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Abstract

Increased data rates in wireless communications enforce unprecedented performance
metrics on the front-end filters to operate in crowded spectral bands. These require-
ments include strong selectivity, low insertion loss, and good out-of-band (OOB) re-
jection in addition to the applicability in complementary metal oxide semiconductor
(CMOS) integrated circuit layouts. The acoustic wave (AW) resonator based filter de-
sign technology has gained a very important role in the on-chip filter design techniques
due to chip-scale physical resonator sizes and the ability of achieving high quality fac-
tor values at microwave frequencies. However, conventional synthesis methods used
in the design of AW resonator based microwave filters suffer from limited achievable
fractional bandwidth (FBW) and weak out-of-band rejection. The origin of these issues
is the limitations on increasing the electromechanical coupling coefficient (k?) of the
resonators, which is an intrinsic property of the piezoelectric material in its design. This
dissertation proposes a new class of hybrid acoustic-electromagnetic (Hybrid-ACEM)
filters to overcome both of the aforementioned limitations of AW resonator-based fil-
ters. In other words, the main goal of this new topology is to maximize the ratio be-
tween the achievable FBW and the required k2. This is achieved by employing one
or two electromagnetic (EM) resonators that are placed at purposefully selected stages
within the design. In addition, cross-coupling mechanisms are systematically used to
reduce the required electromechanical coupling coefficient in certain filter orders. Al-

together, the proposed method can achieve much larger FBW values and stronger OOB
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rejection compared to the conventionally synthesized ladder acoustic wave filters. The
effect of finite quality factor of the EM resonators is analyzed. A new algorithm to
convert extracted-pole sections to Butterworth-Van-Dyke (BVD) model for large FBW
values is also presented. It has been shown in the simulations that FBW-to-k? ratios
of four or above is achievable with this method. As a proof-of-concept, a sixth-order
hybrid canonical prototype with a center frequency of 2.67 GHz and 11.2% FBW is
designed and fabricated. The acoustic wave resonators used in the fabrication have k?
values of 3.5%. The fabricated prototype proves the validity of the proposed method for
achieving FBW values of 30% with required k7 values of 7.5%, which is available with
the common aluminum nitride (AIN) based bulk acoustic wave resonator technologies
of today. The developed technique opens a new pathway to reduce the limitations of

integrating microwave filters for future fully on-chip microwave transceivers.

XXV



Chapter 1

Introduction

1.1 Background

The last decade saw a significant improvement in the devices that require wireless data
transfer. The enhancements in social media platforms, wireless communication systems
including 5g, development of better imaging devices, and the advancement of radar
technologies rely heavily on wireless transceivers. The result is the increased data rates
that require the RF transceivers to occupy larger bandwidths in the frequency spectrum.
That requires the adjacent wireless bands to overlap or become dangerously close in
frequency that they start to interfere with each other.

The next generation RF transceivers that operate in crowded spectral bands, for
example the S-band (2GHz—4GHz), will require an unprecedented frequency selectivity
in order to protect themselves from the interference from adjacent bands. An example
of an RF receiver front end module for communication systems is depicted in Fig.
1.1. Considering this architecture, a common dilemma is the order of the band-select-
filter and the low-noise-amplifier (LNA) components. Placing the LNA directly after
the antenna (as in (1)) results in the lowest noise figure in the entire system, however,
it makes the system vulnerable to out-of-band interferences. This means that an RF

signal that has a carrier frequency at an adjacent band can easily saturate the LNA and



cause the desired signal to be rendered undetectable by the receiver.

Band-Select
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Figure 1.1: The front end block diagram of an RF downconverting receiver.

Placing the band-select filter after the antenna as in (ii) is, therefore, the safer and
the preferred design procedure as it rejects the out-of-band interferences. However, in
this configuration, the bandpass filter needs to have a very strong out-of-band rejection
performance and a steep roll-off (selectivity) in order to be able to prevent the leakage
from the adjacent channels. In addition to that, the insertion loss of the filter needs to
be as low as possible in order to prevent the overall noise figure of the system from
growing.

The need for low insertion loss and strong roll-off enforces stringent requirements
on the design of the filters for the receiver front-end architectures. For instance, Table
1.1 depicts some of the common wireless bands that are in or close to the S-band fre-
quencies. As observed, the uplink of the n40 band has a band edge at 2.4 GHz while the
lower-end band edge of the n41 band is at 2.496 GHz [1]. Due to such close band edges,
the receiver of an RF system operating at the n41 band is required to have a rejection
of 30 dB at 2.4 GHz while the required insertion loss of the front-end microwave filter
should be around 1 dB or less [1]. In addition to these stringent requirements, these
bands correspond to the wireless communication bands which are used extensively in
mobile devices such as smartphones. Due to the size restrictions in such devices, the

front-end filters should be designed as integrated circuits (IC).



Table 1.1: The uplink and downlink frequencies of several bands at and around the
S-band [1].

Band f(MHz) Uplink (MHz) Downlink (MHz)

n3 1800 1710-1785 1805-1880
n39 1900 1880-1920 1930-1995
n40 2300 2300-2400 n/a
n4l 2500 2496-2690 n/a

The difficulty in achieving the growing demands of the wireless industry can be
theoretically described in this chapter in a way to emphasize the needs for frequency-
agile and more enhanced filters for the next generation RF transceivers. The insertion
loss, selectivity, and the out-of-band rejection of the filters are dependent on multiple
factors including the order of the filter, the quality factor of the resonators that are
used to design it, and the polynomial function which is used as a basis for the design
procedure. The filter response can be characterized in terms of its S-parameters which
include the reflection coefficient (S;;) and the transmission coefficient (Sy;). The effect

of these parameters on the filter response is depicted in Fig. 1.2.
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Figure 1.2: The effect of filter order, fractional bandwidth, and quality factor of the
resonators on the filter response. (a): Fourth order response with 5% FBW, (b): Fourth
order response with 10% FBW, and (c): Sixth order response with 10% FBW. All
graphs demonstrate the responses when the designs have resonators with Q-factor val-
ues of 500, 100, and 50, respectively.

A fourth-order inline filter response at a center frequency of 2.524 GHz and a frac-



tional bandwidth (FBW) of 5% is depicted in Fig. 1.2 (a), when the quality factor of
the four coupled resonators are set as 500, 100, and 50, respectively. As observed, the
insertion loss of the filter increases from 0.94 dB to 8.55 dB when the resonator quality
factor values reduce from 500 to 50, respectively. In addition to the increased insertion
loss, the band edges of the response also get rounded, which reduces the selectivity and
the band flatness of the filter. In Fig. 1.2 (b), the same filter responses are depicted
for a fractional bandwidth of 10%, again for a filter order of four. As observed, the
wider bandwidth improves the filter response in terms of selectivity and insertion loss
for each quality factor value. Finally, Fig. 1.2 (c) demonstrates the filter responses of a
sixth-order design for a FBW of 10%. Comparing the graphs in Fig. 1.2 (b) and (c) also
gives the indication that increased filter order for the same fractional bandwidth wors-
ens the filter response (in the presence of resonators with low Q values). The corollary
of these findings is that achieving narrow-band and higher-order filters require the cou-
pled resonators to have high quality factor values to provide acceptable insertion loss
and selectivity values.

There are multi