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ABSTRACT 

 In the movie “Iron Man”, Tony Stark, with his highly connected and smart home system, 

shows the audience an appealing vision of future work and domestic life. Many audiences 

desire such a living environment where they can not only interact with their homes but also let 

the homes manage their operation automatically. As technology progressively steps into such 

a future, realizing a responsive and autonomous smart home is not just a fantasy. To establish 

grid-interactive homes that help save costs for users and improve grid reliability, this study 

introduces an energy management framework for smart home environments. This framework 

provides optimal operation of multiple appliances, taking into account dynamic responses to 

external factors such as outside weather conditions, homeowner’s preferences, and particularly, 

gird conditions like time-varying pricing in demand response programs.  

As one of the largest energy consumers in the home, the operation of the HVAC system 

holds great potential for cost savings and energy flexibility—the latter being the ability to adjust 

its consumption based on grid signals such as time-of-use (TOU) pricing. Achieving cost 

savings and energy flexibility requires intelligent strategies, one of which is precooling—a 

control strategy where an air conditioner (AC) cools space when the electricity price is low to 

avoid expensive operation when the electricity price is high. In previous studies, Model 

Predictive Control (MPC)-based precooling strategies are typically analyzed through 

simulations, and field studies in residential buildings are quite limited. In this study, we 

developed an MPC agent and carried out extensive field tests on nine homes over a period of 
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four months in Oklahoma and Miami. Filed test results show that the MPC agent can reduce 

energy cost by 28.72%–51.31% on hot summer days and by up to 60.32% on mild summer 

days, in addition to achieving significant energy flexibility. Moreover, the agent's performance 

is found to be most impacted by weather conditions, AC performance, user comfort preferences, 

and floor areas of the homes.  

In addition, to further comprehend diverse factors that may impact the results of MPC-

based precooling, an EnegyPlus virtual testbed and a corresponding control framework for co-

simulation are developed. The purpose of developing such a virtual testbed is to create a 

simulation environment that enables experiments without the limitation and variability of field 

tests. The virtual testbed is modified by using the Python script to mimic the on/off cycle in the 

majority of U.S. residential building HVAC systems. By conducting the sensitivity analysis 

and ablation study, the MPC-based precooling co-simulation results are evaluated. It was 

observed in our case study that cost savings achieved through MPC-based precooling were 

primarily influenced by the use of forecast weather. The accuracy of the models and the 

prediction horizon of the MPC models also plays a substantial but lesser extent role.  

 With the optimal operation framework shifting from the HVAC system to multiple 

appliances, the proposed energy management framework has a broader scope, encompassing 

not only the HVAC system but also water heaters, non-thermal appliances, and the power flow 

between photovoltaics panel (PV), batteries, and the grid. Apart from the cost-savings and 

energy flexibility that can be achieved, the proposed framework also provides a more realistic 
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simulation scenario by considering the user’s appliance time usage preference, water usage, 

and thermal comfort preferences. Finally, the framework also embedded multi-objective 

optimization to support the homeowner’s decision-making between cost saving and thermal 

comfort.  

Overall, this study aims to realize the optimal operation of various load-flexible resources 

under demand response programs in residential buildings. This study investigates the 

fundamental research for the investigation of methodologies to enhance and understand the 

interactions between buildings, homeowners, and the grid. Due to the flexibility of the model, 

this study can be adapted to other residential buildings and even in larger communities.  
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1 Introduction 

This study aims at developing and implementing an intelligent system to coordinate 

multiple electric loads in residential buildings. In this chapter, the motivation of the study is 

introduced first, followed by state of the art and gap analysis. Research questions, the scope of 

the research, and the main contributions of this dissertation are summarized at the end.  

1.1 Motivation  

In 2022, about 22% of electricity produced at utility-scale generation facilities was from 

renewable energy [1]. Although variable renewable energy (VRE) resource emits little to no 

greenhouse gas and is sustainable, it brings reliability risk to the grid due to their inherent 

variability. A well-known phenomena, the California Duck, reveals that one of the main 

manifestations of the grid reliability problem is that when solar energy has a high penetration 

in the grid, there is a high probability of an demand and supply imbalance at different times 

[2,3]. The “Duck Chart”, which describes the change in net load (the difference between the 

forecasted demand and the expected generation), was first published in 2016 in CASIO’s report 

[3], see Figure 1.1. The “belly” appearance in the mid-afternoon is due to the excess capacity 

of renewable energy (oversupply), and the “duck neck” appearance links to the ramping 

demand in the late afternoon and the decrease in the renewable energy when sunsets 

(undersupply). Since a reliable grid requires a continuous supply/demand balance to maintain 

the frequency of the power system (e.g., 60Hz in the US), facility operators may choose to 

manually curtail to maintain the base load of generators when oversupply occurs; or they could 
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dispatch conventional generators resources to meet ramping demand to handle undersupply 

issue. However, these strategies cause economic or environmental loss and thus are not long-

term solutions.  

 

 Figure 1.1 The official “Duck Chart” during spring, shows steep ramping needs and over-supply risk, 

published by CASIO [3].   

In [4], by comparing different solutions to handle grid reliability issues, the authors 

indicated that only flexibility technologies, i.e., the technology that contributes to the system 

flexibility by generating and consuming active power, can address the supply-demand balance 

issue. However, some flexibility technologies, including developing grid-friendly PV plants or 

modifying conventional generators, require significant investments. In recent years, a simpler 

and less expensive approach, called Demand Side Management (DSM), has attracted attention.  

DSM is a collection of flexibility strategies and techniques designed to manage electricity 

consumption at the end-user side to facilitate reliable and sustainable grid [5]. Among all end 

users, residential buildings hold great potential to address grid reliability issue. As one of the 

key drivers of electricity demand, residential buildings consume 21% of total U.S. energy in 
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2021 when energy losses during generation, transmission, and distribution are included [6]. 

Space cooling contributes about 16% of total household electricity consumption and will 

generally increase over the next 30 years due to climate and population changes [7], therefore 

HVAC system operation becomes one of the focuses of this study. Meanwhile, as the 

penetration of solar panels and active energy storage increases in residential buildings, PV-

battery systems become another effective source for DSM [5]. In 2015, since roughly half of 

the energy usage was contributed by electrical appliances, on top of space heating, air 

conditioning, water heating, and refrigerators, EIA added 22 categories such as dishwashers, 

clothes washers, and clothes dryers into household energy usage [8]. These electrical devices 

also bring opportunities for DSM since they are more flexible compared with thermostatically 

appliance. 

Due to its significant potential on addressing grid reliability, many utilities offered demand 

response programs (DRPs) in retail level, in hoping to facilitate the residential buildings to 

adjust their power demand based on grid signals. Unfortunately, the participation of residential 

users in DRP remains low [9]. The primary reason is the lack of an intelligent control and 

coordination system, designed for the residential customers, to optimize the operation of 

appliances under the DRPs. This intelligent control, which ideally should be low-cost, effective, 

and algin with user preference, cloud improve operation efficiency, increase home appliances’ 

response speed to the gird signal, and save times for users. However, designing such intelligent 

control for home appliances often involves navigating a complex system: the thermal 
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interactions between indoors and outdoors, occupancy behavior patterns, and the operation 

characteristic of the appliances all needed to be predicted or simulated. In the following section, 

current deployment barrier are reviewed for development of such intelligent control.   

1.2 DRPs and Gap Analysis in Residential Buildings 

In this chapter, the concepts and examples of demand response programs (DRPs) in 

residential buildings are introduced first. To deploy the DRPs, the load-flexible resources and 

their accompanying smart technologies that hold potential for enabling energy management in 

the residential buildings (from demand side) are then reviewed. Building on these discussions, 

the deployment barriers of the DRPs in residential buildings are discussed. It is important to 

recognize that improving the participation or involvement of DRPs from the demand side is 

not only use the current load-flexible resources and their technologies, but also understand and 

overcome these deployment barriers which encompass hardware, software, financial and social 

factors. Afterward, research questions are formulated based on this review. Finally, the outline 

of this dissertation are demonstrated.  

1.2.1 DRPs offered by utilities  

New challenges arise after the integrating of renewable energy into the gird, particularly 

in supply-demand balance issue. The building’s high demand is one of the reasons for this 

balance issue, but it can also be the most efficient solution due to its flexibility. Building load, 

of which 55% is consumed by residential buildings [8], can be adjusted through proper 

management.  
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If a building adjusts its load profile based on the signal that comes from the grid, it is 

called demand response (DR). As utilities realize the value of Demand Side Management 

(DSM), more Demand Response Programs (DRPs), aiming to motivate users to conduct DR 

by providing time-based rates or incentives, start to be focused on the retail level. 

Figure 1.2 Demand side management and DRPs in retail and wholesale markets  lists 

major DRPs at the wholesale market level and at the retail level. Among those DRPs, time-

based program such as Time-of-Use (TOU), which aims to provide time-varying price to 

stimulate users to adjust their load [10], is the most established program and has already been 

used in commercial and residential buildings.  

 

Figure 1.2 Demand side management and DRPs in retail and wholesale markets    

Figure 1.3 displays a comparison of Oklahoma’s and Miami’s 2022 TOU rates, which are 

actual quotes offered by utilities to their customers. In some periods the price is higher (the on-

peak hour) and in some other periods the price is lower (the off-peak hour). But the time span 

of the high price period, and the magnitude of the high prices of two TOU rates are different, 

depending on different preferences from different utilities.  
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Figure 1.3 TOU rate examples in Oklahoma and Miami  

1.2.2 Building energy management strategies and the focus of this study  

Since the time-based DRPs, such as the TOU rate, are designed to incentivize users rather 

than directly control the electricity load, the demand-side management strategies for building 

load adjustments becomes particularly important. Based on the DOE report in 2019 [11], there 

are five management strategies that a building can conduct to adjust its load, as shown in Table 

1.1. The load shifting and generation in residential buildings are the focus in this study.  

Table 1.1 Five ways building can provide value to the grid [11,12] 

Name Characteristics  Example load profile 

Efficiency Aims to reduce long-term 

energy use regardless of time 
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Load shed Aims to provide immediate 

energy reduction during peak 

hours or an emergent event 

 

Load shift Buildings change the timing of 

energy usage; usually means 

intentional and planned shifting 

 

Modulate Building automatically responds 

to the grid signals during the 

dispatch period in seconds and 

sub-second 
 

Generation  Building generates energy for its 

on-site energy usage 

 

1.2.3 Available load-flexible resources in residential buildings 

To enable the full potential of residential buildings’ capability on load shifting and 

generation, lots of research and development efforts have been devoted to sensing and control 

of specific resources that can facilitate load coordination in residential buildings. Several 

review studies have been done to discuss those resources[4,13,14]. It is commonly accepted 
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that four major resources can provide the shifting and generation capabilities:  

1) Thermostatically controlled load: This energy load mainly refers to the traditional energy 

end-users like space heating, air conditioning, and water heating, which consumes 42%–

46% of energy in residential buildings [8,15]. Depending on the operation method, the 

thermostatic control load can be divided into two parts: 

a) Passive thermal storage: passive thermal storage refers to the ability of building itself 

to help coordinate the electricity demand of the HVAC system. A building’s envelope 

and its internal thermal mass can unleash significant potential serving as a heating or 

cooling energy storage in precooling or preheating, i.e., cooling or heating the space 

at the appropriate time to shift the load [16]. It should not be overlooked that the 

HVAC system directly affects the user’s thermal comfort. To conduct the precooling 

or preheating without compromising the user experience, the indoor air temperature 

dynamics under HVAC operation must be accurately modeled. However, this 

modeling is one of the most complicated tasks in DSM, since indoor air temperature 

dynamics involve time-varying outside disturbance (e.g., weather conditions), 

occupant preferences, and complicated HVAC system (different components and 

phase change involved) [17–19].   

b) Active thermal storage: active thermal storage refers to thermal storage tank which 

can charge and discharge energy through the thermal medium at the appropriate time 

to shift or shed the load. In residential buildings, activated thermal storage usually 
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refers to a water heater. Noticed that except for electricity, water is the medium that 

connects many different appliances such as clothes washers. This coupling effect 

contributes to the difficulty of its thermal modeling. In addition, for user satisfaction 

and safety, thermal comfort limitation of water heaters is also needed to consider. For 

example, it is reported that harmful bacteria such as Legionella may occur if the water 

temperature at the tank is lower than 120℉ [20]. This requires accurate modeling of 

the heat transfer inside the water tank as well.  

2) Non-thermostatically controlled load: non-thermostatically controlled load refers to end-

users that are not affected by the thermal dynamic mechanism. In residential buildings, 

they can be lighting, electronic, and electric appliances. However, not all the appliances 

are suitable for adjusting in residential buildings. It is not proper to coordinate some 

appliances such as TV, computer, or lights, as they not only do not consume high levels of 

energy, but also adjusting them may cause significant inconvenience to the users. In energy 

management studies, those appliances are called non-schedulable appliances, while some 

appliances such as dishwashers, clothes washers, and dryers are called schedulable 

appliances [13]. 

3) Distributed energy resources: distributed energy resources (DER) include the self-

generator such as PV panels and wind turbines. DER is another important resource that 

can provide energy flexibility to the home. The self-generation energy provides load-

shedding capability, and meanwhile, it can combine with the other appliances or energy 
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storage equipment such as battery to further provide load-shifting capabilities [21]. The 

most used self-generator is rooftop photovoltaic (PV) panels in residential buildings. 

Noticed that the generation efficiency of the PV is not only limited by outside weather, its 

distribution networks, and the rooftop availability but also the inverter efficiency (DC to 

AC) [22].  

4) Electricity storage: Electricity storage usually refers to batteries or electric vehicles. 

Similar to active thermal storage, it can provide both load shifting and shedding by charge 

and discharge operation, but no need to involve with the thermal medium. Different from 

passive or active thermal storage, which might need time to precool or preheat the space 

or thermal medium, electricity storage provides electricity flexibility immediately. 

However, it is also limited by battery cell temperature, state of charge, depth of cycle, C-

rate (charging rate), etc. In general, its efficiency is almost certain to change over time due 

to the limitations of its chemical mechanism [23,24].  

1.2.4 Deployment barriers in demand response participation 

In 2021, the U.S. energy information administration (EIA) reported more than 300 DRPs 

offered by utilities in the US [25]. Most of these DRPs are targeted toward commercial and 

residential buildings, with some of them are for industrial sectors, and only a few intended for 

transportation. However, participation in DRPs remains low, especially in residential buildings. 

For example, in a report, approximately 9.4 million enrolled in DRPs versus 134 million 

residential buildings in the survey [9]. Although the residential building’s participation has 
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grown with the implementation of various policies and guidelines, some reports still indicate 

that the level of response from users who enrolled in programs is not as high as expected [26,27]. 

Several studies have discussed the barriers to DRPs deployment [28–32]. In these studies, the 

most frequently mentioned barriers to demand response deployment in residential buildings are 

technology, high cost, operation complexity, and user consumption routine.  

1.2.4.1 Technology barriers: hardware 

The technology barriers refer to insufficient hardware and software in sensing, computing, 

and communication in demand side management. In [30], the authors pointed out that the 

technology barriers are the fundamental barrier due to their importance. The emergency of the 

Internet of Things (IoT) may serve as a promising hardware solution to overcome the 

technology barrier. Its rapid development and increasing penetration rate in the past few years 

have demonstrated its potential as well. As mentioned in Section 1.2.3, there are multiple load-

flexible resources and limitations that need to be considered in demand side management, the 

current hardware development in residential buildings will briefly be introduced in the rest of 

this section.  

 In the application of using passive thermal storage in residential buildings, the role of 

the thermostat is crucial. It not only serves as a temperature sensor but also provides control to 

the HVAC system based on user-defined setpoints, thereby contributing significantly to the 

energy management system. The programmable thermostat which allows the user to manually 

schedule a setpoint at a different time of the day was developed and applied as early as 1906 
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[33]. Although the programmable thermostat achieves up to 30% energy savings on the HVAC 

system operation, many users misuse, override, and even abandon the programmable function 

due to the confusion caused by their lacks of user-friendliness interface and flexibility in 

schedule feature [34]. In [34], the authors emphasized the need to develop connected 

thermostats (CTs), also called communicating thermostats. The CTs integrate advanced 

information and communication technologies to better serve the homeowners in the HVAC 

system control and build a data-rich solution for future energy management opportunities. 

Smart thermostats [35,36] emerged in recent years and are a prime example of CT. Another 

technological innovation in smart thermostats is the use of node sensors [35,36]. The primary 

intention of developing the node sensors is to enhance the user’s thermal comfort: 

manufacturers want the exact temperature setpoint to be maintained at a certain room when it 

is detected occupied. Therefore, such node sensors usually include both occupancy sensors (to 

detect if a specific room is occupied) and temperature sensors (to sense the temperature inside 

specific room). However, different in the commercial building, there are no terminal boxes to 

control the amount of cooled or heated air delivered in each zone (room) in residential buildings. 

Using the node sensor to maintain the temperature in one room may lead to thermal comfort 

loss in other rooms, or an overall energy waste. Besides, due to the concerns regarding the 

technology and information security, the occupancy sensor inside the thermostat has no head 

count feature yet, making it difficult to further improve thermal comfort.  

Although not spreading as rapidly as smart thermostats, one of the most common active 
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thermal storage, smart water heaters—particularly those water heaters that can interact with the 

grid—are starting to appear. For example, water heaters equipped with CT-2045 protocol, 

which refers to a physical socket add-on for appliances, are starting to emerge and are being 

heavily promoted in Washington, Oregon, and California [37]. With CT-2045, the user can 

directly change the setpoint of the water heater. Moreover, water usage can directly influence 

a home’s energy consumption, particularly when hot water is used. However, current “smart” 

capability primarily focus on detecting water leakage [38], with only a few focus on 

implementing functionality to learn water usage patterns.  

Although it is relatively straightforward for users to adjust non-thermal appliances (the 

appliances that are not thermostatically controlled), such as manually postponing the use time 

of a dishwasher, there are two primary limitations to this approach. First, manual operations 

cannot be promptly response to grid signals. Second, manual operation may only allow for 

simple start/stop operation, rather than optimal control. As such, an optimal intelligent control 

through energy management system still holds great potential on demand management. On the 

other hand, the smart features in current smart appliances mainly reply on the monitor rather 

than control. Given the unique functionalities and cycles of each non-thermal appliances, 

optimal energy management may require more sophisticated technologies, which leave more 

room on the development of advanced communication and control protocols.  

Distributed energy resources, such as photovoltaic panels (PV), are being increasingly 

installed in residential buildings. Due to its environmental impact, many states provide policy 
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support, such as net metering [39]. A recent national lab report shows the PV system’s cost in 

the residential building has dropped from $7.53/W!" in 2010 to $2.71/W!" in 2020 [40]. 

The major price drop in the PV system comes from the hardware cost, but the authors also 

mentioned that the improvement of module efficiency reduces the number of modules required 

in a single house, which helps to reduce the installation and labor costs.  

Several manufacturers have developed the batteries system that is connected to PV for 

residential buildings [41–43]. Compared with the lead-acid battery, the sodium sulphur battery, 

and the vanadium redox battery, it is reported that lithium-ion (Li-ion) batteries are the most 

promising solution for smart home appliances [22], and by taking trade-off between energy and 

power density, charging and discharging rates, security, lifecycle, and the cost, the lithium-iron 

phosphates (LFP/C) are the most popular choice [44,45]. However, electricity storage is still 

an emerging area, and a battery management system is still needed. Despite the proven benefits 

of battery energy storage, most batteries are still served as energy backups in residential 

buildings rather than using them to support daily activities.  

1.2.4.2 Technology barriers: software 

As DR introduces increased operational complexity in coordination and management of 

all the relevant devices in residential buildings—a task usually beyond homeowner’s—the use 

of algorithms that are embedded with expert-knowledge has become necessary. A noticeable 

technical barrier highlighted in [31] is the difficulties for small residential consumers to check 

price or load modification signals and have a timely and optimal response. In general, one 
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solution to overcome the challenge operation could be a development of a building 

management system (BMS) is a centralized software platform that monitors, regulates, and 

controls electrical and mechanical equipment to reduce cost, save energy, or improve comfort 

in buildings [46]. Different from the commercial building, which has a relatively mature BMS, 

residential buildings rarely have an energy management framework in place. From the software 

perspective, some open-source home BMS such as “Home Assistant” and “openHAB” are 

promising solutions, which support third-party applications, cloud services, and data 

visualization. However, those BMSs do not support advanced optimal control yet.  

In summary, many developments effort have already started in hardware development, 

such as smart meters, CTA-2045 protocols, low-cost distributed energy sources, and reliable 

battery systems, for establishing interactions between the user and the grid. Although some 

limitations still exist, the progress on hardware offers more opportunities for improving the 

demand side adjustment. Although many open-source BMSs have been developed for home 

energy management, they have not been involved in real-time advanced control.  

1.2.4.3 Economic and social barriers 

Other deployment barriers for DRPs can be classified as economic and social factors. The 

economic factor (i.e., financial barrier), associated with the cost or benefits that the DRP can 

bring to homeowners or other stakeholders, is the most important factor since it is the key 

motivation for users to adopt the DRP. There are various forms of financial barriers: some users 

are informed of the time-varying price, but not directly informed of the cost reduction [29,31]; 
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some users concern about hidden fees after enrolling in DRPs [28,32]. To make cost savings 

clearer to those users, and eliminate their worries about hidden fees, in [32], the authors 

proposed a saving calculator for users in DRP. However, in [29], the authors mentioned that 

such calculation could be challenging, since the baseline, i.e., the consumption by a customer 

in the absence of a demand response event, is based on an estimation. In addition to the 

difficulty of estimating the baseline cost, it is also difficulty for the other stakeholders, who 

may have an impact on program implementation or further development, to accurately calculate 

the specific benefits they can gain from the DRP [30]. Therefore, the lack of clear 

understanding of the cost saving by homeowners and the benefits by these stakeholders may 

have negative impact on the short-term feasibility and long-term sustainability of DRPs. 

Social factor is mainly related to the human responses and interactions with the DRPs, 

and is of great significance since the operations of appliances (demand side operations) rely 

solely on the user’s intention [28,29,32]. Studies [29,31,32,47] indicate that the complexity on 

DRPs, whether due to the complicated of devices or operation, can be overwhelming or 

inconvenient for users, thereby providing a strong barriers for users to participate in DRPs. 

Moreover, in [28,48], the authors suggests that the bounded rationality [49], where users cannot 

always make rational decision, is another social factor may decrease the effectiveness of DRPs. 

This issue is particularly evident in user’s unwilling to change their consumption routine, such 

as charging electric vehicles at night time or using a dishwasher after dinner [50]. Therefore, 

ensuring respects to user’s time preference and simplify the complexity of DRPs are the 
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important considerations for the successful deployment of demand side management.  

1.3 Research Problem 

Residential buildings have a large potential on providing grid-service by load shifting and 

load generation flexibility under Demand Response Programs (DRPs) through proper energy 

management. Although significant progress has been made in hardware development, resulting 

in smart devices (including IoT devices) are available and affordable in residential buildings, 

enables more control opportunities. However, the advanced control for residential building 

home energy management is still in its early stage. Figure 1.4 summarizes the load-flexible 

resources in a residential building, highlighting that different appliances have unique 

operational characteristics. These distinctions, along with the current technological limitations, 

must be appropriately considered in the demand side management. In addition, beyond the 

technical barriers, economic and social factors also play an important role in improving the 

demand response efficiency. In summary, the knowledge gap is a lack of a systematic 

framework to establish a grid-interactive home automated energy management framework that 

can enable advanced optimal control and coordination among multiple flexible resources, 

provide more insights to different stakeholders, and be applicable for different residential 

buildings, under DRPs. More importantly, the HVAC system, which dominates energy usage 

in residential buildings due to space cooling and heating, is particularly complex. Developing 

a framework to conduct the user-driven optimal precooling or preheating and overcome the 

deployment barrier of the HVAC system is one of the main challenges of this home energy 
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management framework.  

 
Figure 1.4 Load-flexible resources, technologies, and their deployment limitations in residential buildings 

To fill these research gap, the following research questions are raised followed by the 

hypothesis on how to address each question.  

 

Table 1.2 Research questions and hypothesis.  

Primary Research Question:  

How can residential buildings be transformed into energy-efficient, cost-effective, and 

grid-interactive systems under a DRP by overcoming hardware, software, and 

social/economical barriers? 

Sub-research Questions: Hypothesis: 
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Q1: How can a home energy management 

system be facilitated in residential buildings in 

response to grid signals without the need for 

user’s inputs and knowledge?  

H1: The implementation of 

learning-based model in a home energy 

management framework can facilitate 

optimal operation of appliances in one 

and multiple residential buildings 

without the need for use’s input. 

Q2: Can the feasible solutions for 

conducting optimal operation such as optimal 

precooling in a residential building be 

implemented through smart thermostat? 

H2: The feasible solutions can be 

achieved by establishing learning-based 

models for appliances, implementing 

practical control based on an 

optimization framework, and developing 

remote control capabilities for the 

energy management planform.  

Q3: What are the key factors that impact the 

cost saving and demand flexibility of optimal 

precooling control under DRPs? 

H3: Numerous factors can influence 

the cost-saving and demand flexibility, 

therefore, to identify these key impact 

factors, both simulation study which 

allowed for controlled variables, and 

field test study which provide may 

provide insights into aspects difficult to 
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model in simulation are required.  

Q4: How can a home energy management 

framework be designed to incorporate user 

thermal comfort preference and appliance use 

time preference when optimally coordinating 

multiple appliances in residential buildings 

under DRPs?  

H4: To incorporate user preference 

in the home energy management 

framework, user thermal comfort and 

appliance usage time can be designed 

through understanding and learning user 

behavior patterns and applying multi-

objective optimization framework.   

Q5: What are the proper methods to 

quantify the energy flexibility potential of 

appliances in residential buildings that provide 

insights to different stakeholders such as 

homeowners and energy providers under DRPs? 

H5: The energy flexibility potential 

in residential buildings can be effectively 

quantified using different key 

performance indices tailored for the 

unique interests and needs of different 

stakeholders, and a single index might 

not adequately capture the benefits to all 

stakeholders.  

Based on current research and technology development, the following knowledge gap has 

found: 

1) Lack of an effective software platform that can enable advance control and operate 

with minimal user input. 
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2) Lack of low-cost hardware that does not require significant retrofits to conduct the 

advance control. 

3) Lack of field demonstration of MPC-based optimal precooling in multiple 

residential buildings under DRPs.  

4) No impact analysis for MPC-based optimal precooling based on filed test results.  

5) Lack of systematic algorithm to incorporate both user thermal comfort and 

appliance use time comfort when optimal coordinate multiple appliances under 

DRPs.  

6) Lack of quantification metric to evaluate the advance control performance that can 

provide valuable information to various stakeholders involved in demand response 

programs.  

Build upon previous discussion, the research hypothesis for each research questions are 

in the following. The primary research hypothesis in this study is that such a home energy 

management framework can be achieved by using the proposed framework including model 

development, control implementation, and post-analysis procedure in this dissertation to 

produce actionable instruction for home appliances control and to provide contextualized 

insights to different stakeholders. 

1.4 Dissertation Outline  

It is evident from the above discussion that there is a need for a home energy management 

framework that is adaptable to residential buildings, respects users’ thermal comfort and time-
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use preferences, provides differentiated performance indices for various stakeholders, and 

carry out in-depth impact analysis. This integrated framework forms the central theme of this 

study.  

The dissertation is divided into six chapters. 

• Chapter 1 provide an introduction and gap analysis of this study. 

• Chapter 2 describe the literature review. 

• Chapter 3 describes the development of different models for the HVAC system, 

water heater system and the PV power generation.  

• Chapter 4 is presenting the field study and simulation study of the MPC-based 

precooling in residential buildings and the impact analysis results.  

• Chapter 5 describes the development of a home energy management multi-

objective framework incorporating user preferences.  

• Chapter 6 includes conclusions and future work.  
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2 In-depth Literature Review 

2.1 Optimal Control of the HVAC System 

The HVAC system operation is one of the most important topic in demand side energy 

manage, this is because the spacing cooling and heating dominated the energy consumption in 

household [8,15], the rising market of smart thermostat [9], and the complexity of the HVAC 

system itself. A report which studies the response of representative 1300 California households 

to the price signal indicated that the household with spacing heating and air conditioners, 

responded most [26].  

2.1.1 HVAC precooling strategy and control methods 

As mentioned in Section 1.2.3, adjusting HVAC operation based on price signal, in the 

most of case refers to the precooling or preheating strategy, which take advantage of building’s 

own thermal mass, (also called passive thermal storage), has also been shown an effective 

strategy for building load shifting [51–55]. In a precooling strategy, an AC overcools space 

during off-peak hours to avoid expensive operation during on-peak hours because the building 

structure serves as passive thermal storage to prevent indoor air increase rapidly. Figure 2.1 

demonstrates two precooling strategy examples under DRPs. It can be seen from the figure, 

although the two strategies choose lower setpoints before the on-peak hours, the timing to 

precool and the specific setpoint choice are different.   
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Figure 2.1 Two precooling strategies under DRPs 

Previous literature has introduced many control methods for implementing precooling 

strategies, including rule-based precooling control [51,52,54], optimization pre-cooling control 

without feedback [53,55,56], reinforcement learning control [57,58], and model predictive 

control (MPC)-based optimal precooling control [59–66]. In rule-based control, the control 

signals are based on the pre-defined rule. Other than typical examples of precooling signals 

shown in Figure 2.1, the pre-defined rule can be flexible in precooling strategies in terms of 

setpoints and precooling time [54]. The optimization precooling control without feedback 

means the control signal of the HVAC system is obtained by solving the predictive model and 

the optimization problem in one shot. In general, the solution to the optimization problem 

decided the optimal time to start the cooling or heating process of the HVAC. Notice that, most 

of the optimization solutions for the precooling studies in residential buildings are the on/off 

signals for the HVAC system, but in some literature, such as [53], the solution is the setpoint 



 

 

 

 

25 

of the AC which is achieved by using the linear approximation of the relationship between the 

thermal mass characteristics and setpoint. The reinforcement learning is a type of machine 

learning control strategy where the agent are iteratively train to make sequential decisions in 

given environment to maximize the cumulative rewards [67]. In the precooling application, the 

reinforcement learning agent interact with current environments such as indoor air temperature, 

humidity, occupancy, system status, take sequential actions such as on/off signals or setpoint 

choices over time, and maximize the cumulative rewards based on cost saving or other 

objectives [57,58]. The MPC control, whose concepts is shown in Figure 2.2, is based on the 

optimization control but in iterative way. The MPC predicts future outputs of a system over a 

finite receding prediction horizon through a system model, determines control signals through 

optimization over a control horizon based on the predictions, time-variant inputs, and system 

feedback, and repeats the predication and optimization for every iteration [68,69]. 

 
Figure 2.2 Prediction horizon, control horizon and timestep for MPC  

The rule-based control and optimization control without feedback cannot incorporate 
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complicated, uncertain dynamic, and time-varying disturbances in the HVAC system into 

decision-making. Furthermore, reinforcement learning requires a large number of training 

scenarios to make optimal decisions [70]. MPC has been proposed to solve many HVAC system 

control problems already [66,71,72]. Compared with PID controller [73], rule-based controller 

[74], and reinforcement learning [70], MPC controller shows the more robust and stable 

operation and meanwhile achieves better energy and comfort performance in the HVAC system 

applications. In summary, MPC provides a more efficient control solution for optimal pre-

cooling [75,76]. However, as the name implies, the predictive model is the core for the MPC 

control. In building operation, the model used in MPC must be able to capture the thermal 

dynamics of the building and therefore is often referred to as a thermal model. Therefore, an 

accurate and efficient thermal model, along with a computationally economical optimization 

framework, is essential to run MPC for control purposes. 

Table 2.1 Advantage and disadvantage of major control strategies on implementing 
precooling  

Precooling Control  Advantages Disadvantages 

Rule-based  
Simple; 

Easy to implement; 

Hard to determine the 

specific timing and 

setpoint for precooling; 

Cannot incorporate with 

outside disturbance 
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Optimization no 

feedback 

Optimal or near optimal 

solution 

 

Cannot incorporate with 

outside disturbance. 

Rely on prediction model; 

Reinforcement learning 

Learning by interaction 

rather than model or 

data; 

Can explore the complicated 

solutions; 

Long time interaction 

needed to explore the 

environment; 

Retraining needed if 

environment change 

 

Model Predictive 

Control  

Robust and stable optimal 

solution; 

Feedback control; 

Rely on prediction model; 

2.1.2 Current MPC-based precooling controller issues 

Although an MPC controller can be a promising solution to implement precooling, its 

implementation and assessment are still difficult. First of all, quantification the effectiveness 

of the MPC controller is naturally challenging. Due to the fluctuation and non-recurring 

external disturbance, including the weather conditions, quantifying the pre- and post- 

implementation of MPC controller is hard. As mentioned in Section 1.2.1, when investigating 

the DRPs benefits, the cost reduction or other benefits are hard to evaluate, due to the hardness 

of quantify the baseline consumption. It is impossible to repeat the same external disturbance, 
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especially for the outside weather disturbance, hence it is very difficult to evaluate what would 

have occurred [77]. Additionally, although retail-level DRPs is entirely depending on demand-

side operation, many stakeholders such as homeowners, grid operator, and utility companies, 

can all benefit from it, which raise the higher standards for MPC precooling result 

quantification [78]. However, majority of studies only evaluate the effectiveness of MPC by 

using the value of objectives .   

The performance of MPC controller can be affected by many different factors, making it 

even harder to conduct the impact analysis. Many impacts analysis studies of MPC controller 

are based on simulation studies. In [79], the impacts of weather conditions, home thermal 

conditions, prediction horizon, price structure, and rated cooling capacity on the MPC 

controller were investigated using MATLAB simulation by assuming the model had perfect 

temperature predictions. In [62], MATLAB simulations were performed to investigate the 

impacts of different TOU structures and tradeoff coefficients between comfort and cost. In [70], 

the authors conducted MPC study through co-simulations in EnergyPlus based on 500 

buildings and discussed the impact of climate, floor size, and building age on energy saving 

and thermal comfort. Since MPC controllers require the feedback of the system to make future 

operation decisions, the impact analyses in the simulation studies used the one provided by 

virtual testbeds, such as EnergyPlus [70], or TRNSYS [72], which do not represent real 

building dynamics precisely.  

Even though there are a few studies found implemented the MPC precooling controller in 
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field tests [59,60,80], they have limitations to some extent. A laboratory building mimicking a 

residential building was tested to evaluate the load-shifting potential with a geothermal heat 

pump and water tank [62], where the MPC controller signal was obtained from simulation and 

then implemented in the laboratory building. Although the MPC controller did not use actual 

feedback from the system, it enabled load shifting and saved 25%-35% in electricity cost. In 

[63], two different economic MPCs, i.e. operation costs were included in the MPC optimization 

objective function, were implemented for heating tests in a residential building, where the heat 

pump and the PV panel in the tests were installed virtually. Compared with the simulated rule-

based controller, the MPC controllers were proven to obtain 3-7% cost savings and increase 

energy flexibility. Although MPC controllers are effective for cost savings and load shifting, 

the previous studies reported additional sensors or controllers were needed, adding additional 

cost and installation effort. Only one study was found in multiple residential buildings for 

impact analysis, where an MPC controller was implemented for improving heating efficiency 

[81]. The authors adopted a neural network approach to construct the thermal model for space 

heating in ten different residential buildings in Switzerland and Germany. In this study, a NiQ 

system, which includes a controller and a set of sensors, was custom-made and installed in each 

home to performance the MPC operation. Given the limitation presented by experiments, only 

the effect of outdoor air temperature impact on energy reduction was investigated by 

periodically alternating between the MPC controller and reference controller under similar 

conditions and filtering out abnormal days. About 1.8kWh extra daily energy was concluded 
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for each degree of daily average outdoor air temperature reduction in one single-family house 

in Brugg. The impact analysis of MPC-based precooling controllers in residential buildings is 

limited due to the difficulties of implementing it considering high computational demand of 

the MPC and lack of advanced control system in residential buildings.  

2.1.3 Possible solutions for MPC-based precooling controller 

Widespread use of the Internet of Things (IoT), including smart thermostats, provides an 

opportunity for the implementation of advanced control without prohibitive expenses. In [82], 

the authors reviewed the application of IoT devices in smart homes and pointed out IoT is an 

intelligent solution for small residentials. Therefore, to investigate the impact of the 

aforementioned factors on an MPC-based precooling controller, an implementable MPC-based 

precooling agent through the smart thermostat is developed in this study. The development of 

such MPC control agent requires an efficient thermal model and optimization approach. A grey-

box model approach with an efficient parameter identification approach is proposed. The gray-

box model is formulated using system knowledge and therefore has a greater chance to generate 

reliable predictions even if the operational condition for prediction is beyond the condition of 

the training data or the training dataset is limited. In addition, the grey-box model is usually a 

model based on differential equations with a simpler model structure, which allows the mixed-

integer linear programming (MILP) technique [83] to solve the optimization without the use of 

computationally expensive exhaustive optimal search methods.  

The complicated quantification of benefits of MPC controller due to the complicated 
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environment including the rapid outside weather changes and the variation of the stakeholder 

can be solved by using weather clustering algorithm and multiple key performance indicators 

(KPIs). The weather condition is a complicated factor due to its inherent variability and higher 

dimension. Using a single point, such as daily average outdoor air temperature, as a factor 

affecting AC energy consumption is too simple while using all weather conditions can result in 

over complex analysis. Weather clustering, which merges similar weather conditions into one 

variable, is required in the result analysis. Additionally, optimal precooling is sensitive to the 

time of the day, making many available clustering algorithms focusing on values rather than 

similar shapes of subsequences of time series data not appropriate. Therefore, two matrix-

profile based algorithms are modified and combined for multi-dimensional (including 

temperature, humidity, and solar irradiation) weather pattern clustering. To further investigate 

which homes or operation conditions provide more energy flexibility with the proposed MPC 

agent, in addition to the cost reduction, a flexibility factor that quantified the load shifting 

ability is employed in impact analysis across multiple homes.   

2.2 Smart Home Energy Management (Home-EMS) System 

In a smart home energy management (Home-EMS) system, thermal appliances often 

account for most of the building’s electricity consumption; additionally, they have a direct 

impact on human comfort. It is critical to incorporate them into the Home-EMS. In [84–86], 

the researchers implemented the optimal HVAC operations derived by several control 

algorithms. Their findings demonstrate that a 9%-20% cost savings under the time of use (TOU) 
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rate can be realized while maintaining a reasonable room air temperature bound when 

compared to baseline cases. However, these studies mainly focused on HVAC systems and 

ignored consideration of the smart home environment. Integrating thermal and non-thermal 

appliances is critical for Home-EMS because one appliance's electricity consumption limits the 

energy consumption of another, and thermal appliances cannot be turned off for a long time 

without compromising thermal comfort. Hence, their interaction should be considered together. 

[87–89] integrated the HVAC system with several appliances and considered the dynamic 

model of HVAC system. However, the studies cited above did not consider the process of 

system identification before to using the HVAC model. Unlike washing machines and dryers, 

the energy consumption of the HVAC system is determined by the house's thermal dynamic, 

which is influenced by a variety of factors, including the house's thermal characteristics and 

the outside weather. The system should be identified in advance so that the optimal control 

algorithm can be automated across different buildings subjected to varying weather conditions. 

All the studies cited previously do not incorporate photovoltaic and battery storage into the 

Home-EMS. 

[11]–[15] included solar panels and a variety of household appliances into their scheduling 

model. In [90], the author evaluated a photovoltaic (PV)-battery system integrated with an 

electric vehicle (EV) and an electric heater, and addressed the smart house optimization 

problem using a genetic algorithm (GA) called the shuffling frog jumping method (SFLA). In 

[91], the researchers classified the load on home appliances into three categories: flexible 
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interruptible load, flexible uninterruptible load, and rigid load, and used the GA to solve the 

optimization problem and minimize the utility bill. In [92], the optimization problem has two 

objectives: minimize the peak load, and minimize the utility bill, the problem was solved as 

MIP by using YALMIP. In [93], the researchers considered a home energy generation including 

a solar panel, a wind turbine, and a battery system. The smart home scheduling problem are 

solved by modified NSGA II in this study. The researchers in [95] pointed out that the study in 

[93] did not take into account the uncertainty associated with the load and the coordination of 

numerous residences. The study considered the multiple houses that share the PV generation. 

While [11]–[15] could be practical to the SHEM but none of them considered the dynamic of 

the HVAC system. Table 2.2 is the summary of the features of the scheduling models for 

aforementioned studies. The notation "X" indicates that the researcher considered 

correspondence appliances when conducting their study. We observed from the "Method" 

columns that, although there is debate about the efficiency of GA in solving these types of 

optimization problems, some genetic algorithms are still popular, particularly for the GA that 

involving multiple objectives. Multiple words with different arrows in the "Objective" column 

indicate that their model incorporates a multi-objective framework. Although the author 

considered both homeowner’s thermal comfort and the utility bill, in [86], the author was 

simply combining two objectives together and thus treating it as a single objective problem.  

Table 2.2 Summary of SHEM Scheduling Models 
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Reference

s 

P

V 

Batter

y 

HVA

C 

Water 

Heate

r 

Non-thermal 

Appliance

s 

HVAC 

Dynami

c 

Method Objective 

[96]         X   MIP  Cost 

[85]     X       PSO   ↓Cost, ↑Comfort 

[86]     X       GA ↓ (Cost – Comfort) 

[97]         X   NSGA II  ↓Cost, ↑Comfort 

[93] X X X X X   Modified NSGA 
II 

 ↓Cost, ↑Comfort 

[98]       X X   Compromise 
Programmin

g 

 ↓Cost, ↑Comfort, 
↓Inconvenienc

e 

[88]     X X X X MIP  ↓Cost  

[87]     X   X X(ARX) MIP ↓Peak Load 

[89]     X   X X MIP ↓Cost 

[90] X X   X X(EV)   GA ↓Cost 

[95] X X   X X   (Stochastics) 
MIP 

↓Cost 

[91] X X X X X   GA ↓Cost 

[92] X X X X X   MIP ↓Peak Load, ↓Cost 

Legend: ↓: Minimize, ↑: Maximize, MIP: Mixed Integer Programming, GA: Genetic Algorithm, PSO: 
Particle Swarm Optimization, ARX:  

Although several studies have focused on the Home-EMS, many of them either focus on 

individual components such as PV or HVAC systems. In contract, this study integrates various 

components including PV, battery, the HVAC system, the water heater, and the flexible load 

such as clothes washer. Furthermore, while the trade-offs between cost and comfort have been 

discussed in previous works, these studies often do not sufficiently take into account realistic 
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user behavior. Particularly, user may wish to reduce their utility bill through the energy 

management system but prefer to do so without changing their existing usage patterns. This 

includes the user might have preferences on appliance use time, water use, and the preferred 

setpoint. The proposed energy management framework takes into account these user 

preferences and offers a more realistic simulation scenario.   
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3 Load-flexible Resources Modeling in Residential 

Buildings 

3.1 Introduction 

In predictive control and scheduling algorithms, the model, which is used to predict the 

system behavior, directly determines the effectiveness and robustness of final decisions, and 

therefore improving its accuracy is a focal point in this research. In general, there are four 

aspects contributes to establish an accurate model, including selecting an appropriate model 

type, attaining a thorough understanding of the energy and information transmission in the 

system, using an effective training method, and collecting high-quality training data. However, 

it is less economical or infeasible to achieve perfection in all four aspects. This chapter 

describes complete modeling procedures of load-flexible resources including the HVAC 

system, water heater system, and PV. In the following sections, we first conduct the four aspects 

mentioned above, while considering some barriers in current states, and finally validating 

proposed models in real-world operation data obtained from a Lab House and open datasets.  

3.2 Model Type Selection for Load-flexible resources in a Home 

A model, which is a mathematical representation to describe the transfer of mass, energy, 

or information between systems, in general includes tree main branches: a white-box model, a-

black-box model, and a gray-box model [99]. The white-box model is typically has known 

model structure and known parameters, the black-box model, which aims to build a general 

function governing the input-output behavior of the system, usually has no clear model 
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structure and unknown parameters, the gray-box model, which lies between white-box and 

black-box model, usually has known model structure and unknown parameters. The gray-box 

model, depending on the assumption of model structures, can be further divided into the light 

gray-box and dark-gray box model [99]. In [99], dark-gray box model refers to the 

neuron/fuzzy model, where the expert knowledge is required in model training process, making 

the model development is limited by human thinking. Therefore, in this study, only light gray-

box model will be discussed. Table 3.1 shows the model characteristic and their applications in 

this study. 

Table 3.1 Model characteristics [99] and their application in this study  

Model Characteristics Examples 
Application in this 

study 

White-box 

model  

Physical laws known;  

Parameters known 

Linear/non-linear 

differential equations  

Electrical 

appliances; Battery 

Light-gray box 
Physical laws known;  

Parameters unknown 

Differential equations 

with known parameters; 

polynomial regression 

Passive and active 

thermal storage 

Black-box 

Input/output 

governing function; 

Assumption of a 

model structure  

Deep learning models; 

Ensemble models 
PV panel generation 
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Light gray-box models are used in this study to describe the thermal dynamics of homes 

which related to the HVAC system and the thermal dynamics inside a tank which related to the 

water heater. There are three motivations for developing light gray-box model to describe the 

dynamics of thermostatically resources. First, a gray-box model for HVAC applications and 

water heater applications typically requires less effort to learn than a white-box model [100]. 

Second, because it is partially physics-based, a gray-box model also generally yields more 

accurate prediction than a black-box model, especially in operating regimes where they are not 

trained [65,101]. This feature can be very useful in developing a model for control purposes 

since the control operation usually is different from the operations in the training dataset. 

Finally, the light gray-box model describes the physical process rather than general input-

output relationship, making the model adjustment easier when additional processes need to be 

included (e.g., coupling effect between the water heater and clothes washer occur). 

While the light gray-box model has many advantages, it is not suitable for modeling every 

load-flexible resources in homes. The parameter identification process makes the light gray-

box are not suitable for modeling the electrical appliances or battery. These on/off or 

(dis-)charging behaviors do not rely on complicated thermal dynamics, but rather on their own 

specifications, which can be easily found from information provided by the users or 

manufactures. Therefore, in this study, the white-box model is used to model electrical 

appliances and batteries. Besides, the light gray-box model is often simplified or generalized 

model of physical reality, and its capability is limited in a system that is inherently variable, 
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such as a distributed PV panel system. In contrast, the black-box model is often more suitable 

in handling these complicated input output relationships. In the following section, the HVAC 

system, the water heater system, and the PV panel generation are introduced due to their 

modeling development complexity. On the other hand, the characteristics of battery and 

electrical appliance are direct inputs to the optimization framework in Chapter 5 due to their 

white-box model are relatively simple and straightforward. 

3.3 HVAC Modeling and Parameter Identification Approach  

3.3.1 Reduced-order RC-based gray-box model of home thermal dynamics  

The home thermal dynamics involves several heat and mass transfer processes, including 

heat transfer through opaque building envelope, solar radiation through windows (or other 

transparent elements in homes), infiltration through cracks of windows or doors, and internal 

heat gains caused by people, lights, and equipment. A RC network model, which mainly models 

the thermal energy flow driven by temperature difference (thermal resistance), and the ability 

of a building to store energy (thermal capacitance), is a widely used simplified model to 

describe these heat and mass transfer processes in building [102]. In this paper, a second-order 

resistance-capacitance (RC)-based gray-box model is used to describe the thermal dynamics of 

a home, as shown in Figure 3.1.  
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Figure 3.1 Schematic of the RC network of home thermal dynamics  

Based on Figure 3.1, the second-order RC-based model is given by: 

𝐶#$
𝑑𝑇%$
𝑑𝑡 =

(𝑇& − 𝑇%$)
𝑅#$

+
(𝑇%' − 𝑇%$)

𝑅(%)
 (1) 

𝐶(%)
𝑑𝑇%'
𝑑𝑡 =

(𝑇%$ − 𝑇%')
𝑅(%)

+ 𝑄*&# +
(𝑇& − 𝑇%')

𝑅+
+ Q," + Q-, (2) 

where 𝑡 denotes time; 𝑇%$ , 𝑇%', and	𝑇& are the interior wall surface temperature, indoor air 

temperature, and outdoor air temperature, respectively; 𝑅#$ 	𝑎𝑛𝑑	𝐶#$ 	𝑎𝑟𝑒  the thermal 

resistance and thermal capacitance of the lumped envelope, which includes but not limited to 

external wall, roof, ceiling, floor, interior wall, window and outside air of the building; 

𝑅(%) 	and	𝐶(%) are the thermal resistance and thermal capacitance of the air; 𝑄*&# 	represents 

the heat transfer rate introduced by solar irradiation acting on the indoor space; 𝑅+ represents 

the variable convective thermal resistance associated with the infiltration of building, whose 

value depends on cracks of the building, wind speed, and outside air temperature; 𝑄./  
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represents the cooling output of the AC; 𝑄0	is the internal heat gain contributed by people, 

lights, and equipment 	

The second-order RC-based model is also called 2R2C model. RC networks of various 

orders have been widely used to model building thermal dynamics (e.g., 1R1C in [58], 3R2C 

plus 2R2C in [103], and 6R2C model [104]). For residential buildings, it is believed that 2R2C 

model has the best trade-off between model accuracy and implementation cost: a first-order 

model, although simpler, would not be able to effectively separate the indoor air temperature 

dynamics (that usually respond faster to external changes) from the interior wall surface 

temperature dynamics (that usually respond slower). In contrast, a higher-order model, 

although could be potentially more accurate, would require more sensors to measure its states.  

3.3.2 2R2C parameter identification approach  

To clearly express the relationship between home thermal dynamics, weather conditions 

and AC on/off signal, and make the parameter identification easier, (1) and (2) are converted 

into:  

𝑑𝑇%$
𝑑𝑡 =

1
τ1
(𝑇& − 𝑇%$) +

1
τ2
(𝑇%' − 𝑇%$) (3) 

𝑑𝑇%'
𝑑𝑡 =

1
𝜏3
(𝑇%$ − 𝑇%') +

1
𝜏3
(𝑎1𝑆 + 𝑎2𝑆2) +

1
𝜏3
(𝑇& − 𝑇%')(𝑏1𝑊 + 𝑏2𝑊2)

+
1
𝜏3
(𝑐1𝑇& + 𝑐2𝑇&2)𝑢, 

(4) 

where 𝑆  is the solar irradiation, 𝑊  is the wind speed, and 𝑢  is the AC on/off signal. 

Equation (3) and (4) contain a total of nine unknown parameters: 𝜏1 is the time constant of 
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the building envelope; 𝜏2 is the coefficient associated with the thermal resistance of air and 

thermal capacitance of the building envelope; 𝜏3	 is the time constant of the indoor air; 

𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2 are coefficients representing the impact of solar irradiation, wind speed, 

and AC output, respectively. In (4), we only use the outdoor air temperature as the dependent 

variable of the output of the AC system (containing one outdoor unit and one indoor unit), i.e., 

1
4!
(𝑐1𝑇& + 𝑐2𝑇&2)𝑢 . Although the indoor air temperature, which can be considered as the 

evaporator inlet temperature, may also affect the AC output, we neglect the impact of the wet 

bulb temperature of indoor air due to its smaller variation compared with the outdoor air 

temperature and the willing to keep Equation (4) linear. 

To identify the unknown parameters in (3) and (4), we first discretize these two equations 

and then consider the optimization problem with the following objective function:  

min
5

= K L𝑇%'6 − 𝑇%',8$*6 M2 + L𝑇%$6 − 𝑇%$,8$*6 M2
.:"#$%&

6;1

 (5) 

where 𝑃 = {𝜏1, 𝜏2, 𝜏3, 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑐1, 𝑐2} , 𝑇%'6  and 𝑇%$6 	 represent the indoor air 

temperature and the interior wall surface temperature at time step 𝑘, and 𝑇%',8$*6  and 𝑇%$,8$*6  

are their measurements, 𝑁<=>?@ represents the total number of time steps in the training dataset. 

The constraints of the optimization problem are: 

𝑇%$6 =
Δ𝑡
τ1
L𝑇&6A1 − 𝑇%$6A1M +

Δ𝑡
τ2
L𝑇%'6A1 − 𝑇%$6A1M + 𝑇%$6A1	for	𝑘 = 2,… .𝑁<=>?@ (6) 
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𝑇%'6 =
Δ𝑡
τ3
L𝑇%$6A1 − 𝑇%$6A1M +

Δ𝑡
τ3
L𝑎1𝑆6A1 + 𝑎2𝑆6A1

'M

+
Δ𝑡
τ3
L𝑇&6A1 − 𝑇%'6A1ML𝑏1𝑊6A1 + 𝑏2𝑊6A1'M

+
Δ𝑡
τ3
W𝑐1𝑇&6A1 + 𝑎2𝑇&6A1

'
X 𝑢 + 𝑇%$6A1for	𝑘 = 2,… .𝑁<=>?@ 

(7) 

𝑎1 ≥ 0 (8) 

𝑎2 ≥ −0.5𝑎1 (9) 

𝑐2 ≥ 0 (10) 

𝑐1 ≤ −120𝑐2 (11) 

𝑐1 ≥ −140𝑐2. (12) 

Here, (6) and (7) are obtained from (3) and (4) by discretization using the forward Euler 

method. (8)-(12) are added to ensure the identified parameters are realistic, which we now 

explain in detail. 

The Constraints (8) and (9) are motivated by the fact that the solar impact 

1
4!
(𝑎1𝑆 + 𝑎2𝑆2) to temperature dynamics should always be a positive, increasing function in 

solar irradiation 𝑆, from 0 to 𝑆8(B (maximum solar irradiation). Among all parabolas defined 

by 1
4!
(𝑎1𝑆 + 𝑎2𝑆2), which are demonstrated in Figure 3.2 (a), only the red or green solid curve 

satisfies this fact. We then have inequalities 𝑎2 ≤ 0 and A((
2('

≤ 0 (green curve), or 𝑎2 ≥ 0 

and 	A((
2('

≥ 1  (red curve since solar irradiation is normalized). This leads to constraints 

(𝑎2 ≥ 0 ∧ 𝑎1 ≥ 0) ∨ (𝑎2 ≤ 0 ∧ 𝑎1 ≥ −2𝑎2) , where ∧  meaning "and", ∨  meaning "or." 
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However, a logical "or" constraint may require introducing new variables in the optimization 

problem formulation. Fortunately, a reformulation is possible in this case. As shown in Figure 

3.2(b), the union of green and red areas (associated with the green and red curves) is also the 

intersection of two gray-shaded areas on the right (𝑎1 ≥ 0 and 𝑎1 ≥ −2𝑎2), which leads to 

Constraint (8) and (9).  

 
(a) The solar impact verses the solar 

irradiation  
(b) Cone of the feasible 𝑎!, 𝑎" is the union of green and red shaded area 

(left) or the intersection of two gray areas (right). 

 
(c) Possible shape of the quadratic equation for AC output. 

Figure 3.2 Physics constraints explained for system identification process. 

The Constraints (10)-(12) are motivated by the fact that the AC output impact 

1
4!
(𝑐1𝑇& + 𝑐2𝑇&2)𝑢  to the temperature dynamics should always be a negative, increasing 
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function in outdoor air temperature 𝑇&  from 70℉ to 120℉ (light green shaded area), the 

typical summer outdoor air temperature condition. This is because once the outdoor air, which 

can be considered as the air entering the condenser, gets higher, the condensation temperature 

gets higher, reducing the AC output. As shown in Figure 3.2(c), the red curve satisfies this fact, 

which leads to Constraints (10)-(12).   

3.3.3 HVAC system power estimation 

In Section 3.3.2, we have discussed the modeling of the thermal dynamics of homes, i.e., 

the model describes the heat transfer between the outside environment, building envelope, and 

indoor space. Although modeling such dynamics is a crucial part of understanding the behavior 

of the HVAC system, we also need to consider other parts of the HVAC system—its power 

estimation. In this section, we will discuss the modeling of the HVAC system power 

consumption, which is an important procedure for achieving minimum energy or cost in 

optimal control.  

In general, a common AC system in a residential building consists of an outdoor unit and 

an indoor unit, where the power of the indoor (𝑃indoor) unit is relatively constant and the power 

of the outdoor unit (𝑃outdoor) may affected by two factors: the wet bulb temperature of the air 

entering the evaporator, and the temperature of the air entering the condenser. If the outdoor 

unit is placed in the outdoor and the indoor unit is placed inside the building, the indoor air can 

be considered as the air entering the evaporator and the outdoor air can be considered as the air 

entering the condenser. Therefore, 𝑃outdoor  is a function in 𝑇%',J$K  (indoor air wet blub 



 

 

 

 

46 

temperature) and 𝑇& (outdoor air temperature). However, same as the reason for only use the 

outdoor air as the dependent variable of the AC output to the temperature dynamics, we neglect 

the impact of 𝑇%',J$K. In this study, we conduct third-order polynomial regression to estimate 

the outdoor unit power and constant value for indoor air unit power:  

PHVAC	 = 𝐴1𝑇&	 + 𝐴2𝑇&	
' + 𝐴3𝑇&	

! + 𝐴Q + 𝑃?@RSS= (13)  

3.4 Water Heater Modeling 

3.4.1 Reduced-order RC-based gray-box model of water heater thermal dynamics  

Besides electricity, water is another important medium that connects energy consumption 

in a residential building. For example, a clothes washer withdraws hot water from a hot water 

tank; a hot water tank releases heat to the indoor space, air temperature of which is determined 

by the HVAC system. Therefore, a model that can provide accurate prediction and capable to 

be easily modified to adjust to different physical scenarios (e.g., coupling effects), such as the 

RC network model used in this study, is a popular choice for water heater modeling [105–107].  
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Figure 3.3 Water heater heat and water flow 

Figure 3.3 demonstrates energy and water transfer from the water tank to the environment. 

Additionally, it is assumed the water heater is exposed to the indoor air temperature, and the 

changing indoor air temperature 𝑇%' influences the thermal leakage of the hot water tank. Let’s 

use 𝑡 denotes time, the first-order RC-based gray-box water heater model is as following:   

𝐶JT
dTUV
dt =

1
RUV

(𝑇)&&8 − 𝑇JT) + ρ𝐶W𝑊(𝑇%'#$K − 𝑇JT) + 𝑄JT ,	 (14) 

Where 𝑇JT is the temperature of the water inside the tank; 𝑅JT is the thermal resistance 

of the water heater (equals to 𝑅/𝐴 where R refers to a common used measure for thermal 

resistance of water heater, called R-value, and A refers to the water tank surface area); CJT is 

the thermal capacitance of the water heater, which equals to ρ𝐶W𝑉, and ρ, 𝐶W, 𝑉 refers to the 

density of water, the specific heat of water, the tank volume, respectively; In this study, we 

assume that once the hot water is withdrawn, cold water with temperature 𝑇%'#$K	will enter the 

tank, and here we assume that 𝑇)&&8	  represents the indoor air temperature, which also equals 

𝑇%'	  for the HVAC system; 𝑄JT is the power consumption of the water heater.  

3.4.2 Parameter identification for water heater model 

Since the water heater system has a simpler heat transfer process (i.e., it is first-order and 

has less variables) than the HVAC system, a Least-square method is used in the training process.  

Before introduced the formulation of Least-sqaure method, let’s 𝑘 denotes time step, and 

the first-order RC-based gray-box water heater model is given by: 
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!!"
# "!!$

#%&

∆	%
= &

'
"𝑇()*"& − 𝑇+,*"&% +

	&
-
𝜌𝐶.𝑊"𝑇()/0%*"& − 𝑇+,*"&% +

&
-
𝑄+,*"&		for	𝑘	 = 	2, …𝑁, 	 (15) 

where 𝛼	 refers to an unknown parameter equals to 𝐶JT𝑅JT , 𝛽  refers to an unknown 

parameter equals to 𝐶JT, and 𝑁	refers to the number of training data points. Equation (15) can 

be rewritten into a form of 𝑋β = 	𝑌:  

 

(16) 

where the Least square solution is (𝑋X𝑋)A1𝑋X𝑌.   

3.5 Short-term PV Power Generation Prediction   

In this section, the methodology of the ensemble framework to forecast short-term PV 

power generation is discussed. One of the most popular implementations of Gradient Boosting 

Decision Tree, LigthGBM, is adopted to forecast PV power generation. Compared to other 

machine learning or deep neural network models, LightGBM uses less memory and usually 

has a higher training efficiency [108]. Figure 3.4 shows the schematic outline of the prediction 

framework. First, the residential PV generation and the metrological dataset are collected from 

different data sources (data sources will be introduced in Section 3.6). Then, original data are 

preprocessed, and features are calculated. In this process, a training and a test dataset are 

carefully split. Next, the SHAP value then used to conduct a feature selection. Further, a grid-

search method and a k-fold validation are employed to optimize the hyperparameters. Finally, 

the tunned model will be evaluated using the test dataset.  
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Figure 3.4 The schematic diagram of PV power generation prediction  

3.5.1 Data preprocessing 

In this study, six-month datasets of a residential rooftop PV power generation and the 

historical metrological dataset are obtained from the data sources. To make the proposed 

automation system work as soon as possible after installation, a random continuous three days 

of each month are selected as the test dataset, which mimics any time of the year that the 

automation system is installed, whereas the previous two-month data of this randomly selected 

days are used for training and validating the developed model. Weather forecast is the only 

input of this model, and the output of this model is the PV power generation in Watt.  

Since the PV power generation dataset is collected from a real system, it is necessary to 

preprocess some abnormal data that may be caused by system or sensor faults before training 

the model. First, the days with no observable solar but still has PV power generation are 

removed (the rare case that the PV panel still have small currents generated through thermal 

effects or other mechanism are neglected). Afterward, the days with almost constant PV power 

generation throughout the day are filtered out, utilizing the fact that very small standard 
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deviations in PV power generation within a whole day of such days may occur (i.e., “no change” 

in generation throughout the day under normal solar radiation).  

3.5.2 Feature selection 

The original meteorological dataset (input dataset) includes a total of ten different 

parameters such as air temperature, global horizontal irradiance (Ghi) and wind speed. In 

addition, time information includes hours, months, years and seasons of the forecasted days are 

calculated based on the given timestamps and are added into input dataset as well. Among these 

meteorological parameters, wind direction in units of degrees may not be a good model input. 

For example, the model may treat 0° and 360° differently but they represents the same 

meaning in reality. To make the model easier to understand this input dataset, the wind vectors 

𝑊B and 𝑊Y are calculated by using the following equations: 

𝑊B(𝑡) = 𝑊(𝑡)	𝑐𝑜𝑠Lθ(𝑡)M (17) 

𝑊Y(𝑡) = 𝑊(𝑡)	𝑠𝑖𝑛Lθ(𝑡)M (18) 

where θ(t) and 𝑊(𝑡) represents the wind degree and wind speed at time 𝑡.  

The train dataset mentioned in Section 3.5.1 is then divided into the first 80% as training 

set and the last 20% as validation dataset for feature selection purpose. Since the training 

dataset is in less than a two-month period, it is necessary to eliminate irrelevant features to 

prevent overfitting issue. A state-of-the-art feature explanation approach called Shapley 

Additive exPlanations (SHAP), which is based on cooperative game theory and is first 

proposed by Lundberg and Lee [108], is utilized in the feature selection stage. The SHAP 
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explains the contribution of each feature to the prediction in each data point. Since SHAP 

conducts the calculation based on the model, it is less sensitive to input features, even if they 

are correlated with each other (e.g., air temperature and hour of the day in this case). The details 

information and of SHAP and its application on energy estimation can be found in [108–111], 

respectively. Finally, the features corresponding with top ten mean absolute SHAP values are 

selected.  

3.5.3 Hyperparameter tunning  

To investigate the best lightGBM model, the grid search method is used to find out best 

hyperparameter combination and K-fold cross validation is used to validate the model 

performance. The hyperparameters tested in the grid search method are n_estimator represents 

the number of boosting iterations (i.e., number of trees) that will be performed; max_depth 

represents the maximum depth of the decision trees in the training; num_leaves represents the 

maximum number of leaves in one tree; and learning_rate represents the step size taken during 

the algorithm updates the weights of the model. Table 3.2 shows the possible values of each 

hyperparameter, and 72 (2× 3 × 4 × 3 = 72) combinations of hyperparameter are tested in the 

grid search.  

Table 3.2 Possible values of hyperparameters used in the grid search 

n_estimators [100,200] max_depth [10,20,40] 

num_leaves [50,100,150,200] learning_rate [0.05,0.1,0.2] 

Due to the size of the training dataset is limited, the K-fold cross validation is used to 
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estimate each hyperparameter combination. By further dividing the whole train set into K-

partition and selecting each partition as the new testing dataset and the rest as the new training 

dataset, the K-fold cross validation makes full use of the whole training dataset (two-month 

period) and meanwhile prevent the possible information leakage occur when using a fixed 

validation set [112]. Through iterations of all hyperparameter combinations in grid search, the 

average performance score for each combination (i.e., the average of the performance scores 

each K-fold test) will be recorded and compared, and the hyperparameter combination with the 

highest (or lowest) performance score will be selected as the best hyperparameter. In this study, 

the performance of the lightGBM is evaluated based on the root mean square error (RMSE): 

𝑅𝑀𝑆𝐸 = v1
𝑛 Σ

%;1

'
(𝑦% − 𝑦Zx)	, (19) 

Where 𝑛 is the number of data points, and 𝑦% and 𝑦Zx  are the actual and predicted PV power 

generation.  

3.6 Model Validation 

In this section, we present the model validation results. Firstly, a data acquisition system 

is introduced for a lab house located in Norman, Oklahoma, and then the HVAC system 

parameter identification results are included. Next, the procedure of retrofitting an electric 

water heater into a smart water heater is presented and the parameter identification results of 

the retrofitted water heater are also demonstrated. Finally, due to practical constraints, we 

validated our PV model using a real operation dataset collected from an open dataset.    
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3.6.1 The Lab House and data sources 

The Lab House is in Norman, OK, as shown in Figure 3.5 (a). It is a single-family, one-

story home with a floor area of 1,658 ft2, built in 1940. The home is equipped with 3.5 tons 

(42,000 Btu/h) of cooling capacity, 3 tons (36,000 Btu/h) of indoor unit, and 1,400 cfm of air 

flow rate. As shown in subplots (b) and (c) in Figure 3.5, the outdoor unit locates at the 

backyard of the Lab House and the indoor unit locates at the attic. 
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Figure 3.5 Lab House information: (a) outside view of the front of the Lab House (b) an outdoor unit in the 

back yard of the Lab House (c) an indoor unit in the attic of the Lab House  

3.6.1.1 HVAC system data acquisition 

The floor plan of the Lab House and the sensor locations is demonstrated in Figure 3.6 

(a). The entire three-bedroom and one-living-room house is equipped with sensors uniformly 
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distribuend throughout the space. These data, including air temperature and velocity entering 

and leaving the key subcomponents of the HVAC system, indoor air and wall surface air 

temperature, and the power use in the entire house, are measured using different sensors, as 

shown in Figure 3.6 (a). These data are logged in Raspberry Pis [113], which are connected to 

a data server (i.e., a Linux desktop) in the Lab House.  

The installation of these sensors aims to investigate sensor accuracy, sensor locations, and 

development of other applications. For the HVAC application, since it aims to explore the 

potential for practical implementation, we only utilize the data recorded by IoT (internet of 

things) devices that can be easily installed and connected to the network. Such IoT devices 

include a smart thermostat installed in the living room to measure the indoor air temperature, 

four built-in node sensors that paired to the smart thermostat to measure the four interior wall 

surface temperatures of the house, and a smart power meter inside the electrical panels to 

measure the power usage for both indoor and outdoor unit, as shown in Figure 3.6 (b), (c) and 

(d), respectively.  

High-quality weather data is essential for parameter identification of the HVAC system. 

In this study, five-minute historical weather data in Norman, Oklahoma are obtained from 

Mesonet [114,115] data services. Taking into account that not every region has a free local 

weather data service like Mesont, we used the historical weather data provided by Solcast 

[116] and OpenWeather [117]. These two data sources have their advantages and 

disadvantages on data accuracy and services, since their comparison goes beyond the scope 
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of this study, data source will only be referenced when they are used without accuracy 

comparison. Although all three data services are stable, preprocessing missing and abnormal 

data is still needed. In this study, second-order polynomial interpolation is used for handling 

the missing and abnormal data, which is a trade-off between computational effort and 

interpolation accuracy in real-time operation. 
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Figure 3.6 Lab House sensors: (a) the floor plan of the Lab House and sensor locations (b) a smart 

thermostats and thermal couples to measure indoor air temperature (c) a node sensor to measure 

interior wall surface temperature (d) a power meter inside the electrical panel.  

3.6.1.2 Retrofit a conventional electric water heater into a smart one 

A conventional 50-gallon, 4500-watt electric water heater [118] is also installed in attic of 

the Lab House to replace an old natural gas water heater. To integrate the water heater usage in 

the home energy management system discussed in Chapter 5, a proof-of-concept IoT system is 

developed to capture the hot water flow and temperature, as well as enable the remote water 

event scheduling, transforming a conventional electric water heater into a smart one. The 

retrofitted water heater is shown in Figure 3.7. 
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Figure 3.7 Retrofitted smart water heater system.  

A flow meter and temperature sensors are installed and connected with a Raspberry Pi 

[113], which serves as a data logger and connects to the data server (the Linux desktop) in the 

Lab House. Four T-type thermal couples are utilized to measure the upper element water 

temperature, bottom element water temperature, inlet and outlet temperature. The are located 

at the upper elements well, the lower element well, the hot water discharge, and the cold-water 

inlet of the water heater system, respectively. To measure the hot water flow rate withdrawal 

from the hot water tank, a low flow polypropylene liquid flow meter [119] is installed at the 
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hot water discharge.  

To enable remote water event scheduling, a water scheduling system, including a 

Raspberry Pi controller, a two-position normally closed Solenoid Control Valve (SCV), a 

pressure independent Variable Flow Control Valve (VFCV), and a web-based remote 

scheduling interface, is designed and installed. In the water scheduling system, a Raspberry Pi 

serves as a controller which offers analog and digital outputs that can trigger solid state electric 

relay, which powers the SCV that controls the on/off of the hot water withdrawal. To achieve 

a precise flow rate for each water withdrawal, a VFCV is also installed which controls the water 

flow rate by adjusting its clip position based on an analogy signal from the Raspberry Pi 

controller. The web-based remote scheduling interface is a web application that can receive 

input from the user to conduct local or remote real-time water withdrawal schedules.  

 Prior to the start of the test, at least three values (i.e., the start time, water draw (in gallons), 

and VFCV position (0 to 1.0)) are required to be entered into the web-based remote scheduling 

interface to complete a continuous water withdrawal process, which can be repeated multiple 

times. These signals will be immediately fed into different Python scripts and calculated into 

two control sequences, including volume control sequence sent to the SCV and flow rate 

control sequence sent to the VFCV. Once the time reaches the scheduled start time in volume 

control sequence, an “on” signal is given to the SCV and starts to record the pulse count; once 

the number of pulses indicate that the total withdrawal volume has been reached, a “off” signal 

is given to the SCV. As the flow rate control sequence, the VFCV position (0 to 1) obtained 
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from the web-based scheduling interface will be directly sent to a digital analogy converter 

(DAC) that convert this VFCV position to a 0-10 VDC analog command 60 seconds prior to 

the scheduled start time. Calibration to investigate the relationship between VFCV position and 

the actual water flowrate is needed because it can be affected by many factors other than VFCV 

characteristics. 

3.6.1.3 PV forecast data sources  

Due to limitations in the Lab House, a PV rooftop real time operation dataset is collected from 

National Renewable Energy Laboratory's (NREL) PV Rooftop Database (PVRDB) [120]. The 

dataset includes PV rooftop real time operation data for both residential and commercial 

buildings for multiple years across US.  

3.6.2 HVAC parameter identification results  

To identify the parameters of the 2R2C model, we solved the optimization problem stated 

in (20)– (21) using measured data. To validate its accuracy, we simulated the model using a 

different set of measured data. Figure 3.8(a) shows the simulated (black) and measured (red) 

indoor air temperature, from which it can be seen that the model is quite accurate, achieving a 

mean absolute error (MAE) of 0.503℉. Note that because of model simplicity, the identified 

parameters can be sensitive to training datasets. Moreover, although being a gray-box model it 

has some extrapolation capability, regular model retraining and parameter updating are still 

needed while the optimal control operates.  
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To identify the parameters of the total AC power usage model, we solved a polynomial 

regression problem of the form (23) using measured 𝑇& and 𝑃&[K\&&) data. To eliminate the 

impact of transient AC operation, only data with sufficiently large outdoor unit power (e.g., 

exceeding 3.2kW) were used. Figure 3.8(b) shows the resulting polynomial (red) alongside the 

measured data (black). The coefficient of determination (𝑅2) of 0.845 and root-mean-square 

error (𝑅𝑀𝑆𝐸) of 0.162kW suggest that the polynomial fit is satisfactory.   

  
Figure 3.8 (a) 2R2C model validation result and (b) AC outdoor unit consumption regression result (power 

lower than 3.2kW is excluded). 

3.6.3 Water heater calibration and parameter identification results  

To obtain the relevant dataset which described the dynamic model in Equation (14), we 

collected the bottom and top elements' water temperature from the thermal couples. The water 

schedule event (in Gallon per meter) is calculated from the pulse in a water flow meter. The 

total power consumption from both bottom and upper elements is obtained from the energy 

monitor. In the parameter identification, we use the average value of the bottom and top 

elements as the measurement of 𝑇JT. Although a thermal couple was put in to measure the 

inlet water temperature, the reading was affected by the water supply, hence is not used. Besides, 

the city water inlet is relatively constant, we assume it keeps 73.4∘𝐹	(23	℃) during the test. 
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The water tank was exposed to the house’s attic, which was also assumed to be a constant 

temperature.  

Figure 3.9 is the simulation result of the RC network model of the water heater. Since the 

test is conducted in November, we assume the attic temperature is kept at 68∘𝐹(20	℃). The 

mean absolute value for this simulation is 2.144, which is slightly high. The major reason is 

the thermal couple’s reading of the bottom and top elements have a large variation, making the 

𝑇JT measurement is not accurate. The estimation of the R-value is 20.04 ft2hr/Btu.  

 
Figure 3.9 Water heater system identification result 

3.6.4 Short-term PV power generation results  

To test the robustness of the proposed prediction model, random three-day period in each 

month from July to October are selected as a test dataset and the dataset from the two months 

prior to these three-day periods are used as a train dataset. In these experiments, different 

random seeds are utilized to generate these random three-day periods, and to further partition 
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the train and valid subsets for K-fold cross validation or feature selection.  

Figure 3.10(a) demonstrate the SHAP values of every data point (e.g., air temperature = 

30℃) for the PV power prediction on September dataset using random seed 123, and the 

features in the dashed box are selected. As expected, the Ghi has a high contribution on the 

model, whereas some features such as relative humidity has a low contribution. Figure 3.11 

illustrates PV power generation, Ghi, and relative humidity in original dataset on September 2. 

As can be seen in Figure 3.11, the trend of Ghi is very similar to that PV power generation, 

while the trend of relative humidity is almost opposite to it, which further indicates remove 

relative humidity feature might benefits the model. A reasonable explanation for why the trend 

of relative humidity is opposite to that PV power generation is because of the increase in 

temperature and sufficient illumination in the afternoon, a large amount of moisture in the air 

evaporates, resulting in decreasing in relative humidity. Figure 3.10(b) shows the RMSEs of 

the lightGBM model trained on September dataset with random seed 123 for different values 

of max_depth and num_leaves when the learning rate and n_estimators are chosen from the 

best model and fixed. The optimal hyperparameters chosen in this model is: 

l Max_depth = 20 

l num_leaves = 25 

l learning rate = 0.2 

l n_estimator = 300 
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Figure 3.10 Model performance improvement (a) SHAP value for every train data points in feature selection 

for September (b) RMSE results on validation sets on September in grid search  

 
Figure 3.11 PV power generation, Ghi, and relative humidity in original data on September 2, 2019  

Table 3.3 shows the performance on four months testing datasets of prediction in terms of 

RMSE in unit of W. Overall, the prediction model has highest performance on October and 

lowest performance in July. Figure 3.12 shows the prediction results of lightGBM model on 

August dataset (from August 3 to August 5 in 2019). As can be observed from the figure, the 

model prediction is accurate when the illumination is sufficient. However, under the condition 
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of insufficient illumination, for example, a sudden drop in afternoon sunlight and subsequently 

affecting the amount of PV power generated in August 4, the model prediction results are not 

as good as that in other time periods.  

Table 3.3 The performance results on testing dataset 

 RMSE (𝑘𝑊) 

Random seed July August September October 

42 0.323 0.351 0.191 0.286 

100 0.397 0.296 0.347 0.213 

123 0.358 0.342 0.297 0.220 

 

 

Figure 3.12 PV power generation point and interval prediction compared with actual generation from August 

3, 2019 to August 5,2019 

3.7 Summary  

In this section, the comparison of white, light-gray, and black box models is conducted 

first, aiming at proper model type selection for each different load-flexible resources in 
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residential building. Due to the advantages of the light-gray box model in modeling dynamic 

system, it is applied to model thermostatically controlled appliances. The black-box model, 

however, is more suitable for modelling the PV panel generation, which is affected by many 

different factors.  

For different modeling approach, we have introduced different parameter identification 

framework considering both model accuracy and implantation effort. A novel set of constraints 

to ensure that the model parameters identified are realistic is applied to parameter identification 

for the light gray-box model established for describe the home thermal dynamics involving the 

HVAC system. A feature selection procedure with SHAP value and hyperparameter tunning 

with grid-search and K-fold cross validation is applied to improve the lightGBM model. 

Finally, the modeling process and the model validation results for the HVAC system, the 

water heater tank, and the PV panel are shown. In this study, several results for different model 

are achieved. The HVAC system outdoor unit power can be predicted with a root mean square 

error of 0.162 kW using a regression model. Forecasting of the water temperature of dynamic 

within the water heater tank, using the first-order model, resulting in a mean absolute value of 

2.144. Lastly, the LightGBM model facilitates a forecast of 3 day ahead PV power generation 

with a 0.191 root mean square error.  
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4 Development, Implementation, and Impact Analysis of 

MPC-based Precooling for Homes 

4.1 Introduction 

After describing the flexibility resources model and validating these models by using real-

world operation data, in this chapter, we introduce the optimal operation of the HVAC system 

under DR programs. As can be seen in Figure 1.4, the passive thermal storage, in general, is 

the most complicated and sophisticated component among available flexibility resources, 

making the development of automated software platform challenge. One the other hand, the 

HVAC system, in most of the case, is the biggest energy “eater” in a home, making the 

development, implementation, and impact analysis on its optimal operation has high research 

and practical value.  

In this study, an MPC-based precooling real time control framework has been developed, 

and this framework has been implemented in real homes (field test study) and a virtual testbed 

(simulation study). Both methods have validated the robustness and effectiveness of the MPC-

based precooling. More importantly, field test study, which focuses on impact analysis across 

multiple homes, is used to analyze MPC-based precooling in different homes and operation 

conditions; while the simulation study, which focus on impact analysis in a virtual building 

mimicking the real house, is used to analyze the benefits of MPC-based precooling in 

difference choice of MPC hyperparameters (including prediction model).  
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4.2 Real-time Control Framework of the MPC-based Precooling 

4.2.1 Mixed-integer linear programing problem formulation   

Having described the reduced-order gray-box model and its parameter identification, in 

this subsection the MPC agent is introduced. At the heart of the MPC agent is a mixed-integer 

linear programming (MILP) problem for optimal precooling to be solved at each time step 𝑘. 

The objective function of this MILP problem is given by:  

min
_
	 K 𝑝𝑟𝑖𝑐𝑒8
6`:

8;6

𝑃8𝑢8 +𝑤	𝑣8, (22) 

where 𝑈 = (𝑢6 , … , 𝑢6`: , 𝑣6 , … , 𝑣6`:) is a vector of decision variables, 𝑁 is the length of 

the optimization horizon,	 𝑝𝑟𝑖𝑐𝑒8 is the TOU rate at time step 𝑚, 𝑃8 represents the total 

AC power usage, 𝑢8 ∈ {0,1} is the AC on/off signal, 𝑣8 ∈ ℝ	
ab  is a non-negative slack 

variable intended for penalizing indoor air temperature deviation from a thermal comfort range, 

and 𝑤 is a weight for the slack variables. The total AC power usage 𝑃8	 is modeled by:  

𝑃8 = 𝑃%'\&&) + 𝑃&[K\&&)8 = 𝑃%'\&&) + 𝐴1𝑇&8 + 𝐴2(𝑇&8)2 + 𝐴3(𝑇&8)3

+ 𝐴Q			for			𝑚 = 𝑘,… , 𝑘 + 𝑁, 
(23) 

where 𝑃%'\&&) is the constant indoor unit power, 𝑃&[K\&&)8  is the variable outdoor unit power 

assumed to be a polynomial function of 𝑇&8, and 𝐴1, 𝐴2, 𝐴3, 𝐴Q are coefficients that can be 

experimentally determined.  

The constraints of the MILP problem are given by: 

𝑇%$8 =
𝛥𝑡	
𝜏1
(𝑇&8A1 − 𝑇%$8A1) +

𝛥𝑡	
𝜏2
(𝑇%'8A1 − 𝑇%$8A1) + 𝑇%$8A1			 (24) 
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for				𝑚 = 𝑘 + 1,… , 𝑘 + 𝑁	 

𝑇%'8 =
Δt	
𝜏3
(𝑇%$8A1 − 𝑇%'8A1) +

Δt	
𝜏3
(𝑎1𝑆8A1 + 𝑎2(𝑆8A1)2)

+
Δt	
𝜏3
(𝑇&8A1 − 𝑇%'8A1)(𝑏1𝑊8A1 + 𝑏2(𝑊8A1)2)

+
Δt	
𝜏3
(𝑐1𝑇&8A1 + 𝑐2(𝑇&8A1)2)𝑢8A1	 + 𝑇%'8A1			 

for			𝑚 = 𝑘 + 1,… , 𝑘 + 𝑁	 

(25) 

𝑇#c8 − 𝑣8 ≤ 𝑇%'8 ≤ 𝑇[c8 + 𝑣8			for			𝑚 = 𝑘,… , 𝑘 + 𝑁 (26) 

𝑢8 ∈ {0,1}			for			𝑚 = 𝑘,… , 𝑘 + 𝑁  (27) 

𝑣8 ∈ ℝ	
ab			for			𝑚 = 𝑘,… , 𝑘 + 𝑁, (28) 

where (24) and (25) are taken from discretizing 2R2C model using Euler forward method, (26) 

represents soft constraints on thermal comfort, 𝑇#c8 and 𝑇[c8  are lower and upper bounds on 

𝑇%'8, (27) ensures that 𝑢8 is binary, and (28) forces 𝑣8 to be non-negative. Notice that the 

MILP problem makes use of two initial conditions 𝑇%'6  and 𝑇%$6 , which come from real-time 

measurements at time step 𝑘. 

In general, the MILP problem may be infeasible because, for example, the forecasted 

outdoor air temperature is too high for the AC to keep up, or the homeowner’s thermal comfort 

range is too narrow for the indoor air temperature to stay in. Such infeasibility may cause the 

MPC agent to crash. To ensure that the MILP problem is always feasible, instead of using hard 

temperature constraints 𝑇#c8 ≤ 	𝑇%'8 ≤ 𝑇[c8 				for				𝑚 = 𝑘,… , 𝑘 + 𝑁 , the constraints are 
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"soften" by inserting into (26) a non-negative slack variable 𝑣8 which represents the degree 

to which the hard temperature constraints are violated. Since such violation is undesirable, a 

term 𝑤𝑣8 is also insert into the objective function (22), which only imposes a penalty when 

𝑇%'8  turns out to be higher than 𝑇[c8  or lower than 𝑇#c8 . In other words, the temperature 

constraints are relaxed only when necessary.  

 

4.2.2 MPC agent  

Building upon the MILP problem, the MPC agent workflow is now introduced, shown in 

Figure 4.1. As can be seen from the figure, at each time step 𝑘, the home thermal model (i.e., 

2R2C model) receives the identified values of its parameters, weather forecasts over the 

optimization horizon, and both the indoor air and interior wall surface temperature 

measurements. The MPC agent then receives the TOU rate, the identified parameters of the 

total AC power usage model, and the thermal comfort upper and lower bounds, through which 

the objective function and constraints of the MILP problem are generated. The MILP problem 

is subsequently solved to generate an optimal sequence of AC on/off signals and slack variables. 

Finally, as is typical with MPC algorithms, only the first element of the optimal sequence of 

AC on/off signals is physically implemented. The MPC agent can implement this decision by 

adjusting the temperature setpoint at the smart thermostat in such a way that the AC is forced 

to turn on or off until the next time step.  
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Figure 4.1 MPC agent. 

 

4.2.3 Performance indicators for MPC agent 

Two performance indicators are used to evaluate the performance of the MPC agent. 

Based on (22), the 24-hour AC operation cost 𝐶 is given by: 

𝐶	 = 	
Δt
𝒯 K 𝑝𝑟𝑖𝑐𝑒8

:')*

8;1

𝑃8𝑢8， (29) 

where	𝒯 is a unit conversion factor chosen so that 𝐶 has unit dollar,	 𝑚 = 1 represents the 

beginning of a 24-hour period, and 𝑚 = 𝑁2QT represents the end. With 𝐶, the cost saving 

ℐ—the first performance indicator—is defined as: 

ℐ =
𝐶c(*$#%'$ − 𝐶8Wd

𝐶c(*$#%'$
× 100%, (30) 
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where	𝐶8Wd is the 24-hour AC operation cost with the MPC agent, and 𝐶c(*$#%'$ is the cost 

without (i.e., the AC is under normal operation).  

Although cost saving ℐ is a useful indicator of the MPC agent’s effectiveness, it does not 

fully reflect the latter’s load-shifting ability. To address this limitation, among the metrics for 

evaluating energy flexibility [14,63,78,121], the flexibility factor FF—the second performance 

indicator—is adopted and defined as: 

𝐹𝐹 =
∫ 𝑃	𝑑𝑡	
e+,-

− ∫ 𝑃	𝑑𝑡	
e*./*

∫ 𝑃	𝑑𝑡	
e+,-

+ ∫ 𝑃	𝑑𝑡	
e*./*

, (31) 

where 𝐿#&J 	L𝐿T%0TM represents the off-peak (on-peak) hours and 𝑃 is the total AC power 

usage first defined in (23). Note that 𝐹𝐹 is always between -1 and 1, where -1 means all 

energy is consumed during on-peak hours, while 1 means it is consumed during off-peak hours. 

Therefore, flexibility factor FF quantifies the load-shifting effectiveness of the MPC agent. 

4.3 MPC-based Precooling in Real Homes  

4.3.1 Cloud-based platform for data management and control   

The proposed cloud-based platform is shown in Figure 4.2. The platform is developed 

using Python and supports several functions of IoT devices including data communication, 

alert system, and remote control. To run the MPC-based precooling test on the platform, three 

types of datasets are required: the parameter identification dataset, the real-time control dataset, 

and the post-analysis dataset. Table 4.1 lists, for each type of dataset, its purposes, components, 

data collection approaches, and data sources. In this paper, a uniform time step Δ𝑡  of 5 
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minutes is used for all three types of datasets. In addition, the optimization horizon of 12 hours 

(i.e., 144 time steps) is chosen, which means that at each time step, 12-hours-ahead forecasts 

of weather and the TOU rate are required. To collect and preprocess data of different types, 

several Python modules have been developed. Moreover, the open-source time series database 

InfluxDB 2.0 [122] is used for data storage and communication, and Grafana v7.4 [123] is used 

for data display and user interface.  

 

Figure 4.2 Proposed cloud-based platform for data management and control. 

Table 4.1 Three Types of Dataset 
Types Purposes Components Approaches Data Sources 

Parameter 
identification 

dataset 
Train 2R2C model 

Indoor air and 
interior wall 

surface 
temperatures; 

AC on/off 
signals 

Query from 
database 

Smart thermostat; 
node sensor 

AC power usage 
Query from 

database 
Smart power meter 

[124] 

Historical weather 
dataset 

Scrap from website 
Mesonet [39]; [40]; 

and weather 
services [117] 

Real-time control 
dataset 

Initial states for 
home thermal 

model 

Indoor air and 
interior wall 

surface 
temperatures 

Query from 
thermostat API 

Smart thermostat; 
node sensor 
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Home thermal 
model inputs 

for MILP 
formulation 

Weather forecast; 
TOU rate  

Query from 
weather API; 

Query from utility 

Solcast [116] and 
weather 

services [117]; 
utilities [125–

127] 

Thermal comfort 
inputs for 

MILP 
formulation 

Upper and lower 
bounds on 
indoor air 

temperature  

Homeowners’ 
previous 

preferences or 
current 
thermal 
comfort 
requests 

Historical setpoints; 
private 

correspondence 

Post-analysis 
dataset 

Other information 
for analysis 

AC mode; away 
time 

Query from smart 
thermostat API 

Smart thermostat 

 

4.3.2 Implementation setup 

In this section, we introduce the experimental setup for the MPC-based precooling test, 

including the participating test homes, and the temperature and power measurement setup in 

those homes. 

4.3.2.1 Introduction of eleven (11) participating test homes 

The test homes include ten single-family homes in Norman, Oklahoma, and one single-

family home in Miami, Florida. To ensure that a diverse set of test homes were chosen, a survey 

was carried out for each home to gather its building characteristics including its floor area, 

building age, building structure material, AC unit condition, and whether the homeowner had 

signed up for a TOU rate. The survey result is tabulated in Table 4.2 Except for what we refer 

to as the Lab House near the University of Oklahoma, the test homes were labeled 

alphabetically based on the order in which they were registered. Figure 4.3 shows the 
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distribution of floor areas, count plot of AC tonnage, building ages, and AC unit service time 

for the 11 test homes. As can be seen from  Figure 4.3 the test homes were diversely 

distributed in terms of building and AC characteristics.  

Table 4.2 Test home information. 

 
 

* This home withdrew from participation when it was sold in June 2022.  
 
** This home withdrew from participation due to thermostat incompatibility.  

Home 
Floor 

Area 
Building Age 

Building 
Material 

Year of 
AC 

# AC 
Units 

AC Tonnage 
TOU 

Rate 

Smart 
Power 
Meter 

Home A 2400 10-20 years Wood Frame 1-3 years 1 5 - Yes 

Home B 2560 10-20 years Concrete 1-3 years 2 3 (up)/4 (down) - Yes 

Home C 3500 
Above 20 

years 
Wood Frame 0-1 years 2 

2.5 (up)/4 
(down) 

Yes 
- 

Home D 2500 10-20 years Wood Frame 8-15 years 1 3.5 - - 

Home E 1540 1-5 years Wood Frame 1-3 years 1 2.5 - - 

Home F* 1812 10-20 years Wood Frame 1-3 years 1 - - - 

Home G 1800 
Above 20 

years 
Wood Frame 1-3 years 1 4 - 

- 

Home H** 3000 
Above 20 

years 
Wood Frame 8-15 years 1 - - 

- 

Home I 2600 
Above 20 

years 
Unknown 0-1 years 1 5 - 

Yes 

Home J 2150 10-20 years Wood Frame 8-15 years 1 2.5 Yes Yes 

Lab House 1658 
Above 20 

years 
Wood Frame 1-3 years 1 3.5 - 

Yes 
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Figure 4.3 Test homes with diverse characteristics. (a) Building floor area distribution. (b) Count plot of AC 

tonnage. (c) Building ages (inner) and AC unit service time (outer). 

Although there were 11 test homes, two withdrew from participation shortly after the field 

test began (Home F was sold and Home H had thermostat incompatibility issues). In addition, 

during the test period, only two participants (Home C and Home J) enrolled in TOU programs. 

For the rest who did not enroll, the MPC-based precooling test carried out anyway assuming 

that they did. At where the homes were located, three different TOU programs (i.e., rate 

structures) were available: Oklahoma Gas & Electric (OG&E) Smart Hours [125] where on-

peak hours run from 2 pm to 7 pm, Oklahoma Electric Corporate (OEC) TOU rate [126] where 

on-peak hours run from 3 pm to 7 pm, and Florida Power and Light (FPL) TOU rate [127] 

where on-peak hours run from 12 pm to 9 pm. With the sponsorship of the research, all the 
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homes were installed with smart thermostats and node sensors, among which five (Home A, 

Home B, Home I, Home J, and the Lab House) also had smart power meters installed for 

collecting indoor and outdoor power measurements. For those houses without smart power 

meters, the total AC power usage 𝑃 in (23) was assumed to be a constant depending on the 

AC model.   

The upper and lower temperature bounds in the MPC-based precooling test were 

determined based on observed homeowner preferences during normal operation and on what 

they considered to be acceptable during the MPC-based precooling test. Figure 4.4 presents the 

Gaussianized setpoint distribution of several homes during normal operation (black) and during 

the test (red). Note that a 90℉ setpoint means the homeowner manually turned off the AC. 

Also note that because no one lived in the Lab House, its temperature bounds can be freely 

chosen. As such, the bounds were set to different values to allow us to examine their impact. 

 

Figure 4.4 Setpoint distribution in several test homes.  
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4.3.2.2 Temperature and power measurements  

Figure 4.5 shows the temperature and power measurement setup at some of the test homes. 

Specifically, Figure 4.5(a) shows a smart thermostat for tracking the indoor air temperature and 

communicating with the cloud-based platform, Figure 4.5(b) shows a node sensor for 

measuring the interior wall surface temperature, and Figure 4.5(c) shows a smart power meter 

for measuring the total energy usage of each circuit inside the electric panel. The latter makes 

it possible to distinguish between the energy consumed by indoor and outdoor AC units.  

In the 2R2C model described by (32) and (33), the interior wall surface temperature is one 

of the two states that reflects the heat transfer between indoor and outdoor environment. 

Accurate measurement of such temperature—which depends heavily on the sensor location—

is therefore important. The node sensor is preferably mounted on a wall with no direct solar, 

no wind, and no shading. Thus, north-facing walls were selected because solar impact from the 

sun was lower compared to south- and west-facing walls, and east-facing walls for some of the 

test homes were chosen due to their structure. The walls near a diffuser, the kitchen, and the 

windows were avoided to not expose the sensor to unwanted disturbances. 
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Figure 4.5 Equipment installed at test homes. (a) Smart thermostat. (b) Node sensor. (c) Smart power meter. 

4.3.3 MPC precooling test filed test results 

In this section, a discussion of the MPC agent performance at one test home is presented 

first. Then, by using results from multiple test homes, assessment of the MPC agent through 

with and without performance comparison and energy flexibility comparison are demonstrated. 

The dominant factors that impacted the MPC-based precooling test are analyzed at the end.   

4.3.3.1 MPC performance assessment at one test home 

From July to October 2022, a set of MPC-based precooling tests were conducted at 

different times at the nine test homes including the Lab House. Each test lasted five to 20 days 

depending on the homeowner’s schedule, except for the test at Home G, which was terminated 
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prematurely at the homeowner’s request. This section describes the MPC agent performance at 

one test home—the Lab House.  

 Figure 4.6 shows seven consecutive days (from August 4 to August 10, 2022) of test 

results at the Lab House. Specifically, Figure 4.6(a) depicts the indoor air temperature 𝑇%' 

(blue) and interior wall surface temperature 𝑇%$ (red) along with the thermal comfort range 

𝑇[c  and 𝑇#c  (black). Figure 4.6 (b) displays the TOU rate and number of seconds in a 5-

minute interval during which the AC was on. Figure 4.6 (c) shows the actual weather conditions 

(solar irradiation 𝑆, wind speed 𝑊, and outdoor air temperature 𝑇&). Also shown in the figure 

are red-shaded areas representing the on-peak hours. Analyzing Figure 4.6 , several 

observations can be made. First, 𝑇%' mostly stayed within 𝑇[c and 𝑇#c but did occasionally 

exceed 𝑇[c. When 𝑇%' exceeded 𝑇[c, the slack variables in (22) imposed a penalty on the 

objective function. If this happened during the on-peak hours, the penalty might be small 

compared to the high electricity cost and hence might not cause the AC to turn on immediately. 

Second, 𝑇%$  changed much more slowly compared to 𝑇%' . This was because the building 

structure was a much larger thermal storage compared to indoor air. Such a difference also 

justified the use of the 2R2C model. Third, the MPC agent was able to take advantage of the 

cooler early morning air to precool the space with higher efficiency. More importantly, unlike 

rule-based precooling control which has a fixed precooling schedule regardless of weather, the 

MPC agent was capable of adapting its schedule to weather, TOU rates, etc. For example, 

precooling began at 4:40 am on August 4 and 5:50 am on August 10. Fourth, despite the 
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precooling, 𝑇%' often reached 𝑇[c before the on-peak hours ended, forcing the AC to be on 

even though that was costly. These observations show that the MPC agent behaved as intended. 

Finally, we remark that the reason 𝑇%' reached as high as 83℉ on August 10 was that the MPC 

agent went offline unexpectedly.  

 

Figure 4.6 Seven consecutive days of MPC-based precooling test results. (a) Smart thermostat and node sensor 

measurements. (b) AC signals and TOU rate. (c) Actual weather conditions.  

4.3.3.2 MPC performance assessment at multiple test homes 

In this section, the result with and without the MPC agent are compared and then the 

building's energy flexibility is assessed by comparing the flexibility factors across multiple 

homes. Since the weather is a dominant input variable for AC operation, to eliminate the 

weather influence, a modified matrix profile-based weather clustering algorithm is introduced 
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to assess the MPC performance in different weather conditions.  

A. Weather clustering  

To allow fair comparisons without complicated calculation, and filter out the abnormal 

weather conditions, a modified weather clustering algorithm is developed by combing Matrix 

Profile-based algorithms discussed in a series of studies [128–130]. To cluster the long (four 

months, 5 minute interval), time-series (focusing on clustering subsequences rather than a 

single point), and multi-dimension (outdoor air temperature, solar, and humidity) data, the 

Snippets algorithm [130] is used to find the three most representative days of the test period. 

Then, days exhibiting high pattern similarity with the representative days are selected using the 

modified algorithm which considers solar irradiation, outdoor air, and relative humidity. The 

details of the modified algorithm can be seen in Appendix A. 

Figure 4.7 shows the weather clustering results for Norman (Subplot (a)) and Miami 

(Subplot (b)). The bold curves show the outdoor temperatures of three representative days, the 

hot (red), mild (orange), and cold (blue) days found by the Snippets algorithm from July to 

October. The dashed curves are the 24-hour time series weather data associated with the three 

representative days. The solar irradiation and relative humidity are also considered, but not 

shown in the figures. The grey curves are the rest of the days that are not included in any cluster, 

which are labeled as extreme days. For the data in Norman, the layer between each cluster is 

clear, which means the data within each group are similar to each other. Since Miami 
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experienced a severe thunderstorm during the test period, its cold cluster includes some 

abnormal weather change periods compared with the hot and mild clusters. Hence, each day in 

the cold cluster has a large difference, but a similar shape.  

  
Figure 4.7 Weather clustering results in (a) Norman and (b) Miami from July to October 

B. Performance with and without MPC agent   

Figure 4.8 shows the breakdown of the average daily AC system cost by on-peak and off-

peak hours, comparing MPC agent performance to normal operation on hot summer days. The 

test homes are listed in descending order of total cost reduction. The homes which did not have 

any MPC test on hot summer days are excluded. The average daily total costs are listed on the 

top of each bar. The percentage reduction of total cost and on-peak hour cost between the 

normal and MPC operation are listed underneath. Across different homes, the average cost 

savings of using the MPC agent on hot summer days range from 28.72% to 51.306% compared 

to normal operations. In all cases, the cost savings are contributed by the savings during on-

peak hours (cost savings during on-peak hours range from 36.174% to 68.436%) indicating the 

load shifting effectiveness of the MPC agent.  
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Figure 4.8 Cost saving summary for each home on hot summer days for normal operation days and MPC 

operation days. 

Figure 4.9 is the daily average cost summary of the mild summer days. The legend in 

Figure 4.8 also applies to this figure. Although significant savings were obtained during on-

peak hours, indicating MPC load shifting effectiveness, the total cost savings including on-

peak and off-peak hours show a wider range compared with the results for hot summer days, 

from 6.737% to 60.318% while the main floor of Home C shows negative savings. The smaller 

saving percentages occur to the three AC units which have very small baseline costs and 

therefore the savings can be easily concealed by variations of home activities and operation 

changes. For example, Home C main floor (Home-C down in Figure 11) shows a negative 

saving. It is because the MPC agent was only allowed to work with a 2-degree temperature 

band (78-80℉, from 9:00 pm to 6:00 am), and a 3-degree temperature band (rest of the day, 

78-81℉) were set. The narrow comfortable temperature band impedes the benefit of the 

precooling. In addition, the homeowner requested to switch indoor temperature comfort range 
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upper limit from 81℉ to 80℉ at 9 pm, leading to excessive AC operation at night, resulting in 

higher off-peak hour costs (the white space of the bar), and thus higher total costs.  

 

Figure 4.9 Cost saving summary for each home on mild summer days for normal operation days and MPC 

operation days. 

Table 4.3 includes the daily average of total costs, the cost during on-peak hours, energy 

consumption, and the AC run time during on-peak hours (in percentage) with and without the 

MPC agent. Table 4.4 shows a detailed summary of the tests on mild summer days. Table 4.5 

is a detailed summary of the tests on cold summer days. Despite the colder outdoor condition, 

cost savings still exist when MPC agents were used on the main floor of Home B and Home D. 

These dollar savings after MPC agent implementation not only further incentivize homeowners 

to participate in the DR programs, but also bring a positive impact on grid reliability, as large 

cost savings during on-peak hours indicates significant load shifting capacity.  

Table 4.3 Cost and energy consumption summary for homes on hot summer days. 
 Cost, $ Energy, kWh Peak Cost, $ TOU run time, % 
 MPC normal MPC normal MPC normal MPC normal 

Home-A 6.67  9.49  53.50  66.93  3.59  6.19  59.46  93.84  
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Home-E 1.59  2.23  13.48  17.86  0.77  1.20  22.66  38.06  
Home-G 1.98  3.94  17.81  24.53  0.83  2.97  20.92  68.99  
Home-I 4.47  8.03  41.65  58.03  1.71  5.08  28.10  76.21  
Home-J 2.68  5.51  24.82  41.23  1.05  3.33  29.42  92.41  

Lab-
hous

e 
3.61  5.73  35.40  42.99  1.17  3.43  34.47  92.26  

Table 4.4 Cost and energy consumption summary for homes on mild summer days 
 Cost, $ Energy, kWh Peak Cost, $ TOU run time, % 
 MPC normal MPC normal MPC normal MPC normal 

Home-A 2.84  7.15  21.92  47.51  1.62  5.03  26.19  80.54  
Home-B 

dow
n 

1.51  1.25  18.48  9.89  0.90  1.05  14.63  16.87  

Home-C 
dow

n 
2.82  2.46  22.51  17.50  1.01  1.24  26.11  32.10  

Home-C 
up 

1.77  1.97  12.12  12.12  0.98  1.31  40.73  54.51  

Home-I 3.85  6.03  36.76  39.70  1.37  4.29  23.67  74.92  
Home-J 2.33  3.51  21.47  24.71  0.91  2.30  27.13  69.77  

Lab-
hous

e 
2.65  4.94  24.76  36.88  1.00  2.99  30.92  94.67  

Table 4.5 Cost and energy consumption summary for homes on cold summer days. 
 Cost, $ Energy, kWh Peak Cost, $ TOU run time, % 
 MPC normal MPC normal MPC normal MPC normal 

Home-B 
dow

n 
0.19  0.41  2.95  2.59  0.07  0.38  1.26  6.33  

Home-D 0.27  2.43  1.74  19.45  0.20  1.32  4.99  33.31  

C. Impact analysis of energy flexibility  

In this section, the flexibility factor is used to further assess load shifting potential, i.e., 

the demand flexibility, for different buildings and operation conditions under the DR programs 
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after installing the MPC agent. Figure 4.10 illustrates the distribution of flexibility factor 𝐹𝐹 

during all MPC test periods for each home, where a positive median line indicates the MPC 

agent provide effective load shifting on all test homes. The test result of Home G is not included 

as the sample size is too small. Although the MPC tests in Home D demonstrate cost savings, 

its flexibility factor is heavily skewed with a much wider distribution compared with other 

homes, indicating there is a large proportion of energy consumption occurs during on-peak 

hours in Home D. This is because Home D’s tests were conducted on cold days. In some test 

conducted on cold days, a few AC operations in the late afternoon including on-peak hours 

were effective to maintain acceptable thermal comfort, making ∫ 𝑃	𝑑𝑡	
e+,-

< ∫ 𝑃	𝑑𝑡	
e*./*

, and 

thus a negative 𝐹𝐹. It indicates that it is not efficient to implement load shifting operations 

during cold days when AC demand is low. 

 

Figure 4.10 Flexibility factors during the entire test period except for extreme days 

Therefore, to demonstrate the distribution of 𝐹𝐹 of Norman test homes versus their floor 

size, the results for cold days and extreme days (including Home D results) are excluded in 
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Subplot (a) in Figure 4.11. Notice that the floor area of the two-story homes is divided into two 

parts: the main floor and the upper floor. It can be seen in Subplot (a), as the floor size of the 

house increases, its flexibility factor tends to increase, and the variation of the flexibility 

reduces. A reasonable postulate is that smaller homes have smaller thermal mass, which makes 

the home more susceptible to external disturbances such as the outside environment, causing a 

rapid increase in indoor air temperature when the system enters on-peak hours. This trend holds 

true for other houses except for Home A (floor size 2400 𝑓𝑡2), whose AC was confirmed with 

less capability to cool the space due to an undercharge fault, making the load shifting efficiency 

remains low. The AC’s capacity impact on the flexibility factor is further verified in an 

additional experiment depicted in Subplot (c). If Home A is excluded and a threshold 2000 𝑓𝑡2 

is used, the average flexibility factor of larger houses is greater than that of smaller houses by 

11.903%. 
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Figure 4.11 MPC agent performance assessment: (a) FF versus floor area in Norman test homes (b) 

distribution of FF for different temperature bands in the Lab House (c) average FF for different 

refrigerant charging conditions in the Lab House  

Subplot (b) is the distribution of flexibility factors of the MPC agent for different thermal 

comfort temperature bands used in the Lab House. For a fair comparison, all test results in 

Subplot (b) are obtained using the data in mild summer day cluster. Three different thermal 

comfort temperature bands are tested. The tests with the temperature band [76℉, 82℉] provide 

the most flexibility. On the other hand, tests with the narrow temperature band [78℉, 80℉] 

show the least flexibility, since both precooling periods on off-peak hours and the free-floating 
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period (i.e., no or less AC operation period) during on-peak hours are all limited by the smaller 

band. Finally, the temperature band [70℉, 76℉] is associated with moderate flexibility due to 

its lower upper bound leading to more energy consumption during on-peak hours.  

Although the tonnage of the AC might be suitable for each tested home, the fault and the 

refrigerant leakage may affect the output of the AC and hence affect the MPC agent results. To 

verify the flexibility of homes in this situation, an undercharge was purposely generated by 

withdrawing 30% refrigerant from the Lab House unit to create the MPC test under both full 

charge and undercharge conditions. Subplot (c) includes the average FF of the MPC agent in 

the Lab House under different charging conditions within the same temperature band [70℉, 76 

℉]. When the AC is in full charge, the average flexibility factor improves 23.164%, and the 

average total cost reduction is about 42.409%, which indicates the AC’s ability to cool the space 

enhances the MPC agent's effectiveness on both load shifting and cost saving. 

4.4 MPC-based Precooling at Virtual Testbed 

Previous studies have successfully conducted the MPC-based precooling field test in nine 

real homes. Although in the field test study, it is easier to observe the impact factors that reflect 

the actual situation and are difficult to consider in the simulation study, field test study has a 

natural disadvantage: it is not possible to conduct multiple experiments for comparisons under 

the same condition. This limitation leads to the challenge of determining the impact of MPC 

hyperparameters. Moreover, due to the complexity of MPC-based precooling, it is natural to 

raise the question of whether one or more hyperparameters have a relatively larger impact so 
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development effort can be better allocated based on their impact size.  

To answer this question, a virtual testbed is constructed to simulate a real Lab House 

reaction to the MPC-based precooling control. In addition, to see how MPC-based precooling 

will affect cost saving and demand flexibility in a virtual testbed, it is also important to know 

how the HVAC system will be performed under different MPC hyperparameters. The rest of 

the section is structured as follows. The development, calibration, and validation of the 

EnergyPlus co-simulation model to reflect the real-world smart thermostat response and on/off 

actuation of residential HVAC system is first introduced in Section 4.4.1.2. The choice of MPC 

hyperparameters is presented in Section 4.4.2.2 Finally, the MPC-based precooling results 

through the proposed virtual testbed are shown in Section.  

4.4.1 Virtual Testbed Development   

In this study, the virtual testbed of the Lab House in Norman, Oklahoma, is developed 

using the previous EnergyPlus model study [131]. Although the building characteristics of this 

model is investigated and calibrated in [131], modifications are needed since the model does 

not include an HVAC system. More importantly, refinement effort is also needed to correct the 

way that EnergyPlus models the cycling of direct expansion (DX) coils and the internal thermal 

mass which affects the indoor air fluctuation.  

4.4.1.1 Residential building modelling 

The Lab House information can be found in Chapter 3, where a SEER 14 heat pump is 
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installed. A residential DX system with a cooling coil has 9,000W gross rated cooling capacity, 

and 2.67 COP is modelled in EnergyPlus. The COP used in this EnergyPlus model, which is 

smaller than manufacturing rated COP, is chosen to take into account the system losses [132] 

and 30% refrigerant removal [133]. The energy model is shown in Figure 4.12.  

 

Figure 4.12 Energy model built for the Lab House in Norman, Oklahoma 

4.4.1.2  EMS for on/off control with deadband  

The refinement effort on correcting the way that EnergyPlus models the cycling of DX 

coils is needed because the typical way that EnergyPlus models the cycling of DX coils is based 

on the run time fraction (RTF) of the coil, which is the quotient of the ratio between the actual 

sensing cooling load and the capacity of the cooling coil (i.e., partial load ratio, PLR) and the 

compressor cycling efficiency losses (i.e., partial load fraction, PLF) [134]. In other words, the 

EnergyPlus provides either enough or full energy to maintain the thermostat setpoint perfectly 

[70,132]. This differs from the real-world operation in a typical residential building in the U.S., 
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where a wider temperature range on cooling or heating setpoint are allowed to determine the 

HVAC system either fully on or fully off.  

To mimic the on/off control with a deadband, an Energy Management System (EMS) 

syntax is added to the EnergyPlus model. EMS is a powerful and flexible control that can be 

directly interpreted by EnergyPlus by a small programing language called EnergyPlus Runtime 

Language (Erl), more detail can be found in [135]. In this study, the proposed Erl will assign 

the heat pump, which includes a DX cooling coil and a fan, to be fully on or off at the beginning 

of each time step depending on a pre-defined thermostat setpoint and deadband.   

Table 4.6 EnergyPlus model variables for on/off control 

Purpose Name Variable type 
Actuated 
Component Unique 
Name 

On off schedule on 
heat pump cycle on off  

Constant schedule 
(be 0 if not 
overwrite) 

 

Overwrite the on off 
schedule 

AvailSCH_Overwrite EMS: Actuator cycle on off 

Monitor Zone Air 
Temperature 

Tin EMS: Sensor 
Zone air 
temperature  

Monitor  Tset EMS: Sensor 
Zone Thermostat 
Cooling Setpoint 
Temperature 

As shown in Table 4.6, two EMS objects called “Sensor” are created to monitor zone 

indoor air temperature (𝑇%') and thermostat cooling setpoint (𝑇*$K) at each timestep, and an 

EMS object called “Actuator” is created to overwrite the pre-defined “cycle on off” schedule 

on the heat pump. Then, an EMS object called “ProgramCallingManager” will call the 

program syntax shown in Figure 4.13 at the beginning of each timestep (i.e., 
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BeginTimestepBeforePredictor), and the actuator will only overwrite the “cycle on off” into 1 

(i.e., turn on the HVAC system) when the zone air temperature is above 𝑇*$K + 𝑇&ff*$K 

(𝑇&ff*$K  is given for modeling the deadband) until 𝑇%'  reaches 𝑇*$K + 0.01. Here, 0.01 is 

given to avoid runtime fraction calculation to start in Energyplus.  

 
Figure 4.13 Proposed Erl for on/off control with deadband  

4.4.1.3 Internal thermal mass modification  

After modifying the model to mimic the on/off cycling behavior, an internal thermal mass 

also needs to be refined. Although an important heat transfer calculation component, the 

InternalMass object is applied to an interior wall, floor, and ceiling. There are still some 

underestimated internal masses that may cause a dramatic change in indoor air temperature. 

This issue has been mentioned in [70,132,136], and in each case, the suggested solution is to 

use ZoneCapatianceMultiplier: ResearchSpeicail object, which serves as a correction factor 

for the zone (moist) air capacitance, to solve it. In this study, through trial and error by 

comparing EnergyPlus results and the smart thermostat data, the multiplier value 3 is selected.  
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4.4.1.4 EnergyPlus model validation  

In this study, the proposed EnergyPlus model was run with a time step of 5 minutes, which 

corresponds with the smart thermostat granularity. Figure 4.14 demonstrates the indoor air 

temperature comparison between actual smart thermostat measurements and the EnergyPlus 

simulated results. The green dashed line in the figure represents the setpoint of the smart 

thermostat, and as can be seen from the solid red line (i.e., 73 ℉) that the deadband is slightly 

less than 1 ℉. Therefore, the deadband used in the proposed EMS is 0.9 ℉ (or 0.5 ℃). The 

actual energy consumption obtained from the smart power meter and the simulated energy 

consumption obtained from the EnergyPlus are also listed in this figure. Although mismatches 

still exist especially in the late afternoon, the EnergyPlus simulated indoor air temperature 

matches smart thermostat measurement for the majority of the day, and the energy consumption 

is relatively close.  

 
Figure 4.14 Indoor air temperature comparison between actual smart thermostat measurement and EnergyPlus 

simulation 

Figure 4.15 shows the comparison between the simulated daily energy consumption 

obtained from EnergyPlus (red bard) and the actual daily energy consumption obtained from 
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the smart power meter (black) for five continuous days in August. The discrepancies between 

the simulated results and the actual measurements are listed above each pair of bars, where the 

largest discrepancy is 10.69 kWh and the smallest one is 1.71 kWh. The daily average outdoor 

air temperatures, as well as the daily maximum and daily minimum outdoor air temperatures, 

are listed as blue dots. It can be seen from the figure that the maximum discrepancy occurred 

when the minimum daily outdoor air temperature reached its lowest point during these five 

days. A reasonable suspension is when the outdoor weather condition has changed, for example, 

a cold night on August 19, or a cold day on August 21. The performance of the EnergyPlus 

model may not as good as the performance in a standard hot summer day (e.g., August 20).  

 
Figure 4.15 Daily energy consumption comparison with outdoor air temperature  

4.4.2 Evaluate MPC-based precooling performance at the virtual testbed  

Since the EnergyPlus model has been proven that it can provide a realistic indoor air 

temperature response and mimic the on/off cycle thermostat control with deadband, it can be 

useful for the MPC-based precooling control investigation. This section presents the MPC-
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based precooling control workflow for the virtual testbed, the selection of a hyperparameter for 

MPC-base precooling control, and the test result analysis for different hyperparameters. 

4.4.2.1  MPC-based precooling control workflow 

To conduct the MPC-based precooling control using the virtual testbed, a Python script is 

used to process the required inputs, solve the same mixed-integer linear programming (MILP) 

problem mentioned in Section 4.2.1, and communicate with the EnergyPlus model. As shown 

in Figure 4.16, a similar workflow for the MPC agent mentioned in Section 4.2.2 are utilized. 

Note that three modifications are made for conducting the test in a virtual testbed. First, at each 

time step, the initial condition 𝑇%' and 𝑇%$ are obtained from zone air temperature and the 

north-facing inside face surface temperature instead of the thermostat and node sensor reading. 

Second, once the optimal on/off decision is made, different from the smart thermostat in real 

homes, this decision can be directly implemented by adjusting the actuator status at the virtual 

testbed through the Python Plugin connected with the EMS to turn on or off the heat pump. 

Third, the parameters of the model are identified by using the simulated dataset generated by 

EnergyPlus instead of the real measurements. The weather forecast, TOU rate, and thermal 

comfort range are the same datasets mentioned in Section 4.3.1. 
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Figure 4.16 MPC-based precooling control through Python plugin and EnergyPlus virtual testbed.  

4.4.2.2 MPC hyperparameter choice  

Except for the factors that can greatly impact MPC-based precooling test results discussed 

in Section 4.3.3.2, the MPC hyperparameters, which are consistently chosen in field test results, 

may also have a different impact on the test results. Their impact is hard to test in the field due 

to the limitations of real homes but can be tested more conveniently in a virtual testbed. Among 

various hyperparameters, the model, optimization horizon, and use of forecasted weather are 

the impact factors discussed in this study. Apart from the concern of making the combinatorial 

space of hyperparameter too large, another reason for this choice is that some other 

hyperparameters, such as control sampling time, are less practical for real-world applications 

(as the smart thermostat typically updates at 5-minute intervals).  

The prediction horizon, the usage of forecasted weather, and the model used in impact 

analysis are summarized in Table 4.7. Here the model used in the MPC-based precooling refers 

to the RC network model. The parameter identification of these types of models is discussed 



 

 

 

 

99 

in Chapter 3. To further investigate the impact of model accuracy on MPC results, except for 

the 2R2C model discussed in Chapter 3, a 1R1C model shown in (34), a 2R2C model with 

reduced AC impact by multiplying 𝑐1 and 𝑐2 by 0.9, and a 2R2C model with reduced thermal 

mass impact by multiplying τ1 and τ2 by 0.9 are also used in MPC-based precooling tests. 

Figure 4.17 demonstrates an example of a 2R2C model (red), a 2𝑅2𝐶)$\[d$01 model, and a 

2𝑅2𝐶)$\[d$2	model indoor air temperature and interior wall surface temperature simulation 

results versus EnergyPlus results.  

𝑑𝑇%'
𝑑𝑡 =

1
𝜏	
(𝑇& − 𝑇%') +

1
𝜏	
(𝑎1𝑆 + 𝑎2𝑆2) +

1
𝜏	
(𝑇& − 𝑇%')(𝑏1𝑊 + 𝑏2𝑊2)

+
1
𝜏	
(𝑐1𝑇& + 𝑐2𝑇&2)𝑢 

(34) 

 

 

Although the discussion here did not include all the hyperparameters in the MPC agent, 

finding the optimal choice for the MPC hyperparameters can be a challenging and time-

consuming task. It is beneficial to identify the hyperparameters that have the most significant 

impact on the precooling results and allocate the development resources accordingly. In this 

study, we conduct the sensitivity analysis and ablation study for these hyperparameters.  

Table 4.7 MPC hyperparameters choice for impact analysis  

Hyperparameters Test values 

Optimization horizon  2hr, 4hr, 6hr, 8hr,9hr,10hr,12hr 

Forecasted weather Prefect weather from weather services, 

Forecasted weather used in filed test, see Section 4.3.1.  
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Model 2R2C, 1R1C, 2𝑅2𝐶)$\[d$01, 2𝑅2𝐶)$\[d$2	  

 

 

Figure 4.17 An example of a 2R2C model, a 2𝑅2𝐶456785'( model, and a 2𝑅2𝐶456785)	  model simulation 

results compared with the EnergyPlus outputs. (a) Indoor air temperature results. (b) Interior wall 

surface temperature results. (c) AC impact and reduced AC impact to the home thermal 

dynamics. 

4.4.2.3 Test results and impact analysis for MPC hyperparameters 

This section describes the MPC-based precooling test results at a virtual testbed. An example 

of an MPC-based precooling test on August 6, 2022, at a virtual testbed, is first demonstrated. 

Follows by the sensitivity analysis on the optimization horizon. Finally, the ablation study is 

shown and the dominant hyperparameters are discussed.  

Figure 4.18 depicts the zone air temperature (red), north-facing interior wall surface 

temperature (blue), AC on/off signal (green), thermal comfort range (dashed gray), and outdoor 

air temperature (dashed blue) of the MPC-based precooling results using forecasted weather 

and 10-hour prediction horizon at virtual testbed. The shaded area represents the on-peak hour 



 

 

 

 

101 

periods. Similar observations mentioned in Section 4.3.3.1, can be found in this figure: 𝑇%' 

mostly stays within thermal comfort range and occasionally excess the 𝑇[c and 𝑇#c, and the 

slack variable may not causing the AC turned on immediately due to the consideration of high 

electricity costs; 𝑇%$ has much slower respond to the environment change which justifies the 

2R2C model; and the MPC agent also takes advantage of cooler early morning air to precool 

the space with higher efficiency in this virtual testbed result.  

 
Figure 4.18 MPC-based precooling test result on August 6 at virtual testbed 

In an MPC algorithm, the optimization horizon decides how long the MPC can “see” into 

the future at each time step to make decisions. In MPC-based precooling real-time control 

framework, choosing a long optimization horizon may also add computational burden and data 

collection cost since a longer horizon correspondence a longer forecast data and larger decision 

variable space. Figure 4.19 is the 24-hour AC operation cost with different choice of 

optimization horizons by using 2R2C model. As can be seen from Figure 4.19, under perfect 

weather condition, the larger optimization horizon, in most of the case, indicating lower cost. 

This is because using a longer optimization horizon provides more (perfect weather) 

information into the MILP problem, and hence the MPC agent can better anticipate changes in 
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the system and make better decision accordingly. If forecast weather dataset is used in MPC-

based precooling, a longer optimization horizon, however, may not be an optimal choice. This 

is because a longer optimization horizon provides more uncertainty information into the MILP 

problem and making the MPC agent makes suboptimal decisions at each time step. Therefore, 

6-hour horizon provides the best result.   

 

Figure 4.19 Sensitivity analysis on optimization horizon in terms of cost saving with forecasted weather 

and with perfect weather. 

 

Since the good MPC-based precooling test is the result of the combined effort of all the 

hyperparameters to identify the contribution of each, an ablation study is performed. Starting 

from the ideal case, i.e., using a 12-hour optimization horizon, 2R2C model without any 

modification, and providing perfect weather conditions to the model, each ablation is obtained 

by removing one component (horizon, model, or weather dataset) from the ideal case. Figure 

4.20 compares the accumulated 24-hour AC operation cost of the ideal case (solid green) to the 
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five ablations and the baseline case (dashed black), i.e., 9-hour optimization horizon, 1R1C 

model with forecast weather. As can be seen from the figure, switching from the perfect weather 

to a forecast weather dataset (red line) result in the highest increase in cost (except for the 

baseline case), and followed by replacing the 2R2C model with a 1R1C model (orange line), 

while only reducing the prediction horizon under perfect weather (blue line) causes the least 

increase in cost.  

In addition to the ablation study, the comparison study from the baseline case to the ideal 

case is also performed. Specifically, starting with the baseline case, each case is obtained by 

replacing one component (horizon, model, or weather dataset) from the baseline case. Figure 

4.21 shows a comparison of the accumulated 24-hour AC operation cost of the baseline case 

(solid black) to the five cases as well as the ideal case (dashed green). Similar to the ablation 

study, switching from the forecast weather to a perfect weather dataset (blue line) result in the 

highest cost reduction, and followed by replacing the 1R1C model with a 2R2C model (orange 

line), while only reducing the prediction horizon under forecast weather (purple line) causes 

less cost reduction.  
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Figure 4.20 Ablation study using cumulative AC operation cost: compare ideal case (bold green) to baseline 

case (dashed black) and five different ablations. 

 

Figure 4.21 Performance comparison using cumulative AC operation cost: compare baseline case (bold black) 

to idea case (dashed green) and five different cases between them. 
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4.5 Summary 

The MPC-based precooling agent is developed, implemented and analyzed using nine-

home fielding testing with the help of IoT devices and cloud-based data platform in terms of 

the cost saving and energy flexibility potential in different conditions under a TOU rate. The 

performance of the agent is also studied using whole building modeling tool, i.e., EnergyPlus, 

and the Python scripts, in virtual testbed in terms of the impacts of hyperparameters. 

In the field test study, the MPC agent is implemented in nine residential buildings and the 

performance of the agent is evaluated through four-month experiment data. Through 

experiments in multiple buildings, the robustness and effectiveness of the proposed MPC agent 

are proved. The distribution of the cost savings on hot summer days ranges from 28.720% to 

51.306%, while on mild summer days ranges from -14.563% to 60.318% with a much wider 

range. For a smaller savings amount on mild days, the saving percentages are more sensitive 

to human activities and operation changes.  

Through the comparison of the flexibility factors of the MPC agents, it is observed that 

homes with larger floor size generally have larger flexibility than smaller homes. Test results 

show that difference in flexibility can be as much as 11.903% for an average 775 square foot 

increase. Homes with similar characteristics may not achieve similar load shifting results, and 

two other major factors, the thermal comfort temperature band and AC’s condition, also affect 

flexibility. Despite having the same upper and lower bound, a temperature band with higher 

average temperature results in larger flexibility when compared with a temperature band with 
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a lower average temperature. Diverse setpoint choices under similar weather conditions are 

also observed in Norman in normal operation, which further emphasizes the importance of 

research on personal thermal comfort preferences. Meanwhile, some AC faults that may not be 

easily detected in residential buildings’ AC systems, such as low refrigerant levels, affect load-

shifting capability. In the Lab House, 30% refrigerant leakage may lead to a 23.164% flexibility 

reduction and a 42.409% cost increment, which indicates the importance of automated fault 

detection research in residential buildings.  

As with any field study, certain limitations should be acknowledged. Due to the risk 

aversion of some participants to the AC operation, the MPC agent tests could not be scheduled 

for too long, causing the full potential of the agent not to be fully realized. Such limitation 

motivates the development of the virtual testbed. In this study, an EnegyPlus virtual testbed 

and its control framework for co-simulation purposes is developed. The former is modified by 

using the EMS and Python script to mimic the on/off cycle in the majority of residential AC 

systems in the U.S. Through the indoor air temperature compared with the real thermostat 

measurement and the energy consumption comparison with the smart power meter 

measurements, the virtual testbed simulation result shows a quite closer behavior to the real 

Lab House, hence can be useful in impact analysis in this study.  

In this study, the MPC hyperparameters’ impact is studied at a virtual testbed by 

conducting sensitivity analysis and ablation study. Through the sensitivity analysis of 

optimization horizon, it is observed that a longer optimization horizon may bring a smaller cost 
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under prefect weather conditions. However, once the forecasted weather is used, such 

conclusion can be different, a relatively shorter optimization horizon—6 hour in our case 

study—may preferable due to the uncertainty exists in forecast weathers. The ablation study 

also validates this observation. Among all impact factor studies, the MPC-based precooling is 

most sensitive to the usage of forecast weather, followed by accuracy of the models, such as 

using 1R1C model instead of 2R2C, and the proper prediction horizon.  
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5 Connected Home Energy Management for Grid-

Interactive Building 

5.1 Introduction   

Having developed the model for major flexibility resources in a smart home and proved 

the load shifting ability of an AC system through both field study and virtual testbed study, the 

cost saving and energy flexibility potential in a smart home is invested through simulation in 

this chapter. Specifically, a scheduling algorithm coordinating thermal appliances (HVAC 

system and water heater), non-thermal appliances (clothes washer, dryer, and dishwasher), and 

a rooftop residential photovoltaic (PV) system, with the PV system being optionally coupled 

with the battery energy management system, are developed. The structure of this chapter is as 

follows. First, three types of PV systems that are common in residential buildings are 

introduced. Second, the mixed-integer linear programming (MILP) problems of the scheduling 

algorithm for smart homes for different types of PV systems are formulated.  

To address the existing limitations and barriers in smart home energy management that 

user behavior is not fully considered, we have focused on an important aspect that has often 

been overlooked: user preference. Unlike previous studies, we have taken into account the 

preferences of users regarding non-thermal appliances. Our investigation is based on an 

analysis of the American Time Use Survey (ATUS) data, which provides valuable insights into 

American daily activities and appliance usage. By incorporating user preference in our 

scheduling algorithm, we aim to contribute to a more holistic understanding of home energy 
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management systems and better align them with the needs and preferences of users. 

Building upon the aforementioned context, it is important to acknowledge the focus of 

this study does not involve selling power generated by solar systems back to the grid. This 

means excess energy generated by the PV is wasted if it cannot be used by the appliances or 

does not need to be stored in the battery, and the user will not get the credits from the grid. It 

is worth mentioning that such consideration is not unique to this study. For instance, a previous 

work [137] also ignored the selling excess solar energy options. The author in [137] indicated 

that feed-in tariffs are not widely available in the U.S., and when the battery is available to 

collect the majority of the excess PV power, the low feed-in tariff makes selling action less 

economical. There are three types of solar systems that are commonly used in residential 

buildings: grid-connected, grid-off, and hybrid systems, as shown in Figure 5.1. 

 

Figure 5.1 Three different types of PV Systemsm: Off-grid (left), Grid-tie (middle), and Hybrid System 

(right). 

Figure 5.1 also demonstrates the power flows associated with three types of systems. As 

the name implies, the off-grid system is not connected to the grid, relying entirely on solar 

generation. In an off-grid system, the energy generated by the solar panels is stored in a battery 
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bank, which then supplies all the energy to the house when it is needed. The off-grid solar 

system price is much higher than the other two types, as they require a much larger energy 

storage system. While a charger controller is embedded into the system to optimize energy 

generation, this type of system is more frequently used in cabins, cottages, and even RVs 

(recreational vehicles), and it is especially useful for remote areas where access to the grid is 

limiting.  

Grid-tie systems are more frequently used in residential construction. In this system, the 

smart home can draw electricity from the grid while also drawing electricity from the 

photovoltaic system. A grid-tie inverter will convert the solar-generated direct current (DC) to 

alternating current (AC). However, no battery is involved in this case. To further integrate the 

battery system with the photovoltaic system, a hybrid system integrates a battery with the 

photovoltaic system by using a hybrid inverter that not only converts DC to AC but also charges 

the battery is considered. Therefore, the smart home with a hybrid system obtains energy from 

the grid, directly from the photovoltaic panel, and from the battery. Both grid-tie and hybrid 

systems provide more energy flexibility and resilience to the buildings. In this study, only the 

gird-tie and the hybrid solar system are considered.  

5.2 Smart Home Scheduling Formulation 

In this section, the mathematical programming formulation for smart home optimal 

scheduling is introduced. First, a baseline model which considered the thermal and non-thermal 

appliances scheduling without any PV or battery involvement in the modeling is introduced. 
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The baseline model depicts an optimal scheduling approach to coordinate both thermal and 

non-thermal appliances. Following that, a scheduling model integrating the grid-tie and hybrid 

PV system are introduced, respectively. The first models considered the operation of smart 

home appliances when the PV panels directly provide some energy to the appliances through a 

grid-tie inverter, underscoring the immediate solar power utilization. The later model has an 

AC battery that can store extra PV generation and provide energy at a later time, stressing the 

advances in energy storage and flexible power supply. Lastly, based on the American Time Use 

Survey and real-time water usage data, the user preference models, which relies on statistical 

analysis and data mining technique, simulate household activities related to the timing of 

appliance use and water consumption are demonstrated.  

5.2.1 Baseline model 

To model the operation of each appliance, we use a series of binary variables to represent 

their on/off control signals throughout the scheduling period. Let 𝑖 ∈ {𝐼 = 1,2, …𝑁'K} denote 

the number of all non-thermal appliances in a smart home, 𝑗 ∈ 𝐽 = {1,2, …𝑛%}  denote 

sequential energy phase of each appliance 𝑖, and 𝑘	 ∈ 	𝐾	 = 	 {1, 2, . . . 𝑚} denotes each time 

slot of scheduling period, of which 𝑁'K , 𝑛% ,	and 𝑚 are the number of non-thermal appliances, 

the energy phase of non-thermal appliance	𝑖, and the total time slots, respectively. In this 

baseline model, we first introduce a constraint applied to all appliances and scenarios—the 

electricity safety model, which is given by:  
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P>gg>hhg?>@ijkl ≤ 𝑃#%8%K			∀𝑘, (35) 

where the 𝑃(##(WW#%('d$*6  is the total power usage of all appliances at time slot 𝑘, and 

𝑃#%8%K is the maximum power usage. This constraint is rigorously maintained regardless of 

whether additional power flows into the home from the PV or battery system or not. 

5.2.1.1 Non-thermal appliances 

Non-thermal appliances are a group of appliances that can be turned on at any time of the 

day. However, once they are turned on, the output and run time depend on their energy phase, 

which is a subtask in the operation of a non-thermal appliance that runs for a period and 

consumes a specified amount of energy. For instance, washing clothes is typically divided into 

three phases: washing, rinsing, and extraction. Hence, the clothes washer has three energy 

phases. Different energy phases of the same appliance may consume a different amount of 

power and complete operation at a different period [96].  

The decision variable which represents the on/off signal for energy phase 𝑗 for 

appliance 𝑖 at each time slot 𝑘 is 𝑥%m6 . Besides, we use the auxiliary variables 𝑠%m6  to aid the 

construction of constraints to regulate the on/off state of non-thermal appliances. Constraint 

(36) is used to regulate the operation time for each energy phase 𝑗 of appliance 𝑖, where 𝑡%m 

operation time for the energy phase, which depends on the appliance's specification. 

K𝑥%m6
8

6;1

= 𝑡%m 			∀𝑖, 𝑗, (36) 

 To further regulate the operation of energy phases, the following constraints, which 
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utilize the binary nature of 𝑥%m6  and its auxiliary variable 𝑠%m6 , are used.  

𝑥%m6 + 𝑠%m6 ≤ 1			∀𝑖, 𝑗, 𝑘, (37) 

𝑥%m6A1 − 𝑥%m6 ≤ 𝑠%m6 			∀𝑖, 𝑗, 𝑘 = 2,… ,𝑚, (38) 

𝑠%m6A1 ≤ 𝑠%m6 			∀𝑖, 𝑗, 𝑘 = 2,… ,𝑚, (39) 

𝑥%m6 ≤ 𝑠%mA16 			∀𝑖, 𝑗 = 2,…𝑛% , 𝑘 = 1,… ,𝑚, (40) 

0 ≤KW𝑠%mA16 − L𝑥%m6 + 𝑠%m6 MX
8

6;1

≤ 𝐷%m 			∀𝑖, 𝑗 = 2,… ,𝑚, (41) 

𝑥8m9
6 ≤ 𝑠'm:(

6 			∀𝑘. (42) 

where constraints (37) and (38) force the auxiliary variable 𝑠%m6 	to be 1 once energy phase -

𝑗 of appliance 𝑖 turns off (i.e., 𝑥%m6  to be 0 and 𝑥%m6A1 to be 1). Based on constraints (37) and 

(38), constraint (39) ensures each energy phase of the appliance only executed once. The 

combination of these three constraints along with the constraint (36) ensures the energy phase 

𝑗 is uninterruptable. Similarly, constraint (40) ensures energy phase 𝑗 turns on only after the 

previous energy phase turns off. Constraint (41) regulates the time delay between energy phase 

𝑗	and 𝑗 − 1 should be no less than time slots 𝐷%m. Moreover, constraint (42) ensures that the 

first energy phase 𝑗b  of appliance 𝑚  turns on only after the last energy phase 𝑗A1  of 

appliance 𝑛, which aims to mimic real-life scenarios such that the clothes washer not running 

after the dryer. Finally, by using a series of binary sequences 𝑇𝑃%6, the user time preference 

constraint on each appliance 𝑖 is shown in (43). In this study, the user time preference, which 

specifies the time interval (referred as 𝑈) within which appliance 𝑖 should be operated, is 
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assumed to be provided by the user. given by:  

x?nl ≤ TP?l   ∀i, j, k. (43) 

The choice of this non-thermal appliance usage preferred timing is discussed in Section 

5.2.4. In addition, in [96], the power consumption of each appliance is one of the problem's 

decision variables, implying that once the appliances are turned on, the algorithm can determine 

the power consumption of each appliance at each time slot. However, controlling the exact 

power usage for some of the appliances is a hard operation that may lead to some mechanical 

issues. We only consider manipulating the on and off for each appliance in this study. As a 

result, we only control the on/off of the non-thermal appliances.  

5.2.1.2 HVAC system 

For an HVAC system in the smart home, the on/off signal for each time slot  𝑢T+(d6  is a 

binary variable whose output depends on the home thermal dynamics. To accurately capture 

the home thermal dynamics, a simplified second-order thermal network model which is 

introduced in Chapter 3 is adopted, as expressed by  

𝑇%$6`1 − 𝑇%$6

Δt =
1
τ1
L𝑇&6 − 𝑇%$6M +

1
τ2
L𝑇%'6 − 𝑇%$6M, (44) 

𝑇%'6`1 − 𝑇%'6

Δt =
1
𝜏3
L𝑇%$6 − 𝑇%'6 M +

1
𝜏3
(𝑎1𝑆6+𝑎2(𝑆6)^2)

+
1
𝜏3
L𝑇&l − 𝑇%'6 M(𝑏1𝑊^𝑘 + 𝑏2(𝑊^𝑘)2)

+
1
𝜏3
L𝑐1𝑇&l + 𝑐2(𝑇&2)6M𝑢T+(d6 ,			for	all	𝑘 

(45) 

where 𝑘  denotes time slot, 𝑇%$6  is the interior wall surface temperature, 𝑇%'6  is the 
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indoor air temperature, 𝑇&6 is the outdoor air temperature, 𝑆6 is the solar irradiation, 𝑊6 is 

the wind speed, and 𝑢T+(dl ∈ {0,1} is the AC on/off signal. Note that (46) and (47) contain a 

total of nine unknown parameters: 𝜏1 is the time constant of the building envelope, 𝜏2 is a 

coefficient associated with the thermal resistance of air and thermal capacitance of the building 

envelope, 𝜏3	is the time constant of the indoor air, and 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2 are coefficients 

representing the impact of solar irradiation, wind speed, and AC output, respectively. Also note 

that in general, the AC output mainly depends on both 𝑇&6 and indoor air web bulb temperature. 

However, the latter has relatively small variation compared to 𝑇&6 and, thus, is neglected.   

The indoor air temperature is regulated by the following constraint during the scheduling 

period, as expressed by  

𝑇Vo>i ≤ 𝑇%'6 =
ΔK
p!
L𝑇%$6A1 − 𝑇%'6A1M +

ΔK
p!
(𝑎1𝑆6A1 + 𝑎2(𝑆6A1)2) +

ΔK
p!
L𝑇&6A1 − 𝑇%'6A1M(𝑏1𝑊6A1 + 𝑏2(𝑊6A1)2) + ΔK

p!
(𝑐1𝑇&6A1 + 𝑐2(𝑇&6A1)2)𝑢6A1 +

𝑇%'6A1 ≤ 𝑇T+(d 			for	𝑘 = 1,2, … ,𝑚 − 1, 

(48) 

where 𝑇T+(d  and 𝑇T+(d  are the acceptable lower and upper temperature bounds on 

indoor air temperature 𝑇%'. 

5.2.1.3 Water heater system and its coupling effect 

Generally, water heaters have a higher power rating compared to other electrical 

appliances in home. Furthermore, hot water is utilized in many other appliances: for instance, 

clothes washer withdraws hot water from the hot water tank. Consequently, accurate prediction 

of water heater behavior, considering these interconnected thermal impacts (i.e., coupling 
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effect), is crucial for the efficient operation of all appliances. The RC network concept 

introduced in the HVAC system is also widely used in the water heater modelling. In addition, the 

physical model can be easily modified to model the coupling effects between the water heater 

and other appliances. In this study, the modelling method in [105] is adopted and modified to 

capture the dynamics of the hot water inside the tank.  

For the electric water heater, the on/off signal at each time slot 𝑢JT6  is a binary decision 

variable whose output is depending on its thermodynamic behavior. It is assumed that once the 

clothes washer is in the washing or rinsing phase, i.e., 𝑥dJ	m6 = 1 for 𝑗	 = washing or rinsing, the 

hot water is withdrawn from the tank, and the tank is replenished with the same amount of city cold 

water. Additionally, we assume the water heater is exposed to the indoor air temperature, and 

the changing indoor air temperature 𝑇%'  influences the thermal leakage of the tank. The 

modified model is discretized as follow:  

𝑇JT6`1 − 𝑇JT6

Δ𝑡
=
1
α �

𝐴
𝑅 L𝑇)&&8

	 − 𝑇JT6 M�

+
1
𝑉 �K𝑥dJm6 𝑊dJm

';-

dJm

+𝑊JT
6   L𝑇%'#$K − 𝑇JT6 M

+
1
α L𝑃JT𝑢JT

6 M	 for	𝑘 = 1,2, … ,𝑚 − 1. 

(49) 

where	𝑇JT6  is the temperature of the water inside the tank at time slot 𝑘; 𝛼 is the lumped 

parameter equal to 𝜌𝐶W𝑉; 𝜌, 𝐶W, 𝑉, 𝐴, and 𝑅 are the density of water, the specific heat of 

water, the tank volume, surface area, and its thermal resistance, respectively; In this study, we 

assume that once the hot water is withdrawn, cold water with temperature 𝑇%'#$K	will enter the 



 

 

 

 

117 

tank, and 𝑇)&&8	  represents the air temperature of the room that the water heater exposure to, 

which is a relatively constant value since the water heater usually installed in a utility room 

instead of living space. 𝑊dJm represents the water usage for clothes washer at energy phase 𝑗 

and 𝑊JT  represents a typical water usage in a home, which is further discussed 5.2.4. In 

addition, like the HVAC system, the water temperature is also regulated within a thermal 

comfort temperature range, 𝑇UV and 𝑇JT which are assumed to be given: 

𝑇JT ≤ 𝑇JT6 ≤ 𝑇JT			for	𝑘 = 1,2, … ,𝑚 − 1. (50) 

 

5.2.2 Grid-tie PV system 

To incorporate the PV panel and the home appliances, we added two more decision 

variables into the model. 𝑃W+6  denotes the power from the photovoltaic panel array to the home 

appliances at each time slot, while 𝑃0)%\6  denotes the power the homeowner must buy from 

the gird. In this study, the author assumes the homeowner did not get credits from the grid, 

implying the homeowner will not sell their energy to the grid. As a result, the grid-tied PV 

panel model becomes: 

minfiSk< =Kcl
q

l;1

P-=?Rl 	 (51) 
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𝑃0)%\6 	+ 𝑃W+6 	= 	�K 	
:<=

%;1

KL𝑥%m6𝑃%mM
'K

m;1

+ 𝑢JT6 𝑃JT

+ 𝑢T+(d6 𝑃6T+(d ∀𝑘 

(52) 

0 ≤ 𝑃W+6 ≤ 𝑃8(B6 	∀𝑘 (53) 

𝑃0)%\6 	≥ 0	∀𝑘 (54) 

 

Constraint (52) denotes the energy usage of the appliances comes from either the direct 

energy from PV or the grid. Constraint (53) restrict the minimum and maximum amount of 

energy that PV system can generates. Here, the 𝑃8(B6  is generated by using PV power 

generation forecast model described in Chapter 3. Note since the energy losses from the 

inverter and wires has already considered in PV power generation forecast model, the author 

did not put efficiency parameter in the constraints. Combines the Constraint (54) and the left-

hand side in Constraint (52), if the PV panel generates more energy than the home appliances 

needed, the excess part will be wasted. In fact, the following inequality constraint is considered:  

0 ≤ 𝑃W+6 	≤ 𝑚𝑖𝑛	{𝑃8(B6 , L∑ 	:<=
%;1 ∑ L𝑥%m6𝑃%mM'K

m;1 + 𝑢JT6 𝑃JT + 𝑢T+(d6 𝑃6T+(dM . Note, since the PV 

panel generates energy, the utility bill calculation is different from baseline model. In this 

model, the cost depends on the P-=?Rl  and the utility rate in different time step (Constraint (51)). 

Here we assume the power flow for each equipment is constant during each time slot, hence 

𝑐6 	is not only the utility rate ($/kWh), but the utility rate per time interval.  
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5.2.3 Hybrid PV system with AC battery 

The second integration model in this study is the hybrid PV system. Here, we will assume 

that a hybrid inverter is available to transfer energy from the PV system to the home or to 

(with-)draw energy from the AC battery. In this case, at each time step k, the home appliances 

have three distinct energy sources: the direct PV panel generation 𝑃W+=,+,>?
6 , the energy buying 

from the gird P-=?Rl , and the possible battery discharge 𝑃\%*6 . The following model illustrates 

such power flow between the house (all appliances), the PV, the battery, and the grid:   

min	fiSk< =Kcl
q

l;1

P-=?Rl  (55) 

𝑃W+=,+,>?
6 + 𝜂\𝑃\%*6 +	𝑃0)%\6

=	�K	
:<=

%;1

KL𝑥%m6𝑃%mM
'K

m;1

+ 𝑢JT6 𝑃JT + 𝑢T+(d6 𝑃6T+(d ∀𝑘 

(56) 

𝐸c6 − 𝐸c6A1 = L𝑃dT()0$6 − 𝑃\%*6 MΔ𝑡  	∀𝑘	 = 	2,3, …𝑚 (57) 

𝑃dT()0$6 /ηd + 𝑃W+=,+,>?
6 = 𝑃W+6 			∀𝑘 (58) 

𝑆𝑂𝐶8%' ≤
𝐸c6

𝐶c 	
≤ 𝑆𝑂𝐶8(B	∀𝑘 (59) 

0 ≤ 𝑃dT()0$l ≤ 𝐿d𝐶6 	∀𝑘 (60) 

	0 ≤ 𝑃\%*l ≤ 𝐿\𝐷6		∀𝑘 (61) 

𝐸cb = 𝑆𝑂𝐶8%' ∗ 𝐶c (62) 

0	 ≤ 𝑃W+6 ≤ 𝑃8(B6 ∀𝑘 (63) 
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𝐶6 	+ 	𝐷6 	≤ 1	∀𝑘 (64) 

𝐶6 , 𝐷6 ∈ {0,1}∀𝑘 (65) 

In this model, the objective function is minimizing the electricity cost (Constraint (55)), 

which is determined by the utility rate per time step and the energy drawn from the grid. 

Constraint (56) refers to the balance of the power flow of the smart home, where the energy 

comes from PV, battery and the grid. Constraint (57) represents the energy balance inside the 

battery, where 𝐸c6 is the amount of energy left in the battery at the end of time slot 𝑘 and 

Δ𝑡	is the time interval for each time step, and 𝑃dT()0$6  is the PV panel’s power which stores to 

the battery. Note that it might be harmful to the battery start with zero energy at the beginning 

of the day, therefore, we assumed that the initial state of the battery is not empty (Constraint 

(62)). Constraint (58) indicates the total power flow from PV eventually go in two directions: 

one part of the power goes to the house load; another part goes to the battery system. Besides, 

the total power flow from the PV panel to the battery and the appliances should not exceed the 

estimated maximum amount of PV generation, which is limited in Constraint (63). Constraint 

(59) restricted the state of charge of the battery should be in a certain range, which helps extend 

the battery life cycle. The battery (dis-)charge typically has a maximum power flow and 

continuous power flow, with the maximum power flow typically being a high value that lasts 

only 3 to 10 seconds. Thus, in Constraint (60) and (61), 𝐿d , 𝐿\ indicates the continuous power 

flow within the time step 𝑘 . Finally, two binaries 𝐶6	, 𝐷6	 are introduced to prevent the 

charging and discharging process happening simultaneously (Constraint (64), Constraint (65)).  
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5.2.4 Occupancy behavior and user preference model 

Residential buildings serve as habitats for homeowners, providing comfort, safety, and the 

backdrop for daily life. Their primary function isn't just to provide physical shelter, but rather 

to facilitate an environment conducive to human wellbeing and satisfaction. Besides, as 

mentioned in Chapter 1, many researchers indicated that user might have intended to maintain 

their appliance usage routine even if they enrolled in DR programs. In this context, the human 

element becomes an important factor in the research of smart home energy management. In 

this study, the proposed models and management strategies can be designed to be not just 

technically efficient, but also practically adaptable and respectful of the users' routines and 

lifestyles. 

5.2.4.1 User time preference on appliance usage 

In this research, the American Time Use Survey (ATUS) is used to build a user preference 

appliance usage model. The ATUS is a high-quality dataset, which focuses on recording 

homeowners' time allocation across daily activities, collected annually by the U.S. Bureau of 

Labor Statistics [138]. Figure 5.2 demonstrates an example of the ATUS dataset. In this dataset, 

'TUCASEID' represents a unique ID for different households, while 'TUACTIVITY_N' 

characterizes various activities including food preparation and laundry. The “TUSTARTTIM” 

and “TUSTOPTIM” further indicate the start and stop time of each activity. The ATUS data 

contains a wealth of information, including the homeowner information and work time. More 

details can be found in [138].  
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Figure 5.2 An example of ATUS dataset. 

 A substantial amount of data has been analyzed for the purpose of this study, including the 

activity time allocation of 228,455 households (over 4,440,000 records). The dataset spans 

nearly two decades, i.e., from 2003 to 2021. The analysis of a large amount of the ATUS data 

set allows for a thorough exploration of American appliance usage patterns and contributes to 

the development of an effective smart home energy management model.  

 While the ATUS provides a high-quality dataset, additional work has to be done to transfer 

its information into the useful information can be used in proposed scheduling framework. In 

this study, a Probability Density Function (PDF) is generated through statical analysis for 

kitchen cleaning and laundry. To generate the PDF of these activities, the 24-hour scheduling 

period was divided into 10-minute intervals. The start and stop times of each activity were 

examined to calculate the number of ongoing activities within each interval. As a result, PDFs 

were generated to represent the frequency of activity occurrence across the different time slots. 

Figure 5.3 demonstrates generated PDFs for kitchen clean-up and laundry activities. Notices 

that kitchen cleans up, although it may not precisely equal dishwasher use time, the 
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approximation is sufficient for this study—estimate a user’s time preference towards using the 

dishwasher.  

 
Figure 5.3 Example of the probability density function of (a) Kitchen clean up and (b) Laundry. 

 To transfer the PDFs to the user’s time preference, a sliding window is employed. The 

sliding window scans across the probability density function, capturing the maximum area 

under the curve within its span. The red-shaded areas in Figure 5.3 illustrate scenarios where 

5-hour windows generate the highest areas under the curve (PDF curves) for kitchen and 

laundry activities. To capture the diverse user preferences regarding appliance use time, sliding 

windows of various lengths are used, representing a range of relaxed to stringent time 

constraints. For example, larger windows might signify more relaxed preferences, whereas 

narrower windows could suggest that users might be stricter on appliance use time.  

5.2.4.2 Water usage profile 

To generate a typical water usage profile, a real-world hot water usage profile from [139] 

is used. The dataset was collected in a single-family house in 2018 by Raspberry Pi. Although 

the data only captures the time and hot water flow rate, it is still extensive. To extract a typical 
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hot water usage pattern, a data mining approach—matrix profiling of data snippets—is utilized. 

The time series data snippets method has already been used in a more complicated clustering 

task in Chapter 4, it will not be reiterated here. As shown in Figure 5.4, the raw data spans from 

January to August. The focus of this research is the cooling season, only data from July and 

August are included in the calculations. 

 
Figure 5.4 Hot water usage data collected from a single-family water heater [139]. 

5.2.5 User-preferred thermal comfort range 

To quantify thermal comfort and account for temperature changes, the following 

constraints are used when multi-objective optimization is considered. 

𝑇T+(d − 𝑇%'6 ≤ −𝑀1𝑧16 			∀𝑘, (66) 

−𝑇T+(d + 𝑇%'6 ≤ −𝑀2𝑧26 			∀𝑘, (67) 

𝑧16 , 𝑧26 ∈ {0,1}			∀𝑘, (68) 

where	𝑀1	(	𝑀2) is a constant number that indicates the distance between the acceptable 

lower (upper) temperature bound and the preferred lower (upper) temperature bound; 𝑧16 and 

𝑧26  are two sets of binary decision variables to distinguish between preferred and acceptable 
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temperature ranges. To better understand how 𝑧16and 𝑧26 work, the concept of reward 𝑧16 + 𝑧26 

is considered. Three examples with different rewards are shown in Figure 5.5, where the x-axis 

represents different time slot, and the y-axis is the indoor air temperature. As illustrated in the 

figure, 𝑧16 and 𝑧26 will change their values based on where the indoor air temperature 

drops over the different temperature ranges of time slot 𝑘. If the indoor air temperature is 

between 𝑇T+(d and  𝑇T+(d +𝑀1, but not within the preferred range, the agent will get a normal 

reward, i.e., 𝑧16 = 0, 𝑧26 = 1 in this scenario, as shown in Example 1. Similarly, if indoor air 

temperature is between 𝑇hvac and 𝑇hvac −𝑀2, the reward is still the same, and 𝑧16 = 1, 𝑧26 =

0	 as shown in Example 2. Once the temperature falls within the preferred range, the agent 

gets the highest reward, i.e., 𝑧16 + 𝑧26 = 2, as shown in Example 3. In this study, it is assumed 

that both the acceptable and preferred lower and upper temperature bounds are given (i.e.,	 𝑇@ABC , 

𝑇DEF8, 𝑀1, and 𝑀2 are given). 
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Figure 5.5 Comfort reward examples. 

The first objective considered in this study is the cost of electricity, and the second is 

thermal comfort. The electricity cost is inclusive of all non-thermal appliance operating costs 

∑ 𝑐6W∑ ∑ 𝑥%m6𝑃%m6
'.
m;1

:<=
%;1 X8

6;1 , the water heater costs ∑ 𝑢JT8
6;1 𝑃JT, and the HVAC system costs 

∑ 𝑢T+(d8
6;1 𝑃T+(d. 

Besides the electricity cost, we want to maximize the total comfort index ∑ 𝑧168
6;1 + 𝑧26. 

The total comfort index ranges between 𝑚 and 2𝑚 since the total number of time slots is 𝑚. 

For example, the optimization agent will earn 𝑚  points if all temperatures exceed the 

preferred temperature range, or it may earn 2𝑚 points if all temperatures remain within the 

preferred temperature range. Maximizing this objective function can be interpreted as 

maximizing thermal comfort or maximizing the reward that the agent can obtain over the 

scheduling period. Moreover, cost and comfort objectives are measured and quantified in 

different scales. In this study, the goal programming technique is sued for resolving the uneven 

weight problem. 

In goal programming, two pairs of deviation variables 𝑑1  and 𝑑2  are introduced. 

Instead of using either cost or comfort as objective function, with goal programming, the 

objective function becomes:  

min 𝑧 =K𝑤%(𝑑%` + 𝑑%A)
2

%;1

, (69) 

where 𝑤1  and 𝑤2  are the weights corresponding with electricity cost and thermal 
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comfort, respectively. To strike a balance between cost and comfort, we add the following 

constraints to the optimization problem:  

K𝑤%

2

%;1

= 1, (70) 

𝑓iSk<
target	cost − 𝑑1

` + 𝑑1A = 1, (71) 

𝑓iSqvS=<
target	comfort − 𝑑2

` + 𝑑2A = 1, (72) 

𝑑%` × 𝑑%A = 0			 ∀𝑖, (73) 

𝑑%`, 𝑑%A ≥ 0			∀𝑖. (74) 

To ensure effective control over the weights of each objective, constraint (70) regulates 

the sum of weights to be 1. To make sure that the distance between the objective on cost 

(comfort) and the target cost (target comfort) is normalized, constraint (18) (constraint (72)) is 

included. The target cost (target comfort) is the objective by solving the single-objective 

optimization problem. Finally, constraints (73) and (74) indicate that 𝑑`(𝑑A) will be zero if 

the other one is non-negative. By combining (69)–(74), the weights in the objective function 

represent the user’s intention on cost and comfort because the two objectives are normalized 

and the sum of weights is constrained.  

5.3 Case Study  

This section provides information and specification for the simulation study. In the 

simulation, the scheduling period of each appliance is 24 hours with a 10-minute time interval. 

Hence, if 𝑘 ∈ 𝐾	 = 	 {1, 2, . . . 𝑚} denotes each time slot of the scheduling period, then 𝑚	 =
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	144. Three non-thermal appliances, namely a clothes washer, a clothes dryer, and a dishwasher, 

and two thermal appliances, an HVAC system, an electric water heater, a PV panel, and a home 

battery are considered in the test problem. The water heater and the HVAC system have 

behaviors that are determined by the governing equations discussed in Chapter 3. Since the 

data collection, parameter identification, and validation results of the HVAC system and water 

heater system are introduced in the previous chapter, their parameter identification results are 

not reiterated in this chapter.  

The specifications for the water heater are adopted from [105] and listed in Table 5.1. The 

left-hand side of the table contains information about the water heater's thermal properties, 

ambient temperature, inlet water temperature, and power consumption. To ensure the 

homeowner's comfort, we also implement the constraint that the water heater's temperature 

must remain within a specified range. In this case study, the water temperature inside the tank 

must be between 113 𝐹	∘ 	 and 140 𝐹	∘ 	. For the HVAC system, the temperature is allowed to 

be float between 76 𝐹		
∘ 𝑡𝑜	82 𝐹	∘ .  

  
Table 5.1 Other appliances specifications 

Water Heater Specifications Type Phase Power (W) 
Water 

(𝒎𝟑/𝒔) 

Notation Value Unit 

Washer 

Wash 2000 0.000035 

ρ 997.77 kg/mG Rinse 2000 0.000026 
𝐶H 4182 𝑘𝐽/𝑘𝑔 𝐶	∘  Extraction 800 0 

𝐶 = ρ𝐶H𝑉 
1.24
∗ 10J 

𝐽/ 𝐶	∘  
Dish 

washer	

Fill & sense	 250	 0	

𝐺 = 𝐴/𝑅 8.12 𝑊/ 𝐶	∘  Preheat &wash 1300 0 

𝑇%&&' 25 𝐶	∘  Wash 250 0 
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𝑇()*+, 15 𝐶	∘  Partial fill 250 0 

𝑇-./  62 𝐶	∘  Heated rinse 1300 0 

𝑃-. 4500 𝑊 
Final rinse 250 0 

Dryer Drying 5000 0 

Table 5.1 also lists the specifications of all non-thermal appliances considered in the 

model. The right-hand side of the table contains information about non-thermal appliances' 

energy consumption. Three non-thermal appliances were considered: the dishwasher, the 

clothes washer, and the dryer. Each of them has a unique energy phase, which may consume a 

different amount of energy. Since the water heater is coupled with the clothes washer; thus, an 

additional column representing the water consumption of non-thermal appliances is included. 

Additionally, to ensure safe electricity usage and to prevent too many appliances from running 

concurrently, the scheduling model includes a constraint on total power flow. In each of the 

following results, we set 𝑃#%8%K = 8000𝑊.  

For the PV panel, we choose the rooftop PV installed in a real residential building 

collected from NREL’s open dataset [140]. The specification of the PV panel can be seen in 

Table 5.2. It is assuming the inverter used in both grid-tie and hybrid PV systems has enough 

capacity—the inverter does not pose a bottleneck for the interaction between the PV panel and 

the battery. The meteorological data for the PV power generation forecast was obtained from 

the weather service website [141]. Moreover, interpolation was applied to align the 

meteorological data with the time interval used in this case study. 

Table 5.2 PV panel specifications for test location 

Location PV Size 
Module 

Type 
Array Type Array Azimuth 
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Latitude: 30.07°N 
Longitude: 

90.09°W 
5.76 kW Monocrystalline Fixed (no tracking) 180° 

Array Tilt Inverter Efficiency  

15° Up to 96%  

The specification of the battery system is listed in Table 5.3. The specifications for the 

battery were approximated based on those of a model commonly used in residential energy 

storage systems, which is a lithium-ion battery [142]. The battery capacity plays an important 

role in the power flow of the battery. The battery's maximum (dis-)charging power is the 

maximum power available for a brief period, hence we will not use that directly in the model. 

Instead, the continuous power (dis-)charging output, 𝐿d , 𝐿\ , is used in our model. Additionally, 

the (dis-)charging efficiency represents the energy lost from the PV panels to the battery. In 

fact, 𝐿d , 𝐿\ is not constant during the time of the day. Instead, 𝐿d , 𝐿\ can be affected by many 

factors. For example, In [143], the author indicated that the solar battery continuous charging 

power could be correlated with the solar irradiation as well. In this study, this value is based on 

the rated (continuous) power output and power factor listed in the datasheet in [142].  

Table 5.3 Battery system specifications 

Notation Description Value 
𝐶K Battery Capacity   3 kWh  

𝐿8 , 𝐿6 Continuous (dis-)charging power  1280 W 

η8 , η6 Battery (dis-)charging efficiency  0.9 

𝑆𝑂𝐶LMN, 𝑆𝑂𝐶LFO Minimum and Maximum State of Charge 20%, 80% 

 

In this case study, the TOU rate ($0.05 from 11:00am to 1:50pm, $0.18 from 2:00pm to 

7:00pm, and $0.03 for the reminder) and the user's preferred time range for running the specific 
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appliances are considered in all cases. Using sliding windows of 3, 5, and 8 hours across the 

PDFs yields different time preferences termed strict, moderate, and flexible time preferences, 

as shown in Table 5.4. In addition, the time delay between each phase of appliances in this case 

study should be no more than 40 minutes.  

Table 5.4 User time preference interval used in case study 

Activity 
3-hour, strict 5-hour, moderate 8-hour, flexible 

Start Stop Start Stop Start Stop 

Kitchen cleans up 5:30pm 8:30pm 4:30pm  9:30pm 1:40pm 9:40pm 

Laundry 9:00am 12:00pm 8:50am 1:50pm 8:20am 4:20pm 

Figure 5.6 depicts the results of hot water usage pattern learning. Figure 5.6(a) presents 

raw hot water usage data from July 1 to August 15, where the red subsequence corresponds to 

the 24-hour hot water profile illustrated in Figure 5.6(b). According to the results from the data 

snippet analysis, the hot water profile in Figure 5.6(b) is the most representative profile of these 

days—it has the highest similarity with other 24-hour subsequences. 

 
Figure 5.6 Hot water usage profiles (a) hot water usage profile from July to August (b) most representative hot 

water usage 24-hour profile. 
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The simulations carried out on a desktop with an AMD 12-core CPU and 32GB of memory 

with the Python-based optimization package Pyomo [144–146] are demonstrated. The optimal 

scheduling is solved by Gurobi [147].  

5.4 Result and Discussion 

The optimization results will be classified into three categories in this section: baseline 

operation, which is the optimal scheduling without a PV or battery system; Grid-tie system 

operation, which is the optimal scheduling with a PV system but no battery; and Hybrid system 

operation, which is the optimal scheduling with both a PV and a battery system. These 

optimization results, which are reported first in the following section, are generated by solving 

single-objective optimization problems that aim to minimize costs. Then, it follows with the 

impact analysis of different factors such as user’s time preference. Although the primary focus 

of this study is to build a scheduling framework for the homeowners, with their decision mainly 

driven by cost and comfort, cost saving, energy flexibility, and PV self-consumption across 

three categories will still be reported to provide more insights into different stakeholders. 

Finally, the multi-objective optimization results will be reported, which seeks to minimize cost 

while maximizing the time that temperature remains within the user’s preferred thermal 

comfort range, without exceeding the acceptable thermal comfort range.  

5.4.1 Three optimal operations 

The 24-hour optimal scheduling result for the baseline operation, using data from August 

7 and assuming a flexible user time preference, is shown in Figure 5.7. The following 
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simulations in this subsection also apply the same weather condition and user time preferences. 

The total operating cost for all appliances is	$4.99, which is also the cost of electricity brought 

from the grid, considering the home does not generate any power itself. On a hot summer day 

like August 7, the AC (the second subplot on the right-hand side) needs to compensate for 

additional cooling load due to the hot and humid outdoor conditions. Also, to minimize the 

operation cost, the AC precools the space to avoid expensive operation during mid-peak and 

on-peak hours. These two reason results in frequent AC operation in the morning and before 

the mid-peak hour. However, the AC cannot completely avoid the on-peak hour, leading to 

frequent operation while indoor air temperature oscillates around the upper bound of the 

thermal comfort range. The water heater (the first subplot on the right-hand side) pre-heat the 

water in the tank and allows the water temperature to go down when the price is high. In 

baseline operation, non-thermal appliances (subplots on the left-hand side) strictly adhere to 

the user time preference and avoid the mid-peak and on-peak hour (gray area in the subplots). 

The last subplot on the left-hand side is the total power buy from the grid (i.e., power 

consumption summation of all appliances in baseline operation) and the TOU rate.  



 

 

 

 

134 

 

Figure 5.7 Baseline operation of five appliances on August 7. 

The five appliances' optimal operation for the Grid-tie system is listed below. With the 

addition of a PV panel, the total cost is $2.13, which reduces 57.31% compared with the 

baseline operation. The water heater and the HVAC system still pre-heat/pre-cool the water and 

the space air. Notice that in comparison to the baseline operation, there is a noticeable 

increment in energy consumption of the water heater and the HVAC system during mid-peak 

hours and on-peak hours. Similarly, the dishwasher is also shifted to the on-peak hour. This 

outcome is primarily due to that a large part of home load during mid-peak and on-peak is 

compensated by the PV panel power generation—the “free” power compared with the power 

from the grid. Thus, appliances aim to utilize PV power generation rather than use the power 

from the grid, even if during off-peak hours. However, PV power generation has some 

limitations in terms of timing: its generation might not be large enough in the morning and in 

the late afternoon, and its generation has overlap with the mid-peak and on-peak hours. When 

a certain appliance is switched on during mid-peak and on-peak hours, and the PV cannot 
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completely compensate its load, will lead to a cost increment. Hence, not all the PV power 

generation, even during mid-peak and on-will allocated to the home load, which leads to a 

potential PV power waste. More details can be found in Section 5.4.2. The last subplot in Figure 

5.8 is the power from the gird and TOU rate. It is obvious that the grid demand during the mid-

peak and on-peak is much lower than the baseline cases. In this operation, power from the grid 

is not zero meaning the PV panel cannot fully compensate the home load.  

 

Figure 5.8 Grid-tie system operation of five appliances on August 7.  

Figure 5.9 demonstrates the operations of five appliances in a Hybrid system operation 

when a medium size battery is used. In this case, the 24-hour operation cost is $1.53 which 

69.33% reduction is made compared to the baseline operation. Similar to the Grid-tie system, 

the water heater and HVAC system operation during mid-peak hours and on-peak hours 

increases. Furthermore, different from the Grid-tie system, the dryer is shifted to the mid-peak 

hours rather than operated in off-peak hours. In this case study, dryer consumes around 5000W, 

which is larger than the PV power generation from 1pm to 1:50pm (the duration of dryer 
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operation). The rest of the power are meet by the discharging of battery, which means the 

operation is “free” (i.e., no need to buy electricity from the grid from 1pm to 1:50pm in this 

operation). Also shown in the last subplot in Figure 5.9, most of load on the mid-peak and on-

peak can be compensated by the optimal operation of PV and battery.  

 

Figure 5.9 Hybrid system operation of five appliances on August 7.  

Figure 5.10(a) summaries the electricity from grid in three different cases. It is obvious 

that in the Grid-tie system and Hybrid system, the need to buy electrify from grid is reduced 

significantly. With a battery installed, the load during the mid-peak and on-peak hours reduces 

further. Figure 5.10(b) indicates battery (dis-)charging states for each time slot. Notices to 

clearly show the battery (dis-)charging, the charging power is drawn in a green, positive curve, 

while the discharging power is drawn as a red, negative curve. The blue dashed line is the state 

of charge of the battery, i.e., the percentage of the capacity still available in the battery. The 

battery discharges frequently between 12:00pm to 7:00pm (on-peak hour) to compensate for 

the load, which significantly reduces the cost. 
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Figure 5.10 Power flow comparison (a) total power buy from grid for three different operations (b) battery 

(dis-)charging profiles.  

5.4.2 Energy flexibility provided by different system operations 

Figure 5.11(a)–(d) illustrate power flow for different scenarios on August 7, reflecting 

optimal scheduling under flexible user time preference. These scenarios include the Grid-tie 

system (i.e., no battery), and Hybrid system use a small battery, a medium battery, and a large 

battery, respectively. The larger battery has capacity of 5kWh, and the continuous 

(dis-)charging limitation is 2700W; the smaller battery refers to a battery that has to 1 kWh 

capacity, and the continuous (dis-)charging limitation is 900W. The green step plot represents 

the total power consumption from home appliances (home load), the yellow step plot shows 

the power contributed by the PV to the home load, and the red step plot is the battery discharge 

power. The blue step plot, marked with negative values, symbolizes the power that could be 

generated by PV but was not utilized for either home load or battery charging (i.e., the waste 

power). 
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Figure 5.11 Power flow for (a) Grid-tie system (b) Hybrid System with a medium battery (c) Hybrid System 

with a small battery (d) Hybrid System with a large battery 

As shown in Figure 5.11, the Grid-tie system has the largest waste energy, while the 

Hybrid system with a large battery has almost zero waste energy. Similar to our previous 

observation in Section 5.4.1, due to the limitation in terms of magnitude and timing (higher PV 

power generation occurs overlap with mid-peak and on-peak hours) of PV power generation, 

it is possible that no home load occurred at some time slot while the PV could generate more 

energy—leading waste of PV power generation. This limitation can be compensated by using 

a battery as shown in Figure 5.11(b)–(d), which store the amount of energy generated by PV is 

and not be able to allocate the to home load. 

The less waste of PV power generation means the more “free” and clean energy are used. 

To quantify the benefit of PV power usage and the load-shifting ability in different system 

operation scenarios, three additional performance indices are used in this study, as shown in 

Figure 5.12. For on-site PV panel generation and consumption, two metrics are popular and 
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usually used together: PV self-consumption (SC) quantifies the degree to which a PV panel 

generation is consumed by the home load, and PV self-sufficiency (SS) quantifies the degree 

that PV panel generation is sufficient to meet the total energy needs of the home [14]. 

Specifically, the self-consumption (SC) is defined by: 

𝑆𝐶 =
∫ 𝑃W+2QT&[)

∫ 𝑃8(B2QT&[)
 

(75) 

where ∫ 𝑃W+2QT&[)  represents the total PV energy consumed by the home load (consumed by 

home load directly and battery if it exists), and ∫ 𝑃8(B2QT&[)  represents maximum daily PV 

generation (including waste part). Self-sufficiency (SS) is defined by: 

𝑆𝑆 =
∫ 𝑃W+2QT&[)

∫ 𝑃K&K(#	#&(\2QT&[)
 

(76) 

where ∫ 𝑃K&K(#	#&(\2QT&[)  represents the total energy needed in the home. Both SC and SS are 

between 0 to 1, and the low values indicate the mismatch between PV generation and home 

consumption [148]. As show in Figure 5.12, the Grid-tie system has the lowest PV panel 

generation and consumption performance, as well as the lowest flexibility factor. Compared 

with the Grid-tie system, adding a large, a medium, and a small battery will improve the 13.95%, 

12.67%, and 10.47% in self-consumption; 17.73%, 14.29%, and 11.88% in self-sufficiency, 

and 38.41%, 20.91%, and 17.64% in flexibility factor, respectively.  
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Figure 5.12 Performance indices for different system operations. (a) PV self-consumption (b) PV self-

sufficiency (c) Flexibility factor.  

5.4.3 Impact of user time preference and weather condition  

To further understand the impact of weather conditions, battery size, and user’s time 

preference on total operation cost, 30 scenarios are generated and optimization results in terms 

of cost in listed in Figure 5.13. The cost list on the top of each scenario is the 24-hour home 

appliance operation costs given a moderate user time preference. For the weather conditions, 

August 7, 2022, is chosen, which belongs to a hot summer day cluster mentioned in Chapter 4. 

Similarly, a day belonging to a mild summer day, September 8 is chosen. The machine learning 

model is also used to forecast PV power generation using the weather data of September 8. 

Meanwhile, to maintain consistency, other variables such as the thermal comfort range for AC 

remained unchanged. The battery specifications are consistent with those presented in Section 

5.4.2, and the user time preference interval can be seen in Table 5.4. 
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Figure 5.13 Cost-saving variation in terms of different weather conditions, user preference, and operation 

scenarios.  

It can be observed in Figure 5.13 that the weather condition has a dominant impact across 

different operation scenarios. In baseline cases, a 48.61% cost reduction can be seen if the 

weather switches from a mild summer day to a hot summer day, and in a Hybrid system with a 

large battery, a 46.21% cost reduction can be seen. Although the user’s time preference has less 

impact on cost, it can be observed from the figure that the user’s time preference impact gets 

larger when a PV panel is involved but no battery is given (Grid-tie system) or the battery 

cannot provide enough energy flexibility (Hybrid system with small battery). This result ties to 
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the inherent limitation of PV power generation (also discussed in previous sections), and the 

characteristics of non-thermal appliances operation. Non-thermal appliances cannot have a 

large inactive period like the AC free-floating period, and they must maintain the sequential 

operation of energy phases. When a strict time limit is given, non-thermal appliances may 

struggle to take full advantage of PV power generation. As shown in Figure 5.14, with strict 

user preference, the dishwasher has to run during the late afternoon (the first energy phase starts 

at 6:40pm and the last energy phase ends at 8:30pm), where the PV power generation is quite 

limited at that time; with a flexible user time preference, dishwasher is shifted to the on-peak 

hour to consume more PV power generation. This energy consumption (from non-thermal 

appliances) and generation (from PV) mismatch can be solved by providing a proper size 

battery.  
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Figure 5.14 User preference impact on appliance operation. (a) Grid-tie system appliance operation given strict 

user time preference. (b) Grid-tie system appliance operation given flexible user time preference. 

5.4.4 Cost and comfort trade-off 

In this section, the trade-off between cost and thermal comfort is discussed. The 

scheduling result of the smart home appliances is conducted by using the Hybrid system 

operation with a medium size battery on August 7. The user time preference is the flexible 

scenario, and the other parameters are kept the same as in the previous cases. Figure 5.14(a)–

(b) demonstrates 24-hour AC behavior using different weights in the multi-objective 

optimization framework mentioned in 5.2.5, while the other appliances' operation is not shown. 
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The light purple bars in all subplots represent the AC power usage, which is a summation of outdoor 

and indoor unit power usage. The red curve in Figure 5.14 is the indoor air temperature and the 

green shaded area represents the preferred temperature range. Note that such a preferred 

temperature range can be given by the user or derived from some comfort standards such as the 

PMV index. Here we assume that users prefer a uniform temperature range 78°F–80°F and 

accept a uniform temperature range 76°F–82°F throughout the scheduling period. The three 

vertical dashed lines divide the scheduling time into four segments, with "shoulder" or the mid-

peak hours starting in the morning and the on-peak hour starting in the afternoon. 

 
Figure 5.15 Multi-objective optimization results where HVAC system behavior shown only. (a) choose 𝑤P 

equals 0.1 (b) choose 𝑤P	equals 0.9. 

Two subplots clearly demonstrate how the AC operation change when different weights applied 

to the optimal scheduling. When the smaller weight, e.g., 𝑤1 equals 0.1, is applied to the 

scheduling, the system prefers to maximize thermal comfort instead of saving more money. 

Consequently, the AC system tends to run for extended hours to maintain the temperature 

between the preferred thermal comfort range. On the other hand, if a larger weight, 𝑤1 equals 

0.9, is applied to the scheduling, the system tends to be cost-effective rather than maintain 

preferred thermal comfort. In that case, the AC precooling effect is obvious. In Figure 16(b), 

AC tends to operate to bring the indoor air temperature into a lower level when the price is 
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relatively low (mid-peak hours), and also operate more when the PV power generation is large 

between 1:40pm to 4:10pm. Figure 5.16 shows the all appliance's operations when equal 

weights on cost and comfort are used. In this case, the 24-hour operation cost is $1.67 while 

the time that the indoor air temperature maintain in the preferred thermal comfort range (called 

comfort) is 18.17hr. Compared with the scenario that only minimizes the cost, where the 

operation cost is $1.52 and the comfort is 12.33hr, the case shown in Figure 5.16, only a 9.15% 

cost increment extends 47.36% comfort.  

 

Figure 5.16 Scheduling result with the multi-objective framework with equal weights on cost and comfort (𝑤P 
equals 0.5) 

Figure 5.17 shows the cost and comfort trade-off plot–Pareto front which showcases the 

different combinations of cost and comfort achieved by varying 𝑤1. It provides insights into 

the relationship between cost and comfort and enables homeowners to make informed choices 

based on their preferences for cost or thermal comfort. 
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Figure 5.17 Cost and comfort trade-off. 

5.5 Summary  

In this study, by using mixed-integer linear programming, reduced-order RC-based 

thermal model, statistics analysis on user’s behavior, and multi-objective framework, a 

household energy management system that integrates thermal, non-thermal appliances, PV 

panels, and battery systems are developed, simulated, and analyzed. Different from previous 

studies that hardly considered the user’s preference on time of use appliances and water usage, 

by analyzing the American Time of Use Survey across over three deceases and Snippets of the 

most representative water usage pattern, the proposed framework provides a more realistic 

simulation scenario. In addition, different from previous studies that rely on either a single 

temperature range or an ideal temperature setpoint, by providing the homeowner with 

acceptable and preferred temperature ranges, the framework enables a user-defined trade-off 
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between electricity cost and thermal comfort. The electricity bill was minimized under the TOU 

rate by scheduling the operation of each appliance, the energy flow from the solar panel to the 

appliances, and the (dis-)charge action of the battery.  

From the simulation result, compared with the baseline scenarios that no PV and battery 

installed, the Grid-tie system generated 57.31% of cost savings, while 69.33% can be achieved 

if a Hybrid system with a medium size battery is included. By providing three more 

performance indices, the simulation results are evaluated in terms of energy flexibility. It is 

observed that due to the inherent limitation of the PV system, the Grid-tie system has up to 

13.95%, 17.73%, and 38.41% reduction in self-consumption, self-sufficiency, and flexibility 

factor compared with the Hybrid system with a large battery. Although the Grid-tie system does 

not include a battery, the scheduling incorporates optimization for the HVAC system and water 

heater, two other flexible resources in the home. Since these two appliances are the biggest 

energy “eaters” in homes, they make significant energy flexibility in terms of load shifting. 

However, the flexibility they provide differs from the rapid flexibility demonstrated by the 

home battery. The home battery not only encase cost reduction by improving PV self-

consumption and self-sufficiency, but it also offers greater flexibility and stabilizes the cost 

even when users have strict use time preferences (i.e., low energy awareness). Finally, the 

proposed multi-objective framework results in a 5.84-hour extension in comfort time with only 

a 9.15% electricity cost increment compared with the minimizing-cost-only strategy.  
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As with simulation studies, the results reported in this study have limitations. The 

2R2C model, which is used to regulate the HVAC system operation, did not consider the 

internal heat gain. In our case study, because the HVAC system model is built upon the data 

collected from an unoccupied laboratory house and because the internal heat gain generated 

by the appliances is relatively small, ignoring the internal heat gain is deemed acceptable. 

Therefore, the impact of user occupancy, which is associated with internal heat gain, is not 

discussed in this study. In addition, it is assumed that the user-acceptable and preferred 

temperature ranges on the HVAC system and user time preference are given. Although the 

proposed framework can integrate with the given preference easily, deriving user thermal 

preference and time preference based on historical data is a focus area for the next phase 

study.  
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6 Conclusion, Limitations and Future Studies 

6.1 Conclusion of this study 

This study focused on the development of an energy management framework for 

coordinating multiple load-flexible resources in residential buildings under demand response 

programs. The framework embeds three major components. First, it utilizes learning-based 

gray-box and black-box models for predicting the behavior of the HVAC system, water heaters, 

and PV power generation. Secondly, it establishes the optimal operation of the HVAC system. 

Lastly, it focuses on user-centered optimization for the smart Home Energy Management 

system integrating multiple appliances. By combining these three major components, the 

proposed framework lays a foundation for a practical solution to transform a residential 

building into an energy-efficient, cost effective, and grid-interactive connected home. The 

validity of the framework is substantiated through simulation and field test results, highlighting 

its feasibility for real-world applications.  

Specifically, physical-based gray-box models for the HVAC system and water heater 

system, as well as a black-box model for the PV power generation are developed in this study. 

By utilizing these models, the amount of input required from homeowners are minimum. This 

approach eliminates the need for explicit knowledge of building constructions, water heater 

thermal properties, or specific PV characteristic, which are typically challenge for homeowner 

to obtain. Furthermore, the HVAC system model, as a control-oriented model, has been 
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enriched with adding novel physical-based constraints during the parameter identification 

procedure. This enhancement significantly increases the model applicability and effectiveness 

in predictive control. Therefore, the proposed models make the energy management in 

residential building feasible.  

In addition, an MPC-based precooling agent has been developed and implemented in nine 

test homes using smart thermostats. The successful tests indicate that the proposed MPC agent 

is a feasible solution for implementing optimal operations in residential building. However, it 

is also important to acknowledge that the successful control through MPC agent also relies on 

three different datasets for home thermal model training, real-time control implementation, and 

post-analysis. These datasets are obtained from the smart thermostat, the node sensor pre-

paired with the thermostat, and various internet-accessible data resources such as weather 

station web services. While a smart power meter is not mandatory for the MPC agent, it helps 

build more accurate power consumption predictions for the control purpose. Therefore, to 

conduct optimal control, both smart thermostats and a robust data management platform to 

organize several different data sources and enables remote control are necessary.  

Through the impact analysis using field test results and an ablation study using co-

simulation results, various impact factors including building characteristic and MPC 

characteristics are discussed. For the building characteristic, factors such as floor size of the 

home, user’s thermal comfort range, and the AC’s performance to cool the space prominently 

affect the optimal precooling results. Regarding MPC characteristic, forecasted weather usage 
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in our case study plays an important role to impact precooling results.  

The home energy management framework proposed in this study, which integrates the 

thermal appliances, non-thermal appliances, and PV battery system, demonstrates that optimal 

operation can be applied in a smart home environment to minimize electricity cost and 

meanwhile incorporate user’s preferences. More importantly, through a statistical analysis of 

the American Time Use Survey and data mining of the water usage profile, user appliance user 

pattern and water usage behavior can be integrated into the energy management framework. 

Through the multi-objective optimization, the homeowner has the flexibility to not only choose 

their acceptable and preferred indoor air temperature range, but also determine their trade-off 

between cost and comfort by selecting the weights on each goal, thus enabling to achieve both 

benefits based on their intension.  

Finally, four performance indices—cost saving, flexibility factor, self-consumption, and 

self-sufficiency—are utilized to quantify the optimization results in residential buildings. As 

mentioned in the introduction, the financial factor remains a major motivations for homeowners 

participating in demand response programs. Hence, the cost-saving generally present most 

valuable insight to the homeowners. The flexibility factor signifies the load-shifting ability of 

a residential building and provides valuable insight to stakeholders such as grid operators. On 

the other hand, self-consumption and self-sufficiency are performance indicators typically used 

to quantify the performance of distributed generation resources such as PV systems. A higher 

value of these two performance indices denotes an increased use of cleaner and “free” energy 
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during operation. This aspect holds interest both homeowners and grid operators.  

6.2 Limitations  

6.2.1 Internal heat gain and occupancy  

Internal gain and occupancy schedules from individuals are not considered in our 

optimization framework. This is not only because the heat generated by normal human activity 

generally has a relatively smaller impact compared to influences from outdoor air, solar 

irradiation, AC cooling, and infiltration in a residential building. Additionally, the current 

occupancy sensor technology in residential building is relatively simple. For example, the 

occupancy detection embedded in the thermostat and node sensor used in this study relied on 

infrared technology, which means it fails to detect an occupied signal unless the homeowner 

physically passes by the sensor. Consequently, if the thermostat or sensor is located in a less 

traffic area in a home, such measurement is likely to be inaccurate. Inaccurate occupancy 

measurement may lead to less optimal operation, and it might even bring discomfort to 

homeowners. In addition, different from the carbon dioxide (CO2) sensors, which are 

frequently used in commercial buildings, the occupancy sensor currently used in residential 

buildings lacks a headcount feature. The heat gain from electrical equipment is also ignored in 

this study. The electrical equipment included in this study is a clothes washer, dryer, and 

dishwasher, whose impact on the thermal dynamics remains relatively small.  

6.2.2 Growth of the problem size 
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The curse of dimensionality is a common bottleneck of the optimization scheduling 

algorithm. In [149], the author explained how the problem size can be growing super linearly 

with an increased number of scheduling time steps and the number of devices using diagrams. 

The authors also reviewed recent publications in terms of techniques used to reduce the 

computational burden in home energy management system. It can be observed that the current 

solution primarily focuses on reducing the scheduling resolution or horizon, decreasing the 

number of devices, or combing both approaches. Similar to [92], this study delivers an upper 

time limit of 500 seconds for solving the optimal solution to the solver. This represents the 

trade-off between achieving optimal scheduling results and managing the computational 

burden. With the rapid development in the field of operational research and the emergence of 

new algorithms, there may be more potential solutions to this issue.    

6.2.3 Thermal comfort  

In the impact study, it is assumed that user’s thermal comfort range is known before the 

MPC agent begins precooling or the home energy management framework starts to control the 

appliances. While several thermal comfort models such as PMV and PDD [150,151] can be 

embedded in the energy management framework, two limitations needed to be taken into 

account. First, the PMV and PDD indices mainly focus on a group of people’s thermal comfort 

rather than on individual thermal comfort. As shown in the field test study, homeowners lived 

in houses with similar size, locations, and construction may have different thermal comfort 

ranges. This suggests that a PMV or PDD index might not be appropriate for a smart home 
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environment, where usually only two or three individuals determines the HVAC system 

setpoint. The second limitation is that thermal comfort should be considered as a transient 

model, as discussed in various publications such as [152–154]. In fact, we have observed that 

some homeowners may return home and set the AC to a lower setpoint than usual. One 

significant explanation for this behavior is that the change in thermal comfort is a transient 

process, not only determined by current environment (current room air temperature if 

homeowner is at home), but also influenced by the previous environment (previous hot outdoor 

environment if homeowner come back from outside). Homeowners returning from a very hot 

outdoor environment might require a lower temperature to remove the stored heat—this could 

affect the operation of the HVAC system as well. Therefore, there is a need to integrate a 

personal thermal comfort model, which considered transient, non-uniform effects in our 

proposed energy management framework in the future.  

6.3 Future Studies  

6.3.1 Meta-model to quickly evaluate energy flexibility potential of a home 

Despite the impact analysis has concluded dominate impact factors that affect the optimal 

operation results of the HEMS, there is still a lack of a meta-model that can quickly evaluate 

load shifting potential of a home. Once optimizations have been conducted in large and diverse 

enough residential buildings, it would be possible to establish a meta-model that connects 

building and homeowner characteristics to cost saving and energy flexibility under a specific 

demand response program. Such a meta-model would allow the homeowner to estimate their 
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average precooling potential prior to implementing the energy management framework, and it 

would also facilitate policymakers or grid operators to quantify the energy flexibility of a group 

of buildings with ease. Although, there are already some researchers discussed about such a 

meta-model, developing the meta-model requires a large and diverse set of residential buildings. 

In this regard, some representative building stock, such as ResStock [155], can serve as 

important tools.  

6.3.2 Data-driven occupancy behavior model 

As mentioned in Section 6.2.3, a personal thermal comfort model, which considered a 

transient change in human skin and core temperature, is needed. Although individual 

differences have been considered in various physical-based transient thermal comfort modeling, 

most of these differences are primarily represented by variables such as human body mass or 

blood flow rate. This does not sufficiently encompass differences in personal preferences. In 

this regard, a hybrid model to predict dynamic, individual thermal comfort might also be 

necessary for future work.  

Apart from the thermal comfort, a data-driven model to predict the times when occupants 

arrive and leave home could also significantly enhance the widespread of energy management 

framework. An important application of this would be integrating the Electrical Vehicle (EV) 

charging schedules into the energy management framework, which largely depend on the 

homeowner’s arrival and departure home times.  

6.3.3 Stochastic optimizations consider uncertainty  
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In the energy management framework, several resources involve uncertainties, including 

the prediction such as the PV-power generation, forecasted weather conditions, and the user’s 

appliance usage time. As these uncertainties increase, it becomes worthwhile to conduct robust 

optimization techniques, such that stochastic optimization, to coordinate multiple load-flexible 

resources. However, stochastic optimization often depends on maximizing the expectation of 

the objective across different scenarios, which can require substantial computational resources 

due to multiple uncertainties resources exists. Therefore, it is important to utilize or develop an 

algorithm capable reducing the number of potential scenarios derived from these multiple 

sources of uncertainty. Ideally, this algorithm should identify the most representative scenario, 

the worse scenario, and the best scenario, thereby balancing computation efficiency and with 

the quality of optimization.   
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 Appendix  

Appendix A: Matrix Profile-based Weather Clustering Algorithm  

In this paper, we combine the matrix profile-based data snippets from [130,156] (for 

finding the most representative subsequence) with the MASS algorithm from [156,157] (for a 

fast pattern discovery search) and introduce our own modification to group similar weather 

patterns into clusters. Figure A. 1 displays a flowchart that describes the modified algorithm, 

which contains three stages. The first stage is the data processing, whereby we first query 

historical weather datasets from a local weather station. We then resample the data at 5-minute 

intervals, remove duplicate and missing data, and run different data imputations (linear or 

polynomial interpolation) to improve data quality. The second stage is the time series snippets 

stage, whereby we use the matrix profile-based data snippets in [130] to identify three 

representative days—hot, mild, and cold days—from July to october. The third stage is the 

clustering stage, whereby we first calculate the distance profiles of outdoor air temperature, 

solar irradiation, and relative humidity between each representative day and each 24-hour 

subsequnce. To speed up calculation, the MASS algorithm from [157] is utlized. We then 

calculate the normalized weighted average of the aforementioned distance profiles and find the 
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top K days that are most similar to the representative days. The latter is accomplished by 

selecting the top K smallest points of the new distance profiles. In this paper, K is selected to 

be 30. Since outdoor air dictates the heat transfer between indoor indoor and ourdoor 

enviorment, the weights assigned to the outdoor air temerpature, solar irradiation, and relative 

humidity are 0.6, 0.3, and 0.1. If a data point resides in multiple clusters, it is moved to the 

cluster from which it has the smallest new distance profile.  

 

Figure A. 1 Three stages of the modified matrix profile-based weather clustering algorithm 
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