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Background ____How do different antibiotics react to crossed bridged catalysts? _____Jiif How does catalyst structure

affect degradation?
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synthesized and are unique because of their 04 | ANN \\::::\ N N . varied from 0.54 to 5.37 x 103 min-! (figure 4).
ethylene cross-bridged structure, which enhance \\\\\ ® AN A Moreover, the ratio of the rate constant in tap
their stability in wastewater. - I AN water compared to that of DI water (figure 6)
0.0y Antibiotic % 08 | \\\\\\ showed that the iron I?ased catalyst (LG313)
= NN , , o o was an order of magnitude lower (0.47)
Rxn with s @ CIP +2 pM MRK97A AN Figure 3: Chemical structures of antibiotics tested in this study e e dhe meeanese besed aeraloes
ySt o dical antibiotic y ¢ CIP + 4 uM MRK97A Y SN . .
Radical -1.2 - @ CIP + 10 pM MRK97A \\\ \\\ As the dose of MRK97A increased from 4 uM to 20 uM, rate constant (2.7 N 4'7)_' Future resear(.:h.W|.II determmg the
given off A CIP+20 uM MRK37A N Y of CIP degradation increased from 0.47 mintto 1.90 min! (figure 2), i.e., relationship between ant'b'oF'F degradation
Scheme 1: Showing general mechanism of catalytic degradation © AZl+ 2 UM MRKI7A AN - highest degradation of CIP after 3 hours being 85%, when MRK97A was zhile catalys.t StrUCture.. In a.d.dltlc.m' future :
. | 1.6 - @ AZI+4 uM MRK97A No dosed at 20uM, compared to 37% at 4uM. research will explore identification Pf reaction
A can. ca\.talysts |r.nr.)ro.ve yvater quality? l = AZI +10 uM MRK97A N In contrast to CIP, AZI was more resistant to catalyst degradation, mechanisms and byproduct formation.
A m.ajorlty of antibiotics ingested .by humans & AZI+20 UM MRKI7A A with a rate constant of 0.13 min!, when MRK97A was dosed at 20 uM.
e anlmgls are excreted unmetabolized, and are -2 The lowered reactivity of AZl is likely due to the lower degree of _ 6 L m [qf/
detected in wastewater. However, wast.ew.ater Figure 2: Pseudo first-order degradation of CIP and AZI over 3 aromaticity (i.e. fewer unsaturated rings) or because of larger size (steric % [ I f@
trezf\tr.ne.nt pUEITIES SIS BT e EElignEe FO ellmlnat? , hours with varying dose of catalyst MRK97A. hindrance) compared to CIP, as seen in figure 3. 5 (e —
antibiotics, and then these contaminants persist in £ 4.5
the effluent, rendering it unfit for reuse without E_
additional treatment. The overall goal of this work S 3
was to study the effectiveness of catalytic °
degradation for removal of antibiotics in advanced Our initial hypothesis was that the catalyst-driven antibiotic 5 EE-9 'E .
water reuse systems. Due to their prevalence in degradation would be faster in lab-grade DI water, and slower in tap '
wastewater, ciprofloxacin (CIP) and azithromycin water and lake water due to the presence of organic matter and i @Dl
(AZI) were selected as test compounds 1. other inorganics present in environmental water. However, :: > OE.2 @ Tap Water 0
preliminary testing of CIP displayed consistently high degradation £ | I Boomer Lake MRK97A  MRK99A  TJH516  LG313
M etho dOl Ogy rates in tap water compared to DI water (figure 4). For example, S Figure 6: Ratio of rate constant of CIP degradation in tap
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Experimental Setup: A 25 mL solution contained increased by a factor of 2.52, i.e., from 5.37 x 103 min! in DI to 1.89 d 1.58-2 :
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radical species) and deionized water (DI) that was source of additional reactive species during catalyst degradation. s 1.0E-2 How could th'f research help Oklahoma? |
buffered at pH 7 with 1mM of phosphate buffer g .Cro.ssed bridged catalysts could be a viable
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