
INTERACTIVE REMOTE ROBOTIC ARM

CONTROL WITH HAND

MOTIONS

By

JORDAN RALPH FOGG

Bachelor of Science in Electrical Engineering Technology
Oklahoma State University

Stillwater, Oklahoma
2021

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

May, 2023

INTERACTIVE REMOTE ROBOTIC ARM

CONTROL WITH HAND

MOTIONS

Thesis Approved:

Dr. Huaxia Wang

Thesis Advisor

Dr. Chulho Yang

Dr. Amanda De Oliveira Barros

ii

ACKNOWLEDGMENTS

I would first like to thank my advisor Dr. Huaxia Wang for giving me the opportunity

to learn under him and for believing in me as a student. Allowing me to grow as an engineer

and researcher over the last few years.

A thank you goes out to my coauthors of this research: Dr. Huaxia Wang, Dr. Chen

Wang, Zeyu Deng, Long Huang, and especially Emory Meursing it is because of you guys

that this research is where it is today.

I would also like to thank my fiancee Nicole for being my second half through college and

especially through graduate school. Thank you for staying with me through the long hours

and late nights, your love and support meant the world to me. I love you and I look forward

to saying ”I do” in July.

Finally, Mom and Dad, there is nothing I can say here that will show my gratitude I

have for the love and support you have given me as I pursued my dreams through college.

Allowing me to stay focused on my studies without ever worrying about finances. I love you

guys and thank you for everything.

Acknowledgments reflect the views of the author and are not endorsed by committee members or Okla-
homa State University.

iii

Name: JORDAN RALPH FOGG

Date of Degree: MAY 2023

Title of Study: INTERACTIVE REMOTE ROBOTIC ARM CONTROL WITH HAND MOTIONS

Major Field: ENGINEERING TECHNOLOGY

Abstract: Geographically-separated people are now connected by smart devices and net-
works to enjoy remote human interactions. However, current online interactions are still
confined to a virtual space. Extending pure virtual interactions to the physical world re-
quires multidisciplinary research efforts, including sensing, robot control, networking, and
kinematics mapping. This paper introduces a remote motion-controlled robotic arm frame-
work by integrating these techniques, which allows a user to control a far-end robotic arm
simply by hand motions. In the meanwhile, the robotic arm follows the user’s hand to per-
form tasks and sends back its live states to the user to form a control loop. Furthermore, we
explore using cheap robotic arms and off-the-shelf motion capture devices to facilitate the
widespread use of the platform in people’s daily life. we implement a test bed that connects
two US states for the remote control study. We investigate the different latency compo-
nents that affect the user’s remote control experience, conduct a comparative study between
the remote control and local control, and evaluate the platform with both free-form in-air
hand gestures and hand movements following reference curves. We also are investigating the
possibility of using VR (Virtual Reality) headsets to enhance first-person vision presence
and control allowing for smoother robot teleoperation. Finally, a user study is conducted to
find out user satisfaction with different setups while completing a set of tasks to achieve an
intuitive and easy-to-use platform.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

1.1 System Overview . 1

1.2 Contributions . 2

1.3 Outline . 2

II. BACKGROUND . 4

2.1 Robotic Design . 4

2.2 Robotic Operating System . 7

2.3 Leap Motion Controller . 9

2.4 Meta Quest 2 VR headset . 10

2.5 Ricoh THETA 360 degree camera . 10

III. RELATED WORKS . 12

3.0.1 Teleoperation . 13

3.0.2 User Experience In Human-Robot Interaction 14

IV. FIRST STUDY . 15

4.0.1 Introduction . 15

4.0.2 Hardware Integration . 15

4.0.3 Software Components . 16

4.1 Approach Design . 17

4.1.1 Gathering and Converting Motion Data 17

4.1.2 Secure Wide Area Network Connection 18

v

Chapter Page

4.1.3 Receiving Data and Interfacing with Robot 19

4.2 User Study with Low-cost Robotic Arm Platform 20

4.2.1 Control Delay Study . 20

4.2.2 Local Control vs. Robot Replay . 22

4.2.3 Remote vs. Local Control . 23

4.2.4 Free-form vs. Reference Control . 24

V. STUDY TWO . 28

5.0.1 Introduction . 28

5.0.2 Platform Overview . 28

5.0.3 Hardware Integration . 30

5.0.4 Software Components . 30

5.0.5 Gathering and Converting Motion Data 32

5.0.6 Secure Local Area Network Connection 33

5.0.7 Receiving Data and Interfacing with Robot 33

5.1 Study Design . 35

5.1.1 Control Latency . 36

5.1.2 Motion Accuracy . 36

5.1.3 Task Achievement . 37

5.1.4 User Satisfaction . 38

5.2 Performance Evaluation . 39

5.2.1 Latency . 39

5.2.2 Line Tracing Time and Similarity 40

5.2.3 Object Collection and Placement 41

5.2.4 User’s Rating . 42

VI. CURRENT WORK . 47

vi

Chapter Page

6.0.1 Live Video Feed Using VR Headset 47

6.0.2 Camera Movement Using VR Headset 47

6.0.3 Scaling Up the Robot . 48

VII. CONCLUSIONS . 49

7.0.1 Conclusion . 49

REFERENCES . 50

vii

LIST OF TABLES

Table Page

1. Average transmission latency of two video streaming setups. 40

viii

LIST OF FIGURES

Figure Page

1. The remote-controlled robotic arm platform 16
2. Rotation from LEAP Motion frame to PX-150 frame 19
3. Average time to execute one iteration of the program. 21
4. Average time taken to transfer data over the internet. 22
5. Execution time of different connection configurations. 23
6. Trajectories of drawing a “S” in different control scenarios. 24
7. DTW distances of the trajectories in different control scenarios. 25
8. Latency on the x-axis between the robot and human in remote control. . . . 26
9. Latency on y-axis between the robot and human in remote control. 26
10. Latency on z-axis between the robot and human in remote control. 27
11. Comparing the similarity between different control scenarios and within the

same scenario. 27

12. Illustration of VR-enabled robotic arm control platform. 29
13. Camera viewing angles. 32
14. Example of curve line tracing. 34
15. Example zigzag line tracing. 35
16. Object collection and placement setup. 36
17. Average latency of each control loop. 37
18. Speed of task completion when the camera angle is 45°. 38
19. Speed of task completion when the camera angle is 90°. 39
20. Speed of task completion when the camera angle is 135°. 40
21. Control accuracy when the camera angle is 45°. 41
22. Control accuracy when the camera angle is 90°. 42
23. Control accuracy when the camera angle is 135°. 43
24. object collection time. 44
25. object collection. 44
26. Satisfaction of Latency. 45
27. Similarity of Trajectory. 45
28. Satisfaction of Task Achievement. 46

ix

CHAPTER I

INTRODUCTION

1.1 System Overview

When this research started, the world was recovering from a pandemic that saw millions of

people stuck in their homes and separated from loved ones. There was a huge shift in how

people lived their daily life including how they interacted with other people around them.

Companies like Zoom and Microsoft Teams saw users skyrocket as companies found ways

to communicate with employees virtually. While there are lots of ways to virtually interact

with people around the world there are very few that allow users to physically interact with

that environment while being virtually connected.

Whether you are trying to interact with a family member during COVID-19 or trying to

move hazardous material while keeping a safe distance, the need for telepresence is growing

and this research hopes to fill a small portion of that growing field by designing and testing a

low-cost and low-latency teleoperated robotic platform. This platform uses a hand tracking

controller to capture the hand movements of a user and send it over a wide area network

(WAN) where it is received and converted into data used to update the position of a robotic

arm. While this occurring the user is receiving live images of the robot’s environment through

a video stream. This system allows for real-time robotic arm control using an intuitive and

easy-to-use controller over long distances.

1

1.2 Contributions

Our contributions are summarized as the following:

• We developed a robotic arm framework using a low-cost robotic arm and the off-the-shelf

motion capture device to enable remote real-time control over a Wide Area Network (WAN).

It shows the potential to provide physically-augmented services to users with low cost and

nonprofessional knowledge.

• A test-bed bridging two US states is built for estimating the availability of the remote

motion-controlled robot.

• We examine different types of latency that impact the user experience and task perfor-

mance. Moreover, we conduct two comparison studies, local vs. remote and reference-guided

motions vs. free-form movements.

• Experiments with five participants show that the cheap robotic arm and vision-based mo-

tion sensor are available to provide physically-augmented services to users.

1.3 Outline

This is the layout of the rest of this paper:

Chapter 2: Is a thorough look into the background of the components that make up the

system as well as components of current and future research.

Chapter 3: Is a review of the current literature and how their contribution is used to for-

ward this area of research.

Chapter 4: This chapter talks about the first platform we tested using Leap Motion and

Zoom to control the robotic arm from different distances from local control to over 600 miles

away.

Chapter 5: In this chapter we look into using a VR headset paired with a 360-degree cam-

era and the leap motion to test if having a larger field of view (FOV) can increase users’

2

accuracy and happiness with the system.

Chapter 6: The focus of this chapter is to look at the current and future possibilities of

the research and the direction for future researchers to continue advancing this area.

Conclusion: This chapter gives the conclusion of the research as well as a summary of what

was covered in the paper

3

CHAPTER II

BACKGROUND

2.1 Robotic Design

There are two main robotic arms we used when completing this research which are the

PincherX 150 Robot Arm (PX-150) and the Sawyer robotic arm. The first one is the

PincherX 150 Robot Arm from Interbotix and sold by Trossen Robotics. It is a low-cost robot

roughly $1,000.00 compared to larger industrial robots that can cost north of $20,000.00 and

is easy to set up. The PX-150 is a five degree of freedom robot arm that has a reach of 450

mm and a span of 900 mm.

The arm is made up of eight DYNAMIXEL XL430-W250 servos that allow for a payload

of 50g and movement accuracy of eight millimeters. There are five joints that make up the

reach of the robotic arm starting with the waist that is moved by a single servo with a range

of -180 to 180 degrees. The next is the shoulder joint which uses two XL430-W250 servos

in tandem and both have a range of -113 to 111 degrees. The elbow joint is similar to the

shoulder with a difference in range. The range of the elbow is -120 to 95 degrees. The wrist

is separated into two different joints the first being the wrist angle and the second being the

wrist rotation both controlled by separate servos. The wrist can pitch between -100 degrees

and 123 degrees. While the rotation portion can rotate -180 to 180 degrees. The final joint

of the robot is the gripper with a range of 30 mm to 74 mm being the opening of the gripper

from the center of each carriage. The links and frame of the robot are constructed out of ex-

truded aluminum to give it structure and help it withstand wear and tear. Both the base and

the gripper of the robot are 3d printed allowing for custom-printed parts to be used based

4

on application and need. In this research, the robot was left in the same configuration as

it arrived at the factory aside from repairs and preventive maintenance. The recommended

workspace of the PX-150 is 70% of the span of the robot as mentioned above the span is 900

mm so the recommended workspace for the robot is 630 mm.

The DYNAMIXEL XL430-W250 servos used on the robot are smart servos with a resolution

of 4096 pulse/rev allowing very precise movement. The servos have a 258.5:1 gear ratio and

weigh roughly 57.2g. They are powered through a power hub board and have a range of

6.5V to 12V and are daisy-chained together back to the U2D2 controller that converts USB

to TTL allowing the robot to be controlled from a computer. Each servo provides a range

of feedback information including position, velocity, load, input voltage, and current.

The kinematics of this robot follow the product of exponentials (POE) method which re-

quires a reference frame as well as the position of the base frame and end effector at its

zero point. That’s why this position is often called the zero configuration of the robot. It

is common and standard to get a frame for each n joints that a robot has, so in the case of

the PX-150 n = 5. A screw axis for each joint based on its zero position must be found as

well as the current joint variable angle from n1 to n. this is known as the M matrix and S

matrix of the robot. The M and S matrix for the PX-150 is

M =



1.0 0.0 0.0 0.358575

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.25457

0.0 0.0 0.0 1.0


(2.1.1)

S =



0.0 0.0 1.0 0.0 0.0 0.0

0.0 1.0 0.0 −0.10457 0.0 0.0

0.0 1.0 0.0 −0.25457 0.0 0.05

0.0 1.0 0.0 −0.25457 0.0 0.2

1.0 0.0 0.0 0.0 0.25457 0.0



T

(2.1.2)

5

These matrices represent the forward kinematics of the robot in its home position so that

when the robot’s end effector is changed by some angle θ it can be represented as

T (θ) = e[S1]θ1e[Sn]θnM (2.1.3)

Given 2.1.3 the inverse kinematics of the robot can be found by finding the angles of

each joint that satisfies the equation x = f(θ) when xd is the updated end effector position

being moved too. The PX-150 uses Newton-Raphson iterative algorithm to find θd given the

equation

g(θd) = xd − f(θd) = 0 (2.1.4)

allowing some error e in the solution allows for multiple approximated solutions to be

found as g(θd) → 0 with the system choosing the closest solution to the root. If no solution

can be found within the allowed error then that means that the convergence failed and the

robot will not move. It should be noted that the PX-150 uses X, Y, and Z and the right-hand

convention to represent its position relative to its base frame in millimeters. The orientation

of the robot is represented in terms of Euler angles i.e roll, pitch, and yaw.

The PX-150 can be controlled from a computer by using its ROS API in Python. Interbotix

built what is called IRROS structure to allow researchers to interact with the robot at a

research-level while letting IRROS handle the lower-level drivers and configurations. IRROS

is made up of 5 layers that slowly descend from the research layer down to the hardware

layer. The first layer is the research layer, this layer allows users to move the robot by simply

sliding a bar on a graphical user interface without needing to know anything else about how

a robot moves. The second layer is the application layer made up of the inverse kinematics

solver, ROS control packages, and the Move-it interface packages. The application layer is

the layer used most commonly in this research allowing the integration of the PX-150 into

the system without needing to reinvent or rebuild the robot’s control packages but allowing

for custom commands and packages that are needed to complete the research. The middle

6

layer is called the Control layer and houses the configuration packages for each servo as well

as parameters needed by ROS to simulate and control the physical robot. This layer is also

home to the PX-150’s unified robotics description format (URDF) file allowing ROS to show

the model of the robot in applications such as Gazebo and RVIZ. The fourth layer of IRROS

is the driver layer and is made up of the computer drivers needed to convert the incoming

data from the USB cable into usable data for ROS. Finally, the hardware layer is made up

of the physical hardware such as the U2D2, the servos, and any other sensors that might be

connected to the robot.

2.2 Robotic Operating System

The Robotic Operating System (ROS) is a collection of libraries, applications, and tools

that allow users to quickly develop robotic applications without having to start at the lowest

levels of communications. ROS framework revolves around the ability to build pipelines

between sensors, actuators, and control systems to efficiently and effectively move data and

commands between hardware and software applications. This saves a lot of time by allowing

the use of different products from different companies to interact without having to make

sure they are compatible with each other. Sensors, robots, and cameras like the ones that

will be covered later in this paper have a software interface that can now seamlessly be

integrated together. ROS uses a system of nodes connected together and sharing messages

through channels called topics. Nodes are any connection point that generates or receives

data and would be how the sensors and hardware connect to the ROS system. Topics are

the pipelines of ROS world as they transport data along them to different nodes connecting

them in a web similar to a network of computers. The data that flows on the topics are

called messages, these messages have unique structures based on the type of message being

used.

There are a few ways a program can interact with the web of nodes through Python and that

is by building one of the following: Publish and Subscriber, Services, or Action. The first

7

one is Publish this is exactly as it sounds meaning it publishes messages about a topic. This

is useful when you have a sensor like a thermometer that is reading temperature because it

can publish the updated temperature to the topic periodically. The reverse of a publisher is

a subscriber, this is how a program can pull the information from a topic to use. An example

of this would be a mobile robot that has a distance sensor, a Python program could subscribe

to the topic of the sensor, and when the distance falls below a set value then it would stop

the robot. The next structure for moving data is a service and instead of publishing data to

a topic continuously a service waits till it receives a call. Services have a client and a server

relationship where the client request information and waits for a response from the server.

Servers can have multiple clients connected at once but only one server can be connected

at a time. The final one is an Action, in which is similar in service in that it waits for a

request but is usually reserved for longer tasks. During the duration of the action, the client

is receiving feedback from the server on the status of the action. Once the action is complete

it will receive a response with the final data requested a the start.

ROS is not just for moving physical robots, it comes with an array of tools and applications

that allow a user to test, train and gather data on simulated robots as well as digital twins of

robots. One of these applications is called RVIZ which allows for a real-time simulated model

of the actual robot including sensors and video feeds. This is a useful way of visualizing what

the robot sees and is doing during testing. RVIZ subscribes to the topics of the robot to

receive continuous updates about its position and current state and displays it in an easy-

to-use interface. A similar but slightly different application that comes with ROS is Gazebo.

Gazebo is a full-blown physics simulator that allows users to simulate what a virtual robot

would do under different conditions without risking damage or destruction of the physical

robot. Gazebo allows users to adjust world conditions like friction, wind, and gravity while

also changing the scenery. If a user was testing a self-driving car algorithm then it would

allow them to see how the car handles on ice or what the system does when faced with an

obstacle in its path without endangering a physical car or environment.

8

2.3 Leap Motion Controller

The Leap Motion controller is a hand-tracking device that uses two optical sensors and

infrared light to track the position of a user’s hands in 3D space. The Leap Motion captures

a frame for each sensor and triangulates the user’s hand based on the reflection angle of

the IR allowing the sensor to send back very accurate positional and rotation data about a

user’s hand. The coordinate system for the Leap Motion is a right-handed system with a

positive Y-axis going in the up direction and a positive X-axis being toward the left side.

Finally, the positive Z is in the forward position. The origin of the coordinate system is in

the center of the device and positional data is measured in millimeters from the origin. The

Leap Motion has a 150 degrees field of view and a sensing range from the origin to around

600 millimeters. The rotational data is measured in radians and uses Euler angles similar

to the PX-150 robot. The Leap Motion has a built-in hand model that overlays the sensor

data to send back data on specific parts of a hand. An example of this would be the distal

phalanges, also known as the fingertips, of a human hand, which can be tracked for all five

fingers of a user’s hand sending back an X, Y, and Z and orientation for the fingertip. The

area that is used for this research is the center of a user’s hand also called the palm of the

hand. The Leap Motion can run at 120 frames a sec but after triangulation outputs data

at half that speed giving 60fps of usable hand tracking data. The sensor also has built-in

gesture and tool detection such as circle, swipe, and screen tap as well as using a stylus

or pen to point at a screen without touching the screen. These gesture and tool detection

are useful in different applications but these will not be used for this research. The sensor

interfaces with a computer through the API in Python allowing for easy integration with

other platforms such as ROS.

9

2.4 Meta Quest 2 VR headset

The Meta Quest 2 headset is a state-of-the-art virtual reality (VR) headset developed by

Meta that gives users 1832 X 1920 resolution in each eye and up to 90 Hz refresh rate

for a clear and immersive feeling while they wear the headset. Powered by a Qualcomm

Snapdragon XR2 CPU and 6 GB of RAM, the headset comes with 128 GB of storage allowing

for a wide use of VR applications. The headset also has the option to track a user’s hand

position using 2 different methods. The first is using handheld controllers that use integrated

sensors to feedback position and orientation of the headset. This is a commonly used method

and is the way most VR headsets track hand position on the market today. The Quest 2

also supports controller-free hand tracking by using sensors similar to the Leap Motion but

is integrated into the front of the VR headset. This allows users to ditch the controllers for

a more natural feel when interacting with menus, games, and other applications on Quest

2. To program and interact with data from the Quest 2, the most common way is by Unity

to update the display in the headset and pull data from onboard sensors. Unity uses a left-

handed coordinate system to represent the incoming positional data as well as quaternions

for orientation. Unity is programmed in C# and allows for a connection between Quest 2

and other scripts and programs.

2.5 Ricoh THETA 360 degree camera

The Ricoh Theta Z is a 360-degree camera that takes two fish-eyed 180-degree FOV cameras

and stitches them together to form the full image. The camera has the capability to produce

4k 360-degree still photos as well as 2k video streams of 360-degree video. The camera

weighs in at around 182g and comes with a four-channel microphone. It interfaces with the

computer via a USB-C cable and allows video to be streamed directly from the camera to

the computer. This gives us the ability to bring that video in and display it for users whether

it is in a viewer or streamed to the user’s VR headset. If it is to the headset then the user

10

can turn their head and view the full 360-degree environment around the camera.

11

CHAPTER III

RELATED WORKS

Remote real-time motion tracking has found a growing interest in robotics for robot imitation

control [35, 21, 31, 22, 2]. Motion re-targeting is the essential and challenging part of real-

time robot control from human observations since humans and robots are dissimilar in size,

degrees-of-freedom (DOF), and dynamics and mechanical limitations [19]. However, prior

research on teleoperation systems used very expensive robotic arms (e.g., $20, 000), which

implies overwhelming high costs of development and makes it unaffordable for home use.

Inertial measurement units (IMUs) can be used for tracking human motions [23, 30, 25].

However, due to the estimate’s drift, magnetic disturbances, and calibration issues, IMU-

based human motion tracking always suffers from low tracking accuracy [9]. Moreover, these

methods require multiple IMUs to be attached to different parts of the user’s limbs (e.g.,

upper arm, forearm, etc.) to measure their altitudes and orientations, which is burdensome

and obtrusive.

Owing to the wide deployment and ease of use, cameras have been well deployed for

human motion tracking. Hwang et al. proposed MonoEye [14], a human motion tracking

system using a single RGB camera mounted on the user’s chest. A Microsoft Kinect depth

camera can be used for device-free human motion tracking [32]. Bilesan et al. [4] developed

a marker-based motion tracking system using the Kinect v2 sensor to capture joint angles

of a human-like ankle flexion/extension motion. OpenPose was leveraged to implement a

3D markerless and device-free motion tracking technique [20, 28]. OptiTrack with multiple

cameras was used to track human hand motions with low tracking errors (e.g., less than

0.20mm) [12]. However, the above methods either suffer from low tracking accuracy or

12

require the installation of expensive dedicated hardware. Instead, in this work, we propose

to leverage the low-cost Leap Motion Controller for capturing a user’s hand motion [3, 8],

which can also achieve a relatively high tracking accuracy.

3.0.1 Teleoperation

Telerobotics has a wide range of applications such as being used to work in harsh envi-

ronments (e.g., in space, underwater, etc.) where humans can hardly reach, used on the

field for military purposes, used to conduct medical surgeries, and used for remote educa-

tion. Telerobotics involves two major subfields, which are teleoperation and telepresence.

Teleoperation refers to the operation of a device at a distance, while telepresence means

the operator feels present in the remote environment via manipulating the remote robot

while getting feedback from the immersive interface [34]. Most teleoperation studies con-

sider haptic feedback and/or visual feedback. For example, haptic feedback has been used

to facilitate teleoperation systems for micromanipulation [5] and control of unmanned aerial

vehicles [16]. Cameras and monitors were leveraged to provide monovision feedback during

teleoperation [10, 13]. However, the human perception of distance is still constrained due to

the asymmetry between the mechanical structures of master and slave robots and the lack

of stereoscopic vision [29].

To improve human awareness of real environments, virtual reality (VR) has been lever-

aged to facilitate teleoperation interfaces. Hetrick et al. [11] compared different VR robot

teleoperation interfaces for performing dexterous manipulation tasks with a Baxter robot.

Brizzi et al. [6] proposed an interface built on augmented reality (AR) to improve pick-

and-place tasks’ performance. Sun et al. [29] further developed a mixed reality (MR)-based

teleoperation system, which combines real and virtual worlds. However, the above-mentioned

methods all use 2D cameras as the source of the visual feedback, which still lacks depth in-

formation. Instead, this work proposes to use the 360◦ camera to better capture the remote

environment at the robot end and stream it to the user end, which is then displayed in the

13

VR device.

3.0.2 User Experience In Human-Robot Interaction

User experience is a key factor of human-robot interaction and has been studied by many

works. Lindblom et al. [17] investigated how to properly conduct user experience evaluation

in human-robot interaction by answering several related methodological questions. Similarly,

a user experience design cycle was proposed to include human factors in the design of the

human-robot interface [24]. Alenljung et al. [1] explored the role and relevance of user

experience related to socially interactive robots and identify the challenges to be addressed.

Buchner et al. [7] further studied how user experience in human-robot interaction changes

over time by asking the participants to fill out the questionnaire at three defined points

in time. Different from most user experience studies, Jokinen et al. [15] explored using

multimodal behavior such as gazing, facial expressions, and body posture to predict the user

experience during human-robot interaction, rather than using questionnaires.

14

CHAPTER IV

FIRST STUDY

4.0.1 Introduction

The first study that was conducted was to verify that it was possible to have a platform that

would allow for real-time control of a robotic manipulator using a hand tracking sensor when

the controller and the robotic manipulator were separated by a long distance and on separate

networks. To test this a system of sensors, computers, cameras, and a robotic manipulator

was constructed and data was gathered across 4 different configurations to compare the

latency between each system as well as the accuracy of the robotic movements vs the user’s

hand motion as distance between the controller and robotic manipulator grew.

4.0.2 Hardware Integration

This research uses three main pieces of hardware: a PC installed with Linux Ubuntu 18.04

[27], a PincherX 150 Robot Arm from Trossen Robotics, and a LEAP Motion Controller

from Ultraleap. The LEAP Motion Controller is a motion tracking camera that uses three

LEDs and two infrared cameras in order to triangulate an accurate value of a hand above

the sensor at around 120 frames per second. The PincherX 150 Robot Arm, known further

in this paper as the PX-150, is a robotic arm with 5 degrees of freedom (DOF) and a 900mm

wingspan. When fully extended, it can reach up to 450mm in length and can pick up payloads

of up to 50g. The PX-150’s base and end effector are 3D printed and the servos used on the

arm itself are DYNAMIXEL X-Series smart servos which are connected together through

a DYNAMIXEL U2D2 controller. This controller connects to a computer through a USB

15

Figure 1: The remote-controlled robotic arm platform

serial connection and allows it to utilize the pre-built PX-150 ROS packages for Melodic.

The kinematics engine used to move the robot is included in the software package of the

PX-150. The PX-150 was selected for this research for its affordability (with price $945.95),

repairability, and end-effector customization by 3D printing.

4.0.3 Software Components

Vision-based Hand Motion Tracker. The developing company for the LEAP Motion

Controller, Ultraleap, provides an API that allows developers to utilize the functions of the

LEAP Motion Controller to access data from the sensor. A few functions that are utilized in

this research include the real-time position and orientation tracking of the palm of the hand

as well as the accessing of previous frames captured by the sensor.

ROS-based Human-Robot Interface. The interface used to communicate with the

PX-150 is a ROS wrapper that was built by Interbotix. Starting from the research layer

16

(main code) there are three main layers that connect the application to the physical robot.

These three layers are the application support layer, the control layer, and the driver layer.

Starting with the application support layer, this layer houses the main ROS packages such

as the inverse kinematics engine module, the ROS control package, and the MoveIt interface

package. These packages are how the user’s inputs are able to interface with the lower-level

ROS packages. The control layer contains the necessary configuration files of the robot such

as the robot’s joint names, default joint values, as well as all the other robot parameters.

The final layer between the application and the hardware layer is the driver layer, this layer

holds the interbotix-ros-core package that directly communicates with the PX-150’s onboard

controller (U2D2). This completes the transfer of data from the application to the physical

robot.

4.1 Approach Design

4.1.1 Gathering and Converting Motion Data

By accessing the LEAP Motion API, the code starts a listener that takes in tracking data

from the sensor. After the listener has started, the program waits until a hand is in view

above the controller to then start reading position values. When a hand is in view, the

program then takes the current frame and the previous two frames, then divide them by the

total number of frames in use, in this case, to create a rolling average of the three positional

values of the palm center in order to get an accurate position value for the robotic arm

to use. The code takes this rolling average in order to create a low-pass filter to reduce

the extra noise caused by hands prone to twitching or jerky movements and increase the

accuracy of the movements when sent to the PX-150. With this rolling average of position

values, we then scale them into values that the robotic arm can recognize. With the PX-150,

it has a workspace that is “a specification of the configurations that the end-effector of the

robot can reach” [18], meaning that the robot has a space where the arm can create a valid

17

configuration. In order for the PX-150 to configure into a correct position, we must scale

the position values from the LEAP Motion Controller into positional values that can be

accepted by the PX-150. To do this, we take the positions of the LEAP Motion Controller

on the x, y, and z axes and convert them into a corresponding x̂, ŷ, and ẑ position that is

valid for the PX-150. This scaling is necessary in order to make sure that when the hand is

at the farthest sensor position above the LEAP Motion Controller, the PX-150 will be fully

extended to a corresponding position. In addition to scaling the position data, the LEAP

Motion Controller also looks for the distance between the forefinger and thumb to determine

if the hand is in a fist position. We take this value and call it the grab strength, as it will

be utilized by the PX-150 to open and close the end-effector. After the code has finished

processing all of the necessary data, it then enters the position values, the roll value of the

hand, and the grab strength value into a list which is then serialized into a JSON string to

be sent over the web socket.

4.1.2 Secure Wide Area Network Connection

In order to get the values from the LEAP Motion Controller to the PX-150, our code estab-

lishes a secure client-server relationship between two computers using a web socket. When

creating a web socket connection in different physical locations, a person must have two

computers that have access to the same IP address, internet port, and header number to

establish a proper connection. When the server is started, it will start listening on the pre-

selected port number with the server computer’s IP address. When the client is started, it

will look on the same pre-selected port number as the server to find the server’s IP address,

then, after it successfully acknowledges the server’s IP address, a connection is established

and data can be sent until the connection is terminated. In the case of this research, the

client computer connects to a VPN to increase the security of the communication and allow

access to the same local network that houses the server computer. The server then actively

listens to the port for messages from the client containing packets of positional values from

18

Figure 2: Rotation from LEAP Motion frame to PX-150 frame

the LEAP Motion Controller.

4.1.3 Receiving Data and Interfacing with Robot

Once the server has received the JSON string, the code then deserializes the string back into

a list. As shown in Figure 2, before the received values can be used by the PX-150, they

must be transformed into the correct orientation by rotating the values −90 degrees along

the x-axis and then −90 degree along the z-axis.

After the position values have been orientated correctly, they can now be published to

the kinematics engine using the set-ee-pose-components method. The set-ee-pose-components

method is part of the arm library of the PX-150 that houses all of the kinematics calculation

data. If a successful path was found, it will publish a list of angles for each of the servos to

allow the arm to achieve the desired end-effector position. If a position is not found then

it will return that the robot has failed to converge to the specified position and will stay

in the last position it reached. Part of the functionality of the end-effector is the opening,

19

closing, and rotation of the gripper. Before the code was sent, the grab strength of the hand

was retrieved from the LEAP Motion API as a value between 0 and 1; if the user closes

their hand, then the gripper on the end-effector will send the command to close. The LEAP

Motion API also captures the rotation angle of the user’s hand, which is also sent with the

position data which is then passed to the robot as part of the end-effector’s orientation.

These movements will continue so long as there maintains an active connection between the

server and the client computers.

4.2 User Study with Low-cost Robotic Arm Platform

4.2.1 Control Delay Study

One of our current experiments includes the transmission of data one string at a time over

the internet. In this experiment, the goal was to find the total execution time of the code

and confirm there is a delay in the transmission of data over a long-distance connection

versus the transmission of data in a local environment. The data that was needed in this

experiment was the length of travel time over the internet and the action time of the PX-

150’s motion. This experiment has been tested at four different connection configurations:

a straight connection (a connection with no web socket), a LAN connection on the same

computer, a LAN connection on a different computer, and a WAN connection across multiple

states using a VPN. The results of the experiment were as follows: by comparing the total

time for one iteration of the loop versus the times that were found throughout the experiment,

it was shown that all of the delays throughout the code were accounted for, the movement

of the PX-150 took up the majority of time spent per iteration, and that the time it took

to send the data over each connection increased with the increased distance between each

computer. After running multiple iterations of the experiment described above to collect

data, the results have been gathered and shown in Figure 3 and Figure 4.

As we can observe from Figure 5, when the experiment is conducted through a straight

20

Figure 3: Average time to execute one iteration of the program.

connection, the execution time is mainly composed of the robot’s movement time, which

spans from 0.008s to 0.018s. Similarly for the LAN connection on the same computer and

the LAN connection on different computers, the robot’s movement time still dominates the

total execution time with a median of 0.021s and 0.032s, respectively. The remaining part

of the execution time for these two configurations mainly comes from the network delay,

whose median is around 0.005s and 0.006s, respectively. Different from the previous three

configurations, the dominant part of the execution time for the WAN connection is the

network delay, spanning from 0.042s to 0.091s, while the robot’s execution time spans from

0.009s to 0.047s. For all these four configurations, the execution time contributed by the

packet time is close to 0s, which can thus be neglected. In regard to the total execution time,

the straight connection achieves the shortest time around 0.02s, the two LAN connections

show a longer time between 0.05s and 0.06s, and the WAN connection turns out to have the

longest time around 0.08s.

21

Figure 4: Average time taken to transfer data over the internet.

4.2.2 Local Control vs. Robot Replay

The robotic arm reads human motion as the end-effector trajectories frame by frame. Joint

angle control commands are derived from the frame series leveraging inverse kinematics. As a

result, it forms the robotic arm’s end-effector trajectory. Moreover, the human hand motion

is also sent to another robotic arm afterward, the robotic arm executes the commands to

take a replay control rather than an interactive control.

We first compare the trajectories of human motion, controlled robot, and replayed robot

to study the effects of transmission and robot execution on the motion trajectories. For

example, the trajectories of drawing a “S” in the remote and local replay scenarios are

shown in Figure 6. We can observe that the trajectories of the robot in both real-time

control and replay control are close to the human hand trajectory, which indicates that the

robot follows the human movement well and the latency during the remote control has a

very slight impact on robot trajectories.

We further compare the trajectories by computing their Dynamic Time Warping (DTW)

distance [26] between each other. The smaller DTW distance means a higher similarity

between the trajectories. As illustrated in Figure 7, the DTW distances between the trajec-

22

Netw
ork D

elay

Movement T
im

e

Packet T
im

e

Total T
im

e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

T
im

e
 (

s
)

Straight Connection

LAN - Same Computer

LAN - Different Computer

WAN

Figure 5: Execution time of different connection configurations.

tories of the robot in different control types and that of the human hand span in the same

range, indicating these trajectories are close to each other and hard to be differentiated.

Figure 8, Figure 9, and Figure 10 illustrate the time shift on the axes of the trajectories in

20 frames caused by the transmission and robot execution latency. Although the axes values

are not differentiated, we can observe the robot’s movement over time is not as smooth as

human motion, and the time shift is not constant for every frame, which indicates the robot

executing speed is swinging in a small range.

4.2.3 Remote vs. Local Control

We now present the experiments when the participants are controlling the robotic arm in

remote control and local control scenarios. In these two scenarios, the participants repeat

drawing letters (e.g., “S”) in the air 20 times. The hand motions are captured by the Leap

Motion sensor based on which we generate a time series of human hand 3D coordinates, The

23

Figure 6: Trajectories of drawing a “S” in different control scenarios.

human motion is transmitted to the robotic arm concurrently through a WAN for remote

control or through a LAN for local control. Both are in real-time. Figure 11 presents the

DTW distances in the same control scenario as well as between the remote control and

the local control scenarios. The results show that the user behaves differently in different

scenarios while their motions are consistent in the same scenario.

4.2.4 Free-form vs. Reference Control

We next study the impact of a reference curve on the remote control performance, which

guides the user to move the robotic arm by following a specific trajectory (e.g., letter) rather

than an individually interpreted curve by heart. Specifically, we conducted experiments in

two different settings. In the first set, the participants performed gestures in their own styles

without a reference, which we call the free-form gesture control. While in the second set, the

participants were required to control the robotic arm to follow the trajectory of a reference

drawn on the paper. The comparison of the user’s motion curve to the far-end robot with

24

1 2 3 4 5 6 7 8 9

Instance

0

1

2

3

D
T

W
 D

is
ta

n
c
e

Human vs Controlled Robot

Human vs Replayed Robot

Controlled Robot vs Replayed Robot

Figure 7: DTW distances of the trajectories in different control scenarios.

or without a reference is shown in Figure 11. We find that the DTW distances between

the reference control and the free form control (i.e., red curve) are much higher than that

calculated with either control scenario (i.e., orange curve). The results indicate that the

user’s behaviors in the two scenarios are different. Nonetheless, we find that the robot is

able to replicate the user’s motion with high similarity.

25

0 0.5 1 1.5 2 2.5

Time (sec)

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

X
 V

a
lu

e

Human Motion in 20 Frames

Robot Movement in 20 Frames

Figure 8: Latency on the x-axis between the robot and human in remote control.

0 0.5 1 1.5 2 2.5

Time (sec)

0.18

0.185

0.19

0.195

0.2

0.205

0.21

Y
 V

a
lu

e

Human Motion in 20 Frames

Robot Movement in 20 Frames

Figure 9: Latency on y-axis between the robot and human in remote control.

26

0 0.5 1 1.5 2 2.5

Time (sec)

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

Z
 V

a
lu

e

Human Motion in 20 Frames

Robot Movement in 20 Frames

Figure 10: Latency on z-axis between the robot and human in remote control.

1 2 3 4 5 6 7 8 9

Instances

2

4

6

8

10

12

14

16

18

D
T

W
 D

is
ta

n
c
e

Remote Control vs Local Control

Reference Control vs Free Form Control

Within the Same Control Senario

Figure 11: Comparing the similarity between different control scenarios and within the same

scenario.

27

CHAPTER V

STUDY TWO

5.0.1 Introduction

The second study was conducted to compare different setups of the platform to determine

which one allowed for a better user experience while allowing for fast and accurate completion

of different tasks. The two tasks the participants were asked to complete were line tracing

and object manipulation. Once the tasks were completed then the participants were asked

to fill out a survey allowing for user satisfaction data to be gathered on each of the tasks to

determine which setup was the most intuitive for the participants.

5.0.2 Platform Overview

The overview of our system and the setup environment is shown in Figure 12. To track the

user’s hand motion and control a robotic arm in real-time, a Leap Motion camera [33] with

hand recognition API provided by Ultraleap is used to reconstruct palm center positions in

a 3D coordinate, obtain hand orientation, and gripping behaviors. Then the hand trajectory

is optimized for robot planning with scaling and offsets to overcome limitations from both

the camera sensing range and the robotic arm work envelope. Moreover, we lower the

motion control latency with Last-In-First-Out buffering which speeds up computation time

and smooths the robotic arm execution with PID controllers. The optimized trajectory is

sent to a PX-150 robotic arm through a web socket and then into the Interbotix run-time

environment which allows the robot to move.

There are three different setups used to test the interactions between the user and a

28

Figure 12: Illustration of VR-enabled robotic arm control platform.

robotic manipulator.

Line of sight The first of these setups is line of sight in which the user can see the robot

and receives visual feedback from watching the robot in motion. This results in no feedback

delay to the user.

2D Feedback The second setup consists of the user only receiving visual feedback from

a web camera instead of a direct line of sight. This restricts the user to see the movements

of the robot on a 2D computer monitor only.

VR Headset The final setup is viewing the movements of the robot in a VR headset.

By live streaming 360° camera footage into a VR headset, the user is able to see the robot

from the point of view of the camera. This is similar to the 2D setup as the user is restricted

29

from having a line of sight of the robot. However, instead of a 2D monitor, the user wears a

VR headset. This allows the user to look around the environment and get a full view of the

robot and the area around it.

5.0.3 Hardware Integration

This research utilizes many different pieces of hardware: a PC installed with Linux Ubuntu

20.04, a PincherX 150 Robot Arm from Trossen Robotics, a LEAP Motion Controller from

Ultraleap, an Oculus Quest 2, and a Ricoh THETA Z1 360° camera. The LEAP Motion

Controller is a motion tracking camera that uses three LEDs and two infrared cameras in

order to triangulate an accurate value of a hand above the sensor at around 120 frames

per second. The PincherX 150 Robot Arm, known further in this paper as the PX-150,

is a robotic arm with 5 degrees of freedom (DOF) and a 900mm wingspan. When fully

extended, it can reach up to 450mm in length and can pick up payloads of up to 50g. The

PX-150’s base and end effector are 3D printed and the servos used on the arm itself are

DYNAMIXEL X-Series smart servos which are connected together through a DYNAMIXEL

U2D2 controller. This controller connects to a computer through a USB serial connection

and allows it to utilize the pre-built PX-150 ROS packages for Noetic while the kinematics

engine used to move the robot is included in the software package of the PX-150. The Meta

Quest 2 is a factory-issued VR helmet from Meta and is able to work as a standalone helmet

or connect to a computer to increase its capabilities and battery life. The Ricoh THETA

Z1 360° camera was manufactured by the THETA 360 company and it is the latest in their

360° video and image-capturing hardware. The THETA Z1 camera is able to support up to

7K image quality for still images, and up to 4K video and live streaming.

5.0.4 Software Components

Vision-based Hand Motion Tracker The developing company for the LEAP Motion

Controller, Ultraleap, provides an API that allows developers to utilize the functions of the

30

LEAP Motion Controller to access data from the sensor. A few functions that are utilized in

this research include the real-time position and orientation tracking of the palm of the hand

as well as the accessing of previous frames captured by the sensor.

ROS-based Human-Robot Interface The interface used to communicate with the

PX-150 is a ROS wrapper that was built by Interbotix. Starting from the research layer

(main code) there are three main layers that connect the application to the physical robot.

These three layers are the application support layer, the control layer, and the driver layer.

Starting with the application support layer, this layer houses the main ROS packages such

as the inverse kinematics engine module, the ROS control package, and the MoveIt interface

package. These packages are how the user’s inputs are able to interface with the lower-level

ROS packages. The control layer contains the necessary configuration files of the robot such

as the robot’s joint names, default joint values, as well as all the other robot parameters.

The final layer between the application and the hardware layer is the driver layer, this layer

holds the interbotix-ros-core package that directly communicates with the PX-150’s onboard

controller (U2D2). This completes the transfer of data from the application to the physical

robot.

Unity and VR Implementation The Unity software suite is used to transfer the live

streaming 360° camera feed from the computer to the VR headset. Unity uses a custom

script on the computer side and interfaces with the VR headset using the built-in Quest link

application. This allows for a direct pipeline from the 360° camera feed to the user in the

VR headset. The user will see from the point of view of the camera and has the ability to

look around seeing a 360° view of the surrounding area. To make it easier for the user to see

the robot, the camera is centered so when the user is looking forward the robot is in front

of them. The camera feed is also adjusted to align the robot with the user’s hand direction.

31

35cm
45°

35cm

90°
35cm

135°

Figure 13: Camera viewing angles.

5.0.5 Gathering and Converting Motion Data

By accessing the LEAP Motion API, the code starts a listener that takes in tracking data

from the sensor. After the listener has started, the program waits until a hand is in view

above the controller to then start reading position values. When a hand is in view, the

program then takes the current frame and the previous two frames, then divide them by the

total number of frames in use, in this case, to create a rolling average of the three positional

values of the palm center in order to get an accurate position value for the robotic arm

to use. The code takes this rolling average in order to create a low-pass filter to reduce

the extra noise caused by hands prone to twitching or jerky movements and increase the

accuracy of the movements when sent to the PX-150. With this rolling average of position

values, we then scale them into values that the robotic arm can recognize. With the PX-150,

it has a workspace that is “a specification of the configurations that the end-effector of the

robot can reach” [18], meaning that the robot has a space where the arm can create a valid

configuration. In order for the PX-150 to configure into a correct position, we must scale

the position values from the LEAP Motion Controller into positional values that can be

accepted by the PX-150. To do this, we take the positions of the LEAP Motion Controller

on the x, y, and z axes and convert them into a corresponding x̂, ŷ, and ẑ position that is

valid for the PX-150. This scaling is necessary in order to make sure that when the hand is

at the farthest sensor position above the LEAP Motion Controller, the PX-150 will be fully

extended to a corresponding position. In addition to scaling the position data, the LEAP

32

Motion Controller also looks for the distance between the forefinger and thumb to determine

if the hand is in a fist position. We take this value and call it the grab strength, as it will

be utilized by the PX-150 to open and close the end-effector. After the code has finished

processing all of the necessary data, it then enters the position values, the roll value of the

hand, and the grab strength value into a list which is then serialized into a JSON string to

be sent over the web socket.

5.0.6 Secure Local Area Network Connection

In order to get the values from the LEAP Motion Controller to the PX-150, our code estab-

lishes a secure client-server relationship between two computers using a web socket. When

creating a web socket connection, a person must have access to the same IP address, internet

port, and header number to establish a proper connection. When the server is started, it

will start listening on the pre-selected port number with the server computer’s IP address.

When the client is started, it will look on the same pre-selected port number as the server to

find the server’s IP address, then, after it successfully acknowledges the server’s IP address,

a connection is established and data can be sent until the connection is terminated. In the

case of this research, the client computer connects to the same local network that houses the

server computer. The server then actively listens to the port for messages from the client

containing packets of positional values from the LEAP Motion Controller.

5.0.7 Receiving Data and Interfacing with Robot

Once the server has received the JSON string, the code then deserializes the string back into

a list. Before the received values can be used by the PX-150, they must be transformed into

the correct orientation by rotating the values −90 degrees along the x-axis and then −90

degrees along the z-axis.

After the position values have been orientated correctly, they can now be published to

the kinematics engine using the set-ee-pose-components method. The set-ee-pose-components

33

Figure 14: Example of curve line tracing.

method is part of the arm library of the PX-150 that houses all of the kinematics calculation

data. If a successful path was found, it will publish a list of angles for each of the servos to

allow the arm to achieve the desired end-effector position. If a position is not found then

it will return that the robot has failed to converge to the specified position and will stay

in the last position it reached. Part of the functionality of the end-effector is the opening,

closing, and rotation of the gripper. Before the code was sent, the grab strength of the hand

was retrieved from the LEAP Motion API as a value between 0 and 1; if the user closes

their hand, then the gripper on the end-effector will send the command to close. The LEAP

Motion API also captures the rotation angle of the user’s hand, which is also sent with the

position data which is then passed to the robot as part of the end-effector’s orientation.

These movements will continue so long as there maintains an active connection between the

server and the client computers.

34

Figure 15: Example zigzag line tracing.

5.1 Study Design

To evaluate the smoothness, efficiency, and versatility of the VR robotic arm platform, we

design three tasks to investigate control latency, motion accuracy, and overall task achieve-

ment. During the experiments, the robotic arm works as described in Section 5.0.2, and

there is no line of sight between the robot and the user. The THETA Z1 360° camera, as

well as an Elecom 4K webcam, are set to be 35cm away from the center of a work pad in

2D and VR experiments respectively. Each of the cameras has three viewing angle setups as

illustrated in Figure 13.

In each experiment, seven participants conduct 10 trials in three tasks: in-air free-style

writing, line tracing, and object collection and placement. Both robotic arm trajectory and

time data were collected for evaluation.

35

Figure 16: Object collection and placement setup.

5.1.1 Control Latency

In this task, participants wrote an “S” in the air without constraint to get familiarized with

the platform. Meanwhile, the time of each component in the control loop is measured.

In a control loop, the motion captured by the sensor is packaged and sent to the robot

server. When the packages are received, algorithms including Last-In-First-Out buffering

are utilized to reduce the entire transmission time. Afterward, the robot server converted

the motion data into robotic control commands with axes alignment and workspace mapping

so the robotic arm can always reach a pose within its range as long as the hand motion is

captured.

5.1.2 Motion Accuracy

This task asked the participants to control the robotic arm’s end-effector with their hand

motion to track a line printed on the paper which is placed on the work pad. Specifically,

36

0.1%

54.1%

45.8%

0.1%

47.4%

52.5%

0.1%

63.6%

36.2%

0.1%

61.9%

37.9%

0.1%

44%

55.9%

0.1%

50.8%

49%

0.1%

55.9%

44%

User 1 User 2 User 3 User 4 User 5 User 6 User 7
0

0.05

0.1

0.15

0.2

0.25

L
a
te

n
c
y
 (

s
)

Packaging

Network and Algorithm

Robot

Figure 17: Average latency of each control loop.

there are two types of lines, including a curve line (e.g., an “S” as shown in Figure 14)

and a zigzag line (e.g., a “W” as shown in Figure 15). All the lines were generated by

Python programs therefore they can be utilized as reference lines with known 2D coordinates.

Because there was no LOS between the participants and the robotic arm, they observed the

work pad area with the visual feedback from the 2D video or the VR stream. In both setups,

the participants repeated the experiments for the three camera viewing angles.

5.1.3 Task Achievement

This task is object-oriented and the participants are required to complete point-to-point

moving, object collection, and placement.

Object Collection They first move the robotic arm’s end-effector from the start position

to the object position, trying to grab the object that is placed in a circle. With gesture

recognition enabled by motion tracking algorithms, the participants can open and close the

gripper attached to the robotic arm. As illustrated in Figure 16, the object to be collected

37

2D-Curve VR-Curve 2D-Zigzag VR-Zigzag
0

2

4

6

8

10

12

14

T
im

e
 (

s
e
c
)

Figure 18: Speed of task completion when the camera angle is 45°.

is a 3D-printed cat, with a 4cm diameter base.

Object Placement Once grabbed, the participants move the object above a dartboard

and then set the object on it. The circles on the dartboard help the participants to estimate

the distance. Due to total control latency, human error, and lack of depth of view in the

video, the object cannot always be placed in the center of the dartboard.

We count the time for the participants to successfully grab the object as well as the time

to release the object, to indicate the effort it takes to complete the task. Meanwhile, the

distance between where the object was placed and the center of the dartboard is measured

to represent the achievement of the task.

5.1.4 User Satisfaction

After participants finished all the tasks, they were asked to answer a questionnaire as well

as rate their experience of the platform and the interactive tasks. There are 12 questions

related to control latency, motion accuracy, and task achievement which are scored between

38

2D-Curve VR-Curve 2D-Zigzag VR-Zigzag
0

2

4

6

8

10

12

14

16

18

T
im

e
 (

s
e
c
)

Figure 19: Speed of task completion when the camera angle is 90°.

1 to 10. They were also given the option to comment on the overall experience.

5.2 Performance Evaluation

5.2.1 Latency

The components of a control loop are categorized into three types, namely packaging, network

and algorithm, and robot execution. As illustrated in Figure 17, the packaging time is

negligible compared to the network transmission and robot execution time, and for most

users’ experiments, the robot execution time is less than the network time. The total time

between motion packaging and the completion of the robot’s execution is around 0.2s.

Moreover, we measured the transmission time for the 360° camera to stream to the VR

headset and for the webcam to stream to a 2D external monitor, as shown in Table 1. The

transmission latency was higher for the VR setup due to the 360° video being transmitted

39

2D-Curve VR-Curve 2D-Zigzag VR-Zigzag
0

2

4

6

8

10

12

T
im

e
 (

s
e
c
)

Figure 20: Speed of task completion when the camera angle is 135°.

through more software layers.

5.2.2 Line Tracing Time and Similarity

Figures 18,19,20 present the time it takes the participants to finish the line tracing task, and

Figures 21,22,23 shows the similarity between the robot trajectory and the reference lines.

Generally, it takes longer to complete line tracing in the VR setup due to a larger camera

delay. However, the robot trajectories in the VR setup still have comparable performance

to the 2D setup when following the reference line.

All the participants took a similar effort to complete the task and the trajectories had

the same level of similarity when the camera angle changed from 45° to 90°, but when the

Table 1: Average transmission latency of two video streaming setups.

VR 360° Streaming 2D Streaming

Latency (s) 0.27 0.13

40

2D-Curve VR-Curve 2D-Zigzag VR-Zigzag
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

E
u

c
li
d

e
a
n

 D
is

ta
n

c
e

Figure 21: Control accuracy when the camera angle is 45°.

camera rotated beyond 90°, the viewing angle severely distorted the cognition of the axis

vertical to the work pad, made the perception upside down. It is observed from Figure 23

that participants’ robot trajectories following curve lines are affected both in the 2D and VR

setups.

5.2.3 Object Collection and Placement

In this object-oriented task, the participants were not asked to follow a reference line, rather,

they were required to successfully grab an object and place it in a desired position. As

discussed in the previous sections, the participants experienced a larger control delay in

the VR setup and took more effort to finish the tasks in general. However, as shown in

Figure 24,25 it took the participants less time in the VR setup than in the 2D setup to

successfully grab the object, and the final object placements were closer to the center of the

dartboard despite the higher latency. The results indicate the VR setup augmented the user

performance in this object-oriented task.

41

2D-Curve VR-Curve 2D-Zigzag VR-Zigzag
0

1

2

3

4

5

E
u

c
li
d

e
a
n

 D
is

ta
n

c
e

Figure 22: Control accuracy when the camera angle is 90°.

5.2.4 User’s Rating

Figure 26 shows the participants’ satisfaction with overall latency in LOS, 2D video, and

VR streaming motion control experience. Since the 0.1s latency difference was noticeable

for the participants, they rated LOS control with the highest score and followed by the 2D

video-based streaming.

For the line tracing accuracy, the participants rated the similarity between their hand

motion and the target line, between the robot motion and their hand motion, and between

the robot motion and the target line. The result is shown in Figures 21,22,23, the participants

considered the similarity between their hand motion and the target line was high, and thought

the robot’s following is acceptable.

The participants also rated the overall experience in the interactive tasks, particularly

their impression of conducting line tracing, object grabbing, and placing both in 2D video

and VR streaming. Participants agreed the experience of conducting experiments with the

42

2D-Curve VR-Curve 2D-Zigzag VR-Zigzag
0

2

4

6

8

10

12

14

E
u

c
li
d

e
a
n

 D
is

ta
n

c
e

Figure 23: Control accuracy when the camera angle is 135°.

first-person robotic arm was excellent in general. Certain aspects, such as the latency, need

time for them to adjust properly, especially when following the curve lines. However, these

don’t negatively impact the experience once they are used to them. Additionally, they found

object placing to be much easier when done in VR than using the 2D screen. In VR they

can tilt their head to adjust the angle of view to best suit their needs, and the most natural

feeling camera angle in VR was when the camera was at 45°.

43

2D-Grab VR-Grab 2D-Drop VR-Drop

0

5

10

15

20

25

30

35

40

45

T
im

e
 (

s
e
c
)

Figure 24: object collection time.

2D VR

0

1

2

3

4

5

6

7

D
is

ta
n

c
e
 (

c
m

)

Figure 25: object collection.

44

LOS 2D VR
0

2

4

6

8

10

S
a
ti

s
fa

c
ti

o
n

 o
f

L
a
te

n
c
y

Figure 26: Satisfaction of Latency.

Hand-Line Robot-Hand Robot-Line
0

1

2

3

4

5

6

7

8

9

S
im

il
a
ri

ty
 o

f
T

ra
je

c
to

ry

Figure 27: Similarity of Trajectory.

45

Tracing Grabbing Placing
0

1

2

3

4

5

6

7

8

9

S
a
ti

s
fa

c
ti

o
n

 o
f

T
a
s
k
 A

c
h

ie
v
e
m

e
n

t

2D

VR

Figure 28: Satisfaction of Task Achievement.

46

CHAPTER VI

CURRENT WORK

6.0.1 Live Video Feed Using VR Headset

This research is ongoing and is continuing to evolve and improve every day. Currently,

research is being done on the possibility of using the Quest 2 VR headset’s built-in sensors

to replace the leap motion for hand and head tracking capabilities. By using the sensors

built into the Quest 2 that track your hand movements similar to the Leap Motion, it will be

possible to remove the Leap Motion from the platform and directly use the hand’s positional

data to move the robotic platform. This will allow users to move freely without being

constrained to one location and will eliminate the user from having to be aware of where the

Leap Motion is in regard to their hand. The Quest 2 also has a built-in virtual model of a

hand that the user will be able to see while wearing the VR helmet, giving them both the

feeling of where their hand is as well as a visual aid of their hand location. Visual feedback

of the current state of the robot has always been a problem with teleoperation, but by using

the Quest 2’s VR capabilities it will be possible to send a video stream over a web socket

and display it to the user in the helmet giving them a low latency live look at the current

position and state of the robotic manipulator.

6.0.2 Camera Movement Using VR Headset

The Quest 2 also tracks the angle at which the user is turning their head which allows that

information to be passed to a pan and tilt camera mount on the robotic side of the platform

to give the user the ability to look around the environment to check for hazards or other

47

obstacles that might be a danger to the robotic manipulator. This also allows the user to

adjust the camera angles to improve depth and distance perception of objects that the user

might be trying to manipulate using the end effector of the robot.

6.0.3 Scaling Up the Robot

As mentioned above the current platform is using a low-cost 5 DOF robotic manipulator

which does great for small tasks. If a larger task needs to be completed via teleoperation

then the ability to scale this platform is critical. Current research is testing the feasibility of

using this platform on an industrial 7 DOF robotic manipulator that is in the price range of

$20,000 called Sawyer by Rethink Robotics. As it stands early testing has been promising,

showing that it is possible by scaling the maximum sensing range of the hand tracking sensor

to the maximum reach of the Sawyer robot allowing for a user to control the larger robotic

platform by simply moving their hand in front of the leap motion or the Quest 2. More

research is needed to get quantifiable data on the accuracy of the system as well as the ease

of use felt by the user. The Sawyer robot also comes with a built-in motorized camera on its

head which can be used in the testing of the previously mentioned future research of using

the head positions from the Quest 2 to ”look around” the environment.

48

CHAPTER VII

CONCLUSIONS

7.0.1 Conclusion

So, in conclusion, this research first showed through study number one that it is plausible to

control a robotic manipulator over a WAN in real-time with high accuracy and low latency.

This study was conducted using low-cost off the shelf components like the Leap Motion and

the PX-150 robotic manipulator. Study one studied the control delay performance of our

robotic arm platform under different LAN/WAN connection configurations, and observed

that the dominant part of execution time for the WAN connection is the network delay

instead of the robot’s movement time. In addition, we comprehensively compared the remote

control with the local control and conducted a contrasted study with both the reference-

guided motions vs. free-form hand movements. The second study implements a first-person

robot control platform with hand motions in virtual reality. We developed the platform by

integrating a motion-tracking device, a robotic arm, a 360° camera, and a VR headset. In

particular, we studied the latency, accuracy, and versatility of the VR robotic arm platform

with free-style writing, line tracing, and object collection and placement tasks, and then

compared it with the 2D video-streaming environment. Experiments show that our first-

person robot control platform with a hand motion in virtual reality is capable of bringing

physically-augmented remote human interactions. Moreover, participants’ feedback suggests

our platform offered a satisfactory and natural experience. Future work will continue to

evolve this platform improving user satisfaction as well as decreasing latency and increasing

the accuracy of the system.

49

REFERENCES

[1] Beatrice Alenljung, Jessica Lindblom, Rebecca Andreasson, and Tom Ziemke, User ex-

perience in social human-robot interaction, Rapid automation: concepts, methodologies,

tools, and applications, IGI Global, 2019, pp. 1468–1490.

[2] Miguel Arduengo, Ana Arduengo, Adrià Colomé, Joan Lobo-Prat, and Carme Tor-

ras, A robot teleoperation framework for human motion transfer, arXiv preprint

arXiv:1909.06278 (2019).

[3] D Bassily, C Georgoulas, J Guettler, Thomas Linner, and T Bock, Intuitive and adaptive

robotic arm manipulation using the leap motion controller, ISR/Robotik 2014; 41st

International Symposium on Robotics, VDE, 2014, pp. 1–7.

[4] Alireza Bilesan, Mohammadhasan Owlia, Saeed Behzadipour, Shuhei Ogawa, Teppei

Tsujita, Shunsuke Komizunai, and Atsushi Konno, Marker-based motion tracking using

microsoft kinect, IFAC-PapersOnLine 51 (2018), no. 22, 399–404.

[5] Aude Bolopion and Stéphane Régnier, A review of haptic feedback teleoperation systems

for micromanipulation and microassembly, IEEE Transactions on automation science

and engineering 10 (2013), no. 3, 496–502.

[6] Filippo Brizzi, Lorenzo Peppoloni, Alessandro Graziano, Erika Di Stefano, Carlo Al-

berto Avizzano, and Emanuele Ruffaldi, Effects of augmented reality on the performance

of teleoperated industrial assembly tasks in a robotic embodiment, IEEE Transactions on

Human-Machine Systems 48 (2017), no. 2, 197–206.

50

[7] Roland Buchner, Daniela Wurhofer, Astrid Weiss, and Manfred Tscheligi, Robots in

time: How user experience in human-robot interaction changes over time, International

Conference on Social Robotics, Springer, 2013, pp. 138–147.

[8] Guanglong Du, Ping Zhang, and Xin Liu, Markerless human–manipulator interface

using leap motion with interval kalman filter and improved particle filter, IEEE Trans-

actions on Industrial Informatics 12 (2016), no. 2, 694–704.

[9] Alessandro Filippeschi, Norbert Schmitz, Markus Miezal, Gabriele Bleser, Emanuele

Ruffaldi, and Didier Stricker, Survey of motion tracking methods based on inertial sen-

sors: A focus on upper limb human motion, Sensors 17 (2017), no. 6, 1257.

[10] K. Goldberg, M. Mascha, S. Gentner, N. Rothenberg, C. Sutter, and J. Wiegley, Desktop

teleoperation via the world wide web, Proceedings of 1995 IEEE International Conference

on Robotics and Automation, vol. 1, 1995, pp. 654–659 vol.1.

[11] Rebecca Hetrick, Nicholas Amerson, Boyoung Kim, Eric Rosen, Ewart J de Visser, and

Elizabeth Phillips, Comparing virtual reality interfaces for the teleoperation of robots,

2020 Systems and Information Engineering Design Symposium (SIEDS), IEEE, 2020,

pp. 1–7.

[12] Long Huang, Zhen Meng, Zeyu Deng, Chen Wang, Liying Li, and Guodong Zhao, To-

wards verifying the user of motion-controlled robotic arm systems via the robot behavior,

IEEE Internet of Things Journal (2021).

[13] Panfeng Huang, Pei Dai, Zhenyu Lu, and Zhengxiong Liu, Asymmetric wave vari-

able compensation method in dual-master-dual-slave multilateral teleoperation system,

Mechatronics 49 (2018), 1–10.

51

[14] Dong-Hyun Hwang, Kohei Aso, Ye Yuan, Kris Kitani, and Hideki Koike, Monoeye: Mul-

timodal human motion capture system using a single ultra-wide fisheye camera, Proceed-

ings of the 33rd Annual ACM Symposium on User Interface Software and Technology,

2020, pp. 98–111.

[15] Kristiina Jokinen and Graham Wilcock, Modelling user experience in human-robot in-

teractions, International Workshop on Multimodal Analyses Enabling Artificial Agents

in Human-Machine Interaction, Springer, 2014, pp. 45–56.

[16] Dongjun Lee, Antonio Franchi, Paolo Robuffo Giordano, Hyoung Il Son, and Hein-

rich H Bülthoff, Haptic teleoperation of multiple unmanned aerial vehicles over the in-

ternet, 2011 IEEE International Conference on Robotics and Automation, IEEE, 2011,

pp. 1341–1347.

[17] Jessica Lindblom, Beatrice Alenljung, and Erik Billing, Evaluating the user experience

of human–robot interaction, Human-Robot Interaction, Springer, 2020, pp. 231–256.

[18] Kevin M Lynch and Frank C Park, Modern robotics, Cambridge University Press, 2017.

[19] Guilherme Maeda, Marco Ewerton, Dorothea Koert, and Jan Peters, Acquiring and

generalizing the embodiment mapping from human observations to robot skills, IEEE

Robotics and Automation Letters 1 (2016), no. 2, 784–791.

[20] Nobuyasu Nakano, Tetsuro Sakura, Kazuhiro Ueda, Leon Omura, Arata Kimura, Yoichi

Iino, Senshi Fukashiro, and Shinsuke Yoshioka, Evaluation of 3d markerless motion

capture accuracy using openpose with multiple video cameras, Frontiers in sports and

active living 2 (2020), 50.

[21] Christian Ott, Dongheui Lee, and Yoshihiko Nakamura, Motion capture based human

motion recognition and imitation by direct marker control, Humanoids 2008-8th IEEE-

RAS International Conference on Humanoid Robots, IEEE, 2008, pp. 399–405.

52

[22] Yongsheng Ou, Jianbing Hu, Zhiyang Wang, Yiqun Fu, Xinyu Wu, and Xiaoyun Li, A

real-time human imitation system using kinect, International Journal of Social Robotics

7 (2015), no. 5, 587–600.

[23] Lorenzo Peppoloni, Alessandro Filippeschi, Emanuele Ruffaldi, and Carlo Alberto Aviz-

zano, A novel 7 degrees of freedom model for upper limb kinematic reconstruction based

on wearable sensors, 2013 IEEE 11th international symposium on intelligent systems

and informatics (SISY), IEEE, 2013, pp. 105–110.

[24] Elisa Prati, Margherita Peruzzini, Marcello Pellicciari, and Roberto Raffaeli, How to in-

clude user experience in the design of human-robot interaction, Robotics and Computer-

Integrated Manufacturing 68 (2021), 102072.

[25] Sarvenaz Salehi, Gabriele Bleser, Norbert Schmitz, and Didier Stricker, A low-cost and

light-weight motion tracking suit, 2013 ieee 10th international conference on ubiquitous

intelligence and computing and 2013 ieee 10th international conference on autonomic

and trusted computing, IEEE, 2013, pp. 474–479.

[26] Stan Salvador and Philip Chan, Toward accurate dynamic time warping in linear time

and space, Intelligent Data Analysis 11 (2007), no. 5, 561–580.

[27] Mark G Sobell, A practical guide to ubuntu linux, Pearson Education, 2015.

[28] Uti Solichah, Mauridhi Hery Purnomo, and Eko Mulyanto Yuniarno,Marker-less motion

capture based on openpose model using triangulation, 2020 International Seminar on

Intelligent Technology and Its Applications (ISITIA), IEEE, 2020, pp. 217–222.

[29] Da Sun, Andrey Kiselev, Qianfang Liao, Todor Stoyanov, and Amy Loutfi, A new mixed-

reality-based teleoperation system for telepresence and maneuverability enhancement,

IEEE Transactions on Human-Machine Systems 50 (2020), no. 1, 55–67.

53

[30] Tasbolat Taunyazov, Bukeikhan Omarali, and Almas Shintemirov, A novel low-cost 4-

dof wireless human arm motion tracker, 2016 6th IEEE International Conference on

Biomedical Robotics and Biomechatronics (BioRob), IEEE, 2016, pp. 157–162.

[31] Anand Thobbi and Weihua Sheng, Imitation learning of arm gestures in presence of

missing data for humanoid robots, 2010 10th IEEE-RAS International Conference on

Humanoid Robots, IEEE, 2010, pp. 92–97.

[32] Jing Tian, Chengzhang Qu, Wenyuan Xu, and SongWang, Kinwrite: Handwriting-based

authentication using kinect., NDSS, vol. 93, Citeseer, 2013, p. 94.

[33] Ultrleap, Leap motion controller, 2022.

[34] Wikipedia, Telerobotics, 2022.

[35] Xiaojun Zhao, Qiang Huang, Zhaoqin Peng, and Kejie Li, Kinematics mapping and sim-

ilarity evaluation of humanoid motion based on human motion capture, 2004 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.

04CH37566), vol. 1, IEEE, 2004, pp. 840–845.

54

VITA

JORDAN RALPH FOGG

Candidate for the Degree of

Master of Science

Thesis: INTERACTIVE REMOTE ROBOTIC ARMCONTROLWITH HANDMOTIONS

Major Field: Engineering Technology

Biographical:

Education:

Completed the requirements for the Master of Science in Engineering Technology at
Oklahoma State University, Stillwater, Oklahoma in May, 2023.

Completed the requirements for the Bachelor of Science in Engineering Technology
at Oklahoma State University, Stillwater, Oklahoma in 2021.

Publications:

Jordan Fogg, Zeyu Deng, Emory Meursing, Long Huang, Huaxia Wang, and Chen Wang.
2023. “Remote Robot Control with Low-cost Robotic Arms and Human Motions.” In Ad-
junct Proceedings of the 2022 ACM International Joint Conference on Pervasive and Ubiqui-
tous Computing and the 2022 ACM International Symposium on Wearable Computers (Ubi-
Comp/ISWC ’22 Adjunct). Association for Computing Machinery, New York, NY, USA,
32–34. https://doi.org/10.1145/3544793.3560331

Emory Meursing, Zeyu Deng, Jordan Fogg, Long Huang, Huaxia Wang, and Chen Wang.
2023. “Demo: I Am a Robot: First-person Robotic Arm Control with Hand Motions in
Virtual Reality.” In Adjunct Proceedings of the 2022 ACM International Joint Conference
on Pervasive and Ubiquitous Computing and the 2022 ACM International Symposium on
Wearable Computers (UbiComp/ISWC ’22 Adjunct). Association for Computing Machinery,
New York, NY, USA, 85–87. https://doi.org/10.1145/3544793.3560328

