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EMISSIONS, FORAGE INTAKE, ENERGY METABOLISM AND DIGESTION BY 
BEEF HEIFERS 

Major Field: ANIMAL SCIENCE 

Abstract: Ruminants are a primary source of food security and play an essential part in 
sustainable agriculture. Ruminants consume fibrous feedstuffs and convert them to highly 
nutritional food and consumable products. While doing this, ruminants produce greenhouse gases 
that contribute to climate change. Enteric methane is produced as a byproduct of the fermentation 
of ruminants. Enteric methane production is also an energy loss to the ruminant system. Forage 
quality has an impact on the amount of enteric methane that is produced. As forages mature, 
nutritive value declines with declining crude protein and increasing fiber content. Enteric 
methane production tends to increase as the quality of forages decline. Due to the impact enteric 
methane production has on the environment and to the producer, it is important to research ways 
to mitigate enteric methane production. Globally, wheat is grown on more than 240 million 
hectares. Along with grain it provides pasture, hay, silage, and straw as feed for ruminants. 
Therefore, our objective of this experiment was to investigate the effects that feeding heifers 
long-stemmed wheat hay cut at three different maturities had on intake, digestion, metabolism, 
and enteric methane emission by beef heifers. Twelve heifers were used in a 34-day feeding 
experiment fed over three 7-day periods. Heifers were randomly assigned to 1 of 3 maturities 
including wheat hay cut at the stem elongation stage, wheat hay cut at the booting stage, and a 
mature wheat hay cut at the milk grain stage.  Hay was fed at ad libitum plus a daily supplement 
of pellets were offered via an automated head-chamber system that measures carbon dioxide and 
methane emissions, and oxygen consumption while supplement was consumed. The results of our 
experiment showed that dry matter intake decreased linearly as the wheat matured. Hay maturity 
had a significant negative linear effect on metabolizable energy intake and digestible energy 
intake. As the hay matured, heat production decreased linearly. Hay maturity had a decreasing 
linear effect on total enteric methane emissions but did not have an effect on methane yield as 
expressed as g of methane/kg of DMI. However, carbon dioxide emissions and oxygen 
consumption decreased linearly as wheat matured. Digestibilities of the immature, intermediate, 
and mature hay were 76.22%, 68.01%, and 58.57%, respectively. These results indicate that as 
forage matures it has a negative effect on dry matter intake, carbon dioxide emissions, oxygen 
consumption, heat production, metabolizable energy intake and digestible energy intake, but did 
not have an effect on methane yield. 
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CHAPTER I 
 

 

INTRODUCTION 
 

In recent decades, global atmospheric concentrations of carbon dioxide (CO2), methane 

(CH4), and nitrous oxide (N2O) have risen due to human activities (IPCC, 2013). Fossil fuel use 

is the largest source of CO2 in the United States, while methane sources include leaks from 

natural gas systems, raising of livestock, and natural sources such as natural wetlands (E.P.A., 

2022). Twenty-five percent of the United States methane emissions are from enteric fermentation 

(E.P.A., 2022). Sources of N2O include agriculture, fuel combustion, wastewater management, 

and industrial processes (E.P.A., 2022). One of the goals of the 2015 Paris Agreement of the 

United Nations Framework Convention on Climate Change is to limit global warming to 2° C 

above pre-industrial levels. The United Nations has also agreed to Sustainable Development 

Goals (SDG) to achieve sustainable development by 2030 (Assembly, 2015). Some of the goals 

are no poverty (SDG 1), no hunger (SDG 2), and climate action (SDG 13). Methane will need to 

be reduced by 24 - 47% by 2050 relative to 2010 to meet the 2.0° target (Arndt et al., 2021).       

Increases in income and human population will result in an estimated gross increase of 70 

to 80% in meat and milk demand compared to current levels (Drewnowski and Popkin, 2009; Hu, 

2011), this includes a 69% increase in beef consumption (Godfray et al., 2018).The global meat 

production was 318 million tons in 2016 and the Food and Agriculture Organization (FAO) 

estimates an increase to 455 million tons by the year 2050 (FAO, 2022). As the supply of meat 
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and dairy products increases, so does agriculture’s environmental footprint (Lee et al., 2017). 

Hence, developing means for mitigating enteric emissions from ruminants are essential to 

meeting the SDS goals set by the United Nations. 

Ruminants are significant sources of enteric CH4 (Gill et al., 2009). Microbial 

fermentation in the rumino-reticulum allows ruminants to digest fibrous feedstuffs not usable to 

humans and monogastric livestock (Newbold and Ramos-Morales, 2020). During microbial fiber 

digestion, enteric CH4 is produced and emitted to the environment through eructation (NASEM, 

2016). During this process, 2 to 12% of gross energy in feed is converted to CH4 gas in the rumen 

(Johnson and Johnson, 1995). Variation in CH4 production are related to dry matter intake (DMI) 

and the composition of the diet (Johnson and Johnson, 1995). There are many factors that affect 

CH4 emissions through these two mechanisms. Some of the factors are level of intake, type of 

carbohydrate, the addition of lipids, and the addition of ionophores to the diet (Johnson and 

Johnson, 1995). Typically, as the ruminally digestible carbohydrate intake increases, so does the 

CH4 emissions (Beauchemin et al., 2007). 

Globally, ruminants contribute around 11.6% and cattle contribute 9.4% of all the 

anthropomorphic greenhouse gas emissions (FAOSTAT, 2022), while playing an essential part in 

sustainable agriculture by consuming fibrous feedstuffs and converting them to highly nutritional 

food (milk and meat) and consumable products (wool) for humans.  Eighty-six percent of feed 

intake by livestock is made of materials that are not consumed by humans. Grass and leaves 

represent more than 57% of the ruminants intake (FAOSTAT, 2022).  

Ruminants are one of the few sources of CH4 production we can manipulate (Johnson and 

Johnson, 1995). They are also a primary source of food security (Smith et al., 2013) and represent 

the largest land-use system on Earth (Herrero et al., 2015). The combined economic benefits to 

the livestock industry and environmental benefits to society by decreasing ruminant CH4 
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emissions makes research of the factors impacting CH4 production important (Johnson and 

Johnson, 1995). 

Winter wheat (Triticum aestivum L.) grown in Southern Great Plains of the United States 

can be used for grain or forage only, or for the dual purpose of both forage and grain (Redmon et 

al., 1995). Dual purpose wheat is grown on about 8 million hectares in southern Kansas, 

Oklahoma, and Texas (Lollato et al., 2017). The practice of grazing wheat is also common in 

Argentina, Australia, Morocco, Pakistan, Syria, and Uruguay (Epplin et al., 2000).  Wheat pasture 

is high in protein, energy, and low in fiber, making it a source of high-quality forage (Hossain et 

al., 2003). It is also comparable to alfalfa (Medicago sativa L.) in terms of crude protein and 

digestibility (Hossain et al., 2003), which globally, is the main hay used in livestock production 

(Ronga et al., 2020). In the fall, lightweight calves from the Southeast, Midwest, and West are 

imported to the Southern Plains to graze winter wheat pastures (Epplin et al., 2000) to heavier 

weights before entering feedlots for finishing. In the southern plains, wheat is grazed from late 

November until early March, which is typically when other forage sources are low in quantity and 

quality (Hossain et al., 2003). If grain prices are low and cattle prices are high, producers will 

graze cattle on the wheat until June, or when wheat is no longer suitable for grazing, forgoing a 

grain crop (Stewart et al., 1981).  

Globally, wheat is grown on more than 240 million hectares, which is larger than any 

other crop (Curtis, 2022). In the United States, wheat ranks third among field crops in planted 

acreage, production, and gross farm receipts (USDA-ERS, 2022). Around the globe in places 

lacking rainfall and winter-spring temperatures up to 25°C, wheat is the main forage used as hay, 

silage, or straw to provide feed to ruminants (Shaani et al., 2017).  Wheat is tolerant to abiotic 

stresses, making it an important resource for livestock feed (Ronga et al., 2020). Harvesting 

wheat at different growth stages can have an impact on both yield and quality (Buxton, 1996). As 

the plant matures, yield increases but the nutritive quality decreases (Minson, 1990). Protein 
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concentrations declines while fiber content increases (Jung and Allen, 1995). Voluntary intake 

generally declines as forages advance in maturity, this is due to gut fill in the animal from the 

increase in neutral detergent fiber (NDF) concentration (Buxton, 1996). Declining crude protein 

and increasing NDF and acid detergent fiber (ADF) is thought to lead to increasing greenhouse 

gas (GHG) emissions while decreasing digestibility and livestock productivity.  

The purpose of our study was to investigate the effects that feeding beef heifers long-

stem wheat hay harvested at three different maturities had on forage intake, forage digestibility, 

energy metabolism and enteric CH4 emissions when offered on an ad libitum basis.  
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CHAPTER II 
 

 

REVIEW OF LITERATURE 
 
 

Forage Maturity and Quality 
 

Measures of Forage Quality 

Ruminants have the unique ability to utilize high-fibrous plant material by fermentation 

through microbial actions to obtain greater energy from the plants when compared with 

monogastrics. Over 80% of the total feed consumed in the beef production system is forages 

(McGeough et al., 2012). Van Soest (1987) stated that forage quality is the most crucial factor 

influencing ruminant productivity. Forage quality can be defined as the relative performance of 

animals when consuming herbage on an ad libitum basis (Buxton et al., 1996). The quality of 

forage is the product of nutrient concentration, potential intake, digestibility, and metabolism 

within the animal (Buxton et al., 1996). The most important aspects of forage nutritional value are 

digestibility and crude protein (CP) concentration (Guyader et al., 2016) because energy and 

protein are the major nutritional constituents required by the ruminant for maintenance and 

growth. As forage digestibility increases, passage rate (PR) increases, leading to increasing 

forage intake (Deramus et al., 2003). As a plant matures, the cell wall concentration within the 

stems and leaves increase and cell solubles decrease, and as a result, digestibility of the forage 

declines (Buxton, 1996). Forage nutritive quality encompasses the quantity of plant cell walls, 

optimal digestibility and rate of digestion (Van Soest, 1987).  
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Influence of Plant Maturity on Nutritive Quality 

A major factor affecting forage quality is the stage of development or maturity. As 

forages grow, the proportion of stems and cell wall constituents increase as the proportion of 

leaves decreases (Jung and Allen, 1995). Typically the leaves are of higher quality than the stems 

(Van Soest, 1987). However, this statement is based on the function of the leaves and stems. In 

alfalfa, for example, the stems are structural organs, and the leaves are metabolic organs; 

therefore, leaves maintain their quality as the plant ages (Van Soest, 1987). As most plants 

mature, they produce more stems in relation to leaves. Stems are lower in digestibility than 

leaves, and digestibility declines more rapidly with increased plant maturity than that of leaves 

(Jung and Allen, 1995); thus fibrous cell wall constituents increase. Also, with increasing 

maturity, fibrous cell wall constituents become more lignified. Lignification causes a decrease in 

structural carbohydrate degradability in the rumen (Himmelsbach, 1993). There is a strong 

correlation between the decline of forage quality and the proportion of lignified structural tissue 

(Van Soest, 1987). As the amount of lignin increases so does ADF, since ADF is composed 

mainly of cellulose and lignin. Lignin and ADF are negatively related to digestibility of forages 

(Jung and Allen, 1995).  As grasses advance in stage of maturity, NDF increases while nutrient 

levels decline (Horrocks and Vallentine, 1999). The intake potential of a forage is inversely 

related to NDF (Buxton, 1996). Intake is limited by the filling effect of a forage. The filling effect 

is linked to its cell-wall concentration and rate of disappearance of cell walls from the rumen by 

digestion and passage (Buxton, 1996). Fiber ferments and passes from the reticulorumen more 

slowly than the non-fiber constituents of feeds (Jung and Allen, 1995), therefore, with an increase 

in NDF, there is a decrease in intake due to the high amount of fiber being consumed and slowing 

down digestion. Harvesting forage at an earlier stage of maturity increases fiber digestibility, CP, 

and voluntary intake (Van Soest, 1965).  
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 Beck et al. (2009) examined the impacts of cutting wheat forage at different maturity 

levels on animal performance. Dry matter (DM) yield, chemical composition, digestibility, 

passage kinetics, and performance of growing calves were evaluated when fed mixed diets 

containing 20 or 40% wheat forage cut at the boot and dough stages. The forage that was cut at 

the dough stage yielded 125% more dry matter than the forage cut at the boot stage, with 6.3 

percent units less CP. They found that detergent fiber concentrations were not affected by 

maturity, but the non-fiber carbohydrates (NFC) were greater in the forage cut at the dough stage. 

When included in the diet at 20% of DM, maturity of the forage did not have an effect on PR, 

ruminal retention time (RRT), or fecal output. When the diet consisted of 40% wheat hay, they 

saw greater total tract DM digestibility as well as a greater total tract NDF digestibility with boot 

stage hay compared with the dough stage. They found no difference in body weight (BW), BW 

gain or average daily gain (ADG) when growing calves were fed a total mixed diet containing 

20% or 40% wheat forage. The authors stated that even though ADG was not different in the 

experiment, increased maturity of forages can cause differences in DMI, total tract DM, and NDF 

digestibility of growing calves at the higher inclusion rates.  

Cell Wall and Plant Cell Contents 

 Minson (1990) developed a model to link plant anatomy to chemical composition as the 

foundation for the variations of the potential digestibility of the various nutrient fractions. The 

model is based on the idea that forages are made up of two major components: cell contents and 

cell wall. The cell contents contain most of the organic acid, soluble carbohydrates, CP, fats, and 

soluble ash (Van Soest, 1987). The cell wall constituents include hemicellulose, cellulose, pectin, 

lignin, cutin, silica, and minerals that resist the normal digestive processes  (Hatfield, 1989; Van 

Soest, 1965). The cell-wall portion of the forage impacts the intake by ruminants (Waldo, 1986), 

makes up 40-80% of the forage, and is the less digestible part of the plant cell (Horrocks and 

Vallentine, 1999). The microbial degradation of cellulose rarely is complete; much of the 
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cellulose is unchanged, especially if the cellulose is lignified, and excreted in the feces (Blaxter 

and Czerkawski, 1966). The proteins, non-protein nitrogen, lipids, and other solubles are highly 

digestible, but the sugars, starch, pectin, and other soluble carbohydrates are essentially 

completely digestible (Horrocks and Vallentine, 1999). 

Protein 

 Protein is essential for muscle, milk, wool, hair production and maintenance. After 

energy, protein is the nutrient that most commonly limits animal production (Minson, 1990). 

Since nitrogen is the building block for amino acids that forms protein, the amount of nitrogen in 

the forage is used to determine CP in laboratory analysis. Nitrogen can be divided into true 

protein and non-protein nitrogen (NPN). Non-protein nitrogen includes nucleic acid, free amino 

acids, amides, and nitrates (Buxton et al., 1996). In the rumen, NPN is converted to ammonia by 

ruminal microbes and then is incorporated into microbial protein. The limitation of microbial 

protein synthesis is ruminally availability carbohydrates to provide energy for microbial growth 

(Buxton et al., 1996). True protein consists of cytoplasm and chloroplasts and makes up 60-80% 

of the herbage nitrogen (Van Soest, 1987). Buxton and Marten (1989) found that the 

concentration of CP declined linearly with increasing maturity in all species due to the decrease 

in CP concentrations of both the leaves and stems and because the stems made up a large portion 

of total herbage as the reproductive tillers matured. Ruminal undegradable protein (RUP) (dietary 

protein not hydrolyzed in the rumen) as a percentage of CP increases as plants mature (NASEM, 

2016). 

Carbohydrates 

Carbohydrates are the primary energy source for maintenance and the production 

processes associated with growth, pregnancy, and lactation (Armstrong, 1965). Carbohydrates 

provide the physical fiber needed to stimulate rumination and reticuloruminal motility and supply 
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digestible energy to both the ruminal microorganisms and the animal itself (NASEM, 2016). 

Carbohydrates have both digestive and physiological roles and have the broadest range in 

digestibility of any nutrient. Digestibility of carbohydrates ranges from 100% for sugars to 0% for 

indigestible fiber and, combined with lignin, makeup 70 to 80% of the portion of the diet (Hall 

and Mertens, 2017).  

Both the chemical and physical characteristics of carbohydrates affect rumen function, 

the ruminal fermentation pattern, metabolism and production (Hall and Mertens, 2017). The 

carbohydrate digestibility has an immense impact on digestible nutrients and net energy of 

forages (Hall and Mertens, 2017). Carbohydrates can be classified into two categories based on 

their chemistry and functionality; structural and nonstructural (NASEM, 2016).  

Nonstructural Carbohydrates. Nonstructural carbohydrates are the cell contents and contain 

simple sugar, starch, and hemicellulose, which are easily digestible. Starch is the main storage of 

carbohydrates in plants and is found abundantly in cereal grains. Starch is the main energy 

component in ruminant diets due to its availability (Gómez et al., 2016). The bacteria fermenting 

starch produce a higher proportion of propionic acid than the bacteria that ferments cellulose or 

hemicellulose (Orskov, 1986). Particle size and gelatinization of starch play a prominent role in 

its digestion and utilization. (Hall and Mertens, 2017). In cereal grains, starches are found in the 

endosperm. Starch granules contain amylopectin, amylose, and noncrystalline amylopectin 

(Svihus et al., 2005). Starches from cereal grains are typically composed of 16 to 35% amylose 

and 65 to 84% amylopectin (Svihus et al., 2005). If the grain does not get processed sufficiently, 

the ratio of amylose:amylopectin is usually negatively correlated with starch digestion (Foley et 

al., 2006). Grain processing reduces particle size and exposes the starch to microbial digestion in 

the rumen (NASEM, 2016). 

 Water-soluble carbohydrates consist of monosaccharides and oligosaccharides. 

Monosaccharides includes glucose, fructose, galactose, arabinose, and xylose (Rooke and 
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Hatfield, 2003). Oligosaccharides include disaccharides, raffinose, and stachyose (Rooke and 

Hatfield, 2003). Water-soluble carbohydrates provide a rapidly available energy source for 

ruminal microorganisms (NASEM, 2016). The content of water-soluble carbohydrates varies due 

to environmental conditions; high light intensity and photosynthesis increase the content, and 

high temperatures decrease the content (Van Soest, 1987). Studies have shown that increasing the 

water-soluble carbohydrate content has been shown to improve animal performance (Brito et al., 

2009; Fisher et al., 1999), dry matter intake (Brito et al., 2009), in vitro digestibility (Fisher et al., 

1999), and nitrogen use efficiency (Brito et al., 2009).  

Structural Carbohydrates. Structural carbohydrates are the cell wall material that contains 

hemicellulose, cellulose and lignin. Structural carbohydrates have slower fermentation rates and 

produce more CH4 per unit of substrate fermented than nonstructural carbohydrates (Holter and 

Young, 1992; Moe and Tyrrell, 1979) due to its impact on pH of the rumen and the microbial 

population (Johnson and Johnson, 1995).  

  The dietary fiber concentration primarily impacts the digestibility and thus the quality of 

forage (Van Soest, 1987). Nutritionally, fiber can be defined as fractions of feeds that are slowly 

digested or not digestible and that occupy space in the gastrointestinal tract of animals (Mertens, 

1997). The primary standard of the chemical evaluation of forages is the detergent method 

(Minson, 1990) that Dr. Peter Van Soest developed. The procedure was developed to rapidly 

determine the insoluble cell wall matrix and estimate its major subcomponents, hemicellulose, 

cellulose, and lignin (Van Soest, 1987).  

The cell contents are removed by digesting the forages in a solution of sodium lauryl 

sulfate and ethylenediaminetetraacetic acid (EDTA) that has a neutral pH of 7. The cell contents, 

or the neutral detergent solubles, include sugars, starch, pectin, lipids, soluble carbohydrates, 

protein, non-protein nitrogen, and water-soluble vitamins and minerals (Horrocks and Vallentine, 

1999). The part of the forage that is insoluble in neutral detergent is called neutral detergent fiber 
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and contains hemicellulose, cellulose, and lignin. Neutral detergent fiber values are related to 

digestibility, feed intake, and rate of digestion (Mertens, 1997). The NDF component is digestible 

in the rumen, but resistant to microbial degradation. This leads to a slower digestion rate, slower 

PR, increase in ruminal residence time, and thus lowers intake (Van Soest, 1987). A ruminant 

consuming an all-forage diet will have a higher DMI if the NDF is lower. (Lee et al., 2017). 

Waldo (1986) states that the NDF of forage diets is the single best chemical predictor of forage 

intake.  

To determine the amount of lignin and cellulose in the forage, the NDF can get further 

digested with an acid detergent solution. The acid detergent is a strong acid solution of quaternary 

detergents (Van Soest, 1987). The lignin and cellulose are termed ADF. As the value of ADF 

increases, the forage digestibility decreases (Horrocks and Vallentine, 1999). Thus, ADF is used 

to predict the digestibility and therefore the energy content of feeds. 

Lignin is not a carbohydrate, but is included in the NDF and ADF carbohydrate fraction 

(NASEM, 2016). Lignin is resistant to digestion and negatively affects the digestibility of NDF 

and ADF (NASEM, 2016). Immature plant tissues have a primary cell wall. As the plant matures 

and cell elongation ceases, plants develop a secondary cell wall inside the cell (Jung and Allen, 

1995). This new cell wall is thicker, giving the plant cell tensile strength. As the forage gets more 

mature, lignin starts to form in the space between the plant cells called the lamella and the 

primary wall region, then forms in the secondary wall. Most of the lignin is found in the middle 

lamella/primary wall region (Jung and Allen, 1995). Lignin benefits the plant by providing 

structural integrity by giving additional strength and rigidity to the plant, but decreases the cell 

wall digestibility (Van Soest, 1993). Lignin is the single fiber component most limiting nutrient 

availability (Van Soest, 1987). 
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Zadok’s Decimal Code for the Growth Stages of Cereals 

The effects of the environment and age of the herbage impact growth and development 

and are seen in the phenological development and forage quality. Therefore, a growth-stage 

classification system can be useful in comparing it with forage quality. The Zadok's decimal code 

scale describes the growth stages of cereal grains. It was developed by Zadoks et al. (1974) and is 

an expansion of the system developed by Feekes (1941) . The decimal code is based on 10 

principal growth stages: germination, seedling growth, tillering, stem elongation, booting, 

inflorescence emergence, anthesis, milk development, dough development, and ripening. Each of 

the ten growth stages is then divided into secondary growth stages. A one-digit code designates 

the principal growth stages, and the secondary stages are designated by a two-digit code (Zadoks 

et al., 1974). 

 

Table 2.1. Zadok’s decimal code scale with descriptions of the principal and secondary growth 
stages 

 
2-digit 
code 

General Description 
  

2-digit 
code 

General Description 

0 Germination  5 Inflorescence (ear/panicle) emergence 
 00 Dry Seed   50 - 
 01 Start of imbitition   51 First spikelet of inflorescence just visible 
 02 -   52 - 
 03 Imbibition complete   53 1/4 of inflorescence emerged 
 04 -   54 - 
 05 Radicle (root) emerged from caryopsis  55 1/2 of inflorescence emerged 
 06 -   56 - 
 07 Coleoptile emerged from caryopsis   57 3/4 of inflorescence emerged 
 08 -   58 - 
 09 Leaf just at coleoptile tip   59 Emergence of inflorescence completed 
       
1 Seedling growth  6 Anthesis 
 10 First leaf through coleoptile   60 - 
 11 First leaf unfolded   61 Beginning of anthesis 
 12 2 leaves unfolded   62 - 
 13 3 leaves unfolded   63 - 
 14 4 leaves unfolded   64 - 
 15 5 leaves unfolded   65 Anthesis half-way 
 16 6 leaves unfolded   66 - 
 17 7 leaves unfolded   67 - 
 18 8 leaves unfolded   68 - 
 19 9 or more leaves unfolded   69 Anthesis complete 
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2 Tillering  7 Milk development 
 20 Main shoot only   70 - 
 21 Main shoot and 1 tiller   71 Caryopsis water ripe 
 22 Main shoot and 2 tillers   72 - 
 23 Main shoot and 3 tillers   73 Early milk 
 24 Main shoot and 4 tillers   74 - 
 25 Main shoot and 5 tillers   75 Medium milk 
 26 Main shoot and 6 tillers   76 - 
 27 Main shoot and 7 tillers   77 Late milk 
 28 Main shoot and 8 tillers   78 - 
 29 Main shoot and 9 or more tillers   79 - 
       
3 Stem elongation  8 Dough development 
 30 Ear at 1 cm   80 - 
 31 1st node detectable   81 - 
 32 2nd node detectable   82 - 
 33 3rd node detectable   83 Early dough 
 34 4th node detectable   84 - 
 35 5th node detectable   85 Soft dough 
 36 6th node detectable   86 - 
 37 Flag leaf just visible   87 Hard dough 
 38 -   88 - 
 39 Flag leaf ligule just visible   89 - 
       
4 Booting  9 Ripening 
 40 -   90 - 
 41 Flag leaf sheath extending   91 Caryopsis hard (difficult to divide) 
 42 -   92 Caryopsis hard (not dented by thumbnail) 
 43 Boots just visibly swollen   93 Caryopsis loosening in daytime 
 44 -   94 Over-ripe, straw dead and collapsing 
 45 Boots swollen   95 Seed dormant 
 46 -   96 Viable seed giving 50% germination 
 47 Flag leaf sheath opening   97 Seed not dormant 
 48 -   98 Secondary dormancy induced 
 49 First awns visible   99 Secondary dormancy lost 

 

 
Energy Metabolism 

 
The feed digestibility largely determines its energy content (NASEM, 2016). All animals 

require energy, as it is essential for basal bodily functions maintaining body temperature (Minson, 

1990), breathing, excretion, digestion, and reproductive processes. The animal's energy 

requirements mainly depend on body size, sex, age, physiological state, and the environment in 

which they live. The carbohydrates and fats found in forages in the feed are primarily used as 

energy sources. The unit energy is most commonly measured is calories. A calorie is defined as 

the amount of heat needed to raise the temperature of one gram of water by one degree Celsius. 
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Since the Calorie is a small amount of energy; the kilocalorie (kcal) and the megacalorie (Mcal) 

is used in conjunction with animal feeding standards (NASEM, 2016). The kcal is equal to 1,000 

calories and the Mcal is equal to 1,000 kilocalories. Several energy measures are commonly used 

to evaluate the nutrition of the feed. Energy values are expressed as gross energy (GE), digestible 

energy (DE), metabolizable energy (ME), heat energy (HE), net energy for maintenance (NEm), 

and retained net energy (NEr).  

The equality of ME=RE+HE is accepted because of the first law of thermodynamics; that 

energy cannot be created nor destroyed but can be transformed from one form to another 

(NASEM, 2016). If two entities are measured, the third entity can be calculated by the difference. 

Metabolizable energy is defined as the energy consumed that is not excreted in feces, urine, or 

combustible gases. Retained energy (RE) is the energy deposited in animal tissues or products, 

and HE is simply the heat generated by the animal.  

Energy Values 

Gross Energy. Gross energy is the heat energy from completely oxidizing an organic substance to 

CO2 and water. Gross energy does not provide information about the availability of energy to the 

animal (NASEM, 2016). The Nutrient Requirements of Beef Cattle (NASEM, 2016) defines DE 

as the “gross energy of the food minus the energy lost in the feces.” Most of the energy lost from 

a feed is via feces. The amount of protein, fats, and minerals lost in the feces is directly 

proportional to the amount of forage dry matter and organic matter eaten (Minson, 1990). A large 

portion, around 60-75%, of DE is derived from rumen fermentation (NASEM, 2016). Digestible 

energy reflects diet digestibility; however, it fails to account for major energy losses in relation to 

the urination, digestion processes, and metabolism (NASEM, 2016).  

Metabolizable Energy. Metabolizable energy is a term used to describe the amount of accessible 

energy a feed provides to the animal. Metabolizable energy is DE minus energy lost in the urine 
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and gasses produced, which is mainly CH4 (NASEM, 2016). Most of the ME gets dissipated in 

the form of heat (Salles et al., 2018). Therefore, metabolizable energy and DE are closely related. 

Metabolizable energy is calculated as 82% of digestible energy (Van Soest, 1987) but can vary 

depending on intake, age of animal, and feed source (NASEM, 2016). The ME:DE ratio can 

range from 0.82 to 0.93 in growing cattle (Vermorel and Bickel, 1980). 

Heat Production. Heat production (HP) is the by-product of metabolic processes caused by the 

digestion and assimilation of food. The magnitude of HP is determined by many variables such as 

genetic composition, sex, age, physiological condition, climate, and quality and quantity of feed 

(MacRae and Lobley, 1982). The increase in HP is known as heat increment (HI) or the specific 

dynamic effect. Heat increment can further be defined as the difference between ME and RE. The 

heat produced helps maintain body temperature when cold-stressed, but when not cold-stressed, 

the heat is considered an energy loss that is not accounted for by ME (NASEM, 2016). Diets high 

in fiber are linked to a high HI (Van Soest, 1987). Heat increment is the largest loss of digestible 

energy, which is around 20 to 30% in maintenance animals, 30% in lactating animals, and 42% in 

fattening animals (Van Soest, 1993).  

Retained Energy. Retained energy is the fraction of dietary energy that is deposited in body 

protein, body fat, conceptus, milk, hair, etc. (Ferrell and Oltjen, 2008).  Retained energy can be 

defined as the net energy for gain, which is the energy content of the tissue deposited. Retained 

energy is generally <20% of energy loss in beef cattle of intake energy (Ferrell and Oltjen, 2008). 

Intake of feed is utilized more efficiently for energy maintenance than for energy retention 

(NASEM, 2016). Retained energy can be calculated by the equation RE = 0.0635 x empty body 

weight0.75 x empty body weight gain1.097 (NASEM, 2016). Energy is retained as either protein or 

fat, therefor the composition of the gain at different weights can be estimated from RE (NASEM, 

2016). The relationships between RE, proportion of fat in gain, and the proportion of protein in 

gain are influenced by dietary ME concentration (NASEM, 2016).  
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Ruminants 
 

Ruminants have a unique digestive tract that allows for the digestion of forages and other 

fibrous feeds via anaerobic fermentation. Anaerobic microorganisms such as ruminal bacteria, 

protozoa, and fungi that are found in the rumen ferment plant cell wall polysaccharides, starch, 

protein, and other materials, the byproducts of which provide energy and supports microbial 

growth, which then provides the animal with amino acids from microbial proteins. The oxygen 

(O2)-intolerant environment in the digestive tract produces products that do not get completely 

oxidized. The end products produced in the rumen from anaerobic microorganisms are CO2, CH4, 

volatile fatty acids (VFA), and microbial cells. The VFAs are mainly acetate, propionate, and 

butyrate. Formate, isobutyrate, 2-methylbutyrate, isovalerate, valerate, and caproate are found in 

lesser amounts in the rumen (NASEM, 2016). Other products like ethanol, lactate, and succinate 

are produced, but concentrations are very low because they are used as substrates by other 

microorganisms (NASEM, 2016). Diet, protozoa, and status of the methanogen population in the 

rumen influences the proportions of acetic, propionic and butyric acid (Van Soest, 1987). The 

concentrations of VFAs in the rumen are regulated by a balance between production and 

absorption (Van Soest, 1987). Increased production rates can induce higher VFA concentrations 

(Giesecke, 1970) 

Gas Composition 

Microbial fermentation yields heat, CO2, CH4, and hydrogen (H2) (Johnson et al., 2000). 

During feeding, the ruminant swallows air, which contains nitrogen and O2. Shifts in the rumen 

ecology and fermentation balance cause the composition of gases to vary from animal to animal 

and day to day (Hales and Cole, 2017). The typical composition of rumen gases is 0.2% H2, 0.5% 

O2, 7.0% nitrogen, 20-30% CH4, 45-75% CO2, and minor % of N2O and H2 sulfate (Clarke and 

Reid, 1974; Min et al., 2006). The proportion of CO2 is normally 2 or 3 times that of CH4 (Van 

Soest, 1987). Nitrogen gets eructated, and the O2 gets absorbed or used by facultative organisms 
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(Van Soest, 1987). Methane gets removed from the rumen by eructation or absorption across the 

rumen wall and exhalation via the lungs (Van Soest, 1987). Some CO2 gets removed by 

eructation, but its fate is not as clear as CH4 because of the pooling and recycling of metabolic 

carbon as urea and bicarbonates in saliva (Van Soest, 1987).  

Gas Composition Changes with Forage Maturity and Changing Forage Quality 

Understanding the impacts that forage quality has on the gas compositions of the rumen 

is important, not only in terms of energy loss from microbial digestion but also in terms of 

environmental impacts. As forages mature, nutritive value declines with declining crude protein 

and increasing fiber content (NASEM, 2016). Methane production is thought to increase as the 

fiber content of feed increases, and decrease as the protein content of feed increase (Johnson and 

Johnson, 1995). When ruminants are fed diets containing higher levels of nonstructural 

carbohydrates, such as in early-harvested higher quality forages, CH4 production in reduced 

(Johnson and Johnson, 1995). Chagunda et al. (2010) studied the effects of forage nutritive 

quality on enteric CH4 production by dairy cows. The cattle were fed grass silages that were 

divided into 3 groups and classified as high, medium, and low quality based on ME. Forage was 

fed ad libitum, and the concentrate portion of the rations was formulated to meet the targeted milk 

production and maintenance of the cow. Their study showed that the CH4 intensity (CH4/kg milk) 

from the cows that received the low-quality based forage was 33% more than the cows that 

received the high-quality forages.  

Cole et al. (2020) studied the effects of dietary nutritive quality on CH4 emissions of beef 

steers. Treatments included old world bluestem hay that was cut in October, in the flower/dead 

stage (designated as low-quality, 2.60 CP%, 72.4 NDF%, 41.1 ADF%), Old World bluestem hay, 

that was cut in June and July in the mid-vegetative/early elongation to late boot stage (designated 

as medium-quality, 8.4 CP%, 65.7 NDF%, 34.8 ADF%), and alfalfa hay that was obtained 

commercially (designated as high-quality, 18.12 CP%, 54.3 NDF%, 47.9 ADF%). Steers were 
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fed at 90% of their ad libitum intake. The average total DMI for the steers on the low-quality diet 

was 5.40 kg/d, medium quality diet was 6.20 kg/d and the high-quality diet was 6.38 kg/d. The 

NDF and ADF concentrations decreased as diet quality increased. Their study concluded that 

nitrous oxide emissions averaged 18.5 mg/day for steers fed the low-quality diet, 21.2 mg/day for 

steers fed the medium-quality diet, and 21.3 mg/day for steers fed the high-quality diet. When 

looking at the N2O emissions on a mg/kg of DMI basis, the steers fed the low-quality diet 

produced 3.43, steers fed the medium-quality diet produced 3.41, and the steers fed the high-

quality diet produced 3.30. A large portion of the nitrous oxide emissions were enteric; but 

potentially included some emissions from feces, urine, feed, and equipment. Forage quality did 

not affect O2 consumption per kilogram of DMI and CO2 production. The medium and high-

quality hays had a greater respiratory quotient (RQ) than the low-quality hay. The RQ is the ratio 

of CO2 production to O2 consumption, which allows assessment of carbohydrates and fat 

utilization (Van Soest, 1987).  Diet quality did not affect daily CH4 production, but CH4 

production per kg of digestible organic matter (OM) and NDF decreased as the forage quality 

increased. However, it is important to point out that this study used a legume for their high-

quality hay and a grass for the low and medium-quality hays. Ominski et al. (2006) study on 

enteric CH4 emissions from backgrounded cattle showed that an increase in emissions may be 

associated with lower forage nutritive quality. When the forage quality was low and dry matter 

availability was limited (738 kg/ha) was when they saw the highest CH4 emissions. Boadi and 

Wittenberg (2002) reported emissions were lowest for early summer grazing when forage 

nutritive quality was high.  
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Methane 
 

Methane is a colorless and odorless gas that is a potent greenhouse gas. Methane is about 

28 times more potent than carbon dioxide at warming the Earth on a 100-year timescale (NASA, 

2020).  Natural sources of CH4 include wetlands, volcanoes, vents on the ocean floor, and 

termites (NASA, 2020). Anthropogenic sources of CH4 are the production and combustion of 

natural gas and coal, biomass burning, livestock farming, and waste management (E.P.A., 2022). 

In 2021, the atmospheric methane levels averaged 1,895.7 ppb , which is around 162% greater 

than pre-industrial levels (Stein, 2022). 

Globally, CH4 makes up 17.62% of all GHG emissions (FAO, 2022). Anthropogenic CH4  

accounts for 10.57% of the total GHG emissions and enteric fermentation accounts for 3.17% of 

the total GHG emissions (UN, 2022). In the United States, methane accounts for about 11.5% of 

all U.S. GHG (E.P.A., 2022). Enteric fermentation from ruminants account for 2.9% of the total 

emissions (E.P.A., 2022) 

 

 

 

 

 

 

 

 

 

Figure 2.2 Global GHG emissions and sources of methane 
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Ruminant Methane Production 

Methanogenic bacteria, or methanogens, are single-celled microorganisms in the phylum 

Euryarchaeota and the domain Archae. They are located in the rumen and hindgut of the animal 

(Hook et al., 2010). Volatile fatty acids are the main products of the fermentation of the 

fermentation of the carbohydrates and proteins. The main VFAs produced are acetate, propionate, 

and butyrate (NASEM, 2016). During the production of VFAs, H2 and CO2 are produced (Hook 

et al., 2010). During the production of acetate and butyrate, H2 is liberated, and propionate serves 

as a net H2 sink (Beauchemin et al., 2009). Methanogens use H2 to reduce the CO2 in the rumen 

to prevent the accumulation of reducing equivalents. This process prevents the impediment of 

ruminal fermentation but also produces CH4 (Beauchemin et al., 2009). Enteric CH4 production is 

closely associated with the levels of VFAs present in the rumen (Johnson and Johnson, 1995). 

Therefore, if all the carbohydrates is fermented to acetic acid and no propionic acid is produced, 

Figure 2.3 U.S. methane emissions, by source 
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energy loss as CH4 would be 33% (Chagunda et al., 2010). Eighty-seven percent of ruminant CH4 

is produced in the rumen, and the other 13% is produced in the large intestines (Murray et al., 

1976). The diet composition and the amount of feed consumed are the main factors affecting the 

amount of CH4 emitted (Johnson and Johnson, 1995). Methane production is influenced by forage 

quality. As forage digestibility decreases, forage intake decreases and the acetate: propionate ratio 

increases, which favors increased CH4 production per unit of forage consumed (McAllister et al., 

1996).  

Passage Rate 

According to Van Soest (1987), passage is defined as the flow of undigested residues 

through the digestive tract. Rumen outflow includes bacteria, potentially digestible feed resides, 

and unavailable lignified fiber, with more digestion of bacteria and feed matter occurring at 

succeeding stages. The fecal material is mainly made up of bacterial and plant cell walls and 

some endogenous matter (Van Soest, 1987).  

Ingested feed gets removed from the digestive tract through two paths: digestion or 

passage. The processes of digestion and passage compete for the same material. The extent of 

digestion depends partly on the relative digestion rate and PR due to different feed components 

having inherently different digestion rates (Van Soest, 1987).   

Non-cell wall components of feeds are digested 3 to 10 times faster than the PR (Mertens, 

1993). Cell wall rate of digestion is commonly of the same extent as the rate of passage; however, 

cell wall digestion varies and depends on plant species and the maturity of the forage (Mertens, 

1993). Retention of undigested fiber in the rumen increases ruminal fiber digestion, but feed 

intake is decreased (Allen, 1996). Conversely, an increase in the rate of passage will increase feed 

intake (Balch and Campling, 1961), which increases energy intake but decreases total tract 

digestibility (Firkins et al., 1998). Several factors affect the PR, such as particle size of feed, feed 
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additives, feeding method, breed of animal, ambient temperature, level of feed intake, and animal 

variability (Owens and Goetsch, 1988). A faster PR is associated with more digestible forages; 

this increases intake resulting in more fermentable substrates in the rumen and therefor higher 

CH4 production (Van Soest, 1987). 

Indigestible Markers 

Fecal output has been estimated using indigestible markers for many years. Fecal output 

data are used to calculate digestibility and feed intake (Prigge et al., 1981). The ideal marker must 

not affect or be affected by the digestion process, must be nonabsorbable, and be physically 

similar to the material it is to mark (Fahey and Jung, 1983). They are categorized into internal 

markers and external markers. Internal markers are plant constituents including items such as: 

silica, lignin, and ADF (Fahey and Jung, 1983; Huhtanen et al., 1994; NASEM, 2016). External 

markers are substances added to the diet, including chromium, rare earth elements (such 

ytterbium chloride, yttrium chloride, and alisprosium) titanium, and cobalt (Krysl et al., 1985; 

Udén et al., 1980). 

Internal markers are used in pasture studies and other studies where it is essential to know 

an estimate of digestibility (Mayes et al., 1986) and where direct measurements of intake is 

difficult (Van Soest, 1987). Digestion is the product of different dynamic processes. These 

processes include reduction of the size of feed particles, fermentation, and digesta flow. The 

ingested feed stuffs, the rumen’s microbial population and the type of animal impacts these 

processes (Bernard and Doreau, 2000). According to Van Soest (1987), to estimate digestibility 

an equation is obtained by plotting digestibility versus fecal content. This process is applicable to 

any indigestible fecal constituent. The direct association between digestibility and fecal 

concentration is curvilinear (Van Soest, 1987).  
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Internal markers can also be used to determine PR. Passage rates are determined from 

turnover measurements based on gut contents obtained by emptying the rumen (Van Soest, 1987). 

The turnover rate can be calculated by determining the rumen volume and dividing it by intake 

(Paloheimo et al., 1959). Passage rates can also be determined from the duodenal flow of the 

marker and the ruminal pool size of the marker estimated by the evacuation of ruminal contents 

(Voelker and Allen, 2003).  

External markers can be used to determine PRs, rumen volume, and yield of rumen fecal 

output fermentation products. In addition, they save on labor by helping to avoid total fecal 

collections (Van Soest, 1987). External markers can be given to the animal at a constant level for 

digestibility studies or at a pulse dose to determine the PR by administration of a pulse dose of a 

marker followed by numerous collections over a period of days (Van Soest, 1987). Administering 

the marker can be given by mouth or fistula. The collections can occur at the fistulated sites, in 

feces, or both (Van Soest, 1987).  

Methane Mitigation 

It is estimated that growing cattle could gain an additional 75 g/d of body weight if their 

CH4 production was reduced by 20 percent (Beauchemin and McGinn, 2020). Mitigating enteric 

CH4 emissions has been investigated over the last several decades. This is due to economic 

benefits of the livestock industry and the benefit to the environment (Johnson and Johnson, 1995). 

These studies have mainly focused on animal nutrition, genetics, and management, but other 

efforts looked at vaccines (Wright et al., 2004), defaunation of the rumen (Van Nevel and 

Demeyer, 1996; Whitelaw et al., 1984), and chemical additives (Dong et al., 1997; Van Nevel 

and Demeyer, 1995), to name a few. However, manipulating the diet is the most direct and 

effective means of lowering CH4 emissions in most production systems (Beauchemin et al., 

2009). 
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Lipids. Several studies have established that supplementing diets with lipids reduces enteric CH4 

emissions (Beauchemin et al., 2008; Boadi et al., 2004; Dohme et al., 2000). Dietary lipid 

supplementation works to reduce CH4 emissions by reducing ruminal organic matter fermentation 

activity of methanogenic bacteria and decreasing the number of ruminal protozoa (Johnson and 

Johnson, 1995). Medium-chain fatty acids (C8 – C16) and long-chain fatty acids (>C18) reduce CH4 

production (Blaxter and Czerkawski, 1966), but long-chain fatty acids also reduce fiber digestion 

(Broudiscou et al., 1990) and are less effective in reducing CH4 production than medium-chain 

fatty acids (Cottle et al., 2011). Dohme et al. (2000) concluded that with the addition of 53 g/ kg 

DM of canola oil, coconut oil, or palm kernel oil, CH4 production decreased by 20, 21, or 34%, 

respectively. This study was carried out using the rumen simulation technique (RUSITEC). 

Beauchemin et al. (2007) conducted a study to determine the impact of 3 lipid sources (tallow, 

sunflower oil, and sunflower seeds) on CH4 emissions from growing cattle at 3% of diet. The 

basal diet consisted mainly of whole-crop barley silage (650 g/kg of DM) supplemented with 

steam-rolled barley and sources of protein (soybean meal and canola meal) minerals, and 

vitamins. The 3 lipid sources reduced enteric CH4 emissions by 15% when the differences were 

accounted for in DE intake. However, tallow and sunflower seeds also reduced digestible energy 

intake, which could impact animal performance. In addition to lowering CH4 production, 

sunflower oil increased digestible energy intake, increased the rate of gain, and had minimal 

effects on fiber digestibility.  

Ionophores. Ionophores are antimicrobials that are used in the beef and dairy cattle industries as 

well as the poultry industry. Ionophores improve feed efficiency, increase weight gain, and 

reduces morbidity and mortality (McGuffey et al., 2001). The most commonly used ionophore is 

rumensin (Boadi et al., 2004). Ionophores decrease the acetate-to-propionate ratio of the VFAs 

(Beauchemin et al., 2008). When glucose gets converted to acetate from acetogenic bacteria, two 

net carbons are lost, usually as CH4 (Van Soest, 1987). When glucose gets converted to 
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propionate, there is no net carbon loss (Van Soest, 1987). Ionophores work by inhibiting 

acetogenic bacteria, which gives an advantage to the propionate producing bacteria.  In short-term 

studies, rumensin decreased enteric CH4 emissions by 10 to 25% in finishing cattle (McGinn et 

al., 2004; Tedeschi et al., 2011; Tedeschi et al., 2003). However, due to the development of 

resistance to the antibiotic (Boadi et al., 2004), CH4 production does not stay suppressed with 

prolonged or repeated use of ionophores (Guan et al., 2006; Johnson and Johnson, 1995; Sauer et 

al., 1998; Van Nevel and Demeyer, 1995). Guan et al. (2006) reported that CH4 emissions, 

expressed as liters per kilogram of DMI or as percentage of GE intake, can be decreased by 27% 

within 2 weeks of ionophore supplementation in animals consuming high-concentrate diets, and 

by 30% in 4 weeks in animals consuming a high-forage diet. However, CH4 production levels 

were restored to original levels by the third week in animals consuming a high-concentrate diet 

with ionophore supplementation and by the sixth week in animals consuming a high-forage diet 

with ionophore supplementation.  

Genetics. Selectively breeding livestock with a higher feed efficiency or that produces less CH4 

per unit of DMI is another way to mitigate CH4 production. Methane production and DMI are 

often highly correlated, but the relationship between the two varies highly among animals (Cottle 

et al., 2011). For example, a study by Nkrumah et al. (2006) conducted on fattening cattle shows 

that steers with high feed efficiency produced ~20% less CH4 than the low feed efficiency steers 

(Nkrumah et al., 2006). In another study, Canadian steers with a high net feed efficiency also 

produced ~21% lower annual CH4 than the low NFE steers (Okine et al., 2002).   

Ruminal PR and digesta mean retention time can affect CH4 emissions (Huhtanen et al., 

2016). Animals with a faster PR of feed from the rumen produce less CH4 emissions per unit of 

food ingested (Boadi et al., 2004). Huhtanen et al. (2016) studied ruminal digesta mean retention 

time using the mechanistic Nordic dairy cow model Karoline. Their data indicated that with a 1-

hour increase in mean retention time, CH4 emissions increased by 0.37 g/kg DMI in dairy cattle 
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and 0.33 g/kg DMI in sheep. Predicted CH4 yield was 22.3 and 27.0 g/kg DM for dairy cows and 

sheep, respectively. The increase in CH4 emissions could be due to the digesta PR indirectly 

controlling the methanogenesis pathway genes (Shi et al., 2014). According to a model, based on 

microbial growth kinetics and fermentation thermodynamics, the differences in PRs through the 

rumen would affect ruminal H2 production (Janssen, 2010). According to the model, an increase 

in particle PR is associated with higher rumen H2 concentration, which results is less H2 

formation during fermentation, which results in less CH4 production (Janssen, 2010). With a 

lower ruminal H2 concentration, the methanogens have to increase expression of methanogenesis 

pathway genes to maintain the H2 turnover rate (Shi et al., 2014). In addition to the study 

conducted by Huhtanen et al. (2016), other studies (Goopy et al., 2014; Pinares-Patino et al., 

2011) have concluded that sheep that had increased ruminal digesta PR had reduced CH4 

emissions. Mean retention time has been shown to be a heritable (Smuts et al., 1995) and 

repeatable trait (Orskov et al., 1988). A faster PR not only reduces CH4 emissions per unit of food 

ingested, but also affects propionate and microbial yield, which would positively impact 

production benefits (Boadi et al., 2004). 

Pasture Management and Forage Quality. In beef production, the cow-calf sector contributes 

around 60-84% of total GHG emissions (Grainger and Beauchemin, 2011), while the finishing 

cattle sector makes up most of the rest. The difference in CH4 production between the two sectors 

can be attributed to the fact that the majority of cow herds graze pastures, and the fermentation of 

fiber produces more CH4 than the starch being fermented in the grain-based finishing diets 

(Montes et al., 2013). Also, the cattle being fed in the market sector are fed for a relatively short 

time before slaughter while cows are commonly on high forage diets year-round. Therefore, 

according to Beauchemin et al. (2010), the most effective mitigation strategies are those aimed at 

reducing enteric CH4 emissions from the cow-calf sector.  
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Improving pasture quality is viewed as a way to reduce CH4 emissions, due to the 

increase in animal productivity and reduced acetate formation due to less fiber content in the 

sward, which results in less dietary energy lost as CH4 (Beauchemin et al., 2008). A three-year 

study was conducted by Deramus et al. (2003) on beef cows and heifers in Louisiana. They 

compared CH4 emissions from cattle grazing unimproved continuously grazed pastures to cattle 

grazing management-intensive, best management practices (BMP) pasture system. They 

concluded that when forage quality was high, emissions were lower. However, when forage 

quality declined, the emissions were greater during the summer and the fall. When seasonal 

variations were accounted for, the cattle grazing the BMP systems emitted 22% less CH4 than 

those grazing the unimproved pastures.  

Legumes have a greater digestibility and PR than grasses (McCaughey et al., 1999). 

McCaughey et al. (1999) studied the impacts of pasture type on CH4 production in beef cattle. In 

a 69-d trial, cattle grazed pastures with 78% alfalfa (spp) and 22% meadow bromegrass (spp) or 

100% meadow bromegrass. They concluded that the cattle grazing the alfalfa-grass pasture 

emitted less CH4 than those grazing pure grass. Also, when expressed as energy lost through 

eructation expressed as a percentage of GE intake, the cattle grazing the alfalfa-grass pasture lost 

less energy than the cows grazing pure grass (7.1% and 9.5% of GE, respectively). 

Measuring Gas Emissions 
 

Technologies to measure gas emissions from ruminants are necessary to the assessment 

of mitigation strategies. Technologies have been developed to measure daily CH4 production, 

which include respiration chambers (RC), sulfur hexafluoride tracers (SF6), and open-circuit gas 

quantification systems (GQS). Precise measurements of CH4 emission can be obtained by the use 

of RC, but are impractical for grazing applications (Hammond et al., 2015). Estimations of 

eructed and expired CH4 emissions can be obtained using SF6 technique, from grazing animals 

(Johnson et al., 1994). Short-term spot measurements from grazing animals can be obtained using 
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the GQS (Gunter and Beck, 2018). Each technology has its benefits and weaknesses (Jonker et 

al., 2016).   

Respiration chambers are an enclosed system that measures the total gas exchange by the 

animal including CO2 and CH4 that is produced (Hammond et al., 2015), this includes the CH4 

produced in the hindgut (Munoz et al., 2012). Hindgut CH4 production can account for 2 to 3% of 

the total CH4 emitted (Munoz et al., 2012). Cattle are placed in an enclosed chamber and air is 

drawn through the chamber at set intervals and continuously monitored by using differential 

pressure within a venture flowmeter, while concentration change of the air coming in and leaving 

the system is measured (Brown et al., 1994). Outlet gasses from the chamber and background air 

is continuously sampled into a multiport gas switching unit and the air stream is directed to a 

continuous emission analyzer to determine CH4 and CO2 concentrations by infrared technology 

(Jonker et al., 2016). Respiration chambers allows for direct and  accurate measurements of the 

total CO2 and CH4 (Hammond et al., 2015). However, cattle can stay in respiration chambers for 

2 to 3 days of measurement at one time, and the animal is in an artificial setting, which impacts 

the animal’s behavior and emissions (McGinn et al., 2006). This system cannot be used in grazing 

scenarios.  

The sulfur hexafluoride (SF6) tracer method uses a bolus filled with SF6 (an inert tracer 

gas) that is placed into the rumen (Jonker et al., 2016). The release rate of SF6 through a 

permeation tube is measured before the bolus that is filled with SF6 is inserted into the rumen. A 

halter is placed on the animal’s head that has been fitted with a capillary tube that is connected to 

a sampling canister. These canisters hang around the animal's nose and mouth, and when the 

animal eructates, the gases are captured into the PVC canisters. Methane and SF6 concentrations 

are analyzed in a laboratory using gas chromatography (Hammond et al., 2015). Methane 

emission rate is calculated as follows: QCH4= QSF6 x [CH4]/[SF6], where QCH4 is the emission 

rate of CH4 in liters per hour, QSF6 is the known release rate of SF6 from the permeation tube in 
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the ruminal bolus, and [CH4] and [SF6] are the measured concentrations from the canister air 

(Johnson and Johnson, 1995). The SF6 tracers can be used in a grazing environment (Johnson et 

al., 1994), however, the animals must be handled often, they must wear a halter with canisters, 

and a bolus will remain in their rumen. These factors could have a negative impact on the 

animal's grazing behavior. This method also does not measure CH4 production from the hindgut 

(Gunter and Beck, 2018). Diurnal variation of emissions are also not measurable using the SF6 

system (Gunter and Beck, 2018). 

Open Circuit Gas Quantification System 

A relatively new system that takes spot measurements of CH4 and CO2 emissions from 

ruminants and uses those measurements to estimate daily CH4 production (Dorich et al., 2015) is 

called the GreenFeed emission monitoring system (C-Lock Inc., Rapid City, South Dakota). The 

GQS accuracy of cattle's estimated CO2 and CH4 emission has been validated by recent research 

(Alemu et al., 2017; Dorich et al., 2015; Huhtanen et al., 2015b). The GreenFeed system is a head 

chamber with a feed hopper that baits cattle to visit throughout the day. The bait feeding events 

can be evenly spaced throughout the day to control for circadian variation in CO2 and CH4 

emissions rates (Gunter and Bradford, 2015). When an animal approaches the GreenFeed system, 

the system reads the animal’s radio frequency identification (RFID) tag. The GreenFeed system 

entices animals to visit by dropping bait in 6 to 8 allocations over a 3 to 8 min period. Animals 

are enticed to keep their head in the chamber for at least 3 minutes so that the system can capture 

emissions from multiple eructation events (Velazco et al., 2016). While the animal is consuming 

the bait, the GreenFeed system captures the animal’s breath cloud. The breath cloud is then 

analyzed for CO2, CH4, and O2 concentrations. The measurements are stored in the system and 

then uploaded hourly to a server and processed further. Using ideal gas laws and mass airflow 

estimates, algorithms are used to determine each animal's total daily emissions and O2 

consumption. Compared to other systems, a relatively large number of animals can use the 
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GreenFeed during a trial. In confinement, 20 to 25 animals can be sampled, and in a grazing 

environment, 15 to 20 animals can be sampled (Dorich et al., 2015; Hammond et al., 2015). 

However, training to the GreenFeed system can take 4 to 8 wk (Gunter and Beck, 2018). Some 

animals will never use the GreenFeed system, so a researcher will need to train 20% to 30% more 

animals at the beginning of the training period (Gunter and Beck, 2018). 

The GQS has been used in research for several years and on different types of research. 

Méo-Filho et al. (2020) conducted a study using the GQS to determine CH4 emissions of different 

lines of beef steers that were reared on pastures and finished in feedlots. The GQS has also been 

used to determine if enteric CH4 was mitigated in beef feedlot cattle fed dietary nitrate (Velazco 

et al., 2013) as well as daily CH4 emissions and emission intensity of grazing beef cattle that are 

genetically divergent for residual feed intake (Velazco et al., 2017). In addition to measuring 

emissions, the GQS can also be used to administer external markers to cattle (Beck et al., 2021). 

The researchers concluded that the external marker, titanium dioxide, when administered through 

the GQS feed hoppers is an acceptable method to measure fecal output.  

In a study conducted by Jonker et al. (2016), enteric CH4 and CO2 emissions were 

measured using RC, SF6, and GQS from beef heifers fed alfalfa silage at 3 feeding levels and 4 

feeding frequencies. Their study concluded that in general, the 3 technologies provided means for 

CH4 yields that were the same. Studies (Cole et al., 2020; Hammond et al., 2015), have reported 

that mean emissions of enteric CH4 measured using the RC and GQS were not different. Studies 

(Arthur et al., 2017; Cole et al., 2020; Hammond et al., 2015; Jonker et al., 2016) have also 

shown that estimates of CH4 and CO2 emissions obtained from the GQS from beef cattle 

individually fed forage-based diets, are acceptable estimates when sufficient numbers of data 

points are obtained and sufficient numbers of animals are used. Studies (Boadi et al., 2002; 

McGinn et al., 2006; Pinares-Patino et al., 2008; Ulyatt et al., 1999) comparing RC to SF6 found 

no difference between CH4 emissions in beef cattle and sheep. 
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Summary of Literature 
 

 Global atmospheric concentrations of greenhouse gases are rising (IPCC, 2013). In 2015, 

the U.N. reached an agreement to combat climate change, called the Paris Agreement. The central 

aim of the agreement is to limit global warming to 2° C above pre-industrial levels. Ruminants 

contribute to the increasing GHGs while consuming fibrous feedstuffs that are unusable by 

humans and converting the fibrous feedstuffs into highly nutritional foods and consumable 

products. Globally, the demand for such products is increasing (Steinfeld et al., 2006). Therefore, 

mitigating emissions from ruminant animals is necessary to achieve the 2◦C goal of the Paris 

Agreement.  

There are several factors that impact the amount of enteric CH4 produced from ruminants. 

One of the factors is forage quality. Forage quality encompasses the nutrients, energy, protein, 

digestibility, and fiber found in the forage, which impacts intake potential, digestibility, and 

partitioning of metabolized products (Buxton, 1996).  The stage of maturity is a significant factor 

affecting forage quality. As the plant matures, lignin increases, causing the ADF value to 

increase, which decreases digestibility. Also, due to the increase in fiber, dry matter intake will 

decrease. The decrease in digestibility and decrease in intake causes acetate to increase, which 

causes CH4 production to increase. Generally, as the plant ages, the nutrient levels begin to 

decline as well (Horrocks and Vallentine, 1999). 

Enteric CH4 is produced in the rumen during the microbial fermentation of feeds. This 

results in 2 to 12% of gross energy from the feed being lost. This lost energy could have been 

used by the animal for growth and production. Hence, reducing the environmental footprints of 

ruminants will not only help with reducing GHGs but will also reduce energy losses from the 

ruminants, thus potentially increasing the animal's performance, which in return has the potential 

to increase the producer's bottom line.
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CHAPTER III 
 

 

Effects of hay maturity on intake, digestion, metabolism, and enteric methane emissions 
by beef heifers 
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Abstract: The objective of this experiment was to investigate the effects of ad libitum feeding 

long-stemmed wheat hay cut at three different maturities on intake, digestion, metabolism, and 

enteric CH4 emissions by beef heifers. Twelve heifers (initial BW = 296 ± 30 kg) were used in a 

34-day feeding experiment fed over three periods. Heifers were randomly assigned to 1 of 3 

treatments including an immature wheat (Triticum aestivum L.) hay harvested at the stem 

elongation stage [Zadok score (Tottman, 1987) = 3.1, 37% NDF], an intermediate maturity wheat 

hay harvested at the booting stage (Zadok score 3.9-4.1, 55% NDF), and a mature wheat hay 

harvested at the milk stage (Zadok = 7.9, 63% NDF) of maturity. Hay was offered at ad libitum 

along with a daily supplement of about 0.60 kg of pellets (12% CP) via an automated head-

chamber system that measures CO2 and CH4 emissions, and O2 consumption while the 

supplement was consumed. Data were analyzed as a completely random design and beginning 

BW as a covariate; means were separated using orthogonal contrasts. Dry matter intake (DMI) 

decreased linearly as the wheat matured (P < 0.01). Daily CH4 emissions decreased as the hay 

matured (P = 0.03) but did not have an effect on CH4 yield (expressed as g of CH4/kg of DMI; P 
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= 0.13). However, CO2 emissions and O2 consumption decreased linearly (P < 0.01, P < 0.01) as 

the wheat matured. As the hay matured, heat production decreased linearly (P < 0.01). Hay 

maturity linearly decreased metabolizable energy intake and digestible energy intake (P < 0.01, P 

< 0.01). Digestibility decreased linearly (P = 0.02) with maturity, with digestibilities of 76.22%, 

68.01%, and 58.57% for immature, intermediate, and mature hay, respectively. These results 

indicate that as forage matures it has a negative effect on DMI, CO2 emissions, O2 consumption, 

HP, digestible energy intake, and metabolizable energy intake, but did not have an effect on CH4 

yield.  

 
Introduction 

 

Globally, wheat (Triticum aestivum L.) is grown on more than 240 million hectares, 

which is larger than any other crop (Curtis, 2022). In places lacking rainfall and winter-spring 

temperatures up to 25°C, wheat is the main forage used as hay, silage or straw to provide feed to 

ruminants (Shaani et al., 2017). Up to 7 million head of stocker cattle graze wheat  pasture during 

the winter in Oklahoma and the southern Great Plains each year (Horn, 2006). The practice of 

grazing wheat for pasture is also common in Argentina, Australia, Morocco, Pakistan, Syria, and 

Uruguay (Epplin et al., 2000). Wheat offers opportunities for harvesting excess biomass as 

preserved forages such as hay or silages. 

As forages grow, the proportion of stems and cell wall constituents increase as the 

proportion of leaves decreases (Jung and Allen, 1995). Typically the leaves are of higher quality 

than the stems (Van Soest, 1987). As most plants mature, they produce more stems in relation to 

leaves. Stems are lower in digestibility than leaves, and digestibility declines more rapidly with 

increased plant maturity than that of leaves (Jung and Allen, 1995); thus fibrous cell wall 

constituents increase. Also, with increasing maturity, cell wall constituents become more 

lignified, which causes digestibility to decrease (Minson, 1990). When digestibility is decreased, 
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dry matter intake is reduced, due to the forages remaining in the rumen longer because of their 

slow rate of digestion (Jung and Allen, 1995). Increased fiber content is also related to an increase 

of the acetate: propionate ratio, which favors an increase in CH4 production (McAllister et al., 

1996).  

Ruminants produce enteric methane during the process of microbial digestion of feed. 

Methane produced from cattle constitutes 2-12% of gross energy loss (Johnson and Johnson, 

1995). The composition of the diet and the amount of feed the animal consumes are the main 

factors affecting the amount of CH4 emitted (Johnson and Johnson, 1995). Methane is a potent 

greenhouse gas that has 28 times the global warming potential of CO2 (IPCC, 2013). Ruminants 

are significant sources of enteric CH4 (Gill et al., 2009) and contribute around 11.6% of all the 

anthropomorphic greenhouse gas emissions (FAOSTAT, 2022), and twenty-five percent of the 

U.S. methane emissions (E.P.A., 2022). Ruminants are one of the few sources of CH4 production 

we can manipulate (Johnson and Johnson, 1995) and are also a primary source of food security 

(Herrero et al., 2015). The combined economic benefits to the livestock industry and 

environmental benefits to society by decreasing ruminant CH4 emissions makes research on 

mitigating enteric CH4 important (Johnson and Johnson, 1995). With growing concerns of global 

climate change and the vast amount of wheat that is grown globally and used as hay or pastures, it 

is important to research methods to lessen the enteric emissions by ruminants consuming wheat 

forage.  

The purpose of our study was to investigate the effects that feeding heifers long-stemmed 

wheat hay cut at three different maturities have on forage intake, forage digestibility, energy 

metabolism and enteric methane emissions when offered on an ad libitum basis. 
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Materials and Methods 
 

Animals used in this experiment were under the care standards describes in the Guide for 

Care and Use of Agricultural Animals in Research and Teaching (FASS, 2021). These standards 

were reviewed and approved by the Southern Plains Range Research Station Animal Care and 

Use Committee (Protocol number, AUP-028). 

Experiment Date and Location 

 The experiment was conducted from July 19, 2021, to August 21, 2021, at the Southern 

Plains Experimental Range, Ft. Supply, OK (36° 37’ N, 99° 35’ W).  Heifers were housed in a 

pen equipped with individual feed bunks that were equipped with Calan gates (American Calan 

Inc., Northword, NH), 101.2 m2 of dirt surface/heifer, and 3.25 m2 of shade/heifer.  

Training and Acclimation Period 

 Twenty-five Red Angus heifers were trained to an automated head chamber system 

(AHCS; GreenFeed; C-Lock, Inc.) used for measuring gas exchange of O2, CO2, and CH4. The 

training period started 15 wk before the start of the trial and proceeded as follows. The AHCS 

requires panels to be attached to both sides of the front of the unit to prevent air contamination 

from other animals. The AHCS also requires a narrow alleyway to prevent two animals from 

using the AHCS at one time. During the first part of the trial period, the panels and alleyway were 

removed to encourage use of the AHCS. The side panels and alleyway were replaced after 2 wk 

when the majority of the heifers started visiting the AHCS regularly. After a 7 wk training period, 

14 heifers that most consistently used the AHCS were selected. 

 The 14 heifers were then trained to feed bunks using 12 Calan gates. During week one, 

latches on the Calan gates were held open to assist heifers with learning how to open the gates. At 

wk 2, the 12 heifers that were using the Calan gates with ease were randomly assigned a gate key, 

which was placed around their neck, and latches on the gates were released. After 2.5 wk, heifers 
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were sorted and penned in groups of four to assist the heifers with finding their gate. After 3 wk, 

heifers were then randomly assigned to 1 of 3 treatments.  

 During the 14-d adaptation period, heifers were fed their randomly assigned treatments of 

different maturities of long-stemmed wheat hay (Triticum aestivum L.). They were fed 

individually on an ad libitum basis using Calen gates. During this 2 wk period, heifers had access 

to the AHCS.  

Dietary Treatments, Animals, and Feeding 

 The 12 heifers (initial BW = 296 ± 30 kg) were randomly assigned to one of three 

treatment diets and remained on the same treatment throughout the study; 1) immature maturity 

hay cut at the stem elongation stage (Zadok score=3.1); 2) intermediate maturity hay cut at the 

stem elongation stage/booting stage (Zadok score=3.9-4.1); and 3) mature hay cut at the milk 

development stage (Zadok score=7.9) (Table 3.1 and Figure 3.1). Further, heifers were 

supplemented daily with 0.60 kg of 12% calf creeper pellets (Table 3.2) (Stillwater Milling 

Company, Stillwater, OK) delivered via the AHCS.  

The wheat (Triticum aestivum L.) was obtained from the USDA-ARS Southern Plains 

Experimental Range near Ft. Supply, Ok. The wheat was grown on a Lesho clay loam and 

Lincoln clay loam soil with a slope of 0 to 1%. In March, liquid urea ammonium nitrate (UAN) 

was applied. The wheat was cut on three different dates and baled into small square bales. The 

first cutting was an immature hay cut at the stem elongation stage. This wheat had a Zadok score 

(Tottman, 1987) of 3.1 and NDF of 37%. The second cutting was intermediate maturity cut at the 

stem elongation /booting stage, which had a Zadok score of 3.9-4.1 and NDF of 55%. The third 

cutting was mature stage cut at the milk development stage, which had a Zadok score of 7.9 and 

NDF of 63%. The bales of hay were placed on pallets on a concrete floor in an enclosed metal 

building.  
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Body weights were collected on day 0, 15, 22, 29, and 35. Body weights were recorded 

before the morning feeding to minimize variation associated with gastrointestinal fill.  After body 

weights were collected, fecal samples were taken, via rectal grab, approximately every 3 hours 

for the first 24 hours (0, 3, 6, 9, 12, 15, 18, 21, and 24). After the initial 24 hours, fecal samples 

were taken at approximately 30, 36, 42, 48, 60, 72, 84, 96, and 108 hr. 

Heifers were fed on an ad libitum basis and orts, if present, were collected at 0800 daily 

before feeding and weighed on a platform scale (0.05 lb. readability; Ohaus SD 35, Ohaus, 

Parsippany, NJ).  

Carbon Emissions Sampling and Analyses 

 Emissions of CH4 and CO2 were measured using the AHCS. The principles of CH4 and 

CO2 measurements by the AHCS used in this experiment are described in Hristov et al. (2015). In 

brief, the heifers can move freely in and out of the AHCS and emissions are measured when the 

heifer’s head is in the proper position in the chamber with its muzzle in front of the manifold as 

signaled by an infrared nose position sensor (Gunter et al., 2017). At each visit, a radio frequency 

identification tag (RFID) is read by the unit, and if a meal is allowed, bait is dropped. The AHCS 

bait used for this experiment was 12% creeper pellets that were dropped at 24-s intervals up to 8 

times/feeding event (25.65 g/drop) with a maximum of 4 feeding events/d. Once a feeding event 

occurs, the AHCS was programmed to not allow a feeding event for 4.5 h to evenly space events 

throughout the day to control for circadian variation in CH4 and CO2 emission rates (Gunter and 

Bradford, 2015). The AHCS was also programed for a 24-s interval between drops of bait to keep 

the heifer’s head in the unit for an adequate amount of time (approximately 3 min) to capture 3 or 

more eructations and to achieve a representative measurement of emissions (Huhtanen et al., 

2015a). To ensure near complete tidal breath sampling, the air to be drawn in to the manifold was 

at a minimum rate of 26 L/s (Gunter et al., 2017). 
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 Methane, CO2 and O2 concentrations were continuously measured in the outgoing air by 

a non-dispersive infrared analyzer (CH4 and CO2) and a paramagnet analyzer (O2) and 

simultaneous measurements were made of airflow, temperature, and relative humidity. All data 

were uploaded hourly to the server at C-Lock, Inc. Algorithms were used to calculate CH4, CO2 

and the consumption of O2 for each visit were calculated as described in Gunter and Bradford 

(2017). The CO2, CH4, and O2 sensors were calibrated at the beginning of each of the 3 periods 

and at the end of period 3. After a clean air filter (K & N Engineering; Riverside, CA) was 

installed, the sensors were flushed with a zero gas (0.001 ppm of CO2, 0.001 PPM NOx, 0.001 

PPM sulfur dioxide, 20.80% O2) for approximately 2 min followed by a span gas (0.4998% CO2, 

20% O2, and 500.1 PPM CH4). At the beginning of each of the 3 periods and at the end of period 

3, the air flux sensor was calibrated gravimetrically 3 times by releasing CO2 into the unit using a 

90-g prefilled CO2 cylinder (SigSauer CO2 Cylinder, SigSauer, Newington, NH) for 3 min, then 

compared the gravimeter release to calculated capture. (102.45 ± 0.30% CO2 recovery, SD = 

1.05, n=12). The CO2:CH4 ratio was calculated by dividing moles of CO2 emitted by moles of 

CH4 emitted (Madsen et al., 2010). 

 The GLIMMIX procedure of SAS (SAS 9.4; SAS Inst., Inc., Cary, NC.) was used to 

identify outliers by a model using treatment, airflow rate, and hour of the day designed to 

calculate a studentized residual for each observation. Any residual gas flux with a calculated 

studentized residual of greater than 3.0 or less than -3.0 were removed. Further, only individual 

gas measurements from heifers lasting 3-min or longer were used so three eructations per spot-

measure were present (Caetano et al., 2018; Huhtanen et al., 2015a) and necessary to minimize 

standard errors (Gunter and Bradford, 2017).  

 

 



39 
 

Feed Sampling and Analysis 

 Fecal samples were dried in a 60° C drying oven and ground to pass through a 2-mm 

screen (Thomas A. Wiley Laboratory Mill, model 4). Fecal samples were composited, by weight 

(5 g), for each heifer and period.  

 Samples of the hays were collected by coring every bale and drying in a forced-air oven 

at 60° C for 48 h to adjust dietary ingredients to a DM basis. Samples of the hays were sent to a 

commercial lab (Dairy One Inc., Ithaca, NY) for analysis of crude protein (CP), acid detergent 

fiber (ADF), neutral detergent fiber (NDF), starch and minerals (Ca, P, Mg, K, Na, Fe, Zn, Cu, 

Mn, and Mo). A subsample was retained for analysis at the USDA-ARS Southern Plains Range 

Research Station in Woodward, OK. The retained samples and pellets collected from the AHCS 

were ground to pass through a 2-mm screen in a Wiley mill (Thomas Scientific, Swedesboro, NJ) 

in preparation for analysis. 

 Hay and fecal samples were analyzed for absolute dry matter (AOAC International, 

2000), ash (AOAC International, 2000), and total N using a combustion method (Vario Max CN; 

Elementar Americas, Mount Laural, NJ, USA). Minerals (P, Ca, K, S, Co, Cu, Fe, Mn, Se, and 

Zn) in pellets were analyzed using a Delta Premium portable x-ray florescent spectrometer 

(Olympus America, Inc.; Newton, MA). The hay, pellets, and fecal samples were analyzed for 

gross energy (GE) using a combustion calorimeter (AC600, LECO; St. Joseph, MI). The hay, 

pellets, and composited fecal samples were additionally analyzed for acid insoluble ash (AIA) 

(Liu, 2022). Digestibility was then calculated as follows (Merchen, 1988):  

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐷𝐷𝐷𝐷 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐷𝐷𝐷𝐷𝐷𝐷 𝑥𝑥 𝐷𝐷𝐷𝐷𝑒𝑒𝑡𝑡 𝐴𝐴𝐷𝐷𝐴𝐴
𝐹𝐹𝑒𝑒𝐹𝐹𝐹𝐹𝐹𝐹 𝐴𝐴𝐷𝐷𝐴𝐴

                                                                                              [1] 

𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝐹𝐹𝐷𝐷𝑂𝑂𝐷𝐷𝐷𝐷𝐷𝐷𝐹𝐹𝐷𝐷𝑂𝑂𝐷𝐷 (%) = 𝐷𝐷𝐷𝐷𝐷𝐷− 𝐹𝐹𝑒𝑒𝐹𝐹𝐹𝐹𝐹𝐹 𝐷𝐷𝐷𝐷 𝑂𝑂𝑂𝑂𝑡𝑡𝑂𝑂𝑂𝑂𝑡𝑡
𝐷𝐷𝐷𝐷𝐷𝐷

∗ 100                                                                 [2] 
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Energy Calculations 

Urinary N excretion was predicted for each heifer and period using the following 

equation developed by (Dong et al., 2014) :  

  𝑁𝑁𝑂𝑂𝑢𝑢𝐷𝐷𝑢𝑢𝑒𝑒 �
𝑔𝑔
𝑑𝑑
� = 2.39 + 0.55 𝑋𝑋 𝑁𝑁𝐷𝐷𝑢𝑢𝑡𝑡𝐹𝐹𝑖𝑖𝑒𝑒 �

𝑔𝑔
𝑑𝑑
� − 3.36 𝑋𝑋 𝐷𝐷𝐷𝐷𝐷𝐷 �𝑖𝑖𝑔𝑔

𝑑𝑑
�                            [3] 

where Nurine is the urine N excretion rate, Nintake is the daily N intake, and DMI is the daily dry 

matter intake. A regression analysis for Equation 3 by Waldrip et al. (2013) showed close 

agreement between predicted N excretions and actual values, and in testing showed a 49 to 81% 

agreement with validation data sets. 

Heat production (HP) was calculated using the equation of Brouwer (1965) as recommended by 

(NRC, 1981): 

HP �𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹
𝑑𝑑
� = 

3.8660 𝑥𝑥 𝑂𝑂2�
𝐿𝐿
𝑑𝑑�+1.200 x 𝐶𝐶𝑂𝑂2�

𝐿𝐿
𝑑𝑑�−1.44 x 𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 �𝐿𝐿𝑑𝑑�−0.518 x 𝐶𝐶𝐶𝐶4 �𝐿𝐿𝑑𝑑� 

1,000
                                  [4]  

Intake of ME was estimated according to the following equation: 

𝐷𝐷𝑀𝑀 𝐷𝐷𝑖𝑖𝑂𝑂𝐹𝐹𝑖𝑖𝐹𝐹 �𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹
𝑑𝑑
� = 𝐻𝐻𝐻𝐻 �𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹

𝑑𝑑
�+ 𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝑂𝑂𝐹𝐹 𝑀𝑀𝑖𝑖𝐹𝐹𝐸𝐸𝐷𝐷𝐷𝐷 𝐵𝐵𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝐹𝐹𝐹𝐹 �𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹

𝑑𝑑
�                                         [5] 

where tissue energy balance was calculated according to the need to gain 1 kg of shrunk body 

weight (BW). Because the actual body composition and the mature BW at 25% body fat are 

unknown, BW was adjusted to a BW at which they are equivalent in body composition to heifers 

in the (Garrett, 1980) database as described by (Tylutki et al., 1994): 

𝑀𝑀𝐸𝐸𝐸𝐸𝐵𝐵𝐸𝐸 = 𝐸𝐸𝐵𝐵𝐸𝐸 𝑥𝑥 � 𝑆𝑆𝑆𝑆𝑆𝑆
𝐹𝐹𝑆𝑆𝐹𝐹𝑆𝑆

�                                                                                                        [6] 

where EQSBW is the BW equivalent used in the medium-framed steer equation (NRC, 1984), 

SBW is the shrunk BW (94.6% of full BW) being evaluated, SRW is the standard reference BW 

for the expected final body fat (478 kg and 27.8%, respectively) (NASEM, 2016), and FSBW is 
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the final shrunk BW at the expected final body fat ((600 kg; (NASEM, 2016)). To calculate the 

empty BW (EBW) of the heifers, the EQSBW was substituted into Equation 7 from SBW (kg): 

𝑀𝑀𝐵𝐵𝐸𝐸 = 0.891 𝑋𝑋 𝐸𝐸𝐵𝐵𝐸𝐸                                                                   [7] 

Also, to calculate empty BW gain (EBG) of the heifers, shrunk average daily gain (ADG) over 

each 7-d period was used as an estimate of SWG (kg): 

𝑀𝑀𝐵𝐵𝐸𝐸 = 0.956 𝑋𝑋 𝐸𝐸𝐸𝐸𝐸𝐸                                                                    [8] 

To compute the retained energy (RE), the energy content of BW gain for standard medium-

framed steer equation (NRC, 1984) (Equation 7) using the EBW and EBG is from Equations 7 

and 8, respectively: 

𝑅𝑅𝑀𝑀 �𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹
𝑑𝑑
� = 0.0635 𝑋𝑋 𝑀𝑀𝐵𝐵𝐸𝐸0.75 𝑋𝑋 𝑀𝑀𝐵𝐵𝐸𝐸1.097                                           [9] 

Digestible energy (DE) intake was estimated as the sum of metabolizable energy (ME) intake and 

energy emitted as CH4 and excreted as urine: 

𝐷𝐷𝑀𝑀 𝐷𝐷𝑖𝑖𝑂𝑂𝐹𝐹𝑖𝑖𝐹𝐹 �𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹
𝑑𝑑
� = 𝐷𝐷𝑀𝑀 𝐷𝐷𝑖𝑖𝑂𝑂𝐹𝐹𝑖𝑖𝐹𝐹 �𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹

𝑑𝑑
�+ 𝐶𝐶𝐻𝐻4 − 𝐹𝐹𝑖𝑖𝐹𝐹𝐸𝐸𝐷𝐷𝐷𝐷 𝑜𝑜𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 �𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹

𝑑𝑑
�  

+𝑂𝑂𝐸𝐸𝐷𝐷𝑖𝑖𝐹𝐹𝐸𝐸𝐷𝐷 − 𝐹𝐹𝑖𝑖𝐹𝐹𝐸𝐸𝐷𝐷𝐷𝐷 𝑜𝑜𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 �𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹
𝑑𝑑
�.                                                       [10] 

Total digestible nutrients was estimated by using the equation of Weiss (1993): 

𝑇𝑇𝐷𝐷𝑁𝑁 = 0.98 𝑥𝑥 (100 −𝑁𝑁𝐷𝐷𝐹𝐹𝑁𝑁 − 𝐶𝐶𝐻𝐻 − 𝐹𝐹𝐷𝐷ℎ − 𝐹𝐹𝐹𝐹 − 1) + 0.93 𝑥𝑥 𝐶𝐶𝐻𝐻 + 2.25 𝑥𝑥 𝐹𝐹𝐹𝐹 +

0.75 𝑥𝑥 (𝑁𝑁𝐷𝐷𝐹𝐹𝑁𝑁 − 𝐹𝐹𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷𝑖𝑖) 𝑥𝑥 �1 − �𝐹𝐹𝐷𝐷𝑔𝑔𝑢𝑢𝐷𝐷𝑢𝑢
𝑁𝑁𝐷𝐷𝐹𝐹𝑁𝑁

�
0.667

� − 7     [11] 

Where FA is fatty acid and NDFN is N-free NDF, and all values are expressed as a percentage of 

DM. 
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Statistical Analysis 

 All response variables were analyzed using the ANOVA procedure of SAS (SAS 9.4; 

SAS Inst., Inc., Cary, NC) for a completely random design in a repeated measure. Hay maturity 

was the main plot. The following model was used for the dependent variables: 

Yijk = trt + Time+trt*Time + εijk 

Where Yijk is the dependent variable, trt is the forage quality, Time is the treatment effect of 

sequence, trt*Time is their interaction, and εijk is the residual overall error. The independent 

variable, NDF of the 3 forages, was separated using contrast statements for unequally spaced 

treatments (Robson, 1959). If a significant F-test was detected (P < 0.05), least square means for 

treatments were analyzed for linear and quadratic effects.  

Results and Discussions 
 

 One heifer was removed during the last period of the study due to a shortage of hay. This 

heifer had been offered the immature hay. Also, the last period lasted 6 days, instead of 7 due to 

hay shortage.  

Diet Nutrient Composition 

As the wheat matured, CP, organic matter and total nitrogen of the hays decreased (Table 

3.1). The immature hay consisted of 25.6% CP; the intermediate hay contained 19.0% CP while 

the mature hay consisted of 11.7% CP. The NDF and ADF concentrations increased as the 

maturity of the wheat hay increased. The immature hay had the highest value of TDN, and the 

mature hay had the lowest value. A one-unit increase in NDF was associated with a 0.31 decrease 

in TDN (P = 0.04; R2 = 0.996). Starch was less than 1% in the immature and intermediate wheat 

hays and was 3.3% in the mature wheat hay.  
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A major factor that affects forage quality is maturity of the plant. As the plants mature, 

the proportion of stems and cell wall constituents increase as the proportion of leaves decreases 

(Jung and Allen, 1995). Leaves are of higher quality than the stem (Van Soest, 1987). Stems are 

lower in digestibility than leaves, and digestibility declines more rapidly with increased plant 

maturity (Jung and Allen, 1995); thus fibrous cell wall constituents increase. Also, fibrous cell 

wall constituents become more lignified. There is a strong correlation between the decline of 

forage quality and the proportion of lignified structural tissue (Van Soest, 1987). As grasses 

mature, NDF increases while other nutrient levels decline (Horrocks and Vallentine, 1999). In our 

study, ADF, NDF increased, and CP decreased as maturity increased which corresponds with the 

finding of Lang et al. (2022), who reported that NDF and ADF of wheat in the dough, late milk, 

and flowering stage ranged between 32.95-51.09% and 17.17-28.79%, respectively, and increased 

with increasing maturity.  

An analysis of the total starch of each of the hays was performed to determine if the 

amount of starch was of significant amounts, due to the bacteria that ferments the starch 

producing a higher proportion of propionic acid than the bacteria that ferments cellulose or 

hemicellulose (Orskov, 1986). Propionic acid serves as a hydrogen sink, and therefore hydrogen 

is captured in a metabolizable form rather than lost as methane (Orskov, 1986). Furthermore, 

rapidly-fermenting diets also reduce methane production by increasing the PR by reducing the pH 

of the rumen, which affects the growth of methanogens and protozoa (Gómez et al., 2016). 

Intake, Digestibility, and Performance 

Dry matter intake of hays fed at ad libitum declined linearly (P < 0.01; Table 3.3) as the 

maturity of forage offered increased. Heifers that were fed the immature hay consumed 3.40 kg 

more than the heifers fed the mature hay. A one-unit increase in NDF was associated with a 0.128 

kg decrease in DMI (P = 0.04; R2 =0.980). Since DMI and CP values declined with increasing 
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maturity, CP intake decreased linearly (P < 0.01). Heifers consuming the immature hay 

consumed fewer creeper pellets and therefore visited the AHCS less often, and heifers consuming 

the intermediate hay consumed the most creeper pellets (P < 0.01). Total DMI decreased linearly 

as the wheat hay matured (P < 0.01). Heifers consuming the immature hay consuming 3.17 kg 

more than the heifers consuming the mature hay and 1.77 kg more than the heifers consuming the 

intermediate hay. 

There was a correlation between the NDF values and the DMI that caused DMI to 

decrease as the grass matured. Neutral detergent fiber values are related to digestibility, feed 

intake, and rate of digestion (Mertens, 1997). The NDF component is digestible in the rumen but 

is more resistant to microbial degradation than soluble nutrients. This leads to a slower digestion 

rate, slower passage rate (PR), increase in ruminal residence time, and thus lowers intake (Van 

Soest, 1987). Forage digestibility decreases as ADF increases (Horrocks and Vallentine, 1999). 

Thus, ADF is used to predict the digestibility and therefore the energy content of feeds. 

 Digestibilities of hay decreased as the plants matured (P = 0.02). The digestibility of the 

immature hay was 76.22%, intermediate hay was 68.01%, and the mature hay’s digestibility was 

58.57%. These values are closely related to the ADF values of the wheat hays.   

 There was a tendency for the average daily gain to be linear (P = 0.06). Heifers 

consuming the immature hay gained 0.54 kg more than the heifers consuming the mature hay and 

0.01 kg more than the heifers consuming the intermediate hay.  

Digestibility refers to the fraction of a diet which disappears during passage through the 

gut. This implies that the assessment of nutritive value also involves the absorption process 

(Merchen, 1988). Since total fecal collection would be difficult to obtain, an internal marker was 

used to calculate digestibility. Acid-insoluble ash is naturally present in all feedstuffs (Liu, 2022). 
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Acid-insoluble ash is the ash that is insoluble in a dilute HCL solution (Liu, 2022). Feces contain 

considerable quantities of material of non-dietary origin, therefore coefficients of digestibility 

determined by calculation of the difference in amount of a given nutrient consumed and amount 

excreted in feces is considered to be apparent digestibility (Merchen, 1988). Therefore, the 

digestibility of the forages used in this experiment is an apparent digestibility and not true 

digestibility.   

Energy Metabolism 

 As hay maturity increased, heat production decreased linearly (P < 0.01; Table 3.3). 

Energy retention of the mature hay was 0.8221 Mcal/day, while the energy retention values of the 

immature and intermediate hays were 2.3190 Mcal/day and 2.4615 Mcal/day, respectively. 

Predicted metabolizable energy intake decreased linearly as wheat matured (P < 0.01). Predicted 

digestible energy intake also decreased linearly as the wheat matured (P < 0.01). 

The magnitude of HP is determined by many variables, which includes the quality and 

quantity of feed (MacRae and Lobley, 1982). Diets high in fiber are linked to higher HP than a 

high-concentrate diet. (Van Soest, 1987). Heifers consuming the immature wheat hay consumed 

3.40 kg more than the heifers that consumed the mature hay, which could have caused the HP to 

decrease linearly as the hay maturity increased. Retained energy is the net energy for gain. It is 

the fraction of dietary energy that is deposited in body protein, body fat, conceptus, milk, hair, 

etc. (Ferrell and Oltjen, 2008). The body weight gains are used in the calculation of RE. In this 

study the ADG of the heifers consuming the immature and intermediate hay were 0.73 kg and 

heifers consuming the mature hay was 0.19 kg.  Therefore, in our study, the RE was greatest for 

the immature and intermediate hay. Cole et al. (2020) had similar results and stated the 

differences in energy retention are based on differences in ME intake. This is due to the fact that 
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relationships between RE, proportion of fat in gain, and the proportion of protein in gain are 

influenced by dietary ME concentration (NASEM, 2016). 

Metabolizable energy describes the amount of accessible energy a feed provides to the 

animal. Metabolizable energy is the digestible energy minus the energy lost in the urine and gases 

produced, which is mostly CH4 (NASEM, 2016). Metabolizable energy intake was predicted by 

adding heat production to the retained energy values. Heat production was calculated using the 

measured O2 consumption, CO2 and CH4 emissions and using 1.066674 as the factor for urinary 

energy loss of 6.674% (Shreck et al., 2017). Metabolizable energy intake decreased as the forage 

matured due to the increase in O2 consumption and CO2 production as well as the decline in 

intake. 

Digestible energy is the gross energy of the food minus the energy lost in the feces 

(NASEM, 2016), which most of the energy lost from feed is via the feces. Digestible energy 

reflects diet digestibility (NASEM, 2016) and ADF is used to predict the digestibility of feeds. 

Therefore, as ADF increased with increasing maturity, DE intake decreased. 

Methane Emissions 

 Daily CH4 production was affected by hay maturity (P = 0.03; Table 3.4). Daily CH4 was 

greatest for heifers consuming the immature hay and lowest for the heifers that consumed the 

mature hay. The average CH4 emissions for mature hay was 160.26 g CH4/day, intermediate hay 

was 169.62 g CH4/day and immature hay resulted in 198.40 g CH4/day being produced. Methane 

yield as expressed as g of CH4/kg of DMI was not affected by maturity of hay (P = 0.13). 

Methane expressed as g of CH4/kg of DMI ranged from 22.55 to 29.75. Cole et al. (2020) 

reported similar values of CH4/kg of DMI 26.1-32.2g. As the wheat matured, methane reported as 

CH4/unit of TDN was not linearly or quadratically effected by hay maturity (P = 0.26). Heifers 

consuming the mature hay emitted 2.84 g CH4 /TDN intake, heifers consuming the intermediate 
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maturity hay emitted 2.96 g CH4/TDN intake, while the heifers consuming the immature hay 

emitted 3.11 g CH4 /TDN intake. Moss et al. (2000), stated that when energy intake is increased 

via increased forage quality there is an increase in digestion, which results in greater energy loss 

as CH4. When expressed as CH4/unit of CP and, we saw a linear (P < 0.01) increase in CH4 

production as the wheat hay matured. When CH4 was expressed as g of CH4/NDF intake and 

CH4/ADF intake, we saw a linearly decrease as the hay matured (P < 0.01, P < 0.01). We did not 

see an effect of quality on CH4 production when expressed as g of CH4/ADG (P = 0.61). 

Our results of the daily CH4 production agrees with the results of Ominski et al. (2006) 

whose results showed that CH4 production increased as forage quality decreased. Unlike in our 

study, however, Cole et al. (2020) found that CH4 production per kg of digestible organic matter 

and NDF decreased as the forage quality increased. Boadi and Wittenberg (2002) also found that 

as forage quality declined, CH4 production per kg of digestible organic matter intake (DOMI) 

increased as the quality of forages decreased. 

The NDF values for Cole et al. (2020) study ranged from 65.7 – 73.6% and the low and 

medium quality hays consisted of Old World bluestem and the high quality hay consisted of 

alfalfa. They were fed at 90% ad libitum. The NDF values for Ominski et al. (2006) study ranged 

from 46.4 to 60.8%. Steers were fed alfalfa-grass silage diets at ad libitum. In Boadi and 

Wittenberg (2002) study, the NDF values ranged from 38.5 – 61.5%. Heifers were fed ad libitum. 

The low and medium quality hays consisted of chopped grass hay and the high-quality hay 

consisted of a legume/grass chopped mixed hay. In our study the NDF values ranged from 37.1 – 

62.7%. In all the studies mentioned, a legume was used in the diets. Legumes have a higher 

digestible organic matter content and a faster PR which might shift fermentation against ruminal 

methanogenesis (Boadi and Wittenberg, 2002). It has been shown that alfalfa reduces enteric 

emission by 10% compared to non-legume forages (McCaughey et al., 1999). 
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In the current study, our range of NDF values in the forage was greater than the values 

utilized in Cole et al. (2020) and Ominski et al. (2006). Boadi and Wittenberg (2002) NDF values 

had a range of 23% and the current study had a range of 25.6%. The values of enteric CH4 

emissions in our study are lower than that of Ominski et al. (2006) and Boadi and Wittenberg 

(2002). 

Johnson and Johnson (1995) stated that cell wall constituents yielded greater CH4 

production than cell solubles. They contributed this to the greater acetate: propionate ratios in the 

rumen produced during fermentation.  

Carbon Dioxide Emissions and Oxygen Consumption 

Carbon dioxide emissions had a linear decrease in response to hay maturity (P < 0.01; 

Table 3.5). When expressed as CO2 per kg of DMI, hay maturity did not have an effect on CO2 

emissions (P = 0.17). Oxygen consumption also had a linear decrease in response to hay maturity 

(P ≤ 0.01). The respiratory quotient (RQ) was not impacted by hay maturity (P = 0.35). 

Although CO2 is not as potent as CH4, it is still a concern from an environmental 

standpoint regarding livestock production. Microbes in the rumen ferment and digest plant cell 

wall components and break them down into sugars and carbohydrates. The fermenting of sugars 

produces volatile fatty acids, which include acetate, propionate, and butyrate. Carbon dioxide, 

hydrogen, CH4, and ammonia are also byproducts. The byproducts are either absorbed through 

the rumen wall, flow out into the lower tract, or is removed by eructation (Neel et al., 2019). In 

addition to CO2 being produced during enteric fermentation, the largest part is produced during 

normal intermediary metabolism in the animals (Madsen et al., 2010).The RQ is a dimensionless 

number and used as an indicator of basal metabolic rate. It is defined as the volume of CO2 

released over the volume of O2 absorbed during respiration (Patel et al., 2022). The RQ provides 
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information as to if carbohydrates or fats are being utilized (Van Soest, 1987). In this study, the 

RQ was similar among all treatments and above 1.0, indicating high rates of lipid synthesis for all 

heifers. 

Fecal Analysis 

 Total fecal nitrogen decreased quadratically as the hay the heifers consumed matured (P 

< 0.01). Fecal crude protein was calculated from the nitrogen content of the sample, therefore 

fecal crude protein followed the same patterns (P < 0.01). Fecal NDF quadratically increased as 

the wheat hay consumed increased in maturity (P < 0.01). Fecal ADF also quadratically increased 

as the wheat hay consumed increased in maturity (P < 0.01). Fecal GE was not affected by 

quality (P = 0.93). Ash quadratically decreased with the increasing maturity of the wheat hay (P 

< 0.03).  

Conclusions 

 Reducing the amount of CH4 produced from beef cattle during the microbial digestion of 

feed not only reduces the carbon footprint of the cattle industry but also reduces the amount of 

energy lost that could have been used more effectively by the animal. This experiment looked at 

feeding beef heifers three different maturities of wheat hay. As the wheat hay matured the quality 

of the hay decreased. This study showed that as wheat hay matures, there is a negative effect on 

DMI, CO2 emissions, O2 consumption, gain of body weight, predicted ME intake, predicted DE 

intake, and heat production. Heifers consuming the mature hay emitted less daily CH4, but 

maturity did not have an effect on CH4 yield. However, other studies do not agree with the 

findings (Boadi and Wittenberg, 2002; Cole et al., 2020; Ominski et al., 2006). McAllister et al. 

(1996) stated that as forage digestibility decreases, forage intake decreases and the acetate: 

propionate ratio increases, which favors increased CH4 production per unit of forage consumed.  
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Table 3.1 Nutrient composition of three different maturities of wheat hays offered to 
growing beef heifers 

Item 
Immature 

hay 
Intermediate 

hay Mature hay 

DM, % of fresh matter 90.7 91.2 93.5 

Zadok’s Maturity Score 3.1a 3.9-4.1b 7.9c 

 DM basis 
CP  25.6 19 11.7 

ADF 25.9 32.7 40.6 

NDF 37.1 55.5 62.7 

Starch, % 0.8 0.8 3.3 

TDN, % 64 58 56 

NEm, Mcal/kg 0.63 0.53 0.49 

NEg, Mcal/kg 0.37 0.28 0.24 

Ash 19.66 14.38 11.48 

Gross energy, cal/g 4,087.77 4,206.87 4,226.61 

Total, N% 3.91 3.06 2.03 

Ca, % 0.87 0.56 0.31 

P, % 0.29 0.21 0.2 

Mg, % 0.27 0.2 0.15 

K, % 3.76 2.48 1.59 

Na, % 0.02 0.01 0.01 

Fe, % 0.17 0.16 0.07 

Zn, ppm 28 28 21 

Cu, ppm 10 12 8 

Mn, ppm 85 86 65 

Mo, ppm 1.18 0.98 1.7 

a 3.1 maturity score corresponds with the stem elongation stage of development 
b 3.9-4.1 maturity score corresponds with the stem elongation/booting stage of development 
c 7.9 maturity score corresponds with the milk development stage of development 
 

DM = Dry matter 
CP = Crude protein 
ADF = Acid detergent fiber 
NDF = Neutral detergent fiber 
TDN = Total digestible nutrient 
NEm = Net energy for maintenance 
NEg = Net energy for gain 
Mcal = Megacalories 
Kg = Kilograms 
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Table 3.2 Nutrient composition of creeper pellets offered to growing beef heifers 

 

Item      Creeper pellets 
DM, % of fresh 
matter 92.41 

 DM basis 
Ash 13.51 

Gross energy, cal/g 4,087.77 

CP, % 16.69 

NDF 35.28 

ADF 12.98 

Ca, % 0.45 

P, % 0.44 

K, % 1.55 

S, % 0.28 

Fe, % 0.22 

Zn, ppm 88.48 

Cu, ppm 7.2 

Mn, ppm 214.29 
 

 

 

 

 

 

 

 

 

 

 

 

 

DM = Dry matter 
CP = Crude protein 
NDF = Neutral detergent fiber 
ADF = Acid detergent fiber 
 



52 
 

 Diet  Contrast 
Item Immature Intermediate Mature SEM Linear Quadratic 
DMI, Kg 8.45 6.44 5.05 0.51 0.005 0.563 
Pellet Intake, Kg 0.44 0.68 0.66 0.06 0.005 0.184 
Total DMI, Kg 8.89 7.12 5.72 0.51 0.006 0.503 
CPI, g 2199.72 1228.93 726.47 103.67 < 0.001 0.566 
Digestibility, % 76.22 68.01 58.57 0.04 0.023 0.387 
pME intake, Mcal 18.88 15.94 13.50 0.66 0.002 0.361 
pDE intake, Mcal 21.50 18.18 15.61 0.76 0.003 0.427 
RE, Mcal 2.32 2.46 0.82 0.47 0.094 0.128 
HP, Mcal 16.59 13.45 12.68 0.39 0.001 0.541 
ADG 0.73 0.73 0.19 0.15 0.060 0.132 

 

 

 

 

 

 

 

 

 

 

 

  

Table 3.3 Intake, digestibility, performance and energy metabolism of beef heifers fed three 
different maturities of wheat hay 

DMI = Dry matter intake 
CPI = Crude protein intake 
pME = Predicted metabolizable energy 
pDE = Predicted digestible energy 
RE = Retained energy 
HP = Heat production 
ADG = Average daily gain 
Mcal = Megacalories 
Kg = Kilograms 
G = Grams 
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Figure 3.1 Chart showing average daily gain of heifers consuming 3 different maturities of wheat 
hay 
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 Diet  Contrast 
Item Immature Intermediate Mature SEM Linear Quadratic 

CH4 (g/day) 198.40 169.62 160.26 10.22 0.029 0.926 

CH4 (g/kg of DMI) 22.55 24.27 29.75 2.89 0.129 0.429 

CH4 (g/kg ADG) 370.60 197.01 330.15 129.17 0.613 0.457 

CH4 (g/TDN) 3.12 2.96 2.84 0.17 0.258 0.854 

CH4 (g/ADF intake) 0.78 0.53 0.44 0.04 0.001 0.880 

CH4 (g/NDF intake) 0.53 0.29 0.28 0.02 0.001 0.153 

CH4 (g/CP intake) 0.81 0.96 1.32 0.07 0.004 0.071 
 

 

 

     

Table 3.4 Methane emissions of beef heifers fed three different maturities of wheat 

DMI = Dry matter intake 
ADG = Average daily gain 
TDN = Total digestible nutrients 
ADF = Acid detergent fiber 
NDF = Neutral detergent fiber 
CP = Crude protein 
Kg = Kilograms 
G = grams 
 



55 
 

Figure 3.1 Wheat at different maturity levels 

 Diet  Contrast 
Item Immature Intermediate Mature SEM Linear Quadratic 

O2 (g/day) 4352.98 3532.66 3347.12 102.83 0.001 0.491 

CO2 (g/day) 6405.41 5198.71 4824.45 160.23 0.001 0.754 

CO2 (g/kg of DMI) 736.69 746.84 889.23 67.28 0.172 0.334 
RQ 1.08 1.07 1.05 0.01 0.353 0.332 

 

 

 

  

Table 3.5 Carbon dioxide emissions, oxygen consumption, and the respiratory quotient from beef 
heifers fed three different maturities of wheat hay 

RQ = Respiratory Quotient 
DMI = Dry matter intake 
Kg = kilograms 
G = Grams 
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Zadok score=3.1a       Zadok score=3.9-4.1b            Zadok score=7.9c 

                  Immature              Intermediate       Mature 

 

a 3.1 maturity score corresponds with the stem elongation stage of development 
b 3.9-4.1 maturity score corresponds with the stem elongation/booting stage of development 
c 7.9 maturity score corresponds with the milk development stage of development 
 

Figure 3.2 Wheat cut at three different maturity levels 
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	CHAPTER III
	Effects of hay maturity on intake, digestion, metabolism, and enteric methane emissions by beef heifers
	E. J. Friend1,2, P.A. Beck2, S.A. Gunter1, and C.A. Moffet1
	1Oklahoma and Central Plains Agricultural Research Center, United States Department of Agricultural, Agricultural Research Service, 2000 18th Street, Woodward, OK 73801
	2Animal Science Department, Oklahoma State University, Stillwater, OK 74074
	Abstract: The objective of this experiment was to investigate the effects of ad libitum feeding long-stemmed wheat hay cut at three different maturities on intake, digestion, metabolism, and enteric CH4 emissions by beef heifers. Twelve heifers (initi...
	= 0.13). However, CO2 emissions and O2 consumption decreased linearly (P < 0.01, P < 0.01) as the wheat matured. As the hay matured, heat production decreased linearly (P < 0.01). Hay maturity linearly decreased metabolizable energy intake and digesti...
	Introduction
	Globally, wheat (Triticum aestivum L.) is grown on more than 240 million hectares, which is larger than any other crop (Curtis, 2022). In places lacking rainfall and winter-spring temperatures up to 25 C, wheat is the main forage used as hay, silage o...
	As forages grow, the proportion of stems and cell wall constituents increase as the proportion of leaves decreases (Jung and Allen, 1995). Typically the leaves are of higher quality than the stems (Van Soest, 1987). As most plants mature, they produce...
	Ruminants produce enteric methane during the process of microbial digestion of feed. Methane produced from cattle constitutes 2-12% of gross energy loss (Johnson and Johnson, 1995). The composition of the diet and the amount of feed the animal consume...
	The purpose of our study was to investigate the effects that feeding heifers long-stemmed wheat hay cut at three different maturities have on forage intake, forage digestibility, energy metabolism and enteric methane emissions when offered on an ad li...

	Materials and Methods
	Animals used in this experiment were under the care standards describes in the Guide for Care and Use of Agricultural Animals in Research and Teaching (FASS, 2021). These standards were reviewed and approved by the Southern Plains Range Research Stati...
	Experiment Date and Location
	The experiment was conducted from July 19, 2021, to August 21, 2021, at the Southern Plains Experimental Range, Ft. Supply, OK (36  37’ N, 99  35’ W).  Heifers were housed in a pen equipped with individual feed bunks that were equipped with Calan gat...

	Training and Acclimation Period
	Twenty-five Red Angus heifers were trained to an automated head chamber system (AHCS; GreenFeed; C-Lock, Inc.) used for measuring gas exchange of O2, CO2, and CH4. The training period started 15 wk before the start of the trial and proceeded as follo...
	The 14 heifers were then trained to feed bunks using 12 Calan gates. During week one, latches on the Calan gates were held open to assist heifers with learning how to open the gates. At wk 2, the 12 heifers that were using the Calan gates with ease w...
	During the 14-d adaptation period, heifers were fed their randomly assigned treatments of different maturities of long-stemmed wheat hay (Triticum aestivum L.). They were fed individually on an ad libitum basis using Calen gates. During this 2 wk per...

	Dietary Treatments, Animals, and Feeding
	The 12 heifers (initial BW = 296 ± 30 kg) were randomly assigned to one of three treatment diets and remained on the same treatment throughout the study; 1) immature maturity hay cut at the stem elongation stage (Zadok score=3.1); 2) intermediate mat...
	The wheat (Triticum aestivum L.) was obtained from the USDA-ARS Southern Plains Experimental Range near Ft. Supply, Ok. The wheat was grown on a Lesho clay loam and Lincoln clay loam soil with a slope of 0 to 1%. In March, liquid urea ammonium nitrate...
	Body weights were collected on day 0, 15, 22, 29, and 35. Body weights were recorded before the morning feeding to minimize variation associated with gastrointestinal fill.  After body weights were collected, fecal samples were taken, via rectal grab,...
	Heifers were fed on an ad libitum basis and orts, if present, were collected at 0800 daily before feeding and weighed on a platform scale (0.05 lb. readability; Ohaus SD 35, Ohaus, Parsippany, NJ).

	Carbon Emissions Sampling and Analyses
	Emissions of CH4 and CO2 were measured using the AHCS. The principles of CH4 and CO2 measurements by the AHCS used in this experiment are described in Hristov et al. (2015). In brief, the heifers can move freely in and out of the AHCS and emissions a...
	Methane, CO2 and O2 concentrations were continuously measured in the outgoing air by a non-dispersive infrared analyzer (CH4 and CO2) and a paramagnet analyzer (O2) and simultaneous measurements were made of airflow, temperature, and relative humidit...
	The GLIMMIX procedure of SAS (SAS 9.4; SAS Inst., Inc., Cary, NC.) was used to identify outliers by a model using treatment, airflow rate, and hour of the day designed to calculate a studentized residual for each observation. Any residual gas flux wi...

	Feed Sampling and Analysis
	Fecal samples were dried in a 60  C drying oven and ground to pass through a 2-mm screen (Thomas A. Wiley Laboratory Mill, model 4). Fecal samples were composited, by weight (5 g), for each heifer and period.
	Samples of the hays were collected by coring every bale and drying in a forced-air oven at 60  C for 48 h to adjust dietary ingredients to a DM basis. Samples of the hays were sent to a commercial lab (Dairy One Inc., Ithaca, NY) for analysis of crud...
	Hay and fecal samples were analyzed for absolute dry matter (AOAC International, 2000), ash (AOAC International, 2000), and total N using a combustion method (Vario Max CN; Elementar Americas, Mount Laural, NJ, USA). Minerals (P, Ca, K, S, Co, Cu, Fe...
	𝐹𝑒𝑐𝑎𝑙 𝐷𝑀 𝑂𝑢𝑡𝑝𝑢𝑡=,𝐷𝑀𝐼 𝑥 𝐷𝑖ⅇ𝑡 𝐴𝐼𝐴-𝐹𝑒𝑐𝑎𝑙 𝐴𝐼𝐴.                                                                                              [1]
	𝐷𝑀 𝐷𝑖𝑔𝑒𝑠𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ,%.=,𝐷𝑀𝐼− 𝐹𝑒𝑐𝑎𝑙 𝐷𝑀 𝑂𝑢𝑡𝑝𝑢𝑡-𝐷𝑀𝐼.∗100                                                                 [2]

	Energy Calculations
	Urinary N excretion was predicted for each heifer and period using the following equation developed by (Dong et al., 2014) :
	,𝑁-𝑢𝑟𝑖𝑛𝑒 .,,𝑔-𝑑..=2.39+0.55 𝑋 ,𝑁-𝑖𝑛𝑡𝑎𝑘𝑒.,,𝑔-𝑑..−3.36 𝑋 𝐷𝑀𝐼,,𝑘𝑔-𝑑..                            [3]
	where Nurine is the urine N excretion rate, Nintake is the daily N intake, and DMI is the daily dry matter intake. A regression analysis for Equation 3 by Waldrip et al. (2013) showed close agreement between predicted N excretions and actual values, a...
	Heat production (HP) was calculated using the equation of Brouwer (1965) as recommended by (NRC, 1981):
	HP ,,𝑀𝑐𝑎𝑙-𝑑..= ,3.8660 𝑥 ,𝑂-2.,,𝐿-𝑑..+1.200 x ,𝐶𝑂-2.,,𝐿-𝑑..−1.44 x ,𝑁-𝑢𝑟𝑖𝑛𝑒. ,,𝐿-𝑑..−0.518 x ,𝐶𝐻-4. ,,𝐿-𝑑.. -1,000.                                  [4]
	Intake of ME was estimated according to the following equation:
	𝑀𝐸 𝑖𝑛𝑡𝑎𝑘𝑒,,𝑀𝑐𝑎𝑙-𝑑..=𝐻𝑃,,𝑀𝑐𝑎𝑙-𝑑..+𝑇𝑖𝑠𝑠𝑢𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 ,,𝑀𝑐𝑎𝑙-𝑑..                                         [5]
	where tissue energy balance was calculated according to the need to gain 1 kg of shrunk body weight (BW). Because the actual body composition and the mature BW at 25% body fat are unknown, BW was adjusted to a BW at which they are equivalent in body c...
	𝐸𝑄𝑆𝐵𝑊=𝑆𝐵𝑊 𝑥 ,,𝑆𝑅𝑊-𝐹𝑆𝐵𝑊..                                                                                                        [6]
	where EQSBW is the BW equivalent used in the medium-framed steer equation (NRC, 1984), SBW is the shrunk BW (94.6% of full BW) being evaluated, SRW is the standard reference BW for the expected final body fat (478 kg and 27.8%, respectively) (NASEM, 2...
	𝐸𝐵𝑊=0.891 𝑋 𝑆𝐵𝑊                                                                   [7]
	Also, to calculate empty BW gain (EBG) of the heifers, shrunk average daily gain (ADG) over each 7-d period was used as an estimate of SWG (kg):
	𝐸𝐵𝐺=0.956 𝑋 𝑆𝑊𝐺                                                                    [8]
	To compute the retained energy (RE), the energy content of BW gain for standard medium-framed steer equation (NRC, 1984) (Equation 7) using the EBW and EBG is from Equations 7 and 8, respectively:
	𝑅𝐸,,𝑀𝑐𝑎𝑙-𝑑..=0.0635 𝑋 ,𝐸𝐵𝑊-0.75 .𝑋 ,𝐸𝐵𝐺-1.097.                                           [9]
	Digestible energy (DE) intake was estimated as the sum of metabolizable energy (ME) intake and energy emitted as CH4 and excreted as urine:
	𝐷𝐸 𝑖𝑛𝑡𝑎𝑘𝑒 ,,𝑀𝑐𝑎𝑙-𝑑..=𝑀𝐸 𝑖𝑛𝑡𝑎𝑘𝑒,,𝑀𝑐𝑎𝑙-𝑑..+,𝐶𝐻-4.−𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑢𝑡𝑝𝑢𝑡,,𝑀𝑐𝑎𝑙-𝑑..
	+𝑢𝑟𝑖𝑛𝑎𝑟𝑦−𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑢𝑡𝑝𝑢𝑡 ,,𝑀𝑐𝑎𝑙-𝑑...                                                       [10]
	Total digestible nutrients was estimated by using the equation of Weiss (1993):
	𝑇𝐷𝑁=0.98 𝑥 ,100−𝑁𝐷,𝐹-𝑁.−𝐶𝑃−𝑎𝑠ℎ−𝐹𝐴−1.+0.93 𝑥 𝐶𝑃+2.25 𝑥 𝐹𝐴+0.75 𝑥 ,𝑁𝐷,𝐹-𝑁.−𝑙𝑖𝑔𝑛𝑖𝑛. 𝑥 ,1−,,,𝑙𝑖𝑔𝑛𝑖𝑛-𝑁𝐷,𝐹-𝑁...-0.667..−7     [11]
	Where FA is fatty acid and NDFN is N-free NDF, and all values are expressed as a percentage of DM.

	Statistical Analysis
	All response variables were analyzed using the ANOVA procedure of SAS (SAS 9.4; SAS Inst., Inc., Cary, NC) for a completely random design in a repeated measure. Hay maturity was the main plot. The following model was used for the dependent variables:
	Yijk = trt + Time+trt*Time + εijk
	Where Yijk is the dependent variable, trt is the forage quality, Time is the treatment effect of sequence, trt*Time is their interaction, and εijk is the residual overall error. The independent variable, NDF of the 3 forages, was separated using contr...


	Results and Discussions
	One heifer was removed during the last period of the study due to a shortage of hay. This heifer had been offered the immature hay. Also, the last period lasted 6 days, instead of 7 due to hay shortage.
	Diet Nutrient Composition
	As the wheat matured, CP, organic matter and total nitrogen of the hays decreased (Table 3.1). The immature hay consisted of 25.6% CP; the intermediate hay contained 19.0% CP while the mature hay consisted of 11.7% CP. The NDF and ADF concentrations i...
	A major factor that affects forage quality is maturity of the plant. As the plants mature, the proportion of stems and cell wall constituents increase as the proportion of leaves decreases (Jung and Allen, 1995). Leaves are of higher quality than the ...
	An analysis of the total starch of each of the hays was performed to determine if the amount of starch was of significant amounts, due to the bacteria that ferments the starch producing a higher proportion of propionic acid than the bacteria that ferm...
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	Energy Metabolism

	Methane Emissions
	Daily CH4 production was affected by hay maturity (P = 0.03; Table 3.4). Daily CH4 was greatest for heifers consuming the immature hay and lowest for the heifers that consumed the mature hay. The average CH4 emissions for mature hay was 160.26 g CH4/...

	Carbon Dioxide Emissions and Oxygen Consumption
	Fecal Analysis
	Total fecal nitrogen decreased quadratically as the hay the heifers consumed matured (P < 0.01). Fecal crude protein was calculated from the nitrogen content of the sample, therefore fecal crude protein followed the same patterns (P < 0.01). Fecal ND...
	Conclusions
	Reducing the amount of CH4 produced from beef cattle during the microbial digestion of feed not only reduces the carbon footprint of the cattle industry but also reduces the amount of energy lost that could have been used more effectively by the anim...
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