properties could be determined. Along with Tables 5 and 6, Figure 48 details these beam cross-
sectional properties as well as the mechanical properties for 6061-T651 aluminum (as obtained
from [33]). Apart from this beam’s isotropic mechanical properties, it was selected as a test
specimen for its simplistic cross-sectional geometry. This simple geometry would be a fitting
starting point for generating the desired SolidWorks FEA baseline.

xbar

— .

o

e R A

e \

e

o \
£

e R
e
e LAy 7 H

iy | ’,
R g gty

e ’
i 4
e ybar

g AY

///f'm/////
o L

I_IQ I I .

w L

Figure 48: Square Beam Dimensions and Cross-Sectional Properties Reference

Table 5: Square Beam Dimensions and Cross-Sectional Properties

Square Beam Dimensions and
Cross-Sectional Properties
L 24.0625 t 0.0156 in
W 0.811 + 5.00E-04 in
H 0.815 + 5.00E-04 in
Area 0.661 + | 5.75E-04 | in?
ybar 0.407 + 2.50E-04 in
xbar 0.406 t 2.50E-04 in
L, 0.037 * 7.10E-05 | in*
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Table 6: Aluminum 6061-T651 Mechanical Properties [33]

Aluminum 6061-T651
Mechanical Properties
E 10000 ksi
G 3770 ksi
v | o33 [T
Oyid. T 40 ksi
Oy, T 45 ksi
Ty, 30 ksi

The lengthwise centerlines on this beam, along the width and height faces, were marked with
a fine-point Sharpie. The same Sharpie was utilized to mark every two inches in length along the
beam for deflection measurement, with 0” starting at the left of the beam when placed in the
Vernier Structures and Materials Tester. Additionally, four locations along the length of the beam
on the upper and lower faces were marked for placement of strain gages intended for measuring
bending strain. Another location for strain gage placement was marked along the length of the
beam on the side faces for gages measuring shear strain. With the exception of the normal strain
gage at the beam length midpoint, all of these gage location markings were placed at odd
distances from the left end of the beam so as not to interfere with the deflection measurements to
be taken with the depth micrometer. Further information on the use of strain gages for this beam
is provided in the Strain Gage Configurations sub-section.

Following completion of necessary markings and bonding of strain gages in desired locations
along the length of the beam, this beam was placed in the Vernier Structures and Materials Tester
and configured for a 3-point bending test. Figures 49 and 50 display the square beam specimen as
it was tested within the Vernier Structures and Materials Tester (note the implementation of the
modified shelf assembly for beam deflection measurements as discussed in Chapter 111, Section
A). In addition, in these figures, the presented configuration shows that the strain gages attached
to the NI cDAQ-9185 are those intended for measuring bending strain for this beam. Initially, this
testing configuration lacked some of the positional markings present in Figures 49 and 50. Upon
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Figure 50: Square Beam 3-Point Bending Configuration (pt. 2)
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conducting test bending trials to prove that this 3-point bending configuration worked as
expected, it was found that the lack of these markings had an adverse effect on the collection of
deflection and strain data for the square beam due to support and/or load U-bolt misalignment.
Addition of these position markings on the structures tester, as well as ensuring that the modified
shelf assembly was as level as possible, greatly reduced the observed errors from the testing
trials, improving the quality of data collected in the process. Lastly, for this test configuration, the
modified shelf assembly was located ~2.78” above the top face of the beam under no load
conditions, necessitating the use of the 2-3” measuring rod on the Fowler Depth Micrometer.

In the experimental configuration as shown in the above figures, the necessary constants for
generation of the Beam Theory model could be determined. All of the unknown variables from
Beam Theory Equations 41-48 for this square beam were measured according to the diagram
depicted in Figure 45 (also from Chapter I11). These variables are tabulated in Table 7 below. The
applied load P was determined during testing and is the average load over time for all testing
trials conducted with this square beam. Likewise, the R; and R; reactions and ki and k; constants
were determined by simply substituting the appropriate variables for Equations 41, 42, 45 and 46

and solving.

Table 7: Square Beam 3-Point Bending Beam Theory Constants

Square Beam 3-Point Bending
Beam Theory Constants
a 2.0313 + 0.0625 in
b 10.00 + 0.0625 in
C 10.00 + 0.0625 in
d 2.0313 + 0.0625 in
e 12.0313 + 0.0625 in
g 22.0313 + 0.0625 in
P 150.09 + 0.112 Ib
R, 75.05 + 0.336 Ib
R, 75.05 + 0.336 Ib
k, -3.7526403 | + | 49.210 | Ib-in?
k, 7.622E+03 + 177.712 | Ib-in®
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I-Beam Cross-Section

The second test specimen chosen for this experiment was a thin-walled 1-beam composed of
Al 6063-T5 metal. From the supplier, this beam was rated as having beam caps of thickness 0.055
+0.008” and width 1.5 + 0.024” [34]. Additionally, the overall height of the cross-section was
listed as 2.110” (with no tolerance given) while the beam length was rated as 36” (again with a
length tolerance designation of ‘plus’) [34]. Verifying measurements were again taken on the
acquired beam, and the measurements for the wall thickness and cross-section height were within
the provided tolerance ratings. The length measurement, however, was outside of the provided
tolerance at a length of 35.875”. Knowing the true dimensions of the I-beam, all necessary beam
cross-sectional properties could be calculated in a manner similar to those calculated for the
square cross-section beam. Along with Tables 8 and 9, Figure 51 details these calculated cross-
sectional properties as well as the mechanical properties for 6063-T5 aluminum (as obtained from
[35]). This beam was chosen as a test specimen due to the I-beam cross-section. Since the
composite spars utilized by the DML are typically thin-walled I-beams, establishing a baseline for
SolidWorks FEA solutions on an isotropic thin-walled I-beam is a desirable and logical increase

in geometrical complexity compared to the square beam cross-section baseline.
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Table 8: 1-Beam Dimensions and Cross-Sectional Properties

I-Beam Dimensions and
Cross-Sectional Properties

L 35.875 t 0.0156 in
Woeap 1.485 + | 5.006-04 | in
Hocap 0.055 + | 5.006-04 | in
Wieap 1.485 + | 5.006-04 | in
Hecap 0.056 + | 5.006-04 | in
Wen 0.048 + | 5.006-04 | in
Hyeb 1.997 + | 8.66E-04| in
Hrotal 2.108 + | 5.006-04 | in
Area 0.261 + | 1.436-03 | in?
ybar 1.060 t 3.90E-03 in
xbar 0.743 * 1.88E-04 in

I, 0.205 + | 1.076-03 | in?

Table 9: Aluminum 6063-T5 Mechanical Properties [35]

Aluminum 6063-T5
Mechanical Properties
E 10000 ksi
G 3740 ksi
v 0.33 -
Oyid. T 21 ksi
Ouke_T 27 ksi
Ty 17 ksi

The lengthwise centerlines along the width and height faces were marked on this 1-beam
using a fine-point Sharpie just as was done for the square beam. Each two-inch increment along
the I-beam’s length was also similarly marked (keeping the same position convention of 0
starting at the left of the beam when in the Vernier Structures and Materials Tester). Four
locations along the beam’s length on the upper and lower faces were again identified for
placement of strain gages to measure bending strain. Another location was identified on the side
faces for strain gage placement to measure transverse shear strain. These gage locations were

again placed at odd distance increments from the left end of the beam to avoid interfering with
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deflection measurements (with the exception, again, of the gage placed at the beam’s length
midpoint). Further information regarding strain gage configurations on this I-beam can be found
in the Strain Gage Configurations sub-section.

Once the I-beam was appropriately marked and all strain gages satisfactorily bonded to the
beam at the designated locations, this beam was placed in the Vernier Structures and Materials
Tester for its 3-point bending test. Figures 52 and 53 display this I-beam specimen in the desired
3-point bending configuration within the structures tester. As was the case in Figures 49 and 50,
these figures show that the strain gages connected to the NI cDAQ-9185 are those to be utilized
for measuring bending strain. In Figure 52, the shear strain bridge configuration for this I-beam
specimen is indicated by the white circle (unfortunately obscured by the vertical 80/20 member).
This shear configuration is the same as can be observed on the square beam in Figure 49. Lastly,
for this test configuration, the modified shelf assembly was located ~1.49” above the top face of
the 1-beam under no load conditions, necessitating the use of the 1-2” measuring rod on the

Fowler Depth Micrometer.

Figure 52: I-Beam 3-Point Bending Configuration (pt. 1)
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Figure 53: I-Beam 3-Point Bending Configuration (pt. 2)

Table 10: I-Beam 3-Point Bending Beam Theory Constants

I-Beam 3-Point Bending

Beam Theory Constants
a 1.969 + 0.0625 in
b 15.969 + 0.0625 in
c 15.969 + 0.0625 in
d 1.969 + 0.0625 in
e 17.938 + 0.0625 in
g 33.906 * 0.0625 in
P 149.96 + 0.112 Ib
R, 74.98 + 0.215 Ib
R, 74.98 + 0.215 Ib
k, -9.560E+03 | + | 78.711 | Ib-in?
k, 1.882E+04 + 498.975 | Ib-in®
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Similar to the square beam, the 3-point bending Beam Theory model constants for Equations
41-48 were obtained from this testing configuration for the I-beam. Recalling again Figure 45, the
necessary constants were measured according to the diagram depicted in this figure. Table 10 has
all of these Beam Theory constants tabulated. The applied load P was again determined by taking
the average load over time for all testing trials conducted with this I-beam. Likewise, reactions R1
and R along with constants k; and k, were again determined by substituting the appropriate

variables into Equations 41, 42, 45, and 46.

Strain Gage Configurations

As can be seen in Figures 49-50 and 52-53, both test specimens were instrumented with strain
gages such that both bending strain and transverse shear strain could be measured during the 3-
point bending tests. Overall, three strain gage bridge types were utilized on both of these beams:
half-bridge type I, half-bridge type I, and a shear half bridge [19], [23]. Figure 54 shows how
these gages were arranged on both test specimens as well as each gage type, where dimensions in
parentheses are for the I-beam. From Beam Theory, the resulting bending strain curve should
resemble a pyramid, and placement of the type | and type Il half bridges along these beams was
intended to capture bending strain along the length such that the resulting data could be compared
to this expected strain trend. These bending strain gage configurations were placed as closely as
possible to each beam’s horizontal centroid location. Additionally, from Beam Theory,
everywhere along the beam length between the supports (apart from directly in line with the
applied load or the reactions) has a constant shear force applied. Therefore, the shear strain curve
along the beam height is constant in this region on these beams. Since maximum shear stress is of
primary concern for the composite 1-beams (and due to the small size of these beams), only one
shear strain gage sight was applied to each beam. This gage configuration was placed as closely
as possible to each beam’s vertical centroid location in order to best capture the maximum shear

strain experienced by the beams during bending.
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Figure 54: Strain Gage Types and Locations for Both Beam Test Specimens

Determination of the appropriate gage configurations for capturing bending strain data was
relatively straightforward. Since the spanwise direction of the beam will either stretch or
compress during pure bending (depending on vertical location relative to the centroid of the
beam), bending strain must be measured in the spanwise direction [23]. Due to this fact, the gage
grids must be oriented as shown in the upper portion of Figure 54. Because the load U-bolt is
located on the upper surface of the beams at the spanwise midpoint, the type I half-bridge was
utilized so that both gages in this configuration could be placed on the bottom surface of the
beams to avoid interference. This allowed for the maximum bending strain in the beams to be
measured. The remaining type 11 half-bridges have one strain gage on the upper surface and one
on the lower surface on each beam. For either configuration, the strain gage utilized was a Micro-
Measurements CEA-06-240UZA-120 gage [36]. In terms of bridge type, the half-bridge
configuration was chosen because the half-bridge has satisfactory bridge sensitivity while

requiring fewer gages than a full-bridge configuration [23]. This is desirable largely due to the
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fact that the beams being tested are small and, therefore, do not have much space for multiple
gages to be placed next to each other (as is also typically the case for the composite I1-beam spars
constructed at the DML). General wiring diagrams for these half-bridge configurations are found
in the Appendix, Section A. These wiring schemes were based on the half-bridge wiring diagrams
presented in [37].

Unlike the bending strain gage layout, determination of the proper shear strain gage
configuration was more tedious. In fact, determining the proper gage arrangement to measure
shear strain constituted a large portion of research and testing for this experiment. As discussed in
the literature review, there are two primary gage types used for measuring shear strain. Initially a
0°-45°-90° rectangular rosette gage was utilized for this task. A Micro-Measurements CEA-06-
120CZ-120 rosette gage was bonded to the square beam, as Figure 55 shows, and testing was
performed to ensure the gage was operating correctly. This rosette was wired in a quarter-bridge
type | configuration with each gage grid on the rosette wired to a precision dummy 120 Q
resistor. For testing of this gage, the square beam was loaded to a set load and the resulting rosette
strains were pulled from LabVIEW into Equation 40 to obtain the shear strain measured by the
gage. This measured value was then compared to the Beam Theory shear strain solution for that
location on the beam under the same loading condition. Almost immediately, this gage presented
issues. When unloaded, the two diagonal gages registered that they were reading a load of up to

10 ue different from the middle gage grid. More significant was the fact that all three grids, when

Figure 55: CEA-06-120CZ-120 Rectangular Rosette (Shear Strain Attempt #1)
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unloaded, registered a measured strain signal that would slowly oscillate between +30 pe. At first,
it appeared that this was simply noise in the instrumentation that would be less influential as the
measured strain signal grew under load. Unfortunately, this turned out not to be true. Under load,
sometimes the measured strains from the grids would not change at all from the no load condition
while other times, these strains would change, but the resulting shear strain was not even
reasonably close to Beam Theory estimates. Moreover, after unloading the beam from a test, the
rosette gage would not return to its originally calibrated no load condition but would register a
significant strain reading as if it were still under load.

Attempts at diagnosing the cause of this issue were unsuccessful. All of the grid resistances
were within acceptable tolerances for this particular rosette, and cold solder connections or
incorrect wiring connections to the dummy resistors and NI1-9237 were ruled out via continuity
checks. Further research on rosettes offered a potential cause. Technical Note 515 from Vishay
discusses that a major disadvantage of using a rosette like the one in Figure 55 is its size [38].
Essentially, if the surface the rosette is bonded to experiences a large strain gradient and that
rosette covers a considerable portion of that surface, then none of the grids on the rosette will be
measuring the same local strain field, thus contributing to large measurement errors [38]. From
Beam Theory, the shear strain curve for this square beam does experience a significant strain
gradient between the beam centroid and the upper/lower surfaces of the beam. In Figure 55, the
rosette can be observed to be covering nearly the entirety of the side face of the beam. Thus, it is
indeed plausible that the size of the rosette was the cause of the problem.

According to [38], the solution was to utilize a stacked rosette where strain gradients are
known to be large due to its smaller size as well as because the centers of all three gage grids are
stacked on top of each other to further assist in ensuring measurement of the same local strain
field. An Omega SGD-2/350-RY51 tri-axial stacked rosette was acquired and bonded to the
square beam (see Figure 56). This rosette was wired in a quarter-bridge type Il configuration,

utilizing another stacked rosette bonded to an aluminum plate as the ‘dummy’ resistor. The same
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Figure 56: SGD-2/350-RY51 Tri-Axial Stacked Rosette (Shear Strain Attempt #2)

testing performed on the rectangular rosette was repeated. Unfortunately, the same measurement
problems occurred. While the no load strain oscillations were smaller, the amplitude of oscillation
was still not approximating zero strain. Under load, however, this rosette did obtain shear strains
closer to Beam Theory estimates, but successive measurements were not consistent. Further
issues with loss of calibration also plagued this gage, with instances causing the gage to measure
shear strains approximating 10 psi when Beam Theory estimated a maximum shear stress of 3.25
psi for the applied load on the system. Checks of the gage grid resistances and wiring continuity
turned up no anomalies.

Following yet more research into alternative methods of measuring shear strain with strain
gages, technical document [23] from Omega offered a solution. Instead of using rosettes, this
document recommended using regular axial gages in a half or full-bridge configuration angled at
45° from horizontal [23]. To obtain shear strain, the strain measured from these gages must be
multiplied by two. Utilizing the same Micro-Measurements CEA-06-240UZA-120 linear gages
used to measure bending strain, a shear strain half-bridge type Il configuration was bonded to the
square beam and tested similarly to the rosettes. This configuration can be viewed in Figure 57.
This shear bridge far exceeded the performance of the rosettes. Measurements were consistently
close to Beam Theory estimates for the loading condition, and the gages never lost their

calibration nor did they experience the unloaded strain oscillations. This gage configuration was
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added to both beams for the purpose of measuring shear strain. Despite this successful
implementation of a shear strain gage configuration, measurement of shear strain in this manner
has one distinct disadvantage. As is discussed in [39], axial gages are the most sensitive to
measurement errors due to small angular misalignment of the gage when at 45° angles to a
principal axis. As will be seen later in this chapter, this sensitivity will be a significant contributor

to the overall uncertainty of the shear strain measurements on these metal beams.

Figure 57: CEA-06-240UZA-120 Shear Half-Bridge (Shear Strain Success)

Testing Methodology
This sub-section will cover the steps taken during experimentation to properly prepare the test
specimens as well as those taken to acquire the necessary data from each of the beams. In an

effort shorten the preparation side of the following procedure, some steps will refer to tutorial
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videos or other documentation that was used to accomplish the particular task. It is advisable to

view all external documentation relating to strain gages before proceeding, especially if not

experienced in strain gage use, application, or measurement techniques.

1) Using a fine-point black Sharpie, mark the following on the beams:

a.
b.
C.
d.
e.

Every 2 inches along the beam length

Each beam’s length midpoint

The xbar centerline on the top and bottom faces

The ybar centerline on the side faces

All locations and orientation markings for desired strain gage placement

2) Acquire 10 CEA-06-240UZA-120 strain gages (per beam) and the following materials:

a.

o

- ® o ©

Strain gage application tape

Loctite 496 adhesive

3-wire 24 AWG servo wire (recommended at least 20 feet per beam)
Wire strippers

Tweezers

Soldering iron and solder

3) Prep beam surface, apply strain gages, and connect servo wires according to [40] and

Section A of the Appendix.

a.
b.

Surface degreasing can be accomplished with isopropyl alcohol.

Replace catalyst bonding adhesive with Loctite 496 — apply pressure firmly with
thumb for 6 minutes before tape removal.

Draft lines can be accomplished through fine-point black Sharpie markings from
Step 1d.

Ensure no M-Prep Neutralizer residue remains on the surface — gages WILL

NOT bond if residue remains.

4) Replace the stock support rails on the Vernier Structures and Materials Tester with the

modified 80/20 shelf assembly as discussed in Chapter I11, Section A and shown earlier

in this current chapter.

a.

Ensure the shelf assembly is level and at some height between 1 and 6” above

the beam’s upper surface.
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b. Insert the appropriate measuring rod length into the Fowler Depth Micrometer.

5) Move support crossbars such that the inside face is ~2” from each end of the beam.
a. For the square beam, this should correspond approximately to the 2” and 22”
Sharpie markings.
b. For the I-beam, this should correspond approximately to the 2 and 34 Sharpie

markings.

6) Center the load U-bolt at the intersection of each beam’s length midpoint and top surface

xbar centerline.

7) Plug in the LabPro DAQ, open the LabPro 3 application, and connect to the VSMT Force
Sensor.
a. Set force units to Ib.
b. Slowly rotate crank screw until the load U-bolt is firmly seated on the top surface
of the beam but minimal load is registered in the LabPro 3 readout.

c. Once Step 7b is accomplished, zero the sensor.

8) With the NI cDAQ-9185 unplugged, do the following:
a. Connect the ethernet cable to the computer containing the LabVIEW strain gage
readout program discussed in Chapter Il1I.
b. Connect all four half-bridge strain gage configurations for bending strain to
channels A0-A3 (one per channel) of the cDAQ (see Appendix, Section A).
c. Plug in the cDAQ and open the ‘Bending Normal Strain Readout’ LabVIEW VI.

9) Open the DAQ Assistant Block, connect to the cDAQ, and enter appropriate strain gage
parameters similar to that shown in Figure 43 for each channel.
a. Calibrate each channel’s half-bridge connection by following the calibration
procedure in [29], click OK in lower right corner of the DAQ assistant window

when finished.

10) Using the Fowler Depth Micrometer, take initial undeflected depth measurements every
2” along the beam length for each 2” marking between the support crossbars.
a. For the square beam — start at 4, end at 20”.
b. For the I-beam — start at 6”, end at 30”.
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11) Run the front panel of the LabVIEW strain readout program, ensure four strain
measurements appear (set sample rate to 1000 Hz and take 250 samples per time
interval).

a. Ensure that the Write to File button is set to OFF (red) initially before running.

12) Slowly turn the crank screw until a load of 150 Ib is achieved.

a. Atthis load, record the load over time in LabPro and turn the Write to File button
to ON (green) in LabVIEW simultaneously. Allow to run for 30 seconds then
stop recording.

b. Stop running the LabVIEW front panel to successfully generate a strain data
output .txt’ file (each file should contain ~188 lines of strain data per channel).

c. Copy 30 seconds worth of load data from LabPro into an Excel file for future

reference.

13) Using the Fowler Depth Micrometer, take final deflected depth measurements every 2”
along the beam length for each 2” marking between the support crossbars.
a. For the square beam — start at 4”, end at 20”.
b. For the I-beam — start at 6”, end at 30”.
c. Overall beam deflection is determined by taking the difference between Steps 13
and 10.

14) Return the beam to its initial unloaded state and repeat Steps 10-14 two more times.

a. Once third pass is completed, return beam to initial unloaded state, and continue.

15) Unplug the NI cDAQ-9185 and do the following:
a. Disconnect the bending strain half-bridges from the cDAQ.
b. Connect the shear strain half-bridge to channel A0.

Open the ‘Shear Strain Readout” LabVIEW VI.

d. Re-plug in the NI cDAQ and repeat Step 9 for channel AO.

o

16) Repeat Steps 11 and 12 three times, returning the beam to its unloaded state between
