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For a world of fairness, peace, and global prosperity. For a society of fair and sincere

human rights where people truly care about each other. For a life driven by the

principles of science and logic.
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Abstract

Increased data rates in wireless communications enforce unprecedented performance

metrics on the front-end filters to operate in crowded spectral bands. These require-

ments include strong selectivity, low insertion loss, and good out-of-band (OOB) re-

jection in addition to the applicability in complementary metal oxide semiconductor

(CMOS) integrated circuit layouts. The acoustic wave (AW) resonator based filter de-

sign technology has gained a very important role in the on-chip filter design techniques

due to chip-scale physical resonator sizes and the ability of achieving high quality fac-

tor values at microwave frequencies. However, conventional synthesis methods used

in the design of AW resonator based microwave filters suffer from limited achievable

fractional bandwidth (FBW) and weak out-of-band rejection. The origin of these issues

is the limitations on increasing the electromechanical coupling coefficient (k2
t ) of the

resonators, which is an intrinsic property of the piezoelectric material in its design. This

dissertation proposes a new class of hybrid acoustic-electromagnetic (Hybrid-ACEM)

filters to overcome both of the aforementioned limitations of AW resonator-based fil-

ters. In other words, the main goal of this new topology is to maximize the ratio be-

tween the achievable FBW and the required k2
t . This is achieved by employing one

or two electromagnetic (EM) resonators that are placed at purposefully selected stages

within the design. In addition, cross-coupling mechanisms are systematically used to

reduce the required electromechanical coupling coefficient in certain filter orders. Al-

together, the proposed method can achieve much larger FBW values and stronger OOB

xxiv



rejection compared to the conventionally synthesized ladder acoustic wave filters. The

effect of finite quality factor of the EM resonators is analyzed. A new algorithm to

convert extracted-pole sections to Butterworth-Van-Dyke (BVD) model for large FBW

values is also presented. It has been shown in the simulations that FBW-to-k2
t ratios

of four or above is achievable with this method. As a proof-of-concept, a sixth-order

hybrid canonical prototype with a center frequency of 2.67 GHz and 11.2% FBW is

designed and fabricated. The acoustic wave resonators used in the fabrication have k2
t

values of 3.5%. The fabricated prototype proves the validity of the proposed method for

achieving FBW values of 30% with required k2
t values of 7.5%, which is available with

the common aluminum nitride (AlN) based bulk acoustic wave resonator technologies

of today. The developed technique opens a new pathway to reduce the limitations of

integrating microwave filters for future fully on-chip microwave transceivers.

xxv



Chapter 1

Introduction

1.1 Background

The last decade saw a significant improvement in the devices that require wireless data

transfer. The enhancements in social media platforms, wireless communication systems

including 5g, development of better imaging devices, and the advancement of radar

technologies rely heavily on wireless transceivers. The result is the increased data rates

that require the RF transceivers to occupy larger bandwidths in the frequency spectrum.

That requires the adjacent wireless bands to overlap or become dangerously close in

frequency that they start to interfere with each other.

The next generation RF transceivers that operate in crowded spectral bands, for

example the S-band (2GHz–4GHz), will require an unprecedented frequency selectivity

in order to protect themselves from the interference from adjacent bands. An example

of an RF receiver front end module for communication systems is depicted in Fig.

1.1. Considering this architecture, a common dilemma is the order of the band-select-

filter and the low-noise-amplifier (LNA) components. Placing the LNA directly after

the antenna (as in (i)) results in the lowest noise figure in the entire system, however,

it makes the system vulnerable to out-of-band interferences. This means that an RF

signal that has a carrier frequency at an adjacent band can easily saturate the LNA and
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cause the desired signal to be rendered undetectable by the receiver.

LNA

LNA

(i)

(ii)

Band-Select
Filter

Band-Select
Filter

IF Filter

IF Amp
IF Signal

Mixer

Local Oscillator

Figure 1.1: The front end block diagram of an RF downconverting receiver.

Placing the band-select filter after the antenna as in (ii) is, therefore, the safer and

the preferred design procedure as it rejects the out-of-band interferences. However, in

this configuration, the bandpass filter needs to have a very strong out-of-band rejection

performance and a steep roll-off (selectivity) in order to be able to prevent the leakage

from the adjacent channels. In addition to that, the insertion loss of the filter needs to

be as low as possible in order to prevent the overall noise figure of the system from

growing.

The need for low insertion loss and strong roll-off enforces stringent requirements

on the design of the filters for the receiver front-end architectures. For instance, Table

1.1 depicts some of the common wireless bands that are in or close to the S-band fre-

quencies. As observed, the uplink of the n40 band has a band edge at 2.4 GHz while the

lower-end band edge of the n41 band is at 2.496 GHz [1]. Due to such close band edges,

the receiver of an RF system operating at the n41 band is required to have a rejection

of 30 dB at 2.4 GHz while the required insertion loss of the front-end microwave filter

should be around 1 dB or less [1]. In addition to these stringent requirements, these

bands correspond to the wireless communication bands which are used extensively in

mobile devices such as smartphones. Due to the size restrictions in such devices, the

front-end filters should be designed as integrated circuits (IC).
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Table 1.1: The uplink and downlink frequencies of several bands at and around the
S-band [1].

Band f (MHz) Uplink (MHz) Downlink (MHz)

n3 1800 1710-1785 1805-1880
n39 1900 1880-1920 1930-1995
n40 2300 2300-2400 n/a
n41 2500 2496-2690 n/a

The difficulty in achieving the growing demands of the wireless industry can be

theoretically described in this chapter in a way to emphasize the needs for frequency-

agile and more enhanced filters for the next generation RF transceivers. The insertion

loss, selectivity, and the out-of-band rejection of the filters are dependent on multiple

factors including the order of the filter, the quality factor of the resonators that are

used to design it, and the polynomial function which is used as a basis for the design

procedure. The filter response can be characterized in terms of its S-parameters which

include the reflection coefficient (S11) and the transmission coefficient (S21). The effect

of these parameters on the filter response is depicted in Fig. 1.2.

2.2 2.4 2.6 2.8

Frequency (GHz)

-50

-40

-30

-20

-10

0

(d
B

)

Q = 500
Q = 100
Q = 50

2.2 2.4 2.6 2.8

Frequency (GHz)

-50

-40

-30

-20

-10

0

(d
B

)

Q = 500
Q = 100
Q = 50

2.2 2.4 2.6 2.8

Frequency (GHz)

-50

-40

-30

-20

-10

0

(d
B

)

Q = 500
Q = 100
Q = 50
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Figure 1.2: The effect of filter order, fractional bandwidth, and quality factor of the
resonators on the filter response. (a): Fourth order response with 5% FBW, (b): Fourth
order response with 10% FBW, and (c): Sixth order response with 10% FBW. All
graphs demonstrate the responses when the designs have resonators with Q-factor val-
ues of 500, 100, and 50, respectively.

A fourth-order inline filter response at a center frequency of 2.524 GHz and a frac-
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tional bandwidth (FBW) of 5% is depicted in Fig. 1.2 (a), when the quality factor of

the four coupled resonators are set as 500, 100, and 50, respectively. As observed, the

insertion loss of the filter increases from 0.94 dB to 8.55 dB when the resonator quality

factor values reduce from 500 to 50, respectively. In addition to the increased insertion

loss, the band edges of the response also get rounded, which reduces the selectivity and

the band flatness of the filter. In Fig. 1.2 (b), the same filter responses are depicted

for a fractional bandwidth of 10%, again for a filter order of four. As observed, the

wider bandwidth improves the filter response in terms of selectivity and insertion loss

for each quality factor value. Finally, Fig. 1.2 (c) demonstrates the filter responses of a

sixth-order design for a FBW of 10%. Comparing the graphs in Fig. 1.2 (b) and (c) also

gives the indication that increased filter order for the same fractional bandwidth wors-

ens the filter response (in the presence of resonators with low Q values). The corollary

of these findings is that achieving narrow-band and higher-order filters require the cou-

pled resonators to have high quality factor values to provide acceptable insertion loss

and selectivity values.

There are multiple paths to design better filters. One of the most important methods

of such is to work on the resonator technologies in order to create higher-Q, miniatur-

ized, and power-resilient resonators. The second pathway is to develop the methodol-

ogy to use these resonators in a way to design filters that meet the specifications for

specific applications. This dissertation will include discussions on both methods with

a particular emphasis on the proposed synthesis and design methodologies. In contrast

to developing new resonator technologies, the aim is more on achieving significantly

better filter responses compared to the current state-of-the-art by developing novel the-

oretical synthesis background for such filters.
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1.2 Filter Design Methodologies

The concept of filter design methodologies refers to the entire process of designing a

filtering function in the normalized frequency and impedance domain, denormalizing

it for a desired actual center frequency (f0), a particular fractional bandwidth (FBW),

and for desired source and load termination impedances. Finally, one can obtain the

physical network or structure that realizes the desired response.

The most common filtering responses include the Butterworth (maximally flat),

Chebyshev, and elliptic function based responses. The Butterworth response provides

the flattest passband response because the derivatives of the filter function vanishes at

Ω = 0 and Ω → ∞. It is a commonly used response, however, the selectivity of this

function is not as good as the Chebyshev response. The Chebyshev response, however,

has nonzero derivatives at Ω = 0 and has a constantly fluctuating response, which is

the in-band ripple, which is adjustable. In addition, one can have predefined trans-

mission zeros out of the passband with the Chebyshev response, which is commonly

used to improve the rejection performance of the filter. The elliptic filter, on the other

hand, is a subcategory of the generalized Chebyshev response which has fixed trans-

mission zero positions. The low-pass circuit network of Chebyshev and Butterworth

function based filters can be obtained directly from the g-coefficients, the insertion loss

method [2], or the image parameter method [3]. On the other hand, more advanced re-

sponses including the design of filters realizing generalized Chebyshev responses with

finite transmission zeros, the polynomial-based filter synthesis methodologies and the

coupling matrix approach become very important [2, 4, 5].

In order to be able to design filters using the resonators at the required frequency

band, one needs to be able to connect/couple them with each other and also with the

source and the load terminations of the network. This should be done in a methodolog-
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ical way in order to be able to scale the design for any required center frequency and

the fractional bandwidth. Furthermore, this design should be able to realize a mathe-

matical filtering function such as a Butterworth or a Chebyshev prototype in order to be

able to achieve the best input matching, band flatness, specified selectivity, and strong

out-of-band rejection performance [2].

1.2.1 The Method of g-coefficients

The method of g-coefficients are valid for both Butterworth and Chebyshev responses,

however, this dissertation mainly includes the Chebyshev functions and the readers are

suggested to read [2] for the Butterworth responses.

To get the g-coefficients of a response, one needs the order of the filter (N ) and the

ripple constant (ϵ =
√
10R/10 − 1) where R is the ripple level in the linear scale (non-

dB). For both the odd and the even order cases, g0 = 1. For the odd-orders, gN+1 = 1.

On the other hand, the last coefficient for even-order is found as:

gN+1 =


(ϵ+

√
1 + ϵ2)2 S11(0) > 0,

1
(ϵ+

√
1+ϵ2)2

S11(0) < 0.

(1.1)

The remaining g-coefficients are found as follows:

gr+1 =
1

gr
·
4 sin

[
π(2r−1)

2n

]
sin
[
π(2r+1)

2n

]
η2 + sin2( rπ

n
)

(1.2)

where

η = sinh
[ 1
N

sinh−1(
1

ϵ
)
]

and g1 =
2

η
sin(

π

2N
), (1.3)

The g-coefficients can be found for a filter of an arbitrary order and ripple value.
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Figure 1.3: The normalized lowpass prototype network that is characterized by the g-
coefficients. This figure is taken from [2].

They represent the inductance and the capacitance values of a lowpass ladder network

that is depicted in Fig. 1.3. The frequency response of this network has a cutoff fre-

quency of 1 rad/s and the source and the load terminations are found from g0 and gN+1,

as observed.

Using the lowpass prototype of Fig. 1.3, one can design a lowpass, highpass, band-

pass, or a bandstop filter by performing the transformations on the inductors and the

capacitors in the network in Fig. 1.4. In that figure, ∆ refers to FBW whereas ω0

corresponds to the actual angular center frequency.

On the other hand, the method of g-coefficients is only valid for filters with no

transmission zeros. It cannot give an insight into dual band filters, filters with trans-

mission zeros, or on the design of filters with acoustic-wave resonators. Therefore, the

more comprehensive generalized Chebyshev function and coupling matrix synthesis

methodology is required for the realization of advanced filter responses.

1.2.2 Generalized Chebyshev Function and Coupling Matrix

Based Filter Synthesis

The polynomial-based synthesis in conjunction with the extracted pole and the coupling

matrix methods provide the designer the following abilities:
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Figure 1.4: Conversion of the normalized lowpass prototype in Fig. 1.3 to a filter with
either a lowpass, highpass, bandpass, or bandstop filter network at the denormalized
frequency domain. For the lowpass and highpass prototype, ωc corresponds to the
angular cut-off frequency while for the bandpass and bandstop prototypes, ω0 and ∆
correspond to the center frequency and the fractional bandwidth, respectively. This
figure is adapted from [6].

• Synthesize the filter response in the normalized frequency domain for any arbi-

trary filtering function,

• Being able to observe the effect of the finite quality factor of the resonators that

are used in the design of the filter,

• Switch between different filter topologies that can realize the same filtering func-

tion for the specified fractional bandwidth and center frequency,

• Design more advanced filters with dual-band responses,

• Design filters for different source and load terminations than 50 Ω.

• Design of filters with acoustic-wave resonators.
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Figure 1.5: Filter synthesis-based design methodology is illustrated. The synthesis
starts with determining the ripple value and the transmission zero positions, continues
with the extraction of the S-polynomials and according to them, determining which fil-
ter topology is desired. According to that, there are multiple solutions to the approach.

A specified filtering function of order N with NTZ finite-frequency transmission ze-

ros can be synthesized based on the required ripple value and the normalized-frequency

transmission zero locations with the use of the recursive algorithm given in [2]. This

filtering function specifies the reflection and the transmission coefficients of the filter

in normalized-frequency domain as:

S11(s) =
F (s)/ϵr
E(s)

and S21(s) =
P (s)/ϵ

E(s)
,

where


ϵr = 1, NTZ < N

ϵr = ϵ/
√
ϵ2 − 1 NTZ = N,

(1.4)

F (s) and P (s) are the numerator polynomials of S11(s) and S21(s), respectively, E(s)

is the common denominator polynomial, ϵr is the normalization coefficient, and ϵ is the

ripple constant. Here, s = jΩ is the frequency variable with Ω being the normalized

angular frequency.

Once the filtering function for the lowpass (normalized-frequency) prototype is syn-
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thesized, the design of the filter proceeds as depicted in Fig. 1.5. In particular, one needs

to determine the topology of the filter to be synthesized. Depending on both the used

resonator technologies and/or the overall geometry of the filter, i.e., whether it will be a

cavity-based filter or an on-chip AW resonator based filter, this topology can be chosen.

According to the chosen topology, the coupling matrix of the design can be synthesized

using either the direct synthesis method, the network-circuit synthesis approach, or the

extracted-pole synthesis method [2, 4, 5].

Once the coupling matrix of the desired topology is obtained, the designer can ob-

tain all of the parameters of the physical filter topology from that. For instance, if

the filter will be a cavity resonator based filter, the designer can extract the resonant

frequency of each cavity as well as the required inter-resonator coupling strengths to

obtain the desired response. On the other hand, if the design will be a lumped-element

based design, the designer can extract the required component values.

The coupling matrix based filter design approach is a revolutionary method that

unified the design methodology of filters with several different resonator technologies.

This study will be extensively using this approach in order to solve the common prob-

lems of the microwave filters using different technologies.

1.3 Resonator Technologies

The design and synthesis methodologies of the RF filters, as mentioned in Section 1.2

is able to determine the resonant frequencies, inter-resonator coupling coefficients, and

inductance/capacitance values of each coupled resonator in a filter network. On the

other hand, all these methods assume that the coupled resonators are lossless, which

corresponds to a quality factor of infinity. However, one of the most important concerns

in a filter network is the ability of obtaining high-Q resonators.
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Figure 1.6: Relation between the physical size and the achievable quality factor using
several resonator technologies.

There are several resonator technologies that are commonly used in the design of

microwave/millimeter-wave (mmWave) filters. These can be classified as electromag-

netic (cavity, dielectric, transmission line) based, lumped element based, micro elec-

tromechanical systems (MEMS) and acoustic-wave (AW) based, and superconductor

based resonators. Fig. 1.6 depicts a general view on the relationship between the size

and the quality factor of several resonator technologies.

The resonators that can provide the highest quality factor values are the ones that

are based on superconductors, however, they work at cryogenic temperatures and are

not practical to be used in commercial applications such as cell phones [2, 7]. Another

important technology that can provide high quality factor values are the electromagnetic

cavity resonators including air- or dielectric-filled cavities. Such cavities are sections

of waveguides and can achieve quality factor values of 3,000–30,000 at frequencies

around 1 GHz [3]. The substrate integrated waveguide (SIW) technology has been

an important application technique in the design of such cavities, especially in their

integration to the printed circuit board (PCB) based applications. Despite their high
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quality factor, their sizes are on the order of one wavelength, which makes them large

and bulky and not convenient for on-chip applications for the lower frequencies of

the microwave band. Other technologies such as dielectric, coaxial, or microstrip line

based resonators provide Q values of approximately 3000-5000, 1000, and 100-300 at

frequencies around 1 GHz, respectively [3]. Even though these technologies can be

implemented with smaller sizes compared to the cavities, it is still difficult to use them

for on-chip applications at low frequencies.

1.3.1 Miniaturized Electromagnetic Resonators (Lumped and Dis-

tributed)

There are numerous approaches in the literature aiming at miniaturizing the cavity or

transmission line based resonators. One such technology is the evanescent-mode cavity

technology, which uses the waveguides at frequencies below their cut-off frequency.

The miniaturization can be accomplished using multiple techniques. One of those is to

capacitively terminate, or in other words, heavily load the lines or cavities to shorten

their physical length [8–14]. An example of such a cavity is depicted in Fig. 1.7 (a)

which can be characterized by the coaxial line as in Fig. 1.7 (b). This coaxial line, for

instance, is capacitively loaded to reduce the length of the line. The use of capacitive

termination has the added benefit of tunability as long as the value of the terminating

capacitance is tunable. This has been accomplished by using MEMS based capacitors

in [8–10]. On the other hand, the disadvantage of hysteresis and weak durability of

these structures were also discussed in these studies. Using solid-state varactors is

another option to change the terminating capacitance for tuning, however, the varactors

can bring significant losses to the system, causing the resonators to have low quality

factors [12].
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Figure 1.7: A capacitively loaded evanescent-mode cavity resonator. (a): The HFSS
drawing of the resonator. (b): The coaxial transmission line model of it.

Other approaches in the design of miniaturized microwave cavity resonators include

the folded SIW based resonators [15–17] and half-mode [18, 19] or quarter-mode [20–

23] cavities. The folded SIW technology reduces the width of the SIW by increasing

the height to twice the original value and placing a conductive obstacle between the

top and bottom half-width cavities. In other words, it is based on literally folding the

cavity to reduce the size of it, however, it has been reported in [15–17] that this tech-

nique introduces significant losses to the resonator. The fractional-mode (half, quarter,

1/32) cavities divide the cavity area to a desired fraction and leave certain cavity walls

open-ended which act like perfect magnetic conductors. These boundaries fulfill the

remainder of the fields according to image theory and act as if the cavity has the de-

sired full mode. These methods are also effective in reducing the physical size of the

resonators, however, the achievable cavity sizes are still too large for on-chip imple-

mentation.

A different approach than miniaturizing the cavities is the concept of active res-

onators, which can be used to incorporate microwave/mmWave resonators to on-chip

applications. An active resonator is accomplished by coupling an active loss compen-

sation network to a resonator with a finite quality factor, as observed in Fig. 1.8. This

negative resistance network can either be a two-port RF amplifier as in [24, 25], or

can be accomplished as a single-port transistor network using the base impedance of a
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common collector bipolar transistor as in [26].

-R
Negative 
Resistance

Figure 1.8: Circuit schematic of an active resonator with negative resistance.

Using active resonators to enhance the quality factor of low-Q on-chip lumped-

element resonators has been an extensively studied subject in the late 90s. In [26–

29], coupled negative resistance approach with the use of field-effect transistors (FET)

are used. To have a negative resistance effect, parametric amplification is used for

loss compensation in [30] and a further coupling manipulation is used for shape and

selectivity enhancement in [31] for narrow-band filter realization.

As the major origin of the loss is identified as the lumped inductors, the concept of

active inductor design for narrow-band MMIC filter applications was performed with

FET transistors in [32] and [33] and with the inverted collector technique based bipolar

transistors in [34] and [35]. Furthermore, dynamic range and nonlinearity considera-

tions of active inductors were presented in [36] and [37]. In [38–40], GaAs FETs are

used to link the resonant structures to not only compensate for the loss, but to produce

gain within the passband. Finally, the transversal active MMIC filter topology is used

in [41] and [32] to improve the shape of the response.

The negative resistance based active resonators are a good solution to improve the

quality factor of the low-Q resonators, however, they suffer significant drawbacks in-
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cluding high noise figure, low power handling performance and the design complex-

ities. The design complexities include the reluctance to implementing a passive filter

with active amplifier networks.

1.3.2 Acoustic Wave Resonators

A very important resonator technology that has been used extensively in the design

of microwave filters and low-phase-noise oscillators is the acoustic wave (AW) based

resonators [42].

These resonators take the advantage of comparatively lower mechanical phase ve-

locity and hence, lower mechanical wavelength within the mechanical substrates. For

the mechanical waves, the same relation between the wavelength and the phase velocity

applies as in:

λmech =
vmech
p

f
, (1.5)

where λmech and vmech
p are the mechanical wavelength and the mechanical phase veloc-

ity, respectively.

Considering that the mechanical phase velocity is 11340 m/s in AlN substrate for

instance [42], the mechanical wavelength for an operating frequency of 2 GHz is 5.67

µm compared to the electrical wavelength in air at the same frequency, being 15 cm.

The outcome of that is the multiple order of magnitude smaller physical resonator size

compared to the electromagnetic resonators.

There are two types of acoustic wave resonators. The surface acoustic wave (SAW)

based resonators, as illustrated in Fig. 1.9 (a), have wave propagation that is parallel to

the piezoelectric substrate [43, 44]. The electrical (RF) signal is converted into mechan-

ical waves with the inter-digital transducers (IDT) and the resonance frequency of this

device is determined by the spacing of the IDT fingers. Finger spacing of one mechan-

15



ical wavelength is used in many applications [45]. Piezoelectric materials of LiTaO3 or

LiNbO3 are commonly used in the design of the SAW resonators, which is not com-

patible with CMOS process integration. Typically, the resonance frequency of SAW

resonators have an upper limit around 2.5 GHz [42] due to structural stability problems

while miniaturizing the resonator fingers. Compared to the BAW resonators, they have

lower quality factor values and less power handling performance, which is typically

around 31 dBm (The BAW resonators can tolerate upto 36 dBm of RF power[42]). On

the other hand, the SAW resonator fabrication is relatively simpler compared to the

BAW devices.

(a) SAW Resonator (b) BAW Resonator

Figure 1.9: Schematic drawing of the surface acoustic wave (SAW) and the bulk acous-
tic wave (BAW) based resonators are depicted in (a) and (b), respectively. The image
is taken and adapted from [46].

The BAW resonators, as depicted in Fig. 1.9 (b), are designed as a piezoelectric

material being sandwitched between two metallic electrodes. The wave propagation

direction is the vertical direction, therefore, the thickness of the piezoelectric material

determines its resonant frequency. With the BAW resonators, going towards higher res-

onant frequencies is dependent on the developments on the thin film growth technology.

It has been reported in [42] that the maximum resonant frequency of BAWs are usually

limited to 10 GHz, however, recent developments in [47] and [48] demonstrate very

promising results at 14 GHz and 33 GHz, which suggests a good future for the use of

BAW resonators in mmWave applications as well. Compared to the SAW resonators,
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they can have stronger power handling capabilities (≈36 dBm), higher quality factors,

and the advantage of being CMOS compatible, which is a very important feature in the

system-on-chip (SOC) applications [42].

AC

(a) (b)

𝑓𝑝

𝑓𝑠

AC

(c)

𝐶𝑚

𝐿𝑚

𝑅𝑚

𝐶0

Figure 1.10: (a): An acoustic-wave resonator connected to a voltage source. (b): The
Butterworth-Van-Dyke model, and (c): The input impedance of the acoustic-wave res-
onator in (a).

The input impedance of an acoustic-wave resonator, when connected to a volt-

age source, as in Fig.1.10 (a), reveals the presence of a series and a parallel reso-

nance frequency, as depicted in Fig. 1.10 (c). This behavior can be modeled with

the Butterworth-Van-Dyke (BVD) model as given in Fig. 1.10 (b) or the Mason model

which will be described in Chapter 2. The capacitance C0 originates from the dielec-

tric properties of the piezoelectric material that is between the conductive electrodes

whereas the motional branch (Cm and Lm) can only be understood considering the Ma-

son model.

The distance between the series and the parallel resonances in Fig. 1.10 (c) is

proportional to the electromechanical coupling coefficient (k2
t ), which is an intrinsic

property of the piezoelectric material that is used in the design of the AW resonators

[42]. As also depicted in Table 2.1, different materials can achieve different k2
t values

and this coefficient is a very important parameter in the utilization of the AW based

resonators for microwave filter design. Indeed, it gives an upper limit to the achievable

fractional bandwidth while using the AW based resonators in microwave filter design.
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1.4 Problem Definition and the Hypothesis

The main problem definition in this dissertation is the inability of obtaining high-

performance on-chip RF/mmWave filters that can meet the growing demands of the

wireless industry. The phrase ”high-performance” corresponds to strong selectivity,

low insertion loss, small size, strong power handling, and the ease of fabrication and

integration in system-on-chip applications.

The lumped-element based resonators have the sizes that can fit into an integrated

circuit, however, they provide weak quality factor values, being in the range of 10–50

at lower frequencies of the S-band [2]. This produces significant insertion loss and poor

selectivity performance, if used for on-chip filter integration.

The acoustic wave resonator technology has gained a very important popularity due

to its ability of achieving exceptionally high quality factor values at the lower frequen-

cies of the microwave spectrum, while maintaining a physical size that can fit on a

chip. However, they still face multiple challenges. The intrinsic property of the piezo-

electric substrate, which enforces the electromechanical coupling coefficient k2
t to be

limited, has direct consequences on the design of filters using AW based resonators.

These include the limited achievable fractional bandwidth, weak out-of-band rejection

performance, and the difficulty of achieving a flat passband.

The earliest design methods for the filters based on AW resonators use the ladder

based architecture, as depicted in Fig. 1.11 (a). In this network, the series- and shunt-

connected AW resonators are connected in an alternating order. Since each of the AW

based resonators have a series and a parallel resonance frequency, both of them are

responsible for creating a peak and a transmission zero [49]. A passband using them

can therefore only be achieved by enforcing them to define the band edges. As de-

picted in Fig. 1.11 (b), the shunt resonators in the design should all have the same
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series-resonance frequency and define the lower band edge while the series-connected

resonators should all have the same parallel resonance frequency and define the upper

band edge.
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Figure 1.11: (a): The conventional ladder based acoustic-wave microwave filter topol-
ogy. (b): The frequency response of the filter in addition to the input impedances of the
series- and shunt- connected resonators.

The challenge of using AW based resonators with a specific k2
t arises at this point.

In an effort to enlarge the fractional bandwidth of the filter by increasing the frequency

separation of the resonators, an increase in the insertion loss (also known as “midband

dip”) is observed at center frequencies of these wideband acoustic filters, as depicted

in Fig 1.12 (a). This is because there is no resonance in the middle of the passband in

order to elevate and flatten the passband. Additionally, the out-of-band rejection of the

filter shows a constant, and non-decreasing transmission coefficient at the out-of-band

region.

Several methods have been proposed to design AW based filters with wide fractional

bandwidth values. The most straightforward method is the AW resonator technology

development to achieve larger electromechanical coupling values. In literature, k2
t val-

ues of 20% – 40% have been reported using lithium niobate substrate [51]. However, it

has also been reported that they have many spurious modes and suffer weak temperature

stability.
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Figure 1.12: (a) Conventional 4th order ladder acoustic filters with various bandwidths.
Midband dip is present at wider band filters. (b) The explanation of the proposed
method. EM resonators lift the midband dip while providing better rejection at out-
of-band frequencies. This image is taken from the publication of the author in [50].

Other methods include connecting parallel transmission lines or lumped elements

to manipulate the position of the parallel resonance of the resonator [52, 53], which

creates a new transmission zero on the opposite side of the passband. That effectively

increases the achievable bandwidth, however, the filter bandwidth is now limited by the

created transmission zero.

Another intriguing approach uses inverting sections (coupled lines) to connect

ladder-AW sections, which achieved filters with 20%–30% FBW with k2
t values of

approximately 10% [54]. The inverting sections enlarge the bandwidth of the reso-

nant peak of the acoustic resonators, compensating for the midband dip, however, the

required admittance inverters cause weak out-of-band rejection performance as wider

bandwidths are desired [52, 54]. This idea is improved in [55] to separately control the

upper and lower band edges using transmission line sections in addition to the coupled

lines and the FBAR components. Very sharp roll off performance is achieved with very

good insertion loss performance, proving the capabilities of using external microwave
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elements in AW based filter design. On the other hand, these methods again do not

provide solutions for on-chip designs.

Chebyshev functions have also been used to get the best performance metrics from

AW-resonator-based filters [56]. That study synthesizes an N th order topology with N

AW resonators whose corresponding BVD models are synthesized using the extracted-

pole (EP) synthesis method [2]. As a result, the k2
t for each AW resonator for a desired

FBW is dictated by the sythesis process.

In order to increase the out-of-band rejection performance, transversal sub-networks

have been incorporated to the ladder architecture in [57–59]. A different method in [60]

uses an attenuating phase-shifter between the input and output for out-of-band rejection

enhancement. In [61], an impressive transversal AW filter topology is introduced to

achieve significantly larger bandwidths with acoustic resonators of almost arbitrary k2
t

values. However, the resulting topology requires a differential output (or input) due to

the circuit extraction processes and needs a balanced-unbalanced converter (Balun) on

either side of the network.

The current state-of-the art methods for AW resonator based bandwidth enhance-

ment are able to obtain FBW values of almost three times the k2
t value of the AW based

resonators with reasonable out-of-band rejection [61]. On the other hand, the demand

for wider fractional bandwidth values increase for the new applications such as 5 to

7 GHz WiFi. With the increased data rates, FBW values of 30-40% are getting nec-

essary with AW based resonators that have k2
t values of 4% to 9%. Furthermore, this

should be accomplished on-chip and with the minimum possible process updates for

chip manufacturing.
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Hypothesis

The hypothesis in this dissertation is based on the design of acoustic-wave filters. The

hypothesis statement is given in the next paragraph.

The current achievable bandwidth problem of filters based on acoustic wave res-

onators can be resolved using a hybrid extracted pole approach in a way to incorporate

EM resonators (lumped- or distributed- element based) within the design. In other

words, the claim is that significantly wider fractional filter bandwidths and stronger

out-of-band rejection performance compared to the state-of-the art in literature can be

achieved using a hybrid combination of EM and AW based resonators within the de-

sign. Furthermore, this can be achieved without the need for a new resonator technology

development or creating additional steps in the fabrication processes.

The basic logic in the proposed method in this dissertation can be summarized in

Fig. 1.12 (b). The sharp upper and lower band edges are defined by series and shunt

acoustic resonators, whereas the passband flatness is achieved using electromagnetic

resonators, as shown in Fig 1.12(b). Using electromagnetic (EM) resonators in the

prototype provides four advantages over the pure acoustic design: flat passband, better

out-of-band rejection, wide bandwidths that are beyond the limits dictated by k2
t , and

most importantly, the ability to achieve a specific bandwidth using a wide range of k2
t

values, which will be referred to as k2
t scaling.

Starting with a thorough mathematical analysis to understand the relationship be-

tween the k2
t dictated by each EP section, the effect of using canonical or non-canonical

functions, and the achievable FBW, this study gives the foundations of introducing EM

resonators for bandwidth achievement, strong OOB rejection, and low insertion loss.

Discussions are provided to determine how many and which AW resonators in an inline

full-EP based topology can be replaced with an EM resonator for maximum bandwidth
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and minimum k2
t . Additional proposed architectures on the use of cross-coupling in

a Hybrid-ACEM topology are also provided. For the prototypes of significantly wide

bandwidths such as 20%, a modified extracted-pole-to-BVD model is proposed for

better accuracy. Overall, this study provides new and novel topologies for achieving

significantly wider bandwidths and strong out-of-band rejection with fixed or arbitrary

AW resonator k2
t values. This study can also be applied in the front-end modules of

future on-chip RF transceivers.

1.5 Organization of the Dissertation

This dissertation starts with examining several contemporary microwave resonator

technologies in Chapter 2. That includes lumped-element based resonators, electro-

magnetic resonators including resonant cavities, substrate integrated waveguide (SIW)

technology, and the evanescent-mode cavities. In the same chapter, (MEMS) based

acoustic-wave resonators are introduced with an emphasis on the BAW resonator tech-

nology and circuit equivalent models.

Chapter 3 examines the design of a generalized Chebyshev function with an arbi-

trary order and number of transmission zeros. This is the initial step for designing a

microwave filter at a desired center frequency and having a desired fractional band-

width.

Chapter 4 examines the contemporary coupled-resonator filter design methodolo-

gies with a special emphasis on the coupling matrix method. This includes the analysis

and the synthesis of the coupling matrix to characterize a filter. Examples of the use of

SIW based resonators for integrated microwave filters for the “Horus” fully-digital ac-

tive electronically scanned antenna array (AESA) system is described with the coupling

matrix-based design methods, as published in [62]. In addition, the lossy microwave
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filters and the lossy coupling matrix is introduced in this chapter.

Chapter 5 introduces the role of extracted poles in filter design, the circuit- and

network- synthesis methodologies, and the extracted-pole synthesis method. In that

context, the synthesis of fully-canonical filters and their corresponding coupling matri-

ces are also described.

Chapter 6 describes the coupling matrix based synthesis and design of ladder-

acoustic-wave based filters and the challenges in their design.

Proceeding with the design considerations for on-chip filters, Chapter 7 introduces

the novel “hybrid acoustic-electromagnetic filters” for wideband and on-chip applica-

tions, as submitted in [63]. A thorough analysis of using the extracted-pole method to

maximize the achievable passband with limited electromechanical coupling coefficient

is made with the use of the hybrid extracted-pole method and the coupling matrices.

An on-chip hybrid acoustic-electromagnetic filter for S-band applications is designed

utilizing the BAW resonator of Texas Instruments.

Finally, the impact of this study on the design of future SOC applications, the con-

tributions to the filter design community and the future work are discussed in Chapter 8.
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Chapter 2

Microwave/mmWave Resonators

This chapter introduces and examines several microwave resonator technologies that

are used in the design of microwave/mmWave networks. Resonant networks have

a wide range of applications including filters, tuned amplifiers, antennas, resonator-

based oscillators, and biomedical applications (including magnetic resonance imaging

(MRI)). In terms of their working principle, it is possible to classify the resonators in

two categories, namely electromagnetic (EM)-based and acoustic-wave (AW) based.

These two main categories include multiple types of resonators that are widely used in

the design of the modern RF transceiver systems.

To characterize, understand, and simplify the behavior of the microwave resonators

and to use them in the design of more complex systems, their lumped-element (RLC)

equivalents are commonly used. Therefore, this chapter will start with the analysis of

the lumped element based resonators and continue with the design and analysis of EM

based structures and further consider the AW based resonators in detail.
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2.1 Series and Parallel RLC Resonators

2.1.1 Series Tank Circuits

Since many RF resonators can be modeled as lumped resonators near their resonant

frequency, it is important to consider the several parameters of the series- and parallel-

tank circuits. In Fig. 2.1 (a), a series RLC network is depicted. The input impedance

looking into the series-tank circuit is calculated as:

ZSE
in = R + jωL+

1

jωC
. (2.1)

(a)

(b)

(c)

(d)

Figure 2.1: (a): A series-connected RLC network. (b): The normalized input
impedance of this network near its resonance frequency. (c): A parallel-connected
RLC network, and (d): The normalized impedance of this network near its resonance
frequency. This image is taken and adapted from [3].

For the series-tank circuit, the dissipated power (Ploss), the stored magnetic energy

(Wm), and the stored electric energy (We) are calculated as follows:

Ploss =
|I2|R
2

, Wm =
|I2|L
4

, and We =
|I|2

4ω2C
. (2.2)

26



The resonance condition is defined as the frequency at which the stored magnetic and

electric energies are equivalent and given as:

ω0 =
1√
LC

, (2.3)

and the unloaded quality factor of the resonator is defined as[3]:

QSE
U = ω

Wm +We

Ploss

=
1

ω0RC
. (2.4)

The unloaded quality factor can also be obtained using the input impedance and the

half-power bandwidth of the resonator in Fig. 2.1 (b) as:

Qu =
1

BW
. (2.5)

On the other hand, it should be noted that the bandwidth in (2.5) denotes the

normalized-frequency bandwidth and for a resonator whose input impedance in de-

normalized frequency is measured, this equation should be modified as:

Qu =
1

FBW
, where FBW =

BWdenormalized

ω0

. (2.6)

In most circuits, on the other hand, the resonator is connected or coupled to either

different resonators or to another load with a resistance given by RL. This resistance

changes the measured or the overall quality factor and can be considered to contribute

an external quality factor of Qe, which can be calculated as ω0L/RL. The overall

quality factor of the series resonator, in the presence of the external quality factor is
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denoted as the loaded quality factor and is given by:

QL =
[ 1

Qu

+
1

Qe

]−1

. (2.7)

2.1.2 Parallel Tank Circuits

A sample parallel tank circuit is depicted in Fig.2.1 (c) with the input admittance look-

ing into the network as follows:

Yin =
1

R
+ jωC +

1

jωL
. (2.8)

The stored electric energy, magnetic energy, and the dissipated power in this net-

work are provided as follows:

We =
|V |2C

4
, Wm =

|V |2

4ω2L
, and PLoss =

|V |2

2R
. (2.9)

Similarly, the resonant frequency is obtained for the condition when We = Wm,

which is attained at ω0 = 1/
√
LC. The quality factor of the parallel resonator in Fig.

2.1 (c) can be calculated as:

Q0 = ω0
2Wm

Ploss

=
R

ω0L
= ω0RC, (2.10)

or again, from the half-power bandwidth as: Q0 = 1/BW in normalized-frequency

scale and Q0 = 1/FBW in denormalized bandpass frequency scale.

The definition of the aforementioned quality factor values are calculated using only

the parameters of the series or tank RLC networks given in Fig. 2.1. On the other hand,

a microwave/mmWave resonator in a network is usually connected or coupled to either
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a source, load, or other resonators which have internal dissipative components. In this

case, the dissipative elements of the load produces a quality factor that is external to the

resonator and is denoted as Qe.

Resonant,

Qu

Figure 2.2: A resonator with an unloaded Q of Qu, which is connected to a load with a
resistance of RL. This image is taken from [3].

The external quality factor is calculated as Qe = ω0L/RL for series resonant cir-

cuits and Qe = RL/ω0L for the parallel resonant circuits. The external quality factor

can be interpreted as the quality factor that the load resistance produces with the lossless

LC network.

Including the external quality factor, the overall quality factor of the network is

referred to as the loaded quality factor and is calculated as:

QL =
[ 1

Qu

+
1

Qe

]
. (2.11)

Therefore, a passively loaded resonator has a lower loaded quality factor compared to

its unloaded quality factor value.

2.2 Transmission Line Resonators

A distributed-element transmission line can have an arbitrarily desired input impedance

based on the impedance that it is terminated with [3]. In addition to the ease of

fabrication of transmission lines, this property is utilized to design resonators for
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microwave/mmWave applications. Transmission lines can be characterized as either

series- or parallel-connected RLC resonators based on the impedances they are termi-

nated with. A transmission line of physical length l, a phase constant β, an attenuation

constant α, and a characteristic impedance of Z0 is depicted in Fig. 2.3.

𝒁𝒊𝒏

𝑍0,𝛽

𝑙

Figure 2.3: A transmission line terminated with a load resistance of RL.

The input impedance looking into the transmission line given in Fig. (2.3) is given

as:

Zin = Z0
ZL + jZ0 tan((α + jβ)l)

Z0 + jZL tan((α + jβ)l)
. (2.12)

This impedance can be approximated as either the input impedance of a series- or a

parallel-connected RLC network under several conditions as follows:

2.2.1 Half-Wave Shorted Transmission Line

For the case of a short-circuit termination (when ZL = 0), (2.12) can be approximated

as:

Zin = Z0 tanh (α + jβ)l = Z0
tanhαl + j tan βl

1 + j tan βl tanhαl
. (2.13)

For the case of a low-loss line, αl << 1, which implies tanhαl ≊ αl, and letting

ω = ω0 + ∆ω for a small ω0 compared to ω0, the electrical length of the line can be

30



written in terms of the phase velocity, vp, as:

βl =
ωl

vp
=

ω0l

vp
+

∆ωl

vp
. (2.14)

Considering that the transmission line is of half wavelength at the center frequency, the

electrical length can be rewritten as:

βl = π +
∆ωπ

ω0

(2.15)

and considering tan(∆ωπ
ω0

) ≊ ∆ωπ
ω0

, the input impedance to the shorted half-wave

line can be approximated as:

Zin = Z0

(
αl + j

∆ωπ

ω0

)
, (2.16)

which has the form of the input impedance of a series-connected RLC resonant circuit,

given by Zin = R + 2jL∆ω. Therefore, the short-circuited half wave line can be

approximated as a series resonant circuit with the distributed RLC parameters given

by:

R = Z0αl, L =
Z0π

2ω0

, and C =
1

ω2
0L

. (2.17)

Therefore, the unloaded quality factor of the network can be written as: Q0 =

π/2αl = β/2α.

2.2.2 Half-Wave Open Ended Transmission Line

This type of transmission line resonators is a practical one due to its ease of fabrication.

Just as in the shorted version, as ZL is set to infinity in (2.12), the input impedance of

the network can be written as:
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Zin = Z0
1 + j tan(βl) tanhαl

tanhαl + j tan βl
. (2.18)

Similarly to the case in shorted version, one can set ω = ω0+∆ω, assuming tanhαl ≊

αl, which results in the input impedance of the network given as:

Zin =
Z0

αl + j(∆ωπ/ω0)
, (2.19)

which is indeed the equivalent of a parallel-connected RLC network with the parame-

ters given by:

R =
Z0

αl
, C =

π

2ω0Z0

, , and L =
1

ω2
0C

. (2.20)

Using these parameters, the unloaded quality factor of the network can be obtained

as follows:

Qu = ω0RC =
β

2α
. (2.21)

2.3 Waveguides and Cavity Resonators

Waveguides can be used with certain boundary conditions to construct resonating cav-

ities, which are preferred due to their high quality factor values and strong power han-

dling. Depending on how the cavity is constructed, these can be rectangular, cylindiri-

cal, or coaxial cavity resonators and can support transverse electric (TE), transverse

magnetic (TM), or transverse-electromagnetic (TEM) modes. In order for a guiding

structure to support TEM modes, it requires at least two conducting surfaces.

To understand the field distributions in the cavity resonators, it is important to un-

derstand the field distributions in waveguides. Therefore, this section will begin with a

brief examination of the field configurations (modes) in rectangular and coaxial waveg-
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uides and then will switch to the rectangular and coaxial cavity resonators. Then, minia-

turization of the resonators will be considered with the examination of the evanescent-

mode, half-mode, and quarter-mode resonators. The use of such resonators design of

filters will be analyzed in the following chapters after the synthesis of the coupling

matrix.

To begin with the electromagnetic fundamentals, the starting point is, (as always)

the phasor-domain Maxwell’s equations, given by:

∇× E⃗ = −jωµH⃗ (Faraday’s Law),

∇× H⃗ = J⃗ + jωϵE⃗ (Ampere’s Law),

∇ · D⃗ = ρs (Gauss Law),

∇ · B⃗ = 0, (Gauss Law for Magnetism)

(2.22)

where ϵ = ϵ0ϵr is the permittivity and µ = µ0µr is the permeability of the media.

Furthermore, E⃗ and H⃗ are the electric- and magnetic-field vectors. According to the

geometry of the guiding structure, the method of finding the field distributions is based

on writing the fields in terms of transverse- and longitudinal components. In that case,

the initial structure to be considered is the coaxial transmission line, which is considered

in the following subsection.

2.3.1 Coaxial Transmission Lines, Waveguides, and Cavity Res-

onators

A coaxial transmission line comprises two concentric conducting cylinders of radii

a and b, and the region between these two conductors is filled with a dielectric material

of permittivity ϵ and permeability µ, as shown in Fig. 2.4.
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𝑧

Figure 2.4: A coaxial transmission line of inner radius a, outer radius b, and a filling
material of permittivity ϵ and a permeability of µ.

With the two conductors, a coaxial line can support TEM waves although it also

supports TE and TM modes, which are of higher order.

The electric and magnetic fields inside the coaxial line can be denoted as:

E⃗ =
V0ρ̂

ρ ln b/a
e−γz

H⃗ =
I0ϕ̂

2πρ
e−γz

(2.23)

with γ = α+ jβ being the propagation constant including the loss of the line. The aim

at this point is to obtain the RLC parameters of the coaxial transmission line based on

its geometry. This can be found from the stored magnetic and the electric energy in the

unit lenght of a coaxial line. The time-averaged stored magnetic energy can be found

from the magnetic fields as follows:

Wm =
µ

4

∫
S

H⃗ · H⃗∗ds
∆
=

I20Lcoax

4
. (2.24)

As the magnetic energy is stored within the dielectric substrate between the conductors,
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this surface integral should be within the region where ρ ∈ [a, b], which is calculated

as:

Lcoax =
µ

(2π)2

∫ 2π

ϕ=0

∫ b

ρ=a

1

ρ2
ρdρdϕ

⇒ Lcoax =
µ

2π
ln

b

a
H/m .

(2.25)

Similarly, the electric-field energy within the region can be calculated as:

Ee =
ϵ

4

∫
S

E⃗ · E⃗∗ds
∆
=

V 2
0 Ccoax

4
, (2.26)

which can be used for the derivation of the capacitance per unit length of the coaxial

line as:

C =
ϵ

(ln b/a)2

∫ b

ρ=a

1

ρ2
ρdρdϕ ⇒ Ccoax =

2πϵ

ln b/a
F/m (2.27)

2.4 Evanescent-Mode Cavities

Waveguides can be used to transmit EM wave modes as long as the cut-off frequency

of the desired mode is lower than that of the operating frequency [3]. If the operating

frequency is lower than the cut-off frequency of the corresponding mode (fop < fc),

that mode is an evanescent mode which quickly attenuates and dissappears. However,

the waveguides can be used below their cut-off frequencies for the purpose of design-

ing cavity resonators by capacitively loading them [8, 64]. One of the most common

methods of doing so is to introduce a capacitive post inside a coaxial waveguide. This

produces a capacitive effect, which, as a consequence, acts like a capacitively loaded

transmission line and effectively shortens the physical length of the resonator.

35



Capacitive Post

h

𝐶𝑃𝑜𝑠𝑡

𝐶𝑐𝑎𝑣𝑖𝑡𝑦 𝐿𝐶𝑜𝑎𝑥 𝐶𝑐𝑜𝑎𝑥

g
𝑌𝐶

𝑌𝐿

a
b

Figure 2.5: An evanescent-mode cavity resonator with a capacitive top post.

Fig. 2.5 depicts a coaxial evanescent-mode cavity resonator showing the capac-

itances and the inductance of the structure. As observed, the structure is a heavily

loaded coaxial transmission line with a length of h, an inner radius of a, and an outer

radius of b. In order for this evanescent-mode cavity to resonate, the total admittances

looking into the cavity should vanish as follows:

Yc + YL = 0

⇒ jπf0Cpost = j
cot(2πf0

vp
h)

Z0

,

(2.28)

where vp is the phase velocity in the coaxial line and f0 is the center frequency and Cpost

is the capacitance of the top post of the line. Using this model and considering the top

post as a parallel-plate capacitor which uses air as the dielectric material (ϵr = 1), the

resonant frequency of this cavity can be approximated as follows:

f0 =
c

π
√

2a2 h
g
ln b

a

, (2.29)

where c is the speed of light in free space. This approximation was based on the trans-

mission line model of the coaxial cavity. Instead of that, one can approximate this

structure as a parallel L-C resonator in which the inductance originates from the coax-
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ial line, as derived in the previous section given by:

Lcoax =
µ0

2π
ln
( b
a

)
h, (2.30)

and the capacitance of the resonator is obtained as the total capacitance by the cavity,

coaxial line, and the post capacitance, which is obtained as:

Ctotal = Cpost + Ccavity + Ccoax, (2.31)

where

Cpost = ϵ0
Apost−top

g
,

Ccavity = ϵ0
Acavity−top − Apost−top

h+ g
, and

Ccoax =
2πϵ0

ln b
a

h,

(2.32)

where Acavitytop is the total area of the cavity using the outer radius and Apost−top is the

area of the top of the capacitive post. Regarding the total capacitance and the inductance

of the cavity, one can obtain the resonance frequency of the structure using:

f0 =
1

2π
√
LcoaxCtot

. (2.33)

This approximation for the resonant frequency does not include the effect of the

fringing field capacitances on the top post and more accurate calculations for the reso-

nant frequency of a coaxial evanescent-mode cavity resonator is included in [65].

The most common methodology of designing these structures is to use full-wave

simulations with one of the commercially available simulation software, such as An-

sys HFSS. An example evanescent-mode cavity designed to resonate at a frequency of
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2.83 GHz is depicted in Fig. 2.6. This cavity is designed with the use of substrate-

integrated-waveguide (SIW) technology to be compatible with the standart PCB fabri-

cation processes. The outer radius of the cavity is designed as b = 4.85 mm while the

inner radius of the cavity is designed to be a = 1.5 mm.

(a)

(b)

(c)

a

b

h

Capacitors

Co-Planar
Waveguide

Co-Planar
Waveguide

Figure 2.6: An example of an SIW based cavity resonator design. (a): Top view, (b):
Side view, and (c): 3-D view.

This structure is different than the one in Fig. 2.5 in which the heavy loading is

performed using a capacitive post. Instead of using a capacitive post, this design uses

six surface mount capacitors of 1.1 pF on the top of the structure to perform the ca-

pacitive loading effect. As observed in Fig.2.6 (a), (b), and (c), the coaxial structure is

obtained using copper-plated vias within two laminated substrates having a thickness

of 1.52 mm and 0.17mm. The configuration shown in Fig. 2.6 shows a single resonator

being weakly coupled to two co-planar-waveguide components of 50 Ω each for the

measurement of its quality factor. This structure has its main mode at 2.83 GHz and

two other modes at almost twice this frequency, at 5.64 GHz, as observed from Fig.

(2.7).
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Figure 2.7: The first three resonant modes of the evanescent-mode cavity that is de-
picted in Fig. 2.6. This image is taken from the own publication of the author in [62].

The mode of interest in for designing a filter is in many cases the mode with the

lowest resonance frequency. This is not a requirement and one can also utilize two

modes of a cavity resonator such as the dual-mode patch resonator in [2]. However,

the desire is to have the mode with the lowest resonance frequency to have the highest

possible quality factor and the higher order (spurious) modes to have lower quality

factor since these modes of the resonators couple with each other and create other

undesired passbands. This will be revisited in Chapter 4 during the examples of the

use of the coupling matrix.

2.5 Acoustic Wave Resonators

As discussed in the introduction, the acoustic-wave based resonators can have excep-

tional quality factor values with very small form factors, which make them suitable

for on-chip integration. The SAW resonators are usually used for frequencies below 1

GHz while for S-band, the BAW resonators are used more ubiquitously. As the BAW

resonators are more suitable to be used at the operating frequencies that are used in this

dissertation, the theory of BAW resonators will be considered.

Designing and fabricating AW based resonators is a field of expertise and is not
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the focus of this dissertation. For information about such, the readers are directed to

[42]. On the other hand, this dissertation will include an extensive use of the AW based

resonators to design microwave filters, therefore, one still needs to know the circuit

models that define the frequency behavior of the device. In addition, it is important to

understand the parameters and mechanisms for the design of the resonators to know the

feasibility of designing a resonator with a certain foundry process workflow. Therefore,

we start with the basics of the BAW resonators including the use of mechanical wave

equations.

2.5.1 Mason Model of the BAW Resonator

A BAW resonator is formed by placing a piezoelectric material of thickness dp, a rel-

ative permittivity of ϵr, a piezoelectric constant of e, a stiffness constant of c and a

density of ρ between two conductive electrodes as depicted in Fig. 2.8 (a) and (b). In

this context, the mechanical wavenumber is defined as:

k =
ω

vp
, (2.34)

where vp =
√
c/ρ is the phase velocity of a mechanical wave within the slab. It should

be realized that this structure creates a static capacitance due to the dielectric constant

of the piezoelectric material, which can be calculated with the parallel-plate capacitor

equation given by:

C0 = ϵ0ϵr
A

dp
, (2.35)

where ϵ0 is the free-space permittivity and A is the area of the conductors.
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Figure 2.8: Drawing of an acoustic slab that acts like a mechanical waveguide. The
propagation is in z-direction and the thickness of the slab is dp.

In the presence of these variables, the Mason equivalent input impedance looking

into a BAW resonator can be described as [42]:

Zin =
1

jωC0

(
1− k2

t tan(ϕ)

kdpϕ

ZH+ZL

Zp
cos2(ϕ) + j sin(2ϕ)

ZH+ZL

Zp
cos(2ϕ) + j(1 + ZHZL

Z2
p

) sin(2ϕ)

)
, (2.36)

where ZH and ZL are the mechanical loads at locations z1 and z2 , as depicted in Fig.

2.8 (b). ϕ = kdp/2 and k2
t is the electromechanical coupling coefficient being dictated

by the piezoelectric material between the electrodes, which is obtained as:

k2
t =

e2

Zpϵ0ϵrvp
. (2.37)

Under the assumption of no mechanical loads at the mechanical ports, this equation can

is simplified to:

Zin =
1

jωC0

(
1− k2

t tan kdp/2

kdp/2

)
. (2.38)

Analyzing the unloaded impedance, one can realize that the input impedance to the

BAW approaches to infinity for tan(kdp/2) → ∞, meaning that kdp/2 = π/2. This
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gives the parallel resonance frequency of the BAW as:

fp =
vp
2dp

. (2.39)

For the series resonance, the input impedance of the of the BAW should be zero, giving

that:
k2
t tan (kdp/2)

(kdp/2)
= 1, (2.40)

which gives the conclusion that:

k2
t =

π

2

fs
fp

cot
π

2

fs
fp
. (2.41)

As an example, the input impedance calculation of a mechanically unloaded BAW

resonator including AlN as its piezoelectric with a plate capacitance of 3 pF and a k2
t

of 6% is depicted in Fig. 2.9. As observed, the BAW produces a series and a parallel

resonance frequency and the series resonance frequency is always lower than that of

the parallel resonance [42].

It should be noted that the k2
t value of the material would only be achieved in the

case of a mechanically unloaded BAW, which means that the mechanical impedances

in Fig. 2.8 is only valid for the case where the mechanical ports in the z-direction

are interfacing the air. This is of course, not possible since there needs to be metallic

electrodes to act as a transducer to surround the piezoelectric material. In that scenerio,

(2.36) can be used.
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Figure 2.9: The input impedance of a mechanically unloaded BAW resonator with a k2
t

of 6% and a static capacitance of 3 pF, found by (2.36).

In general, the effects of different electrode materials and also the presence of Bragg

reflectors (used for confining the mechanical energy within the piezoelectric) [42, 66]

will change the effective value of the k2
t , which can also be called as k2

eff . A very deep

analysis of such effects can be found in [42].

2.5.2 Butterworth Van-Dyke Model

In contrast to the Mason model which can be used to understand the frequency behavior

of the BAWs and can also be used for the design of them, the Butterworth Van-Dyke

(BVD) model is designed to facilitate the use of the frequency behavior of the res-

onators to be modeled as an RLC based network.

The BVD model of a BAW resonator is depicted in Fig. 2.10. The extended model

in Fig. 2.10 (a) shows the model that can include the spurious resonances whereas a

simplified model is also depicted in Fig. 2.10 (b). In this model, the RLC network de-

noted by Cm, Lm, and Rm is called as the motional branch, which models the acoustic

wave resonances while the term C0 is coming from the capacitor that is formed by the

electrodes that are sandwitching the piezoelectric material.
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Figure 2.10: The Butterworth Van-Dyke model of the BAW resonators. (a) The ex-
tended model including the modeling of the spurious modes. (b): The simplified BVD
model.

According to the simplified BVD model in 2.10 (b), the series resonance of the

network can be obtained as:
1

2π
√
LmCm

(2.42)

and the parallel resonance of the network can be obtained as:

fp =
1

2π

√
C0 + Cm

LmCmC0

= fs

√
1 +

Cm

C0

. (2.43)

Furthermore, the series and the parallel quality factors of this resonator can also be

modeled from the BVD parameters as:

Qs ≊
2πfsLm

Rm +R0

and Qp ≊
2πfpLm

Rm +R0

. (2.44)

It is also important to mention that the BVD parameters of a BAW resonator can

be obtained using the measurement of the input impedance of a BAW resonator, with

the knowledge of the static capacitance, which can be calculated from the dimensions

of it. Based on the measurements of the input impedance, the BVD parameters can be
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obtained as:

Cm = C0

(f 2
p

f 2
s

− 1
)
,

Lm =
1

(2πfs)2Cm

,

Rm =
2πfsLm

Qs

, and

R0 =
2πfpLm

Qp

−Rm,

(2.45)

where Qs and Qp can be obtained from the reciprocal of the 3-dB fractional bandwidth

of the measured peak and the dip of the input impedance, which was given for the series

and parallel resonant circuits in Fig. 2.6.

2.5.3 Different Resonances of BAW Devices

The Mason model of BAW resonators, as briefly discussed in Section 2.5.1, predicts

the resonance frequency of the BAW devices using the one dimensional mechanical

wave equation and assumes that the lateral dimension is infinite in size. The resonance

condition that was being referred to is the mechanical resonance in the thickness di-

mension and it was assumed that the wave propagation and the particle displacement

are in the same direction, as shown in 2.11 (a). This type of resonances are referred to

as thickness modes, however, in practice, the particle displacement also happens at the

lateral dimensions as well [42]. When the particle displacement is in both the thickness

and the lateral dimensions, this type of resonance is called as a lamb mode.
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Figure 2.11: (a): The condition for the BAW resonators where the wave propagation
and the particle displacement are in the same direction, (b): The condition where they
are orthogonal to each other.

In addition to the longitudinal modes, the wave propagation and the particle dis-

placement can be orthogonal to each other, as shown in Fig. 2.11 (b). The resonance of

this is called as a shear resonance [42] and the excitation in the lateral dimension can

be due to the leakage from the main mode. This type of resonances are one of the main

causes of the spurious modes in BAW devices and can occur either between the main

series and the parallel resonance frequencies, or beyond those resonance frequencies.

spurious

series
parallel

Figure 2.12: Spurious resonances of a BAW resonator on Smith Chart. (This figure is
adapted from [42].

An example illustration of the electrical input impedance of a BAW resonator is

depicted in Fig. 2.12. For this example, the spurious modes are below the series reso-

nance frequency and this type of behavior is common for the BAW devices using AlN
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material [67]. For BAW devices with ZnO material, the spurious modes can be ob-

served between the series and the parallel resonance frequency and can have effects on

the passband of the filters being designed with them.

2.5.4 Materials in BAW Design

There are multiple different piezoelectric materials that are used for the design of the

BAW resonators including AlN, ZnO, PZT, and LiNbO3. The mechanical properties of

these materials are depicted in Table 2.1.

Table 2.1: Mechanical properties of the commonly used piezoelectric materials in AW
based resonator technologies [42]. c33 is the stiffness constant, ρ is the density, e33 is the
piezoelectric constant, ϵr is the relative dielectric permittivity, vp is the phase velocity,
Za is the acoustic impedance, and k2

t is the electromechanical coupling coefficient.

Material c33(N/m2) ρ (kg/m3) e33 ϵr vp (m/s) Za(kg/m
2s) k2

t (%)

AlN 395 3260 1.5 10.5 11340 3.7e7 6.1%

ZnO 211 5680 1.32 10.2 6370 3.61e7 9.1

CdS 94 4820 0.44 9.5 4500 2.15e7 2.4

Among the four aforementioned piezoelectric materials, AlN is one of the most

used one for the design of RF filters due to many different factors. These include the

high acoustic velocity, high termal conductivity, low acoustic loss, and its chemical

stability during manufacturing processes [68]. Considering the other materials, ZnO,

PZT, and LiNbO3 have larger k2
t values compared to AlN, however, none of the other

materials are CMOS compatible. In addition, the high phase velocity of AlN makes

the thickness of the piezoelectric layer to be thicker than the other materials, making it

more stable.

One of the issues with the AlN material is the relatively low k2
t value, which makes
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it difficult to be used in the filter applications. In order to increase this value, doping

the AlN with Sc, which makes it AlScN is a common method [68]. Using this method,

the k2
t value can be increased beyond 12% and conventional filter design methods can

usually achieve FBW values at a similar value to the k2
t value of the resonator. Table

2.2 provides the properties of several AW resonators with different technologies of

piezoelectric materials.

Table 2.2: Properties of several AW resonators with different piezoelectric materials
from literature.

Ref Piezoelectric Technology f (GHz) k2
t Q

[69] PZT FBAR 1.6 15.9 53

[70] LiNbO3 FBAR 3 16.63 183

[71] AlN BAW 1.8 6.03 3685

AlN BAW 3.8 6.3 2589

[72] Al0.72Sc0.28N BAW 3.5 16 1070

[73] Al0.3Sc0.7N FBAR 3 18.1 213

As observed in table 2.2, achieving high k2
t values using PZT or LiNbO3 is possible,

however, they usually have too many spurious modes and the quality factor values may

not be as good as those with AlN. Therefore, for the design of filters, AlScN material

dominates the market [68].

2.6 Summary and Conclusions

In this chapter, the building blocks of the coupled-resonator based microwave/mmWave

filters have been considered. Starting with a discussion on the lumped-element based

resonators, the transmission-line-, cavity, and acoustic-wave resonators are examined
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considering the achievable Q-factor values using each resonator. The cavity based res-

onators provide one of the highest Q values, however, they are not compatible for on-

chip integration for the low-frequency microwave filter applications such as the applica-

tions for S-band where the wavelength of air is in the order of 15 cm. For such applica-

tions, the evanescent-mode cavity technology offers significant size reduction, however,

the size of the resonators are still quite large for on-chip integration. Lumped-element

resonators can be used for such applications with the use of high-resistivity silicon sub-

strates to reduce the loss, however, the order of the quality factor that is achievable at

this frequency range is still around 50, which is not enough to create higher order filters.

The acoustic-wave resonator technology has attracted a very significant attention

due its capability of obtaining very high-Q values (of order 1000) at low frequencies

with resonator dimensions of several micrometers. Discussions on the Mason model

and the Butterworth-Van-Dyke model of the AW based resonators are also made and

they are important in the design of filters based on AW resonators. Finally, the different

material technologies in the design of the BAW resonators have been discussed and it

has been emphasized that the Sc doped AlN is an important material for the design of

filters based on AW resonators.

49



Chapter 3

Design of Generalized Chebyshev Functions

In Chapter 2, microwave resonators were examined, which are the building blocks of

filters. To design filters, the resonators should be coupled together. One can realize

filter responses that are based on Chebyshev functions by adjusting the strength and the

nature of the coupling mechanisms (either E- or H-field) between the resonators and the

source and the load terminations. To find the values of these coupling mechanisms, it is

important to start with a polynomial Chebyshev response in the normalized frequency

domain.

The polynomial based Chebyshev function should first be synthesized based on the

desired order (N ), ripple constant (ϵ) (this should not be confused with the dielectric

permittivity), and the location of the finite-frequency transmission zeros (if any).

The reflection and the transmission response of a generalized Chebyshev function

can be characterized using the polynomials having the normalized frequency variable s

as:
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S11(s) =
F (s)/ϵr
E(s)

and S21(s) =
P (s)/ϵ

E(s)
,

where


ϵr = 1, NTZ < N

ϵr = ϵ/
√
ϵ2 − 1 NTZ = N.

(3.1)

In (3.1), NTZ is the number of the finite-frequency transmission zeros and ϵ is the ripple

constant which is defined as:

ϵ =
1√

10RL/10 − 1

∣∣∣ P (s)

F (s)/ϵr

∣∣∣
s=±1j

, (3.2)

where RL is the desired return loss ripple in dB scale. In (3.1), the roots of the function

F (s) define the reflection zeros, the roots of P (s) define the transmission zeros, and

the roots of E(s) define the poles of the Chebyshev function. For a function of order

N with NTZ finite-frequency transmission zeros, F (s) and E(s) should be of order N

while P (s) is of order NTZ . The polynomials F (s) and E(s) can be written in terms

of their coefficients as follows:

E(s) = e0 + e1s+ e2s
2 + ...+ eNs

N

F (s) = f0 + f1s+ f2s
2 + ...+ fNs

N

(3.3)

To start with the synthesis of the response in (3.1), one needs the information of the

following:

• degree of the function,

• the locations of the finite-frequency transmission zeros, which are denoted as si,

where i ∈ [1, NTZ ], and
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• the ripple constant ϵ.

Using these parameters, the polynomial fractions that define the normalized-

frequency Chebyshev response can be synthesized by finding P (Ω) and switching to

P (s), then finding F (Ω) and switching to F (s), and finally finding E(Ω) and switch-

ing to E(s) using the algorithm that is explained in the following sections. It should be

noted that the variable Ω is used to denote the normalized frequency variable. In the

further chapters, ω will be used for actual frequency.

3.1 Finding P(s)

The polynomial function P (s), which is the numerator of S21(s), is directly obtained

from the desired transmission zero locations of the network, denoted as si = jΩi.

Initially, one needs to find it in the Ω-domain as:

P (Ω) =

NTZ∏
i=1

(Ω− Ωi). (3.4)

Once the polynomial P (Ω) is obtained, one can obtain P(s) by replacing Ω by s/j. The

polynomial P (s) needs to satisfy the orthogonality condition with F (s), which is done

by multiplying that polynomial by j or not, depending on the number of transmission

zeros and the order of the filter [2, 4]. The orthogonality condition which determines

whether to multiply P (s) by j or not is depicted in Fig. 3.1 for all possible combinations

of N and NTZ .
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Table 3.1: Orthogonality condition table demonstrating whether it is necessary to mul-
tiply P (s) by j or not for different N and NTZ conditions.

3.2 Finding F(s)

Finding F (s) is more complicated than finding P (s) and different algorithms have been

proposed for this synthesis in literature [2]. F (s) can be obtained from the roots of the

function CN(Ω) which is defined as:

CN(Ω) = cosh
[ N∑

n=1

cosh−1 xn(Ω)
]
, (3.5)

where

xn(Ω) =
1− ΩΩn

Ω− Ωn

. (3.6)

However, this is a complicated process and the common methodology to find the nu-

merator of CN(Ω) is the recursive algoritm given in [2]. In that algorithm, (3.5) is

rewritten as:

CN =
1

2

[
GN(Ω) +G′

N(Ω)
]
, (3.7)

where

GN(Ω) =
N∏

n=1

[(
Ω− 1

Ωn

)
+ Ω′

√
1− 1

Ω2
n

]
, (3.8)

and

G′
N(Ω) =

N∏
n=1

[(
Ω− 1

Ωn

)
− Ω′

√
1− 1

Ω2
n

]
. (3.9)
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In (3.8) and (3.9), Ωn is the nth finite-frequency transmission zero and Ω′ =
√
Ω2 − 1.

The function GN(Ω) can be obtained from GN−1(Ω) at each step. At each iteration,

it is possible to separate the terms with Ω and Ω′ by defining two new functions given

as:

GN(Ω) = UN(Ω) + VN(Ω) and

G′
N(Ω) = UN(Ω)− VN(Ω),

(3.10)

where UN(Ω) and VN(Ω) represent the terms of Ω and Ω′ and can be written as:

UN(Ω) = u0 + u1Ω + u2Ω
2 + ...+ uNΩ

N and

VN(Ω) = v0 + v1Ω + v2Ω
2 + ...+ vNΩ

N

(3.11)

This recursive algorithm is initiated by setting N to 1 and finding the initial func-

tions as:

U1(Ω) = − 1

Ω1

+ Ω and

V1(Ω) =

√
1− 1

Ω2
1

.

(3.12)

Setting N to two, the functions for the second order are found as:

U2(Ω) + V2(Ω) =

[(
Ω− 1

Ω2

+ Ω′

√
1− 1

Ω2
2

)][
U1(Ω) + V1(Ω)

]
,

⇒ U2(Ω) = Ω · U1(Ω)−
U1(Ω)

Ω2

+ Ω′ · V1(Ω)

√
1− 1

Ω2
2

, and

⇒ V2(Ω) = ΩV1(Ω)−
V1(Ω)

Ω2

+ Ω′ · U1(Ω)

√
1− 1

Ω2

.

(3.13)

This recursive algorithm can be used to continue until UN(Ω) is found. However,
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its analytical derivation is a tedious process with the increasing number of iterations.

Instead, this algorithm can be coded to numerically calculate UN(Ω).

Once the function UN(Ω) is synthesized, the roots of this polynomial (Ωr
i ) should be

obtained, which give the normalized frequency positions of the reflection zeros. Using

the reflection zeros, one can convert them into s-domain using sri = jΩr
i and finally,

F (s) can be obtained from the reflection zeros as:

F (s) =
N∏
i=1

(s− sri ). (3.14)

Once F (s) is obtained, the only remaining function to be found is E(s) and it will

be described in the next subsection.

3.3 Finding E(s)

The last function to be obtained in the synthesis of the generalized Chebyshev functions

is the common denominator polynomial of S11(s) and S21(s), which is E(s). This

polynomial should be a Hurwitz Polynomial, meaning that the roots of E(s) lie on the

left half of the s-plane. It can be obtained using the alternating pole method [2]. With

the prior knowledge of the functions F (s) and P (s), the equation of the conservation

of energy can be written as:

S11(s)S11(s)
∗ + S21(s)S21(s)

∗ = 1 or

F (s)F ∗(s)

ϵ2r
+

P (s)P ∗(s)

ϵ2
= E(s)E∗(s)

(3.15)
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Considering the orthogonality condition between P (s) and F (s) in Table 3.1, (3.15)

can be rewritten when N −NTZ is odd as:

ϵ2rϵ
2E(s)E∗(s) = [ϵrP (s) + ϵF (s)][ϵrP (s) + ϵF (s)]∗, (3.16)

and when N −NTZ is even as:

ϵ2rϵ
2E(s)E∗(s) = [ϵr(jP (s)) + ϵF (s)][ϵr(jP (s)) + ϵF (s)]∗. (3.17)

For responses of both even and odd order, the singularities of the term E(Ω)E(Ω)∗

are depicted in Fig. 3.1, being symmetrically located across the imaginary axis. This

symmetry condition is due to the fact that E(s) is a strictly Hurwitz polynomial [2].

𝑗Ω

𝜎

:Roots of 𝐸 𝑠
:Roots of 𝐸∗(𝑠)

Figure 3.1: (a):Roots of the E(s)E∗(s) polynomial on the complex plane

To simplify the synthesis of E(s), (3.16) and (3.17) can be examined in the Ω plane,
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which requires (3.15) to be rewritten as:

E(Ω)E∗(Ω) =

[
ϵrP (Ω)− jϵF (Ω)

]
ϵϵr

·
[
ϵrP (Ω) + jϵF (Ω)

]
ϵϵr

. (3.18)

To find the roots of E(s), it is simplest to find the roots of one of the multiplicative

terms on the right hand side (RHS) of (3.18). That provides half of the roots in Fig. 3.1,

however, the distribution of the roots alternate between the positive and the negative

side of the imaginary axis. As an example, the roots of the multiplicative terms on

the RHS of (3.18) for a response of sixth-order are depicted in Fig. 3.2. It should be

emphasized that the roots of (3.18) are in terms of the variable Ω and the roots in Fig.

3.2 correspond to these roots, when Ω = s/j conversion is made.

𝑗Ω

𝜎

𝑗Ω

𝜎

(a) (b)

Figure 3.2: (a):Roots of
[
ϵrP (Ω)− jϵF (Ω)

]
/ϵϵr, after being transformed to the s-

plane, and (b): Roots of
[
ϵrP (Ω) + jϵF (Ω)

]
/ϵϵr after being transformed to the s-plane.

Once the roots of either
[
ϵrP (Ω)− jϵF (Ω)

]
/ϵϵr or

[
ϵrP (Ω) + jϵF (Ω)

]
/ϵϵr, which

produce the ones in Fig. 3.2 (a) and in Fig. 3.2 (b) in s-plane, are found, the ones on

the right half plane should be mirrored to the left half plane. To make this simpler, one

can simply find the roots of one of the two terms in Ω-domain, take the conjugate of

the roots on the lower half of the real axis, and convert the roots into the s-domain by

substituting Ω = s/j.
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3.4 Example Synthesis of a Chebyshev Response

Understanding the synthesis of the polynomials F (s), P (s), and E(s) can be best un-

derstood with an example. As a starting point, a fully-canonical 21-dB Chebyshev re-

sponse of order six will be synthesized in this section. An arbitrarily chosen set of trans-

mission zero locations for the synthesis is given as si = j[1.6,−1.2,−4, 4,−1.6, 1.2]

rad/s and the value of the ripple constant is given as ϵ = 80 and ϵr = 1.0001.

The initial step of the synthesis is to obtain the transmission function P (s), which

can be synthesized as in Section 3.1, as:

P (s) = +js6 + j(20)s4 + j(68)s2 + j(59). (3.19)

Then, the function F (s) can be obtained using the recursive algorithm given in

Section 3.2. Calculating U6(s) for this function gives the six reflection zero positions

at ±3307j,±8008j ± 9814j rad/s. Using these reflection zero positions, the function

F (s) can be obtained as:

F (s) = s6 + 1.7s4 + 0.79s2 + 0.068 (3.20)

Finally, the function P (Ω)/ϵ − jF (Ω)/ϵr can be obtained and its roots are calcu-

lated. These roots are depicted in Fig. 3.3 (a) on the complex plane. As mentioned

in Section 3.3, the complex conjugate of the roots in the lower half of the Ω plane are

obtained to find the roots of E(Ω) for correction.
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Figure 3.3: Obtaining the roots of (P (Ω)/ϵ) − jF (Ω)/ϵR to use the alternating pole
method. The Roots that are at the lower half of the s-plane are conjugated to obtain the
correct roots.

The roots, after correction are depicted in Fig. 3.3 (b). These roots correspond to

the left-half plane roots, when the s-plane is considered. Using the roots in Fig. 3.3 (b),

the function E(s) can be obtained as:

E(s) = s6 + 2s5 + 3.7s4 + 4.1s3 + 3.6s2 + 2s+ 0.74 (3.21)

Once F (s) , P (s), and E(s) are obtained in addition to ϵ and ϵr, the frequency

response of the function is known and it can be plotted with respect to the normalized

frequency variable Ω as depicted in Fig. 3.4.
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Figure 3.4: S-Parameters of the synthesized response in normalized frequency domain.

As observed in Fig. 3.4, the function has six poles and six transmission zeros, as

prescribed initially. Considering the filter polynomials, it can be observed that both

P (s) and F (s) are of order 6 with vanishing coefficients of odd-degree. This is a result

of the function having transmission zeros that are located symmetrically around Ω =

0 rad/s axis. It will be observed in the following sections that starting with completely

symmetric functions like this is useful in simplifying the design of the microwave filter

network.

This example concludes the synthesis of a generalized Chebyshev function in the

normalized-frequency domain. This is the first step in the design of a microwave filter

prototype. Based on the obtained Chebyshev response, a filter at an arbitrary center

frequency and a fractional bandwidth can be designed. This design can be accom-

plished either using the coupling matrix based filter design methodology, or the more

comprehensive circuit-synthesis and extracted-pole approaches. Both approaches will

be examined in the following chapters.
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3.5 Conclusions and Summary

In this chapter, the algorithm of obtaining a generalized Chebyshev function based

on the desired number of finite transmission zero locations and the ripple constant is

examined. This includes finding F (s) and P (s), which are the numerator polynomials

of S11 and S21 polynomials, respectively. P (s) is obtained from the locations of the

transmission zeros while F (s) is obtained using the recursive algorithm, as discussed

in Section 3.2. The common denominator polynomial E(s) is then obtained using

the equation of conservation of energy and the alternating pole method. The resulting

functions will be extensively used to form the coupling matrix and design filters with

electromagnetic and acoustic-wave resonators.
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Chapter 4

Coupling Matrix Based Filter Design

This chapter examines a very important tool in filter design, the coupling matrix (CM),

which was introduced in early 1970s by Atia and Williams [74, 75]. In [75], a narrow-

band microwave filter is referred to as a network comprising multiple cavities that are

inter-coupled. Furthermore, in [75], a matrix that quantifies the strength of the coupling

coefficients among these cavities is used to both analyze and synthesize a network to

realize prescribed Chebyshev functions.

The coupling matrix based design methodology has become very popular within

the last decade and it has been extended to be used for designing and analyzing

microwave/mmWave filters realizing advanced filtering functions [2]. As such, this

method has been used for the design of lossy filters [76–80], lossy-active filters [81],

and acoustic-wave resonator based filters [56]. Furthermore, it is used for characteriz-

ing filter-amplifier configurations of RF front-end modules [82, 83], and even to design

matching networks for microwave/mmWave power amplifiers [84].

In this chapter, the foundations of coupling matrix theory for the characterization of

filters will be introduced. As a starting point, Section 4.1 will introduce the concept of

multiple-coupled cavities and how to extract the frequency response of a filter from an

admittance matrix or a coupling matrix. Then, Section 4.2 will examine the synthesis

of the (N + 2)× (N + 2) transversal coupling matrix (the base coupling matrix) from
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a prescribed Chebyshev function, which was described in Chapter 3. Section 4.3 will

demonstrate the reconfiguration of the coupling matrix and Section 4.4 will demonstrate

an example filter design using the reconfigured coupling matrix architectures.

4.1 Introduction and Analysis of the Coupling Matrix

4.1.1 N×N Coupling Matrix

The coupling matrix is a method to charecterize a multi-coupled-cavity configuration,

which is demonstrated by a two-port RF network in Fig. 4.1 (a), which includes N

resonators, as shown in Fig. 4.1 (b).

(a)

(b)

Figure 4.1: (a): Representation of a two-Port network with N resonators connected to
a load of RL and to a voltage source of es, and an internal resistance of RS . (b): The
view of multiple resonators connected to each other with coupling coefficients Mmn.
These figures are taken from [2].

The network in 4.1 (a) is connected to a load with a resistance of RL and a source
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with a voltage es and an internal resistance RS . This network has N + 2 current paths,

which are denoted with in such that n ∈ [1, N + 2] and each loop is coupled to another

through a coupling coefficient of Mmn.

Considering that each inductor has a value of 1 H, The Kirchoff’s voltage law

(KVL) equations for each loop in matrix form can be written for the network in Fig.

4.1 (b) as:



e1

0

...

0


=



RS 0 · · · 0

0 0 · · · 0

...
... . . . ...

0 0 · · · RL





i1

i1
...

iN


+



s 0 · · · 0

0 s · · · 0

...
... . . . ...

0 0 · · · s





i1

i1
...

iN


+



jM11 jM12 · · · jM1N

jM21 jM22 · · · jM2N

...
... . . . ...

jMN1 jMN2 · · · jMNN





i1

i1
...

iN


.

(4.1)

Equation (4.1) can also be written as the following:

E = ([R] + [S] + j[M]) · I = [Z] · I,

⇒ I = [Z]−1 · E = [Y] · E
(4.2)

where E and I are the vectors denoting the phasor voltage and current in each loop

respectively, [R] is the matrix that contains the source and the load resistances, [S]

is the matrix that contains the frequency variable s = jΩ, and [M] is the N × N

coupling matrix. It should also be noted that the diagonal elements of [M] represent

the frequency-independent-reactance (FIR) elements in Fig. 4.1 (b) such that Mnn =

Bn for n ∈ [1, N ]. Furthermore, [Z] and [Y] denote the N × N impedance and the
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admittance matrices of the N loops of the two-port filter network, respectively.

The N ×N coupling matrix [M], along with the normalized source and load resis-

tances RS and RL, is sufficient to characterize a generalized Chebyshev function of any

order. This means that the frequency response of the network can be obtained from the

coupling matrix and the source and load resistances. Considering that the transmission

coefficient S21 of the network in Fig. 4.1 (a) is obtained from the output voltage and

the input voltage, this can be extracted from the coupling matrix as:

S21 = 2

√
Rs

RL

vN
eg

= 2

√
Rs

RL

RL[[Y]]N,1

⇒ S21 = 2
√

RLRS[[Y]]N,1

(4.3)

Furthermore, the reflection coefficient of the network can be calculated from the

z-parameter Z11 of the network as:

S11 =
Z11 −RS

Z11 +RS

= 1− 2RS

Z11 +RS

. (4.4)

Considering that Z11 = v1/i1, the reflection coefficient of the filter can be obtained

as:

S11 = 1− 2RS[Y]1,1 (4.5)

The N × N coupling matrix is a good method to characterize the filter network,

however, it requires the source and the load impedances for being complete. These

impedances are also added to the matrix to form the (N +2)× (N +2) coupling matrix

in the following subsection.
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4.1.2 (N+ 2)× (N+ 2) Coupling Matrix

Instead of specifying the source and load impedances as in Fig. 4.1 (a), they can be

absorbed into the coupling matrix. This can be done by starting with an (N + 2) ×

(N + 2) matrix as in Fig. 4.2 (a). The (N + 2) × (N + 2) matrix represents the

network characterized by the N×N matrix being connected to two admittance inverters

(coupling mechanisms) MS1 and MNL at the input and the output of the network, as

shown in Fig. 4.2 (b).

(a)

(b)

Figure 4.2: Embedding the source and the load terminations into the coupling matrix
to create an (N +2)× (N +2) coupling matrix. (a): The network having N +2 nodes
being connected to a source and load of 1 Ω each. (b): Conversion of the series resistors
at the input and output to parallel by using admittance inverters. This figure is taken
from [2].

Use of the (N+2)×(N+2) coupling matrix absorbs the required non-unity source

and load impedances into the input and the output of the filter. This is done using the

admittance inverters and the kirchoff’s voltage law (KVL) equations of the network are
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now given as in the following:



e1

0

0

...

0

0


=



1 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0

...
...

... . . . ...
...

0 0 0 · · · 0 0

0 0 0 0 0 1





i1

i2

i3
...

iN+1

iN+2


+



0 0 0 · · · 0 0

0 s 0 · · · 0 0

0 0 s · · · 0 0

...
...

... . . . ...
...

0 0 0 · · · s 0

0 0 0 0 0 0





i1

i2

i3
...

iN+1

iN+2


+



jMS,S jMS1 jMS2 · · · jMS,N+1 jMS,L

jM1,S jM11 jM12 · · · jM1N+1 jM1,L

jM2,S jM11 jM22 · · · jM2N+1 jM2,L

...
...

... . . . ...
...

jMN+1,S jM1,1 jMN,2 · · · jMN,N+1 jMN+1,L

jMS,L jML,1 jML,2 · · · jML,N+1 jML,L





i1

i2

i3
...

iN+1

iN+2



, (4.6)

which can again be written as:

E = ([R] + [S] + j[M]) · I = [Z] · I,

⇒ I = [Z]−1 · E = [Y] · E,
(4.7)

where [R], [S], [Z], and [Y] are all (N + 2) × (N + 2) and [M] is the (N + 2) ×

(N + 2) coupling matrix. Since both the source and the load have a unit impedance,

the transmission and the reflection coefficients can be found as:

S21 = 2[[Y]]N,1 and

S11 = 1− 2[[Y]]1,1 .

(4.8)

When the frequency response of the network is being derived from the coupling
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matrix, there are several important observations:

• The coupling matrix entries Mm,n, where m ̸= n represent the normalized ad-

mittance inverter values with respect to f0 and ∆.

• The entries Mm,n, where m = n represent the shunt-connected normalized FIR

elements.

• For a lossless network, all entries of [M] are real.

• In order to observe the response of the network, the bandpass transformation can

be performed as a change of variable:

Ω → 1

∆

[
ω

ω0

− ω0

ω

]
, (4.9)

where ω0 = 2πf0 is the angular center frequency.

• To observe the response of the network when the resonators have finite quality

factor values of Qu, the frequency variable s can be replaced by s+ δ where

δ =
∆

Qu

. (4.10)

It should be noted that δ is a real variable which represents a shunt real conduc-

tance at each resonant node of the network.

The analysis equations of the coupling matrix are used to visualize the frequency

response of a filter that is characterized by the coupling matrix. On the other hand,

the coupling matrix can be used to design a filter network using an arbitrary prescribed

Chebyshev function, as synthesized in Chapter 3.
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4.2 Synthesis of the Coupling Matrix

In this section, the synthesis of the (N+2)×(N+2) coupling matrix will be examined

using two different methods. The first method includes the use of the g-coefficients.

This method is straightforward, however, it is limited to the filters with no finite-

frequency transmission zeros. The second and more comprehensive method synthe-

sizes the transversal coupling matrix which can characterize an arbitrary Chebyshev

function, that is generated with the algorithm in Chapter 3.

4.2.1 Coupling Matrix Synthesis Based on g-coefficients

For inline all-pole filters of arbitrary orders, the g-coefficients can be used to synthesize

the inline coupling matrix, as depicted in Fig. 4.3 (a) with the inline coupling-routing

diagram shown as in Fig. 4.3 (b). For the coupling-routing diagram, the filled circles

represent the resonant nodes (RN) meaning that they include an FIR element parallel

connected to a capacitance. The empty circles (only the source and the load) represent

the non-resonant nodes (NRN), which correspond to the nodes including an FIR ele-

ment and a conductance, as depicted in Fig. 4.3 (c). It should be noted that for the

source and the load terminations, this conductance is equal to the source or the load ter-

mination conductance. Finally, Fig. 4.3 (d) depicts the circuit diagram of the network

that is characterized by the coupling matrix and the coupling-routing diagram.

For the inline coupling matrix of Fig. 4.3 (a), since all the diagonal elements are

equal to zero, the FIR elements for each resonant and non-resonant node are also equal

to zero. This is common for the responses that are symmetric, however, for certain

responses, the FIR elements need to be nonzero for completeness. These will be con-

sidered in the next sections.
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Figure 4.3: (a): The inline (N + 2)× (N + 2) coupling matrix. (b): Coupling-routing
diagram of the inline coupling matrix in (a). (c): The normalized-frequency equivalent
of the network that is characterized by the coupling matrix in (a). For this network, the
capacitance values are all equal to 1 F. Furthermore, the FIR elements (mnn) for the
network in (c) are all equal to zero for the coupling matrix in (a).

The coupling matrix entries for the matrix in Fig. 4.3 (a) can be synthesized as:

mn,n+1 =
1

√
gngn+1

n ∈ {1, 2, ..., N},

ms1 =
1

√
g0g1

, mNL =
1

√
gNgN+1

.

(4.11)

When all the FIR elements are equal to zero, this means that each resonator is

designed to resonate at the common center frequency. Furthermore, each resonator is

coupled to the one next to it, meaning that no cross-coupling mechanisms are required.

However, it is not possible to synthesize the filters realizing finite-frequency trans-

mission zeros with this method. That will be introduced in the design of the transversal

coupling matrix topology.
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4.2.2 Synthesis of the (N +2)× (N +2) Transversal Coupling Ma-

trix

The transversal coupling matrix is one of the most comprehensive coupling matri-

ces that can characterize an arbitrary Chebyshev function of any order and an arbi-

trary number of finite-frequency transmission zeros. This matrix is obtained from

a generalized Chebyshev function whose S-parameter polynomials are defined by

S11(s) = F (s)/(ϵrE(s)) and S21(s) = P (s)/(ϵE(s)) as in (3.1) of Chapter 3.

To synthesize the coupling matrix, one needs to convert the scattering polynomials

into admittance (y-) polynomials, which can be obtained as:

y22(s) =
y22n(s)
yd(s)

=


n1(s)/m1(s) N is even,

m1(s)/n1(s) N is odd,

y21(s) =
y21n(s)
yd(s)

=


P (s)/

[
m1(s) · ϵ

]
N is even,

P (s)/
[
n1(s) · ϵ

]
N is odd,

(4.12)

where

m1(s) = Re(e0 + f0) + jIm(e1 + f1)s+ Re(e2 + f2)s
2 + ...

n1(s) = jIm(e0 + f0) + Re(e1 + f1)s+ jIm(e2 + f2)s
2 + ...,

(4.13)

As a reminder, ei and fi are the complex coefficients of the polynomials

E(s) and F (s)/ϵr, respectively. The underlying theory for obtaining a transversal CM

is that the admittance polynomials of the network can be written as a sum of multi-

ple terms which contain resonating elements. This implies that an arbitrary Chebyshev

function can be characterized as a parallel connection of a set of sub-circuits. To obtain

these sub-circuits, a partial fraction expansion (PFE) on the admittance polynomials
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can be performed as:

[YN] =

y11(s) y12(s)

y21(s) y22(s)

 =
1

yd(s)

y11n(s) y12n(s)

y21n(s) y22n(s)



= j

 0 K∞

K∞ 0

+
N∑
k=1

1

s− jλk

·

r11k r12k

r21k r22k

 .

(4.14)

In (4.14), the encapsulated term should be examined carefully. First of all, K∞

is a constant term which represents an additional admittance inverter to the sum of

multiple terms in (4.14). It should be noted that K∞ can be derived from the admittance

polynomials as:

jK∞ =
y21n(s)
yd(s)

∣∣∣
s→∞

= (ϵ/ϵr)(ϵr − 1). (4.15)

It can be realized that as ϵr = 1 for non-canonical responses, K∞ is only nonzero

for the non-canonical networks. Proceeding with the observation of the encapsulated

term in (4.14), one should notice the similarity of the admittance matrix within the sum

formula with the admittance matrix of the network given in Fig. 4.4.

Figure 4.4: A single component of the partial fraction expansion for obtaining the
transversal coupling matrix. This figure is adapted from [2].

The admittance matrix of the network, that represents a resonant node being con-

nected to admittance inverters, in Fig. 4.4 can be written as follows:

[Yk] =
1

sCk + jBk

·

 m2
Sk mSkmLk

mSkmLk m2
Lk.

 (4.16)
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Comparing this term with the box encapsulated term in Fig. 4.14, it can be inferred

that the overall filter network can be written in terms of the parallel connection of a

number of N of the circuit of Fig. 4.4. As an addition, a parallel admittance inverter

that represents K∞ in (4.14) is also connected as depicted in Fig. 4.5.

Figure 4.5: The transversal filter topology that represents the transversal coupling ma-
trix. This figure is taken from [2].

The network topology in Fig. 4.5 is referred to as the transversal topology, whose

admittance matrix can be written in terms of each individual lowpass element in Fig.

4.4 as:

j

 BS mSL

mSL BL

+
N∑
k=1

1

sCk − jBk

·

 m2
Sk mSkmLk

mSkmLk m2
Lk.

 (4.17)
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Figure 4.6: The transversal (N + 2) × (N + 2) coupling matrix. This figure is taken
from [2].

It should be realized that the transversal network in Fig. 4.5 includes the shunt-FIR

elements at the source and the load (BS and BL) in addition to each of the shunt res-

onators (resonant nodes) being coupled to the source and the load. Therefore, relating

the equations (4.14) and (4.17), one can populate the transversal coupling matrix in Fig.

4.6 as follows [2]:

Ck = 1, Bk = mkk = −λk

m2
Lk = r22k and mSkmLk = r21k,

mLk =
√
r22k and mSk = r21k/

√
r22k

(4.18)

These equalities finalize populating the (N + 2) × (N + 2) transversal coupling

matrix. Although this topology forms the basis for obtaining the CM from an arbitrary

Chebyshev function with an arbitrary number of finite-frequency transmission zeros, it

is not very practical to realize as a circuit. Therefore, the manipulation and refonfigu-

ration of the coupling matrix will be considered in the following sections.
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4.3 Scaling and Reduction of the Coupling Matrix

As discussed in Section 4.2 and 4.2.2, the coupling matrix is a matrix that can be used to

both design and analyze a microwave filter from a prescribed Chebyshev function. As

such, there are infinitely many topologies and component values (i.e., capacitances and

inductances) that can be used to realize a single prescribed response for an arbitrary

center frequency and fractional bandwidth. This is possible with the scaling and the

transformation of the coupling matrix.

4.3.1 Scaling of the Coupling Matrix

One of the strongest points of the coupling matrix is that the off-diagonal elements

represent the normalized admittance inverters and the value of those inverters can be

rescaled without altering the frequency response of the network that it characterizes.

This operation is equivalent to adjusting the transformer ratios of the input and output to

each resonant or to the non-resonant node such that the total transferred energy remains

the same [2].

Considering the nth resonant node that is shown in Fig. 4.3 (c), for instance, the

amount of energy passing through the inverter mn−1,n is represented by the coupling

coefficient as:

kn−1,n =
mn−1,n√
Cn−1Cn

. (4.19)

As long as this coupling coefficient between the nodes are kept constant, one has the

freedom to change the capacitances and the value of the coupling matrix entry mn−1,n,

without altering the frequency response of the network. Therefore, considering that

the new values of Cn−1, Cn, and mn−1,n, which are denoted by C ′
n−1, C

′
n, and m′

n−1,n,

respectively, the response remains unchanged as long as the following equality is satis-
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fied:

kn−1,n =
mn−1,n√
Cn−1Cn

=
m′

n−1,n√
C ′

n−1C
′
n

. (4.20)

This feature makes it possible to scale the coupling matrix in a way to multiply each row

and the column with an arbitrary scaling coefficient α, without altering the response of

the matrix. This is depicted in Fig. 4.7 (a). The updated coupling matrix, after the

multiplied column and the row is updated, is depicted in Fig. 4.7 (b), which is denoted

by an admittance matrix, and corresponds to [S] + j[M], as in (4.7).

 

(a) (b)

𝛼 ×

𝛼 ×

Coupling Matrix Admittance Matrix

Figure 4.7: Scaling of the coupling matrix. (a): The (N+2)×(N+2) coupling matrix.
(b): The scaled version of the coupling matrix, which is an admittance matrix.

Although replacing the coupling matrix with an admittance matrix as in Fig. 4.7 is

not desirable, it will be shown in the synthesis of the extracted poles that this opera-

tion can also be performed on the non-resonating nodes without replacing the coupling

matrix with an admittance matrix. In that sense, the scaling operation gives a lot of

flexibility to the designer to obtain realizable capacitance and/or inductance element

values, when required.

4.3.2 Similarity Transformations on the Coupling Matrix

The (N+2)×(N+2) coupling matrix, as discussed in Section 4.2.2, can be considered

as the basis for characterizing an arbitrary Chebyshev function with a CM representa-
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tion. However, the transversal coupling matrix and the transversal filter topology is not

a practical topology for most applications due to the difficulty of achieving multiple

branches of coupling from source to each resonator.

One of the most important realizations, which is widely used for the case of cav-

ity based filter configurations, is the folded topology [15–17]. The coupling-routing

diagram and an illustration of the possible non-zero coupling values in the CM of the

folded topology are depicted in Fig. 4.8 (a) and (b), respectively.

Figure 4.8: (a): The coupling-routing diagram of a seventh order folded topology. The
dashed lines represent the possible non-zero coupling paths. (b): The CM representa-
tion of the folded topology in (a).These two images are taken from [2].

In order to convert the transversal filter topology into the folded form, one needs to

use a set of similarity transformations on the matrix. These similarity transformations

are performed in a way to annihilate the transversal connections. They also do not alter

the eigenvalues, which result in the characterized response to remain unchanged [2].

The similarity transform on the coupling matrix at stage (r − 1), which is denoted

by ([Mr−1]), is defined as:

[Mr] = [Rr] · [Mr−1] · [RT
r ], (4.21)

where [R] is the trigonometric rotation matrix with a pivot [i, j] such that i ̸= j and a ro-

tation angle θr. For the rotation matrices, Rii = Rjj = cos θr and Rij = −Rji = sin θr,

given that i, j ̸= 1 or N . An example rotation matrix with pivot [3, 5] is illustrated for
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a seven-by-seven matrix as :



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 cos θr 0 sin θr 0 0

0 0 0 1 0 0 0

0 0 sin θr 0 cos θr 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



, (4.22)

The similarity transform in (4.21) can be applied on a matrix as many times as

desired without altering the frequency response that it characterizes. Using a transform

with a pivot [i, j] on [Mr−1] annihilates the elements of [Mr−1] when the rotation angles

are given as:

θr = tan−1(Mik/Mjk) to annihilate Mik

θr = − tan−1(Mjk/Mik) to annihilate Mjk

θr = tan−1(Mki/Mkj) to annihilate Mki

θr = − tan−1(Mkj/Mki) to annihilate Mkj

(4.23)

Using the rotation angles with the pivots in (4.23), one can reduce the (N + 2) ×

(N + 2) transversal coupling matrix to the folded canonical form in Fig. 4.8 (b) by

annihilating the coupling coefficients with the order given in Fig. 4.9.
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Figure 4.9: The annihilation sequence to convert a seven-by-seven (5 th order) transver-
sal coupling matrix into the folded topology. This figure is taken from [2].

It should be noted that Fig. 4.9 shows the annihilation sequence of a coupling matrix

of a fifth order fully canonical transversal coupling matrix, which includes all possible

nonzero elements. The use of this sequence will also be used in the examples in the

following subsections.

4.3.3 Interpretation of the Coupling Matrix and Bandpass Trans-

formations

As the coupling matrix charactarizes a filtering response in normalized frequency do-

main, converting a coupling matrix into a circuit diagram requires one to denormalize

the coupling coefficients and the self coupling elements (the FIRs) with respect to the

desired center frequency and the fractional bandwidth. The denormalization procedure

is achieved with a change of variable Ω → (1/∆)(ω/ω0 − ω0/ω) and is derived for the

inline filters in [6].

The circuit elements that are being represented by the coupling matrix are depicted

in Fig. 4.10 with different color codes. First of all, the kth diagonal element, which is

highlighted in red, corresponds to a resonant node and is realized with a parallel tank
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circuit including a capacitance of C, an inductance of L, and the FIR element, which

represents an admittance and is denoted as b, as observed. The capacitor-inductor pair

can attain arbitrary element values as long as they resonate at the desired center fre-

quency ω0. However, it is best to keep the value of the capacitance (C) uniform among

different resonators of the network since this value is required for the denormaliza-

tion of different elements. This common capacitance value can be called as ”reference

capacitance”. For the resonant node, an FIR has the effect of shifting its resonant fre-

quency from the center frequency.
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Δ  

𝑆1 (𝑜𝑟 𝑁𝐿)

Figure 4.10: The interpretation of the coupling matrix nodes. Red entries indicate
the resonant nodes, yellow entries are for inline coupling coefficients, green entries
are for source and load admittances, and the purple ones represent the cross-coupling
mechanisms. For the equations, ω0 is the center frequency and ∆ represents the desired
FBW, and Ck represents the capacitance at the kth node.

In addition to the resonant nodes, the diagonal elements can also include non-

resonant nodes (NRN). When there is an NRN, it should be clearly indicated in a way

that is similar to the text ”NRN” in Fig. 4.10. These nodes contain an FIR element,

which is denormalized using the element mnn. As the source and the load nodes are

also NRNs, they are shown with green color, just as mnn. In most of the filters, the FIR

elements at the source and the load are equivalent to zero, however, it is possible for
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them to have nonzero values, which is common for the design of the extracted-pole and

acoustic-wave filters, in the following chapters.

The coupling coefficients, highlighted with yellow color represent the inline cou-

pling mechanisms and are denormalized using the capacitor values at each end. Again,

it is the best to keep these capacitances the same and equal to a single reference ca-

pacitance value. Likewise, the coefficients highlighted with purple denote the cross-

coupling mechanisms and are denormalized similarly to the inline coupling mecha-

nisms, as shown in Fig. 4.10. Finally, the coefficients that are connecting the elements

to either the source or the load are shaded with dark blue and should be calculated

separately, using the port impedances, as observed in Fig. 4.10.

4.4 An Example of a Filter Design Using the Coupling Matrix Ap-

proach

This example will illustrate the use of the coupling matrix to design an S-band filter

using the heavily loaded evanescent-mode cavities that are introduced in Chapter 2.

The design requirements for the filter are listed as:

• Bandpass filter having a bandwidth from 2.7 GHz to 3.1 GHz.

• Less than 1 dB of insertion loss within the passband.

• Two of such filters should fit into a square space of 2 inch × 2 inch,

• 30 dB of rejection at 4 GHz.
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Normalized Frequency, T.Z.@ 𝒔 = 𝟗𝒋 𝒇𝟎 =2.85 GHz, 0.14 % FBW 

Figure 4.11: The response of the designed 3rd order Chebyshev function with a finite
transmission zero at s = j9. (a): The normalized-frequency respnse and (b): the
denormalized frequency response with f0 = 2.85GHz and 14% FBW.

It has been shown in Chapter 2 that the heavily loaded evanescent-mode cavity

resonator suffers the issue of the second mode at 5.64 GHz. This results in a second

passband around that frequency with a higher insertion loss, which compromises the

rejection of the filter. In order to suppress that, a third-order 20-dB equiripple filter

response is designed with the algorithm in Chapter 3 to have a normalized-frequency

transmission zero location at s = j9 rad/s. The S-polynomials of the response are given

as:

F (s) = s3 + (−0.056j)s2 + (0.75)s− 0.028j,

P (s) = js+ 9,

E(s) = s3 + (2.4− 0.056j)s2 + (3.6− 0.21j)s+ (2.5− 0.36j),

(4.24)

with ϵ = 3.5 and ϵr = 1. The normalized-frequency response is provided in Fig. 4.11

(a). The same response is also denormalized for a center frequency of 2.85 GHz and

a FBW of 14% and is depicted in Fig. 4.11 (b). The denormalized frequency point of

the transmission zero is at 5.2 GHz, as observed. The admittance polynomials of this
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network can be obtained using (4.12) and (4.13) as:

y11n = +1.2s2 + j(−0.1)s+ 1.3

y21n = +j(0.14)s+ 1.3

yd = +1s3 + j(−0.056)s2 + 2.2s+ j(−0.19)

(4.25)

Having a partial fraction expansion on y11(s) and y22(s) makes it possible to write

them as:

y11(s) =
0.3239

s+ 1.4852j
+

0.2697

s− 1.4513j
+

0.5936

s− 0.0896j

y21(s) =
−0.3239

s+ 1.4852j
+

−0.2697

s+ 1.4513j
+

0.5936

s− 0.0896j

(4.26)

Therefore, using the obtained poles and the residues, the transversal coupling matrix

can be written as:

[Mtransversal] =

S 1 2 3 L



0 −0.5691 −0.5193 0.7704 0 S

−0.5691 1.4852 0 0 0.5691 1

−0.5193 0 −1.4513 0 0.5193 2

0.7704 0 0 −0.0896 0.7704 3

0 0.5691 0.5193 0.7704 0 L

. (4.27)

Following the transversal coupling matrix, the following set of similarity transfor-

mations with a rotation angle θr = arctan(cMkl/Mmn) needs to be carried out to con-

vert it into the folded topology:

• Annihilate MS,3 with k = 4, l = 4, m = 1, n = 3, and c = −1,
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• Annihilate M2,3 with k = 4, l = 3, m = 1, n = 2, and c = −1,

• Annihilate M3,5 with k = 3, l = 5, m = 4, n = 5, and c = +1,

After the annihilation of the elements, the folded CM is shown as:

[Mfolded] =

S 1 2 3 L



0 1.09 0 0 0 S

1.09 0.031 −1.034 0.120 0 1

0 −1.034 −0.117 −1.034 0 2

0 0.120 −1.034 0.031 1.090 3

0 0 0 1.090 0 L

. (4.28)

There are multiple points that need to be taken into consideration in the folded CM

of (4.28). First of all, the diagonal elements are nonzero except for the source and the

load. This means that the resonators should not be tuned to resonate at f0. This is

referred to as asynchronous tuning [2]. As observed, the FIR elements m1,1 and m3,3

are equivalent and positive in sign (capacitive) and m2,2 is negative, meaning that it is

inductive. It should also be noticed that the entries mS,1 and m1,2 have opposite signs,

meaning that one of them should be an electric-field coupling while the other one should

be a magnetic-field coupling. Having coupling mechanisms of opposite sign is referred

to as mixed coupling in literature [2].

Figure 4.12: Circuit diagram obtained from the folded CM in 4.28 .
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The folded coupling matrix can be converted into a filter network with f0 = 2.89

GHz and ∆ = 13.8% as described in Fig. 4.10 and in Section 4.3.3. The circuit diagram

of this filter network is constructed in Cadence AWR and is depicted in Fig. 4.12. For

this folded filter network, the element values are calculated as follows:

• Ci = 1 pF (reference capacitance),

• Li =
1

ω2
0Ci

, for i ∈ {1, 2, 3},

• Bi = mi,iω0Ci∆, for i ∈ {1, 2, 3},

• Ji,j = mi,jω0∆
√

CiCj for i, j ∈ {1, 2, 3},

• JS,1 = mS,1/
√

50 · w0 · L1/∆, and

• J3,L = m3,L/
√

50 · w0 · L3/∆.

While this network can be realized with lumped elements, the design is intended to

be incorporated to the antenna laminate stackup of the Horus radar and is implemented

within the Rogers 4350B layers of thicknesses 1.52 mm and 0.17 mm. More details of

the radar and the laminates can be found in [62].

The resonator technology that is used for implementation is the described

evanescent-mode-cavity based resonators in Chapter 2. According to the coupling ma-

trix, three evanescent-mode cavities are designed. The first and the third resonators are

set to resonate at 2.887 GHz while the middle resonator resonates at 2.916 GHz.

The Ansys HFSS simulation model of these three resonators are depicted in Fig.

4.13 (a). As observed in the exploded view in Fig. 4.13 (b), the input and output con-

nections of the filter are ground-backed co-planar waveguide (GCPW) sections. These

waveguide sections (slots) are extended into the cavity resonators as branching slot-

lines to realize the magnetic-field coupling between input-to-the-first-resonator and the

85



Slot 
Coupling 
(H-field)

Tap- 
Coupling 
(E-field)

Core 7

Core 8

(a) (b) (c)

Iris-
Coupling 
(H-field)

50.8 mm

5
0
.8

 m
m

1

2
3

𝜶

Figure 4.13: (a): The HFSS model of the designed third-order filter. (b): The exploded
view of the filter. Core 7 and Core 8 correspond to the order of the antenna stackup
layers in which the filter is placed. (c): Two filters fitted into a single element of the
antenna panel. This image is taken from the publication of the author in [62].

output-to-the-third-resonator. The coupling strength can be adjusted by changing the

angle α, which adjusts the extent to which the slots are extended into the cavity. The

main-line coupling between resonators 1 and 2 and 2 and 3 are accomplished by tap-

coupling, as observed in Fig. 4.13 (b). Finally, the cross-coupling between the res-

onators 1 and 3 is obtained with a narrow inductive iris between them, as also depicted

in Fig. 4.13 (b). The magnetic coupling from the inductive iris has the opposite sign of

the coupling between the main-line-coupling mechanisms, as enforced by the coupling

matrix. Fig. 4.13 (c) demonstrates a pair of the designed third-order filters fitted within

a single element of the bottom two layers of the Horus antenna panel.

As a proof of concept, the filter pair in Fig. 4.13 (c) is fabricated using two Rogers

Corp. RO4350B substrates with thicknesses of 1.52 mm and 0.17 mm, which are pat-

terned using photolithography and wet etching processes. The fabricated prototype is

depicted in Fig. 4.14. For the discrete capacitors on the top post, surface-mount high-Q

capacitors from AVX Corp. are used. As the excitation slots interfere with the resonant

frequencies of the first and third resonators, the common capacitance value of the ca-

pacitors on the middle resonator is different than that of the first and third resonators.

The common capacitance value is 0.55 pF on the first and third resonators, whereas the
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middle resonator is loaded with 1.0 pF capacitors.

P1 P2

P3 P4

Figure 4.14: Fabricated prototype of the filter. To show the outcome of the lithography,
another prototype without the loading capacitors and the SMA connectors is also de-
picted. P1–P4 denote the port numbers of the four port network in the single antenna
element. This image is taken from the publication of the author in [62].

The measured results of the fabricated filter pair prototype are depicted and com-

pared to the simulation results in Fig. 4.15. As observed, the magnitude response of

the prototypes (denoted as channel 1 and channel 2) in Fig. 4.15 (a) agree well with

the simulated results at the lower band edge, however, the bandwidth of the measured

prototype is slightly narrower than in simulation. This is mainly due to the fabrication

tolerance of the strips that are used for inter-resonator coupling. The undercut from wet

etching results in thinner strips than expected, and that reduces the inter-resonator cou-

pling between resonators 1-2 and 2-3. This yields a narrower bandwidth than expected.

The insertion loss of the prototype is measured as 0.86 dB, which agrees well with that

of the simulations.
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Figure 4.15: Summary of the achieved filter pair performance. (a) A comparison of
the measured and simulated S-parameters of both channels of the filter pair. (b) The
measured phase response of both channels with the operation band of the radar system
highlighted. (c) The measured isolation between the separate channels of the filter pair.
This image is taken from the publication of the author in [62].

As these filters are designed to be connected to the transceiver channels, proper

phase matching is important for the phased array calibration. As observed in

Fig. 4.15 (b), the measured phase responses of the both channels are in very good

agreement within the frequency range of 2 GHz to 4 GHz, which covers the band of

operation. Finally, the cross-coupling between the two channels needs to be as low as

possible in order to prevent increased cross-polarization components. As observed in

Fig. 4.15 (c), the isolation between the filter ports is better than 40 dB for the frequency

range of 2 GHz to 6.5 GHz.
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4.5 Summary and Conclusions

This chapter introduced the analysis and the synthesis of one of the strongest filter

design methodologies, the coupling matrix theory. The methodology of obtaining the

transversal coupling matrix has been discussed extensively and the methods to convert

this topology to the more useful folded version is discussed. A real application example

of the use of the coupling matrix for the design of a third-order filter with a single

transmission zero for the Horus antenna panel is discussed.

The coupling matrix will be used extensively in the design of the filters based on

acoustic-wave resonators and the hybrid acoustic-electromagnetic (Hybrid-ACEM) fil-

ters. Therefore, understanding what each coupling matrix entry means and the connec-

tion between the coupling matrix and a circuit prototype is important.
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Chapter 5

Circuit and Extracted-Pole-Synthesis Methods

5.1 Introduction and Background

The folded and transversal based topologies form the basis of the CM-based microwave

filter synthesis and many different filter topologies including Pfitzenmainer, Cul-de-

Sac, arrow, can be synthesized from these two matrices using a series of similarity

transformations, as described in Chapter 4.

However, not all the topologies can be obtained using matrix transformations. In ad-

dition to being obtained by matrix rotations, there are several other topologies realizing

arbitrary-position transmission zeros, including trisections [85, 86] and N-tuplets [87,

88]. These all use N electromagnetic resonant nodes to realize the poles and inter-

resonator coupling mechanisms to generate the transmission zeros. Furthermore, there

are very limited studies to obtain these configurations from the transversal or the folded

topologies by matrix rotations.

One approach that can achieve an arbitrary number of transmission zeros without

using inter-resonator coupling is the use of extracted-poles [89–99]. The extracted pole

method is one of the topologies which does not have an established algorithm to be

obtained from the folded or the transversal CMs. The earliest works on this concept

dates back to 1980s by John Rhodes and Richard Cameron, which included the use of
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cavities [89]. This approach was also patented in 1982 [92].

In the most general terms, an extracted pole element is a network that includes a

resonant node coupled to a non-resonant node. This element, as opposed to a single

resonating node, produces a series and a parallel resonance, which is used to provide

one pole and one transmission zero to a filter response. Therefore, the use of extracted

poles is an alternative method to using cross-coupling to create transmission zeros in

a microwave filter implementation. The advantage of that is to design inline filters of

N th order with an arbitrary number of transmission zeros up to N , which corresponds

to the fully canonical case.

i
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Figure 5.1: (a) and (b): Coupling-routing and normalized-frequency circuit representa-
tion of a resonant node and an extracted pole, respectively. (c): Normalized frequency
response comparison of the EP and the resonant node.

As it has been extensively discussed in Chapter 4, the resonant nodes in the coupling

matrix are the building blocks of a coupled-resonator filter. The coupling-routing dia-

gram of a resonant node is depicted in Fig. 5.1 (a) along with its normalized-frequency

circuit representation. An extracted pole is also depicted with its coupling-routing dia-

gram and the normalized-frequency circuit in 5.1 (b). The input impedance to each of

these networks are also shown in Fig. 5.1 (c). As observed, the resonator has a single

peak impedance value at the resonant frequency whereas the extracted pole has a series

91



and a parallel resonance, depending on the values of the elements.

The following sections will consider how one can use the network-synthesis and the

extracted-pole approaches to design filters with extracted poles.

5.2 Network-and-Extracted-Pole-Synthesis Approaches

The network-synthesis approach is based on obtaining the ABCD polynomials of the

response from its S-polynomials and then extracting the resonant nodes and the cross-

coupling mechanisms one-by-one until the last element in the network is extracted. The

details and derivations of the extraction processes are examined in [2] and rather than

focusing on the derivations, this chapter will examine the processes of extracting the

nodes in a network.

The S-polynomials of a response were given in (3.1) in Chapter 3. In order to syn-

thesize a network based on extracted poles, one should switch from the S-polynomials

into the ABCD-polynomials, which can be characterized as:

[ABCD]Full(s) =
1

jP (s)/ϵ
·

A(s) B(s)

C(s) D(s)

 , (5.1)

where, A(s), B(s), C(s), and D(s) correspond to the numerator of the ABCD poly-

nomials, which have the common denominator jP (s)/ϵ. These polynomials can be

obtained from the polynomial coefficients of the functions E(s) and F (s). For even-
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order case [2],

A(s) = jIm(e0 + f0) +Re(e1 + f1)s+ jIm(e2 + f2)s
2 + ...+ jIm(eN + fN)s

N ,

B(s) = Re(e0 + f0) + jIm(e1 + f1)s+Re(e2 + f2)s
2 + ...+Re(eN + fN)s

N ,

C(s) = Re(e0 − f0) + jIm(e1 − f1)s+Re(e2 − f2)s
2 + ...+Re(eN − fN)s

N ,

D(s) = jIm(e0 − f0) +Re(e1 − f1)s+ jIm(e2 − f2)s
2 + ...+ jIm(eN − fN)s

N ,

(5.2)

and for the odd-order case [2],

A(s) = Re(e0 + f0) + jIm(e1 + f1)s+Re(e2 + f2)s
2 + ...+Re(eN + fN)s

N ,

B(s) = jIm(e0 + f0) +Re(e1 + f1)s+ jIm(e2 + f2)s
2 + ...+ jIm(eN + fN)s

N ,

C(s) = jIm(e0 − f0) +Re(e1 − f1)s+ jIm(e2 − f2)s
2 + ...+ jIm(eN − fN)s

N ,

D(s) = Re(e0 − f0) + jIm(e1 − f1)s+Re(e2 − f2)s
2 + ...+Re(eN − fN)s

N .

(5.3)

Obtaining the ABCD-polynomials of the network from the S-polynomials is the first

step in the synthesis of a network. This will be followed by a sequence of extractions

in the pathway of obtaining a normalized lowpass network from the polynomials.

5.2.1 Extraction of Circuit Elements

Once the ABCD polynomials are obtained, one needs to extract the circuit components

for a normalized lowpass filter network to obtain the desired filter from it. In that sense,

the extractions are carried out consequtively. At each step of extraction, the initial

ABCD matrix is denoted as [ABCD]I and the matrix after the extraction is denoted as

[ABCD]rem, which is depicted in Fig. 5.2.
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𝑨𝑩𝑪𝑫 𝑰 𝑨𝑩𝑪𝑫 𝒓𝒆𝒎

(a) (b)

𝐴(𝑠) 𝐵(𝑠)

𝐶(𝑠) 𝐷(𝑠)
𝐴𝑟𝑒𝑚 (𝑠) 𝐵𝑟𝑒𝑚 (𝑠)

𝐶𝑟𝑒𝑚 (𝑠) 𝐷𝑟𝑒𝑚 (𝑠)

Figure 5.2: (a): The initial ABCD matrix to extract a circuit element from the network
and (b): The remainder ABCD matrix after extracting the desired element from the
network.

At step i, one can extract an admittance inverter with a value of Y0, a capacitance of

value Ci, an FIR element of value jBi, or a cross-coupling inverter Mcross between the

input and the output of the network section that is characterized by [ABCD]I. These

extractions are depicted in Fig. 5.3. Each extraction step modifies the polynomials

A(s), B(s), C(s), D(s) and possibly P (s), depending on which element is being ex-

tracted. When an admittance inverter is being extracted, one can determine the value of

the inverter as in Fig. 5.3 (a). However, the value of capacitance, FIR element, or cross

coupling inverter cannot be arbitrarily chosen, as depicted in (b), (c), and (d) of the

same figure. The remainder ABCD polynomials after the extraction of each element

are also depicted in the same figure.
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Figure 5.3: The extraction process of the several network elements from the known
ABCD polynomials of a Chebyshev function. (a): Extraction of an admittance inverter
with a value of Y0 and a phase length θ. (b): Extraction of a capacitance element, (c):
Extraction of an FIR element, and (d): Extraction of a cross-coupling mechanism. This
figure is taken from [2].

Using these extraction procedures for several circuit elements, the resonant nodes,

non-resonant-nodes, and the extracted poles of the network can be obtained. The ex-

traction is not performed randomly and it should be done following the rules that will

be discussed in the next section.
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5.2.2 Extraction of the Network

The extraction sequence of the network elements depend on N , NTZ , the desired num-

ber of extracted-poles in the network, which is defined as NEP , and the order of the

elements in the network. The initial A(s) and D(s) are of degree N − 1, B(s) is of

degree N , C(s) is of degree N − 2 except for the fully canonical case where C(s) is

of degree N [2]. NEP , is determined by the designer. In addition, P (s) is always of

degree NTZ .

As a clarification, M is used as the coupling coefficients during circuit extraction,

mij is used solely for the coupling matrix entries, and Jij is used to denote the denor-

malized admittance inverter values with respect to the center frequency and fractional

bandwidth.

For the design of a network, the following rules need to be followed:

• Start the extraction from either source or the load nodes.

• If N = NTZ = NEP , all the nodes should be extracted poles.

• If N > NTZ = NEP , there will be resonators in the network in addition to

extracted poles, however, no cross-coupling is needed.

• If N > NTZ > NEP or N = NTZ = NEP , there will be both resonators and

extracted poles in the network.

• If deg(P (s)) = deg(B(s)), one should extract either an EP or a cross-coupling

inverter.

• Therefore, if N = NTZ = NEP (fully canonical case including both resonators

and EPs), a source-to-load coupling is required since deg(P (s)) = deg(B(s)) in

the begining of the extraction process.
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Figure 5.4: Summary of the extraction procedure: (a): The two-port network charecter-
ized by its ABCD polynomials, that will be used for extraction. Also the extraction of
a cross-coupling inverter. (b): Extraction of a resonant node. (c): Extraction of an EP
section. (d): Extraction of the load and the last node, when the last section is an EP.

• For the shunt sC + jB pairs (resonant nodes), extract the capacitance first.

• When the degree of P (s) and B(s) are equal, a cross coupling inverter should be

extracted following the full extraction of a resonant node. Therefore, for the fully

canonical filters, an S-L cross-coupling extraction is required first.

• If the last node before the load is a resonator, the last element should be a cross-

coupling inverter.

• On the other hand, if the last node is an extracted pole, the extraction of the last

node will be described in the following paragraphs with the help of Fig. 5.4 (d).

97



At each step, depending on whether a resonant-node, an EP, or the last node is being

extracted, Fig. (5.4) depicts the required procedure. Considering that the network to

start with at the current step of the extraction is characterized by [ABCD]I(s):

A cross-coupling inverter can be extracted as:

Mcross = −PI(s)

BI(s)

∣∣∣
s→j∞

, (5.4)

as observed in Fig. 5.4 (a). This operation can reduce the degree of P (s) by either

one or two (creating one or two zeros), latter being special for the case of symmetrical

functions.

A resonant node as in Fig. 5.4 (b), can be extracted by obtaining the capacitance as:

C =
DI(s)

sBI(s)

∣∣∣∣
s→j∞

, (5.5)

followed by the FIR element as:

b =
DII(s)

BII(s)

∣∣∣∣
s→snext

, (5.6)

where snext is the position of the transmission zero that will be implemented at the next

step of the extraction. If the next node to be extracted after this resonant node is another

resonant node, the transmission zero is at infinity and snext = j∞. If the next section

is an EP, then snext should attain the position of that finite transmission zero. To use

the resonant node in a coupling matrix, it is required to normalize the capacitance to

one, which results in the normalized FIR value of mi+1,i+1 = b/C. Furthermore, it is

important to multiply each coupling element connected to this resonant node by 1/
√
C

to make the node compatible with the coupling matrix.

An extracted-pole as in Fig. 5.4 (c), which produces a transmission zero at s = si
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can be obtained from the residue of the pole given by:

r =
DI(s)

Bx
I (s)

∣∣∣∣
s=si

, where Bx
I (s) =

BI(s)

s− si
. (5.7)

Using this residue, the extracted pole elements are obtained as:

C =
1

r
and b =

−si
r

. (5.8)

When converting these elements for coupling matrix representation, the node is scaled

by the value of the capacitance, resulting in the FIR to obtain the value −si and the

coupling coefficient between the resonant and the non-resonant node in Fig. 5.4 (c)

(mi,i+1) to attain a value of 1/
√
C.

The last element in the EP of Fig. 5.4 (c), being the shunt FIR (B) is obtained as:

B =
DII(s)

BII(s)

∣∣∣∣
s→snext

, (5.9)

where snext is the normalized frequency point of the next transmission zero to be ex-

tracted.

The source has a nonzero admittance (BS) if the first node is going to be an EP.

That admittance is extracted using (5.9) and setting snext as the normalized TZ position

of the first extracted pole. However, if the first node is a resonant node, no source

admittance is extracted.

The last node of the design is extracted depending on whether the last node before

the load is an EP section or a resonant node. If the last node is a resonant node, there

is no load admittance and the last node-to-load coupling can be extracted as a cross-

coupling, as in Fig. 5.4 (a). On the other hand, if the last node is an EP, as in Fig. 5.4

(d), one needs to extract it as a cross-coupling element MLast as follows: Extract a shunt
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admittance at infinity (B in Fig. 5.4 (d)), flip the network (interchange A(s) and D(s)),

and extract another admittance at infinity, which obtains the load admittance (BL).

Regarding the extraction procedure described throughout this section, the only way

to understand it is through multiple examples to illustrate.

5.2.3 Examples for Illustration

This section will synthesize three different networks with and without the use of ex-

tracted poles. A 4th order 15-dB equiripple response will be used for synthesis and is

characterized as:

F (s) = +1s4 + 1.1s2 + 0.16

P (s) = −1s4 − 19s2 − 41

E(s) = +1s4 + 1.6s3 + 2.4s2 + 1.8s+ 0.91

with ϵ = 45.5 and ϵr = 1.0002.

(5.10)

These S-polynomials are converted into ABCD-polynomials, which can be shown

as:

A(s) = +1.6s3 + 1.8s

B(s) = +2s4 + 3.5s2 + 1.1

C(s) = +0.0002s4 + 1.3s2 + 0.75

D(s) = +1.6s3 + 1.8s

(5.11)

It should be noticed that this is a symmetric and a fully-canonical response, which

results in the odd-order coefficients in P (s) and B(s) to vanish. The following three

different networks will be synthesized to realize this function:
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1. Folded canonical network with no extracted poles.

2. Two extracted poles and two cross-coupling mechanisms, and

3. Four extracted poles and no cross-coupling mechanisms.

Example 1: Folded Canonical Synthesis

The initial topology that will be synthesized is the folded canonical prototype, which

can also be obtained using the similarity transformations on the transversal coupling

matrix. It will be synthesized with the network-synthesis approach only in order to

show that it is also capable of obtaining this topology.
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𝑀 =1𝑀𝑆1 𝑀

𝑀 =1
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Figure 5.5: Extraction of Example 1. (a): The extraction sequence and the boxes for
the folded-coupling matrix extraction. (b): The circuit diagram representing the CM to
be synthesized, (c): The coupling-routing diagram.

The synthesis of this network is depicted in Fig. 5.5 (a) with the enumerated boxes.

The steps of the synthesis are listed as follows:

• S-L Coupling: Since the response is fully canonical, deg(P (s) = deg(B(s)),

therefore, an S-L coupling should be extracted using:

MSL = −Pinitial(s)

Binitial(s)

∣∣∣
s=j∞

. (5.12)
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The updated P (s) after this operation is given as:

Pupdated(s) = −17s2 − 40, (5.13)

which is of second degree. Normally, a single cross-coupling reduces the degree

of P (s) by one, however, for the special case of symmetric responses, it reduces

that by two and produces a symmetric pair of transmission zeros.

• Box I: Extract unit inverter as described in Fig. 5.3 and obtain C1, followed by

the FIR b1 using

C1 =
D′

I(s)

sB′
I(s)

∣∣∣∣
s=j∞

and b1 =
D′′

I (s)

B′′
I (s)

∣∣∣∣
s=j∞

, (5.14)

where D′
I(s) and B′

I(s) are the D and B polynomials of the network once the

unit inverter is removed and D′′
I (s) and B′′

I (s) refer to the ones after C1 is ex-

tracted. Once C1 and b1 are extracted, [ABCD]II(s) is obtained. This gives

C1 = 1.23 F and b1 = 0 S. After that, flip the network by exchanging A(s) and

D(s) polynomials.

• Box II: With the flipped network, the propagation is from the load towards the

source this time. Similar to Box I, extract a unit inverter M4L, followed by C4

and b4, which gives C4 = 1.23F and b4 = 0 S.
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• Cross-Coupling After extracting Box IV, the ABCD polynomials are given as:

A(s) = −0.92s

B(s) = −1.3s2 − 0.73

C(s) = −0.1s2 − 1.1

D(s) = −0.92s

P (s) = −17s2 − 40,

(5.15)

which means that the degree of P (s)and B(s) are both two at this stage. There-

fore, another cross-coupling extraction is needed to obtain M14.

• Box III: Similar to Box I, extract a unit inverter, M14 and extract C3 and b3. Flip

the network again to go towards Box II.

• Box IV:Similar to Box I, extract a unit inverter, M14 and extract C3 and b3.

• Box V: The final step in the extraction process is to obtain the value of the last

admittance inverter using the extraction method of an inter-resonator coupling

with a transmission zero at infinity, which is given as:

M23 = −PV (s)

BV (s)

∣∣∣
s=j∞

. (5.16)

Once all the elements are extracted, the capacitance values are given as: C1 = C4 =

1.23 F, C2 = C3 = 1.44 F, the FIR element values are obtained as: b1 = b2 = b3 = b4 =

0 S. In addition, the coupling elements are given as MS1 = M12 = M34 = M4L = 1

S. The non-unit inverters are the ones that are obtained using cross-coupling extraction,

which are given as: MSL = 0.01 S, M24 = −0.28 S, and M23 = 1.072 S. These values

correspond to the elements that are given in Fig. 5.5 (a). Using these elements, the
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admittance matrix of the network can be obtained as shown in (5.17).

[Y] =

×(1/
√
C1) ×(1/

√
C2) ×(1/

√
C3) ×(1/

√
C4)

S 1 2 3 4 L



0 1.00 0 0 0 0.01 S

1.00 (1.23j)s 1.00 0 −0.28 0 1 → ×(1/
√
C1)

0 1.00 (1.44j)s 1.07 0 0 2 → ×(1/
√
C2)

0 0 1.07 (1.44j)s 1.00 0 3 → ×(1/
√
C3)

0 −0.28 0 1.00 (1.23j)s 1.00 4 → ×(1/
√
C4)

0.01 0 0 0 1.00 0 L

(5.17)

In order to obtain the coupling matrix of the network, one needs to normalize all

the capacitances to unity. This can be obtained using the scalability feature of the

admittance inverters of the network. To normalize each of the capacitances, a node

scaling is required at nodes 1, 2, 3, and 4. In other words, each row and column i of

(5.17) should be multiplied by 1/
√
Ci for i ∈ 1, 2, 3, 4, as depicted in (5.17). After that,

the folded canonical coupling matrix of the network is depicted in (5.18).

[MFolded] =

S 1 2 3 4 L



0 0.90 0 0 0 0.01 S

0.90 0 0.75 0 −0.23 0 1

0 0.75 0 0.74 0 0 2

0 0 0.74 0 0.75 0 3

0 −0.23 0 0.75 0 0.90 4

0.01 0 0 0 0.90 0 L

(5.18)

The normalized-frequency network and the coupling-routing diagram of (5.18) are

depicted in Fig. 5.5 (b) and (c), respectively.
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Example 2: Topology with EPs and Resonators

This topology is a different topology that includes both extracted poles, resonators,

and cross-coupling to obtain the response. The possibility of having this approach is

introduced in [90], however, no filter application or a fabrication was included. This

section will demonstrate how to synthesize this topology and it will be a key synthesis in

the design of the novel hybrid acoustic-electromagnetic filters in the following chapters.

The steps of the synthesis are depicted in Fig. 5.6 (a). To synthesize this network,

again, one needs to check the ABCD parameters of the network which shows that the

degree of P (s) and B(s) are equivalent. As the degree of both are equal to 4, again, the

extraction starts with a cross-coupling inverter and has the same value as in the previous

example.

(a) (b)

(c)
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IIIII IV V
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Figure 5.6: Extraction of Example 2. (a): The extraction sequence and the boxes for
the folded-coupling matrix extraction. (b): The circuit diagram representing the CM to
be synthesized, (c): The coupling-routing diagram.

The initial TZ positions are given as: si = j[−4, 1.6,−1.6, 4] rad/s. There is also

flexibility on choosing the initial values of the admittance inverters MS1,M13,M34, and

M45, which are initially chosen to be [−1, 1,−1, 1]. The remaining inverter values will

be coming out of the extraction. Once the S-L coupling is extracted, the updated P (s)

was given as −17s2− 40, which has the new roots at: j[−1.55, 1.55] rad/s. These roots
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are shifted from their original positions. Therefore, the new zeros that will be used in

the extraction should be the updated positions of these two zeros. This situation was

also discussed in [90] and it is not a significant problem as long as the new roots do not

turn out to be complex. The consequences of that will become evident in the design of

the hybrid acoustic-EM filters in the next chapters.

Once the S-L coupling is extracted, the steps of synthesis are provided as follows:

• The first and the last nodes of the network are extracted pole elements. Therefore,

the source and the load admittances will be nonzero.

• Box I: Starting from the source side, extract the shunt source admittance, as

described in Section 5.2.3 as:

BS =
DII(s)

BII(s)

∣∣∣∣
s→j1.55

. (5.19)

Then, extract the unit inverter MS1 with a value of −1, as previously determined.

• Box II: Obtain the elements of the extracted pole. It was determined that the zero

that this extracted pole is responsible for is at j1.55 rad/s. Therefore, obtain the

residue of the extracted pole as:

r =
DII(s)

Bx
II(s)

∣∣∣∣
s=j1.55

, where Bx
II(s) =

BII(s)

s− j1.55
. (5.20)

Using this residue, the extracted pole elements are obtained as:

C2 =
1

r
and b2 =

−1.55j

r
. (5.21)
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Then, considering that the next node will be a resonator, obtain B1 using

B1 =
D′

II(s)

B′
II(s)

∣∣∣∣
s→∞

, (5.22)

where D′
II(s) and B′

II(s) are the D(s) and B(s) polynomials after the elements

C2 and b2 are extracted. Finally, extract a unit inverter M13 = 1, as chosen

previously.

• Box III: Similar to the extraction of a resonant node in the previous example,

obtain C3, B3, and extract M34 = −1.

• Box IV: Similar to the extraction of a resonant node in the previous example,

obtain C4, B4, and extract M45 = 1.

• Box V: Similar to Box II, obtain C6, b6, and M56.

• Box VI: For this case, the extraction of last node in Fig. 5.4 (d). Then, extract a

cross coupling at infinity, which gives M5L. Then, extract the shunt admittance at

infinity (B5), flip the network (interchange A(s) and D(s)), and extract another

admittance at infinity, which obtains the load admittance (BL).

Once the synthesis of the network is completed, the obtained FIR values of the

network are given as: Bs = −0.755 S , B1 = −1.32, S b2 = −1.55 S , B3 =

−0.11 S , B4 = 0.11 S , B5 = 2.9 S , b6 = 1.55 S , and BL = 0.755 S. Furthermore,

the coupling element values are given as: MS1 = −1,M13 = 1,M34 = −1,M45 = 1.

The remaining elements are given as: M12 = 0.978,M56 = 1.45,M5S = 1.4813

. Finally, the capacitance values are given as: C1 = 1.04 F C2 = 2.13 F , C3 =

0.97 F , and C4 = 0.48 F .

107



[M] =

S 1,N 2 3 4 5,N 6 L



−0.76 −1.00 0 0 0 0 0 0.01 S

−1.00 −1.32 0.98 0.68 0 0 0 0 1,N

0 0.98 −1.55 0 0 0 0 0 2

0 0.68 0 −0.11 −0.69 0 0 0 3

0 0 0 −0.69 0.11 1.01 0 0 4

0 0 0 0 1.01 2.90 1.45 1.48 5,N

0 0 0 0 0 1.45 1.55 0 6

0.01 0 0 0 0 1.48 0 0.76 L

(5.23)

These values can be shown with an admittance matrix, however, once the capaci-

tance values are normalized to unity, the coupling matrix of this network is provided in

(5.23). The circuit diagram for the normalized-frequency network is depicted in Fig.

5.6 (b) and the coupling-routing diagram of the network is also shown in Fig. 5.6 (c).

Example 3: Topology with only EPs

The final example to realize the desired response is based on purely extracted poles.

Therefore, in this example, there will be no cross-coupling extraction. The extraction

process of the network is depicted in Fig. 5.7 (a).
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Figure 5.7: Extraction of Example 3. (a): The extraction sequence and the boxes for
the folded-coupling matrix extraction. (b): The circuit diagram representing the CM to
be synthesized, (c): The coupling-routing diagram.

To extract each element, similarly, one needs to determine the initial values of the

inline inverter values MS1,M13,M35, and M57, which are chosen to be [−1, 1,−1, 1] S,

respectively. Furthermore, the order of the transmission zeros that will be used

in the extraction should be determined, which is chosen as: [s1, s2, s3, s4] = j −

4, 1.6,−1.6, 4] rad/s. The further steps for extraction are summarized as follows:

• Box I: The first and the last nodes of the network are extracted pole elements.

Therefore, the source and the load admittances will be nonzero. Starting from

the source side, one needs to extract the shunt source admittance, as described in

Section 5.2.3 as:

BS =
DI(s)

BI(s)

∣∣∣∣
s→s1

, (5.24)

Then, extract the unit inverter MS1 with a value of −1, as previously determined.

• Box II: Obtain the elements of the extracted pole. According to the chosen zero

locations, obtain the residues of the EP as:

r =
DII(s)

Bx
II(s)

∣∣∣∣
s=j4

, where Bx
II(s) =

BII(s)

s− j4
. (5.25)
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Using this residue, the extracted pole elements are obtained as:

C2 =
1

r
and b2 =

−4j

r
. (5.26)

Then, considering that the next node will be a resonator and therefore, with a

transmission zero at infinity, obtain B1 using

B1 =
D′

II(s)

B′
II(s)

∣∣∣∣
s→j1.6

, (5.27)

where D′
II(s) and B′

II(s) are the D(s) and B(s) polynomials after the elements

C2 and b2 are extracted. Finally, extract a unit inverter M13 = 1, as chosen

previously.

• Box III, Box IV, and Box V: Similar to obtaining the extracted pole elements,

obtain the values of the elements in these boxes.

• Box VI: Just as in Example II, find the element values in the last node.

After these extractions and normalizing the capacitances to unity, the coupling ma-

trix of the full extracted-pole network is depicted in (5.28).
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[M] =

S 1,N 2 3,N 4 5,N 6 7,N 8 L



0.21 1.00 0 0 0 0 0 0 0 0 S

1.00 4.21 4.18 −1.00 0 0 0 0 0 0 1,N

0 4.18 4.00 0 0 0 0 0 0 0 2

0 −1.00 0 −1.60 1.44 1.00 0 0 0 0 3,N

0 0 0 1.44 −1.60 0 0 0 0 0 4

0 0 0 1.00 0 2.70 1.87 −1.00 0 0 5,N

0 0 0 0 0 1.87 1.60 0 0 0 6

0 0 0 0 0 −1.00 0 −2.49 3.21 0.77 7,N

0 0 0 0 0 0 0 3.21 −4.00 0 8

0 0 0 0 0 0 0 0.77 0 −0.21 L

(5.28)

It can be observed from the coupling matrix in (5.28) that the values of the FIR

elements at the dangling resonators are given as: m22 = 4,m44 = −1.6,m66 = 1.6, and

m88 = −4, which correspond to the location of the normalized-frequency transmission

zeros in the desired order.

5.3 Summary and Conclusion

This chapter introduced the design of filters that use extracted poles in addition to the

resonators. An extracted pole is defined as a non-resonating node coupled to a dangling

resonator. This produces a series and a parallel resonance, just like the acoustic-wave

resonators. The extracted pole synthesis methodology is an important technique to

synthesize inline filters realizing fully canonical responses without the use of cross-

coupling mechanisms. An extracted pole network can be obtained using
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Chapter 6

Coupling Matrix Based Design of Narrowband Ladder-AW Based

Microwave Filters

Both the EP networks and the AW resonators have series and parallel resonances and

their input impedances have similarity, when considered for narrow fractional band-

widths. Due to that similarity, the EP based filter design is extended to the design

of acoustic-wave filters, which attracted a significant amount of attention in the last

decade. As such, one of the most solid efforts to synthesize the AW resonator based

filters using the extracted-pole synthesis is provided in [56]. This was followed by [57–

59] in a way to incorporate transversal sub-networks into the design which includes

both extracted-pole synthesis and transversal coupling matrix synthesis approaches.

This chapter introduces the design of narrow-band AW based ladder filters from

the synthesized full-EP based networks. The reason for using the term ”narrowband”

is because the conventional equations for converting the EP sections to BVD sections

give accurate results for FBW values of up to approximately 10%. To correct for that,

a new technique is also proposed in this section which will be used in the next chapter

in the design of Hybrid-ACEM filters with FBW values of 30%.
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6.1 Definition of Series-EP and Shunt-EP Sections

As a reminder, an extracted pole section can be characterized as an NRN coupled to

a dangling resonator and the frequency response of the EP sections are dependent on

the behavior of the FIR elements at the resonant and the non-resonant nodes of the net-

work. Based on the inductive or capacitive nature of the FIR elements, this dissertation

identifies the EP sections in two different categories, which are depicted in Fig. 6.1 as

follows:

• Shunt-EP: For the case of the shunt-EP, both the FIR elements in the NRN and

the resonant node (mii and mi+1,i+1 in Fig. 6.1 (a) ) are positive, in other words,

they are capacitive.

• Series-EP: For the series-EP case, both the FIR elements in the NRN and the

resonant node (mii and mi+1,i+1 in Fig. 6.1 (b) ) attain negative values, which

corresponds to them being inductive.

It should be mentioned that there are no such terms in the literature, however, in [63],

we refer to these sections as the series-EP and the shunt-EP sections. That is because

their frequency- and bandwidth- denormalized frequency responses correspond to that

of the series- and shunt-connected acoustic-wave resonator sections.
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Figure 6.1: Extracted pole sections that are representing the shunt-connected and series-
connected AW sections in the normalized frequency domain. The input impedances in
(a) and (b) are used for calculating the series and parallel resonances of the resulting
BVD sections in the denormalized bandpass frequency domain.

For the lowpass normalized-frequency domain, the impedance looking into the

shunt- and series-EP sections in Fig. 6.1 (a) and (b) can be obtained as:

ZSH
in = j

Ω +mi+1,i+1

m2
i,i+1 − Ωmi,i −mi,imi+1,i+1

and ZSE
in =

j

m2
i−2,i

Ωmi,i +mi,imi+1,i+1 −m2
i,i+1

Ω +mi+1,i+1

.

(6.1)

Therefore, the normalized-frequency series and parallel resonant frequencies of the

Shunt-EP section are found as:

ΩSH−EP
se = −mi+1,i+1 and

ΩSH−EP
pa =

mi,imi+1,i+1 −mi,i+1

mi,i

,
(6.2)

while for the Series-EP section, the series and the parallel resonance frequencies can

be obtained as:

114



ΩSE−EP
se = −mi+1,i+1 and

ΩSE−EP
pa =

mi,imi+1,i+1 −mi,i+1

mi,i

.
(6.3)

It should be noticed that the series resonance frequency of the Shunt-EP section cor-

responds to the frequency at which the EP section pulls the signal to ground, meaning

that it creates a transmission zero at that frequency. However, the parallel resonance of

the series-EP section causes a high impedance at this frequency and again, it creates a

transmission zero at that frequency.

To find the corresponding k2
t value for a given FBW of ∆ and a center frequency of

ω0, the bandpass resonance frequencies of the shunt- and series-EP sections in Fig. 6.1

should be obtained using the lowpass-to-bandpass conversion as in [2]:

Ω → 1

∆

[
ω

ω0

− ω0

ω

]
. (6.4)

One should reorganize this equation and find the solutions of the following equality:

ω2 − (∆Ωω0)ω − ω2
0 = 0, (6.5)

by setting Ω → ΩSH−EP
se for the series resonance and Ω → ΩSH−EP

pa for the parallel

resonance, respectively. The negative roots of the solution for each case will give the

denormalized resonance frequencies of the shunt-EP section, and will be denoted as

ωSH−EP
se and ωSH−EP

pa respectively. Conversely, one should set Ω → ΩSE−EP
se and

Ω → ΩSE−EP
pa and find the positive roots of (6.5) to get the series and parallel resonant

frequencies of the series-EP section, which are denoted as ωSE−EP
se and ωSE−EP

pa . Once

the denormalized resonance frequencies are found, the required k2
t of series- and shunt-
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EP sections can be obtained as:

k2
t =

π

2

ωse

ωpa

cot

(
π

2

ωse

ωpa

)
. (6.6)

The calculated k2
t in (6.6) is the k2

t of the BVD model assuming that the BVD model

perfectly represents an extracted-pole, which is not true for large fractional bandwidths.

Therefore, this value will be called as the k2
t of the EP section in this study since it is

directly obtained from the extracted pole.

The next section will examine how one can translate the Shunt-EP and the Series-

EP sections to their corresponding series-connected and shunt-connected AW based

resonator sections using their BVD model.

6.2 Conversion Between EP to BVD Prototype

6.2.1 Conversion of the Shunt-EP Section

For this conversion, the useful property of the admittance inverters given in Fig. 6.2

should be kept in mind. It can be proven that a shunt impedance of Z1 on one side of an

admittance inverter of J can be transferred to the opposite side of it as an admittance

with a value of J2Z1, as observed.

Z Z

Yinv

𝑍1 𝑍2 Z

Yinv

𝑍2

Y

J J

𝐽2𝑍1

(a) (b)

Figure 6.2: A property of admittance inverter to be used in the conversion of EPs to
BVD sections.
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Using this equivalence, the conversion of the shunt-EP section to the BVD prototype

is quite straightforward and is explained in Fig. 6.3. In Fig. 6.3 (i), the coupling-routing

diagram of the Shunt-EP section is depicted together with the denormalized Shunt-EP

section. Once the elements of the resonant node are transferred towards the NRN, the

network in Fig. 6.3 (ii) is obtained.
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𝐸𝑃−𝑠ℎ
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𝑏𝑑𝑒𝑛
𝐸𝑃−𝑠ℎ

(i)

(iii)

(ii)

Figure 6.3: Conversion of the Shunt-EP section into the shunt-connected BVD proto-
type.

As observed, the equivalent circuit in Fig. 6.3 (ii) includes capacitance, inductance,

and two FIR elements. These FIR elements can be converted into equivalent capac-

itance or inductances as observed in Fig. 6.2 (iii) and the values of the elements are

given as:

Cac−sh
m = J2

i,i+1L, (6.7)

Lac−sh
m = L′sh + Lsh

add =
C

J2
i,i+1

+
1

ω

bEP−sh
den

J2
i,i+1

, and (6.8)

Cac−sh
0 = BEP−sh

den /ω . (6.9)

The elements given by Cac−sh
m and Lac−sh

m correspond to the motional branch of the

BVD prototype and the capacitance Cac−sh
0 corresponds to the plate capacitance of
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the AW resonator. As observed, the equations (6.8) and (6.9) depend on the frequency

variable ω. However, the BVD element values of the network should attain fixed values.

For filters of narrow fractional bandwidth, including ≈ 1% − 10%, replacing ω by ω0

works well. However, for large FBW values, another wideband conversion is proposed

in the following sections.

6.2.2 Conversion of the Series-EP Section

Converting the Series-EP section to its corresponding series-connected BVD model is

slightly more complicated compared to converting the Shunt-EP section. This con-

version is depicted in Fig. 6.4. As observed in Fig. 6.4 (i), the FIR elements of

the frequency-and bandwidth-denormalized EP sections at the NRN and the resonator

(BEP−se
den and bEP−se

den ) should both be negative in order for that EP section to represent

a series-connected acoustic wave BVD section. Furthermore, it should also be stated

that the admittance inverters going into and out of the EP section (Jout) should have the

same magnitude and the opposite sign of each other.

≡
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Figure 6.4: Conversion of the Series-EP into its BVD equivalent network. (i): The
Series-EP and its bandpass transformation. (ii) and (iii): the middle steps for conver-
sion, (iv) and (v): the final BVD equivalent networks.

To derive the equations to obtain the parameters of the series-connected BVD sec-
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tion, the equivalent admittance of the boxed section in Fig. 6.4 (i) is called as Ymid. In

that case, the overall ABCD parameters of the EP section including the incoming and

outgoing admittance inverters can be calculated as:

[ABCD]total =

( 0 j/Jout

jJout 0

 ·

 1 0

Ymid 1

) ·

 0 −j/Jout

−jJout 0


=

1 Ymid/J
2
out

0 1

 ,

(6.10)

where

Ymid = jBEP−se
den +

J2
i,i+1

jbEP−se
den + jωC + 1/(jωL)

. (6.11)

It should be noted that [ABCD]total corresponds to the ABCD matrix of a series-

connected impedance whose value is given by (1/J2
out)Ymid. This overall impedance

value can also be decomposed into the circuit diagram in Fig. 6.4 (ii) with its impedance

values given on that figure. In order to convert this network to the BVD prototype, one

needs to separate the two series impedances Z1 and Z3, as encapsulated in Fig. 6.4 (ii),

to an equivalent parallel combination. This is depicted in Fig. 6.4 (iii). It can be shown

that in order for that series connected Z1 and Z3 pair to be equivalent to the parallel Z1

and Z2 pair, the following condition needs to be satisfied:

Z3 = − Z2
1

Z1 + Z2

. (6.12)

Therefore, to obtain the BVD equivalent element values in Fig. 6.4 (iv), which are
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denoted as Cse−ac
m , L′se, b, and B, the following equality should be solved:

jbEP−se
den J2

out

J2
i,i+1

+jω
J2
outC

J2
i,i+1

+
1

jω

1

LJ2
out

= −
( J2

out

bEP−se
den

)2(
−j(

1

b
+

1

B
)+

1

jωCac−se
m

+jωL′se
)
.

(6.13)

Equating the constant terms to the constant ones and the ones that have the frequency

variable to the capacitance and inductance values, the BVD element values in Fig. 6.4

(v) can be found as:

Cac−se
m =

LJ2
i,i+1J

2
out

(BEP−se
den )

2 , (6.14)

Lac−se
m = L′se + Lse

add =

(BEP−se
den )

2

J2
i,i+1J

2
out

+
1

ω

(BEP−se
den )

2

J2
out

(bEP−se
den BEP−se

den

J2
i,i+1

− 1
)
, and

(6.15)

Cac−se
0 = − 1

ω

( J2
out

BEP−se
den

)
. (6.16)

The three equations (6.14), (6.15), and (6.16), construct the BVD parameters of the

series-connected acoustic-wave resonator section from the parameters of the Series-EP

section which is denormalized for a fractional bandwidth of ∆ and an angular center

frequency of ω0. As also mentioned for the case of the Shunt-EP section, the equations

(6.15) and (6.16) include the frequency variable ω for this conversion while the BVD

parameters need to attain fixed values. Therefore, this conversion is again valid only

for narrow fractional bandwidth values.

6.3 Novel Wideband Corrections to the EP-to-BVD Conversion

In this subsection, the problems with the conventional conversion methodology from

EP-to-BVD networks will be explained and an alternative method to fix this issue will
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be introduced.

Thoroughout (6.7)–(6.16), the subscript ”den” is used for denoting the denormal-

ized version of the FIR elements. Furthermore, the reference capacitance C can be

chosen arbitrarily in a way to adjust the values of the resulting parameters. It has been

mentioned in Section 6.1.1 and 6.1.2 that the conversion of the FIR elements into in-

ductances and capacitances requires the use of the frequency variable ω in (6.8) and

(6.9) for shunt-AW and in (6.15) and (6.16) for series-AW sections (encapsulated in a

box). It was also mentioned that, substituting the filter center frequency ω0 for ω for

(6.7)–(6.16) works very well for narrow bandwidths [56].

As an example, input impedances of a series-EP and a shunt-EP section are de-

picted in Fig. (6.5) (a) and (b), when they are denormalized for an f0 of 2.461 GHz and

a FBW of 5%. The component values of the Series-EP and the Shunt-EP sections are

depicted in the figure. The same graphs also show the input impedance of their corre-

sponding BVD equivalents, when ω0 is used for ω in (6.7)–(6.16) and as observed, the

impedances match very well for 5% FBW. For a FBW of 20% and an f0 of 2.787 GHz,

however, the input impedances of the original EP and the BVD equivalent using the

conventional transformation do not match, as observed in Fig. (6.5) (b) and (d).
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Figure 6.5: (a): Input impedance comparison of the conventional and proposed EP-to-
BVD conversion for a shunt-EP section. (b): Conventional and proposed conversion of
a series-EP section. For both (a) and (b), FBW values of 5% and 20% are depicted.

To restore this problem, one can convert these FIR elements to inductances and ca-

pacitances at frequencies that are different than ω0. This can be done in a way to ensure

that the BVD model of the AW resonators have the same series and parallel resonances

as their corresponding EP sections. It will result in the encapsulated parts in (6.8),

(6.9), (6.15), and (6.16) to be replaced. The proposed procedure for this correction is

as follows:

• Calculate the series and parallel resonances for shunt (ωs−sh and ωp−sh) and for

series (ωs−se and ωp−se) EP sections with respect to the desired center frequency

and the fractional bandwidth using (6.2) and (6.3).

• The equations for the motional capacitances (6.14) and (6.7) do not change, as
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these equations do not include a frequency variable.

• For a shunt resonator, force Lac−sh
m to resonate with Cac−sh

m at ωsh
s , therefore,

Lac−sh
mnew

=
1

ω2
s−shC

ac−sh
m

. (6.17)

• Again for the shunt resonator, the static capacitance needs to resonate with the

motional branch at ωsh
p , therefore,

Cac−sh
0new

=
1

ω2
p−shL

ac−sh
mnew

− 1/Cac−sh
m

. (6.18)

• Similarly, the motional inductance for the series resonator is found as:

Lac−se
mnew

=
1

ω2
s−seC

ac−se
m

, (6.19)

• and the static capacitance for the series resonator is found as:

Cac−se
0new

=
1

ω2
p−seL

ac−se
mnew

− 1/Cac−se
m

. (6.20)

• Replace (6.8) and (6.9) with (6.17) and (6.18), respectively for shunt AW sec-

tions.

• Similarly, replace (6.15) and (6.16) with (6.19) and (6.20), respectively for series

AW sections.

The proposed equations are tested to calculate the BVD parameters from the 20%

shunt- and series-EP sections and the input impedance of the calculated BVD sections

are shown in Fig. 6.5 (b) and (d) with the green trace, labeled as ”modified” for 20%
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fractional bandwidth. As observed, the series and parallel resonances of the both series-

and shunt-BVD sections match well with that of the bandpass EP sections for large

fractional bandwidth values as well, in contrast to the conventional conversion method

which results in frequency shifts. It will be shown that this correction can produce

wideband filters much more accurately.

6.4 Examples of Ladder-AW Based Filters

Until this point in this chapter, the conversion between the extracted-pole elements and

their corresponding series- or shunt-connected BVD sections are extablished. Now,

microwave filters with a specific FBW and center frequency with an arbitrary order can

be synthesized using AW-based resonators.

To synthesize an AW based filter, the full-extracted pole based design in Chapter 6

should be considered. An important point of interest is to set the incoming and outgoing

admittance inverters between the extracted poles to the same magnitude and alternating

sign. The simplest way of doing so is to have them alternate between 1 and -1, ini-

tially. Furthermore, it is important to start the ladder network with a series-connected

AW resonator. The reason for doing so is that initiating the network with a shunt-AW

resonator will result in an additional admittance inverter between the source and the

resonator. Some details of filters starting with shunt-AW sections are given in [100].

As an example, a seventh-order Chebyshev function with transmission zero loca-

tions given at si = j[1.6,−1.6, 1.6,−1.6, 1.6,−1.6, 1.6] rad/s with an ϵ of 100 is de-

signed. The return loss ripple is 17.77 dB. When the admittance inverters between the

EP sections are obtained as (−1)n−1 for n ∈ [1, N − 1], the full-EP based coupling

matrix of the network is depicted as in the following:
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S 1,N 2 3,N 4 5,N 6 7,N 8 9,N 10 11,N 12 13,N 14 L



−0.77 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S

1 −0.99 1.04 −1 0 0 0 0 0 0 0 0 0 0 0 0 1,N

0 1.04 −1.60 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 −1 0 2.65 1.85 1 0 0 0 0 0 0 0 0 0 0 3,N

0 0 0 1.85 1.60 0 0 0 0 0 0 0 0 0 0 0 4

0 0 0 1 0 −1.66 1.63 −1 0 0 0 0 0 0 0 0 5,N

0 0 0 0 0 1.63 −1.60 0 0 0 0 0 0 0 0 0 6

0 0 0 0 0 −1 0 3.03 2.18 1 0 0 0 0 0 0 7,N

0 0 0 0 0 0 0 2.18 1.60 0 0 0 0 0 0 0 8

0 0 0 0 0 0 0 1 0 −1.66 1.63 −1 0 0 0 0 9,N

0 0 0 0 0 0 0 0 0 1.63 −1.60 0 0 0 0 0 10

0 0 0 0 0 0 0 0 0 −1 0 2.65 1.85 1 0 0 11,N

0 0 0 0 0 0 0 0 0 0 0 1.85 1.60 0 0 0 12

0 0 0 0 0 0 0 0 0 0 0 1 0 −0.99 1.04 −1 13,N

0 0 0 0 0 0 0 0 0 0 0 0 0 1.04 −1.60 0 14

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −0.77 L

(6.21)

In (6.21), it should be noticed that the element m22 is equal to −1.6, meaning that it

implements the transmission zero at a normalized frequency of 1.6 rad/s. Therefore,

this corresponds to a series-connected AW section, when denormalized. It should be

realized that there will be 4 series- and 3 shunt-AW resonator sections in this network

and as observed, the admittance inverters connecting the EP sections alternate in sign

until the end.

Using the coupling matrix in (6.21), the denormalized full-extracted pole based net-

work of seventh order is depicted in Fig. 6.6 (a). When the desired fractional bandwidth

is ∆, the center frequency is f0, and the source and the load impedances are 50 Ω each,

the admittance inverter values between node i and j are calculated as:

Ji,j = mi,jω0∆
√
CiCj, (6.22)

where Ci and Cj are the capacitances at node i and j. The inline coupling mechanisms

have no capacitors that are directly connected on each side since they are between the
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NRNs. However, these nodes are still coupled to the dangling resonators. Therefore,

one still needs to include the capacitance values at each dangling resonator. For in-

stance, the inverter value J13 is calculated as: J1,3 = m1,3ω0∆
√
C1C2 and similarly,

J11,13 = m11,13ω0∆
√
C6C7. Although one can choose different values for these capac-

itances, it is best to set them to a single reference capacitance Cref , just as in Chapter 4.

The value of Cref can be chosen arbitrarily to adjust the values of the other components.

Furthermore, the inverters that are connected to the source and the load are calculated

as:

JS,1 = mS,1(1/
√

50ω0L1/∆ and

J14,L = m13,L(1/
√

50ω0L1/∆,

(6.23)

where L1 = 1/
√

ω2
0Cref .

During the denormalization, there is an important point to be considered. Because

of the source and the load terminations, the equalities JS,1 = −J1,3 and J11,13 = −J13,L

are not satisfied, even though the coupling matrix satisfies mS,1 = −m1,3 and m11,13 =

−m13,L. This prevents SE-EP1 and SE-EP4 to be converted to the SE-AW 1 and SE-

AW 4 in Fig. 6.6.

In order to fix this issue, one can perform a node scaling at node 3, node 7, and

node 11 with a value of JS,1/J1,3. This enforces the incoming and outgoing admittance

inverters for the SE-EP sections in Fig. 6.6 (a) to have the same magnitude and the

opposite sign, which makes it ready to be converted to the ladder-AW based network in

Fig. 6.6 (b).
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Figure 6.6: (a):The extracted-pole based network that is synthesized from the coupling
matrix in (6.21). (b): The network that includes the BVD prototypes of the ladder-AW
based design of seventh order.

Using either the classical or the proposed modified EP-to-BVD conversion, this

network can be converted into the design with the BVD equivalents of the four series-

connected and three shunt-connected acoustic-wave resonators, as depicted in Fig.

6.6 (b).

Using the CM in (6.21), the filter prototype is denormalized for two different ap-

plications. The first one is the 5g n41 band, which spans the band 2.496 GHz –

2.690 GHz (7.5%) and the second one is the 5g n77 band, which is spans 3.3 GHz–

4.2 GHz (24.4%). For these two examples, the BVD parameters of the seventh-order

network in Fig. 6.6 (b) are depicted in Table 6.1. Using these values for the resonators,

the simulation results of the filter network in Fig. 6.6 (b) are shown in Fig. 6.7 (a) and

(b), for FBW values of 7.5% and 24.4%, respectively. The quality factor of the series

resonance frequency is set to 1,200 for each resonator by adjusting the resistance at
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each BVD section. As observed in Fig. 6.7, the responses have very roll-off and 40 dB

of OOB rejection.

Table 6.1: The BVD parameters of the seven AW based resonators from SE1 to SE4 for
different fractional bandwidth values. The table depicts that for FBW values of 7.5%
(5g n41) and 24.4% (5g n77). For the n41 example, L1 = L2 = 4 nH and for the n77
example, L1 = L2 = 2.77 nH. The values for n41 are obtained using the conventional
EP-to-BVD conversion while the ones for the n77 band are obtained from the proposed
conversion.

7.5% FBW SE-1 SH-1 SE-2 SH-2 SE-3 SH-3 SE-4

C0 (pF) 1.24 3.25 0.74 3.72 0.74 3.25 1.24

Cm (fF) 101.35 313.08 87.97 436.2 87.97 313.08 101.35

Lm (nH) 37.52 13.48 42.68 9.68 42.68 13.48 37.52

k2
t (%) 9.26 10.74 12.95 12.76 12.95 10.74 9.26

24.4% FBW SE-1 SH-1 SE-2 SH-2 SE-3 SH-3 SE-4

C0 (pF) 0.76 1.94 0.42 2.14 0.42 1.94 0.76

Cm (fF) 229.16 707.88 198.91 986.27 198.91 707.88 229.16

Lm (nH) 7.06 3.79 9.19 2.72 9.19 3.79 7.06

k2
t (%) 25.96 28.57 30.73 30.64 30.73 28.57 25.96

Considering the steep roll-off, low insertion loss, and 40 dB OOB rejection of both

responses, it should be mentioned that they qualify for the requirements of the 5g bands

that they are designed for. However, the practicality of these designs should be further

considered. The initial observation regarding Table 6.1 is that the required values of the

k2
t and C0 varies across the resonators. When the design is switched from 7.5% FBW

to 24.4% FBW, the required k2
t for each resonator drastically increases.

Regarding the design of the BAW resonators as described in Chapter 2, it should

be recalled that the designer has control on the value of C0 and the parallel resonance

frequency. As the C0 value is dependent on the conducting electrode size of the BAW,

it can be scaled. However, the k2
t value is dependent on the piezoelectric substrate and
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the k2
t values of the resonators should be uniformly distributed.

5

Figure 6.7: The simulation results of the ladder-AW based design in Fig. 6.6, when the
parameter values in Table 6.1 are used. (a) The design for n41 band and (b): The design
for n77 band.

For the synthesized ladder topology, the k2
t of each resonator is dependent on the

following:

• The order of the filter,

• The position of the transmission zeros,

• The return loss of the design,

• The desired fractional bandwidth of the filter, and

• The position of the resonator within the network.

In order to have a uniform k2
t distribution, one can sweep the positions of the trans-

mission zeros and the return loss value of the response [56]. It should also be noted that

there is no such a guarantee that one can obtain a uniform set of k2
t values [56].

For this seventh-order network, reassigning the values of the transmission zeros to:

si = j{1.875,−1.73, 1.5,−1.5, 1.5,−1.73, 1.875} rad/s and sweeping the return loss
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value of the response produces the required k2
t values for the seven resonators as plotted

in Fig. 6.8 (a) and (b) for the FBW values of 7.5% and 24.4%, respectively. It can be

observed that for a return loss of around 20.64 dB, the required k2
t values are almost

uniform for each example.
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Figure 6.8: The k2
t distribution of the resonators in the seventh-order filter with respect

to the return loss value. (a): The design with a FBW of 7.5% and (b): The design with
a FBW of 24.4%.

The BVD parameter values of the two examples for which the k2
t values are made

uniform by updating the TZ locations and setting the RL to 20.64 dB are depicted in

Table 6.2. Comparing the k2
t values of the updated network with the ones of the same

FBW in Table 6.1, one can realize the following: It is possible to design a network with

a uniform set of k2
t values, however, the obtained common k2

t value is usually attained

by increasing the values of the smaller ones in the design where all the transmission

zeros are located symmetrically at the same normalized frequency.
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Table 6.2: The BVD parameters of the seven AW based resonators from SE1 to SE4 for
the two examples when the k2

t values are made uniform. The table depicts that for FBW
values of 7.5% (5g n41) and 24.4% (5g n77). For the n41 example, L1 = L2 = 5.09 nH
and for the n77 example, L1 = L2 = 3.54 nH. The values for n41 are obtained using
the conventional EP-to-BVD conversion while the ones for the n77 band are obtained
from the proposed conversion.

7.5% FBW SE-1 SH-1 SE-2 SH-2 SE-3 SH-3 SE-4

C0 (pF) 1.06 3.21 0.77 2.95 0.77 3.21 1.06

Cm (fF) 116.44 350.49 83.37 322.78 83.37 350.49 116.44

Lm (nH) 33.16 12.15 44.78 12.99 44.78 12.15 33.16

k2
t (%) 12.04 12 11.96 12.01 11.96 12 12.04

24.4% FBW SE-1 SH-1 SE-2 SH-2 SE-3 SH-3 SE-4

C0 (pF) 0.62 1.88 0.45 1.72 0.45 1.88 0.62

Cm (fF) 263.27 792.47 188.5 729.82 188.5 792.47 263.27

Lm (nH) 6.3 3.49 9.61 3.59 9.61 3.49 6.3

k2
t (%) 30.1 30.08 30.07 30.12 30.07 30.08 30.1

The new filter responses using the values of the parameters in Table 6.2 are depicted

in Fig. 6.9 (a) and (b) for the 7.5% and the 24.4% FBW examples. It should be realized

that the OOB rejection of the responses are still strong and they still satisfy the filter

requirements of the corresponding 5g bands.

Considering the two design examples for n41 and n77 bands of 5g, the FBW values

of 7.5% and 24.4% can be achieved with resonators with k2
t of approximately 12% and

30%, respectively. For different FBW values, the common k2
t of the AW resonators are

depicted in Fig. 6.10. It can be observed that the required k2
t value for a particular FBW

is always larger than the FBW value for this example.
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Figure 6.9: The simulation results of the ladder-AW based design in Fig. 6.6, when the
parameter values in Table 6.2 are used. The results are for the case where the k2

t values
are made uniform. (a): The design for n41 band and (b): The design for n77 band.

Considering the n41 example in this chapter, a k2
t of 12% is achievable with scan-

dium doped AlN material, for instance [68]. However, achieving k2
t values of 30% is

uncommon and has its own challenges such as weak temperature stability, low qual-

ity factor values, and not being CMOS compatible. This situation prevents one from

designing on-chip filters for n77 band with the conventional ladder network that is de-

scribed in this chapter.
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Figure 6.10: The graph of the achievable FBW with respect to the required k2
t of the

resonators for the seventh-order example whose k2
t distribution is made uniform.
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The increased data rates in telecommunication systems are already requiring front-

end filters of 20% - 30%, such as the 5g n77 band. It is also projected that the future

applications will require larger bandwidths in order to be able to accommodate the

demand of the telecommunications networks. This is one of the largest challenges of

the filters based on acoustic wave resonators.

6.5 Summary and Conclusions

In this chapter, the extracted pole and coupling matrix based design methods for the

acoustic-wave ladder network based filters is examined. This is accomplished with

a series of transformations from the newly defined Series-EP and Shunt-EP sections.

Proceeding with that, the conventional methodology for converting the EPs to their

corresponding BVD equivalents is examined with its limitations. It has been shown that

this conversion gives inaccurate results when the desired FBW values are above 10%.

Therefore, an alternative method for the derivation of the BVD parameters is proposed

and the results of that conversion have been discussed. This conversion method will be

used for the synthesis of wideband Hybrid-ACEM filters in the next chapter.

Apart from this conversion, the k2
t value distributions in a ladder AW based network

has been discussed in detail for a seventh order response. Two different filter examples

for the 5g n41 and 5g n77 bands are synthesized with the ladder topology. The method-

ology of obtaining a uniform k2
t value distribution is also depicted. Overall, this chapter

builds all the background knowledge needed for designing the Hybrid-ACEM filters in

the next chapter.
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Chapter 7

Synthesis and Design of the Novel Hybrid

Acoustic-Electromagnetic Filters for Wideband Applications

The proper method of synthesizing AW resonator based microwave filters is considered

in the previous chapter in detail. As described, the required k2
t values of the resonators

can be made uniform for a desired center frequency and FBW by sweeping the positions

of the transmission zeros and the prescribed return loss value of the filter by adjusting

the parameter ϵ. For larger FBW values, such as 20%-30%, the required k2
t of the

resonators typically go beyond 20% using this polynomial synthesis method [56–59,

61].

The limited achievable fractional bandwidth of the filters based on AW resonators

has been a significant issue in the literature since the contemporary applications, i.e.,

WiFi 6, require FBW values of around 30% which cannot be achieved using AW res-

onators with the current achievable k2
t values. To solve this problem, many different

methods have been proposed.

An intriguing approach uses inverting sections (coupled lines) to connect ladder-

AW sections, which achieved filters with 20%–30% FBW with k2
t values of approxi-

mately 10% [54]. In order to increase the out-of-band (OOB) rejection performance,

transversal sub-networks have been incorporated to the ladder architecture in [57–59].
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The current state-of-the-art technique, as proposed in [61], is a transversal filter topol-

ogy to reduce the dependency of the achievable FBW to the k2
t values of the resonators.

In that study, a fully on-chip filter is designed for n77 band of 5g using AW based

resonators with k2
t values of 13%.

There has been many studies to design wideband filters based on AW resonators,

however, the main origin of not being able to achieve large fractional bandwidth values

has not been mathematically well established. One of the main purposes of this chapter

is to precisely define the problem with achiewing wide bandwidths using limited k2
t

values. Once this problem is established and interpreted in the following section, the

necessity and potential importance of introducing EM resonators within the AW based

filters will become evident. In this regard, this chapter proposes a hybrid acoustic-

electromagnetic (Hybrid-ACEM) topology with cross-coupling mechanisms to obtain

the largest fractional bandwidth from the minimum possible k2
t values.

7.1 Precise Interpretation of the Problem

The precise connection between the achievable FBW value of the filter and the k2
t

value of each resonator can be examined using an example synthesis. An example

of a fully-canonical 7th order 15-dB equiripple response with normalized-frequency

transmission zero locations at [si] = j[1.6,−1.6, 1.6,−1.6, 1.6,−1.6, 1.6] rad/s is de-

picted in Fig. 7.1 (a), which can be realized with seven EP sections. Considering that

the initial TZ is at a positive frequency, the network starts with a series-EP and alter-

nates until the end, just as in the seventh order ladder examples in Chapter 6. The

required k2
t values of the resonators for a bandpass ladder design with a center fre-

quency of 2.5 GHz and a fractional bandwidth of 10% can be calculated from (6.6)

and is given as: [kt
2
i ] = [13.05, 15.11, 17.62, 17.38, 17.62, 15.11, 13.05]%, which is

135



a nonuniform set. To reduce the required k2
t values of all of the resonators while

keeping the return loss the same, one can push the transmission zeros closer to the

passband, to [si] = j[1.2,−1.2, 1.2,−1.2, 1.2,−1.2, 1.2] rad/s and obtain another set

[kt
2
i ] = [5.17, 7.33, 12.30, 12.59, 12.30, 7.33, 5.17]%. However, as observed from Fig.

7.1 (b), the 7th order 15-dB equiripple response now has more than 20 dB of out-of-

band rejection degradation at Ω = ±6 rad/s. To aim for larger fractional bandwidth

values, or to have smaller k2
t values for the same FBW, one may need to push the zeros

even closer to the passband which would only exacerbate the situation. Changing the

return loss can reduce the k2
t values of some EP sections while increasing that of the

others. Therefore, it is important to make the comparison for a fixed value of return

loss.

 (rad/s)Ω

TZ Loca�ons:

-6 -4 -2 0 2 4 6

-60

-40

-20

0

dB

 (rad/s)Ω  (rad/s)Ω
-6 -4 -2 0 2 4 6

-60

-40

-20

0

dB

-6 -4 -2 0 2 4 6

-60

-40

-20

0

dB

 (rad/s)Ω
-6 -4 -2 0 2 4 6

-70

-60

-50

-40

-30

-20

-10

0

dB

 (rad/s)Ω
-6 -4 -2 0 2 4 6

-70

-60

-50

-40

-30

-20

-10

0

dB

2 6 8

S L

4

3 51 7

10 12 14

9 11 13

2 6

7S L

4

3 51

9 11 13

8 10 12

2 7

S L

4

31 6

10 10 12

9 115 8

2 6

7S L

4

3 51

9 11 13

8 10 12

{1.2j, -1.2j, 1.2j,-1.2j, 1,2j,-1.2j,1.2j}{1.6j, -1.6j, 1.6j,-1.6j, 1,6j,-1.6j,1.6j} {1.2j, -1.2j, 1.2j,-∞j, 1,2j,-1.2j,1.2j} {1.2j, -1.2j, 1.2j,-∞j,∞j,1.2j,-1.2j} {1.2j, -1.2j, 1.2j,-6j, -1.2j,1.2j,-1.2j}

{𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7}

(a) (b) (c)

|𝑆11 |

|𝑆21 |

|𝑆11 |

|𝑆21 |

|𝑆11 |

|𝑆21 |

|𝑆11 |

|𝑆21 |

|𝑆11 |

|𝑆21 |

(d) (e)

Figure 7.1: The problem definition and a proposed solution: Seventh-order equiripple
responses: (a) and (b): Conventional canonical responses when the TZs are at ±1.6j
rad/s and ±1.2j rad/s, respectively. The worsened out-of-band rejection in (b) is em-
phasized. (c) and (d): The responses when a single and two TZs are pushed to infinity,
respectively. (e): The response when a single TZ is pushed toed to −6j rad/s.

The problem in this situation is that the OOB rejection coming from each pole (20

dB/dec) is canceled above each transmission zero. Therefore, when the zeros need

to be pushed closer to the passband to reduce the required k2
t values, that results in

significantly weaker OOB rejection. In other words, for the response in Fig. 7.1 (b), all

the poles are canceled at Ω = ±1.2 rad/s and there is no other remaining pole or zero

to suppress the transmission response after all the poles are canceled.
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A non-canonical response, having just a single TZ at infinity can significantly re-

cover the out-of-band rejection of the response, as given in Fig. 7.1 (c) while keeping

all other TZs unchanged. As further observed, reducing the number of TZs by two

gives an even better OOB rejection as in Fig. 7.1 (d). These two modifications will

replace one or two EPs with a resonant node, which will require an EM resonator for

realization. Finally, a TZ can also be moved to a much higher finite frequency instead

of infinity, e.g., to Ω = −6 rad/s, as observed in Fig. 7.1 (e) by keeping all the other

zeros unchanged. This finite zero can be realized with a cross-coupling mechanism, as

shown in the coupling-routing diagram in Fig. 7.1 (e), and will help with reducing the

required k2
t .
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Figure 7.2: Resonance and anti-resonance distribution of the series and shunt EP sec-
tions for orders of 3, 4, 5, and 6. All of the responses belong to fully canonical, fully-EP
based synthesis results.

It should be noted that replacing any EP with a resonant node in a fully canonical

response having zeros close to the passband is beneficial for OOB rejection. However,

replacing the EP with the highest k2
t (the one defining the middle of the passband) with
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an EM resonator produces the greatest benefit.

To identify the EP sections that define the midband and the ones that define the

band edges, the normalized-frequency impedances of each AW section (as derived in

(6.1)) is plotted in Fig. 7.2 for 15-dB equiripple responses of different orders. For each

case, the transmission zeros are located symmetrically at si = j1.2(−1)i−1, where

i ∈ [1, N ] and the order of the resonators are given as: [SE1,SH1,SE2,SH2,...]. As

observed from the resonant peaks, the EP sections that are closer to the source and load

terminations define the band edges while the ones that are in the middle of the network

are responsible for the midband in each order. However, the distribution of the resonant

peaks are different for different orders.

For the case of third and fifth orders in Fig. 7.2, reducing the number of zeros by one

leaves the response symmetrical. As there are two series-EP sections for the third order

(SE1 and SE2), replacing one of those with a resonant node results in a symmetrical

network with the same k2
t values on the remaining EPs. For the fifth order, however,

the SE2 section (middle most) resonator should be replaced with a resonant node as

it defines the middle of the passband. For the case of even order, reducing the zeros

by two is more beneficial as it leaves the response symmetrical. For the case of fourth

order, the two resonators to be replaced are SE2 and SH1 whereas for the case of sixth

order, these should be SE2 and SH2 (the middle most resonators).

It should be noted again, however, that replacing any EP section with a resonant

node is beneficial for any order, if the zeros are close to the passband. However, there

are additional benefits when replacing the EP section(s) with the highest k2
t value(s)

with resonant node(s). This will also be demonstrated with the examples in the next

sections.
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7.1.1 The Proposed Topology

It has been established in the previous section that replacing the middle-most AW res-

onators of a ladder network with EM resonators and performing a source-to-load cou-

pling can have the largest benefits in terms of reducing the required k2
t values for a

desired fractional bandwidth. Therefore, the generalized Hybrid-ACEM topology can

be depicted in Fig. 7.3.

JINV JINV JINV

EM Resonator
Network

S-L Coupling

Z0 Z0𝐿𝑖𝑛 𝐿𝑜𝑢𝑡

JINV JINV

OR

Figure 7.3: The generalized Hybrid-ACEM topology. The AW resonators are located
towards the source and the load while the EM resonator network is in the middle of the
topology. The EM resonator network can include one or two EM resonators.

As observed from Fig. 7.3, the EM resonator network in the middle can either

be a single EM resonator that is coupled to the AW resonators, or it can be two EM

resonators that are coupled to each other and to the surrounding AW resonators. The

number of AW resonators can be increased or reduced in the same ladder pattern. Fur-

thermore, an S-L coupling can be used to improve the OOB rejection, which, as a

consequence can be used to increase the achievable FBW using a particular k2
t .

In the following subsections, the rules to synthesize the Hybrid-ACEM topology

will be defined and the proposed methods will be illustrated with several examples.

7.1.2 Synthesis of Wideband Hybrid-ACEM Filters

Using the extracted pole methodology and the coupling matrix, the challenge in ob-

taining wide fractional bandwidths using resonators with limited k2
t values has been
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identified. The solution for this approach is to introduce a resonator technology change

at the resonators with the largest required k2
t values in the design, which are typically

the ones that are in the middle of the network. As an addition, we introduce cross-

coupling mechanisms to further enhance the out-of-band rejection performance of the

prototype function. The overall aim with this design is to obtain the desired FBW

and the required selectivity/OOB rejection performance with the minimum possible k2
t

value at the resonators. Once that is achieved, if the BAW technology has a k2
t value

that is greater than that of the function-based synthesis, this will always work for the

favor of the designer in that it will have better out-of-band rejection.

In order to design the Hybrid-ACEM filters with cross-coupling mechanisms for

minimum possible k2
t values, the synthesis rules are reframed as follows:

1. Determine the coupling-routing diagram of the network, i.e., determine which

section will be an EP and which section will be a resonant node.

2. Start with the overall polynomial ABCD matrix of the network, i.e.,

ABCDFull(s),

3. At each step, if deg(P (s)) = deg(B(s)) and if the number of the remaining EP

sections to be extracted is less than deg(P (s)), extract a cross-coupling. There-

fore, for hybrid canonical functions, the synthesis starts with a cross-coupling

extraction.

4. Continue extracting the EP or resonant sections according to the coupling-routing

diagram.

5. After each cross-coupling is extracted, find the roots of the resulting P (s) and

update the list of transmission zeros with these roots. The roots may or may

not be the same as the initial transmission zero locations. This phenomenon is
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also observed in [59] and [101], and will have important consequences in the

design. Depending on the strength of the cross-coupling, the updated roots can

become complex, which cannot be extracted using this method. If the roots are

complex, neglect the real part of the roots. This assumption results in an error in

the synthesized response, however, it can be tolerated in certain cases. This will

be further explained in the examples.

6. At the end of the extraction process, the polynomials A(s), C(s), D(s), and P (s)

should all be equal to zero and B(s), should have a constant value.

7. Construct the coupling matrix with the extracted parameters throughout the steps

1-6.

8. Finalize the design by converting the extracted-pole sections into BVD models

of AW sections using the modified EP-to-BVD conversion method as introduced

in Chapter 6.

The proposed method will be illustrated using three different examples to demon-

strate its strength and flexibilities. For the even-order case, a 6-pole-4-zero response

with two EM resonators will be synthesized to demonstrate how the method is superior

to the conventional method in terms of achieving large bandwidths with limited k2
t val-

ues. This is shown in Example 1. A 6-pole-6-zero hybrid canonical response extends

the bandwidth enlargement capability of the 6-pole-4 zero response by introducing a

single source-to-load coupling in Example 2. For the odd-order case, a 5-pole-4-zero

response with one EM resonator is depicted in Example 3.
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7.1.3 Examples of the Synthesis

Example 1: 6-Pole-4-Zero Symmetric Response

The initial response to be designed is an 18.2-dB equiripple 6-pole 4-

zero symmetric function with transmission zero locations given by [si] =

j[1.2,−1.2,∞,−∞,−1.2, 1.2] rad/s. The S-polynomials of the design are provided

as:

F (s) = s6 + 1.8s4 + 0.88s2 + 0.086

P (s) = −s4 − 2.9s2 − 2.1

E(s) = s6 + 1.8s5 + 3.4s4 + 3.6s3+

3.1s2 + 1.7s+ 0.7

with ϵ = 3 and ϵr = 1.

(7.1)

This response can be synthesized as a hybrid network as in Fig. 7.4 (a) using the

methodology given in Section II B. The initial observation regarding the transmission-

zero set is that the first two zeros will need a series-shunt pair whereas the last two

zeros result in a shunt-series pair, considering their signs. This transmission zero set is

deliberately chosen to show the flexibility of the proposed hybrid response in that the

first and the last resonators can be made as both series-AW sections in an even-order

response, as opposed to the inability of doing so in a fully inline ladder AW filter of

even order [102].
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Figure 7.4: (a): The coupling-routing diagram for Example 1 and Example 2.
mSL and m5L are equal to zero for Example 1. (b) and (c): The coupling matrix and the
normalized frequency response of Example 1, respectively. The magenta trace depicts
the response with the conventional method where all the sections are made of EPs when
the response has the same return loss with this example (18.2 dB).

Since the response has 4 transmission zeros, four extracted pole sections can realize

them, resulting in mSL and m5L to be equal to zero. The coupling matrix of the network

is depicted in Fig. 7.4 (b) along with the normalized-frequency response of the network

in Fig. 7.4 (c), labeled as ”proposed”. For this response, the out-of-band ripple (the
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peak of |S21| in the out-of-band region as shown in the figure) is obtained as 24.43

dB. On the same graph, the frequency response of an 18.2 dB equiripple conventional

6th order ladder-EP with TZ locations at j[1.2,−1.2, 1.2,−1.2, 1.2,−1.2] rad/s is also

depicted in magenta. That is representative of the response that can be obtained with the

conventional ladder-AW design. As observed, the out-of-band rejection of the proposed

method is significantly stronger compared to the conventional design.

An important observation is that once the sixth-order fully-extracted pole response

is converted to the non-canonical hybrid-inline prototype, the shunt and the series

extracted-pole sections have the same resonant and anti-resonant points, irrespective

of the return loss of the response, as observed in Fig. 7.4 (c). This is a very im-

portant corollary, which will result in a uniform k2
t distribution among the AW res-

onators once the design is hybridized. For instance, if denormalized for a FBW of

30%, the k2
t distribution of the EP sections are given as: [k2

tSE1
, k2

tSH1
, k2

tSH2
, k2

tSE2
] =

[10.78, 10, 78, 10.78, 10.78]% (having four EP sections). This gives a ∆/k2
t of 2.78.

For the conventional method, the set of k2
t values for a FBW of 30% is calculated as

[11.1, 15.4, 29.0, 29.0, 15.5, 11.1]% (six EP sections). This gives a ∆/k2
t of 0.96 in ad-

dition to an unusable response for the conventional method. For good OOB rejection

values, the zeros should be pushed farther away from the passband, which will further

increase the required k2
t values.

Example 2: 6-Pole-6-Zero Hybrid-Canonical Response

In Example 1, increasing the return loss (in-band-ripple) results in a lower common k2
t

for all four EP sections at the cost of worse OOB rejection. To strengthen the OOB

rejection performance, a symmetric pair of transmission zeros can be added to the 6-

pole-4-zero response, which are far away from the passband. These zeros can be re-

alized with an S-L cross-coupling mechanism. This can achieve the same out-of-band
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ripple as Example 1 with a better return loss of 20.27 dB and it will be observed that

the k2
t values are reduced for the same FBW without compromising from the OOB re-

jection performance. The set of finite-frequency transmission zeros are given by: [si] =

j[1.2,−1.2, 3,−3,−1.2, 1.2] rad/s. The S-polynomials of the response to be considered

are given as in the following:

F (s) = s6 + 1.8s4 + 0.9s2 + 0.091

P (s) = −s6 − 12s4 − 28s2 − 19

E(s) = s6 + 2s5 + 3.7s4 + 4.1s3+

3.7s2 + 2.1s+ 0.94

with ϵ = 20 and ϵr = 1.0013.

(7.2)

The network for this response can also be charecterized with the coupling-routing

diagram given in Fig. 7.4 (a). The initial step to synthesize this response is to extract

a cross-coupling mechanism, which extracts the symmetric TZ pair at ±3j. As the

response is symmetric, this operation reduces the order of P (s) by two and the new

transmission polynomial is given as:

P (s) = −0.46s4 − 1.3s2 − 0.91,

whose roots are given as: [snewi ] = [−0.031 + 1.188j,−0.031 − 1.188j, 0.031 +

1.188j, 0.031 − 1.188j], which are complex. Normally, as also presented in [90], a

network for a response with complex roots cannot be obtained with the extracted-

pole method. However, it can be observed that |Im{snewi }| >> |Re{snewi }|∀i.

In this case, the real part of each root can be neglected and the extracted-

pole synthesis can continue with the new transmission zero set of [snewi ] =

145



j[1.188,−1.188,∞,−∞,−1.188, 1.188] rad/s. Once the transmission-zero set is up-

dated after the cross-coupling extraction, the remaining network is synthesized just as

in the 6-by-4 example.
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Figure 7.5: (a) and (b): The coupling matrix and the normalized frequency response of
Example 2, respectively. The magenta trace depicts the response with the conventional
method where all the sections are made of EPs when the response has the same return
loss with this example (20.27 dB).

The coupling matrix representation and the normalized-frequency response of the

synthesized network are depicted in Fig. 7.5 (a) and (b), respectively. It should be

observed that the synthesized response is not a perfect Chebyshev function, especially

considering the split transmission zeros at the band edges, since the real parts of the

updated transmission zeros are neglected after the cross-coupling extraction. For such

cases, it is observed that the magnitude of the complex parts of the updated zeros in-
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crease when the transmission-zero pair that is added for out-of-band rejection enhance-

ment (±3j rad/s for this example) are chosen closer to the passband. Neglecting the

real parts of the updated zeros results in increased inaccuracies if they are large in mag-

nitude. Therefore, it is important to choose such zeros sufficiently far away from the

passband to minimize the inaccuracies. The good news is that these zeros are added

only for out-of-band rejection improvement and therefore selecting them away from

the passband is compatible with the idea behind using them.

With the improved return loss, the proposed 6-pole-6-zero response requires k2
t

values of [7.26, 7.26, 7.63, 7.63]% when denormalized for a FBW of 30%, which is

even lower than in Example 1, while having almost the same out-of-band ripple. This

gives a ∆/k2
t of 4.13. Again, the 6-pole-6-zero hybrid-canonical response is com-

pared with the conventional ladder-EP design having the same return loss (20.27 dB)

and the TZ set of j[1.2,−1.2, 1.2,−1.2,−1.2, 1.2] rad/s in Fig. 7.4 (e). For this re-

turn loss value, the required set of k2
t values for the conventional design is given as

[8.86, 12.11, 27.46, 27.46, 12.11, 8.86]%. As observed, the required k2
t for the conven-

tional design is slightly lower than the case for 18.2 dB return loss, however, it should

be noted that the OOB rejection gets worse for the conventional response. Furthermore,

the proposed topology can achieve this bandwidth with much lower k2
t values.

Example 3: 5-Pole-4-Zero Response

As an odd-order example, a 5-pole-4-zero response is considered. As established in

Section II A, employing a single EM resonator can reduce the required k2
t significantly

compared to its fully-canonical counterpart. The response is an 15.72-dB equiripple

with its transmission zeros at [si] = j[1.2,−1.2,∞,−1.2, 1.2] and is characterized by
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the following polynomials:

F (s) = s5 + 1.5s3 + 0.55s,

P (s) = js4 + j(2.9)s2 + j(2.1),

E(s) = s5 + 1.7s4 + 2.8s3 + 2.8s2 + 1.8s+ 1,

with ϵ = 2 and ϵr = 1.

(7.3)

The coupling-routing diagram, the coupling matrix, and the normalized-frequency re-

sponse of the network are depicted in Fig. 7.6 (a), (b), and (c), respectively.
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Figure 7.6: (a): The coupling-routing diagram for Example 3. mSL is equal to zero for
Example 3. (b) and (c): The coupling matrix and the normalized frequency response of
Example 3, respectively. The magenta trace depicts the response with the conventional
method where all the sections are made of EPs for each example, when the response
has the same return loss with the corresponding example.

The response of a 15.72-dB fully-canonical, fully-EP based filter with TZ loca-
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tions at [si] = j[1.2,−1.2, 1.2,−1.2, 1.2] rad/s is included with the proposed fifth

order response in Fig. 7.6 (d). As observed, the out-of-band rejection of the fully

canonical filter, being at 6.86 dB, is much worse compared to the out-of-band rip-

ple of the proposed design, being at 16.26 dB. Furthermore, if denormalized for

a 20% FBW, the k2
t of the EP sections for the proposed design is calculated as

[8.80, 8.80, 8.80, 8.80]%, being lower compared to the one of the conventional design,

which is [8.89, 12.19, 20.14, 12.19, 8.89]%. Again, it needs to be mentioned that ob-

taining a similar out-of-band performance with the conventional design requires the

TZ locations located further away from the passband which results in much larger k2
t

values.

Considering the response of 5th order, it should be mentioned that the roll-off and

the out-of-band rejection of this prototype is much less, compared to the sixth-order de-

sign, especially when the S-L coupling was included in Example 2. Therefore, this one

can achieve reduced FBW values for a particular FBW value. However, the complexity

of this one is less compared to the sixth-order since there is a single EM resonator in the

network. For the simulations, the stronger case of sixth order design will be considered.

7.2 Simulation Results

The frequency- and bandwidth- denormalized network representation of the coupling

matrices for Example 1 and Example 2 are shown in Fig. 7.7 (a) and referred to as

the ”EP based network”. This network has the exact same response one can get by

plotting the coupling matrix for a desired f0 and FBW since the FIR elements are not

converted into inductances or capacitances. Using the developed modified EP-to-BVD

conversion methodology in Chapter 6, the EP based network can be converted to the

Hybrid-ACEM network in Fig. 7.7 (b). The proposed method in Chapter 6 is needed to
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avoid frequency shifting during this conversion because the conventional method has

significant inaccuracies for wideband responses. This is detailed in Chapter 6.

In order to show the validity of the proposed method, both examples are designed

for the specifications of 5g n77 band. This includes a maximum of 2 dB IL between

3.300 GHz–4.210 GHz, a minimum attenuation of 25 dB at 2.300 GHz–2.482 GHz and

5.150 GHz–5.925 GHz, 30 dB attenuation between 2.496 GHz–2.570 GHz and 10 dB

of attenuation between 4.400 GHz–5.000 GHz bands [61]. The AW resonators in Fig.

7.7 (b) are designed to have a series-Q of 1,200 and the EM resonators are set to have

a Qu of 50. The ideal FBW value of this band (3.300 GHz – 4.210 GHz) is 24.4%,

however, including the finite-Q of each resonator, all of the required specifications are

met with a target design FBW of 29.1% and 30.49% for Example 1 and 2, respectively.

The circuit simulation of each example are performed in Cadence AWR and shown

in Fig. 7.7 (c) and (d), respectively. In each figure, the requirements of the n77 band are

also marked with the red lines, which show that the both examples achieve or exceed

the required attenuation and IL specifications. The return loss of Example 2 is slightly

asymmetrical, however, this is due to the errors in EP-BVD conversion and can be fixed

with tuning. For comparison, the response of the non-lossy EP-based network in Fig.

7.7 (a) is also shown as a ground truth for each case.
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Figure 7.7: (a): The bandpass denormalization of Example 1 and 2, which gives the
exact equivalent responses of the coupling matrices. (b): The Hybrid-ACEM network
after the EP sections are converted to their BVD equivalents using the proposed conver-
sion in Chapter 6. (c) and (d) : Comparison of the responses of the EP-based (ground
truth) and the Hybrid-ACEM network for Example 1 and Example 2. The red lines
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1,200 and the EM resonators are set to have a Qu of 50. (e): The BVD parameters for
the Hybrid ACEM responses in (c) and (d).
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Finally, the parameters of the BVD networks in Fig. 7.7 (b) are depicted for each

example in Fig. 7.7 (e). It should be realized that the target FBW of approximately

30%, which satisfies the effective bandwidth of 24% is achievable with AW resonators

having k2
t values of 10.3% in Example 1 and 7.37% and 7.74% in Example 2. This

shows that a FBW of up to 4 times the k2
t value of the AW resonators are achievable

with the proposed study which still satisfies the stringent performance requirements of

the 5g n77 band (∆/k2
t ≈ 4).

At this point, the role of adding a single capacitive/inductive S-L coupling mecha-

nism to Example 1 and switching to Example 2 should be rephrased. The importance

of Example 1 is that for a Hybrid-ACEM network of 4 AW and 2 EM resonators in the

middle, the required k2
t of all AW resonators are the same, being independent of the

return loss. As a result, the required k2
t can be lowered by increasing the return loss

from 18.2 dB to 20.27 dB. The weakening effect of this action on the OOB rejection

can then be recovered to have the same OOB ripple as Example 1 by adding the S-L

coupling mechanism, which produces the outer transmission zeros. It should be empha-

sized that this is not the case for the conventional full-AW based ladder prototype and

one needs to sweep both the TZ locations and the return loss to converge on a uniform

k2
t distribution [56].

To further elaborate on the findings in the previous paragraph, it should be stated

that if the second example is forced to have a k2
t of 10.33%, just as in Example 1,

the achievable FBW is approximately 42 %. This finding is demonstrated in Fig. 7.8.

As observed, if one tries to increase the bandwidth of Example 1 (black trace) from

29.1% to 42 % by keeping the k2
t constant at 10.33%, the response produces worse

OOB rejection, shown with the red trace. However, the S-L coupling mechanism in

Example 2 can recover that OOB rejection and keep the OOB ripple at the same value.

This means that the S-L coupling mechanism can be used to reduce/adjust the required
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k2
t values without sacrificing from strong OOB rejection.

Comparison,
𝒌𝒕
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Figure 7.8: Comparison of Example 1 and Example 2 when the k2
t values of the res-

onators are forced to 10.3%. The black trace is the 29.1% FBW response of Example
1, which has 18.2 dB return loss. The red trace is Example 1 whose RL is readjusted to
20.9 dB with a FBW of 42%. The degradation on the OOB rejection should be noticed.
The blue trace shows Example 2 with 42% FBW which again needs a k2

t of 10.3%. The
OOB ripple of Ex.1 and Ex.2 are the same while Ex.2 can have a much larger FBW
compared to Ex.1 with the same k2

t .

7.2.1 Design Sensitivity to the Variations in Component Values

As the proposed Hybrid-ACEM method includes EM resonators which can be lumped-

or distributed-element based, the sensitivity of the design for the component value vari-

ations is important. This is especially true in the presence of on-chip spiral inductors,

which can magnetically couple to each other and have inductance variations. In order

to test that behavior of the network, the inductors of the EM resonators in Fig. 7.7 (b)

are changed 10% and 20% compared to their prescribed values to observe the effect on

the design.

The filter responses when the value of L3 and L4 are increased 10% and 20% beyond

153



their original values are shown in Fig. 7.9, together with the original response.
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Figure 7.9: Effect of the variations on component values to the filter response. The
original response of Example 2 is depicted with the blue trace. In red and the black
traces, the inductance values at the EM resonators are varied by 10% and 20%, respec-
tively.

It should be realized in Fig. 7.9 that having a 10% variation on the value of the

EM resonaors can be tolerable, however, the effect becomes more severe with 20%

variation. It should be realized that the designed filter may go out of the required

specifications due to the mutual coupling effect between the inductors, which can cause

component value variations.

7.2.2 Comparison with EM Filters

Although it is possible to design narrower bandwidth responses, this method is more

beneficial for fractional bandwidth values of 10% or above. Since the design has the

potential to be an on-chip filter which can include lossy lumped-element resonators for

the EM resonators, the effect of their finite (and low) Q is very important for different

FBW values. This effect is analyzed for the 6-pole-4-zero (Example 1) case by simu-

lating the filter response when the Q of the EM resonators (QEM ) are 50. The circuit

diagram for this analysis is depicted in Fig. 7.10 (a). The series quality factor of each
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AW resonator is chosen to be 1,200.

It has been mentioned that achieving such bandwidths (or having the claimed ∆/k2
t

values is not possible with the conventional ladder-acoustic design using these low k2
t

values, however, it is possible to obtain these responses with electromagnetic-only or

lumped-element based filters. As a comparison, responses of sixth-order transversal

filters (as in Fig. 7.10 (b) are designed using the transversal coupling matrix [5]. These

filters have the same response polynomials as Example 1 and their responses are calcu-

lated when the Q of each resonator is 50.

The comparison of the filter responses of the fully EM and Hybrid-ACEM proto-

types for FBW values of 15% and 25% are depicted in Fig. 7.10 (c). The observation

is that the Hybrid-ACEM response always has less insertion loss, flatter passband, and

sharper band edges compared to the full-EM response for the same FBW. At this point,

it is convenient to define a measure, ”usable bandwidth” which refers to the bandwidth

at which the insertion loss of the filter increases 1 dB beyond its minimum value. Con-

sidering the 15% and 25% FBW values, the Hybrid-ACEM has 0.82 dB and 0.48 dB

better IL performance when the minimum IL is considered, respectively. On the other

hand, it should be realized that the usable bandwidth of the proposed design is signif-

icantly better, compared to the full-EM prototype. The usable bandwidth for a target

bandwidth of 937 MHz (25% FBW) is 804 MHz for the Hybrid-ACEM and 640 MHz

for the full-EM response. Similarly, for a desired bandwidth of 558 MHz (15% FBW),

it is calculated as 463 MHz and 324 MHz for the Hybrid ACEM and the Full-EM

responses, respectively.
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Figure 7.10: Effect of the finite EM resonator quality factor: (a): The EM and AW
resonator equivalent circuits for introducing loss. (b): Hybrid-ACEM prototype. (c):
Transversal full-EM network with loss. (d) Comparison of the responses for a FBW of
10% and (e): Comparison of the responses for 20%. The Hybrid-ACEM networks use
the proposed EP-to-BVD conversion method.

7.3 Experimental Results

As a proof-of-concept, Example 2 is denormalized for a center frequency of 2.66 GHz

and a FBW of 11.2%, which spans the frequency range of 2.52 GHz – 2.82 GHz. The

designed bandwidth contains the 5g n41 band, however, it is larger than the requirement

to show the wideband capability of the proposed method. The lower band-edge is aimed
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at achieving a 30 dB attenuation at 2.42 GHz and the upper band is designed to have

this attenuation within 100 MHz of the band edge. The determining factor on the choice

of the filter frequency is the limited commercial availability of the BAW resonators at

the desired resonant frequencies.
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Figure 7.11: Fabricated prototype: (a): The network prototype that explains the fab-
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The schematic diagram, the HFSS simulation model, and the photograph of the fab-

ricated prototype are depicted in Fig. 7.11 (a), (b), and (c), respectively. To design the

prototype with the microstrip technology, these results have been tuned after acquir-

ing the initial values. For the lower band edge, two equivalent shunt-connected BAW

resonators are used. These resonators are designed and fabricated by Texas Instru-

ments, utilizing dual-Bragg acoustic mirrors at the bottom and on top of the resonant

body [79]. The BAW resonator has a parallel resonance frequency of 2.53 GHz and

a series resonance frequency of 2.497 GHz. Furthermore, the parallel quality factor is

around 1,200, C0 is 2.4 pF, and the k2
t is 3.5%. The probe measurements of the input

impedance of this BAW resonator are depicted in Fig. 7.12 with the black trace. Wedge

type bonding with a gold wire of diameter 25 µm is used with Indium pellets to connect

the BAW resonator onto the copper layer of the printed-circuit board (PCB). 1.6 pF dis-

crete capacitors from AVX corp. are connected in series to the wirebonded resonator to

cancel the wirebond inductance, as depicted in Fig. 7.11 (a). This has an effect on the

equivalent C0, and therefore, the k2
t of the BAW. It should be mentioned that the added

capacitors reduce the k2
t of the BAW from 3.5% to 2.1%. The input impedance of the

wirebonded BAW resonator, including the 1.6pF capacitors are also shown in 7.12.

Due to the limited availability of BAW resonators for the upper band edge of the de-

sign, the series-AW resonators for the prototype are obtained using microstrip-realized

extracted-pole sections. These are shown with EP1 and EP2 in Fig. 7.11 (a) and

(b), which emulate series-connected AW based resonators. The BVD models of the

series-connected AW resonators that are emulated by EP1 and EP2 are depicted in Fig.

7.11 (a). On the other hand, in order for a one-to-one conversion from EP-to-BVD,

JS1 = −J13 and J79 = −J9L should be satisfied. Since both of these inverters are

realized with quarter wave transformers, negative coupling is not achieved. In order to

fix this problem, the coupling matrix in Fig. 7.5 is scaled by -1 at both S and the L
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nodes and to get rid of the negative sign again, scaled once more at node 9 by -1. In

this case, the EP sections can be used to emulate the BVD sections.

BAW 
(Wirebonded)

EP1 & EP2

BAW 
(Probed)

Figure 7.12: Input impedance measurements of the BAW resonator on-die (probed),
the wirebonded BAW including the 1.6pF capacitors, and the EP section.

In order to create the EP sections, the dangling resonator in EP1 section in Fig.

7.11 (b) (shown as ”Dangling Resn”) is designed as a half-wave microstrip to emulate

a shunt-connected RLC resonator. The inductance and capacitance of the RLC network

are adjusted by tuning the characteristic impedance while the FIR element is adjusted

by arranging the resonant frequency. Then, this section is connected to a shorted thin

transmission line (depicted as J11) in Fig. 7.11 (b) to complete the EP section. The

input and the output inverters to the EP sections (JS1 and J13 for EP1 whereas J79 and

J9L for EP2) are realized with quarter-wave transformers. The microstrip-realized EP

sections (EP1 and EP2) have a series resonant frequency of 2.809 GHz and a parallel

resonant frequency of 2.859 GHz, which emulates a series-connected AW resonator

with a k2
t of 4.24%. The input impedance measurements of the EP section are depicted

in Fig. 7.12 with the blue trace.
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Figure 7.13: Comparison of the simulated and measured results.

The EM resonators (EM1 and EM2) in Fig. 7.11 (a) and (b) are realized with two

half-wave microstrip resonators. Their design is carried out similarly to the dangling

resonator of the EP sections. The inverters going into the two EM resonators (J35 and

J67) are realized using quarter-wave transformers while the inter-resonator coupling

(J56) is realized by magnetic edge-coupling.

Finally, the input and output admittances JSS and JLL are found redundant after

tuning and are removed while JIN and JOUT are tuned for 0.02 S = 1/50 Ω. This made

it possible to realize these inverters directly with 50 Ω lines.

For the PCB design, a Rogers RO3010 substrate is patterned using an LPKF Proto-

Laser U4 circuit board plotter. The measured S-parameters of the network are shown

in Fig. 7.11 (d). It should be noted that the response of the design is sensitive to the

inaccuracies at the dangling resonator sections of EP1 and EP2, therefore, care needs

to be taken during the fabrication.

The simulation and measurement results of the design are depicted in Fig. 7.13.

As observed from the simulation results, the lower band edge is designed to create a
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TZ at 2.4 GHz, which is the upper band edge of n40 band. For the measured result,

however, this is slightly shifted but there is still 27.5 dB of attenuation at 2.4 GHz. The

lower band edge is defined by the shunt resonator and the initial dip at S21 as well as the

overall rolloff is much stronger compared to the upper band edge. For the upper edge,

the simulations were able to achieve 26.32 dB of attenuation at 2.92 GHz, which is 100

MHz above the desired bandedge frequency of 2.82 GHz. However, for the measured

results, the upper band edge is slightly shifted. This is due to the strong effects of slight

frequency shifts while fabricating the EP networks. The minimum insertion loss of the

fabricated prototype is 1.45 dB and a flat passband at the midband region is observed.

7.4 Extension of the Design for Different Fractional Bandwidth

Values and Comparison with the State-of-the-Art

As the Hybrid-ACEM method has been established with fabrication results that prove

the concept, it is important to understand the limits of achievable fractional bandwidth

values and also to consider the insertion loss levels for these FBW values. In that sense,

the sixth order prototype with source-to-load coupling can achieve significantly wide

FBW values in addition to having a common k2
t value among the AW based resonators.

Therefore, this prototype will be considered for determining the limits of the design.
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Figure 7.14: Extension of the design for larger FBW values. (a): Comparison of two re-
sponses with the same 6-pole-6-zero topology but having different OOB ripple values,
when denormalized for 40% FBW. (b): Achievable FBW with respect to the required k2

t

for the two Hybrid-ACEM responses in (a) (black and the blue traces), for the conven-
tional ladder prototype of 7th order in Chapter 6, and the state-of-the art transversal-AW
filter. (c): Insertion loss value of the sixth-order Hybrid-ACEM response with respect
to the FBW, when the Q of the EM resonators are 50. The dark shaded region shows
the practically achievable k2

t values of AW resonators.

Fig. 7.14 (a) depicts two different sixth-order hybrid-canonical responses that can

be realized with the Hybrid-ACEM prototype. These responses have OOB ripple values

of 24.66 dB and 23.2 dB and are denormalized for a FBW of 40%. For these two

responses, the required k2
t values are plotted along with the desired fractional bandwidth

in Fig. 7.14 (b). On the same graph, the achievable FBW is plotted with respect to the

required k2
t for the conventional ladder prototype of 7th order, as explained in Chapter 6.
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The shaded region on the graph demonstrates the practical values of k2
t that can be

achieved today.

There are multiple observations regarding Fig. 7.14 (b). The first observation re-

garding this graph is that the OOB ripple and the return loss of the Hybrid-ACEM

design can be adjusted to increase the ∆/k2
t . For instance, for the case where OOB

ripple is 24.6 dB, this ratio is around 4, however, if the OOB ripple is lowered to 23.2

dB, this ratio is approximately 5. Secondly, ∆/k2
t for the conventional seventh-order

design is below 1, which gives an upper limit for the achievable FBW of around 15%.

However, it can be observed that the achievable FBW is within the region of practical

k2
t values for up to 40% FBW with the Hybrid-ACEM response.

Furthermore, the obtained insertion loss when the two EM resonators in the design

have a Q value of 50 is also depicted in Fig. 7.14 (c) for visualization. The obtained

insertion loss reduces with the increased fractional bandwidth, as observed from Fig.

7.14 (c), which works for the favor of the designer and can go below 1 dB for FBW

values of 30%.

This analysis of the achievable FBW value with respect to the required k2
t values

sets the metrics which can be used to compare the performance of two filters. It should

be realized that a wideband response is only valuable to be achieved when it can provide

a good out-of-band rejection.

In Table 7.1, the performance of the fabricated prototype in this study is compared

with other significant studies which can be considered as the state-of-the art in terms of

achieving large fractional bandwidth values.

In Table 7.1, the proposed study is included with the fabricated example of 11.2%

FBW and using the simulated example which includes the n77 filter. Since the used AW

resonators have different k2
t values in the studies, the FBW/k2

t can become an important

metric as well. In order to have a fair comparison, the studies that include similar OOB
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Table 7.1: A table of comparison with the related work in literature.

Ref
f0

(GHz)
Min. IL

(dB)
RL

(dB)
FBW
(%)

OOB
R. (dB) * Ord k2t Tech ∆/k2t

[54] 2.05 1.8 ∼15 17 >30 8 8.8
SAW &
Cpl. ln 1.93

[61] 3.69 <=1 15 25 >30 4 13
Fully

on-Chip 1.92

[55] 2.15 1.87 10 24.9 20 - 6.37
FBAR &
Msp. ln 3.9

This 2.66 1.45 18 10.2 35 6
2.1&
4.24

BAW
&EM 3.2

This, n77
Sim 3.77 0.94 15

30 (des),
24 (eff) >35 6

7.3
& 7.7 Sim 4.05

* OOB Rej Refers to the out-of-band rejection which is obtained 300 MHz beyond the band edges.

rejection performances should be compared since it has been clearly shown in Fig. 7.8

that obtaining a larger FBW/k2
t is possible by having a weaker OOB rejection. For that,

the OOB rejection performance that is 300 MHz beyond the band edges are considered.

It can be observed that considering the designs having large FBW values that have better

than 35 dB OOB rejection performances, our proposed study has the largest ratio which

shows the maximum flexibility of having wideband filters in the presence of fixed k2
t

values and while keeping the OOB rejection performance strong.

7.5 Conclusion and Discussion

In this chapter, the foundations of using EM (lumped or distributed) resonators within

the design of BAW filters is presented with the aim of having significantly larger frac-

tional bandwidth and out-of-band rejection performance while keeping a low insertion

loss in the presence of low-k2
t resonators.

This study includes multiple contributions to the design of wideband microwave fil-

ters, compared to the introduction of this concept in [50]. Wide fractional bandwidths

(such as 20%) are shown to be achievable using AW resonators with k2
t values of 5.8%

or even lower. It has been shown the ladder AW resonator based conventional method-
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ologies cannot achieve such fractional bandwidths and OOB rejection using AW res-

onators with such k2
t values. Responses of higher orders are considered and compared.

The analysis on which and how many resonators in an inline EP-based filter to replace

with EM resonators is performed. It has been shown that this can vary for designs of

different orders. A simplification methodology for fully asymmetric responses is also

provided. The analysis of the effects of finite-Q EM resonators is performed to give

an insight on future on-chip implementation. It has been shown that including a single

EM resonator can even have a significant advantage to accomplish much wider FBW

values on certain filter orders. It has also been shown that using a cross-coupling to

implement a pair of TZs can further reduce the required k2
t significantly while keeping

the out-of-band ripple at the constant value.

As a proof-of-concept, it has been shown that an 11.2% FBW sixth-order, fully-

canonical equiripple filter is achieved using a BAW resonator with a k2
t of 3.5% (effec-

tive value of 2.1%), which is not possible with the conventional ladder design method-

ologies. With the conceptual proof, the FBW and OOB limitations of AW-based filters

are successfully mitigated using the hybrid concept.
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Chapter 8

Summary, Conclusions, and Future Work

This dissertation can be considered as a technical and a methodological pathway for

developing filters that can satisfy the growing demands of the next generation wireless

transceivers. The summary of the work, the conclusions, the contributions and the

future work will be discussed in this chapter.

8.1 Summary of the Work

The development of the dissertation starts with a discussion on the importance of the

RF filters for wireless communication systems. As an example, the frequency spectrum

allocation for 1.8 GHz to 7.125 GHz is shown in Fig. 8.1, which includes multiple

operation bands. In order to prevent the interference and leakage from one band to

another, the wireless transceivers need filters with high performance. For instance, a

microwave filter operating at n41 band requires less than 2 dB insertion loss between

2.496 GHz–2.690 GHz and more than 30 dB attenuation at 2.4 GHz. This requires

high-Q resonators (Qu > 1000) and they need to have small form factors to fit inside of

a chip. The high-Q EM resonators including cavities are too large to fit into integrated

circuits and are not usable for such applications.

It has been discussed in Chapter 1 that the acoustic-wave filters dominate the on-
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Figure 8.1: Wireless communication bands in the frequency spectrum between the fre-
quencies 1850 MHz to 7125 MHz.

chip filter market due to their high quality factor values and chip-scale physical sizes.

At present, there are studies that can achieve filters for n41 (7.5% FBW) band. Further-

more, a new state-of-the art filter is designed in [61] for n77 (24.4% FBW) band using

AW resonators with k2
t values of 13.5%. However, the intrinsic parameter of k2

t puts

an upper limit on the achievable fractional bandwidth with the AW based filters and the

future applications, such as WiFi 6 will require ultra-large FBW values, such as 30%.

This requires k2
t values above 30% with the conventional synthesis methods and such

values are not practical to be achieved.

In Chapter 2, the resonators that are used at the microwave frequencies are con-

sidered. These include EM based and AW based resonators. This is followed by the

development of a generalized Chebyshev function, the analysis and the synthesis of the

coupling matrix of an arbitrary order, and the theory of the extracted-pole-synthesis

methodology in Chapter 3, 4, and 5, respectively. Until that point, the strong theory of

the coupled-resonator based filter design background has been established for the un-

derstanding and the solution of the bandwidth enlargement problem of the filters based

on AW resonators.

In Chapter 6, the conversion methodologies from extracted-pole sections to the

BVD equivalent network of the AW resonators is discussed. It has been argued that

the conventional conversion methodology is not suitable for FBW values above 10%
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and a new conversion methodology is proposed. Furthermore, the CM-based design of

AW based filters is also discussed in this chapter. As an example, two seventh-order

AW-based filters for n41 and n77 bands are synthesized, which require resonator k2
t

values of 12% and 30% for FBW values of 7.5% and 24.4%, respectively. This gives

∆/k2
t values of around 0.62 and 0.81, respectively which is below 1. Considering that

the achievable k2
t values with the state-of-the-art AlScN BAW resonators include 16%

k2
t and a Q of 1070 [72], designing filters for wide bandwidths like n77 band is not

possible with this method.

Chapter 7 starts with the precise interpretation of the reason for not being able to

obtain wideband microwave filters using AW based resonators. This interpretation is

based on the analysis of the Chebyshev functions that characterize the response and

it is mathematically proven that the introduction of EM resonators at certain places

within the network can provide significantly wider FBW values. This theory is backed

with a new set of rules for the design of the novel Hybrid Acoustic-Electromagnetic

(Hybrid-ACEM) filters. It has been theoretically shown that the sixth-order Hybrid-

ACEM design can achieve the n77 band specifications with four AW resonators having

k2
t values of approximately 7.5%. Considering that the target design FBW is 30.4%,

the proposed method can achieve ∆/k2
t values of larger than 4. As a proof-of-concept,

a sixth-order 11.2% FBW filter is designed, fabricated, and tested including BAW res-

onators with a k2
t of 3.5%. The measurement results demonstrate the validity and the

significance of the developed method for the solution of this problem.

8.2 Conclusions and the Importance of the Work

In this study, it is hypothesized that the the maximum ∆/k2
t value for AW based filters

can be achieved by incorporating EM resonators to the network while still complying
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with the stringent insertion loss and the OOB rejection performance requirements of

the wireless communication bands.

Throughout this study, this hypothesis is thoroughly investigated and a systematic

methodology of maximizing the ∆/k2
t is described with real application examples such

as the 5g n41 and 5g n77 bands. The proposed methodology is proven with the pro-

totype filter design of sixth-order, which achieved a ∆/k2
t of 3.2. It is shown by sim-

ulations that the Hybrid-ACEM method can further achieve ∆/k2
t values above 4. To

the knowledge of the author, this is the largest bandwidth enhancement in the literature.

Improving the ∆/k2
t has the following benefits for the design of the AW based filters:

• It makes it possible to design wideband filters for the applications that need 30%

or more FBW values.

• It reduces or eliminates the need for Sc doping process on the AlN substrate,

which is an extra fabrication process.

• If the available k2
t is larger than the needed value by the Hybrid-ACEM design,

enforcing the k2
t to a higher value will result in better OOB rejection performance.

These benefits provide significant flexibilities for the design of on-chip filters. Overall,

the demonstrated method is an important candidate that can be extended for the design

of wideband fully on-chip microwave filters and opens a pathway for the integration of

the microwave filters on the system-on-a-chip applications.

8.3 Future Work

This dissertation includes the theoretical development of the methodology that opens

a new pathway to reduce the limitations of the on-chip microwave filters and a proof-

of-concept was designed using the available BAW resonators to the authors. The initial
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future work of this study includes the design of a fully on-chip filter for a wideband ap-

plication. An example circuit schematic diagram of a Hybrid-ACEM filter for on-chip

integration is shown in Fig. 8.2. The it should be observed that the EM resonator net-

work in the middle is completely converted into lumped components. The admittance

inverters between the resonators are converted into π-networks made of capacitors and

inductors and are absorbed into the adjacent resonators.
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Figure 8.2: An example Hybrid-ACEM filter with lumped components for on-
chipintegration. This example is designed for the 5g n77 band.

The circuit diagram for the on-chip implementation is aimed for the 5g n77 band

and the values of the lumped components of the design are depicted in Table. 8.1. It

should be realized that the values of the design are suitable for on-chip implementation,

except for the S-L coupling inductor Lext. This inductor has a value of 62.9 nH and

can be placed off-chip. In addition to the values of the lumped elements, the BVD

parameters of the BAW resonators are depicted in Fig. 8.2. It should be realized that

the k2
t values of the resonators are about 8.27% – 8.59%, which can be achievable with

the AlN based BAW technology.
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Table 8.1: Values of the lumped elements for the filter in Fig. 8.2

1 2 3 4 5 6 Ext

Ci (pF) 1.23 0.42 1.13 1.30 1.08 - -

Li (nH) 0.93 1.57 0.73 0.73 1.57 1.03 62.9

Table 8.2: Values of the BVD parameters for the filter in Fig. 8.2

.

SE1 SH1 SE2 SH2

C0 (pF) 3.69 4.68 3.38 4.26

Cm (fF) 270.2 338.4 258.9 321.3

Lm (nH) 5.12 7.84 5.38 8.253

k2
t (%) 8.38 8.27 8.69 8.59
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Figure 8.3: Simulation results of the designed Hybrid-ACEM filter for on-chip imple-
mentation.

The simulation results of the filter are depicted in Fig. 8.3. It should also be realized

that the required rejection levels of the n77 band are marked with the red lines and the
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simulated results meet the requirements. The quality factor of each inductor in the

design is set to 50, which gives a minimum insertion loss value of 1.38 dB. In addition

to the requirements of the n77 band, the simulation results also show strong rejection

at the far out-of-band.

It should be mentioned that the simulation results observed here does not include

electromagnetic simulations and are performed in Cadence AWR. Therefore, the cou-

pling between the inductors and capacitors are not captured and this will require more

work to be designed.
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Appendix A

Acronyms

KVL:Kirchoff’s Voltage Law,
CM:Coupling Matrix
AW:Acoustic Wave
AWR:Acoustic Wave Resonator
PFE:Partial Fraction Expansion
BVD:Butterworth Van-Dyke
EP:Extracted Pole
FBW:Fractional Bandwidth
FML:Filter with Moderate Loss
FHL:Filter with High Loss
RF:Radio Frequency
mmWave:Millimeter-Wave
NF:Noise Figure
SAW:Surface Acoustic Wave
BAW:Bulk Acoustic Wave
IDT:Interdigital Transducer
MEMS:Microelectromechanical Systems
NRN:Non-Resonant Node
SOC:System-on-a-Chip
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Appendix B

Lossy-Active Filters and the Lossy-Active Coupling Matrix

In this chapter, a new approach of using active resonators within the concept of lossy

filter design is presented. The objective is to recover the filter shape in the presence

of moderate to highly lossy resonators. Unlike the common active filter approaches,

where all the resonators are loss-compensated, the proposed design uses N − 2 active

elements for the shape correction. Furthermore, the lossy coupling matrix in [80] is

extended to propose the novel lossy-active coupling matrix for the first time. To prove

the concept, two third-order 20 dB equiripple 5% fractional bandwidth (FBW) filters

with different loss levels are designed and implemented. The first design recovers the

shape of the filter with a Qu of 100 at each resonator, whereas the second prototype,

illustrating the use of highly lossy resonators, recovers the response at a Qu of 28 at

each resonator. This study is published in [81].

B.1 Lossy Microwave Filters and Lossy Coupling Matrix

Until this point of the introduction of the coupling matrix, we have always synthesized

the coupling matrix to realize a Chebyshev response that has no attenuation in the pass-

band, meaning that there is no insertion loss. Once the coupling matrix of the design

is obtained, the resonators to realize the function are placed, the network results in a
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response with a finite insertion loss and selectivity reduction based on the following

three metrics: the quality factor of the resonators, the order of the filter, and the desired

fractional bandwidth,

In many applications, a flat passband and good selectivity is required in the design,

which cannot be obtained with the lossless coupling matrix and the use of finite-Q

resonators.

In this regard, a different technique to recover the filter response is the design of

lossy filters [76–80, 103–109]. In its essence, the concept is based on correcting the

filter response and selectivity by accepting additional insertion loss (IL) within the

passband. This technique was initially proposed in [103] as the classical method of

predistortion, where the design is based on shifting the poles of the transfer function

(S21) on the complex plane to account for the losses. It was further enhanced in [107]

by distributing the loss among the resonators using hyperbolic rotations and resistive

cross-coupling among non-adjacent nodes. Two other examples that include filters with

non-uniform dissipation are given in [76, 108].

Within the context of lossy filters, the lossy coupling matrix is introduced in [78–

80]. In [80], the lossy filter is characterized as a lossless filter with an input and an

output attenuator. The lossy coupling matrix is constructed by transferring the se-

ries resistances within the lumped element model of the attenuators towards the filter

resonators. Drawing on that idea, the generalized lossy N × N and the transversal

(N + 2)× (N + 2) coupling matrices (N being the filter order) are introduced in [78]

and [79], respectively. In [78], the complex coupling matrix is synthesized from the

lossy Chebyshev polynomials by considering its diagonalizability to its eigenvalue ma-

trix. Following that, the transversal lossy coupling matrix is generated directly from the

lossy admittance polynomials by using their residues in [79].

To distribute the losses evenly among the resonators or to manipulate the routing
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topology of lossy filters, hyperbolic rotations are used in [78] and [79]. In that re-

gard, performance metrics of inline and transversal lossy filter structures are compared

in [109] and loss equalization methods are proposed in [105] and [110]. The hyper-

bolic matrix rotations produce purely imaginary and/or complex inter-resonator cou-

pling mechanisms, which pose a challenge in terms of the practical implementation of

lossy filters. While that issue is briefly addressed in [78], a more exact passive real-

ization method based on resistive decomposition of the lossy coupling mechanisms is

presented in [110].

To correct the shape of the filter response when the resonators have finite quality

factors, an N th order lossy filter is synthesized with the method in [80]. The design

is based on the lossy synthesis method emulating the cascade of two attenuators at the

input and output of the lossless filter, each of which has an attenuation factor of k,

as depicted in Fig. 3 (a). The reflection and transmission responses of the lossy filter

(Slossy
11 and Slossy

21 ), are formulated in terms of those of the lossless one as:

Slossy
11 = k2Slossless

11 ,

Slossy
21 = k2Slossless

21 ,

(B.1)

where k is the attenuation factor in linear scale. In (2), the lossless filter responses

(Slossless
11 and Slossless

21 ) are characterized by the conventional polynomial synthesis

method and are given as in the following [111]:

|Slossless
21 |2 = 1− |Slossless

11 |2 = 1

1 + ϵ2|KN(s)|2
, (B.2)

where |KN(s)| is the N th degree characteristic polynomial of the filter function and ϵ

is the ripple factor.

Modeling the input and output attenuators as resistor-admittance inverter-resistor
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cascade as in Fig. B.1 (b), shifting the series resistors towards the filter resonators as

shunt conductances, and scaling the input/output inverters to unity as in [80], the circuit

in Fig. B.1 (c) is obtained. The lossy coupling matrix and the coupling diagram of that

filter are depicted in Fig. B.1 (d).

To achieve an attenuation factor of k with the attenuator model in Fig.B.1 (b), the

admittance inverter and the pair of resistors need to have the following relation [80]:

J = ± 1√
1−R2

, k =

√
1−R

1 +R
, (B.3)

where J is the value of the admittance inverter and R is the value of the resistor pair.

The additional entries in the coupling matrix, including the shunt conductances at the

non-resonating nodes (g′S and g′L) and at the lossy resonators (g′1 and g′N ), are formulated

as in the following:
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Figure B.1: (a): The lossy filter model in [80] as a starting point. (b): The resistor-
admittance inverter-resistor based model of the attenuators in (a) with an attenuation
factor of k in linear scale. (c): The synthesized lossy filter including loss in the input
and output resonators[80]. (d): The (N + 2)× (N + 2) lossy coupling matrix and the
coupling diagram of the filter in (c). In the coupling matrix and the diagram, S denotes
the source, L denotes the load and NRN is for the non-resonating nodes.

g′S = g′L = R =
1− k2

1 + k2
,

m′
S1 = ±mS1

√
1−R2, m′

NL = ±mNL

√
1−R2,

g′1 = Rm2
S1, g′N = Rm2

NL.

(B.4)

Considering (B.4), the initial parameter to be determined in the lossy filter design

is the attenuation factor k, as it determines the required unloaded quality factors of

the input and output resonators. To obtain the admittance inverter values in Fig. B.1
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(c) from the coupling matrix entries, the entries need to be scaled according to the

source/load resistances, the operating frequency, and the FBW of the bandpass filter.

The required quality factors at the input/output resonators depend on the attenuation

factor and the operating frequency.

Further observing Fig. B.1 (c) and (d), one can realize that there is no loss in the

resonators through 2 to N − 1. With the use of hyperbolic rotations and resistive cross-

coupling among different nodes, the loss could have been uniformly distributed among

the resonators of the filter [77, 80, 107], however, that is beyond the scope of this study.

Until this point, the resonators through 2 to N − 1 are still considered to be lossless.

B.2 Loss Compensation in Resonators

In Fig. B.2, an active resonator with a coupled feedback amplifier is depicted. The

amplifier is coupled to the resonator with the external quality factors of Q1 and Q2

through the impedance inverters K1 and K2.

Figure B.2: Illustration of an active loss compensated resonator.

The external quality factors Q1 and Q2 are dependent on both the impedance in-

198



verter values K1 and K2 and the input/output impedances of the amplifier. Assuming

that the input and output impedances of the amplifier are matched to 50 Ω, the external

quality factors are given as:

Q1 =
K2

1

50ω0Lr

and Q2 =
K2

2

50ω0Lr

. (B.5)

With the external quality factors of the amplifier loop, the effective active negative

resistance that is seen at the lossy resonator side can be calculated as [112]:

Rnegative =

(
−

K2
2

50

2GAmp
K2

K1
− 1

)
∥
(K2

1

50

)
, (B.6)

where GAmp is the voltage gain of the amplifier in linear scale. As mentioned in [112],

the full loss compensation at the lossy resonator is achieved when the negative resis-

tance in (B.6) has the same magnitude as the resistance of the parallel resonator Rr.

That equality will be achieved when the relationship between the amplifier gain (GAmp),

the unloaded quality factor of the resonator (Qur), and the external quality factors Q1

and Q2 have the following relation [112]:

GAmp =

√
Q1Q2

2
·
(
Q−1

ur
+Q−1

1 +Q−1
2

)
. (B.7)

In addition to (B.7), it is important that the phase response of the amplifier feedback

loop is an integer multiple of 360◦ for full loss compensation.

In the loss-compensated resonator, it is highly desirable to minimize the additional

noise figure contribution of the active portion. It has also been discussed in [112–114]

that the minimum noise with an active resonator can be achieved when the following

relationship is satisfied:

Q2 = G2
AmpQ1. (B.8)
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Combining (B.7) and (B.8), one can obtain the following relationships between the

external quality factors and the amplifier gain:

Q1 =
G2

Amp − 1

G2
Amp

Qur and Q2 = (G2
Amp − 1)Qur . (B.9)

Therefore, it is important to satisfy the relations in (B.9) to have a fully loss compen-

sated resonator with minimum additional noise figure from the amplifier. This design

technique provides the flexibility of using resonators with arbitrary unloaded quality

factors to start with as long as the impedance inverters providing the external quality

factors (Q1 and Q2) are realizable. For convenience, the resonators 2 through N − 1

are chosen to be identical to the first and the last resonator of the filter in this study.

Apart from the input and output coupling of the amplifier (K1 and K2), the NF of

the active resonator stage is determined by several factors. These include the external

quality factors that are introduced to the resonator, the gain of the feedback amplifier,

and most importantly, the unloaded quality factor of the passive resonator. Considering

that the relations in (10) are satisfied for the active resonator in Fig. B.2, the minimum

noise figure of the resonator stage is given by [112, 114]:

Fmin = Fpassive +
Qe

Qu

M, where

M =

(
F − 1

1− 1
G2

Amp

)
and Fpassive = 1 +

Qe

2Qu

.
(B.10)

In (B.10), M is the noise measure of the amplifier [112] and Fpassive is the NF of the

passive resonator when the amplifier network (including K1 and K2) is not connected.

A fundamental observation regarding (B.10) is that the noise figure of the active res-

onator has to be greater than Fpassive and it is highly dependent on the noise measure

of the amplifier. The effect of slight variations of K1, K2, and the noise measure on
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the noise figure of the resonator was thoroughly discussed in [112]. It is important to

emphasize that the noise figure given by (B.10) is the noise figure of the single active

resonator and not the overall filter. The effect of the noise figure of active resonators on

the entire filter is dependent on different factors including the order of the resonators

and the placement of the active resonator among them. Those factors were discussed

and a noise figure estimate was done for a band-eliminate filter in [115].

B.3 The Lossy-Active Coupling Matrix

Having a coupling matrix representation of the filter makes the design more versatile.

In this section, the new lossy-active coupling matrix is introduced as an extension to

the lossy coupling matrix. The goal is to integrate the feedback amplifier network as an

additional non-resonating node.

The circuit schematic in Fig. B.3 (a) depicts the final lossy-active filter when all

resonators have the same unloaded quality factor and the resonators 2 through N − 1

are loss-compensated with the method described in Section II-B. The new lossy-active

coupling matrix is depicted in Fig. B.3 (b) and the routing diagram is given in Fig. 5 (c).

The lossy-active coupling matrix has the same entries as the lossy coupling matrix

except for the included loss at the resonators 2 through N − 1 (highlighted in black)

and additional active non-resonating nodes that include the amplifier loops as negative

resistances. As all the resonators have the same Qu without the loss compensation,

g′1 = g′2 = ... = g′N should be satisfied. To be considered a coupling matrix entry, the

negative resistances at the non-resonant nodes should be normalized with respect to the

center frequency and the bandwidth. This is done by substituting the external quality

factor values at the ith active resonator (Q1i and Q2i) in (6) for the non-normalized

negative resistance in (7) and scaling it so that the ith resonator in Fig. 5 (a) resonates
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at ω0 = 1/
√
LiCi for i ∈ {2, 3, ..., N − 1}. Therefore, each negative normalized

conductance (gai) in the lossy-active coupling matrix in Fig. B.3 (b) is found by:

gai =
1

FBW

[ 1

Q1i

− 1

Q2i

(
2GAmpi

√
Q2i

Q1i

− 1
)]

,

where i ∈ {2, 3, ..., N − 1}.

(B.11)

When the external quality factors Q1i and Q2i and the amplifier gain in each active

resonator GAmpi satisfy the equality given in (B.11), it can be shown that the normal-

ized negative conductance gai has the exact same magnitude as g′i in the lossy-active

coupling matrix. For the lowest noise figure contribution, they also need to attain the

values given in (10).

(a)

(b) (c)
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Figure B.3: (a): The lossy-active filter with loss compensation in the resonators 2
through N − 1. (b): The lossy-active coupling matrix that characterizes the network
in (a). (c): The routing diagram of the filter. NRNin and NRNout represent the non-
resonant nodes at the input and output. NRNai denotes the ith amplifier loop as a single
non-resonating node that acts like a negative resistance.

The value of the additional coupling coefficient, miai in Fig. B.3 (b), is also critical

202



for coupling each active non-resonant node to the resonating node of the ith active

resonator. It can be found by considering the fact that the coupling matrix entries

between the nodes are normalized admittance inverter values. In that regard, for the ith

resonant node such that i ∈ {2, 3, ..., N−1} to see the exact shunt negative conductance

of (12), the value of the coupling coefficient is given as: miai = ±gai .

The lossy-active coupling matrix model that is proposed in this section models the

input and output coupling of the amplifier as embedded within the active non-resonant

node rather than considering them as separate coupling coefficients. An alternative

model is given in the next section.

B.4 Alternative Representation of the Lossy-Active Coupling Ma-

trix

Rather than considering the loss compensation network as a single node, the input and

output nodes of the amplifier can also be considered as separate non-resonant nodes.

𝟏

𝐒 𝐋

𝟐 𝑵−𝟏
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(a) (b)

Figure B.4: (a): The alternative representation of the lossy-active coupling matrix and
(b): the routing diagram for the coupling matrix in (a). This representation includes the
input and output nodes of the amplifier as NRNain

i
and NRNaout

i
, respectively.

Splitting up the input and output nodes of the amplifier network, an alternative

representation of the lossy-active coupling matrix is depicted in Fig. B.4 with a new

routing diagram. The new nodes NRNaini
and NRNaouti

in the routing diagram represent
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the input and the output nodes of the ith feedback amplifier, such that i ∈ {2, 3, ..., N −

1}. In this coupling matrix, the shunt conductances at the amplifier input and output

are denoted as gaini and gaouti
, respectively. Their values are found by separating the

negative normalized conductance in (B.11) as:

gaini =
1

FBW ·Q1i

,

gaouti
= − 1

FBW ·Q2i

(
2GAmpi

√
Q2i

Q1i

− 1
)
,

where i ∈ {2, 3, ..., N − 1}.

(B.12)

The coupling coefficient between the amplifier input and its corresponding res-

onator is given by: miaini
= ±gaini , whereas the coupling between amplifier output

and the resonator is given by: miaouti
= ±gaouti

. It should be noted that the coupling

configuration in Fig. B.4 does not take into account the coupling between the ampli-

fier input and output, however, the effect of the input signal on the output is already

embedded in (B.12).

B.5 Design and Analysis

To verify the proposed approach and demonstrate designs of different order, this section

evaluates the performance of the method for different loss levels. For that purpose,

filters of third-, fourth-, and fifth-order are designed using the circuit topology given in

Fig. 5 (a).

The third-order filter examples include designs with resonator quality factor values

of 200, 100, 50, and 28 which correspond to insertion loss values of 1.49 dB, 3 dB,

6.17 dB, and 12 dB, respectively. The fourth- and fifth-order design examples include
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filters with insertion loss values of 3 dB and 12 dB. To have these insertion loss values,

the corresponding quality factors are calculated as 108 and 31 for the fourth-order and

114 and 32 for the fifth-order filters. The designs are performed by denormalizing the

lossy-active coupling matrix for a center frequency of 1 GHz and 5 % FBW.

The transmission and reflection responses of the filters are depicted in Fig. B.5

(a) for the third-order case and in Fig. B.6 (a) and (b) for the fourth- and fifth-order

designs, respectively. The same figures also show the responses of the conventionally

designed (i.e., using the g-coefficients) filters when each of their resonators has quality

factors of 200, 100, 50, and 28 for the third-order, 108 and 31 for the fourth-order, and

114 and 32 for the fifth-order. Other parameters of the eight different designs, including

the attenuation factor (k), noise figure, and insertion loss are listed in Table 1.
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(a) Filter Response 

(b) Noise Figure,

(d) Noise Figure,(c) Noise Figure,
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|𝑆11|

|𝑆21|

Figure B.5: (a): Recovery of the filter responses with the use of the proposed approach.
Four different filter examples with quality factors of 200, 100, 50, and 28 in each res-
onator are depicted. For comparison, the responses of traditional design with the same
quality factors on each resonator are also shown. The solid lines demonstrate |S11| and
the dashed lines illustrate |S21| of each filter. (b): Theoretical noise figure responses of
the proposed designs in (a). The figure shows the noise figures for an amplifier with
different noise figure values. (c) and (d): Noise figure responses when the amplifier
input and output coupling inverters are not properly tuned.
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Figure B.6: Filter responses of the fourth- and fifth-order design examples are depicted
in (a) and (b) whereas their noise figure responses are depicted in (c) and (d), respec-
tively. As in Fig. B.6, the filter responses are compared with the corresponding design
examples which have resonators of the same quality factors as in their lossy counter-
part.

As observed in Fig. B.5 (a), the third-order filters designed with the proposed

approach have the prescribed equiripple responses with the desired FBW and center

frequencies. Not only can the proposed design reconstruct the response of the filter

having a Qu of 200 for each resonator, but it can also accomplish that for the severely

perturbed transmission and reflection responses of the filter having a Qu of 28 in each

resonator. Further observing Fig. B.5 (a), it should also be noted that the shape recovery

is achieved at the cost of additional IL for the third-order designs. This additional loss

will be referred to as the accepted loss (AL) and is defined as the difference between

the insertion loss of the traditional and the proposed designs. Comparing the responses

in Fig. B.5 (a), it is observed that both the insertion loss and the accepted loss levels

increase with the reduced resonator quality factors.
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Table B.1: Parameters of the design examples of order three, four, and five. In the
table, k denotes the attenuation factor, IL denotes the insertion loss, AL stands for the
accepted loss, RcL is for recovered loss, and NF depicts the noise figure of the filters
when amplifier external quality factors satisfy (9).

Ord. k
IL

(dB)
Qu

AL/RcL

(dB)

NF

(dB)

Ex.1 3 0.918 1.49 200 0.26 (A) 1.94

Ex.2 (FML) 3 0.841 3 100 0.57 (A) 3.75

Ex.3 3 0.701 6.17 50 1.33 (A) 7.16

Ex.4 (FHL) 3 0.500 12 28 3.63 (A) 12.94

Ex.5 4 0.841 3 108 0.38 (Rc) 4.60

Ex.6 4 0.5 12 31 0.26 (Rc) 13.95

Ex.7 5 0.841 3 114 1.93 (Rc) 5.23

Ex.8 5 0.5 12 32 4.92 (Rc) 14.66

The fourth- and fifth-order filter responses, which are designed to have insertion

loss values of 3 dB and 12 dB, are shown in Fig. B.6 (a) and (b). As observed, these

designs also have the prescribed filter responses. The shape perturbation in the con-

ventional designs gets more severe as the filter order increases, which emphasizes the

importance of the proposed method. While resonator quality factors at the order of 100

can produce acceptable filter responses using the traditional design of third-order, the

same resonators yield significant filter shape degradation and additional insertion loss

for the fourth- and fifth-order designs.

Unlike the third-order case, for the response of fourth- and fifth-order designs, the

insertion loss of the proposed approach is lower than that of the conventional method.

This is due to the fact that the number of loss-compensated resonators increases in

the higher-order filters. In that case, the difference between the insertion loss of the

traditional and the proposed approach is referred to as the recovered loss (RcL) in Table
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1.

To examine the noise figure of the designs and the effect of the feedback amplifier

noise figure on it, Fig. B.5 (b) depicts the simulated filter noise figures for three different

amplifiers. These simulations are performed in AWR (Cadence Design Systems, San

Jose, CA) design environment. The simulation models contain closed-form lumped

and distributed elements. Furthermore, the compensation network uses the non-linear

amplifier model with a flat gain of 15 dB within the frequency band of 0.5 GHz to 1.5

GHz. The input and output of the amplifier are matched to 50 Ω and the specified noise

figure values in Fig. B.6 (b) are for a 50 Ω source.

For the amplifier noise figure values of 0.7 dB, 1.5 dB, and 3 dB, the simulated

noise figures of the third-order designs are depicted in Fig 7 (b) when the external

quality factors due to the amplifier (Q1 and Q2) satisfy the minimum noise condition in

(9) and (10). As observed, an increase of 2.3 dB in the amplifier noise figure yields a

filter noise figure increase of 0.54 dB and 0.46 dB when filter resonator quality factors

are 28 and 100, respectively. Considering these results, it is seen that the increased

amplifier noise figure has a minor impact on the overall noise figure of the third-order

designs, as long as (9) is satisfied.

Another important point is that the external quality factors Q1 and Q2 greatly affect

the overall filter noise figure. It was shown in [112–114] that slight external coupling

variations that violate (9) yield significant filter noise figure degradations. To illustrate

that, the third order designs with resonator Qu values of 100 and 28 are simulated with

detuned amplifier input and output coupling as given in Fig. B.5 (c) and (d). The

corresponding S11 and S21 responses of the filters in Fig. B.5 (c) and (d) match the

ones in Fig. B.5 (a) as Q1 and Q2 still satisfy the loss compensation condition given

by (8). The effect of the increasing amplifier noise figure is exacerbated by the detuned

coupling mechanisms. In particular, the 2.3 dB of amplifier noise figure increase yields

209



a noise figure increase of 0.79 dB when Q2/G
2
ampQ1 = 0.5 and 1.9 dB when that ratio

is 0.1 for the case of Qu = 100. Therefore, this noise figure sensitivity should also be

taken into account if the minimum noise figure is desired.

Finally, the noise figure responses of the fourth- and fifth-order designs are depicted

in Fig. B.6 (c) and (d), respectively. It should be noted that the amplifiers at the active

networks in each design are identical and have a gain of 15 dB as in the third-order

case. The noise figures of the active filters increase further beyond their corresponding

insertion losses, as the order of the filter increases. Furthermore, the sensitivity of the

filter noise figure also increases when the noise figure of the amplifiers gets higher in

the higher-order designs.

B.6 Methods of Implementation

Among the examples in the previous section, the third-order filters with resonator qual-

ity factors of 100 and 28 are implemented using microstrip technology. These proto-

types are referred to as the filter with moderate loss (FML) and the filter with high loss

(FHL), respectively. Their corresponding lossy-active coupling matrices are depicted

in Fig. B.7. As observed, the lossy-active coupling matrices have negative imaginary

entries at the diagonal elements, which represent the loss at each resonating and non-

resonant node. Furthermore, each matrix also includes a diagonal entry with a positive

imaginary term, representing the negative conductance at each active node. The mag-

nitude of the normalized resistance at the second resonating node is equal to the mag-

nitude of the active negative resistance, which corresponds to full loss compensation in

the middle resonator of the lossy-active filter prototypes.
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Figure B.7: The lossy-active coupling matrices of the FML and the FHL. The matrices
are denoted as MFML and MFHL, respectively. In the illustrations, the feedback
amplifier network is considered as a negative resistance, as presented in Section II-C.

Using the lossy-active coupling matrices, the initial step in filter implementation

is design of the lossy resonators, according to their lumped equivalents in Fig. B.3

(a). Considering that half-wave open-ended microstrip lines emulate parallel RLC res-

onators, the equivalent lumped impedance parameters are given as in the following

[116]:

Rm =
Z0

αl
, Cm =

π

2ω0Z0

, Lm =
1

w2
0C

, (B.13)

where Rm, Lm, and Cm denote the equivalent resistance, inductance, and the capaci-

tance of the microstrip resonator and α is the attenuation constant (Nepers/m). Using

(B.13), the quality factor can be calculated as Qum = Rm/ω0Lm.

While the quality factor of 100 can be achieved with a microstrip resonator alone,

the required Z0 to get a Qu of 28 is impractically high. Therefore, shunt resistors are

used at both ends of the half-wave microstrip lines to reduce the Qu of the resonators

down to 28 for the FHL.

The inter-resonator coupling mechanisms are implemented using parallel edge-

coupling and the desired coupling strength (Mij) is achieved using:

Mij = FBW ·mij, (B.14)
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where mij is the coupling coefficient between ith and j th resonator in the coupling ma-

trix given by Fig. B.3 (b).

The input and output admittance inverters are realized using quarter-wave trans-

formers in both designs. Their characteristic impedances are calculated by denormal-

izing the coupling matrix entries (m′
S1) and (m′

3L). The unit impedance inverters con-

nected to the first and last resonators in the coupling matrix of Fig. B.3 (b) are scaled

to have quarter-wave lines with realizable characteristic impedance values.

Figure B.8: The HFSS layouts of the filters. (a): Layout of the FML with magnified
3-D views at the non-resonant node and the amplifier network. (b): Layout of the FHL.
The characteristic impedances, resonating and non-resonant nodes, and the resistors of
both prototypes are marked and their values are shown in Table 2.

To implement the amplifier coupling at the middle resonator, edge coupling is used.

The external quality factors Q1 and Q2 are calculated using (10). The amplifier for
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Table B.2: The characteristic impedance and resistance values of the FML and FHL, as
depicted in Fig. B.9.

Characteristic Impedances (Ω)

Z0
0 Z1

0 Z2
0 Z3

0 Z4
0 ZFML

0 ZFHL
0

50 29.9 98.6 36.8 125.4 67.6 38.4

Resistances (Ω)

Ramp RFHL RFML
NRN RFHL

NRN

50 1500 82 45

achieving an infinite Qu at the middle resonator is chosen to have a flat gain of 15 dB

at the 0.8 to 1.2 GHz band.

The circuit-based simulations of the designs are carried out in AWR, whereas the

electromagnetic (EM) simulations are done in HFSS Electromagnetic Suite (ANSYS,

Cannonsburg, PA). The HFSS layouts of the prototypes are depicted in Fig. B.9. In

that figure, transmission line impedances within the filter network are marked with the

superscripts of Z0. The characteristic impedances of the FML and FHL resonators

are denoted as ZFML
0 and ZFHL

0 . Similarly, the termination resistors of the amplifier

are denoted with Ramp, shunt resistors at non-resonating nodes of FML and FHL are

shown as RFML
NRN and RFHL

NRN , and the shunt resistors to adjust the quality factors of FHL

resonators are called as RFHL, respectively. The values of these parameters after tuning

are shown in Table 2.

The physical dimensions of the FML and FHL are given as (14.6 cm × 13.9 cm)

and (14.6 cm × 11.3 cm), respectively. It should be noted that no attempts were made

to miniaturize the prototypes as the goal of this study was to demonstrate the shape

correction.
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B.7 Fabrication and Measurements

To validate the proposed method, both prototypes were fabricated on a RO 4350B Lo-

Pro (Rogers Corp., Chandler, AZ) 30-mil-thick substrate with a copper thickness of

17.5 µm. For precise board patterning, an LPKF ProtoLaser U4 (LPKF, Garbsen,

Germany) was used. For the lumped capacitors at the amplifier network, multilayer

ceramic capacitors from Murata Electronics (Kyoto, Japan) and for the RF-choke in-

ductors, Murata spiral inductors were used. For the amplifiers of the loss compensation

networks, PGA-103 low noise amplifier from Mini-Circuits (Brooklyn, NY) was used

with its prescribed stabilization network [117].

The fabricated prototypes of the FML and the FHL are depicted in Fig. B.9 (a)

and (b), respectively. To account for the discrepancies between simulated and actual

resonator properties, a single resonator of each design was fabricated and measured.

In order to measure the resonant frequencies and quality factors of the resonators, they

are weakly coupled to the input and output ports using edge coupling, as depicted in

Fig. B.9 (c) and (d). The measured quality factors of the single resonators at 1 GHz are

132.2 and 24.6 for the FML and FHL, respectively. After tuning for the slightly higher

measured Qu, it was observed in the simulations that the FML yields a response with

approximately 4% of FBW at an insertion loss level of 3 dB. For the case of FHL, the

measured quality factor was close enough to the simulated one, so it did not noticeably

change the response.
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Figure B.9: The fabricated prototypes. (a): FML, (b): FHL, (c): A single resonator
of FML, (d): A single resonator of FHL, and (e): The feedback amplifier in the loss
compensation network.

To precisely determine the forward gain, phase contribution, noise figure, and the

non-linearity of the amplifier, a single amplifier network is also fabricated and mea-

sured, as depicted in Fig. B.9 (e). The gain of the amplifier is measured to be approxi-

mately 15.6 dB and the noise figure is around 0.69 dB at a frequency of 1 GHz. To get

accurate phase response measurements, the SMA connector lengths were de-embedded

from the measured amplifier parameters in simulations. The 1-dB input and output

compression points (IP1dB and OP1dB) of the amplifier are measured as 7.9 dBm and

22.5 dBm whereas the input and output third-order intercept points (IIP3 and OIP3) are

measured as 26.5 dBm and 41.9 dBm. Furthermore, the DC power consumption of the

prototypes are measured as 0.5 W. For an N th order active filter using the proposed de-

sign technique, therefore, the power consumption is approximated as (N − 2)× PAmp,

where PAmp is the power consumption of the feedback amplifier within its linear oper-

ating region.

S11 and S21 measurements of the both prototypes are performed using an Agilent

PNA N5225A (Keysight Technologies, Santa Rosa, CA) network analyzer. The noise

figure measurements were taken with an Agilent PSA E4448A spectrum analyzer and
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an Agilent 346B calibrated noise source. For the noise figure measurements, the Y-

Factor method [118] was used with a measurement bandwidth of 1 MHz and 10 aver-

ages. Furthermore, an external LNA was cascaded to the network and the noise figure

of a 15 dB attenuator is measured with the same setup to verify the accuracy of the

measurements. IP1dB and OP1dB of the prototypes at 1 GHz are measured using an

Agilent signal generator, the Agilent PSA E4448A spectrum analyzer, and a highly

linear Mini-Circuits power amplifier (ZHL-10W-2G+) with 43.4 dB gain, 41.72 dBm

OP1dB, and 53.5 dBm OIP3. The IIP3 and OIP3 levels of the prototypes are measured

using the same signal source, power amplifier, and spectrum analyzer with 1 MHz tone

spacing.

The theoretical and measured S-parameters for the FML and FHL are depicted in

Figure 12. As observed, there is good agreement between the measured and theoreti-

cal responses for the FML. The measured insertion loss of FML is 2.92 dB at 1 GHz

and its FBW is 4.2 %. The slightly narrower bandwidth is a result of re-tuning the de-

sign in order to account for the slightly higher measured quality factors than expected.

For FHL, the measured and theoretical transmission responses are in good agreement

with the fabricated prototype having an insertion loss of 11.82 dB. Considering the re-

flection response, the three pole locations are at the correct frequencies, however, the

slightly detuned input and output coupling inverters cause a slight mismatch between

the measured and theoretical responses. Overall, both prototypes have the desired filter

response and selectivity.
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Figure B.10: Comparison of the theoretical and measured responses. The first row
depicts the filter responses of FML and FHL whereas the second row demonstrates the
noise figure responses. For the filter responses, the solid lines depict the |S11| and the
dashed lines illustrate the |S21| of each filter.

IG: Insertion gain, TZ: Transmission zero.

Figure B.11: Table of comparison with other relevant studies in literature.

The theoretical and measured noise figures of the FML and the FHL are also de-

picted in Fig. B.10. The measured noise figure values of the designs are 5.19 dB for

FML and 14.2 dB for FHL at 1 GHz, whereas the theoretical values are 3.76 dB and

12.97 dB, respectively. It should be noted that the theoretical noise figure results come
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from the AWR simulations with closed-form lumped elements and do not take into ac-

count the losses due to the microstrip line inverters. The reason for including those

simulation results was to demonstrate the theoretically achievable noise figure for both

prototypes. Another reason for the discrepancies between the simulated and measured

noise figures is the re-tuned input and output coupling inverters of the amplifier to

achieve the best shape correction.

Finally, the non-linearity performances of the prototypes are depicted in the table

of Fig. B.11. As both prototypes attenuate the input signal, the input-related non-

linearity metrics (IP1dB and IIP3) and the output-related measurements (OP1dB and

OIP3) are considered separately. As observed, the input compression point of FML is

much higher than that of the FHL for a simple reason that the insertion loss difference

between the amplifier ON and OFF states is much higher in FHL. In other words, a

higher percentage of the energy is passing through the amplifier in FHL to compen-

sate for the lower quality factor. An important point to be observed is that the input

compression point and the third intercept of both prototypes are better than that of the

amplifier that is used within the design of the prototypes. This is a result of the input

power to the filter being shared within the resonators and the active network. This way,

the amplifier is exposed to less power than the incoming input power to the active filter.

The table in Fig. 13 provides a comparison of several performance metrics of the

related studies in the literature. The compared studies include the applications of ac-

tive filters and lossy filters separately. To that end, the proposed method in this study

is a hybrid implementation of lossy filters and active filters. Results of the two ex-

ample prototypes show that the proposed design approach is realizable and the shape

correction can be achieved using resonators with arbitrary quality factors. It should

be noted that the shape correction is achieved at the cost of increased noise figure and

non-linearity when the resonator quality factors are very low. Therefore, the initial
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consideration with this design approach is to use resonators with the highest achievable

quality factors within the design limits. Depending on the design, a pre-amplifier stage

might be required to compensate for both the noise figure and the insertion loss if the

available resonators have very low quality factors. This results in the prescribed filter

selectivity with no insertion loss and reduced noise figure, which cannot be achieved

by amplifying a perturbed filter response.

B.8 Conclusion and Discussion

Using the coupling matrix theory for highly lossy applications has always been a chal-

lenge for filter designers due to severe response shape degradations. In this study, a new

method of synthesizing lossy filters with the use of an active quality factor enhancement

method is presented. Unlike most active filter approaches, in which the active quality

factor enhancement is used in every resonator, this study aims to minimize the number

of active elements within the design.

For the design stage, a new concept of lossy-active coupling matrix is introduced.

With that approach, this study represents an initial transfer of the lossy filter design

theory to the highly lossy applications such as PCB-based or MMIC filters. Using

the lossy-active coupling matrix and possible matrix rotations, higher-order filters can

be designed using resonators with arbitrary quality factors. This will require future

solutions including active inter-resonator coupling mechanisms. Therefore, the design

theory in this study provides a new step towards implementing high selectivity filters

with prescribed responses using resonators with limited quality factors. This proposed

method facilitates the future integration of analog filters with improved performance

into receiver front ends in system-on-a-chip applications.
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