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Abstract: Precise site-specific nitrogen applications will reduce excess nitrogen fertilizer run-off 
and have corresponding environmental benefits. Adoption of site-specific nitrogen application 
technology has been slow, and many studies have shown that site-specific nitrogen fertilizer is 
not yet unambiguously profitable. Most U.S. Corn Belt states now recommend the Maximum 
Return to Nitrogen (MRTN) method for determining optimal nitrogen rates, which is based on 15 
years of on-farm yield response to nitrogen trials. The MRTN method provides a uniform rate 
recommendation for a region of a state. This study goes beyond the MRTN method by combining 
the MRTN data, Bayesian methods, and on-farm experimentation to provide site-specific nitrogen 
recommendations. 

On-farm trials are now being used to provide the information necessary for site-specific 
management. The issue is that recommendations from only a few years of data can be very noisy. 
Bayesian methods can combine the prior information from MRTN with data from on-farm 
experiments to provide more accurate site-specific nitrogen rate recommendations. The problem 
is that the needed models to use as Bayesian priors have not been estimated. This research fills 
this gap. Utilizing data from the Maximum Return to Nitrogen database, Bayesian estimation is 
used to estimate production functions that have a time trend to account for increased corn yields 
over time. The estimated models are then used as an informative prior for yield response 
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CHAPTER I 
 

 

INTRODUCTION 

 

1.1 Nitrogen Application Methods 

Nitrogen fertilizer is necessary to achieve high corn yields (Below, 2008). Historically, a uniform rate of 

nitrogen was applied across an entire field. The yield goal approach recommended a rate based on 

expected yields, such as 1.2 pounds of nitrogen per bushel of yield goal (Fernandez et al., 2009). This 

approach has been largely replaced by the Maximum Return to Nitrogen (MRTN) method that makes a 

single recommendation for an entire region (Nafziger, 2018). The yield goal approach has become 

outdated due to modern corn hybrids that greatly improve yields as well as nitrogen use efficiency 

(Mueller et al., 2019). Soils are not uniform within or across fields and will differ depending on soil type, 

elevation, erosion, and many other environmental factors. The differences in soil characteristics are one 

reason why variable rate applications of nitrogen fertilizer might be beneficial for producers.  

The technology to apply variable rate nitrogen is included on the newer equipment used by 

custom applicators. Without an accurate method of estimating optimal nitrogen rates, however, it is 

questionable that variable rate nitrogen application offers much value to producers. Recent research f inds 

that variable rate nitrogen is not yet unambiguously profitable (Boyer et al., 2011; Stefanini et al., 2015; 

Larson et al., 2020; Queiroz et al., 2021). The issue is the method for estimating nitrogen rates has not yet 

been able to catch up to the technology of variable rate applications. This research proposes and tests a 

method to more accurately estimate variable-rate optimal nitrogen rates. 
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MRTN recommendations are based on expected profit maximization and estimated corn yield 

response functions based on data from on-farm research (Nafziger, 2018). Illinois is split into three 

regions. A different nitrogen rate is recommended for each region. MRTN rates are not site-specific and 

therefore not beneficial for variable rate applicators (Steinke, 2022). Other studies have used on -farm 

trials as a way of acquiring information necessary for site-specific management (Bullock et al., 2020). 

The Data Intensive Farm Management (DIFM) project is a collaboration between researchers and 

producers across the globe that use on-farm experiments to base farm input management decisions 

(Bullock et al., 2019). When these on-farm trials are used with only a few years of data, they can produce 

noisy nitrogen rate recommendations. Combining the extensive MRTN dataset as a prior to be used with 

experimental on-farm data could reduce the uncertainty and improve the accuracy of optimal nitrogen rate 

estimates using on-farm experiments. 

1.2 Bayesian Methods and Production Functions 

Combining MRTN and DIFM data is a Bayesian problem. Bayesian methods can use the data 

collected on yield response as a prior to estimate more accurate nitrogen rates.  Currently, updated 

stochastic linear plateau model estimates to use as priors do not exist. The current MRTN is in a format 

that has limited usefulness as a prior. The nitrogen rate calculator only produces optimal nitrogen rates 

with no measure of uncertainty. MRTN estimations are made using different functional forms for yield 

response. Typically, a quadratic plateau model is estimated for each site year. Linear, quadratic, and 

constant functions are sometimes used when they better fit the data than the quadratic plateau. MRTN 

also does not account for time trends of corn yield response to nitrogen. The MRTN only uses the most 

recent 15 years of data to estimate regional nitrogen rates. MRTN does not include a time trend when 

estimating optimal nitrogen rates. However, using the MRTN data to estimate a stochastic linear plateau 

model with a time trend will provide the priors needed for Bayesian estimation.  
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The functional form used to estimate yield response functions can lead to very different nitrogen 

recommendations. Many models are based on von Liebig’s Law of the Minimum, which states crop yield 

is determined by the most limiting essential nutrient. For example, Grimm et al. (1987 ) found the 

historical von Liebig model, linear plateau, well represented crop response. Recent research has used 

stochastic linear plateau functions. Tembo et al. (2008) let the plateau vary stochastically from year to 

year, while Makowski and Wallach (2002) let all parameters vary. MRTN lets all parameters vary by site 

year. The more restrictive plateau model is used here as we impose that parameters vary linearly by year.  

Stochastic linear plateau production functions have been applied to wheat (Brorsen & Richter, 2012), 

winter rye (Tumusiime et al., 2011), and cotton (Brorsen, 2013). Few applications of stochastic plateau 

production functions have been used for corn yields (Lambert & Cho, 2022), and most of the research has 

been outside of major corn production areas (Boyer et al., 2013; Villacis et al., 2020). Estimating 

stochastic linear plateau models using the MRTN dataset will provide the priors needed for estimating 

optimal nitrogen rates in the U.S. Corn Belt. 

One approach that has been used to estimate spatially varying coefficient production functions is 

geographically weighted regression (GWR) (Evans et al., 2020; Trevisan et al., 2020; Lambert & Cho, 

2022). GWR is often used due to its ability to fit data well. Wheeler and Calder (2007) used a simulation 

to show that a Bayesian regression model with spatially varying coefficients provided more accurate 

parameter estimates than that of GWR. Finley (2011) also compared the two approaches and concluded 

that the Bayesian spatially varying coefficient model has a substantially smaller prediction mean square 

error. The drawback of using Bayesian methods is that they are computationally heavy and time 

consuming in comparison to GWR. Using an informative Bayesian prior can improve the accuracy and 

speed of estimation while also making inference possible that is not possible with GWR. This research 

goes beyond the previous research on estimating production functions with spatially varying coefficients 

by using an informative Bayesian prior to estimate a spatially varying plateau model. Estimates are then 

used to determine optimal nitrogen rates. 
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Bayesian methods have long been used to estimate yield response functions (Holloway & Paris, 

2002; Holloway, 2003; Ouedraogo & Brorsen, 2018; Moeltner et al., 2021). In a simulation study, 

Lawrence et al. (2015) used Bayesian methods to update the parameters each year, but did not begin with 

an informative prior. Bullock et al. (2020) stated the greatest value of the on-farm precision experiment 

came from prior information collected from two previous trials. This information helped producers more 

accurately estimate a field’s optimal uniform application rate. Franz et al. (2020) concluded that among 

spatial and temporal variables, including soil types, topography, and crop condition, the best predictor of 

crop yield was historical yield maps. This past research suggests that Bayesian methods are a promising 

way to reduce the noise in estimates when using only a few years of on-farm experimental data. 

1.3 Real-World Application 

The methods developed and demonstrated here are intended as a step forward toward designing a 

system that will be adopted by custom fertilizer applicators, such as Corteva, Bayer Crop Science, Nutrien 

Ag Solutions, and other custom applicators. More specifically, the MRTN dataset is used to estimate a 

stochastic linear plateau function that serves as a prior for a spatially varying coefficient model that uses 

on-farm experimental data to estimate nitrogen rate recommendations. 
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CHAPTER II 
 

 

DATA AND METHODS 

2.1 Maximum Return to Nitrogen 

The Maximum Return to Nitrogen method is a regional approach for estimating corn nitrogen rates for 

many Midwest states. For example, for Illinois in 2021 the method used 720 corn yield response to 

nitrogen trials from 15 years, (2006 to 2020), of data. Each year, the oldest year was removed from the 

dataset as a new year was added to maintain 15 years of data. These trials were conducted with spring 

application, sidedress application, or split between a preplant application and a sidedress application of 

nitrogen. No sites were irrigated. In Illinois, MRTN uses mostly QRP models, some quadratic models, a 

few linear response, and no-response models were estimated for each site year. QRP models are often 

used because they fit the data well. The MRTN estimations are often kept in place of the actual data. The 

MRTN approach uses a grid search procedure to determine the optimal level of nitrogen. The data used 

here includes some older data that are not currently being used by MRTN. Also, the 2010 to 2012 data 

used in the MRTN were not obtained. The data used here represents only a portion of the MRTN data. 

Note that MRTN weights each site year equally. Since more data are available from recent years, MRTN 

is not as slow to adjust to changes over time as it would be if each year had the same number of sites. 

The Maximum Return to Nitrogen data used for this research included 2,799 observations of on-

farm yield response to nitrogen experiments conducted from 1999 to 2009 and 2013 to 2021 located 

across the north, central and southern regions of Illinois. The data come from four different projects. 
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The first project was from 1999 to 2008 at seven different sites. The second project was from 2001 to 

2004 and was organized by the Illinois Department of Agriculture. The third project was composed of 

data from 2006 to 2008, with some additional trials from 2009 and was funded by a fertilizer tonnage fee 

administered by the Illinois Fertilizer Research and Education Council. The final project was from 2013 

to 2021 and was funded by a fertilizer tonnage fee administered by the Illinois Fertilizer Research and 

Education Council. All projects include corn-soybean rotations. Experiments from 70 Illinois counties out 

of 102 are in the dataset. Nitrogen rates were not consistent across locations, and six different rates per 

location were applied. Nitrogen rates ranged from 0 to 382 kilograms per hectare with an average of 147 

kilograms per hectare. Typically, 0, 50, 100, 150, 200, and 250 kilograms of nitrogen were applied,  and 

any additional nitrogen applied by the producer was added to these amounts. The yield data are treatment 

means for each site year, and all yield values were collected with a combine yield monitor, the weigh 

wagon method, or a small plot combine. 

2.2 Production Functions 

The data were used to estimate yield response functions. Both stochastic linear response plateau 

(LRP) and stochastic quadratic plateau (QRP) models were considered. The SAS procedure PROC 

MCMC was used to estimate the model with Bayesian methods and weakly informative priors. The LRP 

function assumes that corn yield increases linearly until the plateau is reached. At the plateau, nitrogen no 

longer affects the yield. The LRP model was then used as an informative prior for estimating a spatially 

varying coefficient model using on-farm experimental data. The stochastic LRP model with time varying 

parameters is 

(1)            𝑌𝑖𝑡𝑗 = min[(𝛽0 + 𝛼0𝑡) + (𝛽1 + 𝛼1𝑡)𝑁𝑖𝑡𝑗,𝑃0 + 𝛼2𝑡 + 𝑢𝑖𝑡 ] + 𝑣𝑡 +  𝛾𝑖𝑡 + 𝜀𝑖𝑡𝑗 

where 𝑌𝑖𝑡𝑗 is corn yield for the 𝑖th location for year 𝑡, 𝑗 treatment, 𝑁𝑖𝑡𝑗 is the nitrogen level, 𝛽0, 𝛼0, 𝛽1, 

𝛼1, 𝑃0, and 𝛼2 are parameters to be estimated, and 

𝑢𝑖𝑡~𝑁𝑖(0, 𝜎𝑢
2), 𝑣𝑡~𝑁𝑖(0, 𝜎𝑣

2),𝛾𝑖𝑡~𝑁(0, 𝜎𝛾
2), 𝜀𝑖𝑡𝑗~𝑁𝑖(0, 𝜎𝜀

2) with all four error terms being independent. 
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The 𝑡 is defined as 𝑡 = 𝑦𝑒𝑎𝑟 − 2010. The estimation procedure used 5,000 observations as burn in, a 

thinning rate of 20, and 20,000 simulated draws to generate each parameters’ posterior distribution . 

An adaptive blocked random walk Metropolis algorithm that uses a normal proposal distribution 

was used. Markov Chain convergence was verified by examining the ODS Graphics feature in the PROC 

MCMC statement to generate autocorrelation plots for each parameter. With a Markov Chain, each 

simulated point depends on the previous observation. If autocorrelation is high, then a larger number of 

samples are needed to explore the parameter space of the posterior distribution.  

 The priors used with the MRTN data are weakly informative priors:  

𝛽0~𝑁(147, 106), 

𝛼0~𝑁(0, 106), 

 𝛽1 ~𝑁(0.45, 106), 

𝛼1~𝑁(0, 106), 

𝑃0~𝑁(183.6, 106), 

𝛼2~𝑁(0, 106). 

The priors have large variances which means they have little influence on the posterior estimates. An 

improper inverse gamma distribution is used for variances since 𝛼 (the first parameter of the distribution) 

is less than 2. 

The stochastic quadratic model with time varying parameters was estimated similarly. Cho et al. 

(2023) shows how to impose differentiability at the join point by deriving the first order condition of the 

quadratic response plateau (QRP) model which identifies the join point as 𝑁𝑠𝑡𝑎𝑟𝑖𝑡 = −𝐶1/(2 ∙ 𝐶2). The 

stochastic QRP model is 
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(2) 𝑌𝑖𝑡𝑗 = min[(𝐶0 + 𝐶1 ∙ 𝑁𝑖𝑡𝑗 + 𝐶2 ∙ 𝑁𝑖𝑡𝑗
2 ), (𝐶0 + 𝐶1 ∙ 𝑁𝑠𝑡𝑎𝑟𝑖𝑡 + 𝐶2 ∙ 𝑁𝑠𝑡𝑎𝑟2

𝑖𝑡)] + 𝑣𝑡 + 𝛾𝑖𝑡 + 𝜀𝑖𝑡𝑗 

where 𝑌𝑖𝑡 is corn yield for the 𝑖th location for year 𝑡 for 𝑗th treatment, 𝐶0𝑡 = 𝛽0 + 𝛼0𝑡, 𝐶1𝑡 = (𝛽1 + 𝛼1𝑡), 

𝐶2𝑖𝑡 = −𝐶1/(2 ∗ 𝑁𝑠𝑡𝑎𝑟𝑖𝑡), 𝑁𝑠𝑡𝑎𝑟𝑖𝑡 = 𝑁𝑠𝑡𝑎𝑟0 + 𝛼4𝑡 + 𝑢𝑖𝑡, 𝑁𝑖𝑡𝑗 is the nitrogen level for the 𝑖th location 

for 𝑗th treatment at time 𝑡, 𝛽0, 𝛼0, 𝛽1, 𝛼1, 𝑁𝑠𝑡𝑎𝑟0, and 𝛼2 are parameters to be estimated, 

𝑢𝑖𝑡~𝑁𝑖𝑗(0, 𝜎𝑢
2), 𝑣𝑡~𝑁𝑖𝑗(0, 𝜎𝑣

2),𝛾𝑖𝑡~𝑁𝑖𝑗(0, 𝜎𝛾
2),𝜀𝑖𝑡𝑗~𝑁𝑖𝑗(0,𝜎𝜀

2) with all four error terms being 

independent, were considered. To impose differentiability in the quadratic plateau model, the left and 

right derivatives of the function at any point in the domain to be equal. The point at which 

differentiability needs to be imposed is the join point, namely 𝑁𝑠𝑡𝑎𝑟𝑖𝑡. 

The Deviance Information Criterion (DIC) is used to determine which model is a better fit for the 

data. The DIC (Spiegelhalter et al. 2002) is a model assessment tool that is useful in Bayeisan model 

selection problems where the posterior distributions of the models have been obtained by Markov Chain 

Monte Carlo (MCMC) simulation. Deviance is defined as: 

(3) 𝐷(𝜃) = -2log(𝑝(𝑦|𝜃)) + 𝐶 

where 𝑦 are the data, 𝜃 are the unknown parameters of the model, and 𝑝(𝑦|𝜃) is the likelihood function. 

𝐶 is a constant that cancels out in all calculations that compare different models and does not need to be 

known. Spiegelhalter et al. (2002) gives the deviance information formula as 

(4) DIC= 𝐷(𝜃)̅̅ ̅̅ ̅̅ ̅ + 𝑝𝐷= 𝐷(�̅�) + 2𝑝𝐷 

 where 𝐷(𝜃)̅̅ ̅̅ ̅̅  ̅is posterior mean of the deviance, 𝐷(�̅�) is the deviance evaluated at �̅�, and 𝑝𝐷 is the 

effective number of parameters. While both models being compared have the same number of parameters, 

they can have a different number of effective parameters. The lower the value, the better the model fits 

the data. 

 

https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.3/statug/statug_introbayes_sect050.htm#statug_introbayesspie_d02
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.3/statug/statug_introbayes_sect050.htm#statug_introbayesspie_d02
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2.3 Profit Maximization 

The optimal level of nitrogen is determined by maximizing expected profit. To perform the 

optimization, the SAS program PROC NLP is used. Expected profit function is: 

(5)  max
𝑁≥0

∫ 𝐸𝜋(𝑁|𝜃)𝑝(𝜃|𝑡) 𝑑𝜃  

where 𝐸𝜋(𝑁|𝜃) is expected profit given nitrogen and subject to the vectors of relevant parameters of the 

stochastic plateau, 𝐸𝜋 = (𝑝 ∙ 𝑌𝑖𝑡𝑗) − (𝑟 ∙ 𝑁𝑖𝑡𝑗) where 𝑝 is the corn price, 𝑌𝑖𝑡𝑗 is the corn yield from the 

stochastic plateau model, 𝑟 is the nitrogen price, and 𝑁𝑖𝑡𝑗 is the amount of nitrogen applied from the 

stochastic plateau model, 𝜃 = (𝐵0, 𝐵1, 𝑃0, 𝜎𝑢
2) is the vector of relevant parameters, and 𝑝(𝜃|𝑡) is the 

posterior distribution for 𝜃 given year 𝑡. Brorsen (2013) calculates expected profit as: 

(6) max𝑁≥0(
1

𝑛
) ∑ 𝐸𝜋(𝑁|�̃�𝑖

𝑛
𝑖=1 ) 

where 𝐸𝜋(𝑁|�̃�𝑖) is the expected profit subject to nitrogen given the estimated parameters. The �̃�𝑖 are the 

MCMC draws from the posterior distribution. For this research, the SAS procedure PROC NLP is used to 

determine optimal nitrogen. The PROC NLP calculates optimal nitrogen as  

(7) max𝑁𝑡≥0 𝐸𝜋 =
1

𝑛
∑ (𝑝 ∙ ((1 − 𝜑𝑘) ∙ (𝑛

𝑘=1 𝛽0𝑘 + 𝛼0𝑘𝑡 + (𝛽1𝑘 + 𝛼1𝑘𝑡) ∙  𝑁𝑡) + 𝜑𝑘 ∙ (𝑃0𝑘 + 𝛼2𝑘𝑡 −

√𝜎𝑝𝑘
2 ∙ 𝜓𝑘/max (𝜑𝑘 ,0.00001)))) − 𝑟 ∙ 𝑁𝑡 

where 𝑘 is a given draw from the posterior, 𝑝 is corn price, 𝜑𝑘= 𝜑[(𝛽0𝑘 + 𝛼0𝑘𝑡 + (𝛽1𝑘 + 𝛼1𝑘𝑡) ∙  𝑁𝑡) −

(𝑃0𝑘 + 𝛼2𝑘𝑡))/(√𝜎𝑝𝑘
2 ),0,1)], 𝜑 is the normal cdf of the posterior, 𝜓𝑘= 𝜓[(𝛽0𝑘 + 𝛼0𝑘𝑡 + (𝛽1𝑘 + 𝛼1𝑘𝑡) ∙

 𝑁𝑡) − (𝑃0𝑘 + 𝛼2𝑘𝑡))/(√𝜎𝑝𝑘
2 ),0,1)], 𝜓 is the normal pdf of the posterior, 𝜎𝑝𝑘

2  is the plateau variance, and 

𝑟 is the nitrogen fertilizer price. Other costs are assumed fixed and do not affect optimal nitrogen. For the 

economic analysis, U.S. prices were used for calculating nitrogen and corn prices. Urea prices were used 

to determine a nitrogen price of $1.75 /kg by calculating the percent of actual nitrogen is equal to 0.46 
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multiplied by 2000 pounds of Urea fertilizer is equal to 920 pounds of nitrogen. The cost of urea fertilizer 

is $732/ton divided by 920 pounds of nitrogen which provides the cost of nitrogen which $0.80/lb. or 

$1.75/kg. A corn price of $0.26/kg was used to determine the optimal nitrogen rates. These prices reflect 

January 2023 market prices for urea fertilizer (Quinn, 2023) in Omaha, Nebraska, and U.S. corn (USAD-

NASS, 2023). 

2.4 Data Intensive Farm Management 

The on-farm experimental data from the DIFM used for the second stage of this research consists 

of 3,836 observations on a single field in north central Ohio over three years collected with a yield 

monitor. All collected data were from corn following a soybean rotation. The experimental design was a 

completely randomized design (CRD) where treatments are assigned completely at random so that each 

experimental unit has the same chance of receiving any one treatment. The experiment is detailed in 

Table 1. It is important to note the different planting date of 2019 than the dates of 2017 and 2021. The 

yield average for 2019 is lower than the averages of 2017 and 2021. The late planting date for 2019 could 

have contributed to the decrease in yield. Different varieties were used for each year. 
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Table 1. On-Farm Experimental Data Collected from a Single Ohio Field 

  2017 2019 2021 

Observations             1,373  1,407 1,056 
 
Planting date 4/22/2017 5/21/2019 4/26/2021 
 
Variety DKC61-54rib DKC58-34 p0720q 
Yield range  
(kg /ha) 11,392-17,857 8,238-14,649 8,605-18,187 
 
Yield average 
(kg /ha) 14,643 11,639 13,416 
 
Nitrogen range   
(kg /ha) 181-247 166-296 164-329 
 
Nitrogen average 
(kg /ha) 215 229 248 
 
Seeding range   
(thousand seed /ha) 74-96 67-100 59-104 
 
Seeding average 
(thousand seed /ha) 84 86 82 

 

A portion of the field was selected as a test sample for the prediction. Using fewer observations 

reduces the computational time of the prediction that results in accurate predictions in a fraction of the 

time compared to using all observations within the field (even with the reduced dataset, the estimation 

still took over a week for 2021 data). The longitude coordinates of the map were divided by 3, and the 

latitude coordinates were divided by 4 so that the field was divided into a matrix with 3 columns and 4 

rows. One element of the matrix was used for all three years of data. Each cell is approximately 150 sq. 

meters or 0.03 acres. The width of each cell is roughly 9 meters, but the length of the cells change across 

the field from 12 to 21 meters in length. The fixed width is due to the width of the grain combine used to 

collect the data. For each matrix selected there is roughly 2.11 hectares for 2017, 1.52 hectares for 2019, 

and 1.37 hectares for 2021. Table 2 shows the means from the selected data. The selected data represents 

the field well, as the means and averages of yield, nitrogen, and seeding rate do not change significantly.  
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Table 2. On-Farm Experimental Data Selections from Single Ohio Field 

  2017 2019 2021 
 
Observations 141 101 91 
 
Yield range  
(kg. /ha) 11,931-16,646 8,634-12,636 9,639-16,049 
 
Yield average 
(kg. /ha) 14,567 11,272 13,068 
 
Nitrogen range 
(kg. /ha) 185-246 176-282 182-320 
 
Nitrogen average 
(kg. /ha) 218 230 262 
 
Seeding range   
(thousand seed/ha) 74-95 73-96 59-104 
 
Seeding average 
(thousand seed /ha) 85 87 81 

 

The area of the field was selected due to having roughly the same number of observations across 

years. Figure 1 shows the map of the entire field while Figure 2 shows the grids from which a subset of 

the field was selected. Figures 3-5 show the subset of the field used for each year. Due to missing values 

and different size grids, the number of observations varied by year.  There were 141 observations selected 

from 1,373 total observations from the 2017 on-farm experimental data. In 2019, 101 observations were 

selected from 1,407 observations. In 2021, 91 observations were selected from 1,056 observations. The 

dataset contained missing values which GWR would not be able to estimate without removing the 

missing values. Missing values were removed from the dataset, but GWR is still impractical to use 

because the coordinates for each cell changed across years. 
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Figure 1. Yield Map of the Entire Field of the 2017 Ohio Experimental Data 

Legend 

Yield (kg/ha) 

0  

6.27E-05- 10923.41 

10923.41- 11940.17 

11940.17- 12728.79 

12728.79- 13368.87 

13368.87- 13920.06 

13920.06- 14482.11 

14482.11- 15107.53 

15107.53- 15850.08 

15850.08- 18186.69 

 

Legend

yild_vl

0.000000

0.000001 - 174.111561

174.111562 - 190.317948

190.317949 - 202.888000

202.888001 - 213.090460

213.090461 - 221.876033

221.876034 - 230.834718

230.834719 - 240.803459

240.803460 - 252.639251

252.639252 - 289.883192



14 

 

Figure 2. Map of Selection Grid 
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Figure 3. Map of 2017 Selected Data                         Figure 4. Map of 2019 Selected Data 

 

 

 

 

 

 

 

Figure 5. Map of 2021 Selected Data 
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2.5 Spatially Varying Plateau Model 

Using the selected data from the grids shown in figures 3, 4, and 5, a spatially varying plateau model 

is estimated for each year:  

(8) 𝑌𝑖 = min[𝛽0 + 𝛽1 𝑁𝑖 + 𝛽2𝑆𝑖 + 𝛽3𝑆𝑖
2 + 𝛽4𝑆𝑖𝑁𝑖 , 𝑃𝑖] + 𝜀𝑖  

where 𝑌𝑖 is corn yield for the 𝑖th location, 𝑁𝑖 and 𝑆𝑖 are the nitrogen and seeding rate for the 𝑖th location 

respectively. 𝛽0, 𝛽1, 𝛽2, 𝛽3, and 𝛽4 are the corresponding coefficients for intercept, nitrogen, seeding rate, 

seeding rate squared, and the interaction between nitrogen and seeding rate. The po sterior of the 

stochastic LRP model provided priors for 𝛽0, 𝛽1, 𝛽4, and 𝑃𝑖 of the spatially varying coefficients 

parameters. The informative priors based on the estimated stochastic linear plateau model are: 

𝛽0~𝑁(6614.5, 281.07), 

 𝛽1~𝑁(40.8, 2.51), 

𝛽2~𝑁( 0.3,37.64), 

𝛽3~N(−0.2, 62.74), 

   𝛽4~𝑁(0, 62.74), 

 �̅�~𝑁(11857.5 , 284.83) 

𝜎~𝑁(0.1, 2 ) 

𝑠𝑖𝑙𝑙~𝑁(0,0.21) 

𝜌~𝑁(0, 0.21) 

𝑛𝑢𝑔𝑔𝑒𝑡~𝑁(1,1) 
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Priors are based on the year 2010. All estimated variances were doubled to allow the information from the 

field to have more impact on the posterior’s distribution. �̅� is the mean of  𝑃𝑖. We assume that plateau in 

the field has a spatial behavior, 𝑃𝑖, which can be described through the multivariate normal distribution. 

Hence, 

(9) 𝑷~𝑀𝑉𝑁(�̅�𝟏, 𝚺) 

where 𝑷 = (𝑃1, 𝑃2, … 𝑃𝑛) and 𝚺 = 𝑐𝑜𝑣( 𝑃(s),  𝑃(𝑠′)) = 𝜎𝑝
2 exp (−

𝑑𝑠,𝑠′  

𝜌
)  

where 𝑠 and 𝑠′ are two distinct locations in the field, 𝑃(s) is the plateau for location 𝑠, 𝜎𝑝
2 is the variance 

of the plateau, and 𝑑𝑠,𝑠′  is the distance between 𝑠 and 𝑠′ locations in the field. Bayesian methods are used 

to fit the model given in equation (7). While the nugget was included in the estimation, it does not appear 

in the covariance formula. HMC algorithm, which is faster and has a better convergence rate (Carpenter et 

al., 2017) than Metropolis-Hastings, is used through Stan to obtain Bayesian posterior estimates. Stan 

uses parallelization which makes it more flexible and faster than using the SAS procedure PROC MCMC. 

Four chains are simulated with each chain using 2,000 draws as warmup and 5,000 iterations for 

estimation. The procedure uses parallel computing to reduce the time used to calculate the posterior 

distribution. The estimation typically takes around 14 hours to complete for one year (for 2021, one chain 

was slow to converge, and it took over a week). Convergence of the Markov Chain was checked using the 

Gelman-Rubin statistic which is denoted as: 

(10) 𝑅 = √
(𝑑+3)�̂�

(𝑑+1)𝑊
 

 where �̂� is the variance of the Bayesian credible interval, 𝑊 is the mean empirical variance within each 

chain, and 𝑑 is the degrees of freedom estimated by method of moments (Gelman & Rubin, 1992). A 

Bayesian credible interval is defined as which parameters lie within a given probability range. 
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Convergence is achieved at a value of 𝑅 equals 1. The Gelman-Rubin statistic is a ratio which provides a 

simple summary for any MCMC sampler (Peng, 2022). 

The conditional autoregressive (CAR) and simultaneously autoregressive (SAR) models can 

provide faster computations (Poursina, 2021) than the exponential used here, but CAR and SAR are based 

on continuity and so are not applicable to data where the locations of the grids change every year.  

The posterior from Equation 1 is used as a prior to forecast parameter distribution for 2021 using 

2017, 2019, and 2021 data. The posterior predictive distribution is used to forecast parameters for 2021 

locations from 2017, 2019, and 2021 data. New coordinates from 2021 are added to forecast the yield 

value. The posterior predictive distribution is the distribution over new observations given previous 

observations. The posterior predictive distribution for replications 𝑦𝑟𝑒𝑝 of the original data set 𝑦 given 

model parameters 𝜃 is defined by: 

(11) 𝑝(𝑦𝑟𝑒𝑝|𝑦, 𝑥𝑟𝑒𝑝) = ∫ 𝑝( 𝑦𝑟𝑒𝑝|𝜃, 𝑥𝑟𝑒𝑝) ∙ 𝑝(𝜃|𝑦)𝜕𝜃 

where 𝜃 is all parameters to be estimated in the model, 𝑝(𝜃|𝑦) is the posterior distribution, and 𝑥𝑟𝑒𝑝 are 

nitrogen and seeding rates for the desired year and plot. 

2.6 Weighted Average and Mean Squared Error 

To obtain forecasts for 2021 given 2017 and 2019 data, the separate estimations for 2017 and 

2019 must be combined. Under normality, the Bayesian approach is a weighted average of the two 

predictions from 2017 and 2019 data where the weights are proportional to the standard deviations of 

each predicted value. Hence, 

(12) 𝜇𝑖
∗ =

(
𝜇1𝑖
𝜎1𝑖

)+(
𝜇2𝑖
𝜎2𝑖

)

(1/𝜎1𝑖 )+(1/𝜎2𝑖)
 

where 𝜇𝑖
∗ is the final predicted value of yield or one of the parameters, 𝜇1𝑖  is the mean of the predicted 

values of 2021 yield or one of the parameters based on 2017,  𝜇2𝑖 is the mean of the predicted values of 
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2021 yield or one of the parameters based on 2019, 𝜎1𝑖  is the standard deviation from 2017 for 2021 

locations, and 𝜎2𝑖 is the standard deviation from 2019 for 2021 locations. The weighted average is then 

compared to actual yield values from 2021. 

Mean squared error (MSE) is used to obtain the accuracy of the predicted values for 2017, 2019, 

2021, and the weighted average of 2021 predictions from 2017 and 2019 data where MSE is 

(13) 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − �̂�𝑖)2𝑛

𝑖=1  

 n is the number of data points, 𝑌𝑖 is the observed values, and �̂�𝑖 is the predicted values.  Furthermore, 

MSE can be decomposed into bias and variance via following formula: 

(14) 𝑀𝑆𝐸 = 𝑏𝑖𝑎𝑠2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

This will allow estimating how much biasedness is in the prediction. 

 Following the MSE calculations, a linear regression model is used to regress the latent spatial 

predictions for the 2021 locations from the 2017 and 2019 data against the latent spatial effect in 2021. 

The estimation will show if the latent spatial process of 2021 is explained by the latent spatial process of 

2017 and 2019.
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CHAPTER III 
 

 

RESULTS 

 

3.1 MRTN Data 

The annual nitrogen and yield means of the 2,799 observations from the MRTN dataset are 

shown in Figures 6 and 7. The 2,799 yield response observations from the MRTN dataset are 

used to estimate the stochastic LRP model that serves as the prior for the spatially varying 

coefficient model. The average nitrogen application rate, shown in Figure 6, displays an upward 

trend over time. From 1999 to 2021, the average annual nitrogen rate in the experiments 

increased by 28 percent. The corn yield in Figure 7 followed the increased nitrogen rate by also 

increasing over time and increased by roughly 28 percent. 
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Figure 6. Annual Nitrogen Application Means Across Illinois from MRTN Database  

 

 

Figure 7. Annual Corn Yield Means Across Illinois from MRTN Database 

The mean and standard deviation of the posterior distribution for the parameters of the 

stochastic LRP model are presented in Table 3 and the estimated stochastic QRP model is in 

Table 4. Both models show an increase in the optimal nitrogen rate from 2010 to 2021. The 
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stochastic LRP showed an increase of 21% in the optimal nitrogen rate from 2010 to 2021. The 

stochastic QRP showed an increase of 17% in the optimal nitrogen rate from 2010 to 2021. 

3.2 Production Function Estimates 
 
Table 3. Stochastic Linear Plateau Estimates with Time Trends on Illinois Corn Yields (kg /ha), 
1999-2021 

Parameter Mean Standard Deviation 

Intercept 6614.5 138.9 
Intercept time trend 0.1 17.9 
Nitrogen 40.7 1.2 
Slope time trend 0.5 0.2 
Plateau 11853.4 142.5 
Plateau time trend 204.0 20.2 
Plateau variance 1728766.0 226626.0 
Year random effect 4249889.0 345320.0 
Error variance 1393012.0 44255.6 
Optimal N 2010 (kg /ha) 160.2  
Optimal N 2021 (kg /ha) 193.3  
Deviance Information Criterion 48083.3  

Note: All values are in kilograms per hectare. The selected price of nitrogen is $1.75/ kg., the 
price of corn is $0.26/kg. The data are composed of 2799 observations from the Maximum Return 
to Nitrogen (MRTN) dataset, University of Illinois. 
 

The stochastic LRP model was estimated in terms of the plateau level of yield, 𝑃0. The QRP 

model was estimated in terms of the plateau level of nitrogen which is denoted in Equation 2 as 

𝑁𝑠𝑡𝑎𝑟𝑖𝑡. The models can be equivalently estimated with either the plateau yield or the plateau 

level of nitrogen as the parameter. The parameter, Nstar time trend, directly provides the change 

in the optimal nitrogen value over time. The estimation shows the plateau nitrogen level increased 

by 3.4 kg/ha/year. 
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Table 4. Stochastic Quadratic Plateau Estimates with Time Trends on Illinois Corn Yields (kg. 
/ha), 1999-2021 

Parameter Mean Standard Deviation 

Intercept 6408.9 214.8 
Intercept time trend 4.1 26.5 
Nitrogen 45.5 1.0 
Slope time trend 1.1 0.1 
Nstar 248.9 5.1 
Nstar time trend 3.4 0.7 
Nstar variance 1912.6 290.5 
Year random effect 3655930.0 310663.0 
Error variance 1468639.0 45480.1 
Optimal N 2010 (kg/ha) 228.5  
Optimal N 2021 (kg/ha) 267.0  
Deviance information criterion 48175.1  

Note: All values are in kilograms per hectare. The selected price of nitrogen is $1.75 / kg, the 
price of corn is $0.26/kg. The data is composed of 2799 observations from the Maximum Return 
to Nitrogen (MRTN) dataset, University of Illinois. 

 

Boyer et al. (2013) estimated stochastic LRP and QRP models using corn following 

soybean yield response to nitrogen that provided similar standard deviations and variances as that 

in the estimations here. Boyer et al., however, uses corn response data from Tennessee, which 

could have different yield and nitrogen averages when compared to Illinois corn response data. 

Boyer et al.’s estimates reveal little difference between the plateau and yield values compared to 

the research estimates in Table 3. The main difference is Boyer et al. find a lower intercept, which 

can be explained as Illinois soil typically has a higher level of organic matter that can provide 

more nitrogen than Tennessee soil. 

Utilizing the time trend variable of the stochastic LRP model, the year 2023 optimal 

nitrogen rate was estimated using January 2023 prices for nitrogen, $1.75/kg, and corn, $0.26/kg 

(Quinn, 2023; USAD-NASS, 2023). The stochastic LRP model predicted an optimal nitrogen rate 

of 199 kg of nitrogen /ha. The year 2023 optimal nitrogen rate was estimated using the stochastic 

QRP which computed an optimal nitrogen rate of 274 kg/ha. Comparatively, the nitrogen rate 

calculator computed optimal nitrogen rates using the same prices used in our model for the three 

Illinois regions: North, Central, and South. The calculator estimated an optimal nitrogen rate of 
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187 kg /ha for the North region, 195 kg /ha for the Central region, and 218 kg /ha for the South 

region. The stochastic LRP optimal nitrogen rate is far more consistent with the nitrogen rate 

calculator estimations of optimal nitrogen than the estimation from the stochastic QRP. 

The MRTN is based on the quadratic plateau. Why are MRTN optimal nitrogen levels 

closer to the levels from the linear plateau? One reason is that MRTN does not adjust for a time 

trend, which makes the MRTN recommendation about 12 % lower. MRTN also includes other 

functional forms such as quadratic, linear and no response models. Further, the stochastic QRP 

used here imposes that parameters across space and time are drawn from a normal distribution, 

which may lead to different estimates. 

The deviance information criterion (DIC) values in Tables 3 and 4 are used to determine 

which model is a better fit for the data. The DIC value for the stochastic LRP model is 48083.3. 

The DIC value for the stochastic QRP model is 48175.1. The lower value represents a model that 

is a better fit. The stochastic LRP model had a lower value, which is why it was selected to 

provide the prior for the spatially varying coefficient model.  

Figure 8 plots the stochastic LRP model using posterior means for 2010 and 2021. The 

figure shows that the intercept, slope, and plateau all increased over time. The intercept increased 

by 0.02 percent and the slope increased by roughly 13 percent. The plateau increased the most by 

roughly 28 percent, and thus the optimal nitrogen rate also increased . 
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Figure 8. Expected Stochastic Linear Plateau Models for 2010 and 2021  

Assefa et al., (2017) studied corn yield data from 1987 to 2015 and concluded that corn 

yields across the United States increased between 97 and 147 kg/ha/year. There are many reasons 

as to why corn yields have increased over time. Genetic improvements (Russel, 1991), increased 

plant densities (Assefa et al., 2018), and earlier planting dates (Tannura et al., 2008) have all been 

suggested as explanations for increasing corn yields. 

3.3 DIFM Data 

The mean yield response to nitrogen and seeding rate data for the three years of on -farm 

experiment from the single north central Ohio field that is used for estimating the spatially 

varying coefficient model is shown in Figure 9. The mean yield is determined for each seeding 

rate. The seeding rates are defined as high being between 89,000 and 104,000 seeds/ha, medium 

being between 74,000 and 88,999 seeds/ha, and low being anything less than or equal to 73,999 

seeds/ha. These figures highlight the difficulties in using this data to guide nitrogen and seeding 

rate recommendations. High seeding rates appear beneficial in 2021 but had no effect in other 
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years. The curves are relatively flat for nitrogen, except for the medium seeding rate in 2019 and 

the high seeding rate in 2021 where it appears that the plateau was not reached with the highest 

levels of nitrogen applied.
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Figure 9. Mean Yield Reponses to Nitrogen and Seeding Rate for 2017 (top), 2019 (middle), and 

2021 (bottom) 

3.4 Spatially Varying Plateau Estimates 

The stochastic LRP model is used as a prior for estimating the spatially varying plateau 

model. The estimated SVC models are used to predict corn yield response for 2021 selected 
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locations and using response data from 2017, 2019, and 2021. The means and standard deviations 

are presented in Table 5. The seed and seed squared parameters used weak priors for the seeding 

rate variable which is why they are not consistent across prediction years. The hyperparameters in 

the covariance function (nugget, sill and 𝜌) are almost equal across all three years, which 

indicates that the spatial correlation remains unchanged overtime. The estimated ρ of 0.2 means 

that the range extends over 20 percent of the space or 2-3 plots. The estimated sill is small since 

the data are measured in kg/ha. 

Table 5. Means and Standard Deviations of the Estimated Parameters from Parameter Estimates 

 
Note: All values are in kilograms per hectare. 

 

Following the predictions, the output generated latent spatial values. The predicted values 

of the latent spatial process, however, differ across years (Figures 10-12), although the estimates 

are quite small. The spatial parameters were used to display the latent spatial process of 2021 

locations from 2017, 2019, and 2021 data to create figures 15, 16, and 17. The maps show no 

distinct pattern across years which means the spatial parameters are negligible and the plateau is 

 
  

2017-2021 Parameter 
Estimates 

2019-2021 Parameter 
Estimates 

2021-2021 Parameter 
Estimates 

Parameter Mean SD Mean SD Mean  SD 

Intercept 6625.5 278.4 6477.6 278.2 6610.7 287.3 

Slope 40.8 2.5 38.7 2.5 40.8 2.5 

Seed 19.0 37.7 8.2 23.3 18.8 37.6 
 
Seed Sq. -49.7 37.7 -0.5 0.5 -45.6 34.0 
 
Seed and 
Nitrogen 
Interaction 57.7 36.5 -0.4 0.1 44.3 38.0 
 
Plateau 14456.5 58.7 11950.3 193.0 12915.6 113.6 

sigma 11.0 0.6 12.8 0.8 17.4 1.1 

sill 0.2 0.1 0.2 0.1 0.2 0.1 

rho 0.2 0.1 0.2 0.1 0.2 0.1 

nugget 1.3 0.8 1.3 0.8 1.4 0.8 
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not variable across the field, which foretells the finding that precision nitrogen application is of 

little value in this field. 

 
 

Figure 10. Latent Spatial Process for Predicting 2021 Yield from 2017 (Left) & Figure 11. Latent 
Spatial Process for Predicting 2021 Yield from 2019 (Right) 

 
 

 
 

Figure 12. Latent Spatial Process for Predicting 2021 Yield from 2021 
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MSE values were computed to determine which model was closest to the real 

experimental data of the prediction year, 2021. The values of the calculation are shown in Table 

6. The prediction with the lowest MSE value corresponds to the best fit of the actual data. The 

weighted average of 2017 and 2019 predictions for 2021 locations produced the lowest MSE 

value. One can decompose the MSE into bias and variance. Following the MSE calculations, the 

average yield prediction for all three years was calculated to determine if there is bias in the MSE 

calculation. We assume the average yield of the field is the true mean for yield variable. The 

weighted average has the lowest MSE due to having a lower variance as it had slightly more bias 

than using 2021 to predict 2021. 

 

Table 6. Average Yields and Mean Squared Error Values of Predictions 
 

 

2017 to 
Predict 
2021 

2019 to 
Predict 
2021 

2021 to 
Predict 
2021 

Weighted Average of 2017 
and 2019 to Predict 2021 

Mean Squared Error 904.96 948.75 404.05 360.70 
 
Average Yield of 
Prediction (kg/ha) 14454.32 11530.38 12895.37 12875.23 

Note: Actual yield for 2021 is 13068.00 kg/ha.  
 

The latent spatial predictions for the 2021 locations from the 2017 and 2019 data were 

regressed against the latent spatial effect in 2021. The regression shows how the latent spatial 

process of 2021 is explained by the latent spatial process of 2017 and 2019. The R-Squared 

values in Table 7 show the latent spatial process for 2021 cannot be explained by 2017 and 2019 

latent spatial processes. 
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Table 7. Linear Regression of Predicted Latent Spatial Parameters 

 Predictions  Parameters Estimate   SD  t-value 

2021 from 2017 data  

Intercept -0.001498 0.001697 -0.883 

Slope -0.045124 0.118470 -0.381 

R-Squared 0.001627     

2021 from 2019 data 

Intercept -0.001605 0.001714 -0.936 

Slope 0.058617 0.116787 0.502 

R-Squared 0.002822     

2021 from Weighted 
Avg. 2017 and 2019 

Intercept -0.001489 0.001704 -0.874 

Slope 0.013581 0.169163 0.080 

R-Squared 0.000072     

 

There is a vast literature on the profitability of variable rate nitrogen applications. Many 

researchers have shown that applying accurate uniform nitrogen rates for fields with little spatial 

variability are more profitable than applying variable rate nitrogen applications (Isik & Khanna, 

2002; Thrikawala et al., 1999). Variable rate applications have shown to be profitable given 

sufficient spatial variability within the field (Roberts et al., 2000). The area of the field studied 

here had little spatial correlation, which reduced the potential benefit of using variable rate 

nitrogen applications. 

The cost of information would be the cost of the entire system required to perform 

variable rate applications. The cost would include variable rate technology equipment to apply the 

rates, the technology to collect yield responses, and the analysis needed to estimate the rates . 

3.5 Optimal Nitrogen and Seeding Rate 

The optimal nitrogen and seeding rates were calculated for each prediction year using the 

prediction parameter means from the output of the spatially varying coefficient model estimation. 

A seed corn price of $2.00 per thousand seeds (Lauer & Stanger, 2023), corn price of $0.26 per 

kilogram (Quinn, 2023), and nitrogen price of $1.75 per kilogram (USAD-NASS, 2023) were 

used to estimate the profit per hectare. Optimal levels were constrained to be within the range of 

the data. All optimal levels were corner solutions. Maximum profit for 2017 occurred at 185 
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kg/ha of nitrogen applied and a seeding rate of 74,000 seed/ha. For 2019, max profit occurred at 

282 kg/ha of nitrogen applied and a seeding rate of 73,000 seed/ha. For 2021, max profit occurred 

at 182 kg/ha of nitrogen applied and a seeding rate of 59,000 seed/ha. Given the varieties used for 

each year (Table 1), seed corn price was increased to $3.75 per thousand seeds to determine if the 

optimal nitrogen and or seeding rate changed. No optimal rates changed. What is shown here is 

that the seeding rates and nitrogen levels used here were so high that almost all the observations 

were on the plateau. To learn more about optimal levels, lower rates of nitrogen and lower 

seeding rates would need to be considered.
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CHAPTER IV 
 

 

CONCLUSIONS 

 

The first goal of this research was to develop informative Bayesian priors. The goal was achieved 

by estimating a stochastic linear plateau model using data from the MRTN database and 

incorporating a time trend that accounts for increasing corn yields over time. The intercept, slope, 

and plateau all increased over time. The plateau increased the most by 28 percent, and thus the 

optimal nitrogen rate also increased. The optimal nitrogen rate from 2010 to 2021 increased by 

almost 21 percent. The estimated posterior distribution of the stochastic linear plateau is used as a 

prior for completing the second goal of this research which is to estimate a spatially varying 

coefficient model to determine accurate site-specific nitrogen rates. After estimating the spatially 

varying coefficient model, the latent spatial parameters revealed little to no spatial variability 

across the field which limited the benefit of applying variable rate nitrogen. Poursina (2021) 

suggests experimenting on only a part of the field, which would increase the importance and 

dependence upon the priors. The general approach used here might prove useful for determining 

uniform rate recommendations even if it did not aid in variable rate recommendations. This 

research is consistent with previous research that found variable rate nitrogen may not be 

profitable when the only information available is the location of the plot. The value of this 

research is shown through the high-quality priors created by estimating the stochastic linear 

plateau model. This research was limited to only using a selected number of observations from a 

small section of the field due to the computational time limitation. 



34 

Another issue is the limited spatial variability within the research field likely contributes 

to the variable rate nitrogen to not being profitable (Stefanini et al., 2018; Boyer et al., 2012). 

Another limitation lies within the short ranges of seeding rates and nitrogen rates of the 

experimental data used to make our predictions. Variable rate nitrogen applications can still be 

profitable in a field experiment with higher spatial variability. Using a dataset with more 

observations per location could improve the value and accuracy of the information from the 

predictions by decreasing the noise associated with few observations. Future research could use a 

more extensive data set to further improve the predictions. 
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APPENDICES 
 

The autocorrelation plots display how convergence was determined for the parameter estimates of 

the stochastic LRP model (Figures 1A-9A). All plots show a decline to zero as lag is increased. 

Autocorrelation plots for year random effect and error variance have the lowest autocorrelation. 

 

Figure 1A. Intercept Autocorrelation Plot 

 

Figure 2A. Intercept Time Trend Autocorrelation Plot
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Figure 3A. Nitrogen Autocorrelation Plot 

 

 

Figure 4A. Slope Time Trend Autocorrelation Plot 

 

 

Figure 5A. Plateau Autocorrelation Plot 
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Figure 6A. Plateau Time Trend Autocorrelation Plot 

 

 

Figure 7A. Plateau Variance Autocorrelation Plot 

 

Figure 8A. Year Random Effect Autocorrelation Plot 
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Figure 9A. Error Variance Autocorrelation Plot 
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