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Abstract: On-board state estimation is a persistent challenge to fielding unmanned aerial
systems (UAS), particularly when global positioning system (GPS) measurements are not
available. The dominant estimation tool remains the extended Kalman filter (EKF) applied
to an inertial measurement unit (IMU). The growing availability of low-cost commercial-
grade IMUs raises questions about how to best improve sensor readings into an estimate
when measurements are available from multiple IMUs. This paper evaluates four different
approaches to attitude estimation from multiple IMU measurements and their application
in high dynamic motion. The four approaches are fusion of measurements (virtual IMU),
fusion of state estimates (Federated KF), feedback fusion state estimate (Feedback Federated
KF), and an EKF design incorporating the additional measurements (Augmented KF);
these correspond to fusion before, within, or after state estimation. The performance of
the approaches is quantified for varying IMU number theoretically and experimentally. The
experiments use onboard autopilot hardware implementations of the estimators during motion
in a motion capture volume and the peak and root-mean-square (RMS) errors used to quantify
accuracy. The RMS error results indicate that the feedback federated Kalman Filter using
five IMUs returns 38% compared to general federated Kalman Filter using 37% accuracy
improvement over a single IMU. This improvement compares to a 19% improvement for
virtual IMU and 9% improvement for the Augmented KF respectively. These results indicate
that the Federated KF approach achieves the lowest RMS error relative to the virtual IMU
and augmented KF approaches and inform the design of multi-IMU UAS pose estimators.
The estimators are than used as a part of wind estimation without airflow sensor using two
different methods, one using direct method (GPS+INS), and IMU disturbance method.
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CHAPTER I

Introduction

In recent years, the growth in commercial applications of Unmanned Aerial Systems (UAS)

have been supported by the availability of inertial measurement units (IMUs). IMU man-

ufacturing processing improvements have resulted in reductions of size, price and power

consumption, combined with software and algorithm development including sensor calibration,

measurement integration, sensor fusion. These advances have all supported the proliferation

of consumer grade IMUs in low-cost UAS platforms.

As commercial UAS applications extend to becoming measurement system platforms, there

is a need for improved state estimation accuracy without significant cost increase. A key

use of the estimates are as a reference for atmospheric wind inference algorithms that use

precise state information to estimate local wind conditions [21]. When the wind estimates

are used as inputs to developing local weather forecasting algorithms that have sensitive

dependence on on initial conditions, the precision of state estimation must be improved

beyond the tolerances acceptable for UAS navigation. Given the decreasing cost of consumer

and industrial grade IMUs, multi-IMU estimators geared towards improving accuracy can

yield a significant improvement in accuracy at a low cost and serve as a foundation to long

term dead reckoning, real-time accurate wind and environment parameter estimations, and

potentially provide tactical grade applications using consumer grade sensors.
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There are multiple options to fusing sensor information, and this study considers the fusion

problem by considering four basic approaches: fusing the measurements (i.e., before estima-

tion), higher order estimator design (i.e., within estimation), fusing the state estimates (i.e.,

after estimation), and fusing the state estimates with feedback. The main objectives of this

thesis are to:

• Outline the four classes of multi-IMU frameworks for improving state estimation

accuracy.

• Define underlying local attitude filters to be integrated with the different multi-IMU

estimation approaches.

• Test the performance of the system considered in software and analyze the results as a

comparison of performance improvements against a reference.

• Use the multi-IMU estimation to study the improvement in wind field estimation and

utilize it to test it in tornadoic simulated environment.

In this study, four general multi IMU state estimation frameworks are considered to fuse

state estimates using two separate local Kalman filters. We than analyze and quantify the

performance of the sensor fusion by implementing the multi-IMU state estimation using a

hardware example with five IMUs.

1.1 Previous work

The idea of using multiple IMUs to achieve performance improvement has been used in different

industries. [28] used an ad-hoc Kalman filter integrating two IMUs for marine navigational

purposes. Position estimation accuracy from multi-IMU approaches can significantly exceed

the single IMU case, as indicated by [8], which compared satellite launcher position estimation
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and showed the three IMU case reduced error by 54% relative to the single IMU case. [24]

applied the [8] framework to an integrated navigation system that includes a traditional

inertial navigation system (INS) with auxiliary IMU sensors.

Multiple researches such as the ones discussed in the papers [41], [42], [47], [52], [19], [16]

have been conducted to improve noise characteristics using multi-IMU sensor arrays rather

than focusing on sensor fusion for estimation improvement. One of such method is considered

in this research by fusing the measurements into a synthetic IMU output or ”virtual IMU”

having reduced noise statistics [49]. This method is non domain specific as categorised in [15].

This means that this methods can be used for any application regardless of system.

Previous work in the aviation industry using multiple IMUs in a navigation system has been

dominated by a focus on their applications as a part of estimator health monitoring or fault

detection. In these treatments, their purpose is to facilitate sensor (IMU) or estimator fault

detection rather than improve estimate accuracy. Examples of this work is outlined in [36].

Marine applications have also used multi-IMU (2-IMUs) for fault detection and redundancy

in case of a single IMU failure such as in [39].

Some results are available for position-only multi-IMU pedestrian navigation architectures

when a global positioning system (GPS) measurement is also available. [6], and [42] evaluated

multiple and experimentally evaluated the architectures using five IMUs, which showed

position estimate accuracy improvements exceed 30%.

Other studies that are more closely related to this research have focused on dynamic systems

analyzed all frameworks individually rather than an extensive framework comparison [22], [46].

Where as other researches focused on the orientation of sensor placement [10], [20], [9], [34].

Despite the work in this area to develop multi-IMU fusion approaches, experimental data

for dynamic systems on their comparative performance remains sparse. As a result, the
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question of which approaches are best implement in an airborne UAS platform requiring

higher accuracy is not yet answered quantitatively for high rate dynamic systems. This work

begins to answer that by systematically outlining and comparing four estimation strategies

based on previous literature and most commonly referenced [5, 6, 8, 49]. The results include

both theoretical and experimental results of the approaches implemented in an on-board

UAS autopilot and on the same measurements, allowing direct comparison.

1.2 Thesis structure

The remainder of this thesis is structured as follows. Section 1.1 reviews previous work

done in multi-IMU based navigation and their applications to different fields not limited to

aviation. Section 2.1 defines the typical non linear system to be estimated using multi-IMU

formulations. In Section 2.2, four different fusion approaches are considered and evaluated.

Section 2.3 expands on the local filter design needed to implement the multi-IMU formulation.

Section 4.2 outlines the experimental setup and implementation to evaluate and compare the

performances of all the multi-IMU formulations and discusses the outcome of the study.

4



CHAPTER II

Estimator fusion formulation and error analysis

2.1 Problem statement

A general non linear system may be written in discrete dynamics form as

xk+1 = f(xk, uk) + wk

yi,k = h(xk, uk) + vi,k,

(2.1.1)

where the initial state x0 is unknown Gaussian variable; i.e., x0 ∼ N (µ0, P0). The state

vector xk ∈ Rn, and control vector uk ∈ Rm. The measurement vector yi,k ∈ Rp with i being

the ith sensor where i = 1, 2, 3, . . . , N . The nonlinear dynamic and measurement function are

represented by f(·) ∈ Rn and h(·) ∈ Rp respectively. The system process and measurement

noise vectors wk ∼ N (0, Q) and νi,k ∼ N (0, R) assume zero mean Gaussian noise with

covariance matrices Q ∈ Rn×n and Ri ∈ Rp×p.

The contents of this thesis are submitted to Proceedings of the 2021 IEEE Access Journal [33]
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For the given problem our aim is to find the optimal (in a minimum variance sense) fusion

technique to obtain x̂m(k) based on measurements yi(k), where i = 1, 2, . . . , N which satisfies

following minimum performance requirements:

1. The fused state estimate is unbiased.

2. Optimal weights for sensor fusion minimize the trace of error covariance.

This study explores four approaches to this problem, which are referred to as the feder-

ated Kalman filter (FKF), The augmented Kalman filter (AKF), and the virtual inertial

measurement unit (vIMU) approach.

2.2 Estimator fusion formulation and error analysis

In this section, the four different estimation fusion formulation are evaluated for their

performance in multi IMU framework as shown in Fig. 1. The virtual IMU method is

most consistent with previous single-sensor estimates and this configuration used to define a

theoretical ”ideal” improvement benchmark which is used to evaluate the performance of

actual implementation. All four frameworks described are globally optimal or sub-optimal

depending on embodiment constraints [13], [12], [35].
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(a) Virtual IMU (b) Augmented Kalman Filter

(c) Federated Kalman Filter (d) Feedback Federated Kalman Filter

Figure 1: Estimation fusion architectures considered

2.2.1 Virtual Inertial Measurement Unit (vIMU)

The virtual IMU approach first unifies the n sensor measurements into a single measurement

having improved noise characteristics [45], [6] by an arithmetic mean of measurements from

each sensor. The approach then applies a traditional single IMU sensor estimator and uses

its output as the fused state estimates, as shown in Fig. 1(a). More precisely, the estimator

is constructed as

xk+1 = Φkxk + Γkwk

yk =
1

N

N∑
i=1

yi,k

(2.2.1)

where xk is a n dimensional state, with Φk and Γk being discrete state and noise transition

matrix respectively. yi,k denotes the measurements obtained from each sensor with N being

total number of sensors.
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An idealized estimate of the improvement in state estimation for the VIMU approach may be

derived by applying Bernoulli’s theorem, or the weak law of large numbers [31], which describes

how a sequence of probabilities converges. Under the assumption of multiple measurements

being independent variables drawn from the same distribution, the law describes the behavior

of the average of the results obtained from a large number of trials. The mean result

approaches the distribution’s expected value and application of the Chebyshev inequality [27]

shows the result will tend to become closer to the expected value as more trials are performed.

Assuming the measurements x̂1,x̂2,. . . ,x̂N are N independent state estimates of equal variance

(σ2
x̂N

), the sample mean x̂ approaches the true state as N −→ ∞.

var(x̂m) = var

(
x̂1 + x̂2 + · · ·+ x̂N

N

)
= var

(
x̂1
N

)
+ var

(
x̂2
N

)
+ · · ·+ var

(
x̂N
N

)
=
σ2
x̂1

N2
+
σ2
x̂2

N2
+ · · ·+

σ2
x̂N

N2

=
σ2
x̂N

N

Given, for any ϵ > 0

lim
N→∞

P

[∣∣∣∣ x̂mN | − x̂N

∣∣∣∣ ≥ ϵ

]
→ 0

From Chebyshev’s inequality,

P [|x̂m − x̂| ≥ ϵ] ≤ var(x̂m)

ϵ2
=
σ2
x̂N

Nϵ2
.
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Figure 2: Percentage improvement in estimation with numbers of IMUs employed.

Thus,

lim
N→∞

P [|x̂m − x̂N | ≥ ϵ] = 0,

giving the ideal improvement in state estimation one can expect to be

σx̂m =
√

var(x̂), or

σx̂m =
σx̂N√
N
.

This idealized estimate accuracy improvement, shown in Fig. 2, serves as a theoretical contour

with which to compare the measured performance improvement of the multi IMU estimators.
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2.2.2 Augmented Kalman filter

The augmented Kalman filter approach consists of designing an extended Kalman filter for

the problem using the augmented measurement vector

y =



y1

y2
...

yN


consisting of all N available measurements as shown in Fig. 1(b). The corresponding discrete

measurement equation may be written as

yk = Hkx̂k (2.2.2)

where,

Hk =



H1,k

H2,k

...

HN,k


(2.2.3)

with H1, H2,. . .,Hn corresponds to their respective measurement matrix for each sensor (IMUs

for scope of this research).

The nine parameter augmented estimation consists of a traditional propagation and measure-

ment correction step [35]. The Augmented Kalman Filter differs from the typical single-IMU

Kalman filter only in the measurement equation and measurement correction step, where

it uses all gyro and accelerometer measurements. For the five IMU case tested in Section

4.2, the system has 30 observations and operates at the same frequency as the incoming

10



observations. The observability matrix in equation (2.2.3) is full rank and the AKF is a

semi-optimal estimator [35].

2.2.3 Federated Kalman Filter (FKF)

In the federated Kalman Filter approach shown in Fig. 1(c), N individual local state estimators

are implemented, each having a single sensor (IMU) as an input and each generating both

a state estimate x̂i and corresponding covariance matrix Pi, i = 1, ..., N . As defined by

Carlson [14], the approach

1. Scales the initial values of local filter covariance and process noise matrices.

2. Performs local time propagation and measurement update process.

3. Combines the updated local information into a global information.

4. Resets local information to the scaled global information.

The state estimates are then fused into a single state estimate x̂m using a covariance-based

weighting as

x̂m = Pm

(
N∑
i=1

P−1
i x̂i

)
, (2.2.4)

Pm =

(
N∑
i=1

P−1
i

)−1

. (2.2.5)

The FKF approach yields a globally optimal estimate [13] and its error covariance follows

the additive equation (Eqn. (2.2.5)).
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2.2.4 Feedback Federated Kalman Filter (FFKF)

This approach is an extension of the Federated Kalman Filter with an added step of resetting

the state and covariance to the fused parameters for all local filters with scaled multi-IMU

covariance propagation using scaling factor β. Eqn. (2.2.6)-(2.2.9) represents the estimation

routine. This estimation method should perform better than general FKF as it propagates

higher accuracy fused state and scaled covariance.

x̂m = Pm

(
N∑
i=1

βiP
−1
i xi

)
, (2.2.6)

Pm =

(
N∑
i=1

βiP
−1
i

)−1

, (2.2.7)

N∑
i=1

βi = 1, (2.2.8)

Q−1
m =

N∑
i=1

βiQ
−1
i . (2.2.9)

The drawback of this approach is that it could diverge if not properly tuned. One of the

parameter that could result in divergence is the choice of β. This method of information

sharing through a scaled feedback follows all the information conservation principle outlaid

by Carlson et al. [14] and followed by Brown et al. [12] shows that this method of state

estimation follows the same optimality as the general federated Kalman filter.

The choice of β depends on a lot of factors such as . For this study we use the variance

measurement based on (Appendix B) and [2] to conclude that the sensors used in this study

are similar in performance and this approach is more direct than using condition number of

covariance as in many studies and reduces computational complexity and hence, β = 1/N is

a reasonable assumption to make.
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2.3 Local Filter Formulation

Due to difference in implementation requirements for all frameworks described in this study

(i.e. AKF formulation measurements from sensors cannot be used during priori step), we need

to use two different local filter methods. We use Bortz equation (2.3.2) to obtain an Extended

Kalman Filter framework for attitude estimation to implement Virtual Sensor Method and

Federated Kalman Filter, and we will use six degree of freedom (6DOF) kinematic equation

to obtain a Extended Kalman Filter to be use to implement Augmented Kalman Filter. Both

local filter formulation are derived from base sensor dynamics so the difference in performance

just due to local filter is not observed.

2.3.1 Attitude Estimation using Bortz Equation.

The local attitude estimator algorithm used in this study is based on the symmetry-exploiting

method proposed in Bortz [11]. For any attitude described by a quaternion q, there exists a

rotation vector ϕ such that

q(ϕ) =

12
(
sin(γ/2)

γ/2

)
ϕ

cos(γ/2)

 ∈ R4x1. (2.3.1)

The Bortz equation for rotation error as a function of angular rate ω may be written as

ϕ̇ = ω +
1

2
ϕ× ω +

1

γ2

[
1− γ sin γ

2(1− cos γ)

]
ϕ× (ϕ× ω), (2.3.2)

13



where ϕ is the rotation vector in Eqn. (2.3.1) and γ = |ϕ|. Assuming small γ and neglecting

higher order terms, Eqn. 2.3.2 becomes

ϕ̇ = ω +
1

2
ϕ× ω. (2.3.3)

Equation 2.3.3 now can be augmented with constant bias states b to form the state equation

ϕ̇
ḃ

 =

ω +
1

2
ϕ× ω

03×1

 . (2.3.4)

Both EKF framework were derived by Pittelkau [35] for a recursive implementation and using

the same notation for multiplicative product operator (⊗), where priori state estimate in

quaternion form can be estimates as per

δϕ̂k

δb̂k

 =

δϕ̂k−1

δb̂k−1


with δϕ̂k−1

δb̂k−1

 =

0
0


and the estimate quaternion q̂ for that state is obtained as

q̂−k = q(ϕ̂−
k )⊗ q̂+k−1.

Now, considering a vector νs = [νsx, ν
s
y , ν

s
z ]

T in the sensor reference measurement. The

14



measurement function for a three-axis magnetometer can be formulated as

y = νs + ϵ, (2.3.5)

with ϵ as additive noise. The three-axis magnetometer is sufficient to generate an orientation

estimate based on the magnetic field, which will be used in the correction step. All three axes

are measured, thus ∂h/∂(νs)T = I. The 3D measurement sensitivity matrix H(3) ∈ R3×3 is

given by

H(3) =
∂νs

∂ϕT

∣∣∣∣
ϕ=0

= T s
b ν

b

where T s
b is a body-to-sensor transformation matrix and νb is measurement in body frame.

The predicted measurement is than given by equation 2.3.5

ŷk = ν̂sb = q(ϕ̂b
s)ν

s

where q(ϕ̂b
s) is the priori estimated attitude and the residual is simply νk = yk− ŷk. Using this

information we can use the sub-optimal Kalman Gain to obtain the posteriori state estimates

using measurements obtained from magnetometer readings as a standalone correction to the

EKF output from the IMU estimates.

Kk = Pk−1H
T
k (HkPk−1H

T
k +Rk)

−1

ϕ̂+
k = ϕ̂−

k −Kk(yk − ŷk),

where, K is the Kalman gain and P is the covariance matrix. Now, with updated state
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estimate in quaternion form is given by

q̂+k = q(ϕ̂+
k )⊗ q̂−k−1.

Similarly, the formulation outlined by Koshravian [25] can be used to integrate information

about state estimates using heterogeneous sensors like LIDAR, optic-flow, etc.

2.3.2 Attitude Estimation using Kinematic Equation.

Using formulation for attitude estimation by Kane and Levinsion [23] using quaternions we

can represent the non linear system observer in equation (2.1.1) using gyroscope angular

measurement to describe the quaternion dynamics and bias as random walk as:

 q̇
ḃω

 =

12S(ω − bω)q

0 + ν

 =

12S(q)(ω − bω)

0 + ν

 (2.3.6)

and

S(ω) =



0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0



S(q) =



−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0


,
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where ν is noise, q = [q0, q1, q2, q3] are quaternion representing the orientation of the ve-

hicle, and ω = [ωx, ωy, ωz] are bias corrected gyro measurements. The accelerometer and

magnetometer are then used as measurement to compensate for drift from gyro bias error as:

yah
ymh

 =

CI
L(ae − g) + ea

CI
LB

N + em

 , (2.3.7)

with CI
L defines the rotation from body L to intermediate reference frame I.

Taking the nonlinear system’s Jacobian to linearize and discretize with time step of dt =

tk − tk−1 gives  q
bω


k︸ ︷︷ ︸

xk

=

I4×4 −dt
2
S(q)

03×4 I3×3


k−1︸ ︷︷ ︸

Φk−1

 q
bω


k−1︸ ︷︷ ︸

xk−1

(2.3.8)

and yah
ymh


k︸ ︷︷ ︸

yk

=

Ca 03×3

Cm 03×3


k︸ ︷︷ ︸

Hk

 q
bω


k︸ ︷︷ ︸

xk

(2.3.9)

with,

Ca = −2


−q2 q3 −q0 q1

q1 q0 q3 q2

q0 −q1 −q2 q3


k

Cm = −2


q3 q2 q1 q0

q0 −q1 q2 −q3

−q1 −q0 q3 q2


k

Now the optimal estimate for the state vector can be obtained using Kalman filter using time
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update and observation update. The time update process of the Kalman filter is independent

and is written as outlined by Yang and Gao [50]:

x̂k|k−1 = Φk−1x̂k−1|k−1

Pk|k−1 = Φk−1Pk−1|k−1Φ
T
k−1 +Qk.

(2.3.10)

The observation update equation of the Kalman filter is expressed as:

Kk|k =
Pk|k−1H

T
k

(HkPk|k−1H
T
k +Rk)

Pk|k = (I −Kk|kHk)Pk|k−1

x̂k|k = x̂k|k−1 +Kk|k(yk −Hkx̂k|k−1)

(2.3.11)

where x̂k|k−1 is the a priori state estimation, x̂k|k is the a posteriori state estimation, Kk|k is

the Kalman gain matrix of the Kalman filter, Pk|k−1 is the a priori covariance matrix of the

state vector, Pk|k is the a posteriori covariance matrix of the state vector, Rk is the covariance

matrix of the measurement noise vector, Qk is the covariance matrix of the process noise and

Φk is the system transition matrix from time k − 1 to time k.
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CHAPTER III

Wind estimation

Every year, severe weather threatens the lives of many across the United States and the world.

A lot of research has been conducted in recent years to predicting and improve warning

time for residents about potential severe thunderstorms. This surge in research is because

of high false alarm rate (FAR) that is at 48% with a probability of detection (POD) of

81% as of 2013. However, when these predictions extend to include tornado statistics, the

FAR increases to 74% and the POD decreases to 57% [37]. The severe storm prediction has

leveled out with current prediction methods. The tornado predictions, however, are on a

downward trend despite the use of modern meteorological equipment and techniques (Doppler

radar, supercomputer-aided weather model forecasting, etc.). The inability to reliably predict

tornado genesis is largely due to the lack of vital data that predicates the formation and path

of a tornado.

There has been a lot of research in vehicles that could withstand the harsh condition of a

thunderstorm and even tornado. Development of such vehicles ( [37], [4]) opens doors for

remote and on board data collections of information that could lead to very useful outcomes

in weather prediction as specially as events such as tornado which require a lot of local data

to reliably predict and track them.

There has been some research for UAS performance in server storm weather such as done by
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Eric Flew et al [18], but most of the studies like this focus on the large time scale phenomenon

and sensing real-time deviations, and onboard monitoring of aircraft energy state and health.

Eric Flew et al [18] describes a networking approach to maintain a robust communication

architecture that can provide situational awareness to UAS, provide real-time telemetry and

control for operators, the return of sensor data, and establish, monitor, and maintain, UAS

in high dynamic situations but fails to address reliability of wind speed estimation obtained.

Due to difficulty of obtaining true tornadic wind speeds it is very hard to verify the working

of most commonly used algorithms in such conditions. This study introduces an approach for

wind field estimate validation in a simulated tornado, defines a procedure of model comparison

and validation of tornado using hardware-in-loop simulation.

This study’s approach to evaluating wind field estimation techniques relies on sensor data

gathered from simulated flights through a representative wind field. This coupled environ-

mental and flight dynamics simulation was accomplished through (a) defining two idealized

wind fields (tornado with and without gusts), (b) implementing a simulation routine that

incorporates both the wind field and sensor noise models, and (c) simulating arbitrary trajec-

tories through the wind field while a wind estimator technique observes the sensor outputs.

The sensors modeled included GPS (position and velocity) and IMU (accelerometer and

rate gyro) measurements with experimentally determined noise characteristics. The wind

estimates are compared to the true wind speeds to quantify wind estimation error.

3.1 Tornado modeling

The tornado wind field model used for this study is the one proposed by Ash et. al [3],

for which theoretical acoustic solutions have been developed. Because acoustic emissions

represent a very small portion of the energy in a wind field, the ability to measure acoustic
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emissions of a fluid model provides an additional mechanism to verify its similitude, and

contemporary work in airborne acoustic measurement of tornadoes will benefit from the

availability of a flight simulation with an implemented tornado model that has acoustic

relevance.

The model relies on an eddy viscosity turbulence model which only influences the steady-state

vortex velocity field in the vicinity of the core. Moreover, it uses the results outline by

Saffman [38] that the Burgers velocity is one class of solenoidal vorticity and the solution is

governed by

Dω

Dt
= (ω.∇)U + ν∇2ω (3.1.1)

Ui = αijxj,with αii = 0, (3.1.2)

where Ui denotes the mean velocity components. In this equation, the vortex stretching mean

velocity stabilizes the Burgers vortex, and avoids the transient Lamb-Oseen vortex behaviour.

Taking a finite diameter Scorer [40] potential vortex that propels the flow giving an solenoidal

vorticity, and utilizing the AZZ core radius and maximum swirl velocity to define reference

circulation Γ∞ = 4πRcoreVθ,max azimuthal velocity distribution is represented as,

Vθ,AZZ(r) = 2Vθ,max

r

Rcore

1 +

(
r

Rcore

)2 (3.1.3)

Figure 3 illustrates the non equilibrium AZZ vortex defined above for Rcore = 100m and

Vθ,max = 50m/s.
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Figure 3: Azimuthal velocity profile (left), and top view (right) of wind field generated by
non-equilibrium AZZ vortex

3.2 Spatio-temporal interpolation

In a deployed onboard wind field estimator measuring winds through a tornado, the onboard

tornado wind field estimator must generate both local wind field estimates and regional

estimates (eg, velocity distributions) using real-time onboard hardware. The onboard digital

representation and solution requires the continuous system to be discretized, yet intermediate

values must still be available for use in the onboard wind field estimates. As tornado

modeling is a dynamic system, its variables change in both 3-dimensional space and in time

as well. Thus, onboard deployment imposes different constraints than simulating an aircraft

in tornadic wind field, and hence we require a way to obtain value of wind speeds at every

time step of the aircraft’s trajectory (e.g., arbitrary points in both space and time).

This problem can be solved using a 4D(3-space, 1-time) linear interpolation. One may derive

the expressions for 4D interpolation is by assuming two malleable 3D shapes (box) which can

translate in time and change in every dimension. This can be thought of as the first box to

be at initial time and second the same box with changes in each dimension at second time

step. Fig 4 is a simple visualization of the explanation.
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Figure 4: This visualization represents concept of 4D interpolation.

The equation for interpolation can be considered as an 4D Taylor expansion of first order,

which is than evaluated for all 16 terms for each parameter u, v, w as shown.

f(t, x, y, z) = a0 + a1x+ a2y + a3z + a4t+ a5xy + a6yz + a7xz + a8xt+ a9yt+ a10zt+

a11xyz + a12xyt+ a13yzt+ a14xzt+ a15xyzt

(3.2.1)

where, f represents wind parameters at any given time and space coordinate. When evaluated

at all 16 vertices of the box shown in Fig 4, we can set an linear matrix which results in the

solution of all 16 coefficients which can than be used to find interpolated solution for any

given coordinate.
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f0(t0, x0, y0, z0)

f1(t0, x1, y0, z0)

f2(t0, x1, y0, z0)

...

f15(t1, x1, y1, z1)


=



1 x0 y0 . . . x0y0z0t0

1 x1 y0 . . . x1y0z0t0

1 x0 y1 . . . x0y1z0t0
...

...
...

. . .
...

1 x1 y1 . . . x1y1z1t1





a0

a1

a2
...

a15


(3.2.2)

simplifying, we get:

A = F ∗X−1 (3.2.3)

where,

A =



a0

a1

a2
...

a15


, F =



f0(t0, x0, y0, z0)

f1(t0, x1, y0, z0)

f2(t0, x1, y0, z0)

...

f15(t1, x1, y1, z1)


, X =



1 x0 y0 . . . x0y0z0t0

1 x1 y0 . . . x1y0z0t0

1 x0 y1 . . . x0y1z0t0
...

...
...

. . .
...

1 x1 y1 . . . x1y1z1t1


.

Fig 5 represents an example of an aircraft flying through a 4D varying wind field.

3.3 Wind estimation

3.3.1 Direct wind estimation method

Wind estimation method used in this study is considered a direct method where the GPS

measurements and vehicle dynamics and kinematic equations are used to obtain orientation

of the vehicle using kalman filtering which is discussed in the following section.
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4

Figure 5: Example of an aircraft flying through a 4D varying wind field.

Equation of motion of the vehicle are briefly derived. Considering similar setup for vehicle

frames as done by Langlaan [26]. Consider an aircraft located at r in an inertial frame I,

where x̂i, ŷi, and ẑi define unit vectors as shown in Fig:6.

Figure 6: Reference frame setup as shown in Langelaan [26]

Based on fixed reference body frame, with body velocity va having component u, v, and w in

body frame x̂b, ŷb, and ẑb respectively. The velocity of the frame than can be written as

ṙ = va +w
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Hence,

r̈ =
d

dt
va +

d

dt
w

where,

d

dt
va =


u̇

v̇

ẇ

+ ω × va

substituting, ω = [p, q, r]T and simplifying

X+Y+ Z+mg = m[(u̇+ qw − rv)x̂b + (v̇ + ru− pw)ŷb + (ẇ + pv − qu)ẑb +
d

dt
w]

where X, Y, and Z, are aerodynamic forces in the body x, y, z directions, respectively and

mg is the force due to gravity. The vector of wind accelerations
d

dt
w is expressed in the

inertial frame. Using a direction cosine matrix T which transforms a vector expressed in the

inertial frame to a vector expressed in the body frame and simplifying using linearization of

equation we end up with:

T =


cos(θ) cos(ψ) cos(θ) sin(ψ) − sin(θ)

sin(ϕ) sin(θ) cos(ψ)− cos(ϕ) sin(ψ) sin(ϕ) sin(θ) sin(ψ) + cos(ϕ) cos(ψ) sin(ϕ) cos(θ)

cos(ϕ) sin(θ) cos(ψ) + sin(ϕ) sin(ψ) cos(ϕ) sin(θ) sin(ψ)− sin(ϕ) cos(ψ) cos(ϕ) cos(θ)



and,
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ẋ

ẏ

ż

 = T−1


u

v

w

+


wi,x

wi,y

wi,z

 (3.3.1)

Now, GPS provides a direct measurements of velocity in fixed reference frame. Thus the

wind measurements can me made from the equation above.


wi,x

wi,y

wi,z

 s =

ẋ

ẏ

ż


GPS

−T−1


u

v

w

 (3.3.2)

This is said to be a direct wind estimation method as the measurements are utilized directly.

This method also makes an assumption that the attitude variables or Euler angles (ϕ,θ,ψ)

are available independently regardless of wind estimation routine. For this study we will

obtain the euler angles using kalman filter method as described in 2.3.

Wind Estimation using rate of change of wind velocity

The IMU provides measurement of beady-axis acceleration with respect to the inertial frame

and the gravity vector projected into the body frame. This method of using IMU to get using

rate of change of wind velocity or simply wind acceleration that is imprated on IMU was

introduced by Jack Langeelan [17].

Using the wind acceleration formulation derived in the paper we get
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ẇx,b

ẇy,b

ẇz,b


k−1

=


ax,b − bimu,x − g sin(θ)

ay,b − bimu,y + g sin(ϕ) cos(θ)

az,b − bimu,z + g cos(θ) cos(ϕ)


k−1

−


qw − rv

pw − ru

qu− pv


k−1

− 1

2∆t


uk − uk−2

vk − vk−2

wk − wk−2


(3.3.3)

Equations 3.3.3 and 3.3.2 together allows computation of the wind velocity (expressed in the

inertial frame) and the wind acceleration as seen by the vehicle (expressed in the body frame).

These can be used to compute velocity or trajectory commands for energy maximization

or other tasks such as disturbance minimization. It is useful, however, to determine the

expected error in wind field estimates.
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CHAPTER IV

Simulation and experimental implementation

4.1 Estimation run

To evaluate the performance of all four estimation fusion routine, estimators had to track a

manual oscillatory input in range of -90◦ to +90◦ (which includes gimbal lock singularity) at

an angular rate of about 36 ◦/sec in each axis. The data obtained from onboard estimation

and motion capture system were time synced by an impulse strike at the start of test.

All the state estimators were initialized at zero state quaternion, with alignment correction

using magnetometer. Conservative measurement noise covariances were chosen for the

Figure 7: Truth data from motion tracker
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Table 1: Motive OptiTracker System specification

Positional accuracy ± 0.2 mm
Rotational accuracy ± 0.1 deg

simulation.

For more intuitive interpretation and clear visual comparison all the plots described below

are plotted in Tait-Bryan angles (body 3-2-1 SO(3) rotation [51])


ϕ

θ

ψ

 =


atan2(2(q2q3 + q1q4), 1− 2(q23 + q24)

−asin(2(q2q4 − q1q3))

atan2(2(q3q4 + q1q2), 1− 2(q22 + q23)

 , (4.1.1)

with ψ as the heading angle of the aircraft, θ as the pitch angle of the aircraft and ϕ as the

roll/bank angle, and with the definition of quaternion is consistent with Eqn (2.3.1).

4.2 Experimental implementation

To illustrate the working and performances comparison of the outlined estimator fusions in

this study, the estimation routines are implemented on an onboard unmanned aerial system

(UAS) autopilot and compared to both onboard estimates using contemporary autopilots

and external reference data. The UAS implements the proposed estimators using an onboard

autopilot built on a Raspberry PI 3B+ platform running Navio2 which includes two IMUs

(MPU9250 [48] and LSM9DS1 [44]). A Pixhawk 2.1 which includes additional three IMUs

(2 MPU9250 and LSM303D [43]) running the contemporary Ardupilot estimator as well as

logging raw IMU data is also mounted on the UAS and identifying markers are added to use

an external motion capture system (OptiTracker) shown in Fig: (8) as a reference to expected

results due to high accuracies as given in Table (1).
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Figure 8: Experimental setup, including 24 camera motion capture system.

The data collected from all five IMUs at a rate of 200Hz are used as input to all the

estimation fusion algorithms. To evaluate the performance of the estimation routines all the

state estimates are compared to the output from the motion capture system measurement at

the same rate of 200Hz.

4.2.1 Performance analysis in motion capture environment

To analyse the performance of each estimator fusion algorithms, described in this study we

find Root Mean Square Error (RMSE) for each formulation and compare it against the data

obtained from motion capture system using

RMSE =

√√√√i=N∑
i=0

(x̂i − xi)
2

N
, (4.2.1)

with x̂i being the estimates obtained from the state estimator formulations and xi are the

corresponding states obtained using motion capture system.

While motion capture was used as a reference, the formulation does not always represent

the true attitude. In particular, the 43◦ pitch angle transient at 13sec does not reflect true

attitude and is related to underlying coordinate frame definition differences between the
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estimation routines and the motion capture (Optitracker) system’s Robot Operating System

(ROS) toolkit (right and left handed coordinate systems). The ROS toolkit is in widespread

contemporary use and the data has not been altered to provide a realistic comparison as can

be odserved in Fig. (9)-(12).

The random walk and the rate random walk for the gyroscope were found using 12 hour

data collection and analysis using basic allan variance as described in Appendix 5.1.1 of

σIMU1 = 0.006◦/
√
s, σIMU2 = 0.016◦/

√
s, σIMU3 = 0.0206◦/

√
s, σIMU4 = 0.012◦/

√
s, and

σIMU5 = 0.0231◦/
√
s.

Comparison of vIMU to motion tracking

When running vIMU routine we combine all the measurements into one single measurement

with expected noise reduction and hence, we only have one output for comparison. As there

is only one local filter calculation taking place we expect computational load for this method

to be minimum.

As shown in Fig. IV.9(a)- IV.9(c), the vIMU tracks θ very well compared to ϕ and ψ. The

experiment was conducted indoors deviation from true ψ is expected. The RMSE values

of all states using equation (4.2.1) are as shown in Fig. IV.9(d) and Table (4). We also see

coupled effects between estimates. The deviation in ψ coupled with other estimates. This

behaviour is expected as all the measurements were combined before the fusion and hence,

there is only one input.
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(a) Virtual IMU - ϕ (deg) (b) Virtual IMU - θ (deg)

(c) Virtual IMU - ψ (deg) (d) Virtual IMU - error (deg)

Figure 9: State comparison between Virtual IMU Filter and motion tracker
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(a) Augmented KF - ϕ (deg) (b) Augmented KF - θ (deg)

(c) Augmented KF - ψ (deg) (d) Augmented KF - error (deg)

Figure 10: State comparison between Augmented Kalman Filter and motion tracker

Comparison of AKF to motion tracking

AKF is very similar in implementation as vIMU, but instead of combining measurements before

fusing it to state estimates, AKF uses all the measurements simultaneously in its measurement

matrix and is computationally heavier than vIMU. Even though it is computationally heavy

the state estimation is not as accurate as seen from Fig. IV.10(a)- IV.10(c)

AKF deviates from its estimates during rapid motions near the time synchronization impulses.

AKF estimates deviates significantly when ψ is far from the reference. The RMSE values of

all states using equation (4.2.1) are as shown in Fig. IV.10(d) and Table (4).
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Comparison of FKF to motion tracking

State estimates from the FKF are shown in Fig. IV.11(a)- IV.11(c). FKF best tracks the state

estimates and even though experiment was conducted indoors FKF converges to the true ψ

rapidly. The RMSE values of all states using equation (4.2.1) are as shown in Fig. IV.11(d)

and Table (4). When compared to VIMU and AKF, FKF has lower estimate error. Moreover,

as it uses the covariance matrix of each states to fuse the estimates there is no coupled

deviations observed.

The FKF involves a larger number of computations than the other approaches as it requires

individual state estimation and then is fused in one state estimation, but the advantage of

FKF is that its structure allows easy integration of fault detection and individual sensor

health monitoring.

Comparison of FFKF to motion tracking

The FFKF involves the same computational load as the FKF which is still larger than the

other approaches as it requires individual state estimation and then is fused in one state

estimation, FFKF holds all the advantages of FKF and still performs better than FKF.

State estimates from FKF are shown in Fig. IV.12(a)- IV.12(c). FFKF best tracks the state

estimates and even though experiment was conducted indoors FFKF converges to the true ψ

rapidly. The RMSE values of all states using equation (4.2.1) are as shown in Fig. IV.12(d)

and Table (4). Since, FFKF is an extension of FFKF same behaviour is observed but with

better states estimates.
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(a) Federated KF - ϕ (deg) (b) Federated KF - θ (deg)

(c) Federated KF - ψ (deg) (d) Federated KF - error (deg)

Figure 11: State comparison between Federated Kalman Filter, single IMU run, and motion
tracker
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(a) Feedback FKF - ϕ (deg) (b) Feedback FKF - θ (deg)

(c) Feedback FKF - ψ (deg) (d) Feedback FKF - error (deg)

Figure 12: State Comparison Between Federated Kalman Filter, Single IMU run, and Motion
Tracker
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(a) ϕ (deg) (b) θ (deg)

Figure 13: State Comparison Between Pixhawk State Estimation, and Multi-IMU State
Estimation

4.2.2 Performance in flight test

Now to see how all the state estimation perform in real flight condition the implemented

frameworks were put on am radio controlled (E-Flite mpd Commander) aircraft. The

performance of multi-IMU estimation cannot be directly measured quantitatively and hence,

we use a qualitative comparison against single-IMU estimation. The single-IMU estimation

was performed on Pixhawk at 200Hz and data for 5 IMUs were recorded in the same

configuration as mentioned above at 200Hz.

The flight was performed at ambient condition with wind speeds ranging at about 8-10knots.

This condition was perfect to test attitude estimator as it would result in a good noise

characteristics. The flight trajectory was chosen at random by pilot with covering all ranges

of attitude in mind. A small cut of flight is show in Fig. IV.13(a)- IV.13(b)

As a quantitative comparison of all the estimation framework is not trivial, we do a qualitative

analysis with attitude estimation in a consistent manner over all flight manuver in mind.

Based on the flight test mentioned above, we can observe that all the estimators discussed in

this paper perform well compared to Pixhawk system.
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Table 2: Measured noise characteristics.

Parameter Source Variable 1σ noise

Position Typical GPS x, y, z 5m
Erientation Pixhawk static testing ϕ, θ, ψ 1◦

Airspeed Typical Pixhawk u, v, w 0.05 m/s
Ground speed Typical GPS ẋ, ẏ, ż 0.5 m/s
Acceleration Pixhawk static testing ax,b, ay,b, az,b 0.1 m/s
Angular rate Pixhawk static testing p, q, r 0.1 rad/s

4.3 Tornado wind field simulation setup

For the simulation of proposed model a six degree of freedom model was conducted similar

to that of outlined by barton [7]. The aircraft model is based on RC commander aircraft

flying at constant velocity of 20 m/s. The flight path and the attitude of the aircraft are

simulated based on a fixed trajectory. An on board autopilot module is assumed running

the wind estimator derived earlier. GPS measurement are simulated to give aircraft position

and airspeed. Aircraft orientation is obtained using the measurements provided by rate

gyro and on board magnetometer. The autopilot is assumed to run at about 200Hz (to be

consistent with pixhawk) and GPS measurements are obtained at about 10Hz. The noise and

uncertainty characteristics for each state is obtained using long term (approx 12hr) static

testing of Pixhawk4 and all the values are described in Table2. One more thing to note is

that due to the physical limitation of the aircraft the tornado model uses a lowered Vθ,max of

15 m/s.

Gust-free simulation

Without wind gust the only input to the six degree of freedom aircraft simulator is the wind

speed velocities obtained through tornado model, and a random flight path taken by the

aircraft.
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Gust-on simulation - Dryden models

For more realistic simulation a gust model is included with parameters (wind speeds) obtained

from tornado vortex models. Gusts fields are modeled using frozen Dryden turbulence model.

Thus the wind speed due to gusts are represented as:

w = w0 +
N∑

n=1

ansin(Ωns+ ϕn) (4.3.1)

where, w = [wx, wy, wz], and s is the motion along the path. Now, for the Dryden gust model

the power spectral density is defined as

Φu(Ω) = σ2
u

2Lu

π

1

1 + (Luω)2

Φw(Ω) = σ2
w

Lw

π

1 + 3(Lwω)
2

(1 + (Luω)2)2

(4.3.2)

For low altitudes (below 300m), the length scale of the vertical gust is Lw = h and the

turbulence intensity is σw = 0.1*w6, where w6 is the wind speed at 6 m altitude. Horizontal

gust length scale and intensity are related to the vertical gust scale and intensity by following

equations where h is in m.

Lu

Lw

=
1

(0.177 + 0.000823h)1.2

σu
σw

=
1

(0.177 + 0.000823h)0.4

(4.3.3)

The amplitude of a sinusoidal gust in equation4.3.1 is computed as:

an =
√
∆ΩnΦ(ωn)

The other parameters of the simulation were as from the gust free condition.
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4.3.1 Tornado wind speed estimation simulation

GPS path is simulated in the wind field is shown in Fig 14. The absolute attitude obtained

through the estimator against the true are shown in the Fig 16 - 18. The wind estimation

obtained using the method is shown in the Fig 15 and the error plot for wind estimation

is shown in Fig 19. The root mean squared value of wind error are obtained to be about

1.76 m/s and root mean squared error values for all parameters are shown in Table 3. For

the simulation run at low wind speed the error in wind speed estimation is comparatively

high for the use of direct methods in application of tornado wind speed estimation, and this

could be because the direct wind estimation method uses the GPS velocity and compares it

to velocity obtained by airspeed sensor and hence, is limited by the frequency of GPS data

obtained. The results obtain show that for a better tornado wind speed estimation we need a

better wind estimation routine for the same hardware or a different method that does not

depend on the GPS measurement data and uses other high speed measurement data available

like that of accelerometer and gyroscope.

Figure 14: Flight Trajectory taken by the aircraft in simulated wind field for both no gust
and gust condition.
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Figure 15: Wind Estimation for both no gust [left] condition and gust [right].

Figure 16: Pitch Estimation for both gust [right] and no gust [left] condition

Figure 17: Roll Estimation for both gust [right] and no gust [left] condition
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Figure 18: Yaw Estimation for both gust [right] and no gust [left] condition

Figure 19: Wind Estimation Error for both gust [right] and no gust [left] condition

Table 3: RMS Error of estimated states and disturbances.

Parameter Units With Gust Without Gust

Pitch deg 2.2891 1.8017
Roll deg 2.3829 1.9841
Yaw deg 5.8676 8.8836

Wind estimate in N direction m/s 1.4015 1.3161
Wind estimate in E direction m/s 1.3008 1.2159
Wind estimate in D direction m/s 1.7634 1.7598

43



Flight test for Direct and IMU based wind estimation

The method outlined in the Section 3.3.1 and Section 3.3.1 is implemented in the same

experimental setup as Section 4.2.2. This flight test was done to get preliminary tests for

wind field estimation.
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(a) Wind Estimation using IMU
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(b) Wind Estimation using GPS

0 100 200 300 400 500 600 700

time-sec

-200

-100

0

100

200

300

400

W
in

d
 S

p
e
e
d

 -
 m

/s

(c) Attitude of Aircraft during wind estimation

Figure 20: Wind estimation routine for flight test.

Fig. 20 shows the results of the wind estimation results. We cab observe that the wind

estimation using direct method is very reasonable where as the wind estimation using IMU

method gives highly dynamic wind, and this difference can be attributed to inaccurate aircraft

model.
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CHAPTER V

Conclusion

In this study, the idea of fusing multiple-imu to improve the accuracy and reliability of the

state estimation for UAS was investigated. Four state estimation fusion methods were tested

with two different local attitude estimators. The state estimators were than implemented on

data collected from 5 different IMU’s (2 from Navio2 on Raspberry Pi, and 3 from Pixhawk

2.1). The estimators were tested against the reference data obtained using motion tracker

system (OptiTracker).

The actual experimental results demonstrated that feedback federated Kalman filter with

attitude estimation using Bortz equation had the best performance as measured when

compared to all the other methods. Table 4 shows the root mean square error for all the

implemented runs using the 5 IMUs. Moreover, the estimators were tested independently

using different IMUs as as sensors to give the results shown in Fig. 21. The results consistently

indicate that Federated Kalman filter has the best improvement in state estimation accuracy

no matter the number on IMU’s employed.

Table 4: Measured State Error.

Parameter FFKF FKF vIMU AKF

Error in ϕ 4.0229 4.793 6.180 15.748
Error in θ 1.168 1.190 1.371 7.100
Error in ψ 5.8813 5.878 19.102 19.892
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Figure 21: Idealized and experimentally implemented multi-IMU estimator performance for
varying approaches.

This study also introduces an approach for wind field estimate validation in a simulated

tornado, defines a procedure of model comparison and validation of tornado using hardware-

in-loop simulation. The approach consists of simulating tornado wind speeds using an

idealized tornadic model, using spatiotemporal interpolation to obtain a local measurement,

and implementing the traditional ”direct” wind field estimator. Estimated and true wind

speeds were compared quantify performance of the wind estimation method. The results

suggest a need for improvements in current wind estimation routines. Although the study

lays a strong base for the purpose of tornado model validation using real data and real flight

implementation.

5.1 Future work

The results obtained in this study clearly show the potential of employing multi-IMU based

state estimation to not only improve the accuracy of the estimates and also to add redundancies
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in the system. Future work includes the extension of the studies attitude estimation to

include on board wind speed estimation for UAS and having multiple decentralized agents to

do wind field estimation.

5.1.1 Wind field flight test

Figure 22: Wind Field Estimation setup in field test

To test how well the wind field estimation would work as outline in the simulation, we need a

experimental layout as shown in Fig. 22. This layout is chosen as two high accuracy wind

speed estimating tower would act as a reference to validate the wind speed estimation onborf

UAS and also act as a accurate boundary condition for wind field estimation.

This experimental layout works for multi rate system as the wind field estimation works

in spatiotemporal dynamic system. Actual flight test would lay a ground work for wind

field estimation using multiple UAS as decentralized agents to do high accuracy wind field

estimation.
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[21] J. González-Rocha, C. A. Woolsey, C. Sultan, and S.J. De Wekker, Sensing wind from

quadrotor motion, Journal of Guidance, Control, and Dynamics 42 (2019), no. 4, 836–852

(eng).

[22] J. Gross, Y. Gu, M. Rhudy, S. Gururajan, and M. Napolitano, Flight-test evaluation of

sensor fusion algorithms for attitude estimation, IEEE Transactions on Aerospace and

Electronic Systems 48 (2012), no. 3, 2128–2139.

[23] T. R. Kane and L. A. David, Dynamics: Theory and applications, McGraw-Hill Book

Co., 2005.

[24] C. Kang and P. Chan, A soft-failure detection and identification algorithm for the

integrated navigation system of lunar lander, Proceedings of the Institution of Mechanical

Engineers, Part G: Journal of Aerospace Engineering 230 (2015).

[25] A. Khosravian, J. Trumpf, R. Mahony, and T. Hamel, Recursive attitude estimation in

the presence of multi-rate and multi-delay vector measurements, 2015 American Control

Conference (ACC), July 2015, pp. 3199–3205.

[26] Jack W. Langelaan, Nicholas Alley, and James Neidhoefer, Wind field estimation for

small unmanned aerial vehicles, Journal of Guidance, Control, and Dynamics 34 (2011),

no. 4, 1016–1030.

50



[27] Miodrag Lovric (ed.), International encyclopedia of statistical science, Springer Berlin

Heidelberg, 2011.

[28] J. C. McMillan, J. S. Bird, and D. A. ARDEN, Techniques for soft-failure detection in a

multisensor integrated system, NAVIGATION 40 (1993), no. 3, 227–248.

[29] Robert C. Nelson, Flight stability and automatic control, McGraw-Hill, New York, 1989

(eng).

[30] Xiaoji Niu, Qingjiang Wang, You Li, Qingli Li, and Jingnan Liu, Using inertial sensors

in smartphones for curriculum experiments of inertial navigation technology, Education

Sciences 5 (2015), 26–46.

[31] C. I. Oliver, Chapter 6 - functions of random variables, Fundamentals of Applied

Probability and Random Processes (Second Edition) (Oliver C. Ibe, ed.), Academic

Press, Boston, second edition ed., 2014, pp. 185–223.

[32] T. Ozyagcilar, Calibrating an ecompass in the presence of hard and soft-iron interference,

(2015).

[33] U. Patel and I. Faruque, Multi-imu unmanned aerial system state estimation: frameworks

and performance comparison.

[34] M. Pavel and P. Ilya, Mems-based non-orthogonal redundant inertial measurement unit

for miniature navigation systems, 2015 International Siberian Conference on Control

and Communications (SIBCON) (2015), 1–3.

[35] M. E. Pittelkau, Rotation vector in attitude estimation, Journal of Guidance, Control,

and Dynamics 26 (2003), no. 6, 855–860 (eng).

[36] Robert. H. Rogne, Torleiv. H. Bryne, Thor. I. Fossen, and Tor. A. Johansen, Redun-

dant MEMS-Based Inertial Navigation Using Nonlinear Observers, Journal of Dynamic

Systems, Measurement, and Control 140 (2018), no. 7, 071001.

51



[37] Andrew Levi Ross, Design and development of a tornado intercept unmanned aerial

vehicle, 2019.

[38] P. G. Saffman, Vortex dynamics, Cambridge monographs on mechanics and applied

mathematics, Cambridge University Press, Cambridge ;, 1992 (eng).

[39] B. M. Scheninger, J. Hutton, and J. C. McMillan, Low cost inertial/gps integrated

position and orientation system for marine applications, Aerospace and Electronic

Systems Magazine, IEEE 12 (1997), 15 – 19.

[40] RS Scorer, Origin of cyclones, Sci. J 2 (1966), no. 3, 46–52.

[41] I. Skog, J. Nilsson, and P. Handel, An open-source multi inertial measurement unit

(mimu) platform, 2014 International Symposium on Inertial Sensors and Systems (ISISS)

(2014), 1–4.
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APPENDICES

Calibration

Magnetometer calibration for multi-IMU was based on the routine outlined by Ozyagcilar

T [32], which corrects for hard and soft iron interference. The calibration process consists of

fitting a set of ten model parameters to the magnetometer measurements. four parameters

model the hard-iron offset, six model the soft-iron matrix and one models the geomagnetic

field strength.

In the multi-IMU case, the magnetometers used in the experiment are not identical and can

have biases and offsets. After the calibration parameters were identified, a normalization

was implemented to adjust for individual magnetometer scale variations. Fig. 23 shows an

example of the magnetometer reading during a rotation about all axes before calibration and

Fig. 24 shows the same calibration loop corrected for both hard and soft interference.
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Figure 23: Uncalibrated magnetometer.

Figure 24: Calibrated magnetometer.

Airplane

Kinematic equation as defined in the book Stability and Control by Robert Nelson [29].
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Allan Variance

The Allan deviation plot is a method of graphing the various error sources of a time-series of

data on a single plot. The method was first introduced by David Allan in 1966 to measure

the frequency stability of clocks and oscillators. The technique is useful for inertial navigation

systems since it allows both the angle/velocity random walk and bias stability of the sensors

to be determined in a single plot.

To compute the Allan deviation for a time series of data xi, begin by splitting the data series

into bins of size n where N is the number of resulting bins. Let yi be the average of bin i

where i = 1, . . . , N . The Allan variance of xi is given by

σ2(τ) =
1

2(N − 1)

N−1∑
1

(xi+1 − xi)2

where τ is the time constant for consecutive samples in xi. The Allan deviation then is found

by taking the square root of the Allan variance. For interpretation of the Allan deviation plot,

please refer to [ [2], [1]]. A sample of Allan variation plot is shown 25 and with corresponding

noise and slopes.
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Figure 25: Sample Allan deviation plot as described in [30].

CODES

1 function quaterion = EulToQuat(Euler)

2

3 quaterion = zeros(4,1);

4

5 Euler = Euler * 0.5;

6 cosPhi = cos(Euler(1));

7 sinPhi = sin(Euler(1));

8 cosTheta = cos(Euler(2));

9 sinTheta = sin(Euler(2));

10 cosPsi = cos(Euler(3));

11 sinPsi = sin(Euler(3));

12

13 quaterion(1,1) = (cosPhi*cosTheta*cosPsi + sinPhi*sinTheta*sinPsi);

14 quaterion(2,1) = (sinPhi*cosTheta*cosPsi − cosPhi*sinTheta*sinPsi);
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Figure 26: Single-axis-gyro Power Spectral Density(PSD)

15 quaterion(3,1) = (cosPhi*sinTheta*cosPsi + sinPhi*cosTheta*sinPsi);

16 quaterion(4,1) = (cosPhi*cosTheta*sinPsi − sinPhi*sinTheta*cosPsi);

17

18 return;

1 function quaternion = normQuat(quaternion)

2

3 quatMag = sqrt(quaternion(1)ˆ2 + quaternion(2)ˆ2 + quaternion(3)ˆ2 + ...

quaternion(4)ˆ2);

4 quaternion(1:4) = quaternion / quatMag;

1 function Tbn = Quat2Tbn(quat)

2

3 q0 = quat(1);

4 q1 = quat(2);

5 q2 = quat(3);

6 q3 = quat(4);

7
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Figure 27: Single-axis-gyro PSD with frequency averaging

8 Tbn = [q0ˆ2 + q1ˆ2 − q2ˆ2 − q3ˆ2, 2*(q1*q2 − q0*q3), 2*(q1*q3 + q0*q2); ...

9 2*(q1*q2 + q0*q3), q0ˆ2 − q1ˆ2 + q2ˆ2 − q3ˆ2, 2*(q2*q3 − q0*q1); ...

10 2*(q1*q3−q0*q2), 2*(q2*q3 + q0*q1), q0ˆ2 − q1ˆ2 − q2ˆ2 + q3ˆ2];

1 function q out = QuatDivide(qin1,qin2)

2

3 q0 = qin1(1);

4 q1 = qin1(2);

5 q2 = qin1(3);

6 q3 = qin1(4);

7

8 r0 = qin2(1);

9 r1 = qin2(2);

10 r2 = qin2(3);

11 r3 = qin2(4);

12

13 q out(1,1) = (qin2(1)*qin1(1) + qin2(2)*qin1(2) + qin2(3)*qin1(3) + ...

qin2(4)*qin1(4));

14 q out(2,1) = (r0*q1 − r1*q0 − r2*q3 + r3*q2);
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15 q out(3,1) = (r0*q2 + r1*q3 − r2*q0 − r3*q1);

16 q out(4,1) = (r0*q3 − r1*q2 + r2*q1 − r3*q0);

1 function quatOut = QuatMult(quatA,quatB)

2

3 quatOut = [quatA(1)*quatB(1)−quatA(2:4)'*quatB(2:4); ...

quatA(1)*quatB(2:4) + quatB(1)*quatA(2:4) + ...

cross(quatA(2:4),quatB(2:4))];

1 % Convert from a quaternion to a 321 Euler rotation sequence in radians

2

3 function Euler = QuatToEul(quat)

4

5 Euler = zeros(3,1);

6

7 Euler(1) = atan2(2*(quat(3)*quat(4)+quat(1)*quat(2)), quat(1)*quat(1) ...

− quat(2)*quat(2) − quat(3)*quat(3) + quat(4)*quat(4));

8 Euler(2) = −asin(2*(quat(2)*quat(4)−quat(1)*quat(3)));

9 Euler(3) = atan2(2*(quat(2)*quat(3)+quat(1)*quat(4)), quat(1)*quat(1) ...

+ quat(2)*quat(2) − quat(3)*quat(3) − quat(4)*quat(4));

1 function quaternion = RotToQuat(rotVec)

2

3 vecLength = sqrt(rotVec(1)ˆ2 + rotVec(2)ˆ2 + rotVec(3)ˆ2);

4

5 if vecLength < 1e−6

6 quaternion = [1;0;0;0];

7 else

8 quaternion = [cos(0.5*vecLength); rotVec/vecLength*sin(0.5*vecLength)];
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9 end

1 %% Start

2 close all;

3 clear;

4 clc;

5

6 %% Choose Fligth No

7 Test num = 2;

8 %% Options

9 magcal = 0;

10 Plot Floder Name = append('Final Plots 1117 ',num2str(Test num));

11 fig name = 'fig ';

12 saveplots = 1;

13 MasterFusion = 1; % 0 For simple average % 1 For FKF

14

15 % Set the expected declination

16 measDec = −30*pi/180;

17 %% Include Path

18 addpath('Calibration')

19 addpath('SkinnyC')

20 addpath('AttErrVecMathExample')

21 addpath('Common')

22 addpath('quaternion library')

23 addpath('Flight Data 04182021')

24 load(append('Test',num2str(Test num),'.mat'));

25

26 %% MagneticCalibration

27 i = 1;

28 if magcal ==1

29 plotcal = 1;
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30 magcalrun % Creates and saves new CalVal

31 clearvars −except Plot Floder Name fig name saveplots fig ...

MasterFusion i

32 end

33

34 load('Calibration/CalVal')

35

36 startDelayTime = 0; % number of seconds to delay filter start (used to ...

sIMU2late in−flight restart)

37 dt = 1/200;

38 indexLimit = length(IMU3);

39 MAGIndexlimit = length(MAG3);

40

41 %% Set the RUN

42

43 % State Log

44 statesLog = zeros(10,indexLimit);

45 statesLog2 = zeros(10,indexLimit);

46 statesLog3 = zeros(10,indexLimit);

47 statesLog4 = zeros(10,indexLimit);

48 statesLog5 = zeros(10,indexLimit);

49 statesLogm = zeros(10,indexLimit);

50 statesLogv = zeros(10,indexLimit);

51

52 % Euler Log

53 eulLog = zeros(4,indexLimit);

54 eulLog2 = zeros(4,indexLimit);

55 eulLog3 = zeros(4,indexLimit);

56 eulLog4 = zeros(4,indexLimit);

57 eulLog5 = zeros(4,indexLimit);

58 eulLogm = zeros(4,indexLimit);

59 eulLogv = zeros(4,indexLimit);
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60

61 % Quaternion Log

62 quatLog = zeros(4,indexLimit);

63 quatLog2 = zeros(4,indexLimit);

64 quatLog3 = zeros(4,indexLimit);

65 quatLog4 = zeros(4,indexLimit);

66 quatLog5 = zeros(4,indexLimit);

67 quatLogm = zeros(4,indexLimit);

68 quatLogv = zeros(4,indexLimit);

69

70 % Velocity Innov Log

71

72 velInnovLog = zeros(4,indexLimit);

73 velInnovLog2 = zeros(4,indexLimit);

74 velInnovLog3 = zeros(4,indexLimit);

75 velInnovLog4 = zeros(4,indexLimit);

76 velInnovLog5 = zeros(4,indexLimit);

77 velInnovLogm = zeros(4,indexLimit);

78 velInnovLogv = zeros(4,indexLimit);

79

80 % Angular Error Log

81 angErrLog = zeros(2,indexLimit);

82 angErrLog2 = zeros(2,indexLimit);

83 angErrLog3 = zeros(2,indexLimit);

84 angErrLog4 = zeros(2,indexLimit);

85 angErrLog5 = zeros(2,indexLimit);

86 angErrLogm = zeros(2,indexLimit);

87 angErrLogv = zeros(2,indexLimit);

88

89 % Measured Velcoity Log

90 measVelLog = zeros(3,indexLimit);

91 measVelLog2 = zeros(3,indexLimit);
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92 measVelLog3 = zeros(3,indexLimit);

93 measVelLog4 = zeros(3,indexLimit);

94 measVelLog5 = zeros(3,indexLimit);

95 measVelLogm = zeros(3,indexLimit);

96 measVelLogv = zeros(3,indexLimit);

97

98 % Declination Log

99 decInnovLog = zeros(2,MAGIndexlimit);

100 decInnovLog2 = zeros(2,MAGIndexlimit);

101 decInnovLog3 = zeros(2,MAGIndexlimit);

102 decInnovLog4 = zeros(2,MAGIndexlimit);

103 decInnovLog5 = zeros(2,MAGIndexlimit);

104 decInnovLogm = zeros(2,MAGIndexlimit);

105 decInnovLogv = zeros(2,MAGIndexlimit);

106

107 % Var Inov Log

108 velInnovVarLog = velInnovLog;

109 decInnovVarLog = decInnovLog;

110 velInnovVarLog2 = velInnovLog;

111 decInnovVarLog2 = decInnovLog;

112 velInnovVarLog3 = velInnovLog;

113 decInnovVarLog3 = decInnovLog;

114 velInnovVarLog4 = velInnovLog;

115 decInnovVarLog4 = decInnovLog;

116 velInnovVarLog5 = velInnovLog;

117 decInnovVarLog5 = decInnovLog;

118 velInnovVarLogv = velInnovLog;

119 decInnovVarLogv = decInnovLog;

120

121 %% Initialization Run

122

123 % Init State
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124 states = zeros(9,1);

125 states2 = zeros(9,1);

126 states3 = zeros(9,1);

127 states4 = zeros(9,1);

128 states5 = zeros(9,1);

129 statesm = zeros(3,1);

130 statesv = zeros(9,1);

131

132 % Init Quat

133 quatm = [1;0;0;0];

134 quat = [1;0;0;0];

135 quat2 = [1;0;0;0];

136 quat3 = [1;0;0;0];

137 quat4 = [1;0;0;0];

138 quat5 = [1;0;0;0];

139 quatv = [1;0;0;0];

140

141 % Init Transformation Matrix

142 Tbn = Quat2Tbn(quat);

143 Tbn2 = Quat2Tbn(quat2);

144 Tbn3 = Quat2Tbn(quat3);

145 Tbn4 = Quat2Tbn(quat4);

146 Tbn5 = Quat2Tbn(quat5);

147 Tbnv = Quat2Tbn(quatv);

148

149 % Init Acceleration

150 initAccel(:) = mean(IMU(1:10,6:8));

151 initAccel2(:) = mean(IMU2(1:10,6:8));

152 initAccel3(:) = mean(IMU3(1:10,6:8));

153 initAccel4(:) = mean(IMU4(1:10,6:8));

154 initAccel5(:) = mean(IMU5(1:10,6:8));

155 initAccelv(:) = (initAccel+initAccel2+initAccel3+initAccel4+initAccel5)/5;
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156

157 % Use averaged accel readings to align tilt

158 quat = AlignTilt(quat,initAccel);

159 quat2 = AlignTilt(quat2,initAccel2);

160 quat3 = AlignTilt(quat3,initAccel3);

161 quat4 = AlignTilt(quat4,initAccel4);

162 quat5 = AlignTilt(quat5,initAccel5);

163 quatv = AlignTilt(quatv,initAccelv);

164

165 % define the state covariances

166 Sigma velNED = 0.5; % 1 sigma uncertainty in horizontal velocity components

167 Sigma dAngBias = 1*pi/180*dt; % 1 Sigma uncertainty in ∆ angle bias

168 Sigma angErr = 1; % 1 Sigma uncertainty in angular misalignment (rad)

169

170

171 covariance = ...

single(diag([Sigma angErr*[1;1;1];Sigma velNED*[1;1;1];Sigma dAngBias*[1;1;1]].ˆ2));

172 covariance2 = ...

single(diag([Sigma angErr*[1;1;1];Sigma velNED*[1;1;1];Sigma dAngBias*[1;1;1]].ˆ2));

173 covariance3 = ...

single(diag([Sigma angErr*[1;1;1];Sigma velNED*[1;1;1];Sigma dAngBias*[1;1;1]].ˆ2));

174 covariance4 = ...

single(diag([Sigma angErr*[1;1;1];Sigma velNED*[1;1;1];Sigma dAngBias*[1;1;1]].ˆ2));

175 covariance5 = ...

single(diag([Sigma angErr*[1;1;1];Sigma velNED*[1;1;1];Sigma dAngBias*[1;1;1]].ˆ2));

176 covariancev = ...

single(diag([Sigma angErr*[1;1;1];Sigma velNED*[1;1;1];Sigma dAngBias*[1;1;1]].ˆ2));

177 covariancem = covariance(1:3,1:3)*5;

178 %% MagCalibration

179

180 data = MAG(:,3:5)';

181 MAG(:,3:5) = (A1*(data−repmat(c1,1,length(MAG))))';
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182

183 data2 = MAG2(:,3:5)';

184 MAG2(:,3:5) = (A2*(data2−repmat(c2,1,length(MAG2))))';

185

186 data3 = MAG3(:,3:5)';

187 MAG3(:,3:5) = (A3*(data3−repmat(c3,1,length(MAG3))))';

188

189 %% Main Loop

190

191 MAGIndex = 1;

192 time = 0;

193 angErr = 0;

194 headingAligned = 0;

195 % delay start by a minIMU2m of 10 IMU3 closamples to allow for initial tilt

196 % alignment delay

197 % startIndex = max(1,ceil(startDelayTime/dt));

198 % to deal with the GPS vel

199 j = 1;

200 measVel = [0;0;0];

201 looptime = [];

202

203 for index = 1:indexLimit % startIndex:indexLimit

204

205 time=time+dt*1000; % + startIndex*dt*1000;

206 % read IMU3 measurements

207 angRate = IMU(index,3:5)';

208 angRate2 = IMU2(index,3:5)';

209 angRate3 = IMU3(index,3:5)';

210 angRate4 = IMU4(index,3:5)';

211 angRate5 = IMU5(index,3:5)';

212 angRatev = (angRate + angRate2 + angRate3 + angRate4 + angRate5)/5;

213
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214 % switch in a bias offset to test the filter

215 if (time > +inf)

216 angRate = angRate + [1;−1;1]*pi/180;

217 angRate2 = angRate2 + [1;−1;1]*pi/180;

218 angRate3 = angRate3 + [1;−1;1]*pi/180;

219 angRate4 = angRate4 + [1;−1;1]*pi/180;

220 angRate5 = angRate5 + [1;−1;1]*pi/180;

221 angRatev = angRatev + [1;−1;1]*pi/180;

222 end

223

224 accel = IMU(index,6:8)';

225 accel2 = IMU2(index,6:8)';

226 accel3 = IMU3(index,6:8)';

227 accel4 = IMU4(index,6:8)';

228 accel5 = IMU5(index,6:8)';

229 accelv = (accel + accel2 + accel3 + accel4 + accel5)/5;

230

231

232 % predict states

233 [quat, states, Tbn, delAng, delVel] = ...

PredictStates(quat,states,angRate,accel,dt);

234 [quat2, states2, Tbn2, delAng2, delVel2] = ...

PredictStates(quat2,states2,angRate2,accel2,dt);

235 [quat3, states3, Tbn3, delAng3, delVel3] = ...

PredictStates(quat3,states3,angRate3,accel3,dt);

236 [quat4, states4, Tbn4, delAng4, delVel4] = ...

PredictStates(quat4,states4,angRate4,accel4,dt);

237 [quat5, states5, Tbn5, delAng5, delVel5] = ...

PredictStates(quat5,states5,angRate5,accel5,dt);

238 [quatv, statesv, Tbnv, delAngv, delVelv] = ...

PredictStates(quatv,statesv,angRatev,accelv,dt);

239
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240

241

242 % predict covariance matrix

243 covariance = ...

PredictCovariance(delAng,delVel,quat,states,covariance,dt);

244 covariance2 = ...

PredictCovariance(delAng2,delVel2,quat2,states2,covariance2,dt);

245 covariance3 = ...

PredictCovariance(delAng3,delVel3,quat3,states3,covariance3,dt);

246 covariance4 = ...

PredictCovariance(delAng4,delVel4,quat4,states4,covariance4,dt);

247 covariance5 = ...

PredictCovariance(delAng5,delVel5,quat5,states5,covariance5,dt);

248 covariancev = ...

PredictCovariance(delAngv,delVelv,quatv,statesv,covariancev,dt);

249

250

251 measVelLog(:,index) = [0,0,0]';

252

253 [quat,states,angErr,covariance,velInnov,velInnovVar] = ...

FuseVelocity(quat,states,covariance,measVel);

254 [quat2,states2,angErr2,covariance2,velInnov2,velInnovVar2] = ...

FuseVelocity(quat2,states2,covariance2,measVel);

255 [quat3,states3,angErr3,covariance3,velInnov3,velInnovVar3] = ...

FuseVelocity(quat3,states3,covariance3,measVel);

256 [quat4,states4,angErr4,covariance4,velInnov4,velInnovVar4] = ...

FuseVelocity(quat4,states4,covariance4,measVel);

257 [quat5,states5,angErr5,covariance5,velInnov5,velInnovVar5] = ...

FuseVelocity(quat5,states5,covariance5,measVel);

258 [quatv,statesv,angErrv,covariancev,velInnovv,velInnovVarv] = ...

FuseVelocity(quatv,statesv,covariancev,measVel);

259
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260 velInnovLog(1,index) = time;

261 velInnovLog(2:4,index) = velInnov;

262 velInnovLog2(1,index) = time;

263 velInnovLog2(2:4,index) = velInnov2;

264 velInnovLog3(1,index) = time;

265 velInnovLog3(2:4,index) = velInnov3;

266 velInnovLog4(1,index) = time;

267 velInnovLog4(2:4,index) = velInnov4;

268 velInnovLog5(1,index) = time;

269 velInnovLog5(2:4,index) = velInnov5;

270 velInnovLogv(1,index) = time;

271 velInnovLogv(2:4,index) = velInnovv;

272

273 velInnovVarLog(1,index) = time;

274 velInnovVarLog(2:4,index) = velInnovVar;

275 velInnovVarLog2(1,index) = time;

276 velInnovVarLog2(2:4,index) = velInnovVar2;

277 velInnovVarLog3(1,index) = time;

278 velInnovVarLog3(2:4,index) = velInnovVar3;

279 velInnovVarLog4(1,index) = time;

280 velInnovVarLog4(2:4,index) = velInnovVar4;

281 velInnovVarLog5(1,index) = time;

282 velInnovVarLog5(2:4,index) = velInnovVar5;

283 velInnovVarLogv(1,index) = time;

284 velInnovVarLogv(2:4,index) = velInnovVarv;

285

286

287 angErrLog(1,index) = time;

288 angErrLog(2,index) = angErr;

289 angErrLog2(1,index) = time;

290 angErrLog2(2,index) = angErr2;

291 angErrLog3(1,index) = time;
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292 angErrLog3(2,index) = angErr3;

293 angErrLog4(1,index) = time;

294 angErrLog4(2,index) = angErr4;

295 angErrLog5(1,index) = time;

296 angErrLog5(2,index) = angErr5;

297 angErrLogv(1,index) = time;

298 angErrLogv(2,index) = angErrv;

299

300

301 % read MAGnetometer measurements

302 while ((MAG(MAGIndex,1) < IMU(index,1)) && (MAGIndex < MAGIndexlimit))

303 MAGIndex = MAGIndex + 1;

304 MAGBody = 0.001 * MAG(MAGIndex,3:5)';

305 MAGBody2 = 0.001 * MAG2(MAGIndex,3:5)';

306 MAGBody3 = 0.001 * MAG3(MAGIndex,3:5)';

307 MAGBody4 = 0.001 * MAG4(MAGIndex,3:5)';

308 MAGBody5 = 0.001 * MAG5(MAGIndex,3:5)';

309 MAGBodyv = (MAGBody5+MAGBody4+MAGBody3+MAGBody2+MAGBody)/5;

310

311 if (time ≥ 10 && headingAligned==0 && angErr < 1e−3)

312 quat = AlignHeading(quat,MAGBody,measDec);

313 quat2 = AlignHeading(quat2,MAGBody2,measDec);

314 quat3 = AlignHeading(quat3,MAGBody3,measDec);

315 quat4 = AlignHeading(quat4,MAGBody4,measDec);

316 quat5 = AlignHeading(quat5,MAGBody5,measDec);

317 quatv = AlignHeading(quatv,MAGBodyv,measDec);

318 headingAligned = 1;

319 end

320 % fuse MAGnetometer measurements if new data available and when ...

tilt has settled

321 if (headingAligned == 1)

322 [quat,states,covariance,decInnov,decInnovVar] = ...
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FuseMagnetometer(quat,states,covariance,MAGBody,measDec,Tbn);

323 [quat2,states2,covariance2,decInnov2,decInnovVar2] = ...

FuseMagnetometer(quat2,states2,covariance2,MAGBody2,measDec,Tbn2);

324 [quat3,states3,covariance3,decInnov3,decInnovVar3] = ...

FuseMagnetometer(quat3,states3,covariance3,MAGBody3,measDec,Tbn3);

325 [quat4,states4,covariance4,decInnov4,decInnovVar4] = ...

FuseMagnetometer(quat4,states4,covariance4,MAGBody4,measDec,Tbn4);

326 [quat5,states5,covariance5,decInnov5,decInnovVar5] = ...

FuseMagnetometer(quat5,states5,covariance5,MAGBody5,measDec,Tbn5);

327 [quatv,statesv,covariancev,decInnovv,decInnovVarv] = ...

FuseMagnetometer(quatv,statesv,covariancev,MAGBodyv,measDec,Tbnv);

328

329 decInnovLog(1,MAGIndex) = time;

330 decInnovLog(2,MAGIndex) = decInnov;

331 decInnovVarLog(1,MAGIndex) = time;

332 decInnovVarLog(2,MAGIndex) = decInnovVar;

333

334 decInnovLog2(1,MAGIndex) = time;

335 decInnovLog2(2,MAGIndex) = decInnov2;

336 decInnovVarLog2(1,MAGIndex) = time;

337 decInnovVarLog2(2,MAGIndex) = decInnovVar2;

338

339 decInnovLog3(1,MAGIndex) = time;

340 decInnovLog3(2,MAGIndex) = decInnov3;

341 decInnovVarLog3(1,MAGIndex) = time;

342 decInnovVarLog3(2,MAGIndex) = decInnovVar3;

343

344 decInnovLog4(1,MAGIndex) = time;

345 decInnovLog4(2,MAGIndex) = decInnov4;

346 decInnovVarLog4(1,MAGIndex) = time;

347 decInnovVarLog4(2,MAGIndex) = decInnovVar4;

348
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349 decInnovLog5(1,MAGIndex) = time;

350 decInnovLog5(2,MAGIndex) = decInnov5;

351 decInnovVarLog5(1,MAGIndex) = time;

352 decInnovVarLog5(2,MAGIndex) = decInnovVar5;

353

354 decInnovLogv(1,MAGIndex) = time;

355 decInnovLogv(2,MAGIndex) = decInnovv;

356 decInnovVarLogv(1,MAGIndex) = time;

357 decInnovVarLogv(2,MAGIndex) = decInnovVarv;

358

359 end

360

361 end

362 %% Master Fusion

363

364 if MasterFusion == 1

365 covariancem = inv(covariance(1:3,1:3)) + inv(covariance2...

366 (1:3,1:3)) + inv(covariance3(1:3,1:3)) + inv(covariance4...

367 (1:3,1:3)) + inv(covariance5(1:3,1:3));

368 statesm = covariancem\( (covariance(1:3,1:3)\states(1:3)) + ...

369 (covariance2(1:3,1:3)\states2(1:3)) + (covariance3...

370 (1:3,1:3)\states3(1:3)) + (covariance4(1:3,1:3)\ ...

371 states4(1:3)) + (covariance5(1:3,1:3)\states5(1:3)) );

372 end

373

374 if MasterFusion == 0

375 covariancev = (covariance(1:3,1:3)+covariance2(1:3,1:3)+ ...

376 covariance3(1:3,1:3)+covariance4(1:3,1:3)+...

377 covariance5(1:3,1:3) )/5;

378 statesm = ...

(states(2:4)+states2(2:4)+states3(2:4)+states4(2:4)...

379 +states5(2:4))/5;
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380 end

381

382 rotationMag = sqrt(statesm(1)ˆ2 + statesm(2)ˆ2 + statesm(3)ˆ2);

383 angErrLogm(index) = rotationMag;

384 if rotationMag<1e−6

385 ∆Quat = single([1;0;0;0]);

386 else

387 ∆Quat = [cos(0.5*rotationMag); ...

[statesm(1);statesm(2);statesm(3)]/rotationMag*sin(0.5*rotationMag)];

388 end

389

390 % Update the quaternion states by rotating from the previous ...

attitude through

391 % the ∆ angle rotation quaternion

392 quatm = [quatm(1)*∆Quat(1)−transpose(quatm(2:4))*∆Quat(2:4); ...

quatm(1)*∆Quat(2:4) + ∆Quat(1)*quatm(2:4) + ...

cross(quatm(2:4),∆Quat(2:4))];

393

394 % normalise the updated quaternion states

395 quatMag = sqrt(quatm(1)ˆ2 + quatm(2)ˆ2 + quatm(3)ˆ2 + quatm(4)ˆ2);

396 if (quatMag > 1e−6)

397 quatm = quatm / quatMag;

398 end

399

400 statesLogm(1,index) = time;

401 statesLogm(2:4,index) = statesm;

402 eulLogm(1,index) = time;

403 quatLogm(:,index) = quatm;

404 eulLogm(2:4,index) = QuatToEul(quatm);

405

406 statesLog(1,index) = time;

407 statesLog(2:10,index) = states;

75



408 eulLog(1,index) = time;

409 eulLog(2:4,index) = quat;

410 quatLog(:,index) = quat;

411

412 statesLog2(1,index) = time;

413 statesLog2(2:10,index) = states2;

414 eulLog2(1,index) = time;

415 eulLog2(2:4,index) = QuatToEul(quat2);

416 quatLog2(:,index) = quat2;

417

418 statesLog3(1,index) = time;

419 statesLog3(2:10,index) = states3;

420 eulLog3(1,index) = time;

421 eulLog3(2:4,index) = QuatToEul(quat3);

422 quatLog3(:,index) = quat3;

423

424 statesLog4(1,index) = time;

425 statesLog4(2:10,index) = states4;

426 eulLog4(1,index) = time;

427 eulLog4(2:4,index) = QuatToEul(quat4);

428 quatLog4(:,index) = quat4;

429

430 statesLog5(1,index) = time;

431 statesLog5(2:10,index) = states5;

432 eulLog5(1,index) = time;

433 eulLog5(2:4,index) = QuatToEul(quat5);

434 quatLog5(:,index) = quat5;

435

436 statesLogv(1,index) = time;

437 statesLogv(2:10,index) = statesv;

438 eulLogv(1,index) = time;

439 eulLogv(2:4,index) = QuatToEul(quatv);
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440 quatLogv(:,index) = quatv;

441 end

1 %% Set Defaults

2 set(groot, 'DefaultTextInterpreter', 'LaTeX');

3 set(groot, 'DefaultAxesTickLabelInterpreter', 'LaTeX');

4 set(groot, 'DefaultAxesFontName', 'LaTeX');

5 set(groot, 'DefaultLegendInterpreter', 'LaTeX');

6 set(groot, 'DefaultAxesBox', 'on');

7 set(groot,'defaultLineLineWidth',1.5)

8 set(groot, 'defaultLegendLocation', 'best')

9 % set(groot, 'defaultFigureUnits','normalized')

10 % set(groot, 'defaultFigurePosition',[0 0 1 1]) % For full screen plots

11

12 %%

13 load('MAG CALI DATA.mat');

14

15 %% Mag1

16 mag1 = MAG(:,3:5);

17 [A1,c1] = MgnCalibration(mag1);

18 %% Mag2

19 mag2 = MAG2(:,3:5);

20 [A2,c2] = MgnCalibration(mag2);

21

22 %% Mag3

23 mag3 = MAG3(:,3:5);

24 [A3,c3] = MgnCalibration(mag3);

25

26 try

27 plotcal == 1;

28 catch
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29 plotcal = 1;

30 i = 1;

31 end

32

33

34

35 if plotcal == 1

36 mag1 = (A1*(mag1'−repmat(c1,1,length(mag1))))';

37 mag2 = (A2*(mag2'−repmat(c2,1,length(mag2))))';

38 mag3 = (A3*(mag3'−repmat(c3,1,length(mag3))))';

39

40 figure;

41 subplot(1,2,1)

42 plot3(mag1(:,1),mag1(:,2),mag1(:,3))

43 legend('Calibrated')

44 subplot(1,2,2)

45 plot3(MAG(:,3),MAG(:,4),MAG(:,5))

46 legend('UnCalibrated')

47

48 figure;

49 set(gca,'FontSize',20,'FontName','Times New Roman');

50 subplot(1,2,1)

51 plot3(mag2(:,1),mag2(:,2),mag2(:,3))

52 legend('Calibrated')

53 subplot(1,2,2)

54 plot3(MAG2(:,3),MAG2(:,4),MAG2(:,5))

55 legend('UnCalibrated')

56

57 figure; set(gca,'FontSize',20,'FontName','Times New Roman');

58 subplot(1,2,1)

59 plot3(mag3(:,1),mag3(:,2),mag3(:,3))

60 legend('Calibrated')

78



61 subplot(1,2,2)

62 plot3(MAG3(:,3),MAG3(:,4),MAG3(:,5))

63 legend('UnCalibrated')

64

65 %title('Magnetic Calibration')

66 xlabel('Mag X')

67 ylabel('Mag Y')

68 zlabel('Mag Z')

69

70 figure;

71 plot3(mag1(:,1),mag1(:,2),mag1(:,3),'.r');

72 hold on;

73 plot3(mag2(:,1),mag2(:,2),mag2(:,3),'.g');

74 plot3(mag3(:,1),mag3(:,2),mag3(:,3),'.b');

75 grid on; axis tight;

76 set(gca,'FontSize',20,'FontName','Times New Roman');

77 %title('Calibrated Magnetometer');

78 legend('IMU1','IMU2','IMU3','location','best','FontSize',20,'FontName','Times ...

New Roman');

79 xlabel('MAGX');

80 ylabel('MAGY');

81 zlabel('MAGZ');

82

83 figure;

84 set(gca,'FontSize',20,'FontName','Times New Roman');

85 plot3(MAG(:,3),MAG(:,4),MAG(:,5),'.r');

86 hold on;

87 plot3(MAG2(:,3),MAG2(:,4),MAG2(:,5),'.g');

88 plot3(MAG3(:,3),MAG3(:,4),MAG3(:,5),'.b');

89 grid on; axis tight;

90 set(gca,'FontSize',20,'FontName','Times New Roman');

91 %title('UnCalibrated Magnetometer');
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92 legend('IMU1','IMU2','IMU3','location','best','FontSize',20,'FontName','Times ...

New Roman');

93 xlabel('MAGX');

94 ylabel('MAGY');

95 zlabel('MAGZ')

96

97

98 % disp('Press Enter after checking MagCalibration:')

99 % pause

100 end

101

102

103 % save('Calibration\CalVal.mat','A1','c1','A2','c2','A3','c3')

1 function [U,c] = MgnCalibration(X)

2

3 [N,m] = size(X);

4 if m>3&&N==3,X = X';N = m;m = 3;end;%check that X is not transposed

5 if N≤10,U = [];c = [];return;end;%not enough data no calibration !!

6 % write the ellipsoid equation as D*p=0

7 % the best parameter is the solution of min | | D*p | | with | | p | |=1;

8 % form D matrix from X measurements

9 x = X(:,1); y = X(:,2); z = X(:,3);

10 D = [x.ˆ2, y.ˆ2, z.ˆ2, x.*y, x.*z, y.*z, x, y, z, ones(N,1)];

11 D=triu(qr(D));%avoids to compute the svd of a large matrix

12 [U,S,V] = svd(D);%because usually N may be very large

13 p = V(:,end);if p(1)<0,p =−p;end;

14 % the following matrix A(p) must be positive definite

15 % The optimization done by svd does not include such a constraint

16 % With "good" data the constraint is allways satisfied

17 % With too poor data A may fail to be positive definite
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18 % In this case the calibration fails

19 %

20 A = [p(1) p(4)/2 p(5)/2;

21 p(4)/2 p(2) p(6)/2;

22 p(5)/2 p(6)/2 p(3)];

23 [U,ok] = fchol(m,A);

24 if ¬ok,U = [];c = [];return;end%calibration fails too poor data!!

25 b = [p(7);p(8);p(9)];

26 v = Utsolve(U,b/2,m);

27 d = p(10);

28 s = 1/sqrt(v*v'−d);

29 c =−Usolve(U,v,m)';%ellipsoid center

30 U = s*U;%shape ellipsoid parameter

31 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

32 function [A,ok] = fchol(n,A)

33 % performs Cholesky factoristation

34 A(1,1:n) = A(1,1:n)/sqrt(A(1,1));

35 A(2:n,1) = 0;

36 for j=2:n

37 A(j,j:n) = A(j,j:n) − A(1:j−1,j)'*A(1:j−1,j:n);

38 if A(j,j)≤0,ok=0;break;end%A is not positive definite

39 A(j,j:n) = A(j,j:n)/sqrt(A(j,j));

40 A(j+1:n,j) = 0;

41 end

42 ok=1;

43 function x=Utsolve(U,b,n)

44 x = zeros(1,length(n));

45 % solves U'*x=b

46 x(1) = b(1)/U(1,1);

47 for k=2:n

48 x(k) = (b(k)−x(1:k−1)*U(1:k−1,k))/U(k,k);

49 end
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50 function x=Usolve(U,b,n)

51 x = zeros(1,length(n));

52 % solves U*x=b

53 x(n) = b(n)/U(n,n);

54 for k=n−1:−1:1

55 x(k) = (b(k)−U(k,k+1:n)*x(k+1:n)')/U(k,k);

56 end

57 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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