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Abstract: Harmful algal blooms (HABs) pose significant threats to human health and the 
environment. Monitoring them in inland waterbodies is a challenging and costly task. 
Remote sensing technology is an increasingly useful tool in monitoring and managing 
HABs, providing timely information on their bloom dynamics. The Cyanobacteria 
Assessment Network (CyAN) was developed to provide a consistent and uniform 
program for HAB detection and characterization across the United States. CyAN utilizes 
the Ocean and Land Colour Imagers (OLCI) aboard Sentinel 3A and 3B to provide near 
daily imagery of the major waterbodies across the country. The objective of this study is 
to characterize the frequency, spatial extent, and severity of HABs in Oklahoma 
Reservoirs utilizing CyAN. Sixty nine waterbodies were selected for analysis. They 
include the largest lakes and reservoirs in Oklahoma. Frequency, spatial extent, and 
severity were assessed for trends over the six-year study period (2017-2022). Trend 
analysis was grouped into four bloom categories: high (>100,000 cells/ml), medium 
(20,000-100,000 cells/ml), low (<20,000 cells/ml), and total bloom. High, medium, and 
low-risk bloom thresholds are based off of the World Health Organizations risk of health 
impact thresholds. Total blooms represent any bloom level above sensor detection. The 
findings of this research indicate that statewide HABs are increasing in frequency over 
the study period for all bloom categories. The spatial extent of HABs is increasing 
statewide for all bloom risk categories. Bloom severity is increasing for multiple 
individual waterbodies. Significant differences in bloom frequency, severity, and spatial 
extent are observed between trophic states. The findings of this research highlight the 
potential of remote sensing as a valuable tool for HAB monitoring and provide insights 
for developing effective HAB management strategies. 
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CHAPTER I 
 

 

INTRODUCTION 

Harmful algal blooms (HABs) are a growing national and worldwide concern. HABs occur when 

algal communities abundance grows exponentially potentially producing toxic or adverse effects 

to organisms that come into contact with them (NOAA, 2016). HAB occurrences are increasing 

both nationally and worldwide (Hudnell, 2010). These blooms can comprise microscopic cellular 

populations, including dinoflagellates, diatoms, and cyanobacteria (Hudnell, 2010). 

Cyanobacteria are recognized as the leading harmful algal group and pose a fast-emerging 

worldwide issue threatening both human and ecosystem health (Carmichael, 2008). Monitoring, 

management, and mitigation of HABs are crucial to lessen their health, ecosystem, and economic 

impacts. 

The impacts of HABs can be varied, including health hazards for humans and animals and 

degradation of water quality (Lopez, Jewett, Dortch, Walton, & Hudnell, 2008). The majority of 

the impacts in the United States (US) have included animal deaths, reduced recreational 

opportunities, and taste-and-odor problems in drinking water and aquaculture (Lopez et al., 

2008). Mass die-offs of large algal biomass and the associated decomposition can lead to depleted 

dissolved oxygen (hypoxia) in the water (Lopez et al., 2008). Many cyanobacteria species 

produce cyanotoxins with potentially fatal consequences (Hudnell, 2010). The most common 

cyanotoxins observed in the US include saxitoxins, cylindrospermopsin, anatoxins, and 

microcystins (US EPA, 2018b).
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Traditional methods of HAB sampling include visual assessments and in-situ monitoring. These 

traditional methods can be both time and cost-intensive. The high number of waterbodies and 

difficulty reaching remote areas further add to the challenges associated with in-situ monitoring. 

More recent methods include the use of satellite remote sensing data to help monitor for harmful 

algal blooms. One of the new systems utilized for HAB detection is known as CyAN 

(Cyanobacteria Assessment Network).  

CyAN was developed with multiple agencies, including the EPA, the National Aeronautics and 

Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), 

and the United States Geological Survey (ORD US EPA, 2014a). The goal was to help provide 

near-real-time data that could act as an early warning system for HAB detection. This will 

support federal, state, tribal, and local managers in their monitoring efforts (ORD US EPA, 

2014a). CyAN continues to be refined since its inception in 2015. It now utilizes satellite data 

from both the European Space Agency Envisat MERIS and Copernicus Sentinel-3 Ocean and 

Land Color Imager (OLCI) sensors (US EPA, 2022). 

HABs can be characterized in Oklahoma and provide valuable information that managers can 

utilize regarding monitoring, management, and mitigation through CyAN. Understanding 

historical HAB trends can help develop better forecasting estimates (J. S. Clark et al., 2001; 

Urquhart, Schaeffer, Stumpf, Loftin, & Werdell, 2017). The most extensive remote sensing 

characterization of HAB dynamics in Oklahoma analyzed HAB frequency for blooms above 

100,000 cells/mL from 2008-2011 and 2017 as part of the analysis for the Nutrient Scientific 

Technical Exchange Partnership Support (N-STEPS) program. This thesis expands on the N-

STEPS research. It adds five additional years of high-risk bloom frequency and the 

characterization of the maximum HAB abundance and spatial extent. This additional information 

can be instrumental in understanding HAB occurrence and behavior in Oklahoma’s largest 

reservoirs. 
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Background 

Harmful algal blooms (HABs) occur when algal community abundance grows exponentially, 

potentially producing toxic or adverse effects on organisms that come into contact with them or 

cause water quality degradation (Lopez et al., 2008; NOAA, 2016). HAB occurrences are 

increasing nationally and worldwide (Hudnell, 2010). It affects most of the US (Lopez et al., 

2008). These blooms are microscopic cellular populations, including dinoflagellates, diatoms, and 

cyanobacteria (Hudnell, 2010). Cyanobacteria, also known as blue-green algae, are recognized as 

the leading harmful algal group. They are considered a fast-emerging worldwide issue that 

threatens both human and ecosystem health (Carmichael, 2008). 

Harmful algal blooms vary in appearance. Blooms typically range from light green to darker, 

browner greens. They can also take on reddish hues (Hudnell, 2010). Cyanobacteria HABS 

(CyanoHABS) can appear as water discolorations, forming dense scums and mats on the water’s 

surface. They can appear as spilled paint slicks (Hudnell, 2010). Harmful effects from HABs are 

not limited to when they are visible and can occur even when apparent signs of a bloom are 

missing (Hudnell, 2010). CyanoHABs cause most freshwater HAB problems (Lopez et al., 2008). 

Cyanobacteria have developed competitive advantages over their long evolutionary timeline 

(Hudnell, 2010). 

Some species of cyanobacteria can fix nitrogen (Latysheva, Junker, Palmer, Codd, & Barker, 

2012; Stal, 2015).Nitrogen fixation is a resource-intensive process and requires sunlight as a 

source of that energy (Stal, 2011). The ability to fix nitrogen provides a competitive advantage 

over non-nitrogen fixing species when nitrogen is limiting (Chang et al., 2020). Cyanobacteria 

also have the ability to regulate their buoyancy. They are able to move up and down within the 

water column (Oliver & Walsby, 1988). Buoyancy regulation helps cyanobacteria access the 

sunlight necessary for photosynthesis at the surface of the water while also shading out other 
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species of phytoplankton (Chang et al., 2020). Cyanobacteria have been shown to grow faster 

than other benign algal species in warm water (Michalak et al., 2013). Buoyancy regulation and 

increased growth rate in warm waters can trigger a feedback loop where surface algal mats absorb 

more sunlight leading to yet warmer waters and more cyanobacteria growth (Sturm & Denchak, 

2019). 

The causes of cyanobacterial blooms are not well understood (Hudnell, 2010). Chemical and 

physical factors are believed to play a role in forming blooms. Physical conditions promoting 

growth include light availability, water temperature, flow, and vertical mixing (US EPA, 2018a). 

Chemical factors include pH, nutrient loading, and the presence of trace metals (US EPA, 2018a).  

HABs are often considered one of the most apparent signals of nutrient over-enrichment (H. W. 

Paerl & Fulton, 2006). These factors can act synergistically, creating optimal growth conditions, 

though they vary between the species (Lopez et al., 2008). Particular difficulty remains in 

understanding how these factors affect bloom dynamics and toxin production (Perovich et al., 

2008). 

Climate change impacts, including increases in temperature and hydrologic changes, have been 

theorized to impact HAB occurrence. Prolonged droughts followed by more severe storms have 

been shown to lead to increased runoff and nutrient loading of waterways (Sturm & Denchak, 

2019). Prolonged droughts can also reduce water flow. This results in the remaining water 

becoming more stagnant and warmer. Stagnant and warmer waters are optimal conditions for 

HABs to propagate. 

HAB Impacts 

The impacts of HABs are varied. They can include health hazards for humans and animals as well 

as water quality degradation (Lopez et al., 2008). Impacts in the US include animal deaths, 

reduced recreational opportunities, and taste-and-odor problems in drinking water and 
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aquaculture (Lopez et al., 2008). Mass die-offs of large algal biomass resulting in decomposition 

can lead to depleted dissolved oxygen (hypoxia) in the water (Lopez et al., 2008). 

Many cyanobacteria species produce cyanotoxins as secondary metabolites. The results are 

potentially fatal (Hudnell, 2010). Cyanotoxins are comprised of a group of compounds that are 

both chemically and toxicologically diverse (Bláha, Babica, & Maršálek, 2009). Cyanotoxins can 

be classified as hepatotoxins, neurotoxins, cytotoxins, dermatoxins, or irritant toxins (Bláha et al., 

2009; Wiegand & Pflugmacher, 2005). Each cyanotoxin is known to be produced by multiple 

genera of cyanobacteria. Species can produce two or more types of these toxins (Table 2) 

(Hudnell, 2010; Humpage, 2008; Pegram et al., 2008). The most common cyanotoxins observed 

in the US include saxitoxins, cylindrospermopsin, anatoxins, and microcystins (US EPA, 2018b).  

Cyanotoxins can be potent, with few other toxins being known to be more potent (Hudnell, 2010; 

Humpage, 2008). A comparison between the lethal dose for 50% of mice with a single 

intraperitoneal injection (LD50) for common cyanotoxins and more familiar toxins are found in 

Table 1. The EPA includes certain cyanotoxins on their Contaminant Candidate List (CCL) 

version CCL 3 (2009) and CCL 4 (2016) (OW US EPA, 2016). EPA has included specific 

cyanotoxins in their fourth Unregulated Contaminant Monitoring Rule (UCMR 4) (OW US EPA, 

2015). The UCMR is a list of a maximum of 30 unregulated contaminants to be monitored in 

public water systems (OW US EPA, 2016). 

Table 1: Compounds and rodent 24h intraperitoneal LD50 (ug/kg). Adapted from “The state of 
U.S. freshwater harmful algal blooms assessments, policy and legislation”, by Hudnell, K., 2010. 
Toxicon, 55 

Cyanotoxins LD50 EPA priority Comparison LD50 
Saxitoxins 10 Medium/High Ricin 22 
Anatoxin-a(s) 20 Medium/High Cobra Venom 185 
Microcystin-LR 50 Highest Sarin 218 
Cylindrospermopsin 300 Highest Strychnine 980 
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Microcystins are likely the most prevalent cyanotoxin in freshwater HABs (FHABs) (Bláha et al., 

2009; OW US EPA, 2013). Microcystin is a hepatoxin, or a toxin that impacts the liver, and 

evidence of it acting as a tumor promotion factor (Bláha et al., 2009). 

Table 2: Cyanobacterial toxins, taxa, and human health impacts. Adapted from “Scientific assessment 
of freshwater harmful algal blooms” by Lopez, C. 2008. Interagency Working Group on Harmful 
Algal Blooms, Hypoxia, and Human Health of the joint Subcommittee on the Ocean Science and 
Technology 

Toxin 
 

Genera Short-Term Health 
Effects 

Long-Term Health 
Effects 

Microcystins Anabaena, 
Aphanocapsa, 
Hapalosphon, 
Microcystis, Nostoc, 
Oscillatoria, 
Planktothrix 
 

Gastrointestinal, liver 
inflammation, and 
hemorrhage and liver 
failure leading to death, 
pneumonia, dermatitis 

Tumor promoter, 
liver failure leading 
to death 

Saxitoxins Anabaena, 
Aphanizomenon, 
Cylindrospermopsis, 
Lyngbya 

Tingling, burning, 
numbness, drowsiness, 
incoherent speech, 
respiratory paralysis 
leading to death 
 

Unknown 

Anatoxins Anabaena, 
Aphanizomenon, 
Oscillatoria, 
Planktothrix 

Tingling, burning, 
numbness, drowsiness, 
incoherent speech, 
respiratory paralysis 
leading to death 
 

Cardiac arrhythmia 
leading to death 

Cylindrospermopsin Aphanizomenon, 
Cylindrospermopsis, 
Umezakia 

Gastrointestinal, liver 
inflammation and 
hemorrhage, pneumonia, 
dermatitis 

Malaise, anorexia, 
liver failure leading 
to death 

 

Human illnesses and fatalities have been linked to cyanobacteria across the globe. Two fatality 

events occurred in Brazil, with 88 deaths in 1988 and 52 deaths in 1996 associated with 

cyanotoxins in drinking water (World Health Organization, 2003). Gastrointestinal issues have 

been associated with cyanobacteria in Australia, Canada, China, England, Sweden, and the US 

(World Health Organization, 2003). No cyanotoxins have been solely tied to human deaths in the 

US (Lopez et al., 2008). Exposure to CyanoHABs and toxins can occur through direct skin 



7 
 

contact, inhalation, and accidental ingestion for those recreating in or around waterbodies (World 

Health Organization, 2003). The exposure pathway is frequently through ingestion of 

contaminated water. Long-term effects from chronic low-level exposure are not well understood 

nor studied (Lopez et al., 2008). 

The ecological impacts of CyanoHABs and their associated toxins are varied. Many impacts 

occur from high biomass blooms. High biomass blooms have the potential to substantially reduce 

the light entering the water column and inhibit other primary producer growth, benthic algae, and 

vascular plants (Fournie et al., 2008). High biomass blooms can result in low dissolved oxygen 

situations, leading to fish and bottom-dwelling organism kills, anoxia of sediments, increases in 

ammonium in the water, and the associated pH changes (Fournie et al., 2008; Lopez et al., 2008; 

H. W. Paerl, Fulton, Moisander, & Dyble, 2001; Rao, Howell, Watson, & Abernethy, 2014). 

These impacts can lead to food web alterations and subsequent crashes, as cyanobacteria are often 

unpalatable and of low quality, potentially starving consumers and their predators (Lopez et al., 

2008; H. W. Paerl et al., 2001).  

These impacts can further be stressed if a bloom has associated toxicity. The relative impact of 

cyanotoxins when compared to the other stressors remains unclear (Lopez et al., 2008; H. W. 

Paerl et al., 2001). Cyanotoxins have been shown to accumulate in primary consumers (Prepas, 

Kotak, Campbell, & Evans, 1997).,This can result in transfers up the food chain (Ferrão-Filho & 

Kozlowsky-Suzuki, 2011; Lopez et al., 2008).  

Cyanotoxins have been deemed responsible for mass fish kills (Landsberg et al., 2020; Rodger, 

Turnbull, Edwards, & Codd, 1994; Tencalla, Dietrich, & Schlatter, 1994) and bird kills (Stewart, 

Seawright, & Shaw, 2008). Cyanobacteria were eventually found to be the cause of vacuolar 

myelinopathy in Bald Eagles in 2021, 25 years after it was first observed in the US. Vacuolar 

myelinopathy is a neurological diseases that causes brain lesions and had been killing Bald Eagles 
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after exposure(Breinlinger et al., 2021). Pet deaths have been associated with cyanotoxin 

exposure across the US (“Dog Days of Summer,” 2020). Livestock and cattle have been reported 

as victims of cyanotoxin exposure. The results include 72 cows out of 170 dying within 24 hours 

of ingesting cyanobacteria from their water source (Carmichael, 1992; Odriozola, Ballabene, & 

Salamanco, 1984). 

Economic Impacts 

Freshwater HABs can result in severe economic costs. The full magnitude of these costs has yet 

to be well quantified in the US (Lopez et al., 2008). Less than 5% of publications centered on 

cyanotoxins focus on the economy, public health, or epidemiology (Merel et al., 2013). The 

economic impacts of HABs arise from “public health costs, commercial fishery and aquaculture 

closures and fish kills, insurance costs, possible medium and long-term declines in tourism, and 

the costs of monitoring, management and mitigation” (Figure 1) (Berdalet, 2017). Estimates of 

HAB economic impacts rarely consider all of these factors together (Morgan, Larkin, & Adams, 

2010). Aggregating the economic impacts is problematic in part due to the methodologies of 

estimating these costs (Berdalet, 2017; Hoagland, Anderson, & Kaoru, 2002). Estimates that 

include additional drinking water treatment, loss of recreational use, and decline in property 

values result in an estimated cost of $64 million in the US (Boyer, Danniels, & Melstrom, 2017). 
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Figure 1: Aspects to consider when assessing the economic impact of blooms. Reprinted from 
“State of knowledge and concerns on cyanobacterial blooms and cyanotoxins” by Merel, S. 2013. 
Environmental International, 59 

Public health impacts comprise the most significant economic losses caused by HABs (Hoagland 

& Scatasta, 2006), estimated to be approximately 42% of the total impact (Anderson, Hoagland, 

& Kaoru, 2009; Hoagland et al., 2002). Public health impacts include medical costs, lost wages 

and work days, and reduced quality of life (Kouakou & Poder, 2019). Healthcare and medication 

costs associated with respiratory and gastrointestinal impacts following exposure can cost 

upwards of $12,000-14,000 per incident (Kouakou & Poder, 2019). Lost wages and work days 

can also result from HAB exposure (Kouakou & Poder, 2019). 

HABs can result in fishing and aquaculture losses. Areas surrounding Lake Erie were estimated 

to lose up to $5.58 million in lost fishing expenditures during summers that experience long-term 

cyanobacteria blooms (Fisheries, 2021; Wolf, Georgic, & Klaiber, 2017). Thirty four million fish 

were killed in 33 Texas waterbodies from toxic algae between 1981-2008. They were valued at 

$14 million (Fisheries, 2021; Southard, Fries, & Barkoh, 2010). Catfish farming in the US is the 
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largest aquaculture industry valued at over $450 million annually (Lopez et al., 2008). 

Cyanobacteria can produce compounds resulting in an off-flavor in catfish (Tucker, 2000). Off-

flavor fish is the industry’s second largest cause of economic loss (Lopez et al., 2008). Estimates 

show that economic losses due to cyanobacteria could range to $60 million in 1998 prices 

(Tucker, 2000). Direct mortality of catfish due to toxic microcystins have been documented in the 

most extreme examples (Zimba, Khoo, Gaunt, Brittain, & Carmichael, 2001).  

Cyanobacterial blooms affect tourism detrimentally. The associated costs are often not calculated 

(Merel et al., 2013). Blooms can result in restrictions on recreational activities, even if they are 

not toxic. A bloom of Anabaena occurred in the Darling River in Australia in 1991. This 

Anabaena bloom was not neurotoxic. The tourism industry still faced an estimated loss of 

approximately $1.5 million (Steffensen, 2008). Another bloom that same year in New South 

Wales resulted in a total estimated tourism loss of $6.7 million compared to the previous year, 

which did not experience a bloom (Steffensen, 2008).  

Losses of tourism can also directly impact business demand and property values. A publicized 

HAB event can lead to reduced tourism, reducing the revenue of local businesses such as 

restaurants, hotels, and boat tours (Bingham, Kinnell, Bingham, & Kinnell, 2020). These impacts 

can continue up the supply chain if local businesses buy fewer supplies or employ fewer workers 

and even impact property values.  

An analysis of Lake Erie’s HABs on local tourism estimated that Ohio had $66-305 million 

tourist dollars at risk from HABs. It estimated that Michigan had approximately $25 million in 

tourism dollars at risk from HABs (Bingham et al., 2020). A 2014 bloom resulted in Toledo, 

Ohio issuing a do not drink order for 500,000 residents for three days due to the levels of 

microcystin present (Fisheries, 2021). It was estimated that this resulted in over $10 million (2015 

dollars) in losses to shoreline property value services, including drinking water, recreation, and 
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wildlife habitat (Fisheries, 2021). Lake Erie experienced blooms in 2011 and 2014 estimated to 

have an average economic loss of $70 million (Berdalet, 2017). The 2011 bloom covered more 

than 2,000 square miles leading to fouled beaches, a larger anoxic zone, and impacted fish 

populations (Erickson, 2013). Economists have estimated that if the 67 beaches on Lake Erie had 

to close due to HABs, over $2 million would be lost each day (Fisheries, 2021)., Home prices 

were shown to increase by 2% or roughly $2,000 based on median home price when algal levels 

(chlorophyll-a used as a proxy) were reduced in Lake Erie (Fisheries, 2021). 

HAB advisories alone have been shown to impact tourism in Oklahoma. A survey of Grand Lake 

visitors in 2015 revealed that 25% of respondents would have canceled a visit if a “no bodily 

contact” warning was issued prior to their trip. Twenty percent of those indicated that they would 

not visit at a later date after the advisory (Boyer, Danniels, et al., 2017). A study of Oklahoma 

state parks showed a 19% decrease in visitation to lakes during the month that a blue-green algae 

(BGA) warning was issued (Boyer, Danniels, et al., 2017). Analysis of the impacts of the 2011 

BGA advisories for Lake Texoma estimated a loss of $45 million in lost sales and tourism-related 

activities (Boyer, Danniels, et al., 2017). This loss equates to roughly 8% or almost one month of 

tourism business for the lake.  

Complete analysis of the economic impacts of HABs in Oklahoma is difficult to capture, 

particularly when events such as the 2013 HAB event wiping out the fishery at Altus-Lugert Lake 

occur (Boyer, Danniels, et al., 2017). Estimating the total loss is difficult because it is hard to 

place a value on sport fish. The Oklahoma Secretary of the Environment in 2011 created a 

committee that determined monitoring once a month at just the 100 largest reservoirs across the 

state would cost over $3.5 million a year (Smithee, Cauthron, Wright, Armstrong, & Gillilans, 

2012). 
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Legislation 

Initial government focus on HABs was centered on oceans, estuaries, and the Great Lakes. 

Legislation led to the creation of the National Research Plan for Coastal Harmful Algal Blooms 

in 1998. There was no national research plan for freshwater HABs (FHABs). Most of the research 

came from individual projects without a concerted effort (Lopez et al., 2008). Federal policy and 

guidelines have yet to be developed for FHABs. Many states and localities rely on guidance from 

the World Health Organization concerning risk management and control of FHABs (Lopez et al., 

2008).  

There has been more focus on FHAB research across the nation in recent years. Congress 

reauthorized the Harmful Algal Bloom and Hypoxia Research and Control Act with amendments 

to include freshwater HABs in 2004 (HABHRCA, 2004). The new legislation required the 

creation of a report titled, Scientific Assessment of Freshwater Harmful Algal Blooms. This report 

aspired to 1) examine the causes, consequences, and economic costs of freshwater HABs, 2) 

establish priorities and guidelines for a research program on freshwater HABs, and 3) make 

recommendations to improve coordination among Federal agencies with respect to research on 

HABs in freshwater environments (Lopez et al., 2008).  

The reauthorized legislation required a National Research Plan to reduce HAB occurrence and 

impacts to be developed (Hudnell, 2010). The HAB Research, Develop, Demonstrate and 

Technology Transfer Plan was created. It was designed to prevent, control, and mitigate blooms 

within the US (“HABHRCA,” 2017; Hudnell, 2010). Additional programs funded under the 

HABHRCA include the Ecology and Oceanography of Harmful Algal Blooms (ECOHAB); 

Monitoring and Event Response for Harmful Algal Blooms (MERHAB); Prevention, Control, 

and Mitigation of Harmful Algal Blooms (PCMHAB); Gulf of Mexico Ecosystems and Hypoxia 

Assessment (NGOMEX); and the Coastal Hypoxia Research (CHRP) (“HABHRCA,” 2017). 
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The Congressional committees involved with HABHRCA did not have the authority to authorize 

funding for EPA or to mandate that the EPA create a research plan focused on FHABs (Hudnell, 

2010). This presented a problem for implementing such plans, as the EPA is the agency that 

oversees all US freshwaters under the Clean Water Act (2002) and Safe Drinking Water Act 

(2002) (Hudnell, 2010). Recent HABHRCA amendments in 2014 and 2017 required NOAA and 

the EPA to “advance the scientific understanding and ability to detect, monitor, assess, and 

predict HAB and hypoxia events” in freshwaters (US EPA, 2021b). The amendments also granted 

the EPA the statutory authority to declare if a HAB or hypoxia event in freshwater is an event of 

national significance (OW US EPA, 2021). A 2019 amendment required the EPA HAB task force 

to conduct a scientific assessment of HABs in the US at least every five years. The first report is 

due in 2024 (US EPA OIG, 2021). 

Nationwide standards and guidance were still missing despite these amendments. An assessment 

by the EPA’s Office of Inspector General in 2021 found that the EPA still lacked an agency-wide 

strategic action plan to address HABs (US EPA OIG, 2021). The assessment determined, that 

while the EPA is working on HABs on many fronts,EPA must coordinate the efforts across the 

whole agency at national, regional, and local levels to avoid duplication of efforts, facilitate 

information exchange, and further advance Agency efforts to address HABs (US EPA OIG, 

2021). The EPA’s OIG recommended that any agency-wide strategic plan should incorporate 

strategies for (1) closing identified knowledge gaps; (2) monitoring and tracking HABs; (3) 

enhancing the EPA’s leadership role in addressing freshwater HABs; (4) coordinating EPA 

activities internally and with states; and (5) establishing additional criteria, standards, and 

advisories, as the scientific information allows (US EPA OIG, 2021). The Agency responded with 

an expected completion date of April 2023 for an agency-wide strategic plan (US EPA, 2021). 
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Remote Sensing and Cyanobacteria 

Remote sensing (RS) is the process of detecting and monitoring the physical characteristics of an 

area by measuring it’s reflected and emitted radiation at a distance, most often from satellite or 

aircraft (USGS, 2015). Sensors detect emitted or reflected light from the target object. Earth 

features can reflect, absorb, transmit, and emit electromagnetic (EM) energy (“Geospatial 

Technology,” 2023). A sensor can then measure that feature's radiance, or the amount of light the 

sensor captures. 

The electromagnetic spectrum is comprised of the range of frequencies, wavelengths, and energy 

of electromagnetic radiation. The sun produces energy across the full spectrum (NASA, 2016). 

Humans can only see a small portion of the spectrum. This is termed visible light (Figure 2). All 

objects produce a unique spectral response curve which is the magnitude of EM energy reflected 

or emitted from an object across a range of wavelengths (DiBiase, 2018). These patterns and their 

relationship to each other allow objects to be accurately identified from RS techniques. Variables 

including atmospheric absorption, atmospheric scattering, sun glint, and others can impact what 

the sensors detect and lead to erroneous data. Attempts to mitigate these impacts are often 

required. This includes atmospheric and radiometric corrections and the proper understanding of 

the sensors’ characteristics and capabilities.  
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Figure 2: Electromagnetic Spectrum. Reprinted from Electromagnetic Spectrum by Franson, J. 

2017. Principals of Structural Chemistry. 

Cyanobacteria produce a unique spectral response curve which is used for detection and 

monitoring purposes. Most RS methods for detecting and estimating bloom biomass utilize 

algorithms that rely on chlorophyll-a (Chl-a) and phycocyanin (PC) (Kutser, 2004; L. Li, Li, Shi, 

Li, & Song, 2012; S. Mishra, Mishra, Lee, & Tucker, 2013; Shi, Zhang, Qin, & Zhou, 2019). 

Chlorophyll-a has long been used as one of the primary phytoplankton pigments for bloom 

indication. It is present in all phytoplankton communities and not just cyanobacteria. Chl-a 

exhibits noticeable peaks at approximately 440 nm (blue light) and 675 nm (red light) (Figure 3) 

(Shi et al., 2019). Chl-a can be derived accurately from the absorption peak in the blue 

wavelengths in ocean waters (Shi et al., 2019). This approach can fail in inland waters due to 

impacts from colored dissolved organic matter (CDOM) and detritus that interfere with the 

necessary spectral region (Gitelson et al., 2008; Shi et al., 2019; Stumpf et al., 2016a). Alternative 

approaches to Chl-a estimation have been developed leveraging the red and near-infrared (NIR) 

wavelengths (Gitelson et al., 2008; Kudela et al., 2015; Matthews, Bernard, & Robertson, 2012). 
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Figure 3: Spectral curves obtained at different regions and with several methods presented 
common cyanobacteria features: a) Chl-a absorption at 440 and 675 nm; b) phycocyanin 
absorption at 620 nm and fluorescence at 650 nm; c) scattering in the green region; d) near-
infrared scattering by phytoplankton cells. Reprinted from “Mapping potential cyanobacterial 
bloom using Hyperion/E)-1 data in the Patos Lagoon estuary” by Lobo, F. 2009.  

Chl-a-only algorithms are limited as Chl-a cannot differentiate between all phytoplankton 

communities and those specific to cyanobacteria. PC is unique to freshwater cyanobacteria (Shi et 

al., 2019). PC exhibits a distinct absorption signature at approximately 620 nm (Figure 3) that a 

spectral band centered around 615-630nm can quantify (L. Li et al., 2012; S. Mishra et al., 2013; 

Randolph et al., 2008; Ruiz-Verdú, Simis, de Hoyos, Gons, & Peña-Martínez, 2008)
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CHAPTER II 
 

 

LITERATURE REVIEW 

The 1970s marked the beginning of remote sensing (RS) applications in regards to water (Yang et 

al., 2022). The increased spatial and temporal coverage offered through remote sensing 

technologies has dramatically increased our ability to evaluate the dynamic nature of many water 

quality parameters (Yang et al., 2022). Standard water quality parameters assessed with remote 

sensing include total suspended matter (TSM) or turbidity; Secchi disk depth (SDD); colored 

dissolved organic matter (CDOM); chlorophyll-a (Chl-a); water temperature; sea surface salinity 

(SS); dissolved oxygen (DO); biochemical oxygen demand (BOD); nutrients including total 

nitrogen (TN) and phosphorous (TP); and land use changes that may impact waterbodies 

(Gholizadeh, Melesse, & Reddi, 2016; Lee, Orne, & Schaeffer, 2014; Ritchie, Zimba, & Everitt, 

2003; Yang et al., 2022). 

Focus was placed on the remote sensing of HABs in line with the development of RS 

technologies and algorithms for water quality parameters (Y. Li, Zhou, Zhang, Li, & Shi, 2021). 

The first use of satellite observations to detect HABs came after the launch of the Coastal Zone 

Color Scanner (CZCS) in 1978. They were able to detect a bloom in the Gulf of Mexico (L. Shen, 

Xu, & Guo, 2012). Only a few published studies existed using CZCS until the 21st century (Khan 

et al., 2021). The launch of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) in 1997 

significantly contributed to the increase in HAB studies and monitoring capabilities that arose in 

the early 2000s (L. Shen et al., 2012).  
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Marine remote sensing has seen significant financial contributions from international 

organizations and varying space agencies (Stephanie C. J. Palmer, Kutser, & Hunter, 2015). This 

resulted in robust programs. One such program includes the International Ocean Color 

Coordinating Group (IOCCG). This program helps to coordinate and synthesize worldwide 

efforts and establish research agendas (S. C. J. Palmer et al., 2015). Inland remote sensing of 

freshwater HABs received much less attention and coordination until more recently (Lopez et al., 

2008). FHABs were considered more of a local or regional problem. They were susceptible to 

falling through gaps in regards to funding (Stephanie C. J. Palmer et al., 2015). A bibliometric 

analysis of approximately 1,300 peer-reviewed articles published between 1999-2019 revealed 

that 85% of publications were marine focused (60% coastal, 25% open ocean), with inland 

environments comprising 14% of the research (Sebastiá-Frasquet et al., 2020). 

The trajectory of RS applications in inland waters differs from that of ocean and terrestrial RS 

advancements (Topp, Pavelsky, Jensen, Simard, & Ross, 2020). A bibliometric analysis of the 

patterns and trends of RS studies was conducted in 2020. This analysis illustrated that the method 

development of oceanic and terrestrial RS that occurred in the 1970s led to publications focused 

on understanding spatially expansive, complex processes as early as the mid-1980s (Topp et al., 

2020). Inland waters did not show such a progression. Inland water RS experienced a 30-year 

period where the majority of the publications focused primarily on developing models and 

validating those efforts (Topp et al., 2020). The early 2000s marked the start of rapid increases in 

RS publications (Y. Li et al., 2021). This increase included the advancement from a model and 

algorithm focus for inland waters to research that attempted to address spatiotemporal trends, 

drivers, and the impacts of altered water quality in regard to human and ecosystem health and 

functioning (Y. Li et al., 2021; Topp et al., 2020).  

The past 10-15 years have seen significant advances in computing resources, longer and more 

frequently obtained datasets, and improved operational RS algorithms (Topp et al., 2020). This 
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has led to an increased understanding of the complicated and varied nature of inland water 

systems (Topp et al., 2020). Inland water RS studies have exhibited increasing trends since 2010 

(Sebastiá-Frasquet et al., 2020). 

Initial uses of remote sensing for HAB detection were limited to coastal and ocean uses 

(Stephanie C. J. Palmer et al., 2015). These ocean sensors typically had such a large spatial 

resolution that they were considered unsuitable for monitoring most inland waterbodies except for 

the largest (Stephanie C. J. Palmer et al., 2015). Ocean color sensors such as Moderate Resolution 

Imaging Spectroradiometer (MODIS), Medium Resolution Imaging Spectrometer (MERIS), 

SeaWiFS, and CZCS were initially used for inland waters (Topp et al., 2020). Sensors designed 

for terrestrial applications were incorporated more into inland water RS later and continue to be 

used (Stephanie C. J. Palmer et al., 2015). Each sensor has its own applicability based on the 

sensors’ spatial, temporal, spectral, and radiometric resolutions (Topp et al., 2020). Ocean sensors 

typically have a coarse spatial resolution (300-1000m), but a finer temporal resolution (~1 day) 

(Olmanson, Brezonik, & Bauer, 2011; Topp et al., 2020). These resolutions can make them more 

suitable for large-scale processes that change quickly. Terrestrial sensors typically offer a much 

finer spatial resolution (10-30m), but a much more infrequent return interval (1-2 weeks) 

(Olmanson et al., 2011). All sensor choices involve tradeoffs. A relatively small subset of 

researchers have leveraged commercial sensors, including IKONOS and Worldview 2, that offer 

high spatial resolution (Dvornikov et al., 2018; Sawaya, Olmanson, Heinert, Brezonik, & Bauer, 

2003; Topp et al., 2020). 

Historical and Current Sensors 

Research designed to analyze HABs has utilized a variety of satellite sensors from their inception 

to present. The first sensor used was the CZCS. CZCS was operational from 1978-1986 (IOCCG, 

2023). CZCS had a spatial resolution of 825m and six spectral bands (443nm, 520nm, 550nm, 
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670nm, 750nm, and 11.5µm) (IOCCG, 2023). Five of these bands resided in the most common 

HAB spectral region. This resulted in the first chance to detect HABs (Topp et al., 2020). CZCS’s 

delayed data collection and processing capabilities reduced its HAB applicability due to the 

ephemeral nature of blooms. 

The next generation of ocean sensors included NASA’s Sea-viewing Wide Field of View Sensor 

(SeaWiFS). SeaWiFS was operational from 1997-2010 (Shen et al., 2012). SeaWiFS significantly 

improved HAB detection by adding four spectral bands. These bands included bands more 

sensitive to chlorophyll variation and those better suited for atmospheric correction (L. Shen et 

al., 2012). SeaWiFS was better suited to capturing bloom dynamics due to its fine temporal 

frequency capturing daily imagery (NASA, 2020).  

SeaWiFS data has been used for many studies. These studies include chlorophyll-a estimation, 

dissolved organic carbon (DOC), and total suspended sediment estimates (Dvornikov et al., 2018; 

Heim, Oberhaensli, Fietz, & Kaufmann, 2005; Korosov, Pozdnyakov, Pettersson, & Grassl, 2007; 

Stephanie C. J. Palmer et al., 2015; D. Pozdnyakov, Korosov, Grassl, & Pettersson, 2005; D. V. 

Pozdnyakov, Korosov, Petrova, & Grassl, 2013). SeaWiFS was the most used satellite sensor 

from 2000-2015. It used in 49% of RS studies during this timeframe (Sebastiá-Frasquet et al., 

2020).  

SeaWiFS still had its limitations. SeaWiFS lacked a spectral band in the 683nm range where 

chlorophyll florescence peaks (Shen et al., 2012). SeaWiFS also suffered from a lack of in-situ 

validation, limiting its potential accuracy of HAB detection (L. Shen et al., 2012). Reinart and 

Kuster (2006) examined the limitations of the applications of SeaWiFS data. Those limitations 

include its coarse temporal resolution which was greater than 1000m (Reinart & Kutser, 2006). 

This spatial resolution primarily limited it to coastal applications. 
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MODIS represented the third generation of sensors. MODIS was first launched in 1999 on the 

Terra satellite (NASA, 2023a). MODIS was launched again on the Aqua satellite in 2002. 

MODIS remains operational today (NASA, 2023a). It collects 36 spectral bands with varying 

spatial resolutions (L. Shen et al., 2012). Bands 8-16 (405-877nm) are the most suitable for HAB 

detection. These bands have a spatial resolution of 1,000m (NASA, 2023a). MODIS data has 

been consistently used for HAB detection (Bergamino et al., 2010; Chavula, Brezonik, 

Thenkabail, Johnson, & Bauer, 2009; Hu et al., 2010; Moradi, 2014; Y. Zhang et al., 2015). It 

was the second most used sensor between 2005-2017 (Sebastiá-Frasquet et al., 2020). This sensor 

is known to suffer from solar flare influence, as it does not tilt the sensor track. MODIS does not 

tilt the sensor track because it was designed for observations including the atmosphere and land, 

not just the ocean (L. Shen et al., 2012). 

MERIS was launched in 2002 by the European Space Agency (IOCCG, 2023). It is a third 

generation ocean sensor (IOCCG, 2023; L. Shen et al., 2012) that remained operational through 

2012. It collected 15 spectral bands (350nm-1,040nm) (L. Shen et al., 2012) and had a much finer 

spatial resolution of 300m (European Space Agency, 2021). The finer spatial resolution of 

MERIS significantly improved the number of waterbodies that could be observed. This improved 

the observation of temporal and spatial water quality and HAB patterns (Tyler et al., 2016). 

MERIS has been shown capable of extracting more fluorescence information than MODIS (L. 

Shen et al., 2012). MERIS had spectral bands more suitable for HAB detection and identification 

than MODIS (Koponen et al., 2007; Reinart & Kutser, 2006). It was a commercial satellite. These 

commercial costs limited the data availability for HAB studies and researchers (L. Shen et al., 

2012).  

The Ocean Land Colour Imager (OLCI) sensor is part of the newest generation of ocean sensors. 

OLCI was first launched in 2016 on the Sentinel-3A platform (NASA Ocean Biology Processing 

Group, 2020). Its key mission driver was the continuation of MERIS instrument capabilities 
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(European Space Agency, 2023b). Key advancements were made between these sensors. OLCI 

captures 21 spectral bands (European Space Agency, 2023b). This is an increase from the 15 

bands MERIS captured. These bands are suitable for inland waters (400-1020nm) (Topp et al., 

2020). OLCI retains a finer spatial resolution of 300m and a significantly finer temporal 

frequency. OLCI initially offered a less than three-day return interval. This was shortened to a 

roughly one-day return interval with the launch of an additional OLCI sensor aboard Sentinel-3B 

in 2018 (European Space Agency, 2023b). This contrasts with MERIS’s return time of 

approximately 15 days. OLCI added a spectral band at 673nm. This band was chosen to improve 

chlorophyll fluorescence measurements (European Space Agency, 2023b). OLCI reduced sun-

glint contamination by tilting its cameras. The OLCI sensors now represent one of the primary 

sensors used for inland water remote sensing (M. Shen et al., 2017). 

Sensor selection involves weighing the tradeoffs between sensors. These tradeoffs are associated 

with sensors varying spectral, temporal, and spatial resolution. The spectral band locations and 

widths are typically the most crucial aspect for HAB detection. Spectral band location and width 

control the detection algorithms that can be chosen (Liu, Glamore, Tamburic, Morrow, & 

Johnson, 2022). Comparisons of applicability and limitations between sensors have been 

conducted for many scenarios. These include bloom detection in the Baltic Sea (Reinart & 

Kutser, 2006) and southern Caspian Sea (Moradi, 2014), lake water quality assessments 

(Olmanson et al., 2011), and HAB detection in small-medium waterbodies (Liu et al., 2022).  

Remote Sensing Challenges 

Detecting and characterizing HABs offers several challenges in marine and freshwater 

environments. HABs can exhibit significant spatial heterogeneity (Kutser, 2009). A pixel size of 

300-1,000m likely captures an area that has variation in HAB abundance. This is likely not 

represented in the data. Satellite sensors can only detect blooms roughly two meters into the water 
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column in clear water (D. R. Mishra, Narumalani, Rundquist, & Lawson, 2005). Detection depth 

is greatly reduced with increasing turbidity (Coffer, Schaeffer, Foreman, et al., 2021; T. Wynne, 

Stumpf, Tomlinson, & Dyble, 2010). Cyanobacteria species, including Microcystis, have the 

mechanisms to control their buoyancy (Mishra et al., 2019). They will be found near the surface 

when there is minimal water column mixing (S. Mishra et al., 2019; Timothy T. Wynne & 

Stumpf, 2015). Mixing of the water column can greatly increase the uncertainty around 

abundance and biomass estimates (S. Mishra et al., 2019; Stumpf, Wynne, Baker, & Fahnenstiel, 

2012). Wind-driven mixing is a significant contributor. Water column mixing can result in the 

majority of a blooms biomass failing to get captured (S. Mishra et al., 2019; Stumpf et al., 2012). 

Inland water remote sensing contains challenges not present in the marine environment. Inland 

waters are considered to be dynamic, highly optically-complex systems (Morel & Prieur, 1977; 

Tyler et al., 2016). Water quality parameters including suspended particles and detritus and 

colored dissolved organic matter (CDOM) further contribute to this complexity (Mouw et al., 

2015; Stephanie C. J. Palmer et al., 2015; Shi et al., 2019). Terrestrial impacts including bottom 

reflectance, and land adjacency effects play a role (Mouw et al., 2015; Palmer, Kutser, et al., 

2015). These factors rarely co-vary over space and time (Mouw et al., 2015; Stephanie C. J. 

Palmer et al., 2015; Shi et al., 2019). This makes them significantly more difficult to consistently 

correct for in the imagery. Inland waters require more challenging atmospheric corrections (Tyler 

et al., 2016). Atmospheric impacts can further impact the operation and performance of selected 

in-water algorithms (Stephanie C. J. Palmer et al., 2015).  

Suspended particulate matter (SPM) in inland waters can complicate RS algorithm performance. 

SPM reduces the light passing through a water column. This leads to decreasing transparency as 

SPM concentrations increase (Dörnhöfer & Oppelt, 2016). It also increases the water leaving 

radiance through its scattering of light (Giardino et al., 2015).  
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CDOM is a product of decaying material (“Chromophoric Dissolved Organic Matter,” 2022). It 

may come from allochthonous or autochthonous sources (Brezonik, Olmanson, Finlay, & Bauer, 

2015). This material strongly absorbs shorter wavelengths of light (blue and ultraviolet) (Nguy-

Robertson, Li, Tedesco, Wilson, & Soyeux, 2013). It alters the spectral distribution of the 

radiation in the water while also causing light attenuation with increasing concentration (Nguy-

Robertson et al., 2013). CDOM can impact accurate estimations of Chl-a (Zhu et al., 2014). This 

is a particular problem when ocean algorithms utilizing a blue spectral band are used (Zhu et al., 

2014). 

Bottom reflectance can impact the quantity and spectral nature of the light being reflected from a 

waterbody (Cannizzaro & Carder, 2006). It is impacted by depth and substrate composition 

(Mouw et al., 2015). Bottom reflectance can pose a particular problem in optically shallow 

waters. Many bloom detection algorithms were primarily developed in ocean environments where 

bottom reflectance does not factor in. This makes many of those algorithms unsuitable for inland 

waters (Mouw et al., 2015). The contamination from bottom reflectance has been shown to 

produce drastically overestimated chlorophyll concentrations (Barnes et al., 2013; Cannizzaro & 

Carder, 2006; Carder, Cannizzaro, & Lee, 2005). It often varies within and between waterbodies 

(Mouw et al., 2015). Work has been done to help mitigate bottom reflectance impacts by utilizing 

spectral bands between 600-650nm (Barnes et al., 2013). 

Atmospheric corrections over inland waters require more complicated correction algorithms than 

those applied to marine environments. Nearby land can produce adjacency effects. This occurs 

when light reflected from land surfaces is scattered by atmospheric components and enters a 

sensor’s field of view (Paulino et al., 2022; Richter, Bachmann, Dorigo, & Muller, 2006). 

Scattered light can alter the water’s spectral reflectance. It is particularly a problem in smaller 

waterbodies (Paulino et al., 2022). The impact from adjacency effects and their magnitude can 

vary wildly between waterbodies. They depend on surrounding land cover, shape and size of the 
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waterbody, sensor characteristics, and the atmosphere composition, including aerosols (Paulino et 

al., 2022). This often results in pixels near land being masked (Mouw et al., 2015). Masking 

pixels can help reduce erroneous information but results in a loss of observations about a critical 

portion of many inland waterbodies. 

Aerosols around inland waters include smoke, dust, and emissions (e.g. NO2 and CO2) 

(Dörnhöfer & Oppelt, 2016). They further complicate atmospheric corrections (Dörnhöfer & 

Oppelt, 2016; Mouw et al., 2015). No reasonable means for correcting aerosol effects have been 

developed (Mouw et al., 2015). This is due to a lack of aerosol vertical distribution information 

(Gordon, 1997). Aerosols such as NO2 have been demonstrated to vary significantly over the span 

of less than a day (Fishman et al., 2012). This would require almost simultaneous in situ sampling 

to apply to atmospheric corrections (Fishman et al., 2012; Herman et al., 2009; Mouw et al., 

2015). Work is being conducted to further the development of algorithms that account for 

atmospheric corrections and adjacency effects (Kiselev, Bulgarelli, & Heege, 2015; Sterckx, 

Knaeps, Kratzer, & Ruddick, 2015).  

Algorithms 

HAB detection algorithms are developed based on the bio-optical factors related to HABs. These 

bio-optical factors include Chl-a, phycocyanin, and CDOM (Liu et al., 2022; Tao et al., 2013). 

Bio-optical algorithms can range widely in complexity. The most common algorithms in use 

today for inland waters include empirical and semi-empirical algorithms, semi-analytical 

algorithms, and the rising use of machine learning algorithms (Liu et al., 2022; Topp et al., 2020).  

Empirical algorithms are most commonly used in inland remote sensing (Topp et al., 2020). 

Empirical models fit a standard linear regression between the spectral bands and in-situ water 

samples. These empirical models can struggle with increasing spatial and temporal scales that 

exhibit large variability in spectral patterns of the bio-optical factors (Topp et al., 2020). 
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Empirical algorithms perform best within the range of input data (Topp et al., 2020). They are 

typically simplistic, easy to understand, and have minimal computation requirements (Topp et al., 

2020). This leads them to be chosen often for use in these applications. 

Semi-empirical models utilize multi-band index values (Topp et al., 2020). These are designed to 

reduce confusion from non-interest constituents while enhancing the spectral properties of the 

parameter of interest (Topp et al., 2020). Common semi-empirical indexes include the normalized 

difference chlorophyll index (NDVI) (S. Mishra & Mishra, 2012), maximum chlorophyll index 

(MCI) (Gower, King, Borstad, & Brown, 2005), and the floating algal index (FAI) (Hu, 2009; 

Topp et al., 2020). Semi-empirical models are generalizable, but require the measurement of 

specific wavelengths to capture the absorption peaks (Topp et al., 2020). This restricts their 

application to sensors with appropriately located bands and spectral resolution (Topp et al., 2020). 

Semi-analytical models are physics-based (Topp et al., 2020; Tyler et al., 2016). They are driven 

by the relationships between the water's and atmosphere's inherent optical properties (IOPs) 

(Topp et al., 2020; Tyler et al., 2016). Semi-analytical models incorporate in-situ measurements 

for model parameterization (Topp et al., 2020). They are the most used physics-based algorithm 

for inland waters (Topp et al., 2020). Theoretical absorption and scattering features are modeled 

in relation to the apparent optical properties. These include illumination conditions, field of view, 

and sensor orientation (Topp et al., 2020). Inversion techniques can then be utilized to estimate 

the water quality constituents (Tyler et al., 2016). Full analytical models are rarely used for 

complex inland waters (Topp et al., 2020). The number of water constituents in inland waters 

becomes increasingly difficult to model (Topp et al., 2020).  

Machine learning methods have been developed as computational capacity and available data 

have increased over the past several years (Liu et al., 2022; Topp et al., 2020). The use of 

machine learning algorithms in optically complex waters has primarily utilized neural network 
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techniques (Doerffer & Schiller, 2007; González Vilas, Spyrakos, & Torres Palenzuela, 2011; Liu 

et al., 2022; Tyler et al., 2016). Other machine learning techniques include support vector 

machines (Matarrese et al., 2008), mixture density networks (Pahlevan et al., 2020), random 

forest/boosted regression trees (Lin, Novitski, Qi, & Stevenson, 2018), and hybrid active learning 

models (Taheri Shahraiyni et al., 2009; Tyler et al., 2016).  

Machine learning models have shown good prediction and detection capabilities (Odermatt, 

Giardino, & Heege, 2010; Tyler et al., 2016). They are still limited as they require extensive and 

representative training sets and validation (Liu et al., 2022; Stephanie C. J. Palmer et al., 2015; 

Tyler et al., 2016). Their algorithms can fail to provide accurate results in local and non-typical 

systems (Liu et al., 2022; Stephanie C. J. Palmer et al., 2015; Tyler et al., 2016). 

Availability of in-situ measurements temporally coincident with satellite overpasses remains one 

of the biggest challenges to algorithm development and validation for optically complex 

waterbodies (L. Shen et al., 2012). Traditional in-situ monitoring typically only encompasses a 

limited spatial coverage and frequency for many inland waters (Stephanie C. J. Palmer et al., 

2015). In-situ data is entirely absent for many inland waterbodies (Stephanie C. J. Palmer et al., 

2015). Access to in-situ data restrained to a handful of lakes can bias algorithm development and 

validation studies (Stephanie C. J. Palmer et al., 2015). This can bias algorithms to the optical 

properties of those specific waterbodies that have available in-situ data (Stephanie C. J. Palmer et 

al., 2015). Increased coordination to compare algorithms and clarification of the strengths and 

limitations of the different algorithms are still needed (Mouw et al., 2015). 

Cyanobacteria Assessment Network (CyAN) 

CyAN represents a multi-agency collaboration between the United States Environmental 

Protection Agency (EPA), the National Aeronautics and Space Administration (NASA), the 

National Oceanic and Atmospheric Administration (NOAA), and the United States Geologic 
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Survey (USGS) (ORD US EPA, 2014b). The agencies’ goals were to develop a consistent nation-

wide remote sensing system for the identification of harmful cyanobacteria blooms. The CyAN 

project officially started in October 2015.  

CyAN was designed to support the management and public use of lakes and reservoirs (ORD US 

EPA, 2014b; Werdell, 2015). The CyAN project characterizes the exposure and human health 

impacts from recreational and drinking waters. It also helps identify surrounding landscape 

factors hypothesized to impact cyanobacterial blooms in freshwater systems (ORD US EPA, 

2014b). 

Management of cyanobacterial blooms varies between states (Werdell, 2015). Certain states have 

their own monitoring programs. Vermont has a Cyanobacteria tracking program (“Cyanobacteria 

(Blue-Green Algae) Tracker,” 2016). Indiana monitors cyanobacteria across the state through 

Indiana’s Department of Environmental Management (Algae, 2021). 

Some states conduct only sporadic, or deemed as needed, sampling and monitoring. This results 

in a patchwork of detection and response strategies across the US (Werdell, 2015). Access to 

frequent and consistent data is considered one of the most significant issues facing water resource 

managers (Werdell, 2015). 

One of CyAN’s goals is to provide user-friendly data structures that non-specialists are able to 

analyze and act upon (Schaeffer et al., 2018; Werdell, 2015). Past methods for disseminating 

satellite imagery to water resource managers were often cumbersome (Werdell, 2015). CyAN 

offers data in an easy-to-use format. This increases the ability of managers to identify 

waterbodies experiencing a bloom and analyze annual and seasonal patterns (Werdell, 2015).  

CyAN data are provided to managers after post-processing. This removes a challenging step for 

many non-specialists. CyAN data is processed through NOAA’s automated satellite processing 

system (ORD US EPA, 2014b). This system incorporates the NASA standard ocean color 
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satellite processing software found in NASA’s SeaWiFS data analysis system (SeaDAS) (ORD 

US EPA, 2014b). SeaDAS is a free, open-source software designed for the processing, display, 

analysis, and quality control of a wide array of satellite data (Schaeffer et al., 2018). 

Initial CyAN algorithm development utilized the MERIS archive of imagery from 2002-2012 

(ORD US EPA, 2014b). These algorithms were based on the cyanobacteria monitoring program 

for Lake Erie (Lunetta et al., 2015). Lake Erie has the longest-running monitoring program in the 

US (Lunetta et al., 2015). It primarily uses the Cyanobacterial Index (CI) (Wynne et al., 2010).  

The CI utilizes a second derivative spectral shape algorithm centered on the 68nm band in 

MERIS imagery (T. Wynne et al., 2010; T. T. Wynne et al., 2008). Second derivative algorithms 

have been shown to function well even with subpar or minimal atmospheric corrections (Philpot, 

1991). Validation efforts were undertaken to evaluate the algorithms applicability across the US 

(CyAN, 2022). These efforts started in the eastern US (Lunetta et al., 2015).  

The algorithm for cyanobacteria detection that utilizes a spectral shape (SS) equation is: 

𝑆𝑆(𝜆) = 𝑅(𝜆) − 𝑅(𝜆!) + {𝑅(𝜆!) − 𝑅(𝜆")} ∗
(𝜆 − 𝜆!)
(𝜆" − 𝜆!)

 

where l=681nm, l- =665nm, and l+ = 709nm following Wynne et. al., 2008. R is the Rayleigh-

corrected reflectance (Lunetta et al., 2015). This results in a Cyanobacterial Index  

(CI) = -SS(681) (Lunetta et al., 2015). Cyanobacteria have been observed to have negligible 

fluorescence (Seppälä et al., 2007). This results in a dip at 681nm due to strong chlorophyll 

absorption that results in the negative SS(681) (Binding, Greenberg, Jerome, Bukata, & 

Letourneau, 2011; Lunetta et al., 2015). This CI algorithm provided strong cell count estimates of 

the primarily Microcystis spp. cyanobacterial blooms in Lake Erie (Wynne et al., 2010). 

The algorithm was updated to include exclusionary criteria (CIcyano) (US EPA, 2022). This was 

done to help remove other erroneously identified blooms that were not cyanobacteria, such as 
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chlorophytes (T. Wynne et al., 2013). Updates include using spectral bands centered around 

l=665nm, l- =620nm, and l+ =681nm to exclude non-cyanobacterial blooms producing the 

SS(665) (Lunetta et al., 2015). The band centered at 620 nm is sensitive to phycocyanin. 

Increased phycocyanin reduces the reflectance at 620nm (Simis, Peters, & Gons, 2005) producing 

a positive SS(665) (Lunetta et al., 2015). Cyanobacteria are presumed absent when the CI 

SS(665)<0 and present when SS(665)>0 (Lunetta et al., 2015).This helps to reduce non-

cyanobacteria bloom detection (Lunetta et al., 2015). 

CI validation efforts occurred in Ohio, Florida, Rhode Island, Massachusetts, New Hampshire, 

Maine, New York, and Vermont (Lunetta et al., 2015). In-situ cyanobacterial cell counts were 

broken down into four categories: Low(10,000-109,999), Medium (110,000-299,999), High 

(300,000-1,000,000), and Very High (>1,000,000) (Lunetta et al., 2015). CyAN estimated cell 

counts were derived from the CI using the following equation (T. Wynne et al., 2010): 

𝐶𝑦𝑎𝑛𝑜𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎	𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒	 ;
𝑐𝑒𝑙𝑙𝑠
𝑚𝐿 @

= 𝐶𝐼 ∗ 10# 

A total of 2,068 independent in situ samples were selected from lakes in the region between 2009 

and 2012 from several existing monitoring programs (Lunetta et al., 2015). Participating agencies 

are detailed in Lunetta et al., 2015. All data sources utilized different field sampling and cell 

count enumeration methodologies (Lunetta et al., 2015). Samples collected from greater than 

2.0m depth were excluded. The majority of samples were a single surface measurement no lower 

than 2m in depth (Lunetta et al., 2015).  

These were matched with MERIS derived cell counts (Lunetta et al., 2015). Only 579 of the 

matches corresponded with a temporal window +/- 7 days from sample collection. Eight-two 

percent of the matched in-situ samples corresponded with the “Low” cell count range (Lunetta et 

al., 2015). Comparisons of correspondence between the in situ measurements and MERIS-derived 

estimates were analyzed for temporal windows including <1 day, and +/- 1, 3, 5, and 7 days. 



31 
 

Insufficient samples sizes for the Medium, High, and Very High categories were found in the <1 

day temporal window (Lunetta et al., 2015). Correspondence results had very minimal variability 

for temporal windows ranging from 3 to 15 days indicating that the cyanobacterial bloom events 

tended to have a relatively long and typically stable duration (Lunetta et al., 2015). 

The results indicated that the algorithm had correspondence levels of 90% for the Low (10,000-

109,999) category and 83% for the Very High (>1,000,000) category. The Medium and High 

categories performed poorly with only 28% and 40% correspondence, respectively (Lunetta et al., 

2015). This result is important in the context that the reference data was heavily skewed towards 

the Low range category. Seventy-two percent of the reference data was associated with the Low 

category (Lunetta et al., 2015).  These correspondence values account for the errors present 

within both the satellite derived estimates and the in situ cell counts from the reference data 

(Lunetta et al., 2015). The correspondence values represent a conservative estimate of the 

performance of the algorithm (Lunetta et al., 2015).  

Wynne et al. (2010) also highlighted that cyanobacterial blooms may exhibit a high degree of 

spatial variability. This illustrates that a 300m pixel size may contain many different cell densities 

across its area (Lunetta et al., 2015). Inter-pixel variability cannot be captured. Clark et al. (2017) 

presents the CyAN validation efforts with revisions in Figure 4. Those revisions include 

presenting the data in log space, the inclusion of mean absolute percent error (MAPE), and 

coefficient of determination when non-detect and minimum detect values were excluded (Figure 

4) (Clark et al., 2017; Lunetta et al., 2015).  
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Figure 4: Validation of CI algorithm using all cyanobacterial cell count available in situ data 
within +- 7 days of the satellite overpass from Florida, Ohio, and New England states. Reprinted 
from “Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational 
waters and drinking water sources” by Clark, J. 2017. Ecological Indicators, 80 
 

CyAN data is available through NASA’s Ocean Color direct data download source or on their 

mobile or web app. Managers accessing and downloading the data directly can choose 7-day 

maximum composites from MERIS (2002-2012) and OLCI (2016-present) sensors. They can 

otherwise choose daily data products from OLCI sensors (2019-present) (NASA, 2023b). Data is 

provided as a GeoTIFF with digital numbers (DN). Land, cloud, and no data pixels are already 

flagged.  

The CyAN app is available as both a web and mobile app. The app provides CyAN data for over 

2,000 lakes across the US (ORD US EPA, 2019). This app was developed to help managers make 

faster and better-informed management decisions related to cyanobacterial blooms (ORD US 

EPA, 2019). This app offers a customizable interface. Users can determine their own 

cyanobacterial abundance thresholds. This allows for easy use across states and localities that 

may set their own risk thresholds. Lake managers can use this app to monitor their region on a 
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daily or weekly basis. They can pinpoint potential problem areas and focus their attention and 

resources (ORD US EPA, 2019).
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CHAPTER III 
 

 

DATA AND METHODS 

Satellite Imagery 

Satellite imagery was obtained from NASA’s Ocean Biology Processing Group (OBPG) CyAN 

project data page (https://oceancolor.gsfc.nasa.gov/projects/cyan/). The imagery was obtained 

from the European Space Agency’s (ESA’s) Ocean and Land Colour Instrument (OLCI). OLCI 

has been operational aboard the Sentinel-3A platform since May 2016 (NASA Ocean Color). A 

second OLCI sensor has been aboard the Sentinel-3B platform since April 2018 (NASA Ocean 

Color). The addition of Sentinel-3B allowed for a higher temporal resolution and a shorter revisit 

time between image captures. This led to the production of daily CyAN data products. 

OLCI sensors collect 21 spectral bands ranging between 400-1020 nanometers (nm) (European 

Space Agency, 2023a). OLCI sensors have a spatial resolution of 300m per pixel. The 

Cyanobacteria Index product (CI-cyano) utilizes a spectral shape algorithm centered on the 

681nm band (Lunetta et al., 2015).  

Imagery was collected for the years 2017-2022. The imagery was 7-day maximum value 

composites and delivered as GeoTIFF files. These composites preserved the maximum value for 

each pixel over the 7-day period.



35 
 

The number of images per 7-day composite increased with the launch of Sentinel-3B in 2019. 

Average number of images per week increased from approximately 3-4 to approximately 5-7. All 

7-day composites were analyzed the same regardless of the average number of images. Pixels 

were removed if flagged as land, clouds, or mixed (T. Wynne, Andrew, Briggs, Litaker, & 

Stumpf, 2020). 

Digital Numbers (DNs) were converted to CI-cyano using the following equation:  

𝐶𝐼$%&'( =	10
) *.,
-.,.,/∗12!3.- 

Cyanobacteria abundance was derived using the following equation from Wynne et al. (2010): 

𝐶𝑦𝑎𝑛𝑜𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎	𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒	 ;
𝑐𝑒𝑙𝑙𝑠
𝑚𝐿 @

= 𝐶𝐼 ∗ 10# 

Detected blooms were considered for any pixels where cyanobacterial abundance was greater 

than the sensors lower detection limit. The sensors estimated lower detection limit is around 

10,000 cells/ml (CyAN, 2022). Detected blooms were separated into four categories. These 

categories are low-risk blooms (<20,000 cell/ml), medium-risk blooms (20,000-100,000 cell/ml), 

high-risk blooms (>100,000 cell/ml), and total blooms. Total blooms represent any level of bloom 

detection above the sensor detection limit. Low, medium, and high-risk blooms are based on the 

WHOs recreational guidance and action levels (Table 3) (WHO, 2003).  

Table 3: Recreational Guidance/Action Levels for Cyanobacteria, Chlorophyll a, and 
Microcystin. Adapted from “Guidelines for safe recreational water environments. Volume 1, 
Coastal and freshwaters” by the World Health Organization. 2003. 

Relative Probability of 
Acute Health Effects 

Cyanobacteria 
(cells/mL) 

Chlorophyll a 
(µg/L) 

Estimated Microcystin 
Levels (µg/L) 

Low <20,000 <10 <10 
Medium 20,000-100,000 10-50 10-20 

High >100,000 >50 >20 
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Study Area 

A total of 69 waterbodies were selected in Oklahoma (Figure 5). These waterbodies align closely 

with the National Hydrography Dataset (NHDplus v2) of lakes that are resolvable by the satellite. 

Resolvable lakes within CONUS require at least three adjacent, water-only pixels (Seegers et al., 

2021). Waterbodies were designated based on their unique Oklahoma Water Resource Board 

(OWRB) Waterbody ID. This results in certain lakes and reservoirs having multiple sections. 

Lakes with multiple sections are analyzed independently in this analysis. All waterbodies had an 

area greater than 1,000 acres. These lakes and reservoirs represent the largest waterbodies across 

the state.  

Trophic Status 

Waterbody trophic status is classified by OWRB. They utilize the Carlson’s Trophic State Index 

(TSI). Carlson’s TSI uses Chl-a concentrations to classify trophic status (OWRB, 2018). 

Carlson’s TSI is calculated as: 

𝑇𝑆𝐼 = 9.81 ∗ 	 ln 𝐶ℎ𝑙 − 𝑎 K
𝜇𝑔
𝐿
N + 30.6 

Lakes larger than 250 surface acres require a minimum of 20 samples for classification purposes 

(OWRB, 2018). All TSI evaluations have been based on annualized Chl-a values since 2001 

(OWRB, 2018). Samples are collected over four sampling quarters. Carlson’s TSI includes four 

main trophic categories (Table 4). 

Table 4: Lake trophic state categories. Reprinted from “2017 Oklahoma Lakes Report: Beneficial 
Monitoring Program” by the Oklahoma Water Resource Board. 2018. 

Carlson TSI Trophic State Definition 
≤ 40 Oligotrophic Low primary productivity and/or low nutrient levels 

41-50 Mesotrophic Moderate primary productivity with moderate nutrient levels 
51-60 Eutrophic High primary productivity and nutrient rich 
≥ 60 Hypereutrophic Excessive primary productivity and excessive nutrients 
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Twenty-five waterbodies are hypereutrophic, 31 are eutrophic, 12 are mesotrophic, and 1, Stanley 

Draper, is oligotrophic of the selected 69 waterbodies. 
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Figure 5: Study area and selected lakes and reservoirs for HAB characterization. Data sourced 
from Oklahoma Water Resource Board Open Data Access Portal. “Surface Water- Lake”.
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Frequency 

Frequency is defined as the number of bloom occurrences out of the total number of potential 

bloom occurrences comprised within the 52 weekly composites (Coffer et al., 2021). Pixel 

frequency was calculated first for every resolvable pixel within a waterbody (Figure 6). Pixel 

frequency was calculated as the number of weeks a bloom was occurring in each bloom category, 

divided by the number of weeks of satellite observation for that pixel. Pixel frequencies were then 

averaged to obtain lake scale frequencies (Figure 6). Lake frequencies were calculated as the 

average of all pixel frequencies inside the waterbody. Statewide frequency is calculated as the 

average of all lake scale frequencies. Frequencies were calculated annually for the six-year study 

period.  

𝐴𝑛𝑛𝑢𝑎𝑙	𝑝𝑖𝑥𝑒𝑙	𝑠𝑐𝑎𝑙𝑒	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 100 ∗	
𝑛	𝑜𝑓	𝑝𝑖𝑥𝑒𝑙𝑠	𝑤𝑖𝑡ℎ	𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒	𝐻𝐴𝐵

𝑛	𝑜𝑓	𝑎𝑙𝑙	𝑣𝑎𝑙𝑖𝑑	𝑝𝑖𝑥𝑒𝑙𝑠
 

 
𝐴𝑛𝑛𝑢𝑎𝑙	𝑙𝑎𝑘𝑒	𝑠𝑐𝑎𝑙𝑒	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 100 ∗ 	 ∑&''5&6	89:;6!<$&6;	=>;?5;'$;9<	@9AB9'	6&C;

'	(=	89:;6<	@9AB9'	6&C;
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Figure 6: Display of frequency values at different scales. Reprinted from “Assessing 
cyanobacterial frequency and abundance at surface waters near drinking water intakes across the 
United States” by Coffer, M. 2021. Water Research, 201 

Weekly Frequency 

There is no standard regarding the minimum area of a harmful algal bloom for a waterbody to be 

characterized as experiencing a bloom (Coffer, Schaeffer, Darling, Urquhart, & Salls, 2020). 

Some studies have characterized a waterbody as experiencing a bloom as soon as the satellite 

detects cyanobacteria in a single pixel (Zhang et al., 2012). This would be analogous to ground 

sampling at a single point to classify a bloom. Other studies have used thresholds on the percent 

of a waterbody experiencing a bloom (Coffer et al., 2020; Davis et al., 2019; Hu et al., 2010; Qin 

et al., 2015). A waterbody is classified as experiencing a bloom if one pixel is above the threshold 

for the purpose of this analysis. 

Weekly frequency was computed as the fraction of weeks that had a bloom occurring in at least 

one pixel of the waterbody during the 7-day composite in each bloom category. Weekly 

frequency represents an easily understandable metric illustrating how frequently a bloom may 

occur in at least one pixel in a waterbody over the year. They represent the worst bloom 
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experienced by a lake each week. This means that if a waterbody experiences a low and medium-

risk bloom, the medium-risk bloom is reported for that week. This results in high-risk blooms 

exhibiting a much greater weekly frequency than low and medium-risk blooms. This does not 

indicate that low and medium-risk blooms aren’t occurring at a similar rate. This indicates that 

most waterbodies frequently experience high-risk blooms.  

Maximum Bloom Severity 

Maximum bloom severity is calculated as the most severe bloom. The most severe bloom is 

calculated as the pixel with the highest cyanoHAB abundance within each waterbody, per lake, 

per year.  

 

Spatial Extent 

The spatial extent of blooms was calculated monthly for each risk category. Monthly composites 

represent the total area of a waterbody that experienced a bloom at least once in that month. The 

spatial extent of blooms was characterized in two ways: 1) the area in km2 and 2) the percent 

coverage of a waterbody that experienced a bloom for a given month. Monthly maximum 

composites were created, retaining the max value that each pixel exhibited over the month. 

Weekly composites were assigned to each month. They were assigned to whichever month the 

majority of days fell in. All months had at least 4 weekly observations. Some months had five 

weekly observations. Maximum composites, rather than mean composites, were computed to 

reduce the potential effect of wind and clouds reducing bloom detection. This is in line with 

Urquhart et al. (2017).  

Bloom spatial extent is calculated as the number of the pixels experiencing a bloom multiplied by 

the pixel size, 300m or 0.09km2. Percent coverage of blooms was calculated as the number of 
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pixels with detectable cyanoHAB divided by the total number of valid pixels for the month. The 

number of valid pixels per waterbody varied each month with the removal of quality flagged 

pixels due to cloud cover or some other reason.  

𝐵𝑙𝑜𝑜𝑚	𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒	(%) = 	
𝑛	𝑜𝑓	𝑝𝑖𝑥𝑒𝑙𝑠	𝑤𝑖𝑡ℎ	𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑙𝑒	𝐶𝐼𝑐𝑦𝑎𝑛𝑜

𝑛	𝑜𝑓	𝑣𝑎𝑙𝑖𝑑	𝑝𝑖𝑥𝑒𝑙𝑠
∗ 100% 

𝑆𝑝𝑎𝑡𝑖𝑎𝑙	𝐸𝑥𝑡𝑒𝑛𝑡	(𝑘𝑚-) = 𝑛	𝑜𝑓	𝑣𝑎𝑙𝑖𝑑	𝑝𝑖𝑥𝑒𝑙𝑠 ∗ 0.09	𝑘𝑚- 

 

Trends 

Non-parametric tests were used to identify trends in cyanoHAB bloom frequency, maximum 

severity, and spatial extent. Non-parametric slope estimation is required due to the limited study 

period. The Theil-Sen slope estimator and Mann-Kendall (MK) test were used for assessing the 

direction and strength of trends for bloom frequency and severity. A seasonal MK test and Thiel-

Sen estimator were used for assessing trends in monthly bloom spatial extent. The seasonal MK 

(SMK) test assesses for trends over seasons (Coffer et al., 2020). The SMK further accounts for 

heterogeneity and serial dependence of observations (Coffer et al., 2020; Hirsch & Slack, 1984). 

Each month represents its own season in this analysis.  

The MK test produces Kendall’s tau (t) as its test statistic. Kendall’s t is an extension of 

Spearman’s rho (Akoglu, 2018). Kendall’s t indicates the strength of the monotonic changes 

(Schaeffer et al., 2022a). Tau values of |τ| < 0.2 or 0.2 ≤ |τ| < 0.3 indicate negligible and weak 

changes over time. Higher values of 0.3 ≤ |τ| < 0.5, |τ| ≥ 0.5, are considered moderate and strong 

changes over time (Schaeffer et al., 2022b). 

The Thiel-Sen slope estimator is calculated by taking the median of slopes between all points 

(Sen, 1968; Theil, 1992). Thiel-Sen can estimate the change per unit in time. Short time series, 

comparable to our study period, have previously been used for trend detection (Coffer, Schaeffer, 
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Foreman, et al., 2021). Trends in air quality were assessed using three and five years of data (Kim 

et al., 2009). Water quality trends were assessed over a three year period (Psilovikos, Margoni, & 

Psilovikos, 2006). Coffer et al. (2021) assessed trends for cyanobacterial frequency over a five 

year study period using remote sensing data whilr utilizing MK and Theil-Sen. Thiel-Sen was 

determined to be an appropriate test based on previous peer-reviewed use. 

A Kruskal Wallis test was conducted to determine if individual waterbodies and trophic-grouped 

waterbodies were significantly different from each other. The Kruskal Wallis test is a non-

parametric test that determines whether the medians of two or more groups differ (Glen, 2015; S. 

C. J. Palmer et al., 2015). A Kruskal Wallis test is considered the non-parametric version of a 

one-way ANOVA test. A significant Kruskal Wallis test does not indicate which groups 

significantly differ. Dunn’s test and pairwise comparison indicates which groups are significantly 

different from each other (Zach, 2020). A Bonferroni adjustment is applied to control the family-

wise error rate that can arise from multiple comparisons (Zach, 2020). 

All analysis, image processing, and trend detection was performed in R version 4.2.1 (“R: The R 

Project for Statistical Computing,” 2023). Trend detection was analyzed using the trend and 

Kendall package (McLeod, 2022; Pohlert, 2020). 

Table 5 summarizes the spatial scale, bloom risk group, and type of analysis conducted in this 
research. 

Table 5: CyanoHAB characterization of frequency, spatial extent, and intensity, by spatial scale, 
and bloom risk thresholds and their associated type of trend and significant difference analysis to 
characterize OK HABs. MK: Mann-Kendall, SMK: Seasonal Mann-Kendall, TS: Thiel-Sen, KW: 
Kruskal-Wallis, PWC: Dunn's Pairwise Comparison 

 
Metrix  

Level of 
Analysis Analysis Groups Type of Analysis 

Frequency State Scale 

Total MK, TS 
High Risk MK, TS 

Medium Risk MK, TS 
Low Risk MK, TS 
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No Bloom MK, TS 

Individual 
Waterbodies 

Total MK, TS, KW, PWC 
High Risk MK, TS, KW, PWC 

Medium Risk MK, TS, KW, PWC 
Low Risk MK, TS, KW, PWC 
No Bloom MK, TS, KW, PWC 

Trophic Grouped 
Waterbodies 

Total MK, TS, KW, PWC 
High Risk MK, TS, KW, PWC 

Medium Risk MK, TS, KW, PWC 
Low Risk MK, TS, KW, PWC 
No Bloom MK, TS, KW, PWC 

Weekly 
Frequency 

Individual 
Waterbodies 

Total MK, TS, KW, PWC 
High Risk MK, TS, KW, PWC 

Medium Risk MK, TS, KW, PWC 
Low Risk MK, TS, KW, PWC 
No Bloom MK, TS, KW, PWC 

Trophic Grouped 
Waterbodies 

Total MK, TS, KW, PWC 
High Risk MK, TS, KW, PWC 

Medium Risk MK, TS, KW, PWC 
Low Risk MK, TS, KW, PWC 
No Bloom MK, TS, KW, PWC 

Spatial 
Extent 

State Scale 

Total SMK, TS 
High Risk SMK, TS 

Medium Risk SMK, TS 
Low Risk SMK, TS 

Individual 
Waterbodies 

Total SMK, TS, KW, PWC 
High Risk SMK, TS, KW, PWC 

Medium Risk SMK, TS, KW, PWC 
Low Risk SMK, TS, KW, PWC 

Trophic Grouped 
Waterbodies 

Total SMK, TS, KW, PWC 
High Risk SMK, TS, KW, PWC 

Medium Risk SMK, TS, KW, PWC 
Low Risk SMK, TS, KW, PWC 

Severity 

Individual 
Waterbodies NA MK, TS, KW, PWC 

Trophic Grouped 
Waterbodies NA MK, TS, KW, PWC 
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CHAPTER IV 
 

 

RESULTS 

FREQUENCY 

High Risk Bloom Frequency 

Harmful algal bloom frequency shows an upward trend for all bloom risk categories over the 

period of the study (Figure 7). High-risk blooms have experienced the largest increase in 

cyanoHAB frequency of the WHO risk categories. All bloom risk categories have a significant 

positive, monotonic trend (Table 6). The frequency of observable pixels with no-bloom did not 

show a significant trend over the study period. 

  

Figure 7: Average statewide bloom frequency by bloom risk categories for the years 2017 
through 2022 
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Table 6: Mann Kendall tests for monotonic trends and Sen's slope estimator for trends in average 
statewide HAB frequency by bloom risk category from 2017-2022. Significant trends are bolded. 

Bloom Category Tau MK P value Sen’s Slope Sen’s P value 
Total 0.86667 0.02417052 0.00016412 0.02417055 
High 0.86667 0.02417052 0.00010662 0.02417055 
Medium 0.86667 0.02417052 4.89E-05 0.02417055 
Low 0.86667 0.02417052 7.07E-06 0.02417055 
No Bloom 0.199999 0.70711422 4.11E-05 0.70711423 

 

High-risk bloom frequency varies considerably across the 69 waterbodies (Figure 8). These 

differences are statistically significant (Table A1). Over half of the waterbodies never have a 

high-risk bloom frequency above 10%. Lake Murray, Lake Eucha, and Broken Bow Lake exhibit 

the lowest high-risk bloom frequency. Lake Overholser, Fort Supply Reservoir and Lake 

Chickasha exhibit the highest high-risk bloom frequency. Lakes with a higher bloom frequency 

also exhibit more variation in bloom frequency between the years (Figure 8).  

Tom Steed Reservoir, Sooner Lake, and Robert S Kerr Reservoir 1 exhibited significant trends in 

high-risk bloom frequency over the study period (Table 7). Tom Steed Reservoir exhibited the 

highest rate of increase in high-risk bloom frequency with a Sen’s slope of 0.0855 (P value = 

0.0241). The Kendall tau (0.8667) indicates a strong trend in high-risk bloom frequency for this 

reservoir. It should be noted that Robert S Kerr Reservoir exhibited no trend in high-risk bloom 

frequency, but had one of the largest high-risk bloom frequencies among any of the waterbodies. 
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Figure 8: Average high-risk bloom frequency for each lake between 2017-2022. Lakes are 
colored based on their trophic status reported by the OWRB. 
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Table 7: Mann Kendall and Sen's Slope to assess for trends in lake high-risk bloom frequency. 
Significant trends are shown. Refer to table C1 for full analysis. 

Waterbody Tau MK P 
value 

Sen's 
Slope 

Sen's 
p.value 

Robert.S.Kerr.Reservoir.1 0.86667 0.02417 0.00090 0.02417 
Sooner.Lake 0.86667 0.02417 0.00305 0.02417 
Tom.Steed.Reservoir 0.86667 0.02417 0.08548 0.02417 

 

The waterbodies with the greatest high-risk bloom frequency were classified as hypereutrophic 

and eutrophic (Figure E1). Hypereutrophic and eutrophic waterbodies had significantly greater 

bloom frequencies compared to mesotrophic and oligotrophic waterbodies (Table B1). Eutrophic 

waterbodies showed a significant upward trend in high-risk bloom frequency with a Sen’s slope 

of 0.0119 (P value <0.05) (Table F1). 

Medium Risk Bloom Frequency: Medium-risk bloom frequency across the different 

waterbodies exhibited a similar shape distribution as high-risk bloom frequency (Figure 9). The 

Kruskal-Wallis test indicates a significant difference between waterbodies (Table A1), though 

less significant than high-risk bloom frequency. 

Lake Murray, Lake Eucha, and Broken Bow Lake had the lowest medium-risk bloom 

frequencies. Lake Lawtonka, Sardis Lake, and Fort Supply Reservoir had the greatest medium-

risk bloom frequencies. Sooner Lake, Grand Lake O the Cherokees 1, and Lake Thunderbird 

showed significant trends in medium-risk bloom frequency (Table C2). Sooner Lake exhibited 

the most significant trend with an increase in medium-risk bloom frequency with a Sen’s slope of 

0.0022 (P value <0.05). Grand Lake O the Cherokees 1 also exhibited a positive trend in 

frequency. Lake Thunderbird was the only waterbody to show a significant downward trend in 

medium-risk bloom frequency. 
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Figure 9: Average Medium risk bloom frequency for each lake between 2017-2022. Lakes are 
colored based on their trophic status reported by the OWRB. 
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The waterbodies with the highest medium-risk bloom frequency were often hypereutrophic and 

eutrophic (Figure 9). Multiple mesotrophic waterbodies had high medium-risk bloom frequencies. 

No significant difference between trophic states was found when comparing medium-risk bloom 

frequency (Fig E1, Table A2). Eutrophic and mesotrophic waterbodies exhibited a significant 

positive trend in medium-risk bloom frequency (Table F2). 

Low Risk Bloom Frequency: Low-risk bloom frequency exhibited little variation across the 

waterbodies (Figure 10). The Kruskal-Wallis test indicated a significant difference between 

waterbodies (Table A1). Low-risk blooms had the smallest Kruskal-Wallis effect size of the risk 

categories at 0.689 (Table A1). Six waterbodies exhibited a significant positive trend over time 

(Table C3). These waterbodies included Lake Konawa, Eufaula Lake, Lake Texoma 1 and 2, 

Sooner Lake, and McGee Creek Reservoir. 

The pattern between low-risk bloom frequency and trophic state is much less apparent (Figure 

E1). The results of the Kruskal-Wallis test indicate there was a significant difference between 

trophic states (Table A2). The oligotrophic waterbody, Stanley Draper Lake, was significantly 

different from all other trophic states in terms of low-risk bloom frequency (Table B2). No other 

pairwise comparisons were significant. No trophic states showed significant trends for low-risk 

bloom frequency (Table F3). 
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Figure 10: Average annual low-risk bloom frequency for each lake between 2017-2022.  
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No Bloom Frequency: The average no-bloom frequency of the waterbodies exhibited a different 

distribution than the other bloom risk categories (Figure 11). Fort Supply Reservoir, Lake 

Overholser, and Lake Chickasha experienced some of the lowest average no-bloom frequencies. 

Great Salt Plains Reservoir, Kaw Lake 1, and Lake Texoma 2 experienced some of the highest 

no-bloom frequencies. Average no-bloom frequencies significantly differ between waterbodies 

(Table A1). Lugert Altus Reservoir and Tom Steed Reservoir exhibit a significant downward 

trend over time (Table C4). 

Differences in no-bloom frequency between trophic states were slight (Fig E4, Table A2). The 

difference in no-bloom frequency was significant only between the eutrophic and hypereutrophic 

waterbodies (Table B3). No trophic states exhibit a significant trend in no-bloom frequency 

(Table F4). 
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Figure 11: Average no bloom frequency for waterbodies between 2017-2022 
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Total Bloom Frequency: The average total bloom frequency represents any bloom above the 

sensor’s detection limit of approximately 10,000 cells/ml (Fig 6). Total bloom frequency is 

statistically significant between waterbodies (Table A1). Lake Murray, Lake Eucha, and Broken 

Bow Lake had some of the lowest total bloom frequencies. Lake Overholser, Fort Supply 

Reservoir, Lake Chickasha, and Lake Lawtonka have some of the highest total bloom 

frequencies. 

Four waterbodies showed significant trends in total bloom frequency (Table A1). Lugert Altus 

Reservoir and Sooner Lake exhibit the largest positive trend with a Sen’s slope of 0.05877 and 

0.01218 respectively. Kaw Lake and Keystone Lake 1 also exhibited a significant positive trend 

(Table 8). 

Table 8: Significant average annual total bloom frequency trends. Complete total bloom trend 
analysis can be found in Table C5. 

Waterbody Tau MK P 
value 

Sen's 
Slope 

Sen's 
p.value 

Kaw.Lake 0.86667 0.02417 0.00244 0.02417 
Keystone.Lake.1 0.86667 0.02417 0.00656 0.02417 
Lugert.Altus.Reservoir 0.86667 0.02417 0.05877 0.02417 
Sooner.Lake 0.86667 0.02417 0.01218 0.02417 

 

The differences in total bloom frequency between trophic states (Fig E1) were significant (Table 

A2). Hypereutrophic waterbodies exhibited significantly greater total bloom frequency than 

mesotrophic waterbodies (p<0.001) (Table B4). Eutrophic waterbodies were also significantly 

higher than mesotrophic waterbodies (p<0.005). Only eutrophic waterbodies exhibit a significant 

positive trend with a Sen’s slope of 0.0151 (Table F5). 
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Figure 12: Average annual total bloom frequency for waterbodies between 2017-2022 
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WEEKLY FREQUENCY 

High Risk Blooms: Weekly high-risk bloom frequency represents the weekly frequency of at 

least one pixel having a bloom in the corresponding risk category. High-risk weekly bloom 

frequency exhibited a wide range between the waterbodies (Figure 13). Approximately one-third 

of the waterbodies experienced a high-risk bloom over half of the year.  

Eight waterbodies exhibited a significant positive trend in high-risk weekly bloom frequency 

(Table 9). All were positive trends with Lake Ellsworth, Great Salt Plains Reservoir, and Lake 

Arcadia experiencing the largest increase in trend over time. The Sen’s slope of 0.072 for Lake 

Ellsworth’s equated to an increase in the number of weeks with high-risk blooms by 

approximately 3.5 weeks per year. 

Table 9: MK and Sen’s slope trend detection for the weekly frequency of high-risk blooms 

Waterbody Tau MK P 
value 

Sen's 
Slope 

Sen's 
p.value 

Eufaula.Lake 0.86667 0.02417 0.05769 0.02417 
Great.Salt.Plains.Reservoir 0.86667 0.02417 0.06923 0.02417 
Lake.Chickasha 0.86667 0.02417 0.04311 0.02417 
Lake.Ellsworth 0.86667 0.02417 0.07231 0.02417 
McGee.Creek.Reservoir 0.86667 0.02417 0.04082 0.02417 
Hulah.Lake 0.82808 0.03538 0.03846 0.03538 
Lake.Arcadia 0.82808 0.03538 0.05897 0.03538 
Lake.Texoma.3 0.82808 0.03538 0.02525 0.03538 

 

High-risk bloom weekly frequency by trophic states showed a significant difference between 

groups (Table A4). High-risk bloom weekly frequency for hypereutrophic lakes was significantly 

higher than eutrophic waterbodies (Table B5). No trophic groups showed significant trends over 

time (Table F6). 
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Figure 13: Annual weekly high-risk bloom frequency 
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Medium Risk Blooms: Two waterbodies showed a significant positive trend in weekly medium-

risk bloom frequency over time (Figure 14, Table C7). Lake Texoma 4 showed a significant 

negative trend over time with a Sen’s slope of -0.0249. This decrease indicated that medium-risk 

bloom frequency was decreasing roughly 1 week per year over the study period. Eufaula Lake 

experienced the opposite. Eufaula Lake exhibited a significant positive trend of a roughly one-

week increase in medium-risk bloom frequency per year over the study period. 

The differences between trophic state’s weekly medium-risk bloom frequency (Figure E2) were 

significant (Table A3). Oligotrophic weekly medium-risk bloom frequency was significantly 

lower than all other trophic states (Table B6). No trophic states showed significant trends over 

time (Table F7). 
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Figure 14: Annual weekly medium-risk bloom frequency 
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Low Risk Blooms: Slightly over half of the waterbodies experienced no weeks or only one week 

with a maximum low-risk bloom over the study period (Figure 15). Lake Thunderbird exhibited a 

significant downward trend in weekly low-risk bloom frequency (Table C8). 

No significant differences in weekly low-risk bloom frequency by the trophic state were observed 

(Figure E2, Table A3). No trophic states showed significant trends in weekly low-risk bloom 

frequency (Table F8). 
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Figure 15: Annual weekly low-risk bloom frequency 
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No Bloom Detection: The waterbodies show a wide range in the number of weeks not 

experiencing any bloom (Figure 16). Lake Texoma 4, Lake Texoma, Lake Thunderbird, and 

Eufaula Lake 1 frequenctly had blooms occurring in more than 35 weeks a year. Some lakes 

experienced most years with only a handful of weeks experiencing any type of bloom. These 

include Eufaula Lake 5, Broken Bow Lake, and Keystone Lake 2. Nine waterbodies showed a 

significant downward trend over time (Table C9). These include Grand Lake O the Cherokees 2, 

Lake Ellsworth, Lake Texoma 3, Great Salt Plains Reservoir, Lake Chickasha, Shawnee Twin 

Lakes 1, Lake Texoma 2, Eufaula Lake, and McGee Creek Reservoir. 

No significant differences between trophic states were observed in weekly no-bloom frequency 

(Figure E5, Table A4). Eutrophic lakes were the only trophic state to show a significant trend of 

roughly an average 1.5-week reduction in weeks with no blooms per year (Table F9). 
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Figure 16: Annual weekly no-bloom frequency 
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Total Bloom: Weekly total bloom frequency varies significantly between waterbodies (Figure 

17). Waterbodies with the lowest weekly total bloom frequency include Eufaula Lake 5, Broken 

Bow Lake, Keystone Lake 2, and Lake McMurtry. Waterbodies with the highest total bloom 

frequency include Lake Texoma 4, Lake Texoma, Lake Thunderbird, and Waurika Lake. 

Nine waterbodies show a significant positive trend over time (Table 10). Grand Lake O the 

Cherokees 2, Eufaula Lake, Shawnee Twin Lakes 1, and Lake Chickasha exhibited the largest 

positive trend, ranging from roughly four to three-week increases in weeks with a bloom per year. 

Table 10: MK and Sen's Slope for trend detection of weekly total bloom frequency 

Waterbody Tau MK P 
value 

Sen's 
Slope 

Sen's 
p.value 

Grand.Lake.O.the.Cherokees.2 1.00000 0.00853 0.08047 0.00853 
Lake.Ellsworth 1.00000 0.00853 0.05769 0.00853 
Lake.Texoma.3 1.00000 0.00853 0.03434 0.00853 
Great.Salt.Plains.Reservoir 0.86667 0.02417 0.05618 0.02417 
Lake.Chickasha 0.86667 0.02417 0.06071 0.02417 
Shawnee.Twin.Lakes...1 0.86667 0.02417 0.07127 0.02417 
Lake.Texoma.2 0.89443 0.02677 0.04313 0.02677 
Eufaula.Lake 0.82808 0.03538 0.08338 0.03538 
McGee.Creek.Reservoir 0.82808 0.03538 0.04409 0.03538 

 

No significant differences in weekly total bloom frequency were evident between trophic states 

(Fig E2, Table A4). Hypereutrophic waterbodies exhibited a significant positive trend in weekly 

total bloom frequency of a roughly 1.5 week increase per year (Table F10). No other trophic 

states exhibited a significant trend. 
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Figure 17: Weekly total bloom frequency 
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SEVERITY 

All waterbodies experienced a bloom above the WHO high-risk threshold of 100,000 cells/ml 

(red dashed line) during most years (Figure 18). The Kruskal-Wallis test indicated that there were 

significant differences between waterbodies’ max bloom severity (Table A5). Lakes with the 

lowest max bloom severity included Lake Murray, Birch Reservoir, Grand Lake O the Cherokees 

2, Lake Hudson, Robert S Kerr Reservoir, Lake Eucha, and Spavinaw Lake. The waterbodies 

with some of the highest severity blooms included Eufaula Lake 1, Lake Texoma 4, and Keystone 

Lake 3. Grand Lake O the Cherokees 1 showed a significant positive trend of max bloom severity 

increasing by approximately 45,000 cells/ml/yr. (Table 11).  

Table 11: MK and Sen's slope for trend detection of max bloom severity. See C11 for complete 
trend analysis 

Waterbody Tau MK P 
value 

Sen's Slope 
(cells/mL/year) 

Sen's 
p.value 

Grand.Lake.O.the.Cherokees.1 0.82808 0.03538 45237 0.03538 

 

Max bloom severity by trophic status showed a significant difference between groups (Figure F6, 

Table A6). Hypereutrophic waterbodies were significantly higher in maximum bloom severity 

compared to mesotrophic and oligotrophic waterbodies (Table B7). Eutrophic waterbodies 

exhibited a significantly higher maximum bloom intensity than mesotrophic waterbodies. 

Eutrophic and mesotrophic waterbodies exhibit strong upward trends with an estimated average 

increase in maximum bloom severity of approximately 80,000 cells/ml/year and 45,000 

cells/ml/year, respectively (Table F11). 
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Figure 18: Maximum bloom severity (cells/ml). The red dashed line indicates the WHO high-risk 
threshold of 100,000 cells/ml. 
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SPATIAL EXTENT 

High Risk Blooms: The statewide monthly high-risk bloom extent showed a significant positive 

trend over the study period. High-risk bloom extent increased by approximately 2 km2 

/season/year across the state (Table 12). The seasonality of bloom spatial extent can be observed 

in Figure 19. Half of the waterbodies showed a significant upward trend for high-risk spatial 

bloom extent (Table 13). Individual waterbody high-risk monthly bloom extent can be seen in 

Appendix D. The distribution of the waterbody’s monthly high-risk bloom percent coverage can 

be seen in Figure 20. Multiple lakes including Lake Overholser, Fort Supply Reservoir, Lake 

Chickasha, and Lake Lawtonka spent many months with complete or near-complete coverage of a 

high-risk bloom. The monthly high-risk bloom percent coverage significantly differed between 

tropic states (Figure E3, Table A7). All trophic states are significantly different from each other, 

with hypereutrophic waterbodies exhibiting the highest monthly percentage of high bloom 

coverage (Table B8). 

Table 12: Seasonal Mann-Kendall and Sens Slope for State Extent Trends 

Bloom Risk Level Tau SMK p value Sen’s Slope 
(km2/year) Sen’s p value 

High Extent State 0.4444444 1.43E-05 2.13675 0.01298803 
Medium Extent State 0.3555555 0.00051874 1.351452 0.00120528 
Low Extent State 0.3464021 0.00074528 0.18 0.00326559 
Total Extent State 0.4222222 3.76E-05 3.806572 0.00891278 
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Figure 19: Statewide Extent of High Risk Blooms 
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Table 13: Seasonal Mann-Kendall and Sen's Slope for High Risk Bloom Extent. See Table C12 
for full trend analysis. 

Waterbody tau SMK P 
value 

Sen's Slope(% 
coverage) 

Sen's 
p.value 

Tom.Steed.Reservoir 0.55446 0.00000 0.00703 0.00004 
Lake.Texoma.3 0.51219 0.00000 0.00037 0.00006 
Skiatook.Lake 0.47173 0.00001 0.00059 0.00442 
Lugert.Altus.Reservoir 0.43829 0.00002 0.00758 0.00001 
Waurika.Lake 0.40645 0.00015 0.00140 0.00034 
Canton.Lake 0.37997 0.00028 0.00189 0.00126 
Lake.Texoma.4 0.37585 0.00030 0.00165 0.00288 
Keystone.Lake.3 0.37542 0.00050 0.00018 0.00782 
Lake.Hudson.1 0.37256 0.00093 0.00000 0.00714 
Eufaula.Lake.4 0.36218 0.00094 0.00012 0.02656 
Lake.Texoma.2 0.40236 0.00107 0.00000 0.00068 
Webbers.Falls.Reservoir 0.33144 0.00176 0.00013 0.01135 
Lake.of.the.Arbuckles 0.33055 0.00230 0.00000 0.01660 
Pine.Creek.Lake 0.31193 0.00253 0.00116 0.03799 
Eufaula.Lake.5 0.30714 0.00298 0.00151 0.02830 
Keystone.Lake 0.31066 0.00311 0.00020 0.02916 
Lake.Texoma.1 0.30171 0.00331 0.00116 0.00788 
Lake.Hudson 0.33126 0.00351 0.00000 0.00553 
Robert.S.Kerr.Reservoir.1 0.34756 0.00395 0.00000 0.00228 
Fort.Gibson.Lake.1 0.31894 0.00491 0.00000 0.02577 
Keystone.Lake.1 0.35932 0.00531 0.00000 0.00954 
Keystone.Lake.2 0.32696 0.00609 0.00000 0.00903 
Broken.Bow.Lake 0.42410 0.00669 0.00000 0.15414 
Grand.Lake.O.the.Cherokees.1 0.28394 0.00699 0.00014 0.01167 
Sardis.Lake 0.26185 0.01069 0.00197 0.01026 
Sooner.Lake 0.40188 0.01785 0.00000 0.02923 
Eufaula.Lake.1 0.23333 0.02274 0.00141 0.04725 
Eufaula.Lake.2 0.24958 0.02315 0.00001 0.13336 
McGee.Creek.Reservoir 0.25400 0.02389 0.00000 0.05618 
Kaw.Lake 0.25145 0.02464 0.00000 0.04315 
Copan.Lake 0.23112 0.02494 0.00330 0.02342 
Lake.Ellsworth 0.24721 0.02716 0.00000 0.11762 
Carl.Blackwell.Lake 0.25870 0.03329 0.00000 0.12301 
Eufaula.Lake 0.21859 0.03346 0.00027 0.13168 
Birch.Reservoir 0.26405 0.04700 0.00000 0.04095 
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Figure 20: Distribution of monthly high-risk bloom percent cover 
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Medium Risk Blooms: Statewide monthly medium-risk bloom extent showed an upward trend 

of approximately 1.3 km2 /season/year (Table 12). Medium-risk bloom extent exhibited a 

seasonal pattern (Figure 21). Twenty-one waterbodies showed a significant trend in medium-risk 

bloom extent, all positive (Table C13). Many lakes exhibited very few months with a medium-

risk bloom covering more than 25% of the waterbody (Figure 22). Significant differences in 

monthly medium-risk bloom coverage were found between all trophic states except eutrophic and 

mesotrophic waterbodies (Figure E3, Table B9).  

 

Figure 21: State extent of medium-risk blooms 
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Figure 22: Distribution of monthly medium-risk bloom percent coverage of waterbody 
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Low Risk Bloom: Statewide monthly low-risk bloom extent exhibited a significant positive trend 

over time (Table 12). Statewide low-risk bloom extent appeared to peak in late 2021 and early 

2022 (Figure 23). Seventeen waterbodies exhibited a significant trend. All trending lakes except 

Lake Chickasha showed a positive trend (Table C13). Sardis Lake and Hugo Lake showed some 

of the highest low-risk bloom percent coverage distribution, similar to medium-risk bloom 

percent coverage distribution (Figure 24). Significant differences between trophic states were 

found in monthly low-risk bloom percent coverage (Figure E3, Table A7). Mesotrophic 

waterbodies were considered significantly different from all other trophic groups with a greater 

low-risk bloom extent (Table B10).  

 

 

Figure 23: State extent for monthly low-risk blooms 
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Figure 24: Monthly distribution of low-risk bloom percent coverage 
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Total Bloom: Statewide monthly total bloom extent showed a significant positive trend over 

time. Statewide monthly total bloom extent increased by almost 4 km2/season/year (Table 12). 

The years 2017 and 2020 experienced lower peak total bloom extent (Fig 25). Thirty-six 

waterbodies showed a significant trend in total bloom extent over time, all positive (Table 14). 

Significant differences were found in monthly total bloom percent coverage between waterbodies 

(Figure 26, Table A7). All trophic states were significantly different from each other with 

hypereutrophic waterbodies exhibiting the greatest total bloom coverage followed by eutrophic, 

mesotrophic, and oligotrophic waterbodies, respectively (Figure E3, Table B11). 

 

Figure 25: State Total Bloom Extent 
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Table 14: Seasonal Mann-Kendall and Sen's slope for monthly total bloom extent 

Waterbody Tau MK P 
value 

Sen's Slope 
(% coverage) 

Sen's 
p.value 

Skiatook.Lake 0.49042 0.00000 0.00219 0.00021 
Lake.Texoma.3 0.47635 0.00001 0.00103 0.00012 
Waurika.Lake 0.44843 0.00002 0.00335 0.00025 
Tom.Steed.Reservoir 0.43213 0.00003 0.00937 0.00003 
Lake.Texoma.1 0.40670 0.00007 0.00272 0.00095 
Canton.Lake 0.40134 0.00012 0.00178 0.00010 
Lake.Texoma.4 0.38915 0.00017 0.00206 0.00221 
Lake.Texoma.2 0.40109 0.00038 0.00010 0.00060 
Grand.Lake.O.the.Cherokees.1 0.36213 0.00042 0.00114 0.00058 
Lugert.Altus.Reservoir 0.35758 0.00050 0.00532 0.00030 
Keystone.Lake.1 0.40095 0.00050 0.00000 0.00041 
Lake.Hudson 0.36169 0.00053 0.00080 0.00139 
Grand.Lake.O.the.Cherokees 0.35912 0.00054 0.00138 0.00884 
Lake.Hudson.1 0.37774 0.00058 0.00138 0.00045 
Keystone.Lake.3 0.35812 0.00082 0.00040 0.00677 
Lake.Ellsworth 0.34565 0.00093 0.00113 0.01735 
Kaw.Lake.1 0.35387 0.00098 0.00016 0.00038 
Eufaula.Lake.2 0.34483 0.00137 0.00065 0.05827 
Eufaula.Lake.4 0.33730 0.00182 0.00063 0.02519 
Eufaula.Lake.5 0.31937 0.00190 0.00371 0.01437 
Keystone.Lake 0.31952 0.00212 0.00079 0.00963 
Fort.Gibson.Lake.1 0.31001 0.00332 0.00057 0.00594 
Pine.Creek.Lake 0.30000 0.00341 0.00252 0.05237 
Robert.S.Kerr.Reservoir.1 0.31844 0.00503 0.00000 0.00236 
Eufaula.Lake 0.27778 0.00670 0.00072 0.07441 
Broken.Bow.Lake 0.31557 0.00821 0.00000 0.04419 
Webbers.Falls.Reservoir 0.27177 0.00928 0.00062 0.00404 
Sooner.Lake 0.37501 0.00955 0.00000 0.00343 
Atoka.Reservoir 0.26668 0.01044 0.00169 0.03403 
Keystone.Lake.2 0.25822 0.01361 0.00035 0.00721 
Grand.Lake.O.the.Cherokees.2 0.26523 0.01376 0.00000 0.00314 
StanleyDraperLake 0.29677 0.02064 0.00000 0.01654 
Sardis.Lake 0.22222 0.03006 0.00408 0.04022 
Lake.of.the.Arbuckles 0.22614 0.03127 0.00152 0.03386 
Copan.Lake 0.21852 0.03363 0.00379 0.02696 
Birch.Reservoir 0.24549 0.03618 0.00000 0.01623 
Lake.Chickasha 0.24838 0.04589 0.00000 0.03009 
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Figure 26: Total Bloom monthly percent coverage 
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CHAPTER V 
 

 

DISCUSSION 

Harmful algal blooms endanger human health and ecosystem services and lead to significant 

economic costs. Proper management of HABs is bolstered with increased information about their 

bloom dynamics, frequency, intensity, and spatial extent. Understanding bloom dynamics can 

help prioritize which waterbodies need nutrient criteria or adaptive management interventions 

(Coffer, Schaeffer, Salls, et al., 2021). This analysis supports HABHRCA’s recommendations to 

strengthen long-term HAB monitoring (Urquhart et al., 2017). 

Oklahoma HAB frequency is increasing statewide for all bloom risk categories. This is consistent 

with trends observed elsewhere. It was observed that the waterbodies with the strongest trends are 

not necessarily those with the highest average frequency. This potentially indicates that those 

moderate HAB frequency waterbodies pose the most significant risk of worsening over time. 

Eutrophic and hypereutrophic lakes experience the highest high-risk bloom frequency. They are 

significantly different from mesotrophic and oligotrophic waterbodies. This is consistent with our 

understanding of trophic status and bloom formation. These waterbodies often have higher 

nutrient loadings and other conditions favorable to HAB formation. Weekly frequencies exhibited 

similar trends to the average frequency for both waterbodies and trophic states. Weekly frequency 

is a more immediately understandable metric but lacks the spatial component factored into the 

average frequency. 



80 
 

The most severe blooms often occurred in eutrophic and hypereutrophic lakes. They are 

frequently found on the waterbodies with the highest bloom frequencies. The combination of 

most frequent and severe blooms indicates that those waterbodies likely pose some of the highest 

human exposure and health risks. Almost all waterbodies experienced a bloom above the WHO’s 

highest risk threshold. This further illustrates the importance of real-time access to data, as public 

health risks frequently occur across the state.  

Grand Lake shows a significant trend in worsening severity over time, with an average increase in 

max HAB abundance by approximately 45,000 cells per year. Grand Lake had the famous HAB 

outbreak in 2011 that resulted in people becoming sick, including Sen. Jim Inhofe (Meyers, 

2011). Grand Lake is characterized as one of the lakes with the most severe blooms. Grand Lake 

experienced a toxic outbreak in July 2022 (Wheeler, 2022).  

One of the more recent notorious Oklahoma blooms occurred in 2021. Lake Hefner experienced a 

severe bloom prior to Fourth of July weekend in 2021 (Briones, 2021). This bloom is reflected in 

the satellite imagery. Lake Hefner’s max severity bloom in 2021 was nearly 3,000,000 cells/mL. 

This max severity is six times greater than the average severity of approximately 500,000 

cells/mL observed in Lake Hefner over the other five years.  

Many of the waterbodies have positive trends in the monthly spatial extent of HABs. Increasing 

spatial extent is consistent with increasing frequency as frequency takes into account the fraction 

of blooming to non-blooming pixels for the waterbody. Lake Hefner’s severe 2021 bloom is 

reflected in its seasonal spatial extent graph (Appendix D). Almost the entire lake was 

experiencing a bloom during July 2021. Increased spatial extent could pose a greater risk for 

exposure as more of the lake is affected. A larger spatial extent could also indicate an increasing 

HAB biomass. This is important if a bloom is producing cyanotoxins. Florida and Ohio have 

similarly seen increases in the spatial extent of HABs over time (Urquhart et al., 2017).  



81 
 

The spatial extent of blooms is highly varied between waterbodies. Some waterbodies exhibit 

consistent seasonal patterns that increase through the summer before decreasing through the 

winter. Lake Thunderbird and Lake Fuqua exhibit such a pattern. Others may exhibit low 

coverage year-round with the exception of one or two spikes in extent in the summer. Sooner 

Lake exhibits such a pattern with three comparatively major blooms occurring throughout the 

entire study period. Others may exhibit a spike in spatial extent only once or twice throughout the 

study period. The high level of stochasticity found in lake’s spatial extent indicates that other 

factors may have a higher relative importance in driving those blooms than solely climatic 

conditions. Lake McMurtry is an example of a lake with a highly stochastic monthly bloom 

spatial extent. 

Sooner Lake exhibited the most trending bloom dynamics of any of the waterbodies. Sooner Lake 

exhibited significant positive frequency trends for all bloom risk categories. Sooner Lake also 

exhibited significant positive trends in monthly bloom spatial extent for all risk categories. A 

sharp increase occurs after 2019 for the high-risk spatial extent on Sooner Lake. Investigation 

into any potential surrounding changes could help indicate the potential driver of these blooms. 

These changes could include land use or non-point source discharge changes. Identifying local 

scale drivers of bloom formation could help shape management choices. These findings highlight 

the importance of continued monitoring and management efforts to mitigate the impact of HABs 

on aquatic ecosystems and human health. 

Limitations 

Limitations of this study include the natural error and uncertainty associated with remote sensing 

data. The CI has been validated to have a total mean absolute percent error (MAPE) of 

approximately 29%. Blooms can be highly ephemeral and there is limited validation data for 

temporally coincident (<1day) satellite overpasses (Lunetta et al., 2015). This increases the level 
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of uncertainty in regards to the validation of CyAN for ephemeral blooms. There is a level of 

uncertainty as to the true HAB abundance. HABs can exhibit heterogeneous spatial distribution, 

so a 300m pixel likely includes many different cell densities throughout its area. These impacts 

are reduced through the use of bloom risk categories. All of the analysis, with the exception of 

severity, is calculated based on the bloom risk categories. Exact biomasses of blooms are less 

crucial when examining trends than it would be for the purposes of issuing health advisories. 

Additional sensor limitations include the ability to only capture cyanobacteria in the top 1-2m of 

the water column (Coffer et al., 2020; D. R. Mishra et al., 2005). Blooms that are occur below 2m 

in depth may result in underestimates of HAB abundance. 

The use of maximum weekly composites impacts the conclusions that can be drawn regarding 

differences between bloom risk categories. More low and medium-risk blooms may be occurring 

throughout the week that are overshadowed by a higher risk bloom. This holds true with the 

monthly spatial extents that are maximum monthly composites. This helps account for the high-

risk blooms having a much larger spatial extent than medium-risk and low-risk blooms.  

The blooms of most concern for health and ecological reasons are high-risk blooms. These 

blooms are being fully represented in the data. Daily data was not available until 2019. Its use in 

the future could overcome some of these limitations when a long enough time series becomes 

available. The imagery can only report the state of the bloom at the time of the satellite overpass. 

There is a chance that a bloom is characterized as medium-risk even if it develops into a high-risk 

bloom hours later or vice versa based solely on satellite overpass timing. 

Additional limitations centered around the imagery resolution include its inability to capture the 

littoral zone or small dendritic coves of waterbodies. Littoral zones can be where blooms may 

first occur. Frequency and extent may be underrepresented as a result with their exclusion. 

Littoral zones can also be where scum and algal mats accumulate. This potentially 
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underrepresents the maximum severity of blooms. Waterbody edges also pose some of the highest 

exposure risks to those recreating, pets, and livestock. The larger spatial resolution of the sensor 

also results in only the largest lakes being able to be analyzed by this method. A more 

comprehensive analysis of trends and patterns could be conducted as data availability increases 

with finer resolution sensors. 

Only one waterbody is classed as oligotrophic. Conclusions about the differences in bloom 

dynamics between the oligotrophic waterbody and other trophic states should be limited due to 

this limited sample size. Certain waterbodies have multiple sections and multiple trophic states 

including Lake Texoma, Eufaula Lake, Grand Lake, and Keystone. While these sections may be 

classified differently, they do not necessarily have a hard and fast separation between them. This 

results in pixels that lie near another section potentially representing a mix of the trophic states. 

This can thereby reduce observed differences between trophic states. 

Weekly frequency was calculated based off of one pixel for the purpose of this analysis. This 

one-pixel threshold could lead to erroneous pixel errors impacting conclusions. Larger lakes have 

been shown to be overclassified and smaller lakes to be under classified when a 1 pixel threshold 

is used (Coffer et al., 2020). An analysis of bloom frequency that compared single pixel, 10%, 

20%, and 30% area thresholds for classifying a bloom found that a 10% threshold reduced the 

most variability between thresholds and appeared most appropriate (Coffer et al., 2020). Future 

analysis could utilize a 10% or even 5% threshold to have a higher level of confidence in weekly 

frequency conclusions. 

The 6 year length of the study period limited the types of analysis and strength of conclusions that 

could be drawn. The study period is comprised of every full year of data available from the OLCI 

sensors. Maximum weekly composites were chosen because daily data did not become available 

until 2019. The use of daily data could reduce the limitations that result from max composites 
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when a longer time series of it becomes available. A suggested ten years of observations would 

help account for short term trends that may be observed versus long-term, persistent trends that 

may be present. 

CyAN is still limited in its ability to produce consistently accurate cell counts. CyAN is still 

limited in its applicability for issuing health and safety advisories based on cyanobacteria 

abundance estimates. CyAN does provide a consistent product for detecting presence and absence 

of cyanobacteria and for analyzing long term trends and patterns. This information can still be 

incredibly beneficial for management decisions and inform future prediction models. 

Future Considerations 

This analysis is targeted at characterizing some aspects of HAB dynamics in the largest 

waterbodies in the state. This analysis does not attempt to answer why different waterbodies 

exhibit different trends and what factors may be driving those trends, with the exception of 

observing trends by trophic state. 

Factors of particular interest include potential patterns and trends by ecoregion. Ecoregions are 

areas that are ecologically and geographically similar. They are based on climate, temperature, 

soil type, precipitation, vegetation, and other environmental parameters (ORD US EPA, 2015). 

Oklahoma is comprised of 12 level III ecoregions. These ecoregions represent a diverse range of 

climate conditions, terrain, geology, soil, and land use (ORD US EPA, 2016). Analysis of 

cyanoHAB occurrence has occurred for Level 1 ecoregions across CONUS (Coffer et al., 2020) 

but never for finer-scale ecoregions in Oklahoma. This indicates a current gap in knowledge that 

could be filled. 

Analysis of the lakes’ water quality parameters could provide more context about Oklahoma 

bloom dynamics. Nutrient loading, particularly nitrogen and phosphorous, are known drivers of 

HABs. Physical parameters including water temperature are known to contribute to bloom 
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formation. These relationships are not always clear or consistent. HABs have been shown to 

occur even below ice sheets (Bertilsson et al., 2013; Vincent & Quesada, 2012) and in low 

nutrient lakes (Reinl et al., 2021). Nutrient limitation impacts on bloom formation have been 

shown to change seasonally (J. Li, Hansson, & Persson, 2018). Inclusion of lake morphology and 

bathymetry data could potentially lead to improved biomass estimates, particularly in lakes with 

high vertical water column mixing (Bosse et al., 2019). Hydrodynamic regimes such as water 

residence time has also appeared to be a significant factor in bloom biomass across a range of 

latitudes (Giani, Taranu, von Rückert, & Gregory-Eaves, 2020; Richardson et al., 2018). Water 

residence time was shown as a consistent driver in varying waterbody types, such as lakes and 

reservoirs (Giani et al., 2020).  

Climatic drivers could be paired with this analysis. Climate change is the most immediately 

obvious climatic driver. It has been implicated as a key driver (Alex Elliott, Thackeray, 

Huntingford, & Jones, 2005; Briand, Leboulanger, Humbert, Bernard, & Dufour, 2004; O’Neil, 

Davis, Burford, & Gobler, 2012; Hans W. Paerl, Hall, & Calandrino, 2011; Hans W. Paerl & 

Paul, 2012). Warming temperatures lead to increased stratification and provide a competitive 

advantage to cyanobacteria allowing them to dominate the system (O’Neil et al., 2012). The 

impact of altered precipitation regimes including intense precipitation events followed by 

prolonged droughts is not entirely understood. It is expected that these conditions will favor 

cyanobacteria through increased nutrient loadings and stable physical conditions (Hans W. Paerl 

& Huisman, 2008; Richardson et al., 2018). The spatial variability of rainfall around Oklahoma 

could be investigated to see if that plays a driving role in local bloom formation. 

Land use changes have been considered important drivers for HAB formation worldwide 

(Kakouei et al., 2021; Liao et al., 2016; Weber, Mishra, Wilde, & Kramer, 2020). Analysis of 

surrounding land use of the different waterbodies could help identify if any of those factors are 

contributing to bloom formation. Characterizing the surrounding land use of those waterbodies 
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identified to have severe or worsening HABs could help support management actions. These 

actions could include the installation of infrastructure designed to reduce runoff and sediment 

from entering the waterbodies. 

While remote sensing can provide cost-effective data on the frequency, extent, and severity of 

HABs, it cannot determine toxicity (Stumpf et al., 2016b). There is limited data on how 

frequently HABs in Oklahoma produce cyanotoxins. Remote sensing techniques aimed at 

identifying toxigenic strains of cyanobacteria are being developed (Legleiter et al., 2022), but 

actual toxicity information still relies on ground sampling. In-situ sampling that includes genera 

ID and enumeration as well as toxicity assessments could improve management decisions 

regarding bloom outbreaks, particularly when paired with remote sensing data. 

HAB frequency and severity could be examined in the context of public and private water 

systems (PPWS) and recreationally exposure risks. All but a handful of the selected waterbodies 

are considered a PPWS or emergency water supply system (EWS). It is estimated that statewide 

public water systems (PWS) serve approximately 3.7 million customers (OK DEQ, 2023). 

Additional water treatment can be required if extracellular toxins are present (Coffer, Schaeffer, 

Foreman, et al., 2021). Previous assessments have shown that Oklahoma has 71 water intakes 

resolvable by CyAN (Coffer et al., 2021). Applying an area threshold around these intakes could 

identify which drinking water systems are most at risk and prioritize management needs. 

An assessment of HAB frequency and severity based on recreation and exposure risks could 

highlight the potential human health concerns. Millions of people utilize Oklahoma lakes for 

recreation and fishing opportunities each year. Blooms occurring near boat ramps, public 

beaches, and public access points could pose a higher human health risk. Lakes with the highest 

public use may benefit from increased monitoring. Lakes with the highest public use may also be 

the most economically affected when blooms, or even just bloom advisories, are issued. The 
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quality of the environment and recreational opportunities has been shown to matter to the people 

of Oklahoma (Boyer, Sanders, Melstrom, Stoecker, & Ferrell, 2017). BGA advisories have been 

shown to keep people, and their tourism dollars away (Boyer, Danniels, et al., 2017). One study 

showed that campers at Lake Tenkiller would pay an average of $13.08 per visit if they could 

receive assurances that there would be no harmful algal blooms during their trip (Boyer, Sanders, 

et al., 2017). A prioritization of the bloom management strategies available based on the 

environmental, economic, and social needs could provide the framework for addressing HABs in 

Oklahoma in the most cost-effective and impactful way.  

Summary 

This study characterized OK HAB dynamics relating to frequency, extent, and severity for 69 

waterbodies in OK utilizing the Cyanobacteria Assessment Network. Cyanobacterial frequency, 

extent, and severity varied seasonally, with summer (June-August) accounting for the highest 

frequency, extent, and bloom severity. Statewide, bloom frequency and spatial extent exhibit 

increasing trends between 2017-2022. Individual waterbodies exhibit varied bloom dynamics, 

both between individual years as well as between different waterbodies, illustrating the complex 

nature of cyanoHAB bloom formation. Hypereutrophic and eutrophic waterbodies bloom more 

frequently, severely, and cover more of the waterbody. Nutrient loadings are likely one of the 

largest drivers for bloom formation in these waterbodies. 

This analysis takes a large scale view at Oklahoma HAB dynamics while also characterizing 

trophic-grouped and individual waterbodies. It further provides a framework for highlighting 

which waterbodies may be of most concern. Managers can identify reservoirs of interest and 

proceed to investigate bloom dynamics at a finer scale. A pixel-scale analysis of bloom frequency 

and severity would illustrate exactly which areas of the waterbody experiences the most frequent 

and severe blooms. This information could help target management and mitigation activities to 
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where they are most needed. The results from this analysis can help inform management 

decisions in regards to water quality management and recreational guidelines across Oklahoma.
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APPENDIX A: Kruskal Wallis tests 

 

Table A1: Kruskal Wallis for difference between waterbodies bloom frequency 

Kruskal-Wallis Test P value Effect Size Magnitude 

High Frequency 3.29E-38 0.787 Large 
Medium Frequency 7.14E-36 0.748 Large 
Low Frequency 2.57E-32 0.689 Large 
No Bloom Frequency 2.59E-36 0.756 Large 
Total Bloom Frequency 4.71E-38 0.784 Large 

 

Table A2: Kruskal Wallis test for difference in high bloom frequency by waterbody trophic state  

Kruskal-Wallis Test P value Effect Size Magnitude 

High Bloom Frequency 7.60E-08 0.804 Moderate 

Medium Bloom 
Frequency 

0.325 0.00113 Small 

Low Bloom Frequency 0.00341 0.026 Small 

No Bloom Frequency 0.013 0.0189 Small 

Total Bloom 
Frequency 

7.82E-05 0.0454 Small 



112 
 

Table A3: Kruskal Wallis test of weekly bloom frequency differences between waterbodies 

 

Table A4: Kruskal Wallis test for difference in weekly bloom frequency between trophic states 

 

Table A5: KW for difference in max bloom intensity between trophic states 

 
Table A6: Kruskal-Wallis test for difference in monthly bloom percent coverage between trophic 
waterbodies 

  

Kruskal-Wallis Test P value Effect Size Magnitude 

Weekly High Risk Bloom 8.32E-38 0.789 Large 
Weekly Medium Risk Bloom 4.95E-21 0.499 Large 
Weekly Low Risk Bloom 1.04E-05 0.178 Large 
Weekly No Bloom 1.40E-37 0.785 Large 
Weekly Total Bloom 1.40E-37 0.785 Large 

Kruskal-Wallis Test P value Effect Size Magnitude 

High Bloom Week Trop 0.0406 0.0129 small 
Medium Bloom Week Trop 0.000597 0.035 small 
Low Bloom Week Trop 0.953 -0.0065 small 
No Bloom Week Trop 0.0941 0.00827 small 
Total Bloom Week Trop 0.0941 0.00827 small 

Kruskal-Wallis Test P value Effect Size Magnitude 

Max Bloom Intensity 1.07E-31 0.686 Large 

Kruskal-Wallis Test P value Effect Size Magnitude 

High Risk Percent Coverage 2.40E-27 0.0251 small 

Medium Risk Percent 
Coverage 

7.40E-15 0.0133 small 

Low Risk Percent Coverage 2.14E-25 0.0232 small 

Total Bloom Percent Coverage 5.67E-23 0.0209 small 
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APPENDIX B: Dunn’s pairwise comparisons 

Table B1: Dunn’s Pairwise Comparison of high-risk bloom frequency between trophic states 

Pairs Adjusted p value Adjusted p significance 
Hypereutrophic ~ Mesotrophic 7.73E-07 **** 
Eutrophic ~ Mesotrophic 5.03E-05 **** 
Hypereutrophic ~ Oligotrophic 0.01270558 * 
Eutrophic ~ Oligotrophic 0.03572199 * 
Eutrophic ~ Hypereutrophic 1 ns 
Mesotrophic ~ Oligotrophic 1 ns 

 

Table B2: Dunn’s PWC for low bloom frequency between trophic states 

Pairs Adjusted p value Adjusted p significance 
Eutrophic ~ Hypereutrophic 1 ns 
Eutrophic ~ Mesotrophic 1 ns 
Eutrophic ~ Oligotrophic 0.00267497 ** 
Hypereutrophic ~ Mesotrophic 1 ns 
Hypereutrophic ~ Oligotrophic 0.00199132 ** 
Mesotrophic ~ Oligotrophic 0.00145594 ** 

 

Table B3: Dunn’s PWC difference in no bloom frequency between trophic states 

Pairs Adjusted p value Adjusted p significance 

Eutrophic ~ Hypereutrophic 0.04953342 * 
Eutrophic ~ Mesotrophic 1 ns 
Eutrophic ~ Oligotrophic 0.68100618 ns 
Hypereutrophic ~ Mesotrophic 0.70238058 ns 
Hypereutrophic ~ Oligotrophic 0.13815667 ns 
Mesotrophic ~ Oligotrophic 0.53672934 ns 
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Table B4: Dunn’s PWC for total bloom frequency between trophic states 

Pairs Adjusted p value Adjusted p significance 
Eutrophic ~ Hypereutrophic 1 ns 
Eutrophic ~ Mesotrophic 0.00351971 ** 
Eutrophic ~ Oligotrophic 0.21845274 ns 
Hypereutrophic ~ Mesotrophic 0.00022711 *** 
Hypereutrophic ~ Oligotrophic 0.1104455 ns 
Mesotrophic ~ Oligotrophic 1 ns 

 

Table B5: Dunn’s PWC for high-risk weekly frequency 

Pairs Adjusted p value Adjusted p significance 
Eutrophic ~ Hypereutrophic 0.02941067 * 
Eutrophic ~ Mesotrophic 1 ns 
Eutrophic ~ Oligotrophic 1 ns 
Hypereutrophic ~ Mesotrophic 1 ns 
Hypereutrophic ~ Oligotrophic 1 ns 
Mesotrophic ~ Oligotrophic 1 ns 

 

Table B6: Dunn’s PWC for medium bloom week frequency 

Pairs Adjusted p value Adjusted p significance 

Eutrophic ~ Hypereutrophic 0.10374597 ns 
Eutrophic ~ Mesotrophic 0.46857768 ns 
Eutrophic ~ Oligotrophic 0.00204727 ** 
Hypereutrophic ~ Mesotrophic 1 ns 
Hypereutrophic ~ Oligotrophic 0.01962937 * 
Mesotrophic ~ Oligotrophic 0.02094405 * 

 

Table B7: Dunn’s PWC between Max bloom intensity trophic states 

Pairs Adjusted p value Adjusted p significance 
Eutrophic ~ Hypereutrophic 0.90383755 ns 
Eutrophic ~ Mesotrophic 0.00125451 ** 
Eutrophic ~ Oligotrophic 0.05384488 ns 
Hypereutrophic ~ Mesotrophic 1.64E-05 **** 
Hypereutrophic ~ Oligotrophic 0.01717431 * 
Mesotrophic ~ Oligotrophic 1 ns 
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Table B8: Dunn's PWC for high-risk bloom percent coverage by trophic state 

Pairs Adjusted p value Adjusted p significance 

Eutrophic ~ Hypereutrophic 4.30E-06 **** 
Eutrophic ~ Mesotrophic 2.57E-06 **** 
Eutrophic ~ Oligotrophic 6.52E-11 **** 
Hypereutrophic ~ Mesotrophic 2.23E-17 **** 
Hypereutrophic ~ Oligotrophic 4.02E-15 **** 
Mesotrophic ~ Oligotrophic 3.81E-06 **** 

 

Table B9: Dunn's PWC for medium-risk bloom percent coverage by trophic state 

Pairs Adjusted p value Adjusted p significance 
Eutrophic ~ Hypereutrophic 4.50E-08 **** 
Eutrophic ~ Mesotrophic 1 ns 
Eutrophic ~ Oligotrophic 2.02E-07 **** 
Hypereutrophic ~ Mesotrophic 6.87E-07 **** 
Hypereutrophic ~ Oligotrophic 0.00041824 *** 
Mesotrophic ~ Oligotrophic 7.81E-08 **** 

 

Table B10: Dunn's PWC for no bloom percent coverage by trophic state 

Pairs Adjusted p value Adjusted p significance 
Eutrophic ~ Hypereutrophic 1.76E-10 **** 
Eutrophic ~ Mesotrophic 2.32E-07 **** 
Eutrophic ~ Oligotrophic 0.18497301 ns 
Hypereutrophic ~ Mesotrophic 1.32E-24 **** 
Hypereutrophic ~ Oligotrophic 1 ns 
Mesotrophic ~ Oligotrophic 0.0005694 *** 

 

Table B11: Dunn’s PWC for total bloom monthly percent coverage by trophic status 

Pairs Adjusted p value Adjusted p significance 
Eutrophic ~ Hypereutrophic 0.00019831 *** 
Eutrophic ~ Mesotrophic 1.08E-05 **** 
Eutrophic ~ Oligotrophic 4.04E-10 **** 
Hypereutrophic ~ Mesotrophic 3.70E-14 **** 
Hypereutrophic ~ Oligotrophic 1.83E-13 **** 
Mesotrophic ~ Oligotrophic 9.01E-06 **** 
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APPENDIX C: Trend Analysis 

Table C1: Mann Kendall and Sen's Slope to assess for trends in lake high-risk bloom frequency. 
Waterbodies with significant results are bolded. 

Waterbody tau MK P 
value 

Sen's 
Slope 

Sen's 
p.value 

Robert.S.Kerr.Reservoir.1 0.86667 0.02417 0.00090 0.02417 
Sooner.Lake 0.86667 0.02417 0.00305 0.02417 
Tom.Steed.Reservoir 0.86667 0.02417 0.08548 0.02417 
Carl.Blackwell.Lake 0.73333 0.06029 0.02774 0.06029 
Copan.Lake 0.73333 0.06029 0.01618 0.06029 
Eufaula.Lake.2 0.73333 0.06029 0.00263 0.06029 
Eufaula.Lake.5 0.73333 0.06029 0.01371 0.06029 
Keystone.Lake.2 0.73333 0.06029 0.00413 0.06029 
Keystone.Lake.3 0.73333 0.06029 0.00340 0.06029 
Lake.Hudson.1 0.73333 0.06029 0.00544 0.06029 
Lake.of.the.Arbuckles 0.73333 0.06029 0.01209 0.06029 
Lugert.Altus.Reservoir 0.73333 0.06029 0.06106 0.06029 
Birch.Reservoir 0.60000 0.13285 0.00323 0.13285 
Eufaula.Lake 0.60000 0.13285 0.00464 0.13285 
Eufaula.Lake.4 0.60000 0.13285 0.00632 0.13285 
Keystone.Lake 0.60000 0.13285 0.00545 0.13285 
Lake.Fuqua 0.60000 0.13285 0.02248 0.13285 
Lake.Texoma.1 0.60000 0.13285 0.01421 0.13285 
Lake.Texoma.3 0.60000 0.13285 0.01019 0.13285 
Lake.Thunderbird 0.60000 0.13285 0.02025 0.13285 
Oologah.Lake 0.60000 0.13285 0.00387 0.13285 
Skiatook.Lake 0.60000 0.13285 0.00538 0.13285 
Hugo.Lake -0.60000 0.13285 -0.00558 0.13285 
Lake.Hudson 0.55205 0.18060 0.00111 0.18060 
Canton.Lake 0.46667 0.25966 0.04294 0.25966 
Eufaula.Lake.1 0.46667 0.25966 0.00809 0.25966 
Eufaula.Lake.3 0.46667 0.25966 0.00670 0.25966 
Fort.Gibson.Lake.1 0.46667 0.25966 0.00908 0.25966 
Fort.Supply.Reservoir 0.46667 0.25966 0.01232 0.25966 
Grand.Lake.O..the.Cherokees.1 0.46667 0.25966 0.00171 0.25966 
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Keystone.Lake.1 0.46667 0.25966 0.00210 0.25966 
Lake.Texoma.2 0.46667 0.25966 0.00296 0.25966 
Lake.Texoma.4 0.46667 0.25966 0.02332 0.25966 
Sardis.Lake 0.46667 0.25966 0.00611 0.25966 
Waurika.Lake 0.46667 0.25966 0.02672 0.25966 
Webbers.Falls.Reservoir 0.46667 0.25966 0.00160 0.25966 
Stanley.Draper.Lake 0.41404 0.33889 0.00107 0.33889 
Atoka.Reservoir 0.33333 0.45237 0.01169 0.45237 
Broken.Bow.Lake 0.33333 0.45237 0.00058 0.45237 
Fort.Cobb.Reservoir 0.33333 0.45237 0.04352 0.45237 
Fort.Gibson.Lake 0.33333 0.45237 0.00428 0.45237 
Hulah.Lake 0.33333 0.45237 0.00247 0.45237 
Lake.Chickasha 0.33333 0.45237 0.05115 0.45237 
Lake.Ellsworth 0.33333 0.45237 0.03520 0.45237 
Lake.Texoma 0.33333 0.45237 0.01218 0.45237 
McGee.Creek.Reservoir 0.33333 0.45237 0.00035 0.45237 
Pine.Creek.Lake 0.33333 0.45237 0.01036 0.45237 
Wes.Watkins.Reservoir 0.33333 0.45237 0.01386 0.45237 
Spavinaw.Lake -0.27603 0.56609 -0.00009 0.56609 
Grand.Lake.O..the.Cherokees 0.20000 0.70711 0.00283 0.70711 
Grand.Lake.O..the.Cherokees.2 0.20000 0.70711 0.00028 0.70711 
Great.Salt.Plains.Reservoir 0.20000 0.70711 0.00223 0.70711 
Kaw.Lake 0.20000 0.70711 0.00048 0.70711 
Lake.Lawtonka -0.20000 0.70711 -0.02613 0.70711 
Lake.McAlester 0.20000 0.70711 0.00796 0.70711 
Lake.McMurtry 0.20000 0.70711 0.00231 0.70711 
Shawnee.Twin.Lakes..1 0.20000 0.70711 0.00148 0.70711 
Wister.Lake 0.20000 0.70711 0.01823 0.70711 
Lake.Eucha -0.13801 0.84831 -0.00004 0.84831 
Lake.Murray 0.13801 0.84831 0.00007 0.84831 
Foss.Reservoir 0.06667 1.00000 0.00155 1.00000 
Kaw.Lake.1 -0.06667 1.00000 -0.00020 1.00000 
Lake.Arcadia 0.06667 1.00000 0.00617 1.00000 
Lake.Hefner 0.06667 1.00000 0.00095 1.00000 
Lake.Konawa -0.06667 1.00000 -0.00504 1.00000 
Lake.Overholser -0.06667 1.00000 -0.02397 1.00000 
Robert.S..Kerr.Reservoir 0.06667 1.00000 0.00006 1.00000 
Tenkiller.Lake -0.06667 1.00000 -0.00011 1.00000 
Tenkiller.Lake.1 -0.06667 1.00000 -0.00001 1.00000 
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Table C2: Mann Kendall and Sen's Slope for average medium-risk bloom frequency by 
waterbody trends over 2017-2022 

Waterbody tau MK P 
value 

Sen's 
Slope 

Sen's 
p.value 

Grand.Lake.O..the.Cherokees.1 0.86667 0.02417 0.00220 0.02417 
Sooner.Lake 0.86667 0.02417 0.00728 0.02417 
Lake.Thunderbird -0.86667 0.02417 -0.00804 0.02417 
Eufaula.Lake.4 0.73333 0.06029 0.00478 0.06029 
Keystone.Lake 0.73333 0.06029 0.00097 0.06029 
Keystone.Lake.1 0.73333 0.06029 0.00393 0.06029 
Keystone.Lake.3 0.73333 0.06029 0.00068 0.06029 
Lake.Hudson 0.73333 0.06029 0.00338 0.06029 
Lake.Hudson.1 0.73333 0.06029 0.00601 0.06029 
Webbers.Falls.Reservoir 0.69007 0.08517 0.00077 0.08517 
Atoka.Reservoir 0.60000 0.13285 0.00672 0.13285 
Birch.Reservoir 0.60000 0.13285 0.00327 0.13285 
Eufaula.Lake.1 0.60000 0.13285 0.00310 0.13285 
Eufaula.Lake.2 0.60000 0.13285 0.00259 0.13285 
Fort.Gibson.Lake.1 0.60000 0.13285 0.00241 0.13285 
Grand.Lake.O..the.Cherokees 0.60000 0.13285 0.00302 0.13285 
Lake.Texoma.1 0.60000 0.13285 0.01581 0.13285 
Lake.Texoma.3 0.60000 0.13285 0.01731 0.13285 
Robert.S..Kerr.Reservoir.1 0.60000 0.13285 0.00098 0.13285 
Skiatook.Lake 0.60000 0.13285 0.00315 0.13285 
Stanley.Draper.Lake 0.60000 0.13285 0.00552 0.13285 
Lake.Arcadia -0.60000 0.13285 -0.00327 0.13285 
Kaw.Lake 0.55205 0.18060 0.00092 0.18060 
Pine.Creek.Lake 0.55205 0.18060 0.00116 0.18060 
Broken.Bow.Lake 0.46667 0.25966 0.00096 0.25966 
Eufaula.Lake.5 0.46667 0.25966 0.01494 0.25966 
Fort.Gibson.Lake 0.46667 0.25966 0.00241 0.25966 
Keystone.Lake.2 0.46667 0.25966 0.00152 0.25966 
Lake.of.the.Arbuckles 0.46667 0.25966 0.00668 0.25966 
Lake.Texoma.2 0.46667 0.25966 0.01110 0.25966 
Lake.Texoma.4 0.46667 0.25966 0.00083 0.25966 
McGee.Creek.Reservoir 0.46667 0.25966 0.00047 0.25966 
Oologah.Lake 0.46667 0.25966 0.00358 0.25966 
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Waurika.Lake 0.46667 0.25966 0.00915 0.25966 
Great.Salt.Plains.Reservoir -0.33333 0.45237 -0.00047 0.45237 
Hulah.Lake -0.33333 0.45237 -0.00104 0.45237 
Lake.Overholser -0.33333 0.45237 -0.00451 0.45237 
Wister.Lake -0.33333 0.45237 -0.00878 0.45237 
Canton.Lake 0.33333 0.45237 0.01731 0.45237 
Copan.Lake 0.33333 0.45237 0.01041 0.45237 
Fort.Cobb.Reservoir 0.33333 0.45237 0.00446 0.45237 
Grand.Lake.O..the.Cherokees.2 0.33333 0.45237 0.00072 0.45237 
Kaw.Lake.1 0.33333 0.45237 0.00043 0.45237 
Lake.McMurtry 0.33333 0.45237 0.00662 0.45237 
Shawnee.Twin.Lakes..1 0.33333 0.45237 0.00203 0.45237 
Lake.Murray 0.27603 0.56609 0.00007 0.56609 
Eufaula.Lake 0.20000 0.70711 0.00137 0.70711 
Hugo.Lake -0.20000 0.70711 -0.00697 0.70711 
Lake.Chickasha 0.20000 0.70711 0.00326 0.70711 
Lake.Ellsworth 0.20000 0.70711 0.00559 0.70711 
Lake.Lawtonka 0.20000 0.70711 0.01662 0.70711 
Sardis.Lake 0.20000 0.70711 0.01132 0.70711 
Spavinaw.Lake -0.20000 0.70711 -0.00110 0.70711 
Tom.Steed.Reservoir 0.20000 0.70711 0.00272 0.70711 
Carl.Blackwell.Lake -0.06667 1.00000 -0.00137 1.00000 
Eufaula.Lake.3 -0.06667 1.00000 -0.00130 1.00000 
Fort.Supply.Reservoir -0.06667 1.00000 -0.00359 1.00000 
Foss.Reservoir -0.06667 1.00000 -0.00507 1.00000 
Lake.Eucha 0.00000 1.00000 0.00000 1.00000 
Lake.Fuqua 0.06667 1.00000 0.00116 1.00000 
Lake.Hefner 0.06667 1.00000 0.00026 1.00000 
Lake.Konawa 0.06667 1.00000 0.00047 1.00000 
Lake.McAlester -0.06667 1.00000 -0.00022 1.00000 
Lake.Texoma -0.06667 1.00000 -0.00035 1.00000 
Lugert.Altus.Reservoir -0.06667 1.00000 -0.00008 1.00000 
Robert.S..Kerr.Reservoir 0.06667 1.00000 0.00241 1.00000 
Tenkiller.Lake 0.06667 1.00000 0.00039 1.00000 
Tenkiller.Lake.1 -0.06667 1.00000 -0.00016 1.00000 
Wes.Watkins.Reservoir -0.06667 1.00000 -0.00026 1.00000 
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Table C3: Mann Kendall and Sen's slope trend detection for average annual low-risk bloom 
frequency per waterbody 

Waterbody Tau MK p value Sen’s Slope Sen’s p value 

Eufaula.Lake 0.86666662 0.02417052 0.00064665 0.02417055 
Lake.Konawa 0.86666662 0.02417052 0.00070442 0.02417055 
Lake.Texoma.1 0.86666662 0.02417052 0.00025536 0.02417055 
Lake.Texoma.2 0.86666662 0.02417052 0.00041328 0.02417055 
Sooner.Lake 0.89442718 0.02677274 0.00053419 0.02677277 
McGee.Creek.Reservoir 0.82807863 0.03537822 0.00149935 0.03537817 
Copan.Lake 0.73333329 0.06028914 0.00048598 0.06028917 
Grand.Lake.O..the.Cherok
ees.1 

0.73333329 0.06028914 0.00286777 0.06028917 

Great.Salt.Plains.Reservoir 0.73333329 0.06028914 0.00187405 0.06028917 
Sardis.Lake 0.73333329 0.06028914 0.00022462 0.06028917 
Wister.Lake 0.6900655 0.08516788 0.00020102 0.08516791 
Hugo.Lake 0.64450341 0.11900401 6.18E-05 0.11900407 
Atoka.Reservoir 0.59999996 0.13285494 0.00113333 0.13285496 
Foss.Reservoir 0.59999996 0.13285494 0.00048774 0.13285496 
Kaw.Lake 0.59999996 0.13285494 9.79E-05 0.13285496 
Keystone.Lake.1 0.59999996 0.13285494 0.00026344 0.13285496 
Lake.Arcadia 0.59999996 0.13285494 0.00050884 0.13285496 
Lake.Ellsworth 0.59999996 0.13285494 0.0006725 0.13285496 
Lake.Fuqua 0.59999996 0.13285494 0.00088897 0.13285496 
Spavinaw.Lake 0.59999996 0.13285494 0.00036284 0.13285496 
Webbers.Falls.Reservoir 0.59999996 0.13285494 0.0003663 0.13285496 
Keystone.Lake.3 -0.5520524 0.1805996 -0.0002426 0.18059962 
Eufaula.Lake.2 -0.4666666 0.25965631 -0.0016209 0.25965636 
Eufaula.Lake.4 0.46666664 0.25965631 0.00032778 0.25965636 
Grand.Lake.O..the.Cherok
ees 

-0.4666666 0.25965631 -0.0001519 0.25965636 

Keystone.Lake 0.46666664 0.25965631 0.0002034 0.25965636 
Lake.Lawtonka -0.4666666 0.25965631 -0.0006277 0.25965636 
Lake.McAlester -0.4666666 0.25965631 -0.0003685 0.25965636 
Lake.Overholser 0.46666664 0.25965631 0.00404858 0.25965636 
Oologah.Lake 0.46666664 0.25965631 0.00217978 0.25965636 
Keystone.Lake.2 0.41403931 0.33888781 3.62E-05 0.33888783 
Lugert.Altus.Reservoir 0.35805744 0.43569469 0.00022624 0.4356948 
Lake.Hudson.1 -0.3333333 0.45237035 -0.0002634 0.45237036 
Birch.Reservoir 0.33333331 0.45237041 0.00027844 0.45237036 
Fort.Gibson.Lake.1 0.33333331 0.45237041 0.00067793 0.45237036 
Grand.Lake.O..the.Cherok
ees.2 

0.33333331 0.45237041 0.00223132 0.45237036 

Hulah.Lake 0.33333331 0.45237041 0.00041587 0.45237036 
Lake.Chickasha 0.33333331 0.45237041 0.00010204 0.45237036 
Lake.of.the.Arbuckles 0.33333331 0.45237041 0.00031469 0.45237036 
Robert.S..Kerr.Reservoir 0.33333331 0.45237041 0.00056034 0.45237036 
Robert.S..Kerr.Reservoir.1 0.33333331 0.45237041 2.82E-05 0.45237036 
Shawnee.Twin.Lakes..1 0.33333331 0.45237041 0.00015675 0.45237036 
Wes.Watkins.Reservoir 0.33333331 0.45237041 0.00025345 0.45237036 
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Fort.Gibson.Lake 0.27602619 0.56609023 0.00012488 0.56609026 
Skiatook.Lake 0.27602619 0.56609023 4.86E-05 0.56609026 
Eufaula.Lake.5 0.21483447 0.6967274 2.38E-05 0.69672742 
Fort.Cobb.Reservoir -0.2 0.70711422 -0.0001716 0.70711423 
Lake.Hudson 0.19999999 0.70711422 0.00034464 0.70711423 
Lake.Texoma -0.2 0.70711422 -0.0020489 0.70711423 
Lake.Texoma.3 0.19999999 0.70711422 6.70E-05 0.70711423 
Lake.Texoma.4 0.19999999 0.70711422 0.00106309 0.70711423 
Lake.Thunderbird 0.19999999 0.70711422 0.00047134 0.70711423 
Pine.Creek.Lake 0.19999999 0.70711422 0.00011246 0.70711423 
Waurika.Lake 0.19999999 0.70711422 0.00051338 0.70711423 
Broken.Bow.Lake -0.1490712 0.8404274 0 0.8404274 
Lake.McMurtry -0.1490712 0.8404274 0 0.8404274 
Fort.Supply.Reservoir 0.13801309 0.84831166 0.00021017 0.8483117 
Lake.Hefner 0.13801309 0.84831166 0.00017417 0.8483117 
Tom.Steed.Reservoir 0.13801309 0.84831166 0.00042816 0.8483117 
Canton.Lake -0.0666667 1 -0.000221 1 
Carl.Blackwell.Lake 0.06666666 1 0.00017325 1 
Eufaula.Lake.1 -0.0666667 1 -0.0003928 1 
Eufaula.Lake.3 0.06666666 1 0.00037341 1 
Kaw.Lake.1 0.07161149 1 0 1 
Lake.Eucha -0.0666667 1 -1.40E-05 1 
Lake.Murray -0.0666667 1 -9.91E-05 1 
Stanley.Draper.Lake 0.0860663 1 0 1 
Tenkiller.Lake 0 1 0 1 
Tenkiller.Lake.1 -0.0666667 1 -5.09E-05 1 
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Table C4: Mann Kendall and Sen's slope trend detection for average annual no bloom frequency 
per waterbody 

Waterbody Tau MK p value Sen’s Slope Sen’s p value 
Lugert.Altus.Reservoir -0.8666666 0.02417055 -0.103736 0.02417055 
Tom.Steed.Reservoir -0.8666666 0.02417055 -0.0804433 0.02417055 
Hugo.Lake 0.59999996 0.13285494 0.03892267 0.13285496 
Lake.Eucha 0.59999996 0.13285494 0.02202234 0.13285496 
Tenkiller.Lake.1 0.59999996 0.13285494 0.02186054 0.13285496 
Canton.Lake -0.4666666 0.25965631 -0.0379852 0.25965636 
Copan.Lake -0.4666666 0.25965631 -0.0248305 0.25965636 
Eufaula.Lake 0.46666664 0.25965631 0.01399791 0.25965636 
Grand.Lake.O..the.Cherokees 0.46666664 0.25965631 0.01194329 0.25965636 
Keystone.Lake.3 -0.4666666 0.25965631 -0.0142342 0.25965636 
Lake.Chickasha -0.4666666 0.25965631 -0.0404215 0.25965636 
Lake.Konawa 0.46666664 0.25965631 0.01019336 0.25965636 
Lake.Texoma.1 -0.4666666 0.25965631 -0.0144355 0.25965636 
Lake.Texoma.4 -0.4666666 0.25965631 -0.0268405 0.25965636 
Lake.Thunderbird 0.46666664 0.25965631 0.0117556 0.25965636 
McGee.Creek.Reservoir 0.46666664 0.25965631 0.02601463 0.25965636 
Robert.S..Kerr.Reservoir.1 0.46666664 0.25965631 0.02811086 0.25965636 
Stanley.Draper.Lake 0.46666664 0.25965631 0.01021273 0.25965636 
Tenkiller.Lake 0.46666664 0.25965631 0.02687998 0.25965636 
Eufaula.Lake.5 -0.3333333 0.45237035 -0.018838 0.45237036 
Kaw.Lake -0.3333333 0.45237035 -0.0053258 0.45237036 
Keystone.Lake -0.3333333 0.45237035 -0.0117786 0.45237036 
Lake.Texoma.3 -0.3333333 0.45237035 -0.0151642 0.45237036 
Waurika.Lake -0.3333333 0.45237035 -0.0233562 0.45237036 
Broken.Bow.Lake 0.33333331 0.45237041 0.01711675 0.45237036 
Eufaula.Lake.3 0.33333331 0.45237041 0.01572687 0.45237036 
Foss.Reservoir 0.33333331 0.45237041 0.01711028 0.45237036 
Grand.Lake.O..the.Cherokees.
1 

0.33333331 0.45237041 0.01652533 0.45237036 

Grand.Lake.O..the.Cherokees.
2 

0.33333331 0.45237041 0.02178952 0.45237036 

Great.Salt.Plains.Reservoir 0.33333331 0.45237041 0.00288719 0.45237036 
Lake.Hudson 0.33333331 0.45237041 0.01464661 0.45237036 
Lake.Murray 0.33333331 0.45237041 0.01301115 0.45237036 
Pine.Creek.Lake 0.33333331 0.45237041 0.01965342 0.45237036 
Robert.S..Kerr.Reservoir 0.33333331 0.45237041 0.01091248 0.45237036 
Spavinaw.Lake 0.33333331 0.45237041 0.01983715 0.45237036 
Atoka.Reservoir 0.19999999 0.70711422 0.00589783 0.70711423 
Carl.Blackwell.Lake -0.2 0.70711422 -0.0148826 0.70711423 
Eufaula.Lake.2 0.19999999 0.70711422 0.00537516 0.70711423 
Fort.Cobb.Reservoir -0.2 0.70711422 -0.0351721 0.70711423 
Fort.Gibson.Lake.1 0.19999999 0.70711422 0.00241222 0.70711423 
Kaw.Lake.1 0.19999999 0.70711422 0.0061144 0.70711423 
Lake.Arcadia 0.19999999 0.70711422 0.00636863 0.70711423 
Lake.Ellsworth -0.2 0.70711422 -0.0245883 0.70711423 
Lake.Hefner 0.19999999 0.70711422 0.0115383 0.70711423 
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Lake.Hudson.1 0.19999999 0.70711422 0.00396551 0.70711423 
Lake.McMurtry -0.2 0.70711422 -0.0346154 0.70711423 
Lake.Texoma -0.2 0.70711422 -0.0135286 0.70711423 
Shawnee.Twin.Lakes..1 0.19999999 0.70711422 0.00684171 0.70711423 
Skiatook.Lake 0.19999999 0.70711422 0.00723811 0.70711423 
Birch.Reservoir 0.06666666 1 0.01107692 1 
Eufaula.Lake.1 0.06666666 1 0.00199704 1 
Eufaula.Lake.4 -0.0666667 1 -0.0012492 1 
Fort.Gibson.Lake 0.06666666 1 0.00428085 1 
Fort.Supply.Reservoir 0.06666666 1 0.00342548 1 
Hulah.Lake 0.06666666 1 0.00194137 1 
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Table C5: Mann Kendall and Sen's Slope to assess for trends in lake total bloom frequency. 
Waterbodies with significant results are bolded. 

Waterbody tau MK P 
value 

Sen's 
Slope 

Sen's 
p.value 

Kaw.Lake 0.86667 0.02417 0.00244 0.02417 
Keystone.Lake.1 0.86667 0.02417 0.00656 0.02417 
Lugert.Altus.Reservoir 0.86667 0.02417 0.05877 0.02417 
Sooner.Lake 0.86667 0.02417 0.01218 0.02417 
Birch.Reservoir 0.73333 0.06029 0.00577 0.06029 
Carl.Blackwell.Lake 0.73333 0.06029 0.02622 0.06029 
Eufaula.Lake.2 0.73333 0.06029 0.00775 0.06029 
Eufaula.Lake.4 0.73333 0.06029 0.01950 0.06029 
Eufaula.Lake.5 0.73333 0.06029 0.03168 0.06029 
Fort.Gibson.Lake.1 0.73333 0.06029 0.01223 0.06029 
Grand.Lake.O..the.Cherokees.1 0.73333 0.06029 0.00413 0.06029 
Keystone.Lake 0.73333 0.06029 0.00647 0.06029 
Keystone.Lake.2 0.73333 0.06029 0.00771 0.06029 
Keystone.Lake.3 0.73333 0.06029 0.00333 0.06029 
Lake.Hudson.1 0.73333 0.06029 0.01199 0.06029 
Lake.of.the.Arbuckles 0.73333 0.06029 0.01676 0.06029 
Robert.S..Kerr.Reservoir.1 0.73333 0.06029 0.00211 0.06029 
Tom.Steed.Reservoir 0.73333 0.06029 0.08855 0.06029 
Webbers.Falls.Reservoir 0.73333 0.06029 0.00216 0.06029 
Canton.Lake 0.60000 0.13285 0.05921 0.13285 
Copan.Lake 0.60000 0.13285 0.03239 0.13285 
Lake.Fuqua 0.60000 0.13285 0.02158 0.13285 
Lake.Hudson 0.60000 0.13285 0.00464 0.13285 
Lake.Texoma.1 0.60000 0.13285 0.03301 0.13285 
Lake.Texoma.3 0.60000 0.13285 0.02938 0.13285 
McGee.Creek.Reservoir 0.60000 0.13285 0.00076 0.13285 
Skiatook.Lake 0.60000 0.13285 0.00549 0.13285 
Atoka.Reservoir 0.46667 0.25966 0.02038 0.25966 
Eufaula.Lake.1 0.46667 0.25966 0.00861 0.25966 
Fort.Gibson.Lake 0.46667 0.25966 0.00752 0.25966 
Grand.Lake.O..the.Cherokees.2 0.46667 0.25966 0.00080 0.25966 
Lake.Texoma.2 0.46667 0.25966 0.01659 0.25966 
Lake.Texoma.4 0.46667 0.25966 0.02434 0.25966 
Lake.Thunderbird 0.46667 0.25966 0.01441 0.25966 
Oologah.Lake 0.46667 0.25966 0.00800 0.25966 
Pine.Creek.Lake 0.46667 0.25966 0.01102 0.25966 
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Waurika.Lake 0.46667 0.25966 0.03661 0.25966 
Hugo.Lake -0.33333 0.45237 -0.01671 0.45237 
Broken.Bow.Lake 0.33333 0.45237 0.00195 0.45237 
Eufaula.Lake.3 0.33333 0.45237 0.00480 0.45237 
Fort.Cobb.Reservoir 0.33333 0.45237 0.05308 0.45237 
Grand.Lake.O..the.Cherokees 0.33333 0.45237 0.00414 0.45237 
Lake.Ellsworth 0.33333 0.45237 0.03553 0.45237 
Lake.Texoma 0.33333 0.45237 0.01420 0.45237 
Stanley.Draper.Lake 0.33333 0.45237 0.00863 0.45237 
Wes.Watkins.Reservoir 0.33333 0.45237 0.01342 0.45237 
Eufaula.Lake 0.20000 0.70711 0.00640 0.70711 
Lake.Chickasha 0.20000 0.70711 0.05170 0.70711 
Lake.Eucha -0.20000 0.70711 -0.00019 0.70711 
Lake.McAlester 0.20000 0.70711 0.00847 0.70711 
Lake.McMurtry 0.20000 0.70711 0.00500 0.70711 
Lake.Murray 0.20000 0.70711 0.00043 0.70711 
Robert.S..Kerr.Reservoir -0.20000 0.70711 -0.00088 0.70711 
Sardis.Lake 0.20000 0.70711 0.01948 0.70711 
Shawnee.Twin.Lakes..1 0.20000 0.70711 0.00730 0.70711 
Spavinaw.Lake -0.20000 0.70711 -0.00119 0.70711 
Wister.Lake 0.20000 0.70711 0.01718 0.70711 
Fort.Supply.Reservoir 0.06667 1.00000 0.00589 1.00000 
Foss.Reservoir -0.06667 1.00000 -0.00437 1.00000 
Great.Salt.Plains.Reservoir 0.06667 1.00000 0.00043 1.00000 
Hulah.Lake -0.06667 1.00000 -0.00237 1.00000 
Kaw.Lake.1 0.06667 1.00000 0.00031 1.00000 
Lake.Arcadia 0.06667 1.00000 0.00164 1.00000 
Lake.Hefner 0.06667 1.00000 0.00139 1.00000 
Lake.Konawa -0.06667 1.00000 -0.01734 1.00000 
Lake.Lawtonka -0.06667 1.00000 -0.00631 1.00000 
Lake.Overholser -0.06667 1.00000 -0.03390 1.00000 
Tenkiller.Lake -0.06667 1.00000 -0.00027 1.00000 
Tenkiller.Lake.1 -0.06667 1.00000 -0.00030 1.00000 
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Table C6: Mann Kendall and Sen's Slope to assess for trends in weekly lake high-risk bloom 
frequency. Waterbodies with significant results are bolded. 

Waterbody tau MK P 
value 

Sen's 
Slope 

Sen's 
p.value 

Eufaula.Lake 0.86667 0.02417 0.05769 0.02417 
Great.Salt.Plains.Reservoir 0.86667 0.02417 0.06923 0.02417 
Lake.Chickasha 0.86667 0.02417 0.04311 0.02417 
Lake.Ellsworth 0.86667 0.02417 0.07231 0.02417 
McGee.Creek.Reservoir 0.86667 0.02417 0.04082 0.02417 
Hulah.Lake 0.82808 0.03538 0.03846 0.03538 
Lake.Arcadia 0.82808 0.03538 0.05897 0.03538 
Lake.Texoma.3 0.82808 0.03538 0.02525 0.03538 
Copan.Lake 0.73333 0.06029 0.05128 0.06029 
Grand.Lake.O..the.Cherokees.2 0.73333 0.06029 0.06471 0.06029 
Lake.Texoma.2 0.73333 0.06029 0.06410 0.06029 
Sooner.Lake 0.73333 0.06029 0.04487 0.06029 
Spavinaw.Lake 0.73333 0.06029 0.03971 0.06029 
Lake.Texoma.4 0.69007 0.08517 0.05529 0.08517 
Fort.Cobb.Reservoir 0.60000 0.13285 0.07692 0.13285 
Fort.Gibson.Lake.1 0.60000 0.13285 0.03877 0.13285 
Foss.Reservoir 0.60000 0.13285 0.04173 0.13285 
Hugo.Lake 0.60000 0.13285 0.07654 0.13285 
Lake.Konawa 0.60000 0.13285 0.05045 0.13285 
Pine.Creek.Lake 0.60000 0.13285 0.05769 0.13285 
Sardis.Lake 0.60000 0.13285 0.03130 0.13285 
Skiatook.Lake 0.60000 0.13285 0.07184 0.13285 
Webbers.Falls.Reservoir 0.60000 0.13285 0.05553 0.13285 
Lake.Hudson 0.55205 0.18060 0.06667 0.18060 
Lugert.Altus.Reservoir 0.55205 0.18060 0.02570 0.18060 
Eufaula.Lake.2 -0.55205 0.18060 -0.01397 0.18060 
Canton.Lake 0.46667 0.25966 0.01212 0.25966 
Carl.Blackwell.Lake 0.46667 0.25966 0.02000 0.25966 
Lake.Hefner 0.46667 0.25966 0.02092 0.25966 
Lake.Lawtonka -0.46667 0.25966 -0.01538 0.25966 
Lake.Overholser 0.46667 0.25966 0.05430 0.25966 
Lake.Texoma.1 0.46667 0.25966 0.04902 0.25966 
Stanley.Draper.Lake 0.46667 0.25966 0.04846 0.25966 
Waurika.Lake 0.46667 0.25966 0.03345 0.25966 
Wister.Lake 0.46667 0.25966 0.05053 0.25966 
Atoka.Reservoir 0.41404 0.33889 0.02083 0.33889 
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Keystone.Lake.2 -0.41404 0.33889 -0.00118 0.33889 
Shawnee.Twin.Lakes..1 0.41404 0.33889 0.03190 0.33889 
Wes.Watkins.Reservoir 0.41404 0.33889 0.02308 0.33889 
Birch.Reservoir 0.33333 0.45237 0.03846 0.45237 
Eufaula.Lake.4 0.33333 0.45237 0.02450 0.45237 
Grand.Lake.O..the.Cherokees.1 0.33333 0.45237 0.03846 0.45237 
Kaw.Lake.1 0.33333 0.45237 0.01879 0.45237 
Keystone.Lake.1 0.33333 0.45237 0.03450 0.45237 
Lake.Fuqua 0.33333 0.45237 0.01943 0.45237 
Lake.of.the.Arbuckles 0.33333 0.45237 0.01289 0.45237 
Eufaula.Lake.5 0.27603 0.56609 0.00613 0.56609 
Grand.Lake.O..the.Cherokees 0.27603 0.56609 0.02885 0.56609 
Lake.McMurtry -0.21483 0.69673 -0.00521 0.69673 
Eufaula.Lake.1 0.20000 0.70711 0.03149 0.70711 
Fort.Supply.Reservoir 0.20000 0.70711 0.01294 0.70711 
Kaw.Lake 0.20000 0.70711 0.00622 0.70711 
Lake.Murray 0.20000 0.70711 0.00962 0.70711 
Oologah.Lake 0.20000 0.70711 0.05229 0.70711 
Robert.S..Kerr.Reservoir.1 -0.20000 0.70711 -0.00405 0.70711 
Broken.Bow.Lake 0.13801 0.84831 0.00078 0.84831 
Eufaula.Lake.3 0.13801 0.84831 0.02583 0.84831 
Fort.Gibson.Lake 0.13801 0.84831 0.00651 0.84831 
Lake.Thunderbird 0.13801 0.84831 0.00462 0.84831 
Keystone.Lake 0.06667 1.00000 0.01538 1.00000 
Keystone.Lake.3 0.06667 1.00000 0.00196 1.00000 
Lake.Eucha 0.06667 1.00000 0.02090 1.00000 
Lake.Hudson.1 -0.06667 1.00000 -0.02594 1.00000 
Lake.McAlester 0.06667 1.00000 0.03318 1.00000 
Lake.Texoma -0.06667 1.00000 -0.00980 1.00000 
Robert.S..Kerr.Reservoir 0.06667 1.00000 0.00363 1.00000 
Tenkiller.Lake -0.06667 1.00000 -0.01615 1.00000 
Tenkiller.Lake.1 0.06667 1.00000 0.01885 1.00000 
Tom.Steed.Reservoir 0.06667 1.00000 0.01094 1.00000 
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Table C7: Mann Kendall and Sen's Slope to assess for trends in weekly lake medium-risk bloom 
frequency. Waterbodies with significant results are bolded. 

Waterbody Tau MK p value Sen’s Slope Sen’s p value 
Lake.Texoma.4 -0.8280786 0.03537817 -0.0249608 0.03537817 
Eufaula.Lake 0.82807863 0.03537822 0.02564103 0.03537817 
Spavinaw.Lake 0.73333329 0.06028914 0.0275264 0.06028917 
Atoka.Reservoir 0.6900655 0.08516788 0.03076923 0.08516791 
Shawnee.Twin.Lakes..1 0.59999996 0.13285494 0.029209 0.13285496 
Great.Salt.Plains.Reservoir -0.6 0.13285497 -0.0096154 0.13285496 
Waurika.Lake -0.6 0.13285497 -0.018128 0.13285496 
McGee.Creek.Reservoir 0.59628481 0.15870869 0.00641026 0.15870873 
Lake.Arcadia -0.6024641 0.17606752 -0.0076923 0.1760675 
Grand.Lake.O..the.Cherokees
.2 

0.55205238 0.18059957 0.01470588 0.18059962 

Sooner.Lake 0.55205238 0.18059957 0.00961538 0.18059962 
Fort.Cobb.Reservoir -0.5520524 0.1805996 -0.0096154 0.18059962 
Lake.Texoma.2 -0.5520524 0.1805996 -0.0192308 0.18059962 
Kaw.Lake.1 -0.5012804 0.24231267 -0.0008741 0.24231273 
Lake.Hudson -0.5012804 0.24231267 -0.0094118 0.24231273 
Copan.Lake 0.46666664 0.25965631 0.01461538 0.25965636 
Eufaula.Lake.1 0.46666664 0.25965631 0.01538462 0.25965636 
Lake.Konawa -0.4666666 0.25965631 -0.0147392 0.25965636 
Lake.Texoma.1 -0.4666666 0.25965631 -0.011103 0.25965636 
Grand.Lake.O..the.Cherokees -0.4472136 0.31406254 -0.0005887 0.31406258 
Skiatook.Lake 0.44721359 0.3140626 0.00406386 0.31406258 
Canton.Lake 0.41403931 0.33888781 0.0041806 0.33888783 
Carl.Blackwell.Lake -0.4140393 0.33888781 -0.0007692 0.33888783 
Eufaula.Lake.3 -0.4140393 0.33888781 -0.0192308 0.33888783 
Keystone.Lake.1 0.41403931 0.33888781 0.00653595 0.33888783 
Keystone.Lake.2 0.41403931 0.33888781 0.005 0.33888783 
Oologah.Lake -0.4140393 0.33888781 -0.010181 0.33888783 
Robert.S..Kerr.Reservoir 0.41403931 0.33888781 0.00960784 0.33888783 
Webbers.Falls.Reservoir -0.4140393 0.33888781 -0.02 0.33888783 
Wes.Watkins.Reservoir 0.41403931 0.33888781 0.02307692 0.33888783 
Lake.Ellsworth -0.4303315 0.36707002 0 0.36707002 
Keystone.Lake -0.3333333 0.45237035 -0.0064103 0.45237036 
Keystone.Lake.3 -0.3333333 0.45237035 -0.0270588 0.45237036 
Foss.Reservoir 0.33333331 0.45237041 0.01513912 0.45237036 
Lake.Fuqua 0.33333331 0.45237041 0.00511509 0.45237036 
Tenkiller.Lake.1 0.33333331 0.45237041 0.0073718 0.45237036 
Fort.Gibson.Lake 0.2981424 0.54581666 0.00038462 0.54581675 
Lake.Texoma.3 0.2981424 0.54581666 0.01085819 0.54581675 
Tenkiller.Lake 0.2981424 0.54581666 0.00641026 0.54581675 
Lake.Thunderbird -0.2981424 0.54581672 -0.0012821 0.54581675 
Hugo.Lake 0.34641016 0.55818462 0 0.55818465 
Stanley.Draper.Lake 0.34641016 0.55818462 0 0.55818465 
Birch.Reservoir 0.27602619 0.56609023 0.00641026 0.56609026 
Hulah.Lake -0.2760262 0.56609023 -0.0320513 0.56609026 
Lake.Hefner 0.27602619 0.56609023 0.00117647 0.56609026 
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Lake.McAlester -0.2760262 0.56609023 -0.0001538 0.56609026 
Lake.McMurtry 0.27602619 0.56609023 0.00320513 0.56609026 
Lake.Texoma -0.2760262 0.56609023 -0.0015083 0.56609026 
Lugert.Altus.Reservoir -0.2760262 0.56609023 -0.0007692 0.56609026 
Eufaula.Lake.5 -0.2 0.70711422 -0.0016026 0.70711423 
Lake.Murray -0.2 0.70711422 -0.0059851 0.70711423 
Lake.of.the.Arbuckles 0.19999999 0.70711422 0.01897939 0.70711423 
Lake.Overholser -0.2 0.70711422 -0.0126797 0.70711423 
Kaw.Lake 0.1490712 0.8404274 0 0.8404274 
Grand.Lake.O..the.Cherokees
.1 

0.13801309 0.84831166 0.00961538 0.8483117 

Lake.Chickasha 0.13801309 0.84831166 0.00769231 0.8483117 
Lake.Eucha -0.1380131 0.84831166 -0.0002721 0.8483117 
Lake.Lawtonka 0.13801309 0.84831166 0.00546757 0.8483117 
Sardis.Lake 0.13801309 0.84831166 0.00043541 0.8483117 
Tom.Steed.Reservoir -0.1380131 0.84831166 -0.0037015 0.8483117 
Broken.Bow.Lake -0.0860663 1 0 1 
Eufaula.Lake.2 -0.0666667 1 -0.0015385 1 
Eufaula.Lake.4 -0.0666667 1 -0.0006285 1 
Fort.Gibson.Lake.1 0.07161149 1 0 1 
Fort.Supply.Reservoir 0.0860663 1 0 1 
Lake.Hudson.1 -0.0860663 1 0 1 
Pine.Creek.Lake 0.0860663 1 0 1 
Robert.S..Kerr.Reservoir.1 1 1 0 NaN 
Wister.Lake 0.06666666 1 0.00226244 1 
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Table C8: Mann Kendall and Sen's Slope to assess for trends in weekly lake low-risk bloom 
frequency. Waterbodies with significant results are bolded. 

Waterbody Tau MK p value Sen’s Slope Sen’s p value 
Lake.Thunderbird -0.8944272 0.0288538 -0.004 0.02885379 
Atoka.Reservoir 0.70064902 0.10008264 0.00961538 0.10008268 
Eufaula.Lake.4 0.60246408 0.17606747 0.00384615 0.1760675 
Tenkiller.Lake.1 0.60246408 0.17606747 0.00641026 0.1760675 
Pine.Creek.Lake -0.5773503 0.2415666 0 0.24156659 
Robert.S..Kerr.Reservoir -0.5773503 0.2415666 0 0.24156659 
Lake.Murray 0.57735026 0.24156666 0 0.24156659 
Tom.Steed.Reservoir 0.57735026 0.24156666 0 0.24156659 
Lake.Arcadia 0.50128043 0.24231267 0.00641026 0.24231273 
Sardis.Lake -0.5012804 0.24231267 -0.0067974 0.24231273 
Shawnee.Twin.Lakes..1 0.46666664 0.25965631 0.00113208 0.25965636 
Eufaula.Lake.3 -0.4303315 0.36707002 0 0.36707002 
Lake.Ellsworth -0.3892495 0.41094798 -0.0002564 0.41094803 
Wes.Watkins.Reservoir 0.36514837 0.48745322 0 0.48745329 
Fort.Gibson.Lake.1 0.2981424 0.54581666 0.00369231 0.54581675 
Keystone.Lake.3 0.34641016 0.55818462 0 0.55818465 
Lake.Lawtonka 0.34641016 0.55818462 0 0.55818465 
Lugert.Altus.Reservoir 0.34641016 0.55818462 0 0.55818465 
Robert.S..Kerr.Reservoir.1 0.34641016 0.55818462 0 0.55818465 
Sooner.Lake 0.34641016 0.55818462 0 0.55818465 
Grand.Lake.O..the.Cherokees -0.3464102 0.55818468 0 0.55818465 
Keystone.Lake.1 -0.3464102 0.55818468 0 0.55818465 
Lake.Hudson -0.3464102 0.55818468 0 0.55818465 
Stanley.Draper.Lake -0.3464102 0.55818468 0 0.55818465 
Wister.Lake -0.3464102 0.55818468 0 0.55818465 
Eufaula.Lake -0.2581989 0.65199846 0 0.65199847 
Fort.Cobb.Reservoir 0.25819889 0.65199852 0 0.65199847 
Lake.of.the.Arbuckles 0.25819889 0.65199852 0 0.65199847 
Lake.Texoma 0.25819889 0.65199852 0 0.65199847 
Eufaula.Lake.2 -0.2335497 0.6809895 0 0.68098951 
Lake.Chickasha -0.2335497 0.6809895 0 0.68098951 
Lake.Texoma.3 0.23354967 0.6809895 0 0.68098951 
Lake.Overholser 0.1490712 0.8404274 0 0.8404274 
Copan.Lake -0.1380131 0.84831166 -0.0004085 0.8483117 
Lake.Texoma.2 -0.1380131 0.84831166 -0.0037736 0.8483117 
Birch.Reservoir -0.0716115 1 0 1 
Broken.Bow.Lake 1 1 0 NaN 
Canton.Lake 1 1 0 NaN 
Carl.Blackwell.Lake 1 1 0 NaN 
Eufaula.Lake.1 0.0860663 1 0 1 
Eufaula.Lake.5 1 1 0 NaN 
Fort.Gibson.Lake 1 1 0 NaN 
Fort.Supply.Reservoir 1 1 0 NaN 
Foss.Reservoir -0.0666667 1 -0.0005563 1 
Grand.Lake.O..the.Cherokees
.1 

1 1 0 NaN 
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Grand.Lake.O..the.Cherokees
.2 

1 1 0 NaN 

Great.Salt.Plains.Reservoir 1 1 0 NaN 
Hugo.Lake 1 1 0 NaN 
Hulah.Lake -0.0778499 1 0 1 
Kaw.Lake 1 1 0 NaN 
Kaw.Lake.1 1 1 0 NaN 
Keystone.Lake 1 1 0 NaN 
Keystone.Lake.2 1 1 0 NaN 
Lake.Eucha 1 1 0 NaN 
Lake.Fuqua 1 1 0 NaN 
Lake.Hefner 0.0860663 1 0 1 
Lake.Hudson.1 1 1 0 NaN 
Lake.Konawa 0 1 0 1 
Lake.McAlester 1 1 0 NaN 
Lake.McMurtry 1 1 0 NaN 
Lake.Texoma.1 0.11547004 1 0 1 
Lake.Texoma.4 1 1 0 NaN 
McGee.Creek.Reservoir 1 1 0 NaN 
Oologah.Lake -0.0778499 1 0 1 
Skiatook.Lake 0.07784989 1 0 1 
Spavinaw.Lake -0.0860663 1 0 1 
Tenkiller.Lake 1 1 0 NaN 
Waurika.Lake 0 1 0 1 
Webbers.Falls.Reservoir -0.11547 1 0 1 
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Table C9: Mann Kendall and Sen's Slope to assess for trends in weekly lake no bloom frequency. 
Waterbodies with significant results are bolded. 

Waterbody Tau MK p value Sen’s Slope Sen’s p value 
Grand.Lake.O..the.Cheroke
es.2 

-0.9999999 0.00853492 -0.0804739 0.00853492 

Lake.Ellsworth -0.9999999 0.00853492 -0.0576923 0.00853492 
Lake.Texoma.3 -0.9999999 0.00853492 -0.0343407 0.00853492 
Great.Salt.Plains.Reservoir -0.8666666 0.02417055 -0.056184 0.02417055 
Lake.Chickasha -0.8666666 0.02417055 -0.0607089 0.02417055 
Shawnee.Twin.Lakes..1 -0.8666666 0.02417055 -0.071267 0.02417055 
Lake.Texoma.2 -0.8944272 0.02677276 -0.0431267 0.02677277 
Eufaula.Lake -0.8280786 0.03537817 -0.0833846 0.03537817 
McGee.Creek.Reservoir -0.8280786 0.03537817 -0.0440869 0.03537817 
Eufaula.Lake.4 -0.7333333 0.06028918 -0.0143478 0.06028917 
Lake.Arcadia -0.7333333 0.06028918 -0.0576923 0.06028917 
Sooner.Lake -0.7333333 0.06028918 -0.0538462 0.06028917 
Spavinaw.Lake -0.7333333 0.06028918 -0.0641026 0.06028917 
Lugert.Altus.Reservoir -0.6900655 0.08516791 -0.0320513 0.08516791 
Sardis.Lake -0.6900655 0.08516791 -0.0244557 0.08516791 
Atoka.Reservoir -0.6 0.13285497 -0.0615385 0.13285496 
Canton.Lake -0.6 0.13285497 -0.0235862 0.13285496 
Copan.Lake -0.6 0.13285497 -0.0742308 0.13285496 
Fort.Cobb.Reservoir -0.6 0.13285497 -0.0673077 0.13285496 
Foss.Reservoir -0.6 0.13285497 -0.0368249 0.13285496 
Hugo.Lake -0.6 0.13285497 -0.0765385 0.13285496 
Lake.Fuqua -0.6 0.13285497 -0.0115283 0.13285496 
Lake.Hefner -0.6 0.13285497 -0.04 0.13285496 
Lake.of.the.Arbuckles -0.6 0.13285497 -0.030178 0.13285496 
Lake.Texoma.1 -0.6 0.13285497 -0.0321154 0.13285496 
Pine.Creek.Lake -0.6 0.13285497 -0.0528846 0.13285496 
Skiatook.Lake -0.6 0.13285497 -0.0627828 0.13285496 
Stanley.Draper.Lake -0.6 0.13285497 -0.055 0.13285496 
Wes.Watkins.Reservoir -0.6 0.13285497 -0.0296311 0.13285496 
Grand.Lake.O..the.Cherokees
.1 

-0.5520524 0.1805996 -0.025641 0.18059962 

Lake.Texoma.4 -0.5520524 0.1805996 -0.0247253 0.18059962 
Carl.Blackwell.Lake -0.4666666 0.25965631 -0.0192308 0.25965636 
Eufaula.Lake.2 0.46666664 0.25965631 0.01009434 0.25965636 
Fort.Gibson.Lake.1 -0.4666666 0.25965631 -0.0477941 0.25965636 
Keystone.Lake.1 -0.4666666 0.25965631 -0.0192308 0.25965636 
Lake.Hudson -0.4666666 0.25965631 -0.06 0.25965636 
Lake.Konawa -0.4666666 0.25965631 -0.0357143 0.25965636 
Waurika.Lake -0.4140393 0.33888781 -0.0110305 0.33888783 
Birch.Reservoir -0.3333333 0.45237035 -0.0384615 0.45237036 
Hulah.Lake -0.3333333 0.45237035 -0.0128205 0.45237036 
Lake.Overholser -0.3333333 0.45237035 -0.0673077 0.45237036 
Wister.Lake -0.3333333 0.45237035 -0.0441523 0.45237036 
Keystone.Lake.3 0.33333331 0.45237041 0.01856209 0.45237036 
Eufaula.Lake.1 -0.2760262 0.56609023 -0.0209276 0.56609026 
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Keystone.Lake.2 -0.2760262 0.56609023 -0.0047959 0.56609026 
Broken.Bow.Lake 0.19999999 0.70711422 0.00080032 0.70711423 
Fort.Supply.Reservoir -0.2 0.70711422 -0.0229412 0.70711423 
Grand.Lake.O..the.Cherokees -0.2 0.70711422 -0.0192308 0.70711423 
Kaw.Lake -0.2 0.70711422 -0.0065359 0.70711423 
Kaw.Lake.1 -0.2 0.70711422 -0.0134238 0.70711423 
Lake.Eucha -0.2 0.70711422 -0.0192308 0.70711423 
Lake.Lawtonka 0.19999999 0.70711422 0.00593891 0.70711423 
Robert.S..Kerr.Reservoir 0.19999999 0.70711422 0.00410256 0.70711423 
Webbers.Falls.Reservoir -0.2 0.70711422 -0.0248922 0.70711423 
Eufaula.Lake.3 -0.0666667 1 -0.0071644 1 
Eufaula.Lake.5 0 1 0 1 
Fort.Gibson.Lake -0.0666667 1 -0.0115094 1 
Keystone.Lake -0.0666667 1 -0.0076923 1 
Lake.Hudson.1 0.06666666 1 0.02593537 1 
Lake.McAlester -0.0666667 1 -0.0480769 1 
Lake.McMurtry 0 1 0 1 
Lake.Murray 0 1 0 1 
Lake.Texoma 0.06666666 1 0.00490196 1 
Lake.Thunderbird 0 1 0 1 
Oologah.Lake -0.0666667 1 -0.0192308 1 
Robert.S..Kerr.Reservoir.1 -0.0666667 1 -0.0026144 1 
Tenkiller.Lake -0.0666667 1 -0.02 1 
Tenkiller.Lake.1 0.06666666 1 0.00038462 1 
Tom.Steed.Reservoir -0.0666667 1 -0.0065611 1 
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Table C10: Mann Kendall and Sen's Slope to assess for trends in weekly lake total bloom 
frequency. Waterbodies with significant results are bolded. 

Waterbody tau MK P 
value 

Sen's 
Slope 

Sen's 
p.value 

Grand.Lake.O..the.Cherokees.2 1.00000 0.00853 0.08047 0.00853 
Lake.Ellsworth 1.00000 0.00853 0.05769 0.00853 
Lake.Texoma.3 1.00000 0.00853 0.03434 0.00853 
Great.Salt.Plains.Reservoir 0.86667 0.02417 0.05618 0.02417 
Lake.Chickasha 0.86667 0.02417 0.06071 0.02417 
Shawnee.Twin.Lakes..1 0.86667 0.02417 0.07127 0.02417 
Lake.Texoma.2 0.89443 0.02677 0.04313 0.02677 
Eufaula.Lake 0.82808 0.03538 0.08338 0.03538 
McGee.Creek.Reservoir 0.82808 0.03538 0.04409 0.03538 
Eufaula.Lake.4 0.73333 0.06029 0.01435 0.06029 
Lake.Arcadia 0.73333 0.06029 0.05769 0.06029 
Sooner.Lake 0.73333 0.06029 0.05385 0.06029 
Spavinaw.Lake 0.73333 0.06029 0.06410 0.06029 
Lugert.Altus.Reservoir 0.69007 0.08517 0.03205 0.08517 
Sardis.Lake 0.69007 0.08517 0.02446 0.08517 
Atoka.Reservoir 0.60000 0.13285 0.06154 0.13285 
Canton.Lake 0.60000 0.13285 0.02359 0.13285 
Copan.Lake 0.60000 0.13285 0.07423 0.13285 
Fort.Cobb.Reservoir 0.60000 0.13285 0.06731 0.13285 
Foss.Reservoir 0.60000 0.13285 0.03682 0.13285 
Hugo.Lake 0.60000 0.13285 0.07654 0.13285 
Lake.Fuqua 0.60000 0.13285 0.01153 0.13285 
Lake.Hefner 0.60000 0.13285 0.04000 0.13285 
Lake.of.the.Arbuckles 0.60000 0.13285 0.03018 0.13285 
Lake.Texoma.1 0.60000 0.13285 0.03212 0.13285 
Pine.Creek.Lake 0.60000 0.13285 0.05288 0.13285 
Skiatook.Lake 0.60000 0.13285 0.06278 0.13285 
Stanley.Draper.Lake 0.60000 0.13285 0.05500 0.13285 
Wes.Watkins.Reservoir 0.60000 0.13285 0.02963 0.13285 
Grand.Lake.O..the.Cherokees.1 0.55205 0.18060 0.02564 0.18060 
Lake.Texoma.4 0.55205 0.18060 0.02473 0.18060 
Carl.Blackwell.Lake 0.46667 0.25966 0.01923 0.25966 
Eufaula.Lake.2 -0.46667 0.25966 -0.01009 0.25966 
Fort.Gibson.Lake.1 0.46667 0.25966 0.04779 0.25966 
Keystone.Lake.1 0.46667 0.25966 0.01923 0.25966 
Lake.Hudson 0.46667 0.25966 0.06000 0.25966 
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Lake.Konawa 0.46667 0.25966 0.03571 0.25966 
Waurika.Lake 0.41404 0.33889 0.01103 0.33889 
Keystone.Lake.3 -0.33333 0.45237 -0.01856 0.45237 
Birch.Reservoir 0.33333 0.45237 0.03846 0.45237 
Hulah.Lake 0.33333 0.45237 0.01282 0.45237 
Lake.Overholser 0.33333 0.45237 0.06731 0.45237 
Wister.Lake 0.33333 0.45237 0.04415 0.45237 
Eufaula.Lake.1 0.27603 0.56609 0.02093 0.56609 
Keystone.Lake.2 0.27603 0.56609 0.00480 0.56609 
Broken.Bow.Lake -0.20000 0.70711 -0.00080 0.70711 
Fort.Supply.Reservoir 0.20000 0.70711 0.02294 0.70711 
Grand.Lake.O..the.Cherokees 0.20000 0.70711 0.01923 0.70711 
Kaw.Lake 0.20000 0.70711 0.00654 0.70711 
Kaw.Lake.1 0.20000 0.70711 0.01342 0.70711 
Lake.Eucha 0.20000 0.70711 0.01923 0.70711 
Lake.Lawtonka -0.20000 0.70711 -0.00594 0.70711 
Robert.S..Kerr.Reservoir -0.20000 0.70711 -0.00410 0.70711 
Webbers.Falls.Reservoir 0.20000 0.70711 0.02489 0.70711 
Eufaula.Lake.3 0.06667 1.00000 0.00716 1.00000 
Eufaula.Lake.5 0.00000 1.00000 0.00000 1.00000 
Fort.Gibson.Lake 0.06667 1.00000 0.01151 1.00000 
Keystone.Lake 0.06667 1.00000 0.00769 1.00000 
Lake.Hudson.1 -0.06667 1.00000 -0.02594 1.00000 
Lake.McAlester 0.06667 1.00000 0.04808 1.00000 
Lake.McMurtry 0.00000 1.00000 0.00000 1.00000 
Lake.Murray 0.00000 1.00000 0.00000 1.00000 
Lake.Texoma -0.06667 1.00000 -0.00490 1.00000 
Lake.Thunderbird 0.00000 1.00000 0.00000 1.00000 
Oologah.Lake 0.06667 1.00000 0.01923 1.00000 
Robert.S..Kerr.Reservoir.1 0.06667 1.00000 0.00261 1.00000 
Tenkiller.Lake 0.06667 1.00000 0.02000 1.00000 
Tenkiller.Lake.1 -0.06667 1.00000 -0.00038 1.00000 
Tom.Steed.Reservoir -0.14827 1.03202 -0.00207 1.03202 
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Table C11: MK and Sen's slope for annual trends in max bloom severity.  

Waterbody tau MK P 
value 

Sen's Slope 
(cells/mL/year) 

Sen's 
p.value 

Grand.Lake.O..the.Cherokees.1 0.82808 0.03538 45237 0.03538 
Tom.Steed.Reservoir 0.69007 0.08517 83803 0.08517 
Lake.Chickasha 0.60000 0.13285 38683 0.13285 
Lake.Ellsworth 0.60000 0.13285 196038 0.13285 
Wister.Lake 0.60000 0.13285 103848 0.13285 
Canton.Lake 0.60000 0.13285 91254 0.13285 
Keystone.Lake.1 0.60000 0.13285 132162 0.13285 
Grand.Lake.O..the.Cherokees.2 0.60000 0.13285 80516 0.13285 
Eufaula.Lake.3 0.55205 0.18060 47714 0.18060 
Lake.of.the.Arbuckles 0.55205 0.18060 122821 0.18060 
Eufaula.Lake.5 -0.55205 0.18060 -76470 0.18060 
Keystone.Lake.3 0.46667 0.25966 414418 0.25966 
Atoka.Reservoir 0.46667 0.25966 124946 0.25966 
Eufaula.Lake 0.46667 0.25966 122141 0.25966 
Lake.Texoma.3 0.46667 0.25966 68468 0.25966 
Fort.Gibson.Lake.1 0.46667 0.25966 91550 0.25966 
Stanley.Draper.Lake 0.46667 0.25966 90132 0.25966 
Birch.Reservoir 0.46667 0.25966 45439 0.25966 
Lake.Texoma.4 0.41404 0.33889 124223 0.33889 
Lake.Overholser -0.41404 0.33889 -41459 0.33889 
Lake.Lawtonka -0.41404 0.33889 -35287 0.33889 
Lake.Texoma.2 0.41404 0.33889 59929 0.33889 
Robert.S..Kerr.Reservoir.1 0.41404 0.33889 73798 0.33889 
Copan.Lake 0.35806 0.43569 109519 0.43569 
Keystone.Lake 0.33333 0.45237 270711 0.45237 
Fort.Gibson.Lake 0.33333 0.45237 77568 0.45237 
Lake.Fuqua 0.33333 0.45237 34627 0.45237 
Wes.Watkins.Reservoir 0.33333 0.45237 105952 0.45237 
Webbers.Falls.Reservoir 0.33333 0.45237 67943 0.45237 
Lake.Hefner 0.33333 0.45237 121569 0.45237 
Skiatook.Lake 0.33333 0.45237 40503 0.45237 
Lake.Hudson.1 0.33333 0.45237 45237 0.45237 
Keystone.Lake.2 0.33333 0.45237 107011 0.45237 
Foss.Reservoir 0.33333 0.45237 36907 0.45237 
Sooner.Lake 0.33333 0.45237 164814 0.45237 
Lake.Hudson 0.33333 0.45237 48947 0.45237 
Lake.Arcadia -0.27603 0.56609 -13624 0.56609 
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Eufaula.Lake.1 0.20000 0.70711 187925 0.70711 
Grand.Lake.O..the.Cherokees -0.20000 0.70711 -90141 0.70711 
Hulah.Lake 0.20000 0.70711 40245 0.70711 
Carl.Blackwell.Lake 0.20000 0.70711 24474 0.70711 
Robert.S..Kerr.Reservoir 0.20000 0.70711 76370 0.70711 
Eufaula.Lake.4 -0.20000 0.70711 -33237 0.70711 
Lake.McAlester 0.20000 0.70711 74213 0.70711 
Tenkiller.Lake -0.20000 0.70711 -25269 0.70711 
Broken.Bow.Lake 0.20000 0.70711 112172 0.70711 
Lake.Konawa -0.20000 0.70711 -101913 0.70711 
Lake.Eucha -0.20000 0.70711 -29511 0.70711 
Great.Salt.Plains.Reservoir -0.13801 0.84831 -50287 0.84831 
Hugo.Lake 0.13801 0.84831 26876 0.84831 
Sardis.Lake 0.13801 0.84831 8756 0.84831 
Lake.Murray 0.13801 0.84831 11195 0.84831 
Lake.Texoma 0.00000 1.00000 0 1.00000 
Waurika.Lake 0.06667 1.00000 207882 1.00000 
Fort.Cobb.Reservoir 0.06667 1.00000 11412 1.00000 
Lake.Texoma.1 0.06667 1.00000 32611 1.00000 
Eufaula.Lake.2 0.06667 1.00000 10504 1.00000 
Lake.Thunderbird 0.00000 1.00000 0 1.00000 
Fort.Supply.Reservoir 0.00000 1.00000 0 1.00000 
Kaw.Lake 0.06667 1.00000 85241 1.00000 
Lugert.Altus.Reservoir -0.06667 1.00000 -62876 1.00000 
Oologah.Lake 0.00000 1.00000 0 1.00000 
Pine.Creek.Lake 0.06667 1.00000 10504 1.00000 
Lake.McMurtry -0.06667 1.00000 -25966 1.00000 
McGee.Creek.Reservoir 0.06667 1.00000 13544 1.00000 
Kaw.Lake.1 -0.06667 1.00000 -53635 1.00000 
Shawnee.Twin.Lakes..1 0.06667 1.00000 8237 1.00000 
Tenkiller.Lake.1 0.06667 1.00000 8463 1.00000 
Spavinaw.Lake 0.06667 1.00000 84723 1.00000 
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Table C12: Seasonal Mann Kendal and Sen's slope for monthly high-risk bloom percent 
coverage 

Waterbody tau MK P 
value 

Sen's Slope(% 
coverage) 

Sen's 
p.value 

Tom.Steed.Reservoir 0.55446 0.00000 0.00703 0.00004 
Lake.Texoma.3 0.51219 0.00000 0.00037 0.00006 
Skiatook.Lake 0.47173 0.00001 0.00059 0.00442 
Lugert.Altus.Reservoir 0.43829 0.00002 0.00758 0.00001 
Waurika.Lake 0.40645 0.00015 0.00140 0.00034 
Canton.Lake 0.37997 0.00028 0.00189 0.00126 
Lake.Texoma.4 0.37585 0.00030 0.00165 0.00288 
Keystone.Lake.3 0.37542 0.00050 0.00018 0.00782 
Lake.Hudson.1 0.37256 0.00093 0.00000 0.00714 
Eufaula.Lake.4 0.36218 0.00094 0.00012 0.02656 
Lake.Texoma.2 0.40236 0.00107 0.00000 0.00068 
Webbers.Falls.Reservoir 0.33144 0.00176 0.00013 0.01135 
Lake.of.the.Arbuckles 0.33055 0.00230 0.00000 0.01660 
Pine.Creek.Lake 0.31193 0.00253 0.00116 0.03799 
Eufaula.Lake.5 0.30714 0.00298 0.00151 0.02830 
Keystone.Lake 0.31066 0.00311 0.00020 0.02916 
Lake.Texoma.1 0.30171 0.00331 0.00116 0.00788 
Lake.Hudson 0.33126 0.00351 0.00000 0.00553 
Robert.S..Kerr.Reservoir.1 0.34756 0.00395 0.00000 0.00228 
Fort.Gibson.Lake.1 0.31894 0.00491 0.00000 0.02577 
Keystone.Lake.1 0.35932 0.00531 0.00000 0.00954 
Keystone.Lake.2 0.32696 0.00609 0.00000 0.00903 
Broken.Bow.Lake 0.42410 0.00669 0.00000 0.15414 
Grand.Lake.O..the.Cherokees.1 0.28394 0.00699 0.00014 0.01167 
Sardis.Lake 0.26185 0.01069 0.00197 0.01026 
Sooner.Lake 0.40188 0.01785 0.00000 0.02923 
Eufaula.Lake.1 0.23333 0.02274 0.00141 0.04725 
Eufaula.Lake.2 0.24958 0.02315 0.00001 0.13336 
McGee.Creek.Reservoir 0.25400 0.02389 0.00000 0.05618 
Kaw.Lake 0.25145 0.02464 0.00000 0.04315 
Copan.Lake 0.23112 0.02494 0.00330 0.02342 
Lake.Ellsworth 0.24721 0.02716 0.00000 0.11762 
Carl.Blackwell.Lake 0.25870 0.03329 0.00000 0.12301 
Eufaula.Lake 0.21859 0.03346 0.00027 0.13168 
Birch.Reservoir 0.26405 0.04700 0.00000 0.04095 
Stanley.Draper.Lake 0.27846 0.05693 0.00000 0.03616 
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Eufaula.Lake.3 0.19500 0.05731 0.00112 0.14326 
Atoka.Reservoir 0.19241 0.06765 0.00042 0.10942 
Lake.Fuqua 0.21575 0.09781 0.00000 0.14631 
Lake.Chickasha 0.18247 0.10140 0.00034 0.04574 
Wister.Lake 0.16761 0.10272 0.00121 0.19743 
Oologah.Lake 0.16667 0.10374 0.00032 0.08351 
Lake.Texoma 0.16763 0.10697 0.00037 0.28331 
Grand.Lake.O..the.Cherokees.2 0.23312 0.10974 0.00000 0.19579 
Lake.Hefner 0.17631 0.11144 0.00000 0.29732 
Fort.Cobb.Reservoir 0.15918 0.12819 0.00160 0.06247 
Kaw.Lake.1 0.19197 0.14780 0.00000 0.10969 
Grand.Lake.O..the.Cherokees 0.14702 0.15940 0.00032 0.07865 
Fort.Gibson.Lake 0.13890 0.18736 0.00000 0.43348 
Fort.Supply.Reservoir 0.14874 0.19106 0.00000 0.11548 
Lake.McMurtry 0.12719 0.23476 0.00000 0.23914 
Hugo.Lake -0.10118 0.32563 -0.00012 0.72240 
Spavinaw.Lake -0.13267 0.33528 0.00000 0.53670 
Lake.Thunderbird 0.09904 0.34119 0.00028 0.26826 
Lake.McAlester 0.09187 0.44232 0.00000 0.26269 
Foss.Reservoir -0.07371 0.54672 0.00000 0.51780 
Lake.Murray 0.10638 0.58851 0.00000 0.49271 
Tenkiller.Lake 0.05942 0.65169 0.00000 0.64934 
Wes.Watkins.Reservoir 0.05405 0.66770 0.00000 0.36015 
Lake.Eucha -0.07166 0.69489 0.00000 0.56293 
Lake.Konawa -0.03164 0.77837 0.00000 0.85079 
Shawnee.Twin.Lakes..1 0.03961 0.79476 0.00000 0.44094 
Lake.Lawtonka -0.02429 0.81835 0.00000 0.71164 
Hulah.Lake -0.01701 0.86929 0.00000 0.76963 
Lake.Overholser 0.01497 0.89840 0.00000 0.32360 
Great.Salt.Plains.Reservoir -0.00633 0.95265 0.00000 0.75660 
Robert.S..Kerr.Reservoir 0.00557 0.95669 0.00006 0.74097 
Lake.Arcadia 0.00000 1.00000 0.00000 0.55490 
Tenkiller.Lake.1 0.00000 1.00000 0.00000 0.98203 
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Table C13: Seasonal Mann Kendal and Sen's slope for monthly medium-risk bloom percent 
coverage 

Waterbody tau MK P value Sen's 
Slope(% 
coverage) 

Sen's 
p.value 

Lake.Texoma.1 0.4401325 0.0000178 0.0010229 0.0003328 
Lake.Hudson.1 0.4712209 0.0000194 0.0008723 0.0000266 
Grand.Lake.O..the.Cherokees 0.4286301 0.0000366 0.0006698 0.0000983 
Lake.Texoma.3 0.4175435 0.0000644 0.0003679 0.0002860 
Keystone.Lake 0.4185955 0.0001383 0.0001927 0.0004175 
Keystone.Lake.1 0.4249001 0.0002463 0.0000000 0.0001610 
Lake.Texoma.2 0.4079502 0.0003206 0.0000000 0.0009697 
Kaw.Lake.1 0.3990964 0.0006291 0.0000000 0.0004836 
Grand.Lake.O..the.Cherokees.1 0.3464021 0.0007453 0.0006811 0.0001543 
Lake.Hudson 0.3496116 0.0008643 0.0004885 0.0011963 
Eufaula.Lake.2 0.3471271 0.0013029 0.0004170 0.0229796 
Sooner.Lake 0.5194519 0.0020756 0.0000000 0.0014563 
Grand.Lake.O..the.Cherokees.2 0.2735401 0.0120792 0.0000000 0.0056689 
Broken.Bow.Lake 0.3033191 0.0158132 0.0000000 0.0569864 
Skiatook.Lake 0.2406508 0.0201368 0.0005775 0.0020360 
Waurika.Lake 0.2399474 0.0244737 0.0001764 0.0183981 
Webbers.Falls.Reservoir 0.2329344 0.0275421 0.0001146 0.0211813 
Fort.Gibson.Lake.1 0.2317037 0.0284158 0.0001980 0.0157535 
Fort.Gibson.Lake 0.2248356 0.0289368 0.0004001 0.0048590 
Tenkiller.Lake 0.2425134 0.0344997 0.0000000 0.0784327 
Stanley.Draper.Lake 0.2677463 0.0392110 0.0000000 0.0528407 
Atoka.Reservoir 0.1971103 0.0583861 0.0006588 0.0307803 
Lake.McMurtry 0.2015903 0.0587582 0.0000000 0.0702946 
Canton.Lake -0.1919432 0.0654926 0.0000000 0.3450544 
Lake.Lawtonka 0.1936134 0.0691785 0.0000000 0.0478460 
Eufaula.Lake.5 0.1849007 0.0722365 0.0013615 0.0371880 
Lake.Chickasha -0.2026640 0.0734423 0.0000000 0.0322325 
Keystone.Lake.2 0.1874497 0.0758888 0.0000324 0.0249554 
Robert.S..Kerr.Reservoir.1 0.2031694 0.0768812 0.0000000 0.0207789 
Eufaula.Lake 0.1777778 0.0826623 0.0003315 0.0379123 
Keystone.Lake.3 0.2282774 0.0883600 0.0000000 0.0410805 
Birch.Reservoir 0.1994631 0.0887367 0.0000000 0.0200691 
Robert.S..Kerr.Reservoir 0.1666667 0.1037417 0.0002771 0.2959453 
Kaw.Lake 0.1674944 0.1106121 0.0001422 0.0231943 
Lake.Texoma.4 0.1718308 0.1150501 0.0000000 0.1724502 
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Eufaula.Lake.4 0.1703368 0.1167738 0.0001746 0.0517065 
Sardis.Lake 0.1444444 0.1585255 0.0014007 0.0861583 
Fort.Supply.Reservoir -0.1641972 0.1633723 0.0000000 0.1412827 
Spavinaw.Lake -0.1786251 0.1830105 0.0000000 0.4621559 
McGee.Creek.Reservoir 0.1527607 0.1867487 0.0000000 0.1450810 
Copan.Lake -0.1236195 0.2300623 -0.0001989 0.6686802 
Lake.Texoma -0.1238484 0.2362271 -0.0000784 0.1057296 
Lake.Thunderbird -0.1169973 0.2540516 -0.0001845 0.2488855 
Wister.Lake -0.1169973 0.2540516 -0.0002901 0.3710387 
Lake.Konawa 0.1243294 0.2664898 0.0000000 0.1892572 
Oologah.Lake 0.1111111 0.2780757 0.0005964 0.0835188 
Shawnee.Twin.Lakes..1 0.1432070 0.3449651 0.0000000 0.3361710 
Eufaula.Lake.1 0.0952519 0.3544205 0.0007350 0.0932639 
Lake.Murray 0.1312863 0.4013266 0.0000000 0.4526680 
Great.Salt.Plains.Reservoir -0.0899927 0.4106554 0.0000000 0.5063468 
Hulah.Lake -0.0840458 0.4138701 -0.0003351 0.4302071 
Lake.Ellsworth 0.0603179 0.5679724 0.0000000 0.7443820 
Carl.Blackwell.Lake -0.0493666 0.6594539 0.0000000 0.8337295 
Lake.Eucha 0.0830100 0.6612572 0.0000000 0.2845065 
Eufaula.Lake.3 -0.0444444 0.6643894 0.0003407 0.5273254 
Wes.Watkins.Reservoir -0.0553731 0.6722361 0.0000000 0.7835056 
Lake.Arcadia -0.0478238 0.7160847 0.0000000 0.7987593 
Lake.Fuqua 0.0429795 0.7212119 0.0000000 0.1932248 
Fort.Cobb.Reservoir 0.0374034 0.7257959 0.0000000 0.8691928 
Lugert.Altus.Reservoir -0.0335228 0.7441543 -0.0002967 0.3579439 
Lake.Overholser -0.0295574 0.8185458 0.0000000 0.3103350 
Tom.Steed.Reservoir -0.0227436 0.8260664 0.0000000 0.5217036 
Hugo.Lake -0.0222222 0.8282625 -0.0005347 0.5466279 
Lake.Hefner 0.0218275 0.8433025 0.0000000 0.4508574 
Foss.Reservoir -0.0220922 0.8486154 0.0000000 0.4234864 
Lake.McAlester 0.0158208 0.8914223 0.0000000 0.3897630 
Pine.Creek.Lake 0.0111743 0.9133725 0.0001862 0.5725179 
Tenkiller.Lake.1 -0.0095906 0.9378220 0.0000000 0.8238891 
Lake.of.the.Arbuckles 0.0000000 1.0000000 0.0000181 0.1967425 
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Table C14: Seasonal Mann Kendal and Sen's slope for monthly low-risk bloom percent coverage 

Waterbody tau MK P value Sen's 
Slope(% 
coverage) 

Sen's 
p.value 

Lake.Texoma.1 0.44444 0.00002 0.00015 0.00001 
Lake.Texoma.2 0.41958 0.00045 0.00000 0.00319 
Kaw.Lake.1 0.37679 0.00064 0.00000 0.00017 
Sooner.Lake 0.56188 0.00099 0.00000 0.00088 
Eufaula.Lake.2 0.35769 0.00115 0.00008 0.00426 
Grand.Lake.O..the.Cherokees 0.35073 0.00155 0.00006 0.00229 
Lake.Texoma.3 0.35877 0.00206 0.00000 0.00358 
Keystone.Lake.1 0.43583 0.00334 0.00000 0.00232 
Keystone.Lake.2 0.32617 0.00515 0.00000 0.00427 
Lake.Chickasha -0.46590 0.00779 0.00000 0.01830 
Pine.Creek.Lake 0.27498 0.01126 0.00000 0.01978 
Robert.S..Kerr.Reservoir 0.25222 0.01414 0.00010 0.01333 
Robert.S..Kerr.Reservoir.1 0.42101 0.01552 0.00000 0.00441 
Grand.Lake.O..the.Cherokees.1 0.24855 0.01684 0.00007 0.00649 
Broken.Bow.Lake 0.28813 0.03042 0.00000 0.05913 
Lake.Hudson.1 0.23483 0.03700 0.00000 0.00315 
Lake.of.the.Arbuckles 0.24766 0.04114 0.00000 0.05438 
Hulah.Lake -0.22692 0.04382 0.00000 0.21537 
Fort.Gibson.Lake.1 0.22263 0.05562 0.00000 0.04105 
McGee.Creek.Reservoir 0.23947 0.05975 0.00000 0.03869 
Stanley.Draper.Lake 0.23876 0.06469 0.00000 0.03156 
Shawnee.Twin.Lakes..1 0.35414 0.06823 0.00000 0.04961 
Fort.Cobb.Reservoir -0.31060 0.07604 0.00000 0.06304 
Waurika.Lake 0.19159 0.07933 0.00000 0.01621 
Lake.Texoma.4 0.30476 0.08189 0.00000 0.13646 
Eufaula.Lake 0.18009 0.08455 0.00005 0.02008 
Grand.Lake.O..the.Cherokees.2 0.18396 0.09465 0.00000 0.02577 
Keystone.Lake 0.20370 0.10967 0.00000 0.07029 
Wes.Watkins.Reservoir 0.34641 0.12819 0.00000 0.11454 
Kaw.Lake 0.16417 0.14065 0.00000 0.10555 
Foss.Reservoir 0.18180 0.16621 0.00000 0.07903 
Copan.Lake -0.14359 0.17377 0.00000 0.14629 
Lake.Hudson 0.14065 0.19365 0.00000 0.04975 
Webbers.Falls.Reservoir 0.14843 0.21419 0.00000 0.32922 
Tom.Steed.Reservoir -0.12357 0.24663 0.00000 0.13627 
Oologah.Lake 0.10585 0.30210 0.00009 0.19930 
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Lake.McMurtry 0.12355 0.30405 0.00000 0.35212 
Tenkiller.Lake 0.12670 0.33280 0.00000 0.23247 
Wister.Lake -0.09978 0.34965 0.00000 0.38922 
Canton.Lake -0.11532 0.39085 0.00000 0.33961 
Fort.Supply.Reservoir -0.13791 0.40936 0.00000 0.15144 
Fort.Gibson.Lake 0.08697 0.41315 0.00000 0.09496 
Sardis.Lake 0.08357 0.41525 0.00013 0.36066 
Skiatook.Lake 0.08615 0.41685 0.00000 0.12579 
Lake.Ellsworth -0.08793 0.42812 0.00000 0.65724 
Eufaula.Lake.4 0.08469 0.44073 0.00002 0.09454 
Atoka.Reservoir 0.07661 0.47486 0.00000 0.16004 
Lake.Texoma -0.07845 0.50352 0.00000 0.49335 
Eufaula.Lake.5 0.06236 0.54624 0.00007 0.26618 
Lake.Thunderbird 0.06087 0.57551 0.00000 0.56349 
Lake.Murray 0.10638 0.58851 0.00000 0.52104 
Lake.McAlester 0.06846 0.61708 0.00000 0.35129 
Hugo.Lake 0.05014 0.62497 0.00007 0.28675 
Lake.Lawtonka 0.06585 0.65472 0.00000 0.54068 
Tenkiller.Lake.1 0.06911 0.66623 0.00000 0.61052 
Keystone.Lake.3 0.11547 0.67885 0.00000 0.58357 
Eufaula.Lake.1 0.04169 0.69110 0.00012 0.04766 
Eufaula.Lake.3 -0.04040 0.69810 0.00000 0.64684 
Lake.Fuqua 0.05435 0.71192 0.00000 0.25274 
Spavinaw.Lake -0.05379 0.75488 0.00000 0.69112 
Great.Salt.Plains.Reservoir 0.04317 0.77041 0.00000 0.78277 
Lake.Overholser -0.05319 0.78677 0.00000 0.68224 
Lugert.Altus.Reservoir 0.02990 0.79816 0.00000 0.55621 
Lake.Hefner -0.03059 0.83714 0.00000 0.98646 
Carl.Blackwell.Lake 0.02331 0.86481 0.00000 0.63564 
Lake.Arcadia 0.02032 0.90766 0.00000 0.88687 
Birch.Reservoir -0.00960 0.93986 0.00000 0.39985 
Lake.Eucha 0.00000 1.00000 0.00000 0.84214 
Lake.Konawa 0.00000 1.00000 0.00000 0.68521 
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Table C15: Seasonal Mann Kendal and Sen's slope for monthly total bloom percent coverage 

Waterbody tau MK P 
value 

Sen's 
Slope(% 
coverage) 

Sen's 
p.value 

Skiatook.Lake 0.49042 0.00000 0.00219 0.00021 
Lake.Texoma.3 0.47635 0.00001 0.00103 0.00012 
Waurika.Lake 0.44843 0.00002 0.00335 0.00025 
Tom.Steed.Reservoir 0.43213 0.00003 0.00937 0.00003 
Lake.Texoma.1 0.40670 0.00007 0.00272 0.00095 
Canton.Lake 0.40134 0.00012 0.00178 0.00010 
Lake.Texoma.4 0.38915 0.00017 0.00206 0.00221 
Lake.Texoma.2 0.40109 0.00038 0.00010 0.00060 
Grand.Lake.O..the.Cherokees.1 0.36213 0.00042 0.00114 0.00058 
Lugert.Altus.Reservoir 0.35758 0.00050 0.00532 0.00030 
Keystone.Lake.1 0.40095 0.00050 0.00000 0.00041 
Lake.Hudson 0.36169 0.00053 0.00080 0.00139 
Grand.Lake.O..the.Cherokees 0.35912 0.00054 0.00138 0.00884 
Lake.Hudson.1 0.37774 0.00058 0.00138 0.00045 
Keystone.Lake.3 0.35812 0.00082 0.00040 0.00677 
Lake.Ellsworth 0.34565 0.00093 0.00113 0.01735 
Kaw.Lake.1 0.35387 0.00098 0.00016 0.00038 
Eufaula.Lake.2 0.34483 0.00137 0.00065 0.05827 
Eufaula.Lake.4 0.33730 0.00182 0.00063 0.02519 
Eufaula.Lake.5 0.31937 0.00190 0.00371 0.01437 
Keystone.Lake 0.31952 0.00212 0.00079 0.00963 
Fort.Gibson.Lake.1 0.31001 0.00332 0.00057 0.00594 
Pine.Creek.Lake 0.30000 0.00341 0.00252 0.05237 
Robert.S..Kerr.Reservoir.1 0.31844 0.00503 0.00000 0.00236 
Eufaula.Lake 0.27778 0.00670 0.00072 0.07441 
Broken.Bow.Lake 0.31557 0.00821 0.00000 0.04419 
Webbers.Falls.Reservoir 0.27177 0.00928 0.00062 0.00404 
Sooner.Lake 0.37501 0.00955 0.00000 0.00343 
Atoka.Reservoir 0.26668 0.01044 0.00169 0.03403 
Keystone.Lake.2 0.25822 0.01361 0.00035 0.00721 
Grand.Lake.O..the.Cherokees.2 0.26523 0.01376 0.00000 0.00314 
Stanley.Draper.Lake 0.29677 0.02064 0.00000 0.01654 
Sardis.Lake 0.22222 0.03006 0.00408 0.04022 
Lake.of.the.Arbuckles 0.22614 0.03127 0.00152 0.03386 
Copan.Lake 0.21852 0.03363 0.00379 0.02696 
Birch.Reservoir 0.24549 0.03618 0.00000 0.01623 
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Lake.Chickasha 0.24838 0.04589 0.00000 0.03009 
Fort.Cobb.Reservoir 0.19985 0.05579 0.00114 0.08044 
Lake.Hefner 0.19782 0.07148 0.00000 0.30140 
Kaw.Lake 0.18370 0.07909 0.00036 0.03233 
Eufaula.Lake.1 0.17778 0.08266 0.00244 0.10130 
Carl.Blackwell.Lake 0.18906 0.09045 0.00000 0.12733 
Fort.Gibson.Lake 0.16863 0.10137 0.00086 0.03478 
Lake.McMurtry 0.16852 0.10945 0.00000 0.23807 
Foss.Reservoir -0.18018 0.11745 0.00000 0.74062 
McGee.Creek.Reservoir 0.17266 0.11758 0.00000 0.14424 
Oologah.Lake 0.15556 0.12889 0.00126 0.07520 
Lake.Texoma 0.14178 0.16983 0.00043 0.48343 
Wister.Lake 0.13928 0.17452 0.00103 0.37104 
Spavinaw.Lake -0.16094 0.20470 0.00000 0.65340 
Tenkiller.Lake 0.13085 0.25138 0.00000 0.50534 
Lake.Fuqua 0.13141 0.27257 0.00000 0.10740 
Lake.McAlester 0.09412 0.38465 0.00000 0.21617 
Hugo.Lake -0.08889 0.38555 -0.00052 0.77424 
Lake.Murray 0.13129 0.40133 0.00000 0.44365 
Fort.Supply.Reservoir 0.09377 0.41422 0.00000 0.08664 
Shawnee.Twin.Lakes..1 0.10484 0.49058 0.00000 0.30950 
Eufaula.Lake.3 0.06667 0.51518 0.00143 0.25317 
Robert.S..Kerr.Reservoir 0.06667 0.51518 0.00042 0.61658 
Hulah.Lake -0.05043 0.62395 -0.00037 0.72617 
Lake.Thunderbird -0.05014 0.62497 0.00050 0.38943 
Lake.Overholser 0.05648 0.63671 0.00000 0.54101 
Tenkiller.Lake.1 0.02798 0.81924 0.00000 0.75838 
Lake.Arcadia -0.02701 0.83377 0.00000 0.49135 
Lake.Konawa 0.02322 0.83535 0.00000 0.65034 
Lake.Lawtonka 0.02020 0.85250 0.00000 0.92068 
Great.Salt.Plains.Reservoir -0.01884 0.85960 0.00000 0.67909 
Lake.Eucha -0.01551 0.92592 0.00000 0.59703 
Wes.Watkins.Reservoir 0.00000 1.00000 0.00000 0.53686 
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APPENDIX D : Monthly spatial extent for high-risk blooms (km2) 

 

Figure D1: Waterbody monthly high risk spatial extent 
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APPENDIX E: Trophic State Graphs 

 

 

 

 

Average Bloom Frequency by Trophic State and Risk Level 2017-2022 

Figure E1: Average annual cyanoHAB bloom frequency by trophic state and risk level of bloom. 
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Weekly Bloom Frequency by Trophic State and Risk Level 2017-2022 

Figure E2: Weekly cyanoHAB bloom frequency by trophic state and risk level of bloom. 
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Figure E3: Monthly cyanoHAB bloom percent coverage of a waterbody by trophic state and risk 
level of bloom. 

Monthly Bloom Percent Coverage by Trophic State and Risk Level 2017-2022 



153 
 

 

 
Figure E4: Average annual no bloom frequency by trophic states 

 

Figure E5: Weekly no bloom frequency by trophic state 
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Figure E6: Max bloom severity by trophic status 
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APPENDIX F: Trophic trend analysis 

Table F1: Mann-Kendall and Sen's Slope trend detection for high-risk bloom frequency by 
trophic states 

Trophic State Tau MK p value Sen’s Slope Sen’s p value 
Hypereutrophic 0.59999996 0.13285494 0.01026638 0.13285496 
Eutrophic 0.86666662 0.02417052 0.01194064 0.02417055 
Mesotrophic 0.33333331 0.45237041 0.00293533 0.45237036 
Oligotrophic 0.41403931 0.33888781 0.00106838 0.33888783 

 

Table F2: Mann-Kendall and Sen's slope for trends in average annual medium-risk bloom 
frequency by trophic states 

Trophic State Tau MK p value Sen’s Slope Sen’s p value 
Hypereutrophic 0.33333331 0.45237041 0.00280123 0.45237036 
Eutrophic 0.86666662 0.02417052 0.00258741 0.02417055 
Mesotrophic 0.86666662 0.02417052 0.00343649 0.02417055 
Oligotrophic 0.59999996 0.13285494 0.00551994 0.13285496 

 

Table F3: Mann-Kendall and Sen's slope for trends in average annual low-risk bloom frequency 
by trophic states 

Trophic State Tau MK p value Sen’s Slope Sen’s p value 
Hypereutrophic 0.73333329 0.06028914 0.00038804 0.06028917 
Eutrophic 0.73333329 0.06028914 0.00026002 0.06028917 
Mesotrophic 0.59999996 0.13285494 0.00072271 0.13285496 
Oligotrophic 0.0860663 1 0 1 

 

Table F4: Mann-Kendall and Sen's slope for trends in average annual no bloom frequency by 
trophic states 

Trophic State Tau MK p value Sen’s Slope Sen’s p value 
Hypereutrophic -0.0666667 1 -0.0015347 1 
Eutrophic -0.0666667 1 -0.0053727 1 
Mesotrophic 0.19999999 0.70711422 0.00713666 0.70711423 
Oligotrophic 0.46666664 0.25965631 0.01021273 0.25965636 
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Table F5: Mann-Kendall and Sens slope for trends in average annual total bloom frequency by 
trophic state 

Trophic State Tau MK p value Sen’s Slope Sen’s p value 
Hypereutrophic 0.59999996 0.13285494 0.01327522 0.13285496 
Eutrophic 0.99999994 0.00853491 0.01506509 0.00853492 
Mesotrophic 0.73333329 0.06028914 0.00605263 0.06028917 
Oligotrophic 0.33333331 0.45237041 0.0086254 0.45237036 

 

Table F6: MK and Sen's slope for trends in annual high-risk bloom weekly frequency by trophic 
state 

Trophic State Tau MK p value Sen’s Slope Sen’s p value 
Hypereutrophic 0.59999996 0.13285494 0.03470944 0.13285496 
Eutrophic 0.73333329 0.06028914 0.0271588 0.06028917 
Mesotrophic 0.73333329 0.06028914 0.01780048 0.06028917 
Oligotrophic 0.46666664 0.25965631 0.04846467 0.25965636 

 

Table F7: MK and Sen's slope for trends in annual medium-risk bloom weekly frequency by 
trophic state 

Trophic State Tau MK p value Sen’s Slope Sen’s p value 
Hypereutrophic -0.7333333 0.06028918 -0.0037707 0.06028917 
Eutrophic 0.33333331 0.45237041 0.00263011 0.45237036 
Mesotrophic 0.33333331 0.45237041 0.00375566 0.45237036 
Oligotrophic 0.34641016 0.55818462 0 0.55818465 

 

Table F8: MK and Sen's slope for trends in annual low-risk bloom weekly frequency by trophic 
state 

Trophic State Tau MK p value Sen’s Slope Sen’s p value 
Hypereutrophic 0.19999999 0.70711422 0.00024637 0.70711423 
Eutrophic 0.46666664 0.25965631 0.00041262 0.25965636 
Mesotrophic -0.2 0.70711422 -0.0001664 0.70711423 
Oligotrophic -0.3464102 0.55818468 0 0.55818465 
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Table F9: MK and Sen's slope for trends in annual no bloom weekly frequency by trophic state 

Trophic State Tau MK p value Sen’s Slope Sen’s p value 
Hypereutrophic -0.6 0.13285497 -0.030115 0.13285496 
Eutrophic -0.8666666 0.02417055 -0.0315161 0.02417055 
Mesotrophic -0.7333333 0.06028918 -0.0240769 0.06028917 
Oligotrophic -0.6 0.13285497 -0.055 0.13285496 

 

Table F10: MK and Sen's slope for trends in annual total bloom weekly frequency 

Trophic State Tau MK p value Sen’s Slope Sen’s p value 
Hypereutrophic 0.86666662 0.02417052 0.03151609 0.02417055 
Eutrophic 0.59999996 0.13285494 0.03011496 0.13285496 
Mesotrophic 0.73333329 0.06028914 0.02407688 0.06028917 
Oligotrophic 0.59999996 0.13285494 0.055 0.13285496 

 

Table F11: MK and Sen's slope trend analysis for max bloom severity by trophic state 

Trophic State Tau MK p value Sen’s Slope 
(cells/mL/year) 

Sen’s p value 

Hypereutrophic 0.59999996 0.13285494 59964.3344 0.13285496 
Eutrophic 0.73333329 0.06028914 80812.4484 0.06028917 
Mesotrophic 0.73333329 0.06028914 45184.3958 0.06028917 
Oligotrophic 0.46666664 0.25965631 90131.9333 0.25965636 
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