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Title of Study: OPTIMIZING EXPECTED CROSS VALUE FOR GENETIC

INTROGRESSION

Major Field: INDUSTRIAL ENGINEERING AND MANAGEMENT

Abstract: In this study, we consider a combinatorial optimization problem that arises in plant
breeding that involves selecting parent plants for crossing based on their genomic character-
istics. We wish to ensure that individuals with the most desirable genomic characteristics
are selected to increase the likelihood that desirable genetic materials will be passed on to
the progeny. Unlike most of the approaches that use phenotypic values for parental selection
and evaluate individuals separately, we use a criterion that relies on population genotypic
information and evaluates the combination of a pair of individuals. Thus, we introduce the
expected cross value (ECV) criterion that takes the vector of recombination frequencies be-
tween genes as an input and returns the expected number of desirable alleles for a gamete
produced by two individuals of the population as selected parents. We use the ECV criterion
to develop a mathematical optimization formulation for the parental selection problem. We
target a single phenotypic trait for the genetic improvement program and optimally solving
the mathematical formulation to find the best parental pair with maximum ECV. We pro-
pose a procedure to obtain multiple parental pairs by finding multiple pairs of (near) optimal
solutions. Finally, we discuss how the ECV criterion can improve the genetic introgression
process based on computational experiments.
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CHAPTER I

INTRODUCTION

Cells are biological units of any organism. Each cell includes a nucleus that contains the

chromosomes of the organism. A chromosome is a long DNA molecule consisting of genes.

Genes are basic units of DNA molecules that include the genetic information of an organism.

Figure 1 illustrates these basic concepts.

Figure 1: Cell structure [Source: Wikipedia]

Genes are located in fixed positions on the chromosome called loci. A phenotype trait

is an observable trait or characteristic of an organism. For example, for the wheat plant,

protein content and grain yield are two phenotypic traits. Eye color in humans is another

example of a phenotypic trait. A quantitative trait locus (QTL) is a locus that is associated

with a trait. A phenotypic trait is determined by many QTL on the chromosome. At each

locus, a variation of a gene associated with a phenotypic trait that is present is called an
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allele. For a QTL, each allele can be either desirable or undesirable for the associated trait.

The concept of inheritance is also crucial for this study. Inheritance is the process of

passing alleles from parents to progeny. This process happens using gamete cells. A gamete

is a reproductive cell that contains only half of the genetic information. Meiosis is a special

type of cell division that produces the gametes. Two gametes from each of the parents

will form the child’s genetic material. This process happens by crossing two individuals as

parents and the crossing is the process of mating two individuals to obtain a new progeny.

1.1 Breeding program and parental selection problem

The ultimate goal of a plant breeding program is to improve some phenotypic traits over

multiple generations. Breeders can achieve this goal by selecting the best individuals from

the population and crossing them to create a new generation of progeny, which improves the

target phenotypic traits. In plant breeding, this is called the parental selection problem. Im-

proving phenotypic traits in the breeding program can be achieved by transferring desirable

alleles from parents to progeny and repeating this process for multiple generations. This is

called the genetic introgression process. The goal of the introgression process is to generate

a progeny with as many desirable alleles as possible. Thus, the parental selection problem

plays a vital role in the genetic introgression process. We aim to develop a procedure that

can lead us to find the best parental pairs from populations such that the proportion of

desirable alleles will be increasing through multiple generations in a breeding program.

There are two essential steps for the parental selection problem. First, we need to define

a criteria for evaluating individuals or crosses. Second, we need to specify the selection

method and how we use the criterion to obtain the best parents out of a population. The

flowchart in Figure 2 represents the general idea of the breeding program. We assume

that the breeders consider T generations of progeny for their genetic improvement plan.

Extending the breeding program for one more generation requires a large amount of time

and financial resources, and therefore, breeders intend to make improvements in a specific
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number of generations.

Start

Input: generation 0, t← 0, T

Choose selection criterion
and solution methodology

t ← t + 1

Find optimal pair(s) for crossing based on
genetic information of generation (t− 1) progeny

Cross selected parental pairs

Output: generation t

Evaluate generation t progeny t < T

Stop

no

yes

Figure 2: Flowchart for breeding program and parental selection

We can observe in Figure 2 that the program starts with an initial population of individ-

uals (generation 0) and uses the population’s genetic information to select optimal pair(s) for

crossing. At the end of each generation, the new progeny is evaluated in terms of measures

like the proportion of desirable alleles and each target trait’s phenotypic value. The process

will be repeated until generation T is obtained. Different parental selection criteria can be

compared by evaluating generation T progeny.
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1.2 Problems of interest

For solving the parental selection problem, having a fitness criterion is a crucial requirement.

Any criterion that can help us with improving the target phenotypic trait based on genetic

values, can be a viable choice for a breeding program. For a selected pair of individuals, the

criterion can be represented as a function of the genetic information of individuals. Then,

the problem is to find the best pair of individuals that optimizes this fitness function.

We can propose an extended form of the previous problem by selecting more than one

pair from a population for crossing. The single parental pair provides only one new family

after crossing for the next generation. In a breeding program, having multiple families from

different crosses increases the likelihood of transferring more desirable alleles to the next

generation. Moreover, high genomic relationships between individuals of the same family

will increase the inbreeding through generations, which is usually not favorable in a breeding

program. Thus, breeders prefer to choose more than one cross and obtain multiple families

for the next generation. To summarize, we address two types of parental selection problems

where the second is an extension of the first:

1. Single parental pair selection problem;

2. Multiple parental pair selection problem.

Recall that there are two main challenges to both single and multiple pair parental

selection problems. We need to define a viable criterion that can provide a quantitative

measure of fitness to serve as a surrogate for phenotypic performance for any arbitrary pair

of individuals in a population. The methodology must be capable of selecting multiple

parental pairs out of a population. In the following chapters, we addressed these challenges

by proposing a new criterion for parental selection and developing a procedure for selecting

multiple pairs of parents.
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CHAPTER II

LITERATURE REVIEW

Marker-assisted back-crossing is commonly used for introgression of a single desirable al-

lele [Visscher et al., 1996]. On the other hand, genomic selection was first described by

Meuwissen et al. [2001] to estimate individuals’ breeding values inside a population for in-

trogressing multiple alleles. Later, genomic selection was used for rapid improvement of

traits in breeding [Bernardo, 2009].

Different criteria have been studied for selecting parents in a parental selection prob-

lem. The genomic estimated breeding value (GEBV) [Meuwissen et al., 2001] and later the

weighted genetic estimated breeding value (WGEBV) [Goddard, 2009, Jannink, 2010], are

approaches that use genetic value predictions based on markers. A gene marker is a location

on a chromosome that is used for identifying individuals. Daetwyler et al. [2015] proposed

the optimal haploid value (OHV) approach, which evaluates the potential genetic value of

the population. Wang et al. [2018] show that the OHV approach outperforms the other

two approaches in long-term breeding programs. These approaches propose measures that

evaluate each individual in a population and return a quantitative value as a breeding value.

Finally, individuals with higher breeding values are selected as parental pairs in the breeding

program.

These aforementioned criteria evaluate individuals independently, and therefore there is

no assessment of a cross. In the genetic introgression problem, we favor finding a viable

criterion that can evaluate a pair of individuals and return a quantitative value for each

cross. Thus, we can compare all possible crosses and choose the best. Some studies propose
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measures defined for a set of individuals as parents. Goiffon et al. [2017] proposed optimal

population value (OPV) approach, and a subset of the population with maximum possible

haploid value will be selected as the set of parents. This approach can be applied to multi-

parental selection programs. Recently, Allier et al. [2019] expanded the concept of usefulness

criterion (UC) proposed by Schnell and Utz [1976] to obtain a new measure. The value of

UC is used for determining the gain of a cross for a given trait, but the newly developed

approach, usefulness criterion parental contribution (UCPC), determines the genetic gain

of a multi-parental selection and therefore can be obtained as a measure to quantify the

transfer of genetic gain to the next generations.

Some works have studied the selection of multiple parental pairs. Gene pyramiding or

stacking is the process of crossing multiple parents and has been used for introgressing mul-

tiple desirable alleles. In most cases, gene pyramiding aims to minimize the number of

generations to achieve the ideal line, which is the generation of progeny with the highest

possible number of desirable alleles. Canzar and El-Kebir [2011] addressed this problem as

crossing schedule optimization by adding one more objective. They also considered mini-

mization of the number of crosses required for creating the ideal line. The problem is proved

to be NP-hard by Canzar and El-Kebir [2011].

Genetic improvement has been studied in the operations research literature as well. John-

son et al. [1988] used a linear optimization model for deciding the weights of multiple traits

in a multi-trait selection problem. Canzar and El-Kebir [2011] and Xu et al. [2011] pro-

posed multi-objective mathematical models to deal with the gene pyramiding problem. More

specifically, Canzar and El-Kebir [2011] introduced a mixed-integer linear program (MIP)

formulation for crossing schedule problem. De Beukelaer et al. [2015] proposed an improved

model heuristic approach for solving the problem. Woolliams et al. [2015] used semidefinite

programming for maximizing genetic gain by controlling the inbreeding effect. Akdemir and

Sánchez [2016] used mathematical programming to extend the genomic selection to intro-

duce the genomic mating approach. This approach is shown to have better performance in
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the long term in comparison to genomic selection approaches.

The concept of predicted cross value (PCV) was introduced by Han et al. [2017]. Unlike

most of the existing approaches like GEBV and OHV that evaluate individuals independent

of each other, PCV evaluates pairs of individuals and returns the best pair of individuals

based on the PCV criterion. For any two arbitrary individuals, the PCV finds the probability

that the cross will generate an ideal gamete consisting of only desirable alleles after two

generations. The pair of individuals with the highest PCV value will be selected. The so-

called “water-pipe algorithm” is suggested for calculating PCV for an arbitrary pair, and an

integer programming model is also proposed that maximizes the PCV to find the optimal

pair based on genotypic information of the population. The PCV approach is compared to

GEBV and OHV approaches in [Han et al., 2017] and it is shown that PCV outperforms

other approaches in terms of number of generations it takes to transfer all desirable alleles

to create the ideal progeny.

There are two main drawbacks to the PCV criteria. Firstly, a pair of individuals with

undesirable alleles in a specific QTL will not be selected based on PCV criteria because

the PCV of that selected pair is zero. However, this pair may transfer more desirable

alleles coming from different loci and outperform the PCV selection in terms of genotypic or

phenotypic values for the next generations. This can be problematic when a breeder looks

for some significant improvements in a fewer number of generations. The PCV approach

requires a long-term breeding program to show its performance. In most breeding programs,

obtaining a new generation requires a vast amount of resources, including time and financial

costs. Thus, breeders try to reduce the number of generations that are required for a desired

genetic improvement.

The second drawback appears when the genotypic information of the population includes

a large number of QTL. In the next chapter, we show that for a large number of QTL, the

value of PCV for any selected pair of individuals will be reduced to zero with high probability.

This is a conceptual limitation of the PCV criterion, and it makes it virtually impossible to
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choose a pair for crossing.

Moreover, there are other aspects of the PCV approach studied by Han et al. [2017]

that are noteworthy. The approach is designed for selecting a single parental pair and it

ignores the inbreeding effect between parents, as there is no procedure for controlling that

effect. Inbreeding happens when two genetically similar individuals are crossed. By crossing

parents with high inbreeding for multiple generations, some undesired excessive traits might

appear in the future generation’s progeny. Also, inbreeding reduces genetic diversity through

generations. Therefore, controlling inbreeding between mates is an important target in

breeding programs.

In this study, we propose a new criterion called the Expected Cross Value (ECV) that

returns a cross value for a specific pair of individuals based on the population’s genotypic

information. We develop an integer programming model to select a pair of parents for in-

trogressing desirable alleles to the next generation with the ECV criterion as the objective

while controlling the inbreeding effect between selected parents. Then we propose a proce-

dure for finding multiple pairs of individuals for the multi-parental selection problem. The

use of ECV as a new criterion for parental selection will address the limitations of the PCV

approach.
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CHAPTER III

EXPECTED CROSS VALUE FOR THE PARENTAL SELECTION

PROBLEM

In this chapter, we propose and define the new Expected Cross Value (ECV) criterion for

use in the parental selection problem. In the following, we use the index set notation [a] :=

{1, 2. . . . , a} for any positive integer a.

Definition 3.0.1 Assume that the target trait is affected by N different QTL in the genome.

For each individual, we define an N × 2 binary matrix in which each row represents the pair

of alleles in the corresponding QTL. Thus, the genotype matrix Lk associated with the k-th

individual is as follows:

Lk
i,j =


1 if the allele in row i, column j is desirable,

∀i ∈ [N ], j ∈ [2]

0 otherwise.

(3.0.1)

Genotype matrix information of all individuals is an input for the ECV selection approach.

In order to define the ECV criterion, we need to understand how alleles transfer from parents

to children, i.e., how a gamete inherits alleles from an individual as a parent. This can be

modeled using the concept of inheritance distribution defined in the following.

Definition 3.0.2 (Han et al. [2017]) Let us suppose r ∈ [0, 0.5]N−1 represents the vector

of recombination frequencies between the genes where N is the number of QTL. Consider a

random N-dimensional binary vector J that is defined with respect to the vector of recom-

bination frequencies. The inheritance distribution gives the probability that two consecutive
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alleles will be transferred to the gamete from the same chromosome:

Ji =


0 if allele in the i-th QTL is transferred from first chromosome to the gamete,

∀i ∈ [N ],

1 otherwise.

(3.0.2)

Let us suppose that the first component of the vector J will take a value of 0 with proba-

bility α0 and value of 1 with probability α1, thus :

Pr(J1 = 0) = α0, Pr(J1 = 0) = α1, α0 + α1 = 1. (3.0.3)

Based on the definition of recombination frequency, if the allele (i − 1) in the gamete is

transferred from first or second chromosome of the individual, the probability that the i-th

allele transfers from the same chromosome is 1−ri−1. In other words for any i ∈ {2, . . . , N}:

Pr(Ji = Ji−1) = 1− ri−1 (3.0.4)

Pr(Ji = 1− Ji−1) = ri−1 (3.0.5)

3.1 Inheritance distribution

The following proposition illustrates an important property related to the inheritance distri-

bution. Consider the following function defined as follows for each i ∈ {2, . . . , N}:

φi(r) =(r1 + r2 + · · ·+ ri−1) + (−2)1(r1r2 + r1r3 + · · ·+ ri−1ri)+

(−2)2(r1r2r3 + r1r2r4 + · · ·+ ri−2ri−1ri) + · · ·+ (−2)i−2(r1r2 . . . ri−1). (3.1.1)

10



More specifically, for any i ∈ {2, . . . , N}, we can define the following functions:

γ1i (rj) = rj, ∀j ∈ [i− 1]. (3.1.2)

If i > 2, for any m ∈ {2, . . . , i− 1}, we define the following functions:

γmi (rj) = rj

(
i−m+1∑
k=j+1

γm−1i (rk)

)
, ∀j ∈ [i−m]. (3.1.3)

Using these functions, we define the formula for the function φi(r) as follows:

φi(r) =
i−1∑
m=1

(
(−2)m−1

i−m∑
j=1

γmi (rj)

)
, ∀i ∈ {2, . . . , N}. (3.1.4)

Proposition 3.1.1 Suppose J follows inheritance distribution with respect to a vector of

recombination frequencies r ∈ [0, 0.5]N−1. If we define α0 and α1 based on Equation (3.0.3),

for any i ∈ {2, . . . , N}, following equations hold:

Pr(Ji = 0) = α0 + (α1 − α0)φi(r), (3.1.5)

Pr(Ji = 1) = α1 + (α0 − α1)φi(r). (3.1.6)

Proof. We model the random vector J as a stochastic process. Let us assume a discrete time

Markov chain (DTMC) J =
{
Jn : n ≥ 0

}
where Jn represents the state of the process at n-th

step, i.e., the value of the random vector J in the n-th position. The state space is defined as

S = {0, 1}. This process is not a time-homogeneous DTMC. According to Equations (3.0.4)

and (3.0.5), the transition probability matrix from step k to step k + 1 is as follows:

Pk:k+1 =

1− rk rk

rk 1− rk

 , ∀k ∈ [i− 1]. (3.1.7)

11



The transition probability matrix from first step to step i is then obtained as follows:

P1:i =

1− r1 r1

r1 1− r1


1− r2 r2

r2 1− r2

 . . .

1− ri−1 ri−1

ri−1 1− ri−1

 ,
in other words:

P1:i =
i−1∏
k=1

Pk:k+1.

We claim that:

P1:i =

1− φi(r) φi(r)

φi(r) 1− φi(r)

 , (3.1.8)

where φi(r) is defined in Equation (3.1.4). We prove this claim by induction on i.

Base Case: For i = 2, Equation 3.1.4 implies that φ2(r) = r1, therefore:

P1:2 =

1− r1 r1

r1 1− r1

 .
This result is identical to the definition of transition probability matrix P1:2.

Induction Step: Let us suppose (3.1.8) holds for step i = n. We want to prove that it

holds for i = n+ 1 as well. By induction hypothesis, we know that:

P1:n =

1− φn(r) φn(r)

φn(r) 1− φn(r)

 .

12



As we know that P1:n+1 = P1:nPn:n+1, therefore,

P1:n+1 =

1− φn(r) φn(r)

φn(r) 1− φn(r)


1− rn rn

rn 1− rn


=

1− rn − φn(r) + 2rnφn(r) rn − 2rnφn(r) + φn(r)

rn − 2rnφn(r) + φn(r) 1− rn − φn(r) + 2rnφn(r)

 . (3.1.9)

From Equation (3.1.1) and (3.1.4) we can conclude the following:

φn+1(r)− φn(r) = rn − 2rnφn(r). (3.1.10)

By (3.1.9) and (3.1.10), we conclude the following:

P1:n+1 =

1− φn+1(r) φn+1(r)

φn+1(r) 1− φn+1(r)

 , (3.1.11)

which means that the claim holds for i = n + 1. For the DTMC J we have the following

property,

Pr(Ji = j) =
(
αTP1:i

)
j
, ∀i ∈ {2, . . . , N}, j ∈ {0, 1}, (3.1.12)

where αT = [α0, α1]
T is the vector of initial probabilities and

(
αTP1:i

)
j

represents the j-th

component of the vector
(
αTP1:i

)
. Thus, for every i ∈ {2, . . . , N},

Pr(Ji = 0)

Pr(Ji = 1)

 =

α0

α1


T 1− φi(r) φi(r)

φi(r) 1− φi(r)

 =

α0 + (α1 − α0)φi(r)

α1 + (α0 − α1)φi(r)

 ,
which implies the correctness of Proposition 3.1.1.

In this study, we consider diploid parents. A diploid cell has a paired chromosomes, one

13



from each parent. In this case, we can take advantage of Mendel’s second law to illustrate

the inheritance of alleles in the first QTL. The following corollary represents this case.

Corollary 3.1.1 According to Mendel’s second law of inheritance, the law of segregation

states that for a diploid parent, the two alleles in the first QTL segregate randomly during

meiosis; therefore, each allele will transmit to the gamete with equal probability. This implies

that α0 = α1 = 0.5 and based on the Proposition 3.1.1 we can conclude the following:

Pr(Ji = 0) = 0.5, Pr(Ji = 1) = 0.5, ∀i ∈ [N ]. (3.1.13)

Furthermore,

E(Ji) = 0× Pr(Ji = 0) + 1× Pr(Ji = 1) = 0.5, ∀i ∈ [N ], (3.1.14)

where E(·) represents the expected value.

3.2 The gamete function and a loss function

Inheritance distribution determines the source of alleles transmitted from a parent to the

gamete. Therefore, we can define a function based on inheritance distribution that can

specify the alleles in the gamete. This leads to the concept of gamete function. In this

section, we define a closed form expression for the ECV of a pair of individuals.

Definition 3.2.1 (Han et al. [2017]) For an individual with genotype matrix L and a ran-

dom binary vector J following the inheritance distribution defined in Definition 3.0.2, we

denote the gamete function as gamete(L, J). The output of this function, the gamete vector
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g = gamete(L, J), is a binary vector defined as follows:

gi =


Li,1 if Ji = 0,

∀i ∈ [N ]

Li,2 if Ji = 1.

(3.2.1)

By the definition of inheritance distribution, we can conclude that:

gi = Li,1(1− Ji) + Li,2Ji, ∀i ∈ [N ]. (3.2.2)

Let us suppose we have two individuals with genotype matrices L1 and L2 and two samples

from inheritance distribution J1 and J2. By crossing these two individuals, the genotype

matrix for a child in the progeny is represented by matrix [g1, g2] where g1 = gamete(L1, J1)

and g2 = gamete(L2, J2). We are interested in defining the gamete that is produced by a

child of this progeny for the next generation. This gamete is defined as follows where J3 is

another sample from inheritance distribution:

g3 = gamete
([
g1, g2

]
, J3
)
. (3.2.3)

The gamete g3 can be used for deriving a criterion for the parental selection problem. To

this end, we define a “loss function” in terms of gamete g3 vector.

Definition 3.2.2 Using the gamete g3 from Definition 3.2.1, we define a stochastic loss

function as follows:

loss(L1, L2, r) =
N∑
i=1

(1− g3i ) = N −
N∑
i=1

g3i . (3.2.4)

The loss function is stochastic because the output of the gamete function depends on the

random vector J that follows inheritance distribution defined based on the vector of re-

combination frequencies r. This function counts the number of undesirable alleles in the
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gamete g3, and it can be used for parental selection. Next, we present the definition of PCV

introduced by Han et al. [2017].

Definition 3.2.3 (Han et al. [2017]) For a pair of individuals with genotype matrices L1

and L2, we define the gamete g3 as (3.2.3). The PCV is the probability that the gamete g3

contains only desirable alleles.

In other words, PCV finds the probability that the stochastic loss function is equal to

zero. That is,

PCV (L1, L2, r) = Pr
(
loss(L1, L2, r) = 0

)
. (3.2.5)

3.3 The drawbacks of PCV

Recall from Chapter II that the PCV is a criterion for parental selection problem that

evaluates any possible cross in the population. A pair of individuals with the highest PCV

value will be selected for crossing. Han et al. [2017] proposed a polynomial-time algorithm

for calculating PCV between any pair of individuals. We now address two drawbacks of the

PCV approach. The first issue arises when a specific QTL contains only undesirable alleles

for a pair of individuals.

Let us assume an arbitrary pair of individuals from the population with genotype matrices

Lk and Lk′ . We are interested in the event where all alleles in both individuals are undesirable

for a specific QTL. In other words, there exists an i ∈ {1, . . . , N} such that,

Lk
i,1 = Lk

i,2 = Lk′

i,1 = Lk′

i,2 = 0. (3.3.1)

For a specific QTL, we represent this event as a failure, denoted as F . We have P (F ) = α4

where α > 0 is the probability that an allele at any QTL is undesirable. When a failure

event occurs in i-th QTL, it implies that the i-th component of gamete g3 is zero and
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hence PCV (Lk, Lk′ , r) = 0. In this case, two individuals will not be selected based on the

PCV criterion. However, matrices Lk and Lk′ might include many desirable alleles in other

QTLs, and the cross between individuals k and k′ could be a good candidate for genetic

improvement.

Proposition 3.3.1 In the hypothetical setting when N → +∞, the PCV approaches zero

for any pair of individuals.

Proof. We define the random variable X, which counts the number of QTL at which the

aforementioned failure occurs during transmission of alleles from selected individuals to g3.

Obviously, X follows Binomial distribution as X ∼ B(N,α4).

As one failure is enough for making PCV equal to zero, we are interested in finding the

probability that at least one failure event occurs.

Pr(X ≥ 1) = 1− Pr(X = 0) = 1− (1− α4)N (3.3.2)

As N → +∞, the probability in (3.3.2) converges to the value of one as long as α > 0. In

other words,

lim
N→+∞

Pr(X ≥ 1) = 1, (3.3.3)

which implies the correctness of Proposition 3.3.1.

The hypothetical case of N → +∞ is applicable in practice when N is very large. Our

numerical experiments in Chapter V also demonstrate this issue.

3.4 The expected cross value criterion

In this section, we use Definition 3.2.2 to develop a new criterion based on allelic information

of individuals. The measure depends on the gamete g3 defined in Equation (3.2.3) and can

evaluate a pair of individuals as a parental cross.
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Definition 3.4.1 For a selected pair of individuals with genotype matrices L1 and L2, the

ECV is the expected number of desirable alleles in gamete g3 defined as Equation (3.2.3). As

the stochastic loss function represents the number of undesirable alleles in g3, the ECV can

be stated as follows,

ECV (L1, L2, r) = N − E
(
loss(L1, L2, r)

)
= E

( N∑
i=1

g3i

)
. (3.4.1)

A pair of individuals with the highest ECV value will be selected as parents for crossing.

The following theorem provides a closed-form expression for calculating ECV for a pair of

parents.

Theorem 3.4.1 For a selected pair of individuals Lk and Lk′, the ECV corresponding to

the target phenotypic trait can be computed using the following equation:

E
( N∑

i=1

g3i

)
= 0.25

N∑
i=1

(Lk
i,1 + Lk

i,2 + Lk′

i,1 + Lk′

i,2). (3.4.2)

Proof. We extend the definition in Equation (3.4.1) to find a closed-form expression for

ECV function. For a selected pair of individuals Lk and Lk′ and three independent samples

from inheritance distribution J1 ,J2 and J3, we know g3 = gamete
([
g1, g2

]
, J3
)

where

g1 = gamete
(
Lk, J1

)
and g2 = gamete

(
Lk′ , J2

)
. Based on the definition of inheritance

distribution in Equation (3.2.2), we have.

g1i = Lk
i,1(1− J1

i ) + Lk
i,2J

1
i , ∀i ∈ [N ], (3.4.3)

g2i = Lk′

i,1(1− J2
i ) + Lk′

i,2J
2
i , ∀i ∈ [N ], (3.4.4)

and,

g3i = g1i (1− J3
i ) + g2i J

3
i , ∀i ∈ [N ]. (3.4.5)
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Using Equations (3.4.3) and (3.4.4) in Equation (3.4.5), the expected cross value for the

target trait is:

E
( N∑

i=1

g3i

)
= E

( N∑
i=1

(
Lk
i,1(1− J1

i ) + Lk
i,2J

1
i

)
(1− J3

i ) +
(
Lk′

i,1(1− J2
i ) + Lk′

i,2J
2
i

)
J3
i

)

= E
( N∑

i=1

Lk
i,1 +

(
Lk
i,2 − Lk

i,1

)
J1
i − Lk

i,1J
3
i −

(
Lk,
i,2 − Lk

i,1

)
J1
i J

3
i +

Lk′

i,1J
3
i +

(
Lk′

i,2 − Lk′

i,1

)
J2
i J

3
i

)
=

N∑
i=1

(
Lk
i,1 +

(
Lk
i,2 − Lk

i,1

)
E(J1

i )− Lk
i,1E(J3

i )−
(
Lk
i,2 − Lk

i,1

)
E(J1

i J
3
i )+

Lk′

i,1E(J3
i ) +

(
Lk′

i,2 − Lk′

i,1

)
E(J2

i J
3
i )

)
. (3.4.6)

From Proposition 3.1.1 we know that,

E(J1
i ) = E(J2

i ) = E(J3
i ) = α1 + (α0 − α1)φi(r), ∀i ∈ [N ]. (3.4.7)

As J1, J2 and J3 are independent, we know that,

E(J1
i J

3
i ) = E(J1

i )E(J3
i ) = (α1 + (α0 − α1)φi(r))

2, ∀i ∈ [N ], (3.4.8)

E(J2
i J

3
i ) = E(J2

i )E(J3
i ) = (α1 + (α0 − α1)φi(r))

2, ∀i ∈ [N ]. (3.4.9)

Thus,

E
( N∑

i=1

g3i

)
=

N∑
i=1

(
Lk
i,1 + (α1 + (α0 − α1)φi(r))(L

k
i,2 − 2Lk

i,1 + Lk′

i,1)

+ (α1 + (α0 − α1)φi(r))
2(Lk′

i,2 + Lk
i,1 − Lk

i,2 − Lk′

i,1)

)
. (3.4.10)

Based on Mendel’s second law, α0 = α1 = 0.5 and the Equation (3.4.10) reduces to Equa-

tion (3.4.2).
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Remark 3.4.1 In a case where Mendel’s second law does not hold, the ECV criterion is

still applicable. In this case, α0 6= α1, and we can directly use Equation (3.4.10) to find the

expected cross value between a pair of individuals.

The ECV approach can be applied for genotypic information, including a large number

of QTL, and will not converge to zero as the QTL number increases. This approach can also

overcome the other limitation of the PCV approach, as any two individuals with undesirable

alleles in a specific QTL will be measured based on the expected number of desirable alleles

that they can transfer to the next generation. Theorem 3.4.1 provides a closed-form expres-

sion for the ECV criterion that enables us to formulate the parental selection problem as an

integer programming problem in the next chapter.
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CHAPTER IV

MATHEMATICAL FORMULATION FOR PARENTAL SELECTION

In this chapter, we develop an integer programming (IP) formulation of the parental selection

problem using the ECV criterion as the optimization objective. The formulation is based on

the mixed-integer programming formulation for the PCV approach introduced by Han et al.

[2017]. We also restrict the inbreeding between selected individuals. Using marker genotype

information we can find the matrix G that specifies the genomic relationship between any

pair of individuals in the population [VanRaden, 2008]. We use matrix G for controlling

inbreeding in parental selection. We use following notations in our IP formulation.

Parameters:

• K ∈ Z≥0: Number of individuals in the population

• N ∈ Z≥0: Number of QTL for the target trait

• G: K ×K genomic matrix of inbreeding values with elements gk,k′ for k, k′ ∈ [K]

• ε ∈ R: A tolerance parameter for inbreeding relationship between a pair of selected

individual

• P ∈ BN×2×K : The population matrix, where:

Pi,j,k =


0, if Lk

i,j = 0,

∀i ∈ [N ], j ∈ [2], k ∈ [K],

1, otherwise.
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Decision Variables:

• t ∈ B2×K representing the parental selection decision such that:

tm,k =


1, if k-th individual is selected as m-th parent,

∀m ∈ [2], k ∈ [K],

0, otherwise.

• x ∈ BN×4 representing genotypes of selected individuals for all traits. If we suppose k-

th and k′-th individuals are selected as first and second parents respectively, so t1,k = 1

and t2,k′ = 1, then:

xi,j = Lk
i,j, ∀i ∈ [N ], j ∈ {1, 2},

xi,j = Lk′

i,j, ∀i ∈ [N ], j ∈ {3, 4}.

Objective Function:

Using the Equation (3.4.2) from Theorem 3.4.1, we formulate the ECV as a function of

decision variables as follows:

f(t, x) = 0.25
N∑
i=1

(
xi,1 + xi,2 + xi,3 + xi,4

)
. (4.0.1)

Following is the integer programming formulation for the single parental pair selection prob-
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lem.

max f(t, x), (4.0.2a)

s.t.
K∑
k=1

tm,k = 1, ∀m ∈ [2], (4.0.2b)

xi,j =
K∑
k=1

t1,kPi,j,k, ∀i ∈ [N ], j ∈ {1, 2}, (4.0.2c)

xi,j =
K∑
k=1

t2,kPi,j−2,k, ∀i ∈ [N ], j ∈ {3, 4}, (4.0.2d)

t1,k + t2,k′ ≤ 1, ∀k, k′ ∈ [K] | gk,k′ ≥ ε, (4.0.2e)

tm,k ∈ {0, 1}, ∀m ∈ [2], k ∈ [K], (4.0.2f)

xi,j ∈ {0, 1}, ∀i ∈ [N ], j ∈ [4]. (4.0.2g)

The objective function (4.0.2a) maximizes the ECV. Constraint (4.0.2b) ensures that

only two individuals will be selected for the crossing. Constraints (4.0.2c) and (4.0.2d) will

assign genotypic information in genotype matrices of selected individuals to xi,j variables.

Constraint (4.0.2e) implies that any two individuals with genomic relationship coefficient

greater than the tolerance ε, will not be selected as parents. As the genomic relationship

coefficient between any individual and itself has the highest value equal to one, for any

value of ε less than one, this set of constraints will prevent self-crossing between individuals.

Finally, constraints (4.0.2f) and (4.0.2g) are forcing decision variables to take binary values.

4.1 Extension to multi-parental pair selection

In this section, we propose a method for finding more than one pair of individuals for the

multi-parental selection problem. Formulation (4.0.2) will return a pair of individuals as the

optimal solution for the optimization model. In a breeding program, we may require to find

a set of parental pairs for crossing. Suppose we are interested in finding nc different parental

pairs from the population. The value of nc must be smaller than the number of initial feasible
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crosses. Assuming that the self-crossing is not allowed, we represent the number of feasible

solutions (crosses) with nf which is bounded above by
(
K
2

)
. As we impose constraint (4.0.2e)

for controlling inbreeding, the number of feasible crosses might be less than
(
K
2

)
. In this

case, the number of feasible solutions (feasible crosses) would be half the number of elements

in matrix G smaller than ε.

If there is no element in matrix G that is smaller than ε, it means nf = 0 and optimization

model in 4.0.2 is infeasible. In this case, we need to increase the value of tolerance ε such

that there might be at least nc possible crosses for the selection. Any positive integer value

for nc such that nc ≤ nf would be suitable for our approach.

Let us assume after solving the model in (4.0.2), we find the optimal solutions where

t∗1,i = t∗2,j = 1. This means that i-th and j-th individuals are optimal pairs. To obtain

another pair from the model, we can add the following “conflict constraints” to the previous

optimization model:

t1,i + t2,j ≤ 1, (4.1.1)

t1,j + t2,i ≤ 1. (4.1.2)

These two constraints force the model to choose a different pair of individuals for finding

the next optimal solution. We can repeat this procedure to find nc pairs. The procedure is

summarized in Algorithm 1.

Algorithm 1 Finding multiple pairs for the parental selection problem

1: Input: S ← ∅, nc

2: Output: Set of selected parental pairs
3: while |S| < nc do
4: Solve Formulation 4.0.2 and obtain optimal solutions t∗1,i = t∗2,j = 1.
5: Add {i, j} to set S.
6: Update Formulation 4.0.2 by adding following constraints: t1,i + t2,j ≤ 1, t1,j + t2,i ≤ 1.
7: end while
8: return S
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CHAPTER V

COMPUTATIONAL EXPERIMENTS

In this chapter, we conduct computational studies to assess the ECV criterion. We used the

QU-GENE engine and QuLinePlus proposed by Ali et al. [2020] to simulate initial popu-

lations and other generations. The QU-GENE engine receives gene information, including

recombination frequencies and the number of desired individuals, and returns the simulated

initial population. We consider a “wild” initial population assuming that the population is

not affected by any selections or diseases, so the proportion of desirable allele for this popu-

lation should be close to 0.5. QuLinePlus receives genotypic information of a population and

a list of selected pairs as well as other parameters and simulates the next progeny by crossing

the selected pairs. This provides a tool for performing parental selection for multiple gen-

erations and the breeding program represented in Figure 2 in Chapter I. This software also

provides genotypic and phenotypic information for all individuals at each generation, and

we can use this information to define metrics for assessments in our experiments. We used

the Gurobi Optimization Solver [Gurobi Optimization, LLC, 2020] for solving the integer

programming formulations that were implemented in the Python programming language.

We report results from two numerical experiments in this section. The first experiment

will demonstrate the drawback of the PCV criterion identified in Chapter III. In the second

experiment, we compare the ECV approach with the phenotypic selection method to assess

the phenotypic performance of the progeny resulting from each selection criterion.

25



5.1 Limitation of the PCV criterion

Based on Proposition 3.3.1, the PCV approach may not be reliable for a phenotypic trait

with a large number of QTL. We simulated five populations; each includes 500 individuals.

Based on Definition 3.2.3 if the maximum PCV value in a population is zero, it implies that

the PCV value for any pair of individuals equals zero. In this case, the parental selection is

impossible because the criterion returns the same value (zero) for any feasible cross in the

population. Figure 3 illustrates the results from the experiment. The vertical axis shows

the maximum PCV value among all pairs of individuals in a population. We can observe

that for N = 5, the maximum PCV value in the population equals one, which shows that

there is at least one parental pair with the highest possible PCV value. By increasing N ,

the maximum PCV value decreases, and the criterion returns zero value for any N ≥ 20 in

our experiments.
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Figure 3: Effect of number of QTL on the PCV approach

5.2 Comparison of ECV vs phenotypic parental selection

This experiment compares the ECV approach with the phenotypic selection method. Phe-

notypic selection is the most common approach for parental selection. In this approach,

for a specific target trait, breeders obtain the phenotypic trait values of all individuals and
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choose two individuals with the highest phenotypic values for crossing. We can develop a

mathematical optimization model for the phenotypic selection as follows.

Parameters:

• K ∈ Z≥0: Number of individuals in the population

• pk ∈ R+: Phenotypic trait value for k-th individual

Decision Variables:

• t ∈ B2×K representing the parental selection decision such that:

tm,k =

 1 if k-th individual is selected as m-th parent,

0 otherwise.
∀m ∈ [2], k ∈ [K]

Objective Function: Returns the summation of phenotypic values for all selected indi-

viduals:

g(t) =
K∑
k=1

2∑
m=1

pktm,k. (5.2.1)

The optimization model for the phenotypic selection is as follows:

max g(t) =
K∑
k=1

2∑
m=1

pktm,k (5.2.2a)

s.t.
K∑
k=1

tm,k = 1, ∀m ∈ [2], (5.2.2b)

2∑
m=1

tm,k ≤ 1, ∀k ∈ [K], (5.2.2c)

tm,k ∈ {0, 1}. (5.2.2d)

Constraint (5.2.2b) ensures that the model will select two individuals. Thus, the objective

function (5.2.2a) returns the maximum value for the summation of phenotypic values among
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all possible pairs in the population. The inbreeding between pairs is generally disregarded in

the phenotypic selection approach and hence, there is no constraint regarding the inbreed-

ing control in the model. Constraint (5.2.2c) removes self-crosses from the set of feasible

crosses.To obtain multiple parental pairs, we can use the same approach mentioned in Sec-

tion 4.1. In this case, nf =
(
K
2

)
, and any positive integer value for nc that is less than or

equal to
(
K
2

)
will be an acceptable choice for the number of crosses.

We conduct this experiment for five generations, i.e., T = 5 in the breeding program, as

described in Figure 2. We simulated 10, 000 individuals for the first population with 50 QTL

for the target trait and 100 individuals per cross for each parental pair.

Generation 0 (Initial population): 10, 000 individuals

Generation 1: 5, 000 individuals

Generation 2: 1, 000 individuals

Generation 3: 500 individuals

Generation 4: 500 individuals

Generation 5: 500 individuals

Selecting 50 pairs

Selecting 10 pairs

Selecting 5 pairs

Selecting 5 pairs

Selecting 5 pairs

Figure 4: Structure of simulation study

Figure 4 represents the simulation framework for the five generations. We used this
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framework to compare the phenotypic selection approach against the ECV approach. The

tolerance for the inbreeding coefficient in ECV approach is 0.25, i.e., ε = 0.25 in Formula-

tion (4.0.2). The simulation was replicated five times for each selection approach.

We compare the approaches using two different measures: average phenotypic trait values

and the average proportion of desirable alleles for each generation of progeny. For a specific

individual with genotype matrix L, the proportion of desirable allele is computed as follows:

∑N
i=1

∑2
j=1 Li,j

2N
, (5.2.3)

where N represents the number of QTL. Figure 5 represents density plots for the five gen-

erations. As we observe, by moving from generation 0 to generation 1, the proportion of

desirable alleles makes a significant improvement based on the ECV approach. For the final

generation, the proportion of desirable alleles for the ECV selection approach takes a value

close to one for all replications. By extending the breeding program for more generations,

the phenotypic selection approach may achieve similar status, but achieving a significant im-

provement in fewer generations is the ultimate goal in the breeding program and extending

the program for one more generation requires a significant amount of time and resources.

Figure 6 represents the outputs for all replications in a box plot. A significant difference

for all generations is observable, and the gap between the results of the two approaches is

increasing when moving from one generation to the next.

Figure 7 show the density plot for the phenotypic values. We observe that when moving

from one generation to the next, both approaches maintain improvements. The difference

between approaches is detectable for all generations, especially for the last generation which

the progeny obtained by using ECV selection is significantly better. This difference is also

noticeable in the box plot for phenotypic values shown in Figure 8. Tables 1 and 2 in

the Appendices, illustrate statistical information of the simulation outputs that were used to

obtain the plots and representing the 95% confidence intervals for the proportion of desirable

alleles and phenotypic trait values for the five replications.
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Figure 5: Density plots for the proportion of desirable alleles
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Figure 6: Box plot for the proportion of desirable alleles
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Figure 7: Density plots for the phenotypic values
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CHAPTER VI

CONCLUSION AND FUTURE WORK

Developing a robust procedure for parental selection is the key to improvement in any breed-

ing programs. This requires a proper fitness criterion for assessing crosses and a proper

mathematical model that can optimize the criterion and return the best pair(s) for crossing.

This thesis introduces a new criterion for the parental selection problem. Unlike some

other criteria, ECV evaluates a pair of individuals rather than assessing individuals sepa-

rately. The criterion is functional for any genotypic data size and any number of QTL. This

thesis then proposed a mathematical optimization model to choose an optimal parental pair

based on the ECV criterion, with an extension for choosing multiple parental pairs. Based on

the results of this study, the ECV approach offers a significant improvement in the breeding

program in a few generations and simultaneously limits the inbreeding level between selected

parents.

There are several directions for future research on this topic. In particular, considering

multi-trait improvement is one of the directions. In a breeding program, breeders might

be interested in improving some phenotypic traits simultaneously. In this case, we need to

extend the criterion for multiple traits. We assume we have M target traits in the breeding

program and N`, for each ` ∈ [M ] shows the number of QTL for the `-th trait. We can

define the ECV for the `-th trait denoted by ECV ` using the Definition 3.4.1. We tend to

choose a parental pair(s) that optimizes M ECV functions simultaneously. In the scope of

the breeding program, this might be challenging because some phenotypic traits might have

a negative correlation with each other, and that means improving one trait might cause a

32



decrease in the other.

This problem can be modeled using multi-objective optimization where each objective

represents the criterion defined for a specific phenotypic trait. We developed an IP formula-

tion for a single target trait in Chapter IV. We can extend the formulation by considering

a vector of objective functions F (t, x) = 〈f1(t, x), f2(t, x), . . . , fM(t, x)〉 where f`(t, x), for

each ` ∈ [M ] denotes the ECV functions corresponding to `-th trait (ECV `). We use the

following notations in the multi-objective formulation.

Parameters:

• K ∈ Z≥0: Number of individuals in the population

• M ∈ Z≥0: Number of target traits for the breeding program

• N ` ∈ Z≥0: Number of QTL for the `-th trait ∀` ∈ [M ]

• G: K ×K genomic matrix of inbreeding values with elements gk,k′ for k, k′ ∈ [K]

• ε ∈ R: A tolerance parameter for inbreeding relationship between a pair of selected

individual

• P ∈ BN×2×K×M : Representing the population matrix, where:

Pi,j,k,` =


0, if Lk,`

i,j = 0,

∀i ∈ [N ], j ∈ [2], k ∈ [K], ` ∈ [M ],

1, otherwise,

where Lk,` represents the genotype matrix for k-th individual corresponding to the `-th

trait.

Decision Variables:
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• t ∈ B2×K representing the parental selection decision such that:

tm,k =


1, if k-th individual is selected as m-th parent,

∀m ∈ [2], k ∈ [K]

0, otherwise.

• x ∈ BN×4×M representing genotypes of selected individuals for all traits. If we suppose

k-th and k′-th individuals are selected as first and second parents, so t1,k = 1 and

t2,k′ = 1, then:

xi,j,` = Lk,`
i,j , ∀i ∈ [N ],∀j ∈ {1, 2},∀` ∈ [M ],

xi,j,` = Lk′,`
i,j , ∀i ∈ [N ], ∀j ∈ {3, 4},∀` ∈ [M ].

Objective Function:

We define the ECV corresponding to `-th trait as a function of decision variables:

f`(t, x) = 0.25
N∑
i=1

(
xi,1,` + xi,2,` + xi,3,` + xi,4,`

)
.

The multi-objective formulation (6.0.1) for multi-trait single-pair parental selection problem

is presented next. The objective (6.0.1a) maximizes the vector of objective functions. Con-

straint (6.0.1b) states that only two individuals will be selected for crossing. Constraints

(6.0.1c) and (6.0.1d) will assign genotypes of selected individuals to xi,j,` variables. Con-

straint (6.0.1e) implies that any two individuals with an inbreeding coefficient greater than

tolerance ε can not be selected as parents for the crossing program. Note that since the

inbreeding coefficient between any individual and itself has the highest value (which equals

0.5), for any value of ε less than 0.5, this set of constraints will prevent self-crossing be-

tween individuals. Finally, constraints (6.0.1f) and (6.0.1g) are enforcing decision variables

to take binary values. The framework mentioned in Chapter IV can be applied here to obtain
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multiple parental selections.

max F (t, x) = 〈f1(t, x), f2(t, x), . . . , fM(t, x)〉, (6.0.1a)

s.t.
K∑
k=1

tm,k = 1, ∀m ∈ {1, 2}, (6.0.1b)

xi,j,` =
K∑
k=1

t1,kPi,j,k,`, ∀` ∈ [M ],∀i ∈ [N `], ∀j ∈ {1, 2}, (6.0.1c)

xi,j,` =
K∑
k=1

t2,kPi,j−2,k,`, ∀` ∈ [M ],∀i ∈ [N `], ∀j ∈ {3, 4}, (6.0.1d)

t1,k + t2,k′ ≤ 1, ∀k, k′ ∈ [K] | gk,k′ ≥ ε, (6.0.1e)

tm,k ∈ {0, 1}, ∀m ∈ {1, 2},∀k ∈ [K], (6.0.1f)

xi,j,` ∈ {0, 1}, ∀i ∈ [N ],∀j ∈ [4],∀` ∈ [M ]. (6.0.1g)

There are several approaches for solving a multi-objective optimization problem. The

most common is the weighted sum approach where we blend the objectives using weights.

This approach requires a vector of weights that capture the importance of each phenotypic

trait in the breeding program. In practice, it is difficult to identify a weights vector as there

are many external factors that might affect the importance of traits. However, it is possible

to order the traits based on their importance. We can assume that the vector of objective

functions defined in Equation (6.0.1a) includes the ordering where f1(t, x) is the most impor-

tant objective in the breeding program. In this case, we can use the lexicographic approach to

solve the multi-objective optimization problem. Gurobi solver [Gurobi Optimization, LLC,

2020] provides the tool for using the lexicographic approach with degradation tolerances for

objectives. The method starts by optimizing the first objective function and with an allowed

tolerance of degradation, optimizes the next objective function. This process is repeated

until the last objective is optimized and the optimal solution will be returned as a result

of this framework. Investigating this multi-objective framework using ECV is an important

direction for future research.
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APPENDICES

Comparison Between ECV Approach and Phenotypic Selection

We provide two tables reporting the data used for the plots in Chapter V. Table 1 reports
the results based on the proportion of desirable alleles and Table 2 shows the results based
on the phenotypic values in progeny. The information shows the confidence intervals for
the difference in means obtained by the two approaches and it represents the value of ECV
selection approach minus the value of phenotypic selection method.

Method
Generation 1 Generation 2 Generation 3 Generation 4 Generation 5

mean half width mean half width mean half width mean half width mean half width

ECV Selection Approach 0.673 0.010 0.782 0.017 0.867 0.017 0.928 0.016 0.977 0.003

Phenotypic Selection Approach 0.589 0.015 0.659 0.023 0.702 0.037 0.735 0.042 0.755 0.036

Difference in means 0.084 0.021 0.123 0.025 0.165 0.038 0.193 0.048 0.223 0.037

Table 1: Confidence intervals for 95% confidence level based on the proportion of desirable alleles for five
generation progeny. The results represent confidence intervals for five replications of simulation study.

Method
Generation 1 Generation 2 Generation 3 Generation 4 Generation 5

mean half width mean half width mean half width mean half width mean half width

ECV Selection Approach 32.091 1.801 36.356 2.046 39.869 2.811 40.502 2.143 43.770 2.542

Phenotypic Selection Approach 29.531 1.239 32.892 1.536 34.931 1.896 35.776 2.499 37.356 2.018

Difference in means 2.560 1.193 3.464 1.994 4.937 1.355 4.726 1.664 6.414 1.840

Table 2: Confidence intervals for 95% confidence level based on the phenotypic values for five generation
progeny. The results represent confidence intervals for five replications of simulation study.
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