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Abstract: Climate change is exacerbating drought disturbances, reducing forest 

productivity, and causing increased forest mortality. Manipulating tree size and overall 

forest structure are two important components that are being considered by forest 

managers to help combat losses in forests. When it comes to tree size, however, there are 

inconsistent findings on which sizes are most vulnerable to drought; and when it comes to 

forest structure, there are inconsistent findings on whether stand structural diversity 

(SSD) is beneficial for promoting productivity. We conducted two meta-analyses to help 

better understand these factors, one for tree size and one for forest structure. Based on our 

results, we found that both tree size effects and forest structure effects are highly complex 

and rely on multiple biotic and abiotic factors. Notably, for tree size effects on drought 

induced mortality, we discovered that larger trees are initially more resistant to drought 

but become more vulnerable during longer droughts. They also tend to show higher 

mortality during drought from increasing insect disturbances. For forest structure, we 

found that increased SSD increases productivity in stands with larger average tree size, 

higher basal area, higher average temperatures, and higher levels of drought. My results 

indicate that forest managers will need to consider the specific factors that affect tree size 

and forest structure if they want to effectively manipulate forest structure and tree size to 

manage forests in the future. 
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CHAPTER I 
 

 

INTRODUCTION 

 

 Understanding forest dynamics is becoming increasingly important as climate 

change amplifies drought events and raises temperatures, leading to productivity losses in 

forests globally (Bradford et al., 2020; Senf et al., 2020; Hammond et al., 2022). These 

losses could severely damage forests around the world, which would have both economic 

and ecological ramifications. In Oklahoma alone, forestry industries contributed $5.6 

billion to our state’s economy and supports over 18,450 jobs that could be at risk (Gore et 

al. 2022). From an ecological standpoint, carbon sinks in forests provide a natural climate 

solution (Fargione et al., 2018) and losses in forests could result in more carbon being 

released into the atmosphere, thus further contributing to climate change, and creating a 

positive feedback loop where climate change continues to damage forests which 

continues to escalate climate change. Additionally, forests provide habitat to wildlife and 

others to help sustain biodiversity necessary for maintaining healthy ecosystems (Storch 

et al., 2018).
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Understanding forest structure is important when it comes to understanding forest 

dynamics. For an individual tree, its size directly correlates with how much money it is 

worth. Larger trees can be sold as sawtimber which is worth nearly double the value per 

ton of pulpwood that comes from smaller trees. Additionally, the largest one percent of 

trees are the main predictors of carbon storage potential in a forest (Ali et al. 2019). 

Overall, forest structure makes up a large part of the trait variation in forests that can 

improve models used for predicting future vegetation and its constraints (Diaz et al. 

2016) which will be essential as weather patterns and disturbance regimes continue to 

change. 

To fully understand forest dynamics, we need to understand the effects that tree 

size and stand structure have on them. To accomplish this, I conducted two global-scale 

meta-analyses where I compiled data from all available studies on the topics and 

compared their results in a systematic way. My first meta-analysis is focused on the 

effects of tree size on drought-induced tree mortality, and it looked to answer the 

question of whether larger or smaller trees are more likely to die during droughts. The 

second analysis examined whether stand structural diversity (SSD) is beneficial to forest 

productivity. For both studies I examined the heterogeneity in results to investigate how 

biotic and abiotic factors may affect the two relationships. In doing this, we aimed to 

create a better understanding of how forest dynamics can be altered by tree size and 

forest structure. This work can be used to improve forest modeling predictions and forest 

management around the world.  
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CHAPTER II 
 

 

A META-ANALYSIS EXAMINING THE RELATIONSHIP BETWEEN TREE SIZE 

AND DROUGHT INDUCED TREE MORTALITY 

 

Introduction 

Anthropogenic climate change -- driven by accelerated warming from human 

emissions -- is amplifying the frequency, intensity, and severity of droughts in many 

forests around the world, resulting in increased pulses of forest mortality (Brodribb et al., 

2020; Senf et al., 2020; Hammond et al. 2022). Notably, tree mortality may vary with a 

gradient of tree size, e.g., tree diameter or height (Grote et al., 2016). Meanwhile, trees of 

different sizes make different ecological contributions, given the crucial roles of 

vegetation structure in plant dynamics (Díaz et al., 2016) and ecosystem functions (Ali & 

Wang, 2021; Migliavacca et al., 2021); including forest carbon dynamics (Slik et al., 

2013; Gora & Esquivel-Muelbert, 2021), tree mortality, and fecundity (Clark et al., 

2021), and wildlife habitat suitability (Feng et al., 2020). Therefore, understanding the 

variation in drought-induced mortality with tree size is critical to project forest dynamics 

and ecosystem functions under the changing climate.
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The effects of tree size on mortality arise from a range of related ecophysiological 

variation. Compared with small trees, large ones often have more vulnerable hydraulic 

structures partly owing to their more exposed canopy for transpiration, increased distance 

of water conductance from soil to canopy (McDowell & Allen, 2015), and wider water-

transporting conduits (Olson et al., 2018; Fajardo et al., 2020; Guillemot et al 2022). 

These factors hinder water movement to tree canopies and increase the risk of xylem-

blocking embolisms forming, potentially leading to greater mortality of large trees rather 

than small ones under the same plant-level drought intensity, resulting in a positive 

relationship between tree size and mortality, e.g., Stovall et al. (2019). Therefore, 

increasing drought frequency and severity due to climate change may result in shorter 

forests in the future (Fajardo et al., 2019; McDowell et al., 2020). Nevertheless, this 

positive relationship is not consistently supported by all observations, likely due to a 

range of confounding factors. Although Bennett et al. (2015) summarized multiple 

studies on the tree-size effect on drought-induced mortality, the heterogeneity has not 

been rigorously quantified, and drivers of heterogeneity have not been thoroughly 

examined in previous studies. Therefore, there are important knowledge gaps in the tree-

size effects on tree mortality during drought.  

The relationship between tree size and mortality may be confounded by a range of 

abiotic and biotic factors, such as drought duration, impact of insects on the mortality 

process, and competition. Drought duration significantly affects forest dynamics (Gao 

2019). Notably, compared with small trees, large trees tend to be less affected by short 

droughts because of their access to deeper soil water (Giardina et al., 2018; Chitra-Tarak 

et al., 2021; Ding et al., 2021) (Fig. 1). In contrast, during a longer drought, the depletion 
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of deeper soil water intensifies and the water loss from deep soil may not be replenished 

sufficiently by small precipitation events (Fig. 1), leading to more drought stress on large 

trees than small ones (Chitra-Tarak et al., 2018). Therefore, larger trees showed poorer 

recovery, particularly following extreme drought years (Bohner & Diez, 2021), and 

correlations between tree size and mortality are hypothesized to be more positive with 

longer drought duration.  

 
Figure 1. Conceptual figure showing a simplified comparison between small and large 

trees under short and long droughts. Larger trees still have access to deeper soil water 

during short droughts, but during prolonged droughts, the deeper soil water is depleted 

and the larger trees are then at a disadvantage due to their large size and limited resources 

to support themselves. 

In addition to drought duration, we examined the interactions between tree size 

and drought-induced mortality with insects, basal area, and natural vs artificial droughts.  

Several types of insects preferentially attack larger trees (Stephenson et al., 2019; Tai et 

al., 2019; Koontz et al., 2021; Trugman et al., 2021). When insect-associated mortality 

occurs with drought, mortality among larger trees likely increases. Greater competition 



6 
 

for water resources occurs in stands with greater competition and stocking, i.e., higher 

basal area (Andrews et al., 2020, Bradford 2022), potentially leading to more mortality of 

large trees given their more vulnerable hydraulic structure. We also examined effects of 

drought origin: natural vs. artificial drought. Considering that artificial drought (e.g., 

controlled rainfall reduction or decreased watering) may not fully simulate impacts of 

natural droughts, we hypothesize that the size-mortality correlation varies between 

natural and artificial drought.  

Because the relationship between tree size and mortality is likely context-

dependent identifying these factors is essential to improve the understanding and 

projection of forest dynamics under drought and to inform forest management from a 

structural perspective. To understand the complex relationship between tree size and tree 

mortality under drought, we reviewed 688 papers from a literature search based on 

multiple keyword combinations. We filtered these papers and extracted measures of tree 

mortality, tree diameter, sample number, site location, drought timing, whether insect 

presence was documented (or undocumented), and stand basal area. With the measures of 

tree mortality, tree diameter, and study sample size, we conducted a meta-analysis to 

quantify heterogeneity in the relationship between tree size and mortality. Using 

measures of these potentially confounding factors, we conducted a meta-regression 

analysis to test our hypothesis that correlations between tree size and mortality 

significantly vary with drought duration, insect documentation, basal area, and drought 

origin.  

Methods 
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Data Collection 

The data used in this meta-analysis were collected from research studies 

published before 2021 that reported drought-induced mortality of different sized trees. 

For this meta-analysis, we searched the Scopus database using keywords: (drought OR 

water stress) AND (forest OR tree OR rainforest OR woody OR shrub) AND (diameter 

OR height OR size OR DBH* OR architecture OR demography OR structure) AND 

(mortality OR death). This search produced 688 articles that contained the above 

keywords in their titles, abstracts, or listed keywords. These articles were further filtered 

by reading through their titles and abstracts to ensure that selected studies cover tree 

mortality during drought. Then, the remaining studies (205 articles) were refined further 

by reading their methods and results to ensure that they contained the necessary data for 

meta-analysis. For a study to be included in the meta-analysis, it needed to include: (a) a 

drought event, either natural or artificial; (b) tree mortality rates for at least three tree-size 

groups throughout the drought event; (c) sample sizes (or tree number) of each tree size 

group. Following that process, we included 19 articles, which reported 32 correlations 

between tree size and mortality at 24 unique locations, covering different ecoregions and 

forest types (Fig. 2). The data of mortality rates and sample sizes were either directly 

stated in the study or extracted from figures using the ImageJ program 

(https://imagej.nih.gov/ij/) to measure the lengths of bar graphs (or other graph types). 

Tree size group was reported as Diameter at Breast Height (DBH) classes in all studies 

that were used in this analysis. We used DBH as our metric for tree size because DBH is 



8 
 

generally related to tree height and DBH is the most widely used metric for determining 

tree size across the studies in our data search.  

 
Figure 2. Locations of studies used in the meta-analysis. Each numbered point represents 

a drought observation. The plot numbers and their matching studies are listed in Table 

S1. Some studies occurred in different stands at the same location. 

 

The drought duration was extracted directly from the text of each study and 

converted into months. If the drought was still ongoing at the end of the study, the 

duration was calculated by the last measurement of mortality that was taken. For insect 

information, studies were put into two groups: groups with insect presence documented 

and groups without. This information was directly extracted from the text of each study. 

Stand basal area (m2 ha-1) was extracted either from tables or figures included in the text. 

If stand density (trees ha-1) was given instead of basal area, we estimated stand basal area 

by multiplying density by the basal area of the tree of average DBH.  

Statistical Analysis 
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To examine the correlation between mortality rate and DBH class under drought, 

we quantified the effect size of the meta-analysis using the Pearson Product-Moment 

Correlation method (Harrer et al., 2021). The correlation value of each study was 

calculated by a simple linear regression model. Note that some papers reported the 

correlations for multiple stands characterized by different stand attributes, such as species 

composition, stand age, etc., and these correlations were treated separately. Positive 

correlation values meant larger trees suffered higher mortality rates, and negative 

correlation values meant that smaller trees suffered more. The correlation values, along 

with the sample sizes, for each study were then used to run the meta-analysis to examine 

heterogeneity of the correlation among the studies. We used a random-effects model for 

our meta-analysis because a considerable amount of between-study heterogeneity was 

expected based on the results of previous studies (Bennett et al., 2015; Giardina et al., 

2018). The Sidik-Jonkman (“SJ”) estimator was used to measure tau-squared (𝜏2), which 

is the variance of the distribution of true effect sizes (Sidik & Jonkman, 2005). A 

Fischer’s z transformation was conducted when running the meta-analysis to ensure that 

the sampling distribution was approximately normal. We tested for publication bias in the 

meta-analysis, which results from selective publication of studies with more significant 

findings, using Egger’s test and checking the funnel plot. A funnel plot and Egger’s test 

revealed that one outlier causing publication bias. However, we ran the analysis without 

the outlier and it did not change the results significantly, thus this observation was kept in 

the analysis. As described above, we collected data of factors potentially contributing to 

heterogeneity of the correlation between tree size and mortality, including drought 

duration, insect documentation, drought origin, and basal area. The effects of these 
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factors were quantified by a meta-regression analysis given the heterogeneity in the effect 

size and random effects across the studies. One outlier was detected in the initial drought 

duration plot using Cook’s Distance and was removed from the final analysis for having a 

duration over twice as long as the average drought. The analyses were conducted using 

the “meta” R package (Schwarzer, 2020). 

Results 

Heterogeneity in the correlation between tree size and mortality 

The correlations between tree size and mortality varied from negative to positive 

values among different studies resulting in significant heterogeneity in the correlation (p 

< 0.001). The 95% confidence interval (CI) of each correlation is also reported in Fig. 3A 

and shows the variation in the results. A scatter plot of the correlation from each 

observation shows large heterogeneity in the slopes between DBH and mortality and 

includes positive slopes, negative slopes, and non-significant slopes (Fig. 3B). 

 
Figure 3. A) The “forest” plot showing correlation between tree size and mortality from 

different studies. Note that: (1) The last row shows a statistical test of the heterogeneity in 



11 
 

the correlation among these studies; and (2) Some studies included data from different 

stands which are separated using letters (i.e. Floyd 2009A, Floyd 2009B, …). B) The 

scatter plot with regression lines showing correlation between tree size and mortality of 

the 32 observations. The legend of this figure is shown in the first column of Fig. 3A.  

Effects of Drought Duration, Drought Origin, Insect Documentation, and Basal Area 

 The results showed that drought duration had significant effects on the correlation 

between tree size and mortality rate (p = 0.006). The correlation switched from negative 

to positive with longer drought duration at ~25 months (Fig. 4A). Therefore, smaller trees 

were more vulnerable to mortality under short droughts, but longer droughts render large 

trees more vulnerable. The correlation also significantly varied with drought origin (p = 

0.025).  The correlations under artificial droughts were consistently positive, but there 

was more heterogeneity under naturally occurring drought (Fig. 4B). In addition, studies 

that documented insect presence had positive correlations while those without were 

negative (p = 0.016) (Fig. 4C). Meanwhile, there was no significant effect of basal area 

on the correlation (p = 0.31, Fig. 4D).   
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Figure 4. The heterogeneity in correlation between tree size and mortality with drought 

duration (A), drought origin (B), insects documented/undocumented (C), and basal area 

(D). Red points are artificial droughts, and black points are natural droughts on all 

figures. 

 

Discussion 

The significant heterogeneity in the correlation between tree size and drought-induced 

mortality across studies 

 Based on a range of studies around the world, we showed significant 

heterogeneity in the correlation between tree size and mortality during drought. Bennett 

et al. (2015) showed positive correlations between DBH and mortality in 65% of the 

droughts examined in their study, but this value dropped to 47% in our analysis that 
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contained more recent studies. Our analysis is based on studies from different locations 

that were globally distributed, but heterogeneity can even be found at regional or local 

scale. For example, Esquivel-Muelbert et al. (2020) showed a negative correlation (or 

decreasing mortality risk with tree size) in Western and Southern Amazon but a positive 

one in East-Central Amazonia. Floyd et al. (2009) showed a positive correlation across 

three piñon (Pinus edulis) stands, but a negative correlation in a juniper (Juniperus 

monosperma) stand in the southwestern USA. The significant heterogeneity suggests that 

the relationship between tree size and mortality depends on a wide range of contributing 

factors.  

The correlation between tree size and mortality switched from negative to positive with 

increasing drought duration 

Our analysis showed that the longer a drought persisted the more likely larger 

trees are to suffer higher mortality rates. With generally greater rooting depth, larger trees 

can more readily access deeper soil water, but deep soil water tends to become depleted 

during long droughts and can only be replenished by large precipitation events (Liang et 

al., 2021). Thus, the effect of deep soil water potentially leads to the drought-duration 

effect, characterized by increased mortality of larger trees under longer droughts. In 

addition, prolonged droughts alter composition of soil microbial communities, further 

increasing plant drought vulnerability (Santos-Medellín, 2021). Moreover, large trees 

tend to store more carbon, e.g., higher total content of non-structural carbohydrates (Sala 

& Hoch, 2009; Niinemets, 2010). Therefore, the greater mortality of large trees during 

extended droughts identified in our study provides more support that drought-caused tree 

mortality is more likely due to hydraulic failure rather than carbon starvation (Hartman 
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2013, Adams et al., 2017). Overall, our study ultimately showed that larger trees are 

initially more resistant to droughts. However, once soil moisture becomes severely 

depleted, their larger size becomes a hindrance. Thus, different drought modes (e.g., short 

vs. long droughts) likely cause contrasting structural changes in forests. The effect of 

drought duration identified by our study could improve projections of drought impacts on 

forest dynamics (Hartmann 2022). 

The correlation was positive when insects were documented under drought but reversed 

when they were not documented 

 Insects are a major causal mechanism of tree mortality during drought (Canelles 

et al., 2021). We found that studies documenting insect-associated tree mortality under 

drought showed more positive correlations between tree size and mortality. This 

observation aligns with other studies’ findings that insects preferentially attack larger 

trees (Bennett et al., 2015). While the large tree preference may not be applied to all 

insect species (Stephenson et al., 2019), there are a several possible reasons insects may 

prefer larger trees over smaller ones: (1) Larger trees generally have thicker bark that is 

better for overwintering adults (Fettig et al., 2019; Restaino et al., 2019); (2) Beetles 

usually prefer attacking more hydraulically stressed trees because their defense 

mechanisms are compromised (Netherer et al., 2015; Canelles et al., 2021, McDowell 

2022), and the compromised defense mechanisms tend to occur in large trees during 

drought owing to their vulnerable hydraulic structure (Gaylord et al., 2013; Fettig et al., 

2019). Therefore, the presence of bark beetles and other insects could affect distributions 

of tree size under drought. Moreover, with increasing insect-induced tree mortality under 

warming climate (Jaime et al., 2022; Robbins et al., 2022), considering the insect effects 
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could improve ecosystem models of carbon dynamics, given that large trees are crucial 

contributors to carbon storage (Lutz et al., 2018) and efflux (Rowland et al., 2018).   

Artificial drought experiments had more positive correlation values than natural 

droughts 

 Our analysis found that the correlation between tree size and mortality was 

positive from studies based on experiments with artificial drought (e.g., throughfall 

exclusion), but there were only three such studies included in the analysis. A possible 

reason for the greater mortality rates of larger trees in the artificial drought-based studies 

is the longer drought duration of these studies, i.e., average 100 months in these studies 

compared with 36 months on average in the natural drought studies. The above results are 

in line with that larger trees suffer more with longer droughts. For example, one 

throughfall exclusion experiment lasted seven years and showed a considerably larger 

increase in relative tree mortality for larger trees than in smaller trees over the last four 

years compared to the first three (da Costa et al., 2010). Therefore, future artificial 

drought-based studies could diversify their drought treatments to capture more impacts 

caused by drought. Additionally, it is challenging to simulate multivariate environmental 

changes associated with drought, such as vapor pressure deficit and hotter temperatures, 

contributing to a lack of tree mortality characterized by specific tree sizes (Meir et al., 

2018, Hammond et al. 2022). To accurately simulate drought events, many factors need 

to be altered and measured (heat stress, soil water deficit, solar radiation, etc.); however, 

these measurements could be both difficult and cost-prohibitive to manage for large-scale 

studies (Marchin et al., 2020). Given our literature search, there have been relatively few 

large-scale artificial drought-based studies, particularly for ones considering tree size 
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effects. Meanwhile, more studies are needed to investigate comparisons between artificial 

versus natural droughts and to ensure that artificial droughts accurately represent natural 

droughts of all types. 

There was no correlation between tree size and mortality with increasing basal area 

Notably, our analysis found that there was no significant effect of basal area on 

the correlation. We hypothesized more positive correlations at higher basal areas given 

that greater basal area could increase competition for water resources (Olson et al., 2018; 

Andrews et al., 2020) causing more stress on large trees due to their vulnerable hydraulic 

structures. The non-significant effect of basal area suggests that, in addition to 

competition for water, other environmental conditions are modified by basal area. For 

example, increasing basal area could decrease light availability for small trees due to 

greater canopy development and that may increase their mortality (Iida et al., 2014). 

Thus, the changes in both water competition and light availability may interact.  

Conclusion 

Compared with Bennett et al. (2015), our analysis showed less dominance of 

positive correlation between tree size and drought-related mortality. Moreover, we 

identified important factors driving correlation heterogeneity, including drought duration, 

drought origin, and insect documentation. With increasing data availability, future studies 

could explore other potential factors, such as soil conditions (depth, texture, etc.), plant 

functional traits, and disturbance history (Suarez et al., 2004). In addition to tree-size 

caused changes in plant hydraulics, several functional traits (e.g., wood density, specific 

leaf area) could affect plant drought vulnerability (Greenwood et al., 2017), and these 
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traits could vary with tree height via light environment and genetic factors (Reich, 2000). 

Another factor that needs to be assessed in the future is hotter droughts. Hotter droughts 

are often associated with increased tree mortality and there is evidence that droughts are 

getting hotter on average as time progresses (Allen et al., 2010, Alizadeh et al., 2020, 

Hammond et al., 2022). This could further alter the relationship between tree size and 

drought-induced mortality because insect-driven mortality may be amplified by the 

warmer temperatures (Anderegg et al., 2015) and higher temperatures can inhibit tree 

defenses due to the increased maintenance costs taking carbon from resin production 

(Allen et al., 2010). 
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CHAPTER III 
 

 

A META-ANALYSIS EXAMINING THE RELATIONSHIP BETWEEN STAND 

STRUCTURAL DIVERSITY AND FOREST PRODUCTIVITY 

 

Introduction 

 Climate change is amplifying drought events and creating harsher temperature 

patterns leading to losses in forest productivity globally (Bradford et al., 2020; Senf et 

al., 2020; Hammond et al., 2022). These productivity losses could be mitigated by 

management practices manipulating critical stand attributes, e.g., reducing stand density 

by thinning (Sohn et al., 2016). Thinning and other management practices could also 

modify stand structural diversity (SSD), defined as the intra-stand variation in tree stem 

or canopy size (Palik et al., 2021), which has been shown to be an effective predictor of 

forest productivity in a broad range of forest types, from tropical to boreal forests (Gough 

et al., 2019; Larue et al., 2019; Ullah et al., 2021). However, the previous studies report 

both negative and positive relationships between SSD and forest productivity resulting in 

critical uncertainty in the understanding of forest dynamics from a forest structure 

perspective. 
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 The relationship between SSD and forest productivity arises because SSD 

influences availability of critical growth resources, including light and soil resources. As 

SSD increases, it may have different effects on light availability and the various 

components of forest productivity, e.g., growth of existing trees and ingrowth of new 

trees. Structurally diverse forests tend to have multilayered canopies (Dănescu et al., 

2016; Gough et al., 2019), which could increase light interception (Atkins et al., 2018) 

and growth of individual trees. At the stand level, light penetration to the understory may 

increase with greater SSD due to light penetrating through gaps caused by height 

differences in the structurally diverse forest (Rissanen et al., 2019), potentially enhancing 

ingrowth and growth of understories. However, homogenizing forest structure by 

reducing SSD is currently the most common forest management strategy used to 

maximize potential productivity (Puettmann et al., 2015), e.g., pine plantations in the 

southeastern U.S.A. The availability of soil resources could increase with greater SSD 

because there is improved niche partitioning for belowground resources among different-

sized trees due to their access to resources at different soil depths (Forrester, 2019), e.g., 

larger trees often have more access to deeper soil layers (Giardina et al., 2018). In 

addition, the access to deep soil water of large trees could benefit their neighboring small 

trees by hydraulic redistribution (Prieto et al., 2012). This enhanced niche partitioning 

and hydraulic redistribution with greater SSD are expected to improve forest recruitment 

and growth (Palik et al., 2021). The above variation in the effects of structural diversity 

suggests there is heterogeneity in the relationship between SSD and forest productivity. 

However, the heterogeneity has not been rigorously quantified, and drivers of the 
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heterogeneity have not been thoroughly examined, leading to critical knowledge gaps in 

understanding forest dynamics and impacts of structural diversity.  

  The relationship between SSD and productivity may be confounded by a range of 

abiotic and biotic factors, such as basal area, mean tree size, drought, and temperature. 

The average tree size of stands can influence the SSD-productivity relationship, given 

that greater SSD in taller stands may allow the canopy to have more vertical 

stratification, causing greater light interception (Zeller & Pretzsch, 2019) and resulting in 

enhanced forest growth, particularly for dominant trees which tend to contribute more to 

forest productivity than the others (Ali et al., 2019). Moreover, greater basal areas are 

expected to increase total stand light interception, given that greater basal areas may 

decrease the gaps caused by height differences in structurally diverse forests. As a result, 

greater basal areas likely to enhance forest productivity with greater SSD, i.e., more 

positive SSD-productivity relationship with greater basal areas. (Wang et al., 2011; Ali, 

2019). 
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Figure 5. Conceptual figure showing a simplified comparison of a stand with low SSD 

(left) and one with high SSD (right). Stands with more structural diversity will have more 

light penetration to the understory and greater variance in rooting depths, reducing 

competition for vital resources. The varied rooting depths of the high SSD stand will 

allow for a greater use of available soil water and nutrients from all soil layers. 

 We also examined two abiotic factors that potentially affect the relationship 

between SSD and productivity: average max temperatures and drought intensity. Warmer 

average temperatures, usually caused by increased solar radiation, may allow for more 

functioning leaf area and layered canopies, contributing to greater productivity (Harms et 

al., 2000; Park et al., 2019). Thus, with warmer temperature, the SSD-productivity 

relationship is hypothesized to be more positive. Plant drought stress may be partially 

mitigated by greater SSD due to shading effects, soil water competition, and hydraulic 

redistribution. Understory trees in stands with higher SSD may be shaded by the trees in 

the dominant canopy layer that may decrease temperature within the canopy, contributing 

to less leaf-to-air vapor pressure deficit (VPD) and related transpiration and relieving 

drought stress (Grote et al., 2016; Pretzsch et al., 2022). Additionally, large trees may be 

able to lift up water from deeper soil layers to aid smaller trees whose roots are mostly 
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located in the shallower, drier layers (Forrester, 2019). The increased variation in rooting 

depths resulting from increased SSD will also reduce competition for soil water, which 

decreases losses in productivity during drought (Schwendenmann et al., 2015; Ammer, 

2019). Thus, the SSD-productivity relationship is hypothesized to be more positive with 

increasing drought magnitude. 

 The relationship between SSD and productivity is complex and could be context 

dependent, suggesting that there are factors altering the correlation, e.g., ones related to 

climate, structure, and species composition (Park et al., 2019). Identifying how these 

factors interact is vital to improving the understanding of how SSD affects forest 

productivity and informing forest management from a structural perspective. To 

understand the complex relationship between SSD and productivity, we reviewed 850 

papers from a literature search based on multiple keyword combinations. We filtered 

these papers and extracted measures of SSD, productivity, average tree size, basal area, 

average max temperatures, and climatic water deficit (CWD). We conducted a meta-

analysis to quantify the significance of heterogeneity in the relationship between SSD and 

productivity. Using measures of these potentially confounding factors, we conducted a 

meta-regression analysis to test our hypothesis that correlations between SSD and 

productivity significantly vary with average tree size, basal area, monthly average max 

temperatures, and drought magnitude. 

Methods 

Data compilation 
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The data used in this meta-analysis were collected from research studies 

published before 2022 that reported SSD effects of forest productivity. For this meta-

analysis, we searched the Scopus database using keywords: ( "carbon sequestration"  OR  

biomass  OR  productivity  OR  growth )  AND  ( forest  OR  tree  OR  woody  OR  shrub 

)  AND  ( "Size complexity"  OR  "Structur* complexity"  OR  "Size diversity"  OR  

"Structur* diversity"  OR  "Size variation"  OR  "Structur* variation"  OR  "Size 

variability"  OR  "Structur* variability"  OR  "Size inequality"  OR  "Structur* 

inequality"  OR  "Size heterogeneity"  OR  "Structur* heterogeneity"  OR  "Size 

hierarchy"  OR  "Structur* hierarchy"  OR  "Size uniformity"  OR  "Structur* 

uniformity" OR “heterogeneity of stand structure”). Note that “Structur*” represents any 

words starting with “Structur”. This search produced 850 articles that contained the 

above keywords in their titles, abstracts, or listed keywords. These articles were further 

filtered by reading through their titles and abstracts to ensure that selected studies cover 

the relationship between SSD and productivity. Then, the remaining studies (n = 262) 

were refined further by reading their methods and results to ensure that they contained the 

necessary data for this meta-analysis. For a study to be included in the meta-analysis, it 

needed to include: (a) SSD measurements; (b) productivity measurements; (c) sample 

sizes (or plot sizes) of each forest. Following that process, we included 11 articles which 

reported 22 correlations between SSD and productivity. The measurements occurred at 

11 unique locations (Fig. 6), covering different ecoregions and forest types. The data of 

SSD and forest productivity, and sample sizes were either directly stated in the study or 

extracted from figures using the ImageJ program (https://imagej.nih.gov/ij/) to measure 

the lengths of bar graphs (or other graph types).  
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Figure 6. Locations of studies used in the meta-analysis. Each numbered point represents 

a drought observation. The plot numbers and their matching studies are listed in Table 

S1. Some studies occurred in different stands at the same location. 

The basal area and tree size (i.e., mean stand diameter at breast height, DBH) data 

were extracted directly from either the text or tables of each study. For CWD and average 

max temperature, location data was taken from the study for each forest in the form of 

coordinates. Then the location data was used to extract the climate data for the duration 

of the study from the TerraClimate database (Abatzoglou et al., 2018).  

Statistical Analysis 

 To examine the correlation between SSD and forest productivity, we quantified 

the effect size of the meta-analysis using the Pearson Product-Moment Correlation 

method (Harrer et al., 2021). The correlation value of each study was calculated by a 

linear regression model. Note that some papers reported the correlations for multiple 

measures of SSD, such as height variation and DBH variation, these correlations were 

treated separately. Positive correlation values meant that increased SSD had a positive 

effect on forest productivity, and negative correlations meant the opposite. The 
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correlation values, along with the sample sizes, for each study were then used to run the 

meta-analysis to examine heterogeneity of the correlation among the studies. We used a 

random-effects model for our meta-analysis because a considerable amount of between-

study heterogeneity was expected based on the results of previous studies. The Sidik-

Jonkman (“SJ”) estimator was used to measure tau-squared (𝜏2), which is the variance of 

the distribution of true effect sizes (Sidik & Jonkman, 2005). A Fischer’s z 

transformation was conducted when running the meta-analysis to ensure that the 

sampling distribution was approximately normal. We tested for publication bias in the 

meta-analysis, which results from selective publication of studies with more significant 

findings, using Egger’s test and checking the funnel plot. As described above, we 

collected data of factors potentially contributing to heterogeneity of the correlation 

between SSD and productivity including species richness, mean tree size, basal area, 

CWD, monthly average max temperatures. Additionally, each stand included was 

classified into a forest ecozone using the FAO world ecozones map (FAO, 2010). There 

were three different ecozones included in this study, all were a form of temperate forest. 

The effects of these factors were quantified by a meta-regression analysis given the 

heterogeneity in the effect size and random effects across the studies. The analyses were 

conducted using the “meta” R package (Schwarzer, 2020). 

 

Results 

Heterogeneity in the correlation between SSD and productivity 
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 The correlations between SSD and productivity varied from negative to positive 

values among different studies resulting in significant heterogeneity in the correlation (p 

< 0.001). The 95% confidence interval (CI) of each correlation is also reported in Fig. 7 

and shows the variation in results.  

 

Figure 7. The “forest” plot showing correlation between SSD and productivity from 

different observations. Note that the last row shows a statistical test of the heterogeneity 

in the correlation among these studies. 

Effects of basal area, mean DBH, temperature, and drought intensity 

 The results showed that basal area (p = 0.027), mean DBH (p = 0.0017), average 

max temperature (p = 0.0086), and CWD (p = 0.015) had significant effects on the 

correlation between SSD and productivity. With all four of these factors, the correlation 

changed from negative to positive with increasing values of the predictor variables (Fig. 

8). Therefore, SSD had a positive effect only in stands with relatively large basal area, 

average tree size, average max temperatures, and drought intensity.  
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Figure 8. The heterogeneity in correlation between SSD and productivity with mean tree 

DBH (A), basal area (B), mean monthly max temperatures (C), and climatic water deficit 

(D). Point colors represent the forest ecozone where red = temperate continental forests, 

green = temperate mountain systems, and blue = temperate oceanic forests. 

 

Discussion 

The SSD-productivity correlation switched from negative to positive with increasing 

basal area 

 Our analysis showed that greater SSD enhanced forest productivity in stands with 

very high basal areas. Very high basal areas can affect productivity negatively with 

increasing competition and positively with increasing stand-level light interception. The 

positive effects may be more important than the others in forests with greater SSD 

because greater SSD could alleviate the competition by promoting complementary 



28 
 

resource utilization within a stand (Ishii et al., 2004). In addition, with increased light 

interception, the light penetrated through canopy gaps due to size differences between 

neighboring trees would be better used to enhance productivity of structurally diverse 

forests (Ali, 2019). The effects of basal area on the SSD-productivity relationship may 

also stem from distribution of tree size in a stand. When comparing two stands with 

similarly high basal areas but different SSD, the stand with greater SSD is likely to have 

a few larger trees accounting for most of the basal area (Ali et al., 2019). Whereas in the 

stand with lower SSD, the basal area tends to be made up of many similar sized trees 

growing more closely together. In this situation, the higher SSD stand may be more 

productive because the few larger trees could provide more productivity than the larger 

number of smaller trees (Stephenson et al., 2014; Lutz et al., 2018).  

The correlation switched from negative to positive with increasing average tree size 

 Our analysis showed that with larger average tree sizes, forest productivity is 

more likely to benefit from increased SSD. With a taller canopy, there is greater vertical 

stratification that enables light to be used more efficiently (Zeller & Pretzsch, 2019). The 

greater vertical stratification combined with increased SSD leads to a larger overall 

canopy area, contributing to more light interception and greater productivity (Rissanen et 

al., 2019). It has also been shown that the largest 1% of trees in a forest contribute to a 

majority of carbon storage and productivity, so the presence of extremely large trees in a 

structurally diverse stand would lead to increased productivity even if the remaining tress 

are much smaller (Stephenson et al., 2014; Lutz et al., 2018; Ali et al., 2019). 

Additionally, in younger and shorter stands, the smallest trees that are contributing to the 

SSD are generally expected to be more inefficient with their light and nutrient use, and 
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the benefits that could potentially be provided by increasing SSD would not be applicable 

to these stands with shorter canopy height (Zeller & Pretzsch, 2019). Thus, consistent 

with local studies, e.g., central Europe (Zeller & Pretzsch, 2019), our results used global-

distributed data to further support that SSD is more beneficial to productivity of taller 

stands. 

The correlation switched from negative to positive with increasing average max 

temperatures 

 Our analysis showed that the SSD-productivity relationship was more positive 

with increasing temperature. At a global level, higher temperatures come along with 

greater solar radiations which enable more complex canopy structures since more 

sunlight is able to penetrate to lower canopy layers (Harms et al., 2000). Moreover, 

temperatures could become too extreme causing stress on plant growth. As discussed 

above, the high radiation or drought stress could be alleviated by greater SSD, due to the 

potentially improved shading effects and niche partitioning to increase availability and 

sharing efficiency of resources in structurally diverse forests (Grote et al., 2016; 

Zellweger et al., 2020; Pretzsch et al., 2022).  

The correlation switched from negative to positive with increasing CWD 

 Our analysis showed that SSD was more beneficial to productivity when stands 

are more stressed by drought. When water is limited, stands with higher SSD could better 

utilize the available water because of their varying rooting depths (Schwendenmann et 

al., 2015; Ammer, 2019). Additionally, large trees could mitigate drought stress of their 

neighboring small trees by lifting water from deep soil layers to shallower drier layers 
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(Forrester, 2019). Layered canopies caused by increased SSD could shade understory 

trees to reduce radiation, leading to decreased water loss and drought stress (Grote et al., 

2016; Zellweger et al., 2020; Pretzsch et al., 2022). Therefore, forest management based 

on SSD could be an adaptative strategy to sustain forest productivity in response to 

increasing drought with climate change (Pretzsch et al., 2022). 

 

Conclusion 

 Our analysis showed significant heterogeneity in the SSD-productivity 

relationship. We also identified potential drivers of the heterogeneity given the variation 

in the relationship with mean tree size, basal area, temperature, and drought. Our results 

suggest that SSD could be another stand attribute considered in forest management to 

achieve resource sustainability under climate change, but the SSD effects tend to be 

context dependent. In addition, although the relationship between biodiversity and 

productivity is widely studied, structural diversity has not been well investigated as 

another biodiversity metric given the relatively small sample size of our meta-analysis. 

As more data becomes available about structural diversity effects on productivity, there 

are more potential factors that need to be examined, and some of them have been shown 

to affect the SSD-productivity relationship in local studies, e.g., functional identity (Cao 

et al., 2022).
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CHAPTER IV 
 

 

CONCLUSION 

 

 Both of my analyses showed significant heterogeneity across the relationships 

they were investigating. For the tree size-mortality relationship the strongest drivers of 

heterogeneity were drought length and insect presence, where longer droughts and the 

presence of insects both lead to higher mortality rates in larger trees. This increased 

mortality of larger trees may result in shorter forests in general given longer droughts and 

increased insect outbreaks under climate change. In the SSD-productivity relationship 

mean tree size, basal area, species richness, temperature, and drought were identified as 

potential drivers of heterogeneity. SSD has shown that it could be a critical stand attribute 

to consider in forest management to achieve resource sustainability in the future. Overall, 

results from these two studies suggest that tree size and forest structure effects on forest 

dynamics are both complex and context dependent. In the end, there is no “one-size-fits-

all” forest model or management strategy that can be applied to all forests. Instead, it is 

important to have a full understanding of how biotic and abiotic factors can alter how 

individual forests will react to drought, warmer temperatures, and other disturbances in 
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the future. Without an understanding of these interactions, it may be impossible to 

accurately predict how forest dynamics may shift as the climate changes.  
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